From 003a98d8590408dbb7532ef4e3d2ce660b1bf2ac Mon Sep 17 00:00:00 2001 From: smichr Date: Sun, 11 Aug 2024 14:43:01 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20sympy/sy?= =?UTF-8?q?mpy@7f4094628666e15d4720236159080d972b583492=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../matrices-10.pdf | Bin 287805 -> 287805 bytes .../beam-2.pdf | Bin 10750 -> 10750 bytes .../beam-23.pdf | Bin 13824 -> 13824 bytes .../plotting-2.pdf | Bin 10432 -> 10432 bytes .../plotting-32_01.pdf | Bin 9503 -> 9503 bytes .../control_plots-4.pdf | Bin 16082 -> 16082 bytes .../beam_problems-13_00.pdf | Bin 11403 -> 11403 bytes .../beam-1.pdf | Bin 407311 -> 407308 bytes .../beam-5.pdf | Bin 14163 -> 14163 bytes .../beam-21.pdf | Bin 13029 -> 13029 bytes .../plotting-4.pdf | Bin 8961 -> 8961 bytes .../plotting-17.pdf | Bin 539967 -> 539967 bytes .../plotting-6.pdf | Bin 9503 -> 9503 bytes .../control_plots-5.pdf | Bin 16241 -> 16241 bytes .../matrices-24.pdf | Bin 271985 -> 271985 bytes .../matrices-25.pdf | Bin 287805 -> 287805 bytes .../plotting-16.pdf | Bin 529300 -> 529300 bytes .../plotting-26.hires.png | Bin 30766 -> 30736 bytes .../beam_problems-14.pdf | Bin 17011 -> 17011 bytes .../beam-8.pdf | Bin 10160 -> 10160 bytes .../matrices-22.pdf | Bin 245632 -> 245632 bytes .../matrices-4.pdf | Bin 271985 -> 271985 bytes .../plotting-32_00.pdf | Bin 9307 -> 9307 bytes .../beam_problems-18.pdf | Bin 10513 -> 10513 bytes .../plotting-26.pdf | Bin 128983 -> 129106 bytes .../plotting-1.pdf | Bin 10400 -> 10400 bytes .../plotting-29.hires.png | Bin 19482 -> 19500 bytes .../control_plots-2.pdf | Bin 19524 -> 19524 bytes .../generate_plots_q3_3.pdf | Bin 15864 -> 15864 bytes .../control_plots-1.pdf | Bin 15544 -> 15544 bytes .../matrices-8.pdf | Bin 288237 -> 288237 bytes .../plotting-19.pdf | Bin 9527 -> 9527 bytes .../matrices-17.pdf | Bin 245632 -> 245632 bytes .../beam-1.hires.png | Bin 24788 -> 24792 bytes .../matrices-18.pdf | Bin 288237 -> 288237 bytes .../plotting-33.pdf | Bin 11061 -> 11061 bytes .../beam-20.pdf | Bin 16352 -> 16352 bytes .../plotting-25.hires.png | Bin 32772 -> 32765 bytes .../biomechanics-11.pdf | Bin 11968 -> 11968 bytes .../biomechanical-model-example-35.pdf | Bin 21680 -> 21680 bytes .../beam_problems-13_01.pdf | Bin 11932 -> 11932 bytes .../plotting-7.pdf | Bin 10330 -> 10330 bytes .../plotting-20.pdf | Bin 9764 -> 9764 bytes .../plotting-28.pdf | Bin 12898 -> 12898 bytes .../plotting-15.pdf | Bin 269853 -> 269853 bytes .../generate_plots_q3_5_1.pdf | Bin 16629 -> 16629 bytes .../matrices-13.pdf | Bin 288237 -> 288237 bytes .../generate_plots_q5.pdf | Bin 16481 -> 16481 bytes .../plotting-27.pdf | Bin 14728 -> 14728 bytes .../plotting-30.png | Bin 8719 -> 8722 bytes .../biomechanics-12.pdf | Bin 13189 -> 13189 bytes .../matrices-2.pdf | Bin 245632 -> 245632 bytes .../plotting-25.png | Bin 10128 -> 10122 bytes .../generate_plots_q3_4.pdf | Bin 16202 -> 16202 bytes .../plotting-11.pdf | Bin 8686 -> 8686 bytes .../matrices-6.pdf | Bin 287805 -> 287805 bytes .../matrices-19.pdf | Bin 271985 -> 271985 bytes .../plotting-26.png | Bin 9354 -> 9366 bytes .../matrices-21.pdf | Bin 287805 -> 287805 bytes .../plotting-12.pdf | Bin 7950 -> 7950 bytes .../matrices-12.pdf | Bin 245632 -> 245632 bytes .../beam-19.pdf | Bin 12963 -> 12963 bytes .../beam_problems-11_00.pdf | Bin 9625 -> 9625 bytes .../matrices-15.pdf | Bin 287805 -> 287805 bytes .../plotting-29.pdf | Bin 18557 -> 18545 bytes .../plotting-13.pdf | Bin 7954 -> 7954 bytes .../beam_problems-16.pdf | Bin 9428 -> 9428 bytes .../biomechanics-14.pdf | Bin 10602 -> 10602 bytes .../plotting-24.png | Bin 8378 -> 8373 bytes .../solve-ode-1.pdf | Bin 12686 -> 12686 bytes .../beam-4.pdf | Bin 9990 -> 9990 bytes .../plotting-10.pdf | Bin 10939 -> 10939 bytes .../biomechanics-34.pdf | Bin 21717 -> 21717 bytes .../plotting-35.pdf | Bin 268839 -> 268839 bytes .../matrices-16.pdf | Bin 287805 -> 287805 bytes .../plotting-30.pdf | Bin 26797 -> 27932 bytes .../beam-3.pdf | Bin 12568 -> 12568 bytes .../matrices-20.pdf | Bin 287805 -> 287805 bytes .../matrices-11.pdf | Bin 287805 -> 287805 bytes .../plotting-32_02.pdf | Bin 8854 -> 8854 bytes .../plotting-34.pdf | Bin 266953 -> 266953 bytes .../beam-18.pdf | Bin 12689 -> 12689 bytes .../generate_plots_q3_5_2.pdf | Bin 16629 -> 16629 bytes .../plotting-9.pdf | Bin 8498 -> 8498 bytes .../beam_problems-11_01.pdf | Bin 9835 -> 9835 bytes .../beam-1.png | Bin 10076 -> 10081 bytes .../biomechanical-model-example-38.pdf | Bin 25385 -> 25385 bytes .../control_plots-3.pdf | Bin 14494 -> 14494 bytes .../matrices-9.pdf | Bin 271985 -> 271985 bytes .../plotting-22.pdf | Bin 217195 -> 217195 bytes .../plotting-29.png | Bin 6918 -> 6919 bytes .../beam-22.pdf | Bin 15316 -> 15316 bytes .../plotting-30.hires.png | Bin 25680 -> 25781 bytes .../matrices-14.pdf | Bin 271985 -> 271985 bytes .../beam-7.pdf | Bin 18097 -> 18097 bytes .../matrices-7.pdf | Bin 245632 -> 245632 bytes .../beam-6.pdf | Bin 9464 -> 9464 bytes .../plotting-32_03.pdf | Bin 269853 -> 269853 bytes .../matrices-1.pdf | Bin 287805 -> 287805 bytes .../plotting-24.hires.png | Bin 26955 -> 26950 bytes .../plotting-5.pdf | Bin 9307 -> 9307 bytes .../matrices-3.pdf | Bin 288237 -> 288237 bytes .../plotting-25.pdf | Bin 39816 -> 39758 bytes .../matrices-5.pdf | Bin 287805 -> 287805 bytes .../beam-9.pdf | Bin 11833 -> 11833 bytes .../matrices-23.pdf | Bin 288237 -> 288237 bytes .../fourier-1.pdf | Bin 15180 -> 15180 bytes .../fourier-2.pdf | Bin 23885 -> 23885 bytes .../beam-10.pdf | Bin 11847 -> 11847 bytes .../plotting-24.pdf | Bin 31899 -> 31935 bytes .../biomechanics-13.pdf | Bin 12395 -> 12395 bytes .../truss-1.pdf | Bin 3378 -> 3378 bytes .../plotting-31_01.pdf | Bin 20533 -> 20529 bytes .../plotting-31_00.pdf | Bin 20237 -> 20559 bytes dev/_images/beam-1.png | Bin 10076 -> 10081 bytes dev/_images/plotting-24.png | Bin 8378 -> 8373 bytes dev/_images/plotting-25.png | Bin 10128 -> 10122 bytes dev/_images/plotting-26.png | Bin 9354 -> 9366 bytes dev/_images/plotting-29.png | Bin 6918 -> 6919 bytes dev/_images/plotting-30.png | Bin 8719 -> 8722 bytes dev/explanation/gotchas.html | 2 +- dev/modules/algebras.html | 66 +- dev/modules/assumptions/ask.html | 8 +- dev/modules/assumptions/assume.html | 18 +- dev/modules/assumptions/index.html | 12 +- dev/modules/assumptions/predicates.html | 84 +- dev/modules/assumptions/refine.html | 18 +- dev/modules/calculus/index.html | 40 +- dev/modules/categories.html | 36 +- dev/modules/codegen.html | 234 ++-- dev/modules/combinatorics/galois.html | 42 +- dev/modules/combinatorics/graycode.html | 20 +- .../combinatorics/group_constructs.html | 2 +- dev/modules/combinatorics/group_numbers.html | 8 +- dev/modules/combinatorics/named_groups.html | 10 +- dev/modules/combinatorics/partitions.html | 26 +- dev/modules/combinatorics/perm_groups.html | 134 +- dev/modules/combinatorics/permutations.html | 98 +- dev/modules/combinatorics/polyhedron.html | 6 +- dev/modules/combinatorics/prufer.html | 16 +- dev/modules/combinatorics/subsets.html | 30 +- dev/modules/combinatorics/tensor_can.html | 8 +- dev/modules/combinatorics/testutil.html | 10 +- dev/modules/combinatorics/util.html | 16 +- dev/modules/concrete.html | 38 +- dev/modules/core.html | 502 +++---- dev/modules/crypto.html | 102 +- dev/modules/diffgeom.html | 78 +- dev/modules/discrete.html | 30 +- dev/modules/functions/combinatorial.html | 66 +- dev/modules/functions/elementary.html | 188 +-- dev/modules/functions/index.html | 8 +- dev/modules/functions/special.html | 200 +-- dev/modules/geometry/curves.html | 12 +- dev/modules/geometry/ellipses.html | 48 +- dev/modules/geometry/entities.html | 18 +- dev/modules/geometry/lines.html | 90 +- dev/modules/geometry/plane.html | 36 +- dev/modules/geometry/points.html | 54 +- dev/modules/geometry/polygons.html | 52 +- dev/modules/geometry/utils.html | 10 +- dev/modules/holonomic/convert.html | 6 +- dev/modules/holonomic/internal.html | 4 +- dev/modules/holonomic/operations.html | 18 +- dev/modules/holonomic/represent.html | 10 +- dev/modules/integrals/g-functions.html | 78 +- dev/modules/integrals/integrals.html | 122 +- dev/modules/interactive.html | 14 +- dev/modules/liealgebras/index.html | 164 +-- dev/modules/logic.html | 90 +- dev/modules/matrices/dense.html | 22 +- dev/modules/matrices/expressions.html | 64 +- dev/modules/matrices/immutablematrices.html | 4 +- dev/modules/matrices/kind.html | 2 +- dev/modules/matrices/matrices.html | 368 +++--- dev/modules/matrices/normalforms.html | 4 +- dev/modules/matrices/sparse.html | 6 +- dev/modules/matrices/sparsetools.html | 6 +- dev/modules/ntheory.html | 202 +-- dev/modules/parsing.html | 58 +- .../physics/biomechanics/api/activation.html | 18 +- .../physics/biomechanics/api/curve.html | 86 +- .../biomechanics/api/musculotendon.html | 12 +- .../physics/continuum_mechanics/beam.html | 110 +- .../physics/continuum_mechanics/cable.html | 18 +- .../physics/continuum_mechanics/truss.html | 26 +- .../physics/control/control_plots.html | 26 +- dev/modules/physics/control/lti.html | 74 +- dev/modules/physics/hep/index.html | 8 +- dev/modules/physics/hydrogen.html | 8 +- dev/modules/physics/matrices.html | 8 +- .../physics/mechanics/api/actuator.html | 22 +- .../mechanics/api/deprecated_classes.html | 30 +- .../physics/mechanics/api/expr_manip.html | 4 +- dev/modules/physics/mechanics/api/joint.html | 14 +- .../physics/mechanics/api/kane_lagrange.html | 24 +- .../physics/mechanics/api/linearize.html | 6 +- .../physics/mechanics/api/part_bod.html | 46 +- .../physics/mechanics/api/pathway.html | 16 +- dev/modules/physics/mechanics/api/system.html | 44 +- .../mechanics/api/wrapping_geometry.html | 24 +- dev/modules/physics/optics/gaussopt.html | 32 +- dev/modules/physics/optics/medium.html | 2 +- dev/modules/physics/optics/polarization.html | 22 +- dev/modules/physics/optics/utils.html | 20 +- dev/modules/physics/optics/waves.html | 2 +- dev/modules/physics/paulialgebra.html | 2 +- dev/modules/physics/qho_1d.html | 6 +- .../physics/quantum/anticommutator.html | 4 +- dev/modules/physics/quantum/cartesian.html | 22 +- dev/modules/physics/quantum/cg.html | 10 +- dev/modules/physics/quantum/circuitplot.html | 26 +- dev/modules/physics/quantum/commutator.html | 4 +- dev/modules/physics/quantum/constants.html | 2 +- dev/modules/physics/quantum/dagger.html | 2 +- dev/modules/physics/quantum/gate.html | 68 +- dev/modules/physics/quantum/grover.html | 10 +- dev/modules/physics/quantum/hilbert.html | 18 +- dev/modules/physics/quantum/innerproduct.html | 2 +- dev/modules/physics/quantum/operator.html | 12 +- dev/modules/physics/quantum/operatorset.html | 4 +- dev/modules/physics/quantum/piab.html | 6 +- dev/modules/physics/quantum/qapply.html | 2 +- dev/modules/physics/quantum/qft.html | 12 +- dev/modules/physics/quantum/qubit.html | 22 +- dev/modules/physics/quantum/represent.html | 12 +- dev/modules/physics/quantum/shor.html | 6 +- dev/modules/physics/quantum/spin.html | 40 +- dev/modules/physics/quantum/state.html | 32 +- .../physics/quantum/tensorproduct.html | 4 +- dev/modules/physics/secondquant.html | 106 +- dev/modules/physics/sho.html | 4 +- dev/modules/physics/units/dimensions.html | 14 +- dev/modules/physics/units/prefixes.html | 2 +- dev/modules/physics/units/quantities.html | 8 +- dev/modules/physics/units/unitsystem.html | 6 +- dev/modules/physics/vector/api/classes.html | 92 +- .../physics/vector/api/fieldfunctions.html | 14 +- dev/modules/physics/vector/api/functions.html | 12 +- .../physics/vector/api/kinematics.html | 32 +- dev/modules/physics/vector/api/printing.html | 8 +- dev/modules/physics/wigner.html | 20 +- dev/modules/plotting.html | 72 +- dev/modules/polys/agca.html | 180 +-- dev/modules/polys/domainmatrix.html | 492 +++---- dev/modules/polys/domainsref.html | 1152 ++++++++--------- dev/modules/polys/internals.html | 600 ++++----- dev/modules/polys/numberfields.html | 194 +-- dev/modules/polys/reference.html | 522 ++++---- dev/modules/polys/ringseries.html | 70 +- dev/modules/polys/solvers.html | 10 +- dev/modules/printing.html | 212 +-- dev/modules/rewriting.html | 2 +- dev/modules/series/formal.html | 44 +- dev/modules/series/fourier.html | 16 +- dev/modules/series/limitseq.html | 6 +- dev/modules/series/sequences.html | 32 +- dev/modules/series/series.html | 50 +- dev/modules/sets.html | 110 +- dev/modules/simplify/fu.html | 50 +- dev/modules/simplify/simplify.html | 64 +- dev/modules/solvers/diophantine.html | 102 +- dev/modules/solvers/inequalities.html | 16 +- dev/modules/solvers/ode.html | 158 +-- dev/modules/solvers/pde.html | 18 +- dev/modules/solvers/solvers.html | 36 +- dev/modules/solvers/solveset.html | 30 +- dev/modules/stats.html | 292 ++--- dev/modules/tensor/array.html | 18 +- dev/modules/tensor/array_expressions.html | 8 +- dev/modules/tensor/index_methods.html | 4 +- dev/modules/tensor/indexed.html | 6 +- dev/modules/tensor/tensor.html | 72 +- dev/modules/tensor/toperators.html | 2 +- dev/modules/testing/pytest.html | 12 +- dev/modules/testing/runtests.html | 36 +- dev/modules/utilities/autowrap.html | 20 +- dev/modules/utilities/codegen.html | 60 +- dev/modules/utilities/decorator.html | 18 +- dev/modules/utilities/enumerative.html | 18 +- dev/modules/utilities/exceptions.html | 6 +- dev/modules/utilities/iterables.html | 110 +- dev/modules/utilities/lambdify.html | 6 +- dev/modules/utilities/memoization.html | 4 +- dev/modules/utilities/misc.html | 24 +- dev/modules/utilities/source.html | 4 +- dev/modules/utilities/timeutils.html | 2 +- dev/modules/vector/api/classes.html | 72 +- dev/modules/vector/api/orienterclasses.html | 22 +- dev/modules/vector/api/vectorfunctions.html | 20 +- 290 files changed, 5070 insertions(+), 5070 deletions(-) diff --git a/dev/_downloads/0130acc9674ca6615e762dac32f6f525/matrices-10.pdf b/dev/_downloads/0130acc9674ca6615e762dac32f6f525/matrices-10.pdf index 001c00182237547c66a48097021226015fa56805..9b33458a3b2f15ad5cd145309c8afaef553289ab 100644 GIT binary patch delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$Y=$OA7KRqvl@nQ{m;tM22@e1O delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$YzF40M#h%gl@nQ{m;tMM2@wDQ diff --git a/dev/_downloads/0249fb66c2fcb06b78bd6a84135be88a/beam-2.pdf b/dev/_downloads/0249fb66c2fcb06b78bd6a84135be88a/beam-2.pdf index c92d5d0bb9496a912fc143a2e2f2e3c2cbf846f6..f666b5f7573746962eefe0fc9046a3681e8591c6 100644 GIT binary patch delta 19 acmewt{4aRJ1T{886C+Cllg-oAGME8WhzA`2 delta 19 acmewt{4aRJ1T{7Tb5mne%gxi&GME8W#|I_= diff --git a/dev/_downloads/02f5470280a542a7c80635a082cb7e09/beam-23.pdf b/dev/_downloads/02f5470280a542a7c80635a082cb7e09/beam-23.pdf index a8a826c591381834598c710e727cfc6f7016ca9c..cc29cb80171798a71a346ade46f78f677954df08 100644 GIT binary patch delta 19 acmZq3X~@~YYQ$z}Vq|G(zM0$TD>DE-PX*=x delta 19 acmZq3X~@~YYQ$z>Zfas^yqVkRD>DE-Jq6+b diff --git a/dev/_downloads/034c3ce6c53eca7932c83f9b35d14c64/plotting-2.pdf b/dev/_downloads/034c3ce6c53eca7932c83f9b35d14c64/plotting-2.pdf index 6106bf2faea9cb1a874788b6b22475c459a6fa34..c4845dadb0f4f55a2c63603d2e725814d1f869cb 100644 GIT binary patch delta 19 acmX>Qcpz{?pDLT7iIJtT<>o1>I?Mn|69!`d delta 19 acmX>Qcpz{?pDLSyxv7b<>EiLrs9$!2|}4@>|*Qw8?` delta 19 acmbR5HQ#H4rV^Whxv8n4>1KVU4@>|*rUn53 diff --git a/dev/_downloads/0680199b4e61bc189fceb4418aa72812/control_plots-4.pdf b/dev/_downloads/0680199b4e61bc189fceb4418aa72812/control_plots-4.pdf index 617a77b1a36fa9a9a4eaf3b0491b309f010a5156..1c0add74405d137c1ea85d2b5b9fbaf08b4e5137 100644 GIT binary patch delta 19 acmcaqd#QGVxfPqCiIJs|#b#TpsVo3bYX-vr delta 19 acmcaqd#QGVxfPp%xv7bf$!1%tsVo3bSq8rV diff --git a/dev/_downloads/077b659bec1d5c2fd531dbd0f7e15f0f/beam_problems-13_00.pdf b/dev/_downloads/077b659bec1d5c2fd531dbd0f7e15f0f/beam_problems-13_00.pdf index 9e54aa49ab0a920d1fbb5655217bf1d22f65c022..77e9931566e9c750a880990d96400bc1c3411ea7 100644 GIT binary patch delta 19 acmeBcx1@Idf*t=XrnL%k$ir7Kxu0xk%nX-bm&k zZz69l=e)^53VGLsH+wyKAP>#G{a#r^th)Q)6K>}YZ`AjWgsmOWm=X*-i(jU17-1Xj0Z`KtSzd2s@N^P`T zsXYEgz~r7Y5&}09E8u_u91u0tQ%QwKXF^X25Dn;{yMZX}V`D>6=(&>aqV^sDns#G z_Tkn>vvvTxF)7-80+?r9pWvp@t$dR+0(fc`SK?X5r_$)i>Ti`5N``nga7?I$p!tuaNpGNh;r8 z4nOQ--deoq`Ub@@WViAxoOvEE8cRNpw;p^DH?gBQ#aVzFfTOw}a#>dh2PQ43)in}CWr6n!l5OY8@wwH>3Aj`>%M^N)6q;OznHLouNf#vAAQZa0@rm~Pz)t?IfgD0P zgEA7SnEwSc5WMhL#Rn-A`FANzgY(6C)v2z2IqdQ}!19JmRlm|@#&YdX=2I$+C&A)> z*+Vl|E`J%UMqWR}eyz5C5FU$2%$ihg-U6?6gxAWH*NQ&lvJy$=GxN*D7)rRVWGUK* zxB>y9vOFzIS&*m{Mxnn~=f{kIjvT_eX$3TomoC3H$7`OsCO~Y6h`kvC>#ZL0jsVni zF#kOV0ZDxa((#vl_r`3D@l=r5z~6M!2iP4lgwH1n1>5^53JwB9{A5A;D%k#pLLWTh zL48C~xT;3xM|rIrY;A58F%Qeo1m0KF%FrHN!InpMH|-Jyb}_P6*0MCj7HHc}XtWdRn;1$(>Z4+X@0i6(@KMXPi zsXi)Au0z2J2+QLV7HW+i8O(SH?3SML&Ma*fJ-R4lyhS!j5NS$H19qeU5i~gzO@6WQ z5oS)H(D$TZ3>iEvt8Df+brdHK?Dp&s$=s&?$TZN+Te125CGSIgN}e%Y1ZIzp zxcX@L36lSN0`umk%2&a#mK_2fAXN{er?-GqD@-B9o~n+~b6wF1Z7{y-AiEx3I4cE8jb?5+D#6sU%BX?{F1{1cleiSs;k_h29Eotx~e#BP>42}?Jp zB*L%0U;~Cc_P?gkuWmvo9E+XssaW&xS7$B2Gc9E6QIz3x5DfV{*J~rJc_XlDy5A!T z&bf_AvIT-vGXbK~6AIl~9?@~B?ZcxzHbC=w%E68&k%bkC;^kMcKvBer6HY~vF$g!n zcEE|kFN;2t`__^VygGweV?-x8^qJ|$mXqL4?@EohIU)RK_=(3A;U_%Hh7Oa^Pdn2)RSqomVEu+R_>N_>`W==aJjgPE0|BIOkcp` zSb6*h0-ush)$inVZO`5?p~E}!*pS6}yn|mUmH)?>R({#}U2y*MjQXpCecPWZefz17i?5E8j$mmryh>xfG~YY|UL%M`&vPpYcAal)7I&fe z5x5_UC+!O0Dz8iA@HzO9A)a(acbhcr;%lN_ZZaXr`0?0&GPW^TW9s6xm0o;>@L{!6 zTzKR68_p)aD{UiXn>Qal?IDrro$Gb*;752Sr^bf&h$GMWkqhuv9FnK2INZ&vhQ98e zQ%%D-4;1A*EV~7UzaRg$KSDBbpH$zaLtAecW368oT=jDE?pGwtJWVvFw0@-=)tgl! z>Up_W;;3KMQ+GJq4rG00UJng60B zeLndxXeYAUy*Dst1dopBVGqmN_3Z2Idvuv`Sn9s(6)#H#sh?Q)WXh~TTSla_U!(wa zb~W{_z1(jfcM6;N{ebU;lpAB_xrT97?ZNQiwSjO2gopGPzTxDppPEJDtxB-N2J<~E zi~m3(F!vaS@CC_K!KVDr_!KN?SbC0@dIcos50IQ)_7j-ds!6s1Zm`0MujWP(>*wXK zg6C=+8b9r+_l9hII@4Rxy6=+E38tbR|6f@J_G!XAO15uYd?J$$pFZvoe6?qrO#bkl zyWZ(3WZbh^IJ@(QpS&(@izAVfW4tF7%PNx(t#!dsuh`Q$BZVW@Xx2Hm_LVy!oJfZ` zx*YuEcQi`^bW3h6!*(M!VONtZz$0zsxdY0u$07Ya;vs@WYZ=7I@{}6*BNZcw0y4`2^byG17E~|DtnqUK1r!jLg z0a6$15*?~19fZ}Lj`=%Tf<4zcy!g>%O^SK2ATii4-| z=G_$YO>8>+3Az)7Sp_YQEWf*Fi37V+2L9(=JPNbri%j0D=#mn{&@gdz8=4h5N=2wFt z@*)olYcW5D0I@Jp%EyKzk14z@fJ#D~7kO@tUhf4>rw%a{xsWUJNW~7`xSN7RKNa$W zvpTT%hNEHuIK1YvsCXysSP3Ss&Rdh>A@BvV{k8&pvbxGM=_A zV4Xs!ogEwn2+_bB49iejuL&SyMM`D6z;F#l-yB2|ISOml&$XS9TaNqS#GhC*3E%MFLMVhbUJ_+5(j=k$X;P*0oK0;RiGZ?gUn?CRwWfiwC~Ti|&b6+24t zb6s%bc4~MAL9%(^SkqV)gZ4<#3i%nFhd^Zx7HESqh?$sT8dv+%6uTuOprwVpQ*p?1}>tATZx zGr*67?&PbAxNHocDh(grSFaIlYErE|qg{YgghTRj@YzTm0V+$f*SiQGSPylzEKPgM z1npTBg2ZMvEUYY1hWthBwHBi4a&l0OX#{p#fQO$bXow!tA;hg3lE8!}L)#K)76~9E zv;AsJpb=Bj=;E5H8s@IreT;A!^N>fL??A7Qfb9<+WOWM=p)iH|7&-#lYzM~&jP6s^ z9M>fvjSg-L*^ERgql^Q2*m+&# zt2`s!egF)^a)kvrH9@VaZA?d~R?utp0WTK}Yq%wz=?z=7K2mW@+4HI(HQ@!W9wLfD zui530aq4)_-I6AA^K(gu7dGSXSecXPFQ0IX;-wQz2x685?_>dzZ=n6ix+etqKfbv2sph@7G87>v{2qBJFq8>vV3@+!^3__o{8=tECZx|{{d3mJyIRz% z1s<0Dv{r8FavCtbRss&B@SP1!*S>-I27lboKC|RB<7oDlQ|xya;ZYQ?WkoR}E^;Fy zT4A5=GSt}R9;Scn3(sM`=t32Yw++to1z4}|z(OvDy^ zglJLCQMG~gEHFI@PlJq@5Ck+F1iJoucw;*%_J-ougr}+QKv?@5InE1ol|cWYjcnC) z82l6a{*p~8%X8Q`bSnv8ORr%1w@BD|Yc$v$3_BX1-3hIMJT1M>*IE@V6<2Y@QI(`o zD|s~A2!w08^U0z+A=sNc(Mk$kj$=!HEM}dY_DA%*TIfy)HM>)C$SGcAL1II^s1eXK zJ4wk0cc#G|EsA-VV3($1;TAMG2jC%(!B*9AE8>YOz#qlTNsScq=HajxEH27kgt8T# zP!bY3szvQ4PoI>`92v84_WP0Px^f?7uwO32m&UMA zeoiCol0`@c7^Lt`wf?Jo?d)@qEvoR0_1W;TlkGw?NpM0;GaXQ8wPPRalsG*`-^UZn zg40{2XtykY&J|4U7M8njv|>CCd!2^8=0xt=qKt}-`~otxYA&QB4c1ct84wPPhMMIV z=+4GeMt?^ckpe+3K*NUOHz7saor2AZ4LwQ_mI!b)^THADKrmi|PY9Oi`C*iobPjD~ zrUgyP(GJVf2F`9aX@)o0JV=8zRm1$+VJWX*voC#jK}?C&V|4AyC#^$J#z4BPmtdEG zEIJs=8rd7^miSw)Dd9jYS$_vlBsUN1(@n1Lcn>HLBAYpUK!Nz>$Ntw}=0*E?BIeRLqm zarx7Fx3JJn$ifa|#ZQ*NKhQG9J+xI06_TY*#89};=(Iq6NAr&Y-FlL$K6u1}+iHtE z`c;bN{0>LGiR+plnbg|+;);VkI~;%=w4Lqt%WmnDq+najWak8I;!9_@PH{(WGuS}c z#Apu>yuUO|U@G$W_Uj@cO6z|%LWstzM*0Sz)xWbLDgxi{0lOm~zBvl)JXH{-cfgKA z5Ba!xxze%pf;wa%ZI%aB6r@tOAOxUu3ws@l`PUnPh+;!hB4kR|o?I-dxY+0#j@U8p zgr;DlA7Ji-bV057LNAA{VFZaLc-s9qtY8m+(j-DR%fUR{>;hDuPCRoI25 zMV6Lt3+fVfUH=X{s|!No+NZ1Lq;o)f-yc4`U|3j9(gGYHV^Qbyn#-lop656Q82$w8 zRwa;k?}1mKMS3h22wkW#0AWMGOD5vtK2%K@RfF^7ohb5-^~5F>3*|>AI(|crh6q|L zbe50(WucLbX^=7hOcDT52In?oSU0@E4MKCO1t`_Fk)=8RLa1=IDhwF*zAS@2&r7v zA{qF(;L{JicFG9A`W#8aj@-g#olf)x2zI$zf;vZqI0z!qZ0SbKFHwp%ZUNpvKvj6K z0mTr~Mo0@g3NTR^`Md>`%kl`T?cyd4&NKFAa~Gw7 zUB*G+Zv+@|*sNwqADk&~@aTkiBA2)&NRC~+1?(y;0E>tt+5}_VBuOVp*pp#EsD0eW z+6mz2V2#?=!3j-7;hukVjZft4MVSBCr?Ewho5?OVRBf-S{3mSJk8yQA+VPLyV8UzJ z@bqjtLAf-{#;krLym~zo^vy)kx3S_H#(icnz#-|Ts!S4&h4~6pgUKO?S6QEk+V9-ttlt(|t z?yknnk5K3vam0$9X!4`TCn^x^A_zqmq3|FtSne1M=-60f!)=E%Y^qn%<){8Jig(#= z$8FDqu zw)5jR`JaB`5@sWDn*b{Ql0*9-5#FM3>$(Qr6Qp)nfE{s|B5W2F)_w9wW)P~Tj;e`+ zO_3#@d%v=sciL&_?Xn zjDXdrQ;XR;aS(h_TPO)!_M$7;z8l!(kai<1 z>+9I*wnGqj!4&Vj0QDUnebd3wjnNCpuy=Byua&?ZN6!bE z+Yoyuislf27|a+>zFIT^6K(JBJ8ebm%cRh{T&i=_*G6xC3F*BQ^K=2?f~ShF0JRCF zWd$HqsD-L?T_4#14@*Fc#Q?;U8CNZG>ZRp}eHkvs;+;Hn7(CyY|P zcuaynDnJ)14NrItGdPLHiXf4>asy=jH{QY=+lybr4ff!xVgQMC+53-_h#`fbt0C zbwq1A??bOpr zWDqXS9Q6!ik;#};U7H4T%h5{F9ifxAn#wg5a#1Z7h{&maO&4N*x22=%2D?cV+$ zP-utlNA4d&kGOz41^NfMko(qf0gPf^`Dpoe=0N!9lmME13gF>4OJc`yA1LO5IO=B< zHLtExT3@l0r|od~N8Y{;esb%-x-SH*+sJbcNSyz)WA*?VM%UxE;8Y4$ zV)f(^)Irda7*PC*Z15G+_i|$8Gu0`6w$e1w=H+Ljn}b$R+BgBcf&Q<+7R@S!^z>W; zY~M>!2o^*t?fjshF~K7y+{kliXYA#Td&M$f@b@k1rg70dPCbKNEB;)bZbApy4y^Ex`LwT zq)}~o8Y#>DRk{gKwgi=2$h$1yCH$M!(3QSjJqQ(eNdvEEC!-)BQB++PJt~hr&bl&f z18UN+(5>ieHhR^XG|<=F=xZvt1Jm!~w~QU&P7P*mPceTE9kOcb=VC?Sb=kv`RgZLQ z9C~JMZkm+z9hE*SEv-7XLDzz0?nO=F{&z%bxUbNgt#Q_6=)Y3bZTSYUI_qoI|5}jb zaI<9xtZ=1c>CXRAtl;Q}2XUGS@@^1@>-j4T>Y$bRN9vjYt28WqKjGWb%05BlG3YV*DQn3<}JzFo& zX;SEUnd>eo&k0S&&Ih7%CxIQ)8?DJT)|N&cWCK=1`3df=Xu;`2n*5PnhVm7^$E{gCo(r}s1G2byAAFwvn?d&*^QK*W6hFm9sfS8spa0CI zID3+CL}@%4s1f;PvhmuW*)d#~iZm^M8w^CxuSep;OiF8U$npm;40mRXeNa?O#y)5p z|A|mt*7pz;3Q*ncPr?;ghf>gOwV|mz6fM!O_)1VlqZvuhs9w; zkRuRk#JN6a;qAiA2w9ed3etd_be&jY;yTY1XN$Z^CU=u7#dw5{;F9ai%`20VT&Jp= zU2%*bYCH?UiK?DSN%7=ysNS|t>E7RrP~?yo3#sgVA%BFW!>lg+!N00=N4@Fa&z)Ty z5q3FdXJIb%{N^G%?SW^XC8v|LJ+a$>&qLbBAS2ss`0v^f^okl_ruQllCVlL1@6|TR zT9)?<4r{1P`PkWcYBYj`PX$H8$ogk2rhD|s&7%|r&sP$VtOR9f6BjYM96um;kYQ$* z>H)fWwlqD6lcH5`hZ4uW#}cS(AsvU&#vLs|(WKG~_ksq@@7W&%u~-4#7!x1{%F~V+ z0csppGC#M@j{Uoku*z$yFktw8g2xJFP%&)6l%jygK37YBgUr($j54a>CV@T~nra$X zlN3!%lH&JWjy93t6w`aJCa8m*+*PYKJuthB@wP%M#451?2jr1RMYNH$_%7&%5wOn& z-MjUgHDGjp5h^WZ!g_MP898}$#&a+7E)<;rXk5Gv&`Ont8po+L*m@~U)E|)Rnp>cH zL;DFJXAoF-KpARR+GGbcv@kM$6Wpn%d=|^{x3vHa_@4k+eK_iuCmUE=6#6Kcot@)D zNH`?i$FLIecMOI8=4t$?Z1bl0%EU>0GQeME3(E_r|J@N^3Y#3)Rg5ZZuxu0Jd@S+} zRHA=xDq#Q3?yljkOKg?%|Lr(9@$XeG_IdxcV~C&R5OMF@KU*A}#{^Xa>Wl!?qH1vQ zs`Q{D+IAS~R=A}=4Ylmke-e-R3jubXz8hM}dD}5wwwt7relu#%S`r|3Z1%eWH_q&r zp^d{*LZ@l@8%xwxSUJ}0+l*Q)6vW52smEe%c-l=%05^K57KJR!(MZ3`(tcH7CK?n4 zFLg4Ec*J2Ii|aZ@05VQO3#mvKR@gTo`A8(h^^ixHj^atjK86t7Oi;%NXpM0*j9>dY z)i)Tk(o(gyP%y`gS}j(-{j1w}*!{xV;=VJa3oHGk*Hwl;7ao$dr)o#lZdCo^8SWPw z%x&&-|1~RjhP2j4GHY-%Yj8hgb*y%EyzlVZ$<^hPtIb!|mezW%O!lqm^vpdbeLu6d zT->n6%p0stT9LOx4)ELyYbbXLzpXRGX7hvmD=Cu3H|)(kZ-UH^Wg zPHL(@>}~lMKL4%<^X?Z?+z%+1Gp3oFPZhd0gqf_}@7yi)P20Fm+Ri{UD(8FOpzg9u zPNCu6Xh-F^vVA3ANV>(j`waa1Ul~m8ceh>O`fcV+k)+bAw`mF=Ruvbb+h&6Oif8g= z2kJ?0=AHeOOcNiEHVvprj;&gYkByY|R7pP^UHrC~-B5V$edLvh?<+1(26lf&{v13U zk&tks@N+*H`q{Ry`hgNA5h&i!GMTWjbjT&KN?oD2hvTJu==^!ocT#wU(~R`8ai1C^ zCof3hcy`+^r%V1XqiR`ch4r;%gMLdx4-ID=-O9xrau=)%2@Omo$*s?RseFo9Ia(5u zxT9%`bLHCwQbnA@V3AI!S>zk{U1RPal*}QPCPqb`%H8BXrY;G=LOjkf3Oc<<}RJ^CS2k---d7( z`+FyBW_+0u%Z7bj>T|x?(XL!#pU>C%g>zPQj-FqXnOS1K`qnAeIJwZbaD!{a{_gJ8 z`oF&RMAV&g@ZCTnMN1o$tt}jMtvI3=z3?-=q44o%iF3ZkF2uhgu}peOi&w+Ee}p(% zbqSv|D7vuu_u2!^^*;^hc{+#p`YaX5wG0jhV0jtuoqZNoW0vP--%UO){=;`{k+HCP z;iOX48_P#-cURBO^^QGbN!T4%zxB(jHn%Xw(i_n?EIm*wwKBUDcVVHYr^|5TlHNwE zo(spD-t7tQ5KgWClzx>&aqN3&l2SkYhbG6;WIjEY;GQt?$DWt-f_1FM!k}-(Ei=EI zFV!D-I=v*+^z!JN%Xf+wW>*SQ#zX^Go4T@F&l}Dzf2w(`PYY&wj}(^C!}1$+<8+^8 z6<@1z?za#;ALTCIqW>ae?2(zmWUJPJp-Pd~fH%l-6H>kY!s;G}LXvUI_-}P@w-o2z zYxr`!IJZ{F94&5(sCyVi?lugVu2o)qPnaOS7~7m#CM1O2%HSLZ7yg=*EH(Pk|21&i zOi^d}{Fa43C^5N<@5DM+PR*y)889e1?#74D_(zsUj8U(?cv43?AUH_!B>!BpW|f;w z*DXK)$ar2=bmhAJ(EumXV7>LmFY%9V?0zz+u&O$}Hf3CI-~Q{v_sJ837uM8z9aF~7 z#S}lSultemw0`w0|KilQeX$0${I4_CVt$L@{H5xkU;Ig@^jl7A#?xP6q$RjNYiRPs znX=8I)9|86CVXk%Sifaa>xTa)&EBeW7ev1l7Ok9{*cTgf=*|f91Zi*}l7CU_kn)1W zm%ci9;zCP$Y6IuWVo`Byop(c01iWJhJbA0J+k!hB?#qC0`^&qep*BxxXnZZutg|&Q zX!@+U-|aER%+p^VKEjV-*K!D+34cU?myBJ0x{&fz;#cR>ddd$t!kl=0VLEEdM9khv z`PkL_1*E(!i&O6I@W8Le@9-mJ!<+bj^3|n0t4-yM3f|izwUB= zDMS+e(%Ii1yIQs$XMe#BZ8M3!Ara?d zDzkm*k~UxF%RArpW_VjaeJ>LR}wsD35QY%GPJ~s{!@f zHC=km%dAi3!81KxY3-eczm_F`x2UOO<~rI$*hu!w4<)4+Pt-n1EaRLq`Z7W)95*5H zt9FJ?b8j@&{wt^0=Ios7nXPIroq_(v^TD1=sh+t?7SVgE14MS4NCEaJ>oDsCVSxQ`GGdB zO0J%n8=SxX*zohKS@^sLd7{z3Xg>G;&o|d1Tf0dM5it>O^@|HBtFvBA-6^-+sK)b> zMgxZii(4E8gJ&e}J)Y`(U4LBMf6-TV#`nb`qrq(%c_xxv9i6lr7tiL@FqdpSmPjMD z=R0>sM&@cq>leTO{<1A{M!Ej}0#|{d|Cj#rn|{om&;9&tz7}Y%c+c^!luVtwQqeQ& zcG7>2`IG4Wel>1zfi)m0YdAFiiQ@j;(N%bUI{L%&$75&j?dvoP%lA3JC|v%WrTL3q zbZ#CQel{OTrc+rY)|H-&3I7@2`QX7kS;HG&7o6tQk4F~2Wj$}P zcayAdajT7%IJZ1^-cHzm^p6_ddljUg^|Pnnb@g{deHs*BjcBI}u^z`9zvRApw{_`^ z!P~@plRak)$fJ|to!34}%8tYwAM$;cw{1{t=M2Xic!K|h?JN3sgyaU9tC(id(OtQv z)y0Jo)dz}Ky$w%KkL+LiC9e5Z)sD2%AQhOAqRNSG(5$Ld<$S@xsj8u-qoSU1MU&H< zq#>ok{wH->ikJOcLq$_ZOZ$Jv_V54y$F#K6RsMHOOYMKh_N)K*82dh2ntzXFSZi@g qZPd`tIIYDgzx#hajFyVV|K3$vw+vlAU6w9=wr8to{T3h+qsYmla z%?azL$SX<}oQa9e6j49waPnP1OsvKMxg$*Y(SWtQ;(bcz6Q72w34#2I4rZN{>iD9( zj7jIKf1G;~6sz>*bc$2W&i1P*MM1HC4-Z_&M|7oGOW|vj++2-8fy|gKu&8!HtA;UP zaZnU_n62X`*UNa+DGg^=8_$sAoHQm-6-O8}Pia;`7(VD*BPPk9nZd8njkMHe(Au5( z#DS^-fhutwPhEr5rf+3Sky*-&G|UCm7)r6?Z>re~QRzhLajhhIh0H0Ql#x3|a;k=D z^9n@ve!gy-ej4FMY*rBhIDO#tAlcVKly8|_OS5HS~g=t39FY|dwko$>bi~QBA z+k}Z(qk$Qxk=2~&VETN%efe5h(iHu4k_WZ3*Y`aF920?KtN9Ug3M#f6Ps3iF*NVaQ z#q?^7fRsAI(c2GlCsEc}ogZqGLJcCM5 z1`kRYh5=Fg6sPRDUInqu{;Y7)aC^=Z~*!*+yo@!epxF8bJSHw??S;%{!l^+`^s z7Df|K0}JzIXd?C;r}5Uagg*ca4Q*t4VPBXgFT!aOG>^tp`H;8jXvhYz{$1W zfqzs-=9~m%(N;2QMMC3r0q6SteZE_O;{iO)8A||;K1Ak9n|cZ(jfX%jbt{i|5Heb) zki*HmZb)P@2n`>uR-K$>N(Kw!?3(cFMGW8f>{J`rdarQ~F%-0dh zK2SbJ5=M;V5K9Ll)t3$|e1wHzpnyBLtJ8jfLa5$PP8r*{h`tLFwuV4TaPPpxRm{;o zz593m-h!CzGOkWidbZue-&S^e9dWVoQPb58zVeFVHE+b8``&sk;XCdOyFS zU4?2*e8<(t*lC!(#1E8eBXB@nuTqlrQ5WQD%dl)IAi+K4wl0|NCsIpE)$yLd;y#aC z*l1VPS=}d=yOZPx_GCVy=C4>*yJ3Z@5AxoGbT9Ei_C6CHwwmlRQ!5@e-wM?)O^su5 z4unIcreX2VZ(ea7+vmTICuA)TJ1OqUNEM%4M#~!P?h1=LJC;o!s0-7)eZ|#ixw(1= z>Ns()oG7PSyu%WQfb9+HEPI-*fG$oA_mSbTS24jPo<6918974BwKUaaVd2abh|H2t&0G|^o`LN@m#E19?5+8W_cSYII5}XY1piZfXaeQJANYR&@mlU@=hwo~u+Z zb@aF=(MQ~OOMYn=;Cr06Jmg_T%Gzb?>e{rb-<2ms-O`3nsq7FBp~GiXNm&|^@0F3- zNA4e=-@;|+@7tHXdwzaj$LOw;yv^+PWyjL`2=Y9b(`A$hs4mrv17`a4k<*1P_>?2FY3tB}>$CyyIM=0tvV%dwJ(cXoa4 zS3gol6{PatYgJcbiaAdvRr24fd&8<6_Sb!Zeqn2uHkyigM`0Dj65=bBQzW{4IH$!@ z-?N8L(JS`kw$z~5n?t!oVXLo-*H*R3>m=#d*u_$WEB-s+hX&060{Kz^LR7?t|!5J(VN!SC6>%7Qx>w+1?AvL?) z1Z{-MFKIdAV!&iOZjye10PK!w`i4pT>-1w z53&qKsI;AQh0;yNpd=i>Y>M`}e};iieQNdLPsN6^_>xSKJx5k2j3v;xq+m z7Sjwkn4!Hfg=4RTGW{AX;Ut1rBjKlZs^MwYad@yCGOUjFf>Nhj8p!EwNbbB~Iv_IV zo%yx^3#r}6up!z=0&k`(n8#$$wou$UhEFN|ES`4hObZN9_9|I)wTll!wm!7>_zy!v z{ivu`Pa$!}3SNMoZF2aVyx7y${V^+9wjIrVntMD}kzW9;jv# ze2+k!h*Y;&O$o^9(;i8{G=oG)5MASghKyFRpW|sq`a$zySNxcc7BY7vz8X&}_eCcQ z7?qEROuMn;d~GG3NgEq^yq+ju!) zB)sMpZk-=%sZV4MJM&2ZMPWaEcw<)=Q3FZ&wq)GeEKcb)PW$e-t^=r=FwzP) zskgo_sylG%og}GKm%`Z?6}6p&rD*Z+*BDX6Lg}h8^eQrGsqO>2s$)lmWJ=3sXA>jh zVdO*Bs@3n-5ZS{kRvWEZ{dK55_E<96;=oFxtC3^5sw_!#wYf$IYd&f89u$|LT4C=^ z{))33j@B~*c2Bmw%yZZSufIasDHTTgkzh-^q4U?ZgZ54SG3@&ktaJW9;u6Z!(S_u3{O6uIz0N=ei?#R>ELo! z6ROG^k)F8eyhjMNoXk4X;cQ}svTxj(i3c%-3^`u{HADyroYx-?;I4jB-lM$N8D*#-E|05ZmZMVsVwFEbz=O?gEqckp1cxWVk;=}()%gI4p03E;t2(Coirr}GMgvnfc; zmSI?n8&;4}jwxt;_M{gk9m6n>z=Skd&By*~0dAN|U}AKH`Muxo9cL9|EAs9PI-%k9b#|F4VE=ssTpvNlz9$v#8gRJfO8_s9k>%IgG2E=&v5!AZZeWFWvxss1ZdD<~e zH%9^$(vjN~AgT}QH%_(Z><6cff#z-euq?u{zPi$p(D2a=_(&tQ(ttj@vLhKXRbgaW z1`QjA+Ch+|BaGCh096iyRz*gO$}fI?B@{Ve#efWEJsNU)rxY%C8KJ%)QsXfMIg#OR z1Iy|*WI94Vt#>ygP55%?j3inwiQY8=dxG$ZI+slePN=sHXcm99b8sih?uu1&6k>)F znI0}aZN|xQq$>lGq$FL6a421YPIo<9!=r9gS&ov#jVY;Sl#6=m)|P$?10v++mxGdn zmE;sA#b1CZhLBY+GqLw)NTi|{9W(J{i|ozBk=n~5=C|qRWNUKUgbR5E*`mOra}(0z z+ne_qH`Kw?@D??3)l#ixec#x%_;bk+XtVr;i%n^ znIt&f=)53npAq!ya+emAoHCj2rsRzgb(7AkA?x|>bQJ1Q(xIs3F=Es67)xPTceI zm+sK;nW9`WS3HuS3q;=$AZ76cF>qc}>(Da)#j}`2EF#VzHvVQF|M&)+L-wdYsrG!I-B-->=j13%NH(%V0gy%A76J}z= zK-HN@)d9d_qZxR8eWg3nu#?16g7WgbKIkiabptY(^XN$Je-LvYA*1Q~oJUiVVn#rW z0&-1I3@uK6$pe5E9lsPwDUUG%SsKt4vR*=%j*#tj;f5Jq`%v6an~`?G%yEMX8jY+? zsonuOE#E&J^Gh|f2mbN$V4iM};&s~vX$;LTn@%ctPvN5aURfSK!FBz9wZl7H*YAj5 zHn#5{o&y2@{juM}YKZxrfw%I*V>?96A=NSYpfhyhoE%KOczooD6ngo}1(;Fw6X|qW zJ2fB+2U96lVz-Gk@ptk?tWc{o_fDp2|2tnsg59S+m?s)$u>=3K8h%Ktw?<5!-R9eWK; zBABt#YyaU#qPjtNEHuhum^kKIU;qkYRyH!yk|BA866ro~l3@3jd=IXDcj=&4d9x&| z@a%TzvuP2~L^onX&3+KIf#$D;Y&eIGJS`V(T7{VM$4fzep@t^90##|8&wf?K5j4aJ zzSX_#s-p3U_@Y}{W5ze^!iCP?4PJ+abhMCJhe)ihI0+>z0Lp~+3ynw6N!U6y8I=w~ z%qdm3@dLoq2zXM!9$ut?m%kEai6!Bcc?k2V5jdZl{19qTC=~ObyO?wr9huVY_@Py4 zh-Q(1#i$#a#Xs^P6fYM>#ULNvOhmwaR*DhO3&KaR25GeO zDq&IY^#HVURMAE#|1)Lx!9YC1<9;T$|KWxd`ErpbDY{^r5!glnS>ZTcFtr~=jigy? z41sSqf%)Be8I&T~N@z3_ko91~E>WPV`Y+G!;BT4um%Xmxa8KM#{9O=sKj-o-C=s~| zQeLs6>2vopLRMY7%zxd!8ix#+wEw+^C3$q4S1_~+UG+`DfoMFI57Bjzji^&boVKG? z@KyIPaJGx%x^57Y0b&N-GdB6%*{CQ%jvS#7$ZUD+`0$bPcL3M0ALD8ifQ_T-y%RCx7%xz!wPoL)v8{NNsH zoql{3N0JpqMh$oEuT~I8=GLH-(B#inK_^eIMQ-A*tBt_8G4M14hhjsdppWL8L|`5u zP{YfBqs^iFSg*bbRxQc04kj{T&3p8xWzrr-rMnPyofG+x&+-%O(^*&6Ae?JSc)0+| z?nuDzz2=-3L&7x~v^OXVfttuV)#D~!{sE|#LqN?y)T-Ti1nSds3_~jdwe|^G_L#hLlWN6VW}O$YsxrgD9~B zwkR`{t*PloBQh&xSoYsR^Y21B$zuGa8-K|UXsGj#9TGnCmn?y#{5M*4St|7Y|66a5 z=RH$u0p2OM{&sG$A6oo+-aT^A-+6BeI2fTJ`eNdua~(?$#;zV(wHCc*(hVIC+InfUomBzZ{+IPb5MY6C$SRrL2e_;5)D5h{u>Cu~T6EW?IAu)*Js$}>T;ieZaVQ@1iT#QDlvDxh!iCt**sDN=|q+sUXzD1J_kKTU`UiF;cT?kK3f zMYXA;u1JCclvg1}E07KSa4U%jiI5V*@En3X_}C!~d1&LL5S3pZQdj|)ho?19n*D9c z!CSx5He=F$8El;Y!2R1zki#h79&JCT03WjQn^HXj$q=PFj$3S@n{WhfyKpnJTqIO2 znAmVwiY0v$_x3`KH=}VvRLJ>Kp-O?Q_7zVFE_WQ4tHtG@+WJg9<1WowFUu;BMQU>y z4_X#;n*5?PZ{maN(L|*Wfgg(QdDw7y5Dof|k1?n|-Qkw)^EHAQKSxZKfDB%3@$9@E68;YusP;p3-OYbRSp}0v5UVa`G zgRT9=f5J9te^pxChQM7+Ivy+zy-zU*q(Q_O=!N6uzBZq_zylkGVVn>XzWw4&(x4<7 zE{RT)QD2y(<3}WP0UPc{-@+}zaP~&M@TDs6h7>>^cHf@xZi*NisY~hArPznk-_Yrf zBK)7oB<6mM!rkfmZJ7She)`|)$(0{mU9y{=_YZ{d9^|wtyoI;9W-9cBz8JxsO}OR3 zbzfy`3fhF-1U8>r`S+6a40zJa!wRs6_wt<-+jMB;0!|!cn+`KTE<6a-(zG z1JI0!G)3c$bT#OHLI+M!6zV`h@a>~xTCEy`HYmd?+)hl}Dz(E`KWiT!VhT+#MLf+@ z2QBL|@JL4*AaU>Pf*g53_h=Z(&RW;&))eKx&!Ly zWG%O`<~A;oII}g zFtRyV$$-%C-nWec^q@SsC(BC29ta`oB)8pn);;kdQZHN%6TOZ%FHe<59iKU&VddVqF*2_tHZOy^^M1%%i3}K`BcgoiX$aL=5>!Xq z!kt)nh=A<_7m#`pCZuQ`?-vH*&|YHy;bb@hR3WHrLc@9~*2y62mk1Ra(TN!dwZ;e_ zNh|H45!;Q+DKO+raK7DIc~5nL??wXkpcK-Sk1%)4NIq4}{`4Z5VeJqXCe6DBd($~i zlwwrgATZNkK_9dO?pMeoZOYKqiC5P^+APo!O^x)6L}nZJ1cRd#Ua88cw7@GfQbpj_ z_>nBod|=s|O{anCpkp{B;E$l&8t3G*u6nd+A1zFmqIaD>a#b>gM4=R}TY1iu$j*}@ znM$Wvd)m05`#Z`d$uFiy<1a#$AhMAPcW7)FpnkyTrLlxK9OWWcJslnEfNwrOAP~XXY3R- z1K0Sph`@CvBGlt@NYDyIM}xix_M9DX3n&z!cKU;U^J9{?ao5XaG#~OX@$9*02Yovd z^C1oMalns7!oCv)`wsh567Ft>W*r6evFwiXvMg7amRJn526RE{GI)T&gpR}97L&*M zk}hqrVbDyZSZ3s`5HD0LW9=!p(?J$@`BY-2w+cCxd3LW>H7uui+Efz$82UV+#x2k$ zR$D;PX(Qm8glD8Y9*hAG62XIQaPbt8cLM9v{2^;HGyHXWKo&XWGUFhRa2l~VTuY(` z9${dF>Dnx6;bep%$vwhz7q>n=ckF%;WHa1T0@59%T@Jmj>3L7!1 z^>5X(X|2-l(<6V?SU9e*Y9R~Wd+6kH{etn`Und)|d-|i7QRk-`xLh28nu<`(j^O)& zs4*Be1Jf}GHKLZs0n+koxSTXYZa+@*JTYtw{ko0Fw4fw@Y-%$kY5(!CgA1U7CJsW% zN@hJ?ap=w~-`-w@hSKU?u=77(>&%PXG6G7sa5M}r%XDa$VeNzmgK}|8RfZhqs6tvNAgPqVVYw5~{R#iI`q}3Nl-p+%g%oHNC)gd}>~GsUmXA&xyXh zrHh#wx9nO*F<+kPN1M@~lMDGj=VylUyBBu{EWEbsp1;sk=azBmYs=oNMK())r;8Q` z1idC_BC(g>IxOcGFI$)Oj$sG)+Kx5NPrsfQmtE@qX(yZE^>gTU^_Qh4Y+(pnTC`jG zF*B9vRk|QJKht^_3lvP9uYPhrVllKtytE`N(Yd+1J96&Sj{{UGTaQl6_?M>7w)q8J{JwDDkJDcDe=G);iHhEJY4B&1&xMZ; z6%dCNK4=AoPL<4$&QJ0ow*%O9)yp2K%_mLy6`k*54-*!HoJD=(?wVq9b+O80$4_Wv zZ}#%-XODTbMOklX|JrhQHeE3ytnpZFj?A|M?ghmv^VxXcnBc1s5l+jU7j;W(7poVh zw2w8mzbtQb5ehattG)d0TTWXG;?l4+!}`yPv#lppvc*fAX3v)F(c0}yQ>>4?FxL8V zpgylMP%kC5E+n`*u%RV%i;P~P;@ zcZ-e`*69;D^~btPb@MuRzxnPS@_Sttfqw04*}FHSB(PxV@}WYb1%sqOn~CpkIbFLC zYJ8uVjoa8bHE%Whp=z7UqvX~)B)_*PVOtJo!yLU0}yN4Bj1Ge#$PDY?# zjon@Q*I3uU<)>2CJ6`6i`pves|4}FJp_p~4D>ZY&DfybBl6fuH^GCjQBz=)>vEThv zsKc~<%k%j?cc0EgHBKd+&kO!4Dm|b5>UbofSaM-v)-7LIpM zD<9Us2s+j4`=urN@s`?>LhIsjtW}Sy6ExD1y|r#isJNkQv@0InvSf|TtokstJ-)H{ z*=EhgY%x#6#g(7^cx`kV{P`1F`_w<5E4oA;U{_a7{V}uo+R$0IglsLh0G)4hMCTuq zC0YV|AIG`0#abj9&|t4Et2RuZZ})2(mbR% z<3m_85z>v9ffTfpT6AUCpbI5lpuD)f2{s`pu>yS zsdZIqA4lgz`ZkaE1UxJG@kQ?sm5CwRSMAWD53EeDv5cM*-K7o#XE5u&g)^B3mT=rO zjj!`{@#e97FZgq~+W*Dg$nN}}6Or?avpq|17Suo9RVlpTuOluPC_au&yZ^i-ID1L` zWyy_&DT}}@;|D`A@$q`01&TP+G3un4rVoS#^tsM>MnG}D$csjLPWPBm4 zzvB#swa<2(>F!$ec=2UMV)jh;&q=S>Iz=#mFo6|(KQvEhoAqkGxUI4TC!PNC#)6Bv zw!w=%mGkgY4^DGB;Knd~y@NgZJxk|=yMz4$Jd)r{Tctc}drsJ~<6F;k7dJ13!*@UO zP6w`{@ei@_>FGOg_zAnasb}EoVxHgO2Y%u+9cMC!*1ht7;pKI0@@1dj?xL3^<4G=Q z^){bJpVhzoS`-#2I6LH8vTnBC4HK9x)uAkF7dy$drobL4SZgo?tn;`d3;Hx^cUBmTw& zvLdYH>V*>Zx9@yP-a3z-{bvvS*?E5Re6t2Tb7xB+>i@LTqk?cd(k>W zWj1g8%q8ZGrC;&nkwot`MO*r%8f;&=W1Jt`97fXzt%@ciMs1&T2N#(QcFw-QLN3(z z8QUdWng4LCE}Gr2mtB!*)aK$-oD?a!B{_3>z{TW8yWF=d_6}{$JJ{=)nc*?&nR#mN zA@;FnGJWL!`ycFiK9Saxmw{eI=kL~4&lW|+4f#ELwYT`u z;@o|!fGwPokQ~Qe|Kj?iffAF=wE=hDR!{qm?^rl{c1K0Q%v~BIvZbNHP9Ezz_+{`u zW3RTI$R6#3SG4q3t}NZ2SE>^@Cegiluf$~akD{cURq0-lcK#Ll6`3*>+7s#Xg`%5F z1-tvUb?HRP2l(yrl*y^7IJDUJljnzVT$BiIJs&*=9atR~7(C83pG6 delta 19 acmcbdcR6nZhcTOhxv7bP;buN#R~7(C0R`d! diff --git a/dev/_downloads/0eb265c8614c7bd3f16f6034d076f6d3/beam-21.pdf b/dev/_downloads/0eb265c8614c7bd3f16f6034d076f6d3/beam-21.pdf index 99f64c7646f4bfb53e0d0d18b351fe71c87c1226..88b8f69160c1864639e919e981f279cf5b301b16 100644 GIT binary patch delta 19 acmaEw`ZRUJAw4!j6C+DQ)6FOJWLW@K;4>4if-5@CA|p diff --git a/dev/_downloads/0ffd2a0f4570e502b64ad8529258801f/plotting-17.pdf b/dev/_downloads/0ffd2a0f4570e502b64ad8529258801f/plotting-17.pdf index 90cd629828dbd7e5ae35b86eab7e5f68404e0d9e..e5fa9d6a316b81fec74cb63bf408c2c1054e4749 100644 GIT binary patch delta 38 tcmdo0OJV;ng@zW!7N!>F7M2#)7Pc1lEgbSzY=$OAmZp~5RjoLrm;n^?3x5Cr delta 38 tcmdo0OJV;ng@zW!7N!>F7M2#)7Pc1lEgbSzYzF40CZ-nKRjoLrm;n^>3w{6q diff --git a/dev/_downloads/1362531cda049d5b7f4db4abe11d4178/plotting-6.pdf b/dev/_downloads/1362531cda049d5b7f4db4abe11d4178/plotting-6.pdf index 57b66e5f315f4f5e816ffbeca06dec8abf2089a4..d0e988b9b21d7a16cb9861b786581520593fec13 100644 GIT binary patch delta 19 acmbR5HQ#H4rV^W>iIJs=!DfA>4@>|*j|Kh! delta 19 acmbR5HQ#H4rV^Whxv7b<*=BvE4@>|*vIYYH diff --git a/dev/_downloads/14bd882358332276f28c2e3ace8343d5/control_plots-5.pdf b/dev/_downloads/14bd882358332276f28c2e3ace8343d5/control_plots-5.pdf index d8ca1cd8c13eb13ec5b8cf1c4379b44f4062b819..975510192d636d97055694a51cad92a4654612ac 100644 GIT binary patch delta 19 bcmexZ_pxrnIx99q6C+C_%gtM?_Obu~T%8CS delta 19 bcmexZ_pxrnIx98FEi9VKY=$OA7N#cK^_5wim;tnk2|)k= delta 30 lcmex(M&RQafrb{w7N!>FEi9VKYzF40#)f9w^_5wim;tnY2|oY; diff --git a/dev/_downloads/16f8dba9abaa041f16c4636d6e41a0ac/matrices-25.pdf b/dev/_downloads/16f8dba9abaa041f16c4636d6e41a0ac/matrices-25.pdf index c4305c77beb1ac804f2a68f3bbcb1a0c04cf723b..ed86bc673b67fbed9093cbe62f6572b90cdd7575 100644 GIT binary patch delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$Y=$OA7N+Lgl@nQ{m;tMR2@(JR delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$YzF40#)cN#l@nQ{m;tM82@e1O diff --git a/dev/_downloads/1f24a27fa4a24f0b331e9442f61363d7/plotting-16.pdf b/dev/_downloads/1f24a27fa4a24f0b331e9442f61363d7/plotting-16.pdf index 5db359a72923160bf9cc7ec050f1734b5f823420..06157fe7177bb09226e8776f6ced9aa08204c1a5 100644 GIT binary patch delta 38 ucmbQTTw%&`g@zW!7N!>F7M2#)7Pc1lEgW+M*bGgKEKLo!FB0JR!~_8O;|urz delta 38 ucmbQTTw%&`g@zW!7N!>F7M2#)7Pc1lEgW+M*bK}~O-wAdFB0JR!~_8P5)1wS diff --git a/dev/_downloads/2019cb6b524d1d6351bac9c894de42dd/plotting-26.hires.png b/dev/_downloads/2019cb6b524d1d6351bac9c894de42dd/plotting-26.hires.png index 03788a927f47b73260a05cdb6f0ba5497221eebb..35d9e2f20384fd8d8fbf98e88d4b2646a4b27b67 100644 GIT binary patch literal 30736 zcmeFZcT`nZyFR)AMU5gcMvW+-aSJK}N|lZ=5s{`MAYCKUi_$w7qb4e#dkaX%AfQwQ z0qIzAOYhQEkluUeK9eNhJ@=mT_Z{Qh@nehx*?X;7-}%<(nSY*ASK|1F>l=!qIFwKP ze1@V{H9kDhf6A82)X5aD!HV#%XgfJVEo_><&1t-C_`w^>;3?Yi~HUyl=Whf+MA^v~CJcp&4ss9NNd7@Na{qlKMR`-2Pb!B~h{d#@7{OT)s+J5EfafRh^h3pQ0 z84>S=nQ+fBW^4yVRd$kf;plu4ANe7;aN#SBX%Qb08-Tuq3i zoss;)XHK(ruW3Qful~f+-x{tiNNan&wL@#ymO@>09(*!w+= zt{r~kb*bJNDnl3NCVK7M7fVA#)B96$ota*2)Tv0avUinu+-S?QQOhB;+0UFl4_;nd z>6bsh+OR|7AXK1J+v1Q*cPB%m{Etn0P8P4GqSs|O;^+QG z7OGOy(4kCRYUb0m_A%!@O8%v8-4VgZIOU$#h(6EEG%bB_Sef2i6K^)rQx)OOOHub% z6vqV|9_G^ga8!hI(|+>r$ERbe+u9=Q>+22dnR~M*s#Qd->XY)i<%XGqS?!Tog^Po+ zd)TPTpYOmp?K5voyVTp7I~~^6HC7^AQKiHiL6e&6iE-$S4R*F<-vedRSH`ysW<6hP zHkhWw?R55?-;Q8f_H0*J?uz<~K{Mv8$8K&^qaW0J{`fLfTBzTO`j$~SK1Va4@Z55DgRP>3A%S)OlnY4@tBuMeWlcKa-Kr@e%UkamW`H2)U*MO}XE zUO?XGN#lht+s3bQdY%vTv9+@54>MA5=qlA(3ZW=5PS{SxYt0vKa@)V#Ze|i}=&YNp zQ0RHnn4;X{{-b72bd`pr|N6Y`)%EqFmpU_jd*Nass6w&l`fj*@X z{V9D0T2JgMc3)_lq2pNE?Vb*T4X(5oRb_?YBg$0lDhx}~5nd6K6EA6)_6{=b%`axY z+|~)V%W8FA&A{u{=*AMR?98 zr#CJ{#>LiOs_Vf(MuSn~ueSw7Oy1uujgXO?Zujx=9=&bc3A?REpXhH8X7H(fIJ$IO6De2>UF!n4&UU|sMoXlIt2GpoT#my zU&p)lmIUp+y>+ibe|Str!Pu(5 zq+4d_!5yB~+3C?1hq`vV>@_^D*`=PB?#;L_8_rEAXMX%E$NE!Ig6b;j{8yr9>Wda; zna4QyuHUBJp7oq&W5bL-D!lESN-*D^<7XR&pKDeed|IzRT-RQh_R&+ILLsU&TsNX3 zJY)mUg8k_i3x%U&scdWbnr)kvAF@!EKOqVk;fqsGK0cB^aYk#3gLlb(cH+zJy0Z;g zh4}|2_4E?1m1hj))ZK%EE?lx{YEDcQHRH=_U+VLTG0IQ)DKlBH@$&1wv3q-R_efES z7l|h=*Yw+Jt(VguFKWG%ynJ4ZPteF<%P+5Q>S+GjU^HLXKU{S#DAnaf)$zJf_pL%n z{!cU+xkK*RrG`cug_g5;MngJB}IFe!xxyC>RAw zl&FLU1zBq@VE0jY;nt+q8$SCgJAR z`V-|_4Na@~+R7^N_<6N3?c}md6J-%cb8#n^U_&|!+e!XM{Cy3np#tIhe&+LRW4dVChog#0T7Qc2^3o-H?7~f0*nNGm!E_~FwWYa+VBzNT*Gy9L6Emj$gn{OZ0l~snb{cW2$|(goO*TiK*rpF=IzMKo>hF+u&uGYp$WEQp zvOQ=RdWS1;r{~j6>Lb(clPBAzGW*UArTVB1<@A5`vvr?VcW%#b>SU+RUxIx5s*8KM zj}@_LeQt=?$k@?$bxncnU+d1f^(Qd~@~2DMg^dgbrSmRd5Kne}f7j$DH~rcf4Je=*v%j(v?q&3>+T7GY zY@=0b{>kD;>+bw;ddpae+?+YQFJ|RKX3^G4t4W?Jjo<_>0h4tunh+}SQ_Ka|~V+FKnfwY)ICo`;cck6l{Q%>*{P2gmFYX|@(#}rq-(^R9%8+_U6ejQoLawe zr^LZVCmosfY>E+ZAEMXjW+v&C*nPNfDg9|?l&P&B!uqi%C2#Bl30altJ`2S@rOOKy z%Z_~&I@H+7^;>C@ZRa9f9BH`&^rT$dMpddP^ziB*D9e;&LARcVmO1UwN0}d=F>~7^ zCi=9bw+mP;FHRd@k%uq%n{v-Oc8-%9Ws;<$BvajoUM$U-3}!H(2bSu$uu*D1L&u1V z+vwRh7%Jlk7V|*Bg4N&j>E*eO-WqQR+CrjsI#wRFu(B#~?@tb%A1+krPtIyPunf%{6j+dK z=-Ydc!OuV4qB$s1&|t*0ly!tw_zRN6E_vzX*r#jC9v)*;S^Qx(+R~d^KfheVTM9vq z*k3B}-XESc|=ih@Fwv4EL3vGb-ifUL&7j|9vE zY+aZiQOXicay`+${{ALS&pZ8P=(~^6y{4WVe^=>{kGMc;qVm{yC7cQ6g2`mNuQgFi zj-Ss~PR>oKZIpg2?Xxi2`PXfFMnlT+)f=~;k=Q}iUWa((oYvR3uTiV}b>?C*Uop3i z^d`UaFMnGda_GWOLk06gH0JW0@v?yN%&TqR#Q!!lotdRo{M%}#P1arwg@}PXhqOBF zSO$xt15$O0k`Lr$W;=KjB{OdBq;KFgLQ}tz92f~MArpMc^7D-qT?$Jb3TP^goIu&9 zO^XXDx%BphI4+JC%S%BgDBrq=kPV^gs(Y%D;VoX%CF|RpYp)f$EQ}U+_a&yP(|2Aj zVv(BdWQ-TFaprv@FRn{oi<8VUNq&91296H;g zNZL=k=FWDeVAk1~({1x@kBkee|3rwJoR#8lQIp`r8Z4x?QK4mAggO|HCDWSdWN3|M zG5MHRiUZZzitKTsxM3)RjY2o@ShMj_C&(zOljnD(QK>o z&RWW_iglOVpNr+1Q{HTw65#}a=WxxS4) zUZGKMC@Iww{m5mwnn^`Fz&7<lQqUhqmKRLs2N{EzqGxvc zc709eq~u;XHSE=p3*33-XOUlj?iHiNu2sb(Zn`?%7Phd^%}mMV>nILZUri;dV{*xI zBZ~IZtw{awui1G@nu97czsa4@@ooq4cOV~@Y?~PuB z3@oicYEps1mp>l)ET@IQIm5gj2VP&FC~11^CSTMH>AbcKD?8s7TpDGpw!Y1|*<`v^ zC7#t+64Dhdu{3hiq&|sk(^WQ=c$VmLc20Hqsb`&^ZzleD8D~IEQV=TGh^#>z6uW(Y za^2cH*Pxf-q?jZoC-@!33KH#L*fl@3@~9f-RHK)7L~1zCq~%Ee0?R3+TI_osGV|P+ zdxL2^tWVj!y>h+o~zwUg|ao>j$iyX{UksrBg=~aZS4H6QJSnC^E4yP&fRdp;gHds4G zKz`yOe8WMAM;`x9edZZqF*Y ztLw}VGi^IhKJ~LpER_z{nY#8L_A^^u_CL zc)Y}5ib(J4VUT;AIpxpUOkAl}{-8j)#s&p-$_+m`PDQ$zPF~$kCGAJgJ=%qHS|Zlx z#-0TPsMest@WfmhWfI)fXca;IAOmkV5l`2Qk_)_rZq)hMjOVm9-1iR}8Q6TA)@+Mv z44F&%VJx)J_^b8I-gupurHw}vXV*}Pi9XAgVxQn^mslWEtG-H6bX0qTuh3|`!d@gX zJ;xZz!n~3!it$H2`I@}D(^;&b-nP7C65&L4WxJ~iyJCFq!dSw@eC17uU}d93(_=mD zj^EbPLqy5Z+3u>3Cv?+j$e=OGBsH8{GccFOsq$VBoFB8l26evML7uCEvG4gF&XZYG zglhN$>q0La(o;V99{j~TVH2)5`rm(*ES+7OF?y&c{Q1 zZYf?tZKKp9={3GOBA8}fruk{4Oqp=6bK8>_*nH32*qAKQ=HBzLvoCR_LnwuFg2Dw4 z7CQOsYGVX5_eHQ%C+M$9UPJ&|ty-BfCwWip#=$HdnMLnDO?aEJNMoixpC76-HBeZ( zGWKdcKB!y^(M+O477&eb`W)%~ng#FnQB@2h!0R9ajm}0h(w~@JD|K$aO0f3r+X34( z{SHzTmwtOeU5>A0%iR`F2h8?9tk5SxL4yYih0DQMgMp{V@M+P9zE&Bjp%+M9c7C}{ zTKXQ2vt8fkn~d>t75ULW`^u2+_H=GJ-00lgSt<(kcM=cfVm)1tO}8*)M-<0K1Nceo z!bTboRXxU19NwH1${kV-kS44NiD`y2@0Sfl;O$V>!JKx%I|c z2A`+;hytXWEG={@DJ0ahbBQNF3ZiA8gK!k=tA2@PP?dpL$IjVqhC}(2`c+)AFIJuy ze0t0YnexxOD97!qcPVlbKf1Y{FFu?;F>DOGaOxG}9+ovUv+#R}2=PG#daAtE>f?hN zMID!-*F2f`{pX|am>zA6aOcqPzKym;M{>1r>mY8$+`$t=hIp@Xt;EM@JBvLQy$y!JvUBFWG%9Hwnb(!k zx6H0Eevg6E((9PTFbRkq~>VC{>mayBDrc=hA#4n{OB5kjKxWmc&91?MA|!3`F|K(u~QN z$sQIKQqzcz6Uuq4H*EKsLxmqH?#`YVMlnxf+$y%pomepOiS($wIB6?RFv`ReZPVH^ zZ0!yjr0Wgn+V6Q5e|KcqK!JydtpSmci2PwMt##(KU5Xv>m}}qLdB-fUQ8`K~Dq~C2 z{F-s_YFNw-zESk$>ghQllrOejPWo^48qJR&1A2kMA9XNdm9Hcj_*JNWc(09a-DKdA zaXP7;9lRR0FLs9J=Kb(TR6n$v6i0|u{o4#MhQpq6GD7wB)ThqK= zH=c}8%jM$*W=DX|8md(ThvO4gtMQ_}KVKGMf6{)cv99SI<;aV#uZ4>8qdL|(@|p-q&rXDt!#Hb0*~&^vm-l1PeLI!nHfrdF9B z3O1k*WEqRtn~*&)>@H$sFd2;a$O93pqL;8V9LP43aPUgUNiqg^{_wj7-q{gXS#ppA zh(22S;GXQvc?75AI97VeFO6Diek;SqMsO^OZ01&pTVKg9&0xM%P6N_czprE3d26C? zFDx8aQKK3Eu!nJVt_$hA)sCS?hpCz$7DnHZ==*x>mg*FY z1@3hIcwxJgy$PTa)d-du>e5dfWqoZ&Bd5>y??%jxE*2;Db5qec<Mp`XS zHVAXGMDO0|plV;Q%T!p@tgb#I&7tV^1IyY|Cy+0=sX!~{!ON8=B-&g%b|SWqy-0n3 z*!8l=m0!majWLWS%0{Up$|w=X@DYRVP$7ur;lc8>4!l~Qxa~Pbo1WGY8`ilBaseFzPMP0wK>{QK({=8G#hB64c~se{^{ zWPREvKl8E^in+owjx+fV zD_NrJFbm6K=#B>HfX^4ZcN89 zG~bAJ)u(DTnJw8&(=a0Tr;JhRUKk6GV`WR)kV~;S{^jrA8EQq}tO1Q`j*@}B3d)sv zU*>hwO_PsA$+|&$y2Eu^mr(fai!-78;1zb>Jw^|+Jvr5!3Nd+CPmp1!rB^8$8u)mj zP7B$>xXMVS_(KI^1E@-~LQkvzcQSXfo6RwnclpR{<;{eK^HiQZyku#l?&>Ctzw%Ow z(^9>UI@3xpC39;s3455q+;&6k>K!s5WR#O8Sc*!JZMeay!Q+#M?SDtMf0d{y4Y6E* z3JwOPSb+jJlXnTipxA*bwc~FBsjB|6X=D*2`-|8TCm*o53a;KLE!%W%nyS^2^S zxsea|OZ-Iws6FAc8zVqbfj2=855f2y&U z;(WCV*_f?p*HZ8Kz7WZZcYrPUArzzE78Z(NjeZ7^(XRO#%&)|Y3Bd@|=DMW84|#4u z-h;I+vP2RI_$pniWTK5`Jm!b2l+OF=UVd{T>b6Z%wZMtCPJpqrwKx{N*pOoLUU*6x3Br&vdBw%R6 zgLWFw0Z2q+Nz?MKuRgchXW^oK5eu2&(=_MyRy|(|I}$kY@gijP2Sj+4s+p}4vo%rJ ztbHZT=X?VlTb-CM*95DxP(=w%c7>gBVdN_%mbFj6i}aRmv@ao}ILD3LknF4p83kF8 zSHs@H1KDQeKqmPI1(~$GKynX+wI^=%2Mf`XSEF!CJtEg5L zydh0&?v-M)AUy|~?V?&7H8GD?GG~{rQsv_T>h9CT#q>={YjtK$^kTq{IPyj9$f7aw zr&hX3kuX0c;$VvR3}MDczTxI(BHR7+0;Gwmtn-%@$sWof^F}i5)0Uw;QE0K1{x;_4 z?O}IctKmYWUM}W_2&}AzVP?BL3^{or2rt-S6cTMj?@&24naz9}a#~o31}wxvS#nkr zypZU43k&6XqujYeKSZZss!t@AABYxrLFVPEcsyuXt=i-T=rCG{tduVBkeKVf3vd2F z`j&L!&-(4Ix-Q-|yawbf#11^Y_T9ISg`w3F_7_pqgn`W9{T4SO7KT`q30F?}2iEyc zWUuen7W$-_DF5dhm$ne=bhVXlBurJudSb|0$*Jem(PH=O_ZpPNX$4<_c7^AhGon(|D@^ahda>!0nJv`)t z?7_^=h~d9SA?fK#!d6WxNea{Kz-n+))QD-@(p2YYu}VC3&H-;I_4Ygs+d)wRW{Z=F zWgS##1m<#@PXiwKBhqf@(I|Q5tLy)^5~CVIhkHu4MC|sXS^`F!kP9a6CFt28B`1~)^4SIFr|uP*At z8Og|Uy^?nR=t|4E+l=-_Q0FK2QCFMv(`f%39dl>XK&tE{%i7wu!7ToZ2+c{$9;0uo z*HPM#t;hLqZ!VNF#~}?c>`>$6jAg1VS83SMNS4 zqQ-_Hrcc&0MJw*3UrXo`{1CW!bo~Ie0jY&?uFd8W_u3 z?rF56EYj}Rw~@USCrHPh1M9c(#T>`Uerlic;>)e@%dgfUi4m-AkcnDR3s8&Mm6|WX zyF63OpasZHo#Rt|a5vkbd#n2Te_(JNp8;u8)8~xHT5hcHmRP?{2(V!<`^h?;ZWZIX zGpH{ItW<J+WE*RYq5HxvMmt471B%=f$LSb{B$RvyZz(^jVQE__;}o8xGaWx9%r&W4xZd!rIgz3kFVhZ|ZBW7~LS zmk&`cN_|^{jlE}YjR$yk?n(6sGs<`W`ew6+Djo1`{sv7-U=lP-B;alUtk7krOu)rlo zXc4{J8fAM#ritVI#>>(`CR}Q2ZU*$P+hpM5v)L}m!jNBXZw>VSxR(dzcp5VZ5wg73 z9BO3m0(h506@Ypd=gkNtc;k!Izv2bD8*SF}F)8DYu4uO*PKG z@zPlEcnt62J_5*en5a?;_Wx+HRZ#CfoaDXA$M5`buRhE571xo==eG(O zJYX{T3%}YJTOeLQg&Jks-0G~=(e4qw;(R0S5+BcBlUzKNb^o7&T>Z~hR#pJaYDyF4 z2qo77T)ilX9}XME^u|;3_qm7wAFq5Yr`6%7Z14*J@k6)9o9znaV&G^zxFP*O%E8o` zKrwkV%WP+B@4&|hdwua%c|C(yv%%2Cuwc~B4({xJ3mEC;rN!~80B^D7nSkX7yN}(t z@1OO-v?4NsdufX1^k$P1a&U9NPkIw@;y`1%sBOy&17LFnycFyvf0{s5+Ta=6=oTG= zXFqOEN{L*M{iVVDd2ww<10V49VysrtRXiGEg*x(aMva={^f+P4SSr;WBmxepQhL|d z!*wkPFN1{CxO$^1$pCA3H2EW4e?{o!_X2zt zIxzPA+zzpRJEiR3x_Nla>o4gGwXeN2Gx9lcVz}TymZ8t$q(|+=TPY1Sk?}q5ej^XK zq|%-lT}+$f`aJq`zSx&JA7zd>ijA7A2Mqyev|YfQILj~gYM9};yz z46%!m=jhul!TD(eDs-oMU49%6eP{4P2GBTAJgvw-TJ2RPV_M;Q_`y}KQI`>%ZgJ2+ zF-w6Qw${1nb6OsQ89KILO_W9{C;-{3=90KzQ=UA3=lU9uN4-Kl|#i5yh{kMFMMjD_l2P(2)0}2zK=4=I&{wUr&er7 zQWl4@6X;@xg8A0rtqVJn!(;rVE#J;Innf+QMc?I=O&3h(%Px$(R;H6kwYNFT?$5{YBKEJ|MOA*=X1V!} z))k@BVE7zsXiZK*t=N#b31&#zOC!`&Fb$}g!AtU zd-bY76MuYmQPiUP(H0*`>O+WVyd$fxR!#NjbfOho?Rzbqy~Exvz27Uk=)bsp0U)hB z3`Y(%A@8%&mzy=6rwTKY-ll*u{g$dxshW3TP&j4DjN;d)7 zX1kobV{i+nqM@tbIs&miWn~o3k_RMNQNk#(xCEH~j~UI7urosJLe&zK4Sg?hCAi27 zZ0z@mM-`zO5&E|io(NyAR*%;s0!0XB-n&&R;CQq`NMf~m9v&iQ>MMT3TR=5X<%Ii_ zK-{0qp`3p`inl1l7G3?P2fRtuo(mA9eCC_m<6>hky&cU+^-6Z6g}!;D%oxMJ1vm4l zzSo8)d~c6ZoLzgtc6m=%VqiRn9HL5M0_63i`Fx0T!Ml7;`fZrUmp}Q(Uh^&;Dn@<{ z@V%@{SeEUF&MO`d;E8}J9@u7Z`DoLIizZu2!z6_zTOBotpqhSp^Cwc|W!eh`&5ku{ zD#bA`Wr4yVit5>yc^o&1T)&uzEG4N|h)R1Gle%vmbN{=&w$%-hH*bT&pkwvNY_vUX7BIr-Y(;8O-KNpuwVOw%Em;>x?_WlKCIqmaJRy1 z$bqm2(!U1jn+|3)s26%KrV&Va;o?*Yp*fUB%H=wqwfwXmc$LJtIDqvYIzFN)t3b6W z^?uuGv$QbVXc}fS2B3Y)i-APr#f0zfX4Qg=P~bIR@O5x*YB0>svt!5Xmu-a~Ii9!* z005Xb-x{l#S3nN)iiyo~KhTCWBA|Z3CeUU>aVBEvi_`7P9LDC>X-qyhEN+fCr(gdq zft2^_kcABfN5mEIW{85erD-tD{Ox6njya48dS==^kz)4QY@#y|vQ6QhlC6P30ne&KG#87HYtBXQpj zqGP=02X%yM+b7yJ-S@Qgahon7ql`Fi!bwvTXcYG6!2LF?{`2`C4} z>_JxkpbZfr;&}k1x1jN_DFBk<8bAv!WM^Y9)_gM3-Ioe~6E%y7@nVIg!{c3L0uOE- z$043ZmdL+^&^62}qqoE?5(1k6bThK8qT}%LF1`AF9dR>79eXNY{b{ikpu#I~Y@!lV z3vwL453MDmrvbdo;Q$S13T|TgyB&7nmr8=Zf_GO!)E)RVd$0z!K|+S1;}r^p&1r~^ zOQYItT$K2^pb&_*9e7@&PL#uOKd!*3sVUHKy67rG$YvOY!sGcWH|(Zi3u((+9JCYW z4&kc-??zKy3ivP^zeY)?i9^H;Dgk09GdDfleg&K8OzS;SJxbVpj$)xd>+3gz%Hq^l z>;L)nO&414IT)Pwu_?!Vfz*Q$pZvT)N*ta^U7kzz|66YCkn??T6?f`K1Zk0$hnlSun++oPrW}g?kpFiD}yGL0GKC-k>;lkLK3Q=H4hkNid zGnG|1==7bypn&o0$zu32RimY%6$GH_s2V0=^R}ZKO5t+jWwD5LoB13KTt8p8n~|QI z?T#A$LB@IDR`Ewz#E&+OTMzd1yqIdT&6Sa6e#qm;sV~u%jq{hE>wzq`h67p1tt^d= zX&)V4UK$qQ(IB31uQ@mQk+b9|B0B=V-!%vodZO{;(x2+NPY*4|HP~e~nuZ*?@+%#M zfT)T+0kYNH&s;bA<*AqWEH?Oj9gkXG*x{c9?vji5L=128gC=qa9nEAzYxkq}33^f6 zuvA+mC{G2yy0=2;!$FYh70;S&>6Q;p&TKlMJVtDTO0dvi{T;DjvYt{ffaxGI2K)cS zK~xob|FWZChzAu5$jfl@Oo5CsuUcgIot=$DNZb;qFDoPCsdTC3#TDhWGn$p310ykE zPecRi^l+%$)&jAYA9_x&{scyADD)qKRR1zUpsl|0_?b?S)a|W;2Oj)R+b*By_?x)s zuW$aahA=6krX2UZI$Q0_uffIzUl#W8&c5$&LpjfgU}_maZk9498;skzt0?UcAbu5o z$s@yxid-1Hv|ar9f>-$T<)noFPLu6+ntZ@I@+W`fd!53$IvSJslM}=3g_nQqv;6$( zIthm&9=VT;IS+h%^=D7J0lS!)AwD#AnP|69^(v)erf=hn~g<%DGW>~G?1h+VfLn7Fh4-3Pz1S~go8di;xUhX0RmO~NCn*098$_^Ulh-t`8o+YO}55}XEu*7JyJxU6eRTJz_`%{?hOUj|u z&=0{kdA*M)YpWKso!eXzrJ31cUoz1<{?6l7{uoE)m;zhnT7pI0(%m{cXa4c2ZLUBL z?9lqLnT~*NLQ(%@;1qC{G?=)I@c)QBkobOvVMV6yl(~uY+qaMj9bl2VY`6 zw*~w)OQPXuOpo^YHc7(|(dpvzP1SkNxSc=l&T9AeAS);;C@2`)QMrmZmf`TdK~mIE zml=G1!>6Uzd)24H#pc4VaAHeS+9nsKU35(#ZnXWEy|SPUX|48sZZ!o%R-slY{zB5q3TMHaQ8!1ZCNr5l|}8q|#7 z1d>tfl90M!=B+TFGFgy?nPP>Z%z5vLsyD9mE*ElOVK3FsEZT;NTtYdy=Pv{2#!El} zbc_=dN3_8D_(xTOfaJu7+nr=R0egP!b7FU?QvBUN~ zob`yde2;FJ3zbwOj?sqL9gcMu`vQpzL7bsx+guyeK5wc%IJ6s1H|Kb~!s33c+H7@j z!TkW}uh#KxU4k6j>CdxLm!gLKi)#hSz`}zgcLI(py%RzbG^t`0m&>d9w8fW&O*>pz zH?339uF&)0;#Iaa&boZQfunE-x?q9T!L~;zaQC)w!3%veS15)%+iRe&wjqT0cx(C! zam;{En(nSv5iTRK#S_i=uJ?NaCb({AP53MiFPA~r(xKg5-`+^~OUd;6_~q^G@jrn@ zQXbP-p3rCn)$#-TU&SBcSd8;7kMb(hu{|<6#$HaJf2J{W`uRjn@2fwvC-RS$L`V=t zx1^1CD=g2xdg7bo`nBt z1)0m-Nul23ymOT|?P1H~fPasgEj1f!ARrVPS1lPWp#rGV7ZAr8JTo{MWA(@WqKIdS zEug|0O)e5^4WIv@*Zfo&mM!y2IwaYFOr6RFiYV#f0Q!!Oi^YrBK9CwAqiv@ORL@G%HS_og;n*CM3^#7C3|FVBdjZ=1{=+-#WAVNej&^!Ow2u3tv2-EN-d7^08%QqV)&~w{&aB&ziiX9n3=E zt)0C#IcUgLl_;iTymO~WdXI*hId?DyonJB>EOJsoqbl7df3ltsfJNQLI=AHBDU2jT zemjepqYhTd=u&->E(vu-;n~pY%)ZQl14~5(hj4LE4!^o;9u;!PH78h5(R<868@4_8WKYdtji0CDYu+2 zA45s@q>@r`7*9$3$GuEq54QwIIaVuw{Y`T{@?79`3}!Z`od3?qVsCwpaF_A&q%p~7 z?p5B1MK?gA0V-}cy9JxLBeY5K5e1MEjHf}U8k9mlfpK)(!nK7|0`?NFrc7q6WH9pMh;ZY2f1fjh1lAcrF$)Q+g?_SX~} zmbHeT2{9X9cKd|HO8A957EKu@B>l{>-+FoaQ=??(t$V*uog|?j(bsg8GCa+^7yFIl zeU_K5YqB_HLQ04atWGC!zgz2RUnuiw?If*Pl0?P1fD5EpkpYUzPOpio>`4$&&Q=^P zk!%zIKgOg)@b>ZZ92nsL$ST%ei2Ob0P~IwS;;uxJoGuAJNfcm{*~s_$21g0h#|r2A z%G)j3J%8OMcho5QG{#~&_@Y}Xto$w=?YEDmqh z7f+;wL&PkA@Z{F}@kg~z_+l%NgogYfXhg%&ckZZl*>%Ap7_M9oa%p}r%crKK34Y{!_3o*wVC>YPK5d*BVG6sbsBoS6BbsGRVA&~fg%7jRyT1T(P)2P99+6mAoF(i{J zJAk7A-IJ7g{f2~no|xXH#AL|l1J9JkiWOE0SuqH&0q!OxKM)^!uHcFkJ$+KcqgF^0 z?vH|kQ0D@P74SyHpXl5XfQiaIemoJXQAR6G69nvN2i{q!dMY)UhW%Y6qM}b{WbE~t zLv5*2id0p_e*Ia*!{$7A)W$mH`YQl>H&S-As2_FQzYB{!vZzHBb4d!hO;oKsOaoCmKTnh0@?8yAWlYBNm7Lg~?A|z&!bMVs zCBP~6b$OP|Age~*nT?&=MJl@hprbMjJe7MMFjPG5k4XjYB*6Hg+^naR0BZQi@dIl0 zx&0|7-4Ud9E__CagK*49zo$OrPxBE18jAIRlF(4W>dfw5DMkO@m>%e(n2##Z88sFj ziGw5|iTf^ckR#qpfT@3%_ZP|t;-uva`7>0($GhIxXAxH>nV`s2Q5~ydJnf9SRjEw- zY&rR~$d?7{5|$&iUvU~RPb1G~|KbOHL;-@Y)g)V+Owuc)!bJyIz=EjlsnBL}y%J*B z^Mt=S(N`xxvOrUCMTh*qsT4$RpMd`V0WWNEZrtlO@QnOf&kr}-dLhdtw|${Y(pdDH zktp0GJfru5hybN2Lzz;jm&U3D1YQnK%bUYG&qeUxByPx zmi%I9qDG^Fq_Akr6^EbPwRG`78(~*0G@fhtW?nWA3 z1)BN8@2ow12t`Qk3CI?_mFK@Wr81Nq4>?My15lBK%BeX6NG_KlTV}X#lj3ytaKRh) zZbc0OyW#FA<|oi2Y_~gzX(Zu3sTDkl*!mQg?@&5WG5=s(*d?0wk+2%g;zEFmuZF|! zI;LfzffrIgPWCL%FE16^KcsS)07MOY*D6#d}4-Nu6%MZ*K&{r$Spg%vqPE6(I2Hwc=Myl7K72-N?I&HR3r!bU6JEhjIk|KK4U6_O9ze*GV_ky8R2ASWIF{&VeX+Jq+4S9(Qwfg~bWU zyureSlEOzwsF3Oksd?q*{>bW>-E61f+?I{a5z&*DR<&kx6@a5IJ8_C2G8vR(0WNSs zpvtE#0u&^<-0Sj>zU6gQ_dtdjd&o&ZrZ>P161V^?D3d{y+Ic6u3=4`iypPiJIpsAw z@BX7=o+c2qlNqW16HH^$qh}WxxR49Vj-a|Of!dWeKSbUGlJDGVcysoxPWThBGb}rZ z@lZzla3-IAllk#Sw}Hbk6blvl(s+q}hc}8~_17utLZxXr4m?9j3|gKl(g%+O*8`CE zfctoQ3#>NXr_o?YnX6{Ch5n5;^E--fxc&k4LF2p1sRYpiwm^Vxc!vqM7E>LO}nD74=p3 zfHE8#atQ{?+ZBVd>WLUu9V*Dh>%NhLxFtd`^8`Bwd3_WoK>Fq9oBV*mVvv+vLq z?6yySE1w_VvDcxy>06Zae^+ME2{Daz<)$BLP&~AS<$;-&2gt!^(P}I+3tPLw*^B^L z&ID-ZW;;Ng&H0e4E>V+gy-zYkBu^>PY@H5${wOwfFI*psUROW}2htgY7y+c?B!M-n z11ajhX%3WpFWJ|u0-q7Gy+;x6lr+1dru)D%lm2AJ?qdW7YYn)v<6pSUVlf0&3CHiE zb&-}$I$~@V;Y66rCV#l3QFa!iUphH`PJk^=mYLv(O)kD8n9rIx3|Z_NNgfdz|2UFf zW^jmRiKDb>&++^It1Cx9w{TmYXBf5BvF7dFTubE?ff`R}HJ)=dkaoWz+}pPwsOw$? z7g`Imd8^KUok?01eH*?o&=y1%YgIfv$Q1{NiviQEl*MKkg4stmi+lpmrF1dO$*_Cy zlR_%-l_sC!HtEl+cKn8$5`*gN;RT!A7F@55(kiU zi?Y{AHxS=MPMh$+AWbxgmvC$YB(40>`RE?U~9 z${&&&eS1F!O8$+WUHSUGGQUSt1TZyw2n8t}6gMY9 zF6Lb{Cpdn*`ha!ADP)uOX0-;%P8;;Xz57a}!C!{&*iFzmPAOn@*hlUK(7<{i6sC2R zt?JUfkI0djc-HPcALzfKvKLr+kgyT8<1n}bX(i?hR>GbDRqxpnqOWoqzz6+p-(y)IhNbo}P#_2KsCvR-n59QJZ zY3Jzj8diZC4_Tql_@+1vW&mWvx5Lf=9V}w^xhnbPPka4Xu!4%EB8K6OXFD)jT?kQv z_$FeH8R`iqi>9W?_@pbwEBJvBwee+NaY4i$!*M~xo|2cg!U1{aXkq_ybzK}UQmr-A z#7?p#65gJKRTZ_29&z7=OvjzhJ-p94gcV%~2j>NRm`K+jLu9i_19dJ{zaW$Kadcbs zDnLp%9~pW<(C#FMM))t&0PWj(=sQuBiS(BVg>HBG5?VeF~d&<`r6nKLSWvr_^6biLm@|= zp*hmNX{!?h$6;&rP!Ay$e#!v07DalJ8~%>^4&&405{=VS>dpg*k%e;2z`CVZq?ig$ zjQMYl-t8*QZhi*!ZSd)dF2d%WMWj$J#gDXLLaYj9z5%Plm-%{Q9e=-ME2NXEtjWm2 zC7nS#eLSnP?7+gwql4VQ2>4qFe&HFVRUOB?M%>9WmDOjwzO*%kBB6tZ6*b2CjrkG&u23eZyiJ&lA1>bm zd*}Y&Y&OMKCr28}*97e8Y)!^OXnTIZ<%YZd^&KwPafg_%-0|RrqmZ`+UvhZOyk^3@ z%Pw5TM~d8r?iN~0gD)=Pj}>B>np*gS7H9pj38K0wC-`l3_l@@~Q=x=w^iF=R%B1=c z0U0X;6F39+TQCbi^-L_aHtu|g?jpo(qqIJHbO} z;<)byJVM_;2?#Smhj8jg~C z^s$Y~pqLBg!lj_1tMX=kMcR}Pfr^N!DwfcZ9jnBd0oD;t;5H+2_00-lG183>e8A4l zQ6~t|>tDtq9A89!3^0mybDrbV=tuBY06^?yM5z*xIlFH;@S8oK;auTT1Ivi0w}e$n zopc2$DW{*VseXEirS={uv>WFksQfEso=&2Wubx>WP#ET8k|d>oiCWy z+HsYol3d8=dJO8!I@iX&E2IuLF-E%)w0He5ze30cZaoaWRheaNQCO2@qUFgEi}=0c zU4);S6PTHp2w}F1EzW7haN z&NC{?Yi+|XBAOVKSjm7Cl@g7BQUf?J$^oQnC@LzbDB=iWl->fB5i=sdzB*X+?(XAbG{$n@AIwog+DBoj)3fs@wNQB+V3JOOQ3JVpGZYkhhV6r4PuK;-tLIt&F-Tg-VD zOmHtkflZ*q^b8HpJzooXW_g(|8DaOM@cHWti&?pR31K{}Pdrt5fL0{~o``+SogFX# z1^EGpQINwi_F^w>J%?1SLL0KF<8O$ zMP)}jBh0ZkcK|;Jm0|F{G$)V1bal8CFBE&R;j-0zfht{Hn39j9~igzfPn%fv;cZaGX+=RIsFsJB}PCN@O;D4RTl)hT~_IeM128n z14R6a1zTyF%IND8qqz|w6&(FI7#HJr4xU%?XcT(mI!bzo%Q=E$%AcxSD4z+$ClOA; zB@(0uN(j+~#xjlEqqUMsj}f&u#X@RuJ=0@SC}5Ch}8U5dTk5&sF#1WZ(75)fio3~}|!4|~c2yrEzzK!p&b zhRgatS8ONqh^rCj06&6>zB3d;SLXOD6VUn-TJ=-AKU#D3KhvcTJInp+CRv=78+ zhreB^nkepS3YaTQi_i^X1dg<$62-`Hd1U4eyI;0J^GZV*;*StwsF2%LJk3JT8gI5$v+6;qd7Q?Ut}UL7=IJnF*T;&yW}=OspNn_crkFX+*Sy$k=l&BRw)+}1uEsn z`m;edB`A6$$cSNbvb~wnh4ZsI(u?ACaEr(G;{|?0!Ng7K-6?y}`6iSW36=ufM$kSo z^Hb}L_&@3X1<=U_$FYv=ozNz}CPAF*-By%a_S9$?b`}sZ!%{`t7EdB5YN*s?v_fur zsG(HGl@ga+GYDbH-FCjZ&f3y{^>ZnT9!vl}l~2Cs4VMU(!+xF6OfU#2^VnuRxYJW` z+~^!kiso%DI2d{Y1^bM8N#57E&iPS~7m$n*oOFZ5 z1KImC%Hg-Q71m62XZf4h`?L2nQk`P|Ry% zIXCE+8bfNJf}*Vq{CEpueZ@Sf{i`!F%IOm_xb3}}XgA>osftL+3Nl2|3n6$&f(2_F zWC?x2LQY2(?@)tn&@^E;M>NlzixXYF z!Y6I9MuP<;0uGv@G0PAA(kfz7H?P8?6XN*v2PW+znjvsY)-uz`5=(aU|E8^_?p2uX zbI=lJyJBZcgoX>aeS~CGhNrb=G1FA9lu5A-W-^LAvZGi6Y>KN1-cQgX^tviE*r7;> z51vW!5P^IY)ezI~TTg5|o8a5`f*bjhrLePb4sdwbr zSthRhz?Q3H1VcvK%Wu+Bo?VtYQ~l)@xCYEwV*`x^XIFLY0C)~2LFB?Av@S{5>IL!dA1h}gvL$LFFo|9Rm5i9uKVSLo9A;HO-eBE)IXx>v;gT- zb#o#H@+lZ)*Y2|_I9fd0Z@po6)i65F@=!e*v4C;Td|&nF@d;4I=h^Ct+Pnb7G(Q0N z&JZRa3kdRw6e|AY!_T2%zlowN9IbP+X`9b4%;v-0M4>c}GW+A~>=WQhqoZU&HZY_`$C#ToZOyMQoXBUaA`jDUGzzIhZ`! zp_Q{>pP9VO{L9|HU+~7hXoAy>R8A0U$wd@vlH3AfIT9B@IW6LVK1*|`&1yr*HZ9W_ zC}53|dRP05&ASgk?ICY-E08pTiK73^=K1D9h5a`gyd2#5Z}z$4@2dFABYRq0dxK z+BCU7)OYVn(5fMQvYBd-ELaOdIDjZ4vzv~6!-FCs!Bsw2^*z-`!welL((oS0W4bl1 zJ17(FdIqKQuFsJqQg#jij&{b{&jkSOHo>v@^fB$_56E6=+wUDJ&YvXm;y?W0r9xg- z#2=}Go>zgCq(u|&nWJEd0L9GZ6U+mr=+1x$_BB|(niY!9rJhAa7yjqv8dmx(wx_L6 z{E`y9hu>F=aBg*aO19jiUKTrU6z$YSsXez*VJ#6O(7SBhNeB< z{==91{jobi>ojDjw?0?wV!`x)N1qVIC+NQ}D|U=xj10)bn32|>DIT`%SI;k9p)LvO zTMcI+((T_v2+G!z%K@|$rMQQX?Jy$hj)(Q^PF;1j<29<~$?9v+_oy?4Ng05ymmNR8 z#qzP)l2smNFS%XY&kJN6WFTO4QWc;iQEqVYu|m{SL)-0qQtDF1LbdIRor9ONGICOl zcO~Bkd9yMGGnEBK>!9Ja~8su}-@{_^KQyubha*p@BBMHpQ5?K?%8QsN1WLso1O}|cXxGK*;|$@&x#)~n|d?Vw?Dyo z2_+Vd`;{DyCZIddE~Tib?s!Y6cIw9(0LM3;t&CwZJHYwAZ%}(GJIQyvwkJ|!uzkdf z8=q>5uG*GQJ|Dju$M}=0cxT79~= z*HMGR8yW%w)v~sxEGx;$Nj-Zn+vykJ2tVxMJz9@CgNxWhVA)V_9edj@WHWNkoA+jKtP*EO zib0x!2IvNEPDw8Y)nSvKon@tNjop5~u2Iu_YA~*FE-(UBS-_+fE#vW?ur*T*Q6veU z^2h7SQFfn+i&jax^DMvN)@HU{^g#IYS}5g?xyQY#(E&-GJ~1+dS>E38vctD%I!>iC zyFg*0Hv%VDxbxqB7xK2Z-t*rie5XAaG9T4uxoEeF*~dA>e#Nb!JOgs(jNG~T*y5c+yWYtqS?|^tTbZ}M!FaJO?P5a3hZ};IuBx6+oKC-c z!AmlBrY3Jfn=L9F6Lr3F(6452s?ir$xokC>(NOek6Zn!`^#7GV4}KWKw;4r`&;K^g zs%hu`qBn(ON0imn!l70_IsC`-1I2#c5Uz%Wh-)~uzYI6KzKmjAXS!>}npf*l)N8}) z>gw*n!MM@!+z`)HsZXT z5b86Edtwf`+ziw_wFRE81p4d;Pp1(}9xrz-5D=i6y|ATDQ zoMmcZ(Fu8u=GkTjAG?z~qsDK8~Z4B0D7rnR+|wtjtK*Gb%%qCPSt$Kcg%7_L8rp$Fk1Ftyo_kM!=7VP>8l$l7GO;I)i}ianR>g~cRHNfj6ZIe#$=2srMK!)f;#RbK;bus| z5!W{iQ__Fjj1AKhgH>&9Z9;5Kuc0Fz0}W9!2jFCo1OqM5K^0SInB45;wVc2}N$<9s zP#_B~SgM)4RAFJ^Htat%ea4)0fcN*q7oEarvSgGvGv{nF57iF6!z~vhw|pn`tcK(L z^%0Q!#!lQhotY@U4CYE91Q)HT% zyng+9;Q-6muT2S&0KPN@v+IjdFemdX!V4NuoE2p6`25P++I;uZ)vcHcKa#L36e^*8 zyT3kH-iQxl4LM1zS=fm#T$D6f$~w5rY(?J?;O)}wIdiUo;^N}3y1Ja!ZQXwZ zfY&enfLAreauGo78cV#zRL zIX4y4VP|#nkjC=IBLDWkhbFSx;%AK`R%r5D4%bEDAW+=c|Bru;OR0q&3$LyAp^?is N(l`G{=B^_@{1aeZp+Nuu literal 30766 zcmeEuXH=9~x8@5dsHkY$22h~8Nh$(L6p&!6AQBbH5)>puDU@WWQd@0X0j(lPE(1Zb zM9CPjBnkqOQHq>11x3~DQ{CTp@0xpOe$2m_HLPV9O}*iqefHV$dCq+!1MO{F1h!xp zwoT{k=?fUP5q{;W-oyFbQ6&V?ie_tkz^Kz0AeXv6V9<}+}SqpCr6MBpOad6ciU1^T1%Rv}B=VF7ykQpv|!feJZ428{mT|V2p9Xr)KCO zi~~L?AAcso2WDiyMH79d9ozT|`uzHYa|il#)%(BYb|Uv8y^)|UB_&lG9*3(e!HZ&8 z>?4>3g+pzn|2DmMxzbDp)?R@Ef^a_S;o+e?@KCO~vorQayLB=C09+l9u71N` zN`@033aP22CWQoy9>*|wWsr*|7riBk86guqs;fg1X06nWwxk+nHNY*lZJecdXoUVchg z7$fHCad2Y?oo9c1U`wO7HxUh?L9xr-Smh@ey!{54_DR++l)*kZ9$@)xuGw^rEu+K=hex7^3%aEqQ9MB+%YOK8BlfBkoZQy^vIDi8y zRYGF=)hW^6agU5me7$1Vk@?}q#t(aK8A|OZ=01tkHsVT0Q_5%F^6HR8!j3;{*>VcQ z#?F8W8hv_p<^f5x@x;8I0Sv^qg2`eevGN%~pCb+-%{Bc~AO8CFS!@yD;zm;2@umm_$$W17b2VU*badI!9UT7sYEUoq^UQ)ht-|FJ8lNe(bse)S+f zwAgr2k^jfG4oKtw-hKc72mcF*;D2qf$4yi~*?pHf-Esy?$FpnImb=M;(-lgM8mu6j z5c=Q|^W0x<^YAs8T6sji+pc;9S-iX31ua#iF-$)#xdMLhn=sQ;li3uvu}4EZB8ET$RAd< z@m_2-8ydj*4lAedD9JcZ-xk{oHb$O0Y zoCT>oL?(T6=BtkaI;1Dstsq+=n!7^(T`G%HOR%B7uf+6do;y#c`jdV3!^@B0r*yxg)uvAn`_|9wl>7M$+ z)5yv`m{`TYq?}`&`RLjPjN*R~Ooc%AcGZbT`3)+PWfOU|hu4``RT-RElUgBi*U{TK zFiqLOrHR4ki+hfkKcbQ)hMRR|>P^h7BkPs=POuhjS&{GfG=h?+i<6VD-pNT&x#4=3 zPq?x<9Bv%Az@ADHi!rP`7-8Jp+)PShE~F|iel<25Th96PbN?&*8gVq=uaDW1I6z>` zmMk>u%7Im8j2aR?gIe@lURHxO9BlbxHxj7*UOS8^evS56TU=+TJ}$bCF{E^-1;nF= z#G`MQaHGv4gxT%gxLfbv!n`@0Lr2mHef`@ z=SU+)klfzh;q9A^m1{g9*KX}=O>$__SE{!OoNV3w1uW6#GK>rRc_DGRT*7;(j(V)- z02y>v4t%;l_cnnDW$z){_j|$(EJh=X7N$CNmb5V1BC$(c@6$~lp>I$5CpfoaMmX>Z zpcG*8Gn-O`-reJC1b-fPd%H^7J2^DAu`IJu48wXlaD=rky(dS1_3gf{Ev_FMvDY@} zSiWQZITmw0f2wrc@t&a1CwN=p>_ClEHIXBE02b~Kq?;o{=)Y-7aUc`eU;odAQ!uIj z?-TwvX7&FtjBd-ogJgR2!KpQap?YwA3F3`w?BA$ zl@%Jj-dRP+t5*~x^J5fgH1g?w81T-ZoC?#(;8S&t}xkoIv5@pPE|6JaXGPstu0W0N$u^WAL%MmkFk73Xoa|pQgMKI)Ue%1-78gt8 zJ4r0}CDp}S1gqhl3%O>atUB-P!$!=J+-eI7#pE1C`7|y?2F?$gCD%k*nHu{)Epv8x z`MI*km#`k_;X$QQsf+DqW!ofL6}sH*@3~@ji(ui228-R^RAWPv!H*;{D))X-9zlmc zb}elQiMxxJI;l2+70ktFXIiu0@$R|U@)ysxb3WgG3~X5H3J$yYb_ zt&U6Z2$@Ij(ySTlDn9%*I!0BAzCKO%pHF8E-`%EL)Yb6uH>^4ia&Tf~b6Zrmx1p?u zrNXLny~6GgqtBF+IOz>e_32uhq~m1ECyQDSc1K0Y(lO#kl)Lt}wiud?uPjbj2u=s% z^2W21jazFfmV4vIv&*E5`$7VRAWh-kaUG!o$98|){ytwobBu)KNiVI2=M6s zGP~3pINj~j&$4PIRso!Q!wqF?*xP7#u*ajHT6444(hv4gnpZ(SFr zbY)E3xIHWV^Ew=vRouj>>P?#1FFJFbZqx){aouRsIA7RLROzw^0}}$I(}pDX*Wd3d zPrV+L)Rq^I;t*WPTj$aBz8?;s&2wC~AOsA2( z>yFjD7`EE_Ay(Pjap{|V_z4J|bVv|Iib0UO zYE$-GlonXl;^t_sD*Yp0s85ciV2Y(~ITec92dwSU&tSy?o5LMEm ztkUO~mRv<=RK_FfH(;4U#zYRvkfjy5Mkpg?ZQH&_4+SC*_?S08*B*7qOj}>-!qMq8 zDw$XOsp`I?zbG#>jRj40k2%%6zfZMv6N7l2ku1rL#r_Fu>+1SB0u-7Q73HwpL!K;> zO!(8J(D}==!C{<&{yvpj%1Nq$s)_c6tX%<(Y9>0bYlK>--a`BcZcH=u#O&$0g%;|M z57ag*31J51ambBpwR!X>Iv*eM8z0@=)3erVwqELY-K$2B8n4`XZ)@PRb?A-_m;f2x z9NS$N)B0z8yG_Qqs_O$0AvaKbj|-WPtF02!2w|M-t0{14>78BTmvhWq2yU)e93>x# zi%}Tv(HbOszdP6$wpDW# zYy822v2Ag;m+tlxGt~t}MUFi;+Up^xj)&5ZZ}N01JFqU~Jt}y$`2{kA)*qL@iCEw& zn(t$jH3+daZ^xZb_Fwq&B1@_xWDUYqU5RIsCss$Ecffi>E|T-Ywkm`^i6g|pJ`9YU zayyfPg$t@G-sgN2R_vft`0JMkGT^Tz)+WeX516a$hMkszacOeJ%1M;0FF8zgr_ZSV z_|x@iaOu56#woP^+k6d@Ipw58wZNet4`gfx=Vb2x9{wy~*}$hOOC?Dz)l%l#><@>@ z!i>i^Ly9;whtVo>(FcUd8taF^CvVp%4;au}mW8c(z_0&ijCyc@rKP18)U<{^iG&{! z7hBy7x!ACh(+>uITr zk@Idk$phXhQHKPppz#STz@_86@nQ9f8DV0&uxDN>Ds_6*I+RULIBdrR^&wo?SWqls zoFWP-=T?D;i3(o@*}GHYt!B3Mzur4Qsu2o2qBB>I3z0)P3vcSJhW0XFul}2@^cF*j zXq(u~LQ{pq*P1AK9e;-kO?P0cSmCnvyc1S9tjt_#zVEyN)sJ3ZAMj$WFH7h!+gYo& zbjGlTEexvy*?IarxoqlOilL!TuQI<}3SJg-_5{x|!kOS2aiL)bMgoG-J%H)wz0oDgQJlmbnF7 z9G>X z)Y1#jlN~w>Tw5O9;mt@&jnc=6yW5+4dwXqEHeg@tt$j_(=wSkp6R+(@<>m9DA`dha zP{reD9ZpG;P5;%}E-;^pNSQzC_Oma1@ix0me7~o;%1%sP9V%6n+XY49?Y6d)LuKtY z)Ty#)gAGO+>uVC)2hNA)B_2OkGFjx1kwtlum?}wM>2e^`Rt9uaIqYKem9oN0yvdR| zdfeL!ICf#8ut?^YL34b&A3xmpINt9{p{f`b>eNJ`{jn=u!6N7NZx-J54oSi3zwf|G zMPMDuALx)teXL4>+2yBvhnQIGheyAf>^$ydPJ*Gg%47b45msY`9U}7v}PA<w*Qn@CubCc#gELoEWgjZ%Z7E+vq?&~@-tSy`~ zd)lmI=ri{+#D0@5J=oz{=FsI4`ZEv3-+!D-v-s%sD{~N2?bH@MbuY?*OH*#2dbz;P zl^P9k4VJ&Gk2~1j(TiB_9E{>?r%1Rcgmn|ewl}cq&z&J_W3LCJXo-QK8@ZjD8?e|r zoI8k?u__8BQ>6~k))N!Fnl;~?l2H26>6Vcbe*Cx5u3~p_%zP(E*7fR}TVtUeV6u`{ zPLIlCU-hd(sIO|o=Z8#MZWVWkcX$*xzr^|zAeu@G-S2tUu|W@(Xtb{iFMy4?_gB;G zg>{7p<%c^OFPR(s%pvjP{n7ELB|4AdC$b6oAtq)g{DT3h~clt|}&SQeMH5I-gVOegvT| zb+g2``#Xsrk2)K9{kTtk$7d#NG?{NGd*w99=h4DJK`2*$^llW}d+E_u;lu-k@;N@@ z$Nb46>OJ*~S$uw9&QM8W$-6k3diXguX&Rg7i9)%{)z`Kqn8O*b79h$a9A6G8l9b=` zP*TORbix+m)MtpP1bR>LiD|66$a-G#`gR%Ay816Gw=7r7nOHaR;UrrrTMo<`OtR)X z%YwAS%+5}dVbC*6tIb&Km+h(-&-6n~QLhvY%j#>tFGflF{cc0_X3|^Rw zJK(LSkhgw|m&CO_Erpv)(+O#i(Vin|d-VE(mub~pu#bsh#XUZ)*FWqAoio|F2}{sH z?|aQ$b$x|@&csHxhbfE4$coXahNM$``ii};@xNhXp9P56&q@#uEOoT*PZ|g_W^yzI zyO+9nedMQtQCI3VlDf@-3D(0D|5{zlA%mG98=PBRmPvs0#70-w>+5;yK)A$Sn;YkD`rCgLeXcFhZWDKc?l8w(1~aH>{e*L?W^^F! zvFr12NEMhI)%yzzM70k*b}zChJn^yIA6CJLM++vJoc;PYepylax0-Vj9K??bt`}i7 z7jJeWGzW@4?%13xIQDmhsxfk@DLl?^PRjVUbV{i&o}7q zkva^+(z?1$6Ep4lV{_}pKDmaYgL|>kPMUFWr9X^9lXM`&FK;N8 z8fg|~z^N$$>z>;@RjFFCIz}^2I(K*LAy5&&=RH2UAk>hB=d?&Ow9R+IRy99VwQ2&1 zSG?D`=66-UVNH+j@)@cxy`t@{I%^a33Jk}&`L=Du-H>G{4Ehd)W<1`AY1)tXlv(bb z8Hyu!c}ga56G>p{$}=Fufc9AWBGc#FQ@GFW%;H4M0YZ@MH9If*Ajr<>FEDk!3o8TE zGkZ-$HgRt|45KpNjZ(M8Hfo2H1n*vCP0e6G%@hgw{o)Vmxa}!(9rhDuTJz)>RYyWh zgLxeiCU{s=BzkAETaNxvgMOH5HvT7!@_b=BiP6&sraVS3@si3m%o-YI)p18GNSFLB z=Y78md26Hr7ltoT4<;EK>W8q_#xM#Ko^zzw`Fvr^^i3X9w~ZXw;^KEcD7cF5l0d>l z+xwAdjFJrfJ6}fO%{E(POevD!Y-AnIdW|M0ld+~4cm{1Snw+$rX}Qa}zZw>bm|gI0 zJ2gyId^o{OWiyrlBWbFKvMOV>om!)jxG-r2<1>1@$LgXkG5&^W9^M7k5ih^-7fq$5 znRnFSWs{bWK(J}hlXQ9iCyh(^YzSlEMPVVlT!qBBgAxZF4A+Ie*%}Eoh8u>xu;f{J zK~8^6BruU$;(x}`vC^mGIXQ~!$5%(1bugk!^ll2}U$Tv9y-AwOOO_9$e>D8D9SSbaad=ck$b60ra6Zh!`r-q)4U z*9y~vh#W0~#ll!*e2~{1cta>2z$7!yacna3o}5Hh$i3J)Z?XuM536@(tU&cTgNrx> z)$p_u?*^TvZaIFnQuZ^z_(&u^IkB4d(+&zhcr(|DZg2AS0g}FwR07nRZ|^cVE3Pjq zxQ|_5cO7fiCHMFmDt70hn+?L$Rs6?ZLZXXCcm~});-sNl)TfT(UbrAkedP^}DnaHE zI+(D5xEngpX^)GFXt#LN9}}!REzr6+)d*Qd616xv<<((DLLt_rdX|Yj*NTL$$yaM# z-9qtx8nrdTjvXdaxS=or0oz?ZGbXr}@lPUTD^H!oK%|qsVX#)**;VQt4rGVn1YHT} z{l-D*C7f`ggg!*04})^|XMq%BySFKcf|XRAya?*jln_i4q3$*lm2(0eWXF~AuXuzr zQ&>|KzN4bh#cF@9J@?X3tZL;9>`Ykka_DMMbkvxBbD%wMc%osTMx#Bd(Ep&Z)>x#C zys+Wz_+c`;AlC5jze#&R2Jv8i`3h}k)mOhDpI%f1dV3aBS$`OG8Ftpka6?N=xDQ(a z{~7ske>5m6yc|MOVoILf$wimdRQ1S(F%ytjbywH5ci{WTx-w{m;5}q#5B-oiayo+x zOsR;rcpNSfbRRSb4=o9z`1J;5Dpf*aeHDo`_lHmCAs1Xun+!K)D;nc#8p(A_eWx3m zM(!N+;-F{pa8nIZcqpl4mx18G z_BR|CQJyY$^{~fE(NdhOPfY0cvGQ8^j&vFSu(yH?x+MLYV!3w*F&k9D*=RT^DIR~J z`JJIFM$u}skmvxX9$j@LVFP7trsyXM$2v{Igx+37fHz`-xVk3}^$KJNxA8v_r%u8q zw*v>+;oAp=SlCgRN+WYkf-El9s0LO*a~+NU6BnN-B41wRD^1+=fmhEjrj6kRCb6bjA7E5r3)4Re}7d-GEh&)I~ObS~~4scf@? z%D_%c;O(&*(cyS9V?aY(N(y%O*L&cx??6xuVc-GZOQWKiA_yY6Q_vbk>6)GBq*w(zTPYn2S(S9JvyG=|Tl%Bi28;I2i{)yX^HV z@KwDbEbN_-#SC_Ihhfg!t#An^mM_iC)q-H;mE6EeJ|1l$Z{#IO6@#XXc&6ybErk^~ zJ~{UM0SU`2=OY}a&xVr;EB9dKV$nkL*2P6%3UHZ&UaHFGCc)5s$DZLg5KY=3?;m+e z#f6Z|S?eH4c?qbDl~$XWi3zj(Mt=so=|cNNYa|%-Ue%PtaPKy05)GE1bOE6)7Z0cm z-VDl)!8Kh@bx$5c!_()y0MW#oF$=Mn^Wme_>B!e*2hv^?s$x<;24D@=p4J-#(26=K9 zu1bw8u5Za)gqlorl3}d;A!xrc#7!W6mnnR~7Ga&B{j#cFyDXrYl` z9_)dQoeCCi8@kbPz6Q1ef{Bnv#fVptF0j9z!Sj$hpD9Fw*cZ`yqYUx@d?L@)fP=+D}FeE z8rWxrM7vz{VGk<%GwA4nU?Hkq&C8ENc@8p3WZg%4A)XcqJDXhwzKHk{9Ig4b_Dkdg z{tif$M5zJeVlV}0IDzo(A!y8ec83?G6*tB1p!j}Vyk5)&xOD*5E%TN|KFOwnq|grfj}fbi8r6L^aQi_)qWbXbq1b5p%=0=K`QNR!tnkFv_vXSK3~~3GjlyzbT!_qkXg21vTmK0mPTr z+9Z4xkqWceOqP&%t|g|%SOCx-dG@JQla?qsNCpyv&G9I4&{U@IEReKE}LDrBf$<5}n{BruMaR0$F7 zC<6|xI{lk#2CZZmt~v-OkIowWy~hN1Qx9yK-Zzpt7psa2BI@B?V_p8k zG~X)81WvZs>wN=WPg~d;Rvi<3svYj|K#H{22I3cr8yNoHkGD3qZmQCRC2adnL`VK}` z(1-n1Llbzr4Vbkq41SNefu2wID^N>Jr519S;_eG78#UWO0~nDV`Q%U~gMcNr1~fpR z*GiJXdTxR|a=`VsPF;g8vK2V3hx}-45Ls34hpH$ffw$T5il&q5+$UN}9LRSh2sB;k z^>VMn#5W|Tku7TFBHX2$HKwrMeyDz*e~y-lk^%AL-%Evu-BfK`mzdz5r-O7GpX^bj zlVTtR;`0UpF@J=qlGK)upowOGZ6-lMb@B31O>6k-f(LWd8oZ2UoNFBMtGSNhSo4qm+{7(rw^U$}n>qL`BDN_77{ z&K)C5P}S`S7-wJi64&Q2`{Uo=OjRg#xMr}w@mQImy-Y=O_S>RKv9c;ZKKexjRSf}j zc&-a#4?Y4c0%hP3cGGhb)?~6+2F*gNsmyor`%%rFl`q_QHz?q{mwBLx%l`!)FU1h9 zq1eOhVC%>%^{SQ(Mxl2{!KjK7gJe;d4GSos)0n6e7znos!qVcc!qr`uZ8415Ryr;& zQ)v$CS_4L*r|s589TpRo3~O>O>P%nF-G}kFzzythv(?JqvWCry1%3f9_;IEA8V$9VkZOw-Cb+_!DeKUXKs;6kjAr847rs z#r6xr&})B|oQ&sWUs9T&I<4o^SHT{75A=T}b6`bsSJAaCIkwGZzU;A-P8LJj2D zZV|~WxkAmN{585K_D#UJNo@@qquP|E7aQ@9uE^g8yM+Q|%sdz^LCgtd==P(B z-IKlPY5(KBLuvwBhdb&LtW-Fv$B?8y>dJ^gCme0^ddK{Fk`5US>IQnnNLMi)z?!jN z(#})88`1N}(1rXtT;;OTOpPugSaE4>k() z?MrZfb%uSlst9(|F&W$73Jp@Q%xn|YVPPiVY>Ms=y1R8I_R%6EeGf#*s>wDvWz&=Pj!rr=dk6c=%zVytFXVX+wx z*oF=Hx6eD0G z?k=nVrfKb7Xd-K`h2Hs}z~!!R1zM}Ik8XM>LA_}ir%}cJg9EIowh)9BRg%BCv=m-+~-c)-xn+lnhAUmWJBTI-qKV*rcJ#wBk1o}aYtUep^f&X|MzOE6it zCwRFBnlxP`Q3TEOfof}2$q>2-y0c_aI&--yNlZ5i@1h0!Bo2n}yh$x!;ZuvDMgm{R z%xwq=*5_+9n6L0Jq^|>rQbt2#vY@4RE>=h_fJP%58j$J|)l_#$7)<=-3=94T`vC|R z$!?Vv7Y|2Sc|z-WG6Ei`CR0B1`>1om7<8r$Nm~ybKdK7P>ar<@WaWrP)j*i4irQX4 z5F*1S@D?!SR9`>|VTYuRmJ^ zX12i!wyVw2bMJ(iM{QT$?uD35J38#!CeeyoCph0CEL;^kQ{5RbDf7UxCSoh?Zh<#0% z{txBW2`Jts64arUoTq#ub;P-cu6zR^kb~p4tN?Mt#CXU?7bd%ugx5#3=lNJOeEjmx zMx%a`9&MQx9hdJ3lAuI={dCC6JK@TKMO8=w9qVHwrHZ>{m3sXKwrDhzRqOzatakLY zW)SHAk;V-f>8h;wXWsIi-eW0or1fPPft#&O&W#eWefyJ)aT6~EbXxWjaq(sqFjRTk zQQg?+;fvnmEfUa578uQG^8PEVttZhK@UmX&5Iqi8F~_UskTyTqBlS6)z!67;?U7-4t1zm-*28Pi(2Ytz+FkA9V0T&|RD&o1r_=owQ!Gd%98kvb9- zIukFTnEA@aK5tCmJNQiubd#?upGh!YDYUWJ}@<|Lf51=yKE{}q5YDaju)6ans?ILCG=_rwAUKA z_)a|9@A>*yE}rcZ%^EeIJ7K`yfU3RPTka2m*BX>4%PI$N0KTDiZeDHa+w+Vcz#id3 zGTin(CC>BnL`QxL$P!o$3lkl3)4|h$^S*>--;(}YymL_UxH?o96La+P@0AP5GJ}-c z+bwOFV(dD^{aq46nfVRpa%?K*?rAW7?E~V<7Uq4^y7StCg$zddd_!QZTW4pd*PD%d zMRmCOgyI3Sk|X&H-o6X!8`!qX@3tvjQqRMo2{x!s$A_%1W-Y7-P1p<9&Npf#yzO<;n*cM?jd@ z-rC6PHTz-jFq$0cp@72Sr1c3W-qek34SM>Kn|FyHVdZle0c;}zIU>tWR=^DpqCm{iU;j>sGo)Y) z2s1APfDFdWJ&hxRPImy-?9Db_a64cDTo9c|E9^iF7*c5hYnhP5!NraLJYW!~C?%rx z@GMC$K}7+u%+nDy9BI5c$8I8@<68efj_8ZBLuDI#&iaqi)yO^}Iv1r4TvGx>m?{

