-
Notifications
You must be signed in to change notification settings - Fork 3
/
pretrain_agent.py
361 lines (301 loc) · 16.6 KB
/
pretrain_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import copy
import logging
import os
import time
import sys
sys.path.append(os.path.join('VOS', 'ATNet'))
import numpy as np
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
from sacred import Experiment
from easydict import EasyDict as edict
from davisinteractive.dataset.davis import Davis
from davisinteractive import utils as interactive_utils
from davisinteractive.session import DavisInteractiveSession
from utils.utils_agent import (agent_business, gen_subseq, recommend_frame)
from utils.utils_atnet import run_VOS_singleiact
from models.agent import Agent
from utils.misc import (set_random_seed, AverageMeter, sequence_metric)
from config import Config
from networks.atnet import ATnet
from libs import utils
cudnn.benchmark = False
cudnn.deterministic = True
def create_basic_stream_logger(format):
logger = logging.getLogger('')
logger.setLevel(logging.INFO)
logger.handlers = []
ch = logging.StreamHandler()
formatter = logging.Formatter(format)
ch.setFormatter(formatter)
logger.addHandler(ch)
return logger
ex = Experiment('train')
ex.add_config('./configs/config.yaml')
ex.logger = create_basic_stream_logger('%(name)s - %(message)s')
def davis_config(run, _log):
kwargs = dict()
cfg_yl = edict(run.config)
cfg_yl.phase = 'pretrain'
# ====== configs ======
device = torch.device(f"cuda:{cfg_yl.gpu_id}" if torch.cuda.is_available() else "cpu")
subset = cfg_yl.data.subset
dataset_root_dir = cfg_yl.data.root_dir_davis
max_nb_interactions = int(cfg_yl.davis_interactive.max_nb_interactions)
max_time = None # Maximum time per object
davis = Davis(davis_root=dataset_root_dir)
# ------ Agent ------
agent = Agent(device=device, cfg=cfg_yl)
# ATNet
config = Config()
config.davis_dataset_dir = dataset_root_dir
net = ATnet()
net.cuda()
net.eval()
net.load_state_dict(torch.load(os.path.join('VOS', 'ATNet', config.test_load_state_dir)))
# Assess_net
assess_net = None
###############################
save_result_dir = cfg_yl.agent.save_result_dir
os.makedirs(save_result_dir, exist_ok=True)
path_to_reward = os.path.join(cfg_yl.agent.save_result_dir, cfg_yl.agent.reward_csv)
assert os.path.exists(path_to_reward)
df = pd.read_csv(path_to_reward, index_col=0)
agent.memory_pool.basename_csv = cfg_yl.agent.pretrain_csv
cfg_yl.method = 'random'
cfg_yl.num_epochs = 10
report_save_dir = save_result_dir
set_random_seed(2021)
kwargs['cfg_yl'] = cfg_yl
kwargs['config'] = config
kwargs['net'] = net
kwargs['agent'] = agent
kwargs['assess_net'] = assess_net
kwargs['davis'] = davis
kwargs['dataset_root_dir'] = dataset_root_dir
kwargs['report_save_dir'] = report_save_dir
kwargs['subset'] = subset
kwargs['max_nb_interactions'] = max_nb_interactions
kwargs['max_time'] = max_time
kwargs['device'] = device
kwargs['df'] = df
return kwargs
@ex.automain
def main(_run, _log):
kwargs = davis_config(_run, _log)
auc_meter = AverageMeter()
metric_at_threshold_meter = AverageMeter()
seen_seq = {}
# ====== main loop ======
for epoch in range(1, kwargs['cfg_yl'].num_epochs+1):
# 'J', 'F', 'J_AND_F'
metric_to_optimize = kwargs['cfg_yl'].davis_interactive.metric