e&I$3Om;(iYG$egGqGA5su+a))UD-wz2`fQIVd!Ghn! zD~H?L{(T2(u%O3}w&$o|vG*ZPsbI%J@Hekg4~`WuXDVzuRu0sVl109VB7cj1=U4K) zgq+vqcXyM0r+fLKrQp-)k{Yy>pHxpaRJTwOCmi!}Zyq5CqAD0TF=5&h`!MPrEBD7B z5rnltT%0hKv9wD;vmabMJfsB4;S%_RkMsRJgsMgHs9>BdOHqSaAMNtF* zZgXT<0dXEhZ2d+KBu0Y}^2R})4E(G^066nNg}C9SQ+)Ngm)}LPx)G9Ix90ig9*7y( zChj($`f*qT!@kO3Ip-z{Ql8WVA4^YAt1BHg!G+&W<^P401C5M6;iM54ywm}ibXc7w z6qD71R~-=a2$&9WxZrWC7zGI3(!N#?Yq01_i~34^&|N#LL;A<(ly;W;&qI^QY8b4P z6|*8IXi)N;X0M5xn_Iy0)OvRN;#7~SEo-%X{*Fx0Q{D@+o&W$;p2%%J)Y};in>lD; zf8VFF^@F{D!-rl}v=e~ork**-=ff_Y_ONw!&!dX_FLgMT$@7Jd$GT-hrzs%bUESKQUZ2m0Qfc79r%R8@S3n%43fsD?%*J<)Dlt5f-)NAe9$flM z>$m{DPz*Qu-?K%e&z=!PY`hK_Qm;G_5`z0sH4d)5v--fZ#Gj5veF8Rxg>TP|d0;_A zhMgi?xMdaQft7Ovs8+pWoJZ6)#c#iGac}(uuz&CQdZl5o-}Qi{jwP%W6Keb4+@1$B zorkA+<~&ZtpcE+rh(;7OhN-WP9Jp4^(Q)O0R5N%86nD_40po-0KL|JwkVia2%(dx8 zU@@GlNqJN8$_OoF{(OV#Fc`18?h11v97S=^ z!gd;dnVR?+A(EymmK{SC+78A)aeOuValaD;uP6-E)qbj@pQNs)1D(13L$3$IYT+f3 zp-R2Sb)%&L_R|x|wscJTus2v$2Y>>Uj68c#dZY_lvgQ8POV{v}og!Ke$cmw;4E=t4 zn6mm4-GJyUE~4@7uIL9$_pw2DDYYo#1V#KoI3Aq&YI*71)V7syGB7wgX+NV^h%P!mnS z0X*5ou(=YDOcA_Vrx1FslU%So)|#Ynx^LBZ-o59yGd~69Wn`DS(!IxkM>KWo;@5fz);nNcuriaZB^;}WL6^V&<9+j& z&Mx>VYZV}(C4ty^_K0<En-1#x}&7Ja!8#)>EvL>@1Z==V(W%ItO< z|785F;^ib3JqfWkmy1N)0+uFXgqbt%g~yj~s4h)zlZ+l}+r4;NDN0!tvF#5eBaU_DESqIDAmA*x;vB>(hAP__cnkFs9W| zsEpk-Y%YVwjk(XFDiqI^E-juH$&sob^M^6c1He*TM=M;&T5+rXAYxk~X~I8M6ycn! z@we(p!5Ckm%}1Xf9)^VC8p_$4ucyU8qD3==T7z`u%8zmgq-s%`B}yOB)^Po@zeVEjm8W!3QiIqi2Z)8q*Y_Q{I zoFYV@Cjg|4c*@b>Go0uRS^sd(^zD}>Iw0s#C%>@lbus74+1VuJ!%+!lVJ@zZ0cAwK zhULoT3K-vgh*A~fJWEHrdP6?_davBYv~~ZYVepvoRW1&FTtmEaZ6nV%0Z7>RAnnva&fcJQ zL#}KCXl^$o$U1;5o4GyxI^v|Z9A|E&&$r9>(4Xnytd(%+>_vo~+VvWA*Q-H!7$xM; zmLhb|G{$v?V~lpfdOKR#|g%YWtjJ+dgI8qhi$o=1|_fFuNY7g@4| zVMEn=SJiF;Qv80Jk$%W@CrhhrZ)p7Hm%r`U2poy$stomLeKW+}Kt;5w@kO&s*Ux0X{_&S+ zYns$XJMZy_!(Ts}J0;wRO45KZa3eXl?&E$50>4r5xl*W`0I?uEh$d13;Q&b#)#m_d zk%V6zxS%zfWQ@mIc@&y>mQ5Dv#mc+Tr3Y|>_azd|L)0DXo@D>YJtHpX)PVTQ5lE$U z6gr2X_%$_mz{BJI&8EfS-~*CZEczB;KFBi%wU4tJS#*us##HF_Wn!6=KieG~g$-pJ z;`#aFfO%;F{+933eZ!zD^i*wBjFE=Im|HYw!WGCe^e*U6S4<143qt;G6_qp%>zR(j5bPM*PFPU=#@ocw0t*l3FR@buQ4cPb2a0sv2HN=3!GVE9$z2@*}x zmi~EeIteO`gSU)%0UgjWHxH?Ck=;+dBQnBY$C!34yqza`0d^ z3Vv(b(;3Ly!M^Zy(W0zb0=ErC@7>pH1a;DrPSz@RNFvhQW0411b_&QPS-igX9XR3; zs}6xh)g`$@W3!f(@JH#<@(reMfp3s75U!y<@G-QOgXh4btm0l3)3#)Rf zl`3A)iuaXwX@1civNnlZ?ak}48HUgXN*pZx;tJOKbmQuHPM^uF^A2`M2fPP|H@7z8 zENKjsSD-1Qdaw=&LYqNU*nRm#{{DY$@{i&|rk-4Xr>YEw#e03RT|$RlNe)>Z#aSA$ zau&hSKi3K!`>N-7Td^3W+3fVw9x%6oQzcG{eL?f6l#L8GV!l9#%CfLIz6^K4elvwI z)#A7U{>a8(GGBanuy;5;Bl|N@&=-r^7pD6(5ECL1Dck5!=Ao>{OZrda=@9Dd(r9ofLsM9 zJ|&pb2P!%TIj4_n3VmL6acYzknO$#`f5Bfvy4-*vp9p!K5>)c-_KM#IjME>HGg-J` zNfc`$ZAHh8fPU^pX=bu^xR3=(^&r=FLZl7EZG$wEg1^K(r>i@F+rZfr8Fu`~pQsW@ zhvQ+E2ge^}gBjw7G#RQwuNmuotYGe~`;3l@XgO^ykd5KIT#}Dy#vSEewp( zA(_gRE2vh>TwilSWdL+60E+1cYQmSNg$i5$p?_$a(d%&}Yaggs10aENUGIOY|H#B| zqFlcOsD!4I)asj14$o8p7JAR;p*RULAVi=;lmA4?kj^8o0UfQZhX-N+v%_vY-EM0` z3OUCe3n0o+%VcBq7;3aN{JE3*^(DLEH`3V!y|9seP?*DjJ%OZAYz?m$1P}mT zSBrxan=ud~oIt3=zk8si$yvn)Lcs;>1}79ZnlsG)eK|Cs^BvhuCy`inH8?#22Co8$ zwvnRMWy3v3*nN7f`ET~E4|ftvQKz-7&B{z>3i`jHP|raOu76!$)Gh1(<39W^<}3=m zcK~cbGal3(2Fdu4RVw#`9H1>Krfh7%`Q`7_uy|TLC@NOHlp%5dLVzpmQg+3t6 z?%3@FfNen`jIC)F+GE9SsfLTc;h@>A1O4&I>@t$IFKWZH8`!wvgh}qLaLj{;rL5~k zG&$(i;RAud2Q(D4G7$yN=M_{pP{P=SH+&!vjV20=;hO{y+9N;%fE{ALG=fK1Pq7C? zMQng3%UPhX0Ob^k-RNzm#b*slFFZg8*7es@Bvgt6SVTt84KpaAqS+#(j4goVfyRga zH`{-H=ql_4@b$XTtI0oNkw=rtv4YMBtn+emaS8Sz%gzrv9Hm-;fe2vO{|5B! z?VNl?f zZrs#lA{20NmY>JS7eOYz0cs=>h#lC-C8%Z8M?=d=lnUh3I9-_vJl#VB5cG4mg&9CQ zMVSRkrHn;IG|ij=xrI^O*vDo?Z|7(_8#4O33wwcjHGA*}R^ zlTZ|n(t8Mwe?GUViJo1W-pR0sCawg>$R((GGa^s%74mN~BB%u})wKgrUz8p<2R?VH z7942~gUc27hI3H3NezH6%+JuwhvTGM=FAwGG3QttHPn#4*Fgm8mf5iZy19&%7gq_Ykf)3F>{>R@1wTL zVpg$oE*&IF&(+$B3p4CMDXpRFJEOSNqeNfKL67%?{z@$*19K2PIW$pD(xEr>ic!QX z{kk8gxRE0bx}fRL!S3j=!KnQnfLGtjf90=DMlz5uA*L^?m7(rm36Pc{6X`lq75wGd znOa{S?zHD{z{hsgOwg2Uq$xaWlhJ(dof4ju%4Sw#0 zyuFX9m;z$(`yHybIzp=PgJNb90j$CXh+ssM*>Co!1ZTiu1h&*}<75>9;DsPa=Q_2b*UEm>N4VsDM!4-)G1A!Pe}<(JR4~WWKo3 z2FK3m4mHXkL|w7>+GOjT6bAdnl**(2=#nq;C0KdnhX>@;q@pF^YFRJis~^xO#MW!?cT!~t7RV9kK<^of6o5E|DKwd*8=o2`IgDrhji<*bfo?d% z>=JQQe%HYS07zx00KqPB+!6YusRE9p0Anp{rwIcLh5ggS;l2s5>TRJ)o%Fr^lL$Oo zt+gLIm0~hgmk>gFS?==hUNdh%LVrUhm6yJaeUQK~Yo|B25E8cN+cN}igiSH>OYoX_ zoI45F&Hx3Li&6FUWQXI!s(pYr9>^a}iAw=v4xJbvzx5ic2x-1koi3-10F)SWc1LH- zr2$Md%jOTLA?e6yT)w#*=B-T|io;0@a#0S!$f3_krJO|2MMWSGsTcw23PKMykXil# zRAdK-p^)pdU45m0>zu)!errg{yRV(fTkb`-0N_oNXaBL^EbK$UI{^6Bapoys@WH*- z`16SnyVk`jNJ3o-Cx;(t0<5z@FMxi5u(U9f4G)T;a5rrR96X)ClA$l8f{_*IffDw4 zKsvWT@b~p=W5Mu&|>0RL%0QD4?y2q?{P z`Pb=ABhN&!4A0SK;G$?SPN6%{no_}ZmCQFd^p=B0HMsi+KultWl7 z834xC{UguG`HcuEMo|WK4Ct+FkRN&q6_Cx+N3Yq*h6F){j5=EbjJ(WD=ts9!hC?4h zCKX^OWA`jJ{uj7&WWIyW+_-JrDsQd|D5o_9EoA08cvZck?mWBza2q{8ZEboFXZw+M z86fvj0x-GKCfHGoDpo4?hvPhi<2g&g?ogT#e6)cQh~TtjebSA#LlAv640le>rVntwg<|JHAX}hNNWj?2YVqbM8@X)6 zw?&i4xn1QTblV+<>eyd50{a|T@tGx#F#Scqq93G17^hp`1dc|}Lw-1t;C|~~i1-vR zjxD2Ko(pXD>$pn2UIQeZ2-*M0x1ci<%>w@MaMfthausXcg0Q|=c34O=I#x*rGCP_u z>lG+M02s8N<$<{u900LDtW^X&<=Wb0@o+(lL11kcMCOZ1#rpBb&jXOE4Ol2Z-D_?} z_Ok+bf=1se*TkVaQ@(HkMv4ty^45n_GpGV?2>hx66XU+t=|UZh24E*x2z()eRzqn{ zGH3!YKX9ZO{`GL8ZqyMSMDByJfZvrT0sv1WTn~Z{B#Kf198&+-3`WifUdbjlya$T_ zXCMGk9a)5S<+TYw>}2qr<`_AEUI<+=0F_e7hVVkHi7s898@ursAVolsKyP(E3I}Ha zT~F2*%dGyxcilZ4s_I8Q-s+}2)r;FpJD(W zvGatPFd=~Us*Y#U3R)&sc$-?$+dcb&$xcc7$R%yS>{_h@T)^DZ*?V5? z*5?37;RYP>Jo*rdTF8*5!7?epVIO=dIv-&f-v%5w;syieQ4irTySf37@xjIu*R zJR58bka})JBCaAJBD*M-xg8Wm368u#v{R*CbF>O+kQq0qWE^JQ`iy6f^IBg z<|5`Ix~d2`;BZQd%tAC|--rSU2iKTYol~b%p=SZ?l##O_GEYyS!hl+j|fQFRo zO!p#=Di8*WdrZ-*z5oQaK|=#*`Tr12%ah;n8FFtsCta2a+lBJ{h`CV~eGT+74u`fE zo3Gl{dA$bUC?xNOm%T?}vBzg?G73W=vOBmsSuFFf zwP{14V0rpV4V*jyKAMt&t}_Fs8T1!{r%Jue$G$EtS(mIUjRMOswIUGGIZ%(>-vgGj zeKs*$lF-2s@W=k1BNi7z`}=^$mQ#TqCJOZd$w6SD0tg0rIw+iltFrXsOtZcR0<}M2 z95G5=pwwa7`Rx_;ytbIe>UlU11}!meVXaRBP``jqgEMaaM|TWaLHrNOTt?3*E3r%g%|3szmj9NFT#>pOAs}Kp=#@ z+C-atDXDPcHopyvFudiq7j|W~UBLrla&IXm$4})Vkj?!_T*|RneyiJr0ve(@m?x8$ zh*L7IlcSs|?Y1B0@+2ZLlEhU1px!mZ*(QJO^rl_Co0x}T!9bKy9&r=(tKi7Je|3Q!=O@1 zyP5%^qZT9-!YX12%}vC6?bCL|-@bu7^s5aAu>ThfTYrql*S&*g}G}TPykWz!BJAh1!9(_7nQ;5@b|tNEqa(~X?=aEto62^M5ri) zlav%#mYBm4Mt7sF{hrjYs8>}0MWD0>N&&DoWMImWMlOP&a=FfSG{!OM;paofUiAe} zH&GEyKs2fIvF~gI?FW;!8DtAeEeYCf3>2Ra1~|HcUxco+2tcl`{e2I+ZwDv+O4ojD#BKEK3NROgry!E}HbAEy<w1svq#%WuV9Kea}yR$kd z149J?ph&kHI;Jn>(8&sw=2fg>DCc8(T+@$w0o?L5VHU_a4S+8g)cKv9_6t zP{H5eU0v6lvx7O{>;RYNRshfv`uP04++h+cbpTWc*4i6q9f)v9bEWZd`c~4t`A6l^?Ckm$#hZl?)vG7ks zSlgXns>Q>C4VDt*a%|Y5K;)44e*QX&n_i*8+i~V!+ykwkw~!EGfxaq&aG1pju+Lve zb{k?eV7Za}5}cBpL{78h7us8U-ZFMmEd@`V00&XPo^L$n>a;mZ9F~X-J<3BG4941Y z&{CDMw?aPv%OOr=0Ngmr!ABD;1rA%s-nE>WX{h4~Z>336OAW<~j?1gq0A18EXbk}Y z8?>pcY)f0ZywNu>9q($JzxE#@hY>wOqx*q>2y$bX#Y2}U8X;1ge~e1=>T_SacFky?f)# z8N!@ELy9g0j)$^Aik4#9N4j$C|Ge)UoNuf_7uFXw9;PZfxqS9K3n zt<`30q?C?>!C8=AhTBS8e7DTQxfUC5-n6Uv_&^2&>EIf@net@K79pNV$%9ny!MCZ2)OiJ)rm{HC(K`TF!UfIbFC2nGXBf#IP{eU*!=0BJ%R@ zhQhgY29s?*6`b;!NSzS-8N8L)QvkZ7u3}5SA!G7L?z>=SN3-p<0XRhF5{hROVD-^( zJ$3*fDY?JqO3UUD(M0>kr+~cy3!Ug`$+wCnpIlbYU?Ix{6lHjIJh5M)&<&d@$N~y` zuiP*>xBkTHsFS~nhZ&0V{-AS{$b64Ap zhzgD1rLCcLr?ZK+j#MdMx9$3cx?h7l?zY(N{ywQAl|T@Z?TI*_^hH3PxUm`DOtaWy z!j>ivjh4owqiIBQcoMAt2FN2uAaeB_x8FoLtvp1t2_~=uXVs0Owjwe1*ug<=dn!i& zqwZbu83Nk@*_<+^($2`pH^qIQWne@1*EN?A2^9E$^7P`6wRr|(pRQ8yhZZ@}Bk%EgpiJvN z_`ZATY&L=;5^+#1pqj55<6!g|C78ifcW^^Ms_>iYblVpJzeoEH61xwsQ_wl2H*o?b zz{h`%)uw*6H_2t*o`X1dBIL%`JQ1P`Q~wq$oLS0r295TZYDviS zK>krqMDkeHN$~|{4trAIH79>!1C2hQ=A5X?gCQnxBVw$s+p%CZ6>+30y7ZqxW?k4H zVND`|Bnn{6X9F<}Pb}i~eYJ^q!bJDOD~T*GXsA%|fBpVpHX(XjW=glt2I zjtXoU40ZDt|ZbVC|23T8(dB@=nUScbY|>1NRT`;yCP$8`= z^`y8Jb|YYz-&u9YEi+Dw$xP9Zgrq$+oMQ1Hx@Wmz6mW*6RpTdpaHs>O^ydO~zL8h6 zIxuA}#e?09nYRogPLrcA-`UC{@+e&BQKptvIZ~y7YCXX4i0P7hG_f<7!5;YTkFTh# zCtq%`y<0ifc#4;B7X#|sK*AKN)N&Z{6k|;HS`s;gJe}0?-l8DpFew~3zEi@JUuR)F z;NKbEJ39f{@baDOK#2wGE=H9!;Tn^4dajlwb9jt>iE2E=INyJz05o!#+C z`#`Gr$A(gG5*=H3i_GgktwbODT0Ps2g%4?TPK`gHCobvXvnfETZO3dJmkwNL-gjZ! z$Y?FktSwqMu^r(hYTIEcN<{nfwu@XvAcPFtds^2t-iVN@qfLzVM-fn0^Z zgI304VpP^D49MX}NPcUvoqJn#$K*5x))JRbJqqv7NqZPrEskJB*6(rS?;DV4)4)!0 zKQ7L3D;2XH-o`mRFA3DjG?HurrU5-%d8y*X%GOSGZ#URmx-a;0k28l_0O@V^O0!p{hT)*3 z^n-lbD+}oam^XC6QsR=~Ewk+4!N-BYVs`rpA}%&0S1&GOZcL~pxF}I`YzdYLw^W{Y z-E3nk(s}^n_)nU}6<6QmEib}3NkicV1S&?+cZ?!NCx2`}g*VE}0Os1rWuKUqF=Zf5 zxBzRtbp#{AByQ~W$mAG;EX2`@i|$=REDNJLj+7@WlX7LXo+?f)*Q*ylO3nGDS-;g; zt3o}b88C#rgl8pTIx7z}s5W@i!o2y%i63}eB(TPsd7JX^5S(D6o9s&(AA)|zqp|IiK9D9&^QqWz)GaI{g zD-}fJL9!yK4R7V> z-SkFknuKn9C>B}o9S!^^rv`j3(Q)?XWjTW?+_yxYC!T~xLdvrsFk44aef#;dI6iPt^*$~Siq6Z*SkHw7-f;2 zy^4`^4X)HocaX^$dA$>=e&@g_HV;qg7X_^iA0y#8xSkB}<_}C}B#j1m7Tj6Ae)%kC zt*$pO&FMSOomP)?AGXs@)5r!j3{}z1*=Z-urO%W{+axPwo;$!i03Ch|nDfG(o0goy z)1_O0{fzV^f zuOjC>uRD#zQsTZszvuY|w#rW$n-YT!Z@HSmZUOjCilB-mf&!XX;o9GpWpA2jkZ*b_5c=~5-?q^N>91CON)O@jMk z{HGrMZr(c5@&8AEOn=-1V{s?6EFZT9EtmNN2ZQ&JjGb_HR)jjFl4x)JCf*~omzUOb zEC1u>mPlC%iY3eI_0Won52C2sA@L6$)CvT&F3;)d>4r@A?``3uNmMC$@nYYVD_7WZ z?d|Q7Yu4l_RzWKy>4hdy>xNjdDnk8~ii!&RZCTiZX16XJ_bRYS-+A)n3B05VMV)m+h^QqL=<)IK?;#wVk+z3-^hZjZs(uSYY*s@%0^sKbDDrggM>pxO z()Ja)=mFaNXq=?&AQLG6%`Q^N_TieP2d5)3`kB+W{+vRL){>2=ats0&>nO>9Cjc{#BSJ&By zXC?4@JhY6zfCixASaO|1$__29h!1^y#;8BT|ATqmBb!Lnavh4UENj3maQjo<9nzcU z2i5mRdT~jK>du|#YN{~fd>gP!R=>1Jv5m6H_Hw|ROUlSp#D?fa;4O!KtNX_&#)u|b z!EX7%Yilz5)f)$d8wDRB5I>36(%B(U&;BNgaXu1>w%r~CfEl-@OBq6J;W#7$%TTw` zSMELKgL$CT|Kg_=X(gaxyPbw~!{_>3XXs507d5mKfAxQM#$Mr&;BIMY=@MJ_;nsrw z*O{vH)YEN+Iyk=17CT}_y&;_~l^QTRGbgr$y>8AF$K#kwu3r5+?#Vj~p_3nsVH5bE z@6nnY>EuGHB^V^v>_1@4VS|>a=Hy0NmEIZ0|Hm^%Q9tNM*`T?)(o-=s*x5*|C zYMp$QZT3U3RVVH(4 zC_oFuSy=lzU{v~jusJ&oj`keH%Elq0NRpFj7Ir&49M`4j-V6^9M{IVLco!mM7g4Nv zWPT~VL%yyPPRH_}CAOq`_SMCgV7m|}%kGjj+Fo0mGQb1LfzOoWb&AN{m6yo}TcE*g zxdYn;E)rQ=mF3wNAuC3)_I$0O3%ZBj7?$U*{EMPwEs$pBoO#K=d;9jY)(NaATV{-) zhX^8%h{5Xk772Z0b`H#jN3%S7Bm#=7tE(j#D=1b=+lG9KT1J!~?(aKFfBEH?6VUk2 zeW~4KD=WXpbG8vm#m2@S&ATuS4UUG!t(uw|f&&=J88Mlhd{jAmvZSO$`P>B`A1zZ; zQ>TokOvt4k{jrpy)DEH{9rLkFK}C27z!#*chy%fL;AmiApt~*c9y7RIxT|jKe_eP5 z7iO_!jWl};;_~un@JJsQ4mN+JjrrjZ(n^9LOn-jz#0j~gqM|U}6~haT2$>2yr(xFEtp6QcHdk5lc@-jSY1XUydMmPJ$Tj5p`{LHkntpw3e{$q^|9)vA vyDk20D#s2@{%eHqMNzCmbnO4fANy&Omz|yDdAZPCK-ah5WZ$Dbc9;GG#~7z+ diff --git a/dev/_downloads/2082eb4d6b0c42668444836c10a5a149/beam_problems-14.pdf b/dev/_downloads/2082eb4d6b0c42668444836c10a5a149/beam_problems-14.pdf index e3d4a142f87c9feb975a3106a2ffb3db4ef3225f..11c191322e60bede01cd41f13cb5552f18fdaa3e 100644 GIT binary patch delta 21 dcmey|!uYv`al-~%HbWC5OC#gW+idr;003fZ2rvKu delta 21 dcmey|!uYv`al-~%HUo206GO|*+idr;003f+2sHoz diff --git a/dev/_downloads/2454d35ad3fc284cb67b6c619b4246c1/beam-8.pdf b/dev/_downloads/2454d35ad3fc284cb67b6c619b4246c1/beam-8.pdf index 804726131f3e014459e5cdabcd88f9b162e5ab6d..932594a0895555a67f72a17669468aeb47b9dcf4 100644 GIT binary patch delta 19 acmdnszrlZllM0)miIJs&#bytc3}ygBgazFI delta 19 acmdnszrlZllM0)Gxv7bP$z~6g3}ygBas}A{ diff --git a/dev/_downloads/2608cc95ac952e335ca0ce8cea458c1b/matrices-22.pdf b/dev/_downloads/2608cc95ac952e335ca0ce8cea458c1b/matrices-22.pdf index 378e1302514a070ab7d95e50af8ad2f19046fe03..fd6a07e253226e4b8e1e15988924c4de0355dea3 100644 GIT binary patch delta 28 icmZqp&({D%EsQNpTbM2Ouo;>dS(sREx7)+)#0&tQlnIOg delta 28 icmZqp&({D%EsQNpTbM2Ouo;+}8XFpJx7)+)#0&tQN(q4g diff --git a/dev/_downloads/2667a5fcc739d282a7512f6b7b39071a/matrices-4.pdf b/dev/_downloads/2667a5fcc739d282a7512f6b7b39071a/matrices-4.pdf index d7d5a166c014849314d97b2fddc8893576d45124..1629a379b947e2f7c75594250f56b54417dbc065 100644 GIT binary patch delta 30 lcmex(M&RQafrb{w7N!>FEi9VKY=$OA76!)K^_5wim;tm~2|EA) delta 30 lcmex(M&RQafrb{w7N!>FEi9VKYzF40Mn)#v^_5wim;tnJ2|WM+ diff --git a/dev/_downloads/26aeb23613c82467dc9ad9bdc328ab32/plotting-32_00.pdf b/dev/_downloads/26aeb23613c82467dc9ad9bdc328ab32/plotting-32_00.pdf index cc58ba4dad8007a97cd99a8f44e4bd73265ba868..4de57e69f21267c5e41e1c4a85ebe2cd9f99a341 100644 GIT binary patch delta 19 acmccZaob}w^+J4^sgGzR_v diff --git a/dev/_downloads/295bb235d3caa42841a5fbfa905580df/beam_problems-18.pdf b/dev/_downloads/295bb235d3caa42841a5fbfa905580df/beam_problems-18.pdf index 623161bc10fd46bbe3a89d9523af6a116354c15e..1eccea932c6c89699395c716f3839646c25354d1 100644 GIT binary patch delta 19 acmbOjG%;wyXH_;s6C+C_)6G9sC71zAYzDXh delta 19 acmbOjG%;wyXH_->b5j!|gUvrxC71zAR0gvE diff --git a/dev/_downloads/2acde0fab574588f4a28670019a75bf9/plotting-26.pdf b/dev/_downloads/2acde0fab574588f4a28670019a75bf9/plotting-26.pdf index f97fdf32db237849c7b521ab95e239fb3d56f824..4c5ef5f8f298ac38370283ab3c7cdaee994a5981 100644 GIT binary patch literal 129106 zcmaHT3pCX0_kK626kSN6p;Jyt43$u0=9EfNluIMmN+QZ_$Ze2RPJ}L^kV!&_Npg#E zsmvrXT`=V~7>rAdF&JY8|MxSW8Rxs!Z>|42XRX6Am-n;Z{XYBI&))l0J$>YuhPLLu zRjRMsRdV02(pJ$@@x17^3WZWZS_XPKs~`<8_+Gf`>7s%>eZj>Ur?LmUz+455Ughj@ z33{R4|GeRtr-!e~Uf~On)@B#ooSl4Cbm3o*2KX9T_+IdJR@n#tkJA@?eVu(gRCJ(U zS0OE2FI>9f;i9r%^j9BGCktm^6T?{$2r4t!fwuosE_*rt(4%5~3|6En! z&7RgV$w4>$u6tXc+v1j-HF+rN;m%W!Cp_ne!vt0H+_0Ir`4Rd&Gi)w#e%5h*YPMv4 z0yEb)&qFdW^E_oPHEi=dZ+?zFFW^s8!HX2+%S`H@e6U!TtmnFMA+=G z<2^|TYOr`Oo+Xk%)L7sa{f!SX(CBMLAGOR`@YDD5nLa!;7nW$P6D1 z*5k&GIq)QLPKG2}#p$>nMVUSYneo=2mo~{dU=7o+=2#*&ovLjfNIsWwIil4@t6ol$ zTKa~{-o-IEK#51U_1m?Fyblk@;;#fAySa@0OEEY1&)Ig@R%`E!nm1`kJrXzW?FZ;jO=N=lZJ2U+iN-!{3q=QVo7aG z)+cmqV+74RzHzqD`kA)}-7wQ<-!Uny8A+#Eo!X&ZTawBsIdH8+>+Jb64K8!+edNIG z;%5Jxl@$f2bH2aQ<_}3MukU?cyJL%9^eaQ<6ggR=HAvOLzdr5OZeG7ubAzm;8NTny z#YWbeQ4?-a*qtZ(MKWr-^nfh$_JCv8`s~fN?5JUfd2e~~1jp~RN7}{p4s_3CS7nCw zg@>wDvQOvd{G5=&$r+ig{(XC@Kf7OnxFu1)h^qf7_`xCuv6OwQi+sB~IZ?~FT-xF* zumdCMC(a;BQHEwVt23!CGhqU`jn%VE$1bd0Gv}#Hg>pCQOq*1HvTzUL6m-YbJy4y@ znM{omM1FenBXsLj+Iw2K)=ybSo7mfY!#2G@Y5R~QIo*V@q5Mw@^pTLd?AeCy%~?}h zZ(o?3e#X^oQ3V?=kGf+-cU$=f`jX8ALoW}yO*xiC|4#T>6tVaF9_77nsDp1GI-Q}n z-`IP?`@6}L6Yq81q&k|vW_yo4NQo8nf4)<3JGkWI(wEgHQjs^0jtrm2;`7oh)6YaA zzNt&6j_o47=N>2_k*gD_FRqcZLssg~4FB^pMHzeD!~>PxJk*w4!f_4R^5lsHKNPVt zf2q;v*5Wt4bWTLcEqdZaZxkLMAKiJjM7-Ysh zL=ow^5G$-WHD8q>yQCHWqN-QVDSVL4pZ!ZZ)`7BX>rTe6{V%w_xM_fc!B@8S62m>oKLp_+O@(*Y(F zmqN##R8p8)<)l(oGjBk?e^(_!7vVCoh+E6Ka;m53_Tld@Vizx%WYIUUIIo=P*L^ZI zWg*l$`-nTVRZ&EPlxRd(_Hx~_m+Jy7*4Qt8x{HYjmUvk@Fyi>M>D+4v4eE1+TAG5f zjzW>mVp31n)AlfC+oYF~O~*gC_^mLy4WSVOa*}b%!!e=g6G5X`gME(k3HSGUwC&K9 z_PZjGQSLM`jvC!U`4LmWn>Z(Zu|Fk$OUm7iU2_$>&j?fcIz2oLQm9w1lgmOBgCER~B^BmgXb|Gcn5B8$Yk6xc&hNh? zyP85@zZ-TbxK>;$a#Ni#^~&tX%WtzS0!Q@^X5|nsAInB(U%MS*rDUM>aX#~dHl^vn z4rLo=VCJ-qVfL|z@@~C1cgR7tw7zeh5mvjTR+D;O6cYZ*F3g-(j@5rCw3XlLWe`3c zKHi;jh2dpOURHJNDL7jN{h=c}&=oWVg@{@bc_kO$I@Vj8wRV1ru$ej4QKV3+P*;_D zZnDYNqH-Kxt~y3OoSkF*Q~kKyCdzBxz>Kmd<75)X@Z=L4Zr6~DuJ$$}yrK%4?9leJ z-e($Jt_B)ajTT6(3*hUPzs@a^%!!j^>AA0seY%+f1;eUwG(_DyfZmmm!gc} z<25O*-23L`mvvtc$?75;B!1+4R~n3$jC~^Z;U!f)$&h2GCdX;$o?W{YHGBp?te+6t z>-SX)QwNN+btY*;F=koT6gulu^Vh*2hwgSQIxzRWw$Y=uX58R-n1V7+aCJ+^FOFj3 zi)kCqYMqVM8nt}mb%t_|@`mZ|Q2?NgYMV=w17G%6;}6#CerCaVzBPR@d0n#Rov({_ zR<@uFV~)N)@lSr~xdPsPQ;gr3-m&Uh{<8X%R=#D2U%$dIYX))rE^Xtgqf%XK$t@#S zv4WQAxgj0Gj*lC%lyHFrugsKI=D^MJJ70BlTQztzCtlW95Sx^rN#(J%c0y3dRv~84 z-S>XA!rRMSv$x0^ufA+)H^n8Ijv`x##qv$*(`3UkH}n(U($HF6&ZB+~_za%XAEt`y z&>1`$qtTO_)^Wl!gAHfr3n@h$7% z*9)&PZUVc@je13KjJKKgy5l*Dx$_mhaIEb&UhxRv92CLF;@x+q&PFMk4Tab}yTAuF zCOG}EYe>=D62C(Fd2P9pV!52-*~97XyHae=uV(t9d${($486unliEoSNv!c*0HsVY zUIdE7_KuhqfNpdW`M_glB_pSFl$B*VM9g*^;faELTq~yrM5#}yKls!f?pMq*<`kpL zZuk<_T=+nXl-u%n9{`}U~oYWB<0S#!urR#}7c z)4)Ve0yFv}S{(u|omDcZAi46BW*%@0Zrpw3eHu1W+tm_Bb{^Aurq&+wuiU2HjMFxa zJDNJ<%pQBq?dEa>iZ~CtZK-l+MAl=~`Jk?}JR1vt+O@tNA@2;7|A~2~enx3`;g_;3 z>$35G;vh1EZN4%i5n5|yKwy3v48(B+(|D7o%o><3HI-h-@AONk{~H)=d!p^hUl3&~@v4*v2ZvecC7t$qgu{Pb~n%n!L!4jVrct@dLzREH8oOS+m#gky^ zZ+3fdhO0N3s)i?Sl$MBAc+-|&+C1$*E|QmS*s53JSvF1H1_0?p_N&DRlNDu;9J>6p zsb!bkWY?#dL`CO^y1mR#Y7Ni&h0a}P5nHV&m7%a^%=>1e+Czu)PTn1HCf-*=0mBU* zyS7J7)iGF4-k{p#iiYJB2<0;eSQ)grex1Gvu1%y`)|AFF%;x>!HG6VXgWPklh=IqD zDRK@J*glv4b?^7i^H+y;S$?~>{B*hZ6w?~FWSnQhWByWyeNee|lCtelZfOqFGr-k2 z#HgW%P1Qe1c3@}Rv8YneaXm(aAmMWQSIISkD9ljz(v@2f4U3O$x!*OmbBwlUDpMiE zowbYO+LEtUo6=U2@Uh6GiQ~c&ha~g2#Mklx*V0bETa;g?tNbfp&&~Yq2+797DS{wR zCRp~zP0i|PDl_OZqsytzzkc4tpsF#>h?^Gt{h6+*C)dG=N3TIx=z)pP|6kPN@W!5C zfZL7;Pzjukr5Hzk&qCf(!!vgczT$z>_NNa!@>^e&o2~#%?`w9}hsm8DC_Bs~t%->G z

  • {mD5!=*rR?92cAVF2$hx%79v;FAgFEi1QWPa9?$~D`!AUAzsVZ|h2WpQF9Cv`G3CU5LrR}=C}O#6V8Gaavuf19 zz#zJ?dc%03pU~i;siEw5eG7%CRp#@RHTRy3ek#{KQ0m}*u(vs18%SYX6HvYQd3W)t zoao=6cDjS{8w`9uf>8n4r<_0CvhZIw7)nmh$My6;)1Z>rza#K^4AqWW_ zbVX|DQUbK{h}Za0`Hem+<7%JMfb~3!*`W$oaa`E5XVlTr(dWl;D&-V`cuZSj&d$!x zTSYc}7wht;z76t8Ha4No)S#)sfq|%m1c$27TeI`02K8(8{R+m974^=0CmWlXKxUZ< zxr?>6^|wDCe0_Y}rdl|nqoNr8=0m%vsHoWFZkU)Pv?a^Sy2x|Bvi}~+A)d$EUqLoM zJ@3FhKm8OdvWGpJQ&nZ6tE+2O>D*%DgTY`Rq-)r@7kNjFU8kbg#6q++@$$}Y=9mNb z>$^20wou$>o0%m^NJvb0 zCpR@UksAe4U@BPsxT$^P#~QOL^idz_vRIS<|H&clif;Ou6av? zhwi-8!xY!0x3V5qY9Y#EG4EBsvu-{|8eK~A90}=PYe`YGIDlkN%{}GQr%!L?ae^+h z)p9+(@h|ocB1~{5c78=NQ%}H~zhPYe;8v=L5Qn`ic5|~N{abK7*Pnpg?O%M%B{2E4 z2ZfumDTUJQ+mTvYT8F&bOW~D!yZmM%tFUo~Lt%v)J)20^_gAN|u~HdImVY*f%O9q* zikN1rzGTg*tn{%gsj$HIe^k|uxp3>wotT~i6Pv2U^6Y|w?ws526Z>RIslli9R8@nJ zfp|E7cJSUD#P4(6d2rch!Z$Z=juAe!@*@1zs}65%&5Wm$&9QlvmBziMuCEGf_I(!m zKGb<=(yja-4I{mVz^0yOShTTNy=lJGW8(a3y7O*tM~B3+Ki~0{rsn4AgZ<4KRw2%T z-*r|sOVA)1b7z15YD0bf32r$rF}3KkDSNw{zOtT+~v@st19bNL~pytDAFzr9pTPoDN3k!+V6 zANCr5#ap@LrNHZG=j3#HYacpmB{wf`fh7{H9>%p|Z*Tu8Q#;mY35IX>5~_?9A8Qd{ zM6hY^S?{$#6}{Ksgwa7UT2@w;_x^pued)U9_E=++29MDM=g;1x^_bY$ypj_AqeqX5 z=ZjR3Q{=6;O5{s$OZboz0$QsFBM6xxm%4J+>zZf#`}>V69%UjA99B&#-E!b`|6yfO z4+;vR7**$a6WF_8_{&y*bJ#N_*?THZyojGO7Pw6OI99#mXh_YDV^AQ|Dl`-3_s2M!Z0S%g0hh-X@gmF zoZwK5fPPqqGKMh@&M=%@!_=D^y=IW#yG&k3sBV1WvW5q>!}KG1*uJ^;P4ub}%q2VT_aE zDzNLw&|Enuc}8u=Cs2Q5BJ#!@>C2M=$h)39rQ|w*zc5~6_^LMs91c_HKOzasw}!>x zs`ZUQ=lSv1il=+WL(c<-(jOXp$A3Z3p_O-)Z%fdp*r`KVtbM(Sm*zP|p9 z?C5sb2<~7n<0yzY`O17}n%BF)cXP2j*C3DFBvdrxJGyHgDx{tNOXTgi41AL-567ND z+3RfFs~2LqQxpndr$bq9_I*mv z>SXin4U*zepk-z9q2`v|F9p@w))GQQx0=uthtXSj6H%G&65d8Y7pxsHD4NARQ741H6s(aQS;nVG5$uTiM-&)#boXqsJ9)Opst7b!F-znjn; z_DgLdW|jJ))#Q$B#{J{Ii2C|xM^Bab?|N8cFimT61tw)8vrJ(|MtX*^QAzTZyYl3p zDle|_9D1Xt$U;=pXD;V`$^CCHF6rBiLa({O)sjM?OYumQO%ayZP34EGR z&)oS#Xn*#}LOs}Rq&Pf^Ipmt#?m}4}fpFW-&My8UHXb_Ef0T)mOEd=Q(U+?750h4s zusm-`mi4-shWK$bpK?Yl4TX0e%joB(1i>pP?%M6^DKUNn*f4E0xO72wki3b&^GVAj zxL+kvLx_`gBew0-CHmTjZuFH9vJ@-TqFe(Ip(t5U84M8-+3hL-Ifd8bB8^I*g zQb)@S(3(f6jZV}`ztOlRWLVf`^;$mb@nfX?>JMI`_G2nxVM<_l40dX2jpjKvXn?+T z<;s;3`)skoBL)T_9z~DXJ7hL#{R;?-+%y;I?uF1y zNlrB#GmbI_L*G+SZ0FB~8=D+LP4kVV*r|4ifE{@uE|H1qk%?CM0c&q?~&;I^Ip)VSa|7BO?;)@$^Xx%#f4hjk?xw#P=3j{MNwfiHVynQC4 z4Ix4}81gu;A>r?jX~o^yuHS~-3law@_guHRs0A&t#N1p#GynDOCd-GOes%kM7q(x% zJO;$__s>4=mtfbB7q}5WywAQB>^vqMc&uVhuoCH*my`1g2EVAcovkfvF^7a!+k`ON#Rbv-)a35t{%-eOM4M z57@S*dZJvtIpRxfeoVEn07IXnmfn=n46v7Oco4ME%^^E9W?+AHGFH#MbU`ruk1e7$ zTQ{C>a^mf;Zy=&MS-vCMaG(&GgNIZ$PGLA-sEzax?cLQK*S*iLQ*1`3hd=RAvLy_nq9c7E$cr^?xWO)u0 zt2|mtejw77L2bFUwdR+1`X&yL@eBL=^ZQx2NB@hdKM(oq2l=lgEuGR|@6(-oVhT_n z(7E*{?)0T5>sdtTmqN3SuR;0b;1A;kPu>cie%5o&v#YiB zRQ|-)L&(zi3BF~J4Syd2G%C578n6bMFbq@{Uq@<3| z{vFc28j#=Q1&%U9h^>;sLesagwbaUm!6T0Z#KXVrEur(+MjQN<0txV1tlg#Oi8>yl+N@ zt1cRtcJ$dILBbCD7tBoVadDX2k~0zX9? zMw);vD0+R4iM0{o=EfNPE|GHGP$LLG>l|@XTi>j)xwKs8?4?~tcS0b3f53>)Qd^)B zoY8iD(BNASq!Ohrzpn}#muNt^;^Q6iyp?`Ql}Uoi zNn)>}<f`T7S68NB5*+k+-M9ts_t6&I)&uUhAEOf|k4yD8Dfp#RnZso*+ z%D+pdL?W?|E%BP1b8(2GWF&upQUnrG3gSx;VdRhpl}|caZ|}xq)FL)ZBh{6YF(%{& z#r<3VkfwhZPq~D&KiTRZCbAi_=k^1aCJF{p4TV_fz6i20U&w`=eL20QQTz!_q_x)X z&;Gk5k0!MsO4ClivbC#u<2A?7tTz`q@b^zx4ZHP^zIgfPwR8+y`5#B$^$R9MokJ}F zG9T$>!uw<&EulO4>>HnRhLFqay_h7Lc1fDu+0ICTC`4l@EHmM!HFb46DqN?0jN^^G z#SGM<-|GQehe%i)8}&_|jc9BwH8~Of!j_BTKAO4QWi1uj{qQSUQJbIkBuhW`jD~?t z+gsIyodaP3T~4liI!h=(Dsg3G9xasoS(MW#WvHG$wHb)FJ8KzTp}eqwskJ_+(LDGn zcRQ=Efc~&N5sn@;#fouCJG82&^D~f{Oq&~54iKW8(t+7U?S7(hy>0#S;g={uZA6Kb zq~$`wl`Ab|X*)4?@@T+U%FgKUBTt4Zt1@F)B_$MvvCB%Lar0--mIQ!{u;|7o`7o`* zRLd~dPC8siZ28ld#iwgeu1eW|KSj2}+GDZZUxVmjdN?q9$tHSw^YNe&6v44ldxMlUt%@tg#3k$E8 z4SOVv_^s)-rYIhy4F+F56Ld8-a2{&P_I7q5-mM^l4c5DJXij@6LG;HSq59`GB-~TI_x&9AzV#V{RvH<|A@-$E|`X6{4 z;eVf`*wXor{$oFw2{i7*5V1Mb%?^*xjd)At@-uGP-eN#_^j+&hs06?dudEEd2 zBs@i6D9Pc0z&+9o56WI@cf1T;ZM}T0JZ!)XD=#-ES1%`r``kV@9-a=aE>hxh;upl- zTs^%mh;rL|dAWJYOGr5XcQbKU4?79|r;N(5D=Ih5yPg2h>K%U&Xy0di0Py|Mx_;Hj zFMW9|&}m@vp#9H~!<&oTIiLCfp|4aZdh8LYq!Z8}e!7ofWCH$6s{Qq`J+Fw-G zRCx1zPRtpZ5pgmM0~5f2!lI%+uERA7vAgd-`3QlaCjgM@Dsm2e*d8yk%k)Xg2W1pGZc848IAzZDS=fg6`4`;g%8JV+ z85zL_MWA$IT@hc2BE@|2JN!GlNtihFv7BozD9|D!BMVrnXy3q*Fqm)n{B*nX-Co+* z2Dyen0!GV;qr>fLpJme$)9Qy`vY;VWtmxqD(%&bAHh~jx3IPD_D*ORBuEVeYeWz2< zoZJ;jVrF@HdFN~%JUFkcY_T|0HuP5QsZ%l;&W;kO;PyAm(8jlJJ?Ebv^PLz#`HtmE zH0^wJxdnnA2|;`8G8`tbJZ)p4j$C3T!PUSiLC(c0tb9{G`m3+iOTiUnS;r1SSpJ>< z-+s&0LmPu;t{Eqh|JO=b?B(jJs+?MRa2YxSrn9@-Seo6~-TjXm`Wy$n2zyLkxiG+1 zkORv2q$IYpR|32ycR$CRF*Y|Z?no3gE2hS9{d4nd*(JcqwI8A$Rj0Iq zJ|YAL=5}=v(Hfq_I*Y|cshaskspjl5{Ag*J>zbV^5AnlWULg??AqEDO1V#X|7U$yi zGNmaj@KP2ukzE?_fbV|!wNnGlb^5e{R>zzRfgsX$-@tc!a_HBe7PoI)vfA1`44hzz z2LL7a{aUY?uD=x9=^R2FSTn-S&oPNlo<2G}jZaKX)s4_{6VY$!C9~OpG3g+c`QW#&VoCcm1ZU)*?^B?e0f~JR!;^l^mj`)?4K; z_*F~C-+#sfo0sP~boxcI&QyCoR-9Xt65vjG`|8BRgnMpBMjF`Uj-`gZD_$C1jER|< z7$tc8U~AZ}+NzcOVA0};ef{5Xa!Ku6%B+?~oc5I~;frD(p3Wv@I}8YL>SITu zt&%d!#i9*Cy(-lAFF`OenSKbUhU1Fbuj3}exXSzJE-YN6p>DNeJApiaUflGivQJc& zsOYf%z+pz0z#22&r>|UM=2F+@bNcqnq|~?rK9aGq8K-AYsL{FvfQ8;xVuOo92 z8TMER$S!XyJM?%Me0b2-Cd>7wg(mbf%2s(^s5k5@;S`Q}a` zFj9(m+P%+HGc50^n4L^s_dSk53HptTGy2l;e5PB9ptwq~>)|~w zRDoiZyhsXis_pw5De7F~!mCotCnCW?`mvNB~X=5|fh2TER2;!6A@1n~58&Y&Z zAnn|Zi^-qWJqrqdIWg~W>EFtE*`y@(+tl1C$`YY0Bq5Ux_O>f;G9GFGl@VEwPqf<> zA#%k1wX&OEL|L316StNw@ELirMsR)KWN#W8ce$rYBz6ahP@r?d8x`lDh;-c}sjjwt zE<7pt4B&=#eVrP9Q4?N*Y{Oet^|wMcU#4)rlJ4+P!?aL>pn~ky#>M8Pi+xQeHSMO_ z(-;ZE4(cR8*^(4A^)(xEt?n{O8|G`<^=K;irW%@r*YdFTQt*Mbm?kCSM_DW6hdn0q z;o;sevKi^Y)<@1JB*{!*lBT4@_6zzjsLz;=vi`JGPDkR6Ih#;!CvJeN-wo*dVb_AZ zz0)f8_pfcCiMZR8&c$i8dBd}C6Nv^Vf zG(V%U>V?y#dSH`sg$!fF4Y;RGO}l>OFFf4MC9x9`PZAc%m1ur|0ts;d^FrR^Q@^6TxeM*XL#L}7-8wIaFCD4pM*z2AT77)OS zAbQ)UlXV33GzIlXN=dI?2P(bG<6<0)ph;S8 z-E+~)aJDZ;QH5auCW27W%CTSh-pK?>s(&{{E^X!u6a1Gk=z}*Ke6);>8;KMN1;t%K zIo^_=!(jX2hM_7cn;tIBCWpS96&KG`Zb^3d51(4XXE=_cnVn6Lwbr{{mC-jHiB6#2TXR;)y$_~YLF>_Z`dKawEO#!tW)6p?sfC`RMgTqo6FaP6BpQW2*ra~c zitWVMc+R|H1m?5|(2BK-llCoL76!B$E~O3~!3!^zwI@wT0c~eAvw;=QmBVn}6Vc~6 z=o!pMMn;^HBlzDHKiIQ0=RkmDmN*?4z76xC(WBSDU1JbpkD)hTUtd3NRk!aU6+jWh z44YNCa?S3M%s<@sD|n4dKMm4j0EQ<+-lj)n=0)>Hg>5%`WUG~0_AN1sCUawBW2{b? zOaDp{Ov|i{8b@a#Wzm_MvkT`v+4mzXf3h?;iIdp|NDVeA5gMRe7KrY9_6F zc&dX@b%2wj=ZKee=AdlqNE{Z#dBa(oTa+RmHttb`l@;qkU+`fqj|LdT-ZpWC%dI1V z${?^|S=f>W0Z3GNDtEasXM{!M_;5Cjqt_DVnR{H&n807|(NSwIyg=pnLTouE(6&2a zVZq4+afTAyw99|-(x!nLTz+7qW!D3zuSwA`E0cteOJw>h7+S3BWOY?aYNs@t;erFu{9x z95-aJC!OIu9Hn=(mkbOi!8}j}*4C!KeR9Ek~6)MuCJ z@nHq~!hGQlswZJe2eV%~6GsTnCZP}bAOYKI22mcvHoZd@1n4^I5aH$nWGzb`Re0RB z&~Vu{3S92S)<`M%=N2R};*mqqlT-Rj+c;ef8dpUPCC~+}|NgqK$f_T2?>2$`X9Iy1Tn~_lfw;#H{`62^+0khd1fy=ti2+=-w4(l>lftq4m#aT<5-P za19h17i|<-9Kc+XuC)^^EiL`7vC(|$uqHx*g}UJVdxOo*O{!)IFfaDoKRRPxNJ!{b z(zTcw!pO*rsXH4^pXHaFUUO~my&x_j^{WDF?%mxMqa^Jq?wXw4kT=L!C*qHm> zkti%Cc6P_q)3cJAh6Z1k1xZJSQgFaz0Hm2!4t*zXKbol9Fy~yhKD)da;VgdOEKtzU zU+S{x0|asfbm3%jF7tIcX8}Mql~B zC@W;Q;P6iz`dv+piOB8ZZ=U!o$?+#kW@c>RnlC6V)tiEdde&c9LSjfTE9h-uVd2wp zaVe?9W@nX{t%}$!?~j+053vdUjoEE1Af7ieGIAI8R(w{$$A0?j%aNww2E7dVT*uNn z^&*opy)VHpUc8tyo7hddhd%Ju>Ls`~!x1X}ZsEeD&29eXW=9OWuT5UPk#cdmvFvCg zUwHsx+^q6F|37Ufy`d53AtJna^=jz7;LU-E1DD!x=o>nIz;Eu&qZ0=r!D45*R_$ju z|9#EXNczKrasSzjh%tPlKXD`LXy5L7O$Q#Y|KlK^BssG)JGgjW_DG^`v*zXJEkEWa zO2$Lqxp-;Myk&?wO1sm3^)4*roR)Heo_qfvCd~`|cNv4A&CP!_22k<+;M?eEac{2y zWZc3jzSd)K^712TPA)*N8Vn<&sR}s=APCSoh$bo>)70ZDZa-CxO-vYyFEbS0NW1Lt z=U3ZTh!;ny9i5XCS*ok6lcP7JAFIY#ZzKO@WPPjCr=N!X-=zG$>E9NNg z0b|p8ulaHX)ytQ(?5YzqX*!d{486UpOPh8dLdxqsf^|+?PB8d2U}9l>o~0MkPmK_3 ziRjxUrqjn`92ct@P3UT6g8-3=(K zt^GlO3n5IHnDrrWJAhE*x*hVj(;`55Zy4_c$1F4Mmo4Ma%a122uDYW4(zcgf(F6~* z4&o|gf{ym~YcTPxI1{klK5|+E!^88=BUK$w+ov*T{l}&7ic`mnu(f{q&OJUSIq!vj z-0W&2G1dfyaxQztBIh+1Z(?XTb*!@lZjbqD1nuR-fX4mx&Qv+iywZl1`Uhi?t}JY9 z^g-j}t~aRu($@*N!=-=DCGu<2XT&^~4^!xJ;-TrQTu)n|m9TvM4HbH~RFI9!sNjhOW&ASf#_AsS5|0x5zMWQlEXgepPk5NrS$gtz-^Zj^E!jF#`Pyn+aFd1YTx&>JG7?1 zE_nCurnPl8H8nMVO3agm#YN+k*c+4XSM{%KzJROxtTTKo%R;;JCj*@|1%1c;^H-XW zLNa9CRomLyu$@}9C1y2+Fn)Q?bUo+4bm`K3)82|9?2prLGSuoQGeRE$J!j!lG&7ti zLli0_GhjgozO|?`!(nSh;Py%=K8{PdG)`$(6UJvY5$((?fm`-%Pgn!ybCavQ<_!qb zmd|##>F4I=;y;Zet};ho-#E?@tqjVFcCkU{+her^1UgDYzMGnwdTq>o4_!PX<6`9Q zUU5!8)2X8HxBp})MgNZt&c-MQ?yL?F-UoKGzWToenqf+bMQ0= z5T(e;*)}l%{`r2PK0#6!*urVSXudeI5^%Ivy*7hsohCBOy+;C5VNId34FN}TiWVi{ zKC2|!o$k;;opS<#bCel&s~_+%)~uGYJ9X&G6oYxa8*nTFaR6KA@9_FE1?vB3DYHXR+rsdUrR)AdJ(djl{Bv~vbN3vX_f-GToOv_wh028Jxq zB`{j(pFVwh3Cz8lu@%CcnXx)W3F7%9TQ^AEZa^Etc(XB=9amUhev?6YzkE5t@~RFE z0%uGLG!xd>bM8Qxs`)ZDmi~Bo!1$Nt(tO}^&(@ivOWaIAGGafdpwe(*u@XfUW!;x|0|vZ`_m!2$YBpgSXBW$PX)zEJ z0&%>LARE(IB7bb<=yEw5*w|o2T5g6A z(>~ig1=ufHWrQn>N9B{N zKNwf6d?dSX2Xi=NflsdU2EZW7O8;mR`tGne4O>->4hm(9kZ`-8i?IAOLb#EvG7?Qr zVF+5*r;`o5tKmHRJ_DAYpkm|U*}ZTd9KLr<_G)9r7OBW{L#CUjcPY5-t|I-81}bBI zOD3cdl4yEJqN@vq=W&Q#5)krj)QNsyO${q@wH`j8TUZ1&^Kul~B=(N(L+9KfW%Ve4 zxj+@!<^Q?CmrzRTX6Rev_51PZ=OpTozF+9h3hHYadf)NcS1Z z$a;Tw*fO2K{3a^uZMXh_5|U(F+suZFo*+enYdgI|3sU~TYQt}V`;E3vZkMhqh}X3U zaj5t3sOS1e8W53?;hCJfbu2Pedgenyd^eEf85sg-LCHbs;t5zvi9Ksujn<1@);?Cq z_`CZHY#*<$S-}V9OVBM7qjenn&t>5aV}}B1tFZY~l$O5(0&|xMxqpeLw>0jiytUa3Y=#ov=x$h{JnQ&e_&@ge3qFW?rSrpbLmE%m5_ydRg_c0aG|^T)`%sdMr6 zP%i6=pt4QtJ*%L*X8=wP_VZ`Rw_%$!#i2Cwa8#BUJA*?Ikrb2W-rly4x{pC**lVcK zO+)>=XJ*4ekC}AWKXZOj*&#tLoLuuV5)>B{OP7RiFI%I)=-_v&yw6agTeQI#ow92H zwI#K8zT%U8mJ@7yUYvvSD^t8Fr1&V5(?WQ^H7OXhu}QgcgZ)hIj4fdR6d0O0rrLC; z+BBS~h4rq9cZC-X5rNwm1u&M5&XtgLzZ|mBwg>GJci1{?Pz-~Tmao3@N9m526epESxOQb?Y?bvCM>a%NB z1!Zx*2WuzcgN{&^RIAKx6@B#tERNVpPotFgp8`zP^AsUeNSy;uqi6suclwnn$`k(}p`7KTH0s3oRI zcbLDuMZB*Ncv+&VT!Kw1ZRf?y?_W>Ohr;Js>C@f}l2CM=yVjRq=`3te1_f0wP2uyB zB|)K3+)**5iPR-|Qz~Am#I2m=YoQ4h!1>9meI0Qm%Dqeo5E`FoeJ_GQ=-$P=+g%UXlz??ZM`yVrOs-HpiwZ}D|A0Y*(S zvKf!vjmds+6=b__g`x*V>Gvt=q4X=JJYg;`uWR=687*-o#>xyi@WCYbwp_G&vwK1YDLujeElv@ zBh=J4=3K8CrD|(Iwa#R&2Ed^p3;SsPhy3>9{Vhe$`19gevo!vJ|Ae#SdC4Oiqy1G497J14OqLQErnFRJJ*e|X&hMGPp zOeE-t(5J&60&85F{@NZuF52IltMe$h!A-WhHFB(#&w zByLm(hNKDeB5ph7{u(K1j%*CO(=R^$2jElpT4PAaFC_hxo?&vjw-|}ADQ>%>vQdl{ENvf*0J-7$hFO(Jbd_UO87y4!6B6mCJUAgN!Jt$ z>h8j1V2=MHnL*KKW9%d+>q&d=XLYF~ z(G>2R=1#s5+^7siht$iPM`n8IvbA@ZadWU!{x4rnElGVVs~e^@X`hsWfCYyXjJ@5C#+^#={!2&e=DgWqXmMG zmm!B90m}LLT1D^d<;BLfs9$;$pEA30^!LwHw~?y6sK??;5|pjK?mv6hLh|83X>!uV zUBnOAbCB&vQqQ`0=!p-xQ!FR_!~3Z0C?fqvpYcDiOY^3PrlkGwVa9TN+(jvKd1-I8 zOiZLR;-%MJN~+o@Se$#F&Qa-NDGP({jsDxV~K* z_<<7JzxC#dr)~FzMMYomS7WgcTf)e8_a=@?)t<7U*0KLp>mL?Ct}&^@p5~NybPNIm z8v+6XL~oPeR^e1&oPLyFCC=i9o}HH3_`(-QyEvu{WG;|_oaoe4_JP5{duxG^H5#g^ zwc$4F>*dD+7E1z%-7=S4#~XEKc5lw6E>gZ^wqoecDk$lnu);?b!ldA3%DGdlv z*96c>mjEUZR`!thw^znUvbdB(%(;R$optJrvjex1A#T{#*6=dc3LQ8QlNT1u0XN z$Fw%V2CT`!%^2Jg&HL|dd(sOQOB;HQ8^yv#pZ-HIs6kOSN~_;@P;$EV}XF#o^i c{`C>X=@`|#7<FEiAH$Y=$OA7AEG~l@nQ{m;tMJ2@wDQ delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$YzF40#s(JKl@nQ{m;tM02@U`N diff --git a/dev/_downloads/81f16477713a2ebedd53f1c8ec85b754/plotting-12.pdf b/dev/_downloads/81f16477713a2ebedd53f1c8ec85b754/plotting-12.pdf index b068af8f825825f3ad340244c2bd6a7d42d91718..31836fe95d67ff88bae44f1258791fe5e182cd73 100644 GIT binary patch delta 19 acmeCP>$BUiLx#=J#K_XbX!Aaq044xL4F)&> delta 19 acmeCP>$BUiLx#=3+|dSr{2_x7)+)#0&tQS_y;z delta 28 icmZqp&({D%EsQNpTbM2Ouo;+}8kv}Gx7)+)#0&tQbqR+6 diff --git a/dev/_downloads/865dedeca3d1430244910d89d552e5ef/beam-19.pdf b/dev/_downloads/865dedeca3d1430244910d89d552e5ef/beam-19.pdf index 4a165689a44d1ee915cd86eb60b05e8abce8fe31..faa1f2e6f9c73563b66e42b64a2b406e01816148 100644 GIT binary patch delta 19 bcmZ3Sx;S;i3OzPM6C+DQqs{B|zA^&vBU2W9|3cLkaN diff --git a/dev/_downloads/8c3e8789c867600d80b2cce11272d81e/matrices-15.pdf b/dev/_downloads/8c3e8789c867600d80b2cce11272d81e/matrices-15.pdf index 326b728433e2dd99f56e23ea72de2ccfdc358ba4..3a3c67d248c00283c051a54c54ea67cdb033f065 100644 GIT binary patch delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$Y=$OA7RH9#l@nQ{m;tLs2?_uJ delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$YzF40My5vFl@nQ{m;tL=2@C)L diff --git a/dev/_downloads/8f6a7c938e347f134c67566d5aef740d/plotting-29.pdf b/dev/_downloads/8f6a7c938e347f134c67566d5aef740d/plotting-29.pdf index 170b264e5a060c7924ac580b377569e942d1db48..10910204dc8037b94631300573f9bb528f9373ff 100644 GIT binary patch delta 12928 zcmZ{Kc|25M|8`PoLnpsj#Hd-WGUML%2n5+EV#e%$KlJHUK zu6vcJPG`~KA7S?zL=K7UoOuu*F8lBbXUJlW=lNe%=^ppLVJ{qt*mchDQz4L)WRe+;!+LqGbccmq|>5`!Ef)$G=iN znD`PLU^L$eWUrdA*72;h<>fAnXU#9xs7W|u-6k(@o;3kfE#TobXjVen%Gy#$^|~61 zQByt3a!8DD@-rf>t;Qxg`1$RfAEX}22QoQ2C629XMsEYjg0vfJwZUcPF#&3?fCsxS%bXi~f+;gESvk~HkM;V(lf#iC zI_x1t$v^1RWZ>CkJGEFXn*OVgvkYaGK6{9sln$7er&5D$hha-Qm)MEpIY}sgi#>2s znSQD0vbJY~3Ptoq60Kjn9~ZEH2muW$6#X`XsH_v0(Rso!J5#tVozG5SOTY8h=`bMu zu-##{e&d4+VNtVTq!j1+%6650Oh3l>dPy5brM<~hcoMUsCb_Xx(uodM}}KjHTCmfl}GrlHOFczk8kf()Nz;Rqd+XBJ^1_{T24cC3YwMTP^w zAsfE=e+?N278M7FcxF$;3O91zZ7g$=(XdnR*W{fup&1Zl+bo zN7xWHTv14A*>GsTagOv4>ADQv&j}W{YBz!hVZ!@k(=j)<|JlIJzZDz)}iaHe$ei?9Vw& z`2L*ZwA5V$?AK0wVdm}$(CYQf=`UL$7a`#lUp9iHAD1IJga9_eGjsRy|8I=cpQtG- z*ofPYt{!G=nxqW9(nO1~GdQ)$h??DFCW`QCS@RP6$cTzCRj-t>N8@^4|7*?(E}xCn z1qbRj{gkW;tqIgK9UgOR`X_w$PquUjZyHXeJa9ACo0bSTuRzetVRL`1%}M=xJkAM$ z69Y7pz_l+UdVP))e4+18UY6-}HF9Z??h!Cn?tFaJC0QCWLFeO};M3+o9o~W=2!#z0 zUhrqpt9*YJZF#o2sGiv$C#m@|1f1t~E=9fOi#racLNu5Po6)B-6$p6*enWY$x6{s^ zSf?q5o%D%>S|}aC7h5*d5vIEBPdX+FZrw=7w4*pqHfY@oKvyI=XbZGZif!|JVC|nW zktn!hBT0+)dO7Xg0@*uG52ku-!~d)<$3t8DjYrhVEyYXT&qHbcgkkV!g@2#Gn!~!< zAJ8NS>r~iQnzUWX5c%kJ3|lQz0*Y7QbsA4C^ZZ%JldOmHxi5XY(yXV8Q$?4efA2sQ z`RUF%Hb7z6`Fnfa(q5A&=8VqX3EQE<^wGpS8zpwgM*{`<(Nc4ER4$Uw2| z+U4$tVllgHS`@=?ET|&VJq0{Pm_iav*K9uEF`>w)DqFCzA5-C`0Q?YbLZ6tfxnapa zUrVut(Jx$wGbv)}DP}-SS(k`Iux0SlY){D;>>ke*{#LG4g+#OGEo`C#a$&1cCkgjq zT|2)L-=U=+^xGXVd*V1zvQ&A2Zwokc;C@ffogOit=g(Okcs*oj3+uX|!~cEPqZWU} zq7%B9{zGcAh|nXC0`SA+mkckD{%ELRqx?#UgSQhUAE*`XjAnnJ?;xPxuI@Bf>aylYs3z;eE9#cSp>z0>nJ69)HF3MfsP=Q z`~TwNjn{l?vYKmk4_z7I_CnLRIrUWH%(46Z-sesm(FSYWNg5FiHV9IC)rpbLgVZ$# z{o_dTE>h}uQuPT#XQ0hyr9vms2ZV-1s1`0=j~l5gd8-sd*vBW+_SCUTTVoxU4Dt?banDjg|)C_&}DD16zc~VU$7|LhT!|? zx_Co)I;;X)+c3jO(`a0Kz3@|ZpxT*n-UX24k@OUDGRwaTL6WBLZZ4l^ZlPByNJz%Z zY^c=t_1akeIFPV-_3$TjJnWR-tkQBAzld{FU?3jJZ zd;^_0hL)GHUt7JVUcXAx5~yK@k(qDPyvU+>?CJj1sFZ%V#4moh5K#5|Dm8A&?oju9 zx5lXMnss56x0LAE)kL3^5x|Yf>A{e9)L$umH@5=?k_H34D=lb_TiV^TrrmbFSuZQq z&Ci}%Z77{T&x~!M+!OJ#2ul~Sqon&b`s1}AosyBII|X~(*x$3XvymPIVBCabm3`CG1owcXXUS&U+yrP}(ThFW*p?%UxT zjs9!ek0~&jZ_g|)T@OYo-z_NBk-LC&v7adpn8Anvfy&6@3%4EzxhyDen-TP~J8D#~x-r^=i6VtW~wE?p!mS|dYM`OQms|{P^+zoMFEoAIiLY8I$ zFgqQJ9dUQH!JYSHjLWuu?dEq8g)g8z0t8#$7J~SlvHTRHenCL5H4PtP_paO3R&i82 zVA`>~>W<>UJG5gEe2IHXr8}fXFX&T^_|UG>i_a@dfLXE*7EDJM?Xy@kV!HcVH=>32 z*UO6KeCo_?k2?*TIYmt%ALE4s$hLIDTV7^B|L!!IG$R5mMk?MJd+V;_*wvZ_pQE{V zi~4(H?RS)lJ^gmM{(895=Zqeh3ecN?o|AXP5n{5m)-nOZL;d^LM|)j zZ7}O41B#Wmu7zoGJE#LscHL}~GMB!E4x~1~V$IJ+CZFj4bVSDd)Y^GnXZ9UT8<`Vw zs?Kv4zTt{Z&s2mZbD$O)91Yq+Ee^;Hi@GaK&{ZbY)No);h^jgQVl#IC%=gH&Y;m=L z67m^_&qA>Xc7v7qs^wWgWp2hyfFIo}gCS>Vfu+gkIl$<(+_#{ZxOly9T_fD_zUbHH&f3+Qvt>O3XikY_b5WlImZwrMQ8 zCYYtz26Jg|IR~Moq))LsN1ScH_uYA}tk;c|FN41Z8&LPsA5~9jHhWL;OnD035=}^= z{RG5+8mp+PYt`kb) zex1{n*!g_j^A=gvL3Sd!Uyt?sG@>OaUnva|9w5Gb=tlpWaVVG%NTI-@eYHuf?VpNsf3>v$go_;1_^GcNaqwCds| zrn7-(?Vu3o)f>~b zc&B`F@3#l$LFnx&SDXj5b1C_;f|6`#UaqLwhW(UeL7~xVE~1^TdAYC4^?T0r2>xc2ho4T5}Dl{j3j5 zbZQP=?ilaGXPe;29kLmR2(OCXTZ|u z#=)_(TddqbqPS{yVT@c4n{xxv@`5>hfN~F`Z3-+5S|al2ErmFC<)JJe*AG$#eqOC) zfLt|W;%T9c7+C1~zl1IJ_>_r+27{)=7=3_4rUWu7PXpsm@!vq_6bF>!zeSKD*Qb3j z1W^xxuli3lTrCki;?v3e@r{=-?tR;^-Ey-^$TWRGC?0Ew`JIJ}2Qm}b$}4p83b z*W+Gpv)oU5uXnqA!g8NxMWaUY(mjHfp_J;2dBO`%KA@76= zyF%N{-JT*tp<1Z89GdK?GPe*K%6M})DWxny)7aS!>D%vUWh|VKPEmJnwt&G$00B2@ zT`1$Oaea(^8#j_?hU?Wi=R+JuJ>D6WCqF&KUqn85ou*wL+lc)UgwB8e)`AUtzc5fw zsOzhv`lv3nn)9vSKeFNPjN@)V-DTk zr?EA&j;J~+4p;kodz6flV?fKG>scmWd>K=rxbGS ztwfQJNSymnbc5>(JH~~2duW1uc!P=u4uXy3OnT9`DDi=} znmB(2p%a2U>rJ?alu=i~;*5l6TRacLM#HXWLQd)w(L}%CZXhAmkmRQgooe5KT`MIm z!&6@c(|Q+8-M|7nBe&w?)V=IS1RGU|Itwd+-MJk+RVHzimfr9E3FH#}CB#;1?y|+g zKAlSkg0CoQ`T-RJxl6`}?=j{5J^WbXck3Q{DIJ`5j!t1)71t^bkfMA%;wf_B@D|km zdzOt2GOJ~{NB!v;5S#;R(q(M_!NWJlwt(R?w^MwaDEVDrA;zPFKn?->P>^j7Ulxu( z4wah1=lj6ce==D~H(99gq8!)Z#ylVXc`*^bjHdROBdh+xk{bm_s5=9~caY*4cCrOD zbp>2BubeNuFItP{P?H}0){kKniFoh`12d6Z$I2iAo98grw^6i>3*w(74i&|A@}YdL z>2c&0ZV6Vd0=Z<~U6rZlcc{LIOu8OOA!hZt>>pr3BY~RJDZ~$4DaH8hs;<|?L!(Pm z?=4@rugm4exC9QjiQU0=c0WPWE`g+Xt`}=#gwG4~*w>Sw9p4wHApf!lYvn?#fUdBmmodY9jo(`6_Z4iZ)4Ni2kkW5kNEZu&s6qQT zHwxIN*UvOtD@sglJV}f4Ozgt0o|Ngp8nuKT^*r3Hw@t9h#OXLC}#|8dK2b2iV!BZ|>Q_i^>;9MVVPHMDs90Ww6hVlcbo zHla>PB|!rYmT<{{7~GzTr`G&I4Q`FSvvuY&u{Cp0L*UBY&jm+1)@ubwpOxGX{rauZU10{!0pd(ZTl1S1`( zP4{AR{;c*Uifdt;rs0+S*Y8ay4^K?}bROt4o`;!i)JXY+BkrzXO+_-ohqq)zDJI%I zCm1|C6RDW!aShDfq%q*|wpmytocl7qsq)RJ^Py>jt}i8-3F)8!H;R1pYXyYCdZtp% z5zrRkL$j*ynTi~@Nf6UOQ5O~ps-IBiVYXYVdx|s{?zC$H<6B2ewslZ3H&pNDhSzwT zK&fe?MT-2{3e5+$&z12*2r!pmZ_fc&~wV58O}FyF$Zgg3DX(lO|(lneqaLK-CDNm^09Njj;WpmJ_{I2cfRpD_~wzi zD(Hz)bc*uvD?Kwk_&4IDDH2a3(ot zFO?gD+W0FX&9OtELEKu29766m?e&C`6@c$0UfHBo?3nXC(q~m>P&+08nHZxjtzK^&49ii#w zRQeA0Tlln%=abM0-5Mzp!qPMrsoD7cyre58`SD;_w=hb=dDq=4jt=w4Y(K4Si2WJO zPj$q8tJ$klLM%g3{^+a-K$jR^i2YRKY5-pWU9gBdh<>LSH^1qo;LE@)W}*3YI~2&G zYBx@SE!ZBMCdX2bBcVKuV7OCuB(!Ljx-MtwmAEN@Ecpl+!%!Y1h)s183fJ${43m6r zDAEat^0`R(NJHDgLA(q~&w0<#SM%aYMapTQPXMQMt%DsgISNXI7m{iwF9pDJ?0uU- zA|E62U((8dW-d@#s|>51F=NagDlV*khaUJ@!ip0Id7agC(O2}@mGMIHjYh%K@0S%# zMT=m&;Zts;iQE(3{YRK)T+BQUO+7o`7kbRmCMkg5ABDqszr_O73O~?o7d;`0KjZ9l!XRknq~i1eP-S_<0aVXu zJoPWWC}(=)V-7i&l^`TMZ|6ku~(@FhPyj_uIBb`NT?JlArH&pj&48w}InP{$fI zRtsGOZG@>rB~jy~lIp!iyo>gT3}yY?xmng?C^yJ8*P)sSriRxY$ro;OJ@X6SFTdzf z!8uw6NulkV{VT`1dW%U{8OOlRsZ=OWxSCQz$v>{r;st=HGf2zr#Or2mBl1~U=)o6q z>FF=wBUDL+9zm?L@lOUOw8|GJos(wN26AKf&Z?8wE(W_Jx?i`=p3SW%`PRtb-wFK| zON_3CdIGTJqQ;llO^c?69D+)%WM%ycs%$OODY?(GmdPs>%lqSY!;9>icvlt$c4%NFPWaQN?g%Y2vi?z<~`2 zj}UEGT|w5CwEi(ljwN>{se$1(A#H!S_03ft*%2B0J47o|qAdO3rqQiWW$gA$Tw;7M zY4SJA?FH^MixLl z1;g>@{K2gk4|c`6`$-DHuH>e}@y;T)FRDTAe9>>9>Z6eIRkElopN6s070r`>8`Vr# zJ&k039pNEWKtj7ww`k_RFgz)ES<)Dg2h;BtJ1P|J!j(vQ|6ySNWtEj449-Ll>|%MB z?m9=_g3`Z^ z-LG(LIUryeOlcFk{Y1@_9LF+`KmXD*>=i%5PdSET$9ck~l=w#4!~i4zMw9ce;>RrB zJBBR1%e9stL3x=h&u9f9xe_0?d52wfYO@wOd7dA%o+I=Ai&-@e+-H1nMpA31E8FR0 zyq$2`hcm(?ccb2urcP~NzRJ%k<;^}^5e&|iOa`rQ@vEdl6J!TJyoYl`F7zAPR_2@% zeUjCGL6sL8K&K~^fW7fNq6qMy^%uHU9a8Ap^C!!q$dB4H5 zvQH`7@W)XqbzA#+<&P^HH&h>t)^a3$J9uMlZ4~A8c_c%8{bSO=)v+PAh!KgT!C(oCg)lBNTzX54} z@{Dc#s{UE?jr^{)u)cHaLP-X^K_Lq-k{XF$<#vXXheEVZXZVG+k#@5|guonb@NsxI z;G6ZZxhT6;CC2udxMia~zr(E8+rV9$HPYoZ>D{x27GfAFUxaLe9Ket?;tyGiY7qdB z0-U3R>Csr1^ryQk7h%YnM7VD0OAmK|irp9X<^#Fj>dG`yHfrcgii7-AqOVNWsQl#j z6srj{Y6?yPuHi14n>_}G5{CDUItOa~ON4*oEoseT&*38_-tTj_pRo#w`@^{`Y#&^+ zdr!y2-WDlwuTVMvVvPqye+4l7`x#Y1&U=1;+BP4B*Seym4w8?)Rf8{z*Vl@BY}#G= zX5I%5xJPIh^y1nYprHL~dkfv`GB@$o`+fGEPmW4L__3C=qQeS@FP@9qk4q#TuKM0x zVsj|>UX9BBgcGl9)?WsH!g$>C(#l%!dJ)J`Ds@qa7Kh@D4c|IpL7`+x@@5Qdyy0Xu^ zi>01#@hR){d@BBq@OX{OUuMp%I=F5CRfszbZnMXVM zsB2lHB~mZJTQYPPSh4w6P%pmo6H}IaG<0#^=SgUTDc;oiHu50A& zH8O0`F{X&__dg0`d{A#>DY4NLjUwU!u)| zjR+p=6T6Uku#BR{w6T#r8=EjiSXPuJkuj#vg`{()8UF3Ny?LlD7|JD|+ub;OAE0gH z)&bYjs2Cw)<+Pp{^?c1db-Lm*t=rwIrEIq=IiwU+EZ|b2+?&n+(4~RJkQq{^F{H~+ zaRd<6m%%&1)l=EDA-raS897EjI#8dSqe1t$9uSg`YGMSL*#y}UTM2tdFS|`}uI3rd zF6!-EqRpz<ibKD}M4b0T zn;$+9UkY92O#yDcTt0q$Z*-wn45Zdeaq-Tvw3MVy;4pW9@QIl9a?Wuf*wxA+Z)7{N zmu_CY>@G5H@_6zFh@GE&{o5Z08FB}RQ4uC8N3Ow;K zwW&>LvVg3kh-pdjdC7{IBZ7a0j1F{?3;BJ8{^4 z=K9w~vS7H~0PW%Lm@Pp!FT6c)hnl3+sF6Q-HG-j}waO+W^Tb+NX&kk@^d)^PL}1BX z&4f*z1LveK%ng{2*8TeN4n9K64AT&v@zHEX-tgWeczIKkYhnD%-dLRzT>%yfwgS`a&CoDz(I5i9ZXX z$?e1Yg6B7Hm(avnVg1%i*s}S4A?|4C;)Y!?rWCO6jj%EMt0|zs-C+wo5n|h6t4HMn z&es?_nAYcYDA3w&TH;~1w{s%Z&WtR88akC8a6is{>j+m2G?9*=Nv9lo9R;Pt2nQG9 zgj=4zqAYUyqrJ;9I)_CD(#og+IEyJH#1{hDk%QP>wQtOot6=sB! zP&!{mk8=b@<%}`X>Gi7t+S1YeM9I3l?-#HRmP-x7GP`KvtJ)>`gd2`UJh@Gq=*^XW zAt7-?>p~hfR9G0-UNr{wmD8T4@S({#*%dv3T=4ol`K(hkj}Jlb8mVN5-2KMT74dbn z9Tw=E<_zVn$^O0B@g40-0L`^=iucq6Fzh-q>yWm`8ZSA5VRw{0j^^J*S-$}~7R({) zrTe-SVJ8yxE3ot5X=0-Muo>&V@CQrDR4mfaYjql%+j|$praZAaqU~8P=3sB_t zXrwOO(M=A+E88aDEt4PJ?dIBq)=NK3d6=qYQC|l|u^C;@{KX-LyG7<^E8l)JS7bvC z8+&pTlVtyvmV)X$Xwgh}?@`!Kww!MQJnQTB@pnXi$GysP@*!CxdQU<9sOI`*>`kS= ztUfZ~k8lIN=DP*n=ye*~g>$evWrDfpQ0r=3B14f#IWWCE#o(FVnz9Ynwzg7#&y-32 z(^3%2=n08Kpd2_mXA)QQ$>>?8*4w5DfRK%kU+)>u2y*@&E`PwX4Qxx4+>)~o^y$ui z{_7NS{H9Yp*U*dE4`crT`cY2wyy7e@*b);{h}{i=q5@nUKZC? zcE4*Zse8~J&NZ(e_`LZR;`b)XX9O4icLnA?p0 zj|y>rqd&UiZw^y0I)Y&yNdBS9oS4}KyM+ubLj_Mg?E27^J_E~aLO$Y=)ZhE9;|}!s z$*>Qu=F3~&?EQC2V2Az9_vwTvAfT<_eb;l|-2&sO(+CQjyMixnwGwU*53z9py#0`5 zXsblJmD@ZebZrx?K8KBOM9u2c8mX_mU^apF)xgC&`-oOh=Qr=>=izlKj6F4 z(22Tr=5u`=`&wQV>N?<`B)Y=NNh6FKnv;X-kL&t)DuNnZE`^uZ-B zpf&eVFijT-wJqG}e1-96?aL%2t1X)96e%yfdS$2-`6R)8v6STSW${4|E+-QfjwzJs z=>GYS&G-r5OZ~W@kJ+H++wT{H%(QR_>Z*=(=hX1T=vesO}}t7MUR>m;aIr+}1>l|>?a zBmxxZ!mb$OO$egML@bN1zhl^6%Vk+|R2f;?mpXYX`Iv9X9VkG5)87LL^^!hA@iQ!e zoDhkr4JBK%+L+;DROz>g14C@plo$4;Tr%o^LEintz=PJeO(5p>FJ7W>F1jmogEAvJ zhcMD10!(O;t^glzVv@g=uunYny*ExeIS_UN#6MxY6AJI8*ycmvU<+t%!mvrVF9=0v%0QpM@3tm!*_NB5T&h zi#bEeT?H6;XCG!R!tiJc(X}duyEr(-if#qKTQJms<>gt?ApDP-0PrJpr^!PR^Q=^W zg+j3wS1VSiRxBpH0UoeM7S&$=B0OQ#Lu4&qwOmbNjW5BOzj3TFE7md&SfQ)_CfBS{ za&w8STs$~*&Sh~~$C*)X>+eaY8290=3!)jUU~B|SRKxzn-f>SWIO~%|6@aZ-xL%dX ztO#ZfH017>@pxEizP1{rVi#2t;OOk?r=q@8OlA&@;*-`|ZQQ+A7bOr51zsf!sqKZ# zt!Xoc)}kG*Ep#|*RAnu1 z*uz@Mo+O@%vBH1L=xYT&CROB@#k07q=$Xl6D{GS(>|Je5`Gm6D^*Og{rc44oPTuoZ z^MYgKS7w%9PJ+Mt)Nl`9p zR@dNxn!*t|=+6q^ zll$LaDXJ>}Gn1mSqRKzx6yy~D_nnfOoYMckQ&3a*XBP_UYMZA5{_CjV&i+{hJi$N5 zS5{U3XPm0yp9%kKJ|#7!f5s`x{bLe2d1ZOEe|D{`ET{IrCs9>ZQizhdpubB_dH3<- Jy2g6D{}0$8jxYcK delta 12944 zcmaKTdpwi<|9_>@iQOIL+}TYbp^e5mONC02oGM9@bF>Y+Dn-RelnASw5}}ksPDQqI zT1|||X&B}-+rnns?|p6V&+q&A+~41?zplr;ulM0~c)p&m=lhENaK7;2{QQXdkVOHv z%r|9S}bartyiu!zkwOm|t|gi8||lHAXd zeI0B(|C-*Fv9V#OHKU_C8R%TKvdyV{6_;h3XFSV$@2xJHv<);O=yPlPrDXP zgC|Jxs5z~uAxwzxAEWa2_>~Z?BJeG~r4@MxD8a(JYJ1>?NJN=#H}sz+Qw6^BW+N$T zLrPQisCn?J*NH)wRp!Afek7ad%ikoiTQ{39QdDKtFbq|-A;qZ?)I9i*X&xQ=jCt^y zG{dn3-=(vWv7&kg^s-A}9Bo^wQ^aoa3vr%dB~oxGTVW{U`=;YjSf|MwACl9P*(Wxi zriPvSsSiwr=)d&p5WL#-3Cpl^-2cZ<{I(Mj@a9fnl&}7PjWFzXKzmwod}0Z&;KjOj zS8x*eK^O^9)LsyFb5lvaG}4emF2}Qu!tyu$N^N?QPBF0V>{&UcL07r*r2G4((~UYt z=iSghm(UB2$q#~KR0&5O&Dp)QPjc)Is*cf|m5#~7C;i`tM3dO^z*(hzdrRTHB}SqW#ZSmd|a4wm=#s|8oc=b?UJ?hFe)RyaVm;I+EaVJU16S z@x~MSmV6i8TO+g@9c^=~M4W0983%`zLcAobib)Pm&+Tp>h&W+XT6hz7mIIjP`P{_+ zzs1222t?Gee~&>E$a~Phdb9=7{Af#G1VD+WtaFjiTK9S(*t4&{A7myC*Bn5lD_bXQqv6(iQ&WjIims z!{%WkEcOKx9e+^Pj&xQ$>8HqK2Y{!oWzGfg8Rl)la)l<$$0ZQj)D7Um%_T ze|b`r9U1Rs>v#6Vr1*Xk={$Fo00x+0z7#rSpn)69V3-@3QYL8(_}gdTPB06vNgRsS zBPkaGK#a-dEW{w;OiyE>KaZ~zMz*WwH0@Ls?A|6+Y24_}^&Q9ZiivJ}+~D(0$Y8=f z6Pr$dsKXA%go%5uF?AW_RA=%_+gIAU>rvq$ZSkC6I^BNC-hte`(0T}|RwSmObOvrQ zT+!SkwwO`h7}b^>jE9n?@H?gK``~(mbC~Lm+&WKmyJkI%re*~BSdqU;ZJ;6o$~b{C>gbxB>y7$cyBh-}~U922P=-469oYS7rS$Z)lxVU4yJi;_{Q-Zi`*lR}~x zCaFv<4v~F!1uArm2O0BIe)?=-9kASfA(OK%6)U{l-qE@yd}mE%du(RJzD zQ?xg^c3>TJ9N8_Eh=Rq*%b6_<-=POcLgCYO#q44>t^ZcRB~=cFM|ej2w6VV4=IpI! z>_BlEw7Dhmo04|-752;Yx{Krj3k{_vo~y4K9;Cp#TNG+B51ThpLpfy7v9`X{=_8k9 z9bu;AKG?SWtr@kL-5sG>y!sC?xo%t|?t7kRr)48t2K|bg3;=GxbI1ft=z9rd5QP^O zjQWfA;uYyVs6V(iRJ6%{VOaH-pU`^{C!jhYs-$HCsj}@}h9mg^s2oAxK?z|Hj@p*7 zV`a%-iL&b4Dj7>sk=pt$D-L-vh&A3`C3TfVI1p$P1+vWm*IPF`BC6Q)Q`}+m%VC1{ zia-(yG#%MwjQ4?Gba!tb!SmAyCvW^fu*kdmtwRAMx3TOVhQl*RpPaAO|H4d3grM88 zeUj=5x3OSEmc#fwIu+-~xTUb+S)(1VF54+G7!?$AiW~0BVDoi}jEib09k5+4uSrEA zsOJDbHTHGLZ|;Ir#y8VQiou(yh?UU_?7l;CU~a$`a*8b7+X~-EF(#%!VFv`Fvxm@U zJg!>gZgLF6fJYex#nhniHp%G0&*ONg)S~)jB}-`R6tBSEaz zw2Jekw+aq97*-l)GT7d};^t&A5tDJDNvFO!LbJ*x+F5O33Z?@hDQ#j z9WUo(Px$en9~!ryqvd@*6Fkuh=_Rx~I4VlfWRqWF)$a>M@1-kRi-J;I8 zJkf`&88Osg;a|D*eQJPfphnt#F-HyaAo>ysXiTk6*cJK2QFi>0Rc-zLcMv0}$&7=Jgr>5i{Qs$uV!3=8{TLvgxD%&ZwBU1QD@vmoiBBY;6dgqL*P6wRV7 z8(W4@Ewir(WulS}T}2b8F9Mvp5i$kWYLon|p})=|`q?y21>*1o$D5B?kw6LSk&XHm z{jJWXMLoD2KMSCh= z$G;{y&1khT4$UTd-{u&8Bg`%gU+3O>tJM3mG*&lG*l&EJ{i`QyVqP$8K~e7y8oBkH>4jkLvP(E=}Le9MN`_C?8@ zKDUq{oHBbt9z@PH&js)6Q23o~^N&{rJMBQ;9BRmssd{ByHPj6XU$xb`lY0vmDn}GO z-S@G@p}TJz=9Y1xiz-3_2lkP-Mt6DfWg_&tFT_wIumu7mjP`nJ>hXnl(2yjw)T-9Q zp|3~Xx>lP_u7#Wz(O^QS3>O&Dsjxyy?-dk-@ z%6i-)fHrue4f2?epZ4Dg{>=uky=z(b?@VlRLb#eA`*4}q{dJRr zd}|)D0hbmNrdHgU?8UNCUn4Pc_hq5Fy~0<%K7#oQlIc2^+s?tRtXzS2YV`OZik1MU zPoY|rFL#GAVVv`H5}!AdnAkaf-@)mNZfIvlL(m5&q6B%8wjMs;!KDZ~(%85K&f%j! zV>9?@2^!0|u@pcK3QCrW(J?GXZdz=eU$Tk>yNq&gTw-mogC;p)1}XlKB}G4T?o`#RLi9J5#oz^U0P$l;Q?E-RYQ z_DmGBCa?N>RC}`1r|R8_Z>n90XjBHaEU&*#J&tzzQn0p7T0mG2X-``wgEB$<1Ekzu3+Ty_ zMIR8EPEq3qf5QeF{(BGs490Vw_SHkEDS%z@`R+EoP{CtC8b+{d#4K@gSygbUp_To| z#_e#a`Hg_fA)y;TXiPoJq)F04+!Gi+za6)ipK5zhsL4wH*98m|bFUbw% zt`pz8TIC!7e@mLj%E%`nD(g%pT(oaEW6SPY(RcWjo8<4gJr`lyLwx}QH2vT>ez-98 zxapts%ASRRd)?NX5!-R@Dr-2O_QAoBM;a(@ZBd}9cbtASX@Iq_^HfLZ_BLd!Mb&^a zj%#crl9qAMm1{x&!{yOb*0z-#FfJJEHXJ4fmAs%Zb`zT2e-sBZH{a1l-hr{>R>2$7 zNM%I*QYNdRD%cx(Hi=#7{b$8K*b#YiO!Oisc+Qvx-?!Rl(lB_++X1Ahv3XszOA|J7 zYTGtY&pj&4k6I_JiUGW!!HzG}#`HC=v#?herM^vA&aWu9(ED_ zP@EvtyE#F)*M14(o+hBpzv_ff)SbRO3%UPYolK;# zDh;9{aNWi00k5K46(VANxk-ZO>c7hJ@-%fXqE3C(SPDm!-&sgKqle6y2yQr=XZvdZ zG~%P!I!_nRGk1TnUi;q0rmKsT7ko9Y!`g3BO)d!U9Y5>psJF+asON~F*k+F%sNOE& z9+1)#N3-&R&qUejL{jx|`S0djP+(g%VL+`Q@P{6NimgYDXw>#DF*=jwT=zSdVu9}Z z!SZK)w$IVTh#kl4^}%Ku8qb699`qGR8JQEXf`pN^8;wqBbkPU)ba~j1q-|sdyS=`S zTWR%f&+5o0?n*5)>mg250|&2A?65}{eeLCt$hADZZf2XSdDy)^DC?QO)inh!;2C@TJqRQoz|^M<#M_{Z1$=S3r>mfTtavYQ;L zxNO3vxgVpXxNhKrdc6CN?I!?l`5Jh0iU<#l%9m?;^aSTI0q9x6h6&LUA&6`DX`#wW z==_v>tJzS*4G-JDuBrsQ=b|Ru$@qcr5Bwj7*z+-A$^8x3kw{8;TrT#RTWEh5wwQe$ zjSl3@L?7-%2ona(-4X^?l(6@9BCtmooK0$K1cy3gz_cA)U)`te2&(|q{$tJWC6fA$ z=6j((_4GWXLI#uBN!4$iyea5kP|w3KWt8bO_7~TE@L|}qe*c-)5GAfv?^*7}-RsFe zZmV=!3d-(<7v*s(RunjWnXI@ftsp(4*=&8dSh=+Y0HvnYYA6Cpc#!!J(=o$ zb>hfohiH{fzLE)ulVXxh^#Yj0I8|*MI=bVocL>wvM^Kmn(O!DQDoxN~p{-tSbyz(L z4A7#)yxYP^qrBTKP4pbY-BL=jVfwT$N9x&DIy}&B$+<^#EvW^W0nql>YyaPs5#Qp=5`&spx%1zpKfz}HLn0wHV8*GJYAv-fT~*6K0FIo#XmUTbxn zybYElzFt5SNp>c%TX2G_4~Xx5!;LXX)QD*fbNj}!xWa%RZ{vFbJ!{lb2!)c_M>flu z_#F9unJYbg)EU^HPK_r)V;a8D(}>mlVoKNgDo7nUOx;N!)<_7<#tR8^;a6h$8Fb=% zkrG-x_4+8FkV0siesBaI{#QT3FgdRJNpVQ&*YiAtrLnU z`jzWzjv`F+da3^9O}o%`;mXCHSxO;0)RRcZ27X3PEjB+MFv2+t95^xSbspV`>p4E) zMS`PDF1)^bhYN~DeU-|?)h~_EU(&OiP)qfp-1xY)KL0pqAH%vPOvV{d!Z6S;Bo@h? z5>cj_CEfy2>ay+nla0xL%tC3eA-ZC{htrq5>f*6>(deyuhABukuFRDFGk@4#L}qos z#ItzUoG6$qT3~#>);I1di4{34m!p+wyOIL|VaZO}#UZ$T%ui?ufiVl&LG5eAb!Yur z1R;EqU!}R29~+YR0imM*qoAJm9)riVBs4v33W=^x;+oEil1!Xx)CGDvX95EoWvrTY zus5x$jYFKBLF*!EeAX1{5y;D_8gc^kh~UZVoYAi0dpeVR2wz>?{4+V8yl*AZ$mVwY zlh-GUq6Z$Hb(f(f%x-Sk*rx;SdhY*NXj$Grsnw}{bgyswDMS9*dEV6@b?eU6E|uR> z_4}sX+WF*@GKW?NmXk1zqoNP^vU|vyCC~Q&iH{!QuCk8v6wvUA)1!Rhr5Xh+`yQo$ zSZy?lkE+ad4B)GF_?rSY>(RL|$SsjF8@bSIU5{TVvOK(Oyx21}vIsIfll^?Y*YJV- zk1Nymu(G;1aefb8@z!5X7ItbTI5^dm@>VISpi3JqThN@}ep>5@#bL`3?So|kmz1%t zjhAQK;0|E3=%>E6lB}Q`QY_sB8{qgI~v+s~|n!m>} zfZTV<(cGldyRvIar^7=O=G-+)jkP#j&tuJlF7wNnQ&-HimV2IzQnIe}RBHN@yLF7Mr8fM2-wl-P zKbim07sf)mmA^xdlcO0ldFq$2IHLGt*#l(rtm%QJ%x-pA%GFo94j?#t1NH%*53w|| zoxU1jFPERH7vP`p7C->lm~R%;IV3UVq{SzxxyMCfW^AXH59WUUKSe32d1YU~U+UDD zf=8ns6>HZUnl{w=eqc>*Qj37{d;k7Q)W|zPt*eV;nsf{mM|2belnR(UtGch7T+pxB z6O((8$f)QzX0CdU%ug4ipdB~kd)7x!L8bNpo-(R71y2Gzo3b!xC|^?JG)M}ekdVl@ z_;{NgbUgi=>yMrh(^#mx@exR^Ac}d{gKaD0Qo$DdsM`kpO=Jo+*vh$h}Q6OARP!4 z<{D@45odyDSHJ-IDMx-A<5dEeb0p~32AQns;s=eTPm_+OE<|oU6C1s7XG{H-bOT{Z zAJU7GW&8YPRYqOJwC8u_PPR$@{zb<@?gJ6a1{dqgz-eu?J>K%)--it2ib#nO&$}FLWqyxt-inMf*w*`HumpV%Y;2DU=y&!;{q)!<4d}IyZLsF0A;oY*fkY8D$bxC4nws+ zhd%I*3pGZrUSw}*;1>+GB|o|0yD3?}VJfbr|4f;)Z=(Oipw-AZn~0jQI}=(2`mISJ z%iwYO9B1*;a*VBQ&cPJ=@yfgf1g%Tn3GdF;T@aw0f9s~__ytBZiJ*80h7_L)Vcu-t`& zvWVyEoOflAA!zvR=KGL|X1XWwbYJ$?@mQSI0TqXX&sMQ=xW+y|pPHZS%=c4x>WlMO zwMcydz!_5m_u!}XF0Zp-{^^Xd`w-ZuPJNH?=yVOHbDLlAldp94A3|rJZ`_`bQOh}> z;wCimyy8WN`Z3t_fPUjuN!E7D6>&XTCEOZiOm>o&)|*f>@3)PHx{K>s3z~MR)9u#- zmVKdyb6Yu@lCE3v>bz;c=LT&rv|4<{bUqFLdAU^sP_3tVzfu+0uUk-llIsQ8Go5l0 zfxx58&FR$6$BRDBR}K$N*D&6phftfOWz@IVuGYC98K%2Rv_H{_9kT=o68`fd7imjxBU?RPMl{VGW{E z&iyzZ+0ji-U7b+23$K%l1Cj>&*Av^by4g;Tm87Evt?+aLq*HQQulfouFS7B5@jw(A z*r>B)OSxQEpz13y8#g!5iO131<_O-uus_yztr~~7CAR15CT;Mcho7smYgwDwP~_s0 z#(5n6x72Uy#7^9RzHmndJl+@o*x<@h7ebt62|KB}%!+c-QqR$g(QwVL;r`Ld^2JPY z>MR=atKjvz->u7@W`6$i`bL^&o|d=YM18fXPE+w3gc~4$7{mpeo*f*^uHyZh@bI?Sj*YEm#prM%R ziLO}M@U1eVA4Mf{TH!m);MEV{3t7PYXE~P(LCgJ|L{s*jbt6Es`N$IXPq2eqNP!Xb zBc@9!NpeRdE5BVX5;Vu=)uxU`4g<+=!Nm<$Bhgx`{~(fHY9QfvVNmD&b^p{ymCheZ z|Frx8e(}~dnLx7Yo@i`ko|$F-_Oa|RV5Xh(hz(^HPu35(D^}?L!L1eJAcgFy(NL%A zCSL*RsAD3Ak!D%n`{Ukh2Bp8Q`?ihA+Q{^3SCV$v-j*_o$|X z4b6iBV@rx3h(-p!DX!+-C^_yHTO{cTiCL9GCn=^;*Scz^V zGJA@tV5hSM;hLH3CVS|8z)=-R$;~I#wkn!6ykPvUI3CgF*59ke4^p`qFN<1CM=IuXyD0bLe~U@Mshm23r0HjNpFt4=M3MI4OE z4PBu7fUp4v|9u)9Jk;$+$@xS-9J0f;pQ9xz2-3{Fb$p1QS|jZQt93R3VF_!aTH5$K zV|F#*aaN5LN$Y%T?H`P09b=3pV;3DD1NuxO5PiN0ue9 zat2}zqr>AQ-M4tl-5o#(0$t&4S=5#+u;dT_C}V<`5%H~g!vL_^sg!zc5tEs**R^tK0IcgesN3YShLm@wWy`b_gVQ| ziwRRjU9$RO^B?O@u`ClO_j7t4e)|Ce^3sv|{@YWozvD|J_l98*EqU#KGKQ9{2ubff zt1(0L2S5nmYnHRSox{(J|Df-dMfiN}gO}cO>|$fmn@^QOqCCM)dx#1=lIvYxw|>yecw&Y+JzB^6}>%P z+Ykq;Up#;DLtj3{K@?);@)5Phm*L5TR0g{Xa0r`4~QP#SdtVYyS#ys)4kY z>oD}vJUbRh8wr)G%fU#=9hz0ZzElm=yCw0;vsu^A8q`jw8u2)$xf@q(hc@s#$S$s* zU1@@>kZ1O2_(O;A+S`&(V00f>yl?Z2&xaWl3cZo8~l@Xtw21i#x<4uk;4U_sjch=?FMr1oi zL$+))rz`>#UH6c_rSB9{+5~YX$}C(R$RS$rhh;#FvI=d?i{ktZzT1Sgwdvecv0xT_ z;Uk}t79U|aKJ%5D&zXD|v}|}%%QR0eD7t#Q<}Z)A)OQ|FziKuoE(JGfcCk$@_FDN| zTB(CX>E1nN4gLO`5q(%3a@^?I8N#PDg$HqC2Y5iMOJM~=*2dNL*T;O{`$$9~QxvBD z+nJK__Ap8#HV52kV+mn<)W%P)OPt%4uTFa+5Yv!CqegA&evZR#@Y(Meg9mPZ2OPe& z6U0hU7o3|u`ob`Y4BkVzZbi4qUI@uPd41;lysk-vi(*~qCW-VhUEuGdJr&>(`AjsZZj4Q0ZbwYgwURw<1BO6oe&N!Y*ZlaH6Lb}q<91G2YFE8CEaAN0 z;F~*1;7*L5GrUe6n3LG132&6nP0@hV+h@4CF89C@(?yq)7j@ZUfFKgy=oHUsp!(J# z5!!Q#AV;QRoVAP(%ko@kI(Rg%qfl~%o1s3PTktj2>q&QE`qees>QGtVR`huIwJUDu z!PM)AlyS5lx|r#!K0oIe{^A%QD@g$>4k!F3jNHMOi4Kfu&hfrj-H~h<(2*~ogKyLa)GI{{?+VdN)%68F;EQv6+z=!xa2AbOi6=>-QIfcy3JDWt*;Mf# zI$c*xVbPr{MIZ6AhUs>hEK)8(Y%Va?o)M0V_qj2}%aa?R?E_7jdE=E=Y{!Kv4BFW6 z^ia<&(Vn9vH;^+z4GhljHuG)ew>uW=NKe$x z9i36gAL)89yY@}IgP21ST_6ZVV~|M5LPAx9uCBw4^QZA{kIThAl?m+PM>^R7KiXP< z&xoxwW(81Ai9)LL?=tm;$RH!4`_t0W8FBaN$~|~tf1qJkT4wg@rpM9MqgOenE0ya# z1VvV%Q_lNBZU6juwU2qQQn~EO$6%#0@dKrLL!Xz6Bbw0L2~S*&qRCV7iT*biX3mK5 zmYf-0G`|aq=Kj}z6z~@Fjk3<89nL+u4%vxkfh#iwr+ghZRM3nG;R6t10r)M%Vy5Cr zu;T^Niw)u%U734b%lCWR_6vD*@#2Sr)llp${nfFfddnA}^b7cUeXAGlL>d~#_8v07 zY-F%uC;V@N*M?=12R)?0ZoPl~X1Md;<96@V|JS(PyZ)DP28OXQhm9BL8N@am-Ub=% z`tP^&k-PsjlfIz=>R;n_=^6g_Zw4s6-T(dDE|mVicA>v>r}R|N|2XPy{eLgAThHKM z$2Uan{MTlX26GeskNFHxhW{F8xbt5o*{Nr!XY{XK8yfD~`QIl&A`J~b5j#T%grkkb(jH7^9Gp! diff --git a/dev/_downloads/945e2a45816629e69cae83f93476425f/biomechanics-14.pdf b/dev/_downloads/945e2a45816629e69cae83f93476425f/biomechanics-14.pdf index f952d82cd7179cafe27b4010337911128c423d66..1254fc90931e3c70397ca6adabc8052be6b8bf93 100644 GIT binary patch delta 19 bcmaDA^eSk>0aZ3b6C-m&v(3j;moNhWRbdB? delta 19 bcmaDA^eSk>0aZ2wb5lcO^UcRpmoNhWRdWZB diff --git a/dev/_downloads/950e4c42a3beff8bac74d47e0f8d8516/plotting-24.png b/dev/_downloads/950e4c42a3beff8bac74d47e0f8d8516/plotting-24.png index 5f69ea2bba06a958bfb5d485672e4c11a633aade..a302fbade3c94740daa55079b29cdb2770093281 100644 GIT binary patch literal 8373 zcmeHsXIPU57D2M4I%7 z6cqv*I-!X#U?_sr(9dw*ea`#m{5j{(_x|{<3o_63%*-=u)>^aHeXohUZK%VH;6XqT z#H^>QWeh=Z@Cd`5pa%_EaI6(H8eZ4$c$uJ4UOx7oj?hheFArC=m#g!AL9C-E#u@D{ zE2ShQBjtg{c*$H8eCXxnfl-#0cKh#PQfN;nY2hd~4e+Ux9=dli5X5A7{0|H9i9QEG zf_!>fS5190mnQ-|OwFEj{kF?EabER_AnlNrffieGDvpcpaSRiUahn)RFIAI`rnEdt znW^E8Y%UF+ZtKFr8v7GvmR!Os&feR?Laz*7U*&%+$a?Azb6sEhbSNQjJMNtH>nu>fZj1Z(a3n#-MNOQ>uNa(>v2Ywm;myh8#L7RiM z=b*Pw;gI4*Bw{ocBCsDTl_eMaObh-yKTgYzj*cQ|;pqzK>}4@XH5v|4KMj>x$$KxD zPWb+aseJ>jDk7li)5*!nJeMCt*amHy4VK>R$MQk^Ixr|uh>K}qE(2}8x3%o117l-g zcVmD&4u{HZN|Z2j4?ib}I0e~U;xfI&rF!TshJ22dgZMd4gnzUr{{dy@M4lF1sGrYP zY1wFX=wcZxv$A-j6F0Q_{bL`srMg;-lvydnaLHUd*xgiFToi+F zjqi`0l%W!+JemU{*p&X;tNP#CAM~rwLWG@@VR>zBr|l|iBo0>p9GtW=KYwtrG9PRc z!$a~O&Y~(y-Ym9h^jCuU8VK^Sgu8`99;l8EiI|)Opz4{5pwG>_+$xuiX@(xfvF9Mrt_MFJdgRU|IQvaT0dp1@8?vC8Ys!duq37Qkm%>7c^gFZxwY zN0R}@p6`@awRUTpbh%WprRuvs&&|%wT~JcmNor-J4@J<2cD1sET^p-I+eM$&?w#q# zk4R3|Ydt7ax_NK$iN4_EZ3u^<9tJoMUBqY{dJpTh9yQmCPDORb2~_w@1z9L5DHU5( zOe)z4#7RH}r&%)2G7p!_@3As*-TQSBI4TmFW-_lx;gphNIPBt=H8`+6T)qsVSC-GD zk)dI%RQXJ^SFkwLWon*oLUXjPk$+<2r~MTp_$mg>6xNAL7n$9jOlep6qGZCAbj3hk{L!^w0vO5>h9>bx6b&n2rhx3{C|G}e25Jy6aMY(O`CWkXoBpV++wE*p4pBCR~OIUnQ zc_<^N?np6UNjSC)n})EONtZcaP1Ehc#33VXSB>2 zX1LUAh``Ojs^6!9-b!m-Q7`(-fgHJnsfYNg9Kx04-v-oe^vJqipanab4w#)KJv}*h z|EyLt~B3XlD;U4}XA|#C?XDsJ_x7~P)A?@LH7;fbs z^9CPY$$940*RVQi!xS5zz@5hxDZjgvylIbs)Cz6(;wt3v$?bU!Oq`F|ZK$`b^oIX0 zB~0V=tE-biEVQ?6_$NpC3LAp<@{V?;#YL|Bf2U(PjL7`Q1KE6I;~uW4AK{|#f_rq( zU+5iA=LJ(r>yeeq*Z?-2+J?~FbR89nIV+*I5kF9rxGYE5c?}7=C#M=Do=*#JiRKd* z5g9c^hKNCfK0o8@rCtRGIgea&KclrjgM?;C_^&b`~1Rh?2{ku({f*<=*c zuQ5lJQ>)!?;kfrzUPW?24R@crk=nt6oe08?_=U>_+4QU_4PKR5^o9K95SztNSt6<@ ze$qEIRAcE8sXe-bTefF}cIG4y+2IS4QdXCDbYPb~Nx!12d&yy~tgeTPZiWtY+PBfJ z$ETdJjdvNU&Z1W|Bc`KVhl(9LFR-x!3pM@zK{PL=p?`alu}OmMl0!AtO%?^Kcmolt zV)njJn@D z?sc3S61wC4kBE(>D$?qA5SfqRon$KS!=^^9C$pcb%Q~mI*a!0j}Ht)J~7Ff zEZXv1i13`!Ph=%LV|EjTEj=9h+Vhyw?fYf91>$9Ych zg7-xvW9KhO=k^n1JqXPu)7Ep+kWO$2bfkIQNmm|pjj^oAUY5ft43s#{wGR}j%AKgZ z4%6(pXmeqC8WqyAD7b@1&bi@#DaT{Vg zy*_VX)1dnpw=9fPpo61gdvefVGgo1nH+s@VnE4*6&`rD1Fr?SR+u?MOkwQ>|+{5@~ zq-G$OTtqXBjTZ@NP2^rT-u_i<0{wm+;3MmVd-w(tELNv#E=*)}?ZeHIgW(91^cE6 z(`+|0eTnbh@FMHss43a*bL?cAb38zi@5imzJrY5x5{1oJm06;sX6JwrG;$%qnU)=G zmv3!Y1VO;E`Vt0l9IAxM^R!&ZL&xvNYUTfa=hA^F!n%pee8aL61lUg#Gc7CIfZ)t@ z&?z%xp&B$AXis{XT!p}W0(;Npluj9|smg+{rec?S#^FMda9jj9D9YY>Nl0Mk5IsE^ zj09h87H#k~AT|hkXKau4e+x8oTx=lXYYoT`j~GJK(-_7V+F;23)RCU|;+P?fYBJG) ziiN#6p0_l5Zo)Ha8Hv*XO`3yd-fe)6kIBs`Bhz-YsAl!@sKXo&+ez@b_Sb(JhqD0F z9S*$?O?#v%{9i-=$%Ar60Jd>&pq!USPgf*kMGyKm&eTPLJqu5H45_bv;gX8*q#g!(E}DP zs6|he6EhTaHZibvX#~V}UDm00z~q)1KKNjlLMg}@dT~xCcTI_0hqg#Oe>3UjOEEpb zRT`GwbyvHQYYPMUanv&>!b`RTi%Ke5EMMOiv-GH~-W$ZBkCJZQTz z)_PTuZ|Lw~&l_N-)wSv+ z%=M(bsjjZB;@^k8m;8o>2z|A#qq)zRc@LNR1pNMS>Sm^*Om2?6-`WGURRRqUz-kLa zWhF~XOA)~#(BaGjnD74YE;k*IY>6ZK0u`!&tk19Uh+y+5PRVN5(RVJ*1pp15BI4{i zlXs>ar4D%&{g@%4iiTl`z-z6#!rcdm+lzL2;E;+D!1;Cc6V}#T3!r^T>57HAG5GvU zAPm4|BNvzA-OWWO6@BYRB&}k*R{xc>OZHF78-FR+xD4u-S=Ffr)2ZaHj9_SW_eQokvch!mHo@XR{ef{TP z!7Tx@Os3az&F})Sj74y8%UoYh#i?`JKQquRm1nz8c4hO%r>B3x&|LiTZ z;cidQ4SZgnZUU*lfAIZZ4sKH|YWfrpratD?XHilOy3GOGK)QJ0W4=8G&KI{`>jS+_ zi%}2vf06FNh?TDt?_N$Ey7j;uoCVTL83(XLOon^H*2)R=;qj? z3h_t@7op-;n#x%1S?eQu3Wbu8x4$3A%p<2;g(4c4S=QX=;8=~Wbm($fpCf)D64ib@ zLLl*VAYxs^Tpu`ifS4pHXyK>fg@zNHs=MEzGLWM|J~IV+6a zr0eb5T1H8U2!lL+oFXqMW0O#QwOQ~8bd^&^J*^fENY>xp;j07cOs!o3M9X;|MdWiC zC4qFv0lNBMhbE;usn8iZeTx6XAJAA4Jz!ds?i9%yFN$$@k;l6xRoQUdL;G`rT7%Oc zNO^k3$9Q1+!S(CcUHbE50ORG6cgah&_1A0N9jtKeYKse|Ugf!RBVB#s7%E6W5ydS* zcqNQ$0pXUsGfC^?GiDP#y-4jie&UBIhq)dZ3`4|ufDnq&c9b7+_~!_+p2s_zMl9tc ztHuD`8Eb+Gq?VuC*24|P0Ob`fPTE*jf5Ia8Oe`&nCz}Hniwd%h_4S`;Pk&&}e)sT2 znyhBE5ya*l%3z@C+RF=q!~lpX!2O&FIGDbn;c>e0L)L~raLQ1k(c(P=6FRTHe|xOa zf=BTymOV4N0OsGFf!04`cX1-Paaq^{26hlhc27)^N-oSGP{KZVPpWg zi%~ZzqfYq9)A)Cn0ipPLK|XwN$Tg1)CY!cT&H;M)lCt z8Uggr&28KoOiH{3d{(O~@m9J_uVlz70s*PM(P1qz5vA3N>qSP+)#Xn#;)m_(0CCG6wo`EM`6?)z0+R+G zu5uYl;t#P__R3}Gze%$+dReV=ztW;s;?6_W=O-u z!9fby59iLfdl$%QrUTQouHUl6xXVizT)6Nqi@sdqLc%kq7yQ12=$nGsv~Bji#X^Tm zVHd0!Oi$okgYAs0H-= zX`YbaD*9XliCa+d(&bSwEVi@bxe`s@XKPiY!@W;_DWok#i*OHhN#>)V_N+ zr|gjbmYhResKyNU$1{Ibn1~i#XQcFnq<|RutEnF=ME#bjM4IU!QGXjZ`-3ga$8kW^ zYt8;7i3(jjehym-oFsDkjH4s!MsiBJOy>uI;Hxkknift1!9#6ZmsR5;2Xe&lsjtQD zd!69L%gT=I!`0JL@TbyY*GNCV8M_qMYcv|2BS$txMnShK^4hIuTd`#usja#-kI06! zTKsfSi@Ej11IjJZO0ej0K>VQw>RjE#WK?ewe?WA=-gh(-qT2e^%h^Bin#O@*qH&3N z?P)&-y6LC;fzH3Iiww_JWl395Kdy*D9-SXTN$Y(E%sjf=6Qc6&t|~8rkdSj13uU>E z_#+_4PrKNx8!IGu1q|)&&6=y$)PCkQY~!9Y*Stu|r3=3NOTr5Z4Dz6?DoG%{YFGrsm@+4T5kW4ij?WeVU$AqNHx zb37Oqf=D?B?zoz?b+9{Z+!cFFfVFUHpwOiQLiy#dWf=qYRrOpwE7oEV1B-4>(D|U< zBBh_(D`=Hd)69R@!$La(R`ezs4eBOc_;+UHA&nAd4d-FZFFfI8UdJ(PM%zx zhre}-OG-Q^X(@cLRhK{TuVR?&on}kR_g}5$s3Q(2+1HG!?|o42?&Zo}KVKy!ApuOX zSsttDUz_dro=vvMUT+STfRd9@r*rOB<++i2&fj($8!@EwO$<#{gPDN@u`{(jWe{@I zC=MUC5j{BEo*ZMpvYvM~_Fu58S)Yy|-DbazuEv(tr-u+AaQ@v2;7u_c(5vScB#0=P zm1ZX?{>AZ8)u68io}Qj^9@Cm`mE7FiW7W?6&PVREUy}82-AWanou4o9S(!{%!sILa{0bZ! zW(d7X7y99cUHG*>mdSO}Gih&}CzLVnt$A7vvz#XFBTWp2>Ildq8>CQJ(JR8Z$z)6O zz&l6R6-j9^vD+24%^RJ(=t7-1ezRaZ)l$gRRCjUMK*IcGGjDl)C$fCNl>8Y-)rLVr z4?ogl((iR3C~MvL$!4Mr?YD6^4{(ceTthy8E4wsXEx>%S*;W#I9bfF%C>|TFP56-VZ<5mGQ8_!Dl6k!D@#*qWOXZ;eV&As4&6aB2U;7cVH4`Om zUc}^!KX$Z_RoyeiW+=J`pdw(SvhIt5uzCg2ky|1rO>% zR1T)XuaQ1?t=2rkSG1OoZA(eWs{G6{h~b$d1mEb(w$5Z|S22g6aKBk82&(MLPy0_s z1VOk^v44`I|Nr>E(gW@mAn#)G@@BxhtIpDC@&Qw-%Xs~~y-Dfs!ZJaBJpp%{1aL0B zIyfu}4N|4R-DbpTP{-&E0(2a(?u5>0ZU+?vPBG!33WTfb{vSD#xHu(qN`i~&0v8ki zkunl-{h}z2%KrD2=Kf_o9`7<%U9>PzbnY|X*X}Q0l3u)cJw85;Y0>y+F8vmJk`Q_a z2F=_7ND{j;8MMF1EsJ_M+2nV81>1ZZnt>04ZBGjt!XTC(Ak<0$ANfCCO#eTa=5Ysv rY&RX~p5EU#gut~s{%;rHuZ|dIcWEH8_|kr$0Z8wG zuC1kM1VM0c3&R~@1eY;^(FSl)^So~EY3zpf^s(`h zq_U*6q`Mo|Q(8j6!PCfXYL*gpiwKPp#O|~zJ(kyT(G{1Ys-P#9ThGp)gaskE9x&5eXvUbIvw5R_T0LrGclJ}R#BY(0DV|mll-}Mh9dOCi88xQC`{#VO%DFoq+B};k1;#&C_z%P>__;F|Z_io)sOwFw9 zkZ?#>1j4mk%Y02e0!d_ofhYopre)3g-+ZeY9UYymE|9@+^z6thcw-CLLZtIly_Kwe z&p^fST_+?96qyY{s)nYf_%|1BE`DUUHc7qg<=hUVJVZc^!jGFWiW~O*y{Myu-U#TS zK%X}R&Aa{Hp(QE0rNv#m?L9Qi@Z>7Plcrhg&}*3vH|Z#bkKC1bDtY0J+liOG-lYYu zbAbozAJYhU8XVXj{!6`czzTz}lTm9n23)?fNaiInf#J|{|7uoiTx1i|>Q##EH z%xras4tVd0ISk@yV}U4=sQYhfYncq>$S3REk^#v0mEsR1dKN1e)lPv#l%Sy2e7w0Sa6S+sqS z`FfyeEPrKzjQ5|a@mrr06BD~UzodGwH&C*^j`ybpCw-fFsb{FA_1eg|ARdO}1^&Fi z${+V@`OVr|PHXFFrXj1EoL9Vfb@jyw(YNFqti+Op2lvH!*>(R6V@dvVfANB3p-{7oX1qW!RJZA9!Z>=Zq6Q+`;!f#i|bkW$&i9CuZ21@(8cO=Zy z?&NNrx5+;_V!-B@#J!X^1R8oG^tueIan0I^7cL zwM!)wl$IK3Yim1>e#p<&PkjeIh%{PIB}-$ZsY$|_*SFMS6^$;z)vPnE=~oU8%a9YV7=CcBJa% zrQKR1C|Cj!_3KBh>Q*Bnzt{@@i>mh=&c=y=C@QfrTGiD?HklUWmC?bJ{##n5@uF&K z)*8=__5Grb_3m6QIg5)nMI|{gqKahljuqEi5`W(KAp`ZWGeBFMtb8%5`{tIFe>#p1 z@VtIC!7|U_GvO7_CGVKSe%E)pu;gVZeDyxJLPE2trPze~lY#O)6GAc7M12ozWzfXb zE^c!w__mI|0#lmSR2(~V^dEZU-Ia!t+FBJMVd3;OpQd{TP4`x}hBFPcc7IV{K5YJE zK^#Dot$8dAHz?#WJ6jnrw{o*U?yOV6;&rsRYW@Z*431oAT`G9UA)JQKm+BDg)FL4u?{jMk~lOALkkmcBhi@!BPj_oW~ex zZQO1mpf9`W`rXS72;6<(>ikCy`-6x_g%ah@PvO$R(Jid(KOiC6@Vjz=P@+tjdi#cI zGLJGb$=TTOtZ?YNMq3(=7aYttzA0{2tg^Jbhl2DgeM+iP_c~5t{WI)u<)bc+qd6CNId+t0mc{O(2eO8`J_#fGkB*~W=&qnm=ed!n=eQ_y8rr#mIyTnC|kjrBP-zHy3ir!NSD+?4@l65Uf z=Hs1X-dz{bfsBFJC*GeX|XL2`9 z&itmcw(!LsAIdi~aB?pc4ow{i#i#IK1E$gsNLMBYufmiFAa**0 zyQz;`LIXCH+0^y?eC@FrJHM#W`%4WuF^GkQJmswm9#PTV2|C)+_a$EOryWUodfux6sop03vZ$B`ZR2Om5~QmF z2vp6+-WC>Ure{7~SE}A2&bFWIocG+V5K2j(vBfSf_%uWlJJRyr0)#cl0D`I)89na<7d6&89DN0C`?xJBcV2((&w z;U=kiFh>y6dc>9RcvI+)q_QNi_8)I9RGx+bAK-++>E#l{tr+*CVal5;0}U?W6Dd5h zaWJVYs1e(2v#>qied4oC3z#-I&8CIK5xnmwn+q$+1g#z(B)@?%*YZ?)B{jkXy3IrX z6;-hDmLWtD#m?(Y1v^!mGwj{laFETN@2LPUone5|%6!ZGN_%G`$MoTvL$i^|Wp%z~ zpc69!@@)nI{Fq_xu47|lTJUK2&okoA!mwj3P$AM?JxO&!#pdFrtKJJ*?deJa^p}j_otcaGYI?wEs5^tNy`1s5u>Gx&_e(#=16?A7{fTVv8-6ogXR2oB*3eE|M;_4Cx5Sv%I zy>3hBm_DpEbh@QG1(p>7$GyG%UUPA5*qcQ_b%W|OcZ|&i0cj4_tmx1&t|nM#5P<_y z{5Gw|v?)ISY#>ZJA{p4MUF%}uxbNAJfa9cZ%bq}i)tL7wf%<`Bm$@EpH()Wf!=|-$ zyz7K>9yDW2a7DAi`mVv$O`OL?^Z0p$e`aQt5-i{!IdZCCWVrqaxG; zxn){OLIPaCVpW|w<(`RYu1IFKDRO`J9ov9=n&7}a86R)Y=V}C!mY{lI!R=uZzE%Y+ z@+Mg1c)Ybv(QUBJEsdoiv_9<34VZdsY@AN&;}C@J?nZ7@Hp$c7Tir00dZcpIlv@cw1c%1cCH)sYye9 zOq4B>nIa`Bigtb40$g?rEIZ*b{4j}#LLu)=yGYUkM&Q}of|ANqXjORb?0I1MuGPXJ}n_g0k@?AFp|U1nU9MTHH7-DnU`;a^)Z8u{aM8vqnGyFXl*z+3kD*e?DP4F_gZ)Az&nY9j&mdBJEq#_C|I7G{+C4=Cg1LQ+KkW znW5nuDo6c$m*kCwJTjGF24>ykHZe8DP)93vzDD2L=nzhK=*zm!652xCo=c{!bxGY^ zW;!&AWuWpW|fhw#A8kXgtmV2~q6FDqV~LItyN#KcTXU189}2uQy3GhzNYir9vq23CdH5bu+4!tcc|oZ+Hsnb^?_Ol0T1c>_T7lQnkY$0mJ}AKJ`{(JcGs|K1_j`|v zh>A{E!{T^U1I(`OI}hw0|0TuAT2`n@&Xv9c8R?D9rfI}B)9 zRu=A*^pZ#>Iyx@|MXy}3>Q0jHf5nT;ieYVE9f#biR-2E?-)n>z;4p16;M@h&F+%!J zT36g)VC?aE)c+9g@GaKVyYtSlt;K>8IhRp6y%eQBZ^Ts9kIR^Y{q)Vr@$vCl?ymww zUss%B9T=2L&fzoXLGVGaY&)9;z}dsrA$3G=sv}Z|wC&B03lBf$^5y-v4WlEiob7f(nE85ot7r4EhZxJd3CylHgwx9-*tjm_JYN?Ek`^0gVz%3 z+qZA2Kjoi3CFA4UF2&Fdl~|Vmx`(mQi<1m$B`{E&xwB$oV=)s%FRsg;Zw1%c!q(P2 z?9k{mFZj&zC?S3_US!otGuOn(WcaZ`kV<*;)kLs!>gE(K@bw&B>=#A;g0H+a}<>HBRd9vLhD zkS3N$RyI9%>2Tk_Pu#YwBl?#Ftu`^4qENX%XWI*m^Yj-7@}tjQv_wqcUO!0Vz7(|M z85t{Qe0apugzbSVE&ebDXz!OhwW(AO*e8%k6svl0dD(J;YE_>IFP6SVPW zV-+NZjLRb|N~$WGDFb9XPgWqOT`|&r zewb0kM5VEB^|(PsH3Ln01XrWrdMZLG^-xUeyU8Cb7_{E4=-8hd5hrEss(eO2F5PX8 zjqRc{{a&?9`=)NW zJphMl_Zc8Vd570>ZfR7+R@sLSauIx2EWweUbjb$J6cU-J*h}ISNCF0UclAlm3DwtP z;x58X9o{RGMVpfWx7hEv!*0Pg5;}Ec?ZG<$C}tJASz|g*jfuMdX-EyPGTXh9i7Y(f1D_ z(H;7*1mBe_3pFb_03Cy=eYr9SwL9-T`>vC_6~PYJOX0YLs)au=+aAw}%qe%3oaa92 zDFQHI24L4|W@hq)kM3+6_}{m`>LL17DOJiAB>RMgL0!iolFB%JBeS?!QgvTJJV0;E z0KJ_)qP00;ufRA;==J7m>G*FCk`>Y@Ph|hPndKgRUHAq;{}&CCBj~lIN&qkg%bHUPXJ;IAp7|xz;8!- zI^P3k@dysx;*`-Oemzw#FGgYN&rOuR0zji+V?OAVGTnkV(DI+>9n;3GulFF)5-0cp zbX+wCoI_tgAc9w%`sG61&O54HWAFN60s2@ZZ`;9Dq9(zs~OetJD*ODVQ|L0%C>EDO;6B;@Siw9P2Z$m zoCqR#uGEqHvH@Ma0pNc60j3S@T}hQwrvaR4Hd-k^k18+6&)AM(D8w0C%vY_2v;fiw z{fxE%&s?F{Oz)2ga{9jDaV|mHiW^dI55R;&CDyq;O!r{7feZls!MYmxBRgO(13V1S z!-A~l<@Z4I@cX1=6h+ni845SRhO%k{1|{z(7{S-=5*%io0#_f``7?&kSAB8#*3QIA zj?0*{@Z%|$F?5?{Loj;z;p$D5`&;LK(7vCmaJ~3@yVq!Cl3YX>)u&fWQoLnJG)Ypi za2)vztg%-HhpZh&4E(1V@(W4huT1Z{B2VsRfgk}?Nw!UCt3?XfI6_?=93I43)`k6D zeDk%j=WHu1N4w3z1KG-ve*WO*>$p|m-K0xbb@b#n?G;@dk#7_qo}?@Qa9>jQ2awD{ zwqKf*q)|21zXD?FBqT)UKM?snr)Y%ErOHiez_#*hRWLm~m>ErD0aybdy_;fUIikin zbWAz7UEhon2&tctB9Ji9F4pIDX-mn}!0KlH;F~axDU^5{eC4r#5 zvW>o*a~W#j3(>?Wg4d#Xt~j!ub!)gtql!=XX8V1A8LyWpb6plqG61JE5GnchSD7aK z=2Hj#OVW=vPSzQ@7Jqo~d}GNv*~qLQj%tGQ0i(#8*PtwGNAAdN0cEcHFUeKPWTKy+ z-{MeFvXPO|2Y~v$evDfHb#35`*`0?yn>$62iD{x<;Qo#o*3cRiH&B)hMp9Jv{c_si z3NJG0AZWK}BQhl6{O97-jj<_zC*2WJw6~JZty^a0=x#9HE5|cX!;#SLhQ1vd&;uz? z$U^ZW`V79@;*h$$scB-j?PT!S9hIT-Jincc_^)$wjw7WuqqTnJi>TRWzkID>=EQ-N z_o7mYU3=8A0BkJd>UkDuRhCD^fmNj|F434yaZ;qhg*&yk^V6r#K=9Sy^(inbLHYX= z1@kj9)ae+HeNIuv4gi?bU$4q>OpN0g-@#=B3udZ5=wvUC9*|P8yLdeLxMITjwz(_n z-G&fu-NeY2RqN@~xwJK)?JBs~2Dtgz*ktZ(u9P(Vrn+@@cE0B-I>u9j`J3YVz>LLjPcibpu!3 zZ~=%g8MB`utB*El!?`9EZc-JlE=W!aKVW4#_4}5i@2^`DdX{CUh!vjQhf4aJ39n1y z;=0@0+r;JfU9S$l$o8rj7s*g!4@1ypLM&(}U(_&yTbK8;mf2m*3k2>HC?!d+P56-2 z4n%oXoqtF;j18s8d?$aLeCkxmqHY?yu|1F04ryV;e%yb`uG6p+3lgJrB%KmC`pxA+ z>Oc5bRHN@Lq4JG|%Wqp*S~{z$p%^l%MwZ`Kp(89{U#bij$G@ngasI2KppeJ1wnh?t ze4Lvk)>LeTR(q^2utwm$L4+i%9Dj6J*9?tEhAcN^W?kzf$?5L0-{mNaq;uy3MX>hR zm;~`@PzUh_bq(+3Mlo$WyE&8Q4&8YxqRC2t83791-_Ez5pHHtU{rOdb-P&0}S4WE? z7Sy;j!pyc>b)ShGvPI!ejb#F*B{tE3=`n3(qU*Af=lB zJ4cF&>e;RXmCwgbl%FLUnFg&M@Gz-=l{I^f0pXn+0mHhxGK7$Bu^V+dCR z%A8Q+Rm4B|^8fbRMjJqW%Xwiqp?}&0l-JLS|7TIX&yS_wUstgAKGX^z?d$rQ#n delta 19 acmeB6?n~ZqUYE_l+|$>8 delta 21 dcmcb*lJV+F#tpCh*$m804UH`}fAD|G0sv^q2>}2A diff --git a/dev/_downloads/9ba0a373644e3b8e75cb2f2d1a46ac33/plotting-35.pdf b/dev/_downloads/9ba0a373644e3b8e75cb2f2d1a46ac33/plotting-35.pdf index 1dc87b0fb8a12c7bddd91223e0a39fec01cea812..fb78bbfe1d47a55462fa761b9b269bae88254e96 100644 GIT binary patch delta 28 kcmZ3!MPT_Bfrb{w7N!>FEi9kKSPV^!4Yq$5V=-U`0GmJwaR2}S delta 28 icmZ3!MPT_Bfrb{w7N!>FEi9kKSPaZfO}Bps(#!yxgb8{8 diff --git a/dev/_downloads/a11367bb58b03bf09a75c9657b4e223a/matrices-16.pdf b/dev/_downloads/a11367bb58b03bf09a75c9657b4e223a/matrices-16.pdf index fcd0870e523c5dc3eecfb5c3da90314c7c262826..954f844eae61f6c5505077762c169a46fd29c528 100644 GIT binary patch delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$Y=$OA7RDyql@nQ{m;tL>2@L=M delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$YzF40My96Ql@nQ{m;tMA2@e1O diff --git a/dev/_downloads/a3a06dbcaf4cb9dbce7fe53c37ec22a8/plotting-30.pdf b/dev/_downloads/a3a06dbcaf4cb9dbce7fe53c37ec22a8/plotting-30.pdf index 8b5799f96c109538377583f78d7494fa8121d47d..ce49d6770c4ecfb8cdbf64bbfde94ab4b9b3e968 100644 GIT binary patch literal 27932 zcma&ObzGEN^fziFqH+KMC1zAgT9A|h6x0zA=`InF?ihwtLKK9Np#%w$?(UQr8l-E; zp?m1&J~P1io%_D`z4w03AI|XX*?X^xha)7}^=#=Q=y_m9ZJX?|sf!W`Gc080cB*8{o*cwX-qMHNW8) zSyAzPb-ElGQ?x3B)fpmM^o@TMC?&%Psumjd)F;u`eS;z+9<_N#Y{oPuqNG>_ReHLm zNAesgRP4Djt1KEHK<^veIH_~Izj`w4epps@Qslm&B6?C=b+8pSYw5ltQ`OZWy6%25 zVR*6!JzjM`kq~vSJvs8x5jydAqn)kfJ?;iqohSyBMjaL%Z6uu>^=F-|Epnb9Pntxn z(PM{_q;X)C389 z5p_9UTU0UD5OG>gsxzNe3c8b&+_>Y)DPJ2==tgVE@{c>s=S00U`!P=rO9x);=(SW7wdRMhTOaKZ0UJHL`Lv@?w-6Q_$K(89-)=@$P751+f*8IcjRVBvB*v}Lz zJg&4XxTljsZD?Xi|6-jW%@zmyJw)*QdQ(A%0eQew_f`1PgC%HK)jA!>*=Syyf9K=r zCx?E1kFLu!>P8c8Mf^2-P)Oh3W?@UqYf5aBIXUw`P3FB*hFVx6oOvb5w|le7QbIgFW3Kk+ByGQC+s)=jM%oEq6z#Nl5u*g;-_b* z)4DRT;LjMM>1KI^JHyQM(~6B9WwdcwCZ?5kV?bOgBcOyR1dRP(KM|k*t&%JRH2znN z$ULCp7FcL9=d&^utur|FJqbcMzh_}iNN)b(ZT9@GnIFo}2T68VgQNyobPT4y%WH|0 z9AuR?J+98fFskJL>C?&iQ;Unir^iKA9Gx8}uJY7`vuO=S0}bIdO#0t zOV6bPnO-1I|`^Yw$y?pJ%blaJ<%;|}rM0FT`2aChP~gl9e*ENmW((|`d)G+#3UuXHlh z(>NBkJsbRS`gOgzvwJ27N68|vAGsfH4FP-k`J-33tI&%Po16cnzLRT7Kv_W9ND0Yb z=gG?`W1+OHl~XEAM(}q(fcW2+xSlOBn!xLzY(T_LLx5xYgLLR} z84Cq&Ut)E~1OkEle}dzZ{B!A6R2X^PG7Ut=;uOPVqFD%Z*uqa7-s7d9FpZ_F90$xv zhFpmQkUzk*(mB&C=S-8I(U|0mGdVzZ3NO!Om-72ecA96hbIir7%P$&XWf0CPvO&Ts zXWFu+FX!}8oanirQ!_Kp=9aqeyQK~&7iw#yIkS-AoJ7idbv4{kf4daw^K)^h$0j8C z8XKGo0{`%z?KoxSGg*Zwoyp4ZbP2J#`Wf3Fwok7GP!M07f@}i{f-{jT)5*OmI0YF{ zhR53TXN-gtI`yK-W^gtE>mFi0wT}OPpR&OPuu~Bcut%TXxt#6J011NEYb&`zp&qYi z&;61%FZfV+*!1kg2tkWg6<0+J(c=AEHaP$6*@w15kLG}4oqNNQ?D-BeE32-A@ClEbd~|OLp2uQkH;yb6_1cT1J`8dSl#_Aw)QhSP`?;V!>;~ikPbb zK4eg=Ja<+T!TG@qwAXg2BJPrn<~e#)67lh78pH$piZeKrc0CcyvqWUU)l?H7Phg&v zVy7;A$D;y*w+&^BYtF98co%NRKgaq4@4{_3f21kl{YF-zcba@m%EnN8>FlBhAmbWd zW0~&Lfcet6BM5KlQYr}|3V1d{OuICB@we^F8@qTRG9|Rornf);=1Xw`cFn+Tde^B7 z4W#NN_m>5oZd?^8{M)sa+|jAGV?6gO#I#eB9YOQ1igBjM|Lyk-SeC}nj^^l2C@$2$ z{hnEDbD2is(Xn(ZadOWWAKusmu#|B?g*khF1?@k808`>b=*^*!RJx28)bMs2n(0SB ze)cd8!)Nr$zb_9fW!hGeB?t_>7=~wQv^8wC(`IFd7XP65y(|@#kqhh5Csk=7RE3%@h@UUjjV-=w5V=vHLStKZp9!NqqaH{Ap;KuOh;?+^4| z1DIUrD~eRJu?<4#R&ZK$wnv(Z4ZP-2F6$Dw!`ef^cY)xxuc^;=I5sCRc|=~ogYy`Z z?HuvwCTw+rX|S;6)>^x3VsYPH3%>ES-PR4Wfs230j_QHBT3H#~zqveJbrU_kS zeE5BCo~gie@o;Vq)(%1pJAUWAYJ-^oCxkA}iO!c!S!12mqkW`#)aen$oy8#!G$rh0 zW$Z6p^D*JR{!#A|scZ5VD3yBh!`Ig?2&R4$Oq+A5-hi2-Cj?FF(T;YcS6%Ztim)@q z3nCtwJM|g3P};9K=2fa$Cl179^~{4^5}jnGjJm4BcY~|7Iv~zyWyp+fXonsKI~Ec^ zNDPE>qX&^dfa(tlo%9E@Co7;G(T?itb3SU7#k2C6Qk87a0WnQNr8GdIlh(q<%%i)V zr1$Fm8~l?P5G!|PqKoX-m3*v?9+*KDroh70y0pd*hD!giIoD^P{D38(5i6Ln>6;yq ziCCXs;I`FXw>pedmwY+a6J8TRji8p10tu_1Z1g6ScYXpST8H@XO5}V=+`UlW(&Zkmf9`d?BEUlS zy$C33Y#z6bV_vz$2IP}k9vM~E)MfzelOy&L?UsxeT{NPMYs874i$>V|0ur>X_yotr z9VSjA3t?>tJG>Rvt5}q$)qkLu0!Sbm{KgRo3>bAl0(}SFj68f4oRP|G`x?i8+y&(= z;3&FV(wj!Ujd1{Xi~x7;g8U%sU|~Ir53yF_YVv~m?_Z4W1`e!O5F~n<=MPS_Mm7J= zK~Ci_SM)FjDR8XtL?(=>h0>bE#eLjF) zz{b^6Xn#DunvI+z6o3yal&L$lwd}onZ2iT0m<0h|IG9h(4uuRr#D#A%IMoCo#0l9I z|F-U5wDmfSm>d4waFg9yWuG@?(Q`uDf!-~9IYTVHL zzAc=@Y>p=xo%j5snJ(%Uh4~{p{&P&vpJ=~`2B(nAXElVEPG2qARb1AtlJ};|7_AIW@Lx6ODC}Hd zxT!-)DSFHuua1q~xBm_eeBSYC(|YPxw#B|cb)=N+tta7J=IE*eVXdZVBbLOqTrA1v z`l!C9Ee2lf7CXNYJ{$gW9y1^&Rge$8`r%t?NN3VM+5}@NSTWP;_PG4<{&nUQ964$I zg&dzrZ8J#_Jo)l3dHN}>wZii)4|&qmW=hrvVo#zA7baBlqsjd~bed%H_J_7twk*y# zS$I45%+n+|9gES#J38aT)h$$&c}(X{Ipx!7Rl}aL3E_hB%rXZ0R9+7E?V4;wYWbyHi*cLETZi z9Iub)fSBZRj{{l4f-!>V4f54iXAmOj=IzB}-h2DCom0jW=B#WLqr+6D77$|oAUiD) z>|9gxMa#RPK+D%nB5AGF7o1%7}Kn!|!(kBC?UZ5#Tr%Tj2EjCCL}lj{2wp zoUFd-TsKU?hL zJ3YZ7w?dRsP#MyPgLj083UcgAAa(nGKWIng{^4Tv7RQ3hGn%93553p-c>`zn1aZ~6 zvQ+le)pzFB?#?x{SE6eln*X(~P$4$9fS81Ttwd^xsD;{CJ?WWNz28Ss@#y6ViUaDW z;iaRIk;EhR!xT~W!z+}c;>UJ?P=n9S+Xx^c@nGZX=>dbVLmBhV0-_DcV7HL# zcmn4N-b1YCUS7M3i*1m&mY0xprVJnksCvbfU>&jfGjdU4@SvZ!jb#AO4#X0QWuPY2 z6*guEv8{j7bOr*O#*6r;N02*%#UyD7KrIJE2)|&(k}p16@db_;s9)3_ejr5lK~gu^ z$8?7VcOsea5u#ph=#(A;zm)s<6%?i^VRuTJe$Lp%e+F{tuVD6T3P6e67t}Xd08VF7 zP}L|mQV&etAybP^tI)J*et_WdT7E|ufusW|Bl{-*MDRBHH~1wL@LDfSTTfWC!$|i& zeFLzcIjHH%n{#@0`d9AZxrg_(=!J7D$O~oJ0+B}g&?qAY2- {tP{9EC7O0L4nUg zoWcZ&<7E4;5*Gp|!~*|R&AM8rF7RDtCq5p=(-E=IiP+uWdX{G z?C5+7;=Xrc_@gqgir^*#D%-H*=}&mZG9D=X%UH(CUc3}Hk|qA}rjGMF2xCIUdNVrY z+iZ1Srs)k-{{82nN@D>Epyy?N$5iM;|BE}U9XEmOfDKAyrxg2zz&<{~hz^?OLf%is z8QI5^v}wIUe%pR5KpWMkCgM+XrPoL>8+jR$1!k}FFsS`*>PPw3G!5DNqD($3qcOje z5YL%X$2n))alPFUra%^93gVs3jBG%O&m2el83Jbd6`WD1>~_Y#r_wNxYf$2H4Z)(d zCOx{Hmd7|0!ziSbgA&ibrOw zLdlJM5H>p^pJH{EuNv)G?x@}p^(#~_WVEn3D%E$*0}x+u_yjZgcruV(WS}3Fcuq)S z8oDE(>@82XS+r!-#y`Pv>@axBp0WdZ4Z4We_RvT%&baBSH37+)y=ORtL2jK$ivzFk zqr1;ZZ?)kxj2EG%$*L7nIm-v6AB=9n4&r+x#ETN9*!yw>Q$rY3xBA0>LOzavM-a33 z@=fFbOTHVwASbd?l~VWXclw_7LRZha#<=Ns5J_-(0cJdK+Y3rn;}nd3u}DIk25f^` zWs=~+v$a0=?U74YJVtBrRB;%*ai9_2B2FG@AnQN$doAWaaRD=e=%pUs3(tbl#8p`3 z`1cJOJzJsjF7UFf(JN13Tc0=Q+>3^->QZMcE;Chks!A18HZ?>uh)WI!u&y3NS&sbS zQ)ha6ao*;RGHFy!yjjEOqP5JL)f)Iw$Bm+FmDE+&dQn*-P%4!e;-Tl;h)Y)Ezltr6 zM-@bRLu8v=^~rk&8_XV2o?KM880B)yMket+5I7ej89^x0kcBJbufct$L76l}Bgw2}#PS90oZ)q3 z5+j1D15*)|gp!O+2C=~JK2>xB$6ULio=h{~bo<@3tXgt0ywT>~$#=wamNZef-Y9}E z8B$>vbQwBT4HL0IHk1#+6>2HJstiFj`$_VmJC)X}kNv}%IZ!IKO?1bLEcf&Ps^N$U zfa<2|GpbMS0#wJm4;dbD^3RO(!|D}U9;FLXeghJ|yqq-8*cSz_MEvjM%L|JVhRcMA z&AKDY9|-ru3X_Si&8Oeh(Lh%6eN{Xm)Y$a!@*Jd10#A#P1f09IM+ z_-pjB8x3(m$r|J)EsItZRQ#%Ui03@^g0d*m$)ZW7vR}NEj{`;A_wd19BYx9c(ZHs> zB6u0xZww#+($gyj2E#3ZEkaR)1P4uh$Gi5}$6}-JcHbOr5GSZOY?g?r3xGRcE>#SA%Ew6ZqM#3n;W8dnT@*CM8rrv3Wj%)Cu zR~%bG2FF-G%i1`aX|}tpKB%W(e*rR@mc4=({82_bNncg)ehzH!eIQDMNMS)naDafWLA=ZN;mB1!)Uy<4FRa3dv@@veWrT5<-23cc5HY zCWC9;WMC{{m<;@^ochI~2#QurY&KG(@c-a;JFyZBGkFqLH5rpK`jjh8#$TMlbJ|Vu z?X1zN%W(reJUx|Y5{2oBT6^%I#a0$~eQCc1>A&w%^t_BRgF81L=gxw)!a(jE+55!@q@I=}$PpYz-3y(5SEcV!Cm6v>T=iS}m7ZIrH6m?> zP=(50+QR@L!^6_SQyu6Xx?pshkfCUsHO>td9@MPoeGt32KDcGwT=b`pdZsU~xT$0n z8xD=K2C`?IHcUdD35^gISq3#a?0Sr!It)9=L!%1{MJ7;j#qA}l>tCToI(RCWn(Gn8 z+jE+;@YeL=VJJ=-y>9EftWm2ydY|#~sKUv^nf70Kv;l=j#g$C1&dI|ez46+UA4|fr zQ_I?d8(z5O&=TD8wEtON=eeIero%`-D}@TV0+cBw+ZjE%Ql*@A{!rUIAFqGQ6h)ch zqANqxwTBi9SjR@YZ&*i%<}*9J|~JABly9bJCQncu}r;|pKNGfiWT72CC1 zMby1@3g4K(9Vt4%!a6}$znIDd(Ny5 zsU}J@(y-eBxGedF1S>hr!V~cPX z5mUonI1~u*i(ZWV#Ouk61bCUea5lQ1DeM}?ui_d%@fLG=kLwj7PB+cDsyV2L`9k$r zDfxSlOD^f=Qac)V!hY`dCsG?d2_SZdXJ+_2??J_ethcdr&b#Cp@=>Z`ANly}#j`;ANjB zg=!d#9Y)zT%Qw2Bc*y}Ihjx@7a&)AZeun&Neh2~iECMy}AneMr!tdffD??APp-t|T zhTF2<`%FKbP9qFaT?k`RhILV9)5=4w%J^W+C{ry4*vsS+pU~br)0B0+4PMkCde=|_ z6S%mcQa(z2dD;JW3D$}-*pe~P$K~bxK?PY8KW~mv!|l3)m#e>R8p942OFL2<03|{F ze#;LyIW3SEC-qck*saM}pT32!+j`G|GH{S4jw@a|e8SfOSr~itsS#V=8e(?qkni@Ts zT>HK@z_Jm;V&YoY8cc*0My{+Q+3=$eK!$EDBE%2uaF_M#&|?&21!y$3>1BLap`Zkr zzrz(lDw?91_CVDEirDSECVEzT@w?^AeFuoI2XawZ!$L`d4b9PrbT_`R;-ip1OGbyj zT(`zxCym?UoQ4Zp=4PlW3_sEl=?V_LkQgK(UU)6lsUG0)zDv^>ZKd9w%oW^vcOeRF z;d)xeU=k5vthZB_BxH21X_gbn&{;uGUV%0q?GbXMeYlUW1^rWj&Kj;nu{<=YWd#sC zTu$rM9V`QStK6jd7@yVVKMy^thdMv215g029@t_GJV0s882A|+yX+K*-mmmcSn3}Q}!#ajQC3q?RJ7z){!`pDMxTJPZcGjRf4{vo^NoCBU@ zaD5JnsL-q%tqLUc8_BS)L#y%ILtM)AVtCk5qa5go;R{c5LZ9N((sazjfNLeX_!az= zcPSwN!aOZshp1%EWLSB%We6?4{*(3;=2Uh%M<#!+?hU9%8mR+lGF`5^4(V3okV+%n zEnT4jKG`M`Vpd!xj@Sk(;xq9LNDSJxYS&=}{>J#SK<+=GamzP=7SXSO{5$^Jd@nRj z%YnOqC@?Y5HZw?}s8NC5-)YQSjF!&Ivz;9Wp3^nSf6;H$S~_SD1kvfMeC<*W>zq?8~W(7*ONV(qUu zndngWCiWD$o&Y6()W8>b6-Jp;`61|Bed&+*(p^~dtirWCe8;JJRuZXSWD)$DH6#;` zxq+{(mTA+@4$JRnJ5!B}wUEv2lvOR{8367)4K%fIR|){&(Pj8@S_)L*q2a(GusSL* zg=+#Yccz^|5^=(=B&SG%iMJcG{qUY;?#&D9c$$M$&k8UUF(1EMc8)-2{zJJYO3A>B zqr3D0@c0L21VRs31t)bG0NBDj>Ra(P0B+C7h4b#Zm}||9wBe;=ew6;Nbbh{O#Yu-9 zZZ{Kbqqy>|g`NrMRZ1Ve!x$^ERqL_?+bk*E0uGwU*O$9z?F;G449&cU;Nj_v6D|xn ztxdCz-j!K+7u5SDl7DUftX%xH!#V7MXicD3_VC!qf!qO4Dk$THr+@WDK2oO0P&O7q z^@-0%5Qo74qK(($WWqyrn)7GnAc9X^<*Xc}F-q7rubM*Z;&GOrNoh8xm8VgjeH{+7 z;6+IGs1{G8l*MbD-6xy&xoi-8QK#E%B=^`J(hNHZz75Z~hQBOx`KXV?2NSv-!O|n!K0m_CeXZ=rxo`S!{S9+lxA#VY@8%ww> z@>&18De=i1ceg^Sj)8m@+af)9c+SxDOILH@&XLpdQ{C*q#(*@#K#qt}{XesO+NRKdCe{4ccDuK`f%3kIPP_@h6Dt01On*{ z8TG8fU_$|}gp-Jy<7P30YWcvs|`R+0Pd++xks7--4$^sIj~ht6r0-agJ-x}hQCB~Ey;Akn1g zvBJa2=U0uHhZ?*4WZY(w2v1QQlcGw!Fra)d({9C~Q@&|hP5K+#Vf>P(|CASFEmE-`v2fw$_a4DEP$xTm`g78Cx1$T5*w<0l_AK zG?T?VccKT4So1>wQ@(z{3m%Rt!rnjypGz9_vZY<4AIOApf^MRP)9hSc7AR!g;BUc) zUh=T8J(nx9!>14`|FLbF-ab=ZGm>6Qd)OVCw6R}N>+dtx3Fb!#uvgr_va<>k8)ep`dSn!9v;R8y-n;4XSyAF$1?rK4 zqsHlSg=)cF+9ShR4yn)IxSTI^Lu0cSHcA~C=h4y_E*(3>Y%OOv7ky_8v!iJ>JI@g@C+gVy@> zG8qg%s$Xna9cg$MrT%`+P+;LbTc_bbl5Kt2vm&Sccc2295RaJtuV8xac1a{l@tAEt zjfq~b)D2Ybg*CIg)IPssCw*1jgcaAyb(_~MN|nd&4qxAK8=Z&WVO1QvjmO-& z8{SJ^*`;HSqMnV|I12fu5pw9vf&|*9$It2vIVtavh^Nz2xQj#y-eGmTGqi2J_~0pT zxu5Oghsuwxts=cQKy6ZdswK-)E14CetFM6G>K0TQG-XQ=S5;-tf&&j%D?lhDOI{v) zz|R_oH7wN1S$r&*+AA@z)_l5iKsUwzGR%X`#$p!!EcMnk(Xm_rBbr${XF1?iifbx4 zlg@I#()th1&IRj$2a$f}`O(u>SQ)LwAF|i7L+>8Gxd;G#`5B;>pNGi)BPwMi3u~Tw z7)&b{uE4SLTNS6)-F7CE!{cUmMLdWV^TKGpoWQFB6hQRXJIL=SwSYdd+#E-UomBRt zM7yG2wan*b}xzyYk5Ny(OT&PPwIk?g1_qRyENxDMrR z4^2prOR2*tOesvGL|+Y-VDGxt6fMQAwzU8U3(=MUcFdd@f_Of<7z4mve`5BEI8eyu zB2#mfh>4OZt$2;+t^&=svO_gpwi2C197SMz4$ndPfiZ)fHxGLE7Jlev?2a3b7DID9 z!1>dX>$gcKaCqzK-3KPegdZ5~K~QCml$gbjKBk6(2?TyPjEE6cc2`Qou-`lIqcTep z@wA>pENP?=KV%Q-|Hf%J6KxvkhpOjO&j=Lgc8IUg27pwq-8`GRdR1c67{16Pse+^%QpW7gz3ALp2?zB46f^gY^0)SZ*d z#u^7o?+d(vUl6^$C8RTK9V+t5iUUP?X^eQU6`6KT7XXek=54TV)&&dBq!x*we#Zch zP%p`J&N7bovF38QV<%z=4I9kmD7fJ%npUiNlcA9Lk|PJ4a$Zpu+!nW;qV(e;h@VlV zbR`GPkE;FCTE)AQH+osx6a2Nt#30Zw=f&3Yg#h||c|f!{V?qXHp%wR{@A+wVYz#FJ z!6|_Z#(JTN&NGd^shc=i`R<`w-r{?<32mpqt)(YtYKT|gJN+DLtnE3ko`wv)5_2IK zYV0ss@H;67>lF!o1AEt)q?GvOcpW@8Z0FTI11#SJUT~-14-4HapBI?wv*N1!r}(Au za_Q}F8B?CU>Q0p6O|~9dcL|LWY!+lec|`WKyDXKN98H$$!|htRi%o)?fOFp?&tx&2 zL;6tF0J{54TOJ&=2I$$Qwn@faJRUBL6B)a)%f+#j8&JNlX^3)Xpc~Jki|TDqcnbtVsFyo>oFn!Kgt!?y+ zf!8;Wry{MnLVtWF9>*!Q3gE_YGOQTF z{S=|EesZ;*yqh4l`~oXp50?92q_i14l#MJ)R(~clVQoe-PjV~tKuH9^{zD>PZ*CLT&%z}x!kq1QH?8W)-Z;#EXp#uqfr;*=yS z81E&+2B#?Av+lhMvHV-F+O;>%aB}T;poem567h`Ofg-abja6`5Bf8LpwnB%GdvI zvY+61EwsoSPL-hWqg`aistj;Mv0~_ZDNwbq3OyWHq-ODqZU)kA{&LaExe;S z2e_w4GLq>2k&cKCW_Jj)`TSJuD_S952?tN?rP|r7T|-0yy%d>#cjaY0y(SmxO^z`8 z>C5xHh<;y@BCL~WO0aLdzR|iQh4tdZ?DH_nVLjr^R;`cN2Sc-faD~g{Q_(%4;@jV& ztfmF`nuBgq<<_f&+V~jmT(ZOHJ6}F)?zl;N zFsSr+nyszY6{~x!y4&Fr=&!>jVG$D1^{5+|;wbQZkIcWy5XCH0jJ0a%-49$n;^>ec zR;9v0kwZz`2B2wL6;MCRB+7Q3vqRW+&`>!yX32P}d%eWJ|G*}ZO`*Uhh=L4Y*Nv_S z$vwDYgfvMA?G!7)iSoo431LT{grPUcjva5PWJWTK9E=t|1Ro@5;y7~4s@a>B>7w;U zJMISROb=|xF-W|wwB2w7OhnpVVWQA|RVB(gZlZk!-c;&5ct=&laYXP7%^~^GpqK!8 zz=U)BG_yMoIzzNrJP6g^g0|b~Ojz4fIW$cAFoCwxvj6NqEt6iDC+;=PgR7*UD02p4`|P_!o4T&N@&&4f0(d15BKx)I(GX;*i-L#4z`xXl{C=Z0(> zRdSHi3Fi0GI8daQD64)aT-t+0^Hz#x21%s?_29KI%%QLqZ0|*FoL`T6)MUwYnru

    SokVLN z;yT=H_*yk#cyn7u?>V02Iu-0uL^qjS(5L}@K+OuYrIdGmePPVF!)fOT+VR+53I!hy zGKI(%ImX&5i?#RZd08~4!_Q}7?vH2;$$QoEvq*J1&HAkrY z`UwJE)H*!qh?AbrK>WHZJ`5O$Zwq-^r>L0BXL((|h9!7YFl$^l%BbDC&=NmmQigE8 zWPK1`Ihb^$d7lPJ)Qa-xzPR=;c3~Jv5n|#%dX9X&b_HpRt0AoK{`KvdTWUnTvyHX^ z_w)S8VF&7M;Vj;t4xHfGbi+FEq91wTD}vtiYG^7K#{(eL+n-^7z22^Kw9`E+lW(Ot zb{+H$?M+=YP~ociUmnI$Jh0=}7y2c#UIb!88o4~12=iq>-noC`Igke=DZ!~flD0ga z<>hPi4jDztBUgPQtl^y~WcYgMqm=*t9+UO1pXONHM%|-C-DP_^g=yPl>QqTQBkcB=QN!w(w<1U~lki zLF?AbD;`WC_Eooq?4n;)=i^JLfd*PO&l+%EL(^~jFjB5`%4svp4AK_+GjIdp-G}xq zlGlJ#Sngu>1gw(^MY*#b#`ko}EroWQsBX;dOPh)=Xg zg3Zi`sh|XoIr-J85Yul0Cq1RJ$Yj?mLFT4kE!(&c(|2C{o@Jv;@C7ifQUFg2DBK}R z(k1B(O1!LWur^v#I9E@aN8|ct!t+NAt~?}M!0_}RKt?%lM^1f z@!dZ9#X1XL*m-1m5oo+ze~GnC$SyX60046&6X8Zh-9F4`iDsN%&9hg#ds8Y`d{F)+ z^t*W^mbL|47o^U%%O(m8g+gRvwMAy&y@wo*5{7hFPn*!+<~8day>jYMx5w{$TYbLZAaW-5v+wgry!D@sf7IU0!e3I<)vo2rYXVmQB~# zn;(01pR3Gvo@+bjI-8_uQj&cO>rDs29E!$>%NmiEIgF&j4d^Tsm9fF#Rz~UUuQk>eR_lbPD!(r9o~NHKY%D+!+CZF@z4 zAO5mM!Qw#M(mAw_Zf5l3MU>=V(m9Cx ztuDMj(f0`MzF#?ce0T>z2_k}YXMdD|e~$`mB$Pgs;3xz0jR8^;EB4KWF2guNAxvqK zFL7tHx{?Fd7c`qckYKubQ-1ai3L*Wo{dIPyOV+Gv7Y^nd07fw7L?VqUs7Csr$O=NA z80l2nqxI4f)hE z!M5}8xLS*PCv}GdLq@Ox1XbRBQxvdFouc$$iWOSw!+_Q^;PTU}TFn!V6a`2|L#hx& z8#V&N!}_Xox#$)VluDmudokZE$PNSolb2_qlGm5>WjY7drFvUyt-1^c)25k3p?fdE6|7! zuMDR#VfqrbEOp{0!0)2pg(-xeeZwb#=(!Nk;~oaB3y@BA02GqbT$&u~$^AMB^;iUTHI=P^jJKu10^l7}C`r(JhXgxF2hD=~9QrT$}Jxw1$#Bh?-> zt0DbDK|B0r;e&bRGR^2L#*49%dKVjkP5_S%l;_{ax-!=(y+>0u=-ci8v|rfHF=()& z&5cw)(c$kqd<6;gi`pw!3I-Cu$y#p%dLu>O64z_DctYAj;pd#uz-mPIs2_>fDl7La zb3!S1($dOHePXcfL3lc^@*&uln{8R#T*;{Z<*Mm?Z^RUW=Z~x>S0{d+D z^qkhicVui#fc}8)Hakp%L<-QY;UB(zHO(VEn(-=G@TX}I46c@gDT(zdHlD8l=d2fM z%Dbl+Uqbt%TV~KUtwS}68j$lC#c8&zNpfvL7rX%h4HLEHF>`Kq(0mX4B&QAbYq4^Q z9+~?V(H2I9Hgf8NEb>@ZWsF^Q`M?aMsZTGUiph!IqF}{Et4mC~HE>zNldGFH)qGo; zPNg-dLVLBIVcdsvyba$)<&}7J`DNB$8i~e#+$xvW# zV|@mHmwO-YB9*%E2VBUemTw>HmyLpYt5dP=VWTgYDjg4DNXTLY*b-nLrJ0aW*gOHo&M6x7U9;wwY#yP|W&&`iX*rKF(MR zU;@G1che?Td2ac^pg~RW(*tk#_7SKwVf;gBogWCZt>Br{r=pBhyRu0lly{FXJ_`zPyw3H{+pWBl zy8|6i36T5T6CmwS3uT8D2m|hjLl=+xapPc~0L%%hGjVLT;eE%YRNk-cwl^76)w@!E@Rc^{m4 zFjq<6@a?{z1ZuuP%9gv~S(-D>n6G+#80^`Yl==pz-bFw+JoOOGfjH7|wP zikTgdg_M7O+eg@+pryV?Rc^Q~tDJ|mxH9-FJ)(Z`H~%j+j<5d$db>CAKlFB*;GVOF zE0S$ZdWeeNU=px}Kv5`py#(Ta&JmnD(_{)NOs9Mtouw6MhDEM-` zrr7M^blQ_B1t6#C(|f~6vr3I@CS)uaR1z+pxOsjaaOvgzV=!&@=?g;+E|&woyfm8? zUV@5+2=)uKL?Vqn0p=(75e5tScMk=x&6Al+9N;KwR#3f+`_=5U&dOJJE-e)Yu?p3^ z=5cnV53o>e!8d*d7yB}cK9=90s*i?RTj)CQqm9Gszt{tb5XoO60aLl!+pS!hnjlLv z77cw?7m;Zz+b`adtQdD65u$$trHIIPjkBQk-#g>3^JrpxjPWfQY;49FHuDngaIQCz-%g3ngBz~ z(tz>DO`*JYAUc1gfJ?!U4$EIynnC)B^061X@aF{CPKT%<{H+6P(3_wu6?5l^jBw_Y zC@IF0Df)m-6?Y8v2x$7nThr_#2py}}3>$h? z%~B`G3`_DiVGukZfr2sv#tV%aSqS$)o|n^vkEs;A6KTr`#kRuy%R(zFFGXwR3S5G; z6Y5CodqFjvkoLpSm3~x`8ix8M^1@?aA_2iLWB@p$_5FMETR~=a+Iv(Ex_KKvGeq+z z*U&e&q^p8W@h7rhoPuX3se*~!FORflZsL0mC|mB+Lz(ID2b&07gmzy5aSJj4%eB>c zXn@wA@*ZGx|IZng^AmQeTQM78#t0Fg{5sa#4Bi9q?xKy-o(_^jy&`ZDr;7y_dU1Fo zpYxd+$0%==0_@mL)2u`o7OKeD*gku@93(3;5qiC!^!sBh`oB^k;95OhrcE=k#(^H6>x^>{Yb zSVKvbShgsx{=&<@kHlDv`o7xa`5N0=(&Il}P2N!RCnPQly1rtL(WcdpQB+xsTL~UeGV%$WT&tcnVA|-%h`PE{ueUlW9jk%~&r&G4 zH$W!EVFcy^o-!%It~lV-((I_0UtWa%1d^Gu0Jw0zg>B%YgS^*reVnPr)#bgK%wP3? z?Df>2w75kfCaxOS;9)lp|;}X>R5J-LU=<4@l;j0D$k}!uZ2lK zyO8$i+aU|)x0ZbRy=?fII~RH~{&4+;)uv>Lbse224Om zKi|p^#DwP%E0fQF%CmtA&~?7--o2+)Rj1`#uQW*oc~BWuOM@-6(3jSG=@(~4qKk?p zv+{H%mSr*0M)=$0OH=HQ)x}o=wBim08ox-#46Z`5jN67^3!wJbz2y=4fM0z8j0D7O z>jT&a1(<0;23z0nl%Qv>dtI?Y>S#3ko%vd*0afu~#0KTRK&N4-n$cb-Z?3!rQvp%| zEANKRro+xoga2WPF*Oy8dYIX9R&4dhsU_U-r~_V%mp9V6VvNekMH^lY?F=DSlYQT@ zR*a@OVGur7*z87snA%ucEycVU5x6o!6dx~8CR_*^i@scR#;*#G4Y>n4DDOTdU^>6c z2GBYM*Xi5DCfp)#U>QQFlM?^eV4qcG?Za-fHa*bH^bCW%LcRp?-rxePeW&i8)|rlX z=O$0!)?EOTi-an0PpiN(YWEq)uk{zf5;v8?Lw%aG;SyrNndX-C1~dCs%^*Kk#z0(% zGzJYyDptn<6Z&uUta&WvZ!t9IUe5BGnA4%Do4tP}_gidiXlZn|0#a1kei7Q?88b_nppguiE9`-} zf@JZxJ0J=IIE>Z3`)wblTm@X~mYS&0r=(x7k#GAYGOA0v1MGlO%OAbWvynaw(-l9) zI}v7L@5B0}c;K=>p2n0jfCsJ)%bJjp%{GArk+y@KpC>ccv@dv9!Hs?fJ4b-Mm@lsa zWM3zq0Hhbe6a~OxjvTxZI(u2uO*ni8$-)^0shgkp;Y8GOw;@;Ic zXx?bIh4rO*C_ZTK3xEe-T%8A2eB6=ue!DMsmRZt;_TCAyGu=rnJP@fwA?qZC2O}sF z10+NBRJ6Oc|7EZrYZJQ06iiJWE5^_e%pR_hKld3l8fZio`KHqxE2`Wqoaw>SNY)&G z*_?rag5s8Z4gBBlG5YP6oMH*9uvx^Eo7;kjBild$i>ap{gV9vmBMGcV3m{U>ajiLv zBcXxAJ6IPk^E~S{(v(;K`WG}{>ohLq#!!c1Cwa|1tj7zrY1jQXD#*7sOx5N!_cKpopz2~c=VG1d_LQAY47|1Y507CClVv*7PD!_Z$9 zQ41UO5V`xM1|o$X1U1`!v!J-v#PMm_yd>c1{1Vj*FDpzQlqI*X2e@@5cm0Qe|I`5;$=#sy7ud=0@Uv-$ru*~VDi z(9dDXL%9{1YFVtfy}ZYL)d%9(9(It-u>^!hhW-G2>5^)b)1;*ouTgwioZ>uVw-$}2 zSd~{Hu1tg=nb0FHm%I6Nd8VC1T}1O|*|Z5GJ%~`u-BQyZ1r#j(N2I7Z zS8ckai|W@d1JH2aPjUFNqDDFz`Sld#gCe5wo&O4q1?j1I?6m2xK1s4W!-zJP7w2nxC zqrsn3%eODGKP?uq{t&M1_F%d#ffFHF!U_}rGr=yeg~oSz!Y(HyNE(C*?_gN9V+NSk ziqW%h0bnhh#z0@WJ^{yaYA1RyIvr%0UX?E_CyLFd7W%=sq#Jo*^6`frX$7IROq=+e3 zEvHJm(=8nc2YNA@CvPnLKPT8V)C&%gBMgT(H&I((k4Dz6CTlA$pyNwBXQBubZBBBi zkIx4g$S>G5+6_VX_xDF4NmOgnnc|bX>1V=L`rF8*C4Dfh$G+gvJ*4ud8&RPJIZqSc zJ{y-Qw&TnY#1n-dNy-hs+*JYzdahm#=++<{KD-l^w&S`N`#0c0XatLOl&>M(i%`&;>%+Tw=m*asRffe5 zh#1x%!7$J!LeVwlS@?3D$yha2-Nh0CgGT)z zm?Kjxj0D4JX!oGMW7KY-Bgz}keZf#YS4@9#Iu9Dq@t z+^0?#X&41SFc8d_#WhKkbf4%!C+>5c~&-Y!vP0)x~h3l zZ~&Q(Y<@;_A_-XjVsU(UugLRs3GRVTr`VAMI;dRXvwqT|tnkjlb ziKI5D1-w?oOwbloHge~sIoUAvNN(b@&swN=p&~a0RpuE;jhL+q=x-!e^DR?@-KV0+ zK#t0#C^dl~uvp`h0A`Qm(ly6DD?E?5ogLmmf*<_?{xj+Z?as4xdpcCCOgVmd=w7f1 zSPW0Iut=kL>c4F`VL!@N7SF+Is5XN#zFkQByn>JkOzIt3^voGiw>V+UViO<@ie&o} z-EY!=J3DT@k_#3&m}$IJia4l!j}bmO$S zg?=W8+e-UVMoaC6mE{uTYZ?Zc^=YM*l6$lQdvA9`=zKtr(F$XCFJpW%C@;fCf7Jdf zicYxDlrsIHTBU;o`;|Y69x2(q`z0v&z^C{@O1%yAdW*|_DB?$et;bjyP+J|rNFn3I z@$xK^h^x4$S6p_f?U74=Kq(>gK;@$t`L$nY~#;q4n8$byb z)ldfMZkAVQ@A?C)cSv9sCeu0JO0of0(lubl9eyEBf7vqHhtt$nIN1ap39%kxcP|695IZ;%!SK zS+u#if*`tVc9p-%cYtPSv02E4cN7Ed*kTNa7Y>3h*syZ`=qiVSMykLKLxQFt(c6KM6B3!@5@F|gPHXQCy>cWx6gCT+Mh8=r|B^XJ zC39tAthYX_$^e^Jd;s7ZIuSCx-r{YC*(Qnvk=M`9w0YK0g1*D;ZrhnQzelwAtRBol zk%Y$$5_UH7cSzyhRWOJcDd}`hYpHn+v${4$R!JUc7VD9D^PvGo2Z+R1N*MrFr$-C) zo1f?&X;yH@=$jG#XH8a5C$q1E;O_Bu>kavZFv%&N-35BVg%_Zv3>22ar6-&+c(6;Ox(X>i%lW3*c_N$bCx8I3ncIG=-G zTV$&-WD;++PeyvX;KftEkv?Ui9*zi9St; z6GxRgwfOTyEcwi=)6ClKSyAvIW z0ED6;80k(kq_!C6wZjQ8Xfz4tXc$-w5TR`hI11@U4|0mm7ECvy)IzFSM;N5&uW#V+ z0*s~oJK=nS$XgKZa5b;CnIig;g!J(QPe>|ZOXoQ-kseIZPYFI)wzgVOHWUsAew-6c zITzmya6@1$wgsWcqKBy~xK3|Ivy7fw&k4fDZKr_@f^18H^1_SBJN5X{)|T?z!{$1P zAt9Ywq#Tg99j$_+3#y z{gF}_mxDCs9@%HWxP&06Jai}EZQHos;pbEZlD%QW0C}WHEO;d4#-}T9GO^Ib@9b`0{q&3B zx?*tB!iG!cgNZ5%|NPz0jPr73JGw_ycox1zAfYFiM_C8u?}$fGzzga!XQ8lzIImMH z$2}{D>JXLF9=7xl2GcA#U`OCn=6UR%iQM*BJ6lzKSy2`D-ZhxO%ZWpNhfV~}9D*9C z!zOk;zw18^D#h%A-JnYYQ4sU~Z|hSR5Pm?KcQxWsx%5ZDczN5>>N3jju^IP3Uit2B z21uWg|z78O}jK(!(@fE%(O4*usaC!xRg6Xw=fJ z+ItkTh~p3oax^w_43^E>3|-;K>QmYdO5I5Egn^NEF|zZL3A*~@usI^kmr??MU;IZ} zFWpT6Mx$r~@oFP-%hm`OPh+HOw_VEp9c<_gbgsgLbujCE=`On@b1GEE^+C3L4m3s4W|{3CdC7Oh ztdL{_nNFl}i6c$sdYEhZb{J#T!-k*%3s`F5#qzfyyDP^bQ8q}yYw?*muNv&%2-5sI z3=zlVz=I9Jc_+9+>jf9dTCtA!rcZvt6ql6v&~L)Yb0o+nAc+94ELJ3|5BK5YkG_EV zh4uao1&osB&wjvUJwlG3e+WsTF#A`a4qz*iiBg6Kli9`o-7h`>7mmBW5ou3r9;1ro zY62>@9uQ*y5wi3N4#>dKr757Y;T#jBVX-9;m-wQ^v%bJ~0NGhSRvl8d7v|PZFBiV~ z>;Y*hoCboL^8T;QZG2xq3Rc?PJe${15inI!YRWM+8(!+z0BQJtCb?J*6_QS@v&fbI z(NUMZXTTXwCN#Cf9Kc$q*Ei_VY`cEr(I=LvK6-whHH}3;hIm!L1frv?2@>)=ig=S6 zHj_3T=^eV?+%C-TnL#`dPs^Y$?P#oC9#0e^FT5Gcx>Esc*>%mB^PnsoYw*rZ(O(q6 zOe9bS?n;LI?&j^SDE8!UhkNQ$id8dbgJ(yg`&I_jfQb=?CeF$k?pq%KNFemPtR3-e zG&oAoz%SbKyQ=Tk$35r{o2NP@9DT7A0?KSocA+B~j-|c>&J!!|xmqh0t5!8^2uF}) z^>v5M)cQhwr3@1u;$WWh23@*({4iYH8b7J1^Rpsz)xx{4)|y7CFOUBBg#&tnT>N{320;+O zUgG36Nr3?P&2~+>DD63mVON`xo1$K)LB)M&U*hEgrl^h=oSICmsQv-+&|#IRqrbxt zo2ES1*}VF=!wyG6=0*Y4_0@fP;o$q(E#2uI z^u7E2Z-C_v~dI_)V#W1c5su^{8-1BF8IXJ>SYgnc>Q5e`pdVRgY=GD zKUh*e&EM74<+0WkhS~ps6W)Wbw<^}7z0_JBEp+qnsGI!yW_s9|tN~kKJ{*|r3^%(l z*e0y%4?7ULw%lho)Q>ze7StS~-j!G3l$V`cyN5xd>X;yYo=s!gtxn~I4k(!l2TnJr zxhzb6jffYA)3ycR)Cx1PuWTN5ZLP^Tm+lP5?0Xie7<{pQLXq-dzpg*W<1^H9_)>A+ zddTL|=OQ;aKHWh5bcwH_u|p}%+P6VPeYW-7bj=2#r#U(DVasz3k8X)4M8U!DJx2j} z2kMVzq^Ep1m1j%xp6>~0Dy^Q)xuFyOBvSRmIb-c;zYZHU1{_h?$x+!^!he*wy41mF z)DBz7%*stj6mZq4#-9jV2=>yJEWrXMvLr!jU|t%fezqO9giGG8@|6=mP68hp-~u=U z4PxH+zl4q6*T*aQj+YG%+>ywQPfA8q;o}Qj*4hkjFW|nT_!E>XX5i6DnzCV4K zs#9cqvJ23knl1ZqFl!T)j`tTM3aq`NKyDwNXt^i8P-z?tFSx6<4q{d|xObY6;(2V86A2+q;;1z%+S4)6?@BDOZuxvXx$Apx$V3CpSSKDO zROyt!Oa4G!lzq3O8pIv?t;06N6Y|!?Q}aCA#p%?wq&%24@~_?A*_0A8t{xEf^~NrR z$-{*%O^qja**wJU(IC0{f4X>U{O^tMh75%1%X|L*dH;aXoac+TI{_3Kw&d9{B*RnQ z2;sG&0O0G)momv`N~d=7yJob8h(HjoO&H5h*n@B4{_gtc$WdV zE0Ma_xBl>OPes7(=a3)%&1VrBd=A9X7q#Mx-Ge%@w68%~P*SiM3;p%=JWMtI(B=y28)VGC@ zod(e}@(Ap`KL`h5rIW6_=7=l#kAAWan{D%5>x2q^p~w&PH>Ie;>MK?~j8LpT8qj@J z7lO?@`d;BDDdUu+JTjL9gj$x8-$?7saEmk)FJ?&ZbV?|DzXSkbt|nI{-6%QX%#%}+ z#Q%x@B@f62NP&gPA4klbySnsi|B6uynqnsfk7W3+Rjw{^TwedR zS-trvH z^xI9RER@3#RqS?xD`#kE=zth6mHl>?U43Hj%rk=&t)TH*BVhI=_bKNK8*3d-PxiOm zIhzB@rp;wg;*^4ChP?DP)=xm9`tTpacwI}C(Dc8YTfH=L7fwwk(s&{qx;#r8AUt<2 zzT6V?!+9A-eY@^_KE!kS&CwtK2rI!# zw~4A|lXlo2HcV8Nhw#~R$eytM=ogB0;MW^vUvG*669(-6GmO2N zXx|dO%4HxEdQ;he$Lb)nnI1h{l=9z5MuIz}>xBwOJUYG&a0ErXe|?H~s}k*@!R~lo*60e&Xvta0>37 zTJ-~nY*3g*)?EbUiNL!50ckvJy22Pc6UwpbOQ`sD80yDFV<2nF3leEr*G3`D(R=_FQh6cu2s+KSTPYH!X7k9}ii{PX zQfI!MW3h}Cr@5YhzM0WZ-)pIMZfViB=e{h5Z*BOF7GR|H;~yLoQm%(6-sU*Z>8lVC z{^KwE@2%$u33BN0QGzr~rG700^GgxM1HW8*?M5$NSsBEqR_L(rpV+w&C$1gLhH7j8 zTDE$nvboP575hb4Oq3SOJo>yJm4$*mLO3ICWoVYUNipFH2=0X^RFF0DhyjhQn)#kpMMb)cNuxdpFL1{%79GRSGbZ z@l>7N>Ji!O{Nq5Y<;C1P0k0{N85w#K)d(498c;4Cp*>i{uE3QawE%0-721)Id^WvKG`c2xHr_eJLRsXttc%TUNEY}S+g)##68xb%Q7e(4NIPVHQVkdBWc zq6yicxwkh3=PSg=Q{D@4IK>9Sh6t&oj8&_^SeZgWL-b9Gc81l7# z?VmA+A&Hl9-l`j3Y4i)U3m#5WsN*A516tKdU7bm%0gWJ7R|=K;^=-<@coh#bbWH?l zP+UN8RQ$!YS3EY^M z!l$CNaW37+keUQ%h;pYl_hj2K!hJgmof|CK{eye=}gC!4`xkb8~Yu zoDRiU8~^xZ6&7Fh!du0G3G!OVDM0x1CI&<93A@VM0JKfN5(+;=oO%%zCMOERqD}%K zJ@K%^sX2JsZvQS%V&?5W6oog=9pj)#?4JF0nG^Qo?Jk;Jum44QoAC#NDu?giEy37q+;TZq#2M_ma+ zD=RC7mtX!w2qMjaC*td9VN+xFg~Eb%OAn`|nc=OW#-Rv2+t>lz4uVfnaTOEQ6|e87 zJ;T_7k)mq3EvdeZbB|-~!qp*p{qws7`R%XfY`FVrDk>IR2o`!aKW0}_otsjUg+jle z*OX*YaZqvW02fv&kZrz1MoQpy5bEL1_u=Q2$N6E7u%;7G)f>$5(^a;Y(OzWJ0GQcK zp_8o{Qh#sPnyh)9L3yh(sQu%*kWL)@8TmmJyh#I(58$#+2+3d<+(93}lF?asCDh0j z8~_xZ02?B z25GF&E+c+|(q!XZFTcrG0_jhlI6Nvy?_4LXugiuvLZ3kGJ2gdEAhoB8yr&ugV|q zaBUqUyQ(K|yv~3li|>>$3-`e!Un2xhC5dKMp2ethXPyw!E@CkX$ICefchg1x8(n^f z$L#BlTKf@2u7}84{y%{wD)6I>wbjK2?{FFp-u)!z3)P@%;67!oHQhKBYD-DQHy#!r zT2rz5tr;A1f0Wjd`Cx~w(_qQYYOKe#KT@qR4G!FG*nV^$WbN+ms0r9D-wub`dkt;o zcFD(pEc$zs+-np=WgL&(GAU87mtT)dFaU54LRgG{JC7*~BaYPFYu%FrdZGb@hmO~7 z6cSG|RO?YjD8UyIB+y^;3j^I6{hzlkU>Kcan5>}!fulz?h(98^U-zC|(k3()1*{BT z|Chhx4xwi_@bcd;=pzVL0s9QoRnzA7_LySOFabW8;+2?3jRLrm9^?bmLgK;udy;m5 zwh7_w=Z|!#V-NAjTTJmjPTFncTO8u0PCyTBT1Beu(McC1THI+=8q z$_C3d8i!BO%2FXsO#3v#%ixG`)YEtXP@)X=XLzuV|GfDCDBgYu0OrDve&30zdFSFb zvpVpisf4Bp^f=-n`9FP%i7)t= z9l&>XM`$+m05_VUjp;##P=N_-)S#z#h*b(eoo!+or14q?#6`?jm@$^32~KM(WT`lm z4uo_T>^E-T8;2M=Uwi=cs#W7A;Bg~x))X^20So{P%X(?h3#(KG|3B?qZA_bG6nzOH z{FsCo%^cEZ8u=LF2%#C+b+l+i?0}AqO_`Z?5g2SBF(7UO3aCNHR|$oI2&^?45S<`H z$Ed)_oZ)NjHX*Bn0og2+Q7BAWp|q@?TbY^5VzM7IVtD@aNBh2gKkvQg+;fkqkBVlK zMx0~NC8%q-3-976;gChY3}dJ725uGOYU6C$fypEzu@vtSLmfxhE}#bO_qU4TiB6uA zEu+|`29Kib>LxSI}cniYzRUTdwJ39!PnKBJOy(6F&toJY2Rfwbv8P zR?AsKfin~00D>_0)5S5{@)#?9aHkL^AEs}(xRIlCNHm$rz%Zp(TM~3F@V7b~iZ)p8 zX(`svPczJ922#B0%blOgJfiC&dV5NrSqDLmf=661^PjVkyw59!qg*8(m}>|Bx7hfQ zZrr4otHAmW0$2?y3_fsXI!0S;RF)#0TmY|Ag>nyuY%`c^WTH4L{#$s6M)JK+d@=xC zW8u=}q`T0+=%PP}l%glMJSz-{?<+52aZe419l@Mq^oUWogMEEq$PPt?y@%o=72IAt zdFDm|7pR<*cuAp=+@{!S8C~eK0wM@yS%x%uztFpOu)&QQA>VmX-2U*$R6~8hTj!5m zKw;sIu_P1;Q;Z(ElzF&fnEyI@s)H~TVifO#YvKqoe0=d7dWLqT zJa%^nq6vxKKX(vc6uwDHxhUdX>?jL!(UQu=*&Vf8(?65T1K%FnHI69JhH)`Q;eg@5 z95oH~q5j9^2|ySX&_(ymkRlcQlzkFI^UUj{H)Zkw;cR`V-V7iV>cJzA0d`fMvEq6L z!R3kR%BqMfFcecQ%Y`EC34JpW7r+FqZNrCm2$qf0z{ueyC1TayNnL$pb%iQ$IJx13 zJ0`1%|J)P@&KyHX!O%>$dj6ThqUB42y9Dyh9q5x0i?^SjCc6H{`X4`b6>DQbH?_=m zS|)~)nj&Q^@Kbck73S|9Ak!n~-3bn;eZQPy3ZIS}7egAAQ(t+&3u2}cC4E!Bn4CSe z&;#bC{7#^Th!Ku~Jt%Dm89S~~B|FC}~@giq&?4^YzH4AUteoH{9* znMtpD%w(!T+j{h(5&FTs!T z2yG8T1r|zV>RRB(c>4dvdU-AF{2OU!?Uh+2uZ-ebF}z^W(yPwojh9DnhjK;nGQA^C z1l1@Jhj$|m+U?ezYLDE=uiADr^&=Mu-QY%V@3C#to*qu=59+*CYy^Iye!)%n(t%n< ze$Bm?R(9hYh`9O6Utgmn;ZeVa8Wq2mz`TvM0&6d+?nldFyDHjkH5+}$D!wFR6zMVn z;Q2YWGb(=l9!wC0_?jVv)pyJ|FHa?y`+Z**)|> zkNno!+5OrE8b-w0K#UH<_!B#XjyB;MctNcY4y63UB5Z|4b3s@|53r#_>M^}BOw*i4 P8wx{3FEzfn|ARjOoqb1Q diff --git a/dev/_downloads/d1eadb36634e8e0276f3d1752e83893e/matrices-14.pdf b/dev/_downloads/d1eadb36634e8e0276f3d1752e83893e/matrices-14.pdf index a8d51b28cba97396eb603e7d9ea7e185f6b127ad..bcad2aff6bba6eb49275bb19282a4b74039e72c4 100644 GIT binary patch delta 30 lcmex(M&RQafrb{w7N!>FEi9VKY=$OA7Dg7^^_5wim;tno2|@q> delta 30 lcmex(M&RQafrb{w7N!>FEi9VKYzF40My3Ya^_5wim;tnF2|NG* diff --git a/dev/_downloads/d2c03725fdbe7104e13f46e3798a03e1/beam-7.pdf b/dev/_downloads/d2c03725fdbe7104e13f46e3798a03e1/beam-7.pdf index 7f9cb8d47f4222ceee8f0e96fb5ebf11c347f32f..b7e4593c1960f120dac376c14e2b3434bdeb8a9c 100644 GIT binary patch delta 21 dcmdnk%eb+ZaldSr{5@x7)+)#0&tQJqdsS delta 28 icmZqp&({D%EsQNpTbM2Ouo;+}8W|gHx7)+)#0&tQSP6pw diff --git a/dev/_downloads/d4935c2256660a8a33a7af58457af366/beam-6.pdf b/dev/_downloads/d4935c2256660a8a33a7af58457af366/beam-6.pdf index 84965a1300009e89c50fc3614a3ad433b7aad0aa..5572e8b37e2b97cd5c45cdf57f5c78e0b5792a46 100644 GIT binary patch delta 19 acmez2`NMO=JViD`6C+Clv&~BsLzn?l><0Y+ delta 19 acmez2`NMO=JViDGb5j!oqs>bcLzn?l+6MUm diff --git a/dev/_downloads/d8f4bbfa41aeb33459953469d86ea8b1/plotting-32_03.pdf b/dev/_downloads/d8f4bbfa41aeb33459953469d86ea8b1/plotting-32_03.pdf index 4b12d70fc53a765a4e91dd88127cfc7cf202904f..043f82d38d9655055295ebbff9905d82516f3b2b 100644 GIT binary patch delta 28 kcmbQcM_}$Afrb{w7N!>FEi9_iEQTh=2HQ2IS-vm<0FEIDo&W#< delta 28 kcmbQcM_}$Afrb{w7N!>FEi9_iEC%MLrrR~8S-vm<0FGq{rvLx| diff --git a/dev/_downloads/dac00acb10450bde21ecfc4fd9c34817/matrices-1.pdf b/dev/_downloads/dac00acb10450bde21ecfc4fd9c34817/matrices-1.pdf index cae47d78ed42995ceb3b19d16be136fc14d64350..a8634ef4a2bbc5cc87913f882e427a21e65925da 100644 GIT binary patch delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$Y=$OA=BB3Gl@nQ{m;tM42@e1O delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$YzF40Muz6wl@nQ{m;tL@2@L=M diff --git a/dev/_downloads/db76a3db1d29ef7f72c47b067c360357/plotting-24.hires.png b/dev/_downloads/db76a3db1d29ef7f72c47b067c360357/plotting-24.hires.png index 22a6a4252e75dc11866084556f828d504637990b..ca66fa46742822a495673baa8500c6c05cb7a88c 100644 GIT binary patch literal 26950 zcmeEud03O@-sTHbY29d#bwLDbWl`BAY_f*dRzx7E2*|EN0A-V1*2G$+DoRacU#%$0 zD!Y*-SQQLwWZzLqK-M68fF$#KXwUh+`DW&tYyO*W=Ht4~Ns%P)^FHryy?^)p+&oDz z+PZ1aCJe*28Xy1ZG=^<}{}ieDawEK4>TeH$7kt3aX9FyJTmyp7`w=m-^8uGVeF8i$ zUidDE=;wdY$6HNVTUk~4vX6g&s^WL<0Rfl&byQTm{`EFxA3rx0ncH9E;j6y7eB8z# z!=(O1{}b|N1{z?Pd!F%6Kb*OeGC2^EU`2e1pW$G_H=kUkY<_)=Xowl}HRL*}DE6xX}4e_LpC77;ArO0Sik}ho7;DrLndwV<$0;9C~^4Va#xI zf69sIYO|g^|n5 zAj~lv3A$4yrs)Ry3c1gI91NdpviE(nL;A?bOHt{Rs)z=qau#3BI3lqZWR$k3zV!w8)Z^PdPm5tX!o&)};bDr@1ch)9-7a zjLhPv=w>NLR8gr%F-wQcJ0%;e`A(G7iRr4Pha`g# zKR@OVjB{GqOn;&D_M40Q{Q&+DPblk8q6?xaXg11B34Nndb3Nu%buEB zSR1xVFwnLk@pj(n94{%gBPaKz2FpcBtqd-S86-n;;# zMi#hk{0=*L(=FXhb7-xK<8);o_s?DR{@s+*B>|sKnw5?CwdgOgVn}Pw-gMrg-rCHo zkk4;+71s!Fc6s_JuD<4~h?>jW-#wpyxY4x8cf~XdY>Mj@UuNo&W;rDD(1lRWsMb)5 zVpV`f4@O=@1&@02Slf_Y?tbGNTa0U?jb8*R5E*?w@`B~MFooQp$+ND!j(1QWra%oy zn)I!he&NxK7pw(%-w^EkmaOEqGVe0dSi}P>aKqcBS@t|QiVM7iJ7B!He!_ z_8ve5oojPSqN;N(>%IknQQTsXY@$q);Z)8Mlq)8SZf#e?^NSl-+q3GobOoo9B5CZ1 zoV@xa=Q_Ep^t4=hWa~qtqK~(f_UypiMH`_IPI}##$lyd;mznD-!KM|R@L8H>yuH`q z>an$Yv9y5LhxdoN;YXerCw++2bMO#P^FG zgTfT`-;KpkZSRqwCVQU0Bm7Juoa-4XVyy4NyMMP{k z*LOI?Z#KuNYKi9)Nv&M-D|)lj_~=o;TJa8|2-Yjt0y{EN-=rnaAskt zUi65NpmQ-&j8TJl`zz;5#f8Y7$RZmxy=-w2p^4{97;;3R81SaZ`G=>!2%1b#ti0TD zaN;5~LE0aF-R?>P59n)|^Ds?0;(HgLu70sqk1m&2_seEEj{=7>4lPTu(*MJChHqVL z-{&k-<70PDK#86EV}Gef>_xcNYbcY+db7uI&c{N^x-G3`8`S^8WFKf>jKBQ zHJwd{lv&SaIxlbSZj7{G@R#p-tMNm=SO)JDCTytdKYWKV93v0W(>~lc{ZWq zj#0riKmOP&C8zR?j>tUIi9}zZ98wJy}W1$Fe^ypFL z%9%f1l?3iXgGwvq{Y83nbKFs?h?psVp}^(phWg2xg2>X=-!MZpoXFSMCHJh9(A zY!y;S5I6YGujEUPb43MDJ-U{xwpNclc7b?4o&yQ$#5c>Yw;R{pO+VJ2rIhCKM=J@b%}TB&~c8 z^;V?mH_$H7dG$2s2iNOqnPE$Q-XW8Pe))i5DVJj+h7xKJY+X%z27TyI(PWyZgVQZp ztz|AGLf2e27&-x!28lq~d$~qPn>XKPr+&?joVaU95Q&QnKPb=%INq$2Gbw#IL-D&W zuo6jVRNaqCk@RSjMMZyb@+;(0bz(<(Tlbs^#2GZB$T-AbEH|e7aBU-dzRleH=+Re3 zQbRQV(fO&qa$~gv7+1!d_DFBn<=SW##iYLeEf@L$3JmTE$Zj-VP#9{A; zm%A}6uYZZ2j_jybLcY(FI$37Nl{YjQZ-3fo;OLRZD(#}+`KsE2HSj<^z#42(Jy-H$ z`B2*4$mOs;`Lu-a)jkHU;Y{*v^JcSM?QbebLWMo942Y3?gU-$hc9k}pM^ZeWpC`V9 z(DokkmOGJvuj+U0dTKFSPLGW+QM?yEZV_Ai$HsnPQ;V>PJir4Q7Hh7uH9vfK1%{fd zz7v~qf(q+oVWJv!G)+OlgOHvUFqPz4__N>34Met?`=L#SNo~0{P!Y;$4cs?PjtiK! zw^DSv^fc4CF1t<0aCHPO`{eEGn+yx{ShtH2Qyz>L6LMLpR#N$5%+7#MzeBX_k{mVpw`A!=d8*kcAqg$|!!{8N%F0W28R3h*7hk6uoM~Fk>ZZfx(th|)Ro3{yjT-_q~*0 zN1Dd+>X7;3V8!@P7_<8MhTVX?KunTPJyTXtiR~feiD=(*`q+!45s;P^`UNW>Oll%u5hqq9v@$$_I5& zefCOBr4KWlQ-vE!diRadeQ}j^t|?zfV3pnz&UzzhZtsBvMu=Zl+a5yGa}@riQdwb{pqCY6g6v`M=3{1 zbIE=L_}mRUvd}q$J9{h*o(zV1_%UP|TJ%KwK+D!b=MDzed$+^NWcr0dPvmORi5c*z zWUn~Iva?X8TV{!n%bLFb4m&Iz$)Cf85fh2^uO{Q|aolvlQ=J{*M{bjuR%?@Pj7($V z=S;UW<81~B{k@T zROAsz-K@<{Pjtkw5~ZC&LgbK{x%BuQ3eq8&{Yho7w$h!yk4cbfatM+n&Gv!gda?VEc z#M8|kSd9^Mfi*@6I9cw56ZQHof`Nd`N*5@KJ*JOmyS)23hak%2E52~o7Nsv=@Z++H zLw|0L_g}bwF!q=T*$R~l(jT1!hjLaUxeW|!dQ!Bwg=^YmsWoiE>KV)+}(X|Z@@{vS6iX8v&<5HPha?Ss`;I$L9INw*xrhMN9fc=iY0LhdcBi?h6Dbl22i;b}Hi$Z!ERtt1TU)i6$Ke?)M| z^RRQ=a1AqNMPph+!Ct483{cYW1S8R3cTy@dhD_ zJuZD-u_VmPrX`JS&z~%2_w(PV#QF20#VzGU$m0-u-Q&|j9ye|i*USw+628y@jRJ)* zQY%st0`c8{C8r?Hf9=_Mc8Z`;4SnJg`h+#AG<^t~1L`5Hd#vZflm?XoogG*cd$ys0 z#=mD&PZNwJH=M<=shh%IlY@pI#Z$i7Pf;p6-f63Vg0Cq433~gKDE`3cT50DY=bGQX zA(}$V@#h@^R8T{1O-7j=F@U>iFCW zZ+Ma!TzC>ss!Ws*vWJRW#b{zfJbBg4Q$%>MC;YmGP%6XlM(0$;yMr|YJ z0(6cG3TG=26+_0?Eu!u7y)VhO&)IRaTe9x$r*cSmZr>0^*#Vs1(C*zM6LH;Y0S_0q z_Fk0eDMZ#ei3u}DQX@k{ZnU*OWqc(sla+Eh@O!K`+k$Y=nbH1~=m}Xrd%IB0+QgYa z3|r2WGbh{-Ggp3bpeKyuvNS*~?aGJ8nlTzEt?(_ladMKZj>3TgEZo5E0f%Q1#Rt4F7=TbvH{iVT*d!qRBmm87!gk)h~WSBt- zJbQlfK@_Drf=W21jwN+pxGg)hVpY^>%gFeFI4MLfdkf{ayM-f3UwduFB`cNUSVifu zvfv9b!*v1=Ihz$Y5+~s=xSc|VcFl5HC!88==Sy?eybfN7a13`VpTAAW6oWC+v8Z(v2wbS^S4+@5Zsq- zDFju5&OyjtxZ#f|MTBP|GqfJ!62xy;^A~WMsR5_ObFd7Jxpolz7F)El+g5!NPwBd$V%x%w@r@lLWfjtCO?gkAB_> zsRV26`Tq8O)rraChTV(IqeN2?a_5giUmE7j)GIIoyHGy>h(J;MX)u3sNOAjV;ubsS zJGjSHvnOCrGr-DD(x9VN;CWYg%~o+_tsP=L%WNRooEwB!@mJMLRk+8Jq;Ta$=DPHymuGknxt1)`36#dgARl=qkD zRB6HUadqru9=t~1gbY=C9CP=E%O(xn(Ta;oce?yTQIn=+mJs=pSFxG+cCCSSMOf1f zunO0Oo|d?dNNY!J8?VyrHq3D1S??vHXXWr+oRzSlKjcKFV%nAO$J!5ufZJxwiEKj# zRiX@KV(r^qjt87awwt51zZgeRWPFqzPYvUkxi*_hMX1}j+yh%SoM?M+6v}mCu6@8e zT#$0n@z!ED2;5I3kdvPVFO5nTlS&C6)ny28hOfeG%Qx(V?|uK0xJ7c^mD}&YLgfNG zEE&>*1gKCT)iZwCZ1vY$cPToLoHB}4ozKpJY->1xG8B%!{4@7`(MS^G*?Dx=WyJ1h zxEnBZBbsg?KSqYZSo<6UeX{(kDC^WOu-?ZXUNxLusl!{PenHlO#+oSu*-c#IkPR`` zWgswzAcA?d0UBBu(EbEhCTwW&Y|~+EjtKq~YhAzT#x95Z;k*gtAZ1?N&oZ6pkm8Oz zMrw2Cvl?!_#Ab}ej{)}M7^XzyjzEB{?{YJsLRlYp2y^e#308I1ti>0EhDP zE+xU_yN6(ICsp)AD@nOktJCOBR_kx_e(_W_}1XH&8DKPR}! zr>CrqTQmF`WWzWP;E_+ttCp0Vrwbx2YtLZ`)?h~?Jr2RL6M69|fmR*HSVqK=iCo+w zfWPpI`)#nrMk?ek2_Mrq8#$X0HZr5tXS4Oh$*Rw_xSb+3l@KNlTe~))5;BC(W&N^Q zZ&eJl?S-00bs1Wu1U(NcWY!Akt75f=Os$-%^sc$zl+A{npKAMu$^F7B3mpyJTQL8l zLSNR@C8j#PtRN(sL#6YXvx7AfY;B~N`SeH)V;pBy)DZ;U54@NSK9%h z<=omXGzVQaWvk}#ZTjjxehqMk%%nuP$lg2B>6J4-&LRi?0$VmGaZSV@*2NU)e1+wu zg4MokpG4RUTJ|Pm}@6M0}!`hxzGcUd(t9x zAgUHswHPpTCe9>_VhOqvxfZq4nbB->yn~k%X1fb4w76=`j~4g|GR_Wbw6lj*tn3S; zKL9>i8-QH_sFN(i0L;uu5ZVJ%a)2f-&0*NwMs3nGLFKtRW@vHb!>_oqp)eou z2_g3(*#4>h9yj@j6&c;BGlBoWG7e6aScng|7*veQU}vC(VBU?GOJ=+hlLwf43!oi) z;4Of9)GkL!D?1xtQ`V@sKbZ=)->k329k)gE!j>D#~5LSc%FeLvoPo zWH$?n7z={&&a)Y48%)lgyNX*(2Vi_BxHCk&lB0lu(a->heoicPk?Zc zA*nsr2t`b`1%_GfF{rfPjxi(Q;q~4Gyeup2M5k?z-j{nZcT#Qi!7gEQearllrE1wV)sI^|G)w|ad+(~sU$Gjj)NHaP-^I<*~AtZ zts#4O5Vp6VP@1ZN$|pg}KMG(wC+Q|As=^ zKh`gNS65DC=72Ic}kh`(ld$1Lgo{1~+oY8Wt^&QB1dqZaa)9KqD_%08R$&*1A=9wWZ`%q_ZORlSA?wm{tYouL_w003P>3okp@nBX^s z8R|ozKD0q8OmhhVc80Z+j-n0o@pPUr6k>T7b^E8Lz4yIC7Le_Xlxh|QG`uv{$f z9rUao*QNB4&7yP*Yg{MKUHa5&LVYDxfF5%k3=L^Fu#8B!H;s7~m2H*w?jf?Yk_``y z;yt3|({o`Tnjq?(RD(Hz#bcSxO7|7%;V9meo#V0_N?+YS$hH+Ghr*L?Z~T29gBUNH zlY1H&yb|O%zpbh+$6+hn*DEx`HVK@J_F^}B-d+rbygV8YLJ5uj?)q;FgoUoN`!tH` zq!{w3(x5W5(EGNKUc| z>S3v+KSj5=Gh#&TUn{JM7H9C5T{>5P-z7DW(qV0m znnSQ=yRz5+U?*Kj4XoDyFa!8{8ONIOc=5v-uzB$F?}?0t62VIY z&~u=*kGnH7{PKhh`#PVFV_0MQK?{m}+HpRQlj+uiOdyb%Wlk$Q8$#TC6>Gl=m)Hmp zY3M>W^0i%1pLyKgHZ3mlWJ8uey2`(&NoH)V;4Qkm{tfMCpyq|2Xd_t06g=sY^TC6O z(UQq2Vcuwibaa;b{qlTAQ{g_(t^3z=;3k$0Rim4bgleAFiDh`9x%l4}0eu8uO@r&ar>?IJj^ETeg``=Px*#tZ^m{tw>|zy62YdI6Q{SXK_Yo;+lS{2ws)FmyfUz9^Z23i)Jj zTV!DR-2rWWQ@(HatzQo+fs#`I{uV8Cu3OBtymI9(DXhfo-`o>j=>Ldby5q{qSeF0W zeNj+)MUHjm*#UX%-a@CH3VyYxWp)I5Zb{&b?HNNADtU3_#YBEXvo0s4%ZU`RSgkb_ zuC~`2~VZGdA3j)Ya4lDA5rJZ;B<%AGKi^Kf6R1 z=);HoZ)}rHk`c#8hL`nT$}vsEJ^EMz>jw+L+r;y? zguFM;e0ZgHu7_bm<)Hp3GKODFFPhP!fE=&)|#kOZsQ z4@;iFkX7NKQ4E2yMI0w1vT@6DjcU|hzvEU8fgLgoakrFv!Gj@LKdT92C-JbO8E*nV zG55vjFP^RDHu<du`z;u@FEbUFkNplc)gY{$E#jwyi8WzeRhKg8&HQ_VCJt9a!w zu^zojN zlrbf@r1b<4|JsbCx(b}=Vr$|Eo-kOcFHQvB?!!e=g&4DcFho94Pdo8Q;ke9UQYSF> z)`kQ;r(<{bCaN_b* z5)u-2vs>i}DZoHnDPh^I`()1HzlnA~548dR0e((8D;bC|m1?G5Wg1gk=_G*+&|U^& zW#jFOKK^u4<=RGB{PGX8O+K1}FmA--L*@N`CU^B0yY=|X!x!D%kH;%JKx_?zI&QJy z$IVJ-0xLrnXB$-9;L#D*Nro`DBWc$ScR7YlRj$o8KqR;HYctbo>Ie((_o@=ppJz^X zL=}L^^n{ShvTl9mmeb7uPiDp0CGqky9DJ(=_-A}KU%rhOd1jGCP%>z`cS(uHqVVxi za%DBbfPEU92rj|OWMKrI-*Yi5)ejuaZF%NH$m&$NKkzbHXyR8`Czbr*Xw>5e4<3vs z_^#G`t!oHROspH+(x%GgQI38?aTcSjc6Nv$H^nZp~)j3 zcb>yCI-nqLyatoZd;5)Cha#4m$U-81%O9fLYNN%`Za6zTJ6`#4eG+E<@VEp0U8zqhxTC@bpo_yL493J6~YpHVE4bq-a8=sNABGZ)=pcUuJ9M|mPVU^ z>%f~6grA1$@+fj2;LIw(G`jw|?=T?n$*i!URY!vULVExZac+^WhZKQ(6X!p@LxvJ7 zuI3uf%9D;USot(LWohkD`sgDVyT!V(qaC1es#k&KRM0fIG!!E{4Fri!Clb%|*~^W9 z^=&QUuS~do06?39mL#s}c^1uoVMFDe>+Uu=@n_=$COY$e7U++3+>r22fKR)@5R0}n z7*-6QBz^K-pPK7meqR%JOB6FSqruF@-4~gUW5hxSP(U98k6%(ZsBzR_i3Stlp%ySX z%ID#_(MR!)^;@<2e@B#Gr?ro}+~P^bfOSl;JMDa$LPk^L38^}42#$>m`E>ga^mqL| zuE}1mJ~4Z>XOG4tYIs;FgMG*_fTEhzq}i7%`v=^$Gb##{yn$kpq+jfFZL8*67^-pu zrg{U@oZNts(umj@&UdxttQ|v$>onZseE};=oOHzGfLPZ2+c*1x_)|fwAq#PIM-ZQ5 zKM@dYYAXsi@17;FjWh4Dm6_ z2SXK{R$Ak6;mb3gWj(Ga-uk`SVa=+XYc`?4C{hc>$~PB?}UFdRZfe4MiY&ujO;g5#g{9vG3b01)tHbACb6%q3n?Ukdq zlmwY5m7ZzVU+RyR)GZr7;O_<3Yz7+wGKCupo*sH0~>p#hSl1mhTLosyVt!90+KoL6Z3&(U4mPKa)l={!j#bQrFI-uiThGnl`1Mtam2&eQG+AXvva*KZ(TP+5NCVj**MS>1=Sp+{5CBwUBS_4Vx_Fw#HZA zAFK+?GKp7)+1z#D$qh}y;F|_ij%58;faH68ox$B3)P0__Y8swQ|D1I*066899^f23 zZs`%(cZC|SAlf?*_l(CgI9*5rSw-sRsj}BgP5#{Vv6#M zPk&58WQ3u{9D2l?P7BXX@K-r4V3)RmTQ1eZNc9d{k2#(f5V|mK8TjovWwRvpgOEy5 z#ta$^8I9hnjVm9DL`(;0mBt>~_*5-WWPo@dTn4as<>y+79r8C8-6p#WdtmTCyE0MW z_Hx6nlq$h3h5Wb72S=$g!*ww&R(4*o2Q40-*|9z0+GtvsvM~U*CT!r~zeV?pY6cJm zFko3p5CC+HVGtSbGV}iB4!I2mPi=}_iE#7v(c)_1a*u5eU>A1)Z*dUuk0A1ypzI9f ze*dR#Eos`HUvF2t*qVtJDz10sGV(dtMJ-)Ur9V7tD%1i7#icIt=YyemLNXrfE*y^HheMbTbGqtNdA*DctA~l)-g`12Rq*exH7`Diou;)B zbd?~Uo1p;GeLl)kQndFzou>rT*KCVMn8@iD0}?H3EJa%Te5=iH)$e~-kuhIu_IVcf z^qJ`oI$k*sT|`nHI7hP9;FbMQ-PmdNxKOi)Q4Tr;zG=>W^6>5nN=n3H4|@wm=qeO9usW6VX8B)FRGaz)EV7IzNpWM?FBDGWwtAnyY(4AT+6;I;#Gf4LN*;L z#DfNdn^h`*HCD?n2D}}AyNJoW?A$ejZ2F`{?X;| zA=)CA)SOdLog}jD$alseCCwLrqTu`exT(-_B4YRT1BuB7ibtg_Kp!ej=P4rA6s2eL zFIbaLZ^^}wF_<{Y0G&5&xGddoO0O^DCxLP{QYuhf;=>1cnob|3@v$8OfVT7TD>V zN5%BjRRBLk#ld80m!oB!P|{0OdWKKf4Iz(gWio%itx|ntv-0zE9fcVK37THLlT$Ps zvzdX>nQACoo8rE54@G4Qs&ZwFfjj26*yCoM^5yaofG}I2GK>W-^xgpG4>rzsG_vph zq?>`U_G_rCH!gMkyvt$!YFE`%Ss%`i^)_I#TNSLApc62YzOOL`ge>_lE;ZMwcX8&7 z5^=;6>+KB?rj7l8-*lx}zT_E%`{uzksDSIF1k=L8=_~D7NlM$9B~m~=Lj^a`GmpIp zno1g48__b0bZfG-j`i4@F}4>BK4ku#QE?-#q0#Z%?McZa*LN;J5_aPV=;7Vq@9D4= z6}^Vc+B|w>QL|2-hh_D}w#RIVq2*&JG|3QaInU0&Iz-qoWxg~$;O5iP8$o0Lo#IDh^_#uS zeuGf$BfV9R&u+L3Au@buiO!qyQHxw#R(w_?3s4vmVbLEJ?l12t7t8Hn<3DDyQfg^A4NdvxWaF2oT& z+f(d|uU7!JOa(RxkIm$@$jB>1szZGjR8aOH0rP`;aRlu^an;c8``Ae$2_)2A0?96I zht=7AKGocjs7SfUnU|t&K0^S#gzyFCFfW|Q+i@fO!X`t5)AUGQ(wfFlRn;d*dJG7X z_{C+9e41RBy}ud7h4uE{Cd1`llZKbL^rj>Y1#mMHu;UjpjBUD;zr$L}dxmx`yXWMU z*&d6LN+t0ooQkc7`G^0l0)|>Jor!uYmB`Pxk=TiHU;HQd29GyS$+U%Ow~z8LM}lNB z4AwF%Ex59{NHsTjim|r)gO^iBZUI)&8ApYePpz!OpBTkO*yIQ*}g z*R^FsI1Z)j>NU1XOSSXJuiFW4Arjj89>RKs(;MAST@w`}tShJns{#)jqmr{{Ra8vM z-r=%48>SF|>m_OzCoSQZ-(T~GY${`{ITStzMoKr%BFH5k?SRrTxuh*tv+wt`e5L<)fn4H#?ESDA$kHHndI1fOE_;xkg9nX5(t^G`pr$(& za!=-Kz_7`*1#=$;T!hAs%QT9KBXOYORjAwRZ%T22nAwc-G79T=Nv^S$R;LadZq^x& zR>MJ?vECq02h(-K1gL}W2kDzOaIGma5vz+$`=a)qwlqDrEvVnO?k`Ru!Zbi<7&7#| zkRT5GA_D`N*q6Lh`5D6_~1d$x0CA5@L zaWxqMY3MQ#h+0NpZ#Qp*Dxi2B1(=}a zz5AaGgYw?NgzlcvIzumQa_2d+4&X!?8(##Q*WNV)J}u0+5M=1pGuIODajVc-38v(` z(g2+mN!5|{C`d)aKS0K|!SJtZC)R!qp`~;4Z4A1=0fBHzD@*i-(l4+Dm{dNw_ro;` z40^$*5M1o_4#>3mvKzN%BM{XXzHF=WQ)wyb|Q123@2-*=ykEj)w^CjwYIJwOGDby|4Q zI?6f&$aC)lAet%(8CIdsyF)nvLybF{Xf@28o+YPfL1!bm2!`LQV<`y}neql@XcpyG zCoRwo=PfhLDS72+KGF1Yiy>O)-*|jl3XnCSx&@37vwhg*q|&vCDi7!{c_b5-@)QVY zw^az>g#bLPP}_A6*kaoZo+Dg0cAG(WBc8l?4Bk#y`ydA55*d*0n5NkW?#ZAb_CCT)P!)iJ zJh)tQl++UR>g>%<%RfR^018RhT1T;PMyH%PjC(33PycK9@>5qn8tD$#%A!fgMt4xO z1~x!TOO*jnb5X8d{wTIr4Pctdk~RXs8Kycw9(Cf4TO*3Noz5ZVFK8!)8;9))wlh8l3du8=`ksKMdQGr(AHs%EC&2hPTJS#yOY};UIc&(NhQhvy(!BNitQ$T5A;CEC?pvJVIvAjh@Z&pXW{_R zjOIy+2r~`-sct35&9#u^b~&Z2&1V7L^A{Pwoq&q}OF4OQ0Cc#acm}w`YIQp2`S4xt z0#F*Ek-hZ~VWkgET2!F03wT3Cvz$XYh`bO7M&=#`Zjk8&%&(GN2&kx@OXY;06F@5) z2epH0s%~)pcRQGrK_yH&;tW@mDFvWQhNQ&d?`Q%(Ap1>TfJe0e;=`+sKrIbyg)UpV zL}Y2mN9Ztlk$}u0ujKUXYy)HYGjZp4Cw;bV-6{@yzPjiD?HEucem->Ki;~Qz77Yo4 z*#`C=K&p+_OZZUYB zE`k`l?saATIM8OWW*cBmq#nNua-N+xjpzuSnL;_bW-Izs%w#7y)q6`usy{jKGb}pa65U2 z_c8k;c@wx=PO&+RD4ryNccsFZ0=O4cJ0CM(o}p#15h4fmJYLoq;Vt3N#qn!Y;m*#Z z7Ao%U#uBnL|5-GM1MO->@0S}UAfGC zf6f8J-0h@DmC+wSg`_Hp4Z?W<=gNrjX3CY%JkukBK!s2mf{|%zL7w6jR9u`&1^V6H z0k$Q)2FO%^4E2*pXrM&%74V3YQrblj1xtRo7iXnXY${$M^!^p(pylHLYCr`8xZQe;7Q*;#397_sgOLQBt4NIzz=ns7 zB39+9LS>!SE}-QK=79pM`od=jrKw(s#|aOW%Heo`Lx~3Z+%a=VXlOV;)yHBGP16jj zqTeCk`2H`kfV2lty{Lo}K$LWhq``ui)j)+1r<&_LjedvC_@d3pg^aS;U+gI+PFY(h z=oo>)_jmzG$=UaG?TBoAF3?rHAbXH$Mel!M92Ju_*N@eMKKUYy;Y0ac+)n)bN%3T% zbKY=o2?~-rG7!&z$(rbUnRO2_j278%_c!dWeEkoi>Gb=yy_i4accB_R+C={Bv(G>x zfgMDvGSFK*D;@?Cndmn_&VW@l76U=2fVGuW(O9!=Bb*#DCPWN;4{yqZ0)i!q@Lnq-KJxPN)~ALxl&!V@=uahplm zfM&=-$85`A8@PZAnO&{xUFbx%=M@XrF!!t>vsNak9tCEagGa>mUm&)U7!0rr7kWJ! z&gud`1~@xDy^$Gx8^OUHbeODGfHQ;cd z2$_3sx6rw2$Y1l5iSrZjz_J5kHhfuzm+n|5?(rhQ-FrQ?)RIhX(rsVKCkEg^8a#(F^K_trZ?TFGWSIntqi!_Lc zJ>Rh#8|g5X2liQxlalixOnt{~GRDj-8!`wPzQY1Gd!aKGSW1Yku>&h{^r=qV0#*TO zp80^N2voFxRi5K)AkIM`l?HZqY3|M~XM8@sz6qyYm{VN-{PnA`fr{WaH_0*~Q>8$A zr{?6J*tqr3W)iSj{7~N^r-MPD`z)4)K%fXr}YB+~( zO%bYyMAiLc9SYo!yQpf-f06mzQcl&r1#&|I?axh!5Q&ceP|qQ)?MKAq!a7QnbUxxw zZ4<-W*Vb;;Jm4&gsmp_ZHhDKFQTx12fOJa(-YRTnX?|5%^v&`Ct91q+BpOM_rNwl^R$mHY-?2qu(xM71Yk3526id>b|- zX%|Od-7X)edJ68q1e}?9p?diZ%MEXWh|1w}z(_{ksx}iDa-LW;}VV)*=IAY`<9sJLLFq?O(*w=f1>f zT`mhZqCaPfY`Flydc#M}czW)({-+jxb&{4@S3`?89WKcQCYfvFfgIj8Nn0TK^r`_x z=t(>C0RyNR#Vv7mna~^nP=G7jD*gvtF%&lGP&p``f~%1dsR-Cvh^-<_Hg|2!#KplG zG2(r&K=7w?JI-OYS2a41Lxj@oKMZ{==q#wtF-kcbL=5eGC-P9+0ux*NFt4J|wTvvh z1F#U0VVnqGX=8NS#n1Xo12EaQT&o&lavJ+yS*iFIQHGud4A|9wq z>!&OrZGl)E@qL>e!}6kSpwh2>)?sZ8Td?ZUu>&CTM7hM*pV1GhbqI;E`(k5iSyj9w< z7D$&(=&|IKHR6CC%D9vRtjAQn`IA7!hW)hwF)M!-gPT=S)>!fk4#`QXvYPoLqd~?UjG7{#zs{Ofb0 z(*=6sTFP*skV~Cp4q>CAT@Z9ZA)~U}@$U+J>N~N*lgA8(o8>3-G-&i+w~zn3uAi zy{gZnL%)G|v3p>qcv7N4DSnGY+}fD=Bh3Ch(#=wAiqU60U=RrkjI$4-B}pq5;wJY= ze+6b+n5((8nNfjj2g6nH2))<5HxLfs6LTML6QjG`AL3jaQ*3H~M-f>ZQ%Cy#(uKGC zAs(~E2^CXuAhkh`t2A9*5xsRZ)w=eUkrXmeb!qg@#kq8OP(sgwqP@J@GVPl$4OfF8 z=9mIG6?bfHZ4?>c2=N=xp89k-php1{T?l4ClA%^X9|~k87px=`kX7IcYOj29Y0;;0 zB2;XG2eK`M4CfH#Ul~L#iR?oD3frmxa>r3IGtK^I=u^M;`Iy7m30xkBI@e-e)*}b! zDxps`pp%fMYC%D9^o9&520GocDaD9!nPk`w6zGi*P#!EP2^Ie_rwCr#zuCz4o`p(0rz*f0ABsJ0Uf}PAgz&| zGAxu)1^Z-3F^@Pz`*@4>c0U!*JE%QV<5#g8^Lhmcv;R^$|4cL6+Wu7Y6h?-D>Y!Wq zGghM-6^d}!PSi_m7n<>fSHI@z!K##3QCm^4D^X7SRR|NX8=MGM_Nve?BB6`amG6Mw z4^SCedpZbYfTK$TIq&kiCTCR0NQI zmdN`8lG%-IX00@+C%V;#bmrng{{fF5bdEFE zT$(f*lrEJICao>kF(iXw+!Tuh5IVr$hjS#});aMhlP^4wHd@6V^#h>hDuY~n&Y)`b zWdPNTa#aK=Imd?ZNRv_80m??E6`X4V$RM$E2pEsh02~y+48QB2c;A!T;%XF7$HzGt z038#0uhU;jk-`B}=@@h8$o<9ckujDtP52$A($*=zEqeEsz{5Yi3`fX-(rcDQg$$Y+ zfU|@{zM_8yy46>KBAVCwE&OPO|9P zh$SH!aK;8b{uRGgW8x|teKJ+1pymj1yw|=&#arm{iQxWI_0=Bv#zEZ=CM7f#ZG7Kc z@)t4;I|nJOgbW=m6!)H_X@7(u$T%br0t(JS`tM7WUd-W<=|+XswFw3iYzwQ9;Hp}#j+n@UyyIXQ3KUL!-c6Z z@Hq7(o_Tbk0%EiBah-rCIJ8dE>scV(G?XS-NOs;bs zU~X{az$_0=6@U`H{v~kIChacVWLczVD}G-S1+$UA_1O&Io6dZIlSi!fY{r&VMs{F^ z3jRhu;h&@>y2E=>fyWic?p6ZC#gn?i(CE3c6mXfows5Gh!v9-hi(v_h?$%h*Z zukzR_kmjLtX&_w{L}~!C1BV`Dn~IjWbvfFlIe^MU4o*C>X&9aS17|7e0H^WB;paHq1d&l9%iC(EhPRNw;75; z1h&*#(W(UGFV@wREr09d)&F@iT!L;4J`IVYSoawD6>-9sL0<s;)K&WnM90(ptt>9Ga+JP`04)3W(q)W@X$C9i3B`Ta>^wswITP!%F z4=Q_Y0piK)VCNh`kcD}5!(j>_?2EOQgKB4XI!wCKna2OC#q!ot4 zVr$_ejfq?sY9!~tp(MuZgd(`UCpyOkR}QflfJxSG`{BT$<1d1gNbj(}NUBe+CaMjs z+Cn+fVNHd^SiO)3$0j0@@OGRQn&qK`Y7*gyg-(0_CYV0t8#_4(y^Vqd`1dIgueO;0 z+8j;-rMu3A3^LiTu>>dNEe}$I4z+AfQ9n5LZa+x$ibzwX4W?4I1u#2QK@`=Uz)v+z z)hRW0vJ-k+@z~4+$~aGe%;4ahA{K?MDnjQ6K7ykOT;D@Kb@C`Dk_>}3&;uwJ3z3#8 zP|*y8VhH#!F*&h+_M5@T)hQWcqqcnajQ|n@;|g#HR0Nmx#f?Ty103H`fZWMl85y_k zVJ}-7?IXtdRhnZ1x*&m>{Z4>R0ofyfxuoM;I5{8{Kx8msJ`Lzo$@2?Mm?s^E7B1uM ztXc^wNL;+i4z9-Ncjm&W3F}(_pbU>L+~&i^(8`vJ;+M}QN-od5A`0LH2RKD5P}~>| zN{N8Z8B>6&5Sb=e0~;J&o-?M(Mf_o3Vg~HS!TR_6jo|Q*J}+zUxdFe1OK@b9QUg?* z?pXkL0wz*aHP_76tO4~Xqy_+dFBO*>p<%uz%#qL$uwVvoU=g=P@%j5-=H~YRBI_TK zD^6ZmXiJwPt=e%VrSS&bj)HnVpVz=Sf-(63%KUvQ4A8rf#O3c}VQ6LvBMU&$)lCOj zRSgbagySk9GU0_1m~wq;sm%{H0?>Vp{F#b(KIrs-)A zC!vBchQXkOj|_h06rhZ7SP0|K&DN&t7REggjxk4>S}@QMrLRB0Il z&?fKN{p@`Dr-;#!o$vW@lG-V(EUmV)*cW?vC-RsaY#5+%D!JregN+_$?i`gxlrzoFz}+w2{maA!E&1d#d2 zkFzQ_e=Hao3@`3)O};N42?wF+hu+_y571$&JH$>m$TNqny{olBI8wxm!pnfX3U&Ky zvyTqv-bP%qYA0tHus42xTM<|13=HXeK9O_DwCNWUl=UGwI!1~c$X)kmnDx$5z)LsUX;rS^0pdR8F%)X1O z3xuC}CFpUhuIo}*F!%+z9>|w7A3SKR-GC+R@)p_%qPL0-uYpuN`~Dh3mvg@W49I1& z`!weL;v%ruV{1K27YD;QJ?tTfm8ocQ(&Wg0x8e}&;MeE%2&??`M^O?7#W zicVNGD4P~3(HW_ci)MjX1Qb!L7?gos2+$IB(_JD$Cn930gE5s$9UXL_r7)cpXkktn z0zxq|T?g3OIx5oAJqNtthkfwFlIc8O-n=Ey_I(fM{4dY*dp8PUL?eqnKQsf|K;cfA zJn-1h2}2yM%=LQ>=tuy+v3hpMT~wW5e z0~GkqVID18j#`)seZiK@S@De%s{6f!$?LzhaQ*=UM+w=yGNdbrek}&JS%cNGv~Kr0 zNwJ_S-7~kicr9r-hf+=BnKgCqDxnj%+E*=U=&NXSi|k)rzil+h3d1fT)m98Xv^cv^ z_QF#fUby7KC3r951*Td!XH+5`c0jOI3QKrZ$k9;4h|x#Gf`^V0`C&VhRX)aQ;Oc;k zl61PpoL3mS#A2vouJDTwIT&qs&zo&-_x3SZ!20x*w+*C)#cM4gXI>xndOoECvL;Tf zg?xVS78)cvYr%~`tIpLm`~A&Mtt&=7*c4ihuK=J9(`vt8tf;$Z=@{s!TIoD55-yl1 zl&PeG!E+bET4Qix%bGew-NyTRRJCf~3Q9ifv4iiQ8D6fJn`)QY?vEL-8n(?rk+aK5 zpI=lrV7%aYoI#{z)Sl64hjbLFH0MWqSu+TLSb@_9<S`=^{Vnm9(PqC2aXFq==V zFy%29hnL%b%W&+BQ@hExrdZ?9=G`DngbCh!MQt@6;3{GRj!q;}B^5eT^5tBw_S=-I zhCKAM3EQitL*S%w3jNx_$krV@9NV5PBhw$#FVi^X@ps_hIPUodK#+he5WXX-aYZ3* zIT6WmQG(XfQ&Zt?*pJl2+~IITrE=PXHanF-`?0UM=3-L#nY)AGj=_-jW0RxD{}#C& zIz#&DM#>uK`E$siU;R2(R*V;m*#GLj|NrKE>K8UWsI6eg^~mzld@KL-$3Ol-%wFko zEP`5JswRR7VrU`%|PVj?9%9bg&-&-FO^q5S!PF%%=vI|XNBK>rY#AnHv83_P(euqjkOao2% zG963@tdwQ&sMb(lnP=B8D;Qd;s)k90lhg~K72b;PP9u~D3?wmTn=7=7n$DViI)wpx z`ufZ1bFO~BS)Bui5rSX6eWn0SMVQX{<#;$~_p z<2#4*&N8ykjJ@5yfPT@* zEL>DV{IbYcdb-JB7Cr1Amr4(>e)un5gg(d(6srg^Cf&(tNov$+crlVYiHTT0?6V%- h6LfMgUg(=~-9>2sQaG)?8?*{SxGMucELpyB@87RmC>a0% literal 26955 zcmeFZXH=7EyEc3SDx)IIjAMzk83m%!BsA%nVH6|HMsF%rX&R)L#BtO|rD!6A9vllw zl`c{pM=*q@NUuth4xxsY@4T4j+56e=yT9+p_v?Mv+O9P#W=!tf_jR4+IFIu$H6U6{AH+E_E0x;`H3l0SNSdx!$wX2Z+z1KtGDTYZvJooI+e4w z(5bj%#}4Ikuab$vv;%zDsRQ6p)NS1q-kQeDUpvzy`Tps1hY6v}bL06M}$VW-PPL2H(#@IM{i?E=FgEHJBVp=0jrhXd7;l#u4D z5F<1oMi93L!AEneC4!|$ks3p>wd%bgyYT#2%A}?lgp?E=oaQw*`=F7hLSjc>vi7X+ zRrl&LVoK_Th0x0-G0gJ@#Fvzt;rmn%4=4JVX!?#mRIWdI0M@{Gc^RJY(#KW-EJebW zUkGdDe`XX%OY-YD6cG{8?w(ziyUJl(h;PNHet!zVBJI91@W5awr&@yj=XS-!8zQ=| zta=>B+j5jc!&aAOMtUnKd8O(YmdQZB7^kz)=BP3H{4q@`HObHVweMJq+*DJE|CCFh z9fozNp(j(;8hJt|IM+OsD_{B&xH3`XGxC%X=ES@$5#(02AYar)+lVQ-AC8Nv+FbYs zBd(-CaCCE-Dqr!U4UD8R>v!9D%)D5U3|soFT*wR@!l9VTymt(u%)dfr-FWG2y`iIH zzfr|{@P+#}-eta3{r41JyZOH1!=7(OU-HqQn|4Z}h|7_g6IVZrut<1mouH6aT~UwwaxaOqg9&ExR#<)7 zOh3J1eZHTWa8wDh(}02A$=7~sOQFI?e;ny7;&S+~PuJlo`*^`$?l|2R*Iiy3%f?6P z#&-qu<9Xf97N)PST`Ko5ex$masysVc!qQuxVKq?tMOg%P$ZF`81`WK`;GxK;+qI4{ajGN(2^6IsmdBIa_eK~a1dJM&_sut0 z*r2Wl>5#SNwdXQ6KE=by z!Q{31*5OF4$@d4Mv}wH6VZAuVNR8aS-?qE-RbIytoKCb@I!3qzQD4-Q{C4?s#%fqfC@SgdTxuSQ>>fKo`$?bn;W6E-`=k{I86%JTW?Q3Q@j<7IFHbrN^xrPNf{HP$x`KZp9ZJFXuW_*Kx5+m8FJRn_8~Lx zq+l@>VkOtU8d&+%spd`px!tuR{}N6o=$gsV&%c+#`(k)RPEYXE;Fo)fSx1$a)f7gc z!_qHtpO?$?8Wb3%lwqyG6(vU+-PFX~Mt%=EL zgf(-H?wRbSe|I3Qu4P}yVo7fudNyO&FL5ou)%UYIWsKfeUKf~M;#J(bHt_y|m3wAE zyvhw6HM7aDQ`)=S${e@;kwGh4I2`4jON!gI9h(kBrra>jTUQMH`Y3m;Czz#3i4&5r zby3R9GXciG8B<1h11p3r1mck42I@gT~HagcTX%_=m+q@v%{Gu9!PCu(tIQ zW!=Xra}hS<-ELXNGKX8XGFhTrs5eQt&~aNrht}=S>s#?{AteXO1aerpucz}GVygXn z*WSur62L;f2grKlY^OJ~%ikd``cr{BnLEgObXz8LMaHMz%J+2;PJ=uUKH(f=_3Tfn zd>Pp+%krMEl^cJ0=hfAe2?WobC|_$UoCwKAfC8 zU0*ybV<2`~p_(#V=QQx%>BBMh;lJ!k%;R=rZpK~UY40CL$(&7%3BG3+7MS~f|KJQ| z^}t9=W{1bbyRG=d`=N{7>Lkt$$<-e%>;nfqDvs;xzm=OBlc3HME}h9;9(7(R92T$IA9Q2yF8Z7d~r7QnMJmJ z;Pe~8rgV$!_Av3yKaz^ohkMt}!>S}Ht2Z_uTV7Pu>xc51JZF9-XVFF?oR1;x)5W|wP1De(i={aU(Y z()v=q-vnfA);{-)2YVbsl)y7;qb=;?rYO9Xx`nX*st7}-ZYb>_)|t?|UT7;5@^%O7 z)m2uND5F|LtG0}vFGc4i#Kli-^Q{c4u&FY}>P!@ig~#8Pw4dBs_~ouys(UZ;{EUkA z<-nPDdzu;>@B1|96j`zLI*JzWt?y8mTU-qpdFs@lL&r0XhGHMr3a>5{$wqvGsT@$o z_)=~acBI)3X@!M+d~85o9vPg8HYaqZs>U9<@Jow*@Psz!{Q(lKcXdd;y4Q&Z8>KT*_M?_WNf)CCnh ziRQ32YSHdpv3A(xSa55etA_b_p^b(ghjde24XD_euPDRyNliuGy)tzv*g)Q^!5Feb<%_fQ?Ft8F1-*-%iyZ*Bs2zlz z+HrKMlx&(MC~0&&;-p`%4o)rO2WtKfW!V+o`u+FhXs*oALXz@9jH~_3#5hu$0HM*T zPL;mP{NSRPxb~}2C#*7cCWjBRE@rODar-6d1uZAldXBdHb#m}T!_iMKYIW_ezC*xs zEZekRSF3nTp-2*=wwS;}Wj2cYO9_fizgbYKmeN~3ojd(!^U#+(pAVaTXVw*eY_U`4 zLWo>jFkI*T(ZZe2rmMC*m)nO;Z$)VihxU<^MGvgZV$UA{_Ha;yAm02e4sn50(ZvW<-b3q z5*n2IR+we1E)9;Cq{Z09-eY@Yq%CLk8rE1|ylF3XnBZm08P6NEw+5_}TXPsNXmrAu zK)$NDrqpnn{2chi@#+^`7P zakfH2m#;-`yNh#lpJyQnj4jT)+-ag9-9!-cOaNx6&u6L5yJkH4<{kz0Jcskw2liAv z*W4ANeUI8`F6M7b2n(^&9^nqt%N9+-)@Res@)0|oxBQ5OY}qOEP_%^^78Lg)cWr@H zBWsbgEk&Y-cdQ12OYv|F|MVSv&7UV{>nzaP--A6qlCZwMIM8>4y_OcnTNx1Toxc7< zibh5$S))gI?|qK~GYFR`b35>Ynps$iXAZ>f+FQM=&oV5zUmp*C%&$|oSm#qo>@t^hSG4+<2s=y@&!t?lDAaBla)0QmP{TmupoE)lAjuP<*KJ0qcSzW!}1l9P@KB+DS_5|m4UXgWpp}7moyPQ`?d&)359)3btDs#3)XxZ<8M^Z;f2JB6Rx>& zuPk-A1I(65s*MnIo7MC^Ts_xnFI&CzNT035;|_0p;}m=&OGQmay*Du<&xG^!G3z@6 zDTeJC-@{luTbl9EaqV$bj3W;sNDdIEJ0aFhRQFaaWiz;lzRa`Za$@&Neu}#jR`hxl0);Snb}_ zezh8$mCjsOv2u~PKan5Nbo3J_qzHf+`rE7lVPES&GBums=>hW=DpwvS~ z49)NYDFxh*jGDblm(SspHT~oq-*HiQe9^+O~EeBWHZs`!&5_? zR@g!wA!c=T*x7@Rs)=@LC@F+oe7orhiS@w%k54=WkI<2})8wEd>j}x(LxVezwv(@N zxb?*-hD}=;C&mhi#w7aN=g!u%pp22tJO>Nk@mjv{;Jx3%_dXb}pm5q85f!5oge+7y z;Z_y=Nz=zFU6uSiAaSy!8B&nSYSkT@@1*#O{x9^3-PQeW-7-ceyk5Wf;kO1o<|=7jAPxi@Zqs`rzQt({J4( zv_MY41>X`;bo_8b#2g;N1-K@vxp&ROfwc6RK?_K@_@r~?Sc-I+-nvn;ZPk!#Y^LITWCcm+eA*$&Eh`R*eNu zzE~AVnU4*gB&hjLSXZT`XCr$KA;3~(e#{Pw9)Im#T=X%s$UF%mT~B6FOwQ$2J9gV< zEb{?+7}rWFKsQ>QnxWV0Lr{4mGnJf@bvWeM?2-_j<6cQcyKVph%uN--vP9TXDF5kA zrizOe@vg~`Ln>?QludDYCVFMz7ew@It5h&IdB_m?+n|oH^)ZG<3+tEd(%Tg*!JJ}s z;I-=IAVblyBR$(3Aiy@b&FEmLaX(JUBuMG4T|y<_>oM3c%%$P=Sd7wms-C=K#{+{H zC1EVB1=-$_%jd`=PgwxKDwd8lU&8wGY|dXNADaGh51*QBy>1)Eg}Z9(i33-A3h)i5 zTWU*q3TvbgHgk_qxI@yuN)vldgJ-Yts0bxj@{yRjEGt(tSf2P6E7xeHNidICLCg%o z-Kje__n0V@A8q&Vb^7ZcPVaW5!|E8j1Jc-AG*#|gYZLGpR;SUv7)Ukw(QbeG)qWa8 zmGzk@r)D$s**e#rK=xqeSOz_#Jc#q@ENQBT#85!4uA?OIEp@kYSP1#^O%}~i#yu+z zKsl_D8?L*Ak>kyhW?LQ&3u(TCxtXHnjICHNsQqoP_E9LbpEy*&&l1^RTeHJMZwNAS zrn4z1c}yUS-hCBHCrO^ALhwGN{RjvCiZ$kvDnSu z5ZNebWR!EFb33Na7)rAhY~UJh;xTrG;Sszg1Dq^hiUzWq-H>&zjXo@0B^Q6-N(7&S zZMSCVEF5$kU@J0|W=B$CrHFREX_^=|KU*WqDqECkdL|vE6H}{f3eTT1KhpRU@HhnX zdM$69)^Hpi6;V#urw9OaDlY^j4yvn5Y9Hm!MA0>do}(P<#eG4Z-^*3ejQ{0CZ)bcSNQ#K zAFw_e;?pzEpk+xgw|W}>^ngK3&MqweH!~{Vk}bHCeP}_(`GB54)?&E@+WXF1!p7#d zIdaVWP|?S!9O4e^ zv17Mm%xJiS29LR~10}u2P}vl(EkFT;%yIrhfjiEzVx^lf#9!(96x-CNT)Z*~OqLNK zqt*7u257nMgXWf|ErS=k(aL24&Y6zux^}ksXYPgDW=Wf{(TSIDYhr_&jLqGg_o&!ovONs#fn2bbpfiKbs$O#;b@=8 zU>+aQP;2}pVN1o_85}*;G#hr)^Cn!%3W#kMnH?ScZJizk!b3`EJY}7*Td~L%m%w-4 z91MTyTz@qKCrBcM1OUO&Jj6#`xSUx~W109cCvbJ?^6cMr=F&M+-8dofc(FjIk9n>e z7aD^M!h#|M;tr>%!VIhh6@`^X-Bk&wp`+6GfWN*;iK}XK9J<|TYNnOF- z$d4z$3Tr?0N8y2rU7gQ{^~2UXT@s|xCi7DZiEt@=NAMJaA&Oy2xFadxaFx8##z*1J zfFpgs$E=khT1vWiy&3=z&s>$lY2>1hRKsg{bAz5kl^3>j6qZW2#lIp!d+t>3r!(kB zTwGo}t%+Uho-$9`L~VgKf8}k!WWz}eqr}+pB8S{gFW71LR8e zGU_`}*r~v6DWXN2qrEyJYi|7_yt~uW0^Q94xEp2dMO&yDoP!y5v}lVgH4*HHySaUF zcsB{hW(H?x^N*94crs5Vs2Sa z5NUA|b_H`WU7U0lGOdXX;|{|6lzE6Z_oV`7>!1g8@|n>KxS{Dlqqs9wbLzbr@Fo*& zzxJ#VinIFqglaLfR6a~MN@M7tC?t2cjM-Nm3Wm&o)DQzJ7Eoq7%_PW95ZNXg^DnXfxOmWpBV zO($iem3kG|unt9_y*lD3YqG!vrk%wwv!lQXDgagZ2RwsoRX7Qfr^e^sogy{RRr7yG z>&R<&W%%$x;lBAtqSmL!2Dytpu)A)Gz^8?;A)vR3dKf&c17sw|w|1m!ZpKbMz3{e1 zgAbdy&HrsmQmnQH;8RGX?1)NmJJ-3dWQA$qCb}@{!q2e!CLvS7tebme?kP@k0Pbaj z6Akn4vA3+>0TBUp1gSB3Q{}9%74R7B`NunW8HaT;dA1J4qNlNN0pUbS7{Sk@`4A8` zpk^RPV#GDbK^@ma7mdvwbbxwC+n)Kx+CAFmM(AQDY@qzc4}0VsBb+C0eD8cEmF)FT zMF#e_TSXk{L46n&9S6GZY4G zFLZjYefc(}9!yrX1t`gNE)=yE8$UjjT#_h@!VLOxC|%(XlGvTn-(w#OTnBoF!T|s= z8W8Zoho3)kO+LingzqzhFQmxtRZUCO0xtnOa}x&hiH|#~1U}`IRScYcI|PkC7|8rg3{O;R$3rl>!ssNK!_2;AmogmVf{B zQa@c|*hnJeCHi+&urj#8e;4^t_q7AUo%@Q6&a?gNhrvXsp{|G!sr!ltW1M(vbos*P z=y!Hcymm)yEQf`*_Yhh`W#IQhxNKy}9e*fNiW3d7Q;P5q`(ia!i+Sr#H4oAD`W|sU zsZkWGS%7W;bTGsnKnvt@Y9K90qXH3}T0ViYPBzKm)C`IVPzyn}cj|yEGf8OgDc^1I zkD^CX63=3%B*C`f&%f&#QzA-MCY>5n(7pSrxSi5y1$JWtzw0v9dySIAG!Z;b)~k)&FlRq&6O@Mf?0V z-2^(n?bDwJ6X7Nyk2c=w4s<2B7?FqKP}CUxTC2=1u1fMpfxQ7p*TyQyc|Z`M^%-@8 zu1N6~V21wFM9|axd&52dG?br%1CHCQkw-^aR}halN*3;82{?SZ2BjKioo# z4Z|l=xdBC4gf3Ech#oxxo4BzGg=-7{y1)PR`tbh0s60IzA?h{gSZw@W;AAmbn4j1Q zChB%$p&dWcqhsZog!XUZjpo=xpQz9U6yli>)l(um$ZV&_5oxd<`GTUJ=jwF;QGsi~ zpZ{O7(ZkbSJ`K*y&;?RO*xJWTn0OZ&JXwri?D8?K2j;=nzuVV}%#xNh+6o&BQ3z}NttuQxuT$^U_AZ?{ z4&TlayZYC6+?8Hla)Nic2KeL<$H0}-gm45Yfh|Hy?{!zk^Gsu`T;ilyhf))1i#@^F z$CUY@6%PiV^3E5`)Kq)sS4d-$VCp{utmIkwKG}VBzS*Lotp|G7x_(SyaZRTLU?FLx z3mxvousAmR_x;njth?40dzsMU&;w}&wCtSBfqOx}tyng9rujpBv$%iP11ac@*`R+g z?eYc@U~zjJ0zD=kYnL4b^4& zd%&XOEyQ!Iw3oj=CefrBwuB^2-{rs7K)AU0paP`3%w{|@P>l{fvX=Ft6|8QeY>{?n zCzNPuCj88X8rkeb-bw|J{g3YskZTU50^jejp>FJ5oAhr7$z&c&CgGfT4$CN6TLU_{ zCunoy?aKYSgMv%jfwu1n98S{a4$zser&g+>B=wqxd23UY22MG~bN})eS@_GUK;LW} zWu5D~%eBk_3ZdNy-D9Wp8h6< zvCyT@w_P)ILr@#=y+FQ>S$KnmT{QH(Sn@?GD>grud_l+8$D{A_GTd9Upn`Ozg^d0okzKxg8Fjs-CV}3m9B%o7(pAsmUpq|)l7lB% z-GJUprpmPzdnpuXHBaCgc#BCV_wC!4TT5U+fz~TBZ;61u>lx6D=Z=_C;&+;AE7`ri z_Tr1=g+e(Hn&4C~pGywmu#A#4=XWZu1&rrZyLc$()e_`)iTqPpEAIs&j0R{BGg=)e zp;eB&V4E)zIzdha&F1XU^z7tj3kRL_%tGrSxFe~JTY98_+XaLKNQX;ssf~qVf?{0c z)one;bo9&2soIBr6g^e&RGB(_v!i-aojmX!*C`+TMO`K|h4Sh( zWx?xelKgw(`lIy9|D^n3l?OiC&?cdD@vrJhWl-Uw3z2BxF6v`hC0>TVLR_ta?hR($ z1saW`jxN3E5wk-l+($YJ#yl$Og|)`-@39Z~2`Ob2U;)KKrr*@vFC3Yh>eX}4Dt0*@ zu@72Fw_Q6ui|VL+0=oGPsJ(6=8LG0;odmc#^nCwe2t@#6;YU*Ce^b&b2j?7a)EB7( z!AYl6c6*|U#^6H`6(5-@oi%|{z#HoL3s&%y5MQPSz$xk=6Gcmb_R4#q-IaN_31TB8 za4f}mtfwrPHUMUkd6bo56*w5})9%c02H|r(^hY0DczY|jCq^? zzRL#?2S;_)in}GOYBzPrzv}x+oxW`m0mH$zg=!Rr<2&}7;y#Mz+N)+{-dB;+1J%_-mNLKN)#9%0j z5spsTX>y_`M7bCg<{OFHvnbjpYNrXpYmlh#n-3~dxQ5^#E+OLN_dl5#{APaX?G9ko zUuYhi8P97N0)m|V47z+zW2_IOM|$ly5f4l1+8?1_|CC`L57F9Od}l`)NRt$9i~F^O zPl0-zoAG)yO=I#^Ka}>~7O_IHyHM%{LwOm}FWP%zs;8{!sUf3Qwbd5w7^q=Nx~^7> z*Ck(gaI8k-o5m3MR)t8YOnII6>ZSdtzcQ7ea_Nj8>|B~7miM_*K%^EW6riW0v=>1D zK5%o7{d<%>(Ha(ixho57^>&N<-@p2=IAAQh0zC4+#Q`Bu{8^)>p0@w=V>!pBTE(KGId}v-!~VhOzaPsfIiFWJ_P6%QZqo>j(i6?IR63i?$oe{2$Km zj*!&Tg-nVPW?@gz7>aiO(3qVB{g!RO=bKi(K&(h1&3=mmWvvua@h<$W1=reGrS_27 zx>>*tP6(yUETQ#9VV4BWo~U81Uam zD6p8U;H}S1bgGj8l`#fj`?HTK9Vs!%xY-FRR zXU1#*ShiuCJl`u-i_sy-J_}x)lw1j^juf9Qf#!MD(-Ri9SC1K1-SC^rDw&MG+TM5n zCw*wCr-wKJmTbqfJQk)1#+PwTtjbx3s7%Le{=cF?v9vY zCPi0JBH%o2AY8fr3Qn)?7q}M_&5I;@Zl&4)Gw*2h71J&9EFav^@;M z7-Jfaf#a9&Ut^a2ZvZb}9#l|?Io)FY6Y!;a9qO}Lcy4Ea%qPxxWh(cE%$g|1NMI35ubytrD2vW?~yp_#;Fs{+;5l0=m`jLbm1Zz4; zTkR9niye{X5yy^P{`5Q%!sE!N7ia5__J^yesGJkO6Auq_2kFQZD^|(oHl77&gvYF! zFaAvh|~o>irF~+E7uN;h;Mk8b3D7rK75b3t}X|+f~ve&{exFa)005QsCZ- z>x78N{j}EWKzKtTFt)~E+^2A~Pp+khg| zliDS57$$o6B4ur)r)&ilq&UO>;}a6eWrBPmC8z-i5rhK$n72w`BI%G2w-)Vr z*xIrx*S(w)_yNKh1Keij>|zC{M%D*v2N}}w@V$?)-y5E5geCJp8{9ODDCt&c`O%!f z)EhwU*FHYAJtWteVW$R}um&l;991WyX4@R2>e}pG;+(Db@0-RM#~%4f)Z^vP$zjVQ zQqEgGfDrTS)x+n_%Xo21|NR^kGY-(J+xJiy&xZG&_saip9J&wpy83q>F0A4)bCoZB ze1c;PQW75=FsN^nfCQ2^%&(gO*jfka_grn2eC9qFxI%)yl(1}|NPAj!PK0b ztIr&!95iF41SLbJ!>a{FBy8=jxDBEv;hlHuOL|B z5?pbqsiyed+(_NR?nVUw(t*t7xTT6cTTo5ys$C9GX1*s;4H&A%D&MJOx$*!GG=Chc z3s+Yp0byytm>EsVfw$bcQ71$4y~O>o(%@fUndY=K{aI3L`}FTSO=7Py8^L}L_|z&H z+;iEa+x_s+*<2`c2fQgOHZ)G&@|XkfwN7QRRI3&eb2P3eUm5 zA=<&H25|>8PCJJ6(`zYr$j&l@Tu0PL7KPjzrneF?d2&9e~*2-2VB|l zEjwV2MUy+>jkvq~V-;(j8jQUvkijt(X&^%*5`(ig6ESK7wEoE^e8f;-jR61uSB7>U z=pp=jHyB!0`AUq>H`pj>S57Ivy^Xi=id!9XK>T9|jk1=WsDF@;@9%%q36knA!F!iQ zBYOD~u+V*Rt~JH_i<5)4{L~<5n|^A%cu#sK9-7@&8(g%dPaS#kW!pu>?`m8_4PfIb zydG&NNgZKxC@?(VWmA$o@=wDZ-jVCIfs_E9LXV|M-6`IgTGo z{6WmiicsJ9nz2`DPU3;NNxOO+_FOR?6Zq7|za2JK#$ovk+L4y8_Z;Mgw_%?Wpk?#V zDvIj&1scpB9wYWPf6HS7hK~T&A&5FAS5{|WHs?WCSn$So`xZLc#cyV+f!3$S!2GA1 zAT$CXm?MJN{bQ=Bh5?qc4!1f1$O(^HfI!op44(2Fk|YKr))c?KIy?aD1*~%%Ji7|f z2h}y@tAmQEj~@NB5#u3XMRiX>SYfrofDzz`C%}FbcbD;}w8)sq4fE@9NgC?VBZWFL zezW!waN_xtFsNf_qs?j57;C6!()R~{oBGQ@*4F## z*JPq4Ps)YCSr$w@LC37E9 z-%T3T!jGVLHqr`_dEy=9xEM*^Qnh4Y2n77P9qL{8>!Cq^f14X=Y7aF^=NYK#qCmUU z7zu{iMWHkwq7I=t(D`Y!`EsKpkd|!ty1}4izQAIyH{TKJ0yLHzh2@K#Al)K~wH1|E zrmCXiR4wkm+UU5)_R7x?c9ZXZ&nFMrjxbcgIl0m810T!R7uN#KmDG+MARu6fY$As0 zKn(|~hZ}lxmJ9{E!zTsupIF!*atzhi$E|4jAsK`j+I~k-uh{YOU?`cu9pl*m{u1Fi zj-crkm^0SupF!EP`6j=0EhzVL!a(zH!cUAw=Gg{fZX`|(3nsJWq3Igm@q|R@pk!yN zw{{H?k+vKMPu}J|w$l%GUB4a#v?ZZRvBU#6%jZ^sF3_b=f_$oi7urmsK2rhqd-bb< zUX9LT*9P?sHP3t4Z@qplRJrOv3s~OVdVOeNrI(=;#sEbdKe2h^DlImkwxD$dx##lM z(QVY2QkI**8z>}NBBUwq5J>JHgx14lwP9RFUVMie-^!Fj)dCE!IqF~&&?uooX5#cq z;?;XBeZPm!FJxGpZb$$Pdh#Omkgs_;E5=Ehs)FLzP8l8-uznw*9+MNw3`Mu#4i5a| zJ^2`DY=3NvEnTz+4{C6P^s6z~s85%ITpuc|F>oKe5mnx_4VDS&t+q2W)ZNoP!Olhw z7w-_N1gLNmQqTZrQP%0#CT)Gc@5_6=zC1SD1QJFPr_MV}8PeVmezK(1KKLm(V4QAf zknqtyYRuhl@~NN&i3K(Vf{UB{K4A1j(}nqnV^?}Z2kn1W?|wKpHFZPaQ{Ahp{SaK3 z8wCy;TLN53cuXCZGlr0U6x zfR%~zohX3OKs<~tKms}Mk{s|yczdh84ZN|IMdFBb|0$=>H|g6IjauwWHpCH7;}Xmj zORwNc`1<-Gs4V@8PmUD}a^sAqv%Y>n5`p#3uOFPlb>|uhE&`Q!aG@h-Vd4m;ZA3jz z!G-%OJYW8dd%UuMn#Gw&0T|bD|g`PB5+WF|``5oawi$yapKn2}mNtv=4d_{tjvGT(H<(u#7IG+rq3|whZ(* zUBtw$okD7!P>ruCge?tv6dYY^NkyrY$m&YooNbt$eq2-$|0t;Hz14A;7 zN?5HhEM#6Lg$F`ndbi)-f}N5H5bUh4A(yv-2I2X_i4t#Ui498p>Y8i?H}kwmxk1ix z68eNndodR{CV|@Ev^GyKX!TPBeSjAX1XXp-w`Ri%dTywbkQm5VjbtC3xvFvXBDzs~ z8I#p%%aYMF6kq?A9YL%F0W^8OnPu%R{rEUCi_r_8o)Ze~Lw#}XfM##mDixB(RPJphS)HsYl}cv3XE3-T#TjxVr*&z zV?lJCzFDC8ztPYBNV2Es#QFCOaM<*pZ`AxL2|^U4pQVqrD?{V$iDPx{Z=YdGb#4Sy z>(mzKwJyc;J7OH-t94kF`A(HlWJ{00zZv(hhxw$a}FPGP7eoa z1xXf1K~qG`TOQV7aOnq$n{Q+kW+t7J}IX}?{gk+85YF$TwI))Ku8j`8* zz|M`0rn6%MIz64kH&KUNzWWxl{_AgHj5gPa(|5xx_4)#9|BsED883gy9iYM7h%Brp z4oP75!?oI-=%BiADw&{NYC^(QdH0Td!j?!;i>hA-B{BJ9a9j7<&)*n$)lY+yGFogD z1IKgF6R@ETLs$Sh2)A9mEoJmqEFX_(Vd6>-AV1SET1JW2$0BdePy*N@HD+cgf%W|K zp!wdiV7%RHkS|gf{t^O#?>UA7>w7~fzzrG2E^(V@I^5AZ4#BH)h7ITy7vyt(=ZH{a zkT(B&kT81`JCj#u2E$H>Xd`X4n>D;vz3PurbnKaJK-$BFn!}aYxzX`F_Go32rZfP8 z=1VC(K;O%|&o@IOlYO~DYtj5LlbM z$3c##W}VwWFo(fPT*>jM4SDlJh%n|O|2RPF zT~{0FYA*w;C~L7R3O9pl2Uh}`YGiJgJxi}z2{~~FU}SBhRQL}2!MpTy)iV~IZCNl= zg;vBA6k91~HkV)I{xWSJ9GxvFi5_L5`-Vu^5rrM1=2eF=w>sDYVtOG+)*Bz8_^LIP z2xE}B!^yC|w!Q?c(1lB&1r55+a?sugmxtL3R2gHJFEpk& z&Ag+7*G6i{aH|0e@|RqDfv)?eWGW_SpnL_U>|`11aM}&nQpzPzT@XFxUc13$3bc$L z@?U{31D<&Xx==dKRq&9TYUsVhkD_qNmQXTW){kpoB@MS3*~)Kg#v;ljSAh zJ6w~@s_q&{BJ89h2}!hIA)!~wKs>s1!J6|{G6n|Z8p~18*$HVc{JRRSG0J;^R+~0a zJ3t2tnhlzA{Rt3Uf-=Slh(n6icDcU$ctS9 zGYYMXKe^Y&!s!TT;t+l7GYE)a&Ip=V12B6Kp>8sikd3}YKpCJ!sW${=7SLlt47y8X zgz|mr^$t55$weWF`jh@c3YHJLDy$>=)-9*9d0MBJVT_dwoP@ElySuPD=X>%sIbm_m zH93^B`5H^?Z|%9?CBR;w;{?RR9dn=u4jaQHUL5GKoUjmk7>;&aE}e~WT!kd-xDFjP zXt}370+Z_o%2RF&r?mo2dP6uxv%Scqg{Tdq(H1p1A&+j>`|z9FlF6&HObEZ{{nloggL})n{RU%o$xa$o0>og5zf>t8n$gq%L^Ehm zg6j^#(GwlF*ounPlNGB^#n_5v`C^@X80=ced+_oXsWL!itV|}r91HByk_r?Gk?o+& zcU)?GgyKfayQCvnA0=cq0p$RwT*w0tST{suK!b;*c?3X}f89a31W`U7mbuO5pz=p! z4c5pqLc#$TF7#*tICbjwrSl2UG=@&VEGw|@X-$0j-e5^C%Vmr9Xev%;2Nc%%mUcVBg(Lu zv3G>UYi`%TQ3bNuMv+JN7lS67I|$6yM)v&X6a_5ZagxJkI8J|O@X(R7QavoJ+l*Bj z;STeiSA$6**1J8>;-Z5_fCaOfJ7pl~q?F4T9jxxi4l57~RxE!db`J;@wBGG=^Vx7F z%9%;QqYz2HK5};127?o|vE*mSEPf((gOA$o2pNA#XedDupoPWhDk@z!N5o_<9TF?dfK%NsNm+Bxty4qO(GIUN%KSD45n)uTa(HfCu&JQcWQ(v-VHaVfSFd>bPhjd{ zguT&Rn{$FgXFjx|>~Tm0Qu+`Nc(Uw&v3;lZoK2O1u@=xr5*E7vH$D9p=E8wdNo)Gh z6CtXu0BuncEnHkn4O&TAN57ls9$>LvUU)h^*7#Fkf5bqXE6|xrBTi}jm zemVprUkLnxqrj{h=Z#-MGp$-8T~nMmHq+)f*cLGJZqSnZ<=$W$_o*V>PRa|MHD3x& zJS?DCY^k+EVR2jOP&{YpuB;4<)_AH>V;1225do2h6A@~M@8Od|{WeBlfpJXPtUZ5@ zJf7pclFNqEQ{P#M5#}17n$Wv zNmw1V0R7OzYEzAOcNxS`quBf7IR@?J+#zK7cK*gKmXAAZu|^5l))am?9sr^^Fgz?c z;Raf+Fv2Mfhim}Af_>Fxo_-9+WSpEVQ!ifVaAMfiC^eW3W2bh2N1c1(KgCh?wC1eN zvZ#E6J=Fggl>YcgzxfcKOC5|42y02Hcb`+3pXe$U>)idHW76oSF9K~6x-8XS6+H!w z3c&Jbgx4p$2XnZ?rl78<+0P%6;on1olFLIxEY>I~9;V;Mi(Q}QU{u}(dm#D3aK9YtB~N6kVbJnzD# zo6k(-i||M1Kjm6}*d{C0yKD}bA3TL>x^cp%rSCT|lZy-o^dJyBp*ORwGP7_)*N$Tj z{YyDvsx@y7Z7-j9yDXsk-s8m)`Y#-~w_z?}I}qIm(9aqgW*#kG6SKJ z;{(0$p~;e|dZg7t-7nN&*$}@uHbt&&98du5l9*jAQ!RNe%d}=D)usqyESC2caE9C4 zsz_rv$U&h*PGfa?V2$M1YD=FRgE?nij|v#$Z%Ee3V=I(AK{|lIFgQa7hQH-~xPuHl zNmysDQS4gd&&Kg@gowIzj#1K}OD%+^J}9LiDbcg+*oymr11G^ws~+*}5Olbwm<&h& zT#zL~iM=+NI5%$P`-{sv+3ZppP-91sPGp;G#(ii&q>vmO_}*7TjR%V6fxEIWh6Kq} zeo<_qZRUm|D2^eF5qEeNm=!zpfiOKvf;E!LsJ5_vQ9JPH@0|es2vU920udKKSFnp( z>J2D(eTBUMOdAmJ+vQGqDNnETTI>U1{gz2|ix3pyR4LPXy^7i`t8gj;oP0CH)B}wu zsP$zd-s1ycUFlNd#wCB?fFVY+ywL9joA<~i6;r+zcFOdw`+<*Ahb{u{MW=u;qHoX# zM$_p%Wpp4G)H%JrttTJPIM~B9hg^Q+FQ@~*42Oz9qbQH$&?{8AFjiDy45v_dz4{5K zt^kz?XX(Q2xLrbjpSId444~PCPX-1*2RVJWB@X8aNCrO9Ue9Anv*j)9j??-hwG>eI znC1b*YTnvnH3a0Q;p!+!UL5&@n$GI9pzMvPy{BEcFjZb$>;JDKOHhPM3gQk9WR=t` z0DZy6g6B^{W(ec5FXt5)KtIkE9f1V$Jyi(m^+2L$*MgcRZ+;)B7xPN9anyO=Pp4V` zJaI)E_;5}DZ+*~J40EFZKqE?os=)aHkls)g4%5X^yne|+!iD%&)U)64M?}X#&mLr$ zhi+`y5kJv-8Y^_5%SfkZ+ZQr}6`&Uk$1KoHl4^AHU}OTO^03+?fn?w}P?YR&#{(RI zmJ5oq3!QLUhzx@LHAAXe(j9o5(#2o5h)8G~u0Xg=u!3Hg&lF78Z5*~KB(6E9TsDseR0XOX;0GJl{BCs~-!!f8$9J5zrj*Yu7L z4l`pzj7lLHCBy(Ec3y#2FO(;?`?|`42^W7Y_1OR5nmJq7jG_93q)pNQQtg!4jFm=nOE5rzW) z_ktT~Jlb8)gqpCBA7%Rt*v?FQK;=f2w!EWRDFEg~!&jo}}gC zH^TH9Jc?qI&HQC4H?y>A??)Ydd(G4X@{SIt*5$W1MS)0a=Db8Bd zg#O9+cZON?tMYaNAmh?O$8wBAF?E@{{mPjU6Cbyq@xwY!S~rnCF6l~xDX|xWsg)Y& z$On|e<7z`qmv@UBgI)|jhG}1qQ!Qoyye>%oy#0ihs406sM{?REmEz zK$C3kZr-dnvO~Zyh(ho%lmBLCQcE6^-P&Grs%RSt*ejZ#tIIYUty92fG1hWi)oW+j z%_vN6qOXcAG+~_*<4XjlYVX1E1anaQ`H8ydY%@0fa-^T_OzH$d7>)vKy{>x~m#PpS(0koAw$Tbkb-Fv2R#-eK zNdZ`Xkvoq-PDSkK>0?I25X%4rm+nJ*Kk0cUUJNoi#aJs36f;L;XFX#mP(xoD&$lu1 zR{qw2#o>Oyj)}gNdj=4%{2CPBwzVQ>#z_6p4`cNaS@cGPNB{DVTdPFajd`MI7jJuT5m50WUrJ6DM3?$G#0#=*N zs8bc~*3|q25{q|+Xv=Z+$eDWJaAXan$JAC;TD&AA=EzxbQyiqBmX0dm%}}|7Am>0} z38%_ocxkTS3vaY*ui=JbX@?KmvCVfYAIkWm@FBN7vTshQQi3C{($}_gtE){|!$KZb zz*8!fhw#&(7R652@z!SuiU@Bh@9VH}Vl8M`>9IGl_K*^Hro{)|6K+8vHmImPX!Ix# zji$lAjhr?^m4pQsG!Q50pyY{6vAl-`7T|+s1HGh}C5~z@>3w)QPAJAKP)|ZU(V8xL z-5m6$vPV^F{xLe0i+^Kp^=(Dk!TI*i+DLR3bUyDi-u;)D@+M)Gbr;Ns@zi_89rVNf?n$0O@!Tss%az1A#Gl`OA%m zpT^ft<7=nq{45N?e_=m|O#?6Z4gir~i=~HJ$o*UCueUg`=9nWZMv1i_Y%YG;X*eG? zA}VBkbst(8g3%;i0%F&LvX&}3t2@aF_k_^h@Dyy|xjWW>Ij@-wwotM)Y_~dQ{yvVs zr+qXG(^4Vxq7>d_!pzrgav`_?7@a%hgge;1^4kFch|V0)rt&F7!GQ|B3wsN@Mw;OT zDQ_THc$;(>{`15hPDwb=sFu5l58;zZ36g5wqcK@SE~8xm8%+W+e+UjAG`5T7qbkBS zLn1=tyc}T$Sc+Wv6IfRbh_Fqdqffq|8m5X038t_|1W{1>P{&*PR6$kTK(-HfUfs*p zD8S6jDb#&-fL5dCshBisYZn=tmI375Ezmm`Sa&{^;kq?X$%neGgoH0f`b+Yakq8T> zyiKe&HH48ZTPXUytejX7;$YRef!-7k+i1v_X7(RhXOUm2*2z)hi1!KV!0}pF8ni%U zxHNvSYI0R>h~~SjiN5|tL8|?6V>AaTMbo}Uv~KKwjxF-TVM_#draBU(w#0pnLUTg~1d zf7$A2=B_!uR_mfH-wT|7^GXzDwE;0C?(%nOZ;;=8ZI%x?%r@4I-1L(ei+^hn29T^X zaw)1u(YpMi;$(h)^_>;svC+3FO0(+eHCY__(qD`V&fN=gHhG@z-$;JS`ZfNm&-+I1 F{{y5;)r$ZC diff --git a/dev/_downloads/ddddc4679201fda850a702ce6ca7ff1e/plotting-5.pdf b/dev/_downloads/ddddc4679201fda850a702ce6ca7ff1e/plotting-5.pdf index c5bc354c74fa3d7903caa9b7c98830b0521c264e..9984d6fbf4158a70071dd14423c229a157034485 100644 GIT binary patch delta 19 acmccZaob}E?RHJ4^sgKnDN- diff --git a/dev/_downloads/e0563f4c3c89c72192ce76efd2e6fe6b/matrices-3.pdf b/dev/_downloads/e0563f4c3c89c72192ce76efd2e6fe6b/matrices-3.pdf index 0326024e90cd12b988fdce3725f195374ea608ef..4c28014bb1706cc407dc911438b57b04e3605fad 100644 GIT binary patch delta 30 mcmaERTJY^@!G;#b7N!>FEi7k~*bGgKEDQ{`Uru6?Vg>-jP72Nd delta 30 mcmaERTJY^@!G;#b7N!>FEi7k~*bK}~jf{-8Uru6?Vg>-jX$sK* diff --git a/dev/_downloads/e07f3720dbc2048eb106de8a904dcfa9/plotting-25.pdf b/dev/_downloads/e07f3720dbc2048eb106de8a904dcfa9/plotting-25.pdf index 85ec07d9d14f7a735211d2288d92c592780048b3..885cb34c99799f07f33170194f161dfd07d80247 100644 GIT binary patch literal 39758 zcmZU*2{=^!|33ayq_mJd*|H|fM3i00t`Lf{Z&@SzZj_KcvP7Xml0Dh?tffd{?31yT zeGCR;%hR^r<|F7q{uA1hY^WI*|ec!Lw89rTQRS_{!32MH=F|LAIYB8=$T&`A* z)N*oMFay6wwp_3qmY$Z*u6A57T}wM#4=!tgJG3b!BlL0J-J{S55W|a$ba4-|Ea-c`hTV)_Wxf1G;e73?zUidr0K)-Y&~4P z+^xZSp!tLGZ`s;7SSq>tf)Ou)|0J$l5|!e*EFmd+1w0;h11t>O?ZG8Yn%;F67gz8} z47&9HZU*%A{_fqhb+Plb=Mp22sOsPh*2@J`bq1TDY-{amV+&2&!_(c?@*%bF>zIan zJsaQREU>|9ZmMr$8vQ(vOxNN69Afxo%N#{nO=Au%|;nH{o%F-Cn|46JY__*tGYXu$4-fYl=HyvM5@tqctoJ%o3nGl4 ze;Wvf?;(&`VyEx1!h8Q>R}@DH7@CBfpT+ZP&*QOK1ia$jHu&F_Ft)J`-^0O!3Fs2I z-%3fp6UTLhP9gp|cTP#+`W(Go^R<>b*js~SonAPjTrDR$GaD9*;|pFbt#8Aud4`QS z9V;+LMRyJi;_0)rj$0!iH{S~^c$<4mo=$+nO!31gpWn|-&D}qiez`JVz0Wtb(JXb0 zr1_dWtG#FSe z=}Q64c?Or%t;X~!TcZ;%m~PZ>KDV9`5k!YZ%v(*2i?|bI8mF8vY>n3J-AX1qySSpSk=gY5`p%S#vPw4E za_3{;3!u4H`5I&44?4e{S^auAoo(`UklP|Pw?_lZU|UXC(b0;WkeOQrA!2 zmf*Bdb~IhV->iKa(4P+viU|L6dRrY+5O_cSOxOZz%EoUCg`U%?^~N-k37qm=IKlYP zlpYLmD-~&G+7Yxzuv&q}y*}R_`$xIx9QU6meif-Eqmp2bn(n_PN~tqKMbU!_cvexa ze|wgSrdvx6Mq~I)^ntgT`mPa;Y_WQVF^zmMZzFP|N?W(;1e#5YCeyW~jfNv7)tA;) z@Vy;(=+6F0`)Q!L7Gp|hzB6j2VIUF>z4UC^;cQlVvJ!jjot_xGT7too-K7~-|> z$UtW`# z+EwzC4{2bYC6(#at>BftbgJnNUf;2CciXwA-@Q(CM@c-5Kb@|#s3(LWKCi8tu|v1B zTr0jUoRU6JZ+TkA)=bGSROdq3}L?B*OYPO!;V zzaPoT8Y?O8Ako&@q%_!PD}{~j8M_obHnRQKTv>DWrdHtW6X8Oi?nsAgLH;If+oWp!ob%V5@RnF!+~ z@+Z!ql|K2YV8}dS=z2M`sYbnfaHVOYYht8yheYm963ypXyij2LLXkG<6HF)7mCwsN zQTWy};B>TzC?qYHwxkhr zD1$TyGqYkbGuKG=Poyp4uvU*7cPE}$Tc~ejQTg}4_GC`CUDr46C z!`Mu04TGSw+&R-*!+2%&_Et;l8XXO)C}wT=jyc)vT@il;2fm-aN4id@LPbG5VViVa zMef}pOQI3+Wu{^mGEpZMtCP3-j(p@q4>`FmqPWQCRB-NwhWFUFU0ngAsRY8S55#d? z7F?HWJ4;qr9NHshKU$j9-hpj!A2^K*!C!t?zbeMm zi9^A{?tJwGo%i=|&`zj_`qqz0(VrW=Kn`>dJ=KTL3t?_#Si}nKAxGXrn{4>8>GQV3s$ei=j{+>THS*4Z@B%K;&%{^A(QOx32!d97fX}h(eztJtQhM{?w zp=Qy>hM!p&F&MtBk9&3F9%njn%Yr$+FU)8@vJ6Tz0+&Le(V?b}Z8pOQZ2TclE z!q9{pnW6$PlFo~C2ub0Eyq0>?w~~8o#a;2XPeg*zgv>d{?Y<+GJDo4<@=_4UzZb}H zYI)h~=5i`=QN7(b#xa)C62%Hya49(JMg0f8PQ-ygKx3+>S#W*J5d49@5Zy(Y?t z`~EH3saPyUyJPB>#*vR4=;;6#=WLrjKc!leVv*Av9skLEUK6%+m5weE!`Uf$tV$gH zluaqAEeCTo#7N6$zZJ3L;CvFGjc*yP9;y7e+8*lbUDT<7aWD2;V+?W*8_<9@cX@$# zG;EhnvGUx9CBY?_K|GXEeBg4zoiuA&Y<|mOF@a5(=1w<3H%U3uSrI$5gTy4}cgZ6p zLhs`3nXbz_hQ+yMa5zq^SEffNnTH02{@4;5fEqLFN$U*z z6=Xbm9Tgo>bLJX_y}Ys_BLp~yw+jbW!XM`K2t7;xC3%W0gmUBHC z57iceLV1aSz{o`#q<%$%(L&?teAu)3=UXj@qfF<|CKS>UI?KPA%QP>BCGg)rBak$1pUWx-55l{!Izn zAx@DuL&rJg#pebyc&!>0o=;l>+uIU!HhsD?A;l_abN*;aUv3=-JTX(% zT(-ajQK%6))7pTLzVhBZlIK=~)$+2#%PTJan0D)PH{ZRe3v}80_b6Ll#O>qt_G+PI zgIU~RpV#d)mg*VFJQg;?3^XHGj?;b42fpv5_g4ASb#+nnLouXaM~{K$yaw)g)~&+| zMn-qtFD<=V95`Vlo$_F`)cSbES?M#&otF4tYXSc5A%!VDKCktfYoE^WGQViu7PYqd zYFJ~QJWWMo*aTl*eSKNBu?;yDVKlWu!7)XJtt#NtmV4G@C`K!VX~T6E`_-sZgA_dw z=evy?XYIad(eQHPla3<;@5*vYb$x!hYGrH%&{#C%X`>}7Wbju^}`ArNpIK+ zpUwr`d5dx6C4!L~zR|g5s`O%IPsNL4DZ^ShV157Au;L1`Xg=V`AJyb?C$cn7rQb#Q zOBaT@B?p{v)Qq(LQH?iP83_{jX4n&C7J2ohN|oN1*3deog^iL0L61T=H@16K?@cOZ z6iRM^WgxmYR*h9x48K{%oMdeDrNv5q9u^vRW6E-j?=8u7yWI8K*SEav?q2$>wLh~- zAn{eopuPL*=@dT`9qQMf(uO(|;;@~q?z{EDk=8UW5faO{`4riwMC@=*F;DTo8C#vS z>CEKAX z3UI3iV8FE|vq7&+WccFb>a;{Yq*{Cp)fOQe@vta>fN#f*WO-=PY}}@FGvpaTOo3qD zml$>pAqZxm{x#!c*vqtbf9DkBx;I@|Sx)FT3C=1QLh~t@7q@Nqu#fd7g0+DRZRD>} zsCa<{8oy{|G=1aRl;=A=*TGq3eUfblKmR1{g$EPTbgRKhVLaYZ+1vm`zpOi7Qa%k$ zC492(v$jidf$Whd@VZf1+s6>A@)M&6izR{TZ4joW@@~UnWJT}*r9DGh|H_W z&Gu(jdHt-XQ_CE$=`Ciofj88fS$e{SWEIF4;9lRD^aFeLfqlZ4Rw~+cGB}^JL=8oR z7}HYdN$lp?#ni1bj=`Rsab6lnoye6cY!Q9ZQeuzVrv@VSc5htiRYRpptu4+54auEJ z!wzHhyKcsjNI*{T?}bz;^i#B&F!spWl)pQ?arIsR(wzyZl>xKJMu&CjJZ&t99QC!c!90DtGz(b0|D>?Y6kqFGFi1S=}=CuY84C!@Qc^fzO} z*8$C37wLIKc=;|DxuPd!hZd|J8g3Evm>ymduJriYlPKpZs}2&eaYncITe4XLz8AiR zW9P`<->P%fq8)OE+kiMhDC?hbD=%sIz;0hcktHg1Yp{Ip@4u~4!L_OPy(LguO%9fm z+(ZN#Jtr|Fkn{g4wd)R}c|gtv*g$Mkckophl-rs8j===0O3idgaH5S+Cn^Z}Q|?Z{ zX^*v(zm$c>MtaVEZZ%4K_-m(tH9>wK=((eB?m9^gu_M&=`hh=d{@u5?-fEY2@DLEW zx}+>ya$`8E7m#lvFzjUMM0gF}BB9Ht2!&OdT0Q78ZW`2*dqY@7=Y>h@WQ*v$9i*<# z7l9Km9bK_PmG?(@ldFp@??oO(&tGkIAfu0ZbC(#3Z!&mZ68yjhP_)Vv6|O>9Qf<%m zz9uw=(17_npNFP0Z*jpan zl0KQYN$%5TTa-Y{4ir@Tc0(mcPGfxeeW;{f(? zV*l1fVvK-lS9dsMc^H9@gU2gxAMbqyQZNHDQi@(ghhMYFz*T7{VcGHvUwK3d2Hm*>3P>d$69{bNe z7J{vfd!DCW2bqD<{ee*{blhl?R7f-=`Q6hhPk3K6fPxTuY$NQZE45Ia=&mhMFjv@k z{_7p{YTx0H?C2!Snuku>{OJ@rE!twf-S<;vCe8PQETZ^O+c&sk3sNL!D(Bs6))Z8p zjL|7NTq}o5O{^#_%YmSx@90vj0WKe~L6k)rQ;hv9<-=3dT>q z?Vz!JBAK~0M?)tGB~siDo-w^3w**jFA`vX=Nb&>tYo5Ysca9L;p9h_7@_bY3uN!}e zEO%wDMb4z9rhjxEL`T3*V0+uv>LhD08NPEBIitF!3C$O9fm!RXCa^y@k}YBh>nkNr zjKE!gJzR1-W@=;}FNAq&{WfIF_ z4P`&*R?9R?+x78*eVNa6m@W-u7EAdH_9Ck7^&)}flWb25lm5;bq}$L2t&d|HnM&_S z4i?MX_fF&xCl6cW3NBG$K&<_5^0iu|$(z@N)15f*7vrVIJ7BL#VFSl+K{j3Y?EtYR z(pGI9*TF`e(Geo9uXAVnqA4Xv(FPwH;uf6O#zfsrf%NdBdtt^jZlxgCoa8x~TSx>= zHxyCv8=BT1R&VnB0%4V;qU~%32^;~zpJ@7u<_<;B#*ZVAqRgMPY&Rf21mubs1?)E< zxIjcY5*`dwo+8B)E6jqAy#!IX2=&#$>WhrQ_PtJ40@~4uAUvMhulSW^Lr584rBIBJ zmk41j{_q_|88rM}RbXUqDyBjH$cC>XdSRJHubVAEsV>X?<^aLNRsD3C0_W!ukhk8w zQtUccpXA%rtl5z@v&W>=WG)1cw>H*XN;@@X$ttgEJ={6>HjHJN86V>o@g=e&HoJDO z;e(?m#~4e$e0-v_baWG8K%lrLhgR~YFbs<*m3Mk5TX?VI=wM(|{IywuQ$ta0qspJC zjV?Y|rUfaPGqid8&y`^$5tF_fzH+v5CEtwNp3#MGdMmm5^IK#BuS@*r7s2hvSTvNH zYF8$boBp~h)?&s+0p`Un-(TD{NR&d`%yrlv?F?;B-RgVTFgJNmo}`kPHEPg;uoK~L zB>O_9ieoI3P9Sq-jV%Hld~dXV>vFx>cQw23ok-Q#*1`!`B!hGxty!aAK08AG1HhM% z+sLFY`GX)Pd9JIdrpfx36>qWAV9s=LV?zLaO`C>T{mk&c8=KEQQ}s=XpnJ>f^vlo5 zHtM^=WY+mF5N#vY^OUkb00B~ETDUp`WI?(0*u6bgKfsIvJ0FIo-ZhQ6sFrzYM-RUe zMhIm_u3;K#0OtvcvCc$`0qwV|yddi#EZ=UDeS#QbH2IBZ(lp3E*ce@fYSPpo#Qd~M134Y_jn9+cBkuj|Pve4Hv=5m^8s z!eFMSon6(jXf|T{_I4B3{f2SB$EU*pc5{lM5{ctnh617Aos_Ca$8b zOnHt`TWH*AWD5p0G;cgolPY}y7~psviDe~Evoq>2MD#~4fR zUi`{#RCWNi-pC5|Kt`I1VB`oKa{II9QwW#!r!@}3L`2m z=j*S%*-YB1#3QCOWjHo*3+Lj%Eno0)d3%A8H6~au?6zblkcah_S15FXVJ+Bq?x?e} zQ^5^0=3V$d-Wh(<=BNe6`yU<;z|ifj3wEPg^Qm(7b!3V`wBXeFv#Fo^v!bU@U+!ip zn4ZHP;kn~JWuZmg$@)Y;3X}T5xY+T27d%TfrOd@rqe@cr)%pmZChb{GR124VjZFl6DN!?(=jayK@ z*DB7%Ih{rWfUo*0hC`=0m1$^768PeLN#D<~`%sFF5@xB&91Ubm?E<_Q<93pP<}f&u z7L<~+AE5MVCq8($mE#)x6Kxnv&AyK`=X4ZNNanQ7gsXKX2A)feWA!|jBqg2h`=X4W z|6#cAxw*E$Zzr#YhWMn+44-ektiFE!ZKr78iz5<}U!>#9ZdnLY7HS!3TV1bDX7I4_ zKD5C1M1-{lIi)oPrczrFxLyQ%>Ow%bkUaPcz?RZNXlS8M-aD31gm1URHLDC5; zCE&g~ATab3|M{vZDRTtFWAAp?6ajOAl59LaGXRhevPkBAml(SB@B{67)n+94bqtAN z67_8w0oReWp`P0?(g@%i_ohlg?^Afvln3@TF-;{=Pp2 zxT-s~f|1c+&<2_sz4G|%M-r%^$KniBC`NJnGdH9MDN}(yxE@9rDMlVgsdnoVWoZ8l^#1tgk94KHDWOf2)@upH9RN zEgc5R~Q&ZDg{t2iOeMB{U_TrC!-9d32D$BUXqAMGxOFmqdpJ zVFyZkgzb%xCjd-&nFrOpJJA!S0{fFqX&{RNvdIap+C2X-i|D=nl_&3?-1(aBX71Ib zHV|9DSIl&*!=5{9A&(VOJsUUuV;|qlw;j;hHR2yaF%wKGlZmS5LUL<$KW`=xjcUm~ zt9m(Kd$Wj~NquUJp=?`M(qyWzJ=Y#&1p7l`1>153L_9K4+~>DYjD|K+Sg4Q7Yy~mL zSPUStB>5U}%g16+&Ozbz4m`V}ZQv65ME9!7(U+%@5U zi83SvI_pl`(Y&1J3|vQzT!yQXAwvQo=)!#xWI$#_FSL%blC6}+%L#%?*bSUeOzX5? zG!4*SjRb~Jk%S-?<5@^~=FCoXQ>cQl2e=MMw%$!>aSs6Wy@*!QI!CsW$u(?159)v5 zYPE)FBygHr?_im8$@_TfXC2vDCQiJ7U>*tcaE>4#D_UNNPu1d+Xxib6lOK+E!QvU> zeX<26t^6BH8e1h~%vvnP?g;SlQ;eIx zcNzi;o7S!JtI_;xx5m3@wKn6JP7+P#pc9#B&Qd! z2TT{yI+E63gMGf4B()ZUn`BAez#S)CI@((-&(j1_u%Bm3R$l#4*w?v250qa`lRw8e zS_aZ_zp&WW{E>vHl=df6kOUQV*kUtB#~`piPH~u@HJfe+t1oqehlra4cFC?gt|J0qTN5?-eFP*u9COL?ESCa;L^BIq+$-p4#yH zhG%el75lwrP>t2PaOD1gG@45Rpo;~L&%cSFOE1Hw?zuTC!rOZ3rkoz<2Eak?@;Mo~ zo5Kj5xT}#X@l`&;M-C%I58K?lNaUocAD8~A1NqS4h-UI9s@RhtM{mqevDCo%rgH6`2_i$VKsJM09+s$*o-GTEt|!`q0EV95YM)L%RRCylJAPFi&J6 zGJW1>n%chZ`P)eW&1s8H=RxMrV1P@Hd^Ar#euJ1g*?V((8mQP^=~74FCQmhedNJRO zi`fOdoNYdsP67GcuQs&Vi>B6{=!aM@(a{Zn6r8W>j_S+k+?J^__V zj5oBA5M(`3=N{kQjd_>@4nZ(wTRUm7RYrdFW6?sv{=HkC7Y zV%VA{TgACr`4p#|Wu&Y_KQ43`ovovgH1F6G| zt1lM&N+yjz?0~8haj}J!@DItyL#C-?C9=l>O|4M9q)NYSviJ)UvvNlQHsA7-lNLQ8 z@S^^H%A4F%dU%hNw18rS5Vs*JM&2`tC`>66Xcizh|bzG z{ZFqH!j2V$Teh=vcU}*PqHn}nM43%{9M_vQXub6EUF5E5Ny0V=1|zuS`|g;UONslE zfJco6DPt*i#PczdDLFmCgy}c5mo5vO)@BH&N8RG@yL!Ez2xjgeZRHcPmJdtgz&UXuU4Gx4hbAY%7fM8;^YIROZL=57D# zuENzZ#h*dJxVkCfV3QNZ1pN1^JhlKsX>_3CiOk8;PA7>SK5;=+l6>`rCf&TIExx^! ziC;yNqd$=jS+yI$8`4}M9~LJ80acFUxE&2MV5XLKw9-7hy#eplcYPl`cJI*0OmH4^ zTG7cAV)Hu|KaiYvqkg6~kK(Ef_98@{@kbZV}52v}K(Cm#sXXy{d-S3rmBJ=$3-lzEU8#uBEz_ zsc-D)b4QE6zdN5*Jw0DkYj zOGsb)eZmNK^fPM}-LGakfm2!KPLn0$t$5+Ba>J{>u|4SEvc9&4b)1tHs{m_H3v2xD zQdH6QuRC#a&*}PIO9OF>_Shm1r! z&t2F9`R5w3Pbk>!K>=`FGGqKmm!xTJUL(Rj(ptxj=fY>S+KSU$d zS$4xmb+CrNo^%=hh|uE9$WeG9UZ`2?(ZWo*kSIA*e63PmUleUE@+KLySP1P5)*4<) zv|uyNq={cFy_jD%5pUf6Qe9!uaiNzg)!QiHDXx|7{8t0R!sB6UKRdWKGUtDMzVfm3 zMAvEDJnf~#m_{q1hL|HBCKh^WFo%gr$=cZK>%9r4qGjJ01UvrJy~nwYOcd93@6^+J zMmR_eU$#~rwRSOWi=J+E&}Mc2a17;Tj_lA*EPHSC`=J)kxwSN4+K2Sq-n~&lbQYO+ z*y9HEDck7PWriDrE?S^0SOBEOOO}UdT!xP>dC>IM3HTT}=Zf*_z>zJaz;VvN%8VLnLk=nMWkeXrOeq^#cPpXm3kv7Dr31{@KEP7S;7_{@hd!6Fmtm&4u`hm*0hKJwJD%xCp&V=N57;) z08+>gX`#i<4kQLsRraqU0C0!kLV9OVLMS%)`r6l<4LY%6KceU2r`7_oN#}slOR7sC z{i7i|dFNxJgkn>g%KG6!CkkT;w_aP0So%|QkO|dT*OgCO^2B)EZ^F^BYtX zrJx0gaue0-str3IO3o}qJXb?VWNxhx()H&8VSRF;Os+(Icv4a(cDVz?6Z;tVmow#q z1^4!(=fGV&MlhNEF7MQ)xh9QDo4|1+YTj3&`qVEC^o)D(qP!J->u~10Q>Iq8`zEPH z!|Jab>u77KWSc%J%_#Da`gS2hPgxu8VPr_;l$oEKm@+X5xLfUGl-%D3i&?073IRix z6DC*Y=9n%eOfLk#^lv-Kwyd)xhjR}_*c)K08E0R1kMOhbe0?x=-RXt(_+kF!OZ6_f zw715Pvp^62Hek{#z5BZr|4kK{nRKpR6^n~jj<1{WD1_5ojb_of0!1WKJ%{YPi`Jl7 zBPL(2cWb$nyQUMpy(juQ2Fkq`Xdj;TKJn5Z@jmr(NxlgSbHQBw*dIyO0r_yb<&|x@ zNIJ?<&*#Q%x)mXjPba<3h1sKms~+eiSb2E;xBc$CnU()3%Q1G_o4ks<%U(m)Dtg63 zrcMjF=vL@ROp5u;H4iN$hnT#%uxZ*dQ zgI{?Bwzgk$>a@7F7Lp-`_Z)!TsK%zuUxWBCv4p^(ZK)={^45BZm#SE#4+dXB-U>MwqU+y6*+8Dnlb^uzDk&bcy`Y z=i_3!pw;MLcnAQbg`{HWnAtvr+-_Zdkb3=(L~vTp-U9F9WZ!@3ER$?wc$1mLM>@$P z&9sp@E93f8SvH|i=)mw7Ldv^lMU`%bjtPkPX;4)b%aKj;xNhXYn%=c6&z)+!A->x3OysFDOak`a(UNOhx8{hy>5O_SO!Ca143 z1h`U$MYQ>DdBk~4d#m&is*JGkpbNqi_{pd#6YUJLL_$wkoU$h&9(3>ml0C2QUlxxJfY0~J`s z)C% =`t2dv*H*;NCJ2Hd;Ac)sbM=3DxX8zTP9VAk#)9((8X^Wkj8=HpnXz9rwfNbfUgi` zp{rciLvBq?uccrM-DUv!Fz=596sn_U?)NrcB!!X0AKPPx7495%fBcTO&Rg-lkTtg@ z5#xEaP(T4-T=qO`jT`gLW_7&|uc6o!R`xIxHJ{zDUH|B!Wf*5P%PL+n#<0E0Jl@65 z^fmw^WTS(Sxl7$SG$320+}yczv_@K45SRLJT-Bl4db%h{O5Wv4ZVxRIk_G>v1ID*Qq!AsQYgUAb8w}|m3olRNz;AH zIsQd2G5RoH&~$XNzWMHtj=1QPmSnerI=6aRWjM|~0%6ZBcs{RVoO6%2PV<_u?hu<^ zWJp-iuHJp{=uyzOb&kgBl{y`~Mq(%bPK)}d7Rbds6)6}PZt`+^3-+_vX@=kVI@FrK zc381cYcNUav5kj96=X?5kA#jR@GTRcnVz8qhHssH^6)KC zd&6X|#uVikYZ1f0CT;u9tI-ZLRjh@(CnCuj>rfPNKtp4*KX+|?WVL(o||bo|M=YrRsFo(K*G^(GD;`7 zD(Sq7w$6PN$2Z}VsWnS=;4tejWY}OP}T;Q5}hFfuUj9fziHk+KIX-CJ6OV? z!BKdxM#@do`m2q1ePCfe^BHTZJd01{ba5E?UP@Gr7tu3Id^#AAXkZ5fZ(vfgMKZhmaA0GYjku`WPDlo;C=oIUXwRxS$aIj1CEGqFrWWH&B^0Q>~a`f4KsKyFv+ zn5P>=B?egHQ<e?T}X1VA&53qVtHq(DL+)N*D*q@^)Q>AC{(^vwDz(wLH?6U< zL5zaRhDuw1nck%~I`rRrxmRktxI0d3x6sx-bIM9ZpL~Xv=}n0D5T7M?-Gt1B4{LAGD+5soawu$re%O>mI5qUkbuJ zF15pU>?&`(DG0T^q)fjdJ9>Wd1x3#t8rBt#{JFFHRX2JL)=t)NBA3mH=urG|G*m3T zYc6S@)>{4RExDR+Mr;8B$inmK0kTNBMg~}fv`gf)jb-qNy9u*sPzCmal`S5W`bDBk zaV4PDo;2r#TH>6|n>eSg&t*kumw}S8Obb)f)|^Bv2`QNGdR)0da#DJNY$uloYS;~O zQoGvgZE7cmK4N|1-y3A!A$Dm6kK3o*m@0YDOT;?!*Z1K_2K?u~=W5>|H)t70POk6> zMUy}h057b{2Unl&BVSEOE7ZMIMpU$e^MoXzrjgNat<}sMBi$DPq){gZi#yyTco<2@ z5KE9oFG@jb@N20A60rp0!xu7W)U0S@-N#dFO*;MdY<}Jla3jdQ&bF|+$2s#@B$@N* z#Z)Zcz{c0}F$q(x|K`0+j%J2Bgx=AJ+uj>WeX2uO%24gxld9M3&-aG$g1UcPh2a?( z00VTl#;j@Y-nh@H79e>05%t_qyX+H2#ZMGLDs+@rY-8|7O{?n^FKUKMpMJLr}b93 z`zf40J+!pvDK%`qe~K%W|H4`|^G~fqkCmH2tV{57*1x6ll=ydZ49oNNL=*b+bWaPm z7w63})h1KOs6nQZK6Sbh+9~{>jF<#K41kZ$1ZND7aIlcI*E5$zUHl$ikI~RC+dTU4 zs==RjjuK+l*uOz-x*P$*=QoC}LZ%n`9ByIGIlQpq8 zwEy!UU$;vqQ|wX2sUFrJs+QMi=)WEf<@0yT`(tHxb+0uVgi6qn$W(^`Y8>=;dhB1C zx%(p{6P)}2scNmGM6HFh5}z>xAsL)f->H>e>!`yWiQ~J67tyS-{DKoL0J=XQL3fH` zlCV)Cvi^NzUn#eSQ_`ORsGP9gB=}z%cPBAo&YcVaxdkL%_>RwqLJJ$+3PFP!JmVm!;3W zB{7~Zg0{xK4=Lsy-@glvp(JZyQ$z0ZyA6RX3zUH$&j1=5psn8(*asjE(ADNHf|p=P zghxP_gmyqNsGLdM97HA&(EFEvB8?u54Rz^mpGboNsKcbQyK?i{_sBeRYYDS&$nP4O zU$Jv{n_8SC(hL6?#-9&=XTfdx0*H|k{%Pp#JKTR%zO2?JkN$1P17w+Xh2!&;VT~^= z88$v}@#`H~HW83DSHzg*gp)FARg>Zk`iyY0nYYL4NdRyT5@5{=tZn9tw^#=mj-H_( z676`Y4jHdo6`jmz`@S!LEZbOW8UwO85lGa!of;sQEZn)xnsNI z>n{ACxuS`4g)j%bk84jkSRXWjzrE~g*vhKPWveHOUr$4edIg`jalwknY`T_8Xrs-2 z#P$JvqP{Wsp!@}jIRT!oosXiy^2z(0A8#BJuK3m4^VIwYW7gc>guL(AY@ZY?3rIn$ z`owk$9mDmS_Ag{TP?2zTb6{%@0L2b^0^5I1`*<|lV&7EfbdB~i2|Eoa_7G#dB2_yH zE`v;CQ|JaXN9c{a)A5pIoj1$c=73(mDRi5LToydP_5fz03&`FQ(-bsKu12mkh1wmA zdhGtesHz8}cK$j5=^^*0$SS+^$3Zf~&br}rFlu1Y!KgL|tKxZh@cc){q~}M%<7!Ag zyoZ4wagBv%ia>?*-oB~>cc(z?yL(*gfxEXF=5*Z5NSnS_7o9U*y`_L7KD%dyH`21X; z(n3tROWr>ROYJU-KKkJnF{xYgJ&F zXuYgF)f;}Yq*5U+p!sn%Wg+u1pxSX*x7Y7Ur5%h_EkcRdSM-XrTbvBZUVJ*0MnT|U z6Wq^tC0)2nonnMqs;O9JB+9j{HEQt6L9yLC`;N6qH<$W$D5+AiW9iA#@I!MpZf zO9SIv4vzMG@xjr)E;z7l?*rTBF*~rbp@IV|!|mI)VyFcvwu4fty3xMVN;3>ffmjWd zX*ydExZd?Ll9d79ID25Ft=0!t%5v|(3oaaZfm%1o3kcgyz>UBQw#Zf*uDc{1 zi}WJT2daJ*=NltC-!z=6nN^LW4ejv@n#%oxD3-uj*)BMgM@&Q9>nr)1>dzb#SBb-hg)Q0z#vv6`Hp=_E{HHr5bk_HG|vc;|{8 zi!t55N~F4rzf%Ed*+;b`+^|k3X?N~-X#tpHknvO2-tCM0o#-Q4!srweEkSDj(?D** z*I@p}Azk~AQSb4}LTa*90O$Uf-;Z)dS`IFRBNO*Kg>PV883oe@Gl z<^xo1xI-{Ai))vC&vZ1!$cEi?ajX80--)kqNaHd0V8ch&);DEb;~fI_$m2oXYxt8= zodU{*X`}cPnOsWT5E(4-TOZZ(Y>3pQFZ^1$5p4dM%j{5h*kb@xwJ_LI+9aIH?bKL* zPQb!&wZMW_IH4^)h!Ak!pp6J&=@$N`6+gsXU(cea$h%;3&UCp?vQVX^B;`q01w;E~X{ua^2$!}f`f^la)rwK%E{Qv>coA+;>3Ofb9Qvm`K- zY*V1n5Ter_Vv>C!?ebw#-5fZC!=Zx+UUP`#rUHA?*Wb8J`>8d){llC9UXoVJM3&w? z&~GXS0FO)mFX=rf(`V53NjX>n6-a0I!#_UJrTd8p+W6h-ZOTCVAl=QV&&_KP?Lqpe` z!PD>g;g%3kZOT6$Y1JoU?YUtQDkjWe5G=}_PO zy!7UCtOao~0yOS;e zRJWdY+K>g&Ol$k`;$UE1dN-pR2JRQ%#wi&2V1k z7ZDHD7zCw2f=3U&HqoZO%Wjch-GLIqEa#h@1A)Yg-TF1FqrEtu0g6|JJ>vpEQegmb zWJe#@?KkI`kpIyLv*gGzXHAX8TISzt_IHD%HHR2NxpKbc<3}+jIU)lLiO=#uk>(j6 zO04#5>Kg9$wL?(PLyf7}#_IR_=P`!|7mffV9v?7(|L1iUp6IHL;&7^@yYbzV`Uskj zLq{w~{}hQ-048yk>VQeKg?^6&MHxuycp3sZtaPd#eTK_56HGn*5t3Xk#L=$LrZFX)PR z-9WCcOvC5sLE-;dyq0T}U&i_C;ARK#i$UOJM2}(7B@g zfqWAw8(q+4>vX70**1FCCbpw&Hlpdse-y>`6N2ZCbBb8xyUB0sf>+bpL-cY!_&tcB zsFh(kdSm_Fp6O+ZdQB<2)SQQMeQ?8*hv>UEk8_sFZMSAJq|=O%H1*xNyx(ec0>7nz zq?NhVx1P|Z*y~bxvQ0z6;hTurM7w86^nMXL46lVlkZK(AvkOb%V2GBNHs3u_#y92bL|wnP%MV{}}RQvFFRV(;xR?8`^KI6O<{4 zl(BopYH?VISpM;fF9>qL8iwW@H|GJhr=eP(1F?5dbSc=|qs@b4rT*~}6AWIpO%l|_ zzu`2#VOOeRxa?88u(saaF-TNLMrbaCEA#Fz6WX+r$VulFWG1<2K| zL1+d(UOqnX*1CSB@xuyC$HMLBIi^~f@GP&7z0|zIacK>!ZvaK2_L!#D({p}0KwB*bn*NJD)ht!;_*+4SnEkxIzYnB<1yf@L@?c` zrkE?Z&yI1OV=83cCu=fg(_q(U3sr4KYw;|!u|nqeKv|6OSjyjaQ|syyjeuGJr{|1N z?5$0U{w~}KQh!X)QX#wY?<}_|3Js|M;OWU_PTdDQghpmIMq&wQd?T3P4%+^pS+dsr zPB!_+t$g_CB%8)-o&fDzE$N4~E5dQfIMKQGi+}VTAe|>L4EIXs-aZb?eTpkMO9x83 zdf4i=c27k@>3fD!GcJg$#@LVIE6yeaM=gCkb?kL}w&0|X(yghk8`VAzo@##s*-^E2 zJs(NkDdZm=+X%UzH=U;Me}FuBUv(rk4oh!$A1gn)Ui*}pZ9aSOW?YneK?UAm)GLrO^cN<7g zPxCGYk$B0l8dyjHuG_cUm5qzMUmSLos@6aF%6E9p|wHL4~yT20aT^~mRod>e(<=`>+KA~NBmY;tW>S6@JMyKNa_p!r+C!iK9BvM1< z&c23na>UW`b}MN4s40>)o4R|()Og>MG6KFAKl23&O$vByDy9V?jCw&K?1g04ML0sQ zY>|AFCvl%-YvGqUyT~{x|KE0txEpBvq;>Ags;k4H6&087g6cbwY=~md8HGar?r!YE zYG=RLAVMOhU}n86(`+_3K?e-*4mQP_Hf+V=HFB`9eH)@sN#tV+w)_37{e$_B~&WeQr7JIXpDVrwPcwrSt9OI zDa#0D4|j%9mbrx{TQY;ekdS?Q&NYMj-uM0cexK#{yqq^PNgo5Q*7gA=y#NZE%mqb4jIJvVL4tNy`lEVBV}(5 z=?|8sL)UU7WNL&kl_r=O*B#c2il{Am5*!&F^ZPpMuXupvtPhE=^4x8|=soo=J32%B z(wH6y;@bg~pWgHjCL?SkMexiO{t`8+adBe$Hr(ABEC{3Q7h zWwZ40RzEtjC(DY{fXk_(J7sy0Wv9W1aAtgHM2&sYr$DetS& z#gysJ8OI2=d!EnPA(5BsVd8?75DU9BH`Z(7kRv$I@D!Z;xJm0!-oUt~J=^LxHNP3F z&G>5<@}75oIvzYb<3Q#qxS`#DQ{-WB^#c>>nTuTCA*(XhBM?c~wOq5G=*KmO^`2Z2 zyJ8vb)#a$?L1o{c1q5Z{d%XgYcVlW83YKP!bvbkUAR8^#+U-}5gfnqwWEZutNB7>z zHI{AU$qd*u1q^vsXOEX?LcpLtShpT_E!1`bjzVuz76+iDv3{1=ll$e&2W5kLzz9tY zh#&T<+;obXxkUo$)pN?ZOJZE@F0}NvIr@Ok(bY8}{iQ+Fq}v}DyC^Fw-xVL3Dqdai z60SM}KPJV-*ts+K`)L6^>gv+3I&*0ncAMGSTJXJAURV1WCnoe*j!L<$Eh-^iB;{l= zR}Y8OXT-S~L%Ic>jN)qeLZ$Tuv@L21w`{*m-&C-+R7E;x#>5~H90Q=cge03BU0vrL zy%K2E-NSl(jin@|bDg>jos|f-G?E8l3%f6`tI(a+N0>8KvIreqv^*gY4?!(KbtZBaR`n}?ZB@DGH4#^TU_4k$wU+19j zLS5F7zx6a0C1nNNo~&ELw=t>&*c__UK8DfA5uWRYdxY4R1%3x~;9dNa0FYCXR(G`A=f+pQ3#V|Bj%6hB4F|3G?c$J;c2d;nO6 z{{5s%wFT~h-mSgD&~hb_jM3>IhoEKl8{de4BL*zO1dRCOl!bi0OsOP6TkXnNH-Y0O zG9;MGQ%ju5bg)2xUw#A3<6LUdWO+v2cvJ7)IQ&O!QdR~y3W`==vO5({QBXJxwxyE! zzRl`<-Y5ML$wo++b-VlLguhYmqk2H|om>nYer;QN`33;O*x^-Hpx*OsVAvk^p(2v^ z?qd1pK4ikG4~xu$_FFRGqaZPvaCQL;Eu+)~8vs8B;_%3#>@9-$gK1+A!)n2%V4n)G zIgw<7Xl874Tirkk9ptCjGeZ*wyLxojHf!QLIYr4X43clK0*0X^IqjNRdiUmjP?2!( zRd?s~nev83CqAb?FE|F@u6mQqE5HJaIyRvt$DdTJ!8nPc)Pb^$872D&!2MZ=0EP6nMsi~#+`z~5^e8kk%We| zeE^m7a-{-m=51&K-WsFNv?-Di!P@KdJ|%#S7wlmI8~B5yQojrFHI-&?8o#&E>Nd6nxo=~p)r zx!wuy-#Lyao77(Cgq2<7ZQp!#Grwpk-2K|Vq=vo7?WGUu|C!?_Zz#`YCnr63H z0Zdub^3lL)GA0kBboEy8=uqykfKrsj*OZq7t0ji@xTq8klz-TXs|z2NrnVNHQLfT> zu;ilDMl)#{zam;&s(#4y)3-upg1<_))@Z2lL;Ub|b|TM?tn=Z;I<`Rvv=;-9SH#In zk&(<+si+(({w|DeZSSc?1a;_{#!X(U7RrAz+&S)1DfD9l9XajQ+z?PMfB4V?`a{K` ze7DNT@w@@0dJcu~kuge=YD6S=l;M2~wC{Y`JW-k?5*Wnl^Z`_57j%HMC{o57&TML~ z$ZOtb0+{rsW%<-u>cDX7^zUxf!V`Epd(Q_feCL!f`cr#PjrOwKF3y)nyMFxenhL@6 z8h81Ghtt#6Za(EY# z2j83O@!I{#9B@pypNb)UB4xt?k?EpwoQi9p$*^IrMYmAQt&Z>=y(v-so&=A`x^r@O z1OhVK4hQa~v{u{YEur#LstGaS-m;y6BrNzuc)1+X3a1LNwj4_W+Zvkk-UXJ&m9t1u zh)wrZW>eU!<4|WL(*`SQrNxPrXUOjAINq3N>L${fucck!)^o29RhhUoemdywRZ>XW zoY^N7m|{Vo@1iL00L(>+U9>-+VVPgC8ON(CAz!`|rxI=L?=Y{(z?o{iL;SG%P2GHAeFu1W4` zqId<%a-sK)o#AyK-@ zCWCr3um78EC^oX{$sXzSq!ect!pq=;8*;nLSnw$cug3RZ1H+`dP7*)oV|fFh()>igDWE=dqj(EjMx3-=2@4^Q>cffPKn)9AAc({E~%2BZd} z#%@%K^DiH+{%COA@q?&%l`m5YedsfUq+s{_vf5q6q0%akdcLOm?xzH6_SvLPNu5~? zO`ZyU8`4%X{pv#0?EFmrMz$3xCt672m2d5_7{UBDj_6HkE`t8|w3CllhAyfOWp5s6 z!1lDM77H|D8@J~chiX$d7ngu#BlRG(%ua>IqBM{IgjwI=)16Ad6<@{K+kHaU0XiM% z%@}=QcVUW=l7O3$8%IyAD$0D!r$^pUrocquX25r<^(!ugZn?w$_t-o63v%tIW*RLT zE@&GrMucEoFpXS!<)H{t%WsC>=2Wl9;1YaNtn7}@H%>qOXFT<+_rHsZuk1eX@@ z1uXc;<4=Qx(Y~dWpgaLfbgS^RapBwhw1W1Hw%nfIFp-W2ua8>aKlo@jWJ-^>o1_WD zRVf+C#sEE$K^yWrJvW**q%noSdb)tJl7z~-b>zcp4DXhyVFUii)HxO zWvOA!F6SbAp=fE3`tV70t`aPBE-= zBPj3v*TuJ1;$1)7+q7qAog_{Utl17Xli3og$RHcT!mEb7A_^^q9`FE$ph0!li5~Xj z;$7cE%U>+#*$qtY5}sKzhvC$B`7fcr(C0PDQSEPJ7dRB?kkzY13knoWu_-7onJ)Qg zy-%Q6n?ViNQi>qAzEh-EuN7|Ym`T*i=K?nCi^q~x0xvD(OJg9R@z_F{_ke41k5%^B zUdU%uI_J%Pj%ir4n(ZOfIe6p&{%D>y^V+sE(Y`k#j{=`zEHI4`8O_Y){Uj+gls{cM zO4T3mzbX7i80~QE6P7<}&&uHzA#@zWkT(z&9>S1(LZX?3DQ&S3g4ab)U z?-`aj4tX}ZbQ0BV@CExZ1@D%nQs=r++oh2jcau|>@ymsG$Af5+`%-zB=6bGv-*A+) z%2B3>FeRxb515*$bVng=dUAAA7mi`>foH)AmW;8w%RnA7e;KoMOoQnE#a$?nFnVku zYqmX2cc19a#Lm>^%;i5q#(i1YNa4l396m`Q-pwC}AuZ<2?oEN5Mj3v^yQE?V zEyn=p0_11ymSuJ!gyoJf+(Vh<^N&reh2CZihw43$yMO}6YBGi9rewZYJGFt%9UW(c z9w~Z@^7>Nz%##qwyO3pn7}qm)L?!j=&909>yxuHG#>FHzu)Wf;2A*-sCxu@2oaqv< zk;^F)G=@v~Aa|#z&|F%h&zBG>3!w$=&Qv|+)K-0{@#HB1g$ONo%=DTA14p)-F$PuD z*@u19q~(uEA;@J72$q*9_rul{qi5Pm@GY~GK_j~O;!Ad_6x&Bjrb?4E$q2IwJLW(X ziwNMa@`G^zo|2QDiX2&9)c>iSVSdNVLZ4n|cu{R?mrsO0dbJgZp#64QqlttQpI`s* zYQr5Ip51+l`|3t{2_f-j88ge{t^@Fehr?XJv+F-P=Rm9{$Xph|)*7_=99Z!0pk`}y z9eGuGFST#<$|nvkw8MN^2eB!(I`tty5X|99F;-Dcs9Eg`!MtcNhIAI3oYkj3RTR_h zp><=91Da>!yUpay0~BfW7Xp}qre&$X338rR@RRE;Ex^u|UU69lXTbptfRKXrqRV7@ z3e~EYIYBE6^>4>AbWBU>4w))B_V{@_uy}SsJgRe(D2EppnX?A%kULuX?ixTwpti}~ zW~TSZ`Wq&ND<-@Ri#%1_T7gBtsUA~BiV_;!#v;FrC5!u&MQMmjQE)|i&j^0WwMn#U z+}&$bYn!xbGvLD-;VDjeKH{*8O5vC3Mpi;Q9IPQoaPOYA>b*e@1>OsCvg5x;PPN{K zfY~vYF>q)+g@8@V_Z}-e*)sPfOoV5g_+dKWn8%;1a>@@$dB%UuvP64w36s_|`sD(T z@SX5knO!~Y1z3kIhhRH++F!YUQak`ybIB@>{nwuMN58|U_v18 zu2*8o0mk0ng#V!Q+Z_La#OuBLD+LoAg1IK&t9h%$bB}NDVx`ABrRq^jHLOi}6qjBY zqP-Vgt#gBP+lrAb%IKIvZEw-v9+b5=PtITb&vqiO+RY>v@}j-5W=rcd(~ ztswE9Rc}UXYF!wPcfPGOZ~(*w8R8z6?27z?7nQOCh32^q*nOgI===t{OR}^MlDl?q zy!1qLTuq@1i7IPtv^!$XT2Lu!&z%6H6X%NuN_fg084l%G`xvl`FGJF9MnvAvq=heS z=NX?fYr^D)8-BOyUChj9!TWu4sdyf&)^{5DG0nX`;gYL(^Xnp(M>{5t?It6I#E;vU zew#Rrn>A_b8Z>R+OK;RDm7~z50@511s%oTUwkF>n*m3EGq!zi4-u*}fz$^_D{Q{u` zUbm~8WtLxBOAu7qB7L6n62fR^YJ&k?A5hziKYh%e-J4eU_UYu^&7_Y?q0q~lLoj~~ zW}Uw`n_iOe#z&x#*O;wE7WFP;*1P=dci*6|1tz~uzQ;=X2`QXD{#DQavws~}UR2MJ z=zeWXD8cl4LsH1=YObD*LG9>7pdJZ6e|nZLLHNiM012RYn#nx{IS!ABH1&_0A~H*MnH;?CVw}e! z%m8fxj@^z8zysk>UkX@I6Ze&OU?^9ATxfnU6uCSV>0Q{!5hRyYotG$Q8(TH_Do{ID z=%RA{!bggVe3^9Qmz!QaW9lis@lO87z6vd06?ZQ`Rb0r;2z|=T!dvBOOM!vTQS(gn zAi6ROC!RV75Ll35Q0J4}IX-{j#UN;>bO)SK5_|8*8vdB9Nq7!LNm6vxTynjlsP$MHBRJ_SL(V!r!6fUr%ZDPXeYN9)49N9jSr#wXM0;K$0C_)I zQX_TN3QgO>z8)z)JQu#|XwlSCsZ>{y{xwICO08H}!*_(B^7o3k9aovipvSVJLZ@o2 zGuoY)y8@jfYe9U;GwOpfMrW2^KWlBeyGu#33PjV-xNkW%1=?tuE4kuleFJZWecmW9X_|-N*V-W&n!Oq@Ke|OCT8*-ikyzbJJ}+OI5-%RsG$A*f zP3pg0U#O7Qq;Nz>kzyOYWV+b55-3_^SUfZ|HY{yy@1jZ*`l$@mB`yP?G!T;zw&ERJ z`sNZ8{sJiJ(fP=Wc005c2j07vHZFs=$v?m26`JF$z>aDkKFub>I=ACsFXobsTx^2T zB)HlKfU+vJUJP|?di^Zj4`;z0A@$-ex5~nBAH%N$A z1*=<&@YXsVtAL69*l>V5`hh(^|4ievVZ2_qG5f2lRzV!fWt!|Rf>vn9`S1@o>9Yfg zxq2q?doiX6QJZ+y1j?dEaD89s0d+{NR5jZ7;fA(C$kxlWva>dio>GeJ=BK)0oGQC+QRSC)%9~KGGY>Q0cp%(j zxXDoth7BHPi|CQY5jm!NEF}afna{+(CC5`c6V)Gb7)qLA%zs>g?ZcDibr2NWy8z@( zWnd<_K489AFXdoxbS>_7%jEz?a-y38^eSU|L!XRC}qsa&r>vugqJxtzvNPMI!xVZO|hoK&?bK;m|R*s({`S53Hq*Kh=+A z&a`nEGmSANLpdx6@g4yRYSK_a%9&~O@RgBTWy2))le*ArS%L4=?je1W7(iB*y;rf! zTk2%*S`blWV&u7A@$&432!Y!b5N%MF4WMxa!RdMEEJu;D={O=av+RSN!$v6lv9c)s zgvs3d>>$Qe82mR~y=bhO=QQA7p>%VB!`#1PK z1WF6-s#?c9gA^o3)_!D0CMP2`7DICtzP;5c&F9!JK)#F*HRZrELk^-J`qt-XaJy8J zK{seo8iih1G~8*jt1AAPliMw7v3peb(@=U%=wVxRDdba;jnCsreIY%XI48w4^B&_% z+{c5C6(( zIb(m$@9c$7H;WxP6qD|Le|RoYR0M3p%6fbu;*PVuaCvb}qa-v95_~@S!NwsLV^~vo z)BAAL0Wthp$$ZmeU-imC-^de2rQJ-g$Y0M7ak)WC?oT~C#|=JBU*&|ApyDG;RYg?E zw^36Pbe_tDHk?wQ7o#yAk6Ok`mqOEhp9kKZXBk$VnY{t>6d4jbqbL9Lq*)_2WE-FU z*m|)9GqISN*jesLUGMo6mlZSkd}spjB{$`Kwbcf zsFb=!I|Iv8;THo5cBH98JHy6qgwNjZ=C@H~2D{suO8Vx+4oA{!+~3qa3w|S0MQ~Fk z4R)iHqN-o6D5Z(c?Nya>oK`L*6(p0fe!$rQG$D|2#xG133T0G9@IR2tS_mc3! zSwhroe&S2j$APcDTzp!D7sGVnO6HUW_V|%y+d<&>_^F(##f#NIy=0!A{)%a3!1!Hu zYJcuS zEWSydd>E}37#vbPsz8QnyHM-hXKX1%jX9EUgRQbV3ohE|%k8ABKF(gPb{+!P!8rHWugC zN%mHsZ0Vg?5DfrYaB0v}5KM~kF4uiOq|m|=!Pw#}7>=~q6{SJ1%9GkuhIOemb`(23 zq?zJ__cDl?-35gW)RrKF*9Vy9UT>T#qye#Sny(RA*ipgJFw|t%7{@f){VgUXwB>j_ zVE^g|ruTOIxME&*L=(}WGIOV6^_vhJWys}`6e$tcayr39!L;nAEFuhvzicyRE;|ltPC2t z-q+lEoklj=cdhmNQ?=fW`#kt$uM0IDi*uH1uFY=#^MrTNCQ1Xg^45d%2i>dG7mFRG z)z7D0gRC~7a_;Q*2mC}5P31)Q_`&O#6P;>VPxzRzR_q~we%|hDCS;%ay~LRFTG#h% zwZ~DfzFcy?xC1i~9eKDT5y^W@O(f?Akg)jzO!EVX+1dYiCLgeL3KA`VD%cn3<&Jx` z0;EZ<{hUzmTuf%oajJw(%Y&>6xlj!81e`K%5L~}%NhZ7ee>0J#ZPwCG%iZS4WHH;(Forz(d|B zeB$=Vg+alSwx>;A=2nJ_49vd$KI?~jXYwXA<;6G5;v|`_4VZa`v+1?zB-S+f#Ge7d zA;TS}JDHHS7J#4x3O)9b{&++8ez&;#o9p9REN?L2V3Jw>DX%uMsPUjVhszog!bEJK1+X!hHULm;O!QO7 z#QK>Z>%1ufnqwnP2`td)f3aDbE0zySn~72mB)Bj*^g{DoNy{}@f+~t>N+xtg72|=u z3%*`7>gP_25NTsj=5|WI`6_e#F~M-V6bq#?O0KAR5+l9=>|SHY#{pCIUM7;tIJWEF zRftkEB?l=TE)UTM{2&8I>7gp>q}Cx@?QW;Ibx7Np_Z2n(crpeYL|uG4b9g;pMC>~X z`1-aQNEPC4N{23OVS*luP|xNdh_M9>T549V$eA@TSM;fAd=CTzp3ED&z>k41qQF5n zU?*SC#d|$w{haT9;o|i#0Y@(!RyQGsW}jD^MOl=fd9Z8prCI4*#`pk25_nlrC7+d& z93r#h1A_iP8l1uenGgsBBJEwM{_()ooc<#mX`R~Zs9h`jth+#{NBEg@k_z}v6{$yW zKdW;T$(gq8;m@znse2uIzy^ve(u$}x_j@!&8vqImA12LBF8O?8v=;!11D*6^z6ge9 z0@KhrkQGkWi31S>15rB8m48j{S7&06SyaSxI_kr!it(FGH;y$m`rfzz#V0Lh6D8a? zMHziPT|N6*SEUL3=dTRVcc;uMOxMNlSE6X_ zVtM!}=<|u45@BL4etSIwm;xuEg#VoTJ_yiD3=}krn&Ho|1E83J0KQ+Bh>@b~-oY$i z?$|vPfkDO-s%Q808Yi-QFe3l)-TVrMSZ7OBb@2V8hBSM_k8@$i0Ml4&&iOoMg}#L0 z?tXn85M+B{L>vNvgZptr#N3m5OUSHIEEc^1?dQhOh4I~~IFGAjgzH*}x!b?1Mv!$C z6)LtKmKP>~*f>DqH=N$PK0@zSEE9*@OujeoX?^Ys`H{tl4EG?x;5F%bH>Uf;hpiY@ z36`UYnw+tN`OKM)d$!fb<`#ssfh2UT8lQABTO?TSLX=dIo|go=4?+($@tk{qY{U-C zb=~)2;FJ-nuI`UL(4f~V37E}{7RPtd9&=;Le!7VIo`u%-wjOoweYew49+y_5fRS__ zY7R7bfN{aK6bRuv7~p)Mq@**7y)4+LOpU3vH5jEwL?0$(+?MO$ZjvWp0kt1w>@hi7 zmQ3`igZ$+kB1Y~}h;~F$KO*dEbs_GenQD4LpO8wcRbHFPPG|@qqwZpG-twrwDJjF} zv~bI1;bOkX!_ztqfQkWMSDVqwjOpEKe@L2QPc=KB?rc(+w@rW?W1+K)K|;hIAdb#* zM_qZaq2$?6X6pCyqC>X#n5_n17Rv3K6Per^IxvIcKQcg=lsI>w zJnG;v5*;p}QbTh|2@i&K?8FRQZIcd^&Jysc8#@JQ9{pHGkH-Q>TE}Psx+p%!V5a0| z0Y%Th+ds!`NurNwfWncD;pez2@HBK9{)a%VRrZ^(rA=$$!twBYlxr1Ji3`c8OW$bf zA*;a+u>eE)x;DrrAC=qG!Ri9;=pT8%2i$6B#QmN9pUO5j3rBf%J0E2_%Yl< zX6%v_MYGFZp}C1L`MuD!DS>qLyB<5G5Yi>9P?bj9HZf*Py~F%GCZ~0ovklnn@zi)x z03JxRtIZs$%N-vVt%s`B{hJo-x~v#J7=i%(`G(R=BFP8+O~L#WH|d&M6uqQS%dk+` zQK2w^(S%MZx~Ekjf!sL*gjFcoOU?cqZl|y|Y@bL+g`Tq}Ui~)a8u)I3SG(Ebz{(Dt z9~TIc7YwKF5I;TKW6Fnp%h&ww^*QU3WKPViRjyDC&ZcIM*$f|zI0y%Uu-KdIO0n}J zjEJsTH0rDo!IgvyS{k1u3seTqi?2+%2F-U=E|1m+EG;|r43mQ*E0;!31{V8f2dNmw z@EurMUZ@DDoLC~}1{LS7%#RbtR~E>*(-zmM*AVi(;{!?5{aWUevn{R*IP;YWYDT5v z@;F&~Wj-DKxV2DV#eQ)qXmK_pw{lz1+!V>YaHE?;{bP6~B_D4+I!iFoZ2XBYVUf^%QS&dp?e)TUhb zw}Hi!v)^#24s<72JAV#nJK@z46P2X$a7GY?*{}TJs$W&b@R>9Md>|+0^-Pb&$9=d! z3lD0*o1!Hp*KF+V+SfKbMD_{^O*=(n?7qPH13_Xdl%SP{+g{H|Bhd+zy%G?o}Mq}F}e6bxG)XMA`65L*Cl-@nPBvIE=C7Ne6 z>pf#1Xgsl!ev>LScZeQ?^HNANE#)IMN^4zajXIt;<6{*tzFEU)j96K5z=4N_7+c7f z+iB~gZ7HI1nF~L&$>VGBo)DQ0^adU{C#!iaN8K5vo%|sb!;q2LeGM77gIfJraQDSD zyTR|~K?(`kPu3$6^!w>dKcN z&~r(Z-$Mk_CR0gsQ7Ce6`uC&nr(C-t-_}h`;#PLBHaIo0*`Tel?rt^~F3_E;r6U_$ z7A6COZV(8#oZ|XZnboJpFw^yC3aihQlwi{5ZP0e^_Ao^xOj^Ui+1{&5?`d&P;m9uW6a%iB z15JknRASy%8xik6NzznH>F(m*r4_k1>k2n_ss+c>*T{z1@*_^y&WQ~>*iBWI_4{sI zN#m3FhYq3s-b}b0{C}dIIQTAt%(l&bW_bc9HaR;lrlvd*_g`^kC!S>^*qS`E9F zb@gNO(<&#T=6lB*rr(8Qw_e_3Uv%g4?;c{0QT9XG!n<9JTgwD~lwPDnYt_VLD!0x* z5AFZ9J4mp$|>&{#=rOJ@g+2b9&p z4ePFEZ{Y@$VUs>@v3f6yghmgPa@q!K<>qkR-PH{Smjm_a!ld;)EZrHkKy@M5q%T^y zfO7s_6`-6`r(C^Z#xO~^3|t;2i9o_(aCvzd7+gjk1=NU9)ddT8HwP$_jFgNF9MlE= zt>2l#q@hM$a&xu9f>)uIut}?4FF?+uLNcyyct*wol4cf{E3(ADc%D|+( zVbVS@Q=ow`X+sBVcY9D0f>9FC$u*saItl6g&m#XK21Z-|bDy0p?65FJd1lxCZSP^y zC$UyGV89e*6=Bklz@c9xWfAhA&lcCu*f`kPyF;UMW$hLweb(K=*}>{0+RoVqv{zcs z-NxlIbaTPNo6$4SF{BJM)z-QN^%LrrF-%@Y=D#Dc{qL58fTLh?V0`7k@S_kYm^?zB zO%XI!0VM;IRY1ZJiZYCZ1nq?W4&_J4!kjfGNmp}!+Q zg2Q17;C-k}MU*1AGM_LOk@5#ZC;EDpmg074t3+0n%2m!i6^)m(y5+G;; z5G)&1Clb8F5XxHPpesXvpqk{MUt}N=LCuD`23mjX3PMuv^? zx77j^7kU*7{lhKorM;g@i%PPokDsZck5XK6_b{q=7 zcG4PA{BZ-vy2_Yxx&2M{=-`lxbXG_F=ccF6b2 z5BJGW#M?XM#-1$F+J57dvx$tUWzFeO41SWNbJ@E{Ep}%koG3WCE46z6_H*+}dn<7w zdk)6c_3YaDILMqoJt9T^%cg-RsxDltyC?hdO78fZ3Nl&X z;OLFoe;Ax!XT$2?$O63b9|uQL=d2sc$!%pM@gH|=GkUBN#6$X4$lE@!ZrvGv!rh4S zdqf&c!mzwQI?KMg2LZp;vn3=@oa}O??}R?=tkostW6yElAN-#&iQ5}uKfU_RHk*Ah zLab}BrWd~7u83^Yx_iVlS2^kA`)m_}$R3{aZ5G0IyHt~8rCwu|6<{=tD+w0&(U*A< zoKbRj&j{YlOn%z5`6OoqUL#W8ZSTS}X`FkoLF5bg2v*X?oOA)@^ykQx?1{cOep8H; zD35eD-;XJI79Jgk?1>X+s+Q2~Q`r329&asL6L$;MukroFJN;`l$z=2i`8G;Vc_?)u zB9}&+TVyf6W*qttGW>^lKo*#?|0qMGj^ZvB!QVz^xRy^Gijel!esZL7xw0{$`7-|> zCc&@c1d}FoV_yjN>#6uANu`u_ksBQ4Xz{Nlu{Vkf%cXN-s={nTZ~x(tSiJF}(nd9M z^9vm{9{xXDpXnWW)wNmWUJ;tT+v?5DghD}D7|im>eu zk){0jlFY>o8}?x8H(95hi!10OxaR#R*lIYxyfIBvKmH%&1Hs!hi~G-z{nP~=oqvJs zknq-_IxwKWKy@a_`~|85u=@{C9kvS9|5o&0LFzwRYzPMbdx*~V3q+TNV#ohAhz?w- zw6BeuD@@uI4FU>xFL38>?`C7efb4ARkX`YwPH8P5{ppncYsmh$z5}r`pgKbKe@Y7f zSD?C_>@PkR4)yQ^e+` z;QIetsE+*iP#p!rCn$vb1*SvyYY=_y`riiC8D@3OaX@C0fpP&U!!(p&z!-KPvYoOF zl4RAS$}%ziPbB{bV1E5AYNx!AsIs z7BD#UqV!4G|1ui@Qmfg1sp1zr{IlL)aM;g>zXA&lxa2R4mWu=00}EqBD8IITjl=xu z94=Yd0ZK?(%fXsK3^BV4@k_2AfOlbZV3joiA?r^!tp=!3hz2_XoZxk5S9fOzOPD7@ zN>K_fb=?)~4wr!0ySrb<9+Q@KSSia#CJk6CYY!_xg#P;Ob!%IgrG=FfsOw+K z0r?qKIk=)vL$W<``k1T?2!T*=I9v`PBZD#$`$clzZZ@`TfH+ZP17Y{-4`3~jAjY$W ztv`bZGw26~UVVl@p#anI*Jtv;ko@f#2>Ji|OaVm9e|?6M`FlPTq=V4UdcELY{;&CD zWDp=i{nva51QO6e|N2ZuMpgz42=udF9>|CM+cP;NAkzMlPYzJne|?5fM1jHo*YZGd zf0F?MGKPQ2hft6Qs`#((Dj@$ZX9a}J-`XOtsPI?0AW%qP>i$w5QXZP!|5^tig#Pv} zQW1nFf5``kkiWevFOT}0tWb(TQ`X;gce8MCwsB*SpL!0yz`OuPQrFcLnidTEa29O~ eEDJO(7;_BkZsF$6P(eU&DWcd!MAWr4*!~Ck2DNJd literal 39816 zcmZU52{e@b`~Fv(qLN**WeFik_CYFpmQePcWQoSUQ?%G4OT?&<$eQe1GL}*%g|Vv{ zOqtM_7_!X&^UMtI@0|a6J14#K%=3Jf`@Zh$x<2W+As-1*9)I`a630xCuxbJG#0037i8Lm4>; zQZA6TFmm#6b@mrfp#D=c*k9Y!-_hSy;5_wz7(4p=yZU+y$U*;PkT$*P=;H3}CLmAy z)Yr$^)YV_W8a(#078r_au)lz`?kzBci?qKl(f-yIu>C*7k@^280F4_Oy{{`69d-E9 zCa!)y0lv;)KG68V^9@{G+#N6a1cN7@1^=CwKYK<|K=!=c8F_Gf=}TZ@;M;xzO4Q+L zczgSRf5||X{@=xbKHgcqE3V#d{x=0=XiwB~_X6`3kk;}7i*VW1*~i5d8n&OmudCxN zhTz=9R^9%^-ZTe=sMinK&+0BkygJa^c>c>ChLSV}*Zr>;9@R?m&WFkH&N@TsN>|# zD6$QCb7KvsPR8>@#Y7eP^4;3})!wh(m7a2LJFqS4U;Fk-C7EbXUR6&b&qO6QM3K=$ z$r5u>6~2FOGny!kEme|NNNBDHl1c5TpQNRzIx>!5Q1?0S3b%%N3;EwP89WU9Sw-1S zub`sHs3m@ILwr;6pl9QIb@OEHD>%!(SB^hKGFZm)!v92O7}tC(#O{N5+2xC9@ zmswkwc!j`~FD}a6A36gsRr17_kniD4FxhU``z^y?KOZtsViD!DQ+xGPB;?DS-o&4( z7Lz=e=12Azt>)^$Q-~}awp4Z2vs@eVlHN=mQ<5Poj4;Ra`ti9U-zoy zQC#1+3f^U0e_p#~mSeAqw2ODJg&ig&M7<)-$_;l9S&jRx&G5CFU+B8z_L@1iYHvqfd&aKW(vouAi}yiY;l(_!ihr)AKP#@FF2`5#_)Qkk zVsB;BpGOp!4(4`|&i*@xFVg;T|G}&XBI|(=vL?3epNRKxXYy$i-0&qP{nuy3eR!Gk2zh1_&S7umGNf-7P?cC2^JS|0e+di1 z*{?Y=SuKyDdT!Qnjnaw38*>^JE=-1Pa0rE6!%&{OwS8$-b#iH_{?-L|{r5c!iMANw zQe}&7w8l;KFwBO|T6ZU-lA^0 zfZbBbIyZ4XtKk=2mr<}D_QvOmh;!6~z1-hY> zU^P$sdcE$Zdm>#NvEv!%JoWD3xid3v+C}o3a|!jXoH^}FiAgpsl3#1WX()n`F~LdL zx;Imr?6fdc?DwzpYqd%MW1ZIyPvjKxG0Hx{mzfoOOj;>$3PG7OL13ycJ7_@?4(&Cn z56i5liXVG=tnn8Z!`jcM84Xjm)Z1ya)XL`KC$G`Mrx@!