with DavisInteractiveSession(host='localhost', davis_root=kwargs['dataset_root_dir'], subset=kwargs['subset'],
metric_to_optimize=metric_to_optimize,
max_nb_interactions=kwargs['max_nb_interactions'], max_time=kwargs['max_time'],
report_save_dir=kwargs['report_save_dir']) as sess:
# per object per serquence
final_mask_iou_seq_obj_scb = AverageMeter()
final_time_seq_obj_scb = AverageMeter()
final_recommend_time_seq_obj_scb = AverageMeter()
final_agent_time_seq_obj_scb = AverageMeter()
final_seg_time_seq_obj_scb = AverageMeter()
final_reward_step_seq_obj_scb = AverageMeter()
final_reward_done_seq_obj_scb = AverageMeter()
agent_loss = AverageMeter()
i_seq = 0
sess.connector.service.robot.min_nb_nodes = kwargs['config'].test_min_nb_nodes
while sess.next():
# 1 ------ interaction initial ------
interaction_tic = time.time()
init_tic = time.time()
sequence, scribbles, first_scribble = sess.get_scribbles(only_last=False)
annotated_frames = interactive_utils.scribbles.annotated_frames(sess.sample_last_scribble)
if first_scribble:
i_seq = i_seq + 1
interaction_time = AverageMeter()
frame_recommend_time = AverageMeter()
segment_time = AverageMeter()
agent_time = AverageMeter()
assert len(annotated_frames) > 0
first_frame = annotated_frames[0]
next_frame = annotated_frames[0]
reward_step_acc = 0
reward_done_acc = 0
seen_seq[sequence] = 1 if sequence not in seen_seq.keys() else seen_seq[sequence] + 1
gt_masks_original = kwargs['davis'].load_annotations(sequence)
nb_objects = kwargs['davis'].dataset[sequence]['num_objects']
agent_train_loader = None
# make subsequence information
len_subseq = min(
kwargs['cfg_yl'].data.len_subseq, kwargs['davis'].dataset[sequence]['num_frames'])
subseq = gen_subseq(first_frame, kwargs['davis'].dataset[sequence]['num_frames'], len_subseq)
_log.info(f'subseq: {subseq}')
_log.info(f"first_frame:{first_frame}, subseq:{subseq}")
n_frame = len_subseq
next_frame = subseq.index(next_frame)
gt_masks = gt_masks_original[subseq]
prev_frames = [next_frame]
annotated_frames_list = [next_frame]
# ATNet stuff
anno_dict = {'frames': [], 'annotated_masks': [],
'masks_tobe_modified': []}
info = kwargs['davis'].dataset[sequence]
img_size = info['image_size'][::-1]
n_objects = info['num_objects']
final_masks = np.zeros([n_frame, img_size[0], img_size[1]])
vos_kwargs = dict()
vos_kwargs['pad_info'] = utils.apply_pad(final_masks[0])[1]
vos_kwargs['hpad1'], vos_kwargs['wpad1'] = vos_kwargs['pad_info'][0][0], \
vos_kwargs['pad_info'][1][0]
vos_kwargs['hpad2'], vos_kwargs['wpad2'] = vos_kwargs['pad_info'][0][1], \
vos_kwargs['pad_info'][1][1]
h_ds, w_ds = int((img_size[0] + sum(vos_kwargs['pad_info'][0])) / 4), \
int((img_size[1] + sum(vos_kwargs['pad_info'][1])) / 4)
vos_kwargs['anno_6chEnc_r5_list'], vos_kwargs['anno_3chEnc_r5_list'] = [
], []
vos_kwargs['prob_map_of_frames'] = torch.zeros(
(n_frame, n_objects, 4 * h_ds, 4 * w_ds)).cuda()
vos_kwargs['num_frames'] = n_frame
vos_kwargs['n_objects'] = n_objects
vos_kwargs['subseq'] = subseq
vos_kwargs['n_interaction'] = 1
rec_kwargs = dict()
rec_kwargs['n_frame'] = n_frame
rec_kwargs['n_objects'] = n_objects
rec_kwargs['all_F'] = None
rec_kwargs['mask_quality'] = None
# dataset and VOS business
old_frame = None