|bR*C<4J;xU?0hQ8W9PEf zle3|8c#cdqYrEVOJWq3cUI9z}`DgRYMquE&i0hOs*d>?UPqHNnM9r z>svdY&=cgn3sP53?PQ~hmQl&Iz%P1~Wq=K3j@;CzOo9(d&)2C#%`tGhEyazDy(b<* zI}29JX4+^f*p`Zf&tm!@doiN0(<ik zCF)b8>>_Mi%^I$X24myM^>0d`5$LUC4SQPgHycA}5=T#%iZWU?ZKtAyv{4TiOkq{> zE*Q?MNMzrrsYU)@Q`&_Cw)3|l!gXm|juVP~H0sS(n}7~ zx@_kE3BU_FJ<$?uk{yq8Mm}rcjqcJ}b?wI9|U8 zCQBkZ*roXSzZ>oR2xcL$A)ZoHWMBow(BE2PoB5xj3B9hzD*BDa@q3 z8(XaCVLzQ=2CY)+gFiX_Y3Lvk+U|yn^@IeMOOM5YFakj_XMqp>BSx(+YirJlc*aNu zh53CxFamk%#5L#!MgPLY+w099+Ebwp;PT*;kN@7+Q}@G91y$8{p^}Egg@9`!PMgM#hjO$v?c%XRBLUco#kv)GO5Z z_QT8@JdQrDNAyHr|B*mX2(McXzv|d0XQbABCsaMF7y^++yzuzFO%{dmBZI5ytDL3U z(7Y!3ng0IK2&EJ1Yel4PaGkV;+vxX)s-b(O+z7woXG3}9^?lKVTy2uPQFbhV2)*58v*=NBUQ*K3=zOLq5QIU_TOw6Dg|6d7{Lwn6=4GS-hU5 zSA{stRHosG%eGY@WdtKr%XL@;_t8It^8ig_rY6)25y$6 zrfN5hJPH+tu*LW4ME-rGG<-%wq3E{yj|t+^T&Ge3{}2wRD-v3ruDJaBOohPh$r!^k z(7eq{AA50vRJ^G$+}|q{u=lDer8*Y%Gk=gEp!}kEYqG+p5c1te%GLUsz`pDE5}VVo zDAI)jPg;rM&vASD$`+IVlCO4{mIfZ%0@+&z8 z%PpV9;h4thqwU=so3dKZv9I*2RYQVuyRsrzmGmRjnIqMmN_;__0AkUa^26hMWSo$Z zs?(x*eAL3X<&3E2EJyCVe(cAErs0Cin9DKoN-6M@Vhi=vxixFb{he;N4f|5T96!a z;LCr;Qy+^9?td`p4)%k>M5mm7-Kl;0DNZy!JPLoJE9PC+ntx)H!n8edMTc6rW{Hwz zlP=&1W7&g^q-U$?iiE_lZ(FG|VUaL?rD^E|@+_cN(|V2bK3ZyTBh{me!9H+)#jBo| z)V|d?WN+7>wHBJITDYF^OO0D$CYP-(_!xgNn)s`Y_r^fUl=SPeasj`xA4%QZ>z?N| zV#ZD0W$w3;!x+5K6{)D_@^tv>^fmJ0tPX@_8(0S=Z@YG6HNChzg;58?Uxs-#scHO>g5$`(IR}1y6{og%S2X9y9A_Z-Ub{mKn zcmeL|l#1Us|9BempZ)X#pG^!u5O2dPvh5zoX=*I}=I(*KOM8Z;Buk8iMulCn8m64e z?xf!TRG*7oyYhP*V&?JoIY=QY(>tfzkk>5)a7JI*iu(i^{p(c-4-rLp+i_l*-!0DE z(N;Rnn)}fLSIVMMp3j*_g)C?}PZO7phC!CoL5xpy`Ul|6(!B18M?)7;VVfWwHjaNK zsz!G#i7M!sDiK;X%}@Q7Nm#sP^A&yR60#|FR+z)=UjtXqDC7F?J@OuwLE;s+Ukhv) zV#XK38TSQ*725v2RUCbUv9C$}f0=vdzAYUucCUF$b zd(6iz$uBkkr%0PLZjz$uMC7M(0NvL3N=51_yJveP%5Ii+xO7JKxzmMu^ymLMeN*!MQ)>w@7+iYj(*G#)^h zVW_HA|6_}YrWf0xso*lQZHfydou98FmW&o|HzTQAF0I{5e4IOS#-VRd4$lu8-%nnT zU1-#5=yhcT+wl{ccNMn3MMWGu4p@=Dbr|pa%rWISAz%Hy@rXbEQN2FA&uA*#DJ#HA8xNMTl?7RkzL-z&ju<%TYvQh$&T?Ma7{vkBWjSOHs~iTULgaIC&}s z3JFnMO4(B+ab{cuuATQi&TU(%_%!?hJ#1wfhO7D8O{6|1Cb%ykQsD_rF@>xL*ogF- z(^cDJZsdJWu-`<5W<4}uTq|u)KAEWcrfiSAq@=`vfSu>BY@gRqMu9wG>KS#i-QUwINvA@&KdhiGRTH(bhh$9CG@ z<2*~wDX4yb-Oe}LV%1C?Es%msZu*UW?Z_nMjuR=HOZXOUh^w@12gXX|S65K8AvQ(d zJf!Wn7Io)(FRgKv+YwdeFj-WY5v4|7NhMxOJ?y6Ca2m7TL=Zo4q9ou2hJU(+$QuXl zKw z4Tv`JfWyO$REErl3^O<>0vIht;zYH@zoI_7J^6N&uT&Xj#6V?V|F&_8>m&8)QQJ!^ zYDp9})V?y}iHn4G8Hf(PlcbVGoF8B-OTy&4SmGCKvq2q+nCegWq zHtyDT_Hhsj&@LkYJ^qHzyOkOJ`E&=T(Fze8CRiu=y;PM~CW+5?1{7JUluGO%{L{Fc z1g!wy`ZN=V2b5waTU(L%R^Oeioqo;k_vQY|9{Jb%>|sNwN{4uWIba4|GY4VdVMos92ls$&1XxL3AeZZ?$ zaKA&V#+m09r^U^yC-@ZZ0tXbm-4T~HJ{9~d;Dt@&|oM_MfqMh<Pree#E}wi zQAC!#wv_nGvqayDkZ!Hv4g7+jywvyCX{6QfbPNQ|4 zsrnOQ2L=U6e7zrR&hd^*kM$6e>aJJKk3l2qovM2eq;#e)x_Bz`!-K<`vUPpPi=| z6y35`2ev9uoUgQ1ajnWv*$rW_s8zZ!Fh~fN?1ysM#8~ehohsl0%QHX`|r<3y^%EQ98o-1h57y|wzq^!Di)j}8GZ^^9} z!{*iwcL90RLr{lfzIJ~WaObjo|I>CQw0+gGIst=g`Ju(iRak2ZW`#dmw9FL}&;S}WuPy)55d1B^D!40BONDFtDfr;_1U9{i>T@S@G{ z|C@c53Y&3Aqwoynfk0*e&=i}|V8qr(X^&m0?s{a>>{5FC^Ff?v0;Jm#36{MlT85r@ znkW&TnTB-7ysI_M9~7dbaEiZpC@>@Ojtf`j(_ybvMb6ZcbD!+LZ2}+UWLlMn*+o zjpJC2xJaF$WWC?&B>o;(5-Da9P)q$^MAwc#E$)C!a;XUB{YW8&Ru1>)=1LP*4lYD| zr5h3?bai^Vjq8Bf|BFUW@Kfe&xROw=aG(n;2E9CuUa@V)Bf2u2=32{p* zk;t_;X!HvqzS-A^Z7RMu5oQW`d!&Ff<17C}&I}O^6Ysvu#@VGsES?HZx(0b}?StNs zyBj((CS%E%30t~cgPdIu>B;bi{U&jiXk&UiQ4Av{>)hJO=i^>;9Gl#bI3lCZW2tos zY3zqYvmH}RK$Wj>tqoa1=>!0BN&75fiPyLt8Rw>!atEXFU4K*YidJP!+3Z0o<;^dL z`MCr1UU9NueJohdJ(#v9^8_ES@$!PT^6f8D#+aFCOj7sQlk?n|g~*gD!u3aM{WY)) zGr`B)LyT|!bEVKVgx@XV(BZTlX3_I3q$20)Zh0rXgaX1F&u_bgw~O^ju*cL<%*Ejr z@65!c(|`i35QVQ*0q6DJnCA(4^BF4d$>}98zCSm_E{Sbh#4B!C`o3INmE(QZ#GKN4 zzotToWLC}utM1(hynepI>Yb^dDz+wAvun>Vk3gJ#FzQOK-_avsBHm{76+boA!n)4Y zpa1?^m4`$`qBg}0K!v8%r|}Xr)eY0$8EYHJbK*IngsntIp9t|iZ_W5k$$cVOY)N+QymW6EJRa~XIn+Z{Bs$vud*<)OJ z&+HtaJ5bGJ!W6B@n$aGeN+x}2y$dMo>1)$r{duD#v&v)P0~V^&?8a56EoB!=&uGIs zGdfE%8yx8jwtx86g^D0dFAg5t9oI zUo)m3Slc%vAv)5&hU+Y)R&`$S+Ks+Tk~{Vx8g@S-X@gqTXQKE~L)2wR`JvM|h5KRO zy2EBhotUjTZVyeRSa_7*0p#0CNU%mA0jr zKIeSNS>@(L(G+qU_{wn;tOnju>odTu(Ug-xRTUKqY z3}VO(wIt%FTh3WKk9u1UJ!;Vt5W(cdTUIM93Vnbb5!z8!eSoA_Zp-XDK7~8JCx?<6 zARouKjy#3VgeYz-%B_#Krau}EB)ztKcO&C_Lh-+KhsK9ej13;`^e1Ij-#yl|DQC_d z(Aie|NShXV<6A-;Uc@_{!g-7^o>ZEGg}+=rVITku5>b276|*I>4eqB@F3D(S!aeAT z7EZ_pw-P>$-@dap&|I1IzWUUp-)!}L`C#?MI~_!cAZtTxC9y&4xKY88$o7jNf!URa zDf*`EwIRRAw$_$eNwsOCfUR5RAA256M`$FmGL^ak$epBWF{Dr}4kZn5<{R!W>~DSW zwiub}HbLJxT~JLb&hDEoWc*Fw&chWT_GbELY^dxJ6p7EW?@=sTCYr2fdLqthnH1P_ zvO&otI(9lOz(`%2M=H;1Elf&~&)w!0t|vAyw+qd;QFBTmSh~nwa~2u177(S=`ne@n z0^!eBJv;IGBZcIz-{M>WjG$NhL&b(tf&9`w;NJO1y%GBqTJdFxY1We`%qe|(~aep$BC%M%i~QnMhkqK^oIH1dwApxgXB*--aZ;3owOJVz4qwS}nm z^@`hN8o?Zg_L$4v%x8oQ)r(0kk004$LKCVFoZ>FI^e85@>h+3FW*Qztd0WqoiY*0Mx%bF3U*EEH%B6A5ov!$Piy&YU(0@cfPgVjR$ zz^M?Dg-fC&SH8QyEaH+!%r)K5sT53usF?ML8_2cXI_ruslf(%B zbV@;>nmt#WpNBaqb^obCseMlNR9J*3y;_Nkw3%z6 z7!BW_KJE-k5U|F2VBBGkcL1udAw0cz7od&@P!(*{mtzV*zy?qRa(pz+T;L@cr6E31 zm8>&aq5ce|C@me&mU(vwn1fWc<#+1>wVL=8;1KfEoA9kiNgQVY?h3x`AFR9fq&>jC z>q+0^>?ZtR@Bg%?j~`N2L&W)i8oD3=Y?#u&;!_^YRBSv8h{pb2HrdN zWXH$x)76-x9?5kN&7sU7$BE)3wI>MDH1ZK8j*1=gqvDwulqKV1OAqejmbe`nqmLZA z=^g9rmF+fRS_`|a)jl6|N9SeE-Pv)pjft8*&Ld7@_KtMs6I@Pa_cg{o@uA5ci!B6 zQI#`U_D+b*uAB0r;1eek?t6mhc2J2HWr`%BBd+5!88lOpJnVJ!3U>#m!GvG778c50GrP)~ z%p@C(Rw{)QB-{g`QIRnxiMfU-i+0xI$7bxBSlmE|DG6-pl|HT3oblTNLH9WDIwR}A;F zGIoAX&{_=oY(^dFly3=Y@MMNQk2{80|MZI8!DQ`{fYqf_e^=kMbl z_yOM~>Nsb@CTTVGeQI&yNlWD=P7f6RX7wsgw-5LgJyPODo0225p*Avurq~4fAz7@( z_kKX+fg^%R9b*OYI=I&ZbQ-z4#XVj{k=)|G+HX8~WEH%+lw7mMQ@Q?e;X8IJXnOO! zAuKlrp&zT$okhm_wDz;Sb zk@!8G$*O=a@GMwUCgl;~WLR?otXcd~LW}?72D^$&Z;y`$^GLff6Hc$+{)JXW#HwBw+2WxuyAsfqbK88XNhT%KsQlaoac{SVu6ALhcn>8vxN zZJvp_lTrjZ_CGFnaXZp0`Z#z#qS@lz<@aaTUc_y9`p`XI-Im|}xE0!lsp`}-O(KM- zEmgw%xOCMv5hhhVrG@E%Q3e;@XYPaTKl7AW#8x$B=GmDh6c~0Bqqnc6+{NAExj|h( z6k3B$8m)03?fF|i6iz<#a!)tQSdujQS}0;Gpg+Sqia&zjJNL}dWfcCW+c`qFR+zx`l_PLw6R-N$m8Zgs|WRLz-`E|19()E=F{Ex z>n*S^IIFG+1;2<3tGKP3E~dC&C6LfBcP{$`N0lcZdL}3IH>>~&8O*?@*Gr@Vm;G1< z>eFs?CO*Jtbm~4BtzT?Dg=YDTD;nEdAak~tMb2Y`au?{HYC*Xl>YjMQip;W zgrCNkGCVOeSyCv`<}Jzd`xkwQJMQ#RZN+a}QkRdj?jQGhWZn77V&t%(g@8pWa{X3p zbR5PmMTwX}{)M$to{!A*03xf{d9!?0k+5~7=&R-x;iuORG!nXOuU$M$+AAw~Dvb%X z$1#Qd!&dFU>q(=F@fKNS;`jD^m|CCMGb};Zc;V{uf)gF_<4Jx;V(#Zwxb;U| z%Ca!~+i+yg!rJ7luU8$<+XL0{Q>G?8dL69#Ez_9?xs*N*^xJ(?oao%j=pn8fFCMKN zi17MJJQ!I{LVEl*=+Jr70S#i{3+epx#JHJGnU_k!Uj%3D62m}s<>9I-dH6MVz(s8XpFyhBw5rTCSs%cVK-w5LMX)axPuJ8e*>f#yA=a&gz z;g1iQXRlu`JwDdZ7+dHtM28sb4Gedpd))f|sKcWaPlDuHV0m<0?2nZy<`=0amaOP} z6x8?&_=%hGgZEFXyySo09ofz%q+#`yo^yA^|;nro^unDL$Dcux; z!%F_GM&r3f>6yElVp`+|bYt_?T75~3=U`@#vgk3u9p3qdU{FkguhpXHq+Ds-zHh3tUxgsGD|LEiBxV;zJ3Z4=e(rW$S9ssw5o0$ zwMK%%nE&q4&hDsjoTOH_)Qc4nK;2QnAJ=%8N}f+GuKPde4)~m7_Nt}(*f*^+1fy@5 zfu*1^ta?PE&6548?WgjiKjf5G23kXee?26b?`yi7>JkI#1Cj!4(I+PEiOwnSt(&+0 zu2p8IIclB@yq;iwh(%uHyVxV|qlV%j6CW|MiOlklohFY+zf2=;r;TQJ)4_Rv=`Caz zjr@>nx-U_u2CpC)3CI66{f#&jqiR<$u=n~_0~*zIB^6WT1FtH|dH#~P{Wm7|2>nQ{ z)Hq?5waV_m&7lS1n>`G{qcw*s=|2NngX(lPO1gBYaPO7#f9;&48BQfL*}E~KBoHcP zI*aWy?Mxdqq#c-ZsE^hak?PJ_V(e-)A%wrXc}Z7NT$$(O1GeD<>who~)<=C~EHw4g z#jZ0TEM~e+h&e?=jj&?&?9)t!6AiR7uLVA!C~9cKNXa1BHu$Gm7_(Es+Va zj(;voFT#hD7~3AkxqO=vSULbN&OltUV3JRa10QPokdhyM=$54ne$4va#jvc+AWgur zSNng~WleR4Ryjf}cIMA0pJ=}IyXzE?UPM*q;|WOw(c_$5w}-!M%Zt9eIz25H2qq^e zev&l7zNs6S5pD6TN~w^Aj?sF(=%T^!mh~AaNA11JWgC&71v@xXwx%WHK2^K*LC$mjFBayf9DlAwsegZJ zim}{ZhCT?k3}JeTTa=rcV=xL21+4?iL;rz^Z0ZXKCr1GPy<7c-H2NCmt#oUKg@SDa z)FE~%8v-u+bxo>ZR_~S-$P5gH|h27ijqufqnNd5jJsarH|Nb`*$!e zA*z4xM=GxVCZF2tnyhL~VefAHs1VD4>3xlQzUs4(9iP8gNG=&LeCQybHI|BX02VWi zsRgRi+#mu=ZNLEh8#lOyKjfzTbxVSAJ%7OTuvDgR)KRwt^v?;@u`whzz2aIYMNFlt zO#4(87CH)#I{eXO4f?gv#EI10)LT4IY2I#6;X-BcEX2aL_^`EoTa4>9gzQu_YnD&;tN%R$2+GGizJlm|0nAj`Qbj?T50gL zZv6JGhC7wVmh9{c5*o4Waji_YG4sz~V?`<5hb zOEN3^2z_v=b=_>Am_zL`cw4bq;NW z$p~KFW7xr(P}`WK)_U+mRJ+L^q|+_(#%Az`FmiA$*7k~Z3)BS^QuGm|CP5S3FkTo zKPCPQ5nIdfk^vdoJopx&#wPTED`nN#v>^;vo;CK-{^OCC0|~)i3RLnkQyYGtd;YwEJi|64{ zkI(Fh6xnDLIo6=2E%)H$ZuyPYqGa}P6xq;C$IWVsr5?Y}d~-hk+gU+-)!Z0~$Q4u^ zb800h*6c=GOTQli3f3^s59^jC?YdYvSR9qh2$5ARU+l=hT>UT9!mnRuK1M72Gf|@F z&hO+!4dZTJq-jv|Vo5x+ZC4m2_wS}qf&Wf=PDk5Q6<^e(`itXVOR0*FlO)?EgwcFY zp(L`Lg47@5Hu9c6QX2TJ2p#R^zM#@D^kiqr4u^=^x*2&HTj_?PaF*_iJDer2?#m7X z>bIrI@N(pn|Exdce-jS-Z^EcAihy}d1%p}2L2?zGFFH=7gyLzgvh=o6fgrJ~Q)vwo zN6x#RszjiT%sQ1ybO6YF?WMVdM-VEz+IpiQxjWUZhtlrT!4Fm<%=qA{MabAIo|vK2 zriH=o%AvelTW+#SLx+{-l=ilC-QW9rEOTLP`H+S5-naAnboujg4I|;m;{fTa>^V3{wwhXE)h`<=>e}48jW)v6d z<#(eu6ivuo5gFBDg1o%^Be;Ethr$2?Y}^x_67B|k$T1N+cI#*$qebPunLV1i{my10 zrY|hSgPr0?k=pXY`&sEJhN(=>FA?;LVkejG`+*7`%yhDnUj*XiG)9hF7sKr2b!&1j zm(Yg;G155=`bR@!h+g@^1Rh`h)ljUxNn=)EV z2R|CW?A0+Cs*nE=OJhHaZhfd*np8(CRfS(>5Z_pSkS3jM^U?LLSA^AhQgTonZrvHD z;|F}CNsMZO@;u*5lD!!FA@DlZ$I9N=g||wnVKN2Mm02IT!qu8@g^u~%Inp7n=)?)< zj`>x^=g9vuIpeNSAanf)3iq+TYp~knHj;(#QyynEYOt_#X^F@im9YmUKn6S%!3=0G zt=lZ!l-9hzV73puqF5lFG=0;yqnE0Bm2A*Z6DLCkngeyLk!pX7ZYy1V1_y=<)CJkk zv1<<%AKopO%(Xl5=I2#G6;I?12P1D+a8?1ml7u813iaj&2LjIq#H>g!r7!}@F3Luw z1F+So8isQ{2q_9Pz=mf_1Nh)H+FWw5r&Q{mu$I80-KIJ6CwZ|a7EqCZqkbJoVm$&3 z7(h9~%XW~2N7!?RICS2ksUifar)#%G)U8{y0}0uUsT+BTUlhMm#Y?}=P3qSODEC7< z_z~oN5!+jXg)AN=$N!e$1SQLXt#&d{oyTlf#^GA-?XryRi*rcuMbKI6$43))Afxk7 z?q)Rl(QZah?@E`ar>Iug^tv}f3i1SObu4? zn8auX`L?)aQqf^%P?3s^1*US0T8l$@pJmi%ByMl&qz`{P=uG1&3xu|UJ{k+iaz6YX z8|okw&z5^vG&5MAN1>wB0Rs)CSG5UMg7$1xbW9XJ0kL+&qOLkS#95#^AfZ;CG>#sd z;-XkeT8n|mft03UeYS3zyTfhbg=gQpi%=3tPe(%G?`RpC*Vm9#&Ph*|1*}0nZeI8< zI_kCgD#>bIOKzFJibst9AX$8xd%j%jKtcJ_ zQ#q4gQ+)<-;MwsXp2U_@$Bk5fFiM>ad3~BtcUQgdC+- zUAnSny*t!2v?8G@RsA9Bp5?z9?G-g;-^_O6BN+Jw-_)dkHjN^onqOvCymX+JFV%nj zu7^JiH=a(UIRK55C|@yJbm9gk4e_D8FLgSgYNL?!O}@+^Nd`_~Q*9)vrxsnb3sVpt z$5pdyOJrzLFKZ0_3x0)GVFnZyYP$mFxSVH3C_KGQ&(8e%L0TNE&TVLGgL(n-m%CBh z?R-z2x5^9Z^Xi8mp)<7a#>D{jDn$Aju__V!f1ZHz+c-zL$5!LFE!7El^#a4TunHwn z+|LJJqln6YcGTHpD~Ne;pv(Q*`h)7JY?l3?R&Ea#*pHi7B7O?6i9>dug)NH9Dogw- znAcAu-ei2FQ1M6FCwbp2Gu>Vv6kz~Kmoyadd*t?qbTI(Ue~bBeN36n@c7bAh^LPH` zxVvDeQS<(>_{f3lJ2=7e?YQ*rbBQ^f{}P3s(;&pGa^*Hq?g;Y%6y}+eZ*XatH{zN+$l|qMhsMLchZfyiFP>lo>ylgkjo(%1V+0C6Wi@IdJ zU#O2#@o^*9sbLfsb@cYm=hIg!cFG#+w)sxM;9c_Iai@kEed}&|&Ai@8uM>MDxGbqA zY0tY|L4CnuHw?L{8MB5WCmG3Yhlr68H%5FXWgnDKC9de`8Suu!Ri;+~dI%-Go$QLD z@7tZ0OwI1J{Qt|IXS*)l1*=^sF#0bghIUipr`7IQdjGqBJGV9;lJE@$&RypOEU0EA zz@yyEMoaazF*kQ3vlL{|iXKm{adiD{q6AGhcto_YE!b= zDlSE{bQQB!#w(=@$*QgnNU8TzPM`2zgAYm^DO4mdv0`AW6UWkh)UboO`JuI9-@gx6 zVrjRDOf-ZiddfzP+>S1ui)~}nKL?J^n1J(YrEwcGCann*$s;GLMf%0?GM8P+^MSe+IRz7`>0mXOaQ6Cwoh~wecNq{j&^j{9kj;7S7ht_3)yVN=S-YUh2&1?=rd7_IK6+bx zjQYU12;!4fi|pQWq9BVP zqegb$u2GY{Cz};?D@jKZ$e($1{NZJ6zel=M+>W}mSpZW9bpFX6-2ECh6tFmCdu5Y% z<6H#sBsFaTkA6ds%Dl#vU+GF3#l&34W!@FniAXQ z9Rhf3xtDk}ey4IpY4tE@W!g$ae^oZ|Z1a=g7A^k-+~YX@+BRfStNyYwCN=+U8**ii zKBV&C#-F_V|B*b+U6MCSm&A(dBcN=&zzB;EQW{i1_JK}bYVX(FX6!DROZ$(^y}Y=a z9JVL@Fd_8Ye{m_G^_~^Q^BGFFm1vXVx3=IV=)Um;Fc401vn_Zxn=XAd6}H57e-}|~ z?%$2OM?r3%iG1pSf}*L7E}CQ<5u}B# zbMTjb9#UpO;p}r~LM5S1~$+w5DH$xK3*E&e){c&f#1YmvMfdWn>GrYb&niHJZ z#eu^zjox){g+r`BJ^{n1n43Ixi1QDqpRj?1=9LX?hs$2N?@WV~mWgXyIpBcn4%EN0 zG5UVMvXN~kCmnNPnjKWvDlE~%LP-kj5OPz)J1a5slmLTo;+ zlRlM3)4)dNXsPOb0VnDyl;R4`Qk(7sc&R*`yk^xdJ?W`MhhMn^)@|dOUMn!6DW!OW z**Te1Tyc44{Oggw^b4Du48+WAog1C(hQdlY=n*3*>mCanqS%mOn}<#{Mg2;MXQ^gc~s0Qsd!m0!Ua zvVq>iCl>P1E`=E~_l6G$AhgNN(z3@MdLn`ll*YA5G^J6;dw8#2-WxYV6I$*px688c zmZQeKfJ90&1%cIoIit zxNnQUjnB8AEbK79JFjj$kv)7)LDIpz-s=!}pTB^`SRx(f=W%HcNlc#bv2$u2hO1#D z`9h|c8+Q`P&!qw|%-X$T3!o8Kr9g;Sl&1vYR@AsXW_epA`*T`_3 z2mqDXp5VE*Pc;Id)Xh*{7L*vG&J$|>NptH@+?{6)J2x3NZ9H!$XNVrn4+JmK*jMJf z#PRaG?{H0RD{#eI-fqjFeym4NMqpU6JKGgWC`J}agAiI+tzTZIx(i>Q6ElPy3b-G= zHmmdKM}zxEZmJx+@I42Y_m;VFfzCV+ANLSCa-&aIc17jNu&mGj;ISdRCI_8NU7P=r zYx}B>Fi5u55jKR4KZt%uynQU}$xXG#1yt6NpWlB{H}}&lWF}#>{d8E!prJ_inA_LF zkosU7w?q=l!-q8b>ii_?hTVq;kZba)d1j)&f2UB9{D&W#FFVp$uhvMT_C3M<#oyyZ zrmV(8$lvchyha~0=<$RA!AA`EMMfp+nfj*X>AgjdxH*A_=AN%@W;DrR^Yu%wO-; z;#!s+;=SV4NYqoKr5||54}DvmUCasUUz+!pn(#SSxdU&+pSN=js8|x$oMLGBBO@I0 zWP<`o#O>pMn&aZE-`%+L{o%_+86BRyPoCv7U1p$&KD3*}-Wc|H^yjoA7ta84vLCy+ z@7`%g(>=*e8`F#}Bx6SdaIkj)GScI=JX+G2XwnkD{RzGGD*!TDi;PJ(F&p$==JnAl zdnl)c(Z%*uhF~yp3z=A5M%9!;L5djmo@r`ZR8ytQ0T1U#RSmSnx5aXOU)GDFqspw-dW6-0T zT;a*gCDcPSGRfF~p<3EbvLnTwrXKc6JT^aGteS8r5rL;9o( znpgh&6&SDR2SM9l?!dPliD*zO&Sj}Kkv!%Zb`EXzOQLi0x|9Bmt}c$dxufd& z;+#? zT_HX^lJmh1@m@4nH#MdCCKW<++aKKbQ!{HsPQ>ODXmX)s;OE)M5qqj{oEnxm@1f>N z?Pb9yYxn*tjo1Ynl7$}!fkH%(lPN?7@rn~O2WKL7Ma?p zj+v-9?Suhh9vq~>n%45nmpdVVONk6n`4&)}PE!UX`0zyQK4uz>!0V;Wn|($FseBD? zxB8X#$J=y~$te7xLq8OlO-l=W+%fm&f9kkULn^4x@o*?uWu4{K>x=xhDt=`sziIGh zr?V0+=DfY=Wh#`!MFk!OMz?f(a?X5hpz1L+%tw^cU>}gS0Dk|B;e58jMl&M4e;qNL zSrcqVUIGTC(~t81>ERViv+Cmk+E_QIh;IAT>}xsyzC~e5ooV!<0qXy?_uXMlWnI5^ z5v7TOfIqTo=ZN$dlT-HIYwcBjYwe;z8`$Ou40yL5XOjm`7Z3qk0QkxR~Vp05^;MAGist1_gYq+!xXnXavfgw z8B;^qr^jo_X8T)Bs}2|KHT2BxxjU=AHW#1~Mv6g?#yGys=4{6)07E^h|AKUWGs6z{ zYnZr2F{KA%<}Vxpn^&#+^$%^|mEE?XAO+3hv0I(!iHGL+Go14LgdxeC01Hv2%PviU zV9yA5yfUq0df78*MHXYLZ>?r1%QevELLEH-GahIQ8=F=X`-FeIy)zbDa<%11=d;SJ zdEV@=8^W;yoo~PvfV_nxnqUpgkw5Kv)%z{oqIl^BA1y8)`<6J4Db>l|$~@}kfZU1* zgIbPjW&Ydm4+usd5}_n5a6;#PdWwiHF_WSsu9FibanZ_dy^qPlu3zY1V6;93n0hr7 zt_bdvH&nZ#icW}XPlW?}hh*LNQ_w_>e6|;Pn2OBqzV&xDA8px0 zqHZzkXEaK)?qA;wt(pk~@tV-Q%TGpq9f8#{bB8mj0M58i-q8HGAO)g18)m;+lP|3t zPAIv?BlRR!jtd@zkrfDbp{#`*5IMr)1XjEp2itvAMo*~@)xs_ag8BRFtw}>K3u_CH z+yYxyy?srVQ98$7Rujec{&2-d+_Q~!!H`BFx+OcVzIdNnG_l~ISns{t;z)Ed>RohqS?nAfD8tE6ZQvDdIyN39r@!fp|?HU3W z=Awxt@jX?ke#Vpu;&S*UZD^Y!XeH9da?WQ>0sf*wPU?~=6T7HPSLzyN%{5*;=KAKG zJAd}#q^$)|voWbFzI__CTY+AZOI>;9Uh3$crrN0WOUJFzJ+5fP;+(|-461hH2<@WZ z^O~QNYA%gyNq{Gm9VgIrv!qlVFiV+AtByuF^${5NUZ#1HuhTk~B()eYw~M>23VSrC zDp!IaxNb~3-!bfd0O+ExuXG(9Ste*sB@M)}r?cx`(Ycx<7eM^!E@f3gq9jOrE!J15PGJ4olaoPA3Z3R1_KEeZ{uv?o|V z4vzfx^K43;NmDT=a?c|uB-S~lz&pPMWxMUID&K6lz?#!m_^RV zmdTH*fK~*&auwjF6LkGD<6b-Jw4|pU)3AdXFIZVHzWk=W_|Vhq7L*A%B*Wy-QvB&$ z<`0kgyT!|ohw>N;a$!_IaK1YDbqw07;)`S0mq*-OVrStKmw8mD9^;N!$sP1d|#V82}R@@{+p?3>ZfcxmE2bAMN^K(3FDb`;M2y4Ol2K$jmVnzZ|z&0I5AtgipG%dx+;E9MD&Fc=V zb@McsNeVO0mh<8?LY)E8fUg$>3B66gs=ypDHC=gS9563C%DUfE40-@Ix*{G1JLN%P z0@#_O{Crvg3YtrgE*Rhwo+P=xz1#g`g%RIPT+V(1&@T;^AWH*E^*r=@i~()4Hykj4 zjiEr{dtQm%)+VS@Cyg}2Vrgg);K}MOu>3z;xtA1?Upx27qi=^R3ztDl5cY`D+$w;t z9$3oqoXWGnLjdC&hI5cCm5=h%lZ}@t=IjPLcNGW8)t%ybcB#XbQFpPUI2zi%=%vX^ zE@)^DBt>r~KE`0T8OkK#pyrOFNC!Qz!_q>~z*Rdw5wN8*@)k7l%T)$@aS&RNm;`?(!0!Qe z*Pe{vTBCE7s?;(z3_nXM3#yQQMO~1MyMbC*lWPm3u6K|l4ruQ!eg47)+WKjn z$-OlD=V(64=>@;xY09QU8>8|GU8yiMWw9IQGOjKGt~0**Na}v|u}P*ala*<-FwK7v z+Em2bWJ6wYj(vg~EMlkZ^7BMF)h#jCa=Y&2)PwHz~!)Kk2GJKANtqH(7aln#Ck>M~STBtwM~^c;-RXD|@w8qB~oxJ3MJM z!k3Eb7R4TXY*^AOSTJoMvBe&4Ggi+e1PFKVW+!y@*CB!yOZAGsH}d-WgXzo*Z{T;| zR)?!v80ii~dG;z_^1D&U){{C~&#@Y4ahg5bwmbDxS&Ni=rR2wWp6o-E?_XC2R1MxP z#WVR{A=f4hheJ38JV2qXqp$ZZ$<;>-aK?J;S0O_RKVv%1*2I(;Tl*hItwwAZH|;8& zvdtNr4k*`Te9{S7zmzxI@$G7XebZ{QZ zRCu80*gIIEdVF_bhtx>eQx2kI)TE_&JW1f29yxIu$us`e%ew^4>uD@@SsrhfGHE0? zw_4d#-r!XIho--7(7=2GtA5AT%-o8olZ$B%QAeEUcn02%#od<8VNPbdZfM}od_HUN zO>HD%F?#yA`v=Qfbmu2eqcdMaU-1=r6XQ{f`%lM97%mieFRY@qQ*$J7zQ$DA@G&8| zrHOB-Z6=J3dm6o43l;DzDke5^1*q3ML+tHXAQ?GcD6m}Q&2I1Nuhm>fCr%TZ>2&2M zjmU#ECsN1#?tE7@%*+RkTlXkA7WvvB+egLt>PGUsjINR^3J>_f$N9mZ)twwPKB1Q8 zw{)Ore6<;EHNwYAw0KU&4EDO>^@)oTnB|<5I*yYV|Lo?wXj5cm(SxO4&Ox5a6^9*I z+MerX+-<#sbTdh9L$9^u9Ea3i*F%iwy_SMxpAC4x{H@-tse`UR#Aq6|s^i8qFc-tR zeSLCo%HAHZ$0Q-vaFq1+MCXI$a^^uE1%vq3`sw8q4r@#qMz(VMdLFvmC_KZF{6hXb z;ESJ%Y`#nf=NC*Uf??80H^nhZQhD3BL+CWpUCZio3{A~_vl^zFa6|u2PPH_jsg$?T zD{Uc2_*{zo2j74J?dK!I&yR|JEG1yn*vdB^VRVmb2;-IaJqlPts^t$gDvy=o*}vtC zt3d+Qc)NRUNX;-utpM?g+4r13&m}ohR`lGnfqTIL*;OWPOeQO(q5+tf*!UCd7X%NL z>Gc*Kak^O?XOB0-kse6%pNe&4jOD!~{PYHnyt}E|2gd^V`23?ZjI97ux z!*VP59%m){aI~zoIPFc=?_8dd`NaOMZ2XYKHD0KzMie_P0{zg^>}fAud~=1Fh?{FP zl}4c@UIbX(usUtFdNECUzyUpS*9+`WgRI!;qwr(?`b3HKInh3Tl}b-n3+-e!SFMl8 zM}q+}S)NmC$G^ozEM3>gZuNK{&D=u%STWFYj2yi%x6QOxH2@B;jUo6YR17t`cevvu z-6l)L*UUL@5aRCUUh%fCmZ)e_L5vdnn3w$Vh^5az<%Uu*3Bfk^TVO9YC~D9go5Rs z@-dyntlq4eTR)c@Z9Pcm!ZeUM$Ay+ZH{d!_%1I+Tz0zj#8a}i4;~lWalPGtTeR$9l zhHwh|t$T53`GSuTfCjG;(Ay$CbndmhvtkV0F%X|28VTLi-OR3dZt_}o{`N|C-*YH6 zpr272wZza;tr#hE*SZqMzlyh6Zo+SfZGa8*))_Cf5+pMdGVXy!H9$)j3NEI1&ZP-& zLkrF;o>j2hh~JPq5gQPW#S|Gf2*R;)cT7mabTd&Q1MA$NoBKV}J<48ixfb?y7s-Ea z71m64Cfa~+pgY`q!|$9ycyuJWF|_dyzQksSKU6WFRo6MAgkhVj|pk}=!q zG0ng=*M)$DPjfs_@p#knfq=loAEH~u5Y~&gyavMy4|3&++?-4uQ-9`*Z3`{~-q(%@ z#4SD^3%E1!1#s3sNbC*RsWLNW9)&L7fR&-H?C1zx0O zjZc>pc)^@n#)9aHl{wBEpp0>cX?)7SqCL?Nr>U%z?bltlGCnxD@bE##ZoSOBil~eg z2b^*^N56rJ)@A=ZzBI|{-smM`-aIk7!8X+)R`$CkT2_#cntG$~b{dIKrnt7Csvyt) zy19|qC8myXha9|hP-JDa_f@72`N==X>1rku(u5i+<3_m4@7!x{JN~nkh1ez>$zFo$ z({O4ekQj@*jKbTcQ#=nkF*oqfyLyEM-fca^CE)gQvXv4=Mt!a6P@HM97nzcVG zYFYV*xl*4?TWf#Ybd1Fsa{L#u-NdJQfa{Qerc|+^(0ryis;qHoNql!-#BTKnile_v zM&b5$AlK7l3~I*)G$O@BsQ#)h;?;Ml2lfAeqLcI}fp&A|GGXJ|B2(4~5^P zou^C38}>jhGFUD=g(NdM7tQJ}|0L9(6r4ftk*ZbL?n^`aY72nvkph!76Rb9cE)?nErz%b6~hCp+9u`Cg6FdXwCM zbbW*8sf_G+^VnfGh%?&k9D5#oRK9l971+neGF@IwfL&!_UMDyUsxW?xkSGUT?+bah zJ6Uf^;1FTL^yPW@tN_~w)$*LKqv+B%@2PCcCw7SQ7v}K0_I8k*%D-98uwGE zc=Vd+&yRXG{g2-wm+Uk$6put=8n#C}^5a$9TYSr0E96dC_QZvE;#a?q zbp0{4+{;lVbZ1fak?~cGRm48lMB_kWYu4$J_>dV3^`e_C-3Kd4hI6U16pNDH>eYv? zY4fu0Su~s$(rS9(#KAN4lIuc6a0%0f9;Wto_C_v?cC&02AA#6Ezxw5vS?N-t6usM& zY0mQQft=UJOgc47LQm%G?%)3nFomWVi|y1KO#f~iTsh<)^)WpBID74UXih_}+7Hr$ z%$c@@JIC;RX^DLJK8P8S_uEkdj0n2C9Q7<{(zB8*(zX!?Jt^JgxhO4RK zhW|0g++cSv`@5> zjHdmL13l|(sy%E&^0mP>H;Ut=c_+^|yi8#u2J$&-bAP?3P5-VYZ|ulp-rPZpz<2o^ zQA|1lcCkLFx9`K<#SPqQ6p}Uf}kyM3Tm}_Dla)Nk_W+FsYZ{ zWlWIoyk*1E87P&EpKp*b_q%c5u0|h|UKks4>>_B!OO0^hM$C^KY-wvcy=ZP$^LsO` z@HzJm-`Ttxx<&w#lAq1K~?U#8) zeq!n3SxMkUAjf+$XdwAWb?__9V)nY<9iqX#^CPMhz9{=F4hmyOH-ogww-c2E;ktY?MMBl}q z-|{=C3`UJUH(=GW$BS{+xl)BWnRpv^#3SN5lOl$RcrkF&NDy9Dok(2H5gNFra_Opf zX^`B#9tv-Wj0y?M4=SDjU6+B3IduSsd@hQ*)m8g&2sV`e4DBW*Jt3fDd^O06JoOnA05sYXlNz#) zQ<$jj+VZd(jh+D)4^pb-qDQS~d;$e<#wPjFXp)0J`2fE`4f=?WMiS~`9y&u!x{{koRORSyiocCfi$tc2JR@$EDZ+1LQZR)68J8Bm z?<|0vlu-wkKGldmpYwXtmp5sH_f}`F0AEy$EK2%(fpgVUlg^;BBQ)#9qM=!7o&Ixb zSmiz!kUXX|1Bi!wGe~$O zv-jzDQ>@7IQeXKrkq*MMOitIrMhGa(=_#?*6%WEFfM_9<`>Q+mNoqfag%A%q8afES z^N%>UqQ`lx(bPPb5Gk3)UV1UC`I*2j4l_d*oD-W8ZulD-IRb;(@~8?0Na6r6GbsEORY|W)rXYtmX&9R zWNaab6fu^AR3m`$KmlScO?`tGQIE$awmR=wNv_3Vcd8ItTnzuEMw60Ph0krt&}y}G zP+(8O7RIVtJS*-Sz;=u(yg2qt>xLa4wjfgZQf{LXcoS+9BWLvbz=vgD?VrNZ)qbym zsL@{{kSA+If2GCw`^N|PNDrt$99LG=Z~PSuxC zQ1%)-qi0?*ev-<&IY#5C{e&^|DXR2aucMm|;WQf^AmQ&=h%v~wYrY>1Fe)Wf8WLVi zd+~ki!+u#pp-=D@whaoDwx;^QarJEZY= z7xc?SAf$pk0f7jsECo;7U@CM91-F+p!gC z%VGF1B6V|5DftewM8eE(g3$JgFLx!=#@QJY$xJBCwZmZpo7ADspJKI(3UR@1saxfv2Nn*zhFs$m^@j z6kfbopQsZ`-88A(JLWF)pfUyl*rNT?Sga-M;Fl-WIjF()o!vL_5Hy9jYr{b$xDuJ zAV2qv<(9oib5r$t@N@(dU1PYRou2ZJ3xcFVrOD!X{*@!k_iJwxM&lgQTg;C*^SRgI zh<^rj8Y(f#(zsr(uQ*vlZ|NUuV<_m$*#datc+#Yp1!O`gahwg@Y_CtL#&qB3nf@mw z2xgTZ$xuGY?2(jis>40Env@aun8g~&cNt4=$=4hJVg%v9>-3rHO7w~rAoyzReV0}D z?2hT&G2B>Aj2o9Zq@M&{HlzZooo6;iy1Ca0dYrDGwMTrTKJM(fuw8EdT z?AuzcTF%t~uNB5YUazLwXSV%_2ssqdLNK)hWA<3i|Bi*n_!)v(Ym8dVACR5D`S%+#rxAX}fna_?*ND6K1vV zaqLb6C3<)$tp-3|+#I5|?GWcW3v+NWHWk(|v(@xb7Zv zAXK}>EeKi8B|YtZ`ME_GJ>;WE#D@YbKt-W^NjQyBZZEnfg@8uAOX*ftYQ~bZkFyeo zYTVYt$MX-MA;YI37fB#0#eUscUL5)~=KK5hV<&=bp6l*{VZ}Sfk;luo3*!Uxu)-fc zDQ+SM^`Qkt$N^?JjvM;xA$URJP9UavG2UWfp`5{BmcMdf+QU4}m|R0OAU3lEcMbpx zYuu~UH9$s)r*fX9_)0s4k6|G$L7fWgS5XjNVVZ30rrXQ}3WPr00Ju4z>HS?;j0iPA zmMjio$45LBl9luc-4@EPOv50&~S12PNb{K$tgn#D=cv|KJ)QWQESY26wSc_kgnq^Nw}T0 zcT?+EA2E#~1J9B}H8JCKSSGHz9q(G$4}tVxTJ`{XpI`xm74o_J9m5K+?(4JqxBdJzCsx=5Z+o%7NP6Z z#uOpp;F5Pg?hBJD#A3TXE!sl49or z0RE2&(ZD(>ecG;mExC`7Dk{j2Uo}%<&gV&D`x3Ve(Lm0{qc3ojCXPLiVP{sT zB~(8+GE3mi?@;rFQyopDnhS8_AU=+{9>27wB(%j#jx&KON+YGdsFS5OIj_+8zXT8V z8{@nmp3VWmTw4;#J-%mKBSnAiWMoIyhI4Nt)+?_pABF^htn($~^f*;v@)bB!0NTJ5 zy@n!?NGZD@z*Sh}3d2!(CTp^K5s=GvCmXr)p6wvHids~+;$#ClGSHaxCb{d(rpj>+ z_#H-|k`XO|n72dh-|*#DbvY4@-?wGycVDWkJZE;EX@HgYLGs~!;@%oNBH1yXr@k_^ z%Z6VJ<8GGA`>evAe^y!d#nZ!#fYsKjANS=0ovtXx##rYvi&5Y&=Lg(lW)b0IqCs*k zEp7K8cI1#pyw|&up&pnXdQ{H&r0bTAWKA11Lg1wgjSxIpv?kLo?EM<_aW@A(#(H^H zYo}pNe$qpwW#i#e2#2eR=(mkdDlt$1XG7Gg=pp+>ry^c3qNSthbD=)PRrMR*3x&G5D#z;bzH5;J>{GOFy8OUpar!3*|-gRnV!!3~EJGj5L zEy*K$d}u40*h=a1%FI*>lLgi;rfv&rhJ>W^nxg{-RxH2F7;#s;3GMyAOu4~`Y z5;aSW9DI&wA_;S((Gm)3J;*S)D0*VaJvwd^OZ6J?rZVG!5epPNa5A-eArol@=wZ?i z3nq@$P19;nv%hk4I5TzE&D`%$;1HT6n-Vz{p+7v~Lg}3NnMd7)b-%ZntCS?+^o$s1 z0X(K)L`LnyP5X${xI%jQazz0z1SK!H&$%Q!TsRm)OEE8ZR@35GQ}05VL=e1PE$_S= zdKw8v+iHw)F<2a3pNvYKXJ6shv^)>q%EHjJMz=YilJ5Ns`5YjM18s>f4UvlTyjV;h z8!JWg`uU!&@MLEpo|E~#ava$v4?gOsP@6JpD5mo>#&vCb&I8hzP~7H(VHh`GbOi%> ze%8{{NKLc-u57pbMWVAEnJ!%C@xq(5kiN{GBl z?9fM7gVgzqC+pTIW&0e-kwz<2Hg5i+$q5mVFd5L`-h^&36}K%@SRh{lx*@51+KL6Z z6Oc}{;lwlzM$$dzr*^E|14F{=4^RlswZFPH_|yZpYRX$Q#UY;U4@Ac|;c*H2ycNKX zRKIOKpedlb6+=u#6C2b!ERKWpgSu?AX$TN_`aX2 z8(ySzD4x6g7+L+t9Fr+9-V`@|PlM6hfYNVZ7-a~}&QFyIAJ9{o5;Cs5(0~h|J}^LX z_Vi)*k!86EUkIltq~6QwG=T;jl6)1)ldJXYYvYY-7BQmjY5^mno4Qh?pw)y_`0vk9vDKo2^BfGwuPR7nnJ3=bW9lrb^wN7-y{7 z=O7Am=6ZWMB&>KjcPmmw^&Cg&`fcgCfDyq6)P+m@0ogeK!BzSg5K4QtYE&l&G$k)H znRK`pg8{a7r#pmxhd+*qP@8_a3?xpW4BM5m*z(XPWdBLl+@P*?p7M789}2Iw&`R}Z zXH0}%#5N!ZV4SP|>o=8EXefuG9>Q%rEBl}!ACM-&nXmPSc1CTpPb`XOK4w(th0*Mt zQJc#;GhQ;U@klO5&wuF;m+wcb&0#o77B|CdRq%_@@{8IN z2$8YCr9&q4x+_7+tlH4%5YWvmZrRV8q7X5fJ@Z_3%A?*1W;E|8_@&w>`ZLa#t{a-E zkmS?3E=E49BB%qU`lGO}*l@WgiWCrgcQ9eqbFkdQo2o*8a=)La2qA~txbm$fCS1sr z=f^PRB#!VqV6Cu{J{60m5Jo%$jO}u(7_Bj@g=w6ejx<(&YGd!+J*vEO^xJoc#%8HI z_gqxs%*%udV{JPx88N!OU!tqGGG^#`+p+fVqXdPp5-VH1ORh5&W6NJl2mPDU67)_r zzke!)-787)Bn`JGO;>JO6L=YB&(HZz=Hp0JBXU)ID=tjfIAUd}+qSKUb)}r3vak)f z!TYvOQ}juJ=UP`AX{yb#Ilj!S@1(2q62L=+Pexn%!=>@#6@HQzdWv`l$qzb8mPc=I zx=4Qh#O0aW$@)`V1Lf81-?Yn7D;q}G#Aj`g3IRsHK&C4V&l$R<$?WmI%)*wAyc!HHY;mcGdk6K^GwU`90t^CO8?WkJ&(GWmxNFuM0 zlcYa&1T9vPn_wu1qXOwUNZyL)tJ5P(oQKhCDpN(YB$9KjIFwz{K-g*6+^I5gXPtnL%d)~H=_$;ZfGILA0PRW0=Q@f$> z`BW3n_~pvE?$v2gTbd^(HhrC0(M4E7y64oNj4>9<1K%3NWE#32^v$%IlxZxpZY(63 zRIOoHHs-@T0;+-thE@9h@A6_Iukd0nN>u7ErV}<=AG&tPw%^@*ZF*mVpSGOeP*oPG z1#TlZIX*!ow@yOiEFnbL+qc z=*9`(qjO--WQLRuRO$N4+HKU@k|8M|+qzc&*u4*#EMXAGRaMwDikzi}?tnH>%eYnZgh0s$M& z47l^OH8zT6->PBPU+I7O{PdkYPOaYVhS3af{2m=Z-4cC7{RI$pa>$Wa@57y;4)w)l<QR|P0XNy*s!9<`&UUqXfcL$$BEuj@rbpjG)>tqds#Ewe&&s!oYwpLb_ zZkA5wmhPZTxR@wR#0Mtg3o`-|2ouq@weYY3B_Sv!0h!#Ad5B0z=6@CWFKnQ+^*__> zU~26Sla`>8_HU_&i72|8TY?Ug7L$gFKn#a|2#Fyi0L`W@=PYflZ9Jgf(c8L&iJbQ^ zb+9#8bh37^1nm{k_ONu+fi5nZ`cNnXgds&CRofy9q7x#^045q$K!_5Q8B><&w~W6oZLLBWb|_lR!$qkVsI71Og^0 z4&Idl4G;y_&>4D;00$fnlLX&GWlBp)gERFWbfyr4kfepqP$M9sphE%(9`r2|5Kb)v zybJ23TqDE*Bcvz?Qc{|7mX-wV1@|T3Vt_zuz2cx=q!?g~H1wS~3<=IsfLYL)a)?3i zNl=&oouT?Eodz)wv;i=d7OE2ozM(K>t8vhoB0o?~;?NIKh(%DdA=02TI4J!BRYyH& zk$^*6BO??i%^Yeh@0_s)h{L6bo=5)*E`M?0LDR$l$2ABw4{W2qBTV~{!b=1=|v$He@ z-sY!UIP2`@2%OJPgAXJ?NF3-7TvA#b*kJ?$nBXmtfRF|T@;`utAu(}LZBYs2A0NMq zNlNU&^??e>~#4q6MPl%eKRFv;lv2i(`UQyLR2g7!5k0_Hgdf=pD4QDQ0;Pb`ot5{w#us=qUo_!d8I_z413swCrV?S=WC^zT(M~)ayy~DhZRNjfz){L?xHiLiG$^e~c z`!2@kPMScw5KeEm7JHx6WH{-OuTb8e(2A7Aa9R$XFc!2T@u6B&;Np?1da%!v$IiP% zhFy-m;dQh7+yQBSL9Z)Z^N3S$=Fx6;)n3J$d~wOrwQoJ<2bTWKeYoBkDOn|R`iH?a zee*90?2`#~f?_}X^yWS0+Htq{i%&mZBeWejC~g@QSGV_dw{-C1lq)(u#mez?O>i9d z96hG`=sxuoxkFVke9RmP9|!2^9tD|jK8Z||=-)B&80C0)FFiiL+PL)QVRcsfIMVja z3!^uGY~&CND?2*4I3{n@{X^&ct__==BL?uwf9xEgE9c#ID$$m2tu-M?OWdKFhF%kD2vCn<=j~Jt{>^xWHXr z5=J)8B)#7@>Lwpp`h&b=c$F)X;}#Si#s5Sm$9hy0uBXFpuM zUYpwCbVi~LKTsYzv>KU1AS|!#G`VgN`VTz(hj>5?n6m%KL*x}{`kmYdCP;_Z&m4~w z@zH#Is%gEdDe|)p=X=B8f&}iAS*`dN+~2ho{8EI|-u8Ah+KCeq3xwQnloXYVypDSp zW)*t-y=`*I_6Ks?l{-GaxT4I;`RCVX+Na+1?otRZc4Fu=FT9yl#7zi;nVmW+sMwUL z%FN=}a`Gv%$~c0(KWVb>qxQ49#3MKNY}b)G)-l>Kb6;Nb#AlDgVqae&8;Ee|ue}U`}^L|2gU_gI^>Qs>V8&n5i_aC4-Y!j;gt>}LRssCuPAsGDc zAv*1E5M2z49sk!LI&h^TewJ>|FcD`b5Kwq{gDVdkH%m(jWT*WJ*`@#0DQyL$zns#4 z4cY%jJ76mXsw2eyr?~Kc1*(gS{pMrg5Pkn2s{enez6EEgSo_~Wbs#_gy-*zhQwYTW z??H7Cg#h&Xe*o3Re!_GJuK&M<>d1c&)ullA1ch+F!F1?)3!-nG|J$HC#jI{Q4#-SW zP%cQyPz@#MFpAxWY^N9{NwR5D#i*G67n1)S$e$I1fi_b#?@klK9hw<>!-ZX(-96xfFdGjK7k3#E5yzh|2s^u3^V5oetd)hQ zIY@;5{;i9J70k@k+#b~RmvX@Sl&WlGw!69plV6dZ)%K-i?N@&Cp-A2&-Y zT97!ArUha5<{!vfAVG|01^amqN|-@^FsIFX2q|e0hyCk4N$|$s?uq~XJt<&t{`Ea5 zL-MzKAhQ1JJ@88cbT;(&vn`^c2oRzE^&SEt0c^-$?}>_viT>+7@ZR5P6Gwt*{IB04 z#1WEzYqPj00{B|!?`K;ONC^;!{mVUs1oH3oNFa?_>om3#1kl9dq|Eb@QNzAVM0Bl%VC~Q`J06`#%6mfFEiAH$Y=$OA76zuFEiAH$YzF40Mn>k_l@nQ{m;tM02@U`N diff --git a/dev/_downloads/e8a5010f49b1076156ddfe2fa5fe6189/beam-9.pdf b/dev/_downloads/e8a5010f49b1076156ddfe2fa5fe6189/beam-9.pdf index 40ecd7874ad78deeadbd5d01888cc44c3ef1210a..e7d5a907274957cf7a4d1b8067c2627e0a3b81ec 100644 GIT binary patch delta 19 acmdlPvomHxpB9^;iIJs&#pWqmOPK*ovu3qOPK*oq6X#w diff --git a/dev/_downloads/eb990a3106294a2a2f898aea0b429ab7/matrices-23.pdf b/dev/_downloads/eb990a3106294a2a2f898aea0b429ab7/matrices-23.pdf index 620c28ebf9296107e95ba51e5111388ac391ea38..99a5c02c28abc795079c1c7a657be255b9c5f170 100644 GIT binary patch delta 30 mcmaERTJY^@!G;#b7N!>FEi7k~*bGgKEKCizUru6?Vg>-jeG1e7 delta 30 mcmaERTJY^@!G;#b7N!>FEi7k~*bK}~jSY>rUru6?Vg>-jaSGA^ diff --git a/dev/_downloads/ebf272f79479d63cc5b71ad0f0e41f7d/fourier-1.pdf b/dev/_downloads/ebf272f79479d63cc5b71ad0f0e41f7d/fourier-1.pdf index 59850ed0c5404635a1dff8ccff77517c0518cc52..40b10af1f926b63665d00b54cfab864135d08a84 100644 GIT binary patch delta 19 acmX?8cBX8Dqy?LyiLrr+@n(4oU1k7ENd@%) delta 19 acmX?8cBX8Dqy?LSxv8m%>1KHgU1k7Eq6Po} diff --git a/dev/_downloads/ee22a6375b132bbe50ac86a0282c8f8f/fourier-2.pdf b/dev/_downloads/ee22a6375b132bbe50ac86a0282c8f8f/fourier-2.pdf index d1e3fff2aaeee6dbfd145093e3c6701a0404b7c3..a2415b1bde41f24d7cb0f3556b736d7b92780611 100644 GIT binary patch delta 21 dcmX@Ri}CC(#tru(*$hpL4NOcnKZ(p_1^{T62#Npz delta 21 dcmX@Ri}CC(#tru(*$m80O-;-;KZ(p_1^{UA2$cW; diff --git a/dev/_downloads/ef1b602db6b31a5b8d8b9d20a2410f41/beam-10.pdf b/dev/_downloads/ef1b602db6b31a5b8d8b9d20a2410f41/beam-10.pdf index 768312677588cdb7b0d782c4d3df7b43e3e66a47..73ecf2d91400a8d1880d556e063c003dbf742a57 100644 GIT binary patch delta 19 acmX>eb3A6l5iK@D6C+Cl%gv{>YMB92E(c2h delta 19 acmX>eb3A6l5iK?Yb5j!o)6J)}YMB9290x}L diff --git a/dev/_downloads/f0b1ed1309beacf065f53d41a069ebe1/plotting-24.pdf b/dev/_downloads/f0b1ed1309beacf065f53d41a069ebe1/plotting-24.pdf index 25aee15b864ab165556141cac9e3d83bc5a15a0b..590fa19d978cb3d1c9b6bb1874b34276494b6fb2 100644 GIT binary patch literal 31935 zcmagGc{r4B`#;{ksiZ>5no4C$$Zp#3E=9<`g=7nju`e@iqHL8AF_I!nCfT!0SreJ8 zBiqDaiWm$AW6bxu?-`!Yas2-H9nW(dZ_V6u-Pe6x=k+>Y=j%Mr`{=cc+R}0|3OkPG z_KD_v-XSM?O4QTdb%(mTsO6`-5wC-rkO09-@lSKX=F) zIosWI@o*A7!}-?B)4|BmThtQV_M$eJile``sO%+oFopA+|6bty_mZgf|Cx^5|Mvl) zc|)`Jas;zuPhZy15#{OQBj@mA_!SjmBYTpKnaM97h z^QI#-ZIri{qn-N>|K!NZUo8{gqi^|Pu=a?rS1z^MeqKK_P&Ku2f14x!lg*_&KH8Fa zP-6+-ZUo;Hyy29mc!n;@>v~JUb!7s>jA7APEBdTyJd?p%Ca`AktZ~u+o|(y-#?ew) zZLCECOOUmkutH$b35x_g9kW8iN3SR?nKn0M&LfyahQ3&a{v<{Xi(uNamWZrH9EOp) zgqcAE_JN@U?MSS4*0}fb%7QH(vr`PsTGql~7FXyj0)mR+yTGtwJ(OIbkyzwZ=>PMC z_ruE+Jc~l%24fwp&MdwjLray9)7QlLr)Uh;_8O1-L`7+_t=K=wVmNVoAyrZ%10Df7O^& z!Bs;BohR;zJx(!2a*#jFAmRQu`7{m=OmG>cD+UHQ`2)qE**ggb!{P}|orvJt6&A)Z+m^3NYT z)>p&+uI}iI{T+|P7C*nFoQ38sqB2Tulh_HZm!q&Z-!}HjIsKZsek1Vi*RrL5F9L{9 zLgvE8DgUJ%^$|PU*Z$NIgFGH0-+`{?j950>#^+V*{v-Li*~%S;piZft&rQ)umv5i& z%E{7Oef;e_+(zG4&kPC9q{(dF^Xj>ZxL-x#yByn|LIET^`$Gw2)JP9Ysf@=@@#Zhv zWY;kbjgWTy6ftGu`Q;{GZzPbrIt2W%roAR6LyO?pF1$Hi)7{ln9^4|v-^r>;r;KBeQ8dwwMc zEAb){)scnYA18JXF^^8X7%k*WUy@T+$%^v&@6s%cXTD!m4?$Otf_ zc7ngiajZ|3Y2$Cbl)^)@%NY7BeAWAvz|iZIAjw^v!IzTLiWd2fJ=EYb_j=^;eQ@!I z-6gQbCv$$DviWZOq$d(es$#|CvArK(XLG;%PPcTZc;j0Kr7*VHXF;~~8C`K`9 zUVJ6cp4HUJ@}%y2G;P@zO{(0en>S>nH@zHCUp*(sCok2azPRsvGr1%;A%2O3X<7hZ zyD7(z%s$Zu?l0ax#xGn?7${ior+glc&zyaoL)DB0Gw1JYEY@A%u_e;}@o%uIBlZOS zzDo6DgX6fb1G=_9uwzL;hK;wt_+vgUn&%jiuiUg5Fr}BVEN0! zic107%tkk}PXv+Au&hu7JkIIfeF0`_ z;?X^+BG-RAn^C2a;o>W*6RM-uo69U?TpbN0WFdQ&YDQ9&l_Uw zkxWhS*vdJX33-bezeSnhTm+TTfW7d-kE4V!+-@_0d;BzRE**?9RpLwGtb0pQSdqj~ zDf1UHl)&%3{E@Z|IoQfCH>Y+)#-pi;z>r`6u`pLP-c|INYV!E*v;)V*TGSgd-y#e4 zAq2MF;kC7=iW!F#!kaZ}ryg8?O@a`3S35~b|JxSzitqw;dp|82Z2G#HrSFZO<==Gq>TJs5Uecs?P`oEwFQ>bdixvgjKmjv zHwO=~QO`KBw~P&CUrwrK(x|2T-S3uuFfb2&G#%eWaydN9K0?B1bRK$TbaBr;K_W_I z$4x=i*S~6cHh*+CxU{HgUXu7xyhTw*eaJsDUFoVYe?GoI2gOTTI?7tn;<*}AI`zj| zYgFc6qUmkq!M>{AiB1r61!a9ZOwiBO0CQOG=WW9hOlii%oeB^LGZqwkWy1{oyQzFMofacW)fZda-o< z*mBU~q}$f+qNgrS>d~fcTjF@3mEEz6{H{JU#!*_>x@ku^5nc1_wY&@-UsYW6a zO|ST7cZU;b*c^qT1vayBn~0>TzWSP?>Y`+`z~VE7)?~nkSxM{C`Q~E77s_TAVR+Nu z;f3pZ`Qlz!9uTGt2G}Ue!)I`G@Goj)fxdfJhEAV!?EFwD%NqL4Pa7sV`Wfvy-D;Jo z2~lyXMIx|KaFZ8NmDGoJz}JH{M$eGO&uuH`>&Zd)*>>XM%^f#)=L08J<1bX8Zt!<~ zvD@29=TS6~0MqWK?@g3{cza^SwQXgYVz(*E(T%wou`thWu101yXhiPus!ch}ewbuv zPr<`5V<^1jV9YVFli>JHk3E=LT+xR}BXGR3a@I8FrUPomZ63=x7|)j4?&9}vn|d0~ zGZyKU3b%AX{E^15{vvRHkpVka+C-2ZJ2bp&vg1ZH%M(6H6iYFK29qrWK<#89`f2m4 z|9e)&bIu~61{hbc}r$gr|$zW6A2bGX%l?MRL!*FCC0^s<_I_l z51aNHmNbQ8*;rq4A}iqQ!#Wr~5twMVw5{C*d*ZqJdY7CN^q#CP!Lefzy#jH(omd8U z8@1_;A?&jNv`u$2sb{YKT^s3M9D5{uaGu45mvifaz)`wKYn2uJKVxk<$R2ATPct~u zf;|#ta1Isv+$#|X4?b-+6;lY=fv>QE&&3)Zz+7Jorx}F#(*iYb!kl_K^^ zm1ti7Hix#}54;IG!a$QHN7;y?ph-^gfg==2^+;mD2ub67TTH2u#6-P3i+0NbvKT*e zRzPsePh4>OA*2`_|HS-#asm=QIJcRFZ)3n@Zp%?|VaL+gu+-G_jGPY6=5n!U$AaOd z#-N9gqZtr~1g2|+!Pk?%u%mg6}YJm%X``rZ)ps9Bo^|^E)ygKPWfpR znzH7$XT^9vX^B`EZ`7f<=YGZ#7gmB1Rd}JCqp3qUg87m%Ii|sa%)3i7;DA2z$~jVi zVu=R1{UXuD3!qNkcyjUhw0QLR-_8yR+^7kY{3<4dU>YmWO>Qvj4)+`2Ezx-QHoqqn z!YkFx345@tJy(kgl!dz(x*ZP|#xJF%#w>n&K#{w%81mIQH1p5tM~CR`PfyGjNERpW zY*EY?NluGq&~ejo)IjEdU;gmPD*C}0s^*^-OMPVzeYw)9k6x32RF?$b1<3qe`uzzJ zwILh1?8jQq&emA$y>aU=9?ul8Y%tD@^62u^RW#18jChXrMa$Os6~583(tN^`~|n$ZA{2cvqL0IUk`-#hD80-_2P#qiG#72KXx^w4Bn^ zZ0ea*T0kO(JTxHDNsQY~zm_LlZ6$rB9W)&qIM*gsR^4&=Nzfn>ZMNxER^ z)6!cva~LKr$WyuWg!fygi3RE++fpU|1WN2yx+@g%{bb(vrUKhP>u=RrIn*6_(b^!Q zls8J!;E~LI)6Nr}K2Q-XQYWWER4vYH{!?q7|ZOBv18AM$3Di^YKURnxGH`cU})v)WrDmR(`NJ`or_e|xd&!aLPB}uV@ z>Nu^!iKI7tcsgFyx^@~raA9cbJnV)ZjA53;xwsJtZT^{eKI^FNIOK#quue=yA@Iw^ zyOzRoC(lBcz1J(Y29&h_HcC9g#L{*aYq5^+x#qgEv4v}G0d>?5dq{Clc}-f$e2+-G zVzVM~!dB!(%?EgadwBY*WtqK_9JW=b1I@gw8XbrP35htb6)(=Ix`eLTO7f|myF(}FBFAwqfJm_~&D zdy`Mv*W`eU@_o~r7HkU6L9$+M9KUmC@zy4MASs}uBef_wfh)fyu5haOs{?)kTMJ93c6v>DkxiA&_~{`{U; zWlW@#%ePRHw%U?g{wxJ;t$uzeX}&C4?p#d1Q`!fx4v*i4Kd`q~BU6uc0=x1|6^x$# z??WAc(4bvU)+wobUFC+{_8V2w#B+3Qim%axRL`z|d6|NDGcR0DY%#rh})a@O%rK(`(qAH1dr0NC<`PnsXA^_M|8~pth!)kBQ*B0lyxN%Uj6=h4(V5U~4L2Q54#FEI8h zwu?{31Bz7562!fPL}5fE?MOe-?-{Jc0@lj>+};N1A#9X&JIwLS%6Wcb^&DJ9u?pUA z%y&zx93z*GC6Hd3T{MAC*OKcI>c$W9#~DdIylplLrlg$5Th1Is)f;zav9bnm$A?{O zQ#QCrT6{~@y4I|*YoZgYnMLiFA1@47bA&yIn?A>VK9U!_3cG8_ePUY7z9WHZ%wbG9 z?(noR6}L_aOGDxln5a4pA?d;SZHIVQ_S*C%A91EXqhc{>`Wnn1mZSdFL_A+(39NX= z&VOdtO|FNO^)OwffUC`WHvcA+VUt}534t<_)SB1bArvXV@}5I1&wNKc+X?QQ;l;$5 zd|wli-gO0GuW$&%AfEb@q2;8WO@_dhC> z$ItPWOMm1$-qH?pm|i)u;Y+lZqgE%;zu#^5dG3$a;uBi(^n!oRkZ^2mf(~g>sFKxa z;_-`kTe;AP!6n*H20G(brjO;kK%)jv%ML-hA7PnrxfmiM5o59wx3ipq(ZgyW-J*g+ zPhvL2Ob=$P8Ckh+44cC*^m#A-sA*br{d8e77!+6b5>Qo?udCx2)pIsmZdvLteZqT^ zO}Ii?0ha|(kh0mJe>^Sj&FW)e5K$iR@mWHtReK&YTHHMLSnhn=PR+v#ukX9H&Q^!^$Sz^)8 zYXwm9P-4R%<#zc)k!c?dpJ2T~>cmk=k4_QBw8?o*h+}ZSTM;5idIT6E2A00=zrq$h z?8{$@AWQnc-PSL}n`wm0$N0ax>^dk5X6ZjaAD824D#*RVA~|3a{_=_&1yBx>=Pvs( zoL7h#JANp}|Txn}QnF~2+UR1I4V_(pwiF5P4ca>@3Ze9L7OCi!W z$nl<}!0}A^W3gN@qmV6>ZLJ$HQUuCQbUj^OG@WZd&bQBn-#>aXp?BeTS2=;`=#>`m zBw%R!ROQg%85O?M6Yo!ua@Y0NHSdyg-Sj+DjE6s|(;zF_9(nx@cB9(&J^b!p#>#>^ zHkJC^4S&W1C#AOj{@ni%7W&3&h0mNnw>2wyB?i-gQaz)X) za~LO4g7(iSh-6~x!z5V6et_gejm#BF3YWdK@;`uY@z)4YR8k-LGl40(Z3p7jHz!FS z_6FWfbX4p)_T_^Cd0}S2Oh{gZc53CtrMtaYr&JKcIOAGe%FRGH64;S1HFgo}gcH}C zm^UO$FZ3#xxJuFqKcDMQFaP;Rne`ENxV(?nn7-TVeuJi_k(pdLR}{QX_6|HcQFm;+ zx82EUtqt7=8SD=3Y}Pd3)amFw7gOATfFnM+d~MIldO7v{IAxptu6KY=e?Vjp0iQK{ zv_xa#yIrur0Z7^R(Srz5^w`1FbLe7IRL;sz{c&%h#$gcCE4MR4UxSO^)u;2arRo#K z5sUvLq7j`BN~dOD)0SHH`;kjSDG9#!91EQbySIL#l*%2XU8?cV8}$F=>Jd<1k{f-x z>ar&kZ|9Bg@2vxZ$J|o`iTOzWW23jdM$LtWZwfDuKZvFJ-mSASeF=c}m7>NF?pB$C z_T3!+;@bHuT;?!19j&NJ2$KD90&vHaLVm;|KGrAv^X{G;jgV^IJkrLq>Xf9UxmG9PDy_v3mege=hRiR7CJ+R_OroYq7v z!nABM;XZPW>>u6_hbDwd9kX$2uPg_%WS8lOlh~N$NjCTn=^ku%WAu8}v6SV>v#{Ai zYyQco6!uT}S)L#b*DgTj+418onskf0q#hJFziL(b=wM)OFsE3j*>gSc?u3AgtVJnR z#U}!!iT-|?SyE|gMdSXCc-8hFhJ={Z$Lt`+7Lgx66|_$Kf9M|mk&W(ie>8%C`)8*> zP^5T{j|piRSH_Uy$-cEI0xpt)&q;1u*cnK}lATm{}YkfY{E*x~&B z!ge?ba-Jfb2pzbgzctXO)?Elq+h>-?ku&0x#7maoS)}4c|5-ZcEVVR5oy0pu0wTb9 znvsJM91A9#e#~A$5m|RnbKusY1sTLAI6<*FkSHh=WjD?5AfSe#W8hx-s$us^k(kY^ zr*7Qzzn%E>v@TQ!1y8c9nmtL1=Fal}`8BB$j$epxqK3>Ha(^^B3fV&C?HiCS$hhG( zO{0j^UveHGGJaP4CUn^|e}lbD>x(n?64RAE_sSg7QnGRSn%X*gl#AdBC<-^9{ls44 z53JdhdOl8&%EhX5c0!IGq<;SHaA|7!#U9sX=5Lpi_PFU|-T0z{Hb4Iz6qh@8JnHj& z%axYMMtA+_>7{|$a0uFo;26#UmM|_>&{C8c?fE!a>?OcuL=0^qr1S>3lvFRS9m_?i z(LpGTl5*>w_hR{?=F0he5?tYYS~#6n4jEaR=}n}mGk zV;!udpPQ?^y%ls=YDIfFCOETT#D38wx%qf9$xgD8ro zzsAt=N+%kTeNk?A){tznX3<*ie zEk6(O(;931tD?X!}pUCvVe!P0j3>16(a`)8o7Y*x= zUwAAt?FL&h>{(F z%`bfI6HS|k4$I7EVVRq+7Kgq{Omt-=bU+E83T&Bk74Z(0T+3TZ&Y(Hwu)uLaGs?jZ-4~W30O=^ zOfFHTfo-biVrevbLQXVqTt8Jld4is}gF_R`Sk~09$wBeSkVNNqZi4~wTu>1`Pb*gp zi)v9+98XU%8x4s^NVR|&02If_UgUtya|f!y|H$lya5k9*s$C$KuCSFOepR!s$lA*Q z2LNT-u^F{6#8sxN-im$G0#Fzhz6z%7*HCz{j)TGltXGhd$aW&}=RxL~?L@4vf9*iN zPaf}SqHNPSezk|#krlJt-54ZWaYNHwA+yqd5W{B!>sOeA)G!g-4&&7wz)O6SmQhb? zhoYu^6P&1t`%McU(5Ts(Z4kJ7b-D`d8Ni&tYQ0(N_1`qz24Y}XET?L1kAQg`@Q*`} zIP4vr7fmqd{%Co0q7KFMMBe;Si@}KoJTnZyg`K^9@>^CRdM2QbWM(#czE3LZOnTz7 zd3F9m4v(Z}8EaeruFpd!u^;4%&@GQn+YGti8Ej1k>3odZl1k9X(<>{1N4T@-U#il- z1CByYxq|c%fiNXv3?>+Ab5G4BW(vE*LTKn`z_1bLE1l{S`eu?-^SfVlpm~x5Ou%5F z_`<4<*BRR;J8;GPML>u$;2zS`xY_ZzczlfFqk>m5wrf$3qSs6$W*@% zFCeAR8YDNH_i2*n*3B(D3!+#H>2XKhp^IsE&*Ea_HpX$t`~4 znU(X2J+YlYGBls(HpUpva(|8bPv4LGMl0h4^Z4Hp*8I@H7&1^qKr%5yu*OgG^&A@c zCtaTlzxS$(q)9jm|8Use%Ol{X!XfFiaeZl zEJe}yzfcFCW6zL}2IWtuEbbWF=@2|~3azwjy+=?zr6c|G8|aBwQ?UT`a#0h1iJ@)f zKV9+LI2KIE6AlM9G&b~bC^6Oc;yOMFlS7jFi$O0k)2;9f!vw23gj1c5U?s1Y^Vi|( zbUm4BilFMbREu@kBS|?|tsC%x`C9ABcb)xcC#A3PTr1Qeqi|nSg%iSJ$me~(lyU+4 zw7<+$=bt+z12(qRi@EYIw``XDO|a9)FfmTznrAR5M$M;u>X zWuGWxJ|`?MWO8^)1x%wHnbUs|uG1@r_X5Cys96CEyD>C)-dWFbx{cMm{rqH*bIyvg zOs5XBKjg?-2u#qjVB78}W^{BFTQG!an1X}yoH&L}$XXsDu{D1UL<{VJCY73f1e0;9qgl-ijIooH8PHnI5@&G!`&7@F_k^EZmxF!We_L*Ni6h z+Z>ks;u}@SFWpDaEvO6C2JFsh#i{2P2mGFssoJuf`-ifWtetMy89*Te1Djh=`V(Rb zF{xLH?08`bk5ZW^y|orDw1cc%8iIld>R;7n2@rrn^1ina%=qz| z)6Rn(F6(`>0WHnLQ?~7rl7hgINRp4*aw}f*lnU-z!%1Dw3N#;vbgp9bWR-QLgZxqj zF<^E*BOoMmP7b4?3weaprdA~auv8c~e;vwC$^4P%R0pNw+B+GCfbz%YuJJR-q16pSaD!uhGLEN*m2T6coQj8+MWcC5NmEz7+CmG>)6Mv=14kpK{mY z3Ye5I)|ByymTytyx?;acF!x=`?(Ae%|l z?7Ncrm9xJ2enixFK7L@PKoUwtJ=yHw=lLw3zcs1UIi&WS%857=a%KLGLv@)0xF=~A z-SN#Qv}iJ~rhPX4Gd^E>_V^{!(kk4>S}SLZ&n@%h%Jh^fKU-Yc6DMpR?gb^_{prp8 z!XTaP^Jc<+PBgmMbhtm<37u~pt~PO2n{h*b!nDswX!brwYj|gS*0uaL2X|6YSz@m^ zMvr68j^Xc|aT2aiy$8yff()r&(5YVMA?FOLNb-T;#C9$F8TeBR!>xcC0A!#^*6!W4 z>dF(f&IQjn=iPGYn(iYw8Gx#z&RiZ)=|gJFr11B{NhW#AkUrCvHxuEn6x(hUJ|$_W zMWCXp3lIJn)-P!Rk?%c-xnNR+HliA@xJbr7W(BHlIU|IscKk7jsvX#MHCEsTPP6AR zw$G2Xg?0(T5&e~N%!5Vtd{}=;H`rpEVr|m-pKDH@Va&%b`~%K{qT}i~hDZf}!e;2S zl8JFxMVWH&C+y=JI&{_7NIiPl+uU$TK)BB|%CBxsPT36yifvgkiI;tKzQgzZi>4i!yOv@%{=0tOzt=_-t_Y#w{qurYu=~_xWRgfR7Js&q}MU4&s@Yh_A&$k@tWX{`HDS-!{2O zC9A!^PhtaFs_-~N$^(6%o4~<&56;BVfSddV-M{;0F}HKeetWls&`>Ranv}q~s6 zlAk(r$6>xIt+O)Xh5W3(1GbG!xNT^%)teu`rl7Z7c(-@XoW)`pzLEPNlv zL3R8{aE6vfBxOw-3!&S z>xsBEIsLcSTR40F*Th>eo}!G)mqM#gotqI)ESRfV%>GOkSB96J3-iRuCHpJD2C%d? z3zjNg)*UtMkP?TOecff4GX89NPO1Sa33Q^Z$82=lDBrZ9-KOvk$-#=PSI92o@8#VC z*^DRIo*)-=Tm$w`Kl%v2dxoxXtZ1rd%~yXZUUP}H#hg2_guE@lU4S0|(Z;_*_NUbt zZuK?VeZdUQa9gwf98DlI25dpp$u14h=%@#90)m8U*3KfiRU79nl1l|=3d+D=aBt>- zEeZSyLoM)XX=hgbtJC|aGEO`i^ge18BM!PctOAy>tHbIkderlh3+$-P@-RNE=cPVa zGl1c&N4aSxY>s4mt)&2%&ihNn;Ikb zw?H?3$_|9rZY;rCd!9bl?q6~g?8u(fsh^~mC*PBqe`(F1R=uUlnbYr22(H>t5IM{N z`!#`s(fB1Kw&VKiFU_C6Ks@2Z{5@*Lwqs?m_pc`5TEdd9$8#>_PW4a5D+S!(AU&yJ zF);u9s-K*{P{G9huHgU~f|%5K_$BB5n6a>cOWA_aiH`RmCC;c>F6V;Poiv!=;Nvu< z48ux)v;8_|GR(hX7WeQs=g=rVEXW3zvRyGgI51O>lqROajx;eIlr+rIO`K!mhG>3e zf#37eoDU)}YICU=rlc5~!&H+lpI9RwU;HZhYsDc|$avOZ10^O_ZGq(!CN=oVoOlnF3 zm#YqM&tJtQIji1ak)+yYz>a`)qxiytl5TN>Jxa(Q9UmE*d)Qw2CU7FviIlFe0-Av| zR8*KyM6*mT6GCQc_dMa7=_X{nq!0y8H_JZFL29hmtkb7$q%R1pQQoS0D}NI>s@AAl zvu>sOM`mVxFMZ!g(4kM;Ae)b63EQq2XFYMvI2(v;;{=kzwBl$r+ajsp&s9z-cc!)) zSjRq%GWb)#A|cZG|2Kt5+}Z()!L1%JR#d(iU;O5bls}Cj(5DLE*n#r_rocsz*A!Z= z#5gq?S4{PZ>#+l1))GlBv(A?A90EpCx?V)VlIetgJ^CEuSrKB$pY^HY5O^*ZOl`lf zXrJas4OV>*AeEZ|0K95S2s3d@c40K=m1+_ zwC$h`oBb>Pa}P!K$Q=%|tEeYmrqO1Sbpb2kl^!k=>6lQOcwCy9R@t+tMt8KRO*svr zDGL8zj_2P0INm)0tv!d4$1I#%^-V82oMe=FqZ8Zoa;J&~a+YpJ4p+Z{xG-kI>H2Zv zvWxKQ`F5-DdWnB|7|wGssZE~m*t&z$%6!@P#G&QA4yzY7A#1N+f$z6GuHWEPu|dW( z7LPpୢHt!Nw9Z6BL`^ulE!;nBtB-qY0uhuK2GMB$okOw*Dhl%>DOi8dtao~@N zIgw^fYbsIUpsa1QF1`;7=Lu;EtI0-nS{UJA%bTj@wL|?~M~|j+@Ce7l1QE$}bIE27 zr|Kr)TE$MS9{(uvU3M;yNo`OA)zC6Yj;n@N4*ulW(O;Gs5M?p8C-K9@lt~s_;?m2v zZU)s^fNtk$=;NDKd6OUb6NW`DRzLL<+s!qzW-%a+jHJb&rOGDC7>Ko_yTU!{!7L3S8`eypuPFkPUX{(Sz&{w^ohg;EBW-!XMP0agzwCNr1wjGz~-P_4K#qx6dfg}>k%{=cbe_zfr13O<4S~2k6Q(S zAtE?LiX`dH=E5s;c<4|0Lja>IrV0-7)&h%Cba*fnn)>6tXp4Hz!6QAd{_d4GD5BDn zEEQHQOy#m>4m+%LTIo{zsgfnztP3kmn96E@ou?p416OLMsszN z>O$)B$iJF_rr#U~&_Q@6AAkD}M{RIvUE=l;Dl`pRsudq0F)wivg#eYhsvS|Vb4x_f z<;!eH<&hw2h9hd6!!4Qu8<0jmN0Y2oSE~^*f1SKEEl#hlxQMHW6MU$Na})y4(xn4V zY`sBtxhVBV8ohfpE=0`f{-m340{uo4ov8@1x~1}e_LMa#=8*#0mhh`rk0%r1Q>SjBzdnb zeDPs)vB1WBEtSEB(vg5;!?64*L6UmLcOz5abT;rf0(;ngU4MmiU9>h9(DTQmlYXkZ zQF+hQN6GKC^yqTH?ze+8$4>JTUL@D0EOpN3^*Xr{GKFhHDT&mBRIB%C8w+FMvrM@7E|Olj1Boit2gmpib%;7UDIevjXF zhoN36kpxI~Bx&NpT}!M}9$QE9c{08ZsAA9w?ykv`fK*2)82lG_e_=cz@FCe)-Lxs} zpJtVJG^mkt(wW~Uy<#@-s{;8jRl5Gg$UhPCNo)!aT}mjUIbSvBn{w~ZUngA8SzS*r z>oM6cyX=Cz+Uvgl{>1&A^eb=c;9v~IoZ3H!nrY3qqv-PQf=5aHd{Bc}R)dBJv-vtZ zfCeSSw;};jda6}`Xr$AFu=DtE6{wzuyJvwe4YFhvjDBTwEt+U0WZJawi&aA6QJQD) zw$BC0I5mDC4=3`#wLPI*g-X`Y8B_2K&xna1m?b{V`5X>w<`_V3A@hT)jMS-Xo0z2C~Z|x8J1z1sxVH8g`i}Vi0C< zr!R3XM&EKiwxoGA&z@=6M!#Sd4o59E3r2`ERCD8RsJNIKlHKA?^c)1o-1)ZQTLM)<2Yyd6_7A6oj_tSgtLA}p&^Z}N6FV#+iBkMY?EFGjJ>6}?b zkDZPcgl>+Yi~hS%IcdDa$%f-p8mQw}RzvC_@#5LaiOu$)%0wmy5re*wI)@!V&#o(1 zY}20oCu91LsoU%X%0qZ%mwlFxCac_l#oZPMs=0I(%wO%}cJ=&461-u4A^Rl_am0nTafg9;ut|zW0^Gb&R5jr5b&3 zPYMwe5v4PY7rh)@?ys+yMAIR(<72rvtI>5neXz zTD`nMvp<{$2|ecdwlV+zI)8)S+#M%9Kh(tuA~OP_zfXVtxTbsLO zZh71=ARAT->;+9q{RS7^a^L(q-&SB{KW$obXR)wtvG71mX;v9gS9D&g(3o6!N$SLq z6$*z6#>>5|Su8jAYcy7uTrn>J>Fqz-q6Nr`nL(575u>hd#Az$SnH@Lm0!9b6BI+Y% zlah0stm?vE>ZXjgfqIdgVhM-T-y#0ERx>DJJAUMgG@(G7t=6g5t$=RM6gZ>Yjn)Aq z(zJp1i4z*R31hEdSp z9?q9f2RFKdv;E+IHRw)Q{Ly#=y#q}O22$Tnsp}LBrEcCAA^#(r=i6;ToPX)nHv*xQ ztJd23lTNXF{9fIS%s7X2iULS1z7SHy^ShX0lMd$v4A@W&0v5o1YUj9+NM;+9H%PS> z;ql9RwW)NX%vASOs(NIDSq=488_1bqB#&(YV)*#y%lXDQ;TvXGM2d?^KjI{BzgWqQ zGlM-PP#^QG%=%<717-#q&T=L@hjL#!&9iod^!4-vto*Qd%NrU`Y@=pW`<)@JQdEr` z59Fv_6svaM@A{TN({SM1ZZ5Tct$|DphPYm8xc&sLOf|0yL~OsPpe?gt?9?swrK5k) zm%e~Ht&rE(s1ld~txe&fT7vHQI~ES(-TR9~p$=o@jt~00X>hk>{6)U5>hNAjep{d9 zl)uT|j%OKLApXUj`_%;8K{c*Aa!VudZog}XVDWpe2_95)xIDpCFU414rLHfyY|KC6 zV14x)fI;$ple=tZ7WT${WxMZ%hw{eK>>^YNOtwlC;qZA_?wo2I{A{vXXGE=OnvR~d zUk%C*IQ;jE%_mCCXy4f#7F-zVLB_N<)CA;bjai#j zkWl)aou1~xY^OZCzs5Fk5+9;W{RP-%m_3)R7db$tU)1HD1lMmZG4!Vn%7S(l=!BQy zg_x=)m#e#re%j3ajjevhZ_YlvgVA!7?kh4N%!Y);Hbz`0d%8rk=(yF838h}m*Ko*) z)6rCki@ngX>ID+^RMWfkIW#N3@H1z!@~qAWd6LIsIXpX4vnr~UJ#IogZf)Etl|1qR zPgg~D`U=20{3Z!lh{Hq{Md9w9Wee+#6~4KvfMlziMOI9J+Veq|PwjqFc19e#*pQj& z^_UMf+odIy8S^;d8#rx9w0{>9TVG-$3JVDpQ<>=X5%>nbJy3jx5qbL}@WblBsTK#6 zg4tCVD}DAWmFI0ZzG0NW+~6DfloJDt&{3RaIMOu%#+@A>cZ8aLk_B( zMj(iB*`OU$k*fNQw*~zojuG%+GxiORU`&o{c}2<*c*)Tm2yGiitqKBvK3HcuJ#_CG z>3rh7(2+X7sKWY37ZucoAYi|I^U#suaJ9Op0nMV^z5U@4{UNy0$bO;os*{%cOh5yr zcRh&_H4wKmf{R1CYo|x%ITK3evKgOrEVVB#by9PCM6N1h&U4uwV zwK4OPaE({py^ndeQ290pP5+f8JOOzOZiMDL$=<^Kb%1)t-v%7wtBzmZv9cqz0JZq_ zIaCyGH%4mccns2ql8!2kVfZ|DE?bzuc}g4g{8FROJ=gPf&&V1oDQE1iqwuY4gSesKfN$f&Y=17J3&uDcziQ|Qh?zzamB z$4>awhJe?oco%!cnXPOY<}%B|~1=j2Lbv zpVXWe86@=@4x9*y03~Kk3!nbGttE5t6yWTQK5*?fTw(@91NmZN9K-CCH9pffKKO}j z$d!Omk`6B^@frwk3op=xd@OQr^tqPcH*a2(&|{bQ{4SfmI=MS^E-$cY{Q*-HbD_iL1Z6R z^i@dz?jd)u&Tu2d{dtiBaS#6VB(wcx9pUkt{QIW}_s-r08?Mo^&R65)Z}FpOg02@y*s!j${gqPja=~A)F6?AW~>j*3udNIe?=oB4_4P`?pW_eIq zb5Q+43-k@>vP7Sc^9B`5?7CWA^}OjF+MqXhq7xHhuZD@4xVq|05DeqolpodX(*N`h zYSFbZ4r=Rtz&1E~!Nvc=OGO$sF1{Q8#s3Ftv@mnJw^ZusoA*FOh_T?J;w7~f0EBoJ z<-CO6((r!%bk&KZLSasigN4Jc9}qfQgNiSm?ReoVP|yrD3|1qsCA%EecW!}8Cdd*U z^VW}2R|&4|P+Wr~U9MRA^n+cx6Mhvd2J z9!}qBz!k+vzllT8Q;he}7O)f_R^aJX%Iqc`^4cASV@lO4#tnH+v!XhUg8tA#@o)YD zkzcL3l5uqzPPJ}XRjoqR``hgDRM}L?7o?y!p{v4rn{0bpmW9o~OU}5NnM)@+I=7r%WyyRKKU4WzCpL73d8+AXb?}btMyi?fPhW7*t_}Fa-w%m73X= za!Z$Vl%umjzcAbuBusnOV0swz6@$K)APr0P=UtHS1HIveku26Jz7}Q?duCd9!fsHm zEWlcIJV{j%bPGFpGU=}~rjbYfyBhYrG_QO($)eMvHfqUP*5swG)HLH7|7eERh*g({ z$LpN@5bA{yUl^?F$;d~1oW7eC5YUasO^ zl@|=xbQV1R08An%5^u#rsGpvjuZIdJ+P7g*D`J`3gC&S4!p=i%dc&7D%Y66^#42p( zT5H1i`GZ~PBcf?~yTSAJcg`r8$wL8S6@bp6f^Eo~vlL&DTzdd<9BdDwJ4JipK@Luz z`G78Iu(Zn=lsAP<8;2h*X@W-L6|P6gh=DGl=ED|){CaK`{kOtFY;63mXHMp3U~Q$> zbuQYm3w&KKfU-%CzUL-&OIY!((SY5T(kC&dRGpQ8$s&IsDi$mSM5zf6`Pe2T1V6#o zqokb{X?;0QKTD; zn^(~bB(JUIe;+~?3$j58Q-DcS-t=B9t=Z0^*BjBATwXl zUEJq(7^+E^^y)bt&j)@KFJ`U|>L)BCr*D6rW_N5?1Xt7?6PZi)QynS@6S@r=Z9IgM z-w4A_Mg7lB&`b}aAW&h(GZCrmit)7?jNLDU_@@j??XZXLX!F0O$637c=(e+}%ajaD znvCcU35o#T!bbz*2xHmdaI-3I>UCZ_8IV=bvjgy&XX5d~XJ#rnbzR9kKjRsw2mx>W zm@9x?t%$7wr3coL2&AQ9#ev5?VI(b?wA1Q32{|LnC3{0~O!H(HY^N=sJ^<@ERHR}W z>g3iN#Pg4=r=H?Vk_dqMMkF3GD?IR2eb?jCpXywpM1LeITIUrX-$B#qck@x$E?sHP zX8G>)X0LRS9@O`%O1cn`oo~v3hE`C zcr?$SvlThY)36w#zUOyWsE(i~?7FN(`e{5UIDsVWD=fAWI1q}J%jvA{Y%APWzp!7V zVUue(rrg{P(b` zX8Rr9)Ryj++@^ETiK#BAngTC3gGH>_Z@07s6{9{(Hxv%t|xGb5_o?C%HgDPWKB7*#{)I654f_tJh1Z^_zm3o&$7`_!V27ntCj<< z+!dmyd;*3Bkjqi{Yg6Y?2)+dPY*?|eT@w9(ZTFP+d~zyFS#*y^V@ zm^8vs;^^W>JEpVkVctq=Xg4jRmh!o*2bAEi8&7H70sBt2>SgiG0bx=_2)qHjU6;>< zd!MY4A$E=p{F#O;$K^aAfPPr69j{9&jB zylWlN0gs_KA%vmcGzW#TfDc>|UnsTvLsx&>!LALhw$*M>;cNi`>Coj<3o1g{?WdW8 z0c)MBB`a!z_B%LR=>5aTmGcgwdK{9-pz4}H76iYjqUva6#4VUz*g9zE59o%mcL4Yf z-G9vVY_^WM3>rcQMi4kJ&W&qcURt?&1f>B4+1FM>*ZyC7R{~CT)AmWFPDMgm#A&ym zeG^HFBq2oB4xvNHLAGe4veSYVw2@Hip%9{kBBbP$L|HnmWZ!vb{^uM~&-*;@_kQnp zeb@C}AJ<&-Kl7jUo_l8Qx&Jf2ySa0i9<43H0cDA_J1AaObZ=AJrnBq=kDD&E1ujE? zSSpKKy!8S`-_0!Hoycl0esz_63{2BER3c^v`sK)QU`HU(pxK~qkPZ#*&;Tr+%cxfC zuzjC)M2_JqczT@n;DG9Vd+tpsVxxXyKu1C=#D4@RY=++jw?ITjhS}dq426H zLahDkMZiuRaYV{GF2|M4=BX$AVlOBA+8;y2x5$j8@pn1!a}Wtr_G1gs3xH$c6)Ito z>lCV5ywn!;bD<~HyqK$zM1^6l%NjcTV?e(Z=eOxnF`M#t!sY=T;zcZ(U+(_Aw{gR|G}}0NMq5%#2^inJJ5D@rT|K z=vocw(cs8@ex&jvkuC=3BbvF=A%rnXT<}901Kd@h6hU`ttGpegJc5qao+8H z?dNCnuG_Ztm&^-?1(-$CsIaPJ87tQ4i zNc;BMVb5NL%2v?J_tOD*n9j?8g1%H}WO^fZzaI#t#my9aK@fiunEu72O>j^MtP4|;0dbl&@Xq;*snA52@FH254*u7J}RZOu$2Y7v5!6&{`l;uj%)_FL)^691m$4VyHZId4SWg<8HzsP zjNqVIvS`jMAapoW@b!j2&J64Oj0GdwC{S@T!_d@sSU?p_cYc1jU)8Po?7k@|OXu2_ zsonc(xG~52)a_Qok+?v~;(4@y4W_1z?Vk)+-MkYbmGNzEcLJV^Rn&4TV|{a689HiC z_1l>(5Bpy{B3Ai#N?JP3O?`;AKV|%RkIRCt+qwv+rfh$(Yn$+o`%8R?M~ZhBTzI_r z=s;S{Fr)E?>xU5qYUEW5&qm+J%jVE&Wt|FalJN9-aI${ZoY)=*fi81aDPmN&MNnD! zln%?5%|~w}tGsJ?0zUO6YztS^qu^|+RQFY;hud|plT1QcDS5mK1@sgSfBDyCw6 z7GV-Ih2?JfRL%vrRssGX^|-h$d$Wc2SWJ8qgv#O~RoN$6w{iaOZ&8qLj zB-ss|$@85BK5+`$W+^Mq+zr1NT&AnA(gFux2;egFzsk8%p^WL|aFKO)E}Uo}3ss*v z^<{K9xK?Yni@3BazjF5N*Y$w5!AC(3~gP`Shx=i077Ijp+c05DjWFacAPd%1l*Oyg0X+Qnfxn*?*3mD>$HBs)!!d zds$E(mNw8i-)}h2q3c1}EACqCKDX_Gy5@k0MDNJEv^VQkcczkpJ~vjyrVYFhjvI{G zz`^EPBt@}|@1LWOaQtzrANpSmYBlK*<+;QD;8Wz@E8`~-?ic)~kt}HXt-kO=UQ^w2 zpsjN0?ASHGW{3k)R=2jfMeE>IDNmzdWtNm%5BfoU|)pVp`LTG_ls-IhH^xFvM>^Ip2+W9iU~g}JwkntLv;06MLbuiL)F zm4YLe)%>32C%dBA8R9^}lV#GDWehYt@nl2i5y$rz&!^0UO0|&O!Zu0ielQrTojh;Z zrYrV$f9rog6aq!{pn%}B9XUr#O%wXHEVPCK>m7#*o;ZS=;Iyu@*IBE;(U^p?(Tq;* zDEY>wwcrMjw4cQAh+o0OQEDDML((FY+uiXpOCA6{Vm>zcnLZ8!*M>6BFJA++|Lf`z zOq@yRdLPw?;k9b;&8tOSQVlHT&x#|uaqh+uO~-EN+^Pz_8t7ekJ8Bsle2Dmxug{LA zVxmsm6@VQ*dERhu89D|JE|hpO{Z+*vkNB7vt36*&OY#`$0w9dik-Fn9D-Jf5?E!m% zk(^s91@>P`1>Q=uhM$9d*#7JPyyn4NK zNw}hhMhLhy0Cc(LoP&AN{(E3BW>$kKNnJFU;cu^0NUNg-vszql?=O@P2cICpl;9EgHK0G~NhmdSZPN4d zrltC%>@O0>R)TGSa5A{mSS;)g0ZBqq_n4RT@~v}Dt~bqETyLUBI;mGy+k_jFngb?> z42O!sw^6Nkj&qpZQebT4pKppLpxdvOSKL=-Vf-& z?*jcENzhANgT-d5SX(U04-**kva{-x9b1wpx7Fc%8h~h7_$n>D?bXUTZ{;Ai)O{sp zeTr5jRgOLQW<}A>_>zEy2%e34W^fkYx>qUEew{7hD%HV3;1rjTE?#KYLk;En5x2Ra zg$Zph?^d5!@_g=gXFTLdjlqZje^~s+C-&v6*r|VqD1zjM*f_D&1tF!kAQ2PN! zM^zUO3;Tt3hJZseEREzuaE!teV99Wfp}i2SVtI$=aV}`h;KkUb<+RQ!fYC?tOjT!{9ulX@rGm z>KS}q4}^?nd}n*KZ-~~Pwm)nzil1__$bEMCH-+$6_N^h`npbpgvh9mSRJN}Ekzd-A zm3w4eYy2*sRUK!lNwzWuKEy{>8K=IriX}Rg>hGrAe$(YBk>NKVeVuw;J8PNE*WO-( zY=4;&_IaF`DOzax$4s=s^#KdQ@o5!Dz9*Nv9^10rZTsoH>mCojuKynC_)SB0JuB>T z(KNT`cZ3w4Kjr*l?#|YBayzsfYi{FPKT^=xreUeOqbfSV$cHu~iglvgGkSW0j=sGE ze*@dS`0JCL=i7Ie9^J7{w~!ELvMH8spJDicO~kbCL$`G$-5MtP!u*J>A?BYmNn)5RgTX^-1Nh;j>7vYA?Mh70h06=FKj-ej7ujK8o|WA2xSRCrspiOdPkH z*QaTUu2tcS?)i$@D>57fRT6#bI^yVZoDM%Mxcp4?7CmnJeJh3?97>G?i;xVL-V9o{ zbh8a4&Aj)Gn{3O(Pe0}~t8&f7c`a*ww$rrE-{4nLEe@ZzqSN9ie%+k+N;4@g?`4&} zE^U!vymr}W_MxnAe%$G6HzfDpOj_)f%5CqrZR_odDp&pBq^VgfzTyuqWpmyd$q0NB z_MMg)L%b{Ca#g}@pI9)$nuoP++$?fljkQ(35ufZps|S;k&<-GH_L26PNpQQRWft!(W`^qZ!XPkxoav~<*l#u!$U>Jxl?(Id+9Oe z5yAa=%WNt9sz+!#SK5}5>ll%B2hWR^9Nw(sCFv+4wJfBFJ?EZya6KxdBd0$#BBYKK z(i|q(Hcj}wi@ZkRK<5|9Q^E=4RX!KgL?kO+1Mj9BTu`kjBWA|eC+BKupmlXHKaQx_ zW%Sbj(e&i=zKRR(-j$b95qRIV=~<`a=2Mvo#9o10H*ZKpd*q5asK{h@>sOoc1%wc! z&b;+WaZuz_E4kn>c)Q`IHR~^h`~m#F$)_^miXc@z&yYB5y)f z3P=0S-X97W=zilnzPPRcGw-ypPQ?}3uT|^a?(f;O{<_yavD9wbsMW}L?T3s4&A^@Z zK9xqYL2qhLSBwbXAF}#n_a&>Asg{>3=2oz+CB2qm(j;)U%KZMq96j8Tt+905xT4b$ z4+Ot7`0LJTxSmrK7duCS>d}2ANA?dq+Qc$t@HA>0W&G=>kBSb7`3rF5GJo5cioxQcGYwTM#v&q=v!2HlVSE|gc?kz4<@J!s%zq-Qi-aT2Fjxv8Km&9`&59iVTe$Oy?_G!`#eTD3}g z{i%Xtv$Ciw=d?5~zH3-0q!TWdX1Z`;0$t=<7U|hQzKqlEt+HPj4!wnWZNB{DiINI` z(xAzvY1A$JklZ{jBatZIN$HSICR-T@@Q*>{3;Lb~)vX`lQKc}yp?`&S1C*5;@dvml-$*EM;+M(o= zZSBwHHM1G~kqNXnc^fYrs~|0&agHjhx9i0A7d>zGNa=^Jigk0U*61E}coAErwuoOz z_fJ{{4eaoU&#~x(nCZc6q`TX3p0qSf0K%R8COb#^PESL+i@Tzp%|3>kC$O5M$zZyB zXzZmk(O48_8=d=%C&AtWHgPuDx!W=s`#oHlXdKtBkD;fH2Vyq}mPJ5ew$q(KK7UmN z$Y&$R@{S@7izA~I2_zgEMnR3dO7BN`P=p@826JemXwr$9%-qwzEn3OF>G zL`IWHAQLhHO(BA~R8Rpdc!oZFPXG>Bq@sZIFi#ql27FE!^pVC8C@AQ|O29@zM+S@s z(~>~LIeCD%pj_mcKm>%KB926%AwG=)>I=fjI6P<|r(7Z^mxKp|p}}-SGzs`rKrHAZ z4iDpz5h6ezmXCBABp|2*AS?=&NdjpQqVOsQeT08tNksSq3rPg44Vwmi;E;ZS#c>>p z1e%DXg!KLS04m7I0?#R(1ZxFq&SL{!ckz7CWhh=nkXjKbIFNwTkB|?hR28-fVJ5&( zFx5mZuu@no3VFxPfJUZ)0m*TY5jZ>m`CzI;Xbt!R^28*E@B`!to!3jLp}H=Is+bDlRE&>Gr215+g+;#BKrc-}MuCtU6VN+bUL`nfs$p$J^($Booy zqfqsFYfhi&8xNn4Ke(GM)E+ov&OIMZ=^1C&Sc#hoZnbUDkK9o3fvNbkVTSPjwTJ4T z8(oZf>BWfFHkNI;w!mjx$YD)XicgI#(Er&EuT=ScLBzv_iq{^_g2=N~hnZNsG+mj_ zXw1)v8Stqh5sY#i1vChUClH`jIBpXOG%$_-jVRNCCt?k;WRmfdHavwqEt6TKu+n`c zdd{lQ-RgS?IWPFcyHN-Kq^^?}Z*FmTusZ&2d5Q+wOaTDBUoGDgXn(!QHdg*b>o{vx zx!}xsp&LBRnlFVVq7_W?+oIF<7B>-aN1JAx2#{wvo3?H+LTlUVlP(|V^zD&)?G`ut z+3C95bM4cGN5W(qK9zjHEq2Ie+11YfW|^USPW@@R#pBhY65C$US2_r(ox>|-xvNsp zY)#WxdX&q~C4>bL#Goz9gHkVCtD3I9AncZAIGHInoP>$=IBp!Cg8SyK=xklBOLcnw z%{0BM^^BCIo6=edOuA%GFIhmsfRWy{VN21di*T>|AE%qVb=Xx4U$*#FKJ9vBw7cX2 z%Vh)kRdZAR$(G@;3^sdkM8JBt`N=<_;bi{h(GU!rzoj9`fF>lceD1e?@v#l7!Z6-? zS7a*33M<2Ec1k_8IG%N8`MItgr&E@<8Lsy|r*!dt1M8V1ksXtz=zcioUOwjLsiI)} zlgA!1;&S-UtMF^EYEld|B&43#CK<}yZkWD4B-=&!o$cKtvGZ)_G_ z=v=)P>|v}zmo~NsWfKMk(vBEsgkTutRH7p_14sQh~sP1NEM4_i*8<_G8mEk zO7yE4@dbWCZK+7Qqd@+;QS5d;K2f)dX?qg4p2=)|?0TmsbEe7A7=NOcQOuvv=XZ;V zzY2&Obqx%r2#An)6M`Wa2$KXujz}{}A_AfnGGR=NEkrOxa|OfSvi?;h`qPmIEBMy} zA!?F9h(}B?{+9$oFmYpi?U=4$nLuMaynv5KW9)&+NRF||2?3E~5Avsgh%|QUc43TM-H`gI^ zBO(9-*$_^cpudo5ADKn*$d-K4#4=e@)WoAfHIc}gI5e2=r%IKR#Wi)@EigVjIqm*E_GlZrtrI9~ zNyJCH_WdJe36055LBv zf-UmYFaiz-wz?Bx9!xr8pB)o1G;YZ7wF5ka#_Vu)g+l)tmJ+QU3tIadc4t literal 31899 zcmZs@2UJr__daa9HdI8VcM%b3BA}E&6fU5mAcFKFARr(m^w45Mkg9?-DOXTIsz|R< zsz`}QiP9o9QUgQ?5R&}oB!Tz0*7vP@*Al|XIWu$iJp0+t-g`uE{;MS=D=mLeG=E4a zulk^@&^aM@Tjzr?n2?Mi(!*XzM#IM2=Dxe5kjzaRM|&@!^WcJ8LTYLU?cMG|7b^ar zFKD^Dc?-$WFOV_Ovvsz&^A@_u_*K*2Tid|f#@k*L$@XE=<1H7pvlK^n-#PbI2A`D!zrz_RRWC&r?u0lMJO_57EXypS<*HWm(a9L z%sK|eO(WB&Rn&D7^g)r=W+e61H)QD&78Oj55Er!HoDHIFps6cGG@>BwCh-DyY`8zJ$os zCpmf@iue(F8i6%;2SO#K#=3+vkBE=j)IPNc=vxt5@Hey?MIsfuPCRv56>fKF)?Q>vP)q@nh7nF0!>`YQKqQ;&bWX5_-R#v zzG<@7V*f^ErHkrVjP|6xKnszr%dwpOqGS8V01a1X}+Aof?U=nnee zS;rOnd*fC`>I?Cz)B_&u85(D*^Bz@=>m!r*rExaIR)U|Jkriq(NrDJ(YCTzV-ntlV zH4=k(M#!%I%3P#b?%O4o@0%OmaTA^LFDl*cnrWHX6l3bOc zG;Ys7W6a#S_-_^V4)b>NFm3ItWHvw8*`mc-m;kmiG_OWtqA=__d|do#$cNP?#;acY zBNtT@2@HZ^9?D%Wwb7_8`xva8+rH3$di+sdA!`z2$^hXhwJ)ihGD5Qi9tvsK0gpq#4IqP-MmnDi+T=R14 z7nvgM{dF@T|BTUxs`N_d@WDgOn?+lh8Ewyeo{Ki?T+Zr=)p(z=)axagt13&M>$#D_ zVsS`W=3>|D9j z+3DO>Ujck&b}4d70AZ~0)N1jkohvaS>I)cUJM0m5wsz`SV3cd*wT+T56r#S+e>HF^ zj^>VJ1H%to!Mz^&rclJk%iMgd>$OuW$j6L@7KnXb=-oL>d``DAyv5+=DK^G#e`8Ciyb+&grqT zLH7|M%7+kHQ)$E$dAD~p(t6}e75GxY_huf1~VEnKRd ztmE86;^5xNwBU4hyVlH4nKLe2VUETD3{;H5k|Wrc|2Ca#C=5MR^BWO`@iH>q=_`3w zqG!LA7UAN>cl&-8)4@Z~FWysJ^)p_Iv;frc7hP!6stXiT)eFdgBMsB61 z#uhOpt{qiOLh$mwnv_@}dcmZsBHWiEa0h0-xEyfxMoUS}P_{ARmeYU>LBP20lLV$sBCC&;C)&>>8olw;Ytt`e01A`-^-sr$b%cubov$twv?4s4|2xqa6d~wW zWEBwOr5dg$V2K{EGJ-FM&#ObPa#p$7R~9}NhrgcDH=z<@cwEPS*|~7cJx>{ zG2MHpG{S!uxC5yR5$EKkv?GwC!SkW^XqD8@AOc240C`y2nkmoZy^aD&oee;b5@qu#3$D{l>`M2l@BUf*E-eTLA%}4C_ z;Lhk0v2a|YK6s#@HdYT|l~Vk&<-P*_ZYJAu~S;2yZc9T2i%)XY&rK{IZUAWXMZSQ8KKYFVng$*$@H+Q8$Y`?O@ z&u5P-7yqy%RIS z%rrI{vgO4vM(!Vdv7Kto+2gR;+wDU~fXitJX|oGoPsSdHmd3CsC>Y7T`zO9Fh23~5 z*c)HZDQe0(){r%8JV?$HL{9h$LlA0+cdvOXxa6a{S$V#T(|fbFRcWjTp^z&>I!~*N zdCD_DY|H`QuUa|UP>YjwOz*ZAOq?yD5v)2pM2$XGwT4I5U{J*58vyET{DcW|D4DBsPc1>%#OJRx`T_=)lA?- zOmSO&yBQ!@*WKHq@Rxd{U5pT+x0H22r)V@5n+hjZF@Uo5g0Js)B(U@1l0X%0&Xnfk zz;x4v;qIBo8B}O$eJMx)ze4(i&JehR=IQ&E+4nrG?DUwei@|h8U#z}El#&{H+yudH zyL)oH@eR3Zm0p{Yw-(ap?J&F+&JsIfdUxU92^$qo=w6u&tkA9b;LDMo7$(xR zCfU3gaFp&|G3!ANU+t}$lEW;UX1bpek)}-%dFBHO%GWT+FB`~k7EG>n&c=&O>u^~9 zEPYd8eRKy`HrV_IqoY<&z?x-qbr=@b4$Emjxk;aj_p^RW4uB$oMh1S)naO(mSqDDj z?w|WybZY8y>)ul#-`K!{y}Bjs^Q;xZvW`Z7zCnJyVDZbqdyjI$R?-V~@S60$h^$qP zlo?o#0fX@tw9aU5hfyUzz-87fmc-Qr9eG=4tZOW#qVhg|2@PAS(A{N$)N+)Exi8ty zKVYyHp2uzYiWes#z;UKUC}Rc61=(5$$-N)SjeBEPIrH|>Ei5){dJRbdbDasutmes_ zeNd>Auk%omnBT<$Z6YfdoofE044-S&dfR$lI-KFBVJRx*RjE4*5iOv?zox= zuXECd*-3bbK#ubh&4at5`@FTnAvc$)w++jUsxgD#g4i!YsC2Mha6$X)Qoc=s$N~po z1`V{DgO?Tp?iEo(CVm)nGDxqzz!&rOg074Dko!(VhSX-XDr%{}COC$Z1N0CN~T)LaWRqTJb)h^Pc zKGOq{*$r*H+o3r8yL(SmSxh~jw#Lj54jt5qpmXl0OX+5Za>W@$uNEfw=B+Z^{=r9c z(fMXCiu>pZ8;rVn8ICm}%H{5lt85ht5Z@RHppgBeztaislua$)XoRJz{?01qFq?(H zTC&dfq2OUYE%Gw9+)N6_OUW`U6GUX|4n#XrahWL)1FR`T0~WnJv2LRUzQY~z#b6#q zR0DQP4`aUUTYxA!bIBunARPZq9!t$7!bq|+Zj3ihL7pNwvStI8o~G<{(P}M2@U$tN265>^@(F}_ z7W6EiLm#^STcKMcjEE*=eS`*!T}d22MA$tJ?0QzXQO2K-_Z<3aJ9A@UB410=-72b0 zsU@EojB*ithTu><1ucFDt$y(vWFMAT>)7uD#7^-AZ90Ai4ej^(0C6n(4#kii88@PF zS^pg<-EuC2Y)?O~fHwh|DhrJ~BG3VuDlP_LCZFbW<3`xGHRV07D~GV}hQoPRx~=lh z!3joXl}`FfSRWGN%By1y_qB%#UapRb(TENvjPJ$Qr6RALX#OwAc;kgp+wFU*+nhYp1iWgj4(Hq zyH-h;L`fp_*rtJ2e@4&?ifyd5tKkiU-d0Uav*DzeLr=+}cJmtwa?uwVgt2x}G}7f$ zh5LR&(eZHR-LYT=$XFzbOcN5@vRGKLa5qp4i+v?^bO_GsDJIM7DOE$ z%dw8*>z*uC%}eLZ=h*EgklHUVnA|IBaEdfBYD(iUkdlmfvXXvmMTknA@E^+1lE(hF z`=in|jp6qT&HfX>D!uIYJE;eOipjF+5Ov~>i%}r#s}@D+i}MMr2kGQx;5`31pW9 zi{{vvt7PdLN74s=MRuan$u|s(o5+d6OV#e2I09SI#|Y_nPuCnjh=!3Z&adh9wDe`Z zKPA7XGJ+tLfG=Clq9TpWEIE|!Ad7XogxvA#9(ku~XbH zG6pug5~gIE{)i7Hs(r1}UhaM^f%`QfTA?}_V&E$ai406G(Yg|4<+VnQy4zN;ff6hG zlI-Zic9Zikg6&c|I&wGQ>g6-36_JygLrxd_y2kuX2r~MtV{puJtx!a6j>Dq#`jWUCdc3*uN%#s2TJU#UgYF-9#e(8) z$LD22ZZ3vKZ!R12zt@J8sk2y)ZlFvhpkj9WP{WBfb=ggbr_cru-4{=r*~!6yFq(u7 zoQ6FX>?|m`85MDqQ$RK1%{oCHuadOSnE}(0Gy+V~_o@;j=T1ox1ppqnk-#!XU zIaTR6;{d5D%V6}a&hFoFVN3B{%V}Cxp6xv`Ni9pqt}|@cwg%`@6~kZe>y@HSRKw-; z1Xe6aeltbS39Yirq>5ayXn}Pbe(Q4~j>f9mJaKY*+}H=?nj>@P-YTSL5-A?Kl&+j5 zIUWF%K>gq%;N^YHnv%8U8;W%|Cn=R1Sl{pL;u-I5fTH-6L>O8S?=G) z#U8_)km?YHZ{!z}wiHFp-RZ9!@z?afE*=EO zf7D|t)kkT_gn3O*S?{8Rsq)*&7C^+Z|m-j zhOCw~yLP5}o31Mg1rjvd*!&{j*7=X3SPkhoEJ!$hsy`RFNf4Axu?1PUIimsULqvd+ z>KNR_@E93toYiujAx*=|PBQ6a)T~Mpv#YRZ|gHEtd5XXD7%Z7rLPL zX=PcPII51hC6{sn7VFY@w1#6Kubv;VIc)etp^X3Rq~6IzN;)Aup6^bc+CT*R7=F|; z@^yleXihaLwd?(GxQYUONoG$n2P4Z>UC2@RzcmqfOkWeSVygKXwcl!L%g34OeS)w- zpQ0Ka=+hHIcU{0i`rL>FYwl-?QUsbu$@SR}&&fVNj5g;`MjJvT)zaIv-&Otiaq;t8 z8nwA#-G@TPk^n{_@s>G?+5K3G$TV{ldQ`j(C*3Ac{7Uh-Yx3=pl?Gz-Ei5$R#~8-a zx=*kF$nV`fX9x%doKiD(@6KT6OKBI@)>o|shQHYSoZlAwxk}A{WxL>XuV|G#X@nxA zCpfYBeS@exiu0osgQLs~OaI-Wa{GrH42w#{$wKS*X<7D<${G>g|QcGtJW(1 zjjghKla@P<*XXUAN!?mORxT5U(@xo2xoxQU>=x#X0y}DVkKR6dd>pP3|HJeU3sw?ZP@6EQBF93XRX!ez7M?=0Ey#h0q5qeSJ53>V3&H{6b` zfAYc{Y{0@k;`w#@fXZ0A?Et0w$=_fk^`&`pHX^kz@YOM5Tcdye{JPd0Kr>iO$uXUC z4F4E0Zwuz`D^jBRWx;lGM~CDX|JkgX;Xxd)nY{55LB+V?=lh>Bc;CZCB zsm(RYKEE3&0^|DX)LyQgLdZxf` zm6oHNHx~1zrZ4sI@a_xa+ARzPx?|tX6_Px5&&8{2J^R_Hbuyd=TjAl%C04`nKJXu= zx7O7nY5`rcaK{j8Se&`SZlZA~T$VDj{~~Tq@e#&FP--&klsyeE^VTqq!aa?FS2A!X zxGem+(C~3&s94d|)9mytik)Qh1VAlKA8NS{q-{2TPU-*2BRFE+D=|s^^5zSQ=PB;w z0S^P>g4Y9x`YXB~0|BLFlyZ#bi%Y}>w+GpEmgf8C1C7e8dPw7Ub<~=PS)WE+?ixSv z_WUFAdXddNRXCrcDOB4Fgo7dF1uoTY5AkMNIuYhN7Gi7{rS4W@70?b%!`FIWSsPZa zhD*T4y7(V1rZp_SwIblI+eu2I6h|`lu;Mau3qFcZkA|R1zo;Ibk5_a(suQ7j*1_WH z07-k7jvKpR>-uX#A8({w?C+&-)8upvAY!}wiA?rDrvur;hANSdZR#LGz@k^Jw?Ixj zgQbAsZjfviL^H-TYu+K$!uU$Qh_Q~pi~iypwCwDLT+q8^nFYV^NtfzQ3^s29sr0$N z*y;pvb2FmvcSnhGR~w9qZO#5k2#=%`Dgpd~yP%p->67Z5K+XO2=$8uKjxNJ+PP7yX zjQ8YqF?M^%GAesi$XBY=I9Sb=OJrTg{-2+PFIF>?$!V8Lp4+L#FL)eh~nU zMp09IOgO@f$IlG_os*7ra*odQyU)sK=h#^sbpV7l4FY{a#BsXUk;$s~*;sqdY0GDI zc0jv9bA^O)#DnB(_O*d%+BEK}-fobv@HP!pRp0M;%eN_w$4MgKCA_CBDUfF%uP&xL zKiq(9Q0=7Tw_838mHp!|pnm;6EAy2z?C;rG!|QmQ#LOyj z(}5k}HyJ8@ZcX$_HFm*q>LTRE+(PLuAmu2-?Z+rS z-9t=CpvQ_|Q#*lpF=G}}X>e-3MUGa}Z_9}M1D&wk z+b+Yg^D~3n2*!NBrPe+N;?ua*u~3?2-e(Jcqf{tVEtz^qcgl_WT_x84BMU5dm}DVV zHCWVDdno_Kg{;s`)9R8nJumd@+#@}3ET#CjVxb7GW(4TLqaj%?oz{B%fhr`PL(;HE z*@*LSj9`A{ytvcQ)vPwU(&05why}qlU1*=DZfg4|68DFskzOBDLmCgQ4$Vd?BwP4f zh4@|SS>b;uSv5bs^i6?xXyv;Vh$)K!{hEJ2z&+1dENBWbbNCqL!!vi4D4SJP@yieL z{QKSPxUd1W@G%>Y(e6~=aTL`zhL{(M!DyeOAy1)~+0jMX7M_C!xA;4qp>4_3fAfcp zT9uMpX&Y;I$^1)BXqUp6JfF=86iH<)lV1y6mq2t2D-oQhe(%oqE15WNwNT`eD&u!i zz-!uc-tT;D*vgW~%w>z-Ecy-}v})2{aqnSO?vh1iMkJ0ry^P(WsaOs56(qu@|n=)sQQBwrOR7GQB zo;CyUv*+8uaSF*)O@3(o)wNv324$p2e9{;(mB9I#ru3lIq3Sje$EH3dCylOZG~We+tyB{Y-4K z)-L!W4^YlmW(&6;;dv>lIVAqH<0Ljc1U>Qlyb|dvjw_0Px%S_nw%fI9t{SYWhAb@Y ztneP+(w3)h`4B_48CP#Mfmq>0{MQRtzOwlZ=#&-RJNMW8xwX=cEN7G5S?|BxXq!rA z;}qzGWSZt6nK4^zu9J_M9lO+NJUZG5ibVknpD9121~5Wq?G zo8IBYTxHC$J#=8uYvt;1b{sX`)`ya>RWP{oJdY&}62(AR0@$y?+BVuI?1IEDATF<0 z+A5-pRz|l&9371$FU-pxD`4;mlINg65vA7hN}}w)Z9!4`l?lju0&5DTnU>PUBYjF) zl=;8?43Z9ziRJWOkY}E)-tbJFKltuOzyk(q(@vif=6Lzf`?No8l?p?%m6a$Sh;kJ`%>k0oMd}= zDh}`jXtk>L(iJc)xpPVCA11_uuR08a#2nqIR5aWfAgS{V6V?KhS!M*-+_H5=jV;~n zW^RyGYli;^qlX(A7qHMuIOsTAIP0$cXL7S%>2Qz{X z=8LM73;RJK#xNm#-1iQdbDpzSa1hyVb%V)}@dz{0kKQF2MdG;-w75h(L9ab=Xf=MQ z9&=7a4Jn@u)*0=HR?84+87jzF9dLBkGlE2~PZ~MO&oec`1xy1}{KF&F^!QubxTX^I zR4nYiQiDJG0IBF(7GaaSauA@F(bjS$zSk&{%W&6s`%K3 zvm2`X4agXyGt-Ao<9ULOULeXxONdhYmfEta1_pd!#K=zdA(y@C1$L$b>&V3L<|-|l zfhdP%7ru+rD!*GdvrX>|L~$(N8v7*)WF6(|%oUe2?Zut61mu7_|GA9!pf;r^VfBA+d8uK?$LKj+YbRVvYP8@ z2Cjg-#p@%bYnYM=2-tAqmv_^rO}V#-h=dniW&LO@GXJmMg5#|t#H(P(0g9wj6-H+l zt!d>J>*S>5j;&~0?ts%4D!S`_|J?EEb1A3P5GLpaB;%Yg99bZJz96N|+&5`&KY_%f zA{3>|{j!G!COxZ%uYB=tP1lUN&PJMjTd?+vc0EL0El@tYz<(Mgwp$ny2vF5U-yPG$ zqNSLbnd|CiTf|IkQnCw1e>Jr03-rWF4wXX-_0fru#RE#q+vw(G$7Xu!W%_s|czKLD zpJ2|}$3i@YW#R3Z znW@VEvS-{8JZJ6`lXjLh_5KfWth%-kM^46(u~OFX*U2RiOk!7X#}%^(Axy0bklVON zNqWFt$pA3`dATDL3>#2h6n;i1UGiX$Zm9?QxDUk1Kfw5$_S=C>-Bxh0Pl~?rfPf?y z4g7`dwW^l1$#hkIDMe+cj8MRTTMUXlUrtca12$TcJ`qini@#15jZ`&R5)p z11g_=WuLe-CHTH0kQ>h7c|x7!QrgB9U)wHlP_N3rD=-n3R=E4vvvH4;$jhrevX^d| zcP#0>P{UQxVBEd}<6}P?NuN!Z#I2k+_8-`rF6kw8*Kq%ZF!o1lo+|d&;AUTcIh=HJ zS4-~v)H{I~E0y3eF@fICyL!u&O&IT?#kb=r!}hlZ{1&S`%f zlS&c1V|b&hENu0D!IaSo(mVYY%oWmwy1&i#-vtgh;A_tDK+o{;y9!l{QEDUX^_x~X z)Y>+W&f73zJYtydwX@e~_sVlqu>olSarXi>N22|wI0r*3dyd>KWnC?m<+<{U0mO1B ze&e|QPn}F-)%j5NlWFAc`5(ox6IB{+>eNuN+O}3GF-7aXzJe{ltMWi;@)9lb>(H zUKh=h$3Lw%NPMKe#7xg=jVn@ zz$9pY36EYsOtuH;kUpF7&&Ay=kpLYqE0}@AhoPE4v;e_zpA0iNR@TBedviOejOj*~ zva7abh+gb?2e3PWV;OCKF}&(ugMsk0ri^zN|9xlkXhQ4YG;SAHlf@fx*CyRD$0Zgo zC;g=IOtJNnzoCFq)D5)eh(%r2>))0eu|wOdoL{{?DeUn7KK%_o{Tm@T`sz}the>NP zdtLz7LmL~2yC-h&X&|TmN%a48&T3iJDCm>3TVO!dH%H68P-Q8z#>h8Mxa3<|Hh*!3 z-}5a%9Hf}D^eI20V8=;{q^y-}&Fz_YK4{}c_m zmoUj<7lHMAW1_*`MkTt;Eqs@GE!P&&19bEXjP|bU(h=C#dJZN3IdsToxQ-0JWP&a# z8vUf5|Ll+C7aig}e2DBXZ9m!WwT6mJ06{Y*+5RCE7VFH54qDu!2i>vbKb@;`P9J3& z2E26x*0$&4$1~RhyBmgeo~foVuM(qY=-vE}2%Jv^tX{Q;ww7%utoqkzD6pUqZFOOXs9onYl&=a4`diS<2F$ zzQw5XVed9{y%>t|IL1nl|Rjjw9a^VSV#gmNOicqQszmdBlHT@3u8REoWFhI-6)U zXS~JNGcK1kGjuho-%ZzTdJTSL#wh%T=36_8+t8do=d}#l#er?NkGa>g<(gENpWNg+ zeI?|SSACXIr1`Ps+`5`pd%orp4nzfvp2hf&huFqo0=UmSwl;vIJWC(KfKRvhK~Bq- z5aD;{@X}p>SeHzI2?CVQn0j~xMT=w>D zxjx$7{-Z4IyLxp0PJ}?8@&JbjeB)zh2C@K!=Qof3==b=|pKatrxw096`&iX3qQT#{ z9Ol0Mqk2GPfkdav3RCI~SkC}I(jyFzl-Zh&7tP%xMu{Z3kN9NYddu5OECqR@LX7v~ zNOie?*VWZZKYsh|-hvCV1HFZAoUG%D*gWA~a$uZRr5^bBPiBZXhCPlF6yC#R8m};s zvK0{?mV_@m00L$@2{Er#Pr=hpF^#K-?HlpdzK$)-pLH}0t7O=S97=70#qlOF?U5XY zZoGJT<@lK&;tW`Bz_}DADtG zCov;`9rUAsbJsoT+Cnm#-&nEeeT*AOOVdZ^HREWYUBR?c8rQi$p=w*pp%$|sD}T%Q z#@40g9k&bAuhMfQG{OtMX$B^vsNOLp62I0QO>G7uITn7{brB7&zGR7paCH-_Sf+l< zo%UjDN8=^l-|?i|Ybd&+yC+2u9=8SkA^Tv0V=tLguTVVr?KE?$+V=m?rNF^LgCWM4yHf*$ z9Dzu(2phl2V52l5+D?BrO;Q4aN=lT5RM$0Y1y$~vJ@e}Qf5XQu+n3#%^r#inpwRK5 z2l?}AQ0wqE+_VfcoF}MMLR4%+%+UWJ2K=}MF*LJOy>;i<(8TlPpa=)mk@vH72N>+S~n?oB98uZ=Y(tOwPO7G@#8OP@+{Y1cdL)wx_6tu z?-3}bW$&ZbFB=W)^aYapT1LGfiLJjTl*tZek^Soh=woz(K${^d>1JD{6U=sOmPi5~ z;T7B^g}q}#-%?fe6)6G5kfxnjMod)lV(e78i}T=4CB zr%7iJOR*^}u9)8zVDNxi%u;L%*VBemA@w~CjkkOcbO)$s04`vB2-|m^>E}>5_l(_# z8SesYpON-W{e4?|RlX~)zt;`VbZ#~81`5|}4!)$z&6}j9!{W?<3?56&?ai5C+d{bX zs`z`1{g{l7BA%VRfSS3&$bH}iF-*BBWEp>qh`*}c#H4wFtkXm`F2-*%n=4mFKYjct zc@7F61Lc2wg3>jHUG=J>Ub{L@xeH#e|AK70y-9E_N4ve+GA{JUE5O0%-an%Yd3KlVR(e zN=859VZrU(wpI1@PfK$o`VN=;~mFDOAr$%zJvp}$Cvq_Ro0}6~g<8hW) z@$$%ZP$rHhmv5f#JBaDdUn7OMA>NxR?Bb4o%uAf^V=}c-RDcg-1OjuC4>V^bU<9+H zQbYGSPf~j%jsNcVV3#r4n^C5)6@Fr7Qnp6v7u>m>xo}Qw1~pxCD`biLrX!Qm9aRnw z>6w^z%cQ`v9;^27gcFlOZiyO|*GlyX=Xs}?_L5UU1yuW;jnZd`+~2ZV6Y8~Tsv@1Fl=n6BAli9C}Vr{ zkh)C;!hXTn#Tcm_sivUQTd4u8f_u0X$SHrtPaoW}zfr38X3#+a zP{Ti>wkuqd>KP zK#kmgSjC8gGFp)QububCfbPZWLQtPQ>sWJI^|MuU>2cMnS+1oO=S2n;La7ycqkea8 z1(RN??LORe?O^?iqb^Qq=XL?fNbC2a+1{9|j z<`rr4WoypG3EXirl{N$21?f^b^>L53xAOZxAjXst9A7oFb@tr*9MMkf`e6f=MF7V_ zuXVrM`%D$HM|g|N;gIU#Vv!A{$2*77>&hKfTFdd;Sa|#TB><>$)=bGInU+>mQVB%V z5g+pP`E}3%vsg=nlU^SmsLXujlpe7pPOUd;u_z3K6P31o{W{;af0mN~pSBQJre)cF zC*a+En?J{B+FKekWL$}-9?>_KJMbo{PDWxJJKZw=!!(sNgQERx*Zm&tL|quuF(P)} z0qmVF82k*~!vyXO%PXK3D@3({d|TP>67uN>+_%aI87yU1y!*ENB4+vZa82wo`7x4s zUugVndKx?7ej140e0*OZ`rnio_CBu6(e^53$&_~?&h9A&|?|vdlIUs zp(ptWZmq2`KW7hO!g|jJ_|oP*o1!fRZXLmkItp`F9C_gf9s<=q33z`!4^%hRyZu$G zwIy-jjr#c#h$pMQ50G9IfDF4BM$SA8u%m4?WOhCc5D^wQ$hW2W3Y7#Wq~j!or-nq< zd!&FIi;>fzYnO$yspYdPpgcvxAQn?L)!L8kwg_(*HX1rEl z((o}6#uc`@e0?(11_BnJK-~>acKJeFNjcD&~x@49_i1XOfP zK#vl19Y|rjk2iE*GhErvWDgl*l{X#Y==wg+b_N%A_uW<&#i*rBB!!7fg3 zfS|nDi|?25efwpR1?*Mxr4n=un{L?8itk1%kF#&hdL8&}O0VJjlTkA)yOe){<^*Ys zp(qQ|1|`~#(MD-K_^0PCQ@ly0DR&{N&?usf2NU&9wEm-#3_WUgqi9?ivl;v(j**mE zYr|b5*Us@RGeS@lSGIQ@+MOXt!;5~-;IzfJSJ&mt^c)k}tuC#p{W!CgNoz%@a_|1+ zum!QOBPlgmj!?^Q;Vf%wves*BX2~8WRlZPcygKa=y%ftMYUjr7+%BftjpFf}Bp*%$ z4duW)TCJJ$W9QrH1vD#(9G;QeUPJ&JN0o;|5TV&eBKNskPVaO`ApNX`iz-t6P|MLf zjF*%$uznm9e)-#~*DpK=XL@$uf}UmqaW3)xgrHG3B^Q(TYotZ~Tw?9J+U`AT4%7Z| ze4wGbH(rw7WEicP=7K3w*g2KZw_Cfk#Y^7YBmk=`*(D!^&B9VIR@97@<4slQ!ZjoF z&VnhKT3V0){fDOot#A$~lzBAE#*d&a588Y~8%w?iVyBz~u^`J)&Vm?4;>X-WS}??D zP#+!pp;W%J01_1D^;$x{ke5tLfRK8Q+I#hZdAeU`3zM8tK!FTBJ+=Cg5(5I&!WfAY zn9Z@Z%c;l_@lJB%r?R)J{7cg7C#+*iEZxzYJDlY65+F9ugF4|=tOdXEEQlCE(Qqi5Zn+~j|dBVbyg+KZ0Tu{$bM z@AGg$*_Ul-&3az}j43uLL@O1^Q8HgzaZ>30oD0|Zt9zbr=pc!XYAIR|c@@X#=Yb0> zQHwpH))k*0AV9`srA8HlLmFnr^~d_g-hJA2AA2RRyF;}lY1}smUGnYsb%vlQ{_gqh zzW&lx8% z1`i{VyewLs*I}2!=}#caw%9M#T;Hw%%DB}gmBawUQTOqfO{CC1NK?(+Fh5J$p|{TP z5>x0FAIWAn2E7psPD7YW#0B4|I|u}*T$iX(>i3HcF;6b!N^9q;Vl}mzI(I<{lE&~V zv6UMjJOI%v3vz)}^Fp|c{j5lC;BWj+KWS@&64<~q`w{;r6$%pVJMjB`=w`~SY|F7} zmAjLmV(uU$iDmb0m>#CX6uA-U`gdcyS!9s%cHN#{9kb!`O=8Qb;4^&lv;D}uoEuGD(`-6oQUKD-dNKEL5o+9~k+gbk3!<;kQQsG| z?|M8*ST+@)T1G$c|8(X$R3uWk|Bkf$Mj~(NTd(}JrPh*MdxV?K+K1;mF3M+i?xfde zzi@r|5$fHZTG}O#wyb+^s}0vVMT&`$4Wm|gzpILnSwD+$#?}12gBS&K1FZ$-``+fz zn>G)!DqpsOyXn!J3v?%J=AS7#(}>OmG^su(xA`K!XY^>8y|uAAWE9A5P-Yu%ItCEA zb`v&JsS^a}t(Zu_TRMNS@ZS?#kcufeBmrNbK1CWUw@)u`lQe`Ha zcvDY$eMVd3m@dURusOuE{B{05gg&Okgsp)R)AM6Sl=C8&@sdL9D5fBvC2+De4(Ak5{&{t=BhZ0p&SX8Tpra~^5@4?t-2_?)rWPB*^9`zVoxz^{L^ zh)+PX%Li@#*37Ol{P6q^miFZt-9SH9L9W_xIaJ?ex0pIkp;>{YP2r<@mpw zFP6uYsN_D{=!R?RzF2^SqGU{y@g-!J8Pz{gZ=N|)(wyuQx zYR#7vTJyPuM>gJoG6EsKiXvSwLhrr(>u0868VLp;qVm?%x*`_qsMJmvPm(FsAyA!* z{N_Db31K#_R6T@SqKr6=C<#T%b*h;Ab9$vKSlsTCK3_Oy7d}bmUBkgrL8On}s|R)6 z*k*D;bxejPpGWMVwKHUi1iq>JWq6S}RrT0@4;MYk5%~v}EXlrx6d4JSY$bjWakjYj zQ~Xio_u5EXQs=qe?<1N5;P4zb)mj!=%*(juWbL6R8UDM5DxD%d>HR|llm8@Up}=2D zq4?hU|7@fVELM-=7bY# z_KFs86oqNHZcJiG&5zPYYiLf9V@*;A*55trykpxmtaY+v>H7{!fx``bDYQdq*2Uf@ z_tze;>1AQ7?_JIQ=~O2<*{vtF*H7~905@j3UV1t|9IB|VUBt0Q^*Jz*YOpS~hgnO7 zqAbB;{Vhp7^<0d?1jR7tda>zu0(XkEpu~eh+EVQydMT2}+mPT8vfL!2oD{X;Vo?xK ziCc*-X4I7C&l95-?=q_%VI<#S)+BByZ#_FOUKyXgxIS7B`dbqqHzU|m_9?xXhaRbu zC=-$eGoVrtlwj2^W~T9zDquB-!6!kYD`9}r1BZC6pCwAUD*$Z`o&G|1St#0( z3;jF{WcF_AM`M(Aw^WEC@%V%rbPtG9ZO3y~fH0U*gxjNPpF+r}z5~w7`C&i5F3{1R z*RfTJn@H>+NpuQB3Ex1qF^Wpve?2D`;-T6r)V>vOw9*LV*fduXQ@wHk9s>>l&Qh@| z63Ale1`QdWktDf(s1+8pw|JtG1LN zxm88y{-EhFy6#gyqm{zKn$S9%5(+T8I=@apxIeWWv`ciOv3u78tsZU;P==YcYO?c8RpOxa?-(yXfHRvaIq;tEvw<(s#H zNAtm0j5QJ{VLeK23;JS=dM^}}tb;6TBHO7zO9*;oV|1GPwyXX;r^rfI7{E$XD2x^l z4ylv|W#WJs)h?o_h~W$`aBdG&I>JUIA+h38%(FeD--RSrh^f#AC^hjRs<&Z8+Xtr8TF(@%A3r<}0qW}4NM;N{UdVWwgvph1>S zzRDJApw!-1L!dt$bS)4>{u#BJfSCtB4P=37XFn%|y{ca`Ev!)Nsny9G4dFT2 zJnL?+H!7|?gm!3iGP~E5>N4W9ssigH7aLSbV=5zxvOdrjOM+bQIN01+r zfX=+90`u?}P!(-oLv7phN!M#lHtq1Rojcv;#SuyLV>=KqsdmnQ2Wien@@t1>WSrFjcW$L=OLRy z=x64%D^L1THp9vDS`LAQ7#7gq$&gFZfn4%u)1J(kk$n&TX`Bx+h0OR?rLuFB$FE{~ zTDawQ(2+?()gzJjY!D2@3*Dw{lRM~VYF*~f#>P|{M>*T-Puv3ME&TRrMDG&< zvp?heSRLw`*Ip?B5Vn%TTa@E9ZzCo@)E>pL}zA?DZ93$Gf8%K@puhuFT&Y4c&d-kA;H%wA9VQZPJ_uba#&QP3Ju_^P1R zB89=toMymi-3Hw#45o4t^Fysp`;$|_qC zDV%jB$HtNMGrZm15}#f_BikF&W-ru|z4kX*LN&Wg3bcZOlLZJ>gL%`n!0OOt-LES+ zy4ETz3f50##O77RFB^d97c@Jsr*#6a3l6s_>P@eSIiGcS%A+wjkks*l>*E59+cl}3PPVWt8iB1xgC|glejqa$7 za4c~ql+VR&3LC)r8xo>e2fdUU0IngHy!`o&->_KP&W!4`SzVR5>zFF z*l_k=f&Q-WtW^|8{(g^I^n|h)q*t(OH|7R_eq9L%t15P#;!6!i)T2Pi!TkGuq=a|u zSA?Q2#we~6(t6W}D+6UP!#6=2J6$LfY|MWN6-EJ^nO+c``c?lv=J6r9tSrtEOrhLK zw_feQ;trVZE5(7%srQT>oP`b0z z8`9%nw|sF$x@`%)BbY*Zf+dMLF-}GR)-@@IBfb_>UaEhc>sVOseOyM#spQSE|(0l2Na4(uqibJ?(&+`R7 zo|?-z>!5Zqah5os!zhuZam#andx8gmO|Z({6oS%dX9SqFi?Md6%LSz9K5Z2lGPceg z{xy>6q{+w_0%3kzd6SPxxyz{7A!Oh^|6hC80o7FU?o~uwL=YR;lAtb#2uW^8Q#uRS z01*XL5JT^QP^2SkL8Xhz!eX+nA}A;-BE2XmDoQ9KN>vb}B7y=U{mtAE#PW9kZ{Po& zcg{Nx&YZdTX396;eDlpWbMO2d*(58!BmX3xo6P`(K^zq zMm~78aCaW6kyULAPPnlMKiZxymb>uaFs9*BNYC=key@^s_VN$6|C+s!+x_^O;8={M z=TP9hO8&|?q*=l`xw}jjEZZQ;VX(UNNRYusz&O4=5WS4G^$|S#tkd7hwY1a(HUyXs zdkGjd!`u-2id?~`+#N$BzROV7hjAmU9y_9|p=^SA?WtmXZmdt)qot0dAvp=&>ru-O zHz2TKeO7tkZ&Oou<1+Ze?!uU+^&DibRB#x&%TeGUXA*t;X-4R7G*dvOAshuTry zk+ik^Gf(P+<~AXxnHrj_U^{o-IX z|7}uWN=K38fgkG2GIp!Z+J|UtkNf7H-Kx*VB!op^-d`Tl~Yb0PDs% ziYvk4gOwl>?W1EFwsRi{HmP@LyYV?xTrA`t)anAaIiMZI2=wauxZlKBupOltbZ!jD1 z>%ocuWQYg+W7+^bvzGY2^@Z5vF>PD1z(4Q6H)NdmhBX~6U?&C84zXsCPiBt=eZVar z?Fs6f+$UzK-}911drlpDt)4e`+hiYfo+{!xZBpf%deWHNzOU?C5}!#9DBHXij&>CD zR64U5ZoeVX&y&k|mp?+-GI*RXnDcIC~cGv5OG5bIGp@0Mc6b zT7qx%xfE*ayx_p&-2g*rWK8X3J$Nma{?@cn;jJF#rUm5NehdC)0l-plFuc{hYb?%)wn;fn3QvZ-+y~5x_xGsEF$ga`0 zf}G0C)X)_GObLu-N0%YG;XY|}2FUbSf#Pbm`DYa=0hqz2-hg?8CZ^28u7rELKFW`c zB|8rdpDG=`y6ja`>63<`!dJl|cGkOpANE+(diPlDnCyx1Cnv<VIK3*kdz?++zaJoV=Dj}8643C1uN=lHpiVrz(>QtJ_dMQ)ojoc zm&P?f!fM6Hx5zZOYRx_TqDHH5asB+Vki^#A5AjKWM}-5OyB7*TfX)`M#4|DbvX=r# zjp~>%GK5|mH`%V2pqeE;cGIL6fQOwuzm%st?P+Gr&-S$J&f`vo4DsWG?!8$S2g z>XUWI#vLF9Aak9FXHfyOieA?k@n$-EUAL_QwktTZ&C=vio$EUDYiVKga2%DP*+wEK zX<7i|Vg`RBobFoRsn_I6MH)Su^(7||ay6S}Ujb~z7W*RrRf)oSV((krwl;WqlId_j zS+Ae$6POjKCxE3CodHI>5w~>}``m^TT4}by(>|5&4AdW7+k5Uby21j7M$|8PcU;Ol z$REe$y90JMYd$nmHOvN^*A4n!SiX+@WAxq#ICeWcu=R6B5ctMIeW}WmJ7Xw>$Y#qwN5&^PgPS1Is*wbt#@nGg)E zS@x|alufJM?)1@e2-Y@?aNJwcYV0#=D?+3>ZHow z;YwR0T}h+=S+~o2X)s*$u?wEx3|qm3!(9rTl>r~T>~GM|BK7_;dIwO|U)Ayf7lj3= zBfQT$$}?$dORyFxpDft%lfcMomFwN!0)b>m+V@kFp7{1IJpd>5JIPK#o96q2Q}6ej zHrX%~BR(7U7Kte&wR4lKllC@1rhA)De^5J{TfqjT|H^q0lzHcP+GpBWpyiSN7CC|x zCdkrgK*qyTlf6F$SR@V^m5%vl@Kv#K*E$u4kZb6;!mr1aeJBND&>q*XuH|gX-kVnr zUZA(LOy343fe-M83byei0g|KH26S6t;v)ix7T9(3z0~oEvH3^v+fIPP*^)goY}iwN zAdNECavkDFpPOTGA^Q~y?{vHL^Jr{%cWDjK);%iB*cJMO#H%L>h2Ez<7IC@_NA#Js zS>U)6z(C$T9%*2A$*NJcz}R~E!vvjZ_u1|)lI7156U9$?SYR8MzR+!QQK-BA=jEy~ zzciG^W1J`{0MY27GPa_=7=l}7r=<*D=E4tu!P=vDj0=t`N3XYp?`RxC%HkV0SV~p< z_|-2vNa7AJI^Z5+mpZB%l?$+6o415_z2NTo1ok<*>sPp`xs`@6Yb^nwU=v6CI73Nf zA7j@}^em=|OBz&5-FXJNyD~8Qc03BmSXpv8=+67Y=$K2b`vu($RNdQ@8Ou}6o+rh= zb8XY-m_@W##6tyrYI-Ae>q5r0z=7Q{QeyD$xf352SoV|ZR{gkRoinT z)W(v*UKMI%6x8{s*QJj@IRnTsYVVtaTr}WY7!>`i^W9lEQ=?}d>xu5-Sw0i*rnMru z&bHun7Mw1*(eWPL2G`VzFOGx5La4^=C}5K%fpGF?Q}3oFN|!|-CF*lZ+Y?*0LxSro z-vQh~fHa(vSL%Vd&JDlss!=&1W)L=Z$Mk1ALr{BNx7*EBS6z>Y4Wb z^vxwhne1C9l6zQ(f^JY^F1#Ex)7~CB>%&P_6NY=B53R{}+CaFGCQ}_ZGdL=ojr6Q) zDN22M#OGv%$1QDEsK^JK-m&wzm%JQ6NQscInV0I>hNxMgoOY`-9Ui@$5l#Dy<^$pE zk2yn)$9^@atTK<9gE%3x$SJl0SN}Pp>cQRwoLfr1S~7ox6U%@w%^z%-O0L?!&k5?{?yS1}%ua z&|9#^HfxpsM2VLx)vC;9MJujexOyVme2+7RtTl(~~+ z7#vl>M*4)_$5Dq0&WOQg-4pU{ju-aC^oyV*y)nn@%Gq+ysa5D0E*Y9W@PuyI5Xbv9 z?Bz;{=UocD8WT5$JiCjl3XYvur7QVAsFKLp;*+l`#uKzkKDo}Xd;N2m%aG?&-Cq^+ z&SDooVWzBe4O@lZ;Th#(CUKtxy}V~fk5OE31)oi>mr5~?hHO4J!^}m@5w#vZeNFhT znw9inM(%5QZT06}p`Ty+dXxxD+}FXB91O2MF;Se5uNzZUu6!B4ru7oxj!dkapbvt? zpT$n5yOLHRxT*CskGLO;F?C0U)4lswSvg@LC`})yvELdcg8ZJ(=|yvo`+4;DgavNd z?~a6st&L+GxMMx%C)IT#22Mua##?!w;!)v=NYyI0%*ZzdbFe*~9eq2sOcZzTJd@(X z)e+~B)J_9Q1ATBkJJf5}L=)vMucEW8KRngaIxFlY>3TxezHVK-vTbT{k?J32{4RX> z>Zd-jqP#lH3XY4$zJnSCsySUvct4e!F;%5AuI@eg6FactE^CwVEdR30Bzhb%6!zK- ziMB_7R)(Dwic%RSmp$k-kiXd5Uw4r6iW+|Z?i%DSYvkqG{1G7Uk@iEsE%CSg~OF@lkLumU%uM!P5=nv7$`BI{Gp*M?+;me>w^%9n= ze@Xe$6UUX$gR`g08i5o0D{vfG){xbK8@ii2gb`KpWp(5_Zk85*m zxcgJC0se<#J$MJN+01@UHltax0}^+vRdr%VsgFt{!#BY#(kI=Wr=yW@5$csJj+JXd-Fudr1IR3=C`XW!rzK? z(^3~n8&Y)O;0GhFb61|+@5)?MoZef^FX0d2uz>iPJ)Q*t7bI$bAM6Yqe)tfJwIhcl z^^f?OY)LGxzi1k{wd-dsyTV!96dEox9IpK|$ctka8(MZ2I~5uA*IrTF8K8gDl6l9p zYwgpZ1a_-_Hoo&f@~eCaZ8)$`e++>EmJlb@TS??9mxpnSm`1a-_7zsk1Bha~RE?4etHZvMwjy z>`Gr?S|4$VH*zam%T=|*GJKq~e&mU>lAM-v!Vs$lN#CxJ{hMC=Al9ottE%F0-S$R_ zuIA*UqgP^z8|&&dtUEW>3)RcZR6YGl~3XMZO?(fdNlAc}LMJjy1 zR%yf0`+iy6hOtKb5u|JQWRN9dVb`gxIo#ADe6%0we7mxRT5HLfA%6tAa+&Z$GU3z( zby@-)nIL2;LKe7sLEW9er+aV~lh2@kmv3C2(8<8f$=|p;QH{_PFTu^8*eF${eBH)5TYVUtscXa)l6Ee-v#fG8R_#P#>F)BFKNIw{lbV|ri*Jcsm}a(k zF`FTI{s#Hs=YloP`!>tJb+qp<&hPM_KF(Rb?gtH;>ZV5EnMIlSFVGoH6fYypo*A(B z8dhV5i^~W*=}(2gai&E1Cebnn&HU%3xP586YO2qdIG5|)cRFCvvnpAI= z>=zS-Uu>NiCf>#jH%~=FD;Gx(Z{QI}*OBGvrR~6A;RvGmt&E9lgbaHR_`CVV*3+8h z=%K57*Ksj1`uR4lE0+E7KB$0_YB85T#zH=xv zAVz3a`V23YBkFobi9mo3e8B(Y6?DG?h};G|0s)UZsDB_)yp9`ipyLSq1%2^TH2Dbs zi=&;LE%5dO-TUkT4tNMSye|&#hx!S^;Y}TFyc|GDsGlOyFOH1RMt;xCDQrM#{rfh% zFzkV&APT=}f7yB*UenVWdL^PGbQ~Vm1aA}(5(T70s;4L2%`VA3=)xsQwIGDoGamI zBpQxFqKMJ~u~ZrXhfv8l5}kksGN2Rw4%3q;M1D-7!t{R?L z@HRyS`C*xK8Xd&^XD~(^L!yep7!m;+1p@^L9?VMy4d<5u(t>)?Ymzcx1Pu*jDjkjK zR6s9yP9Y+of&6-vLA_)IFoq8EDdWf>rU7Qb7!3$aM?skYV^}}hX^??{2EbTRSSK0e zL75^T4#uebz?zid4FR$Uk`0>%V-V1Ofz|PYC>b;n%?bJYA0bWCYW=iKzu z#R{L2-Mh$4WV3bCwrGvQ7c9m5O~MlHav=>>JCaVsEQL!p&J7zE9JJlv6WpQLkv=4``h_c~4Y_ zfZ6eH>r*t^#1hh+ozGS1J7kyAY8|f-_Hw*__5+bwbHg>fcDMZz!NILFE$E0%b0}>k z5r1tJ4hvSOcQt#du>-fsdK>wy&jlmx-#nlrKr5m2AR2)y&ES?eLX0nttKT7%VMw!Exem`G1 zQ*(aA72QY*YvFJ*KHBTZ&d5~aJ5NPdORhf6x$2!+`p1_iF%}+5a#Hy8<$e7WAt@ur z^p6@FOGe!!`aQ45wfb)1RW7b=4|sI{$?)+Zwra`G|Yb`k1J{*z3;|-1oS?=3& z^anhgD!&3Af`Rk5JR}>@#f4ogx-)LF3Dl`D6iT)a1YSxbCZ^F8C_yQif? zXH7Su0S`I#J*QL+WvjgwA&=9@71BQ~&{?T67ho@4X>@YanXr8yS6NAVTI%8irsXOfd}k zCe0L!2$)u=!k8Res9}hkFbuyd`dgFeha(RX_}2!Z=oEtxLES65s#SrmLvd9@ zWqncQQ_O}h52x;A=@J#EY?-(^x_JZ7$NXK8FB#y}Bj6F=*yOuN#&2=7L3bYb%|-nO zdxM2N+JK22He_mT+Q0`e+-F$><~?^8rk9JO70!pGL{}mzxidYzi0g0;US95=>+yKk z$plJFmc6_v9&C%)cv}OCvhjnQp&8SIldES&tBa^-3dx zbsmr}>TdZdobzSb+KGadIZYI->n8rdvX~4O5q7xAXK+Ub{^8svo{@+Iu+04C8G#0t z&fh&#{yrUD8FU!@`%)f(PWeGPuo0mW!fhEw_=@2k*zAcYHKnP&P1OF!L z1?j%eOC=J%tplOZ!20*wym0H_n`bm4`3H4Szoi8MtF~`>g#ZQhT^)2~+V|;*KudgG zFNr|?zC0QNTKaW5ghu*~&j^hSRP49uXcQp%@Nbe=pwH=3+Tq1wIJ(%fP$%NXj{del thH&`pOeP!xs4m##W(Twg90I8KY)>x+%L^4Z5)mQOMSuQT$52=FKLBbLfOr4^ diff --git a/dev/_downloads/f0f9e180dc0f510887f7768447a685c0/biomechanics-13.pdf b/dev/_downloads/f0f9e180dc0f510887f7768447a685c0/biomechanics-13.pdf index f152f7f53afad7fed143be2e9dfbc1b56c598df1..5f93052799d5a611f865d1f943ef30fb03145af1 100644 GIT binary patch delta 19 acmaEz@H$~bj1HTjiIKUX+2$l2P8I-9lm=J; delta 19 acmaEz@H$~bj1HTDxv8PC`Q{`YP8I-9rUqI7 diff --git a/dev/_downloads/f143e8af7f67232f463360136b513860/truss-1.pdf b/dev/_downloads/f143e8af7f67232f463360136b513860/truss-1.pdf index 389f3f0bef3bedfc3968882b4c93a662cc138142..85d9b221bf0d770a2da4274d79bd3a568c32565b 100644 GIT binary patch delta 19 acmdlawMlBj4sJF>6C+C_)6M(1OBew|kOn#c delta 19 acmdlawMlBj4sJFBb5j!|qs{xcOBew|ga$VN diff --git a/dev/_downloads/fd7d64e97562f1e8bfd34628ef58f000/plotting-31_01.pdf b/dev/_downloads/fd7d64e97562f1e8bfd34628ef58f000/plotting-31_01.pdf index d7a7d7b4a0b4c1108fe975cb2ed877c095fe8378..8d71dcd2d0347c35553d42702f6e47e92b68d68b 100644 GIT binary patch literal 20529 zcmeHv2UHW=*Y8!Dg2GiVV4=i|T_B;i09LR8S5Q$PU_d~63B8Kg3$cSrQ4u=?r5lQX zfQk@BAaqcKhyjAq`>%}k zle;599scU=VP|IVL$E}a-DH4}Vjti`AZ~R-NZ0_+8{v5?f${@6O20CI(v4E@ZI4g~ z$S0cG(>#2=?GS!Y`jPdG><>6mH+TdfE0U0Zs_G;~O@fN5nxZ-~J#iz#7;-m_pasZV z@9yq_d{aV){wNIeXIy$a?A;xG4ic2$iUv-u2)_iPfh!_}P4;#k2kcR@X+GZeR5#&( z*u1=o6#4Dmaa#H&kB@&mv`^;!^u{OkYu2fpI@-J5U+jqK<7)!iOLnclC1dkG(AXfR zz9I9>!7UGp@?K0f)ABFts1(UH6*u>2gpVJe9-|jb7l)7Zw1!N2gip6?uuKZ3`|0gm z6SjW%#5SAor&FVBMmskP{dztnp_X1%S8~%`uvchpEO=GJ>FiXKQU5aV-w!N zVkeCE(Cwxl4;Q2qP~Nekrw78W(gF*@5?Nxrf@z`+%Vuq0ekCL13S)ZWIAgk>n@}*M zqm@6^FUynE4~xyqjZ*&lVw^Xi72FUwUzX8+&`>Ys#90@fmb7C2^67!RBTr?mzV355 zwnd0`^6ah)Lc_`q9&LW4=(;V-N89=@TU5{%W<|=qwCxq*c%4}=zu@jJYX9vIH{GJr z>WHsPs;PXJ+avqeN+)GFSBpk1JDnpN+kgJpWWLqw!UblIt zt>WYJ+rGAWN$E;@>cnh!y?r6XGhCXZ`Czh2N@}YFO+WjRDRZ(4C$#bW1-B;@jB34r zTvJ|0y3IAfx6Rr9RYNkbN&t0}TO8ADuAR<#Zm{O15Q{C)_-!2L0=?M!5ST)y>9en2 zBe4SBlxEY^vLy#2Vxq_~D6T)(-5{f}@a6%f;mAhci&vC4X=6W<1L6nCYqO;R86yF4 z9S84f&Cmtp)^gn%P2Rv66QgZeg0h&(#Pn>+b`-0&iq8Gx^a)uDv*R+c^!vqvYswzo?!nnKZ5XCcq}PaH0$0qq>|CHE2~{2@+88wkMHHB%#B$JI5A>pVzv#C^bd1-? z@xVLCb#RMV3d5(l%;(+gJ|JIS9dO$JmlbSu!Iq)V<(!xwCO$k`j(5w5msrc0H zj%$Ya2B2lUcH7bT0Jn_rIJJa#)(TKbne}cqm1RKoc2;@n<1?NDO8Wxhx*ok$cLr8x zMOP9VpACK@2YkFH7M$S;mmSsq{8lV@NK5mAd}o-aQ+ul2VMuCkV)Z+9XJAkTp2iHh zBqyensOWOUimjsJ-J*-(x{}>Fk&VDQBkAT3x=6`qHu9DH`QdmcH|4(6InMsisS&Tf zw5eA*>1e^J<7u6TWgkQWGf7}Pl zl@vKHcxv-=vE=p_nOUFhz|=~?jFq?|vvX4z9jTLcK$9t2yT?~mK|&MLon*sCpe945 z6&!Vh+um<^5;I7a{ma{t8gI5Zzq+LXVt|>R-p``lZG>Cm*a3cLz9w9sUc|SQ`!cR z5(B}DS4qs%PrvifjLPztG&??bSCkOlPF=^O9%{0T`=TdxK?4*|b(&1(PT-+|o&_x# zaiu&!cVYi!g9^WxCSbJXHCpM3yK%oUzgsk97K*7q?EN+C)zQw5ecGCrQ2$CX+$R1f z2stuM7Fk*E6_bRouM`)H8{a%5EfR}MLb8n5Dksk40L&x%eBZhZExnD)r;?Oh0|{lZ z2k)GYBX$D|&ZyzaN8(wE?iK%1W+jl8Y^+V0ltO*`bD&4=&d&6*lORAx8tQ#b#lHyg z%%y7w0znwasZ`NXhMczP%_ndF3WYefEzM~BSqG-v0TI{B@7 zb2Gwr-j|KE#I>L%(|g5AqYu)(gC} z#x;Hy+2@LBxAjcDJEBYONy(C}9k(YoiX4Tx=jpqYRY1RieKnRYeq)i)cv$SfHf>4h zGmdNhMB{Li&@#-#Std4Baqsn$E4)6m{e?vVwgX3G91xeyQmH>#2W>ngH%j%C^ro+X zHt#F$D|;ai+0pIk{UbovdLto84eyPMfpBQVuJ3|w+>v?NYc-nZN8U_qyFWL$;M4nO zk7LFPM_=ES78wBU>{*^xKY9)tQG7;{g9$&(CyI%!e(OMYo-@#$awz_B?qS7tPaa2k~1% z`da3%s9!xBX3dl(?!i1BjJ9EMwwaOb&<)xzH@qGyj5-c5&`xF?r4u)Z=IwP~cEd&E z89r^Rp1@I71zRWLO^;SwJas%X=#NiLFa(Zh4+;8o1A7R2A8*a6(M=CNr3oB|={~0? zeHoZdh{e6IUt?Cx%!yYFz=tNQrTdRr zkhtN*WlYs~--o>v)zZWQ{->I~MaN=+A&a>yI3BEqnS?yv{pQ}ca7M{$6jFtGyD5L) zpIxXtd#-P$OU82!36>^etZf|U%4g5WKF(KW`&o$XH|HP=pDRUYC;kONYEk=HT!a{J7%AScrN;ivMNmaV!e63pW1+-O%%!HRlPp$RxKs9 z4Mm5`_Wt(4^g(K%>6bU$Ad*{RCzNv8+RJ%mcX#T5B~$ohR^Sdb7}Q`;0mM>hZYbEW z6AE0l~-Wo(GhVi!8k_1>AtE|vGNdr_B0DBgQQ1ldqA4W;Oyy{4HH$HlG#`( z%$$WCzIXOKgM$Xi$0@y^p*5c8jGo0o3YU8?xH7{F(%9uVwgLy&p=WGmdx40M#3Frv zjwc+XCC2PY*nYpLb8E@Q;A6>Dt5jTY;r7o>0_;;cXa<-Yg%_?xETZmSbC5|(p4 z8@cm$;#9R?PO)^$Hi7_LH-6OUHo!EImhP!VEl?o=PDH1U)w(Vjg`bZ)a!1zh^-B|E3>7sj6V|ew)>0- zv{m}0Dh)W7n4UkS%ywlUNIRY{IjIjTf$U|P%E>)`96aCq+n2eo+!PEHEW@FeU&Lc! z#lw2?Gn{98N&obIUnwlzs&eEwvjau35H6M0Oud7zS1ENrUnZuRa3&#>F)2Ltb z$B3_*lV5=t6p9@~_DFFlCql^kGN+R!dF@Ex5gv@sASX(}I`2om1Y%YY z*jyq{6;n(&9>00=Fq9gBF>^TeoeP58zB$Kf0oSc_P*#jF@h~K ztHnP98}ejjh8YMQsNL7IG)Bj*__$NKfA{;wmJ=>4WE`a?CsWV=9c-0W+G_Visxt7}_VB zVw?6XF%XE3!#(U!UPyvwkP+`!rUC6BO?IwK&paq?zj~uOYc`Ohf_Us21ITW?Q<3K% z?}0&wn!kTd%KiKmb2#c z$Nboj#symcsJ8df(CH9NBi5f!n!KKkN%Zh=p6lq6f-+1Z$2sX-zZE*ktsRe1b6zej zAj1UY^79O3JMdu@bV_Oek^AwASd3z+WegdmU=z^Wk_Y*ljWF@j+h`wW%B{py9e+K6 zK{Ku+y#d_z99(qF94^la@r!x838ObBu%$!Kt1AMCn(Mo94t+H=XWpo4pXLcH!XXNI z819hWn+>d4CaKuY04^Bakt(1J4TZrjxBfE5{enrZ>gy4wnb7FQx754Ocm)@1%vi58 z5NQR3l2R&jXY_ZVHXi3u>XGAc!KtTD(-w?{LU!jmj*i4w5_VbeyNCKP6$tHCeD}A> zjl_yGvmvuQqvQLH@=wc^+j>Vd*57SDbHXbnVpr0cQ;6o1auC69jY?HDk9hP}5=7E)}u^a62Swc=`A&RQJSudnAP-Ts#DI=0D@z zOtuc5F#N^MnCqW_bmhO=tZwHanEFx<3fm-}2GP5nQvFBRav>q4XFAhna`mcnFR{=t ztHq^Ms}JglMQKTYrfdwoR(Je+lo*dM=|9_wF zY1l`ZsCIY7vzqz3qk+%i%(6V?d+%Blo&tW8j)*lvLuMt)_Vt~Fc12@vP9}A|1M!EQ z6kK%M1d1*(V~)QPoQvb1w5v|`6&S^|S~Ev$KCsbNHM1VkH!uQ4`@i3{(ANjV#npWA zx}(5GdxI&D@=E7ds-1hFs=?sRe?Z#*0fZBZp?Igu0x(s0wAs-+g)ocuIPTu989>II zVk#wB*eH?(FpK%=;fkbYn1?9#;+;9bTijb(llHuq_w_umZ--)EN~Uo0jG`Pt)5`{Z z6qCIMeG|2Sj|^$)Qc*lt>3I&5p=EItpP!;10S=k}@Nv<61>BgHt=&=o zCuXD}0oxh6UbSJdqL^DKDo{=0JuwH%9Tp4@Pyz8Ztb1|tUpGpCjV`aKa(lN9SaNQH z?~X=QNO@TAgXCCO@aEUqO_v-GRSN>fz8XUReaV#Zn?Qd zbAHFUty@c$TM8D;&0CvaG#BY|py9;-rMYWZD5lNByh3N!&``i_OKXkI2gOO^SRs^bc|{SGYwI5Im(#oe^VkxH zHyku%)B49!bVOJx6kzC-MOJ7&4Kr`{>!%!+h}VUQuhsV;mFWc4+Q?j}KwgGNs4XHI zr|<~1&tl{##4e8lp(ZHr$oMszKO43A*Y&-odF^(;Ea2P<8kld7T!AHqps(>8# zk@s3_pxnGD`BeE+klmcM>=gl@Ism&*riF|yK*i=QkJZ?WaX#92-fyX8Y|+Or7@j55 zB9ptJYYod4MyW&b$}(@cMGPKQq^q9(EWqk`Zu9}B;H&u{2kYPei@$*G9!TLGOR7k}?6kCb!!n zQ=oH#2?F9B_0;797=)b{5<7Zi?oB{0Qe#|EkdOO<#Szc@3WaO7!I`*EDL2Gm<_ru@ zQu2J81;oo}|N5Nx7KWrSnYoBb<7Gvu#GN_87)_e&!{a0n0uN`!3*x4JnDy{#Ni7>j zz4psyy|~@y#&tb|KN$9L9b^TyLSHNVzD7YKo{<*6z|w|})dXyHm2XqoxJmaq0|YnP zm!q-q>0+7jXgo%rgkI#r{GDrER51tokgsHVp7!2a9>7rAQGB&N5FND&xD~wB!4iyn zQ2g?=I&M#0`6tNoNQ823?Ahc5YpEQM*-C6!6NZjA7JPvP z?nINX+g*i)une{^4lrOrSy#_s)`3vz9&cmFaMXR&3TixinTkppC>Lkx&6k&72IOYt zx3AIGKVblbyVbMfUy?vB=4HtG4K0OK`I=`W4;^a)S&V(uzTxqFSWB=e{+W$NFxj>E z?Y3OV90u9HvVWE51sJJYoRe{MPjBnjCikpxgn(g~Qls8jUj>R~kC(M$Usn6ByX84c zn^kOVz9L48@Rznb*-yIBqqjs?#z~?^BurX@v;j00=7kLKN3!8WEJ~?FW;rbRjkKt; z&!9Vcy|y)U060%J>^7y;uWmgpx(qE<3(D&nj)8zK7vRA+G-eAD)I>ni&d$`i`M}(_ zYd;A+h<6!erF*Z304LP*pWRp-Wj#)=l7ApcX7B2Gr2=J=thU#o66z!BOtA`%peThB zf)$}yoNtNpYvXl5+k5SpQN9Ki3`9oSoS4#&pk!=t&MfzZ5S8xb!`!I&O&_Vc-O40r zC5gMT&43fm((`_@ed{cc$g(7_NcXKWm;X~DJ)L|bc(Z24x;sy1wHO}0OZ+DMCz*xW zcc5FJzu5flA}qD_9Um`Hge1u_4r4$?JQ0fw<|5qIqw@`9Z&ao3xcTcIw^QztvwzF@BG zsYli#oD*eo6}N&4{l8em)NO#HBpD?lu`oL_0~F3Igcz@-rNpJDR1vm??B?jqpu=d_ z#NGeipb{p4V9DEwg)hzkow&%%7UbeF+v1c$K`FKf(s!G+y0CNyn2VU05Rmu@$0&<< zrzyZdTdot5RNHh00x%@=GP!Q<9%xI$L83A1K(#yC7wacr$&4y4zKNEAfz=KgEWB*% zdQP1Wb1R*aoB1qO6$W=JL7z03+OvXOmyZC+@h2qvGxe@uOwsyjh#antz}UWecZ?k_ zMVSgknj8o|vHtHH=9nc?FvqrLESPDq7-zONs{gtT2z{JRdv@|sApw~vd8GVQq`jU~ zaRZ{*JV|YzgD{)4S`vDkI`KSVdaSwq>V5#W#J1G+Ji_YQYu9-_^r|DiaxiMAImWC7 z=w)86?4tP7CHz*OZisV+9a5XKzy0yW9;~m&)!=@H`qlRnXcQj45A~b4t3;hG+kJhT};HpSdYk*KdY*0XRdB5><)8eOF5~_r^HLdAU6w zGWJi$3r1~zeYi7ZS-@*Um@c*v1IF86a6to=JXGCi%gCy@RIfuIP;p)7KILJelPTn! zU+{>F1IO-L837{iL9J&obVA`+5D2-lJ!ERkdAz#VUaLMq(#0~PwL^(+2_%r-zA80o z1+e5|%OGjTvU&6ASn7^8HQt*8BW`Y1bz2K~?m+9ei+*H8;S zFq*L_Swm7oAzlEeC^G3$IWnLPnWeqp%qFO{gglA5T9A=|i&!29g+mAuj!K?EZv8tf zVon=_upAi3PC05*UWj$mn4StvuYQL$^3#ky&%==0yvd!fGJiV*lB0{W^f7syT@~57 zWus6Zc`odtwhSO$B)@#KrPdM`s`Fgv-IJ8u+FD!iU}Z$n+VVYl5SY>gC0}AO{%nJu zAmDnl3p}<6NJ-5tN~)f5vS{f+W^cuQ<(coRXI_2v=SYgB$buw1Q1K9Y4?-a_y%qd^ zgHG9+;qrc`8dOMdkR(Govj(PbMQai6TAY!cH(T57(BPZ%rDggP*(CVbQ(&VqiG?ws zt8Cc!SmRm7Ts_E1@OWb4vy?x8?-1wuCwztdbeGx<1sAZs3X=6^uJ(;N!GXZs=bk%6 zS-Bi5s_kMplYR7~xK!6t=-_Ird_k9WUhdhn;=I+^Aj3Ybm6tRfp``P-*A|iPLP@{0 z$d+6QTpPW9fFGJnBlCd5juSM@Vn!4#L_)=&KiUlmUzfyFybY&j-*HYq;G)&nMQJd2 zoAkL=QipqkGE&XtF;RQ>e@WRRViONKDdmcbL<-Ksbe6wzpjZG00yN173IS_-LD}OS zHDk#i&@OpN@uV`~I{okMJR*Gdw-$qBkwfQay#zWuoV8Dwyb^HI6vB(Rh58A-L2hiov?Snxv|~_JPbe@D#0B8Z_n&{oil`X72>VK z*#>jL8Z(D=9Yk7hViM}?bd!8g(vt}qD)Ij2!g@PkW**PqxFIhRMA%Tt`z3GZfy~1h zW|r-R4_z8lzRb3{387hVXIA2j*pMpE{kPR@sMl!KVS z94XMb4v}5)<}SqCh@EVx2VHE|an?ZEf#gXUUC^aPevzfaoP5sL84ehC*YnG0m_Z+ct+}X>qFfquu*ukw6K7%Q9Bs(k z(=8Z?p&4@4g6LDwj9XQD_E*lweVbd~cA*zbS^cLu=^DD)*Fryj{1P6CK1}M7dMR-l z)OoY=6D~EB>BCxxXGE_`4fX&}Cnrqf{YK70c&=zh9k;+o#nI=>e+E_Nh~8S!Z*Zm6 z%*O=(;vVmx(ct=!Jq}Qp)$l~1E&gOGH2!$#{O2%T)Z4o}lpcaLYmT_3?qZQ+jGlBQkn1hZl+&QG54H&CXt0dMUC*8V_9AZivMx1 z#Vwj3N6pf6j(9l>7mV&XQKrB#@U*G?6UpQ%eAslGs}i{pJT>MN(~;b#{a)rR2v@;F zcS5(|5Bb|K2%=BCby7^T$6hfl+#a{9=z$(#@P!0jADCH&b=`zSSHtF70x~S^@`DhJ z{&<>^pQSjgz}*<(8PQ(QfYJu3l2x!nfokU6m5nfC#`n3&@`G*(e*$x_j+8#^J`)jF z7cIyE`nxhaxE0*aFPmJy)r=o?gz~do#eJvmo{HpqiL`XfV`m2~IRd)a?b&)t2M0mI zbk9eu?--?k2XtpD*u4bjH>;|9CLcyF(%`&fXn45tHt=DFp7&!BTL?9W<>tJTM4Ctr0dpEScD;2r{~lnI57tqh5Yy1w!P2gKPgtn->4tf!kPg2 z(HBDaIXG26!maV8Z`_K=-o>5`Zf>L8mxvFV zhXF*{_;<{|k}1p&;QxY9?n%hZgxS9Js55hNKAtziBpzfW!^RZyOV52A19vp+*96Ua zxe;V4T?$NX`UMKH@IN5<-?z|ohd?eI5u6c-!<PIA*y*p)Hq$INZ)%c0J?XDM z)e*$!B=WBR!!VaS#tk3L3LkkFKA}HV-a1_tKGkoN96rIB{>ot#Oit%d^_I0x1{Ac* z8s=11`4!Z#=)J+ZUsKNYPq$aZPxG~O2U7klpR^92{Fq-u^Vh1pG-_!yth0lqGr`|m zwwQBqWc2OXCc3NHc$Q)O!hJ*4AG{31!Un|R)2}nbgAbfP-}&xoSca)z$~+^fR?XgHx(?mpiF{5t4an zqv!Z;bdblGp31o~(djYWXEXg}IDAB`VDdVnb$V3KZ*zYZ(THdFffqi}$)G2g-yZh; zWO%=;-*C8mTx_bJ&Pw9aUXFd4vhzQkHr>M6!p9w_Px(X)^THT^rZs^6VrWe*|$7d?9IHDg18 zvzO;Nx$Znzdf+!vjc{g-cExD_1N!viySW{M0_h)BxBPmvU9ht8g7hj zZjun)e)f-tdnF{|sq=29tGyn{UFEWW+v?9wj)Mivj-VOS2~zU^Kqk6T5my1&8HsIo zByOP6?7=6)jplnd?OD6Y-kG|`*No~;Q!uf0b@K8>b{`rzdDDD09;A8`NW#P&RQOq0 z4doNrTe!)dX6NnX>Eq!|P=fm-&3tWru>F_lS}MXsW2zf6&wpA1nP&so!Kk1_Qc@=< zsHiCsl+@Kp$Ua4NO~jb6rHrUP-cHyyM@13|-7Jax`}PUl>WC2e7qa^j+1-fk#S|uP zc1JcVqI)yH?+N{OiMYwh!NDHcS&43?v_uwCCJ-HvJ&z;;F#zn#B$_)N@HvRg2KI%1 z-#Cgf`l~>H5Cul>zw_-%bwoC1ssr}^qXY=V^)x$l7pRu97J-Pagnm&_R#8W{xq5D~ zcXB-FgKB6m{t?+@itK)MvRm)&=xUFMifHCz@3sg1U_=eTI71jyBmKAm73CASuR4iD z_-{Cb|EqJTC}|Q@5gj9&SqYjdngn$fbzv=pSPe}QL0LnMprS>>4mE^M^mlZ;in$KrKvNYtkcqT32^t#6cNJxV8nUW8tBDXmLO!Es^mi5HKz8?PAortlYH4aAXK)QYW6Y>%2%~3| z2$U)GP)7_8y;luk9L#}?Mb^bWtEeJ^(8LZk4K3`frGe0kTvu08Mi>O^sv_&EDI zLhn;0s3B)fL|EtX;DFGrB&eG*o~H4TxZc(KXeOdoZEk#Gz-*e$bUv(Jv%a zL@3!PYv>s{FukD5fkRjgVG+9%mGAct2!UV(%BbZe&XYqT0ZvuG^6MD z-ODIxbL<``KlRk5@~f2uiFXc?>`q=VOxV4hJ40Z>NY!X~uRG5#bjJP?5@t|;2b0P_ zn$|b=l>VJPHG2766e9Aj9Twq#!+JtCId$W>&$P?(y8?4!NH15`OGKVOvvJ4%?ijoG z%XgV1>n)SZdb(BX_xpco@S7amF-Il#_V%{RUHSIptN^X#YJs?OFPitcscu?SK|Ypv zw_DtJj7Yn9@A4vh(HD=*nvGw)IxHR|S?%4*%1-vaxj-g!ZSgIgk`vz77deeg@@{KT zY?=Z{HUFT#e}KTs2*CMQ^(pM!>dm))7L&Dh;E2QBR=eo6$3IT9XT1^}!G1wbTJ?Fk> zvC8}?)uUUM9({2Ab|wG%`DaoL&Z>L=F`h)E`yAVS_MTEVO~K8EWu)oyrhD(BuOBbT zP`ngZN)jJQ4GgODN$zxd^mW~qXOr$?gS00XTLZRpDka{v2UooOTC{6_$#u5-I`x_l zt+^-K$Imc0oY4tBoBft2{y~QS0JW8oxc9FzRNJW~%C~e*_ptcXx@BjG0VcOrRZJCB zoO!!PrqJqG`lY2;znWgWx3t4dFX*ab?9(RpYiCu?m2?H#q3q0DV)BJ&Cml{i7COab z&$vdOv621u-p-AZGHV~E}i$tnJ-sol4ShbZwtK2XC6q{b}8-SbC1UZX@cfsQ!^3_cU}1h`TY9wke@OB z2BV!j|Az5V;eEsQNF4hC+XF=U1E574ks5 z^vc-VNd6YKY{4ukDO8TkGxmq zC*%)an(`g_V`BJw*7&Ii`T_a>A{9j77~)q^{$G;M{}IHms{AA3$KU#5`3r?v=aOQ z?W3P@q>rEf+Ymn%aPe4&#YPO-BT3+UOhvSYrG+0tD~9HfL1L? zCrz73bo(|y(ZkzuwJ;HBj2-Z`Ltf+c=-;>bka476?nN3NKd+&rs)ck&e!f>7DI$Nmrml>{w4bi2Dy#m&o2sh% zFV{4cRezaJlk}_nG}M2QixSdW{AE6MWu)Ww6D{hqnJrl&R|9(y5 zSJ^9Rs2~lopT=pSjkj;te7vbnuJ+#8tNqNJg6t7nBM?nJJWyA`V#Zc?2PE2jLu)i2 Xs<#hjmP*LWHME46FW+opApAc7$ht^n literal 20533 zcmeHv2UHZ<*XO7p2nvHJ7!X7T9E>OiR8&xDph2S0geFH3l~Dx7hysERBA^ls z#3nn4N>UJ;97Jfbi6Tvgt*ZA58E5uCd%pel>^XZ@Po3(je)ZnX_jhmcTH?^o-7<2r ziaZienhB3{dE^Krf|G?kkESMpc+}h3ia^{!aicgm*${|_C^l9!f;=+d2tiw$$BKFy z9jH3*f!$72H-Z8-fM{%BVQ*#WMoF9Xeka=-0UP_FGYH+-wPQaK+tr4hX*l;%)~-2s^DTolaY!WYgSSttgH> zUNQN14_ucxaOCdjw3Pi4-u~0CJf*k&CRfWRw@GHBO!|A0#TDJfmdhu`-zH@_J*3C6 z%H-}mC|>+XG&hb$->M)lUod49I8L7(A1$12DV!ZK^P7$?93Ohjq_@osm5q;tunG%j z)eB~vr$@~Ss?yBNW~ZkkIwz>poBO=NSdRn8#*fL4)TIuDPd=Vycb2tHkJZJQ1$IR+ z;wDETXtPfTX5FXze5Ss2>G%cSp^eW>tj#YRpP8KfJ~EYYjVa~db+lk++|z7!h$U9Y zmQ*X886O=L)(LoEYHG7Op>m**CQ`Q9DE3b#OY_tn=E|ooeOjaapH6+_kCXT?-F~h1 zw%~?!6%xuv_KG%_SLktN1?T*^d+VFEiH!I5I*(m6RIf>Q2RMuN>|Z@MtUD=bW`A-? z_ukUzZib7gP9mj(k542tSuAGw&c5KCT(nDJN3U^Z)%eP^dypdQ_egjTI&?X(Jv`;G zi_UNQok^9g{e0mYLvzGTY@%CQ`(?YAuT9>_A8S+f62EXVG22q9-Pgiw-}CJDWO2p| zjv%r1g7u{JUhTHY>)6LVXVuWeG?&}cQQ8mCem;3b9it~(<_Ggn$764 zkbQbp|J$o+_lH-X<=3tg*(*fT$-d#5LH@PJ9Q&%hwJN?*qovfuLj30Eurk({e8su> z3SxcOTwe}9O7}i8^e#X&xryFV`hl|OW@i|awI^knFCDHcJAQkPLFdQMMdvOCd)?Annd#PNg%xYX$kr~nxo>**Ad$}@yDedt%|B>Y3~5cv+odw6cTu%C0FvV z%m4iRY(p_1qLvk-mz9Je%n8Pcg~#;hA~%+#U*wrhN{;$3ilI=@nz*cCwOl2v6a&D63dcGV&x z`lxxtFv4!lNm9#f)(*Gi&S7_x$a~WazlT8<0z*4I%a_is5H<{1b~KzTixp(FJPG=e zCiAw{obYR<;*^?JZ{*jzR@%%@9e**fS{CRsUwg3OU9b7q^q{vxuf}hlOl~pV0NtWY zu8))$fhi@p%sq6O@1<;v!#o%71O?BgTY-RpwEhOQK8a5j*c9!oS!In!UoC;bkGN+( z7PKb{aAC{J`U}xpi_3s*_$ivVXM19 zr9Yw7M;;Tyo>z%YbIVt6FmeU*NmWqN=xvA3c$>^x;_Jj^i=^GK*Q#*;)P4wy2rV9?&Pk9h#f~ zMO>qexsLn&0Yj>V;jso9iM_xRy(>Ic{N@Iu+Q?M!F-KreP9~;$`lalvK#HnNIfsxs zDD0Hu8abUuKm=*1w&wEi-@i`zkXmbYK~44=!6r8lK?dFXR?>g_2%k|{_mYom3|CM> z^K*Z-Q9$NNTGsG6Xv3n@s(t4l17)opWvHFZu>6jP0>!>P@SEVW97**#H|%sDvGB<{ zkQFTc#-g7qGOCI~JOK6RX*|}mZBsgBosi3|arNC=y$^CiaxCPAgUelnzJ$P_njPn_ ztJ4hKCbf+9TB5yt9K1Q6nb?`6q%<78gI|dx0*$LAoP#;d};{4f%`)C8XI3J+!q4w(jM43c>)tp zWsa1d$D>+=1J@JH*Br|Gxm%qB>mHM%dMT;K6;tgs-==>30^`1RxC4_DsyVwL+*_$S zbBQ|;v#a~FzV?f7&B?m1jQAX==w?&B3haGHj1 zqkt~-J#90iGj=NXG!zd>ZwUAj(D5p}`o?O9C`HW|k*r&?1P_vXy>6FR=XZ7cG!O6O z5X@+pv59xx1|ieYdYQcQTqVBY!X>_CD?)!0i!wZzxue$-2Br&tY@>gI{G4c7kd=ey z8>6qu^*P?q^)2hSS>i?$zlr|5v<#%V(K|$&=cnvpi0XD}%(8$+6LIoU9~nBzkoI_2 zx_As&{^agz4`yOS^2^0r%Yw`54mP^DK$crW3PdC|Sr7<(KHgypfr)cg*>klkQ|{3p z`VOCQ%nMfz^-milDM@ca@Q?dOUkWff&FnxT{{kE)RWqJSUhKQj0W4L`NaHl_>c>YJ z=1_ct4*vB|J;CyE*ofzLFD$2VO!2C-9AvzqGU4)|BmGV94*)q8}8pDVod z1AnU3LAoOYx>mfBR|L$kh+_1NRQXRL26prq>m<-o2)f8xzwW zTaVD#9T?>Lcq7W+cUTVd&B52h>Eg5aC^MV<34L}M1kDL?FZseJ!ED(PS9_&zLP=*a zyjv{lTDc+EsPV4%48&=Z-z@V9@;vQMJ{#Zgu&EdWS~Q*1Q_Juwz%Rce%Q~70QiqCY zTIXx$u}~NvSmer?Gn)D<7nA2@{EJW>}4pL8b11}H@NpFSO_nM5zi%%od1wwlL~n;X`v$QLlL?t ziF@3G**L6Bwvn6bpf@Pya%L8_9ECZ5)MF{Vp%zz&Y}4(&D2P+56g>A&fiiE0=V3W| zSS1L?lG+iLMvhNBZnbtkwLYBR&fs0~v3!%}pl<3n?$)mrhiq>S7A?woD?XMtA?$HG zatOVk4f}uFcP@94HosQr1ZN?&z`l&UieK~h$C~G=k3RJGwZ?^gqha2K$20^VudK1Dcsl4?@OtJ`?OB~CAD*T}hn z4ZnNn24Rbck9o@M$=>BJ>P0Z}rnVOB+uoSGH7+D}*Yvr8lHW5!Uc&{ALVDkQn*_WU z?Ays_JApq^$l6)b)!F{~*=>_{^5z;oafK?S-ybQSt8P|5sw)ZE?R|9B+4*WU#>koI zI_f(MFqL-d;$PxYwJ`yyw3SsoaPW*D)BG;|RX8s;zUivlt3~{uw??#EiuEp1Nv=jO zs-xp3S40U4InXuP$gnAUTS-leB|yTXho6yqUt$#JjB7`Ae|Z<^>iy-!2cnl6eVy&S4_8g0fP9%G{mekgD-M2Yh*q)QIbRhCPm+0$bqQy;hEm@P-RzuCH zU0*k516a`NxOu$F6_GSB-RLK0gRYpaYuH1FjWql+jZU$@N)5KPJ zOvD^w&pqiX=b(Zo^lj8Ay+vSoC9y;LxKd_Hs_Ye@PCQ25IxxPE1F3v(=u)lo=z4pp<4jA-c$&M%5-9p?qg@SyOOQ~ysZBYxVUyYNLKYzmvrI}0mh!s#m zt98)J*U*^SLb_s{H{1c5O3QkEnd}+|By#FaZGSMdEbXSN6x&G5`iHxF>TeS1QMt!A6}y14~6KtZE=(47%)J;f>i1##WQC@vqt)naNez>y}7?YKH|d{Snj|ciH%NV zj700RuNVUpjPxEcYG?Kg12CRy>{IkGNewi(f`Kqk7s`wsl1Id5Qj^r7V?Ow714 zx-V&MhN9G)B}MOpW?H{eCAvkpYZz0C&*zs^rX^Th+qqV%xOw6IMOn{c?fO4Ozogc( zy&s%7O7u$J(lERf29*K(7}E2-*j(PjetyDT73||fUcHFTk9k@hZ2B$;*lp`l>#OUu zqy`mP7quy0!5eg@uAk5-(g&6=6A}z0i8V7qvhac<6c0d zN2Z{uE;sOu0iIa)uf~`jt1E{+R~vkh$;E{2$M|-B*Qz-?Fz_|~r89`j^(M2s%hLZa z&@O`}Mh(spg)^zgc}N3CK<@sqKcQl0}}T73sq0 zSYF3nTqNFsE}=KbI<`FA1w@$Uyu$FBL76|Hhm&RcLrfxoL3<`}<^}ix`NTc9#y=x& zBBHKgsw0X;a3?$S;QIKd&gcB7qgLMn;ka!QOGISr+aJSmLWp9>(f~}QZrEX5X0rJ4UN6xzPm@M@M zO{*3w+=Aj@G7gtr?bZDaj2fcs5O2x|^A~EANYiV3ecZJH# za`p4-1uEdyJ|jg+*#*6*rEWJxGB`xM+`=`8mAyvG_PQU8@$t&WfxDq4YZq=_mu_1I zgP9q>v+Xq~U9pU%z7Lnf^(R&16^dVk05Z$JR0{2)K!XoIXPF3@8K?~lUpVkc7SjPS zr}(0P7>)P5erQpCH-|(5~EyT`mK4Q^zbb) zrQIMr#hf|U!CeBfN=odqk1orh0rc5(IMnJwR&vUtKcz8>uUg6F6!od@&N#5B!(>si zzWA7??>WaRNMjF3q12sv`2iL(-BXsRYGO^GL$s1Qvg@u7o==xh@ z^mk&0)12pTq<>+VJ6N!->j-7ha_AKXb*IowHJQAL)lGNay8jwro!VOXII-mJCy>EC zHmMHXa!Cz3njnBQ{t`KV#l%C^_K>OLP%r_rruF?<_Zky|XtACcm%||#7XA7gAC<=1 zLjrwF*Vyua_`xBTENN_jM=1{zv+l)@Sz4mLhcB;aRcx@*!#f8Fn!MO3s3 z%Tr5U6qYY4|HGrWTu$K$4-{OhXQ|%U-U$#X{Ng-sRK3hR2MDXCw_bPT#DiIQ*u97x z&g}`i+H<6|iZVKBC|5b&t)(Y4_Adu1AuqwTdHw^ijnb(b}(xC*SmNQ;SN|LmA402GNOdLj3p`Q!I&S? zbmX4|5ddgxTd6_WbP-aObEY76Zb82)*8Pikh|MyQyix@e$`Pkz<#ksA6JnmXj>nez z1{SYNS)CJPmn?OLOBh5r$Mo?F*Wb!vk)qebHwQXr^|;moJot zh=xmtzTuP=S6Q`C975YNmy-GgaFBQ8l~T(AG8W-YU84rI4*<`d@*$T=YQRBOM!)x^ zyS@bx#e1Ww%7-!}A=Yegj$U+1T-b2QPW?AwtW!w5*ME&hMF`Gq zN({;LARec>zS!3D_yDL>6<{v)1tu3wTJiCBOpvAg88PeT2Hm=49wZ4_eSajl)DFrc zg3%z!M&7fW5W3E5Vl7j@Vgho?42c&5K~*J=zRI!W;k!-@1SG78IkFK%yVj=h`|)7q z;qK1*I=iRwUxqLQr8#{5t_^grN$=D31>5nc#9QZK%L8N;%vCE9#OS<4_Mc` z;ex%!(wop@M5m{2upmU(lT#wX2`6$Fesni|c?no7A#-XA1Lmk!!6#B9a#^}bFPgLa z^fM%%{Ne^+jGFz0Pa<$RUv;KrVHt++D<@@-Mh{)>1oeyw??-_RP+}7!xeE>yLZn6e zKJjJ%!sw@=bq9@mKLPK##dcbXqrA2{d&)z5RStdQC6zE=ptQ9ckISzHU?*K^!w_ojLJ%7e;0aL|JsPQDqKRKX{rz&}WAiwr%u&5Ys&C!X76j0vu+r4?&L8LT$QYr1uUiS?lX3Ta zl0lOWEbtndEY^0zazLA%S1T z3eJ3J9I3g2LgCoxYDCMK+z&z3=Xvua{Y(gS@l-?J$dphtjdq1qchdKy$PBiBJA@Su z@gFmbV3q0Vf7165M<9R1U^-U~~NFN53zTN8Z z(bLeV5uCl73s-}zL6iBaCSdzr=eOxZ9^u-^6LN2Q;sg8kfmg|#@;AG>JKgg$suqbV zg6LB%W95}EJ{QzBa2bW+LG7cUsT9axDs74D?~a^5UJPQhktd~uB@J`X3H^(E1pso0 zPV`?>)5?E(N;Cp%INeD9?GjX7-3ueHXaJg;r~LdQJQ~==fK23N3PTVS(i~zE#kS8N z>amM_s@1nmKs!P)^eZPZ|M;q{0NHT|DE(6Vu^!l0v*v(&W`k_QHz1e2oCl>~Gbf<9 zR;U6myYj+)rc0389fWZ$U1}r=uIM!UI=$jI7?dZ}!ynf!47*l_wT5VKB`aRTobA+* zTEX7puKR~Gw>nGvvsjC0qR{K3x1zJiMVY!~ZvZFmSAzK6U{%d@84+%`1C=7uhFeq9 z(EIc{P;gtVoyRsQXe&WnCW1(pMt$(b*BflRJ!Q7eiC&;7afMGQ1{z_6xC(vt4$Lpe zTy+bJQa%A*uARDYAq3A`2LxL?fWn+&Bgn-x&daP%@rMR&#YcZ14(-5JhVr}@gE+L|XQ2#buP_gwx;w*XlfB`B zoliKs6>!VrT7Os2M-bL5R;O3J2SAa#^;A##4P0}GP?n5H17D1_Nh9qCVO}6_Krpj? z0)X5c@7Yvy-u$B=$1wRd+)yuz*6Gb|@iR)lV6-2uPQNH4eID->P8}%~iq!zF;v^|O zLTiJ{%?cH$X$xo=~N169Mj9S^hMXQPRJXD+Ft@ z(!`8{?~9_9HSbrzPX-ydp z3T{UMDls+uN($T$(?*e6t#$(69ua42x2@BNtedz+v5AUlRA=P?AT=K>Lh(Eo(+ zx08NO<_XmWlP@~z<#tFrkrLDaz)p1~Gu47O6_{?MEYpM{xh1vYCNOcN+i=cu42oLElk=4EEVBb^D679czvMtk z&f+6CcMp2UZhXTY9aZ1?OV}? z8d5*RF%p&_Jv(&X?rtmLG_CtWVOZ=7acy`A{7GE8)WFbG5K@28($+#EU^F#f|C+xcr01-(wqd_m&8#-I$ z3I0{hIN+~(To>FHk0qJv=&Vlnhv80IAYl*_9#}W+fRp8~Tjp^Hb_D|Zc{0;0n_pr* z5by4VlFq+^p3kTypXw?AI%&f%5I(*m_TxAv&E@njOni_Ly<=iKu3O9tNKr3sIMI5a^$B3FzXXeJ&VoI#89No6ZCRkV&xJIP1v-A~EAb5!-6m8%4 zV^G=I3mq`T+ZZ_4NIw}1r7pAB)4m_MAj%G2v z7Ea4T2z);P(&Vk$5LOu$PV@#(yuv>tP*?cbG#(<6zo2?K*W0~4jen*M7o2Gb$c7DI z)8U~Gm`?=!0*8K7ee=gm^pY5$UKPlz_6Ydqi|M7=um5D`N?7y}?b?H)p;#vq^RZ~$ z7sqZ5_gAjD#E2-fMBlQ}#Jr{<0BJimq79j(7Vzt-4^BY8E>KU5bA{YHNd#u6;!Whf zF=xDmt=V@jQ!G^sG=~`8BO!fW3!#L`@7UMd@M430PX-nw1-y*`Z%1In7Jf1P8ILLB zvbLcCu*-BVGu`SE(C3(}EpPcjn6lH_BpmO*z6LSx;Zya$!+we%BjZBGZD`_IgT+Ph>h6SfwPp9vba##*myikYnvyoK9= z^+rdK>y(Svcms>eif?bkn`N}f^bj)`c93jgAKJ7ZX3#US>9;~5A7At?-mwA(6kTm; zlu=3}!`@(oU&$JINMdKq%C8F{i2((vqcMwwgy^7$^MNCj;fK9rHV&s0n<)w&oAh2; zSV1Wc2wvlpe*6V^p+~?f0_;y{54YZ&i^U8wLwSc2Y=>lYyg~k^3VR=y7QVUvz67X2 zT0M@PGJf3)GM&$@CB6wzx_a6!tA#OZVRlbXJo8)?3oXyC>%5gVZo;ZtV|sRgyfa?E z%Te-!IK)G0X_4+<((npAEs#Sx5mxhl1>rTzpWK7^k4j&)8Lw?yCp66kaSK(GIxY?3 z@YH9c2uft;I**Ey&RHJRK~Cj5zr^35*lej}H^N4Do1VnokiHD?nsVxhP}3PuE^upG zi?TVd<4F2=4JG2fhYMB?A4q91T??V?=0jIv%(2%~s6s+pOnboVsT!#dMR1~48~sei zE0|~-jyZPRZ~}oi(k=gqO$BtFyhzsCY+DeCsivOCnkf83u!QTEXjtTg7n$Bg-4d{b zYhtOg)fRt*acikz6bhCqNNPED<$`ae|&!jp-M{n zVH^kePo3t^z%8Y!vA2;7sYE!ATs#G;03xS-y8v|XuHwuUd1b_edc4 zn+B%0lE*t9=&r5RuI4Nj1c5{3^30cuS^$us-;!C%#`|g+4o{^zVDq>4dDEI_T5L>g%BAdS)uXr7QFv4 za4z$WHW?!P@Dt`7cy2dvFG|N>CRqu;I6&Gm0OFHLTGk_e+@!Kh`MnZxpv=5vm<1ym zgZ$3Je3Aw7Hu;^L+`Mmi9@uRva89BcB>HT(h=tf^fK2I-tX>MNo? z0-b?s9mU>xd-Zc^H$t1sdO!FcZ~5o!Ybr6x z0WUCz)ijRCih0%-1RPh_tq;mWZbj%VXMR(^!+U z6P-H#(|gBj(`LVoL5#?R>q|PvKV`946RbdXWZ~q?wwaLGA(g<%h`_1m zBcropIx}MlPcy*6A4XEAecPW$ZEdG{F_5y#+MH9ka?=WGSchvJI5x^vX@pSDKRerVZq~bQO8(>Iv|ROo%ZZ6CX{j?((~ot!XM^`mNAgch zx0FTXGOw49hSVFq9U70XLGBjan0(w4ROlzn@o<{-+d>_aFNGZaEjnF%Q(g4U&i&7? zoztb=aVm{-JkjVIv%5_vk!2YgIwhP{@Orj?azkP4)1D-~S?X}O+01K=L4%p$xTz@x zT3lJf=!V?UIJr^%7S=Uu!NB&bQ#~}5gtS1<>De~^8)nm812fFFS+?iw3?p!8q)Dfh zk!m|rAa-I>lC7c>Fv4UK4IT_I-$fjW7!_+VYYiL}3(ONE59oc27|`*^Qk@*gPg6_} zn0;?%(mu@+n_YYCU{nISX%6oAg4^e??P2JaF*yYlH8p%w9k#Iyy?cs4p1X(cr2Bbu znW74^qwHUHmT5)M1zwVt?(jVrBv4VPXyBT&qH4y`eAhwo0`Z*-zblF)6-)ZuV-*>8 zy^7e$S@-9bs@8|EcTq1}Fd}vz`?OwpS!tMZQvG>%0`o|=WW3rs`)I#|QKqMpqZQLO zCw@q?ZQ0JeD96rb=O3|)l!`j2#~F50z|P^Y?W@zj@TmmS>(nd9haW}EK26N)8sU8L zS#i%lNMZgiLb!2GP3eDuwJY2BiU`~s19=uY?>Gcj&ekew)z6yIcQ^6w_n_#jZ03`S zIkvKNZPi9G?Q8ijPnP}u#~r;LF)htPeEY&yJT?{*ilqoVc%f7=mbdwgx&D@~b~Yo0 z^e&$TvvDHQ|3D_XSrJzO*d2*&c_eP9(5%2Gy&XozJC954w6dohcQ>R^X)*>D4t6f? z$PUEacCIwH9kvu#0*QyXp8`M2E1`TM`wMqk(JWor#KG73s^1UY4860%oOSrsuRY^ehjH&;7stD`K5gl?Eb z{?C0vw>u(49zu3tB0C(h{g^z&T~uVlBDz2G$G*_HTg07q*49?Y?n-n!>WI z+4o2y5WT?OOrnw9X*XMBHn2DJ$L3Lt(Z36Ho+vPS|DA6KiVdgv45%Ff2t4b_k_{t?+{itK>3v)o3taj-%}MKpA?ay*WH zI6(2jI71jyBF*1~it-8ESD8d2{5Kpt|J6AZnpBtprsCRf4jDGLITUtcog$ zAg`iCP*5XbhY~_3`aL>cL0Jx*6;#mi|LNetzgIxUq6az$ekds*wnst*psI)*$V6(Y z1QiwJT0x$mge-sHA=zxJ}?^#1;_x6nU^S`gz`g=^A{Gj+r}9yFj&yo`2+VG^FA& z4~dg-gS;035#nEWlgr~_1P!`)R#g1=thg(zSOCq6vq!fr;o)gC*mOOFJsb9`yq`If zum3zJZ>INdG0vNtOjjCn>034*iqOsPaFuz}%*pR88QA#lXw0ozPrIvok8Npwu-to= z&t}u_N#5@*?~d|XPKs;(Jt@kg$qMHOBt?AhKXERB?RIi?BoKcDX2ecq6cI0%Q&Cey zQiXy7y2~E2sGx>~@qfWIo$`t#Lz1%6vDaPlD#{C=yB0}{)5Hn98$->vomR-M`DNuW zkKaGgIzNHK<>Zi{@UQD>8L06g7^-QSCxCF)-8i%L`i3vR&jhA?xwno(;GWm(XYrPt zd~!j1%S0|kz7U&I4AYekjuQ9TUP_X7R^A&FvhDa@BkfZ$``2f1n(i6>eRmUb?0icWfVP0jJ*?0|b^w0M5UvPv-Dm*G1d7>D5x-&s!(9 zSw>2Qe4b@+zvWuIEL7L+Fz0-rt*)_o?UPA+Q+OC zs_pcxeDkg3sCj8LgQ}}s_o*%Kx6a8cX-ww$)FLzUQ@{O#4F3UY%Oi2`UuCFtSdDMd z`lY?2D`#{!ULkrJ{IR)mrm*tL`{Sa;CKq4aSbyi+k?Tq8y9~8`?#RaEHZv;h6`8kQ z$k5JaXXX)8t`%Lf{w=uJ?soQqD9r^s81It~?+_M!_aVV>b9ys}_T?-pe~V>CP-NzM z<|Tr~=GD^MDwB5!3OQCwK2Rz&4PDzB+1K*gFyYm$RY8jv99I=#d|?dU)H2xg-fgA) zhsR3gtCk4v+Mqce{;*DvbyBfLe))%20#EE0FM|9 zi;X5`7R2ctz4Z_B`TGxu{EYFpA2@vYFBl&c-W;|^;@CWF4-n}*K#Ra)G|K-7jTp8k zKy3fFseeYa{}?z?0{=6n=b4A;<*{ER`Hz^M=O;|Bh=fRI^aoTNtgMmWVZlDSVn7+m z$V4A2S0^O@6Nqk}$Qecd$ZxCsg#5t|r~E+vm>B+=HGV3B<{|&TNd*x&hWHia|Ci+R ze+2O>%Fjpq_%FYlnnP?ja{Diy|3BjYe;n~6_VeG1_z`@I)&l=E#E%p+2#EgQK>YG^ zXdgxW|926;(tk$$sz?=vR)X`;KKdC)`uO?34e?_E7msyVY{ZZ~k_3LlR77i7T9_AF zF*Jt^LZhlYRweL&P>a-de=QW|*9p7j2?#IPT)X86NV@pz(D`6}o80_%&fE`l5qE4u z9wJ&&2y$qIBW{!bpAJKy7aTS(7S6-iKjQs7WcuUgd^opTPG(-y%+ZeOj{Mdb=!5-u z0L@&uAVH}Cew2*3&+atVdjjlYzu4uDv~@5BV5b#n_xyNx2lA_1Xs2y6k~Wj)ZB(>G0RHPeIYs%u(MKZ5lMplh%d^P1zu!X|9)F`x5p5d${H!w4efsI1 zvOE%Gf4ZkAkGTHN_Y{$i%TM=I<&oa{&-X}wm!FFA-{c~vrhsVYr)QPrk;cc*_Z0t5 zi?T8rF3^8J^o#UNewMSG3JD3bKaEpSP(wn&U!O&y@jP1GTq$-AR<1l~N5Rm}#|p7E t0`Z8G6Y45h%-Bn{MxqVsD%kJZ(cCDmZkSohsi`U{@JLAPGT6=YKLA3ihgbjr diff --git a/dev/_downloads/fd8f37f13aecb42027ed8c23548b8132/plotting-31_00.pdf b/dev/_downloads/fd8f37f13aecb42027ed8c23548b8132/plotting-31_00.pdf index baded606f054e7ffca7f43c307bab4f98b7ebc4b..1da0f607d7a562221d4579e75e0f7e7ce93fb1bc 100644 GIT binary patch literal 20559 zcmeIa2UHW;`!}u&h=PJH3KmLsQBf%&p-TuNA}R<97Nm+aBUJ*Cj)17U2&@$Z1YN|2 z5EY~tihziU5JfRG0YwN(H`3cXGxrY5>i)m`JHP+$J?}a1dG*YhNpk1jr$3+P8Sbpv zwPmX!Nl8^`&D|zK`XeC{L7Cur=!g)7LLlz(_i`c-_3eG^-8@|g#9j6-PILkp8DK`B zQiYs69MOTAvu@bx>ET0A!3Gd5Ob;D#a_}K&fR6@#K8EH#_C8JoRq(|wdmkSsZx4bR z`ca5ze%RiT=HWt6hrfDzI+#285Uh}8w`@g7aq{ya5VyM{By5IfeR$qZu$e^;=|=`o zx>4%Aoe=5(`9w1(x~H$V1HunVKeGN#Cr6t7W=}t4MP=l_s=Bh0CP772O-UV@o~Vy7 zhTKgjXaVx{JUl#+Pb75cY+;~3@9rHzT)4k@@DV4IRb>xv2xGpo|F(?WASu5TX(8VH)#CxXs<@- z6eDQj!x(p1=5w1UM|XPaXwbx07i2tdzA)jGy7^LYo|wsdXBY( zj3svEPK=KE7Eds`?S@8~UB@`zCM!dyCdk~cql0n*p}f)Y>2CuQIp?@t6VF^mN8(yS zCb+S>A>F3lK@*jIeZ-<*?LdDirwg{ap{6@3j@tVFEW>O&Ja}vWlcx`dDL0}#pX-Jy zUh5T%3#xY5d_5xn$<__eBLXjvzHDVE$JK3HZ{&9U z9K|okJDATykp5fro^u*XO!{?8(>8d|#>Trt&2$pBYCpw0GiNva&^ES_U7uL^K}vGF zI9)gI5<@kR?-86XJL}Ie*B#5$O*b@W7sgPXbE6X?_$m&45sW)P&mB&V0t{6grMabc z98$V}cE{JJlfFr9%aO?erDi*%W>)p`q?t6{0+bdE_@x=F+C-NlETNSxTGSc6=KUiXc1d20gs7#QKoz#ZS?(9REqT-}5Ia zfc1COFEis}ZL33O#<4jh^Hn!$hX79rnOk2ruU6{#dDZRJqS7uWwFG5=z^j?EY#Q?= zlXlf&%fu@)DLao5t&VHkDO?RV(GA{e8wcT)=w!%G=Q*XGOqlz1+*^3g6qj zT%&Hby*aPQOuGGEE-OOz`JrAxuI1L8To#nLm9B|))dvS42(5q!R!KRSyHWn;x$eiW z%g#EIh9ep;zqrTVB7qSn$ZopP6FZLSwcu#z6*X>IGY^Q>y0N>ynTPX}Dpihu@TAzf zZ0uQmS)Z@`*N>;(Iaup>KBFu9)@^F{>wl)!xL^+CJDJ(`V09o%Tl1VkM~D}#Et^js z{31BKdu7vnFte_g2{YX#{`dU%P%Dy!*?hlBVXR6w(Tk)P&iF*zMXzt2uQuI3J#sDo zq4Ul3ASlGl-V;)-BhWOf5A>`)7mFF-suX6>Tbi9v07gK+?Mn&}Lk>$BRt;_SA^~;=-zE-~--Oe}ar`eVjLrvg=OhI@)FnY7+D+?p zU$_W|aX7EN-H|DPRn%~^byZ@`BCF2-erl-xL66c{{6@E{-UUYkr79K>E1`)c@$S8m zq(WtXe!@ya+Skgj6nOMV-V8LP=XW>V zIfZ#4H%nvuQaR)_7)mXeui%9s;biS2lwwH@qzLB?)D6sMV(E99t{8&l;je70X8-e}j zJv2IY9LBK{`X>*ZHAFox)=M$gM**&LQ}=40;Xy)Q-n^o4Y(20ep6{j0J=Y_E9dWu; z8U-Vvb}H)nydL*}Ap3OGH|YM(8o*80QD1|eLN18&t!HE13|B!5D=7Z*zDQ#jI>L^G zA;vLiyE4yB{2pD{;Fi3nfEJuqKaa9rQc_dgTsNQSh`US^PFRpvDwSf3Gdp?gsur1C&FOG=a+ zwn!{oLz0=5Ms@G{crerA(g2 zl#F41QEqe;2*ILFHC^iCc(4vC}M8ix0*6a>hy zbxlu~h>ZEEMSEfdhrK0-bdJMSQ<&Km%I|tWO33G4R>9};^X$79yB5w>&Aecl8>|6H zYnI<{6^W;{TnaNq6#AYt#q|nF^#V7w>dN)O9F8=FOh$n?ZOS@k`5*=vdSqL)6dhI|m|1NNch!cipKg1`MxtC|Y9pF6orXM(dTHuS zs-+1f$}RH@D5&l_axcOVaFppJ!peMtM?5u)(>;(OZr5^`ti%T}gd1C|>omJ_&);m| z)zP^P#ZGrb3hFzw8n%tHgv3q0E&t(!GaJbk*^V&*8Z7E(NvvoqRBYH}0NEX%Q8*Vv#ZFz`|F>a!5ueMN(lJl=bbT z;r@~|d2iJ+Anay8Tf6onrc#5z`OM^uDL}uJyy1B_w~S&QHt|@tu;xU&g58^KXi{HO zRn{BT4>GTpuIobqQ8?F#Uz#iBh|5{1Y|h!9$9M+Hi1XMlGzR>2rpNbLQHHp&QU1zNOYblz{5!byz)KT05hTZE1D; z6``0-taIC7CP*Hq?LP=4gFvyggv2Y3P<%~dO$((l+Z1(AU1sH0Uh&qR?_yhYg?yUp zYPS?|h=Z9imRZpW5DO09-p^=;(X)hiq@a5S7O^??TUQ{7vIIkeT{njIdBNyuEQqUV z;;~9$b?Px~;nvn&C=yqTD-(H+2Z%4WKl9_&1QN$w-*`y%1L=52*LPb~Lth!6PuUZ? z6H8f%$*f1RZbDGb=a{bzPHut7dpP{mJ{*5Gw@YP7dHVstC~cU_t-+0^>S%+&0vMF6 z8IgvXx2i$pqEpZ5sNpMS_|(0|rCI;=UZ5Usj4AWZn`pOu06yrOevzgym(N>9Uwj^Y)ic9F1{SQ zJ3Q9*peVU5Owjuxw_|+qW&S=|Fc|YjLhbzmI7Wp#6xjj?IdOjPu2b@-d{g)$QSg?r z&~ND|ST4loO6`ypm{xdmoq7&G354C;DjvyQ)!XjekRK z7@(c~P?dEd5~Ekvj}<`kN_-S=Mc8A>pS<6}RdDYaR1Q^D>4ND-8NwpY4@DIJ>S8VAK9!+PcTz$g%M!<4fOH@w0|SB-6TcuQknaKNZ;3QE}* zah?hYU{)MgOg{tWGRzc=p$20lH&4`^;z-u^-t+eFKJb?4M`P^}>j(f$Hyb`@EK$bg zM@i&Qy8~q$6H>QG0!|i~!@EgM6WO*jCb5_9eon{WS$Wg_c+1vwd*YA*rOle}_6}LU zRovtERX?DbFznaj(j=H9Y;}+1V^uHaIrzn$N;a4b&kb4|81gf=o?*X#FwMvaj;cU!uSf9~Ho3Q7pTD{L|eQ zK>dE%IoiJfHHPQvJUM=&g$u-zzCyEG$pF|+VhWA(;;wSl=YcwO=8eq8*Xq+Jfbv`t z7<%$0O+Q_$@osDLO@7!&9|@ACiPs9-R@U0x->D0wyxZ_$qXh0nc80`Vi=T5b!8l1P zhYyo-H{HsfPciEoy0`La{yejb9UcC0Zz$biYQS2Etd>Qgmm$x?4bEAG3rc}iS1R3K z(DyIov2NoRVi5}0F2I9-LR9P4_A6&CTS{;=z zYPlWm60H=sMTb&=9qhTIlXV*S$_PcwZPFQtyPz*2X@#xQBg{P~Dl6ZWBT}%ljTm2^ z;!{`H3w@|UiT#_=PHX7sT5{GKAsev{&dbX{kny0}8D@HA9tVDAq+{wQtMAtuX5GG| zAoumb>Tpbnybi6Nk5}%QH?`kK&2Ej9K*tV9dY_!I0%;APYNAd+$28FS5}1p=)5}`` zn(({KlkA*RP;K020`G!>)p~>!W$yE=YugCCsX2yG>b3x??Xsz#_D2VguwAtLqs<1o zVhuV#w^oX;wATW+EYeQB=NN^NNasB;I_}JhtOk-ET$i^p85rP*Q^^`*Z0Y1gPFJM} zaSu?LwPo@UWeKM8t^GymNslu=@<0$BIzU(&C?<^swU)h`d!GLe9sJnsT^1+wF!AL3 zPe1U!4LCjade;aE2C?S7`u2-WH94E^)Xb;4R4LE-1v-d~nvaj)b1rZYMhxFO(h}gf zDQSCfndgsE{nzRJVgi&Ox`Ff#v+iH}C9c?7DRp&t{Ka zlX^%-Fl?`AZhmxOBVo5DztqFlaI@0e0_2PB9pk4{`EpHwCls71q%5H8z<~IfTx$9X z3n@s>dy?vNNUU=J3s2`(b#EF1e&58@BNv>NOL8UbrFl?~IlcLbz7)hdHeZw>44QqP zDfdZV{ZX&*=Or+%y_v_HN0AOhQfx9kvLZhgm8C&z4!5lMULZCTe@cdE{C!}gO%rv# zrlx@#GNG-Enp;E|0wD+O*Lx`U5k~fqkawFShd3Z)vj`g$@X zt_NPBD@8kVTo%yYXSjW2+c3s0VvnQimc?`F*i0j}PetlVfcY;e zP@`0pSD>-?*Z%ITl2tOLAa+jr_P%F&ef9&uLCPgefQ7rg*4mdB@SwxExHs@PD@wNV zkat*DGjVQQ3>&?FYyayCd-fR^<$`(x(w8x8^TAxb3zp~k1VP=puwSiVU@9y)YQ%~2 zUmb`n`BveML_xMs>6;{Ip?$2&2E`R1TF35B7%y1RHSC88Wjik&m)zuCzLT#o^i@^G z=Jc+AoRnCJfev0;SiL`VnhXx#rOkkN{^EJ&%bF8^1}QE1SjM{rQN6&9o2$=#$iw|C z>$-@rD2S38L}nJl`f@vPj|O@qX%18fY3-SQ;2j#7OqGWVjgDD^D909lY?lUsjI60e zKr4)djRrOYj@#o56AT8!<3fzB^v**hC8K#9*mP4~-`7m3tq+u9RinNLv}h-~{U(Ry z(%4p=V-pKNobsSBZtq{$%;jy%x@FtnWPb7r52~s0a9+d}7*a=ftZ(~m82SUp{dBN7 z^lGcjJmcSBc)jcL^yVFaI}(SpyGk}o>Bm)|AcnL1D2s##^Gv<#!P!t|AqAQD$<TJlLYi$bJR9Ade^`3nH88f;d$TiE?HpfTpz zrsJstaI#@?ab5_p7Y|#8Uj00}IOL@5iF-HBt)yKx5??Tc&14lRNXJ45lN2kqPY5c! zrSIf`KNm|5vLkK+@c!?glW&5JR38UC)msB`~lk|n|X0DnqgBww}=oV72d z*2TX4E+FvO0?W>e_^iH%1!qRdq?DtdV9r@av(Lt3L|j_rLwo45Y<5Go*ZGZ_4;0o) z_(|N1bea#V2G%C`Q}Y0P;#L_p>^(B@%pew10{61KLf2}LE}P#xF{ePe=`zYK6<&7& zi?lXL`ht&Ptk}?~3MHLVxLMH?V)$WyLp$RXsI#=Q>FzR6&TQV8P{Sh3Fp?Ad^ke(q z-#>->cT}Grk6$-&=CvmhWWF%LfLvURp*JHgK=*AGPWZDGRjUZ>Dq(c!LAxt+7l%g zoQD}3h4WMSQkac$ljl)i2Lr&%er?))4-_~}LEXsG+Mj?bJY7oLLBNzQaq$qy`5l@t z)y_pnP(l9~2(j+G6A>|Z71j0SM0+1lm_`as;!b%R6(kE=CO2x5GzN+t>3n0&k>9+q zTsTVY>wI>vp#?<6ylIr=y*0lJ3E3b~h; zAWXA8_T19?#0Ow48)NuWm7qEthJJ$ANR`(`Az#|S03xaSd?M8d7fH=ZNvEBF3;z}; zS21cI1t@mxN$PssT@MUA6N5}tWLiZTngf*;B&B}fRl~}__DCrgly~f^VcIssa_*H1 zELPL|#8QqybensCOzi`XAJVVV!~4T5m#rN;Er7-(ZkEiDe+7_2!LlYoITXk{tsY(s zL>&&CjH)5T-!ZHZ5dA0qi|mN6`D1Mx=nrh0f}93~7;Jf0t%Hd=5bN$X%wcQ8K|Ce9 z#vX)vSZ?gf`W-~;k!|BoH{qG7GV@?!KXni!ru7R^Y`*{JYcNkRn3VNYS^3t`wH(48P%yk#5s99 zE(Xp!Y*R9nt+pT3&&`?Qk3|e%%YdC8mMb?5(Fv8YsPTwK(Kra%?MQ{^5OBWqf`oa{Ff)8_ z-FX5fWE-(PF#9Js?|A(63qAWZ!Mt{btt*qslsUE9ZA`Sl&iayHBuXK>fP=sw?ofeE-0nw(0wm5PQ(tvl|b? zx_9_&EB_H_EaRC@+V^d~0z1(9s#aHG9SaKGaV=H`wHmTqSL-IqN_Yubwy9!E%#@VW zwZ`=@bhik&AGL0U1&05d(S{z?Wkm%h~VKNl$;1wO9B^r)O!Jl4B(38<5j6H{1sdT6n6g8()T+G%>9 z0(S40;__gX7&KNkE89IM9ZAt>vns@Q2P>oYDbQF!T-&`0ZDoM4Y#G6g&Nsyjlvup~7Cn44R7!XHI4Bxtab_iqE3v zYdYV6_EzYWZ6-rYlx_Dg9dv?KV92{i4~LkvR*NSJotfUkQF`-lia*;UUNX)t;>!-i z1{L_5q!@VEe=Kdoifz_2#R4xpITu?V+=4LNG*z2$Ehy+x{zL7Lz;mY#biSk7zilCSiC=CMp$mevQB0*~Ho=;l8q?4nCWxC0?|k)%+$a#ED+kvs zbi)%H!*@aP2oLxQ(w$53Ng9e*22RPXKU%*YDk8l$!mz zLPNHzvh}c=@Q0OO%H&vB@BsHKFpbeVHBZs_Tfk;V)T(KWn{qHz`0M!g0Z$4vmoA2jH{a5LUdp_9ce0clQ zH1JGO^R!2>BjVs&LC8b69@cjLjM}Fl*4U!N#zi*I+_7 zl~a$z6Z-3w__e3)o6L~JtLwk{p*`9WC6R+f85vLk_k5AqY`zV4UYPTw6E;IM5obXE>mRg;{7ATR}B(f?LsD=!y-~IWkr2)X$FA2$oLS!J*^F=`4yc4F4eBl;#tH@U% z(>U3_UwwEbUVm5YKB%`5BbZxd)llwv?fjS4S7;-_OsLmt4QwPRs#%-^Wla9)ec_h1 zbsn(&MLD)t8kcXu&EM!|z`YVvQX)M+Sjd3L(^s17HM9Z>#b!i2MixkAevxpCbk2GZ z5}PQY;zf}TORZsYYbkASJA}5amiWaLM(%$G>-tKU_g0-d0iX<$D2k-l;-Ru8*XvJE zjB`5%vqlu}Qh^POWQGXSRdIVCw2Dug(aD$GW$LdWINc*@It~DR@8pv={8%NEkT}dP z%^mRph;BqFNcf7n1h7$7r((CzTG(x(rZ<<~?f?>kJq|BwqhL{n?CWJKNf@XrO!K8`5dU63j9q|+CA)Rnqc;5QZ!BgA)8+& z_2Y}fGd|I;Uh>5Z#(0ONntNeaZzR)S_&jGuA4mXL_6XLlRaSME(d>ithEcLUNCEwK zjAnHxzFZ9|L*$35{^8FM8zOUc^#Mt15E0@(%wG(3o3-MgA)ah)c;Yu&Ah=_X8cZ&Q zGRlKyEcm#gn)Q#TTSZ6XDWzG zXMMw;o>f&)B|mq1O@baRW%%ghLAToaXs(=rFI!UVg}uHt3-YaMyV}RkLv00YayLBVv_~ zd7$R!8Rx~Fgz)UToNfZ`MF!!u z#1NKuRvY*(6+-ExaOSLx>6C+j3W=f?&tRMTp}1zpTiBEAq=hbE#A4496WQMm^oqaO z9*A|!gW_0`xmR$_)-E)q?WKHLV1lMc(n85~%rPjUSFSyhC2zR}~mCz#pz7%&Ho6q9!=EH76%SDfC zuLNKK;APb)cJq6IEal-6VK9n|S87qW)HtRo75Qxbj% z_;0T6nyW(Mz+8G@N0#;ySR=H!tdV*yO>PD7+la=B=7;@m=lCWk5J-z+x9?ES?Sl2X zy5^ospx78$r&X`QnJG4&W!N}%eZ*pCSFzV&{CR8&_rQl55DxPF>j&Kvg9Y2cRNn6# zZ=T2NH17+{sRC)dQTVjyaY`x#D#cU$UiBcU&u?~qzlAPN#tnsN`wRXo1AHm1AvbKZo22Qlo_QdJy5Cs&u5 zbdf=!7ScPGQ)}V?dIS{YPq?!2mdL(XH#>7c74m4L%yk9c9?A3ytmEtg(|Udm2x{CH z4?_WE<(|-k5Gi&4n!BRoFpNW$Cvu-*R3Y5j^LDqw0E|3PGVn;(S@;H`m6+d#Z$sI& z-MSYahs$nP&D@GTqX76^KrUf1*O&3Qi;7o#wC&G}BE64dO_U-J16I#*?3vY)0vZ3u zb52123AQu~52%L{X+IKpbvt-Mw4~tS8L|1$0bEkNUd(}*o9Ejr`@Yo~24?MQF%}u- z7q%GN2|V&B7`@C0wqp5LfZoVpKtP%D35W!~#qh*o5RzdP^w8LbL%`#7epa{)Zl6!B zPVW9F3i)7nRa*DdI00+wvlPx*33?!g{moV&a zcF&Q|4B;gPGi&p6eF?)$<)41yAU%LahOl+g+&q`TCEZm67pvocba1go>s2o(eS(Z{xx;Q^L3_j1 z2#_6@1od`QH*bK9q#&U=41dPwdtt6T55k^4`pyq(csTXn|Hxfg?-OXYCK!b)ZGaT+ zHoxzr59F>vWYzTC6DWk<{dDkn*myY%FI1O^1*B3>c5X}Xcx^=r71;p8Ya0%o+9p#x ztx28gKWp38*23%y$$y?}(=j-qIX2p$J1W!CbA*3L6n-*yq!?BUUzM|;hr>zqccAVkq$;Qypk@T+|ndzQ3 zPUvut?$lUgN~Y)^Im$YA6VAcb#gi_@BRw)x1GPrlAuY-O!1Tp&=7r z8kt4GAs;;r^F3-Ap>KzCdtG$CD&6IU_S>_kg=K~cq|dic-PJ9k>wd|vkaT%5k$PiX z>;_k?h;O(unzubDv}s zCnv@3r1W+joBo!|6@70v$t<248I<`{F*Q}TZohV3D4Da49x~lgDP!EgyhAnrT6=SH zs(xD6rcYNXp|4U`SGQvzf6w`l7wN3&jnf}vN2gnNOi$_Q7LR{T?cM*Pou}U|ye4>Z z_vedKI{hyvYkME}wFrc9L&Ud)*;#X2_=Xu*y#+(2m4uSU7p4(jS+`paWGQODIXbM^Y3h9@k=GJz+riNv`ogj?t#6w&5BYWaOYu}~tR3B#;@wrzIm{#-GYYOsWv>k> zksa;ghHTWG>K&WzlY3!`2)KCijc3UCaPh=wh38a|UE!aTjqDrj^p7${lixHdh7D`D z5uH}IKTjGB#|;xF+H!}px+Y(a4UJazu63C%8h$wM9ouf~y+E^F@OVqr-W!_e{y4a~ z3+|M|c7mb1!$>L`8rbjH2Xqe^dSOMd!S~dW&`opS?;}&yKsJy4%O*0NSk{s<<%Rlz zCSgln7OR?i=P#|EazAKbB3mT8<)?3|lDA6a0gtBTkR*mxR#7^J8S%vdaTwm!olrD@wGO77i?Tp1Ai>>}=Dvq~u-%#HS}H<8X(7aFXetxP8fpX;EoJObL+C_*N5`wElfYR; z10DaL4k7$^6=W=WpmX4dnhIij%BTP|RgnXkNK2ETp@Do>ArsV)#Wm1FjZ7eGsRhqU&@)N| z$`pF2BZi0GtA;QR=0L_G>tfd`s)!&ou|rKm3p;CRAoL>NtCPqGgJ4}%WL-7Hrd71i z`&0>P$XOE+7J9}GGCEEj69Rfh*TU}|TV(_;uC-leA-Kb# zX;0&~&^kMTRo0fMWXl)l)vxu4`@zER0uvE>|xearTV9@xktRhYxG^ zm}XE{%jQ1XuC@5~E)9Ou!^R6$lCB%IUi@6-M9KBj%6Kbq<&S6Y54fvtSy4qfnR>H( znaLQDe*V_Q6;2}0?wY?hdG;cFS-iws?-q7mhBxwuPdV~se`=SX_D) zoKZ0(YxLoc$jj`&O#_ z9HSb!?U%?qiPx+7^?p8+xiwndd+B%@G1lkg-soGTZn~no9ebyy>#J^yyI((DkhVFh zBqu?4*|qeBRsy z%3OWU>s!0^C8S@yO*3D2uZf@fd#;D*dxwW%aXG(meb8NHxI0_!x>~Vq z)T-vVp7+np)1F>h9yV|8K21qZC#V0Sj_KOhKFi2&)72`MFAy{Ml`?(;N%EJ zG6CTQn`bZIWw>BBI@fQHxV7|2_!Va5%tLbpTiL71&7Uwg|jgB zU-5nxGX3kz*>G+vNpV)w%$?@pi@b#l^uhkR0nJ>vAVH}CUROpmqB&x{C%`WDE-zoC zt%ETD8?#8e=dYXfk@s<-owjvI+Vpbs^l_sdA}~~xw3J9nUY>Lxk^#Nm!mV`kiCN|vew_`LB?ZC(L6o2psz(+w`C()8L3?~ zNhFf0iZV&Xa{VmH`FT4z3n8_>vJg_$!+%IqL=7n+oe4AFp*=bDAHf5DN76zYC*Oak ziW=E><5bmu9H*v^DD1m&YDlx@`|s415q14-9P;6ZdzF<{kOKJc<4CGxWkmSj-Ah(R z%=mBLkyJ@YVgKECNYCX5`jB1&f}*~=R~;!Qzxz&|jPyLe`%aaN8p3z?s;d6*ohDi1 zhxs&>f0Q56&-#I8Efv&v|GtL03i=+o@4i#j_;H*%0;#?qr-?LGzWYu?8EIU6|D7u7 z2R^hkX4{L8w>{0x$s2p|pE)hS39&T-(ah5mbrmdTZ1-?Rq75<&c;g-2$KKlqGfR?| PriPZ#nl%QdTZR4?Q>8!O literal 20237 zcmeIa2UJtrw=b-S4N+7?EC@lY2O)$cK#(G$prWE8pnxDP2uP7oq}waSjsk*+hy{p> z^b!k-g#gkbH42g_^-w}+fw%WwE9g0%?|<&N-+kka@y64!$4*&g_W7H0v$As6CIcmc zGD&P@N(1h3t{4HQg7dI*5!2Gb;rIG`I^yv9w%)dfJ)Cg(UA9h+G@L3jU=L15N6gXP z0UfCE%LD@tcW)dK8-U+uZ0F)=?~PLjZ#N(HHZ<|J^>)OOzz4f*y}cd1+;L>|tr*_q zkgbEWyAw_ge(U97Z{p~UvqZMtWPp(3c+?w*-|B{tuo2$%;e9Laz%S$werEus8>QaM z5upx{kKf}+^YHPqNBBYMNA}<0=-_O-(c>txqYCn$q^6>*fg_U0%4*2+czuL1WHt>) z0p#hqyL%w-2 zo7mCVg2wl0j?5!*U;PifS-fXTn(hd7P4vRa%r)}{UJPuwv(@6%iD{d+oak;+EUV3F z-c%HUpZYp;_DoaySis%r#uS~<;nwako?Pfi9%G~$uQT?VJwA9obfBIwdQL7hf1E2J z_q8RGKR#M-I67D@&rFOHNSPZkSW`xKVdjS>#x8q#R?sr_zSa_=e|) z@*m3`5je$xAB<4UP6V)#(n6@fCxQXkLRFjkz}SE1cy8EzhydLuw$U&er}fp?$%Xr<+p_r^*TrfP}S zYWaR93vaJG$3HB1fy=>0C^L-iDCsfF$oJ!^9%6uZ4vS@|uav*7bS5m)G9( zcndB*_>J!y9Zpre{LZ(clLsF<)@bqIKJ?Oe+sOKe3%wcbS-AaWgtUzRrHj?$9&Yi&S(v zy|t@3SM)0o!VS>9Q%kQ132*E0SpnxVT*SkzNzm&crr`hB~H&PuH*iU)(Tl>{L` z#LL!3Ee0aCA=?nzm9FvUjRklyldso#J-HeyE-KPx5@@VF=d~urfRgzl;wnMU*Ka3L zdS+%sM;d~y;+oeDcXj}QS<6RS@#<@V}xlw$! zNblo__9n8@W=8VuAQi;EQjdrSf3Gh?Rn8kbRIz@!`(}}$4#iT%n$P`DP4M<7CXH4- zv#u8|RA;z$xI88vk=58EidFlQ6FNGrKG8+=lbgXP242ijQ$ZDea5N=bPJP_!@K2H z_5zuvEi$RLTxE@U(GAjloj+QgFoQK>a;AJleTCt|*qFZh&wNat%;1KRi_|zwH7+qp zKW>}pqDJ)NExU=HY_=)Xzu3K-dKr4_+fKB8nY+Vb~!?2s$# z$K;k#D)TJF7W0kdQk9E3A#ErH440Yaxw>=H18g;h98fNewyliu$D+x@#0az8eS7e*>}cE^Tj6hR-11(-@ejE@XT9v)r=R$N-Igh4xceu zWw2!X6KnzfLt@(I!L=8FV*K3(zDu75^h@x^9)`Tk19s06q*kP#0hYxa3R!PTEJI_F zZbmh4TpUKIz}R7{0-&XUBtl8kZLp@&HJyG|47O(5c0!wiC#HAP`s-dE!_Rb~Ln_JF z2{}A_rJt1rVpzzVPiLC)p{&lNl%?dL@zOZoZ&LJ_c+Ve`-kIARu_9#M!LJ+uERv;y zE8YVZvk3iq3V_8vvBW019b&$i%y}Www-iF4Jx4r{(8TPSZt+^m>*26y?p0$n%<;`? zs$%rPpj2Lpp9N;1Cfwn==P;feZJm2p=k}LYED&7e-!N9|i^VL=X=nPXDeEz*?Jy6Z zU5o=#$hcL1rQw1o689o5+ub_jqq=;?3wktN!;qW?A}eoBe*JX)(WA|nX)7T zScZFn4JxJH)LsvU=xnTx+C7YIlWKm`t*s>(8uHC_or_(-kSjYjhf;H}F>dB-cGxhQ z_pZBCrbEcu%X@08tAIv;n&K*HD@+2(rTfzhC0=7j>ca2}1sdbs!QnE14GqL=Kw*iO|!}ki$*bN zchj9|qNRZ7+*jd0(g%PTn${O_RQCZ5B3mI?O3E$nFzJx6SkOVei9h5z~bZZUKoyePcD6)-2u`8Q=#qT17I_Wbtf}{ znX@GIUsXw8@(1zCpe(?q0<%va(Llp9z*%@jm*yspMbJP<_-4k22%(d_BiIECZj83< zuI?Kt_y@oh$dPpuW8@29&}+`$C}YY_=yF7}NHp!1$6Jso)1sma#eh%vWS#~PBD7jI zjdXz$`W@!ggfmoOUOnoOV*z1Ce%I`+G};|#za?WZ__ZBkc8q}}u)|zt;6*AJ;27~R ze%TMq@HFk1!!OrC{;%rWvG{Q?UVqp!d=iU;x*1s&{a>YknY7o+6TV+1LCxhwY_^g8 z1}xZK_CTmE79Y(Il+Bsx{K)MP2pBYH>e3QSkQo^=ysvwKrfZY^y`BM~`X=pXR(cj- zp}Ro0n|EFf=$9CtM(^y!^ot}_mx{crVB4C7F*;jY0Qti+h65x3X)P8KdKG@6fk1us zi-tv9z*d(_7M_%RNngzh%J3h@#U!8dUo0ltkbGld$wM13qRFya`qB{UeRR!NQq<^S z5v$elC`2*3=}!`d&*T8cWe`7Y$kzOUofTY3m~MPXf&+k_x|(3GYJesm(i(LV#}lwz z_V~WyS)Km(-asIhe{8jR0mW}r&YzzRk>%dJp+9(7a7@*f4nCd;oOBWG`z#rdbZ;o0 z9+BHLu1Enanz#&$7(y14Yn^$R|5?!YxqgzC2>?U7c1#iQIi^Ua)p;6e>#H{!Hbdmk z$C>R-Opjra4S*b@3wkz_z5^xF@WUb$AWnf8St9s&EU=iI>3yS~U@Ntnv_hEHA{2vU zDZ8J5pg7cYyQ0_xxO#m-LK5Ag4<*R>Hb0rJ6Nj;D<753}Z1pE|ALwF+vk;T>;M}H1O!RC7V1hQFXlLGLR=+aypa?v^8$pBe7kl%n>WoMsxPk9 zS_YFznX{R84@}du^oszNm%lKFXl&REfRRMHcDorSDW>H?hGEr* ziNMX4nQsq{cAEykw9#5llO)hk(?<1rajeQP1VY3 z3c=1A#VJFAqPZ26ER|H&? zV6E8>=f0n3hadQ8v6g=8v|(e&t{GorjWS$`3E1S=K;z9e^TIW${ksx6tmrCl%h{zN zx`b2Sr7NrM;os;1n)nN1td*x=Ti52Kp6)*pQuKgrEG~b$ufW!{!~8xQCHFKfk1}%o zhaVu&(0F*87G$H)>@zXa4bbPlRy6(D`tPU^Uiov(m|pF7P~m(iZOLVOSEd~A8j#fA z!nI;83*@wvc7tJIbv!9IOoksyX{ih+v%@^V>yf>|H{_s1ygsSR921|X-ILez=!o{$ z71ZF`EA_@=^074Mg7(L4yMRc7uRZ8C1zh=Bm#v>^YGcdgV>{O9@8hjr1_{&NvsKqt z8Zb;bkWi9Vh6kGB)-;ns!$ZJgZucHZt8avAqns=}AO&a8O-C;jHnO`{pSe_;$#4l~GS_aiDoyRkd4}$o3FPn}(${YW{Lza= z>pdjlQtjsz6OeawY{S^xTIK+8Q-4wSG?tlHD#z`s--GX$MZRivD{0coCA?94@NZpE z6Meik=<-p)JH*~uw@L!ip;IiTR;h2e3oN-fM<9wIJwJa(gmP3>sj;K z0&ioscL)0oyJuugr zvUqtwv){>fix0aPW}{)^+TH7)x{g|X*rglrseAhAxuq1=qW+dn=sKyqyB<_SXzfQr zj}^Wwfbl1}NVM;>5-`7oth<+m=GRw3`M&w#Zd9b#ZuePqJ=q5plBwA=TWH7a`SC+H z`__X1R3mbZ*=&s&AGzjFcWB0a@1EXlSqS3y%UP`RM~9Vn?#oy_>#R zgT3mds1lqDyR$I+e0HNMh*;H*g_4|PXL|Tlpw}+fH$@H+FY_>Cfjhf9|J<2HG-K-Cj*-8+Iz-*~fbo5TUvKW>rJ@dL z>i45a(-todX!1MJZeinnbJ;WoniJkBM)6KXUkdBwDWH+g#I^ejw9UvXuh%zVgg&EL zDJm_bt$>c-|5ILF#9I5eP!!He`JYReD}gJlte%h;4Nv7Ay#xqiy3T%U+eJMxq9=cf zW^Fu1Or8X7ymPEV-6K?8f0Oa3dxu4ur=dVai6OUOqXswDi_E3KQA)1Wvu_2V3ma^S9E?(SQ9VL+MJm6bKLw155H{w>El@?}p-UJ%^x z1sS_YXn zPJ#(eL4EfoV-p;?&letlZoI@3WG5c;>NF_D#0(eNx+%b=V_DIcsLs2AyLfd=eNVcA zxd@W4&C+!=0Y2yxB#yLy(o%c}BLB7BOy(UJ9-2OoSeuVQ*E`#~DKPaZ7HDX3ja^3} z6M^eK$t;)-?A%)7V-A0?B>o+c2-{{aXOBBzkY-sd-tRLHE?n!BWjO;&ZAfgoPQAzx zn+rT>p$R$pJ>-O#N)BJw1@fGK%IQ_izK{7q8)lSSwdeNR$Xyj#_D8_I4H^<79R^v; zH%2by5W;-Yl2*m!)P3$;B=0~=Bh<}S1~%upjBm`;(f*E_Q|||*2Hg*@8#Z=eP7yS| zqxNw&jOzvUJ||$rY>}d>T{HrjI7;PW4tYLs(|ofelJt9^kM+rANo$!>Pk~ps25+Oi zCc&((w5PUdbSn%PtZmmh%O#=SMsuu^at2tKu>DgloRu$$fIvroqsW{m9Mzk1Dk#$|38CtK z6Ip86I}CI6e$Y{e{hO;73xUh^rJ#$PFCKab_zXxog9M=~szOiMUf+nA{fVN~N z44rMvf}yJ*via_G{ZZnuQy~Yiayf<)E(-W996x&Dv$o?iz|=51`rd2eVWg*TcH!}y<;G&Q|!CSbvO z*2@^bGcf)yb2TlsjeF8MaB|}eu2t7;A6oBZD32Pyr$hH(qSK-e4#ibw11vT)8Y;|~ zG>@0cx29t2=J(EU{Z#5uv#@9QGLq{`iS>pXgjrqurByYICNiugac^MC9BMkKCM^%c zlI88Kj4cA7W}g9rczSasC&5wQ?-zqzIM`To|**cQDXh$*J)FH+Y206E*^y;ZL`keck! zn0iHbC^QjNZqi>M8~l%KEiqZJVMBNDJi*&Pv8?tst=*Yo8+|>e0V~En3Z$i&a>YP) zIb5xhtd-cN2;i{WxrH;l1O(y0k^F+CZCK#_+VD2F=R-4uEBwcI^ItKmG$09)|0FqK^!dk!gI4tB!`W1xC-{I?RNLeYLiQ z_MPYf!fjwx-1e|m0bni3IM6{7a_VF>v6a12W9>QsORXvjrjAgBbqQnqbkkP|)>w(& z%`wtpz!$n&CWy{q_Hw4SVEKCJ!`c+XADd`tZ`z#@@JeCp22aEWsl1I-0SfTXJm@~4 z50YMltDuy61QaNmeKFEkK#AHX-X~oD8O`GH(L(>1N3od1@=2sV7h=ic+}(Y%VUDBN zJZ0BEody9X5t%Ru!+AN=d=W_2wEZ9bqr+W5-16b&HmwI#Xz&9(iq(GB5tOpK9_c+G zDz!94ESvCp3BGT~bD{4I#s($usNrWmx}UcA7%zUAdEynkWv-_YyZR@%e64)ez!<^d&w9h#ecdHw8$A?^8@4 zE1xV>f~j%(j935>XZp_5z%t}%T4ZBN<7q%uY)xAn2kD)Hdh^VEx+|nAtA>|rgu~L8 z=WPYHZsv0qn${e+K}i&5GzCmh%Dh+RlL%qhPR30Q5;`?yRd9|3RBm1k>vUm5F~EJ#=a(phg6dUHx^^LLMn6Ul# z+-#H-dcIq6)jK~*=G^;~Z__k4_HVHDjC&g6C2~GkufW7 zWxhOY5k}E{beJ}YSd2wxR2IVCVJu5CejxlS7G!I4Lelyk#`kw(4T=1kq2~&0^G)B6 zutg&ZuG^NfPe#nu-nD2w{p=4!a9IG#aWhsW`b!T(-`{saU^f7=Lw;Pc<_Gb~Hsi)YVtMOGu zdsT1Kdd7BVo;?L~aDnl`h+rYS@)$TF^atR5pL8 zNWcFmiVOp3gzK9!=PoipP-%%&TIwHAb!R>^=S>wxDYMb-oNp&V*~?5yQWs`!!*Gs5 zO&Qi~&EsU$CD#u0s;bR+XZ0~AunBE&(LXQ!+!kNmPJvtv z7^b53clg~BV%Qr)GMr(kU#%S0A0NmbP0{} zbPGFoVL(odJ95Cf)8HH=aVV!Wner4Wu4afN_rv|nxwyf`FPb`xFr`i(v>)T&x=<%- zki>Tmz}g<6X@5Rsk3%cSC`!%=1zoRNN{DjLV%`WF6uL@1&Jl}YQ88k1MxQYbo2-=< z&BU1WA3${N{@NUmPfXC~w!HnR!Dku<7Chrzd)5h-fuPipA9q_aImfsXtX$Ai5}^gv zd*7~10#wuM=}z2DeO2Ok43Jyo3EYnmRr~Y1MOmNHb0R9r-j(+iO6H{{x1KuO_1qKd zYo)zZ76CBFQ+6$ToDHBcT4sN))LGex?UqwTm6M+g9K*W(Sj@%Ekc|H~k zHWv5=bqFOK*v?^2kAM<>YQ_)a9E$-)mzETLF&ElzYVko|b@-arZx`nbOEWE2Tik1{ z^$lSAq=Ry1Fjy6;m&W9WEsP>_lHx3p}F{55p~WQ*f3B#L3un2@Qa}8&BEs_Lo{1s zn#paz#`(q+zc4t4Qg3Jl^D>?Lt$}?Og5E;iCy#@#!|;@Kxhd#@FjP^}{k7&{`a|1+ zfxdmXRlt~Un2@-ZP$KE#fz<>!D6i|lpmRhp$Q`VC>6BH%teYNFuPm%9Z7v2FI21k-#XDR2!aGiv=)$l9r$-_Wjy#c&5l#H$>1J>r$3UBjVfxfZ3B);r-N zmWrFcy6<6;6%|-qJX#5Zlz$5MTakOjX4nhV>0%Jp3mXs2JexsKG5B>I3+F-|SYA9zP2b&)S$k}^HjefR7~92d~RuK&0*!&Fb9^&=24Po3j@{ixFa|D3{c0-N{V)xBn)R_13kk~ zB7L-Z#(7em;7P^8p67uE5Ei)3D^t(BiuIYTea@7v)M8#|SnIAmD=kiFkR;v_Zf4k z;PGf5S0s+=*9015?9kmDLNe6C$W&YU0wKRXbqy0xBr4-vvi7+zm>?UP1E_bG!Rj2@ zCFrd1;gQY7qb~LDQLpt;`Z7elbMHf$gY ztG0Zzt}xhNE6mbqn|K}*+<1CO*qE?FS~~k}!Z{!vRunAz*;Bw1+MK30;$0^mkW!xhFnkZIt;10!1^^;QT9hQ#LFCRN z(q5HI6o4k1vY(8w>U-sXDkVNp0-)5#Z+Y)xM}pIw>G9~3nJbpFhxK6(tHCvTSlJ%R zF1x0iRF(k%nRON~S{p>I(=>^-ZL~sIw>hV>_wyuWM*+LaCiH*^5c}P$yP}4K2&GZ0 zW-bO7YAJNY4Ye5nSn_>$R-4z}0mU{~;Fy4qg=MWW;=A*iXCr{;E787Be+Er}^+w6# zFf7X~SR!%E4*y)iow=_lQ55D?Dy;7mYVP7A!5=>$kK{|A8ts8)wCc0M4dMW3<=4DZ zEp~x@aaKCbt}5ys5H7dYRh@l9SZs5g8Czh<6Ipg$izjs*5bwIuxNo@+e5RBUk=(eT z2YaOCX+6uotz8vrgv;F)$0=*UlFD$-h2)`YeQ*?i!w>Euz!Xw%TNDx7WALE+;d*f( zNcdL+{UeIo#>o)H6eGd7+ITwrs|>>Sg5J5%bsBWZXFY_`Ns!13BZUKqAGPpGZ4!8D zqrq<~nTh;O7WQy1ny!+*KZuDvlFd2g>~0IdGE#ytqkExl9hF*cF(<14$F@3~<2egL z)PV3eqhw*m_V>t&jx>ix>XZ77!c!7~>Q#2D`8XTu&1vQVHXGmqq!s9mJfq6ku<}~? ztU@mFbE*X-i>A~}=}#Ac{fsVb#Y>)n2!((4LCCflm=v+c*;)p_IEs9JSL?Qkdwt7)%MF#zYe8jJk zg&8Bh-LI`o_%s0dCX6$B2g6Z)7B4GfdxY7?REs&J2aAHl~}4n+-j!N#8E_G}*P_ ziH)wMM5qm8Oj@_Om?0SK6EI#Em%SD|He&GoEB6`8hPf`wF7J{P+z1(MR@V&~jv1Wy zy4WLR+&;zW1G8+rQqVU(*1`xHO&P5&4jma}vd0D^8ACnX5%swX7Y$BlBt?!yjgLk# zMp|@7lS79_LI*2tLUxW1BCkIdhd6`HlALfI+l8d>$hmoFME0#ZRYvaUGcdJEa&p_F@eI>W&3MP zGg}ttgtjq`z8bzX!jD|XHhjcL9f>q+vnc#FuZFQp@VwhbP|3b0%}*canaeSTTKMb% zmaajL?nn)zq`*&u5z;##w<_i8#(0z7g79Hp;P`ldKxo0CLgj-aqi%1@J~F>__cr-5 zDi|YKL*rkrkMWiYMr-TYZJH*QI-!#7r{_0~n|)OjxE}lv?R7&^9;=l-z0BCfVjFg8WRE(VINtL*v=|+q*juyXa^2v@8DTyZGJkq3w8b``NP4!DP9SJl9Ys z!Qg0FTx2Y-eZZCZAb$Kulw*U<_#iuVkiG{!-35;(!E;{NIVSXM69G9Dr6xT6g`I#x zKefainD`7m^7Z#qP$YHa=+nO(fzpo5oA+8pTt9H<@p&Z-lCf9Lg3>X!gPV6M6e?^I z=_koNc)2>@PWua!*0+(HrdAiNEp590ZnOIZJ65EDX|ufA>^I?R4?dsr!EyIwuTG>a zbBPJs8Ex(GFor~5lUzkV)VPs*hA@ylP_V~2N-=t;;neW!^PCUwKJ?aM(j4{BylPG6 zP~W4-@u$i8t-Ptvzmc~5gA{%}?j}6pMI!uHcq7ayQkfwdX#G@fgUI2-qj9l!6@$h- zB#O6+6&=#c`|=uh@bUhNPxoH978|~IIdmd*75%jivb!#> zh&tk0rr#%Us)#DpT{KyF$3Jj|9>No944nGIj`HC*+R_}sD?@$reVfb_H#xf4n)#U6 zy3>@5?G8I1@j*`388~~(fjXwAGUQu4jrli z_Wq*;aCkkMJ$k~CqDsNx(VfsYN~%OP^a!Wt7Ds2NL*A%{_6c7i=O>YqozC`p?oNjt z5mDhyydB-l&=)&wk7Ar5jFDA-JzR$U#k<22lg2 zMpP4{AjGO`sNhu9$v7fK1-r-yo#^-Ic%m8s+==Sw`2Tc?3BM;IW6=v;LwJ#ii0!GM z0?;5K7qSpV1E;QzyeF#S$jIjE=tWk=sZz*d$c0lQtKrCGWDzwYPMw5|)j$YPL0+SG z^m`(5AtzVWk@@JF6b%Y;2cMyLj2WW37HN^1HxnzWKum&;~*%y0FBq4&( zz%H^n1-nz!5qgo&)d;ExgJ540vM(92X(9!kN5YYjy9OdG^p0Js=r}b@2q2u2l2oq$XLdPMEuFQlS8Va9|Q6gq2S6_h9y6*25P zxBx|sf;c3&P(uJVfZD-dFHF{mU7$Ac%Z1qkY7@c>vlVC)s6G68p>$#Iku^};5MC(f zYAPCt4iQ>W8~BHdg6x6W1p$@R&r4_%!aHIM2z?|m?2f+v<-&9gzDLJQT&P{3T1D?a z(>@wfg)t9_lkniTKMoP%Ur$M^3d0B*bYT*ukp4Y~ZVrDr?*(p#==ff}nPOsf#;dNL z9T*Rvs~U8WJE!Z^)LEJS269ucud-5;1z)|C-ZxB@@LU~QSH3s)Mx~$g z<*lY`8}7~bAD`p2>e2)MPxiO@v+PF{w0=*Ds%Wwj@&l5h@Ju^?B7qrrc)8*5KLayj zr%EKm%L(cTLj+YK5j{N)StL@BF#azPs6~~eVxpo(HhtHss;(xI?)74w0!;xoYsJNb zdJe?wib+y^VnP2v>#qr12uqNl@UQ!68&l>WkgHxG7J@tGvoEvh>hkZG#zIrS-&rO) z@6OS8&l2sY&LJG%S}b!u>bcw~DSX4alhFzR8{ep`^Hke<{H&hYR&yQ8*zNKeQ?0iQ z)-2Fky2If_T=BVO*;n6xpVGa@@~O}F$(?geR~$$ew||#1!kN`4a{#o?*gpTA-l zZ)(&&d8*`K#ZYLMd$(`!r7&Dht$qtJnia(>x&)dyh|}@-1+Xq38|aX zRbK3}>{PD=N!d)r*LT;yIp-C#*m+RUeNX*>O~X-@>VHt*KOkmR1mOIu`jmEW^_rqL zBd<)c{}eTuZ6Bq0_S-mX#)s+CW?$UkZP9!uEFQPcJiqnw<3q36M8XO7)UzRqEVq5% zHtfZ1wckZf@a+lcm;HR?=FF0-HBZE;DH5Y$Ya715`AS&ql*Mwan%i-Ju6;}IeTr4l zN=fPM)wT*wb98U1DnF-btK+x^`=V?wxtlE^&W|9S-XeecQOvzkQN8(LX$IkHUJFK& z@R8nUOv4`#I%rC6Hf1|BT+2K5rSyKgCVSwB@@i>(icCLGZHn}6=ak+JTV4p=vfYAIp*p|n?YtD1Df#OKDmy1ll05QJ#36p$we)XA z9#8wzrTNpn> zBZlp95ZnK@^xqNfKL$>e!2gWt#eTu`s@N}W{6|bL_BTvVLPDe``okcH9jVCgi(oIk zFrbWNWPE_5mj{ynad>Y(B+=HU3rv{et{|lL{hm4Dl0H z|4Z`u--7r_s=p$B;V+t4P9QcRa{F)I{~zN2zZ~%+_VYiB_z`@I)&l=M#E%p+2#Egw zf%sJ?&_0U#|IZ?R@_$DB8b}p}R)W8vee|^u=?m}wV~8IMxWZV6#YPO-@A);RB3eVi z|F5AHLvzSSXjE0jssu3*YLVLRuZ6;|b%KE^4&en`%YcAG(#2ng{tDLh2*0*-CVqGd zudjzp!rR;82xx@E>#6>K4nv?99QI2r`~_qGjQ77F)1M#y3g-+6O20JC+??Hgkl)Y( zeXySs(99(iBq%k&k8R3R1gh5RfXLOePR5*8U>7qh5|wF{IX45ksna z_z!7{kdYFSiktWh?a874aPIIk0)>baoqzuf>Hq!y8R_?NswBjG{E>H>ijki>4E%4 zvl^L%81G-{Q&U&}O)lyxl;8NE5RnRdVy?HBt@B|=FYIUQOq>H85nIFI_jq`qu7bsk gt?pDL+DxD|nzyZ&H)fUu3euSqTe)(xv4PnC0;F24q5uE@ diff --git a/dev/_images/beam-1.png b/dev/_images/beam-1.png index 0760d06a3f5d92809d48433e70a46d455a42c17c..fee8a6b940c92cf1e9e7a13fff31ee5700d576d3 100644 GIT binary patch literal 10081 zcmeHtc|4SD+y7 zk(;ZOgq*}>33oS7ugl{6j$U5wp7N5C@V_3DaPx4G6pTEs47y@;zhmwRLC16`|5Qky zm**hpe6xny4I|&=l@Vum<2l6I#@L{b)vNNSD#tA@^B3`4XOYb@Vf_-_^y$KeT=!Hv z_eA)TYloochew0uZaVTU(sC&q<>)$iUb{4BNAg0ChX&T==0&-hW9M&t;!b3{uIExD zloIe5 zm~3$j_y`VR0H43T`1j?%{qVmF0%}*8TIo3!-kzkf{Xzq_$7M;O+?*H0^?Jw1)tbuQ zu|wKaubwhM=D&Wp1!aWz#5ChC35YdA$Lxg_Qw=H|RPl&avf~o$@cYUv)O>>$N@ypy z!kG%+%{`HNmC?wW(i=wJPt!c#G~&t>%-wL&5j*f}ntX5d8Vxa|o1xa_1XSF99;#*R z%VKMOQg#~h;H2VjTlVrND2tzjX7A@64hcd~$xW#Fn#51{FGfMrUeuSgXrZ!8P_SIl zZ#SqfsnZ6FPo03c8(y3YHWz>%4rLv^HpA!n1%$Y#8q|DclsY)$H!27;3U*0ifdrxU zx~$FTd#v}dz^FzBi2E|)@D&8LvrzF5mD@dyl}&-#Pl9V-T1a@;jPZEw@NuYkncy6} zily-jJs|{@s6mj&ahf|SPmXab=9Sfu5r}fPv?1-s+(T3j13iK&CLZ<4cky(!4AA)J zugx!_%Sv-`S+_{fSu{|Uze;oLNqEPW;?DA6`8m+@OLfSdoeFY)1|M2f_PR6j=`DC( zMDE&ov1!w~5xXhNNx%Zpy z4c(Qu%`{eFR&z&%O?@ve#s>~ew&j6jL)jSKUL3-D&(>0TH`&N<5ZW}GrU)Fg#=g20 zOiFmwy0}|>%C*G=!fX`u%I+G5>IMN z-V1YsT@ahb6GGw%9-l!g_)DnvhM%uCHFum&mRDuQO<;&pARM#&P_yR4s|f5zle)P! zb~6*-6*rq12Wo!k;pr0W#EaY$g5QM4BW~-ane3Ew=FL^iNp}s2X)qO7<$UOvVH&Aa zF&W<*3+?RQ(}kMld8ultl9g(Ov)C9@_IfcrJdwF&)mED58Of-e-NPh~fzNkCZqb$O zH^vjLxUf-HO&*evp_Pk10o`wHU=z+>`_j7`?A*9^o-6I0zh`^@o1r<1OwNepT~{RWd)jazhh3IL8H4E+#NNaC4?SaJ7~!-)gO-N|-rnAW<&SM|2eDkq zN2Ar14<=ZJG+^Yteq(+836Dr6*TDNKO~01)!Q6kZ#0hEC>Bi;xdWL=R5l2Zb`-i{# zY7Kqk0u%7_tJvG$=ONWZa!U5K#0poRrdBv)7%v!0>GH%0)6^~+A7zBB<0iW2#_OK? zFXp1(XlAj8t1&=wPHUspdvnM`2aT@1?Ipz%(6ZM(KJO=aVyC*FV`}oe1kS=9=!GGx zoIK8@7B88-lNmZMOjSO@)YS3V`&mVJ)70YHTK~pW(^Xm7oRAQzm7kw(a&U0SdrZGL zLQhY*IXi35!OosjQQ^1O8O<&CAtHi_@(>LTO?MNL*aqvX@SNl3Gj?zFBKmBTiHUSi zmFS-Gy7C9DT?}p~z0kWLm=?3i-yf!WHca(&st}T=@mp%|1RvRqyfOZCkSl8OYow%T zQRSUYz6vX?8pA9U**{Vy693g+B~coA7|6lNnO{?5osyC=h)3d0KAN4?7_1H`TU=V& zZkOtuPk+vf65Rgv%W41D%3!fwWYAuBTI<}VNQw@n6+H{Ldx=+fHWT6>p$&e>rJCv6EaDwWc7ByCuVkoIZr*$h^Vx^oKhjZ)`~CJ+r$>=Kb$&A z)Z!j}(FFI~J66j^_5S0>yIsSPGyaGvQ3~X0{coZ4bYlk>=Zpyw*Sl zP$C=(s)XZ^?ISa#!6Pnogu8+6dVE#up_M_0p3F7m8bJ{=CEcu{KC!?#8=^q!h12E< z=0UEDy*=>aUfZ~FAZBXh@HpTU>v5&NGV`X!>aercjqojLOyJu6hp zBwlee7i9UBNa(`cw$z}Uf`aPFMx~MguKT{eKRXI7li*T-<=_rZ-9H?Ot3AD-rb@F` zli&08*|L!)`q!%Q3_3pluev8!d?LnldP2Pepe!%1_4TB(cU8gwEhH-f!0|RIQdox) zV!fNgp8jj39XqrEs?$J!TlAvemZx0Vi5O0^__%}zL!j}ePd`3Qj(z_=4&oz94s!pp zbuRb-cVVJ23xrwVwlN5^`3#xSSAs;&Qx`mj49w>`HRGpY`f3|#pgJ(ta#7XhPQqX? zOms902vhAUI!OJl+mUG}vGL-%LJ9BE&+|_e1K9EIHwgRe6}Ai0T~%doE^HBST|s3Q ziSz`ovtV%{bObUW05>=|Xk>1_VDD2Ht`YoJ>J;@AlmDS?u3KqMr*V3eg%Dqy2yTDm z=&0x5Fqa%ju0iY@Sz0dt!xq}3REe_(*Vl4Drr+o@5&HeP9UUpc#j@~2hZslsBVL(P ziC>+A6T5%>NGI*@TrU5di82NS z@0rNHz0o201!8d1UTt#d00> zJL3tBzdxwto56!LNUEZicaxlxFa@XX5f?CeW9DACZuBLAWVR<>AZeSN(s$*SVoZD^cU z=WIVS*m10Cacu}nSij*|7aYjf1I~lR#ui@P@o+b z7f10H*x(4y4A8Z}vGAq#5Sm5TM?WZ)z~4sIMDYFJD!~MGWIrT@PEWr9n2x8!As`-x zj~{;mQ^*d~dgXpXuIuvus|;Kl`>^hCs)gy3H0B4vYlIoV6{M<_G5i>StEY{~eTiW( zeXCc+EjsAloxLT>E?~krz)skZz!7Hj*{+mH36@=Z<=SMOkRc6pm)gtvPg3x1*sQtD zjDaEgllUT8{AH?A!RlP9VP{FFQ)Zbdiv1o=?^aS9N2PbjM@VaPl9hti*49=*xe_6F z=`-F1eEne%gf?r%9W}_#jMdmaTr>q6iXI#i|3;_H^rXoKNk**rQ6hEZ&lmJk_fOup zm(xF3T3qbu>B$5kFN3=xH8jfzao>op!v2-)4>r#z2bdI#hxJPu==W;U^?y3STF7<| zO6(pS%-h@Blj9@;+363m-Zu_NkshK8|#Mg8Hhsw$p!a?qsE%D!oUO zXx3NUkQT@tA0*mc_M?}4fpDs?DyE7MF&en3-GuD36jE3Bp3F+<;fP!q9&*z{QENpS z5wc2|#!A%={m%Mu%?l`Xve-zyZwFO5NzegHTUby)@pwahEVMSdD^iLd%}}%Pz=x{T zqH!`oturPQc~`u65fevY-`R8((!;|UH4HAWchRu=<~t@M=XksuY~)7=^S-VZeS8ml z9o1(1*)NM)ro;A;wMNpl!r9H`Hwr1V^NFV~frR|--5FzJFFB0sYdAG=@5laskP@V@$MYlB&wd_iV- z-`xk^D}zEfHBnNx=0&1T+$=d}n`zW?a-h=`JAz!3SL)Ph>DCAaWdyLQXm;}AqSMuD z*D43%l4p1J*%4kPs%P=w??a4he42UJXk1-KaB3hygN~Xito{M17eqc$fam%m?4ATQM8&5(hW;8b^HNy?fT&6YE;J;*J9c%5r}MF+ga%3BOPqb z5y6*2+T1{EcUZ9aP{ZY@^z^fF@$q>dKB!t?T@pPvkc-#Hen|2LnN8K#GlkWs2KJ=t z2tK3>BuGY-kGv7n%z`7Tr``)LJU32zofdAG8mAy7I)IYgecrGZ%eOEP*oyD&&0@2) zb+W`;Hyl<-ggL`Dlrh9!ETUrLMp_`<4f7Lt)3gtMENKo7nZL6YtDhX)np%6*p@>|3 z;>kS~E(d|70I5Qmw4i&{gOIuGWq^7U-K2P(-BGw(Ge~;ziB#btmzaqrYPrN#vvN2- zG1Kl*=L%VSO?=F~0bk}~0Sj6h+g>dy zUbz(7YWmV@#x1KKS)%9g&0oq0chOX-)7l~Ifax~DS?U7FIgO3C)v>e^_ewP-KjMvb zl}Vq2id|Ef<^ua|vag0!d^)ms-L7o0EMEzoNp7vjhZw2OMV^{LK+SK8-OcPC?2IMC zNn!P4Jg`Soha4~^ruy1)ri@)s)YODad&7qRg2-dYhH&| z$suAkv%wkWvR0_#En0ax5_)_zYgx$6rZBT-x=4mEnP5*Vdxi6E>tzkoS(YP0OqQwsn^ zb37cCaV7WZ_bWmZ zHsN>JoCC{!!yaRC=C@-`zJiw!uC!0F1o-o7{1ytA8H-9wjkmYALHu=ebPQH{=Ob*--qwzs;q79(yYxnyvaG4o`qCF4oHggcfs^o&QcBZy7p znQzHaId+|`3uBlITuBnd*bMpuEt-;v@DqS{E>ai}Z-v{&y15V{mMA^JnpfsEb2a)^ zw0OSJV%O!P>hxCzm1J$_ZB&BD59N0D;TPW`SB#lW#rYD(Wc=FK86pu>B{SjB_nw|< zvyHW-CC>sr_itSjQlb$tcgcrg7WmAqV?O>45ebX6i@3O7M2@4l!kkNJ2Bty2LrFE@v$Jo5w70mh@VG?G zy}2>gZIN6snpxAup}F@|zSyNY_25g{=M6PZqu?ejW8SnpU=R>8hmpRB~=eD4nL&;8s(Dj_50$miVk^ z%Ce;Bx5_C--u;r>wLcPuU9Q-l<7(I{%z`I9F5Aw%3@?XC)>Ilb z>9UKaq>2-Q#-@{~LTVpw=$_9CFVB)0wN%-l=N<!(IXCxv;;s^Kse z%R;hT^fx{ucaBb=D>Nx{8-{Y-Hxy|P;%hE^O3$j(pVk>TE9ENFB!`Uzf+bwzS8Xjt zO-a$rT5jSEXtyr0k3uZ=4oeKtIs?vqA3yO0EMLAJr>V_{ zw{2pvKq<<~`qr-uRCuC!!qt}DWnI<=N*r8Mp6ctQDZ$--7S%~yxbW6Lkz|W!VqyZU zqPkZJvG;jMo6emE)sl%Af|m`%+YOYB1>sWeo*!{V*@AQg<^`M=qxkEsmA?MveCU$A zyi;eIGIB4pI*8#eb?s+HMuw}*=~{1! z=DU1H&_=8H-0K&l81in6t4zyf5Pv|21?1?ebKg((XzoN~=qHe4n^s4EqpRKC+lWC1 z_FgB8MbREi3oAdywLpdSpKP0eSqGmw-DSD4F?`CaPrAW*FjNGrSC1g)8lsi1<+)cM zuCJ!)LzWmXc{s)j_p363+=KC6>U(TW#hajmUI|#M-eEfzPNbr}5BEf|bpRwK_8R~PRH>L}^(Yj03JEORC+h|_J zJn+jQ=N6P)|4(BAse1QfBrMDzxvmpv$<2^CIAgk zWdUeFZRzGZN;PobJf0VMu(4!4j(-1MB}VyBHu5eNuQUiGbw0!vTPF!~{`H-CF&HtT zv9a;Wa4}{47q>G2GIFOvT>PhBt9xyB$cX)R?Axw4@D@<`2S3@W$KN|Le*0i$?63fc zeLgpvlCS&djFDD-q<{g0udcyBosH%o*VHKW?@>vCLjXr`)=;@K8n6xgZ@J<69!!PO z6V6Anjf#es64uK5CCc5!c5Q|GZ)249?qp5jT!np?IqAvtpk^;;bGy%s7K&f&jK@h*G@83}fI2QypbATYH6uv*za@Qv` z|CkrxWOpdacj~Aac(1@R1#CsZ)|*ly{koiL+A_DfkTiC1Uh60gM2OF)Qh9fbYQuN<$J%M8FxT>38tDGX zej4xsPP3BkU20kg8n^|1)T)3h=ookh;NO@3_QU@@2)4*nWiLe&ZY+hj0Z2j`w{+AB IRqu!X2PgC~v;Y7A delta 8420 zcmZvC2{@E}`}S=j;VDs45kilBDM{H|Buf;=F3Ogeq3l_1D)k^s_9Z5}u}!u?mLY`f zTlVZbY3$1^-_P?t|Mz>}@B1Hz<8Zjmec#u1Ue|e@znRn;)e3(@Q~x1=hjqnR;g}p( zQ)h&Qw(s>iRph488IRUZ~uPVu03l>X$D|^yifJUC0wBjZ^im z-1z0D3(W{BzOqR~X;W~sXsK}S>mg7Ze1?Xn)d2y0v@nzPcW_Un;c;hyirTcY1gQ1A zG!`c^mk9R}kfa=~pTqR4;{uwqs#*e2@g2yC=?D~eB$$OCat6j-LDSSed@o27cL|}4 zH~V6tOSvpC3T{)S^%I>Ig02U#K!-Oq;};=iL@lSOESyb+Y=WV1Yxq4>%hEf~%mCG{ zoP>%(!W^7fvrhRL@j_M{WzYmIw+Ia)jsu|_W9Iuu*O(iRwqz=;Ma(fs`NR{5p*hq) zO?B(X4gtr!v+7(a6ly6qA)1&#+pLa`i(Jft&eA|1W6qxICgQKTmX%~vyDqBf4Ah)K z;;8ImM%(9NP3Ada@aX4EP$(}1g?>hvkl&ra%AM&2H(YA^W)(mZF0a&_rtiFGC-mX$ z^U8SeF)I#shwJ{)5RGaBJ^fZ4lSKCNywbqL!J0}oA2#n zL!fX}-VsRE2|-hAJ%aDxy#DEzp{BqiU!z42)0$VGV8%5egSvSG!SbSoX?jEbN4_3> zkX3xUrJvK+zRfWgidmGO=DD>sgU(-LOK7|9M$0CCwYo$NB&%8O?^P!20Fr@Xm(HV5 zJjhxI3v^wO8K>r#)`N}Ga(BrFp1i}YMki^u7@XGWj_DWP^^QlhGUCX$^GKQy$c^O> z_!{SB=~oSVw5Ht)i@i&}+eTaRJ0I`9^tz;$Qp$uZsW443VQ*$MrRx6nG^R2@MonVS zb-!Nv-EWqifZyJd*69bbq|2;g5WH`poGd zZ*-t{V@lh#S^)&a*#JRM+d`zziSzKIAKQ9`{Ae1BU*hl+zC%Db(#(vjFxUi}S7lG< z=Py08>#mhsyBC2F2}15GXMDw&iJIS(JP0Wg6=J4$WPpag*(f`G-IRrXT|46R3N<3T z^TXsYkwkOSEiCc5(WD=v4DLbQTr^`8dqw5zoM=qhh$%BPJv|-NG#v_4+8zj|-{YTJ z=yVBMB}PMD2S-Z}0$Nrjxc4JRN>lUtX3tEjXKG{qFpJthIM|wr)E17{%)#UJIb_gn z&C5K+FJHdgtmmdYh}hi1!Dei1Y~p1L)8FWix;S)lxt5kZ&8{?wI8D;S2FVx*dN=Xz zeJzO1R$HN)s3H=dN5{gkxdg&^H>T2q_#{c*vnTOl?Q|LRbAL=oq0H+Fl=rAK9GXC$ zQ}j8(C7+#@{8AmOr~cvI8z?+&``1`5Oqqvc`18#PKTpxrYGrLbw9WeRpI&}T2@`zMSmr!w+4Rl$7)##S%!?NpkKT#D{cQ znz66}6@xL7T+o$Vm^?bQlZ&Wj6$cs{}$a_mUP?BJ3-xT+7F}W z?)&*gHpzpi0@LZU+fn$+>|5MZh4*k}9>u#F4o9QZHs(7GoKT3+rS8p4tfcI+F2 z*do%$D&2EyY94jUZ@lMvxd6J2qazOQI9?!Tf?vo|B4fQ3F+GbV;4asRS{j+k7by9o z#{?u9PTt^2Qpe(|%|NAVk=J93bcOcj0+23i_hI33uL^{QO~qA5ypjH+Usa2NkR-Bd zWMrh&al9ssjXFGREG;7g=j|F8806;UES+j3R9Bm!P^g@|JeOiQsV8z4*MlI4`TXK4 z(p@9?3&uy^(zfGX%xUAY2P)l2#(Z}RyPu-1y{>*$EYSJ$=lh0+Zp=>+9LE*e*x4(G z;As1eU4G@6V+elvKiR^T`|NSp$_y1B96@{tPh#Q~_Wg8=E-|KsQ2W}ssDQ(Z#!6FF zwMpPD*;bcikY|{Zl5!Ead4F$Lkik?EN!@TVWUa7X7`*J-^kiv>T=i!M^F3dU$&oX; zlEwvH2|aD1?TM(Bqj5KY1EHs3wP!F2<(khu5MTm1J)oFHgfm4)ft{r*B zbTpI;=`NbdOqo`SD))G(Uz^oz8+#w!pnF+DNpaPjfe(tGy+g$1=OcA>BjIQE_G2sG z-#h3d-W$jV zy?ri7^t>r4F)^{!by@!~-Lc|>1>*LBRX541e-7gFDYxJCT?k&>4VDnTAuB90V^B9{ zEj(JK&a-TK4GeHRQIjoE?ZSs*-We2jEjQr|U9X*-b=_8^H?qUbhx z#ovegBG-SXzNr9X?#&_66gm~Mc7DR+pdY7y{bf8H{&Xje*}l^TUj z<3QiX7HU`W79L_0-Idi;fBa~n0bE;tmvz{<%sBxX`>}QrR_Rklb z=1NLSZ|IORT0#Qk+o!dKcvL0nc^rrE`Oc06g$kBV3Ez~y-SRvq<$y$kY>N$by6?fe zB^c|yeRwcm0HJJT6whyqr!C0Mbq0OoHDE-qv!M0%-CDoU)uFV*H@mt6riKwl66Y8L z)(rX02T#S?-=3Y{9!b8D_EC^hT3QNfLkES*Pc*Ceb4h9Ld&0{E5ki6Lx58dKpS~gN zA-$;C&*=$#;~j95jY7<63Gw)Dm@r^@>M%+_e(3iP40KlP%E-vrFaO8~QA+re`v^Zx z?L|+wn^zhKhl-axDW0JJou~Z1t){ckyMa7wmhl?}>J!wI?z+o{80cSLzQ`(Uv`K|J zFsy8;`R%zO>Ml9Ze{_z_W4Hjn$?#OLUn0kJ;AB1mk3pB>Ycx+7HEiw$1w=nPFe|7O zvbmiD+VohbVs4?7Ex!h1zDaiKf^fi(PFvR+(^@gVwjltSzXOHEK0gdpH8k;;{Dp`% zcEGu^wpVpQhpZVek99Di(6O*7JxFLF)p#ns6O{v~I*WjyD9U5-xG8$&(+`zcx-hYjG6RtKGr& zsL zS@$%)ikF>q{>JIohQ(sLW5i52hgdy4JOitHkY#GMf3cv5vPR9>pH+3hd^3zpx&|;%*!`p74MzKXjJ?+2R-bX`|>GG94743Lb(hVo& zF)=Y&;(DvPwq|n>t)7SW-V7L$!J}wiQwtFHxvN*NW)~MbcQnG|H9o@P;)jhd%8`Lp zoL5!Wrix&$0Qd{28}_gZk^FRy;>eaclhc$oUZaaKbJE7i1(lP5P#4_YodO7tT+t;b zEm69*01mB|VkVtyLyIN*kKjWFqv(yotyrnoq=pCK^YrWHTTdH)yDMLA^$hY;^Xss; zw|7q8)rjO^@;t{xQ+GK=g^UU4?#=2ak2)`TZX1EpRgbu3&z|$tx#CutcsQGd-6IkW zn#M}&A87xL?Z{K7q*=hD`uqCQ0R;jDC^a&7BGTv-C+w2(YI*Q4`hh?ezcxD*3hCoR z{um59I~U{8V@oy$1ub|~Alugo+Sc!tOcAGah~-)U&0kE6H@i6;??sT9n69qXnVcRf z(WB_Z%r&ln?sEhT;mtOw&g+LRYa(breqFqZ`kbp_78^4cVqVU(=Mywq=mOGiqHdS~ zvlqL0mWUC4Iwc>2?%%%;XpG$p%Zm~l>u$BwgTUC5H3KuoqXO?#+$p{G`>Q4bTdUM9 zzgDq&HtVM+YRd>@6nSi%ob+|_Ghm9z9#ag}>)%CQZnVo>fb%QVLqnGuG$gPhXL>8j z#$)*DV$NV^H0;@G>;p*~w|-sgQmKM57aDAoHPh)-5p6$t@&S()(i6cU)gIu2_$>mI(6z)L^{|w=(&FDcVDM=$Snmm zx>S`S11BFF-6ZgG#O6K)Ef<~8)Ke944Q1MXFeKzD%g`kyWdT}ee}8|_T{sQxHl48I zGF;4_B{5p5pOF!3dpkDf%mUL+foq{kd5orMINo6>^?u^D`z_(X0iw^Cf7zhN1NZXAHp4SX$z&ZA^)~wUg8*0gShfzq0bAlOeoi z0B6uKow1q=D5wL-@mUtDCd$BR^EtU&b2~LzOk-5GZ znD@wv20IF*q5;M)cYePniGh>vs3q^^0Eo zDfg8q$?%WSjV!cG)8*v2BY>I!t_1J*VxG;+s0}Tq^9x-F^KujH(#nh`J?&eyG3}Sp z&x_(8vTcfTsSuMYE?q2O5;ni=7L8NKQEgH>K5p3zzEGF_(A?ZfHa3b^3~EC1w`gTt zSwBC(C#Kx!Y3UYsEz4M@Xp zlteK}$&||IWX_OdmzvnrLq$+~R^*=p{+i8YQxcw5w6)l&@t;2n@c3&;ef=*(7p^aK zjL?^+yfA!sqO&)}UEP-SXguTkfiLX-;i&i=;`Q#qz`qH14I^(x0rk1f{! zjF&;FWo7i|e%q|1ibkWnoKGB6{Pj9OW^sUxsuBU0IIj8_U+&8_(dJGjo)t;@QOD-K zMB$TY>CA#H^yQy3eM(EK|1hQGD!*QD=58A2OR{vuz>E0UeMLX^zLVR@jUgWRET%hPwCg8%$>`Z6qo)_cF<>_s9vOXQ2yNMD2P^Gq}6{@LXYJDGvOys^^6M>?h{^$c<5Nz9k; zUDP$D#i5OxA0lEyjY=ewySMAk!POfE!r=+t@4NA$$YkH0pz&BrwfW|}Ru$Ib+4_#x zlJF^d8q>so){%d0d5L3ww|OTwH~*jnmTNDHjCOLL+Y*V6n0l^p_~^%-cx?Pt7JKm_hG^o@QZ5yJxlh}nwL%ohUGY9Ycr{Kw${L>kNt^w?Aux^>iLA# z;{RU)5%2g}V~g!1C6R4PT!@a3A=%cQ-xmouL5@W6qmgO!nuyIWPV4J@$OE1kx>&TK)& zE94z^G&!P2$~#j@w@Qy*A0E#y>BND=j(ClC+!FC8%>+W9|7#dc@N3XB#|p+Lc$YYK ze=Vmx-SDI%VZ7(OeCsv+v53>X&O%1dbXU{oZAAuXokxnDjCVBp%Jg>70- zjnHu4cyVW>%n{>!IGK7nlH^J)>VW$2{nX?G^&Llr+|<;W%}gb1NtBjJkyYy&fh1@l ze5u;YCHVwbvS*8hN9Vol2TEV&;b)&L{B>flk%<|RjOn^X)s?*+zuojAYFT%>*55xBCjoeOt0(T*|mBAF4JOI1G>AU9TPB)p(h;~g( zd{S3eM`tToT3Q-cyvT@=FfXWo$J|=vQQNHBQ6q3+zoKs|=jw~QjCa!MWYm@k{A1f$ zI)h_AJm0>3+jOLEJML3}wx6aNCVcXkV7%tDu`jMKNyMhDX1=iOPZo34fAF{_o%@ko zro9-umefBqS^kv<1M5qO_Ps6>8`zf9&lX&Xmy4BbsC!MHwcKf|xN)v5ahh{P1*nI3 zelH7)S|Dp^W$0{MhAG(KjEcW0x-Ru??kG@68*Yyur;te-o!Zn9tZvqdwEd64Foo^7 zB=wBUu<=66cVaDEoSapY+bg3Ly`gt_-L7-ucUFd^$~x*`!7ObIUdCb2g8lSqO)=x& zg-UdEbldr5Kc8U~eTG*v5#=;3Ry{SV_z{QJqLmRx!kE^dk!YEg%YZKe!$MC}o4CB% z3bM1~kkHu+7fRw!d9QI8$WB|rJ)b^8YoRLNwq9-<}7HW{{A$oLDU3k`xT&~wh2SP_zg?U z&$D#3Tl>T?*t=hwVsM^ew?*4`$}N({^qpl>=+LCouI1XK({%@KCEwB2%o|@%(O5Kv zUI13=W@-62=uN&PPiDb)X`HG7U9EOo9fp^MDZ22Fe3K?mIuBFXB>Y(Ra=5u{PBji}Xo|h4&CmMG(Q%;DcUvmfSbmNZ zxC+K}QxI%#zkHlPdCjbt9Vwu_WHP=VgYfrzRrkqvGmRUI!)XJtqr>&Ir|r|H_xx)^ z+SPX=G2Cb2{f34&HT(UzCDPu85jwsY^v3Vszw_THzT{+PHg=p)V{IfXAu#~{n?*$t zry7lGy!S@s-c{-A=%iX*@x0xXu7l<9y~C!wO=>hJ1$@I5a<%R5me&wN9Idb_@nDDI zxuHw?*YYxBBV!Ra+Zt;RN?XQ7)7tvdB+U9dyV`4K$yVuL2&qKYj*pA$I&^o~9%qfU z?%22kJq4m@`k}y}?I=oX_1fC#5EM8sf6S{_2nEXSwCEK&kFLSNI4+;fZtc+>Lc$&1 z6rA_02oRfEom#KdpQ8CxP|)!=1qi<%Ccpj{x@OOY?seTcg2dTBa^Td|TXJqI%{r~n z=wAf#2%*2ic^)*51J z|JD_c%o)RYhxilVnCy@wQhzg3KLPxIU)vFhR<{E|+FvG6>{ka1Ur#Z63^M!vK2nw# zjs(bwkZL4+`C{DtR8K)c0qsWjRv5hB$EO;sZZ7+qc0ggnrl;R&jg^>BR)RW-4V->8 zHHxZ1FcKLJ!ZNnP$kSS+r>~#sx(xro=H}+_KG1k z2zv2Kfa{3E)29z?ZLhHc zNSPo8`ui(>FoUNB{6AC%94{Z5QG&Ktm%Su$r35M(eP2t5D{Dzbv_68!g02yA2f z&%pJyqai5#6mWWfe;?QYl$mEh=J>a#2?^&x_vj-+kcCZhc1-uvzQQStRu%{y1l_0u zh7}fegM#Sln)pw@_xE4Ay1118;~>IM7o1PPe;-hQBtd>3PdZi7MD%raed_4Y0*ayd z-U)Dk~sZeo%PBySmT z)~>7txPNvX*CNe*5<&e%m0} z)wMLWJ3DdgpEz%BZ2`Fw=+S+HgA4z7ZpgSBY)(r3RWZ-CI$EJyUtix_xevmS4Fp!8 zoWkIoMdy$iE-m!|{UYC_>>21lfO+L$u@A4FPg3+1XAOL#gN?eaa0IGN6dl2%${u-p zdz;SA&MvL3xo^&kKdLem&`#FlXRSz?KEbV+2fW?$R`l6O9JjK23@QJ7Ar0M&yvV~9 zCbutjJEiM5I}AaZQ!l}}CNwlpAE@RBtgrl^FCiqHp(vH}3CFHalwYmTR diff --git a/dev/_images/plotting-24.png b/dev/_images/plotting-24.png index 5f69ea2bba06a958bfb5d485672e4c11a633aade..a302fbade3c94740daa55079b29cdb2770093281 100644 GIT binary patch literal 8373 zcmeHsXIPU57D2M4I%7 z6cqv*I-!X#U?_sr(9dw*ea`#m{5j{(_x|{<3o_63%*-=u)>^aHeXohUZK%VH;6XqT z#H^>QWeh=Z@Cd`5pa%_EaI6(H8eZ4$c$uJ4UOx7oj?hheFArC=m#g!AL9C-E#u@D{ zE2ShQBjtg{c*$H8eCXxnfl-#0cKh#PQfN;nY2hd~4e+Ux9=dli5X5A7{0|H9i9QEG zf_!>fS5190mnQ-|OwFEj{kF?EabER_AnlNrffieGDvpcpaSRiUahn)RFIAI`rnEdt znW^E8Y%UF+ZtKFr8v7GvmR!Os&feR?Laz*7U*&%+$a?Azb6sEhbSNQjJMNtH>nu>fZj1Z(a3n#-MNOQ>uNa(>v2Ywm;myh8#L7RiM z=b*Pw;gI4*Bw{ocBCsDTl_eMaObh-yKTgYzj*cQ|;pqzK>}4@XH5v|4KMj>x$$KxD zPWb+aseJ>jDk7li)5*!nJeMCt*amHy4VK>R$MQk^Ixr|uh>K}qE(2}8x3%o117l-g zcVmD&4u{HZN|Z2j4?ib}I0e~U;xfI&rF!TshJ22dgZMd4gnzUr{{dy@M4lF1sGrYP zY1wFX=wcZxv$A-j6F0Q_{bL`srMg;-lvydnaLHUd*xgiFToi+F zjqi`0l%W!+JemU{*p&X;tNP#CAM~rwLWG@@VR>zBr|l|iBo0>p9GtW=KYwtrG9PRc z!$a~O&Y~(y-Ym9h^jCuU8VK^Sgu8`99;l8EiI|)Opz4{5pwG>_+$xuiX@(xfvF9Mrt_MFJdgRU|IQvaT0dp1@8?vC8Ys!duq37Qkm%>7c^gFZxwY zN0R}@p6`@awRUTpbh%WprRuvs&&|%wT~JcmNor-J4@J<2cD1sET^p-I+eM$&?w#q# zk4R3|Ydt7ax_NK$iN4_EZ3u^<9tJoMUBqY{dJpTh9yQmCPDORb2~_w@1z9L5DHU5( zOe)z4#7RH}r&%)2G7p!_@3As*-TQSBI4TmFW-_lx;gphNIPBt=H8`+6T)qsVSC-GD zk)dI%RQXJ^SFkwLWon*oLUXjPk$+<2r~MTp_$mg>6xNAL7n$9jOlep6qGZCAbj3hk{L!^w0vO5>h9>bx6b&n2rhx3{C|G}e25Jy6aMY(O`CWkXoBpV++wE*p4pBCR~OIUnQ zc_<^N?np6UNjSC)n})EONtZcaP1Ehc#33VXSB>2 zX1LUAh``Ojs^6!9-b!m-Q7`(-fgHJnsfYNg9Kx04-v-oe^vJqipanab4w#)KJv}*h z|EyLt~B3XlD;U4}XA|#C?XDsJ_x7~P)A?@LH7;fbs z^9CPY$$940*RVQi!xS5zz@5hxDZjgvylIbs)Cz6(;wt3v$?bU!Oq`F|ZK$`b^oIX0 zB~0V=tE-biEVQ?6_$NpC3LAp<@{V?;#YL|Bf2U(PjL7`Q1KE6I;~uW4AK{|#f_rq( zU+5iA=LJ(r>yeeq*Z?-2+J?~FbR89nIV+*I5kF9rxGYE5c?}7=C#M=Do=*#JiRKd* z5g9c^hKNCfK0o8@rCtRGIgea&KclrjgM?;C_^&b`~1Rh?2{ku({f*<=*c zuQ5lJQ>)!?;kfrzUPW?24R@crk=nt6oe08?_=U>_+4QU_4PKR5^o9K95SztNSt6<@ ze$qEIRAcE8sXe-bTefF}cIG4y+2IS4QdXCDbYPb~Nx!12d&yy~tgeTPZiWtY+PBfJ z$ETdJjdvNU&Z1W|Bc`KVhl(9LFR-x!3pM@zK{PL=p?`alu}OmMl0!AtO%?^Kcmolt zV)njJn@D z?sc3S61wC4kBE(>D$?qA5SfqRon$KS!=^^9C$pcb%Q~mI*a!0j}Ht)J~7Ff zEZXv1i13`!Ph=%LV|EjTEj=9h+Vhyw?fYf91>$9Ych zg7-xvW9KhO=k^n1JqXPu)7Ep+kWO$2bfkIQNmm|pjj^oAUY5ft43s#{wGR}j%AKgZ z4%6(pXmeqC8WqyAD7b@1&bi@#DaT{Vg zy*_VX)1dnpw=9fPpo61gdvefVGgo1nH+s@VnE4*6&`rD1Fr?SR+u?MOkwQ>|+{5@~ zq-G$OTtqXBjTZ@NP2^rT-u_i<0{wm+;3MmVd-w(tELNv#E=*)}?ZeHIgW(91^cE6 z(`+|0eTnbh@FMHss43a*bL?cAb38zi@5imzJrY5x5{1oJm06;sX6JwrG;$%qnU)=G zmv3!Y1VO;E`Vt0l9IAxM^R!&ZL&xvNYUTfa=hA^F!n%pee8aL61lUg#Gc7CIfZ)t@ z&?z%xp&B$AXis{XT!p}W0(;Npluj9|smg+{rec?S#^FMda9jj9D9YY>Nl0Mk5IsE^ zj09h87H#k~AT|hkXKau4e+x8oTx=lXYYoT`j~GJK(-_7V+F;23)RCU|;+P?fYBJG) ziiN#6p0_l5Zo)Ha8Hv*XO`3yd-fe)6kIBs`Bhz-YsAl!@sKXo&+ez@b_Sb(JhqD0F z9S*$?O?#v%{9i-=$%Ar60Jd>&pq!USPgf*kMGyKm&eTPLJqu5H45_bv;gX8*q#g!(E}DP zs6|he6EhTaHZibvX#~V}UDm00z~q)1KKNjlLMg}@dT~xCcTI_0hqg#Oe>3UjOEEpb zRT`GwbyvHQYYPMUanv&>!b`RTi%Ke5EMMOiv-GH~-W$ZBkCJZQTz z)_PTuZ|Lw~&l_N-)wSv+ z%=M(bsjjZB;@^k8m;8o>2z|A#qq)zRc@LNR1pNMS>Sm^*Om2?6-`WGURRRqUz-kLa zWhF~XOA)~#(BaGjnD74YE;k*IY>6ZK0u`!&tk19Uh+y+5PRVN5(RVJ*1pp15BI4{i zlXs>ar4D%&{g@%4iiTl`z-z6#!rcdm+lzL2;E;+D!1;Cc6V}#T3!r^T>57HAG5GvU zAPm4|BNvzA-OWWO6@BYRB&}k*R{xc>OZHF78-FR+xD4u-S=Ffr)2ZaHj9_SW_eQokvch!mHo@XR{ef{TP z!7Tx@Os3az&F})Sj74y8%UoYh#i?`JKQquRm1nz8c4hO%r>B3x&|LiTZ z;cidQ4SZgnZUU*lfAIZZ4sKH|YWfrpratD?XHilOy3GOGK)QJ0W4=8G&KI{`>jS+_ zi%}2vf06FNh?TDt?_N$Ey7j;uoCVTL83(XLOon^H*2)R=;qj? z3h_t@7op-;n#x%1S?eQu3Wbu8x4$3A%p<2;g(4c4S=QX=;8=~Wbm($fpCf)D64ib@ zLLl*VAYxs^Tpu`ifS4pHXyK>fg@zNHs=MEzGLWM|J~IV+6a zr0eb5T1H8U2!lL+oFXqMW0O#QwOQ~8bd^&^J*^fENY>xp;j07cOs!o3M9X;|MdWiC zC4qFv0lNBMhbE;usn8iZeTx6XAJAA4Jz!ds?i9%yFN$$@k;l6xRoQUdL;G`rT7%Oc zNO^k3$9Q1+!S(CcUHbE50ORG6cgah&_1A0N9jtKeYKse|Ugf!RBVB#s7%E6W5ydS* zcqNQ$0pXUsGfC^?GiDP#y-4jie&UBIhq)dZ3`4|ufDnq&c9b7+_~!_+p2s_zMl9tc ztHuD`8Eb+Gq?VuC*24|P0Ob`fPTE*jf5Ia8Oe`&nCz}Hniwd%h_4S`;Pk&&}e)sT2 znyhBE5ya*l%3z@C+RF=q!~lpX!2O&FIGDbn;c>e0L)L~raLQ1k(c(P=6FRTHe|xOa zf=BTymOV4N0OsGFf!04`cX1-Paaq^{26hlhc27)^N-oSGP{KZVPpWg zi%~ZzqfYq9)A)Cn0ipPLK|XwN$Tg1)CY!cT&H;M)lCt z8Uggr&28KoOiH{3d{(O~@m9J_uVlz70s*PM(P1qz5vA3N>qSP+)#Xn#;)m_(0CCG6wo`EM`6?)z0+R+G zu5uYl;t#P__R3}Gze%$+dReV=ztW;s;?6_W=O-u z!9fby59iLfdl$%QrUTQouHUl6xXVizT)6Nqi@sdqLc%kq7yQ12=$nGsv~Bji#X^Tm zVHd0!Oi$okgYAs0H-= zX`YbaD*9XliCa+d(&bSwEVi@bxe`s@XKPiY!@W;_DWok#i*OHhN#>)V_N+ zr|gjbmYhResKyNU$1{Ibn1~i#XQcFnq<|RutEnF=ME#bjM4IU!QGXjZ`-3ga$8kW^ zYt8;7i3(jjehym-oFsDkjH4s!MsiBJOy>uI;Hxkknift1!9#6ZmsR5;2Xe&lsjtQD zd!69L%gT=I!`0JL@TbyY*GNCV8M_qMYcv|2BS$txMnShK^4hIuTd`#usja#-kI06! zTKsfSi@Ej11IjJZO0ej0K>VQw>RjE#WK?ewe?WA=-gh(-qT2e^%h^Bin#O@*qH&3N z?P)&-y6LC;fzH3Iiww_JWl395Kdy*D9-SXTN$Y(E%sjf=6Qc6&t|~8rkdSj13uU>E z_#+_4PrKNx8!IGu1q|)&&6=y$)PCkQY~!9Y*Stu|r3=3NOTr5Z4Dz6?DoG%{YFGrsm@+4T5kW4ij?WeVU$AqNHx zb37Oqf=D?B?zoz?b+9{Z+!cFFfVFUHpwOiQLiy#dWf=qYRrOpwE7oEV1B-4>(D|U< zBBh_(D`=Hd)69R@!$La(R`ezs4eBOc_;+UHA&nAd4d-FZFFfI8UdJ(PM%zx zhre}-OG-Q^X(@cLRhK{TuVR?&on}kR_g}5$s3Q(2+1HG!?|o42?&Zo}KVKy!ApuOX zSsttDUz_dro=vvMUT+STfRd9@r*rOB<++i2&fj($8!@EwO$<#{gPDN@u`{(jWe{@I zC=MUC5j{BEo*ZMpvYvM~_Fu58S)Yy|-DbazuEv(tr-u+AaQ@v2;7u_c(5vScB#0=P zm1ZX?{>AZ8)u68io}Qj^9@Cm`mE7FiW7W?6&PVREUy}82-AWanou4o9S(!{%!sILa{0bZ! zW(d7X7y99cUHG*>mdSO}Gih&}CzLVnt$A7vvz#XFBTWp2>Ildq8>CQJ(JR8Z$z)6O zz&l6R6-j9^vD+24%^RJ(=t7-1ezRaZ)l$gRRCjUMK*IcGGjDl)C$fCNl>8Y-)rLVr z4?ogl((iR3C~MvL$!4Mr?YD6^4{(ceTthy8E4wsXEx>%S*;W#I9bfF%C>|TFP56-VZ<5mGQ8_!Dl6k!D@#*qWOXZ;eV&As4&6aB2U;7cVH4`Om zUc}^!KX$Z_RoyeiW+=J`pdw(SvhIt5uzCg2ky|1rO>% zR1T)XuaQ1?t=2rkSG1OoZA(eWs{G6{h~b$d1mEb(w$5Z|S22g6aKBk82&(MLPy0_s z1VOk^v44`I|Nr>E(gW@mAn#)G@@BxhtIpDC@&Qw-%Xs~~y-Dfs!ZJaBJpp%{1aL0B zIyfu}4N|4R-DbpTP{-&E0(2a(?u5>0ZU+?vPBG!33WTfb{vSD#xHu(qN`i~&0v8ki zkunl-{h}z2%KrD2=Kf_o9`7<%U9>PzbnY|X*X}Q0l3u)cJw85;Y0>y+F8vmJk`Q_a z2F=_7ND{j;8MMF1EsJ_M+2nV81>1ZZnt>04ZBGjt!XTC(Ak<0$ANfCCO#eTa=5Ysv rY&RX~p5EU#gut~s{%;rHuZ|dIcWEH8_|kr$0Z8wG zuC1kM1VM0c3&R~@1eY;^(FSl)^So~EY3zpf^s(`h zq_U*6q`Mo|Q(8j6!PCfXYL*gpiwKPp#O|~zJ(kyT(G{1Ys-P#9ThGp)gaskE9x&5eXvUbIvw5R_T0LrGclJ}R#BY(0DV|mll-}Mh9dOCi88xQC`{#VO%DFoq+B};k1;#&C_z%P>__;F|Z_io)sOwFw9 zkZ?#>1j4mk%Y02e0!d_ofhYopre)3g-+ZeY9UYymE|9@+^z6thcw-CLLZtIly_Kwe z&p^fST_+?96qyY{s)nYf_%|1BE`DUUHc7qg<=hUVJVZc^!jGFWiW~O*y{Myu-U#TS zK%X}R&Aa{Hp(QE0rNv#m?L9Qi@Z>7Plcrhg&}*3vH|Z#bkKC1bDtY0J+liOG-lYYu zbAbozAJYhU8XVXj{!6`czzTz}lTm9n23)?fNaiInf#J|{|7uoiTx1i|>Q##EH z%xras4tVd0ISk@yV}U4=sQYhfYncq>$S3REk^#v0mEsR1dKN1e)lPv#l%Sy2e7w0Sa6S+sqS z`FfyeEPrKzjQ5|a@mrr06BD~UzodGwH&C*^j`ybpCw-fFsb{FA_1eg|ARdO}1^&Fi z${+V@`OVr|PHXFFrXj1EoL9Vfb@jyw(YNFqti+Op2lvH!*>(R6V@dvVfANB3p-{7oX1qW!RJZA9!Z>=Zq6Q+`;!f#i|bkW$&i9CuZ21@(8cO=Zy z?&NNrx5+;_V!-B@#J!X^1R8oG^tueIan0I^7cL zwM!)wl$IK3Yim1>e#p<&PkjeIh%{PIB}-$ZsY$|_*SFMS6^$;z)vPnE=~oU8%a9YV7=CcBJa% zrQKR1C|Cj!_3KBh>Q*Bnzt{@@i>mh=&c=y=C@QfrTGiD?HklUWmC?bJ{##n5@uF&K z)*8=__5Grb_3m6QIg5)nMI|{gqKahljuqEi5`W(KAp`ZWGeBFMtb8%5`{tIFe>#p1 z@VtIC!7|U_GvO7_CGVKSe%E)pu;gVZeDyxJLPE2trPze~lY#O)6GAc7M12ozWzfXb zE^c!w__mI|0#lmSR2(~V^dEZU-Ia!t+FBJMVd3;OpQd{TP4`x}hBFPcc7IV{K5YJE zK^#Dot$8dAHz?#WJ6jnrw{o*U?yOV6;&rsRYW@Z*431oAT`G9UA)JQKm+BDg)FL4u?{jMk~lOALkkmcBhi@!BPj_oW~ex zZQO1mpf9`W`rXS72;6<(>ikCy`-6x_g%ah@PvO$R(Jid(KOiC6@Vjz=P@+tjdi#cI zGLJGb$=TTOtZ?YNMq3(=7aYttzA0{2tg^Jbhl2DgeM+iP_c~5t{WI)u<)bc+qd6CNId+t0mc{O(2eO8`J_#fGkB*~W=&qnm=ed!n=eQ_y8rr#mIyTnC|kjrBP-zHy3ir!NSD+?4@l65Uf z=Hs1X-dz{bfsBFJC*GeX|XL2`9 z&itmcw(!LsAIdi~aB?pc4ow{i#i#IK1E$gsNLMBYufmiFAa**0 zyQz;`LIXCH+0^y?eC@FrJHM#W`%4WuF^GkQJmswm9#PTV2|C)+_a$EOryWUodfux6sop03vZ$B`ZR2Om5~QmF z2vp6+-WC>Ure{7~SE}A2&bFWIocG+V5K2j(vBfSf_%uWlJJRyr0)#cl0D`I)89na<7d6&89DN0C`?xJBcV2((&w z;U=kiFh>y6dc>9RcvI+)q_QNi_8)I9RGx+bAK-++>E#l{tr+*CVal5;0}U?W6Dd5h zaWJVYs1e(2v#>qied4oC3z#-I&8CIK5xnmwn+q$+1g#z(B)@?%*YZ?)B{jkXy3IrX z6;-hDmLWtD#m?(Y1v^!mGwj{laFETN@2LPUone5|%6!ZGN_%G`$MoTvL$i^|Wp%z~ zpc69!@@)nI{Fq_xu47|lTJUK2&okoA!mwj3P$AM?JxO&!#pdFrtKJJ*?deJa^p}j_otcaGYI?wEs5^tNy`1s5u>Gx&_e(#=16?A7{fTVv8-6ogXR2oB*3eE|M;_4Cx5Sv%I zy>3hBm_DpEbh@QG1(p>7$GyG%UUPA5*qcQ_b%W|OcZ|&i0cj4_tmx1&t|nM#5P<_y z{5Gw|v?)ISY#>ZJA{p4MUF%}uxbNAJfa9cZ%bq}i)tL7wf%<`Bm$@EpH()Wf!=|-$ zyz7K>9yDW2a7DAi`mVv$O`OL?^Z0p$e`aQt5-i{!IdZCCWVrqaxG; zxn){OLIPaCVpW|w<(`RYu1IFKDRO`J9ov9=n&7}a86R)Y=V}C!mY{lI!R=uZzE%Y+ z@+Mg1c)Ybv(QUBJEsdoiv_9<34VZdsY@AN&;}C@J?nZ7@Hp$c7Tir00dZcpIlv@cw1c%1cCH)sYye9 zOq4B>nIa`Bigtb40$g?rEIZ*b{4j}#LLu)=yGYUkM&Q}of|ANqXjORb?0I1MuGPXJ}n_g0k@?AFp|U1nU9MTHH7-DnU`;a^)Z8u{aM8vqnGyFXl*z+3kD*e?DP4F_gZ)Az&nY9j&mdBJEq#_C|I7G{+C4=Cg1LQ+KkW znW5nuDo6c$m*kCwJTjGF24>ykHZe8DP)93vzDD2L=nzhK=*zm!652xCo=c{!bxGY^ zW;!&AWuWpW|fhw#A8kXgtmV2~q6FDqV~LItyN#KcTXU189}2uQy3GhzNYir9vq23CdH5bu+4!tcc|oZ+Hsnb^?_Ol0T1c>_T7lQnkY$0mJ}AKJ`{(JcGs|K1_j`|v zh>A{E!{T^U1I(`OI}hw0|0TuAT2`n@&Xv9c8R?D9rfI}B)9 zRu=A*^pZ#>Iyx@|MXy}3>Q0jHf5nT;ieYVE9f#biR-2E?-)n>z;4p16;M@h&F+%!J zT36g)VC?aE)c+9g@GaKVyYtSlt;K>8IhRp6y%eQBZ^Ts9kIR^Y{q)Vr@$vCl?ymww zUss%B9T=2L&fzoXLGVGaY&)9;z}dsrA$3G=sv}Z|wC&B03lBf$^5y-v4WlEiob7f(nE85ot7r4EhZxJd3CylHgwx9-*tjm_JYN?Ek`^0gVz%3 z+qZA2Kjoi3CFA4UF2&Fdl~|Vmx`(mQi<1m$B`{E&xwB$oV=)s%FRsg;Zw1%c!q(P2 z?9k{mFZj&zC?S3_US!otGuOn(WcaZ`kV<*;)kLs!>gE(K@bw&B>=#A;g0H+a}<>HBRd9vLhD zkS3N$RyI9%>2Tk_Pu#YwBl?#Ftu`^4qENX%XWI*m^Yj-7@}tjQv_wqcUO!0Vz7(|M z85t{Qe0apugzbSVE&ebDXz!OhwW(AO*e8%k6svl0dD(J;YE_>IFP6SVPW zV-+NZjLRb|N~$WGDFb9XPgWqOT`|&r zewb0kM5VEB^|(PsH3Ln01XrWrdMZLG^-xUeyU8Cb7_{E4=-8hd5hrEss(eO2F5PX8 zjqRc{{a&?9`=)NW zJphMl_Zc8Vd570>ZfR7+R@sLSauIx2EWweUbjb$J6cU-J*h}ISNCF0UclAlm3DwtP z;x58X9o{RGMVpfWx7hEv!*0Pg5;}Ec?ZG<$C}tJASz|g*jfuMdX-EyPGTXh9i7Y(f1D_ z(H;7*1mBe_3pFb_03Cy=eYr9SwL9-T`>vC_6~PYJOX0YLs)au=+aAw}%qe%3oaa92 zDFQHI24L4|W@hq)kM3+6_}{m`>LL17DOJiAB>RMgL0!iolFB%JBeS?!QgvTJJV0;E z0KJ_)qP00;ufRA;==J7m>G*FCk`>Y@Ph|hPndKgRUHAq;{}&CCBj~lIN&qkg%bHUPXJ;IAp7|xz;8!- zI^P3k@dysx;*`-Oemzw#FGgYN&rOuR0zji+V?OAVGTnkV(DI+>9n;3GulFF)5-0cp zbX+wCoI_tgAc9w%`sG61&O54HWAFN60s2@ZZ`;9Dq9(zs~OetJD*ODVQ|L0%C>EDO;6B;@Siw9P2Z$m zoCqR#uGEqHvH@Ma0pNc60j3S@T}hQwrvaR4Hd-k^k18+6&)AM(D8w0C%vY_2v;fiw z{fxE%&s?F{Oz)2ga{9jDaV|mHiW^dI55R;&CDyq;O!r{7feZls!MYmxBRgO(13V1S z!-A~l<@Z4I@cX1=6h+ni845SRhO%k{1|{z(7{S-=5*%io0#_f``7?&kSAB8#*3QIA zj?0*{@Z%|$F?5?{Loj;z;p$D5`&;LK(7vCmaJ~3@yVq!Cl3YX>)u&fWQoLnJG)Ypi za2)vztg%-HhpZh&4E(1V@(W4huT1Z{B2VsRfgk}?Nw!UCt3?XfI6_?=93I43)`k6D zeDk%j=WHu1N4w3z1KG-ve*WO*>$p|m-K0xbb@b#n?G;@dk#7_qo}?@Qa9>jQ2awD{ zwqKf*q)|21zXD?FBqT)UKM?snr)Y%ErOHiez_#*hRWLm~m>ErD0aybdy_;fUIikin zbWAz7UEhon2&tctB9Ji9F4pIDX-mn}!0KlH;F~axDU^5{eC4r#5 zvW>o*a~W#j3(>?Wg4d#Xt~j!ub!)gtql!=XX8V1A8LyWpb6plqG61JE5GnchSD7aK z=2Hj#OVW=vPSzQ@7Jqo~d}GNv*~qLQj%tGQ0i(#8*PtwGNAAdN0cEcHFUeKPWTKy+ z-{MeFvXPO|2Y~v$evDfHb#35`*`0?yn>$62iD{x<;Qo#o*3cRiH&B)hMp9Jv{c_si z3NJG0AZWK}BQhl6{O97-jj<_zC*2WJw6~JZty^a0=x#9HE5|cX!;#SLhQ1vd&;uz? z$U^ZW`V79@;*h$$scB-j?PT!S9hIT-Jincc_^)$wjw7WuqqTnJi>TRWzkID>=EQ-N z_o7mYU3=8A0BkJd>UkDuRhCD^fmNj|F434yaZ;qhg*&yk^V6r#K=9Sy^(inbLHYX= z1@kj9)ae+HeNIuv4gi?bU$4q>OpN0g-@#=B3udZ5=wvUC9*|P8yLdeLxMITjwz(_n z-G&fu-NeY2RqN@~xwJK)?JBs~2Dtgz*ktZ(u9P(Vrn+@@cE0B-I>u9j`J3YVz>LLjPcibpu!3 zZ~=%g8MB`utB*El!?`9EZc-JlE=W!aKVW4#_4}5i@2^`DdX{CUh!vjQhf4aJ39n1y z;=0@0+r;JfU9S$l$o8rj7s*g!4@1ypLM&(}U(_&yTbK8;mf2m*3k2>HC?!d+P56-2 z4n%oXoqtF;j18s8d?$aLeCkxmqHY?yu|1F04ryV;e%yb`uG6p+3lgJrB%KmC`pxA+ z>Oc5bRHN@Lq4JG|%Wqp*S~{z$p%^l%MwZ`Kp(89{U#bij$G@ngasI2KppeJ1wnh?t ze4Lvk)>LeTR(q^2utwm$L4+i%9Dj6J*9?tEhAcN^W?kzf$?5L0-{mNaq;uy3MX>hR zm;~`@PzUh_bq(+3Mlo$WyE&8Q4&8YxqRC2t83791-_Ez5pHHtU{rOdb-P&0}S4WE? z7Sy;j!pyc>b)ShGvPI!ejb#F*B{tE3=`n3(qU*Af=lB zJ4cF&>e;RXmCwgbl%FLUnFg&M@Gz-=l{I^f0pXn+0mHhxGK7$Bu^V+dCR z%A8Q+Rm4B|^8fbRMjJqW%Xwiqp?}&0l-JLS|7TIX&yS_wUstgAKGX^z?d$rQ#n4MT!dX?UZq97o>hTcL`iiBPSMMbF+ zI-#n7bd=uj@H^++&wV}j|8gJhLz11nXV0uzvu3UD`mPDPhgPMeV4{E^h*DimSqFmP z;1Y&8Lk50`>|-t9N8bJJeRo}FD|asoS4&9K!rjHe+1Iy7C=8 z@AQ=kKX1LkoG&v%G<2j&a9RX5rsyG69BGVB7-HZH=BmJbZN9A`)~Fo2*j$6+;h~OV z)-GClhBsB-Bqea2oZM`lqL){*)#^wc)UKM>k&&F`>`s>-;wT!YyD4hlYud8o^Y?{< z)!gGV_!c9-mFh>&KbYTxpjO^U2XY`;tSSurxkC>wnU(*GOL}`*2=je$s->mIkyxM- z$;8XSapwXzS}&Sa&Y>MXEh6GTM!MUXDd(4vkie;)DsG>|>c4&`V1J>|Qwg@tjD|tC z-F{CCsaslFhKGf{V2jlMm%Lkfo_CL|~eGeE=?5@`1; zkfX}7Gij{cx;L}**RLnlc7q*{_#o3y%uuUpM@NVIpuS;oZmwb^leo^(Q0dlOn)6Ls znpRpV1ccFrFu~v#eDeS;NxcG=^8YXY(ZjBqr6n%p{N-G9hD`B;TBnY0-}=5pUU3BL z4=k$H+NojTdZ}59X;$EVF&Q=MTiR1I5^^d%4UN~F#a?TZeEj@X zS12&t+7QH+CT#H>w0DptgQ&x+Ss(@P*H7!K`fn3`r5Xr>v= z2g^f}BH)Iax_X$7j*k2GsPzqC!Ey9#Y~?sqGV6}#YY1AkAcfXr71-HjeE;np z`Gmw^di4!a;^N%L?}N#sPv$jK)kH*czLB=xrhsVfzOV0C8!9D`voYW1G1OBd)~H)& zY^@L-M%ZzMY$t&?`10%BqL1dy0(n2TqXdlo4|ayj5*ys54?W_q6BrEr5Bzv2F_P~t z(@bl3CaH&R&+i?&73*@_PRJ~byHN*eogC}%NF1IUv{J|lu)2vX$o}+MUEl%oiX>}K zMj}_WBXK$u{#^kqR3#3DBk0&}*)62IQMJ55tHrpwcI|xnr1s8&x%}LY6GmTuZey~U zKy*e$GO--{IZZm;-ucaefLlaB)3Q8}!V8Bf!P5H{A;03|aa&8&Y`=xx-?tkdIgclr zyU9);9dx%pa8_^h#OCU1b9gNCh&u~fT0aOw?6M-DGw~l4Hw3*VWQyNvEPlVU*x!DB zl>55x(s*4r+(nF>Dur%+)LQ4xvnsz@UNS6}fM8V9OdCU=QI-cPyt*``ZaDd0HvMCG1@gD_W#p^#{JT)KlS3rzqI)T%!A-eiBc zCI4#l?Uq!7QE)-RFglPiA@%S3xlD~zBO~U zDqEX$oV1+#rN+x!qx&+6jiOajUtj%(Vd{+=;oeR)~pd9KFR zHNt4d4`GJ9y!TCw=HfGWWuVk|GE(c?-jOSV<85qfyaBf<-+@|789 zq@?K~<>tSxwgk?NJ;Rop_J2f`AIQ^V_TQ8xB?*XHvdft?%rOzeF#9L=#+~ox-zANIQ!@qt+;35P;pI{&;m(VGM+S{`-2r@`o5$lVFe|G^} zimrce14ne0M5&ROs=yTVjOy+gH;tUHKmNt-aKOYzkNG~@V&?ms10UEbK3p+G+7toD z6jk`(H-}qN2lrjwaCK6|u)~*d8eiZ#sO25XE`9B>+Tie}MnIX89wnpQj=$7S9NU%{ z=rQY3Rr|lpj;~JmkCn`U9)<%;~zh; z9lMU%65_Q|vo=E6BrF*#UeZF|io!hInF0bvS10_+2P$zZ%1#!f?0=Jlk~4!QAKo0v z30@I%0RenSz=W@PuVCO^p8L^OO@Cb&+`K(g&MFQ>V}f(wwQ4&{S=xudD#Ql|t)!}Q zKQ`@(J2}Y40+a9r*5f`EK+u#_Z}uaiNeqR_Ap>B(j7_X^`R^V}@3uLvjH&Aus6|}F z4w61o%ZAv0badnsokUT)rrtR#Vi>RSz(#4V?Lv91kBEYlHbiskPxDk!UQ+@`yX`go z&?F&0tX?MDL>7;qU7e`8@S(TvD+R4+VAH7Z?B2Xl8=F+-GZLKBMAvxA73YM&brNFO zv})7&YgbhwZ^oy6iJG0J9=O}+N$A%?u?288@0YBItzR<@r!|oEO5HdLCQ}dCA3>8S zCy(4;=#j+@zQI{%RcDX|D!~*+93~yC_MV(ObU{=$C^fc}rBZy0Vq6Hh(v=EJlNdz@ z+W zZ>Zi2lJu>r3TjyqdnG{+iG8)s!j}5Czm83n0F(7d1UOKE{oaALsi~7J9a`sL+lqb~ zD365vw8I=|I-h|t?QGEFcI4T!HT~JQzr4Pj7Z(>d7Okr#H|WVJrZ8Lv_HC+%WXT&x zAZs>wAt5=9G3{VAJ}w?8DkhQ3(mHKR($4O*zicRb^7zQv_LthiGxB`V-l`0;sl>Fj zHwx_8adC8%mxL8qWZWxQ&eGmA#|#w5Z+^Pq!2S9{#96XEkvm7PFL5004_l4U9=j9? zx3XQ=O8W7$8~wcXoiH5ZTfbv!yX!)Aj7grIL!y$@_V#MxTRVB6B7E2d+@|}&j|fL@ zn9J38?lctXxpR)(&kVJpd)#YH*H*^3OgtFQ9YKBBPagw^g^!;eDy`{njo^W#a)74; zzQu10<9V|s2AJ?S8B`&}2?K|Z`Uqstit)V?{JOnBgoWu%7sZU~|qW-l(hYrijeDO4MB z(Evub`8%&h7drE@N(>*l-h~C@-2mg2SZBrt?&}uo-yo_(FFMv|2&!!AckhCy=fKmC zW7QzK545zba6*bJ#|PcNSruTdwailNa$EGthp@oGhH9g$yI5-n?q`nlkbh^q7Bbni zZXgfdpH|fy^`X7arG81}^dv)y*#;pt!E%8BuGbQpgAz z&Q6Dx)9>g?m<*coq#FU=gmWQ6sB7M>w>phP;n#UKr*QeSkBwn)h~<{e&^ZuyfW*p# z;zHznhP5Zv3qKy{dx^fz)O#IvbJ?>PwZ>y#+cvV|w_Toe%1j6-RZN{p^cXCpIm#fZ$~L~r9&F)PoD`U!1zM7*W4H^k^%%R!yW~MqHVZn%C`KYLK%`HqHY@jn-+) z%+m96d;p3z9R!yCjr-qEj2iS7Cx~G7rb#J0)ixXq45vNiLQh4Ty} zXzRHgv%iJUfGbq}CJr|_wPpcXMrxza%0Y{Tk5z4Zn8CaS>7h`U6?x3QO}`4r?>s49 zoI|wIf}JyS3o43Uv;%7eT2TS*I85?;ELq7SFgEeA91M&^^fQ-iNGjJzlz0|W&Rcd^ z$cuI;RFJv{F~=r6k%eJw2Ab;W8Bb+=2A{?-n#TBUSDnhjCy?m53a)ZgU@oma85$6& z%io(fyPhcQo&yOZM6L}nS6D?3yb7{~xEJJ)l~Tn!fmBSP2y%CTg2DC!5)3xh>KOo8 z6eIu7#B$m#;-b2By2WXWS_=|G_%0=)bzZ_bNw9eU=(w-U-jMgw>B#>{+FPwDC@9=N zAQ+2u3(<>%Z<2@J8aqKH$|pD(X&31WUL z!l0|aGQ1}HUNV{%c`OaRToD05pxS@W)dVmGarrmOn{+;Z{ybLq^zjJm1qJtix^x^9 zi)4{CPzpKU*Ss_N2IO)t4n@KvA_i+5AAJ7u1sV6~(W8O)0e%b&3@;DgLCUo$=E7AQ zGFtLS?w{Xz{ZhXnBs5%Hn8{RmKx{Fy8ykqkVU&)>U!sIB4NNxs=^Ggp=jU^NZf_4= ze*dPVq{@C+Fyl|8y*vtqN=!-FEp6uo?+=>=nH+d%YDSJ#+cQ=&mxU!|HHYvBC4c;5 z=sr__t}vLKx}>UVGvDdTl^^^-HeGdf^`f<*%g+?p^LwWTiU}B)PMQQqBdV8T%Z<@a zTwHvAvtMg#CX{Wljaq)-aBoB3#H92Y3Ar61U!B8;mR~?XKa`3^@BaOwk&*j|;5#6R zGC(EqYlE9nK8+yv_1mxCkSRY|eyM1hx%tNIWuVbh#>_?+3Q{*b>zQud|jFhw+uX}3Om;3Vga9$p04z{cM z^;~O;$YaHTWc19QtdD8XYLw@?{FAvZEQeouPloK$&uICwVMjVTI>qf>!N2>xnaO{~ z#Wj>NTVk}}FKRV1__mg~Gdz+&bhz2m_CuL9@cw?c^N8`dRtm|qo3u0`LTC&PV;@UQ zP>Z|*HqyOZXm=cIjpS(RIFHFA5XS4$N4PBZ=F`P&<8I!(IneCqg)1zy|M4ko#`}_4 zs?^h5LVtf^Y-~mr9MRJ3P~ibby_3D24oE^h2d-uCA{4ODi+?ch<_gx->l2CQSkkwg)>BZ!86I ze-IwQTWhV9cXo6<=jG-7z;MIh#m^jn>krQn)xBog+S($aNLe|{mGm}fh=6#k^o z0sxi|V0{p4_4Aq2j2PxAy|uKqyZ6b_PB7Re z9|i^nrooVo?PnYBy^qq<(<7bl$++^ixcKbpD;KnG(KfArJg2k+QH=m?tdv{#q+bTJ zf4dX#!jhC-MC9G}@WJ+quD-s$6ziAdN<7{^t0f_UzS_251$0l@(5so2FZ@Qe|B}B1+Mzd7ZmiN0wK9yi z?lo|Atu(H-(=R_b+lj=~*Vh|2dB6Md;|KkDvQreA=KNlIfchs2*st+>|9Tx=UHhQ5 zSXI_O42*=yy+v}8=V(@lvhyM(&|c9Mr@A|SJFEJ_m-HSz%FXm$VYEPMP{H2@rXw8K~tpV+u5|xg{llrP`ZK1qA2*_KLmiMSfy~{usU;2zLea4cNI- zWA)Qa3oc|stSMEAVlE~SbdFZNT69m2j~rE>lQ(TdxqsvO7v`c`Bqo2u2zxG%NK9)ZMENlCVKc@?0= zw^;f!Y6wJ4JhUFpot5C!JP1amK(tz1Q&H=c<3Ze#XwAz99 z^Cz`NFCrS=S_5KY2z4^kQ#}{5lYywlpH#Mo-oREy^t3I|f03=qzd_( z*sDkLLBL3^@IWz~luVr6*vCmQ#B@mR)rF;UTu%l_!zk$?wYVOswzpKflYT(zS1-)( z`EDDP9e7Z*`VB{(7muE@oE%DhY~DeZH$4g=hwXNfv#FUhR{o|2 zc~f|u)PiA4-0J(&G%cqppmFnX2y1=n zv22rcHgH88s5AX_37_ppQql54TV0~-z$-W zr{du0z5W718#U?zcdAJnq#OzuSEnFQ2LKihvVJrjUA}f+{?v)-SZ%K-6U1HViUahP ztF%y5Bpf4y(n>C?SMgny#wYMV&N42ouSYafpU9qVdJQt?Zyh%aNk@dB^@2q^eAn9V zzBwf8^nIY_+VO|BM2Uq+NeAu^lHD1yhH`$}dj9@RD$%TtvQ+#<#Ujb8rUBIhrD=eM z0m&n}gT+g&GYR{KWSWvi)^i|%SJ!<$!)q)Gjym2|U3h*jKk&$b`;-Kj&j0iUxifyP zJC*B{9iikbJ_XwVcRYIh*irQvLhCj!E?-T4KNe(n7s1@Cth)0L){>7mxo!Ke6Kx@{ z=Jn@$UC5v!Y6^%c-x7rnSkH?_p6rIMh#e;-CIV+CyHdmkg8WuPIVf@<;LpaQ|Ni|e zj8m!8OkoEQt9H^(_H3@EhVWN}iA`NFIS#N`ospS-Wh-J%e(N8|tF3!k<&JlMdc4d4@BjV%8wndPhU{vmMpwg?ju26f|o3 z*^NQ%j>FK%_TtsOZ(8}w4n*5~jOp-KROD1@TDLg3t|L#j%s{g-5jZBseoSwF>Lk(N zZOrkuBv49FQCSkJckA0P-#)PAD8Ll%gEB?!_|;NV0nJQ@ZBB9*SI?E3r~^RNZ3eRe znyh7-9{RXiTALqq+|SQE@Ty}$JsrMYR^B3Ex!e3rHD`nsZVQ>WO?8t*Th zoJQhN`{*TB%kAWd`HRAe1%-4(%%aVEZNdpJ24Bk4^R+jQGD%teD2;hWp5z;O7&RKwL3;@wnD9Cnl%WYkiv%;C@ZT-I8 z!r?}@%v{S}WC94fwC3&oT4|I4rv9CnRDMdjy;AHT<9;+Kzu@#(XV#D>lE^E7M6o^(E4g`+3CgwDs4Y zl<~3OK_v(Hl!F~2n)HR~ooCX+@(wAR5oRvyp>m+7LNO-sGMmbwUSwb#_6A%9TS?o;eB==;BHYTxe@vD$FafkP0ysE z^(KPOLab_j6bo*q4R=w%f%`Ap9Q2}nJ`3gC#KFadWjXxu!+{%4l?S-=U-Kxid5$&< zb=D@EQbOnu>{Un_0VT7g2Uz!OfUnf==)`fM@}=FnlBI7>;P@Vn`# zM$E4U+eWCzuZXq21C0^^T~MGIA0E*?rwA%87w$?@D6|1e3DB01pAjK$GzL^4w=1P=Z*-J97V(plJOwIH0!HBGjE~S*CFL zR!UCbX|2oO5g68@u_Z1c{+fvkY;7be1n%N~a$GAG&`?iW?Pk5OzvRdbR}6(i)*6}o zj+6Xb%e*E&I8Y5ygzeS{Jm^Y~16yPXoe$(DeE}+OJ$t_{*v@Gbd)SLwtiKj@;I52@ zoBRI_+uUhE4Gt2@gB&G_;D?}Y1j4dab&YL**NYEsz2bRr&D0UJRcI$7yW+dXA`wLD zwOb37o#RK+mXI-l~v?r2B}&4VlB3f8Mc@2b{1}=cu#6s4JC&3qD89B%PAzdo<8vji4D($W6lJmFwi`%!5M9Mz6K3sRE!SJaqJ)bSS8YVZ}!9g$c1UStMau z6ySf=)4a>yY=<=Lrc4`tUp=KFzd_D95VTe0@kZ~S`J{e9LF&w}I~PZDr* z(wb-qr2{P1N#i@|M^Jrxq3uzd!&~X(smx8-`8Q!7{zjPcLWzk4Lo;1KXw?Uq}% z2Ab;VacCaIe9K1Saa`BmhNn;Gz%h-avFdowWnn{|{DM?!C>AVJZmTLA)-@)}c{?Y$ zi^iwFAk?tpO|eMZFY64CUn>u)q>hiWiXc6GZ2L(W7mAAQ7niOvRYvkueg6~3Q5_^I zzDIg~_cEk>5uE1;>p(6v??fFQDV@8_(%UUbzB!=VE(nDRmLIInNtGI7UwS~wY~TP- zuLhiyM*4qnnx&QdIy${*bJN}O$rBz?QC*?t&A1gc=obHwCj{m6Rofc|?9PM&xUBc| z={w)e-#KsJ@@KS3_(M_8X`xnbke?^+o)EWi`T0efX%c*bf;H(B7{Jm)Y{nJl&pg*A zOHG@7N2B1adEgX@au|4F>0B-00;?PkWpqhGoB&U)6t>(@&sxM0Vh?o z-kLNT04{C--+TK(`F~D1D5KF)NkV32fSDMZ^7|F5DrVk_xiFao+`21(!#>RDO2^2Rs8#`$#)lUatRnk0_Vy^qakSE z3)r`TJk{t6lM*y%iU4;xP7Cusa}6vBv&=4v@IK%`Pha0sgc2&xgP_}g$L!0C?T5<% z&)U!8HLhLgbpnll;)U3ePb@8qv$Lm*f@)l6k-(@10!;wjc%!UNvAi@W|(^H?6yuAK^OT;YLky*jmsU-R?B$G(73^4*#6O2lGq zMQ9t3?4pAfBqpG;N#Ntbb#(4Z~8(&U%Sx!>-*nS_UVoP$>kB7 Yu>6MvP2t3Mpl?Y1E?T)v(fs-U0(d(m^#A|> literal 10128 zcmeHtc{r5c-~XAhCZs5BqU?J@k+LLv_MK3Xee7$tiA02uovf3TEo*iXCHs(V$VkXO zwyeW*=JWmje%EikuIKsx`D5<6ult)<@P6p_7^pw=aB+0@aI|~G=JnXk-OkxbR7g@tM99V2 z-9tox&DO)i#r>wRFzSDH6LNO55$1?wkb$C(xhNaE13;@m`XPe6U$O(hwXJejPR}QO zdBWHK^^ffKHExDeq(caU2WXo>{ntPrK4zem!JSU zT~i@V90^HD{9Ih^=4Zj1HeS#iR@}H}Pn>2wdd1PO)_x&z01&QdAb|9B%XZrCRPjYq zPBvj-Oys9?Fj&KaP#2YQ91P@b26h9&xH_Y696nK$Qp; zAjCHKZQCyn6?snfW=I)!badDc7iYBTf%*Z<_kNMpanvWt5y8R24q57ab5Y@(p4{SIL&;>C+t4!VmHS_%pZ zUh)V62NY`=&#gHG`=h=ByxhksGC&b{&PyQHX5Z@`eiVy|eSfeq&C~mAHQ3 zBYW@aS=upr1X~4{dTL&h`4g4n%tCrPI@n`D(hSt^Dk{VdT7VBFJ3#mTo|&J*2{+S;1Q$470h&R?kk{*od9tWcS92FTu>D2865 zS&pO$7wzl2h;8SC7&&_4}16PQH4+l;-u7>@U z*bukJn2LZpkG*+|rtbDAohN&1tJP&XsWL|+K}WlDI{x*8Z@Y(&{3mV}*z~ebR@+`S z^IsbddX5D?jA;nOrAjx9hfmNOP3hQL@1&uUq@J6L-+F0T_(C7GHffh#faJ*2&jU599&r@LL2-Ki=Wvk6+)wi1yxEFTQzM?t6!b3?n0Z+jG}? zq47F|fni$j{$Ca622ODYuis7Xoo6;`oGo}6s7=Yiq$~nlvHD6s-+H3^mA_kA#lzNE zGUD!>T6bF7L$3>tPE`JQ^sdi_y4|*ut_L4K#%UsNs0g#<$o~;c!ew}aL1nhQ9^(_ zR>UWE%O>une1Zu&x|rj_Vygtrn;l-Y(;FrTiPYPEdEIH<)Zg2q-rn6>byn1li$~>? z<(!}Zws|a4dA-u{i2@=?eV)sFbe9Awot?Rw6yj}pz@(nJ5Ng7HR?GiyN{UQhUG?U~ zYN{k9h>k%5F{nMCY`z=a3Em80_20)T z07?oV@s#dDSJ&2UzplEj^ozWlZC>yD*5wg9?-%Utw(Q*>E4Y3f%njouW04xup!A`F z10sq{yQPS5-do$Fqu7G{F^$vGf&5^y!Zmkyd%Q~hyhLC6dllu<44TqNBsgel@WWu# zFejw1w(gCNTJwxj1PX(&AA`xd&7g*?R-u;4o?f(SFG9)9+K|xmVmN z@Z3yb$3P);^H=2T7~w;4T;uj_+>821q>JOxVfE&EC-!qF_D}!pCZISKD2qS~6A!m% z?;lkTtD4o0XiNt%q4!cml}swX-#bHWIpLU(NPUh3lOv60Pv$u{e7nw;yV5R%A+>^9 zvc!TKcg-%`HrZQ?L2)C`hau7L47D$-XV^j%xlc}?uraN6VNh>|SOT>di5YoS^+O1oOTBW9Su78M?MTEc1kiz(_iick3{_1u9 zQ#7w0;dOT!#?)CnNq549j4EiSlQ&;EMn>rLnbciGLP8Z|%j1`znK4+d{Pt?uW9)>t z8VWb2@%xM-xZ?bSZ+_IKn={0$ZcKxWSsOf39ci&KTg6xtiF_~&)n|L0-OM{f%q44C%!R@oJWxOt zrO^JUF7cSlxOgyC)sumlAHZ;`b=e2Ya%cet*O?h?_l-2~n{#g*r0DQ0)#HyeUJ%z} ztj%c|G~jLweow$YJBDTPR+ia)u`GtJuCRSrO#f%xxOSe)uJ;n|1>WYqRcLsMSchZs z`ciq})QO9|gejfXpVm%YPzxuI8kg@9*v+4xJURU}?edY->TmpsL8ZAKY`muGY6Ew} zLD{kxY>zl;Q0JAhL1b4{4xt>?AiJA1Vl-cc%RBI&pU+3-Kb?eAy>42Std_>5@%lM^ zWd>!qc@wdSiCVdO(n;#r!80Vf^jmMz;eJ!MRnwpz&JO+O45Q^NMY?=$56xrs9z-TL$C2_rLH%<Zo0*XTM0Nc12nd_#z z8tFWhj&@RX3;YleK9$W{$<4|6?8PCblO$x#goo=FLPZjo4YK-GRlA-wNv*ybc zPX1oHgf<3)@nq%B^eggpjr}?eKlA;CTRRZT@ zo3yPP_6{U@Ss<(BkmzhTE-`W{ZkY7JjgY&;v>M$af z5<6t(iD~?Trd+3)Ml_JZxghK3+k3Il>1^~?XOK6)xR+)vbW(t?EQ8!!0U_H^Ppqo& ztM-`32yBww4Vmr66zFzq1mmipA_?aJ{Ie?Oq%#7qR%$!z-+^#?6&35UmE4#yC>S<= zqGyQI*4&8a<&P!28ZbYAvWxKM&P;y%x zx|Ih=yzP}q`suG*`-=vr0>l*Vr+c*0VcBC!?_Z710{G-Wq62g!sC>Xc14Uk#8ZAe0 zKQ+_>E_#}`If+X)BukD5)CnS%dD}nZBO+ldvlbu-E)J=LhGP4&NsX1z%jEh23Si+* z$lCnEcz>O0M}PmX^$UFd8~F8A+JGPq{S5Js5-pJ|Ffl{0$gESRr5G+)&vQC!a{TAx zC~gFUhKPtY4$u9jG=u!QHel;mVwLu*5_8L2<^Wfwe#c|F?#*X-J90l2WCF@@(!@c3 z>m-?G7R&bJU%hV$PB}m}j6P-Sb4l%YuTvn_W4!}AYLk{hHg$;xR9Hue`IItI!(C#- z7B`xVebVNGae+Km5rKZIk=bip=;uR|GgYM>UYm{E9J&*4-3;8HFdQl&T>26PXWdOwf1Cxk{xCPadaGFtJIli7sp5`1WcWY7rn}QZi2EpR zxlh{QV#TA-!SZ~P1U_!1CtLdPl}=3HtK%34%(-5_dLVTSlq~!-+ryLnyQR?RGTlX6 zDGDI0cJK9AMJ#ED?6CNjDqRqMU0fX79#y5wc991}kCZ7a zOyIm|KtC6|JRk2zI2^9S-46y;j38VQ0x-YTQH`fASwP|nZ-*BW^uP0T;1%kD(0f_`Zcz5!|CW#YJ9V5Ye{%zfwY5jxKZd`-1Tt}D z3VZ!Aq%q4+w&H^2;Iga!kG#bHZE3029Q6LR-mArj#C?b5vC1lT1Oeu243`J;HDkU_ z|DK&)s9h``Xpg$!xxZY!IOb3i^=%p%F2n@b?)(hgM`ie})R;5{28>+FEiAnE!Jr76 zU}(;(Qu{kj4Q5q2>S@I*=_Nre|O<^bXhlTq5$q(7qn=+-Gkrb1ypa(jiV!)^g+Z0hL_yNS7~i_t?lix>nvI(!M=POs%-?tn zsApRkjEBw%r6Zrp<~lDn@84;@aEg)9v+cAYkBp23yW&e|cn%ddy_dFDCoOUnqi8xT zJ^u8`*<=P(nftFPs9-;oG`^Q*a~Thj0XIVZ$w6~}z}|em{bVDt`tYFrg7aX!ru4b8 zuPN72sl^R{O>XbtL+l6MM!kU>`D)?@IHLANBultHdbf(@y%iKSw>7t7OLf$0-TQ{6 z?CX4gZrIPDBO>Jl*X7HXtzuTMz=`{w>opq?o7p|S%OUI2`SKk0)n)8_J`P5X>01IC zzn@a&Sr8+N+KA62fpik|O@v_RA9Bp>3I^+ImYJwIY0$kHUa3rK zzq8|`o_w{%EB&38k3JE&LvaM>KczTo@6d5A)TQCaygdVOo_ zw|krOxh)}74qFR9=$hgmoL!ozt6o`LUtfQqs;Ww8Jt0H;RerbUbLjEKH%(AC9=N%= zxeUBjSFi1rIk?Q!k<ZY^ zR}dFVZF=9-mcR>3S67!KA>i3#ayAi>k1LDB{p}C6wKp%Gm{uDd9rf(BP*sh%>9zDO zE-sF1Vs5ru=d3}-R$l8W54~_`&}V|ZyszwbthcDqL z7y5IREHCvKE^Lge=mZ8f1|Du?!ZkOxpQ!cZV1Hr~kSPQDr&_332j8lvRoM1l!D;98 zY(W33k}6{P+^LD^MIsF8Y6EgwA2gGgr zvbbbsedkm(rFnNBYTTD+{?xKYnibqmlF@LKYiql@eysJFeD z-*Lb3xg)dNq3Ni!Q3&}u9#K(UsJ)(kR9042BhfRyH8nM<&>*XvCyRgow&LXA*l}C8 zl6$&Y-K0`Id8u|^Ku}O0s%DSG^vl}E@201xD<8E*^xY1RL5-FvKsv5~kDvcXp|L1* z=;m-4buy&`&U?rRP%MRqU7}e&Y9=rzBHKT9rEz;Mwp%@td1S_|v^mdCoDu#fT&pFi z=BGcBqWJt2#(KGsyoovzvP5Y}D%|W*ObmYn(a)E5Rn{O!QXDR`j$&el5&3f{?7ZVs zo}#3m0Ks04f^o`b!#|;%gd)B%*!^|<2Sv0+w$>rpmLS;5v(dEs!AE)+B52x0kV*Qp z&kT`CM~6;lBGzyy2B33IYIM$DZT=Tz5y@2&J;$K*l10kEd)zgQqu|pgquYLe2eBA6 z!Texm|Gff_sZaSyiS&5Z7;(cs`gV>4GsgG@*xQ#iQ1oY8-!otJQ z9eB=Vc=L&fXjhNBMJ_87&@h#M%>>cJF(yD&Y5TB>+Pntqb!x;7-;9VlD{^NT=GTfb zmx`c%*+I{cD&<|gY+LI1oyqRNhcpUuwaw9L!U+)ni=Jobbbjh?Qfa?cGx>)4I%X3Uy;~k5gpNJnjU=Sm}~V9h&t2w_`BzuU((`K z7*rrm^<1(&oa-f}PiVoI+t!K1C`g--$KFMt12-;+G6S?<X%^B0gn*GTK{LD^NOtQ+Yr}0pjv>HN`)W z37I=e9YZTqQ)2QnXKRC!w1L)K@bSF4HW;!#tNuw+2;#&&l{zmKwM0^Cao?$48&X7Ph^{P02Rn&%tBHr}%%Zobn=O6@ z7%u#XR0xtqG;4opQ@Jt0G2t2ph261(TQMoE=`A38ZUvCeDgAzvi_bz6$yuLR^cR9Qjxk-y8`SBQkAFOY<{AynPr6Vovy`+ymrTv=HcFXHcUP+#!2 zU0_4%VQ@_xl?3E4&kNiz9D|hKvN%qKpuaKKYuFS>WMXA4ImXB}5>0m8-k}>)mt@AZ zwStnOtB*#a6>GK(AkF9Q3F@;=tDRD%18SY>mapTqA9S!DvSqkOi&=#)bA(ee0Wnp_ zLXTlHY`P>iRlI6IHjae1e>V8>U%x)&#biX-nbuK_*qmmC#`h1YP-)LO;a9TxRYsL$ z)?}X+cjvlo4EE&ZwLl*S3YWSZ!Ww9_Hz$M2U#l)G6v%M<&Z|U(Fxsv!U}k0pQtg8Q zdU|@#c*Q@X)~yOE^lH}>p?;$t1b&^dA?P#gAC(Jj&V3Jc7JU4hwvJO`;&?h-d*%4lqqb zNToEh+S}(%9<&#>ceJo(%OYfrNQynqHZ!L-@HXXk2STi8Wy0ES(!DpKku)bfb2?IX zq+$2%W=T*=Xh^EI)=Ff7rz}XS>UjiRB^{CBpcWf03i>glHcSLJhl7o}+ ziCnk0UZt9=8)(T^t{+-(QY!Z7Dizx;_!Yhzd3hY=Ar|-3m+v;8gsf{+FmitFD+ZDS=Otb-4`}6pX9mV8 zkfPrlwV6FN9IsiGLA`SwQtzq?p%soPzJ{LL69UPn_?XarkTbAbxi1=qfj-#|ZJ7($ z_?E|cyVLE4=swMJk&a$+{wN}BQ$wgorzPkAZwcc_Bnk*Svh8?2$he7X9mE+sJcfWcPu+3g=Zu?WchA?D6-E5 zq7>&wUe8q_GoQ;djQyl;qm5>J8=07ix^C$O6_qMR1u7a@qMo7J;;17RglcDr5J7Xj$}%gNqYQN2rM3W0ls5M?Va48syLDDL@b87snvGF|1kp`xMTuJ`_pt zG_6jRW0hf27VT(oaI6VIKt?f>j`P3pc7P*A{j3X>wVO{Sok%hS3hDi_Fi^n54~ zne(yfy`EMIj`sB7$!MJ6g{waQRA zD;;d4&fy{Lm-Vy?B}$bXbRe&)F5cQ9AEvmiQ`&D1XpUprBD=rz{9W#DQriEkb0>J& z3hk{8&|G`J8SQr6+?RbI)!dRS+7n(pK+$gihDvV8@6XK4nh>K|Fsui%3xgeA*VvwD z0W`z=cdw-PyJ%&can{!(R5Y%ee({=rBsKBTw+84Lrm1Zi6khGMb1OSH*4yP_8O+5% zB4S=bR~RFcD1FdZuZ#MjYCqIfZyFVIBmQ_pGe1SvdsWD-&ktyJw**cr&TkHM2j6OV zl486M?t~!0-I2e`vnhi$f_VgAIzhet&-U>|16Xq)oqnzb6OLXt_*lG|Mcu zb3j9Mb$x%!QtlE7s-l$+7As)MaOId9?&{-Ha9;+F+uM(STFAeUVp#b4X(iy0n+|$AAklk_=E-z6qrtpEGsl)RQ zO&KDt+Ie7hXFDhdsbz+`bd;7TDCPDl>7JdWzj@%WP<$oIlvhyw=0?}F4PY>40?pj; zq!9CB(!=L+?sU!J9{P>XuMrA7Va9WE{9?YDRCy^q`j0#U;8Rr4;7Wc9EJ^`v>pbu( z0qYL{I^;inyYuBWukPzNZ;D^OqY%O4BI+OSzQs(63 zT)|f}$25e0;M@w3mmQJO5|(@qema=q#@R^Hx|y!#z}F znh(jU#d+xQ`&wAhX=mX?u5fcJL3TjL-rjy9^Y&(+{Q2vSBgdRONmUN8qy?5;u)#`~ z|E_QOUy6J1jJo+6`ihFrNet5FrUxu=YV+a%m(DOk(x*xu*w(JEyFn6CH4fGc<--mQ zf5#l4cB~$AzCcY*;uu%L!L4T};g-;|9&p+n9TMLc7gr@yqK6^F%ldzCEk(n1LBQ$% zsUHiC!hC#KsFQ`H+Lqf-Hg|@4=O8E)7A{%Yhb$K)mjpJm5kAoV2nDXw?FA6J*3KlF zIw~RXa_LCmpOcl9wXz85GuyRaZIENDNTx<7{Y$sGG~X0r)ROpwgfv77U~(nA+G!}Gr9J=gVJ=g&F6zV8RgX7*&y+OuY@x$k>T$j$5OM~`qG0RSA;)VQVx z01{pz@U+zMYY;t91HTmARPVaocE-4Q-g{&Xbnm&jI6AvI+TBNcSU+;Lb9Ryxxhx_s z;^OS;CVl~J>*nU-dPP(e`=4$i&W~(F`Cc+B!bj1$Xc)Nyz;ONW4}tRxIT0&kzY`QnH^hh)0zTquI)%n8X*ZKBu9W4f&BT|sf! zM$@#A5Lu3FMbU&SGAGvMTUg3PqG zYg4U6ZAAD}T7YNj?(Uvt!fic?5izr`Itesi0I;Pa#o6t@IsD!x*;~!X$cWgC2+x3h z+n-)NW9B*RZv62<$buf=`@jG#dY&{~gZlJm@9~#+Uw^x#HBp9B z!m(caAMB3yR=UrZ_^i*JaaIRlsE!@JF4r}B0E_{k`2}YH|AZDcU3v~b{^wmvII;mW zF-Fv)@cVbQ%*@R5qM|oW$vAb5eS3+Gr9w9{1CX*kZ*h?O_3Ks5j;f{4dGOD~!fz#L zI1TV|SHjz~id))xe8+F0nTrh>@ENM~fTZF%;{ASqyB(($p|C}wXzm6YYKZnVxj|L% z{B^InudZ|TdXMTE^vNUVPaZjH>g?cfTU%TEaUO-`2?SWKNKE7ks=LR+!eX{@@r&in z-!7K|4G_hz#GykmoMWt>Oy)6#f!<0QV_HvkdGtN=iTT;r+S+ZgQb@6RbI zkwF&?+djq7qt%+6*(_o48(7n-Aj#%VhDclG`}^6ygsLT`JPxsBD6YCkn+@uHjf(a0(Rr!mvGJ{jMobC`#HfXZF#~2&_B#tUZCniCqPx5Mth(aPn~lZc zJhu*$IQCa+wqa$lA zMgbCxdh>I09qK6m3=^jc)j%bsc7@&ii`an-+}^x}%7`dCgCG~9K-P~-YoF*%XtcCj zr8EH>OqnW|T)&g2X^@zx{R~Z_5NA@m;(@6{PyQ`4v*GZvwcB7TD^eh{P(<>b82bbC znV+vk0O`~f*;Zv<&gd+iH<)&!*{?oqU$Ju8h)>>vM84p8af@9O>dLBC$I#W)i5Vio z5jseTdv1`7)uq(&gcPmhM_bQcjjD6(UA?xfzilbq!vJv}i$I`U~Lsco#t zWDR%sDI0I^I?)G|TgS|R%RoON%UMylRf=iXn$*{ML$N?+)bF-QnUle98G(L_$0=3d zS!V}Nk^**wf`ExD!qeL#@R4CC8Qr~#ijJWQVqQqW&2t$tBVJbZG`QY%(Q7AP#m7;~ z%VS9B<`Z>Gu(zaKyVR~)I_6kh$O)|BN#EZtcPA$&<0WmvR`)$Ao127g74T=4lSs}4!y+qYOc}dTmPSvPrYwDxOfUoLj{PLqZ3@AZ{Tzg~~m$=2{W!_^S37Ok# ztry#A7~dLEe)~quL#hP>d=x8V0@Lryu74$iQ8`u}d^x#V_D&atk(rs8DG+{y7HDX; zwqo2iLOC!9RBcvcWb0%-ooi1110r1n%K27C)Mtgx31j^S@s@!P^zLAc5sarFyhBHz z5a9fHpLpjG?i&kvjn|tBiFs#fl2GEDVwZZ~K$(yCPPJNxgR=}O!`nNnCi;n@p0ZP+ z+hjDRC~&}7QiDZ8s5aOBX)*J=q#ZIjd)hTm$aX>b7?+!R3}9wNmgKC1e;a3^H4=FgV7j-OYQ8m z(2UoIA;&w%D31pL zAXHhIVOG^*ACRBK_*NvaMThVngws+2K2ui$$6tN3R-f70?H4a}9QtA{w0>p7=Xt`L zT_3D4wW#?mirAPWY$c_~(#6hufnH|-`X2NrecI1aCI(^o;gWD}`6iN5Jre@ZJzRbl zH)3e&SalrjZu&6DZKuR-Ds(}Mq)rLyhexXQH0d1PQCNxFgt=|xclFs;9p5^N01r!T zUQ792985)yi#x=`T|C7&SV$Rg6)2f{C37^I8l9h<=qsew@VBYD4wQ5j`mN&kF0avy zy)WtVv!1mKr9l930k~sYc*_nT*k}hc_7_s-JO+62 z{<8MOhd|@Bw>L(vtuc})q%4RAmR->MaucBpgV7|t(>^n24D|KSL4Y{jmPBk;ejFX6 zB`mC`9t_R=1I>&k*kq2F+clkpy&v`D8>Qb+*uF-8JIF6051_&qiI&_pU> zP@cczLl{1X?~0AI>RFzd{czZf0I?@uX<@M#yIWvi4ELF%lR|?Mn0^nWn5skKYbK_( z3kryNN)l*5;;F9IGmei+cB(oKKHM>H8vtUopj-o6V5D{uuc({cQli8RmX8h(W11|` zmax+b%sm*&S}c4X>F1dcyK(%1ZroP|L?JJ*RI*5!-JJe|TCVBPo1M@cG^piA0%|U~ zAN`7?h>#PR8y>KU6*f^KF=Ry`(~@|eTNYDwr0;8kJYSsq*Y`Kd%&73!UaFmCed-CZ zUqs85-+yT7%i;E%Q`qLga+n(+Ac~74<^f9;OqSbX;)0+h1p?UHh6@Th8X{_AhD@m` zDi6VT7(F!y!we4+KW=QC@%8GU0RYEe0aAJA`^>TX@V{bV8N<1mVl%4aA+Ytc!XOLK zptiRDb9{yqiLYx*iu_2x8Y0jf#msMgw_IiOQ@{K<$_OIp5G6+{p8!&^68;qqFdU)o z=kJ4yAK>}U3u(_S65;cL04cle`pyBO)|wKiCtbRywub~m*MLjZwD=fX?Kds0j7R~j zVc<0qGwB@TJ`f3_3LN@!ul5#9Nk;&mP!_T>5Rl%Dm=h1ET)byzi9$*|%z*18qa