old_masks_meta = None
old_masks_metric = None
repeat_selection = None
else:
annotated_frames_list_np = np.zeros(len(new_masks_metric))
for i in annotated_frames_list:
annotated_frames_list_np[i] += 1
repeat_selection = next_frame not in list(
np.where(annotated_frames_list_np == annotated_frames_list_np.min())[0])
annotated_frames_list.append(next_frame)
old_frame = next_frame
old_masks_meta = new_masks_meta
old_masks_metric = new_masks_metric
vos_kwargs['n_interaction'] += 1
# Where we save annotated frames
anno_dict['frames'].append(next_frame)
# mask before modefied at the annotated frame
anno_dict['masks_tobe_modified'].append(
final_masks[next_frame])
scribbles['annotated_frame'] = next_frame
scribbles_subseq = [scribbles['scribbles'][i] for i in subseq]
scribbles['scribbles'] = scribbles_subseq
init_time = time.time() - init_tic
# 2 ------ segmentation ------
segment_tic = time.time()
with torch.no_grad():
final_masks, all_P = run_VOS_singleiact(kwargs['net'], kwargs['config'], kwargs['subset'], scribbles,
anno_dict['frames'], final_masks, **vos_kwargs)
new_masks = final_masks
new_masks_metric = sequence_metric(metric_to_optimize, gt_masks, new_masks, nb_objects)
segment_time.update(time.time()-segment_tic)
# 3 ------ frame recommendation ------
frame_recommend_tic = time.time()
rec_kwargs['all_P'] = all_P
rec_kwargs['new_masks_quality'] = new_masks_metric
rec_kwargs['prev_frames'] = prev_frames
rec_kwargs['annotated_frames_list'] = copy.deepcopy(annotated_frames_list)
rec_kwargs['first_frame'] = first_frame
rec_kwargs['max_nb_interactions'] = kwargs['max_nb_interactions']
next_frame = recommend_frame(kwargs['cfg_yl'], kwargs['assess_net'], kwargs['agent'], kwargs['device'],
**rec_kwargs)
prev_frames.append(next_frame)
frame_recommend_time.update(time.time() - frame_recommend_tic)
# 4 ------ Submit prediction ------
new_masks_submit = copy.deepcopy(gt_masks_original)
new_masks_submit[subseq] = new_masks
sess.submit_masks(new_masks_submit, next_scribble_frame_candidates=[subseq[next_frame]])
# 5 ------ agent business ------
agent_tic = time.time()
new_masks_meta = dict(
sequence=sequence, scribble_iter=seen_seq[sequence], n_interaction=vos_kwargs['n_interaction'])
agent_kwargs = dict()
agent_kwargs['first_scribble'] = first_scribble
agent_kwargs['old_masks_metric'] = old_masks_metric
agent_kwargs['new_masks_metric'] = new_masks_metric
agent_kwargs['old_frame'] = old_frame
agent_kwargs['next_frame'] = next_frame
agent_kwargs['sequence'] = sequence
agent_kwargs['seen_seq'] = seen_seq
agent_kwargs['repeat_selection'] = repeat_selection
agent_kwargs['df'] = kwargs['df']
agent_kwargs['annotated_frames_list'] = annotated_frames_list
agent_kwargs['old_masks_meta'] = old_masks_meta
agent_kwargs['new_masks_meta'] = new_masks_meta
agent_kwargs['report_save_dir'] = kwargs['cfg_yl'].agent.save_result_dir
agent_kwargs['agent_train_loader'] = agent_train_loader
[agent_loss_iter, reward_step, reward_done] = \
agent_business(kwargs['cfg_yl'], kwargs['agent'], kwargs['max_nb_interactions'],
vos_kwargs['n_interaction'], **agent_kwargs)
reward_step_acc += reward_step
reward_done_acc += reward_done
agent_time.update(time.time() - agent_tic)
# 6 ------ print logs ------
interaction_time.update(time.time() - interaction_tic)