    x{tY5iXHCcfz-y@I7Ft*1@6~i;mifzwhpaI)(PC0`=}Bk~e;|q!2I>tJx5O z;w~i*0GUufJsB0}cB~+BRcB}TQdkEEX=wB8xL%Ea!`j#ueYGLT7MNgy=uGbe=A3W{ zOq{}BTgmtc*~e)jIzTKCmuYJop(IWCofEXfm0k3P@t=Qi^G+T8)+sh5Dj-mKR6+C2 zs}h{yuNWbh4#_!ft@e4>i5Tt~J`QvhdC(7P$t&-v+E8(FnVI zOmQ$6z}jQ=W;tRsXUphI1P-(^0l9NCB=tIfZ>5{5Sl?v?v=E|+)agU7WL@Tnaej($ zx2?fVvW8|u;;vJ?tdmZ;nT^yqHEyC2n%Y2h4z1>wO((xwWf2#V*;N6AfH?Ony>=vYpoBz zRy04joKF~IS}D23YJ6LAo}@q8cJ}A*RV9lq7Bz0SDn0u>6_>2p)mPDiMK9L3iS+dL z$iTUy#&0OFb1xoforsS{z6YrqCAiHPy$Sy!N_7<1GHbsQKLQJAVCugnDm{Im@@GKx z&PfmQLX6{P$}9YJ_39c6SEJrX-)3Gt5N@{LTQZj4qiHVh!MR^ieyWRr15_qD>k$f^oKE^5m2-+LOGDMQ@6+F1tyTFFtlaQdPdD+|v(_9outh(f*?e zw;JgZP!d^foQpet7HZ)6Yu6SFr4$0u z(SAOR1xsC(Qe6Y+X-^_xtj&^6salwJK~m$bbCA6tfU-;=%_nH01j0HX;qE?sPjksY zj+M<@i^c&`dnEkP4>vCPy}24lBVQ4M;poTcU^C+F-0z3L>GcAr;+wItK5So0pR76G zpL85pbH2V7-EM+8hZZ9D{$F;!|8(F)HW;@^NdmJnT;j(lqd9YZB~G)w{%TyI;X|4@i)TTim`Vvs-2vWsH=<13cu4+?FGpG8mP z@^}bI)9K^`J#%hw_DX+DwA+$P3g9Z%@)D$G)Mt#-Z-Efn#O^O!gso+2m$}7vgHiur zpz?*ydUk4wf*+Pwk3iRefTXSbCdsQo$v=H)RdZMyUFcxOx_W7LN`*yRHV%wG79imyoJ>I zSS*4piH|y%GuTC=T5=8CSo~8O*1yd9Xo6L!$NOq4GM+MiZSh>58Z*Fc;X6y9!M?Y% z)g)ip=p13SJi!sF?;(^R5|;k7>=kD%kjQZFtnc*su0Ks|Qm{saFts%3@5#kq&KaY9 zap{mXn!2iU(w}Kqj-|+pES=3o%Gy2m%k+14i3NMhi}P5O@^lq}mWr3HjcM${n>ZEN z^DWLiFamn`k=#*R!DXg3{|TWeIt88GEc6Gd-(>Sjh_ZelMNML(Cy6XMscMn@anFsd z^?;ek#0~We^TyaEW39wL%zhPp4AVh{j)wIE~ynoJjPB*)(c=zB3~IUMhug%4ic3g=0PjeW@34rP zs&}%r-TX_Ck{dV3({{Ha<~Ps+_ermvhjnW^fP^>V3V>W=?q_P_Z?uSm%EsQ(%U7F@ zD!x75LO3J>snp?YP#N=9FC#Efl0`k%HMMbq?R^AHO6Qh*Xo-vJ?YIxTJhPD=D3LIY zu8NlSrSAB1l*=Jwa8SLqCbYkyDO{X|;x`capeliK^3t<=4yB6c=1$lHGQpA);+6C$ zw0(<0Cd9>dmPMm!c)JD|6ByxWEM*1FPMOyD`v^fB+(7+lPo@DDR(NPTOQveu-ttTS^xm$JweKt zkdtw#qyncmCF{6h-_F%*CbU^YnfGvAN7l?SC8KkszJyFmKdv88UfeA2{s@8%IjhXy z1|Q#J>30;-tn%wRZzi-vjte*Ck=vYhe8!f0Q9E0&5yE&kH!Y`GW!iJT61Jylg81HDXh$3(G(gi(RV~s=JvSM)j^uo~&M6s2 zunu&}Dkc}mK6L^!z(5;G=Xf;BwHysSoZbrndSUyc59h6R=X;!@*Ktv5{ZVG+$=!2? z5dH+=Do=rN8lc;Z{jq9{WXaHWrj5DdS~(v3b!@F;r$VLV3&B==ujBM=4iCc0Am|gJ z3ZDCpS$PS+Q1}Ie@znivzTJ(HJ_^FMbhrFFX>~3_p!IE|W-xBXmTGHRgEV%z>`hwC zX}fDdqx`JhrE{!o09_$;hgV{NF8|E;*AGiswS4HO!q)&gS1_HLZN^;ZQev`rmilJy ztVfb8D2DuKR}O6hS}8`8{D)5r=Yh9np9>rFYVR3LwvQ@=+f3sp2WCD>L|4(LW#HaN z;=xiMhX-u~FZ%w9&Zo*cJfvGO4DtFxmWi7JhxgEkPDsmNiN@`?aAL(f`}e$k#K{S= zMQ%}_b$fVy6i93P(_l?Cyc4*P1>9vDGw(T-{1!5qQrxuofoFF3CXH4TSxi|x!As!% zzB-FtLsT|9`8b@`n0?=xKOlwMfU*lZQ73OEtB|?c_Fg{J1^%6Y!efP4DX7Z-9ya@P zKE=s8|KR=;ncbERS{c)5wx9131ML+Z{7dw^$GP#@HE_H%>fhtTG79zLiO*Yc64kkF zJr8W@7lLuAaR}6!mwE7BI6;9z2%qsamJ7Ukn*SX) zp+T+^PWW%z&|c3;qJi|(E;s1^Y0~18mEe`0Lt~Yu06Z!qx7X(5>{gt&DqUsq^c;NZ zf|#ZTZm1#Iph8Uq9n~*l6Y=0w={l59S?@32HjzlfA}Vbct@9Uu=o;WBnn{s_mh3U> zNJ_vk6)GlUTHj^8Cm~J+7J@}#-9=Ik8|Dhf*j-%nU9hRSz3ui+k!{qeame`cob_N$ zT|>V{&NtpYo&63e%w95JHMT1@bjjRfQ8K=x($xR$w8L(BnETScbX1M@)~Q!wnb!#9 zWII$`I2{N1?2i0f(fkquysL+zcE`*tMzO8d`_Bpi^CwRe%mzDhnv%_CJ%QJrfnIUQ zQ18F3x4ka8ZCI*W?de#IB(sJ?rD{h-ugLk0CKUgxb}$Q>A$SxJUT}A>$g=Pdd@)lY z^j(J|;1+kVMwv)Hs&jYK?f5+UF&_m}gfcygO#FDCEi#f1*Haz@A4;h2vE0G_LgH)_ zG9=&xWm5`ZWJ3wE?9TG-v*kyq<_v8+1*O0W~2)k#KTV$nb*s9&3S{N|9ZN@ z&yUY-GsY!{ah^x_l*(vYP2X}34q^Z0ko(aZl{Z}3ZlswreLEdxIYRO`@dh%YO)6`R zrQ-@q#|=qgT>(%^=A`>z+#x;=x=0%|tgJdcxT26AV)*uj|ZVgS3>azvVc zhF!{;eY{0~-!FLKVt35*Bfhjyx#d|{TDTW7DGP_GfL z3K4(Y!1X)#$xoIDcK*dy%@}jYmP=65;q}P$2$AvsDPoHZ1i}C8&J-X#PkJH z#DyGAImCaE(0e+8KoKSJ`VZa9*I(hk1Ny9ucb_Vn%ZeuFGar_@CY3Ge2KZM$6ybsj0p8jKw#+ICX7jrYEp-R_&(ep){RdE>4UT{PbDxNxzQ32VH3Q!s z9z~Qjng(jis98KdceKmI7Uy(k4Re%K;%Z8K^M9;#Em}VG_MsQf(fQBT_8zaI&U?Z^ zKZ7`qjJ*8ozb2AP1X|A06_M!}xIkl;BgUVJ$!0K*RqRl8sC@k*!}{88^wYJ zvOiqMK45vA;P@!Plc3eb-e0Eq)R$x-nU{8i7=izF2JW^@MG+BCiky(8)Hci3KonDe z+Qc0Y5g{J#40WyU-^UfIN}zg!LFGxq@v}Cy`(By8mF>dD1ZM{fuowDIlR0A%t)5#C zzg}c=wAf?W%z5Nu4%sx-Gw{lx1N8)k{`QX~$Yh|+9V3`h$9Q)~BuWI7*rxkFf-6T!8 zEmpc(PTx)~I`*R$eMM-y2*k`L+vYDumJNG9cgiWl6Zr9>$Ly`qOWa!3_3yh((+9j` zR1ghS?%(}Pkb|H6X+l2102QmwFbs~UXjT^ibb>I6fk@Pz>SXq~ULcXb>7p+@ zKKASAnxAvu@*xKW_E!YX86kDHTGvtfH6geGL75=M%!VUl@zPK81JiAE_}RW%=Q114 zvGa&oWqH7`Gkt27AT_$e)t$(@Gr~JkGh)y1xkZo;BssHW>-hZDXq{4hQ*J)Hfk_tV(0B_-z^6 zd;FWumb(nLmK(71yiK%Ncp}!}=cz6z@QHN5-jaf}*IZq-AaKs~}^5vkEl-$EISo#ztpy0aJSs^=UdyF+r|e(qp`9%;{s?(=N$;YaK}9 zP~MwFZ?q9^W>K-}mWz7|#z!M$8P$I8%)7QMWaJ~v98dv{vQTwjzV&wY*XG=LcWg4S zHOA6()B-jtHdgRdgF!>wduX~<)63(|{O-WS&8armRZP&=rky1r(v`@VgP8I>g&AMm z8{`WoYnA?p@aZ#)q^@F%s&s%WTs?K5^Lj_U!qpSX$LUCRYmdtQXRe|%{ot~E|YRBOyut1s8fyq?9XnK^7W#O zWr=m}j^cGYcnPF(P=Y&Gd{oCDKwW&pysLRfvhMtBHL9YQ;hOos+Pe~{CX#hMZllIK zIfu z;DTmQF)j$mBC;i~sym4Re0tx!x#ynq&cjouI+g0GzyA8`ukSBAUq8G$#l6fm(tM!qevbhy1nHmt%}gieyM}!l8h*3gS{@WbeS`H7dJ5tEDgf+4a)!_%_>L8=o3H zvz=5UX*A$EU$;`mCa(7YXFd_D@4E9CGx=Oj74F9Blb1EWu`GI5MJaBCnVXAV%$F6vjs;XNZ@3HI{lRW5$c$0U!hehIEjqa5(JznV z4$5i=dEmj-xd6dBsadXORV2tOlldhz8^>cl&-)#BdY$u`PNO{Ipt%U333~gp!P0dZ zH}if1d_qpP%eK-3>#Q<_=0zHd8pWmkuGqzKTSgfsdZ+SjWty36lqC1xmoR>a2#YL42~Jt91)J2N zEBFCB`ryyc(U&B==zOnvl20zIGMhQ=#*L?Q?rqCXFwd$9jF_${TNgu5Z#e&A`H|ci z=MqO{wdT&S0Q-nBc;Zfdvc77Ehs@6BCy%I3u!x#}Ec6>Yqi{slIGpp1)^Y z>UTDJy}@d(*}I^1?54u2ZtLadyz0{{lVXHzDXp(ID1WW#`jb5KMbf6p(O2Dx%E;?2 zfS3e#WVsn>wo@xLfZ^^17H85{FZPGn)Z#vXH{|F0qlrdEes76ZmlppZFnM_HxLrkn zYi4j345S=6$L_wl*i>r2rtn2vRXiR~yz_cK?yYXwsjmy?v45j$fLQ9D<*mO@s&1U; z4;c*XyS7O>uT5w=#?v{;5St~fYc%0D%f$4K)$O+XvY4@{2EsiMvVW5{de^Vo^)K!e zD30a3+dHZtgG7@@vTv-zvvxc5j7Q_;S%A50m8*wKTsHlNqt<%rioY2g5%*{#_WW<= zWK-}YvE0>)LVUNkcF0U;7Lx zfRDUx;?0>MR zji%J?36TQ69}F8V*>V-Jj`d5^Q`ihP9srhyn$FUvV| z6^An-uECVY{q~l9-~>JkugB0W2;-LyPHwfjpnV*)9%U>|eGiWOpeeS0@QIawlT`j< z3NJ*6Z=|m0>&gd8wVRhD&*sTa_+R{RtINGmc1FRi{7@(_+$_H6HZc*Nc4Znr@Vhwh zHQ;%{pNcgITxi+WoQUtH+(&@l#5-=xleN2*YzzuywKbR@<+zvV+(x4PiiIg?H3zeG zmqXcIMgPM=85ATO#hPp4d<- zR?52)cJh*kPgQ4czuDI#OCjEM@KR&F`n79&TfJOGQLDR@yxLCbFz)+g_ggJfxP8Y= zm{Bf~XYs@>XXUC!X_>=AvFbg$b9L^a6N&1rYL&dJofoTm@D6lYDUo+o%2hYzT`iLH zePx4MmBYlg?9Nj4b)LG5t?E#}lB;B5wM6xbcSqdmpl*@Gs@l~b+897$>EdU+t$RzO zV~@2fd7jH1lRE9x!=~+3^N!@y8brptZtn;>ajf;lzP0JD;p*~W@#+u0ag8sgu}xHM zu5Q`+2cDF+OlpcqLb+QEFNw#rfm8YGr-~lSS3KXpJ*I0}jNeUinHf(!?fIyRiAu35 zO}ty&p?aWh15&>?48Kr+>T=??lMZM^K}VNCYjLgc$I@w|Yo0s^aaE}g4^g!`Q`#3r z(C)pgxAQN&aMFV4+N9pFpzF7nANIOCNAbn+^9y$8b~yjC;&nt^uIC?ZrVT3hMf+-J z-9OOxmmyu2!L?U9V3E_xwD1_~IBAi`DD`abCxf`mLg~qEyj!PkCU;+p@^ig8iK`p13XTRjgC|z-!X1I`O7khU_@?t4c{} z3R_|#=iEPRx>MY$G-=@fu>b6vqK=^0E=5DfsYQ@WRzrlUVU@*LQz4ToN@mcQTCQ1) zZxxohBg=JVkYKh4=PHW^cvio_w`vt{J@gVXsDFL_D)ycJ!$+&{QLXN)c{0wUA$Ds# z=QE}bHOp`weSLh1vEj_*3s;xj+<73~)+Xa|)tI3R5=I?&8#5-;b9nY?TJeYcss1bH zo4ywKw#a2Q(S6jC@6A6kAbp-(Ej28a{4dCvNFI8PG^qdD6(#ol9wY06@}UOd4?h+0@2P>bB)sA>;b~vIed{z z5F+deey~6(bjbT0JdZE%^$UZuLr_c#3AS{DPLQn<`p|D6;q5(PK z_pm;NPR4Tz1J?gsB51#-fVwcjHnfRG0d_}%3Sd$}0u8a42!jDWQ&5BkI%mK{LlKlk zBY=d^X>^1}1C7ur2!jghGJyaja1C?#Jq08{cg+Cz!!}t=7Rd23m}7&XFbFV*Lcl@6 zL{yB4cvn%MJpW4G5di%QQ-#?R1p*#4h`lYVe_51Mx2#7a<;=R+LR6ugA8EB_Vn}aDMXa&KfqB6+f27Df&9dr{FjtMg+ zU{LTbT`N#15{ZC)r)hviXMqKYCuj(`4M02So-kblyMQ*KmoR&PHlaoyJ;k{87>9I$)xiqUQZ=X+HxN}P3}I@F@DYQV7IDdLBB zoHA1HMF^6(&Zbq_BcjwpeJAfc5_Q+>m)0R(9Y!;HZ-^+|sI=q3H$*KFK2f)Mae_jH z2=Sw126k#e1*@FQ00SbU6bhuA*9?)u0&e^ZQ05s*B{`DlH0OdEltJ%%D)f@Mk;n)c zV!VB&wKwHl*;k{R2r-|KRe$r=bccf7@r(UgEaryxvmPWXHEZ7Jb6DY(X14jcx^mF1 zfnR^KeOB1Ar~Be1h`DQiP113{s|pJFC&hrxv1XM*x978*5U$rE+Ws}~qMIk&57{%g zc-J2%{^64|tTW!U>gDxn@>t)qmHhH=YnMx{(ya?~Jg%9HG_b4iH1ZwFPDd?Ii>w%k zlH-=ObdA{O7T~*(Lq0N5uceNuY<0>NrSD4BO2P4`ZI%3X{9Ts`mpwL}PMMhAxMbIni8YQhqth)jey^%5UQJb|p0*IJKbMzJ{5AQ~ zR-Y{!E(`XY>+|!BJ~owik1Vz^m~f~3pySjNRsCmfI~zFcvDcZnw7iMRt;njWW6iB^ zADugLjIeY{Hch@_`}ikmZyy&p9=wtIUEJ4wT$tZizN~E6ZRIfeZrEtF{5Y-XyTK#p zPMXoS<50!OH_NDH=!o(g!*f>m%m1;9wD7C1Mursi^_I*}IraQn(8=agU%R%e`bcb@ zQa_=e-mhcm2@q%7FJ9aYAVTHofFW22dcY8eG@2^=7$D>Z2}>NMSvVdh(6$b6!@DgbN~^5*~CYHhz+*8 zbLoMT^#Ee8u>-YYz>tFeOIrB107ELO4-B<$%W&6i?Ai_fFXsOb4F8VoDJl z0YHEap~D38g}Hsqi=tRauIE_vks=30fS6ci4jBRdzB{Vahilek{a{}Az9OQHHMoiB z<%y7CA4F^PzpVzalct)UGg1^IXb+4EaLR|&Rpio~^0udaGc!zs|Hyi2S8|>|atn&2o2Yq#G2h_*9 z5(EX#f$xHvI%hgc0_c@VCX=ZY5*b})s;9ZgP`(cVMCMEai0d?eAS|YVAi@XHmBAAk z_=f~)%1{Ogtfn4ibS4NrdzFC@w`Um(gulJYSiR~oNN_iXf4Y9bH62WLk1`4ffx4HW zC>ez6-OEUzxnBLEWIC9nZtbBIGH^LP%1{mG#Uy=0*?dbdY~VNMTOsFdD%rqVzN-LoDOgsDBs7-VpQr7H^y^%Ml~ zL$SA*ISQirz=jawlAs{C1TbH~4fFwC1dlesdJ=_shK6D0hBAOQ2_`0U9XN#l0!_@j AKmY&$ delta 21278 zcmb5Wby!qk_ckhmB2t1%he%5|NU11DizwY8J(R>yTUuIaNhMXfyIV@SbASPchN0uz zGx)yecb)HC=X~eCec?0vSB3_!79tH&WlXs*Esf79FbwR4mr zK_&~y{5N(wax8K(W|?5W_ji{twYwUW-#gmuaY{J32>FcPGud|fH5<}az?7)$f~37X zRleFxy*$poIuHVoNXd(t0!cC8Vz<8`wg4Ety67l4L8Kyqt4*tuQ_71u;9LNqzsI({ z|8cbes0S`%_5?Ri$2_hOSLa9st=Gi@7gF-1r2V3|psjiRD*Xy6sDE{yf2F`W2B;sL zMV!uEA;$Jomp>{Y)V21G^mO^lok@nZ>3XSC! zR4?wmP$9>VX1NpV14)8FxY)9jcDd>Zoii{XpCUMO4Cyc#lX6Vyh-KZ9^Q)4booA|K z`|54%BXe&WD@tLfG1B$5a1S|LupBiFvVJ26sCPllXF1Hnn_jA^X zcs%0o%o1WfwmSaU=|ApKBzR~YIS>AT^N!fN>sR95RHmrJ3Fp&{5aS50P!s~ljoh4L zp{e1K-L-bJBX>%o_AwpW&nVXP1Gn%Nq{+7}P3GlV9sL~IYbeMoNp{_yi@+GZl`UD! zt}GYkwI}IQc0W~4OfG4K&e2cz=fB_Kn?366tefW=>*zoJBqI&M2HKjP$+z82R>SSa zaE{SWS$1O_$K=c>x$X&ol8ptSdrK%3b~+rE=_F6t<{4rqTJw}vyvZ{JZzg1G(>@ zh=bRG`IK#c^uCzE*RN-P_2c^0aJIBfRyjYaFQ+qC+J61v{&$8xB4u9qn*ej$RPk__ z^!O{=uIc?0JUFacLbW*k}!y8|hHqaA=q1t#>jw5~x8Qnm&2b`)$8oCSa1> z<;XjA7ko;faKZFJKWS0A5MDn~P`OZ|pQIlVc5E@;!HwfYBA~q6b&g(&Bcg`3 zsUP(e7GXu(*e~2=rmHGW@Jmmf?r4`)^YTzFz1CV)qMwhk?~G=_YxMFHYJ7D4oClwp1vNAR!Byq?qWpPNm>C0HK9j1%@QdGa|Iqwq6`d62?F~r&N3x zRwmgYl4r$fvGD)n{r^vL{O^1I&nDT-LZWqn;z)Z4(cfEiN*D@S{24H znqzX>ojb@9X~GJWx`+EIu9qWA0BN#|&?t{sz6qpYfpe1aR{vPi!PALYaY}t>s|PE- z3m74G?$ezu(#DfccixwD^wKj|vJr8b5hivh+08wk?xPU^-LC#sWwN+A4a#TjMBRJD z+1%u8ohUfj$~ev@`onX{uiS zTjjevaG#19mMXZ!^IU6>Um2RBx>#HA^^(3@V7XAy$DP>Faxm04VK?Q~&m{iE`46=@ zM3&4p!ku8W`c2B-CqTLC59dK2-)n#8pGUbixMWl4-;#a&e@ol|NmR6hi(Ok#!4Cd> z>fgWZQDK0gPJZQQ*nfNUlUd!HQI90%WlS1!s9Kd8m7u)c*yDG7TK0u}VAdEbai%&5 zJwh3l6&vMCpnLVA{du~d;v*_2+&L-{q&~l1qWPaC6HWa9Xby1A5jtCd{=8kNi?W{A zXshqFhl@L)qM<{Q_%woKY#L(vv=o-fgXhA*yJui;!!eFZP^(>w30i+qiRW*6n?M;V zB8axk6u}g;?e2G`sfvqs2(Qs$bOctW{?8@AzcpuQ4>>ByB0&e_bbo@@Ke4lD&p`({ zr}q|E$*AJ!E{*Zn0+aA7X&UzYyj!9$-7q|HO&wKSH&ASHx6;Zil7FZCb?cuZEdMFu z|9a#9SOQ!t%aT?ShKV}%FgjWOPpJ=lQ|%)otdhhw}JwN?ku zt^)ylYW)9x0`)BZ?@-c&|D*&4+|NS^UBM00v8PPYibF*UT5q~HM>?W* zDMPu~yX;9v;=IFKRn9k1zyCje8r(W@p5Nt@nE(3KxxWGvZDVpv@U1rhlxyp_1Der0^`coDd;_6*VCF^ddi_*JIB%A;1lykTc5a*@g{F{rUM*CDmy=rK%tLgR z2$;O#qKwWCb)jXHa|%J+v-Ufdqs?^P~6P~-|*PC7JI+&^WcGi5ca`yDH= zjor5T3=cSx`}_+_y@jrl`KvdUy~}CNLZ!k%@EE-g;!&#Vq&ohXVgOnCM6dvlbL2gF z$w{ul>2)476pdbMfIqv~Th%zV?^?JG#+TD563 zME!U3Wdin0tP;8V_9i0M#Qr#s)ZK;BUolQdN#!Mp5<28oJlqSw9y>6oMST4sHc?F( zdgk#b`pAjxFl0m}wP0-UA;#f=$;eHgZ~qxo)Hhb#G5*Y~&^0T+&WavcZgX;cZm$CCj-N zkYrW3C)gw&61vp+$A~YS;wN!6)nWYHI>Mkwb3~8rXSvp!K|TECK3}RFt=pBR-jCx$ zkNA0`8FJosRqiL9@mmf3-0tj#4rc=cn#wkvx?*`v(v?TgBqkBV>S3Gdzn5E141GU> zB5}L_aBmZX*phF%nXo9obqY5~?G>S(tmf>FD|bG`QjlEEe!K;PJ(0%~4bgK>aQ)U_ zkomys`;dSG+meJHm!%E7yG9sux$k}^J->Xh@)taqwOJ~I|Mr9Z`99uRWGC<@C8H8& z`NG3w)dZ^iZParnjs(3`gFc9pyi#}{Y@g>=;@QD*V5XhEy}9LkOfyKHCg>P=YdxV6 z1A*LL^jFuXbg_2ZO+jUUxjUviYBbe5qRT33^B;)f_RaVNdiHqMCVq6vA1X%F4AM{rF}u_Nk!S{L#pOs z>v7>uoUJA13k^YqX#3K6^P%i*nnha)HN^;RxmWrw!ZP@w?|rwdKkJs#?xS6Y2f!4Ont|6=GC&n7s@!SH0?eKqL7z~3qyZfYPujabgl@(6 z^+)-sw+;S8(=nZm=H%yhLK7J(nTgh!d>Lqjnr5&}A5B(uy$-<^m3_d0Nqj!>qJ|4O zVxUb?n@t2^HYS0Hz%XV1ycWB_NwM3;sS0fs1ybVHhQH^%*%E`?X@ZJR4k5Dl1BC(} zvrm=M0;VI9EMUN!|MWexe*mI0lwt$!f$;WP_a-bi9jHbD+I2=m!x#t z1+OVMtJH2^>Y)WkDlF$qx=cZl07tjc!y~m#3fc~@ybW>#+RagmMCY^76TR3w+;WfE z=?C)vobabwxEC-4k}-Um0Y1fn5gh6pWUu}h6X*11;KEu8M;g9T$ljuR_hZs&k_I;!)vk4Y$L)1v{J>DVC^b?5Ps3ab_)d_d37lV2>{aQI#e zi?_ENB7=+Wthlb7YbGAA(BT_*Xe5iRVT}}nu;7z+FugK-u91@d^i^SAZ=`RosE75e z$X3Yo$Vu;@%ZtlXy@l!|V19BD_eO#DkNR;5r}9A^WWK!?AO-bR_;*Bh^0A z_HBN(Ntf`VcxhAM=T5ta$)X4cMI@+@Pe1l4jh-~ADu5Y~9w)Nt3zjcd$H$A4gO0964Sz+le-(6f4Fbm2ow4sVyFxhrCN&=BMv!ZA3R&@2>=%)+VDr}b; zCm-C_5R`k4@gUIhb~MHO2Jy80Ye^yA>SzPIN{ry{QjU&YzE9kX)}JzW`InO%W+|tk zG+Wr5(zVOp7-4?kr5~L=$0c}=zYp8?hv#JYtF!k71BF6aLemy>ZnJkmtKdl)N+~dI zdGO5+bpo%0tsii~;_<>She_QZLYBp!9IRL${NCl|IJMJ>xb2b>So1uD&eqj#m1zNl zAj@lkpNi?y8E9*N9kL?Qw;fA&dntt$c$FbR)YP3 zIhX6G3(nau`(LSVz1o{^kIR%0m4&7=^&bB51RhGxCj&Dag7_WSYX&0yEIajglkEq&LP^9ay7Y)`-gK%-=IhWK zN&%O_fzQc=f5$t(y_}8>@Yfq2&@sIz%GDd6Sc>+(6rADk4))l@4fw z{j}eF(0^96y*;qhIeRFzRk4O%_(nD5bRLD#;DQ^S?)#2vnZ7>>1H$8j*{^A{T1am4re_STkq_!Q80fk z>|*SEju|B{h&bpi$gBb|gqV7IqMQqcssw~Bzto5@6WKxy^6$WOBSM$ER(iO@Q+AR% z|5iQyaJE#WYn+0tQ=qKXp#bq_Kx(hI_a^UbuWI{Za%yiT257F@Q0R__sm)^lY1ya! ze2^dLt$QvBn-Mc*Pw5%?F%3;~B~Qfl-m7W6HL#aGz43P*0WLan%U|IiYh^=;&%C(vY zHJi5jNYXQI9&(;~i15O7!}t%Z@3LCQ?m`lHNw&|OmQ1OsUx6CYXDbJd&BrD26-;;GvU6mFb+*DTDP~#Rq1|_RzCo;q^hvGYs+j2v2}^94C1314jGmZ2 zEkjz&r@X98RM_*J2C$BZqra}Y%5k@_1f`jpRP%&hjLLi||K!HJiG~j*ynNQtyO2oK zQLWYZ?chO+rahRj#wazU{2w-Tu!3?g(*k|KL*2OrjmbF#w{) z$hHUXsp6=)e?~));+yxejG4HbBo(0&V^$f@{TeI`Z+cqBwgq6k2_d<&nwez*x z!d(%+w432bF=}U|ergk@0@rODpb)9sC9(1bb?sL(gJS0BwIIBtx~XdWvfek7-zhLan<-E5xy zT-s7cIz!OLf)P5i0HUl1zaN2B)>o{q1XZkblT-rAK|@-At~9T(zoe{$*pQZ*^o=1I z!<1OwR26yIZ+ypJl4CN%ZOz$t-{#%s5w`1x|FX7FLe_~ipAU<<_i@Xm!59v9h;SYx zT!XjbNkI^N&~PRS22SPp^%ABl*Ev2t;^_B>b=>&N;YenX)+k8lXXAZvpMJ#pPW?me z-*M{}fO?*UZ#mx-G~{PQ+a!NRB))-NbXV3dTWPpOMNVT%D;;QXQRe&rUor-FPw!b} zZI7+LM`q%8oKZ-s$Xq_5kG^18xBC{i+zn&H81R(uVo*iiS1fm{wOxhpj}#IP9&4`? zI@2*BZR&xCp59&VtoV4utr~Y(nsshw0v30+WK9^J7kkh)v3MKFol3ureJhg^5dY5P ztxi^2a@%ktsJ>-m5OltI9{`4}G;wGgwFw!cT`k-qacl_E{duqZxw5{ zw&r0BWbTVe)z^|DYLX%I9o`%*Sshm0Z8TwYD~jshiY3DOZcF1BfP2YU=~$Lt53PP~ zwj{R3KOi`}%yfBGuKehm@s~&K#gZsLa(j90{@vlcp@Db9kHjoo+`rA?R?Noh-#dl; z*!)xM2s#~5Qw#xDv(#OKO_PyXP!5UC1OKP}RpZO|jZQPft&mZ$CJFZbcu!DlUK#&q}8h-^A3WQ`(o2$%%LFSL1JEG7p;mf_B-?UZ4(EJWA^m& z&f3qvCS@BJ#E9N`)h1OWZ20UKh8DYzD8U+BI`|_BVt=xZ>*T!oD*K2?W9zWcC@?@P>M(?n$Nd=QE zr^+9!!;`4NIvj8L^(am@m4Mwe++tv?%F0@W2V;E=zD9hU=sE^e z-{XNro?^R-FQJ6zhZJBxMZ(f@wifwG;vlKFt2#Vdl+Z5s7dc2QOmSQbF*0dFC5{k` z$*sFrQ)@=~zPQh+2844pmWdf2Ob+mY{P!Yii8tO`NB`A4yF!JFcvSQxR%m3#CM=h$ z>OfeGAk9{hfB2vmE@P-T--kIJvk&TZ zKYE&>(&}pwyX+5Tp8=!$9Qz&+=M8nrrYHoVJP*)jys7kd?S5g2d7$=Or%TzYB%$Y& z4q}LNNn$qcHseDn+YR;!35!e<@jJb2rs7yg@_T#gVrqDd$X6KYx8zy#4=FECRiL{< zmyid5&oHTp=ch^W7b2E7YJMjW*_wYZq(^IX)j4RSFf?kwEVaDv^zKpFq$}wr9cLLi z!3i4;Zb7k6E(l`R#)aECdexm^Un&SDAq`cNf4TqEVOO#ZQ|!iK->pG03~y3OKe4er z3!!1JO+ajKyKj2=o!6)|zRz^ul(*jk#2Sm9-L_TqAe zMJsUwwqV&0{7J^H%vmExiIa#DMn2iRpr8SaWSIVvRrRH%X2w1-p zbD#lhP|d3++$GlEGxi`b-aaiU&Xu_^;vUn<6-NsPI7aw;OU&uwXGpDfcM5X(!OaIb zw7tL}l;G0iH?OXwYJ06ykhyYqd#q69(G3@;QZNu2WzEpsmW8K{8ZDLhxPcjEwP9+Z z-_EFSro!Fwexu>WWNcxzK?1w(o4uqk@vu8W z4{bk8L-(RfeWPmyYdRxexXGYM()mobGk>g2@3rd1ZL)p!+MN4+>%o{VG?Xkl8-S>;xQ(D? z!zd13Rm2gpN7mC}zR%bucGlFb4lH6#@*=)}t~V+wE)aZ{?d%xt^2%h%0Au}ktW1)2 ziqQ()2AK(iXa$%3?g2M`u2}szVQBZM%CB=!?SIy~KdxS>a4GbmG_*wk?Z%Axd+lNs z`nh|e-DV}Y6Me0KQA4^F;ZDLN2`WUi%tnsCibfogAua4y>r5~)OR0ZxsDh#UrY`jX zQYMt7a=7?{A|{`_l?XC@cha%+ms)01@@-)fQ$lEqZ=CRT)k1<{KqWpP^7V(RKj~{N zB%_fioMhV~!)1aZP(Su__v_lR z?WhaqxY@4hV^i-D+j%Qb&}NW_$*KiAC6@t;B5rm~RLA8M`?mF4;TQ8fw%VAYxa>8U zk~?j{c}mPEULK&Og9kPDTtvxkr4qPFYF* z^2gGc&V574MwMA4*u`y2O1jq4_W5qw8#J0XrXhP`=@d<(osr3Z{i>JiyL_|#ssW1= z#i~4qv5&NFGjNYT?KPb&vr>z=(L^2eMnIDtcNhqDA&&lG&TJ+R!H`jWz-dfD=93el z=I*r}1j`4zx*UVI+(VabC#0@-4Z8?`{CMPImyciY}#(n z=KK<$hT0(o;#VH-Z?`{zOwPrMxQ~SrBfkH8A1$De#A$=I+n-Z}3a-|LoVUj9$rrf~enxc2JYTcHpwDJfH8T{OP*h7`Z zmoplg%3MDjdQPnE4*b}ryT;`_xK%{fEVQkDJb6(=U{N`-?pz_Bm3*E-i>NiR5nJjb z1}%qe*~L&N=wjmtz8~%XTA%*;zi2}}w>j5H!1CL08bHVDo@GB+)fatOuuL5qMH=J3 z0C9j7$%|Xr;E6^hhV`lhUGX>A`zZq75HYpRdHi_E_NXQXgs|+gah9dKo9XRNyZ|YtT7ofE#(fWcDJrC?y4R#c{IdHqmRu>L zxbLAVpo)3K&^%*u>raQG9oKX6AST3nVvu#!l4f{wQ;7OhI=A5SVZdvsGX1oY+9Z|; zY=*&uI)%NFmDK!Fk2``0L)XaVr|cjNzQSs}+Xt9q*VZ@k;E`06bFfnoIhH%;+n)_O z_8?|a3SE*2G4`u08-xrP1Dx)bcEgQ6)rBtTbJw$Mv?{DT5?|o z!lmNBadd`2+7nN@UbAag$JrOY9N_)n{eE%pcmG2hGn+2i>rB|(@*hu-1hgB;Dp73G zQqwEg-tUDB>3!_bxLOh9*5pM3GF5t9*wYM2K_HoUC zu|Ehy6I}cATAs3$)4hGvZMq@+8`hd@U>B83hCJv4+Z(`z02bAk|q;yO2eBPf_$u2XOAT4R1XTiab~WwCA=n^6Xn1HmWev9 zB4C-CqjVqL!Kf59`C%1_L$#fDVQ58f9YwT4+RB?e6}i_`6nCRuzvo2{GyFd;tAeK`C$>;$q?i^DNi6vuxs+mt_%d62%;bj(Cz#0jNf1W;paum5fmSVtOs zIc^(;*XkLcVV;J2j=rmqWeL1+{@YlA$@1}@)U;jWPQbcJXGWk7tMlqqvfLF4)spupd4xbxLis zK}QG$FC#AjsweXt)Q~IcCwK6OxiV;k9MrF3slZ=arW_a+0|5| z-p%974RRySqM}_HPR0LmW|d;?Im3L~pd(f|?6)3~5p7t=pE%a!ZV@4nBarNF0A6sq zlGH|6Xg{J4S^ywoi}4^ShN!tv$js@7zU|Ju1x zky}oOvSG#MR~cNYC-qK_|MKXe)hU3`daM^@zz5KVY zF;-^C@I^-Ryfib8zupKST%cPab{(LvWClQ{!ro8+?YZ-lF9pugz1=;iRcOA+D_+F@bH(~Q)_v#MjF`=Q|(z599_CF@2< zM<1+AWkWsrFSSy#ol4rOg+UiOUz2FoDV}&UW37I_1=W{Adxpx*j;Y`cPT=J9IeYWD zWg$6pV4lA$j~vyd>>H#1yBn#bd7i_}uw=iL!%906P?8-JZN7kiTx#W!Q}T?{JA_d@ zNG}-G&I=@8bU6_B`%pr33Xi2YP_quvQ*F!oJ8qr`9U_&l(UUq4ukTo4k?8(V@CM&Q z{yZ5d$rVhWJ>+RVmlz_c?NLkp>8-LyDQWD*(5_Q#MgP+_i?R*Xcw2Suu!)@4UexUoo9YzLt%r&qCgW;0>kNb1`U5RyqV`&Tknr6ynTQnx&+<`|h;ur`PupS3K3fFn@`00M%03To_tPr`PpRB>E&;labxtrC6u-?<+y zCG_P5{En$T36-b+m~=baDxSZ#7CzIoZeI9>tw))mWyH`*wka(!Y0~`8noiy)*(5bv z@v6$&Y5ap`e_ePKUQt9qQR*4*a$EZjDr;=p|D;=qJUtun613Oen>C4lv_$|^;z$S8 z&r(CnoGAM}wffSPq(85U9@4PZTG2i&*q?0$qc1d#fX8VZb6reON%SuHYl5Rzn~3=- zjE)JCOhvO~1f`J|-KtH&(b@n=RpHUMN=-*jGsmH6rGpyB8u0y>Q=@jhPBcCjch!Mj z0#K?6%o+*4g48`$X&|WOXgK(uV~|9f^~g6Si2Q6K-u>1Y456k+tR=k~?8^x*B^i0M zUx_?BW~20jFWvi`A|*R2Fjx85Ski{S_e^X|V~PpCb_KRGTrBEmNg2 z@_M+MzAfCB=Uund&JAO2edl8qir(Hu$U^xv!vh_+=5rx?LYdb|B|cLG9+=IP>PQMfRj1`2y%}fhFc(5|XRhA+^cnuYj0uUtk|cHsR(;xcT1Ve{?(;W0-&rJ<$&2BW;U(lVP=%$$ zgYMRTu7L^4?$ATEW?P;d^{9XSdT$8s^Ux}3?By?2VUPX^@V%8xLG$HHbzLmarxRtU zRo~4ctW)|-E?!y<()Y}jyKF*Z>iD_ksOq!71jNfvC(<<8bh$?v`c#U}Gm$X_K1@y! z(#9KI@7JTo3j&R>hZ*cd3JjJzZZHZ3MB;(2@!t0RnM1d^G9CTeLZ8@reA;8>#ByS_ z*u%mn!TTz6QK;w%F&*E3-fvL%jRib`jrFj7%u52ExQ!@5)6-A$|85pAop>?0dX1&k z2~N#3XQ;m@P7PIN`_{IbcjNA@w=Wc^?I6aJDxJ?9!2APo$C@M99J4I3!fnv@-*6bE z6{lY}{!!jz_`c$Uw*MC+cqQwDDjXiCq^Pix(rr0E=LfuBsJ3w8alEJ|ak>PB>Bbf% z1pTru@$MPX;y?5$)&9{jvHn;EtLX;Z`tiD+b^!ZhcAw@0tCYbHuAATjej+@O+m?KbnRCiU z-7xqO=;hqcr>X7k;}HX%Q1QcRk}4;*gKyT<9V;lT@Mhadr zH6G;)Hy>PQ76LG0yME*y)K5g<9{S6t`l%<<7}DauKUb<-7R)i|22*Ig{M~?fxmf6E zMT^s~woPGMt655XRX=J6hjta1(ta^Vrl2I<3aS6$+#sOB)@678`oIj6i5G*CaXFt6MOo)1GoKq4e^{^cZbyYN7q1USi$=g)WGCV)#AUin^%8(u*vU8~ z32xN@k%aZZ`f8lr;+7{Nt=eOGG54p+oZ zjIzMMEB~r?>vbrg9SQg3$+Bs4_ce6$GV{tYz8h>R!Bm$O<=Hx6Gg0VNmH*=g@N&+n ziIh?*KEhNq;e6nRo)ylRgYI)8c)}}p1+~})J9I<1Qr;^)RI)2~sFt%POucY#}V8)t=mue4v^7sceXB zza6BSvF(-H0+&#*yzRNg%w(|In2By@{*ZjV`cBo z-yGCg5yZydG1CpaSHb>@u*tAYNEng_MN)%J_yqH5ehO81JVa`<4$9sV$EI z@@^yA@Ytb%?C03yFb`3^k&=upX6ILo@zt+RNdQ&(Wc8ckI`U0rvSary8QX;Wx0ZHbSM{^tH!9J0!+@*QVH3h z?=8hM;(^vHy=m(r2hFxDJBL%@NTyh4ZLGdgQ_;by;W;WJP{x>{P+GI!xFM=rV%_fq zbGk}bdV}BCIDK6M?wy%yh(TmepNgfPsZmT@44Q-}Pq|B%6Ur~wrijp8eQqGl){eZL z=k)YmN5ri;$X@i2TQs6nx^|bOob%L<_3Vt15LDK2eLq7xJ`TU;|5TPq6e6;BxR?7@~o12JlqT-;{7N2)E%-=CcqH8wv#fB+^Ws$#1Bj9Jh6lkd-~^RpLLGI(M^1g*l2 zqR0OvmglA~PORf5PdQ=8oIfPYQQ(xFQwlz$uDC4|art%B3Mq*{kZ386s1G=&ztn4U zC<>#_Y(g| zh!jLy8na4bGf0%c7b+il^h~9w>dS2+gHfM*?0IaD)#lzcOL|M2|tE>iI$sJ)XJE|B0S%n2&dwIwk9HfmZ<47NlfU}{B6>zIDE%bG}Gsv7)S+nsQ@ag9CLN@?t` z+-IPCR6FVNEGNg*QP8S}Y%jt!hs3e&1b{-k;3&`e&nQ`i{=6BL_;H4? zrBl&IasS7&ZpFi?No8vgJGlKhy#9VOCCywo&p#(S!o3Ks@vy#}`hXjfuNLOWi!OAnAinm#?5EIp=a`NBXh4R z*1Kxf_QfTUe(t)44UEvUun&r`+Y$4SK&GxG+@{@+H7mmvC_|5AouV%P^WFJf{ah*) zi9h`l7fX3LFKaXd>z|f^z0HRG2cV2%+aPnp8_T>!dP?qcVgl5$$sv0(FFW-SEA8hG z0gahxo0CluWYOdjSAVYyo48{>yx&<8EKDu1*+zJl|D(7azAdp=+aZp>JW2x0b5y?@ zUlQ4Ni;T)_81|FbnIw?0H7CZ?c5YlHXSITp%6xqwVQVZ~o$QbZ0-2rf!q#sUtG$jv=Wj|Q)YhiUX-n?d zO{G)|Z$?Q0#f zTF?^bTcq7}R~j>qgQ@!S?r`^xJ;&OAKJlGjYz>) z)oa*rn250YqVZXOU?L!S(<%4ct}11A62S=N^daWfzVFx1~r+$y;gyqkLE7_~Al5pTmQ zBPu4JpZ-?0`aQA#ag;P+d1>0cl(1^qalqFAh|xkSi584_(O(8j+U)Hl<%_Chc3VEI z5SHmTqMeA~w~{wP3RcvPI6qmT-95dd==2R6v6E@6Pw{|CXvW6vq)d7vara6qb>_5m zz{+nwOX?I_)i#Le$V=U%{=wOk$4}ev)1xQUj)NtI0RfqW4J-&Q_z3tz`Z+@6*RSV0#6+aQ2b`qE3z~HNxH= zh#qv3A5pk`onRl#`EdsdOMB*RU9d_Hq+3%RsE)0j4 zB}-Fo|K!m0oc9Oe#Q0cFw;K_ zkt4_Q^k*WL{3Rn<`oKu)cM#mVk$~XV)`{j|fz%Ee`7O|yvsc`uHAQLw>HP> zrOzLxA~w<{%Yed#Uhwle@q^HGY?`yKtTc!di^FHi0;X5n{m9%S4ww?=IiwaPFiikD zae+yD2W&9!WOR;qHHR>8xTR9b*BObR?k-%KdAr`UlzB)jI74>&-WI-@G}m>*IrfoG z0K47x6hr9Su^{vLtR>?pmMR`WDHgNZs5AiYl_<2Bh`!2$0h3BVr83l_@VTaXAE0kY$#vILE^3D4r*9#{+I;(&oQH|9%{ghiVg4w4o5a4}4+k)xGPU=5YmZ#U6;ipMAc05*kMr z;f_&eQEnkB4?(}OBbC&sLAPBL`p5hn)?XqqVcF$N0*D!c40>T)5~-(^W^T_7bTc+w zlIw#PI7GS^J>a@CR<(W_Jhn8C>XrF&`H8G~>c%o&5AEA|Jb(3{mIg9HVCp*;(1&WH z@DO^{l~$8b#F#s7<52~tDLY16>TMsTQ8?D!$yHd4{!y8E_$ zylwm2D~D%ui6wovLbt{*Q6jS9_N@-H(oo?Y_3&ISPIK=Q#t@`jmldmXwlbosk}&G@5!tPQ-FgUM|OH3AYF)fL{dwEpC_FT0U{70A|d78=O`IO)2b*d2v1X2%pPl z)TPa3y*@d&LszhSid$1A2}D~$FgTVHw!>V?H`}EWkd{0hEV7Dg4zU}4xxky%Tg{UB`}-DH&IQt3M2?QJqvk>k%OmnKs#40fp1@Z{N^|P-;Cl&Pl&JT( zt@UdSnQ|%;&}`Oh1@@Y`45^?hSBva&fW>hjpe7c}0KAUnU6xKf6xYK~*e<^*n;?!K!VSKB^QR7-S}#-k zo7L20Y+4ehWqV`&nIG5-Eek~cMU2UPwZ#ulP}RrH8$XC+%OVE3vdo7Ee^P)*iN!t= z7Ya|A$uaAGUiP+o`|4uRIvRQMzc%Ye{4%GZgYPenKED6*;+)8n^i;EKN+q8bL;HMS z757scRXyh$)Nsg^4B>2sEm4hl0yuY_hJ7{tL7i6q4$vlr(=akifUK>P$9jtDXl@_t zzTNq+b0Hr}yR-uoO}EkRm6H7;eF63tBDGR!_BEDjN0(!-OrB@_yH(L`n{~41W&6GP_j&r=8l=jbxa{jef zKkiP@LEYV<_8jy4ms{9j{2_1jSMztNlYp!FRi51j!}Cf!&F?gx#d_(^%yHA`ij)@L zfu$F55b81nj^@MlbMMzMhbJ?Bjs+)Pu>?JmtokyW+$k(3Xg$=Ky}-SdB6%qYFW*l+ zrK}sjPQI8{>I|E)+xtB5X|OitKW{YTz=!`!slX_SiRdVa3xH0kg|`*7))9vi6;Ke* z>h9bK6tMX3h((QFuKZJQ#sj6wMheNU`p)sUCfZRTcQtj3aL25RE}OYBF*CHy{lb3B z3^E_LOb=dnh0akDF$dv&rZ&4N(iCnT+c6n>iKewtS)uK|SEZg4D}sO+B2B232bi+V zt^A^nB3}&DiwWNxN{lb|8RN!hdd|!wn9_N@YFRXC?}v6dTG$Pnh?~QW=3?x<%TfN0 zTa@WE?}IuB0_(Q3zZ_Oy<|lrWQB@tz_5i;kSCun2B4@e-T+y5K}U&L z(1J;BI~65VUW^^_4ZxydTYK~d_Px6BLlBwP2^4fY*Q@1)p2(bUBUzEpCT+JSyb71d z*kvQ?oWd{eCi5KaR+5+%k7YWRyq9D>qS>Uhwes{?^vOW&(VX6{ocOi@oDkhOEP2=G zkfp{cx&c;Z!8iA$vev{~*4W#3=$~5@UCjCLhP95e84s_oXX-bN;ze@kZxRbfw_f z%+ppp&TS*YSX9J0wpY*gusVLFuC(qRNP%(vOt$QfMxfNdqg?wtGR=Mhc(^#{kfBRAnDOCj#c#*pj4P7TkSQRQxK7fm~GYc-ME}n zPjoFGQ5oR5`dqPVfsCupILf@V)qPaZgvJ)wl@|=PdfB*0tRwd3Wr8`Y&kcfqT=`_k zLvNq_CfzvsdiSr)F8LEr40ertLWjEFAppL@Vy!XJdOa(9@>Wl%3tx26aop7~^S6t) ziYMLsxaiVi2!{l?lf7HRE{==17nLG@;!P&w3L#vELxG(b}FU9tGc73h}4(v7{c33#}Nc-Hn z;wzV9eSXfDvt!<=+&rs~mVhryAm zu)>JGvD4r0GPb5^SHM)3S zThBDqZJnzGPL3tx{frPt>>QWTNQ$e}cm~19s853p>GTC}@~_oM>rykdN>qnmiLFOB zm}D1>GsuJ8_6105O`e*&2l$`QIQ#ID;6pYmSuKpdU=8p-*0fP@tN$s^RS`85{^BRu z8X%I2K+<)C4MjBv-UouR?s~0W}l% zDx57w7W#oc&(Rb!Oi|f;9Q2XaB{+vU>Yn2j2gUrT-sTcLhP5O|U)54v;=G;@_yP0u zY z`g(q{+8K51_3f11+gBw$BKlwO%jlRV?`gLs2B79qHabR5;MxVrVxBD}TnqTusEM#* zl5pP*!X@5x!EVYjyH)_zn0irEfwjPER5VCvk#iq7X#Yz&`J0GuQss`2sE+eyND{3! zLuJhWYUA3&nz*v~wmxXF$ad}OBBE?5SoH%Ek_-WaR4HoLLKalsVJH?s2*esdD3AGg z_^1e|Xb?h@T@?WlvNQ?Ehh$_avOEG-g$OCH@`#XPG!PI-W_Bh(zg71Bb-(+ax%b?; zckcQ9&YW}kA2mByKUolkX5Jbj1wSHV$wybC%$jc-z4YhQ-D$#6Uf$l`4{FBVV8|6R z1kZrruy);mv<6T4!}Jlaxvy4syLy+)nw;irmZ?ph*KICsCANj0?`8p*^Ya63@H_RI>5@p7g||kkaEk$;3_FSoLt+`D5k(3Sa`q zYdRzH<_|uQJ*WghNpjVB$c3|ceY@`-Q`O=vnT^OO&|F2y-bvJ}!tUA9Zg0TTnxa#mEKdCq>rN zxFoN|y3qEBd>Y>ae4@>oN~oH3=8AfbAkj27cXk`Xe56kp9Tq z*CiHkJt0Yw#@Bz0o$I@p6K!BJFNr&q2v8HnKk)tbeErSS1Iz?}UaSS?1PWBf+xj8r z`-_@$caC))r`2z(iM;1|%inaJ966w~3SpIrq$+b-JO8&t0C$ivlyylpKYUTb`80lM z#r7^#9!*c6P9{ZcgIsYs32--v8C}K47I&965Gi;7Cp-dddBI-cb*Yv0-ojG{8ef~) zTIDu$qUE>PqHe~G_9_!sB~I-gPVKar3RTwfUgO+bt?S$K#OoYDD>lU8^20<>ZbeCu zR@`f(eKLwWIUCpL%9Qbbn z#je0gh9b}TX!VlgA)x|1|tn%rLrdA{3`-71;ehOQclP6DHYiykx$W;@;9lZ+lPf zk%ovM%XB=Eb&$>dC^^-A28#&HFU2q<&(Ynol zw3U|x%y0&>^}o5}0i?NaZYU+WL&?8`^(MDVkQz&kc=cs4W<-QJsUhqI>c-qbK8U_j zv0y~2GKK2W^dkazTnOm`rO5o@$`E1)ORNoMqMsuR+&9NIM53uXb>R;mE=w^d|m!+$Bha2xipih#Z~O zsx>gWFbE?E4OtMNh#XD}a81+09bGi!a}aB32GI!tI*n>T^d${#7ohu*2@p{UU}OPZ zSWtk_V#NvF;ki>kdR$NQ(d&20;=clZo2we0-aBP@o6u5VOLn{OrsRgk2um$)eww*3+&9IL8$ z%{t4wS=pwgp-qrKl!CrQkvR}TyKc7|u?vMD>WwZA z+UnoEm9T|2xaH5{!`gtbdd(SZ84B99Wo4$G7r-PgbiR+KehAHL7Yj9u0h)?){hsOi zGq8QSX|zd0@QwjkuSMVg%O4Us#^JHwvg1yNe-ne(SYc7dLas&wP&V=IRM9%MEdTaoQ O6h~ugYY+MX1w# diff --git a/dev/_downloads/a45cb86364a3602f7138b4466beb1097/beam-3.pdf b/dev/_downloads/a45cb86364a3602f7138b4466beb1097/beam-3.pdf index 3cca14214a458838d01bcce7c4ddf3928250fe18..ecf27a3a51c0bcd662be1ac4dbd0f1403915970a 100644 GIT binary patch delta 19 acmbP{G$Uz4q%NDGiIJs&$>w<7oy-75Vg_IU delta 19 acmbP{G$Uz4q%NC*xv7bP!RC0~oy-75PzGE8 diff --git a/dev/_downloads/a6ba697f4fd41244d4a03ae13c871d77/matrices-20.pdf b/dev/_downloads/a6ba697f4fd41244d4a03ae13c871d77/matrices-20.pdf index c14518efe3ab5794d65366b4e9533b2073d39d47..e074c016b989c9fdbaa00e44323df5faca60e21e 100644 GIT binary patch delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$Y=$OA7AD5ql@nQ{m;tL?2@L=M delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$YzF40#s+5Fl@nQ{m;tL-2@C)L diff --git a/dev/_downloads/a892d8f10080acfce9914123b164dd0e/matrices-11.pdf b/dev/_downloads/a892d8f10080acfce9914123b164dd0e/matrices-11.pdf index 06b544ba14c74599b58fcdb13695f751b21fc54d..a4ffa42991d171365ffb1b791e44bf449d6cc943 100644 GIT binary patch delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$Y=$OA7Dfi!l@nQ{m;tLd2?ziH delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$YzF40MkYqvl@nQ{m;tL&2@3!K diff --git a/dev/_downloads/aa497c934ec12bc50f842dac34beeab7/plotting-32_02.pdf b/dev/_downloads/aa497c934ec12bc50f842dac34beeab7/plotting-32_02.pdf index a217b2eb27fbb120faa8ed8ebbea70d6349baa19..2c1c3becb24fe66e9f2fd8ff637cf5fde9796635 100644 GIT binary patch delta 19 bcmbQ{I?Z*%7I`*96JrBIlg+#2?=S%XM$-n@ delta 19 bcmbQ{I?Z*%7I`)Ub5m18)6Ki&?=S%XMFEi5bfSqx2#4Ysf4XOUqB0GWXZ;Q#;t delta 28 kcmX@PRN&-Nfrb{w7N!>FEi5bfSq#igO}DS*XOUqB0GY)I>Hq)$ diff --git a/dev/_downloads/b0f2a5ef738f9e96458a670bdb264732/beam-18.pdf b/dev/_downloads/b0f2a5ef738f9e96458a670bdb264732/beam-18.pdf index 35d62056bded28864356389eb8ca6fdf54327596..e8aed6e963bedda496d468eb3f81b353d6d6b6c8 100644 GIT binary patch delta 19 bcmbQ3JTZC0G+j1B6C+DQ!_9MazcK>=Nk0b& delta 19 bcmbQ3JTZC0G+j0Wb5j!o^UZT~zcK>=Nn!^L diff --git a/dev/_downloads/b287a2bfc71470e15bf28009eae144b3/generate_plots_q3_5_2.pdf b/dev/_downloads/b287a2bfc71470e15bf28009eae144b3/generate_plots_q3_5_2.pdf index 796ab98e18bad2e0f3fde1937e6aa77a1a43b9e4..cb3f169c6d54a7c41b40784b825771e4ef0390b2 100644 GIT binary patch delta 21 dcmey`$oRF9al delta 21 dcmey`$oRF9al0+;|yWCqs& diff --git a/dev/_downloads/ba5808c3dcaa3ca2706d8976a3ba018c/beam_problems-11_01.pdf b/dev/_downloads/ba5808c3dcaa3ca2706d8976a3ba018c/beam_problems-11_01.pdf index b02d4a866ec908f4b30f031019bf8cfb66e1b1bb..941fdddac62999bc3b67994134954bc6afa91e0e 100644 GIT binary patch delta 19 acmaFu^V(;Fsxq6QiIJtD#b#|~2W9|C2L zk(;ZOgq*}>33oS7ugl{6j$U5wp7N5C@V_3DaPx4G6pTEs47y@;zhmwRLC16`|5Qky zm**hpe6xny4I|&=l@Vum<2l6I#@L{b)vNNSD#tA@^B3`4XOYb@Vf_-_^y$KeT=!Hv z_eA)TYloochew0uZaVTU(sC&q<>)$iUb{4BNAg0ChX&T==0&-hW9M&t;!b3{uIExD zloIe5 zm~3$j_y`VR0H43T`1j?%{qVmF0%}*8TIo3!-kzkf{Xzq_$7M;O+?*H0^?Jw1)tbuQ zu|wKaubwhM=D&Wp1!aWz#5ChC35YdA$Lxg_Qw=H|RPl&avf~o$@cYUv)O>>$N@ypy z!kG%+%{`HNmC?wW(i=wJPt!c#G~&t>%-wL&5j*f}ntX5d8Vxa|o1xa_1XSF99;#*R z%VKMOQg#~h;H2VjTlVrND2tzjX7A@64hcd~$xW#Fn#51{FGfMrUeuSgXrZ!8P_SIl zZ#SqfsnZ6FPo03c8(y3YHWz>%4rLv^HpA!n1%$Y#8q|DclsY)$H!27;3U*0ifdrxU zx~$FTd#v}dz^FzBi2E|)@D&8LvrzF5mD@dyl}&-#Pl9V-T1a@;jPZEw@NuYkncy6} zily-jJs|{@s6mj&ahf|SPmXab=9Sfu5r}fPv?1-s+(T3j13iK&CLZ<4cky(!4AA)J zugx!_%Sv-`S+_{fSu{|Uze;oLNqEPW;?DA6`8m+@OLfSdoeFY)1|M2f_PR6j=`DC( zMDE&ov1!w~5xXhNNx%Zpy z4c(Qu%`{eFR&z&%O?@ve#s>~ew&j6jL)jSKUL3-D&(>0TH`&N<5ZW}GrU)Fg#=g20 zOiFmwy0}|>%C*G=!fX`u%I+G5>IMN z-V1YsT@ahb6GGw%9-l!g_)DnvhM%uCHFum&mRDuQO<;&pARM#&P_yR4s|f5zle)P! zb~6*-6*rq12Wo!k;pr0W#EaY$g5QM4BW~-ane3Ew=FL^iNp}s2X)qO7<$UOvVH&Aa zF&W<*3+?RQ(}kMld8ultl9g(Ov)C9@_IfcrJdwF&)mED58Of-e-NPh~fzNkCZqb$O zH^vjLxUf-HO&*evp_Pk10o`wHU=z+>`_j7`?A*9^o-6I0zh`^@o1r<1OwNepT~{RWd)jazhh3IL8H4E+#NNaC4?SaJ7~!-)gO-N|-rnAW<&SM|2eDkq zN2Ar14<=ZJG+^Yteq(+836Dr6*TDNKO~01)!Q6kZ#0hEC>Bi;xdWL=R5l2Zb`-i{# zY7Kqk0u%7_tJvG$=ONWZa!U5K#0poRrdBv)7%v!0>GH%0)6^~+A7zBB<0iW2#_OK? zFXp1(XlAj8t1&=wPHUspdvnM`2aT@1?Ipz%(6ZM(KJO=aVyC*FV`}oe1kS=9=!GGx zoIK8@7B88-lNmZMOjSO@)YS3V`&mVJ)70YHTK~pW(^Xm7oRAQzm7kw(a&U0SdrZGL zLQhY*IXi35!OosjQQ^1O8O<&CAtHi_@(>LTO?MNL*aqvX@SNl3Gj?zFBKmBTiHUSi zmFS-Gy7C9DT?}p~z0kWLm=?3i-yf!WHca(&st}T=@mp%|1RvRqyfOZCkSl8OYow%T zQRSUYz6vX?8pA9U**{Vy693g+B~coA7|6lNnO{?5osyC=h)3d0KAN4?7_1H`TU=V& zZkOtuPk+vf65Rgv%W41D%3!fwWYAuBTI<}VNQw@n6+H{Ldx=+fHWT6>p$&e>rJCv6EaDwWc7ByCuVkoIZr*$h^Vx^oKhjZ)`~CJ+r$>=Kb$&A z)Z!j}(FFI~J66j^_5S0>yIsSPGyaGvQ3~X0{coZ4bYlk>=Zpyw*Sl zP$C=(s)XZ^?ISa#!6Pnogu8+6dVE#up_M_0p3F7m8bJ{=CEcu{KC!?#8=^q!h12E< z=0UEDy*=>aUfZ~FAZBXh@HpTU>v5&NGV`X!>aercjqojLOyJu6hp zBwlee7i9UBNa(`cw$z}Uf`aPFMx~MguKT{eKRXI7li*T-<=_rZ-9H?Ot3AD-rb@F` zli&08*|L!)`q!%Q3_3pluev8!d?LnldP2Pepe!%1_4TB(cU8gwEhH-f!0|RIQdox) zV!fNgp8jj39XqrEs?$J!TlAvemZx0Vi5O0^__%}zL!j}ePd`3Qj(z_=4&oz94s!pp zbuRb-cVVJ23xrwVwlN5^`3#xSSAs;&Qx`mj49w>`HRGpY`f3|#pgJ(ta#7XhPQqX? zOms902vhAUI!OJl+mUG}vGL-%LJ9BE&+|_e1K9EIHwgRe6}Ai0T~%doE^HBST|s3Q ziSz`ovtV%{bObUW05>=|Xk>1_VDD2Ht`YoJ>J;@AlmDS?u3KqMr*V3eg%Dqy2yTDm z=&0x5Fqa%ju0iY@Sz0dt!xq}3REe_(*Vl4Drr+o@5&HeP9UUpc#j@~2hZslsBVL(P ziC>+A6T5%>NGI*@TrU5di82NS z@0rNHz0o201!8d1UTt#d00> zJL3tBzdxwto56!LNUEZicaxlxFa@XX5f?CeW9DACZuBLAWVR<>AZeSN(s$*SVoZD^cU z=WIVS*m10Cacu}nSij*|7aYjf1I~lR#ui@P@o+b z7f10H*x(4y4A8Z}vGAq#5Sm5TM?WZ)z~4sIMDYFJD!~MGWIrT@PEWr9n2x8!As`-x zj~{;mQ^*d~dgXpXuIuvus|;Kl`>^hCs)gy3H0B4vYlIoV6{M<_G5i>StEY{~eTiW( zeXCc+EjsAloxLT>E?~krz)skZz!7Hj*{+mH36@=Z<=SMOkRc6pm)gtvPg3x1*sQtD zjDaEgllUT8{AH?A!RlP9VP{FFQ)Zbdiv1o=?^aS9N2PbjM@VaPl9hti*49=*xe_6F z=`-F1eEne%gf?r%9W}_#jMdmaTr>q6iXI#i|3;_H^rXoKNk**rQ6hEZ&lmJk_fOup zm(xF3T3qbu>B$5kFN3=xH8jfzao>op!v2-)4>r#z2bdI#hxJPu==W;U^?y3STF7<| zO6(pS%-h@Blj9@;+363m-Zu_NkshK8|#Mg8Hhsw$p!a?qsE%D!oUO zXx3NUkQT@tA0*mc_M?}4fpDs?DyE7MF&en3-GuD36jE3Bp3F+<;fP!q9&*z{QENpS z5wc2|#!A%={m%Mu%?l`Xve-zyZwFO5NzegHTUby)@pwahEVMSdD^iLd%}}%Pz=x{T zqH!`oturPQc~`u65fevY-`R8((!;|UH4HAWchRu=<~t@M=XksuY~)7=^S-VZeS8ml z9o1(1*)NM)ro;A;wMNpl!r9H`Hwr1V^NFV~frR|--5FzJFFB0sYdAG=@5laskP@V@$MYlB&wd_iV- z-`xk^D}zEfHBnNx=0&1T+$=d}n`zW?a-h=`JAz!3SL)Ph>DCAaWdyLQXm;}AqSMuD z*D43%l4p1J*%4kPs%P=w??a4he42UJXk1-KaB3hygN~Xito{M17eqc$fam%m?4ATQM8&5(hW;8b^HNy?fT&6YE;J;*J9c%5r}MF+ga%3BOPqb z5y6*2+T1{EcUZ9aP{ZY@^z^fF@$q>dKB!t?T@pPvkc-#Hen|2LnN8K#GlkWs2KJ=t z2tK3>BuGY-kGv7n%z`7Tr``)LJU32zofdAG8mAy7I)IYgecrGZ%eOEP*oyD&&0@2) zb+W`;Hyl<-ggL`Dlrh9!ETUrLMp_`<4f7Lt)3gtMENKo7nZL6YtDhX)np%6*p@>|3 z;>kS~E(d|70I5Qmw4i&{gOIuGWq^7U-K2P(-BGw(Ge~;ziB#btmzaqrYPrN#vvN2- zG1Kl*=L%VSO?=F~0bk}~0Sj6h+g>dy zUbz(7YWmV@#x1KKS)%9g&0oq0chOX-)7l~Ifax~DS?U7FIgO3C)v>e^_ewP-KjMvb zl}Vq2id|Ef<^ua|vag0!d^)ms-L7o0EMEzoNp7vjhZw2OMV^{LK+SK8-OcPC?2IMC zNn!P4Jg`Soha4~^ruy1)ri@)s)YODad&7qRg2-dYhH&| z$suAkv%wkWvR0_#En0ax5_)_zYgx$6rZBT-x=4mEnP5*Vdxi6E>tzkoS(YP0OqQwsn^ zb37cCaV7WZ_bWmZ zHsN>JoCC{!!yaRC=C@-`zJiw!uC!0F1o-o7{1ytA8H-9wjkmYALHu=ebPQH{=Ob*--qwzs;q79(yYxnyvaG4o`qCF4oHggcfs^o&QcBZy7p znQzHaId+|`3uBlITuBnd*bMpuEt-;v@DqS{E>ai}Z-v{&y15V{mMA^JnpfsEb2a)^ zw0OSJV%O!P>hxCzm1J$_ZB&BD59N0D;TPW`SB#lW#rYD(Wc=FK86pu>B{SjB_nw|< zvyHW-CC>sr_itSjQlb$tcgcrg7WmAqV?O>45ebX6i@3O7M2@4l!kkNJ2Bty2LrFE@v$Jo5w70mh@VG?G zy}2>gZIN6snpxAup}F@|zSyNY_25g{=M6PZqu?ejW8SnpU=R>8hmpRB~=eD4nL&;8s(Dj_50$miVk^ z%Ce;Bx5_C--u;r>wLcPuU9Q-l<7(I{%z`I9F5Aw%3@?XC)>Ilb z>9UKaq>2-Q#-@{~LTVpw=$_9CFVB)0wN%-l=N<!(IXCxv;;s^Kse z%R;hT^fx{ucaBb=D>Nx{8-{Y-Hxy|P;%hE^O3$j(pVk>TE9ENFB!`Uzf+bwzS8Xjt zO-a$rT5jSEXtyr0k3uZ=4oeKtIs?vqA3yO0EMLAJr>V_{ zw{2pvKq<<~`qr-uRCuC!!qt}DWnI<=N*r8Mp6ctQDZ$--7S%~yxbW6Lkz|W!VqyZU zqPkZJvG;jMo6emE)sl%Af|m`%+YOYB1>sWeo*!{V*@AQg<^`M=qxkEsmA?MveCU$A zyi;eIGIB4pI*8#eb?s+HMuw}*=~{1! z=DU1H&_=8H-0K&l81in6t4zyf5Pv|21?1?ebKg((XzoN~=qHe4n^s4EqpRKC+lWC1 z_FgB8MbREi3oAdywLpdSpKP0eSqGmw-DSD4F?`CaPrAW*FjNGrSC1g)8lsi1<+)cM zuCJ!)LzWmXc{s)j_p363+=KC6>U(TW#hajmUI|#M-eEfzPNbr}5BEf|bpRwK_8R~PRH>L}^(Yj03JEORC+h|_J zJn+jQ=N6P)|4(BAse1QfBrMDzxvmpv$<2^CIAgk zWdUeFZRzGZN;PobJf0VMu(4!4j(-1MB}VyBHu5eNuQUiGbw0!vTPF!~{`H-CF&HtT zv9a;Wa4}{47q>G2GIFOvT>PhBt9xyB$cX)R?Axw4@D@<`2S3@W$KN|Le*0i$?63fc zeLgpvlCS&djFDD-q<{g0udcyBosH%o*VHKW?@>vCLjXr`)=;@K8n6xgZ@J<69!!PO z6V6Anjf#es64uK5CCc5!c5Q|GZ)249?qp5jT!np?IqAvtpk^;;bGy%s7K&f&jK@h*G@83}fI2QypbATYH6uv*za@Qv` z|CkrxWOpdacj~Aac(1@R1#CsZ)|*ly{koiL+A_DfkTiC1Uh60gM2OF)Qh9fbYQuN<$J%M8FxT>38tDGX zej4xsPP3BkU20kg8n^|1)T)3h=ookh;NO@3_QU@@2)4*nWiLe&ZY+hj0Z2j`w{+AB IRqu!X2PgC~v;Y7A delta 8420 zcmZvC2{@E}`}S=j;VDs45kilBDM{H|Buf;=F3Ogeq3l_1D)k^s_9Z5}u}!u?mLY`f zTlVZbY3$1^-_P?t|Mz>}@B1Hz<8Zjmec#u1Ue|e@znRn;)e3(@Q~x1=hjqnR;g}p( zQ)h&Qw(s>iRph488IRUZ~uPVu03l>X$D|^yifJUC0wBjZ^im z-1z0D3(W{BzOqR~X;W~sXsK}S>mg7Ze1?Xn)d2y0v@nzPcW_Un;c;hyirTcY1gQ1A zG!`c^mk9R}kfa=~pTqR4;{uwqs#*e2@g2yC=?D~eB$$OCat6j-LDSSed@o27cL|}4 zH~V6tOSvpC3T{)S^%I>Ig02U#K!-Oq;};=iL@lSOESyb+Y=WV1Yxq4>%hEf~%mCG{ zoP>%(!W^7fvrhRL@j_M{WzYmIw+Ia)jsu|_W9Iuu*O(iRwqz=;Ma(fs`NR{5p*hq) zO?B(X4gtr!v+7(a6ly6qA)1&#+pLa`i(Jft&eA|1W6qxICgQKTmX%~vyDqBf4Ah)K z;;8ImM%(9NP3Ada@aX4EP$(}1g?>hvkl&ra%AM&2H(YA^W)(mZF0a&_rtiFGC-mX$ z^U8SeF)I#shwJ{)5RGaBJ^fZ4lSKCNywbqL!J0}oA2#n zL!fX}-VsRE2|-hAJ%aDxy#DEzp{BqiU!z42)0$VGV8%5egSvSG!SbSoX?jEbN4_3> zkX3xUrJvK+zRfWgidmGO=DD>sgU(-LOK7|9M$0CCwYo$NB&%8O?^P!20Fr@Xm(HV5 zJjhxI3v^wO8K>r#)`N}Ga(BrFp1i}YMki^u7@XGWj_DWP^^QlhGUCX$^GKQy$c^O> z_!{SB=~oSVw5Ht)i@i&}+eTaRJ0I`9^tz;$Qp$uZsW443VQ*$MrRx6nG^R2@MonVS zb-!Nv-EWqifZyJd*69bbq|2;g5WH`poGd zZ*-t{V@lh#S^)&a*#JRM+d`zziSzKIAKQ9`{Ae1BU*hl+zC%Db(#(vjFxUi}S7lG< z=Py08>#mhsyBC2F2}15GXMDw&iJIS(JP0Wg6=J4$WPpag*(f`G-IRrXT|46R3N<3T z^TXsYkwkOSEiCc5(WD=v4DLbQTr^`8dqw5zoM=qhh$%BPJv|-NG#v_4+8zj|-{YTJ z=yVBMB}PMD2S-Z}0$Nrjxc4JRN>lUtX3tEjXKG{qFpJthIM|wr)E17{%)#UJIb_gn z&C5K+FJHdgtmmdYh}hi1!Dei1Y~p1L)8FWix;S)lxt5kZ&8{?wI8D;S2FVx*dN=Xz zeJzO1R$HN)s3H=dN5{gkxdg&^H>T2q_#{c*vnTOl?Q|LRbAL=oq0H+Fl=rAK9GXC$ zQ}j8(C7+#@{8AmOr~cvI8z?+&``1`5Oqqvc`18#PKTpxrYGrLbw9WeRpI&}T2@`zMSmr!w+4Rl$7)##S%!?NpkKT#D{cQ znz66}6@xL7T+o$Vm^?bQlZ&Wj6$cs{}$a_mUP?BJ3-xT+7F}W z?)&*gHpzpi0@LZU+fn$+>|5MZh4*k}9>u#F4o9QZHs(7GoKT3+rS8p4tfcI+F2 z*do%$D&2EyY94jUZ@lMvxd6J2qazOQI9?!Tf?vo|B4fQ3F+GbV;4asRS{j+k7by9o z#{?u9PTt^2Qpe(|%|NAVk=J93bcOcj0+23i_hI33uL^{QO~qA5ypjH+Usa2NkR-Bd zWMrh&al9ssjXFGREG;7g=j|F8806;UES+j3R9Bm!P^g@|JeOiQsV8z4*MlI4`TXK4 z(p@9?3&uy^(zfGX%xUAY2P)l2#(Z}RyPu-1y{>*$EYSJ$=lh0+Zp=>+9LE*e*x4(G z;As1eU4G@6V+elvKiR^T`|NSp$_y1B96@{tPh#Q~_Wg8=E-|KsQ2W}ssDQ(Z#!6FF zwMpPD*;bcikY|{Zl5!Ead4F$Lkik?EN!@TVWUa7X7`*J-^kiv>T=i!M^F3dU$&oX; zlEwvH2|aD1?TM(Bqj5KY1EHs3wP!F2<(khu5MTm1J)oFHgfm4)ft{r*B zbTpI;=`NbdOqo`SD))G(Uz^oz8+#w!pnF+DNpaPjfe(tGy+g$1=OcA>BjIQE_G2sG z-#h3d-W$jV zy?ri7^t>r4F)^{!by@!~-Lc|>1>*LBRX541e-7gFDYxJCT?k&>4VDnTAuB90V^B9{ zEj(JK&a-TK4GeHRQIjoE?ZSs*-We2jEjQr|U9X*-b=_8^H?qUbhx z#ovegBG-SXzNr9X?#&_66gm~Mc7DR+pdY7y{bf8H{&Xje*}l^TUj z<3QiX7HU`W79L_0-Idi;fBa~n0bE;tmvz{<%sBxX`>}QrR_Rklb z=1NLSZ|IORT0#Qk+o!dKcvL0nc^rrE`Oc06g$kBV3Ez~y-SRvq<$y$kY>N$by6?fe zB^c|yeRwcm0HJJT6whyqr!C0Mbq0OoHDE-qv!M0%-CDoU)uFV*H@mt6riKwl66Y8L z)(rX02T#S?-=3Y{9!b8D_EC^hT3QNfLkES*Pc*Ceb4h9Ld&0{E5ki6Lx58dKpS~gN zA-$;C&*=$#;~j95jY7<63Gw)Dm@r^@>M%+_e(3iP40KlP%E-vrFaO8~QA+re`v^Zx z?L|+wn^zhKhl-axDW0JJou~Z1t){ckyMa7wmhl?}>J!wI?z+o{80cSLzQ`(Uv`K|J zFsy8;`R%zO>Ml9Ze{_z_W4Hjn$?#OLUn0kJ;AB1mk3pB>Ycx+7HEiw$1w=nPFe|7O zvbmiD+VohbVs4?7Ex!h1zDaiKf^fi(PFvR+(^@gVwjltSzXOHEK0gdpH8k;;{Dp`% zcEGu^wpVpQhpZVek99Di(6O*7JxFLF)p#ns6O{v~I*WjyD9U5-xG8$&(+`zcx-hYjG6RtKGr& zsL zS@$%)ikF>q{>JIohQ(sLW5i52hgdy4JOitHkY#GMf3cv5vPR9>pH+3hd^3zpx&|;%*!`p74MzKXjJ?+2R-bX`|>GG94743Lb(hVo& zF)=Y&;(DvPwq|n>t)7SW-V7L$!J}wiQwtFHxvN*NW)~MbcQnG|H9o@P;)jhd%8`Lp zoL5!Wrix&$0Qd{28}_gZk^FRy;>eaclhc$oUZaaKbJE7i1(lP5P#4_YodO7tT+t;b zEm69*01mB|VkVtyLyIN*kKjWFqv(yotyrnoq=pCK^YrWHTTdH)yDMLA^$hY;^Xss; zw|7q8)rjO^@;t{xQ+GK=g^UU4?#=2ak2)`TZX1EpRgbu3&z|$tx#CutcsQGd-6IkW zn#M}&A87xL?Z{K7q*=hD`uqCQ0R;jDC^a&7BGTv-C+w2(YI*Q4`hh?ezcxD*3hCoR z{um59I~U{8V@oy$1ub|~Alugo+Sc!tOcAGah~-)U&0kE6H@i6;??sT9n69qXnVcRf z(WB_Z%r&ln?sEhT;mtOw&g+LRYa(breqFqZ`kbp_78^4cVqVU(=Mywq=mOGiqHdS~ zvlqL0mWUC4Iwc>2?%%%;XpG$p%Zm~l>u$BwgTUC5H3KuoqXO?#+$p{G`>Q4bTdUM9 zzgDq&HtVM+YRd>@6nSi%ob+|_Ghm9z9#ag}>)%CQZnVo>fb%QVLqnGuG$gPhXL>8j z#$)*DV$NV^H0;@G>;p*~w|-sgQmKM57aDAoHPh)-5p6$t@&S()(i6cU)gIu2_$>mI(6z)L^{|w=(&FDcVDM=$Snmm zx>S`S11BFF-6ZgG#O6K)Ef<~8)Ke944Q1MXFeKzD%g`kyWdT}ee}8|_T{sQxHl48I zGF;4_B{5p5pOF!3dpkDf%mUL+foq{kd5orMINo6>^?u^D`z_(X0iw^Cf7zhN1NZXAHp4SX$z&ZA^)~wUg8*0gShfzq0bAlOeoi z0B6uKow1q=D5wL-@mUtDCd$BR^EtU&b2~LzOk-5GZ znD@wv20IF*q5;M)cYePniGh>vs3q^^0Eo zDfg8q$?%WSjV!cG)8*v2BY>I!t_1J*VxG;+s0}Tq^9x-F^KujH(#nh`J?&eyG3}Sp z&x_(8vTcfTsSuMYE?q2O5;ni=7L8NKQEgH>K5p3zzEGF_(A?ZfHa3b^3~EC1w`gTt zSwBC(C#Kx!Y3UYsEz4M@Xp zlteK}$&||IWX_OdmzvnrLq$+~R^*=p{+i8YQxcw5w6)l&@t;2n@c3&;ef=*(7p^aK zjL?^+yfA!sqO&)}UEP-SXguTkfiLX-;i&i=;`Q#qz`qH14I^(x0rk1f{! zjF&;FWo7i|e%q|1ibkWnoKGB6{Pj9OW^sUxsuBU0IIj8_U+&8_(dJGjo)t;@QOD-K zMB$TY>CA#H^yQy3eM(EK|1hQGD!*QD=58A2OR{vuz>E0UeMLX^zLVR@jUgWRET%hPwCg8%$>`Z6qo)_cF<>_s9vOXQ2yNMD2P^Gq}6{@LXYJDGvOys^^6M>?h{^$c<5Nz9k; zUDP$D#i5OxA0lEyjY=ewySMAk!POfE!r=+t@4NA$$YkH0pz&BrwfW|}Ru$Ib+4_#x zlJF^d8q>so){%d0d5L3ww|OTwH~*jnmTNDHjCOLL+Y*V6n0l^p_~^%-cx?Pt7JKm_hG^o@QZ5yJxlh}nwL%ohUGY9Ycr{Kw${L>kNt^w?Aux^>iLA# z;{RU)5%2g}V~g!1C6R4PT!@a3A=%cQ-xmouL5@W6qmgO!nuyIWPV4J@$OE1kx>&TK)& zE94z^G&!P2$~#j@w@Qy*A0E#y>BND=j(ClC+!FC8%>+W9|7#dc@N3XB#|p+Lc$YYK ze=Vmx-SDI%VZ7(OeCsv+v53>X&O%1dbXU{oZAAuXokxnDjCVBp%Jg>70- zjnHu4cyVW>%n{>!IGK7nlH^J)>VW$2{nX?G^&Llr+|<;W%}gb1NtBjJkyYy&fh1@l ze5u;YCHVwbvS*8hN9Vol2TEV&;b)&L{B>flk%<|RjOn^X)s?*+zuojAYFT%>*55xBCjoeOt0(T*|mBAF4JOI1G>AU9TPB)p(h;~g( zd{S3eM`tToT3Q-cyvT@=FfXWo$J|=vQQNHBQ6q3+zoKs|=jw~QjCa!MWYm@k{A1f$ zI)h_AJm0>3+jOLEJML3}wx6aNCVcXkV7%tDu`jMKNyMhDX1=iOPZo34fAF{_o%@ko zro9-umefBqS^kv<1M5qO_Ps6>8`zf9&lX&Xmy4BbsC!MHwcKf|xN)v5ahh{P1*nI3 zelH7)S|Dp^W$0{MhAG(KjEcW0x-Ru??kG@68*Yyur;te-o!Zn9tZvqdwEd64Foo^7 zB=wBUu<=66cVaDEoSapY+bg3Ly`gt_-L7-ucUFd^$~x*`!7ObIUdCb2g8lSqO)=x& zg-UdEbldr5Kc8U~eTG*v5#=;3Ry{SV_z{QJqLmRx!kE^dk!YEg%YZKe!$MC}o4CB% z3bM1~kkHu+7fRw!d9QI8$WB|rJ)b^8YoRLNwq9-<}7HW{{A$oLDU3k`xT&~wh2SP_zg?U z&$D#3Tl>T?*t=hwVsM^ew?*4`$}N({^qpl>=+LCouI1XK({%@KCEwB2%o|@%(O5Kv zUI13=W@-62=uN&PPiDb)X`HG7U9EOo9fp^MDZ22Fe3K?mIuBFXB>Y(Ra=5u{PBji}Xo|h4&CmMG(Q%;DcUvmfSbmNZ zxC+K}QxI%#zkHlPdCjbt9Vwu_WHP=VgYfrzRrkqvGmRUI!)XJtqr>&Ir|r|H_xx)^ z+SPX=G2Cb2{f34&HT(UzCDPu85jwsY^v3Vszw_THzT{+PHg=p)V{IfXAu#~{n?*$t zry7lGy!S@s-c{-A=%iX*@x0xXu7l<9y~C!wO=>hJ1$@I5a<%R5me&wN9Idb_@nDDI zxuHw?*YYxBBV!Ra+Zt;RN?XQ7)7tvdB+U9dyV`4K$yVuL2&qKYj*pA$I&^o~9%qfU z?%22kJq4m@`k}y}?I=oX_1fC#5EM8sf6S{_2nEXSwCEK&kFLSNI4+;fZtc+>Lc$&1 z6rA_02oRfEom#KdpQ8CxP|)!=1qi<%Ccpj{x@OOY?seTcg2dTBa^Td|TXJqI%{r~n z=wAf#2%*2ic^)*51J z|JD_c%o)RYhxilVnCy@wQhzg3KLPxIU)vFhR<{E|+FvG6>{ka1Ur#Z63^M!vK2nw# zjs(bwkZL4+`C{DtR8K)c0qsWjRv5hB$EO;sZZ7+qc0ggnrl;R&jg^>BR)RW-4V->8 zHHxZ1FcKLJ!ZNnP$kSS+r>~#sx(xro=H}+_KG1k z2zv2Kfa{3E)29z?ZLhHc zNSPo8`ui(>FoUNB{6AC%94{Z5QG&Ktm%Su$r35M(eP2t5D{Dzbv_68!g02yA2f z&%pJyqai5#6mWWfe;?QYl$mEh=J>a#2?^&x_vj-+kcCZhc1-uvzQQStRu%{y1l_0u zh7}fegM#Sln)pw@_xE4Ay1118;~>IM7o1PPe;-hQBtd>3PdZi7MD%raed_4Y0*ayd z-U)Dk~sZeo%PBySmT z)~>7txPNvX*CNe*5<&e%m0} z)wMLWJ3DdgpEz%BZ2`Fw=+S+HgA4z7ZpgSBY)(r3RWZ-CI$EJyUtix_xevmS4Fp!8 zoWkIoMdy$iE-m!|{UYC_>>21lfO+L$u@A4FPg3+1XAOL#gN?eaa0IGN6dl2%${u-p zdz;SA&MvL3xo^&kKdLem&`#FlXRSz?KEbV+2fW?$R`l6O9JjK23@QJ7Ar0M&yvV~9 zCbutjJEiM5I}AaZQ!l}}CNwlpAE@RBtgrl^FCiqHp(vH}3CFHalwYmTR diff --git a/dev/_downloads/be5321e199329605807b665644b38c93/biomechanical-model-example-38.pdf b/dev/_downloads/be5321e199329605807b665644b38c93/biomechanical-model-example-38.pdf index 8b96edaabbfced2c1aea0c09b04daca3d562b666..dba9347117867996b1298791acb817dbce9f7063 100644 GIT binary patch delta 21 dcmZ2^jB({L#tl_*Y=$Prh6W~^8{$^7003T$2igDt delta 21 dcmZ2^jB({L#tl_*YzF40W(H=P8{$^7003U)2ju_& diff --git a/dev/_downloads/c1423271668bdc35a9c394131066e255/control_plots-3.pdf b/dev/_downloads/c1423271668bdc35a9c394131066e255/control_plots-3.pdf index 6a9f0175abd6321247ec01a8a75add35e932a1cc..29a3a615a3a79969bbdbac0052652eac41f0c3e2 100644 GIT binary patch delta 19 acmbPNIInO+unC)?iIJs|#pXy8R~7(Adj=l> delta 19 acmbPNIInO+unC)ixv7bf$>vBCR~7(AX$Bhr diff --git a/dev/_downloads/c1adee8d5f4e9aedd715240ee2abc6e5/matrices-9.pdf b/dev/_downloads/c1adee8d5f4e9aedd715240ee2abc6e5/matrices-9.pdf index a7c966cabaca57dd5abe51f3ff62bc2b622d35eb..fda1bec99430b06282ef124c8a2ebcc992310aac 100644 GIT binary patch delta 30 lcmex(M&RQafrb{w7N!>FEi9VKY=$OA7KWzV^_5wim;tnL2|fS- delta 30 lcmex(M&RQafrb{w7N!>FEi9VKYzF40M#kpb^_5wim;tnm2|)k= diff --git a/dev/_downloads/ca52fc8f0db47908fb8d38cc335d5c1a/plotting-22.pdf b/dev/_downloads/ca52fc8f0db47908fb8d38cc335d5c1a/plotting-22.pdf index c432c77cbcd8ff0a23ae848088a905dfd110b5cb..85241f488512f5ce701467fd8c8a6a0442e62681 100644 GIT binary patch delta 26 icmaF8fcNzR-i8*&7N#xC*L_(GO^gk;-}Ysmzytu4e+kzB delta 26 icmaF8fcNzR-i8*&7N#xC*L_(G%uP+V-}Ysmzytu4!wKL3 diff --git a/dev/_downloads/cb44a32b25833934efb3a9d4adfe400c/plotting-29.png b/dev/_downloads/cb44a32b25833934efb3a9d4adfe400c/plotting-29.png index 3289ebb2b0463fdc3ea7757ebcae5f9364d4833a..0ed8e687380f8519f5350f01c1e5592cffdb647e 100644 GIT binary patch literal 6919 zcmdT}c|6qLyFWA5P$pj`B%|zWrH~<0h#@0uQlzgeW6RoPAB7eXV=G09Nu!W0A=9K^ zWXUr2EkxGrV~yOSZ{K@gzd!El-rxP_-us8o%;;Ptk132^}c zw&V15OaVZ`uLu$+JN)QDcfW%lTE4ngzGhb(eTkR69e~j#Ur)CyzHWp+(N`V3eF#@P zlogLD9#ZtY;^TWr9_{Sw>*=Geq~!kZW{Ow5os`6*P+D-QZJzq)d;s9VZ~Y-ciFXeG zAmoA5IbnY7(Nv$mr^UC8>bXV-rbn2vb2PuubkaAH`Z3~gaq44yM$2{QoFZ(#xzOG{ z?71B~*tSrdhx_=EW|r=59mIi^+a*vQ%%jiG1^66m`Khm(h+OCtF7CeL?BZO%x6pr1 zF{F_B`ejJYGBRF2cE{@T195YcxYptqGyK>h->Hcu1$5kRSFn}Qd&C?ruiz0n+NUCW zvPe2nTPK@A-Aao)K+#%%Pvm-ZE-h2CU(8eJz$txU)ir#W^q*T47fv z78Lf;SjAaxg4iRvx{ReMn%MwTjTLp7g~MRxm8mj0To6uyp+FNt*6n5F>foG51qHpw zS;e{G9CLqvM*q(d3>!XL8=Po+k=*)^XD9d$vHTT7af@KhC?vu?F>Y{41pNT+oBedZ zjKXKQ#svn$>W65}-_a*ePrL}00+kWL>{Pl1(7(;}9d9uX&Z3Wc?ZP%?QgDxhzGB$q zVOan2|2AfZnF=^LmUd-wK{xpHV)R8Y@Pv&+C~Q;EdVcGZ8#DZ`NPqh-(SR`ySR=s5 z+6Ar=O7Z}eE(S8|IYjjZE(~DUVyeYRX#dS%>Uq_E89O%Rzmkouz3gN-+3^F9U~O4j z^bkduMj%NEI76Qj4)$4pfB#-p7OE}+Yf$W3-G>PK!{PFqU>1Fe$i1f7>DYjw?OU7q z4{a~G0;mu;`?K(-ry16b#{jD!8<6QJEi^a%iqSQnA~Q2Ho6~&Kiwz8Vk0UaLwtmdI z#~jO`ndvl};1cbmEapA_|CM5hQ_Q#~93UXkF7o zwvAM;z|V@SDut&kSU4nr#M3_$4w~ zaNPI>wIt-yc*naWN#mtdq$NzBP9+i-IE+X3N)Y)5{!rg|s0Hez!R*M_C`ymVLMn20 z=ygx;ajRD*NIZ48ljfBYEahk@|PVw0rNfUynqR=%ph<)S^~+$U_E(eZR*3q5v!7 z(Xo0YdL52hv0uN1Bw@>j`4k_XTv?o&tU8R+`7Jc)S0O9fgi2O;zCz_o*M&b|&zJy| z)#|EgM=p$pQL>(tQN!wJ`5|sr5jODT%-QNnEGLZ?+-JpB zNkWp&ycye1wbz5*v`lt3M_ZtI{$A7B?Th>_eyBQ+E}RGx&cIro0VtvIaZ`Dy0iNFZ z_kRz`=2b{KIIQ9kdzIwsqK(j}VH6YJYW(8HF!wq@qBmz6;c>~S5-Jb6fe^m95 zSHBqP^+eN&wNb6$tXtPLa7HxkaO)pSjJN|Z1n$*5Fu72pQ3ip_Yj~h`S2uhYbUh(% z5Q7*vxO=B1KL|IqPGOEbq?ysnRQrds`NIXE0e=*Zg&jIP$|GA z7!PL$2iy#862tZ~VA;l!qVwi&z@4f4oM;=`N93|vSex|tj<|FRfqhP);JUit@+sfl z8h+}nKxYCf0u5hS!h_0L=6Kuh;KXo&lX==4gaIs6l8^K-k9x$`HsZ`lDTQ+|6;C~C z_*C0T(&+%rS5T12FzuH?`B5kr)^3hL@M7iUt>_c+w{~-Z{TW5(*)Jf~Oe`!V7r&1~ zP^$3*ol`%SOiMgqJg{mo@-p_-2FtxeaM_Wxz}`;e({Ln7zosE+ZFw0^Y$Q-0AH^JiQB@D_^pvKCL8jg&XNc2xG7bFogaQ5vKT<8UC89I;NCN z1Ub?mWk2C&BlbyR{7@AS$`7ve~xFrKo(4-bIIEaeAz)rQ3R%xArqKU7?_`^qbQ6 zbU?qGA|&TprWA+yx%nYJDA&^TOXvmxcPZCS7}FlTlg`Bj>i1}LR@RUVC351J@5t(@ z!wXU3M>jei-)+_9e)DLr>M0;64Gw;5Kc5j4Ow7r265p^kP3o5x^O^hT;Rce<0K3}Z z8k35`^YNKNI1UM;*dwPI68jdy4MS+c!X$}t8VjIWT1dF}NFG&L!;|&>$zLJtP2sP9 zkdD>^`lD=FYC4_B#j1M(!3I=JfSsv-X>lFW>u^_>hdkK*@#~!0LgYb0=Rrc|mvylDvi|UG6EYCL+;l z_YvTD3uC|EI4pwMT`7o_u>(XJ2XF)=dv!l@dkzGCO@T*hPZik91!f;yo$6)0Qtkha z*~T|D^04o#FOu#s-c7g%`EdI(+Q}!dlN%gJvHE_@zRP(wn5FXXL=!U(YJ?>K57C7 z^^KDY3WBoerM0zRkMq*0X8_4;kIHH5*Y(ga$D!{28VCL+5{A%$Jl>1&IJstT$`Y!ez3D1m^y}g5^-cyH%-?$&~OrH_o;yuZ-47Q$wC;MeQ zWw`~)+*#B8qybjg_q(*;7;I0vz0oGd!zpsoiHHwA{n;2~`RK}i%$5MflsW0IX z*7eQ_nr+g%pzyexUy!#6E>3tjiP`4u)A!o0A~bzU8qm+JtaUtKI%5+hf;WFmALa1$fM-DV`X#rPm(1`t69*$0 zeMDHNbhPF7-K!4137!sQ-0N*+#)#13i*$c=w$_x3TI2UZ6Uuz&Qdw`Y!#uK%Gj!J) zh}Uiyu-l$T&q0*&xiOu`m)|8<<~y;4vZHs$)0h(D#CHpD0#w;p)^q0=Pqb-fMW<%D zv5wDtXVYPW!1Uw<`qxJvCpTakiFal(Ga3ym9OMW=fX2n_-S$Dj<%TB9>|Awkh@k#% zxT!eKIN8NDIEyo{+j?0DslQ`uO#NDu0v~g!hZg_H;Gh$LGP*d~SIQ5_H{de2VFxYT zb)AhCA6|W(?d>WHmCgfVkuz@(L<=4eQ5(S2+`fL4B{o%|;%Aw;`7jJ;a6JGrXUxSb z7L$D2ENJnp9TsOxJ8r3lqL0F`-MMh>iMiPjM%S~g^-TvS)&*jOKSj;Nx&$wz(Mco^ zKoP5u-0IShohK2%^tla&XhEMU`GM!#Thc#m8-I2E2-5V9&5qgh0@Hxuom4&Ee%$(a z^M?xd#6-w?6|Y@jpt;PCkxDcWR#`C^7?mZ#k|JT4S*K{YYR0m{qYOxT$u^RS$%dnk zXE3;l`V@%`W)?izRtMKO{YE?cMf}?0LaO-c+G6}Oqj)Z^ASnbE0gwaF9`;`OXkQJr zPs6^tY;(v+6@ml{-@U>Pxg?lhR8p|ro8#bFSkSvkrG42DMX<6+A&>~>_d-U=JB6bv zl0P1h1NrPiXhpt|LXM0yB>fzmj3{kn2N*;hh4pkd+@EUYn7{b(0ZG58ZK0VYz?SPpQo6id^H5_01?j^^W zR_^l{VO5|5+t%debJk6qTRj5m#lF`k@<>T_IV8NO=|tBNixzS6&-?mZlWyOKH>=cEV(1x+E~>l93N zBLZ6*8}R1dTTMGjylk#YcyamNrcGV4(peJ|6GmEAY3aF*wZ)d78$S}$(sGZwe$CFV zwb1?O8nEy=q`P#%{GNtCVys24>?_yuvRociEn`c#nCI{g{ijZ8{-=~Gm}FTwxuf<~ zJi#-8{boPJFSPb|c0TXzy+8@QdhlnrtG%qEVv|D2cS|E9t*O4i`RdPU3Yv?pqnnyi zdP2tz4<16W>OX`mx^t(Myb={>mQA7P3JMC+?C(3e3;$!tD|lt_COq4%f`S4*TjbA; znNZiwpBod+8P)lrt{xtij*cT-WtWdc_WPyWKlqoe)-WYpPRv_wt%XE}`Yw zc%0roTqp0NKX?()hi@Yz6U802X75^hozxT*j2=r~Nxf7=PTUatB=5np8;K-KD=V8_ z{5hXo>^Etdn4IjoF!EX5bAWUzT8JX3>?r=-zl=DOJNV(IYg@JjIa9#)+6nlYnH9Xi zVJEB%W-Dt|u5E5C`@Lrqc*OL%!M>gGcyoO;T(e_os^@6nlG{{IiLp)jRSO%NRCeBd zLEY5{Sx`KdOE=MlZ?>OKV}0Y?yuW{EePO|N{Njib&b9p|Zp>%lj%@5(RGVtw$@-OigGmg2dRePGAv@0Tk0=3Os98X0k19BbB2gu0M%f1yd6m-^<7 z)eR2b_E<6PnAG<%!>-QGP4^GkGrt7R5L%y`Y||9nnd3A3X{Uvyr3;;e5K{Mj{_OOF zry`iED=`k1(Ahup@3-gLOkxab?<;|}wl-NMrDc&1nI~?r6Fx+4?=JIu5wiH=;`qb< z^=Ds#mu>pt+4J%^~du5QH4o{`q}c9-v+`9g>O44;vf5$N&*28M=hO--JRM)&R_oX==OTY*De zYrcIozf|GS=^nI})K;f z`@`D0x?=Bd1~viX6dC=9_4S~su0p-XLG!o8i5XA(%84)1)9F5kA0{c&> zrmFkRi&Q5pPIkC<tyrZ?;>od3Wz^Rp(%M2D?4V38dpld;p)3glq z^itFo@@e*&ce{MRK))(&Zo7!OuYQz(Qv0h*AC9rAr-g#ilxJR{rPsBh6t9(eEx%W0>AHoz<+f& zc+mOFTmQ157>qcsoH*02D`1le0}zO3Lnm5savpSUOw-&#JjD1Gw>kD*!=An16)|H4 zOm7JSdOB3VzJSRb7Y~ni-jG?AFY5?+J4ZSp8Z;XgG8c96IplLM8|onJ&-eI@HHksi zjhFXtaYSEsD|n?dFtST7^J zRIzkLN66&=<^|`!a2NW&V2b^u$!yYwHKTpt{f(oSKcRB0i))GEKrD6|14ur~&Q0ho zwSMs6fs31)ISzLlQps;HLSQY19ZiQ#;YklhCa$)=K0*B3=%}2OlwNdnbeb80Qyo@j zvBky3->Uo#!$l$up#aL0LZP@gJFAV4soU8N^@?3mu)@2oUBcd>3-vt!NtveZ=+{pxj#=X@9q5Edk*a2RTM-7 ze3|(E6$NwpuiRY!FJ$YVug?EJII#aIEC8AT%rg$~!cZEVBq4#0j-OvK6vg0bfZ~If zu*iR^BY<-ogpN0cINdsQPb>Gwba^9@ABd5+;MgLkpkSe`{Q;*{LTHivoQgSHm!x0@ z6}oYy!o}6q;{5r*??XvRN#WmEQHuH3H1;ivAn9FO3ca>8^+M66OyB#;*cQbJ1gfq7 zw?yUR$Nz#)P0ThlX$vUwu&;oX53@99W~@mmcI|MP>Ms6y62ZyV@ata|@I5)wixYz8 z_kH+(`frW@Gr8H56bJA1kihsii2%@7_@AlQCP!r5#6QNZzqG+=eo`x=6O8N_r9O+^7(we_j5n@4Ds5WXhAdp zfD@;qX$$}oo+3zWEb!2c>8geYbx*Bxo+hqWJ&Bjx?STFzPq%BXp4SMMG2V9W9t2kx z1=$m_M`YbxJv@&b!Z>((x_O+GlXL!0Gg()6dpXf?9(6bsyPM8=4*)puTYrcE;{5{v z2s-05HB4`$PWIk(Gy7guKWi@$r#oz^KC0`?sHz8Wm~?pkYbEvPa-Boaks20#xtFAV)7i@3Yhq`?PIIkMo-MV^0{#t$fitik#{*=G5-a$E0Pv)^L%*g z*-=bDyRrH3k_;wB66idQ-I05fNS7ixjP>3QfB7iBoK^4xhN)>uwT((jXOGYPMm=A4MD)CF|5ptk2no9KIKGpG(XYUapYGTWAk3bgd-7?3CUwi!kAcP{L7kP#-J3T=pW2?;uI> zI0IrCE6a?}>S~V?Q?3@AJ3IS25!X_h6-s0O>s; znlG-n-h&HhoIzk4y(Xm-5?1ls&0dSD$`Xo4gdFl;%9j~{+^w676B4RFpHK4{d79EL z;JD9@kDl1pH9ip9tA-#8GK0JKeQ{UBA{K;EST;k@ujNvx=$rzr=Ss=;V(V=J8#Yxv zpEftEsC}ynQXIj2lo4VeYpGR8$|8qLQ$%KQH~suD(wlI#DX$l$oOi;h|Hdf6p(*u?5Td8#OjTi0c%-Q7P*T#AE^t zk4w3RW%&mlFG|a$V;8o)mBYdp1;Uk!x-Sso*jfUw6?Cyx^OaSKx|#)=hNwZ4P8!6o9eB| z6AOw!lCZBQWLcVy7Egaf@ytK6kfpPwEYrHk)+*K1|A%LrWMT33?9X& z%T}#EndW;w)uQBMfvyclk_^M@$bn3LIV3M8R`=`D!MmVYy>rmOHYe^&Fmwkyd);Zu zgfjCp-(~BC7*k`m}>9CxpWPZ+}&^GkdB@>k-8o=^B7OO2Ra5_oOh@Mj}Z%lCp_A<(8mAm)&?_<%H#f z;A8*#)!3(En(uDqoO>T5bQB_5o`oxZxNSKN32Fn8r1zt}R(Vfn;Gj<*YU0`3Pay#5 z*l7Fd@h|NV^VcQ8-S`(*vTsh!LJN;JRTpQ3(J2I$3}uUnWd$GjRNyda8-AZJv`d9{ zU6yny9{!S&pG#2=SpegXMw7$;@aXz%or^xg=rjT=8X+RHMUlYg`Gww2?05I0!T#K0 zQ$eLxB09LY{JM(_Vynaa7O{I@gutLObFE|Z?y?ZlQ#jpA+3E`^@^#SeQ@oT5C&CEU zhHUK_V`>c9T>FIlu0R;m2t6sDD2&U?gDvxmsaZt{lcoSOh_Nsg{XWdV$6V7EHPaQ8 zBs?HD#CorA@L5(=xU>KxSf!zs3_0t7s%gI5!v?ftxQAk9xRePcypDB%Dls9LlMg&_ z8%d*ew+dNy>Gbg#QdCu z1PbHh&n|rQd(ktyxi@{tV=;DabE3MFZx~(r;!3X|;#nrBxxer9p;V4?O`0Qa^I&ch zPOaL|cs^h~DY?=Ck@Rq)lkFliGkDVDZ52O*h;#0hb?*D2e8+Xw zeT4gq;Ucw`P zbeTDR-^m7ep-x_HT}T7DwWTaV;-JRYTe3H|m%o2Y7&6kgzft!E`G}hks8fD0NK=3x}c;bVrRNHPgw0@J*906)njt zQR$5Czo7?6abJpY(g)!q`Lom!U&`BiSGU*9LRTb=ETvVKQ>XckTePW;l!}qspbSXF z#O$-PhivdjNNe#EA(=b^Am{L{^5SbyQjc3TB_3h0;zN-j_0-iTo^|{*GL90LStYLT z-W?gf0dmeD0RGC%#oW?PBD&bZxuDw{;3J^*?+atbr*BX5Ipl}1l(m3Vxc+pwJ?BoS z=b%fui7Q+!cV_NymIT;69D<_y55>2b5oFTP;??c&0Yk@;+%f@h_8g3$1;M`6Z@Tl4 zTQ?iF+YpevM|;kXcfbao`qV_C%o!9zwRZ?*-bSuG2`A2~Jo!WcdlN22yentV&o9U)vfhEt61Kab~N*qI`T@tlX*sGS?+R&H0tC&kv9&4Xr!fJ3$v*t)*ty zg-apS%uLIjLH`dp@>R#H9M6yX#?}6mxGx`zGHy=YTv|v&vB{x<8<(Ra8TKZ{C2~AY z*Q3oxKVn)GTVD5V_C^np4fCV0{FLu^e!5ianLnhy%dY46*!Lt@zS=0d6$!P{w@jw^ z`Q_ZDQ2cs5IQx6xvU11J{?c zR*b1lCVH#ls6DEdjJJEqZa>cdo&nxnrX^8Ct7b!>BgN2r(f6&1T*7l{Su#Pk;N?s5 zZC3dBtkBZ{yW{6v63u4>uF?EQ(nivC!96Mp=)@k-u5}CVx@Z8@HXd}#F*Vd~UA)hc zOX(wq&Eypk+xC%$E+TPh8>T$BgW&{DdQuL>pVZ<$jwV zS;OxTnID<|#!W`@0t|DXkG7z~nUiic#8_TtCuDTo0oZ`H1eBe}502uKl#1!|)vaVW z(s4l(?BLg^A@Oq7eZRr1;B8Oe#+c6GeP=#y>R?cLew@y0>X~ zl}wA0^xtd)GY*rMW39^BixYlgGxM?}*iq`jvzz1$R!=jnaPWef$4zoc{!0pkVLdv| z*nU`VSpf#NqJ;n|2M@(R!6!gwO5iBpE-$~@3FQn4#TQl6qV$>`MvYud6ZNT&^im&e zQChfw8eE(Q5vK5Kp`tlL%1|3XR6Q zEquqs#tL7PBZd8P2(KfBt%s9rzSZqzlZQxRdoveidS0reRGgtK;f;(=mRcWHqLp7~ zUrPkB!R&wsIarTl)z8&ER%1&)u3PY^5J%Jy=iZ!a zZ1QlOp7^kDdomy+nE~4)1GTMEGKQ71nOMoy8;jSfKYryW1u|u)3XMsqUw55sdVjo| z%GwWKvPe9Q@1q-=vX%PWs6DRb8nLCif(HnhWTV)P)OadofMxlC>ze`jnQz>|ybwkA z%%7cmbi!j;bp1M)P;_CXW03FiM%b}y53>E%{BsXzPsJ^C3Q*>nc}dNBQU`S_7tM3? z&Pq$WSFba%DWO5Mrc$qG+{VUowbSa{cWEgpT-RW6aq-jg@^fp;(-vpWgqRma=06cP zFf%I}Z&3;_@fgXa%ndPT+NzH=9_-z;^-555wtN}OG;?P_I9k&{eZ4q6V8h4E!orEM zFvfuM7DeK2m;{)Z#Ldmk#m|0K*{GbjEG;9`QBXEzZf*TyX-akVb4!Yt>gv$Qrizk9 z<;u5UDvAd)nGWLPdk`nwdH(^A{*+)v+QiG^XJb~Rn488^3@olkFV_AtLkg&$5_BQ>@3bGS>Jaz>p7>q zg2G~}@^ta)^g|U?bVf$e@bHlJrjY$ryFEhC`k|6*Cu4D<#DCqlYNmEu73;Fo*<04_MP~rZumoL>($#u>(ueVs=*hovN z{%Pm@^`%xqLP8hp&|E^tGmRdfA;8?Q-%L$cz3KSw?sm%x_iWLzul5;c{{9;T+nszyo``J*ne$wz1|#HfbNIf{G5&HUaC4-hTRJF1-estSZ!|FI{MEC*y{WX3<`C*|em`)MB;31k&9BoJ~#I0UjD zoemXIzAfBP=C|e@A)s((x@tN7OoU*X*7dT}Lm z`rOr{ii(mu!wD@ZM=6iV_g9gIR#y3qjc4gc^aNFIJnt;BEt0V+9WAR~FQCjuxQ_M` z>5IZm!ChUJEf19ps(cq|Sz6(WPMwG7F?uOVuIZ)D-A~}1{Jgxg9wV)b!VP5W*WP2Z z)V-fa+aLRB~zw_xx&?v>JJt_U;}pEQJ_OT2j)`#icMMB}FACjFOnR z)A`GDjiX18#*!zBs%`Z3^?xoUUrsyeWvr!j=kkjOqJ)Lf_O24AB)TDsFa!vE+^5^z zY7gR@JXw>!BA+9>U?0T=^o_2#yI(O(vZSASazN&5y`R=Le zO@A{pv(?B;ct5|Y`bgpYm;>63$XNH7DlV*#PerLK-JjOx+*5AkG2Gn#(ypna!efL_ z;?_ zmpFZ9M1IryZClNl>|OWK5Bt`~3<7A)$qHf>53xdOx6biO;D2M)%PhSRe|4g>An)0; zjxhd%o@3cbPcZywG`iTnO~h}mK_a#%BFuZbuK)(o)^N@8OmWD%n zods4oFztjI5+asdb#vLV?~PB_EBmP7wv6c$*64TJT^$_mTKo}nE3_Td($bn8$q48p z@_E!p?Af(-cX{li#74O7&;4rdLprdwmX)4_TaXyDkkxCELFL_Y{)_pxtC2DCSKAPz z0NYK*XD=9#jAgOT+feS$GXrlIYq!a*MB3HPeQzqcwd!64>%eG_@+U)f&|{hjE-p}N z(zrxap3V+ZomOTBDu-fqZ&8ExT|n~id_^h!5D=!nUpP`kIX#<}O1-ivd3syCN9XxX}6-xDktk<6GoaNWuB{rmT^(ry1O8UiR0tr zx3rP{2xf422nM`Wt~WmOiXOvyunt;#{Z}4AQ5aMfB=HT3Vrvdhv9NuC8$17tozDNk zrs%)TG`NR}TP2f5Glo*9c{-HqQ)9wGKW!urQh>q)jw{_}<=&EONbKw1W-a- zYlVYya-WwbyA2o>5qp&K{tMz6FqS7KCd_PY1AYv4c6PpFW#K`?7c-G%VPs9k*GjMa zCwj?Q85;{ZDJnkh536O>)ooi^T5x(Sn5V~4Ah^eNV{Vt3sp;qos)*C)aCOiP!Ld)t zXYRKx8G;O3_G={%-@-KRK|yokq*D zsq)ROtn4E4fqhs6*q>EeY7U`9xdPbO(SQeGpfVc_L6*}b`?`6{Mgsv(xs0@?`7X3; zd%^a{h(uyEr`r{M4B?@vj2_%KeG7Ym?LojP>zpzhkzr1H{i zoPk>IQKwD^*itu6A=sGzY~Nf65CW0%JRG+5zyG%Jf06Nj`M3fd;Am=YUJyo*B!1-s oeyG{`Yxnh1V=Rbus8a0Dft3g#Z8m diff --git a/dev/_downloads/cc4619d4e67ea48ddf5026828b7569eb/beam-22.pdf b/dev/_downloads/cc4619d4e67ea48ddf5026828b7569eb/beam-22.pdf index 891ea3b2c2ec2e01c75d346fc2d8a5ffe7881d4e..006697b6218960fa58dad831bca15b522b0901ad 100644 GIT binary patch delta 19 acmcaoex-bar8%3SiIJtD*=Bq5sVo3a$Og6m delta 19 acmcaoex-bar8%2{xv7bv;bwdDsVo3aum-UJ diff --git a/dev/_downloads/ce89ed58fdb41bf7840cc83d6e6a1ba6/plotting-30.hires.png b/dev/_downloads/ce89ed58fdb41bf7840cc83d6e6a1ba6/plotting-30.hires.png index 6954ae39ada93909faea4d21570605486958030a..488a28f44639ccf63cfae0e2a9ea1206e74ba887 100644 GIT binary patch literal 25781 zcmd43cT|(<*Eae9Vh5a2aX^YQ2Cz^p6hVQ^IHGhE>D8f1RR|(AaV(6Zh$PZm97GTd zL8{cCC>RikARrwDX#s-t7C8IH-@Nbpy=$Gd&N_d6tTls5xSzZ1a_wth_jA|C;HoTfM$PG4d)Wgg*Pc zja|}O;MHn7Hapl<-@~pS3Y{o?0ADZ{3@i9(tG50JmftQC`h$_fRy_Kiag=`_`u;JN zcL)0JrpL1xeOG#lZGdkiQDcl3zT?9WVm$DjTK#|3ufIr6v3%a0Bn*@L@}fqfZt`>0@!*BY;xqd&Y}RZgB_!g+FL6g66SiWc)?>lf zM_{S5*SNFH!p>-e^9OCQ2cl6PMK)7izDyhcC>4 z(=JJ4cAVv2!>5LZ@+I$henvwmKE0=4uu&kha8)_?jx08m_|Rv0+zG4>!z!)Xuhuxe zd)RbPIJ=xc;$M6tLyoc4kv5P`Lg$K+yZz})neZ9GA-ia8x(&W z%qeI3Hb&JW2f@2r1dTi1-cA0HN~s9ZO}98D5U}~(pJi+tW|Ud90T0HyFUHG@ZW4c_mtw0dghrX2obZ=9D`AnO ze}0qxa?MX_`AZRzxbncL`gJo6d0swO*7HoTLwD2g_MI})ji)GL{?;Qn^s95;-^TDmzSod>X;$(QT1qV@cryg{~jL6o10{AZrmN-EEPYu z;~{_X@{N4Y6sU{<;7Ue z>0{1%xz(a+6hgVB0ano?Y=tZ8x}e67;rAZ_KRZ%WR1qZ>1Pks?jowM3&lfjJ8EPi2 z%oQ=`E6l!cn-q7UM!PYY>6{Q{&=lfkhfU<_`mN10ue&eFv}kQro70nKOrXy-@s!j( z4wE*1irXm@ZLq!_{vH0knS0`oNsY8*5#lGzmbX-@F3o0n9d~Is*%9zyq?vM7;vi)k zESi-4qQlKZQt^-9!G+SA9~m#7#tXk~F_SsTu}1SX^WD4|V_B|FhB>Y*G##vUkK0no zFQTTXI`z&iLU;QfasH%i?0AZaUgE`}1RYhPm@SEgSZEKfzX1mdDMyHCJ-h zgA>)lqwK2B@Z&UNMQJNi@9Vrq)1rgMWY5BbNgFZh@lU+lv5$=@s~2t9-Yn{9bwV5# zyv=tteWY1NWVNG_X`C*7-1(8-x>2WSFdzQh5?HS!KKJ6tcp9H#$>Y-$A~&nVlMyna zh!*0(;FeWrEf!so#`aV#d^0IsnXF=lt3y(jW^SDgC#zVLvZ@%s3DQk>)sV(wDhCr}hEnWk5tzS|tw$Ee@BuUX}eJWVtH2)1mX>}r(T8``qu&(KXKR=A46Af!7*T|Uh0 zQd9P?H~-dpCbg4fNSlI%X929R>GEjf278sCPQ5HCU-%<;EVsp>IbDWc zVX3?a#>4xMd`LaSB|D~ulX>`R2QN#(5$D4nGmUSg5Gy+R1>r-iLv!8!whI5Oux+KW zZS90+x2;!3KMq7&>8u;#u&6_g^yxbnZ8kf-+-QG^v8X@w!2c1%yZnu9kQz&RP0XZ9 zIdC@a$9c>@Wt?a3sW75xF1HWd-t*o6%`NNX6M{#LTLM338{>w_Q>Eh8+HY+-1)qO zF`D_rjQ%8bf1Fa5hctYObbF-z_+@w9R`dPsZdpy27yJt`m7GnIdabsl=s_ADJR7l+ zYCa*HJIzFm-}~(bdp;}YILD!+tXa<@sYVSeMYI={);BlSchvF<0^#s-P30sB3wp2>zb$T(C+Agw_{0*EN<=3-e24ik+K!}*p zntC>-{`HsRJfGeK>2PAOoWY#KMM0>qST~pIf9E=RASnZqKYwwAf9OT(Mt|?RfE! z$(ttgM|_<}aIykcqy+P2_t|kZHV*P@qh`uV@7nj!uE-Ej(Tldq9u?~dk5E##BDoJV z5)BG_O3-7jwnG4sjZg5>DeTB3Y*hni5Vi1Y8K9&*Z|z;ZHucf?dx)!dc)OdD8j;eHy6W{hDF*7jkOt*urHi_5*b>D0rq*z;%8jfPM4b>+(y7klQv zTbF1{%^NgI2il`V@fBt-MPhKzBlF6ymh-Z8fkv- zi6bJaxt0p09!+$+_EUri$P>d7e4C_;dMvxIb-f^n!pEq$#QhW7gtm*Bs|j?2jcf~? zFQpW;>PTGQx7b4eKIM{*(%z)!<<}skjo=>jiIU{T%osXz9a(7amS1k%hvjG5t>zx$ zxvVdZS$+ESg4sy4rS-0@4!qq{x1JHz8c96Nh|r6)ng?6X@|ZAY}pUt{PK zZPv%z?Qc3(-yc|AzNdxKo^aK>NbMAjmZ0U`rU#PlX#KJ6$nTfc1bha zwxwc@kFRwXln}q2;ok>8QT$V`@EoK`c)oBUmiG?KBRNPuPW_~aM)2pxO_*r7TqVXD zlh)Vi=%n1>qpWgu(;r*JVvdos9J_AkMg#Egz_D*NSxh`;e>pL6;2wQ>R!RGs>`s2n z^#tF>i(w%+W@eTt|2|p4wYr>7Fv>EA?giNtP=#XYNlI`rVKYX(F<#VLHvhR+Gy2vR ze01%#P7~tdsX23>786(iJ})k5U>KK2-mZPDz(Wk9J}&DQXCBG|r;0N8Ezef~ul81Q zEf!D?AXb(~1$n?hTT7;0hB;&xRF+kUm4ZnqQrOwLg}oJot)rD2_9gxCF~jloEw_*+ zZRSqHNA-MIILA)gAjC7oHnT|xbM*trWfwf&RGF$3RsUPa0c>Pf)^oC0==FltF&9V` zIaefgrv4yTk;itxE9qqEZ32qBAZ+f9F=mD}OQ%%Yoy-NG>KDG%~aTPxzvOr5X)VAxw) zu1-_x*;$D|T7gdbz@>T5zV*`!q0Y6KoG%@L$ zFj?Bki3}b5u+CO|iFI!U^Vdx#Y59Ky*sa2=NF1NFi{de%zn4+pTzKkfB=1c>oi zXfXVc)gJnAbf%ZT+m?9bof17LxZdmi7C4h{{aN#cdp$3zZF%po?TElob}6~2oCbb8 z?B#+}oi0G0Gxld&4#d@x4!gC?mDF!1Hr%>%oZ#v+QQWemYo{Y^_&rYvJATR;c(XHW zmi5>vuW|(@Z~|;rlIvPfG5OoNXNP-!jT$PCxUKaBd-B-k`lVwbfm3-YQg#c!t>?)j zjZ7JtO=1sc*k)>5WMg?B-cb%D_z~GOZ2o~EAJ zE*=l4xxmX?L6l!O0euL{Fvgk{O-SR!;)vmTWTq;Oy>ytOqyW6p)#5qV9LNcxge&Vz zlqxK)&adNg>VpR-ez9;#a^%kH%G{6|5+x~?_pWKQ`?Ud#q>7;EFPq)Vm2Y>7X*y^> z5{o?<@vI2&=?`xSObH=BGyeXVVgV8I%F0kn$AF|C81RUI=p&Cj{ep=$g^>^YA^08b z1a_wKi>rH<;KFd5ch9n32H#Mt(P1I=NAKgK60cdV8-QX$vq4smvBr$i2#!^(hh5O! zuZ24~{-|ul$ER6;J@T^N751o&bQT3FZ1Ee|vBPcLZcV4vJQYsdb(bIy4{0&(#8Hco z*`|Y3HcYj3qoAIFX1S%^l^aLBz`_o}cwrKjv`vDt3H&ATTkw|E@})T90*Z4+WJpu7 z4ns+l-ZhA7!xGZiWs#vo%Bg8R6W-7X-}T2Ey*`+J@oVo?U5o*5_gS8Eb)Ot5qpL4! zY6oF-YNCMhx#|doB;Jx3xyt;+_Pi`B@(d^CeWC@FxCBWn5|68Xd5}!=Qxo>w+~`Ky zn+^NqhGvQF-sOHKn8t$r)Iz_LFPtr_*wj|l!kw0hjXmRee0!wq^5r($gq0CPX2tS) z{fBqy^zR*2?=5J9zdDUDerAGO*U81`#gVPA{JL(Avf-zN^zR7jBgFHg>vkwz=)P5$7=uK`3tS7dT zG4S+FethoQ)V&?^$=loX3sid#j;lJ zInnM@=hmsfQnlvWQSy#EFT;Lr42Zrg*&X9$Eodw<2YgcwC-IH~WFzG)ORi(YBCzsr_ex0-6OELx%kq zU>a%tOfUCr3pIg{VB9PLFfFb7=WMV44Amg)ABNRhUQTmtcgkw=j=ez`_9?_pt1P_| zA`1mm!8tAAcQC~}TXvGGgup*6!(eGzU~pmLrZnP0RjvgLP|}$=e>!`1Q+M5leY+sw zEsXL}g8+?D6AKF+=f=RLmEy2lzf~+lG5q@0z@5Fdz{g?3hdRC37tR^Q^X}NH`sJ_D zRYT$hC`_=~f{Bvpo;Az~$b;MZN%5!FR`yDEdKL{l4yzsDp*8?iq%K;uNB}qj?`Hx#w8r1XoF@jiG z`)r#`gho6RgJ~34f^1j1hDmu?0M~QuQ`0k4KmW!DfM0d85~0{V43r1@FqsU6xtvT{ELGW@!TxrR$Dq z*%o`0d9}uby~?d~<`E8uj~(NL`un`yjYdg?$}DGQuIuO%xD9eCgK@R@;%sVG!1?j*KB2o<%z3VWsR+@R8NcP9k^cx&S+V|n1_jJ$n&{O^ld zc&_osgH2}K*llXW%bRlmJ?46}okqaYNYg=5niKC1x4tBfo^9|8HL-yko7Rhq`0fsO zv*u8~jgJg?33s4EA*K0$zRgq!jT|fYM?oJi4u6=H=zqNpLWbH+7(P;cUJnZDfUy?? ziN4s9%y5mlVK?+h7by>r_C!15GAy0_~IHH5C{BmOI-KfiA%4$C0 zN9qTt^atHb$H~Tq`Vcf0Yt7bAwx{;2X1r{v$L#S_l`DWXa`50y&kHRf9}@(Djmbzo zE1_*_17ra;5(2a=>+i$TjAa|YPGGsvES@a22RAg1Af{b_H4Hv2oMD*a7-N$;3uF`` zjxU;8UhZie!L|YIZtiGi9r->sa%G_gc`M$1>03lr3X}fwADCbqOiRFVJjU*F1F4zn;zLCty-$kmtusG(DwHy)rJL<_K zUGDUxD1^R%MGEdB;nPnn4LcTflY#3oIPn-&@vgRZT({g-OJ=+~Z1%_7ygP<>IaFUP zIthtr1BS(S&UMP{^#(TANCr?fHky7|CM9U~s!`2-PKBT6<0S`wr7_LrLq-@W_Acg*M$*K7o%Q zw3CD{iqlXZ>17bMl1!a>cTmskB}5~*%+ERmv84N{KWBifn>kxNBu!j0Mv01*RM;-P z_^Bq-kJICnhtbaPY$hZmt5dl1^wt<#;Ak+6Q1rQKhOXJoq50b%B97G;@3uN1y%*X2;fbOWdR$b_24-W zK=Io}E+`AJI^eSc4p16Io&_!=<2ZDlx}6GI$V>{Hbq1oZFp@zoQ<@1p@Xd`;2E0ci z)){RzW@%4U@KQ6x040ugd3q>2&+qN>QL6YW>3fCK4)=A7dF zka^k!r`!x|0`J=nq+7ibJS3I@Q4?G3uF*`^ON{NhavC|;WGhfxOT~U)-i+c;lC&W7 zx}LbX(WGc@&M{mm6E)1@j;1;uf-d0mmw!OfHJdj&niXTfmvhBa9KO;{W3umo=2L2e z!T`t!M56~@__6;Gru*frrjDTM6F4F$Ja)KlEuFCR%(_1LYM^>Asu!p&`33cdxmx!R zB=Fl`g(Huzy}d`8LnMO7*4J*>S4kdiIUJ{&2fr@`F6Vm4$}=4TF%>!RQ~Ca^Qz278uNn)ml3|(^jyz$vKu#{7Y8XH^`z=A0n6;y zrjOV;U!M5LEqH2l^?mKtxgscyL?P*t7NN~Sjv$u7h}p2(j5K2d?c`9k;-%4nAx*@N zleA`TE8w8sL(B>xa!H|i1x>75T=)2wds!*`3S~KjA4wDFa8(^@Om~tZ)T5!MM?s1Z z1^Ex!hpmU{*2>%P+W*?hqe-@1!p04j^#iynJ1aw-W6$k{N!cpbuN?DpgLD51W?tu^@HxP;Ri4_4C*h!4M(5lFG(ym|soKM+cF1vE znt3+SJ6GtK@gD?`xnt$y^oNkxJFxr4P=iDlr0nx?P7FKyCzxGgz0Gww5;GMb77pl(u@)f1n2LgG-b+XE*!gl z1uSzGtd)9iX3U~{pl^F0H_L$!mv*a4^U0t)!9R)oRQoE(IFKLB0Sz2*OQ zvGe7_NSKq&H49*T;WYClV6NS+DIuA}Zxt}e--i(n84iT9TyphF!8O(U`w7-*;H-dBKoQNdrDEAsGXi*unNbr+gZB{D+&SDvFR4$Ad!A=7 z`{~g^D7vBnjeqQQ%QDdnyZ=+<^IRRU0og5Zkc!Vv3qH$c@Z}5xNhVvNx$?7!CXhA2 z5x}-d7xX{S25L4nLfXs*jcz0ZwG$`AyFfxM-$NLSPDUT{pKW0_oCLp8+_aNa`HzJ| z_`v5da06-{L?KrnHZ5jlGOT5(U(zr+Fw;WtjY zoYHInr8cPn0U9l@mp{iTx%bf1^|TAypIXCjs{(D)Qn0#F;1KLqHWeUk6}vQ}eP{c#R`=|Y93hgLyMj2h?t!SBq7zMu#*0ukam96dYjTD* ze3itPgVVeI&|hP=R=f6J?dwO!ysVYJsh~CvM%V+}l^=UgUPn+Z1CZr*_$$+p7+*GD z4sO6of+&_BTd!i+pvkb51iBf*=`a9B0`AwNrCC z>>vIhGQdmzU6EbBhCY+8(kS?>mrBfZ%2;$}Fq`6tC!g2WcsOv!=L5-7ZJ}>8h${|l zR$ja|DpPU*cuj-}8EzEHF67f(_V{ql$e~lFI8-B|QO~E>y+{(Ls>t*w&rB3L;k)99SbDgM0c2`mC0bV0n8|dSX5xT*(#oPf_FGc< zxF>W_fj`0TKgP4UGB}BFVG3$|zc#5DJ6kn@{J)cIi$ba9TdBqWqjS!SPX*%Qh#g&1 z#GGeyw^KE{b*)1GC;QcFpMG9^htMZA5~Nz@)SH4jg}oYpq(xM+38ERLY}+DRIt-@T zb=?6vfzbMZIKmo+f>D-*pu*cd6sH)PM1qETz-&uyF*Vd#Ms?Ybp<%y8qh{cCaB%I9 z!3NaGnc?$Mq1w40w3s9wumqME`h94u4<>C5uH<1##Xw4!_4Ohr*jaHB9P^|W#88`q z`fR+^8(8otSZf}l6h0|;=g0FVswowJjc&S370lM1vZK?&aEqp|Wbyk&Pb!NXd$J_4 z9lMwHpY8z`-|QVq0dhOd7@xOnMII-gqCD{?uf;enORZSn%jLg*udS6r-fs1}ji;pZ zKdpKGb*zc$dVI_n*k+f}n!@#%dcDnQ8b2Lyfa&$DmLZ`nUrUZ5-u+Ez)T!NxVi=NX z86j!{^+G+wZ!GB#K>i0C_K@CAx@IyNn<)8Gi@%ajmo6yDxb*n(!V#wKRZ|R@`2e9b z<0gXN8DamUiBA-!Tg|o2@l9?6O=9gKYIGE zdW}*6L1YGFj-5vd&af7vUYZ$;%P)`u-Hbca^Z<}BSVGhNHr*;M{j zlJ(a{fq0cO4AlJxVIbJ;un$y1*8VmlyNo(QwdIMP>KaV53*xKaOao;`#vC-!+S@OM zK?Q|E;siJg>#N4(4Uh&6K<^=Ct&AXg;OkTyjc$aj<2#HazVeNlTK0tcen8@pCvQa%HfEv?+37HLGZkpGuW9VZU$y z(upJmMJwrPQIihS*bu@;edUIIve~=M^pb-CG-Kv!kX)!E-Trnam;~?(IH1SB)tL2K zO_b7si8DuB7i%WkuA;=wx8Cul09oWXd6}aix`iaI!mPT}?cIRwNDas#3#R{7 z2`K(zMY?opqF4qc6X+9KgHvQA{cn|k;!9x7=emn5g+wnZZp8>&;2=MCD0kvix`857 z+`5x=L=%C)5ktr+_%^7v@U)}=XTKljv*-pD(@AK@aQ`I|!2CdSOKtscnSgixTVZBU zFG5)a(5mpbZfSlh)uqaU}QLLmcbh&al>n8;~Tkpc|(I zJsLlnCPw`-RfJ8dnc3OwCdnk5gVWw)L+6!IMXxA<$GghH*;cZjR|NVoszsS@SyG_> z6917G-*4#@h1x`%iGo%{Y>7rdyv)I%eg&|t#!nEoB0Wn#Xq@@u4lGs^_9_PpS(e@; zevw8mFASt?!3UfUlRi0NPFtRn6XnN5lL4*@+q0+xGMdj?Il<|G-_CoKeJf+6@R0by zDJy?bTU{9F<`@9fSZweITXNNhBlRd5DRVF6#kN7K6w8SP?N2}>@_nh#&^l!Rn>&XH zF3eRP49ouLc%ju)5d+ygWxZ0!D23|N%IjHc)l4gv^9hn{PHeQ5JVX#T_3KxrzT9i^ ztiGRHjEz189ANw3ekx9{mE;*FcOR969Mme9tB#~$^K4A+U z8{Y7}WsaIfEoQ*>u)3-vpo#W;)r%j%FLcqUJG=eNrV5L|-@M=cyiYNVv1+oo2}@!^ zDk1y>f(743TC3gCg<}CeP#4$#@jqJP7`_{wsC@3?Akz~KK!?6`bwRr`lU9Vp!iX)$ zO5On(1adviWs9lX3Q!lbVhuD@Rr^R!>=;njQ7d4*tTS2>*%RL7N+Z3RBf}Y6f5kFi z(`jtjH7W_4T7eD$?PdR0c+v^rG`3jJ)rLqv-zw>Gh95v?uW5#lIAw086Akg7| zP4G?z)x5fm_3eC5CWa7FMSLN*BbLf4i729a(<+yK@x+SmZ# z)z=sx9x(G=usF>A1<)o)rLhZoWVvv3@s(M0X>oDbay3q%RnCG3k24cGw!oItIy>vdLp*VZMfqEs(Ibwv;_Bgv#TMoLSAZIhmDZ#126 z)TCn@)Oy1-6Fn*dV6J!h_meTQc+M4Pl&&CiO+g{F(M&s=*;uQ+kl7ZMlV z3@O5uKBS%nBDO%{xHQO?sxJ7T1)r?C1L2tu%aDYg2T63f){Gnx@|>_$ z6bx=kt5My|bD19-MbP!*C+P&7OyWamV_$4<_!^G_#Vk@Gf`bHWH=tTw>}r5KxZ4vt8TN@>vOZGg{L_6H{#oM52}? zZ>co>#x#^pS++)dn~FAWfOR^H_KLWu>ob%D#Fp-8IfrJj((}hXbik-Ng~hUA35`VH z0ZJZhsVphwR5%X2LpG}g^(y?7#792rK(3L{1+f@(InO^Y_44Vs+!FXT3UCM}3Yh`x z)1P2yf(iz7nZeQ++Z7sBnyb)|ftqVQ^eQGRwdtV_c(&BW@DW|R%nB`qa_DPe)DMuU zu`;CN&uP0;)oOh_;LBZ53X^40WJR}~JNC!#evGBj=?d6=;WvOx?ITzEHZeD87^(5= z)(H1Gx3xyUPeyFXI%>l1!ORDsnwS+Lnk#S1kB{6>x!Ruzt61mSF=4Bqpf56iIXm*^ zScnHWPIYt8u__*hW3Bun!T5K**oV*{XqPo|Nm+4J;zEu__IDiJ^tm_w*Z$09O|CW| z)Datw4$u>5dF^QWvM+#!0KEkyI%rilT{b@fLfcn={lN4lTG7w}I>$j=BMkxzhnfEY z(&-|XWbHeGP*Z{#uh*0!a-|+%-6l)nVu)-0-iHDXc$IB>(NLg0xHu^tQYQL`mVpcV);? zriUPYueW0GF`xX}MgyG{Dl#_TA_DQ@({;6_gt&&{*%EX$F~T#*m*^tQpMP(u)OsRRq*2yT8XxH_##0j~k&IM^WRZ#b6&qnfL!CB&KY{QG9FEPMt@3Q#nlApwYl zKOL)hFkt1|z^hH`ZLz1>9y}9=_If-7Q=D#vB&#ThRqjPcBKmsra|?~Q7Vs4%nbl`x zt=25FraYHiD0&7H08v0mf;x;?Sr5?t&FN-Ea)qF25FUfu4y$$rA>x>;BP1Hqoq`rq zME%b7p+ZPB)}_q`GPYx^%|{Hs6VN0^{T#B~$vj%~$l&~@Y@SaRP~vnffu3{w$|qh- zu?)~sUW1Nph?44fK4=9^_If9l4XL-3bl)amBx&UHuA+I)CSmeOg)SdH&(JLH`x87K z6HWnVre2;Ij)2A(SycR{y83erEr1o|i{b7WJl{p>hW_UXTT`f^VON zWZ){(%C`uhhoTHlA730k3v`V>)Pv|`8<5LoBsGRAtImFGIw%^srLt)1-F^@NBgbbc zt&cHXF)syeHc(gluzrPjoT1z)tGYbqR{rI0D5o)k6o4V4ll!$U7M+!p1A%oR)LinV z(96JBvxs~L4bAB=({$d(*vPRG_Yp2!^O>D`PIq8=K(9oeo=qw~0XnTnlv) z_Gta?%RzQ_!pacQlhmt#$TB*ZO1|8%0$ghE2Z!!4M)cKeUgk^Sp%4?|2dNG}d)=7Vm3swM+iJCsU!<`tftI@3&xdR{uQS2J{t3u5VO#B9@}9_C6n zid!wGS5IQlT7!-{6cr%Xi#T;b?d@wtj&R@F{2ICY8W7&VY@@g~ykV1MA}~+Do3HPR zu@E#nIYD*>ww?t@)rI5`&><&uTxPmx7^}Utx}3eGvc*&vWVdLH#q}|MUmlOSFB*k( z2;U-N44MUZag~`;(ffN_Rmmh##E5SpG9?ddiE47}J2vH39_I91oaZ?Og z!eu?bKm!HTAvnfiYbZXUbl9e#*R!@t-XiL~ZPMVR6x6Edafo%tsGZ?^W1bh7=Jo_4 zX#Oz;OpxRSLI>v0Ve3vM3RMo)?U+R)Lse-h>8l6r%Jx&;v~qRTwH3GW7E|Pv`9Gq| zMhB>%d5AJASvIM&<;yXngRy#rXu~B=q%H#&n5a0pIHb8AwV$xXuiMYMlrK*J@WCu8 zVBZ-3{r_%#J9eSA-N$y|MB)k7A+rHQTX3ut^f7_H!32t2(b%ZjNRM14Kq=6(*erpb zNp}4vt$;mTH<>R>w_F=kVQy1+RG;@G+C~{}skoKD-iqdGgd!Qs{(J8`d*Qu}CeO=P z8$qgvv0RbWE5`nxeQ)Ov>%#4_XPSV)p1?9)k8F~(?ruzMKgHiy*eP8jiFgET8YJ5o z{$}8pyNkz{MOspH>T(uZAG0fjgd>0~x6gbjV#nobq;u2z6l16=a)+x(LmV_vFYe zW`@v&3Y@i^3N8;cNpYBM$!dJI!Uu9Olmfi`CyIv#tDsF9IOkDb_k%ZsJ6F8A#BR=W zX@vYmeBWy2&Ak(m;@hCAI`V`<#-*o(1~$a{@>ION0@sd9*bSWh+fuL>gUJv7g zap#`tC?Y6KQ^B%Jx|4u|u({SQ1+toAPz%C6t%R@d z_D8&j-8EISj4AniXD=DYU7l}rPVk(IZtT1iCO(+$UG}XyEwCPr0%QY@obuk47v=NW z8gm_Ko1ocn5UhbUUVUGL(hFjf#jgs)xXAryo#)2d7heg5K0KeQ_4RpPLv5V`!&>c+ zn3qFvcNB+=q;FQ}Y=i{&X>Z;W!IQF!AJfU|^TE?K-~>ybE``ap=t4;8E8&Wg@|^24 zxr_-u?4DQabBnkmmwu~QYM~Dn4<+kbSy|l?6pvq9qOa9zAUJEA4n63Yyau>)r(GQ( znIZ{Rv@Liw<9zB=ldggjMPC^(^=#Ie!0>~{Ps_g6BnKZ`WZOwL0&lK#V<^erxB7v2 z{LiO_zX@R&KHc0Y%A|yQq|8eJlQB$A{9F~LuyPlJFQelWY5m$9uZqcB6tdtS915{! zsi)8?mMi@9i?+{ny^6~)>+$WKJi4`Q$I~FfwJgr0YbI@it8AX0o*<|-d~o8+U%?Ai zk_}+=IyF`vhU&8ym3yxDJ4=(ZU4c3PmV3-}0R=aDN%}r{{`hp*lDDAJXLj5K0qkTj z1hO6IXz2rwj18FgMUI1ZY3OTioqS!oCU->4@8kK)?(T=heIsf4O*+19FpBMPTT|jq zqiDO(#WSlVR*Ce+C^Oskw&NdfaT<*zE0RYJp%f$lcWd_h!@WUiDC$u70Ir8N{md}r z5FDNkoRXTF+A+V;k7E8^S3&Qo53egwdGw&{-O}860$PH$pZ)+phzwkgd3NOEu8uo` zpvJPu5Mh+7y&>~o!CC9&in@S{ESB=`32*_vQDeTJ&bXirW5W;2w~HLZwb}UFfK6wQ z3p7uq#fkNTHGao}eLx*9hf z2#kbMB;o1;aKUPWk*GQzqp-96+40 zp}JBjEVgS(K^sgq!9BZJ8oA$kc!PB_*H#+WcCGA`i!Yz=37QCeeQV2fNW)lrp6@IE zJvi-+aOEZGTF0}K|G?u>r;X%QG@6;!kTlkb7P&Z>knY`EagQ6I0bQ%X$g>j6IG5zO zdkPgNP?+5FWc-ws$BQ$Cup(V|+6T?Bw?oFOfQwTXY4{dhxz^$DI=jgWO zI=}N{R4o7+_#&%MKmT;kfnGjWi$)BS41L+G;bOKlYQ~7a+F$)OEylLi3od#Y8>mX1 z9M3nl4ID|cCVV)vI9J3-!igxkT{JlL?ak}U5O?@c-1!&{=Y>O-yj8|RF#)P3`HF=v zVvv`hlQ!gAdoaChL^V|_ycRZ1b-oewrMjuK{$Bb^0gUzg`ry|;-!6s}1Wa9M9wG6J z^3^YIf@ibr>d`JUDKhE)oE{NXA4gEz%?~W}M;J0fxoTXc|AYe>ZInANRo(Gha))qr z9bqZC-w^(YPXww0zLfrdzrf_&>0&sNrq)*F`D@i8E{`5;kbP4nq?t%3a@p;W&T=8h z0hkVj`$gV&1olS5L7&`XLpTpFAu&;t&M&*WQ)aL^Wp$>@E<)tEv_s8^1-#eG&v%-BxM6T*iYdeRto{u$ot4^; zN*`K3eE4u)Z37P8w9uUUYU5teK;89~JjtDDjv}!t4b*2pCi=BnSbQoXzi_A-gqT|o zX5FLDB(?p&`g)Wc#a%bBVW&*+_0$rgk#Q_C#Pxr&E!yd@x!OEBK5Kl1% zIrlY zok^8+8vFD@dp(Sl0xfPE{O#@QyN_qPuGWYHm&7-{GToRCTk0#x82;y;&qvVBX-~ku zj={@Y;HJDvd~2uANLtL`V1jppKJ;Q0h>LabUVs)dZVy~+ z64YFo{8Rgelv2>#m{`cn2Z%b+^KS@S`1c8X2G6N$tC%a80d^J8gz3nM%3mz6zTG{2 zTOs&oDlBGU&&VMMJfa;8V%738#%=uvIB4+b3Iq1`*pNxo+>R75{h8 zY>SyMY|_^jGrRhO>4|?V|DYJD5d3)?LR9cFgt~_Le)YhacPfm<`eLg{`SO{jiTj)6 zIIv&IrJj=rcOaPYbSUxqm%G5b&XRF<+)=aX+QW2$yO#auP%hhUh{Pv&ER9>xl2c$%%K6?R~&(V;=Aka#42K>zRL^ z40k*v4kT{0tWy90Rm>KGcLz*|7y!l+RG(qtm?-c<5Pb>}G07u6=~{g099KBLE=*(Q zaoNI`d+Xq&JQx~+b|1-edXeJ;0mo4!NA8b*ef8yy^d z+5eyp%mQeVa)thy2nF#?!@S1n2K5L>;(Uulc)J}M+Irqa?nj}%D7XhY6TLG*q(Ptr zA*U?E*q=d-U5~8dNlAW#&SBcc6F)#p_epHZ%7DxwggFF9Re!?V#u9xS;8g~BWXFjc zpvMFDA!d4jVkoT*(WJ0)NS?7W1@d#A2&G!Tx^3*4X z2&b->R|Qw8bujrauq6%1j&RH&cq2ni;%R*@N=9Y?IdCRCSHaJs1UAS4<7^vSDsjZV z^0yStbPSwuPpRxqmQn+(u`77GUYi^;-|c_HYV}6-6^IB!rM+CQz`3!w>4uXE0G`tJ zpZ5jpTX-X*5&6tG-5I50a7r6BK^DIRapl_>V{H|j&9tMVV+sm@BiyCg!{Xa4s{w(Y z@-IJ-zNMj9kfW^zJm4U? zY!2|&SnWqSJkL8TH+Ofd(N3Yz$(t%6J?`{!<(<-c$U+g6N-OVPyTfWJ8D%fh$|hfL zLsiSMfT;l-6ZUOfErnGNi07ogy6@oo+Zx0M9^N{*MjPYAtJa46bqtIUO&p;jUHRfS z4Wh2RDa&0$QxU|K{aN&irLNOQA7@>*9X37g{Qlk18ZinEv{oAAaFw2y9{Z@x5Fg*{7;81+e*LW+B-PFMRZ|eb+$OBkCZ*vTJ!3|lv@9;N`RCVpW9;WLIY4} zoB;(r!dCJn!~dvolNoDVj&B5 z87B#ZE>vGbva{}d_vipOK)Sno8l1X5sXF8^%iZE#~sgWwRCq{ni-i6F$@O#X|%Be)D0K2YT!orL~;7- zhf+_m0l9Dq^^#`Ip~Ues^s*_P2Wq1kw>8!f0(OeAiN-;7@h9(&Xd|;=^|jLWJeMIZ z+!n}w`Q>jMP=pe((~X*pI=emB-Txu-%ZtF>P_LLmB!$~N5{{A4-A9A4~cI1!UZ^ zLM%+!MIKsoZ40+v7s5H=TIPCGJEw+*0BI(aN2bx%HX}Y}ST65Y)Te6P%7QX3`Yu%MFH66tgW4^h4RexgjwQ)+nRWbKQYF z>OPwXJ%-O0F~yzzBG3~;s7Q4h1g<#9WtJ5SZxsd~!{zBdjsv;;VTLijN_--5QLsGiBj-gA<=`{j&ZW|6WpoZip>Jr{_?S7DIuS*Ws4+ z70RrDsv04+VJh7D(}atBR*!E1nW%*LJSBJ|Q3Tx3N--d-L=jPC1o=nuz#5dT4bYUv z*ZUC&ph!`v2ZBd+{sjVhjnL5FC@5ww{}b@Luh&0RP*Cs{7`4DE2LPxyri9?V42W%Z zo2XcxsDs?SdZz~Br||)}@zuS)hYkpN0NPBJNeMo76Xco83n~@g!hIftJ(;erK3>_= z5^C*;QxMfej@aWvVU7*lPY^aHpPv2|u5`(O@8bpPL4CL(Hgi z!-@X;aM7h#mz)^7Gy=D&_YW?YS^PikU42YjbrgM~fykm{aZ)#7=vHB71HxuS+OWdL z$La_~aln94KmjF8V6cHOJ|a=4%RmYULnzaTI3*Cm$HwSZGT0D-!jRBKKBs(C%D_=J zpabf;50*^-aVC;r()SMueebou*Z1zd=bU>_tHVcYe)d!=-es6g=wD~P%bo`3u@V{F z&0<~XsD-`J2w(>!EU=X8?#rh>Gh&<`W7ji3geDv_dNt-GhTt z$_U;i+P4y1LA0i?&Ku%dB;{CnDd6sy!)1A)kS1d*=mi4e`XNn;McU?9qx`5wpl63_Rd}p0Jsztzq;S_vm^fcH zMttwp)Y&b96Hx^E%CBfAilrelBdxHNN@Vc_ou*6yaKh`9a3iE2gj0z2>oggE1L^*KlfW)EdL`q#Mz^m&tqAycP`)U-C2Zj z%1f%ld_4bosB*1{2bECqdm2+dUQ$_Ome<+cVV@p@7TZr2I$g~2Ouifv|Ah`fGD_Nu zni8D{*d|kTTup7Q^-P>O?ZziEIN^gN)Yc#kraiCw@f$<5I@o{z-5eSRPR!3 z8VI1PNGybF($of9+2@Xk(^K~b05Svsmg29K#jm{AZ6Mqm_ET5bH%g~d=Nd#9B^Y$bhX9>)ujXYey@DhT zm1RUxtQ#RoZY$LWVq8|@wooZDJ;iD7LnAg6>$J)^kj<7NpMayaXag3v0}jx1i>1Xq1UK!!o<)XH0b&p+BdZ`|-VaROf`VF_ab1eA!o?N-B|lQRU& zNK4P6f*0Xilxe^?fkDNNlv`$~1pzDoyk&|H@zF%WLk~2wW0(l#H!!~7D^B5+!Bd7% zE*~u*t1lDbV~$Zy!qZ?ZZOn}xgzIV$9IQqq83`ED`Vg9VZ6nGOLUyX~7PMqTI+V^` zo=zc2{dYKQ_5^lf$cXW8CGLE2%wCRGz>FENmi6AkIRI(S{2fTe@e^ufY8o?S21fqE zaxOr6{Ki|TL-jAXtAU(mLTX-oj@QXwpE=7v9$D9atc~dZ(%&EuZKE_H1GMXVGc6M& z%Lu@JTGQLgpyZ>ZRBUxj8j)!f2a}V>b%IHNcT@Jw(d|&DnpHwWtD-A+=_U!c?Px0# z!AmC#ZnySR5+zks`6tmuQ}`vDaMAuCEnPO-|H;!SO_jFba;b{~Gg!X8;AGE z(vSTz4x9i}4C*yE6MZ62Q5%y!X6j?+KioS1(Jx1oKg6S<5+{Y@C6UkJu)JBQ=P}zr zKV;zf!WP+%4tZ?i|I5;GRZ*o+Gvgc6uvhT`Px# literal 25680 zcmd43XH-*Z+cvyG5F0WxI2I6a#sDHsrAbZHQ4HNek*;(QPzb#wj-!quqKWht3nCq< zQiD2*krt^UO(oJolimW~c`^6%t^0k}_v`!hveqnQ2z&4AI@@s`=W*@ZCPun~TST^C z7$!(O{l{4h7)heoVPP6;G&NcW_Xcw<+3;FvfHJ7{!Tu= zZr)x>3hD}n6|Q*uk`Bx5b0v|k_-ZIBdj7v3Q}Fh2QN%_3gojIQzH<74FNTS~M*s16 zvHWx}%%PO{$FcK)NuxahNl8vsI;$Qn#B}~&sI23ge*Wn%)^YEhe3g|J_5Jc;jOAhB!Hw)V?zj)zL=NNBir3+ufKM{T2 z2%7%92_u-tCpb0^^*zMx-|EbRJx}#(CyrN@lJ0cK>hK(`eSU^XUJEE*Z7-#!rz#{0 zpeydIo$HbomX?yuwa{SxsZ!7PW#!#H!|{qd^i<`CVcS{1R?nodTT&I0zeTS9Ug71w zcpdFB_Adf|p)0WB6snZ>XcT>3>Uu9yfOQ9RMpoy#>ITs7C~5`VIcEOFv~zNnQO!I% z2WY7Vw!y>2rKMFlq=V=amTg_Vs(I;_LEoF*b{d~B!WutjnfoR7y}ZgiXDqq48ZcF} z!N~{t2+OkFR`bHe8<~kC9eJb#$(H-KD025wSCu)kRL0qA8bi)R?5TR;jm=-$oq^5#O9U?WfDx~ zR}c68xHqy|&bjjreu>dHw%b-5P&Fjqb)h@#b&zcw=))MAZ37Q3tPyxcbtWNgaY8y4WholR>& z*I;cb=~B2r<~q){=}Qj>7b{|G97g7{ZMI(4 z?xM{z7$gyN0lkHqWL}J()d|~I6w|k+(|NVFS>}UB8SKU$ z9WC|IeD^S>Br`%WX5G#;&3g{fHNL84Xh;}f)r}$^IGS`UGV!m-#IvPKBg{8Kuw51g z*y=5%rfeyUygJQx!OQ+@;I}V2Y?&z`X2O)p7~ViKJ)H#Y|X+; z<5vTZ_&PJsqosoRw~3nNbXdH(C=t>8ghV-|78*F!L^dn+ES3NFK|D*7J30=m?QG!t z^2?{IwV5{I3t!pqMD^2ARJh6uOPdLkIeB&(MBl4|HECC12UeHSI`f}eZ}S(4fNnRSY>>l*$khey9tU}dM=Bp9NeRpOG*gN=YL7-2@fe?O0D1LZ}}RG z&|fiD!j|`zNq%f=fcY0ZIzbDY%V=kCJ*T>TPxhmGDObL_PP6gPXg_glXXIIZDXfBZ zN>q}(s6V^|!+hf~K1`$~u`j7R$YprPtP^kk*07OtOq#J&hh6H*O!~i(pd3>*Z-j!u zEv=b2V#xF9#sGeg#d?XEwCwVX4IOnzJJ*^jU(@sDwlq~&ocPSx_}|!dwJE_iV3A+n ziPBcNv^Fz+Gutv!!jcltCqejEdDZ0cBd#X1FNRxa=C(44ThXd3W=1bWhZ76F-elHX zbDA!qil=QTqF&pOb?#bfNbcu;C>WVqj;$27HK@)iQ>La?!q}@UZ9VcR zxrZ+vKXTck?S{!s4{YZg$4=Ut90Cg_cw7-AVDx3~h&i*X*G%K2hZ2v)r%x}Ku?*`R z#^eq5;$YnXauW-)>l-CgxtEK@HA^n+)`GIfNFCokjHP{3$XGnAh_q$k z%BIsB%0@ET&l0KEw;xPK_12y#MlxyhwDvO{#??3N{IU^j*2c{XkDeJ%CXsMsV@^uw zCUSatwnQtd0tl>~Ru7HdkPG-?uSK%tyfQSaE*X!N)7+H}UClB#_!j<&tl&vm7j;9Pb10ERC0uxyW z*bMJLzG?UkDyCR~!FZ+8VrP@ydQe!l*@j4pdY-qLh#Iix&1YJZ9-RA=hmz(5e{JF4 zw-)a6rgUyiI^%ZdHlpMA5k;A^x3OaDM`KcId&%>U>*p_sfC{7Cur~qD7u9 zQ#S7*1eLN7ghNg9aHo=+w_@_2X>CtPSWIvB1yi2Dg|GicgCA+(tLgk953^yM+*T_} zqD7QBrwb~vl#xM7h{7UcO*RpQgKN0x<@?*jt^KxZ-;GkywxW2jjmdf?-33s2=~q#X zlS@hT(kuD&n6yPBVsnkip2NQ{*1KfR22|6uX3wubD)ulP%YN|j2~9Elh2`4H;J@f; z2c_7rHwf~eRIFV}5;=TW8LjGxs7mJNGjX{7chL>U2hU>dt*Tw;=L7m|R1pwh?cKQD zpm(mMS!QTU-Km3BR$#7PoT8NOk=anTR!`S*>Rg5+i>+xN7{(P zd|#^8^5yk1MY!M{?%SMYUOZb$UW59pw+{W%POz%xx|PbNJ|Gj0tEn)bn|GX}-j$2v z#}15Tq*H%2JCOY6I2ek*ietmH^pF(Ny1(*m*T1pa2>&z zh#=MN}HOxR!Q1Yp18SYr|QMyQ-!If9HG#CL0@kaASg}A{Sn`UOZ1G{ zCSj|wSuzg85eu62+IqIp^AjI_F1n{QHR1 ztNj25h~gpjxP9;e<-%Xh4a{s*_Gq-qFwR4%BRIVLdXqg~K|3KNzrJ4p+td|B@!D%bc z=x)+ENDMUvO0YM6h2LYC5^EM3{E>~n?UQScHkXRhq9$EEHH?FG5YATVlGzVNv^C}K z@ZLWO5X}8<;LMQYSTU`*{b2GYY-C^o=Q-VzE1R$pbG7!!F|AUQ&@KR zWgh3-4JpZx-Zc2J*0;$-DV$sCghPi^XZ2Rwx}ElztAAc4b>>jx+h2S(ZPNdK|3v08 ze&x5IFV_k#VDz8{BOk}iDQ^pEZQVN_Or-ghl?H!<0nhtiI3M?yefiTpZ1NSj zv_){=X&-&+RpOl9R9eARjB>MRwtc$y)|+M%tiWJ9UaK>FnJuw)+6Z3->C#nd&A{hd z7RUFT=Q2MQH`tPD)NZ4;N9h^qmxN@SemPoBY3?(uZ*{Jjh|xPkk21Fsx9b(ye3iop z`-7LevgW(3ylpf#H#G9?OTP5_uOO>y0iS+b9K=H+rM#P?;TQ%5$EkTc8+kEhDny=# zUC-`Ap@E%pt+#mZ8@=fEX*mHiSX zKYPH4c*IA>b^|tK(DF<&E7wwk-_M2jzJgldm8mgrbB=E#adoZ~Jdu7^@!7$(Q_|{X z5w;E=e%HavGo5W_K4UfCMDRL`L%LbBUtWQKitM0}%AjUGxtH0_Sh&Ia6UA(19%mQq z7iL7|v6<13TEggiva6RW=b0=q_-vMMlc8lw~2q?T5z>^YiG`o%Jm_r8}(Fv*X+#%11-HRGhG9E=sf z%4_S*CnO9C)-GwSPEY4Z+<}6S(3LdL@W>m>7y4j=o&BexH(G1au~=N|Xwd57dZ5u| zw}~iEa1|du#-6_H2{5(|mRYQ`qY6kMFkk+9-nL4;1d;bpr985Ke2z*Eaz5hc{@^HlCg0-J zJ%f9i% zWZs>rn+XYeQR2+5KHHp$N~L(!9M`>YW6OUgzcNpWnsUUo@0_|O`3!rS0j<``#F`mr zzDjZNN7OnPp{rbGgiSq>h&JNU*X23g5)6HZpqjyWg(8G}vm0FJ`4i}j+b>A(!B>-h zu?WtE4=wjhP;LBW0RJak^T2p(s7qtswB!JVWZsxac$nU2iBf947CG~uWrJ3Jteef% z>&;C`{PKlj)kR&g1DIRziCa=uo~Aj=^Txq*2F^`J^(8<-$0z#flw1ei`<9|daO#U}_ppyA-@OFX z^gO%F8Q@4;@ca7(7wB2>*i)y`O5dsFJ_O+<<1s#py8maH#hwYhbjtWe-up3E-|bMYE%qJkgPCzz@VVI&DF3XiK{*b+{$+9D@p=D8P3&j4%o8CZ+r##ov0f4MFswYFrw zUffB!re?%;%dCS~h#SH6qK3ESXTJ_f=yD3?d)I*vt8=cmBDg7_$1jaWxUl4Xx`30* z{PK!f1*%4h)@otT6r5v85{t+mfr!pvP8VfBs)nh z%`)_>aoAsrclXe&!~BX@S+}T6+Pe4H|H!Tmp33ny!12o21iIq4>iuz1cG@S@T}xrE{=dP&8kQ4)rn0 zCDe~}2KKX~&8ZdR2N67@e7Gqpr5$26(YbLu#JLExJ@$vS=dF)8o`&+8FSnPMmk_44 zoUO0+>e~^XO%WN!sq8q1%vnWpyw)UP9h~JjLnRHUF0`BS(tyH9CY#2ys#Wg zXfc214&S3`3~r94koafdsA}s8P|6qHNM!aIi3K^X1BV9A`~6w-X5@tv!#EQODeMu=v*g0mD