_log.info(
f"avg_{metric_to_optimize}: {(sum(new_masks_metric) / len(new_masks_metric) * 100):.2f} "
f"init_time:{init_time:.2f} "
f"rec_time:{frame_recommend_time.val:.2f} "
f"seg_time:{segment_time.val:.2f} ({segment_time.avg:.2f})\t"
f"next_frame: {next_frame:2d} [{int(sum(new_masks_metric < new_masks_metric[next_frame])) + 1:2d}/{new_masks_metric.shape[0]:2d}]\t"
f"reward_step:{reward_step:.2f} \t"
f"reward_done:{reward_done:.2f} \t"
f"seq: {sequence}_{seen_seq[sequence]:1d} [{vos_kwargs['n_interaction']:2d}/{kwargs['max_nb_interactions']:2d}]\t"
)
if vos_kwargs['n_interaction'] == kwargs['max_nb_interactions']:
final_mask_iou_seq_obj_scb.update(
(sum(new_masks_metric) / len(new_masks_metric)) * 100)
final_time_seq_obj_scb.update(interaction_time.avg)
final_recommend_time_seq_obj_scb.update(
frame_recommend_time.avg)
final_agent_time_seq_obj_scb.update(agent_time.avg)
final_seg_time_seq_obj_scb.update(segment_time.avg)
final_reward_step_seq_obj_scb.update(reward_step_acc)
final_reward_done_seq_obj_scb.update(reward_done_acc)
if agent_loss_iter > 0:
agent_loss.update(agent_loss_iter)
_log.info(
f"* avg_time: {final_time_seq_obj_scb.val:.2f} ({final_time_seq_obj_scb.avg:.2f})"
f" rec_time:{final_recommend_time_seq_obj_scb.val:.2f} ({final_recommend_time_seq_obj_scb.avg:.2f})"
f" agent_time:{final_agent_time_seq_obj_scb.val:.2f} ({final_agent_time_seq_obj_scb.avg:.2f})\t"
f"seg_time: {final_seg_time_seq_obj_scb.val:.2f} ({final_seg_time_seq_obj_scb.avg:.2f})\t"
f"{metric_to_optimize}: {final_mask_iou_seq_obj_scb.val:.2f} ({final_mask_iou_seq_obj_scb.avg:.2f})\t"
f"reward_step: {final_reward_step_seq_obj_scb.val:.2f} ({final_reward_step_seq_obj_scb.avg:.2f})\t"
f"reward_done: {final_reward_done_seq_obj_scb.val:.2f} ({final_reward_done_seq_obj_scb.avg:.2f})\t"
f"agent_loss: {agent_loss.val:.4f} ({agent_loss.avg:.4f})\t"
f"seq: [{i_seq}/{len(sess.samples)}] {sequence}_{seen_seq[sequence]:1d}"
)
global_summary = sess.get_global_summary()
_log.info(f"# final avg {metric_to_optimize}: {final_mask_iou_seq_obj_scb.avg:.4f}\t"
f"final agent loss: {agent_loss.avg:.2f}\t"
f"final avg reward_step: {final_reward_step_seq_obj_scb.avg:.4f}\t"
f"final avg reward_done: {final_reward_done_seq_obj_scb.avg:.4f}")
auc_round = np.trapz(global_summary['curve'][metric_to_optimize][:-1]) / \
(len(global_summary['curve'][metric_to_optimize][:-1]) - 1)
global_summary['auc'] = auc_round
auc = float(global_summary['auc'])
metric_at_threshold = float(
global_summary['metric_at_threshold'][metric_to_optimize])
auc_meter.update(auc)
metric_at_threshold_meter.update(metric_at_threshold)
_log.info(f"# global_summary: auc:{auc:.4f} ({auc_meter.avg:.4f})\t"
f"auc_t:{auc*100:.4f}\t"
f"{metric_to_optimize}@{int(global_summary['metric_at_threshold']['threshold']):2d}: "
f"{metric_at_threshold:.4f} ({metric_at_threshold_meter.avg:.4f})")
print(f"# time:\t", end=' ')
for i in range(len(global_summary['curve']['time'])):
print(f"{global_summary['curve']['time'][i]:.2f}\t", end=' ')
print(f"\n# {metric_to_optimize}:\t", end=' ')
for i in range(len(global_summary['curve'][metric_to_optimize])):
print(f"{global_summary['curve'][metric_to_optimize][i] * 100:.2f}\t", end=' ')
print('\n')