  • {mD5!=*rR?92cAVF2$hx%79v;FAgFEi1QWPa9?$~D`!AUAzsVZ|h2WpQF9Cv`G3CU5LrR}=C}O#6V8Gaavuf19 zz#zJ?dc%03pU~i;siEw5eG7%CRp#@RHTRy3ek#{KQ0m}*u(vs18%SYX6HvYQd3W)t zoao=6cDjS{8w`9uf>8n4r<_0CvhZIw7)nmh$My6;)1Z>rza#K^4AqWW_ zbVX|DQUbK{h}Za0`Hem+<7%JMfb~3!*`W$oaa`E5XVlTr(dWl;D&-V`cuZSj&d$!x zTSYc}7wht;z76t8Ha4No)S#)sfq|%m1c$27TeI`02K8(8{R+m974^=0CmWlXKxUZ< zxr?>6^|wDCe0_Y}rdl|nqoNr8=0m%vsHoWFZkU)Pv?a^Sy2x|Bvi}~+A)d$EUqLoM zJ@3FhKm8OdvWGpJQ&nZ6tE+2O>D*%DgTY`Rq-)r@7kNjFU8kbg#6q++@$$}Y=9mNb z>$^20wou$>o0%m^NJvb0 zCpR@UksAe4U@BPsxT$^P#~QOL^idz_vRIS<|H&clif;Ou6av? zhwi-8!xY!0x3V5qY9Y#EG4EBsvu-{|8eK~A90}=PYe`YGIDlkN%{}GQr%!L?ae^+h z)p9+(@h|ocB1~{5c78=NQ%}H~zhPYe;8v=L5Qn`ic5|~N{abK7*Pnpg?O%M%B{2E4 z2ZfumDTUJQ+mTvYT8F&bOW~D!yZmM%tFUo~Lt%v)J)20^_gAN|u~HdImVY*f%O9q* zikN1rzGTg*tn{%gsj$HIe^k|uxp3>wotT~i6Pv2U^6Y|w?ws526Z>RIslli9R8@nJ zfp|E7cJSUD#P4(6d2rch!Z$Z=juAe!@*@1zs}65%&5Wm$&9QlvmBziMuCEGf_I(!m zKGb<=(yja-4I{mVz^0yOShTTNy=lJGW8(a3y7O*tM~B3+Ki~0{rsn4AgZ<4KRw2%T z-*r|sOVA)1b7z15YD0bf32r$rF}3KkDSNw{zOtT+~v@st19bNL~pytDAFzr9pTPoDN3k!+V6 zANCr5#ap@LrNHZG=j3#HYacpmB{wf`fh7{H9>%p|Z*Tu8Q#;mY35IX>5~_?9A8Qd{ zM6hY^S?{$#6}{Ksgwa7UT2@w;_x^pued)U9_E=++29MDM=g;1x^_bY$ypj_AqeqX5 z=ZjR3Q{=6;O5{s$OZboz0$QsFBM6xxm%4J+>zZf#`}>V69%UjA99B&#-E!b`|6yfO z4+;vR7**$a6WF_8_{&y*bJ#N_*?THZyojGO7Pw6OI99#mXh_YDV^AQ|Dl`-3_s2M!Z0S%g0hh-X@gmF zoZwK5fPPqqGKMh@&M=%@!_=D^y=IW#yG&k3sBV1WvW5q>!}KG1*uJ^;P4ub}%q2VT_aE zDzNLw&|Enuc}8u=Cs2Q5BJ#!@>C2M=$h)39rQ|w*zc5~6_^LMs91c_HKOzasw}!>x zs`ZUQ=lSv1il=+WL(c<-(jOXp$A3Z3p_O-)Z%fdp*r`KVtbM(Sm*zP|p9 z?C5sb2<~7n<0yzY`O17}n%BF)cXP2j*C3DFBvdrxJGyHgDx{tNOXTgi41AL-567ND z+3RfFs~2LqQxpndr$bq9_I*mv z>SXin4U*zepk-z9q2`v|F9p@w))GQQx0=uthtXSj6H%G&65d8Y7pxsHD4NARQ741H6s(aQS;nVG5$uTiM-&)#boXqsJ9)Opst7b!F-znjn; z_DgLdW|jJ))#Q$B#{J{Ii2C|xM^Bab?|N8cFimT61tw)8vrJ(|MtX*^QAzTZyYl3p zDle|_9D1Xt$U;=pXD;V`$^CCHF6rBiLa({O)sjM?OYumQO%ayZP34EGR z&)oS#Xn*#}LOs}Rq&Pf^Ipmt#?m}4}fpFW-&My8UHXb_Ef0T)mOEd=Q(U+?750h4s zusm-`mi4-shWK$bpK?Yl4TX0e%joB(1i>pP?%M6^DKUNn*f4E0xO72wki3b&^GVAj zxL+kvLx_`gBew0-CHmTjZuFH9vJ@-TqFe(Ip(t5U84M8-+3hL-Ifd8bB8^I*g zQb)@S(3(f6jZV}`ztOlRWLVf`^;$mb@nfX?>JMI`_G2nxVM<_l40dX2jpjKvXn?+T z<;s;3`)skoBL)T_9z~DXJ7hL#{R;?-+%y;I?uF1y zNlrB#GmbI_L*G+SZ0FB~8=D+LP4kVV*r|4ifE{@uE|H1qk%?CM0c&q?~&;I^Ip)VSa|7BO?;)@$^Xx%#f4hjk?xw#P=3j{MNwfiHVynQC4 z4Ix4}81gu;A>r?jX~o^yuHS~-3law@_guHRs0A&t#N1p#GynDOCd-GOes%kM7q(x% zJO;$__s>4=mtfbB7q}5WywAQB>^vqMc&uVhuoCH*my`1g2EVAcovkfvF^7a!+k`ON#Rbv-)a35t{%-eOM4M z57@S*dZJvtIpRxfeoVEn07IXnmfn=n46v7Oco4ME%^^E9W?+AHGFH#MbU`ruk1e7$ zTQ{C>a^mf;Zy=&MS-vCMaG(&GgNIZ$PGLA-sEzax?cLQK*S*iLQ*1`3hd=RAvLy_nq9c7E$cr^?xWO)u0 zt2|mtejw77L2bFUwdR+1`X&yL@eBL=^ZQx2NB@hdKM(oq2l=lgEuGR|@6(-oVhT_n z(7E*{?)0T5>sdtTmqN3SuR;0b;1A;kPu>cie%5o&v#YiB zRQ|-)L&(zi3BF~J4Syd2G%C578n6bMFbq@{Uq@<3| z{vFc28j#=Q1&%U9h^>;sLesagwbaUm!6T0Z#KXVrEur(+MjQN<0txV1tlg#Oi8>yl+N@ zt1cRtcJ$dILBbCD7tBoVadDX2k~0zX9? zMw);vD0+R4iM0{o=EfNPE|GHGP$LLG>l|@XTi>j)xwKs8?4?~tcS0b3f53>)Qd^)B zoY8iD(BNASq!Ohrzpn}#muNt^;^Q6iyp?`Ql}Uoi zNn)>}<f`T7S68NB5*+k+-M9ts_t6&I)&uUhAEOf|k4yD8Dfp#RnZso*+ z%D+pdL?W?|E%BP1b8(2GWF&upQUnrG3gSx;VdRhpl}|caZ|}xq)FL)ZBh{6YF(%{& z#r<3VkfwhZPq~D&KiTRZCbAi_=k^1aCJF{p4TV_fz6i20U&w`=eL20QQTz!_q_x)X z&;Gk5k0!MsO4ClivbC#u<2A?7tTz`q@b^zx4ZHP^zIgfPwR8+y`5#B$^$R9MokJ}F zG9T$>!uw<&EulO4>>HnRhLFqay_h7Lc1fDu+0ICTC`4l@EHmM!HFb46DqN?0jN^^G z#SGM<-|GQehe%i)8}&_|jc9BwH8~Of!j_BTKAO4QWi1uj{qQSUQJbIkBuhW`jD~?t z+gsIyodaP3T~4liI!h=(Dsg3G9xasoS(MW#WvHG$wHb)FJ8KzTp}eqwskJ_+(LDGn zcRQ=Efc~&N5sn@;#fouCJG82&^D~f{Oq&~54iKW8(t+7U?S7(hy>0#S;g={uZA6Kb zq~$`wl`Ab|X*)4?@@T+U%FgKUBTt4Zt1@F)B_$MvvCB%Lar0--mIQ!{u;|7o`7o`* zRLd~dPC8siZ28ld#iwgeu1eW|KSj2}+GDZZUxVmjdN?q9$tHSw^YNe&6v44ldxMlUt%@tg#3k$E8 z4SOVv_^s)-rYIhy4F+F56Ld8-a2{&P_I7q5-mM^l4c5DJXij@6LG;HSq59`GB-~TI_x&9AzV#V{RvH<|A@-$E|`X6{4 z;eVf`*wXor{$oFw2{i7*5V1Mb%?^*xjd)At@-uGP-eN#_^j+&hs06?dudEEd2 zBs@i6D9Pc0z&+9o56WI@cf1T;ZM}T0JZ!)XD=#-ES1%`r``kV@9-a=aE>hxh;upl- zTs^%mh;rL|dAWJYOGr5XcQbKU4?79|r;N(5D=Ih5yPg2h>K%U&Xy0di0Py|Mx_;Hj zFMW9|&}m@vp#9H~!<&oTIiLCfp|4aZdh8LYq!Z8}e!7ofWCH$6s{Qq`J+Fw-G zRCx1zPRtpZ5pgmM0~5f2!lI%+uERA7vAgd-`3QlaCjgM@Dsm2e*d8yk%k)Xg2W1pGZc848IAzZDS=fg6`4`;g%8JV+ z85zL_MWA$IT@hc2BE@|2JN!GlNtihFv7BozD9|D!BMVrnXy3q*Fqm)n{B*nX-Co+* z2Dyen0!GV;qr>fLpJme$)9Qy`vY;VWtmxqD(%&bAHh~jx3IPD_D*ORBuEVeYeWz2< zoZJ;jVrF@HdFN~%JUFkcY_T|0HuP5QsZ%l;&W;kO;PyAm(8jlJJ?Ebv^PLz#`HtmE zH0^wJxdnnA2|;`8G8`tbJZ)p4j$C3T!PUSiLC(c0tb9{G`m3+iOTiUnS;r1SSpJ>< z-+s&0LmPu;t{Eqh|JO=b?B(jJs+?MRa2YxSrn9@-Seo6~-TjXm`Wy$n2zyLkxiG+1 zkORv2q$IYpR|32ycR$CRF*Y|Z?no3gE2hS9{d4nd*(JcqwI8A$Rj0Iq zJ|YAL=5}=v(Hfq_I*Y|cshaskspjl5{Ag*J>zbV^5AnlWULg??AqEDO1V#X|7U$yi zGNmaj@KP2ukzE?_fbV|!wNnGlb^5e{R>zzRfgsX$-@tc!a_HBe7PoI)vfA1`44hzz z2LL7a{aUY?uD=x9=^R2FSTn-S&oPNlo<2G}jZaKX)s4_{6VY$!C9~OpG3g+c`QW#&VoCcm1ZU)*?^B?e0f~JR!;^l^mj`)?4K; z_*F~C-+#sfo0sP~boxcI&QyCoR-9Xt65vjG`|8BRgnMpBMjF`Uj-`gZD_$C1jER|< z7$tc8U~AZ}+NzcOVA0};ef{5Xa!Ku6%B+?~oc5I~;frD(p3Wv@I}8YL>SITu zt&%d!#i9*Cy(-lAFF`OenSKbUhU1Fbuj3}exXSzJE-YN6p>DNeJApiaUflGivQJc& zsOYf%z+pz0z#22&r>|UM=2F+@bNcqnq|~?rK9aGq8K-AYsL{FvfQ8;xVuOo92 z8TMER$S!XyJM?%Me0b2-Cd>7wg(mbf%2s(^s5k5@;S`Q}a` zFj9(m+P%+HGc50^n4L^s_dSk53HptTGy2l;e5PB9ptwq~>)|~w zRDoiZyhsXis_pw5De7F~!mCotCnCW?`mvNB~X=5|fh2TER2;!6A@1n~58&Y&Z zAnn|Zi^-qWJqrqdIWg~W>EFtE*`y@(+tl1C$`YY0Bq5Ux_O>f;G9GFGl@VEwPqf<> zA#%k1wX&OEL|L316StNw@ELirMsR)KWN#W8ce$rYBz6ahP@r?d8x`lDh;-c}sjjwt zE<7pt4B&=#eVrP9Q4?N*Y{Oet^|wMcU#4)rlJ4+P!?aL>pn~ky#>M8Pi+xQeHSMO_ z(-;ZE4(cR8*^(4A^)(xEt?n{O8|G`<^=K;irW%@r*YdFTQt*Mbm?kCSM_DW6hdn0q z;o;sevKi^Y)<@1JB*{!*lBT4@_6zzjsLz;=vi`JGPDkR6Ih#;!CvJeN-wo*dVb_AZ zz0)f8_pfcCiMZR8&c$i8dBd}C6Nv^Vf zG(V%U>V?y#dSH`sg$!fF4Y;RGO}l>OFFf4MC9x9`PZAc%m1ur|0ts;d^FrR^Q@^6TxeM*XL#L}7-8wIaFCD4pM*z2AT77)OS zAbQ)UlXV33GzIlXN=dI?2P(bG<6<0)ph;S8 z-E+~)aJDZ;QH5auCW27W%CTSh-pK?>s(&{{E^X!u6a1Gk=z}*Ke6);>8;KMN1;t%K zIo^_=!(jX2hM_7cn;tIBCWpS96&KG`Zb^3d51(4XXE=_cnVn6Lwbr{{mC-jHiB6#2TXR;)y$_~YLF>_Z`dKawEO#!tW)6p?sfC`RMgTqo6FaP6BpQW2*ra~c zitWVMc+R|H1m?5|(2BK-llCoL76!B$E~O3~!3!^zwI@wT0c~eAvw;=QmBVn}6Vc~6 z=o!pMMn;^HBlzDHKiIQ0=RkmDmN*?4z76xC(WBSDU1JbpkD)hTUtd3NRk!aU6+jWh z44YNCa?S3M%s<@sD|n4dKMm4j0EQ<+-lj)n=0)>Hg>5%`WUG~0_AN1sCUawBW2{b? zOaDp{Ov|i{8b@a#Wzm_MvkT`v+4mzXf3h?;iIdp|NDVeA5gMRe7KrY9_6F zc&dX@b%2wj=ZKee=AdlqNE{Z#dBa(oTa+RmHttb`l@;qkU+`fqj|LdT-ZpWC%dI1V z${?^|S=f>W0Z3GNDtEasXM{!M_;5Cjqt_DVnR{H&n807|(NSwIyg=pnLTouE(6&2a zVZq4+afTAyw99|-(x!nLTz+7qW!D3zuSwA`E0cteOJw>h7+S3BWOY?aYNs@t;erFu{9x z95-aJC!OIu9Hn=(mkbOi!8}j}*4C!KeR9Ek~6)MuCJ z@nHq~!hGQlswZJe2eV%~6GsTnCZP}bAOYKI22mcvHoZd@1n4^I5aH$nWGzb`Re0RB z&~Vu{3S92S)<`M%=N2R};*mqqlT-Rj+c;ef8dpUPCC~+}|NgqK$f_T2?>2$`X9Iy1Tn~_lfw;#H{`62^+0khd1fy=ti2+=-w4(l>lftq4m#aT<5-P za19h17i|<-9Kc+XuC)^^EiL`7vC(|$uqHx*g}UJVdxOo*O{!)IFfaDoKRRPxNJ!{b z(zTcw!pO*rsXH4^pXHaFUUO~my&x_j^{WDF?%mxMqa^Jq?wXw4kT=L!C*qHm> zkti%Cc6P_q)3cJAh6Z1k1xZJSQgFaz0Hm2!4t*zXKbol9Fy~yhKD)da;VgdOEKtzU zU+S{x0|asfbm3%jF7tIcX8}Mql~B zC@W;Q;P6iz`dv+piOB8ZZ=U!o$?+#kW@c>RnlC6V)tiEdde&c9LSjfTE9h-uVd2wp zaVe?9W@nX{t%}$!?~j+053vdUjoEE1Af7ieGIAI8R(w{$$A0?j%aNww2E7dVT*uNn z^&*opy)VHpUc8tyo7hddhd%Ju>Ls`~!x1X}ZsEeD&29eXW=9OWuT5UPk#cdmvFvCg zUwHsx+^q6F|37Ufy`d53AtJna^=jz7;LU-E1DD!x=o>nIz;Eu&qZ0=r!D45*R_$ju z|9#EXNczKrasSzjh%tPlKXD`LXy5L7O$Q#Y|KlK^BssG)JGgjW_DG^`v*zXJEkEWa zO2$Lqxp-;Myk&?wO1sm3^)4*roR)Heo_qfvCd~`|cNv4A&CP!_22k<+;M?eEac{2y zWZc3jzSd)K^712TPA)*N8Vn<&sR}s=APCSoh$bo>)70ZDZa-CxO-vYyFEbS0NW1Lt z=U3ZTh!;ny9i5XCS*ok6lcP7JAFIY#ZzKO@WPPjCr=N!X-=zG$>E9NNg z0b|p8ulaHX)ytQ(?5YzqX*!d{486UpOPh8dLdxqsf^|+?PB8d2U}9l>o~0MkPmK_3 ziRjxUrqjn`92ct@P3UT6g8-3=(K zt^GlO3n5IHnDrrWJAhE*x*hVj(;`55Zy4_c$1F4Mmo4Ma%a122uDYW4(zcgf(F6~* z4&o|gf{ym~YcTPxI1{klK5|+E!^88=BUK$w+ov*T{l}&7ic`mnu(f{q&OJUSIq!vj z-0W&2G1dfyaxQztBIh+1Z(?XTb*!@lZjbqD1nuR-fX4mx&Qv+iywZl1`Uhi?t}JY9 z^g-j}t~aRu($@*N!=-=DCGu<2XT&^~4^!xJ;-TrQTu)n|m9TvM4HbH~RFI9!sNjhOW&ASf#_AsS5|0x5zMWQlEXgepPk5NrS$gtz-^Zj^E!jF#`Pyn+aFd1YTx&>JG7?1 zE_nCurnPl8H8nMVO3agm#YN+k*c+4XSM{%KzJROxtTTKo%R;;JCj*@|1%1c;^H-XW zLNa9CRomLyu$@}9C1y2+Fn)Q?bUo+4bm`K3)82|9?2prLGSuoQGeRE$J!j!lG&7ti zLli0_GhjgozO|?`!(nSh;Py%=K8{PdG)`$(6UJvY5$((?fm`-%Pgn!ybCavQ<_!qb zmd|##>F4I=;y;Zet};ho-#E?@tqjVFcCkU{+her^1UgDYzMGnwdTq>o4_!PX<6`9Q zUU5!8)2X8HxBp})MgNZt&c-MQ?yL?F-UoKGzWToenqf+bMQ0= z5T(e;*)}l%{`r2PK0#6!*urVSXudeI5^%Ivy*7hsohCBOy+;C5VNId34FN}TiWVi{ zKC2|!o$k;;opS<#bCel&s~_+%)~uGYJ9X&G6oYxa8*nTFaR6KA@9_FE1?vB3DYHXR+rsdUrR)AdJ(djl{Bv~vbN3vX_f-GToOv_wh028Jxq zB`{j(pFVwh3Cz8lu@%CcnXx)W3F7%9TQ^AEZa^Etc(XB=9amUhev?6YzkE5t@~RFE z0%uGLG!xd>bM8Qxs`)ZDmi~Bo!1$Nt(tO}^&(@ivOWaIAGGafdpwe(*u@XfUW!;x|0|vZ`_m!2$YBpgSXBW$PX)zEJ z0&%>LARE(IB7bb<=yEw5*w|o2T5g6A z(>~ig1=ufHWrQn>N9B{N zKNwf6d?dSX2Xi=NflsdU2EZW7O8;mR`tGne4O>->4hm(9kZ`-8i?IAOLb#EvG7?Qr zVF+5*r;`o5tKmHRJ_DAYpkm|U*}ZTd9KLr<_G)9r7OBW{L#CUjcPY5-t|I-81}bBI zOD3cdl4yEJqN@vq=W&Q#5)krj)QNsyO${q@wH`j8TUZ1&^Kul~B=(N(L+9KfW%Ve4 zxj+@!<^Q?CmrzRTX6Rev_51PZ=OpTozF+9h3hHYadf)NcS1Z z$a;Tw*fO2K{3a^uZMXh_5|U(F+suZFo*+enYdgI|3sU~TYQt}V`;E3vZkMhqh}X3U zaj5t3sOS1e8W53?;hCJfbu2Pedgenyd^eEf85sg-LCHbs;t5zvi9Ksujn<1@);?Cq z_`CZHY#*<$S-}V9OVBM7qjenn&t>5aV}}B1tFZY~l$O5(0&|xMxqpeLw>0jiytUa3Y=#ov=x$h{JnQ&e_&@ge3qFW?rSrpbLmE%m5_ydRg_c0aG|^T)`%sdMr6 zP%i6=pt4QtJ*%L*X8=wP_VZ`Rw_%$!#i2Cwa8#BUJA*?Ikrb2W-rly4x{pC**lVcK zO+)>=XJ*4ekC}AWKXZOj*&#tLoLuuV5)>B{OP7RiFI%I)=-_v&yw6agTeQI#ow92H zwI#K8zT%U8mJ@7yUYvvSD^t8Fr1&V5(?WQ^H7OXhu}QgcgZ)hIj4fdR6d0O0rrLC; z+BBS~h4rq9cZC-X5rNwm1u&M5&XtgLzZ|mBwg>GJci1{?Pz-~Tmao3@N9m526epESxOQb?Y?bvCM>a%NB z1!Zx*2WuzcgN{&^RIAKx6@B#tERNVpPotFgp8`zP^AsUeNSy;uqi6suclwnn$`k(}p`7KTH0s3oRI zcbLDuMZB*Ncv+&VT!Kw1ZRf?y?_W>Ohr;Js>C@f}l2CM=yVjRq=`3te1_f0wP2uyB zB|)K3+)**5iPR-|Qz~Am#I2m=YoQ4h!1>9meI0Qm%Dqeo5E`FoeJ_GQ=-$P=+g%UXlz??ZM`yVrOs-HpiwZ}D|A0Y*(S zvKf!vjmds+6=b__g`x*V>Gvt=q4X=JJYg;`uWR=687*-o#>xyi@WCYbwp_G&vwK1YDLujeElv@ zBh=J4=3K8CrD|(Iwa#R&2Ed^p3;SsPhy3>9{Vhe$`19gevo!vJ|Ae#SdC4Oiqy1G497J14OqLQErnFRJJ*e|X&hMGPp zOeE-t(5J&60&85F{@NZuF52IltMe$h!A-WhHFB(#&w zByLm(hNKDeB5ph7{u(K1j%*CO(=R^$2jElpT4PAaFC_hxo?&vjw-|}ADQ>%>vQdl{ENvf*0J-7$hFO(Jbd_UO87y4!6B6mCJUAgN!Jt$ z>h8j1V2=MHnL*KKW9%d+>q&d=XLYF~ z(G>2R=1#s5+^7siht$iPM`n8IvbA@ZadWU!{x4rnElGVVs~e^@X`hsWfCYyXjJ@5C#+^#={!2&e=DgWqXmMG zmm!B90m}LLT1D^d<;BLfs9$;$pEA30^!LwHw~?y6sK??;5|pjK?mv6hLh|83X>!uV zUBnOAbCB&vQqQ`0=!p-xQ!FR_!~3Z0C?fqvpYcDiOY^3PrlkGwVa9TN+(jvKd1-I8 zOiZLR;-%MJN~+o@Se$#F&Qa-NDGP({jsDxV~K* z_<<7JzxC#dr)~FzMMYomS7WgcTf)e8_a=@?)t<7U*0KLp>mL?Ct}&^@p5~NybPNIm z8v+6XL~oPeR^e1&oPLyFCC=i9o}HH3_`(-QyEvu{WG;|_oaoe4_JP5{duxG^H5#g^ zwc$4F>*dD+7E1z%-7=S4#~XEKc5lw6E>gZ^wqoecDk$lnu);?b!ldA3%DGdlv z*96c>mjEUZR`!thw^znUvbdB(%(;R$optJrvjex1A#T{#*6=dc3LQ8QlNT1u0XN z$Fw%V2CT`!%^2Jg&HL|dd(sOQOB;HQ8^yv#pZ-HIs6kOSN~_;@P;$EV}XF#o^i c{`C>X=@`|#7<;;Ptk132^}c zw&V15OaVZ`uLu$+JN)QDcfW%lTE4ngzGhb(eTkR69e~j#Ur)CyzHWp+(N`V3eF#@P zlogLD9#ZtY;^TWr9_{Sw>*=Geq~!kZW{Ow5os`6*P+D-QZJzq)d;s9VZ~Y-ciFXeG zAmoA5IbnY7(Nv$mr^UC8>bXV-rbn2vb2PuubkaAH`Z3~gaq44yM$2{QoFZ(#xzOG{ z?71B~*tSrdhx_=EW|r=59mIi^+a*vQ%%jiG1^66m`Khm(h+OCtF7CeL?BZO%x6pr1 zF{F_B`ejJYGBRF2cE{@T195YcxYptqGyK>h->Hcu1$5kRSFn}Qd&C?ruiz0n+NUCW zvPe2nTPK@A-Aao)K+#%%Pvm-ZE-h2CU(8eJz$txU)ir#W^q*T47fv z78Lf;SjAaxg4iRvx{ReMn%MwTjTLp7g~MRxm8mj0To6uyp+FNt*6n5F>foG51qHpw zS;e{G9CLqvM*q(d3>!XL8=Po+k=*)^XD9d$vHTT7af@KhC?vu?F>Y{41pNT+oBedZ zjKXKQ#svn$>W65}-_a*ePrL}00+kWL>{Pl1(7(;}9d9uX&Z3Wc?ZP%?QgDxhzGB$q zVOan2|2AfZnF=^LmUd-wK{xpHV)R8Y@Pv&+C~Q;EdVcGZ8#DZ`NPqh-(SR`ySR=s5 z+6Ar=O7Z}eE(S8|IYjjZE(~DUVyeYRX#dS%>Uq_E89O%Rzmkouz3gN-+3^F9U~O4j z^bkduMj%NEI76Qj4)$4pfB#-p7OE}+Yf$W3-G>PK!{PFqU>1Fe$i1f7>DYjw?OU7q z4{a~G0;mu;`?K(-ry16b#{jD!8<6QJEi^a%iqSQnA~Q2Ho6~&Kiwz8Vk0UaLwtmdI z#~jO`ndvl};1cbmEapA_|CM5hQ_Q#~93UXkF7o zwvAM;z|V@SDut&kSU4nr#M3_$4w~ zaNPI>wIt-yc*naWN#mtdq$NzBP9+i-IE+X3N)Y)5{!rg|s0Hez!R*M_C`ymVLMn20 z=ygx;ajRD*NIZ48ljfBYEahk@|PVw0rNfUynqR=%ph<)S^~+$U_E(eZR*3q5v!7 z(Xo0YdL52hv0uN1Bw@>j`4k_XTv?o&tU8R+`7Jc)S0O9fgi2O;zCz_o*M&b|&zJy| z)#|EgM=p$pQL>(tQN!wJ`5|sr5jODT%-QNnEGLZ?+-JpB zNkWp&ycye1wbz5*v`lt3M_ZtI{$A7B?Th>_eyBQ+E}RGx&cIro0VtvIaZ`Dy0iNFZ z_kRz`=2b{KIIQ9kdzIwsqK(j}VH6YJYW(8HF!wq@qBmz6;c>~S5-Jb6fe^m95 zSHBqP^+eN&wNb6$tXtPLa7HxkaO)pSjJN|Z1n$*5Fu72pQ3ip_Yj~h`S2uhYbUh(% z5Q7*vxO=B1KL|IqPGOEbq?ysnRQrds`NIXE0e=*Zg&jIP$|GA z7!PL$2iy#862tZ~VA;l!qVwi&z@4f4oM;=`N93|vSex|tj<|FRfqhP);JUit@+sfl z8h+}nKxYCf0u5hS!h_0L=6Kuh;KXo&lX==4gaIs6l8^K-k9x$`HsZ`lDTQ+|6;C~C z_*C0T(&+%rS5T12FzuH?`B5kr)^3hL@M7iUt>_c+w{~-Z{TW5(*)Jf~Oe`!V7r&1~ zP^$3*ol`%SOiMgqJg{mo@-p_-2FtxeaM_Wxz}`;e({Ln7zosE+ZFw0^Y$Q-0AH^JiQB@D_^pvKCL8jg&XNc2xG7bFogaQ5vKT<8UC89I;NCN z1Ub?mWk2C&BlbyR{7@AS$`7ve~xFrKo(4-bIIEaeAz)rQ3R%xArqKU7?_`^qbQ6 zbU?qGA|&TprWA+yx%nYJDA&^TOXvmxcPZCS7}FlTlg`Bj>i1}LR@RUVC351J@5t(@ z!wXU3M>jei-)+_9e)DLr>M0;64Gw;5Kc5j4Ow7r265p^kP3o5x^O^hT;Rce<0K3}Z z8k35`^YNKNI1UM;*dwPI68jdy4MS+c!X$}t8VjIWT1dF}NFG&L!;|&>$zLJtP2sP9 zkdD>^`lD=FYC4_B#j1M(!3I=JfSsv-X>lFW>u^_>hdkK*@#~!0LgYb0=Rrc|mvylDvi|UG6EYCL+;l z_YvTD3uC|EI4pwMT`7o_u>(XJ2XF)=dv!l@dkzGCO@T*hPZik91!f;yo$6)0Qtkha z*~T|D^04o#FOu#s-c7g%`EdI(+Q}!dlN%gJvHE_@zRP(wn5FXXL=!U(YJ?>K57C7 z^^KDY3WBoerM0zRkMq*0X8_4;kIHH5*Y(ga$D!{28VCL+5{A%$Jl>1&IJstT$`Y!ez3D1m^y}g5^-cyH%-?$&~OrH_o;yuZ-47Q$wC;MeQ zWw`~)+*#B8qybjg_q(*;7;I0vz0oGd!zpsoiHHwA{n;2~`RK}i%$5MflsW0IX z*7eQ_nr+g%pzyexUy!#6E>3tjiP`4u)A!o0A~bzU8qm+JtaUtKI%5+hf;WFmALa1$fM-DV`X#rPm(1`t69*$0 zeMDHNbhPF7-K!4137!sQ-0N*+#)#13i*$c=w$_x3TI2UZ6Uuz&Qdw`Y!#uK%Gj!J) zh}Uiyu-l$T&q0*&xiOu`m)|8<<~y;4vZHs$)0h(D#CHpD0#w;p)^q0=Pqb-fMW<%D zv5wDtXVYPW!1Uw<`qxJvCpTakiFal(Ga3ym9OMW=fX2n_-S$Dj<%TB9>|Awkh@k#% zxT!eKIN8NDIEyo{+j?0DslQ`uO#NDu0v~g!hZg_H;Gh$LGP*d~SIQ5_H{de2VFxYT zb)AhCA6|W(?d>WHmCgfVkuz@(L<=4eQ5(S2+`fL4B{o%|;%Aw;`7jJ;a6JGrXUxSb z7L$D2ENJnp9TsOxJ8r3lqL0F`-MMh>iMiPjM%S~g^-TvS)&*jOKSj;Nx&$wz(Mco^ zKoP5u-0IShohK2%^tla&XhEMU`GM!#Thc#m8-I2E2-5V9&5qgh0@Hxuom4&Ee%$(a z^M?xd#6-w?6|Y@jpt;PCkxDcWR#`C^7?mZ#k|JT4S*K{YYR0m{qYOxT$u^RS$%dnk zXE3;l`V@%`W)?izRtMKO{YE?cMf}?0LaO-c+G6}Oqj)Z^ASnbE0gwaF9`;`OXkQJr zPs6^tY;(v+6@ml{-@U>Pxg?lhR8p|ro8#bFSkSvkrG42DMX<6+A&>~>_d-U=JB6bv zl0P1h1NrPiXhpt|LXM0yB>fzmj3{kn2N*;hh4pkd+@EUYn7{b(0ZG58ZK0VYz?SPpQo6id^H5_01?j^^W zR_^l{VO5|5+t%debJk6qTRj5m#lF`k@<>T_IV8NO=|tBNixzS6&-?mZlWyOKH>=cEV(1x+E~>l93N zBLZ6*8}R1dTTMGjylk#YcyamNrcGV4(peJ|6GmEAY3aF*wZ)d78$S}$(sGZwe$CFV zwb1?O8nEy=q`P#%{GNtCVys24>?_yuvRociEn`c#nCI{g{ijZ8{-=~Gm}FTwxuf<~ zJi#-8{boPJFSPb|c0TXzy+8@QdhlnrtG%qEVv|D2cS|E9t*O4i`RdPU3Yv?pqnnyi zdP2tz4<16W>OX`mx^t(Myb={>mQA7P3JMC+?C(3e3;$!tD|lt_COq4%f`S4*TjbA; znNZiwpBod+8P)lrt{xtij*cT-WtWdc_WPyWKlqoe)-WYpPRv_wt%XE}`Yw zc%0roTqp0NKX?()hi@Yz6U802X75^hozxT*j2=r~Nxf7=PTUatB=5np8;K-KD=V8_ z{5hXo>^Etdn4IjoF!EX5bAWUzT8JX3>?r=-zl=DOJNV(IYg@JjIa9#)+6nlYnH9Xi zVJEB%W-Dt|u5E5C`@Lrqc*OL%!M>gGcyoO;T(e_os^@6nlG{{IiLp)jRSO%NRCeBd zLEY5{Sx`KdOE=MlZ?>OKV}0Y?yuW{EePO|N{Njib&b9p|Zp>%lj%@5(RGVtw$@-OigGmg2dRePGAv@0Tk0=3Os98X0k19BbB2gu0M%f1yd6m-^<7 z)eR2b_E<6PnAG<%!>-QGP4^GkGrt7R5L%y`Y||9nnd3A3X{Uvyr3;;e5K{Mj{_OOF zry`iED=`k1(Ahup@3-gLOkxab?<;|}wl-NMrDc&1nI~?r6Fx+4?=JIu5wiH=;`qb< z^=Ds#mu>pt+4J%^~du5QH4o{`q}c9-v+`9g>O44;vf5$N&*28M=hO--JRM)&R_oX==OTY*De zYrcIozf|GS=^nI})K;f z`@`D0x?=Bd1~viX6dC=9_4S~su0p-XLG!o8i5XA(%84)1)9F5kA0{c&> zrmFkRi&Q5pPIkC<tyrZ?;>od3Wz^Rp(%M2D?4V38dpld;p)3glq z^itFo@@e*&ce{MRK))(&Zo7!OuYQz(Qv0h*AC9rAr-g#ilxJR{rPsBh6t9(eEx%W0>AHoz<+f& zc+mOFTmQ157>qcsoH*02D`1le0}zO3Lnm5savpSUOw-&#JjD1Gw>kD*!=An16)|H4 zOm7JSdOB3VzJSRb7Y~ni-jG?AFY5?+J4ZSp8Z;XgG8c96IplLM8|onJ&-eI@HHksi zjhFXtaYSEsD|n?dFtST7^J zRIzkLN66&=<^|`!a2NW&V2b^u$!yYwHKTpt{f(oSKcRB0i))GEKrD6|14ur~&Q0ho zwSMs6fs31)ISzLlQps;HLSQY19ZiQ#;YklhCa$)=K0*B3=%}2OlwNdnbeb80Qyo@j zvBky3->Uo#!$l$up#aL0LZP@gJFAV4soU8N^@?3mu)@2oUBcd>3-vt!NtveZ=+{pxj#=X@9q5Edk*a2RTM-7 ze3|(E6$NwpuiRY!FJ$YVug?EJII#aIEC8AT%rg$~!cZEVBq4#0j-OvK6vg0bfZ~If zu*iR^BY<-ogpN0cINdsQPb>Gwba^9@ABd5+;MgLkpkSe`{Q;*{LTHivoQgSHm!x0@ z6}oYy!o}6q;{5r*??XvRN#WmEQHuH3H1;ivAn9FO3ca>8^+M66OyB#;*cQbJ1gfq7 zw?yUR$Nz#)P0ThlX$vUwu&;oX53@99W~@mmcI|MP>Ms6y62ZyV@ata|@I5)wixYz8 z_kH+(`frW@Gr8H56bJA1kihsii2%@7_@AlQCP!r5#6QNZzqG+=eo`x=6O8N_r9O+^7(we_j5n@4Ds5WXhAdp zfD@;qX$$}oo+3zWEb!2c>8geYbx*Bxo+hqWJ&Bjx?STFzPq%BXp4SMMG2V9W9t2kx z1=$m_M`YbxJv@&b!Z>((x_O+GlXL!0Gg()6dpXf?9(6bsyPM8=4*)puTYrcE;{5{v z2s-05HB4`$PWIk(Gy7guKWi@$r#oz^KC0`?sHz8Wm~?pkYbEvPa-Boaks20#xtFAV)7i@3Yhq`?PIIkMo-MV^0{#t$fitik#{*=G5-a$E0Pv)^L%*g z*-=bDyRrH3k_;wB66idQ-I05fNS7ixjP>3QfB7iBoK^4xhN)>uwT((jXOGYPMm=A4MD)CF|5ptk2no9KIKGpG(XYUapYGTWAk3bgd-7?3CUwi!kAcP{L7kP#-J3T=pW2?;uI> zI0IrCE6a?}>S~V?Q?3@AJ3IS25!X_h6-s0O>s; znlG-n-h&HhoIzk4y(Xm-5?1ls&0dSD$`Xo4gdFl;%9j~{+^w676B4RFpHK4{d79EL z;JD9@kDl1pH9ip9tA-#8GK0JKeQ{UBA{K;EST;k@ujNvx=$rzr=Ss=;V(V=J8#Yxv zpEftEsC}ynQXIj2lo4VeYpGR8$|8qLQ$%KQH~suD(wlI#DX$l$oOi;h|Hdf6p(*u?5Td8#OjTi0c%-Q7P*T#AE^t zk4w3RW%&mlFG|a$V;8o)mBYdp1;Uk!x-Sso*jfUw6?Cyx^OaSKx|#)=hNwZ4P8!6o9eB| z6AOw!lCZBQWLcVy7Egaf@ytK6kfpPwEYrHk)+*K1|A%LrWMT33?9X& z%T}#EndW;w)uQBMfvyclk_^M@$bn3LIV3M8R`=`D!MmVYy>rmOHYe^&Fmwkyd);Zu zgfjCp-(~BC7*k`m}>9CxpWPZ+}&^GkdB@>k-8o=^B7OO2Ra5_oOh@Mj}Z%lCp_A<(8mAm)&?_<%H#f z;A8*#)!3(En(uDqoO>T5bQB_5o`oxZxNSKN32Fn8r1zt}R(Vfn;Gj<*YU0`3Pay#5 z*l7Fd@h|NV^VcQ8-S`(*vTsh!LJN;JRTpQ3(J2I$3}uUnWd$GjRNyda8-AZJv`d9{ zU6yny9{!S&pG#2=SpegXMw7$;@aXz%or^xg=rjT=8X+RHMUlYg`Gww2?05I0!T#K0 zQ$eLxB09LY{JM(_Vynaa7O{I@gutLObFE|Z?y?ZlQ#jpA+3E`^@^#SeQ@oT5C&CEU zhHUK_V`>c9T>FIlu0R;m2t6sDD2&U?gDvxmsaZt{lcoSOh_Nsg{XWdV$6V7EHPaQ8 zBs?HD#CorA@L5(=xU>KxSf!zs3_0t7s%gI5!v?ftxQAk9xRePcypDB%Dls9LlMg&_ z8%d*ew+dNy>Gbg#QdCu z1PbHh&n|rQd(ktyxi@{tV=;DabE3MFZx~(r;!3X|;#nrBxxer9p;V4?O`0Qa^I&ch zPOaL|cs^h~DY?=Ck@Rq)lkFliGkDVDZ52O*h;#0hb?*D2e8+Xw zeT4gq;Ucw`P zbeTDR-^m7ep-x_HT}T7DwWTaV;-JRYTe3H|m%o2Y7&6kgzft!E`G}hks8fD0NK=3x}c;bVrRNHPgw0@J*906)njt zQR$5Czo7?6abJpY(g)!q`Lom!U&`BiSGU*9LRTb=ETvVKQ>XckTePW;l!}qspbSXF z#O$-PhivdjNNe#EA(=b^Am{L{^5SbyQjc3TB_3h0;zN-j_0-iTo^|{*GL90LStYLT z-W?gf0dmeD0RGC%#oW?PBD&bZxuDw{;3J^*?+atbr*BX5Ipl}1l(m3Vxc+pwJ?BoS z=b%fui7Q+!cV_NymIT;69D<_y55>2b5oFTP;??c&0Yk@;+%f@h_8g3$1;M`6Z@Tl4 zTQ?iF+YpevM|;kXcfbao`qV_C%o!9zwRZ?*-bSuG2`A2~Jo!WcdlN22yentV&o9U)vfhEt61Kab~N*qI`T@tlX*sGS?+R&H0tC&kv9&4Xr!fJ3$v*t)*ty zg-apS%uLIjLH`dp@>R#H9M6yX#?}6mxGx`zGHy=YTv|v&vB{x<8<(Ra8TKZ{C2~AY z*Q3oxKVn)GTVD5V_C^np4fCV0{FLu^e!5ianLnhy%dY46*!Lt@zS=0d6$!P{w@jw^ z`Q_ZDQ2cs5IQx6xvU11J{?c zR*b1lCVH#ls6DEdjJJEqZa>cdo&nxnrX^8Ct7b!>BgN2r(f6&1T*7l{Su#Pk;N?s5 zZC3dBtkBZ{yW{6v63u4>uF?EQ(nivC!96Mp=)@k-u5}CVx@Z8@HXd}#F*Vd~UA)hc zOX(wq&Eypk+xC%$E+TPh8>T$BgW&{DdQuL>pVZ<$jwV zS;OxTnID<|#!W`@0t|DXkG7z~nUiic#8_TtCuDTo0oZ`H1eBe}502uKl#1!|)vaVW z(s4l(?BLg^A@Oq7eZRr1;B8Oe#+c6GeP=#y>R?cLew@y0>X~ zl}wA0^xtd)GY*rMW39^BixYlgGxM?}*iq`jvzz1$R!=jnaPWef$4zoc{!0pkVLdv| z*nU`VSpf#NqJ;n|2M@(R!6!gwO5iBpE-$~@3FQn4#TQl6qV$>`MvYud6ZNT&^im&e zQChfw8eE(Q5vK5Kp`tlL%1|3XR6Q zEquqs#tL7PBZd8P2(KfBt%s9rzSZqzlZQxRdoveidS0reRGgtK;f;(=mRcWHqLp7~ zUrPkB!R&wsIarTl)z8&ER%1&)u3PY^5J%Jy=iZ!a zZ1QlOp7^kDdomy+nE~4)1GTMEGKQ71nOMoy8;jSfKYryW1u|u)3XMsqUw55sdVjo| z%GwWKvPe9Q@1q-=vX%PWs6DRb8nLCif(HnhWTV)P)OadofMxlC>ze`jnQz>|ybwkA z%%7cmbi!j;bp1M)P;_CXW03FiM%b}y53>E%{BsXzPsJ^C3Q*>nc}dNBQU`S_7tM3? z&Pq$WSFba%DWO5Mrc$qG+{VUowbSa{cWEgpT-RW6aq-jg@^fp;(-vpWgqRma=06cP zFf%I}Z&3;_@fgXa%ndPT+NzH=9_-z;^-555wtN}OG;?P_I9k&{eZ4q6V8h4E!orEM zFvfuM7DeK2m;{)Z#Ldmk#m|0K*{GbjEG;9`QBXEzZf*TyX-akVb4!Yt>gv$Qrizk9 z<;u5UDvAd)nGWLPdk`nwdH(^A{*+)v+QiG^XJb~Rn488^3@olkFV_AtLkg&$5_BQ>@3bGS>Jaz>p7>q zg2G~}@^ta)^g|U?bVf$e@bHlJrjY$ryFEhC`k|6*Cu4D<#DCqlYNmEu73;Fo*<04_MP~rZumoL>($#u>(ueVs=*hovN z{%Pm@^`%xqLP8hp&|E^tGmRdfA;8?Q-%L$cz3KSw?sm%x_iWLzul5;c{{9;T+nszyo``J*ne$wz1|#HfbNIf{G5&HUaC4-hTRJF1-estSZ!|FI{MEC*y{WX3<`C*|em`)MB;31k&9BoJ~#I0UjD zoemXIzAfBP=C|e@A)s((x@tN7OoU*X*7dT}Lm z`rOr{ii(mu!wD@ZM=6iV_g9gIR#y3qjc4gc^aNFIJnt;BEt0V+9WAR~FQCjuxQ_M` z>5IZm!ChUJEf19ps(cq|Sz6(WPMwG7F?uOVuIZ)D-A~}1{Jgxg9wV)b!VP5W*WP2Z z)V-fa+aLRB~zw_xx&?v>JJt_U;}pEQJ_OT2j)`#icMMB}FACjFOnR z)A`GDjiX18#*!zBs%`Z3^?xoUUrsyeWvr!j=kkjOqJ)Lf_O24AB)TDsFa!vE+^5^z zY7gR@JXw>!BA+9>U?0T=^o_2#yI(O(vZSASazN&5y`R=Le zO@A{pv(?B;ct5|Y`bgpYm;>63$XNH7DlV*#PerLK-JjOx+*5AkG2Gn#(ypna!efL_ z;?_ zmpFZ9M1IryZClNl>|OWK5Bt`~3<7A)$qHf>53xdOx6biO;D2M)%PhSRe|4g>An)0; zjxhd%o@3cbPcZywG`iTnO~h}mK_a#%BFuZbuK)(o)^N@8OmWD%n zods4oFztjI5+asdb#vLV?~PB_EBmP7wv6c$*64TJT^$_mTKo}nE3_Td($bn8$q48p z@_E!p?Af(-cX{li#74O7&;4rdLprdwmX)4_TaXyDkkxCELFL_Y{)_pxtC2DCSKAPz z0NYK*XD=9#jAgOT+feS$GXrlIYq!a*MB3HPeQzqcwd!64>%eG_@+U)f&|{hjE-p}N z(zrxap3V+ZomOTBDu-fqZ&8ExT|n~id_^h!5D=!nUpP`kIX#<}O1-ivd3syCN9XxX}6-xDktk<6GoaNWuB{rmT^(ry1O8UiR0tr zx3rP{2xf422nM`Wt~WmOiXOvyunt;#{Z}4AQ5aMfB=HT3Vrvdhv9NuC8$17tozDNk zrs%)TG`NR}TP2f5Glo*9c{-HqQ)9wGKW!urQh>q)jw{_}<=&EONbKw1W-a- zYlVYya-WwbyA2o>5qp&K{tMz6FqS7KCd_PY1AYv4c6PpFW#K`?7c-G%VPs9k*GjMa zCwj?Q85;{ZDJnkh536O>)ooi^T5x(Sn5V~4Ah^eNV{Vt3sp;qos)*C)aCOiP!Ld)t zXYRKx8G;O3_G={%-@-KRK|yokq*D zsq)ROtn4E4fqhs6*q>EeY7U`9xdPbO(SQeGpfVc_L6*}b`?`6{Mgsv(xs0@?`7X3; zd%^a{h(uyEr`r{M4B?@vj2_%KeG7Ym?LojP>zpzhkzr1H{i zoPk>IQKwD^*itu6A=sGzY~Nf65CW0%JRG+5zyG%Jf06Nj`M3fd;Am=YUJyo*B!1-s oeyG{`Yxnh1V=Rbus8a0Dft3g#Z8m diff --git a/dev/_images/plotting-30.png b/dev/_images/plotting-30.png index c7dac685e14588866844db1ed2bb70cef718a8f4..eeb830c6e26a76d458f780d06d06340555570d0a 100644 GIT binary patch literal 8722 zcmeHtc{G&o-~TmZDI|(0B~w|;l2T%_RFoNvove{kW6!?COsGV*v6H9>31u0SWg?VJ z7$QpyF-W%T`*Zm`-|zSHoZmUm`Td^fkKcLzc${;exzBxH_xrxC_xtsJyz1AkOJ)USFNxY&7k+qm5X+BP1pjxHXK`0FUI zn{MuS7w6N`3evLDt}gB#vXZFV9v-gliZU`z{~9Lk;&w|$IGkGrnqqU+Fm(rD7jFAN z5WF8B1K@}+M(u*3&y&d?0j@^hsT-G?k^Ws8l z1qG#1$V5JedffU&N4=ip|I84@{hU8~hnU=@$xtM6Ux}{N(f!ZbVh}H_%~WrzIWVnk zybU|b8U4`xYma~7l0!rC@y`nBc-+_38Oycb`-}_>4B#B-aiU}<0EnMnz)8|k+wR!? z{J(G-RxmApcO`2+HeI8aeE-;P;-_EYpCSw9(m3A-hlPQ^_COq9n$7 zXn#*5=XfJnTa52~9dkKq_s9z*puemkRftG-%1X34WgAvfqN}0^z=uTA zQ7H@Yd~-3+-}|4A?i}Z%#CuJ}*)>Nm{$}es4Q?MI15h~Lb}2>Wnt+^mWeZOy5`~G6 zr&YK!su5XPjLR26We^hhs5`#)Xi;K3UmYHvQMvY=gEEpJ8MC=oqb&jGEWCiiK_WG; zp7V7ZetP;jiz=z#Uq|5dWyQPaNGYZ*WNGYAaQNg0sn;$ zU(4M77^or5fvT{unC1!Nq?SebMecOnx5|ieVbRM1%6*4q&tDIjlmj57A#{(O(?R7v zba>71Go&l#@&iK)NoumKGzms6>iP3#Gh++K&a;KH&3vj(UcaMX;^LK;DPDU~Ip2|> z_L;f7yUf;a$6idqS9c!bmz%dzgSr3AIf)@ahV!2}YR||>{k1>K%yg1Wb##K%>Cq$Z z2W?PsNdP<}#ogFVNtMHdMU|y7R`2QoY2Tlm_)bZ8v<-NsiU1dnoHj_2*AY1X-HY^Y zZXO1dmFuh+J0Gvl1QrX3sn@SJrx=?3Dunh;5z(1votpcbf>`viVcW|x$;wPBz5PS6 z`0PqVAsG~u_?O8!KQYv^L9@|K91(!Ctsu=%|LDTFEgDm|;*4~yP!7oa<2L^6VWu6` zF&hDxEsO2!s1h)I#FXYW(qlmP%={pyAEWeTS$k|?A%>l)Z z*GDQUK3J@05&4Lk`UY8N95TC$q4}e^YWi`Rr@klvLW)xFYr))Ha%_l61_x0%U~7#g z6L`d_SJd;@4KydW^A%yKM309fhlpDqzixDfU0bhxEqH-{8778yDt2Q{^Ps$25i02S z^Gr5UpvXAu7gIp^+#>IwwzX+Tb-l;KLMKHEW{rHwx|JTkm&Yj^aWP+4UkH;-4hGdR zNw+&gM!rx52KQ#O6NO71@sSP|WnZ84Gc(s+z+{o0mVfQq*JQCm7#C6&W%9mhmr`oo zu&elNxoETy)9bu2_VL-qtfEunL+ZVFV#C#=<6GmsZCe0+_@kwh4b7z#7^z<=;Wgn-CK z%a#Tk8@b(Q2SmBBu*L}!EC>G|2?W>~^igf@X|kETRMAH_@i(MHt-SRAu5(HS&h%*CD6U_3Cgz{w^Env`L^CY108zTpI6wlzBb(^f&w{* z1m7qIa_XHeN5<3YO|zbA%arq`tMdli4!q6*HWOlwNSPj8m=LS~_#O9CMhpCsfK+fw zt*6qo=}U1ME9i?)ywxB6aF@-j%T7@c;rc5M{}lQ&O~nPx*~+a2=qh*aFubZ`#WdxA z+(1VV^uR^y31jz^j`YnNXg1wzykJ?g0+9NB>Cxsj3N zB{ROQ)(jA$(HP0tb?-h$Rvd3H9-yvnPSiB}J2pm=W0`lbphBvbl-!qc6Rk*o^Kam^ zf(93Rskhc@mXvxiLH8X%?eH*Wd~+>J5bY?2D1aB}mUr&Z#@cA@I+_>^xt*DdhjjpdYQ zR}EQTAEjN}JQ|;X{q_w)AW;|41*s{?EsOkoa8ayqME*6G0#5ptrwN#6-5CWD&_mY=mH9lKG3Si49*`@7tP4cPy8)S@o3JV za5hkTOahZ4dnx7L>6*3l8Sv>l=%P_-h0g)0i0{GPpZ6rswWJ-B@!HyQlJ&g}6G=Z`o6V!RnNy zF-Lr0ri{|ssaKe@aWHa3j+eMI(+ZNCn~lsU)T_KKlWXyZ@9MsKRg}iM`GFaDwpUh^ z*vH4k)_qbD7Y7LUvFMK6*h$_QE_P7hGN$Vus$>6ZQh28b86ZW^82SB@=#_x9|GOI| zgXHFgkIX2dv_J?8fZGu|Q5i>E7Tftmb|A6;~29J*;<0wD)k zD0|S}*eDh0jX^GQEX75+>TK0yPd6@D!)fZ~gGr9Bt8L zV*QRoW;`n@&T7v#UB3e-)N%Z*F$6#gx(gEP!WoAI1rA}^Hm|)t2h2hF%U|~6lVw@6 zKeKd{-=?uXYvfanhJMjZNQzq8CQznATO`pTEHYv0on{YNTi{F+%uJKmL@}p+NzMbc zLs5{RGjI^-gkqmfUkT-Ycsuc9eR8{U__hRg%D$KWhK1dwpw4$7Pu`*RR8Y1y{=*%e%jBMGQ zWf|_*_ckwqWw?ObC28oa1E({U{2j$EY`{o~Dfwy4jcNw7cH@Fj)=1*zFHNVGb|szs zU=huXD!Fb;H5DwZY8Z-YeFjj%BvK|U-YY|pxu3Z`Hw6`wI5tk5b`rb5tp~V`RW@>ycNv=W;(~hgK&7~%ncvuv@%#L6 zD$($^*T3uDS?t_Vc4C*BI>w<3%fdpAMU9oS0vi)uRN8rogTRM`Rr54^xXRIcNMfi4mPB?*d(ABQ4(L18AB5N9ue%9to&m=Qdp!L zhctms4qg3A70<cu;1M5 zB#fuO+R3OD(bHp;UbAov?O)7xOLAxtVIe+8e$0(tDBsWo~sors)fH z{5CbE8^_d9V0wB^KuYG;>_Zh;Q8}QV)r%?d$mQj~h31@r1)Nc8YIwsck0|tp1q>+o zb@W~I+zNyRpD0Ca`1LnY=LkVRr2R`w-Qdra=iwU{LU4iAzS;}ZEkjY(Hb|oC>iV3E4&QnA1}^~_TcqomM~?=c(z}YXCgoJe zU{2hABI%>VOYCtC60)H10i@H6HGa}eLPp2FHczmtE%T9Y{%gq3QS_fud+v1=q$!X* z2QL=%H+;)_nbM_!&-JB(3ypl>Nm0Oixtn1gGZ~Y@Rv-9?!k&}IrObpECSZ}~R)88V zE^s5$@_qAc?c2BHb_)6X)j6~8kf4R8o&kyi8yl@D-mWh-={B0v5u+tncrX40)dA_s zX%1Y?{uZ{^!&A+{e<0`YP_p7C`noN+PTmZg6b_Bk>>|EduJhCaM1t?gzSEqp;pRL< z&V!l$)1_(18CG`SnhbkesQx65evUv!r#U%~emNsVDT5uQbo=xBa^3}#ygReDwU z5$ITG=Y*k&rb~@fgpf?YpGT8&gM58#s+S*>+<3I&b4}|pg!kUWyQGT0L9K3QO!Fg6JL`(=rF_#F>8gNl=rHOm@SL({{z1BjXAe ze)BHA71fIYgzHEkr)r!4TShsXpo*DYF+2xPD9sS(dmJP;Rc& zK7hf{f>^e3?N$U=UIR;K2<2~0tAA~?8#&hc!D1{i84shr3%ZYctgSANn7*N9-`VVy zV*MyGK~yJUx8U{J9Ty+50q*Mu`-3^J>0$x_jVrf z=%*`_W0%bftr#Ac`3R`<;y`sjY=j`c>72JgKT^?7mv$O(mR@DzJ`6ix8$(N{sRJ|g zV7udVrT!kI1}?$)^+}=WpWH&IO6W-&UO_3&{iv$70=V4*+p6BsJ&gT~ZI->KkpaM- z=oI@+yS3)ijM}qzPaMaloW24@?x|C-HShbt2e@tg7d2p!na@_~#vSeMM~-z;`@X24 zd(D_Brf|JG-*0%~H~gT$>BanRYLS1q4CCYlAtI?ju=1N#AJ5Hpv_kD)VN=y7DQMtn z!V=2L&viKIr{E4w5!B2OdfxqSXMe{?fq(Ml9)Bz_fv>hU^&)rg-H$eYH^|zHuRSK( z(ASz>5?3!Y!_E%qh-$J4}0!2)WIt`Kc1^5*KF2 zZndHA+V?E21!)pz`}hvb92Nz{#=gM!B`)bOfoo();ZcbXIBjQlREDtux{XYYB3 z7+U2|kDTWrepD+?llAlXBqX33stZ6AI?&?XbhT>$7B$b3;q8L2W0jDS%H-leeS|r6 zURsLUcZ|T$g1a;>46WFBI9X-*I-QOVjlvpf*xg!|ql}F159wVxjVPbJJXf}PhK>s4MxHbyXid(RzrV*GO6itXR1S$UJ)Zue>k2{2!Ykp{_BsD_O3!!@(LYMMS zk$Yz9#s^qW_UDR=)*i?l1n;-4cK%c2 z>d!H{wpJNbYFG7&Xt)Zu2QNUOjvqfh|5Iq|>SS+Oms8n~ms~3Ax}=Wh_vdRl7#`Ke z`30LB`DV$5zJn}tN+2i#2}0VM;!hk~w1^eerhRI=CLAg=V`=-b9-!bIzl*Lx5?yI8=^7o`qe_KfD_CMxwCkIwmL zg!P|7Hoi}78zUt|MAX~b+DMr>IpSH_*%M=JFG>S9)>mjQ1PAA-(}cjQM-emSegyUm zIQSJiRUxy}(8ws)*Rmk=;`j2!(>b}hZ58gL^WRLa<=*^~@NV$I!HcWQTkE4Lo~!ft z(sz!rHAO}GY;0@;z6Gyd9pBiPCTuYVWUMN4QeCPQGEH>}1slpfdfb7m)KvMxu9CLT zQHYmWS>wyI4e9qHAGnX)a-AJgpB$*U_TGECbLz+Yh1H3|yq7O8AG`dxwUDqe5nVNC zXl(q-sh6x6uv+r`#S6IK{vs}pce1Bc6JD(PwRFa*$B6``Y%09{AD#5pV5su3%Ed*zD(457}0Sl+u#LS3;@(<=K6g|c=y!(B# ztp?nGM#w*qV-jeHAJ`$|K6{Hk%nXQwLj!(bzs2@fgkW*FAAj!C3R2h9G}k!aOhR71 z%ZqnZ5^jN5zW4eDU;4`V$GZS`7If`2tpbrAu-NVWl~Z;2?!q?{2m+(E#mR3~{@$Dd za$^HieW9NuBqa0<4da@cnjEh@+CR!c$;8CQ#m3sAAH=@%7=Qlbz4rv=9@FZN>A>tO zLIH;9cVU6PiYxbUR?Rccw^xz}F|v1t)C869UR_(7?)nsS?2Jtyq^?z4 zc=z3TI4Qno!~-ENEp2@H@`I_$Ib5&a6FF-N5P=1TWLD;!KRkRx5bf3M_KKc2QGwW5 zXh%)Ke}7{Ww%YYsYuiBNA%*Mmalz6MJZwCoVAV2iIYUkKDkmwSnHq>+04Vlv3wVx5eM40W%+V92XalzOnn>Il^Wo z>#qG28S9eQKf|9B+SOG# z?Xg&_{pH9*c=QAJrY~O{dP?vH#lCZP(B-l5@kR#v`ugs3RQayTKTRjjBqt}6k160k z1hJe^@?U(d0P|>4JV&;Mzh;H%;@B9v|5hP_7+~;HtF62E)*0J|T?=Dvmz4bGTPF%@ zoY4t92~y@SVeXF?wL6 z3bC$y-$}Z(=r)W);RnHgAo@Q&J$Jh{gw1b#wowFgCF-zIHZE}(24azuG}oZwRK=~ zQQise4rr&y4f3i|^q?@1g&F_tjZK}LJ3|Ws^EPxG`55925ed!>udmE)M-1|}k*;n= zdHK0Cv^VbN&70&Gh|rVLNajNgcp`DTdVv4N_r3qhx4{38W9jbUd{X*d1(u!@`DL%n z%bd6Aa8d)@MfG?A5Ye8c$v@d&Wey2m(d&0o;QR}rT<_`rcOwbrj#rrIHd+9rA3SMI zgj_3(f%r9cb1RAzMB6Fs1BLKID5A)7!Z=OA{c_n4uhdC#a6VEBP=5L?P36Ntnr%4_ zR0r7qcvmVs4#`JA-uX#q;kCl$Njt6@87>auEB_&0m_Xv=~ z`TAB&Rj)bcUwwNqn3eO@+)~zG_2j3G7AqwWDy6$qFQSxbFvf=PudrT-*b76ZEPuNd z3e~Ci_U$jJ@>`P?qfgtTk6bEPtAb1L)&t-nJiMU_|Gy&je+T?Oru6^mC{@+%LT;32 z3=34LAPbQTwnW4vIXubD&CRh9(0QQp0%76d@i8&a(9@Oe@Jp=n1*k5kAnAXjWoa(V zx9jvqA}Lp%JM93jPX7t9|MnEh`;XxHtchtgnU3ROb{Gor;f-@8)2k@WU-G0CqsM zoO=ubZ3!U+wiyRrgDCnRe(HL4jzM+00<1BH+S=L?@IMRys_4H-YO7l{JCr`^Hc9Zp PWdn>lPOadgb7Gb%g! literal 8719 zcmeHtXH-*Nx9&>l@FJ)b1tC!a2vS5qO28n}La!nn3t;HdL4k;3qp0*QY5-A+^e!j@ zN|n$FNb#je5fG5j&*J^gx#Rx1WMbm(^#nE6-v%b3K72#)(120B*6VOTbvx&so1nawu+U!RRO}<2(W|Zen16e<4 z#rfFj(~8X4DStC({nqy(BE9bYWgc<*^yP-`FrxkaFd7=&?o#4SHJ#@pxCHb%{g*Zc zr^UK~4e1{!W_*T}f|K%Qe%;2C+=7AvE&x2W1taE+<8Snx`?57jgH0t=`iWB4lgkScsP9JN=c z@xj~Lw{ETPE3JQ^N1wl3y{b>xaQ|60K>GA)>ml6zz~w79`$rHoJmpj!)+Dg=?Q3lI z^Y%26bY^LgSx}s*~N@LcN!1} zeCLHaQUuqRP~W?F|4_j8M&ji>dmR9X4@AXeT%0SpLq$}(5H|<(Ez7i1l&!S&qCT4g zfUYz)>ENk$j<+xoIJsa2aBI!HWD(J6MEDjkDJ;Oau@x1LRm=Nv8MU2h~77n63kJL)2fd@nqPJGXxn zCF?S=x7%&EBgk@;*p_cAu1w9mA&D4Q6aqw6DJgPmJo($pKj*F}9}1W?{MloW^=s5E z8+sK~?Jwu@qNB;K*cxEGCmO9hlC9_vfUy`K+nzEL&N7+rju5Y$>mw)#8uV`6a?}%*+!&aY+;l~HR#kcHQ50`|@;lPd1wqCt74W{)J$;d5 z{l`0|hAI9)HOmqW=bmQ2BY+s8=o^!*Ta^B4?~WC~U7&)N{ON zB4W(Ub$I2p*_6=1n^}u8!~rP;D45=w@9@~Ap{HHClcJ&rFsrOQ@`j3DYOP)W?9hC3 z(^34m{Mi6#q5&RTl$`dN%UTA?4p=63H;0&OnEaA7n&rZrjB_quqU474k0{&~2Qj^+ zxogxPj$_%^H7Nw*P5D!V=cJ4TZ?M-}^x8t2KXfGTc#>~JStfK^w9 zqh8Y4lT?9y6!VB1vCNnHUM9G@)GNzpB5YAc9~rX7b~IYsOVgVVIk7aTM{uX2h_5x>gb|-aG|8`Hmod!U{e>!q)@H+Xe z8F|2t0v)6|3TW+A!(?2O*2eb5!&S?B0v?)hBW!g}W5jKo^#ir_%OQlm8GijbtsMN* zm}?((4e3e8$vLfb_vwY=blOK4A;4I0h_Bsy$D^*#?}*32?TYWt1q`Pp%F}6qp?Oo& zv~pV0erpow{gfi>$OCBE;F?`JlK71=4{Z2`6yiqiF`I<6G* zF{_9R3a2`$8KgU7nZWqNY<=0KZtDh{+pdV-?kaDxl?VPuOKJ`ia<7>S?1)SEC^go5 z*ojDV`tgKbMH*_}xe<8|Y*b){mj==BFtU|OhegwI^Z!sY!>v#LPT!BFJ}BIk{$6M{5{Pf3RFfReQ$hY<-M{a5RPO& z*^#Q#mVg%&G}eByDDw|_PuF=5om;hi^2MG7&FuFpP9yT!p%d@ZX{jg6!ML~^C52_T zxY$*g>4Fe2dKNFZIOg%oA}Xp3hO}1re1EOxud%L4l(;T<<+|<+aVNM}*vOj%8a^Z) zBTQ)%W(_I$kx#Vf)(3~;FYKDmeIJEn^S@ zT*P?7n(!#veUvowA~9$Udd)3`SWZei;XU5;>?EXgm4L`&SKaSAu554#0si$qb8;Bn z^vHaxHif`$tqa%{;I2vu<`CJM+tB!$hBFvfKYpA%Qe|wB z9GBsaWi1F72QP-o^>~ym6$8Hc9ifH0W_+rjPEwDk{MKcV1gN@&w#Mq=GLDfPC=V7b|aaHT@E*rtZ0RG;pq@rBrfFoZ2NJA)?Y`mv(I$t z6xNe{a z1qa7_DgzT8+TODC+2y=v*#;Hqv?}bnFWkSI$k#~*3?dodc+|5vgR`|!^nPu+6v z`WMj=Q_4I%_~&|Z*vzR6oJWa7=aDPb^AdzbOMNa{L%B;2k~X4ieqCE(JIAcjQ0C&4 z(Yf9(J)L0#DpOM3V}8|-)%v3cPlH316ZC}NH@q`cE+@bYsD0~X;7uK*VH?yByO{~( zF_H$BRmP%XaXc&O49n>nQKZ8HB-~#2!e%3@7)>;xr&(rasHEyGH!(12FpQ4;d&<}` zdr{_*&@ZItAXFfiln#iK_Kznwu?;GnnT*(=4M<|=&mugpjC~;Y=T8Sr+^2$z zM5eBgQ$32QHIc~iN<%Hn>RwkS&qTm}rz0hKd;3MGt@CiNAJ5=tE+CQn=B)XC$lCKo z%p?ACV14-Lb&b8YL>)KEus)5XJ(8&7Ue{;MW@zn-Wg>dQliBJkB-QVPH=)L^BZ)lu z7L9cc?)J#>Fx)P_dfS~MGA^qN3}63mq-kikyM=e^DyF`6MGKaD!lur;vaDXBogCp*ru*dCl81k@{Z6E6)DwbDe^`^ z`@t0aH_s8easSa89YH~*ZZ_W*THxDXQ&D;?T;@*YB8EtLz$RCy&K26rKnK>z)n#jw z5#&$d#+E5iD_D`q?Ji4A+#N25->@-*Iq~zCd8C__EK4=n;Hk^4&0e+jzTWKl629|v=Vsc5h$BbZ!$V+!iA8^bzkS8bl66#=WLpP0 zx7q{4sa36R%#E*#IW+Xw{h+zNwpzz4JBJC7TC7iF+#r*sI%4tPqT+p2$o%+wf}BH9 z_Y{+5@F@yCwU<>-QV8S7a=XAQp+}Bi7WTXHCc3m8LgwqK24)=I6R(nv{d_D;64W8J>%vWlmIM2~+e`R*YWUhm zhVoe2rX@^%OevnsT1MS=MW|WLbdnc_jP;`-CG*jNem=z;5_g6xjkaFw7o|6MX$$5* zv)GAs*_7fS-sCx_wzXcE^=A>PnbTnTS>cBmF0p5h9WkO%N3W#*h#?E^s*%^nb}QyF zb^cLLUjwyE+D~Kxi)Gx?;^J;#S?vwMxI$sQgkHMn;s^oznB_Eho)9nCk#uru3YMWA ztOWA@%->V^sVUfaSRZHIe-a^$Yn+-A+glc521>aOI)pyaT#}l$9;||IQhQBTOKP0s zH!bLEABls2@8xdf*>3X3d(g|nR$!t(JIeHO^N+%bU|ldCSQmunXTbgq$qQSij-t4J{R^~>1`M*SpvER(g|)v!&A8!Hb{QV60)x`IGfj*eXj^z#MO zNl%6JNDghJojV$P%aTH1Ip0uA(d%<96HWIy&rF|jqN!oSBwOff&@kX$Yh+oZ8Z;+D z!HjASWmuSsP=C&C&4(Y}afsh42;nX!f=VooA@nA^N@`Lq(3Z{P~2GvYl#rK#e5mhGR5c<|} z@q)@5X}vX2MydFmMG#H4{=}EN%X0e)Vg@0n-XyE>;B13d^|(SS!;xU-zABlV<*0*J z7=n!4o0nWwzrQ(C)r$Icl?CX(d-IGxKxJ!IfP#0u<;{W?YL47VluR5hhX8pG%VL_} zeExJ0aq=1k&n_Ott5d%fzm{14p4#Z93y4d37T2>8?zcRU%Q-l_|Ck$=&K`9XjAJ*( zB-0fIr(i1?rZqcYpm;l>303(B39N+_EG#QJm6X{(uKXQK-dZ2oL|8|QgG~CF&SWS0 zNR%Ys1y`&dhVC{?rr89c^n2ZHn}#?xGmwp0&H;&b^c>8VUNYj)48x@-uBNW z-51_MlzoKuv-WngIL{0oS$;dw*s<}j3H64L85lAw4&&clPHth$$%YjR_JGn98OaZ) z%iP_ttm7zG1X%yqP=fqxv^-YketiW9T06+;tu@H8%P1kBqC7RN&3j%;K+`KUuvAb; zTU~wndk9x(X2@xvLUYj7TRBQ7>EIzq1$(w~EWU-r_2p z%M$8_@cDVFZaJ*C>>Vs7`>?tEggK)FY2~2V#RN?L$ZFx29E3@vWgxtOR@X#|Lj^4=QN8@2?>c?!Oui9(lYF8Q<1Jj)PvRA{JUz$r9G zOu6gxY`v27&-K}Q()(-{J9odpPC@P4<|>)up~I$(NteHh)zhn$Mcn*uZCN`AI}jV} zp%uib$8aEUv8c$nJ_HI|a`48G{tvf%^ms}|YJO}qAGD+O8UUkjufjJw{HAq9gqr<$ zJRU!WlL}QRe*XczCj*>##MNzNtVP%bOqpJ+u>x>9;mzsgm8TBUnrOkJVt!>(-@B~C z0soOP+$sb+y-un-+!l4!6Y+NWw=Cm`r+2lznVI~B>y5%dFGUMBQ=6NSI|v-) zV5*jD-Vn3ArwWh!H$R@(i3UXM<0jNHH!~Q&ByOn%#}Pd_l(w_M)n8%I>iz;Gl zwW81l$bV#G6ecogkCK;L3|O>gkt1}QzjL+VJ+OY#V)F~=T&$h z$F0DsO=}SL5T;T?xqCc+@R~CPu^-Bkd0msxc_PwJFKW z;`S~*dAzw-?>}oFGLMoLayCK)fB^swuZ`bhoAU_WPURB2lIgcNtiCXBdinBO-}!z; z-?_MJ*RPw|*yQ*2n!1fvo8?#O_ocKhU9 zlbqg#V!gfAR_$=rm!aF1W@ctvzuP1wcele?xP9O+9?G)Jb(Rg>a4Vf`&b`F5!r<-8lET#r}I-4w1$&&or>?M$#;z1^5Q z&()wF#VgleF&4s`@Yfrhxhb~XM>{Xcthd?{`f z1g&ERO9wX0 zTlo_(GhS;%k-x?Y_mvV%;^X6?qx$B%$ArN5@z(i|ZPq*dpN9|GH%f+X>QD}+%|J8S z5%rjSo0{`^cJH7IK^vp~^J`KAcA>#nq%%XT1C;}kBgSZih2iT9?$CLJy(cT2wjY8l z0LIZXEGiBTSt+tE*)VJrqcmx!&J(^1gGT9!zQ!}1>5?`dqrcPyxHmYx2>#XkCR|Q`q z9y<4}+>KJ|zhqmtHTN!Pty^>btMH4#=&Ab=GxRbp{dvvaH0*rWTcZ2!(lC@db@8+E zD_v1nS1%V(`1$3zfMw~;=RtoK2v}`X1sjkcX7Q@MU3c_W3t#zb`CPmD5awY2HS3_D z>J&MT0%*iSpYskpxZ$Gf4>h7sh~TT2K5Y9e3`&J;M;2450i)hs%1<_b-N=SvpM%!@ zE-B1@3TF`&6(z%fY`@37?3qs!2M^g${X3hh>uWs*lxQSA^}Jj48u5hMWt%Qm6`%GD zWvhD(Y~_573RziMbA9g;i{bo7^Ko^<1qL)0YsJ9EpSRKlvnlH#D&&gyOsAQus%l(p z)ep?tZNq|NQw?h2+$bjhZn6%(>xGLhO;FN8MU(wPKfQ zUkhkPzk#_MLo&eanjS>s@lj!!kez_GpRY1``Wze_`u^Q#PEO7~ajWvYkj1hASIt}c zFD?YXZEJ0P>jB|0C+pI0>g3=s6#X|TCMIUi9rDHtMc-CG4%5_urZ&lXSFA>_{B2gS za7IF+A37uhsmgb8*vzKJudg|Z*R93tQy3jfsr^S}@Sh>4py^~M$VZOY81HBlt^n?6 zZnX<%KK3EFugt}KeHM<|#pLg6B4`f%Flr#y!14rPeei1V-x29yw5x53+gf@aeF#d47BdPrLEt|H>f5qjM5S+7rzL;(x)X|Etsg z6CN1%_MUDxYKi9S%QX@9{WW6ImMB@l$3$d+IW_ znQ`tlz(zB>y1IH8z7AzQ$f}y94^|P}l9%1x-Scr0;^KNOPf<_p&jDMg^vAtXp*uyt zs%H4btt;Q_N8msOgvcEUIXQEz--2OVg1F>vg++-Yp@E1P*tr6ASq+qSjqp4R+VwzI*r1?IAG4Id!IW8-)BmY7@G<9@8Ec z0y7?>(PeeIV_=8+j|>S>B1<6x*bf9O6chRxN`XJe>;fj}pw!Zz@6RvcW+qDht72bc z0iMSop8xY4_dg=t-wWxb3`WCdDQRwQ&Y5x&{?CFBOpyN$+Sfw&5U8^tv0xRZ48W`F Ks}-o)hy5Ff%o|+* diff --git a/dev/explanation/gotchas.html b/dev/explanation/gotchas.html index a987ad70496..36309530e27 100644 --- a/dev/explanation/gotchas.html +++ b/dev/explanation/gotchas.html @@ -1571,7 +1571,7 @@

    help()
    measure=<function count_ops>,
    -)[source] +)[source]

    Reduce expression by combining powers with similar bases and exponents.

    Explanation

    If deep is True then powsimp() will also simplify arguments of diff --git a/dev/modules/algebras.html b/dev/modules/algebras.html index 1dcea91fc62..b5c5c1d29ba 100644 --- a/dev/modules/algebras.html +++ b/dev/modules/algebras.html @@ -821,7 +821,7 @@

    Introductionnorm=None,

    -)[source] +)[source]

    Provides basic quaternion operations. Quaternion objects can be instantiated as Quaternion(a, b, c, d) as in \(q = a + bi + cj + dk\).

    @@ -876,7 +876,7 @@

    Introduction
    -add(other)[source]
    +add(other)[source]

    Adds quaternions.

    Parameters:
    @@ -918,7 +918,7 @@

    Introduction
    -angle()[source]
    +angle()[source]

    Returns the angle of the quaternion measured in the real-axis plane.

    Explanation

    Given a quaternion \(q = a + bi + cj + dk\) where \(a\), \(b\), \(c\) and \(d\) @@ -938,7 +938,7 @@

    Introduction
    -arc_coplanar(other)[source]
    +arc_coplanar(other)[source]

    Returns True if the transformation arcs represented by the input quaternions happen in the same plane.

    Parameters:
    @@ -974,7 +974,7 @@

    Introduction
    -axis()[source]
    +axis()[source]

    Returns \(\mathbf{Ax}(q)\), the axis of the quaternion \(q\).

    Explanation

    Given a quaternion \(q = a + bi + cj + dk\), returns \(\mathbf{Ax}(q)\) i.e., the versor of the vector part of that quaternion @@ -995,7 +995,7 @@

    Introduction
    -exp()[source]
    +exp()[source]

    Returns the exponential of \(q\), given by \(e^q\).

    Returns:
    @@ -1019,7 +1019,7 @@

    Introduction
    -classmethod from_Matrix(elements)[source]
    +classmethod from_Matrix(elements)[source]

    Returns quaternion from elements of a column vector`. If vector_only is True, returns only imaginary part as a Matrix of length 3.

    @@ -1055,7 +1055,7 @@

    Introduction
    -classmethod from_axis_angle(vector, angle)[source]
    +classmethod from_axis_angle(vector, angle)[source]

    Returns a rotation quaternion given the axis and the angle of rotation.

    Parameters:
    @@ -1087,7 +1087,7 @@

    Introduction
    -classmethod from_euler(angles, seq)[source]
    +classmethod from_euler(angles, seq)[source]

    Returns quaternion equivalent to rotation represented by the Euler angles, in the sequence defined by seq.

    @@ -1135,7 +1135,7 @@

    Introduction
    -classmethod from_rotation_matrix(M)[source]
    +classmethod from_rotation_matrix(M)[source]

    Returns the equivalent quaternion of a matrix. The quaternion will be normalized only if the matrix is special orthogonal (orthogonal and det(M) = 1).

    @@ -1167,7 +1167,7 @@

    Introduction
    -index_vector()[source]
    +index_vector()[source]

    Returns the index vector of the quaternion.

    Returns:
    @@ -1192,7 +1192,7 @@

    Introduction
    -integrate(*args)[source]
    +integrate(*args)[source]

    Computes integration of quaternion.

    Returns:
    @@ -1223,13 +1223,13 @@

    Introduction
    -inverse()[source]
    +inverse()[source]

    Returns the inverse of the quaternion.

    -is_pure()[source]
    +is_pure()[source]

    Returns true if the quaternion is pure, false if the quaternion is not pure or returns none if it is unknown.

    Explanation

    @@ -1250,7 +1250,7 @@

    Introduction
    -is_zero_quaternion()[source]
    +is_zero_quaternion()[source]

    Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion and None if the value is unknown.

    Explanation

    @@ -1276,7 +1276,7 @@

    Introduction
    -log()[source]
    +log()[source]

    Returns the logarithm of the quaternion, given by \(\log q\).

    Examples

    >>> from sympy import Quaternion
    @@ -1292,7 +1292,7 @@ 

    Introduction
    -mensor()[source]
    +mensor()[source]

    Returns the natural logarithm of the norm(magnitude) of the quaternion.

    Examples

    >>> from sympy.algebras.quaternion import Quaternion
    @@ -1311,7 +1311,7 @@ 

    Introduction
    -mul(other)[source]
    +mul(other)[source]

    Multiplies quaternions.

    Parameters:
    @@ -1353,19 +1353,19 @@

    Introduction
    -norm()[source]
    +norm()[source]

    Returns the norm of the quaternion.

    -normalize()[source]
    +normalize()[source]

    Returns the normalized form of the quaternion.

    -orthogonal(other)[source]
    +orthogonal(other)[source]

    Returns the orthogonality of two quaternions.

    Parameters:
    @@ -1397,7 +1397,7 @@

    Introduction
    -parallel(other)[source]
    +parallel(other)[source]

    Returns True if the two pure quaternions seen as 3D vectors are parallel.

    Parameters:
    @@ -1429,7 +1429,7 @@

    Introduction
    -pow(p)[source]
    +pow(p)[source]

    Finds the pth power of the quaternion.

    Parameters:
    @@ -1457,7 +1457,7 @@

    Introduction
    -pow_cos_sin(p)[source]
    +pow_cos_sin(p)[source]

    Computes the pth power in the cos-sin form.

    Parameters:
    @@ -1582,7 +1582,7 @@

    Introduction
    -static rotate_point(pin, r)[source]
    +static rotate_point(pin, r)[source]

    Returns the coordinates of the point pin (a 3 tuple) after rotation.

    Parameters:
    @@ -1621,7 +1621,7 @@

    Introduction
    -scalar_part()[source]
    +scalar_part()[source]

    Returns scalar part(\(\mathbf{S}(q)\)) of the quaternion q.

    Explanation

    Given a quaternion \(q = a + bi + cj + dk\), returns \(\mathbf{S}(q) = a\).

    @@ -1636,7 +1636,7 @@

    Introduction
    -set_norm(norm)[source]
    +set_norm(norm)[source]

    Sets norm of an already instantiated quaternion.

    Parameters:
    @@ -1671,7 +1671,7 @@

    Introduction
    -to_Matrix(vector_only=False)[source]
    +to_Matrix(vector_only=False)[source]

    Returns elements of quaternion as a column vector. By default, a Matrix of length 4 is returned, with the real part as the first element. @@ -1719,7 +1719,7 @@

    Introduction
    -to_axis_angle()[source]
    +to_axis_angle()[source]

    Returns the axis and angle of rotation of a quaternion.

    Returns:
    @@ -1751,7 +1751,7 @@

    Introductionavoid_square_root=False,

    -)[source] +)[source]

    Returns Euler angles representing same rotation as the quaternion, in the sequence given by seq. This implements the method described in [R3].

    @@ -1826,7 +1826,7 @@

    Introductionhomogeneous=True,

    -)[source] +)[source]

    Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if v is not passed.

    @@ -1869,7 +1869,7 @@

    Introduction
    -classmethod vector_coplanar(q1, q2, q3)[source]
    +classmethod vector_coplanar(q1, q2, q3)[source]

    Returns True if the axis of the pure quaternions seen as 3D vectors q1, q2, and q3 are coplanar.

    @@ -1921,7 +1921,7 @@

    Introduction
    -vector_part()[source]
    +vector_part()[source]

    Returns \(\mathbf{V}(q)\), the vector part of the quaternion \(q\).

    Explanation

    Given a quaternion \(q = a + bi + cj + dk\), returns \(\mathbf{V}(q) = bi + cj + dk\).

    diff --git a/dev/modules/assumptions/ask.html b/dev/modules/assumptions/ask.html index 328f12fc262..d6b13afc2e3 100644 --- a/dev/modules/assumptions/ask.html +++ b/dev/modules/assumptions/ask.html @@ -803,14 +803,14 @@
    Documentation Version

    Module for querying SymPy objects about assumptions.

    -class sympy.assumptions.ask.AssumptionKeys[source]
    +class sympy.assumptions.ask.AssumptionKeys[source]

    This class contains all the supported keys by ask. It should be accessed via the instance sympy.Q.

    -sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]
    +sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]

    Function to evaluate the proposition with assumptions.

    Parameters:
    @@ -900,7 +900,7 @@
    Documentation Version
    -sympy.assumptions.ask.register_handler(key, handler)[source]
    +sympy.assumptions.ask.register_handler(key, handler)[source]

    Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler.

    @@ -910,7 +910,7 @@
    Documentation Version
    -sympy.assumptions.ask.remove_handler(key, handler)[source]
    +sympy.assumptions.ask.remove_handler(key, handler)[source]

    Removes a handler from the ask system.

    Deprecated since version 1.8.: Use multipledispatch handler instead. See Predicate.

    diff --git a/dev/modules/assumptions/assume.html b/dev/modules/assumptions/assume.html index 966b57dc663..f68ed58a074 100644 --- a/dev/modules/assumptions/assume.html +++ b/dev/modules/assumptions/assume.html @@ -803,7 +803,7 @@
    Documentation Version

    A module which implements predicates and assumption context.

    -class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]
    +class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]

    The class of expressions resulting from applying Predicate to the arguments. AppliedPredicate merely wraps its argument and remain unevaluated. To evaluate it, use the ask() function.

    @@ -858,7 +858,7 @@
    Documentation Version
    -class sympy.assumptions.assume.AssumptionsContext[source]
    +class sympy.assumptions.assume.AssumptionsContext[source]

    Set containing default assumptions which are applied to the ask() function.

    Explanation

    @@ -903,7 +903,7 @@
    Documentation Version
    -add(*assumptions)[source]
    +add(*assumptions)[source]

    Add assumptions.

    @@ -911,7 +911,7 @@
    Documentation Version
    -class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]
    +class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]

    Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects.

    Explanation

    @@ -983,7 +983,7 @@
    Documentation Version
    -eval(args, assumptions=True)[source]
    +eval(args, assumptions=True)[source]

    Evaluate self(*args) under the given assumptions.

    This uses only direct resolution methods, not logical inference.

    @@ -995,13 +995,13 @@
    Documentation Version
    -classmethod register(*types, **kwargs)[source]
    +classmethod register(*types, **kwargs)[source]

    Register the signature to the handler.

    -classmethod register_many(*types, **kwargs)[source]
    +classmethod register_many(*types, **kwargs)[source]

    Register multiple signatures to same handler.

    @@ -1009,7 +1009,7 @@
    Documentation Version
    -class sympy.assumptions.assume.UndefinedPredicate(name, handlers=None)[source]
    +class sympy.assumptions.assume.UndefinedPredicate(name, handlers=None)[source]

    Predicate without handler.

    Explanation

    This predicate is generated by using Predicate directly for @@ -1028,7 +1028,7 @@

    Documentation Version
    -sympy.assumptions.assume.assuming(*assumptions)[source]
    +sympy.assumptions.assume.assuming(*assumptions)[source]

    Context manager for assumptions.

    Examples

    >>> from sympy import assuming, Q, ask
    diff --git a/dev/modules/assumptions/index.html b/dev/modules/assumptions/index.html
    index 6ffedcbe1b0..e46e43a20b2 100644
    --- a/dev/modules/assumptions/index.html
    +++ b/dev/modules/assumptions/index.html
    @@ -805,7 +805,7 @@ 
    Documentation Version

    Predicate

    -class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]
    +class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]

    Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects.

    Explanation

    @@ -877,7 +877,7 @@

    Predicate
    -eval(args, assumptions=True)[source]
    +eval(args, assumptions=True)[source]

    Evaluate self(*args) under the given assumptions.

    This uses only direct resolution methods, not logical inference.

    @@ -889,13 +889,13 @@

    Predicate
    -classmethod register(*types, **kwargs)[source]
    +classmethod register(*types, **kwargs)[source]

    Register the signature to the handler.

    -classmethod register_many(*types, **kwargs)[source]
    +classmethod register_many(*types, **kwargs)[source]

    Register multiple signatures to same handler.

    @@ -903,7 +903,7 @@

    Predicate
    -class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]
    +class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]

    The class of expressions resulting from applying Predicate to the arguments. AppliedPredicate merely wraps its argument and remain unevaluated. To evaluate it, use the ask() function.

    @@ -963,7 +963,7 @@

    Querying is ask():

    -sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]
    +sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]

    Function to evaluate the proposition with assumptions.

    Parameters:
    diff --git a/dev/modules/assumptions/predicates.html b/dev/modules/assumptions/predicates.html index 742c3c46284..68a294161fe 100644 --- a/dev/modules/assumptions/predicates.html +++ b/dev/modules/assumptions/predicates.html @@ -804,7 +804,7 @@
    Documentation Version

    Common

    -class sympy.assumptions.predicates.common.IsTruePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.common.IsTruePredicate(*args, **kwargs)[source]

    Generic predicate.

    Explanation

    ask(Q.is_true(x)) is true iff x is true. This only makes @@ -849,7 +849,7 @@

    Common
    -class sympy.assumptions.predicates.common.CommutativePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.common.CommutativePredicate(*args, **kwargs)[source]

    Commutative predicate.

    Explanation

    ask(Q.commutative(x)) is true iff x commutes with any other @@ -869,7 +869,7 @@

    CommonCalculus

    -class sympy.assumptions.predicates.calculus.FinitePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.calculus.FinitePredicate(*args, **kwargs)[source]

    Finite number predicate.

    Explanation

    Q.finite(x) is true if x is a number but neither an infinity @@ -913,7 +913,7 @@

    Calculus
    -class sympy.assumptions.predicates.calculus.InfinitePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.calculus.InfinitePredicate(*args, **kwargs)[source]

    Infinite number predicate.

    Q.infinite(x) is true iff the absolute value of x is infinity.

    @@ -932,7 +932,7 @@

    Calculus

    Matrix

    -class sympy.assumptions.predicates.matrices.SymmetricPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.SymmetricPredicate(*args, **kwargs)[source]

    Symmetric matrix predicate.

    Explanation

    Q.symmetric(x) is true iff x is a square matrix and is equal to @@ -969,7 +969,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.InvertiblePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.InvertiblePredicate(*args, **kwargs)[source]

    Invertible matrix predicate.

    Explanation

    Q.invertible(x) is true iff x is an invertible matrix. @@ -1006,7 +1006,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.OrthogonalPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.OrthogonalPredicate(*args, **kwargs)[source]

    Orthogonal matrix predicate.

    Explanation

    Q.orthogonal(x) is true iff x is an orthogonal matrix. @@ -1048,7 +1048,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.UnitaryPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.UnitaryPredicate(*args, **kwargs)[source]

    Unitary matrix predicate.

    Explanation

    Q.unitary(x) is true iff x is a unitary matrix. @@ -1087,7 +1087,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.PositiveDefinitePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.PositiveDefinitePredicate(*args, **kwargs)[source]

    Positive definite matrix predicate.

    Explanation

    If \(M\) is a \(n \times n\) symmetric real matrix, it is said @@ -1126,7 +1126,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.UpperTriangularPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.UpperTriangularPredicate(*args, **kwargs)[source]

    Upper triangular matrix predicate.

    Explanation

    A matrix \(M\) is called upper triangular matrix if \(M_{ij}=0\) @@ -1158,7 +1158,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.LowerTriangularPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.LowerTriangularPredicate(*args, **kwargs)[source]

    Lower triangular matrix predicate.

    Explanation

    A matrix \(M\) is called lower triangular matrix if \(M_{ij}=0\) @@ -1190,7 +1190,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.DiagonalPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.DiagonalPredicate(*args, **kwargs)[source]

    Diagonal matrix predicate.

    Explanation

    Q.diagonal(x) is true iff x is a diagonal matrix. A diagonal @@ -1225,7 +1225,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.FullRankPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.FullRankPredicate(*args, **kwargs)[source]

    Fullrank matrix predicate.

    Explanation

    Q.fullrank(x) is true iff x is a full rank matrix. @@ -1255,7 +1255,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.SquarePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.SquarePredicate(*args, **kwargs)[source]

    Square matrix predicate.

    Explanation

    Q.square(x) is true iff x is a square matrix. A square matrix @@ -1293,7 +1293,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.IntegerElementsPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.IntegerElementsPredicate(*args, **kwargs)[source]

    Integer elements matrix predicate.

    Explanation

    Q.integer_elements(x) is true iff all the elements of x @@ -1317,7 +1317,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.RealElementsPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.RealElementsPredicate(*args, **kwargs)[source]

    Real elements matrix predicate.

    Explanation

    Q.real_elements(x) is true iff all the elements of x @@ -1341,7 +1341,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.ComplexElementsPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.ComplexElementsPredicate(*args, **kwargs)[source]

    Complex elements matrix predicate.

    Explanation

    Q.complex_elements(x) is true iff all the elements of x @@ -1367,7 +1367,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.SingularPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.SingularPredicate(*args, **kwargs)[source]

    Singular matrix predicate.

    A matrix is singular iff the value of its determinant is 0.

    Examples

    @@ -1398,7 +1398,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.NormalPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.NormalPredicate(*args, **kwargs)[source]

    Normal matrix predicate.

    A matrix is normal if it commutes with its conjugate transpose.

    Examples

    @@ -1427,7 +1427,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.TriangularPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.TriangularPredicate(*args, **kwargs)[source]

    Triangular matrix predicate.

    Explanation

    Q.triangular(X) is true if X is one that is either lower @@ -1460,7 +1460,7 @@

    Matrix
    -class sympy.assumptions.predicates.matrices.UnitTriangularPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.matrices.UnitTriangularPredicate(*args, **kwargs)[source]

    Unit triangular matrix predicate.

    Explanation

    A unit triangular matrix is a triangular matrix with 1s @@ -1487,7 +1487,7 @@

    MatrixNumber Theory

    -class sympy.assumptions.predicates.ntheory.EvenPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.ntheory.EvenPredicate(*args, **kwargs)[source]

    Even number predicate.

    Explanation

    ask(Q.even(x)) is true iff x belongs to the set of even @@ -1516,7 +1516,7 @@

    Number Theory
    -class sympy.assumptions.predicates.ntheory.OddPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.ntheory.OddPredicate(*args, **kwargs)[source]

    Odd number predicate.

    Explanation

    ask(Q.odd(x)) is true iff x belongs to the set of odd numbers.

    @@ -1544,7 +1544,7 @@

    Number Theory
    -class sympy.assumptions.predicates.ntheory.PrimePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.ntheory.PrimePredicate(*args, **kwargs)[source]

    Prime number predicate.

    Explanation

    ask(Q.prime(x)) is true iff x is a natural number greater @@ -1576,7 +1576,7 @@

    Number Theory
    -class sympy.assumptions.predicates.ntheory.CompositePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.ntheory.CompositePredicate(*args, **kwargs)[source]

    Composite number predicate.

    Explanation

    ask(Q.composite(x)) is true iff x is a positive integer and has @@ -1608,7 +1608,7 @@

    Number Theory

    -class sympy.assumptions.predicates.order.PositivePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.order.PositivePredicate(*args, **kwargs)[source]

    Positive real number predicate.

    Explanation

    Q.positive(x) is true iff x is real and \(x > 0\), that is if x @@ -1656,7 +1656,7 @@

    Order
    -class sympy.assumptions.predicates.order.NegativePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.order.NegativePredicate(*args, **kwargs)[source]

    Negative number predicate.

    Explanation

    Q.negative(x) is true iff x is a real number and \(x < 0\), that is, @@ -1704,7 +1704,7 @@

    Order
    -class sympy.assumptions.predicates.order.ZeroPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.order.ZeroPredicate(*args, **kwargs)[source]

    Zero number predicate.

    Explanation

    ask(Q.zero(x)) is true iff the value of x is zero.

    @@ -1735,7 +1735,7 @@

    Order
    -class sympy.assumptions.predicates.order.NonZeroPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.order.NonZeroPredicate(*args, **kwargs)[source]

    Nonzero real number predicate.

    Explanation

    ask(Q.nonzero(x)) is true iff x is real and x is not zero. Note in @@ -1782,7 +1782,7 @@

    Order
    -class sympy.assumptions.predicates.order.NonPositivePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.order.NonPositivePredicate(*args, **kwargs)[source]

    Nonpositive real number predicate.

    Explanation

    ask(Q.nonpositive(x)) is true iff x belongs to the set of @@ -1826,7 +1826,7 @@

    Order
    -class sympy.assumptions.predicates.order.NonNegativePredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.order.NonNegativePredicate(*args, **kwargs)[source]

    Nonnegative real number predicate.

    Explanation

    ask(Q.nonnegative(x)) is true iff x belongs to the set of @@ -1871,7 +1871,7 @@

    Order

    Sets

    -class sympy.assumptions.predicates.sets.IntegerPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.IntegerPredicate(*args, **kwargs)[source]

    Integer predicate.

    Explanation

    Q.integer(x) is true iff x belongs to the set of integer @@ -1904,7 +1904,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.RationalPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.RationalPredicate(*args, **kwargs)[source]

    Rational number predicate.

    Explanation

    Q.rational(x) is true iff x belongs to the set of @@ -1939,7 +1939,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.IrrationalPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.IrrationalPredicate(*args, **kwargs)[source]

    Irrational number predicate.

    Explanation

    Q.irrational(x) is true iff x is any real number that @@ -1976,7 +1976,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.RealPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.RealPredicate(*args, **kwargs)[source]

    Real number predicate.

    Explanation

    Q.real(x) is true iff x is a real number, i.e., it is in the @@ -2047,7 +2047,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.ExtendedRealPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.ExtendedRealPredicate(*args, **kwargs)[source]

    Extended real predicate.

    Explanation

    Q.extended_real(x) is true iff x is a real number or @@ -2078,7 +2078,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.HermitianPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.HermitianPredicate(*args, **kwargs)[source]

    Hermitian predicate.

    Explanation

    ask(Q.hermitian(x)) is true iff x belongs to the set of @@ -2103,7 +2103,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.ComplexPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.ComplexPredicate(*args, **kwargs)[source]

    Complex number predicate.

    Explanation

    Q.complex(x) is true iff x belongs to the set of complex @@ -2139,7 +2139,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.ImaginaryPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.ImaginaryPredicate(*args, **kwargs)[source]

    Imaginary number predicate.

    Explanation

    Q.imaginary(x) is true iff x can be written as a real @@ -2176,7 +2176,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.AntihermitianPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.AntihermitianPredicate(*args, **kwargs)[source]

    Antihermitian predicate.

    Explanation

    Q.antihermitian(x) is true iff x belongs to the field of @@ -2203,7 +2203,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.AlgebraicPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.AlgebraicPredicate(*args, **kwargs)[source]

    Algebraic number predicate.

    Explanation

    Q.algebraic(x) is true iff x belongs to the set of @@ -2243,7 +2243,7 @@

    Sets
    -class sympy.assumptions.predicates.sets.TranscendentalPredicate(*args, **kwargs)[source]
    +class sympy.assumptions.predicates.sets.TranscendentalPredicate(*args, **kwargs)[source]

    Transcedental number predicate.

    Explanation

    Q.transcendental(x) is true iff x belongs to the set of diff --git a/dev/modules/assumptions/refine.html b/dev/modules/assumptions/refine.html index c3549de3169..a231a42e287 100644 --- a/dev/modules/assumptions/refine.html +++ b/dev/modules/assumptions/refine.html @@ -802,7 +802,7 @@

    Documentation Version

    Refine

    -sympy.assumptions.refine.refine(expr, assumptions=True)[source]
    +sympy.assumptions.refine.refine(expr, assumptions=True)[source]

    Simplify an expression using assumptions.

    Explanation

    Unlike simplify() which performs structural simplification @@ -840,7 +840,7 @@

    Documentation Version
    -sympy.assumptions.refine.refine_Pow(expr, assumptions)[source]
    +sympy.assumptions.refine.refine_Pow(expr, assumptions)[source]

    Handler for instances of Pow.

    Examples

    >>> from sympy import Q
    @@ -868,7 +868,7 @@ 
    Documentation Version
    -sympy.assumptions.refine.refine_abs(expr, assumptions)[source]
    +sympy.assumptions.refine.refine_abs(expr, assumptions)[source]

    Handler for the absolute value.

    Examples

    >>> from sympy import Q, Abs
    @@ -885,7 +885,7 @@ 
    Documentation Version
    -sympy.assumptions.refine.refine_arg(expr, assumptions)[source]
    +sympy.assumptions.refine.refine_arg(expr, assumptions)[source]

    Handler for complex argument

    Explanation

    >>> from sympy.assumptions.refine import refine_arg
    @@ -901,7 +901,7 @@ 
    Documentation Version
    -sympy.assumptions.refine.refine_atan2(expr, assumptions)[source]
    +sympy.assumptions.refine.refine_atan2(expr, assumptions)[source]

    Handler for the atan2 function.

    Examples

    >>> from sympy import Q, atan2
    @@ -927,7 +927,7 @@ 
    Documentation Version
    -sympy.assumptions.refine.refine_im(expr, assumptions)[source]
    +sympy.assumptions.refine.refine_im(expr, assumptions)[source]

    Handler for imaginary part.

    Explanation

    >>> from sympy.assumptions.refine import refine_im
    @@ -943,7 +943,7 @@ 
    Documentation Version
    -sympy.assumptions.refine.refine_matrixelement(expr, assumptions)[source]
    +sympy.assumptions.refine.refine_matrixelement(expr, assumptions)[source]

    Handler for symmetric part.

    Examples

    >>> from sympy.assumptions.refine import refine_matrixelement
    @@ -959,7 +959,7 @@ 
    Documentation Version
    -sympy.assumptions.refine.refine_re(expr, assumptions)[source]
    +sympy.assumptions.refine.refine_re(expr, assumptions)[source]

    Handler for real part.

    Examples

    >>> from sympy.assumptions.refine import refine_re
    @@ -975,7 +975,7 @@ 
    Documentation Version
    -sympy.assumptions.refine.refine_sign(expr, assumptions)[source]
    +sympy.assumptions.refine.refine_sign(expr, assumptions)[source]

    Handler for sign.

    Examples

    >>> from sympy.assumptions.refine import refine_sign
    diff --git a/dev/modules/calculus/index.html b/dev/modules/calculus/index.html
    index 424baa344cc..2a07ae0073d 100644
    --- a/dev/modules/calculus/index.html
    +++ b/dev/modules/calculus/index.html
    @@ -805,7 +805,7 @@ 
    Documentation Version
    Euler-Lagrange Equations for given Lagrangian.

    -sympy.calculus.euler.euler_equations(L, funcs=(), vars=())[source]
    +sympy.calculus.euler.euler_equations(L, funcs=(), vars=())[source]

    Find the Euler-Lagrange equations [R31] for a given Lagrangian.

    Parameters:
    @@ -891,7 +891,7 @@
    Documentation Version
    symbol=None,
    -)[source] +)[source]

    Return whether the function is decreasing in the given interval.

    Parameters:
    @@ -949,7 +949,7 @@
    Documentation Version
    symbol=None,
    -)[source] +)[source]

    Return whether the function is increasing in the given interval.

    Parameters:
    @@ -1003,7 +1003,7 @@
    Documentation Version
    symbol=None,
    -)[source] +)[source]

    Return whether the function is monotonic in the given interval.

    Parameters:
    @@ -1065,7 +1065,7 @@
    Documentation Version
    symbol=None,
    -)[source] +)[source]

    Return whether the function is strictly decreasing in the given interval.

    Parameters:
    @@ -1119,7 +1119,7 @@
    Documentation Version
    symbol=None,
    -)[source] +)[source]

    Return whether the function is strictly increasing in the given interval.

    Parameters:
    @@ -1174,7 +1174,7 @@
    Documentation Version
    symbol=None,
    -)[source] +)[source]

    Helper function for functions checking function monotonicity.

    Parameters:
    @@ -1213,7 +1213,7 @@
    Documentation Version
    -sympy.calculus.singularities.singularities(expression, symbol, domain=None)[source]
    +sympy.calculus.singularities.singularities(expression, symbol, domain=None)[source]

    Find singularities of a given function.

    Parameters:
    @@ -1300,7 +1300,7 @@
    Documentation Version
    -sympy.calculus.finite_diff.apply_finite_diff(order, x_list, y_list, x0=0)[source]
    +sympy.calculus.finite_diff.apply_finite_diff(order, x_list, y_list, x0=0)[source]

    Calculates the finite difference approximation of the derivative of requested order at x0 from points provided in x_list and y_list.

    @@ -1380,7 +1380,7 @@
    Documentation Version
    evaluate=False,
    -)[source] +)[source]

    Differentiate expr and replace Derivatives with finite differences.

    Parameters:
    @@ -1432,7 +1432,7 @@
    Documentation Version
    -sympy.calculus.finite_diff.finite_diff_weights(order, x_list, x0=1)[source]
    +sympy.calculus.finite_diff.finite_diff_weights(order, x_list, x0=1)[source]

    Calculates the finite difference weights for an arbitrarily spaced one-dimensional grid (x_list) for derivatives at x0 of order 0, 1, …, up to order using a recursive formula. Order of accuracy @@ -1570,7 +1570,7 @@

    Documentation Version
    -sympy.calculus.util.continuous_domain(f, symbol, domain)[source]
    +sympy.calculus.util.continuous_domain(f, symbol, domain)[source]

    Returns the domain on which the function expression f is continuous.

    This function is limited by the ability to determine the various singularities and discontinuities of the given function. @@ -1623,7 +1623,7 @@

    Documentation Version
    -sympy.calculus.util.function_range(f, symbol, domain)[source]
    +sympy.calculus.util.function_range(f, symbol, domain)[source]

    Finds the range of a function in a given domain. This method is limited by the ability to determine the singularities and determine limits.

    @@ -1680,7 +1680,7 @@
    Documentation Version
    -sympy.calculus.util.is_convex(f, *syms, domain=Reals)[source]
    +sympy.calculus.util.is_convex(f, *syms, domain=Reals)[source]

    Determines the convexity of the function passed in the argument.

    Parameters:
    @@ -1757,7 +1757,7 @@
    Documentation Version
    -sympy.calculus.util.lcim(numbers)[source]
    +sympy.calculus.util.lcim(numbers)[source]

    Returns the least common integral multiple of a list of numbers.

    The numbers can be rational or irrational or a mixture of both. \(None\) is returned for incommensurable numbers.

    @@ -1789,7 +1789,7 @@
    Documentation Version
    -sympy.calculus.util.maximum(f, symbol, domain=Reals)[source]
    +sympy.calculus.util.maximum(f, symbol, domain=Reals)[source]

    Returns the maximum value of a function in the given domain.

    Parameters:
    @@ -1836,7 +1836,7 @@
    Documentation Version
    -sympy.calculus.util.minimum(f, symbol, domain=Reals)[source]
    +sympy.calculus.util.minimum(f, symbol, domain=Reals)[source]

    Returns the minimum value of a function in the given domain.

    Parameters:
    @@ -1883,7 +1883,7 @@
    Documentation Version
    -sympy.calculus.util.not_empty_in(finset_intersection, *syms)[source]
    +sympy.calculus.util.not_empty_in(finset_intersection, *syms)[source]

    Finds the domain of the functions in finset_intersection in which the finite_set is not-empty.

    @@ -1930,7 +1930,7 @@
    Documentation Version
    -sympy.calculus.util.periodicity(f, symbol, check=False)[source]
    +sympy.calculus.util.periodicity(f, symbol, check=False)[source]

    Tests the given function for periodicity in the given symbol.

    Parameters:
    @@ -1990,7 +1990,7 @@
    Documentation Version
    -sympy.calculus.util.stationary_points(f, symbol, domain=Reals)[source]
    +sympy.calculus.util.stationary_points(f, symbol, domain=Reals)[source]

    Returns the stationary points of a function (where derivative of the function is 0) in the given domain.

    diff --git a/dev/modules/categories.html b/dev/modules/categories.html index e4857eb723b..1dedac39baa 100644 --- a/dev/modules/categories.html +++ b/dev/modules/categories.html @@ -826,7 +826,7 @@

    Introduction
    -class sympy.categories.Object(name, **assumptions)[source]
    +class sympy.categories.Object(name, **assumptions)[source]

    The base class for any kind of object in an abstract category.

    Explanation

    While technically any instance of Basic will do, this @@ -836,7 +836,7 @@

    Introduction
    -class sympy.categories.Morphism(domain, codomain)[source]
    +class sympy.categories.Morphism(domain, codomain)[source]

    The base class for any morphism in an abstract category.

    Explanation

    In abstract categories, a morphism is an arrow between two @@ -869,7 +869,7 @@

    Introduction
    -compose(other)[source]
    +compose(other)[source]

    Composes self with the supplied morphism.

    The order of elements in the composition is the usual order, i.e., to construct \(g\circ f\) use g.compose(f).

    @@ -910,7 +910,7 @@

    Introduction
    -class sympy.categories.NamedMorphism(domain, codomain, name)[source]
    +class sympy.categories.NamedMorphism(domain, codomain, name)[source]

    Represents a morphism which has a name.

    Explanation

    Names are used to distinguish between morphisms which have the @@ -950,7 +950,7 @@

    Introduction
    -class sympy.categories.CompositeMorphism(*components)[source]
    +class sympy.categories.CompositeMorphism(*components)[source]

    Represents a morphism which is a composition of other morphisms.

    Explanation

    Two composite morphisms are equal if the morphisms they were @@ -1032,7 +1032,7 @@

    Introduction
    -flatten(new_name)[source]
    +flatten(new_name)[source]

    Forgets the composite structure of this morphism.

    Explanation

    If new_name is not empty, returns a NamedMorphism @@ -1057,7 +1057,7 @@

    Introduction
    -class sympy.categories.IdentityMorphism(domain)[source]
    +class sympy.categories.IdentityMorphism(domain)[source]

    Represents an identity morphism.

    Explanation

    An identity morphism is a morphism with equal domain and codomain, @@ -1091,7 +1091,7 @@

    Introductioncommutative_diagrams=EmptySet,

    -)[source] +)[source]

    An (abstract) category.

    Explanation

    A category [JoyOfCats] is a quadruple \(\mbox{K} = (O, \hom, id, @@ -1188,7 +1188,7 @@

    Introduction
    -class sympy.categories.Diagram(*args)[source]
    +class sympy.categories.Diagram(*args)[source]

    Represents a diagram in a certain category.

    Explanation

    Informally, a diagram is a collection of objects of a category and @@ -1262,7 +1262,7 @@

    Introduction
    -hom(A, B)[source]
    +hom(A, B)[source]

    Returns a 2-tuple of sets of morphisms between objects A and B: one set of morphisms listed as premises, and the other set of morphisms listed as conclusions.

    @@ -1287,7 +1287,7 @@

    Introduction
    -is_subdiagram(diagram)[source]
    +is_subdiagram(diagram)[source]

    Checks whether diagram is a subdiagram of self. Diagram \(D'\) is a subdiagram of \(D\) if all premises (conclusions) of \(D'\) are contained in the premises @@ -1352,7 +1352,7 @@

    Introduction
    -subdiagram_from_objects(objects)[source]
    +subdiagram_from_objects(objects)[source]

    If objects is a subset of the objects of self, returns a diagram which has as premises all those premises of self which have a domains and codomains in objects, likewise @@ -1382,7 +1382,7 @@

    Introduction
    -class sympy.categories.diagram_drawing.DiagramGrid(diagram, groups=None, **hints)[source]
    +class sympy.categories.diagram_drawing.DiagramGrid(diagram, groups=None, **hints)[source]

    Constructs and holds the fitting of the diagram into a grid.

    Explanation

    The mission of this class is to analyse the structure of the @@ -1585,7 +1585,7 @@

    Introductionlabel,

    -)[source] +)[source]

    Stores the information necessary for producing an Xy-pic description of an arrow.

    The principal goal of this class is to abstract away the string @@ -1680,7 +1680,7 @@

    Introduction
    -class sympy.categories.diagram_drawing.XypicDiagramDrawer[source]
    +class sympy.categories.diagram_drawing.XypicDiagramDrawer[source]

    Given a Diagram and the corresponding DiagramGrid, produces the Xy-pic representation of the diagram.

    @@ -1802,7 +1802,7 @@

    Introductiondiagram_format='',

    -)[source] +)[source]

    Returns the Xy-pic representation of diagram laid out in grid.

    Consider the following simple triangle diagram.

    @@ -1865,7 +1865,7 @@

    Introduction**hints,

    -)[source] +)[source]

    Provides a shortcut combining DiagramGrid and XypicDiagramDrawer. Returns an Xy-pic presentation of diagram. The argument masked is a list of morphisms which @@ -1912,7 +1912,7 @@

    Introduction**hints,

    -)[source] +)[source]

    Combines the functionality of xypic_draw_diagram and sympy.printing.preview. The arguments masked, diagram_format, groups, and hints are passed to diff --git a/dev/modules/codegen.html b/dev/modules/codegen.html index f8b90b89e5f..b1cae2415f4 100644 --- a/dev/modules/codegen.html +++ b/dev/modules/codegen.html @@ -1341,7 +1341,7 @@

    Autowrap
    opportunistic=True,

    -)[source] +)[source]

    Specialization of ReplaceOptim for functions evaluating “f(x) - 1”.

    Parameters:
    @@ -1380,7 +1380,7 @@

    Autowrap

    -replace_in_Add(e)[source]
    +replace_in_Add(e)[source]

    passed as second argument to Basic.replace(…)

    @@ -1388,7 +1388,7 @@

    Autowrap
    -class sympy.codegen.rewriting.Optimization(cost_function=None, priority=1)[source]
    +class sympy.codegen.rewriting.Optimization(cost_function=None, priority=1)[source]

    Abstract base class for rewriting optimization.

    Subclasses should implement __call__ taking an expression as argument.

    @@ -1402,7 +1402,7 @@

    Autowrap
    -class sympy.codegen.rewriting.ReplaceOptim(query, value, **kwargs)[source]
    +class sympy.codegen.rewriting.ReplaceOptim(query, value, **kwargs)[source]

    Rewriting optimization calling replace on expressions.

    Parameters:
    @@ -1443,7 +1443,7 @@

    Autowrap
    base_req=<function <lambda>>,

    -)[source] +)[source]

    Creates an instance of ReplaceOptim for expanding Pow.

    Parameters:
    @@ -1480,7 +1480,7 @@

    Autowrap
    -sympy.codegen.rewriting.optimize(expr, optimizations)[source]
    +sympy.codegen.rewriting.optimize(expr, optimizations)[source]

    Apply optimizations to an expression.

    Parameters:
    @@ -1521,7 +1521,7 @@

    Autowrap

    -class sympy.codegen.matrix_nodes.MatrixSolve(*args, **kwargs)[source]
    +class sympy.codegen.matrix_nodes.MatrixSolve(*args, **kwargs)[source]

    Represents an operation to solve a linear matrix equation.

    Parameters:
    @@ -1569,7 +1569,7 @@

    Autowrap
    **kwargs,

    -)[source] +)[source]

    Approximates functions by expanding them as a series.

    Parameters:
    @@ -1616,7 +1616,7 @@

    Autowrap
    -class sympy.codegen.approximations.SumApprox(bounds, reltol, **kwargs)[source]
    +class sympy.codegen.approximations.SumApprox(bounds, reltol, **kwargs)[source]

    Approximates sum by neglecting small terms.

    Parameters:
    @@ -1778,7 +1778,7 @@

    Using the nodes
    -class sympy.codegen.ast.Assignment(lhs, rhs)[source]
    +class sympy.codegen.ast.Assignment(lhs, rhs)[source]

    Represents variable assignment for code generation.

    Parameters:
    @@ -1818,7 +1818,7 @@

    Using the nodes
    -class sympy.codegen.ast.AssignmentBase(lhs, rhs)[source]
    +class sympy.codegen.ast.AssignmentBase(lhs, rhs)[source]

    Abstract base class for Assignment and AugmentedAssignment.

    Attributes:

    @@ -1829,7 +1829,7 @@

    Using the nodes
    -class sympy.codegen.ast.Attribute(possibly parametrized)[source]
    +class sympy.codegen.ast.Attribute(possibly parametrized)[source]

    For use with sympy.codegen.ast.Node (which takes instances of Attribute as attrs).

    @@ -1856,7 +1856,7 @@

    Using the nodes
    -class sympy.codegen.ast.AugmentedAssignment(lhs, rhs)[source]
    +class sympy.codegen.ast.AugmentedAssignment(lhs, rhs)[source]

    Base class for augmented assignments.

    Attributes:

    @@ -1868,7 +1868,7 @@

    Using the nodes
    -class sympy.codegen.ast.BreakToken(*args, **kwargs)[source]
    +class sympy.codegen.ast.BreakToken(*args, **kwargs)[source]

    Represents ‘break’ in C/Python (‘exit’ in Fortran).

    Use the premade instance break_ or instantiate manually.

    Examples

    @@ -1884,7 +1884,7 @@

    Using the nodes
    -class sympy.codegen.ast.CodeBlock(*args)[source]
    +class sympy.codegen.ast.CodeBlock(*args)[source]

    Represents a block of code.

    Explanation

    For now only assignments are supported. This restriction will be lifted in @@ -1929,7 +1929,7 @@

    Using the nodesorder='canonical',

    -)[source] +)[source]

    Return a new code block with common subexpressions eliminated.

    Explanation

    See the docstring of sympy.simplify.cse_main.cse() for more @@ -1959,7 +1959,7 @@

    Using the nodes
    -classmethod topological_sort(assignments)[source]
    +classmethod topological_sort(assignments)[source]

    Return a CodeBlock with topologically sorted assignments so that variables are assigned before they are used.

    Examples

    @@ -1991,19 +1991,19 @@

    Using the nodes
    -class sympy.codegen.ast.Comment(*args, **kwargs)[source]
    +class sympy.codegen.ast.Comment(*args, **kwargs)[source]

    Represents a comment.

    -class sympy.codegen.ast.ComplexType(*args, **kwargs)[source]
    +class sympy.codegen.ast.ComplexType(*args, **kwargs)[source]

    Represents a complex floating point number.

    -class sympy.codegen.ast.ContinueToken(*args, **kwargs)[source]
    +class sympy.codegen.ast.ContinueToken(*args, **kwargs)[source]

    Represents ‘continue’ in C/Python (‘cycle’ in Fortran)

    Use the premade instance continue_ or instantiate manually.

    Examples

    @@ -2019,7 +2019,7 @@

    Using the nodes
    -class sympy.codegen.ast.Declaration(*args, **kwargs)[source]
    +class sympy.codegen.ast.Declaration(*args, **kwargs)[source]

    Represents a variable declaration

    Parameters:
    @@ -2044,7 +2044,7 @@

    Using the nodes
    -class sympy.codegen.ast.Element(*args, **kwargs)[source]
    +class sympy.codegen.ast.Element(*args, **kwargs)[source]

    Element in (a possibly N-dimensional) array.

    Examples

    >>> from sympy.codegen.ast import Element
    @@ -2064,11 +2064,11 @@ 

    Using the nodes
    -class sympy.codegen.ast.FloatBaseType(*args, **kwargs)[source]
    +class sympy.codegen.ast.FloatBaseType(*args, **kwargs)[source]

    Represents a floating point number type.

    -cast_nocheck[source]
    +cast_nocheck[source]

    alias of Float

    @@ -2076,7 +2076,7 @@

    Using the nodes
    -class sympy.codegen.ast.FloatType(*args, **kwargs)[source]
    +class sympy.codegen.ast.FloatType(*args, **kwargs)[source]

    Represents a floating point type with fixed bit width.

    Base 2 & one sign bit is assumed.

    @@ -2123,7 +2123,7 @@

    Using the nodes
    -cast_nocheck(value)[source]
    +cast_nocheck(value)[source]

    Casts without checking if out of bounds or subnormal.

    @@ -2180,7 +2180,7 @@

    Using the nodes
    -class sympy.codegen.ast.For(*args, **kwargs)[source]
    +class sympy.codegen.ast.For(*args, **kwargs)[source]

    Represents a ‘for-loop’ in the code.

    @@ -2232,7 +2232,7 @@

    Using the nodes
    -class sympy.codegen.ast.FunctionCall(*args, **kwargs)[source]
    +class sympy.codegen.ast.FunctionCall(*args, **kwargs)[source]

    Represents a call to a function in the code.

    Parameters:
    @@ -2252,7 +2252,7 @@

    Using the nodes
    -class sympy.codegen.ast.FunctionDefinition(*args, **kwargs)[source]
    +class sympy.codegen.ast.FunctionDefinition(*args, **kwargs)[source]

    Represents a function definition in the code.

    Parameters:
    @@ -2283,7 +2283,7 @@

    Using the nodes
    -class sympy.codegen.ast.FunctionPrototype(*args, **kwargs)[source]
    +class sympy.codegen.ast.FunctionPrototype(*args, **kwargs)[source]

    Represents a function prototype

    Allows the user to generate forward declaration in e.g. C/C++.

    @@ -2307,13 +2307,13 @@

    Using the nodes
    -class sympy.codegen.ast.IntBaseType(*args, **kwargs)[source]
    +class sympy.codegen.ast.IntBaseType(*args, **kwargs)[source]

    Integer base type, contains no size information.

    -class sympy.codegen.ast.Node(*args, **kwargs)[source]
    +class sympy.codegen.ast.Node(*args, **kwargs)[source]

    Subclass of Token, carrying the attribute ‘attrs’ (Tuple)

    Examples

    >>> from sympy.codegen.ast import Node, value_const, pointer_const
    @@ -2332,7 +2332,7 @@ 

    Using the nodes
    -attr_params(looking_for)[source]
    +attr_params(looking_for)[source]

    Returns the parameters of the Attribute with name looking_for in self.attrs

    @@ -2340,7 +2340,7 @@

    Using the nodes
    -class sympy.codegen.ast.NoneToken(*args, **kwargs)[source]
    +class sympy.codegen.ast.NoneToken(*args, **kwargs)[source]

    The AST equivalence of Python’s NoneType

    The corresponding instance of Python’s None is none.

    Examples

    @@ -2354,7 +2354,7 @@

    Using the nodes
    -class sympy.codegen.ast.Pointer(*args, **kwargs)[source]
    +class sympy.codegen.ast.Pointer(*args, **kwargs)[source]

    Represents a pointer. See Variable.

    Examples

    Can create instances of Element:

    @@ -2370,7 +2370,7 @@

    Using the nodes
    -class sympy.codegen.ast.Print(*args, **kwargs)[source]
    +class sympy.codegen.ast.Print(*args, **kwargs)[source]

    Represents print command in the code.

    Parameters:
    @@ -2389,19 +2389,19 @@

    Using the nodes
    -class sympy.codegen.ast.QuotedString(*args, **kwargs)[source]
    +class sympy.codegen.ast.QuotedString(*args, **kwargs)[source]

    Represents a string which should be printed with quotes.

    -class sympy.codegen.ast.Raise(*args, **kwargs)[source]
    +class sympy.codegen.ast.Raise(*args, **kwargs)[source]

    Prints as ‘raise …’ in Python, ‘throw …’ in C++

    -class sympy.codegen.ast.Return(*args, **kwargs)[source]
    +class sympy.codegen.ast.Return(*args, **kwargs)[source]

    Represents a return command in the code.

    Parameters:
    @@ -2421,14 +2421,14 @@

    Using the nodes
    -class sympy.codegen.ast.RuntimeError_(*args, **kwargs)[source]
    +class sympy.codegen.ast.RuntimeError_(*args, **kwargs)[source]

    Represents ‘std::runtime_error’ in C++ and ‘RuntimeError’ in Python.

    Note that the latter is uncommon, and you might want to use e.g. ValueError.

    -class sympy.codegen.ast.Scope(*args, **kwargs)[source]
    +class sympy.codegen.ast.Scope(*args, **kwargs)[source]

    Represents a scope in the code.

    Parameters:
    @@ -2442,13 +2442,13 @@

    Using the nodes
    -class sympy.codegen.ast.SignedIntType(*args, **kwargs)[source]
    +class sympy.codegen.ast.SignedIntType(*args, **kwargs)[source]

    Represents a signed integer type.

    -class sympy.codegen.ast.Stream(*args, **kwargs)[source]
    +class sympy.codegen.ast.Stream(*args, **kwargs)[source]

    Represents a stream.

    There are two predefined Stream instances stdout & stderr.

    @@ -2470,7 +2470,7 @@

    Using the nodes
    -class sympy.codegen.ast.String(*args, **kwargs)[source]
    +class sympy.codegen.ast.String(*args, **kwargs)[source]

    SymPy object representing a string.

    Atomic object which is not an expression (as opposed to Symbol).

    @@ -2495,7 +2495,7 @@

    Using the nodes
    -class sympy.codegen.ast.Token(*args, **kwargs)[source]
    +class sympy.codegen.ast.Token(*args, **kwargs)[source]

    Base class for the AST types.

    Explanation

    Defining fields are set in _fields. Attributes (defined in _fields) @@ -2509,7 +2509,7 @@

    Using the nodesnot_in_args are not passed to Basic.

    -kwargs(exclude=(), apply=None)[source]
    +kwargs(exclude=(), apply=None)[source]

    Get instance’s attributes as dict of keyword arguments.

    Parameters:
    @@ -2529,7 +2529,7 @@

    Using the nodes
    -class sympy.codegen.ast.Type(*args, **kwargs)[source]
    +class sympy.codegen.ast.Type(*args, **kwargs)[source]

    Represents a type.

    Parameters:
    @@ -2593,7 +2593,7 @@

    Using the nodesprecision_targets=None,

    -)[source] +)[source]

    Casts a value to the data type of the instance.

    Parameters:
    @@ -2647,7 +2647,7 @@

    Using the nodes
    -classmethod from_expr(expr)[source]
    +classmethod from_expr(expr)[source]

    Deduces type from an expression or a Symbol.

    Parameters:
    @@ -2679,13 +2679,13 @@

    Using the nodes
    -class sympy.codegen.ast.UnsignedIntType(*args, **kwargs)[source]
    +class sympy.codegen.ast.UnsignedIntType(*args, **kwargs)[source]

    Represents an unsigned integer type.

    -class sympy.codegen.ast.Variable(*args, **kwargs)[source]
    +class sympy.codegen.ast.Variable(*args, **kwargs)[source]

    Represents a variable.

    Parameters:
    @@ -2737,7 +2737,7 @@

    Using the nodes
    -as_Declaration(**kwargs)[source]
    +as_Declaration(**kwargs)[source]

    Convenience method for creating a Declaration instance.

    Explanation

    If the variable of the Declaration need to wrap a modified @@ -2772,7 +2772,7 @@

    Using the nodescast_check=True,

    -)[source] +)[source]

    Alt. constructor with type deduction from Type.from_expr.

    Deduces type primarily from symbol, secondarily from value.

    @@ -2810,7 +2810,7 @@

    Using the nodes
    -class sympy.codegen.ast.While(*args, **kwargs)[source]
    +class sympy.codegen.ast.While(*args, **kwargs)[source]

    Represents a ‘for-loop’ in the code.

    Expressions are of the form:
    @@ -2843,7 +2843,7 @@

    Using the nodes
    -sympy.codegen.ast.aug_assign(lhs, op, rhs)[source]
    +sympy.codegen.ast.aug_assign(lhs, op, rhs)[source]

    Create ‘lhs op= rhs’.

    Parameters:
    @@ -2890,7 +2890,7 @@

    Using the nodes
    -class sympy.codegen.cfunctions.Cbrt(*args)[source]
    +class sympy.codegen.cfunctions.Cbrt(*args)[source]

    Represents the cube root function.

    Explanation

    The reason why one would use Cbrt(x) over cbrt(x) @@ -2911,7 +2911,7 @@

    Using the nodes
    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of this function.

    @@ -2919,7 +2919,7 @@

    Using the nodes
    -class sympy.codegen.cfunctions.Sqrt(*args)[source]
    +class sympy.codegen.cfunctions.Sqrt(*args)[source]

    Represents the square root function.

    Explanation

    The reason why one would use Sqrt(x) over sqrt(x) @@ -2940,7 +2940,7 @@

    Using the nodes
    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of this function.

    @@ -2948,7 +2948,7 @@

    Using the nodes
    -class sympy.codegen.cfunctions.exp2(arg)[source]
    +class sympy.codegen.cfunctions.exp2(arg)[source]

    Represents the exponential function with base two.

    Explanation

    The benefit of using exp2(x) over 2**x @@ -2969,7 +2969,7 @@

    Using the nodes
    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of this function.

    @@ -2977,7 +2977,7 @@

    Using the nodes
    -class sympy.codegen.cfunctions.expm1(arg)[source]
    +class sympy.codegen.cfunctions.expm1(arg)[source]

    Represents the exponential function minus one.

    Explanation

    The benefit of using expm1(x) over exp(x) - 1 @@ -3001,7 +3001,7 @@

    Using the nodes
    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of this function.

    @@ -3009,7 +3009,7 @@

    Using the nodes
    -class sympy.codegen.cfunctions.fma(*args)[source]
    +class sympy.codegen.cfunctions.fma(*args)[source]

    Represents “fused multiply add”.

    Explanation

    The benefit of using fma(x, y, z) over x*y + z @@ -3024,7 +3024,7 @@

    Using the nodes
    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of this function.

    @@ -3032,7 +3032,7 @@

    Using the nodes
    -class sympy.codegen.cfunctions.hypot(*args)[source]
    +class sympy.codegen.cfunctions.hypot(*args)[source]

    Represents the hypotenuse function.

    Explanation

    The hypotenuse function is provided by e.g. the math library @@ -3051,7 +3051,7 @@

    Using the nodes
    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of this function.

    @@ -3059,7 +3059,7 @@

    Using the nodes
    -class sympy.codegen.cfunctions.log10(arg)[source]
    +class sympy.codegen.cfunctions.log10(arg)[source]

    Represents the logarithm function with base ten.

    Examples

    >>> from sympy.abc import x
    @@ -3076,7 +3076,7 @@ 

    Using the nodes
    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of this function.

    @@ -3084,7 +3084,7 @@

    Using the nodes
    -class sympy.codegen.cfunctions.log1p(arg)[source]
    +class sympy.codegen.cfunctions.log1p(arg)[source]

    Represents the natural logarithm of a number plus one.

    Explanation

    The benefit of using log1p(x) over log(x + 1) @@ -3109,7 +3109,7 @@

    Using the nodes
    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of this function.

    @@ -3117,7 +3117,7 @@

    Using the nodes
    -class sympy.codegen.cfunctions.log2(arg)[source]
    +class sympy.codegen.cfunctions.log2(arg)[source]

    Represents the logarithm function with base two.

    Explanation

    The benefit of using log2(x) over log(x)/log(2) @@ -3138,7 +3138,7 @@

    Using the nodes
    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of this function.

    @@ -3150,13 +3150,13 @@

    Using the nodes
    -class sympy.codegen.cnodes.CommaOperator(*args)[source]
    +class sympy.codegen.cnodes.CommaOperator(*args)[source]

    Represents the comma operator in C

    -class sympy.codegen.cnodes.Label(*args, **kwargs)[source]
    +class sympy.codegen.cnodes.Label(*args, **kwargs)[source]

    Label for use with e.g. goto statement.

    Examples

    >>> from sympy import ccode, Symbol
    @@ -3172,7 +3172,7 @@ 

    Using the nodes
    -class sympy.codegen.cnodes.PostDecrement(*args)[source]
    +class sympy.codegen.cnodes.PostDecrement(*args)[source]

    Represents the post-decrement operator

    Examples

    >>> from sympy.abc import x
    @@ -3186,7 +3186,7 @@ 

    Using the nodes
    -class sympy.codegen.cnodes.PostIncrement(*args)[source]
    +class sympy.codegen.cnodes.PostIncrement(*args)[source]

    Represents the post-increment operator

    Examples

    >>> from sympy.abc import x
    @@ -3200,7 +3200,7 @@ 

    Using the nodes
    -class sympy.codegen.cnodes.PreDecrement(*args)[source]
    +class sympy.codegen.cnodes.PreDecrement(*args)[source]

    Represents the pre-decrement operator

    Examples

    >>> from sympy.abc import x
    @@ -3214,7 +3214,7 @@ 

    Using the nodes
    -class sympy.codegen.cnodes.PreIncrement(*args)[source]
    +class sympy.codegen.cnodes.PreIncrement(*args)[source]

    Represents the pre-increment operator

    Examples

    >>> from sympy.abc import x
    @@ -3228,19 +3228,19 @@ 

    Using the nodes
    -sympy.codegen.cnodes.alignof(arg)[source]
    +sympy.codegen.cnodes.alignof(arg)[source]

    Generate of FunctionCall instance for calling ‘alignof’

    -class sympy.codegen.cnodes.goto(*args, **kwargs)[source]
    +class sympy.codegen.cnodes.goto(*args, **kwargs)[source]

    Represents goto in C

    -sympy.codegen.cnodes.sizeof(arg)[source]
    +sympy.codegen.cnodes.sizeof(arg)[source]

    Generate of FunctionCall instance for calling ‘sizeof’

    Examples

    >>> from sympy.codegen.ast import real
    @@ -3254,13 +3254,13 @@ 

    Using the nodes
    -class sympy.codegen.cnodes.struct(*args, **kwargs)[source]
    +class sympy.codegen.cnodes.struct(*args, **kwargs)[source]

    Represents a struct in C

    -class sympy.codegen.cnodes.union(*args, **kwargs)[source]
    +class sympy.codegen.cnodes.union(*args, **kwargs)[source]

    Represents a union in C

    @@ -3270,7 +3270,7 @@

    Using the nodes
    -class sympy.codegen.cxxnodes.using(*args, **kwargs)[source]
    +class sympy.codegen.cxxnodes.using(*args, **kwargs)[source]

    Represents a ‘using’ statement in C++

    @@ -3282,7 +3282,7 @@

    Using the nodes
    -class sympy.codegen.fnodes.ArrayConstructor(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.ArrayConstructor(*args, **kwargs)[source]

    Represents an array constructor.

    Examples

    >>> from sympy import fcode
    @@ -3298,7 +3298,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.Do(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.Do(*args, **kwargs)[source]

    Represents a Do loop in in Fortran.

    Examples

    >>> from sympy import fcode, symbols
    @@ -3325,7 +3325,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.Extent(*args)[source]
    +class sympy.codegen.fnodes.Extent(*args)[source]

    Represents a dimension extent.

    Examples

    >>> from sympy.codegen.fnodes import Extent
    @@ -3345,7 +3345,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.FortranReturn(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.FortranReturn(*args, **kwargs)[source]

    AST node explicitly mapped to a fortran “return”.

    Explanation

    Because a return statement in fortran is different from C, and @@ -3364,7 +3364,7 @@

    Using the nodes
    -class sympy.codegen.fnodes.GoTo(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.GoTo(*args, **kwargs)[source]

    Represents a goto statement in Fortran

    Examples

    >>> from sympy.codegen.fnodes import GoTo
    @@ -3378,7 +3378,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.ImpliedDoLoop(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.ImpliedDoLoop(*args, **kwargs)[source]

    Represents an implied do loop in Fortran.

    Examples

    >>> from sympy import Symbol, fcode
    @@ -3394,7 +3394,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.Module(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.Module(*args, **kwargs)[source]

    Represents a module in Fortran.

    Examples

    >>> from sympy.codegen.fnodes import Module
    @@ -3413,7 +3413,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.Program(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.Program(*args, **kwargs)[source]

    Represents a ‘program’ block in Fortran.

    Examples

    >>> from sympy.codegen.ast import Print
    @@ -3430,7 +3430,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.Subroutine(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.Subroutine(*args, **kwargs)[source]

    Represents a subroutine in Fortran.

    Examples

    >>> from sympy import fcode, symbols
    @@ -3450,7 +3450,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.SubroutineCall(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.SubroutineCall(*args, **kwargs)[source]

    Represents a call to a subroutine in Fortran.

    Examples

    >>> from sympy.codegen.fnodes import SubroutineCall
    @@ -3463,7 +3463,7 @@ 

    Using the nodes
    -sympy.codegen.fnodes.allocated(array)[source]
    +sympy.codegen.fnodes.allocated(array)[source]

    Creates an AST node for a function call to Fortran’s “allocated(…)”

    Examples

    >>> from sympy import fcode
    @@ -3489,7 +3489,7 @@ 

    Using the nodestype=None,

    -)[source] +)[source]

    Convenience function for creating a Variable instance for a Fortran array.

    Parameters:
    @@ -3525,7 +3525,7 @@

    Using the nodes
    -sympy.codegen.fnodes.bind_C(name=None)[source]
    +sympy.codegen.fnodes.bind_C(name=None)[source]

    Creates an Attribute bind_C with a name.

    Parameters:
    @@ -3553,13 +3553,13 @@

    Using the nodes
    -class sympy.codegen.fnodes.cmplx(*args)[source]
    +class sympy.codegen.fnodes.cmplx(*args)[source]

    Fortran complex conversion function.

    -sympy.codegen.fnodes.dimension(*args)[source]
    +sympy.codegen.fnodes.dimension(*args)[source]

    Creates a ‘dimension’ Attribute with (up to 7) extents.

    Examples

    >>> from sympy import fcode
    @@ -3575,25 +3575,25 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.dsign(*args)[source]
    +class sympy.codegen.fnodes.dsign(*args)[source]

    Fortran sign intrinsic for double precision arguments.

    -class sympy.codegen.fnodes.isign(*args)[source]
    +class sympy.codegen.fnodes.isign(*args)[source]

    Fortran sign intrinsic for integer arguments.

    -class sympy.codegen.fnodes.kind(*args)[source]
    +class sympy.codegen.fnodes.kind(*args)[source]

    Fortran kind function.

    -sympy.codegen.fnodes.lbound(array, dim=None, kind=None)[source]
    +sympy.codegen.fnodes.lbound(array, dim=None, kind=None)[source]

    Creates an AST node for a function call to Fortran’s “lbound(…)”

    Parameters:
    @@ -3614,25 +3614,25 @@

    Using the nodes
    -class sympy.codegen.fnodes.literal_dp(num, dps=None, precision=None)[source]
    +class sympy.codegen.fnodes.literal_dp(num, dps=None, precision=None)[source]

    Fortran double precision real literal

    -class sympy.codegen.fnodes.literal_sp(num, dps=None, precision=None)[source]
    +class sympy.codegen.fnodes.literal_sp(num, dps=None, precision=None)[source]

    Fortran single precision real literal

    -class sympy.codegen.fnodes.merge(*args)[source]
    +class sympy.codegen.fnodes.merge(*args)[source]

    Fortran merge function

    -sympy.codegen.fnodes.reshape(source, shape, pad=None, order=None)[source]
    +sympy.codegen.fnodes.reshape(source, shape, pad=None, order=None)[source]

    Creates an AST node for a function call to Fortran’s “reshape(…)”

    Parameters:
    @@ -3644,7 +3644,7 @@

    Using the nodes
    -sympy.codegen.fnodes.shape(source, kind=None)[source]
    +sympy.codegen.fnodes.shape(source, kind=None)[source]

    Creates an AST node for a function call to Fortran’s “shape(…)”

    Parameters:
    @@ -3664,7 +3664,7 @@

    Using the nodes
    -sympy.codegen.fnodes.size(array, dim=None, kind=None)[source]
    +sympy.codegen.fnodes.size(array, dim=None, kind=None)[source]

    Creates an AST node for a function call to Fortran’s “size(…)”

    Examples

    >>> from sympy import fcode, Symbol
    @@ -3685,7 +3685,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.use(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.use(*args, **kwargs)[source]

    Represents a use statement in Fortran.

    Examples

    >>> from sympy.codegen.fnodes import use
    @@ -3702,7 +3702,7 @@ 

    Using the nodes
    -class sympy.codegen.fnodes.use_rename(*args, **kwargs)[source]
    +class sympy.codegen.fnodes.use_rename(*args, **kwargs)[source]

    Represents a renaming in a use statement in Fortran.

    Examples

    >>> from sympy.codegen.fnodes import use_rename, use
    @@ -3740,7 +3740,7 @@ 

    Using the nodesbounds=None,

    -)[source] +)[source]

    Generates an AST for Newton-Raphson method (a root-finding algorithm).

    Parameters:
    @@ -3830,7 +3830,7 @@

    Using the nodes**kwargs,

    -)[source] +)[source]

    Generates an AST for a function implementing the Newton-Raphson method.

    Parameters:
    @@ -3884,7 +3884,7 @@

    Using the nodes

    Python utilities (sympy.codegen.pyutils)

    -sympy.codegen.pyutils.render_as_module(content, standard='python3')[source]
    +sympy.codegen.pyutils.render_as_module(content, standard='python3')[source]

    Renders Python code as a module (with the required imports).

    Parameters:
    @@ -3910,7 +3910,7 @@

    Using the nodessettings=None,

    -)[source] +)[source]

    Renders a C source file (with required #include statements)

    @@ -3928,7 +3928,7 @@

    Using the nodesprinter_settings=None,

    -)[source] +)[source]

    Creates a Module instance and renders it as a string.

    This generates Fortran source code for a module with the correct use statements.

    diff --git a/dev/modules/combinatorics/galois.html b/dev/modules/combinatorics/galois.html index a36e8bc86d0..3faa811aca7 100644 --- a/dev/modules/combinatorics/galois.html +++ b/dev/modules/combinatorics/galois.html @@ -836,7 +836,7 @@

    Referencesboundary=None,

    -)[source] +)[source]

    Names for the transitive subgroups of S6.

    @@ -855,7 +855,7 @@

    Referencesboundary=None,

    -)[source] +)[source]

    Names for the transitive subgroups of S5.

    @@ -874,7 +874,7 @@

    Referencesboundary=None,

    -)[source] +)[source]

    Names for the transitive subgroups of S4.

    @@ -893,7 +893,7 @@

    Referencesboundary=None,

    -)[source] +)[source]

    Names for the transitive subgroups of S3.

    @@ -912,7 +912,7 @@

    Referencesboundary=None,

    -)[source] +)[source]

    Names for the transitive subgroups of S2.

    @@ -931,20 +931,20 @@

    Referencesboundary=None,

    -)[source] +)[source]

    Names for the transitive subgroups of S1.

    -sympy.combinatorics.galois.four_group()[source]
    +sympy.combinatorics.galois.four_group()[source]

    Return a representation of the Klein four-group as a transitive subgroup of S4.

    -sympy.combinatorics.galois.M20()[source]
    +sympy.combinatorics.galois.M20()[source]

    Return a representation of the metacyclic group M20, a transitive subgroup of S5 that is one of the possible Galois groups for polys of degree 5.

    Notes

    @@ -953,7 +953,7 @@

    References
    -sympy.combinatorics.galois.S3_in_S6()[source]
    +sympy.combinatorics.galois.S3_in_S6()[source]

    Return a representation of S3 as a transitive subgroup of S6.

    Notes

    The representation is found by viewing the group as the symmetries of a @@ -962,7 +962,7 @@

    References
    -sympy.combinatorics.galois.A4_in_S6()[source]
    +sympy.combinatorics.galois.A4_in_S6()[source]

    Return a representation of A4 as a transitive subgroup of S6.

    Notes

    This was computed using find_transitive_subgroups_of_S6().

    @@ -970,7 +970,7 @@

    References
    -sympy.combinatorics.galois.S4m()[source]
    +sympy.combinatorics.galois.S4m()[source]

    Return a representation of the S4- transitive subgroup of S6.

    Notes

    This was computed using find_transitive_subgroups_of_S6().

    @@ -978,7 +978,7 @@

    References
    -sympy.combinatorics.galois.S4p()[source]
    +sympy.combinatorics.galois.S4p()[source]

    Return a representation of the S4+ transitive subgroup of S6.

    Notes

    This was computed using find_transitive_subgroups_of_S6().

    @@ -986,7 +986,7 @@

    References
    -sympy.combinatorics.galois.A4xC2()[source]
    +sympy.combinatorics.galois.A4xC2()[source]

    Return a representation of the (A4 x C2) transitive subgroup of S6.

    Notes

    This was computed using find_transitive_subgroups_of_S6().

    @@ -994,7 +994,7 @@

    References
    -sympy.combinatorics.galois.S4xC2()[source]
    +sympy.combinatorics.galois.S4xC2()[source]

    Return a representation of the (S4 x C2) transitive subgroup of S6.

    Notes

    This was computed using find_transitive_subgroups_of_S6().

    @@ -1002,7 +1002,7 @@

    References
    -sympy.combinatorics.galois.G18()[source]
    +sympy.combinatorics.galois.G18()[source]

    Return a representation of the group G18, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C2.

    Notes

    @@ -1011,7 +1011,7 @@

    References
    -sympy.combinatorics.galois.G36m()[source]
    +sympy.combinatorics.galois.G36m()[source]

    Return a representation of the group G36-, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C2^2.

    Notes

    @@ -1020,7 +1020,7 @@

    References
    -sympy.combinatorics.galois.G36p()[source]
    +sympy.combinatorics.galois.G36p()[source]

    Return a representation of the group G36+, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C4.

    Notes

    @@ -1029,7 +1029,7 @@

    References
    -sympy.combinatorics.galois.G72()[source]
    +sympy.combinatorics.galois.G72()[source]

    Return a representation of the group G72, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with D4.

    Notes

    @@ -1038,7 +1038,7 @@

    References
    -sympy.combinatorics.galois.PSL2F5()[source]
    +sympy.combinatorics.galois.PSL2F5()[source]

    Return a representation of the group \(PSL_2(\mathbb{F}_5)\), as a transitive subgroup of S6, isomorphic to \(A_5\).

    Notes

    @@ -1047,7 +1047,7 @@

    References
    -sympy.combinatorics.galois.PGL2F5()[source]
    +sympy.combinatorics.galois.PGL2F5()[source]

    Return a representation of the group \(PGL_2(\mathbb{F}_5)\), as a transitive subgroup of S6, isomorphic to \(S_5\).

    Notes

    @@ -1063,7 +1063,7 @@

    Referencesprint_report=False,

    -)[source] +)[source]

    Search for certain transitive subgroups of \(S_6\).

    The symmetric group \(S_6\) has 16 different transitive subgroups, up to conjugacy. Some are more easily constructed than others. For example, the diff --git a/dev/modules/combinatorics/graycode.html b/dev/modules/combinatorics/graycode.html index 7eb4ada3f1e..45d623f75e2 100644 --- a/dev/modules/combinatorics/graycode.html +++ b/dev/modules/combinatorics/graycode.html @@ -802,7 +802,7 @@

    Documentation Version

    Gray Code

    -class sympy.combinatorics.graycode.GrayCode(n, *args, **kw_args)[source]
    +class sympy.combinatorics.graycode.GrayCode(n, *args, **kw_args)[source]

    A Gray code is essentially a Hamiltonian walk on a n-dimensional cube with edge length of one. The vertices of the cube are represented by vectors @@ -856,7 +856,7 @@

    Documentation Version
    -generate_gray(**hints)[source]
    +generate_gray(**hints)[source]

    Generates the sequence of bit vectors of a Gray Code.

    Examples

    >>> from sympy.combinatorics import GrayCode
    @@ -898,7 +898,7 @@ 
    Documentation Version
    -next(delta=1)[source]
    +next(delta=1)[source]

    Returns the Gray code a distance delta (default = 1) from the current value in canonical order.

    Examples

    @@ -961,7 +961,7 @@
    Documentation Version
    -skip()[source]
    +skip()[source]

    Skips the bit generation.

    Examples

    >>> from sympy.combinatorics import GrayCode
    @@ -988,7 +988,7 @@ 
    Documentation Version
    -classmethod unrank(n, rank)[source]
    +classmethod unrank(n, rank)[source]

    Unranks an n-bit sized Gray code of rank k. This method exists so that a derivative GrayCode class can define its own code of a given rank.

    @@ -1012,7 +1012,7 @@
    Documentation Version
    -graycode.random_bitstring()[source]
    +graycode.random_bitstring()[source]

    Generates a random bitlist of length n.

    Examples

    >>> from sympy.combinatorics.graycode import random_bitstring
    @@ -1024,7 +1024,7 @@ 
    Documentation Version
    -graycode.gray_to_bin()[source]
    +graycode.gray_to_bin()[source]

    Convert from Gray coding to binary coding.

    We assume big endian encoding.

    Examples

    @@ -1041,7 +1041,7 @@
    Documentation Version
    -graycode.bin_to_gray()[source]
    +graycode.bin_to_gray()[source]

    Convert from binary coding to gray coding.

    We assume big endian encoding.

    Examples

    @@ -1058,7 +1058,7 @@
    Documentation Version
    -graycode.get_subset_from_bitstring(bitstring)[source]
    +graycode.get_subset_from_bitstring(bitstring)[source]

    Gets the subset defined by the bitstring.

    Examples

    >>> from sympy.combinatorics.graycode import get_subset_from_bitstring
    @@ -1076,7 +1076,7 @@ 
    Documentation Version
    -graycode.graycode_subsets()[source]
    +graycode.graycode_subsets()[source]

    Generates the subsets as enumerated by a Gray code.

    Examples

    >>> from sympy.combinatorics.graycode import graycode_subsets
    diff --git a/dev/modules/combinatorics/group_constructs.html b/dev/modules/combinatorics/group_constructs.html
    index c4e572744d8..5b0ab30ac43 100644
    --- a/dev/modules/combinatorics/group_constructs.html
    +++ b/dev/modules/combinatorics/group_constructs.html
    @@ -802,7 +802,7 @@ 
    Documentation Version

    Group constructors

    -sympy.combinatorics.group_constructs.DirectProduct(*groups)[source]
    +sympy.combinatorics.group_constructs.DirectProduct(*groups)[source]

    Returns the direct product of several groups as a permutation group.

    Explanation

    This is implemented much like the __mul__ procedure for taking the direct diff --git a/dev/modules/combinatorics/group_numbers.html b/dev/modules/combinatorics/group_numbers.html index 4bf2d5fe8ff..2be98a6d679 100644 --- a/dev/modules/combinatorics/group_numbers.html +++ b/dev/modules/combinatorics/group_numbers.html @@ -802,7 +802,7 @@

    Documentation Version

    Number of groups

    -sympy.combinatorics.group_numbers.is_nilpotent_number(n) bool[source]
    +sympy.combinatorics.group_numbers.is_nilpotent_number(n) bool[source]

    Check whether \(n\) is a nilpotent number. A number \(n\) is said to be nilpotent if and only if every finite group of order \(n\) is nilpotent. For more information see [R48].

    @@ -832,7 +832,7 @@
    Documentation Version
    -sympy.combinatorics.group_numbers.is_abelian_number(n) bool[source]
    +sympy.combinatorics.group_numbers.is_abelian_number(n) bool[source]

    Check whether \(n\) is an abelian number. A number \(n\) is said to be abelian if and only if every finite group of order \(n\) is abelian. For more information see [R50].

    @@ -864,7 +864,7 @@
    Documentation Version
    -sympy.combinatorics.group_numbers.is_cyclic_number(n) bool[source]
    +sympy.combinatorics.group_numbers.is_cyclic_number(n) bool[source]

    Check whether \(n\) is a cyclic number. A number \(n\) is said to be cyclic if and only if every finite group of order \(n\) is cyclic. For more information see [R52].

    @@ -896,7 +896,7 @@
    Documentation Version
    -sympy.combinatorics.group_numbers.groups_count(n)[source]
    +sympy.combinatorics.group_numbers.groups_count(n)[source]

    Number of groups of order \(n\). In [R54], gnu(n) is given, so we follow this notation here as well.

    diff --git a/dev/modules/combinatorics/named_groups.html b/dev/modules/combinatorics/named_groups.html index db00256097c..4d197e27e80 100644 --- a/dev/modules/combinatorics/named_groups.html +++ b/dev/modules/combinatorics/named_groups.html @@ -802,7 +802,7 @@
    Documentation Version

    Named Groups

    -sympy.combinatorics.named_groups.SymmetricGroup(n)[source]
    +sympy.combinatorics.named_groups.SymmetricGroup(n)[source]

    Generates the symmetric group on n elements as a permutation group.

    Explanation

    The generators taken are the n-cycle @@ -839,7 +839,7 @@

    Documentation Version
    -sympy.combinatorics.named_groups.CyclicGroup(n)[source]
    +sympy.combinatorics.named_groups.CyclicGroup(n)[source]

    Generates the cyclic group of order n as a permutation group.

    Explanation

    The generator taken is the n-cycle (0 1 2 ... n-1) @@ -865,7 +865,7 @@

    Documentation Version
    -sympy.combinatorics.named_groups.DihedralGroup(n)[source]
    +sympy.combinatorics.named_groups.DihedralGroup(n)[source]

    Generates the dihedral group \(D_n\) as a permutation group.

    Explanation

    The dihedral group \(D_n\) is the group of symmetries of the regular @@ -903,7 +903,7 @@

    Documentation Version
    -sympy.combinatorics.named_groups.AlternatingGroup(n)[source]
    +sympy.combinatorics.named_groups.AlternatingGroup(n)[source]

    Generates the alternating group on n elements as a permutation group.

    Explanation

    For n > 2, the generators taken are (0 1 2), (0 1 2 ... n-1) for @@ -938,7 +938,7 @@

    Documentation Version
    -sympy.combinatorics.named_groups.AbelianGroup(*cyclic_orders)[source]
    +sympy.combinatorics.named_groups.AbelianGroup(*cyclic_orders)[source]

    Returns the direct product of cyclic groups with the given orders.

    Explanation

    According to the structure theorem for finite abelian groups ([1]), diff --git a/dev/modules/combinatorics/partitions.html b/dev/modules/combinatorics/partitions.html index 3ae31755a04..e5f17b9a791 100644 --- a/dev/modules/combinatorics/partitions.html +++ b/dev/modules/combinatorics/partitions.html @@ -802,7 +802,7 @@

    Documentation Version

    Partitions

    -class sympy.combinatorics.partitions.Partition(*partition)[source]
    +class sympy.combinatorics.partitions.Partition(*partition)[source]

    This class represents an abstract partition.

    A partition is a set of disjoint sets whose union equals a given set.

    @@ -835,7 +835,7 @@
    Documentation Version
    -classmethod from_rgs(rgs, elements)[source]
    +classmethod from_rgs(rgs, elements)[source]

    Creates a set partition from a restricted growth string.

    Explanation

    The indices given in rgs are assumed to be the index @@ -883,7 +883,7 @@

    Documentation Version
    -sort_key(order=None)[source]
    +sort_key(order=None)[source]

    Return a canonical key that can be used for sorting.

    Ordering is based on the size and sorted elements of the partition and ties are broken with the rank.

    @@ -906,7 +906,7 @@
    Documentation Version
    -class sympy.combinatorics.partitions.IntegerPartition(partition, integer=None)[source]
    +class sympy.combinatorics.partitions.IntegerPartition(partition, integer=None)[source]

    This class represents an integer partition.

    Explanation

    In number theory and combinatorics, a partition of a positive integer, @@ -930,7 +930,7 @@

    Documentation Version
    -as_dict()[source]
    +as_dict()[source]

    Return the partition as a dictionary whose keys are the partition integers and the values are the multiplicity of that integer.

    @@ -944,7 +944,7 @@
    Documentation Version
    -as_ferrers(char='#')[source]
    +as_ferrers(char='#')[source]

    Prints the ferrer diagram of a partition.

    Examples

    >>> from sympy.combinatorics.partitions import IntegerPartition
    @@ -971,7 +971,7 @@ 
    Documentation Version
    -next_lex()[source]
    +next_lex()[source]

    Return the next partition of the integer, n, in lexical order, wrapping around to [n] if the partition is [1, …, 1].

    Examples

    @@ -987,7 +987,7 @@
    Documentation Version
    -prev_lex()[source]
    +prev_lex()[source]

    Return the previous partition of the integer, n, in lexical order, wrapping around to [1, …, 1] if the partition is [n].

    Examples

    @@ -1005,7 +1005,7 @@
    Documentation Version
    -sympy.combinatorics.partitions.random_integer_partition(n, seed=None)[source]
    +sympy.combinatorics.partitions.random_integer_partition(n, seed=None)[source]

    Generates a random integer partition summing to n as a list of reverse-sorted integers.

    Examples

    @@ -1026,7 +1026,7 @@
    Documentation Version
    -sympy.combinatorics.partitions.RGS_generalized(m)[source]
    +sympy.combinatorics.partitions.RGS_generalized(m)[source]

    Computes the m + 1 generalized unrestricted growth strings and returns them as rows in matrix.

    Examples

    @@ -1046,7 +1046,7 @@
    Documentation Version
    -sympy.combinatorics.partitions.RGS_enum(m)[source]
    +sympy.combinatorics.partitions.RGS_enum(m)[source]

    RGS_enum computes the total number of restricted growth strings possible for a superset of size m.

    Examples

    @@ -1075,7 +1075,7 @@
    Documentation Version
    -sympy.combinatorics.partitions.RGS_unrank(rank, m)[source]
    +sympy.combinatorics.partitions.RGS_unrank(rank, m)[source]

    Gives the unranked restricted growth string for a given superset size.

    Examples

    @@ -1090,7 +1090,7 @@
    Documentation Version
    -sympy.combinatorics.partitions.RGS_rank(rgs)[source]
    +sympy.combinatorics.partitions.RGS_rank(rgs)[source]

    Computes the rank of a restricted growth string.

    Examples

    >>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank
    diff --git a/dev/modules/combinatorics/perm_groups.html b/dev/modules/combinatorics/perm_groups.html
    index 3ea1cd2efc1..160d752aec6 100644
    --- a/dev/modules/combinatorics/perm_groups.html
    +++ b/dev/modules/combinatorics/perm_groups.html
    @@ -802,7 +802,7 @@ 
    Documentation Version

    Permutation Groups

    -class sympy.combinatorics.perm_groups.PermutationGroup(*args, dups=True, **kwargs)[source]
    +class sympy.combinatorics.perm_groups.PermutationGroup(*args, dups=True, **kwargs)[source]

    The class defining a Permutation group.

    Explanation

    PermutationGroup([p1, p2, ..., pn]) returns the permutation group @@ -922,7 +922,7 @@

    Documentation Version
    -__contains__(i)[source]
    +__contains__(i)[source]

    Return True if i is contained in PermutationGroup.

    Examples

    >>> from sympy.combinatorics import Permutation, PermutationGroup
    @@ -935,7 +935,7 @@ 
    Documentation Version
    -__mul__(other)[source]
    +__mul__(other)[source]

    Return the direct product of two permutation groups as a permutation group.

    Explanation

    @@ -968,7 +968,7 @@
    Documentation Version
    **kwargs,
    -)[source] +)[source]

    The default constructor. Accepts Cycle and Permutation forms. Removes duplicates unless dups keyword is False.

    @@ -981,14 +981,14 @@
    Documentation Version
    -_coset_representative(g, H)[source]
    +_coset_representative(g, H)[source]

    Return the representative of Hg from the transversal that would be computed by self.coset_transversal(H).

    -classmethod _distinct_primes_lemma(primes)[source]
    +classmethod _distinct_primes_lemma(primes)[source]

    Subroutine to test if there is only one cyclic group for the order.

    @@ -1002,7 +1002,7 @@
    Documentation Version
    perms=None,
    -)[source] +)[source]

    A test using monte-carlo algorithm.

    Parameters:
    @@ -1034,13 +1034,13 @@
    Documentation Version
    only_alt=False,
    -)[source] +)[source]

    A naive test using the group order.

    -_p_elements_group(p)[source]
    +_p_elements_group(p)[source]

    For an abelian p-group, return the subgroup consisting of all elements of order p (and the identity)

    @@ -1055,7 +1055,7 @@
    Documentation Version
    _random_prec_n=None,
    -)[source] +)[source]

    Initialize random generators for the product replacement algorithm.

    Explanation

    The implementation uses a modification of the original product @@ -1090,7 +1090,7 @@

    Documentation Version
    -_sylow_alt_sym(p)[source]
    +_sylow_alt_sym(p)[source]

    Return a p-Sylow subgroup of a symmetric or an alternating group.

    Explanation

    @@ -1137,7 +1137,7 @@
    Documentation Version
    not_rep,
    -)[source] +)[source]

    Merges two classes in a union-find data structure.

    Explanation

    Used in the implementation of Atkinson’s algorithm as suggested in [1], @@ -1168,7 +1168,7 @@

    Documentation Version
    -_union_find_rep(num, parents)[source]
    +_union_find_rep(num, parents)[source]

    Find representative of a class in a union-find data structure.

    Explanation

    Used in the implementation of Atkinson’s algorithm as suggested in [1], @@ -1198,7 +1198,7 @@

    Documentation Version
    -_verify(K, phi, z, alpha)[source]
    +_verify(K, phi, z, alpha)[source]

    Return a list of relators rels in generators gens`_h` that are mapped to ``H.generators by phi so that given a finite presentation <gens_k | rels_k> of K on a subset of gens_h @@ -1239,7 +1239,7 @@

    Documentation Version
    -abelian_invariants()[source]
    +abelian_invariants()[source]

    Returns the abelian invariants for the given group. Let G be a nontrivial finite abelian group. Then G is isomorphic to the direct product of finitely many nontrivial cyclic groups of @@ -1312,7 +1312,7 @@

    Documentation Version
    strong_gens_distr=None,
    -)[source] +)[source]

    Swap two consecutive base points in base and strong generating set.

    Parameters:
    @@ -1471,7 +1471,7 @@
    Documentation Version
    -center()[source]
    +center()[source]

    Return the center of a permutation group.

    Explanation

    The center for a group \(G\) is defined as @@ -1498,7 +1498,7 @@

    Documentation Version
    -centralizer(other)[source]
    +centralizer(other)[source]

    Return the centralizer of a group/set/element.

    Parameters:
    @@ -1543,7 +1543,7 @@
    Documentation Version
    -commutator(G, H)[source]
    +commutator(G, H)[source]

    Return the commutator of two subgroups.

    Explanation

    For a permutation group K and subgroups G, H, the @@ -1572,7 +1572,7 @@

    Documentation Version
    -composition_series()[source]
    +composition_series()[source]

    Return the composition series for a group as a list of permutation groups.

    Explanation

    @@ -1619,7 +1619,7 @@
    Documentation Version
    -conjugacy_class(x)[source]
    +conjugacy_class(x)[source]

    Return the conjugacy class of an element in the group.

    Explanation

    The conjugacy class of an element g in a group G is the set of @@ -1656,7 +1656,7 @@

    Documentation Version
    -conjugacy_classes()[source]
    +conjugacy_classes()[source]

    Return the conjugacy classes of the group.

    Explanation

    As described in the documentation for the .conjugacy_class() function, @@ -1673,7 +1673,7 @@

    Documentation Version
    -contains(g, strict=True)[source]
    +contains(g, strict=True)[source]

    Test if permutation g belong to self, G.

    Explanation

    If g is an element of G it can be written as a product @@ -1729,7 +1729,7 @@

    Documentation Version
    factor_index=False,
    -)[source] +)[source]

    Return G’s (self’s) coset factorization of g

    Explanation

    If g is an element of G then it can be written as the product @@ -1784,7 +1784,7 @@

    Documentation Version
    -coset_rank(g)[source]
    +coset_rank(g)[source]

    rank using Schreier-Sims representation.

    Explanation

    The coset rank of g is the ordering number in which @@ -1812,21 +1812,21 @@

    Documentation Version
    -coset_table(H)[source]
    +coset_table(H)[source]

    Return the standardised (right) coset table of self in H as a list of lists.

    -coset_transversal(H)[source]
    +coset_transversal(H)[source]

    Return a transversal of the right cosets of self by its subgroup H using the second method described in [1], Subsection 4.6.7

    -coset_unrank(rank, af=False)[source]
    +coset_unrank(rank, af=False)[source]

    unrank using Schreier-Sims representation

    coset_unrank is the inverse operation of coset_rank if 0 <= rank < order; otherwise it returns None.

    @@ -1862,7 +1862,7 @@
    Documentation Version
    -derived_series()[source]
    +derived_series()[source]

    Return the derived series for the group.

    Returns:
    @@ -1899,7 +1899,7 @@
    Documentation Version
    -derived_subgroup()[source]
    +derived_subgroup()[source]

    Compute the derived subgroup.

    Explanation

    The derived subgroup, or commutator subgroup is the subgroup generated @@ -1937,7 +1937,7 @@

    Documentation Version
    -equals(other)[source]
    +equals(other)[source]

    Return True if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup.

    Examples

    @@ -1962,7 +1962,7 @@
    Documentation Version
    af=False,
    -)[source] +)[source]

    Return iterator to generate the elements of the group.

    Explanation

    Iteration is done with one of these methods:

    @@ -2007,7 +2007,7 @@
    Documentation Version
    -generate_dimino(af=False)[source]
    +generate_dimino(af=False)[source]

    Yield group elements using Dimino’s algorithm.

    If af == True it yields the array form of the permutations.

    Examples

    @@ -2032,7 +2032,7 @@
    Documentation Version
    -generate_schreier_sims(af=False)[source]
    +generate_schreier_sims(af=False)[source]

    Yield group elements using the Schreier-Sims representation in coset_rank order

    If af = True it yields the array form of the permutations

    @@ -2057,7 +2057,7 @@
    Documentation Version
    original=False,
    -)[source] +)[source]

    Return a list of strong generators \([s1, \dots, sn]\) s.t \(g = sn \times \dots \times s1\). If original=True, make the list contain only the original group generators

    @@ -2086,7 +2086,7 @@
    Documentation Version
    -index(H)[source]
    +index(H)[source]

    Returns the index of a permutation group.

    Examples

    >>> from sympy.combinatorics import Permutation, PermutationGroup
    @@ -2128,7 +2128,7 @@ 
    Documentation Version
    _random_prec=None,
    -)[source] +)[source]

    Monte Carlo test for the symmetric/alternating group for degrees >= 8.

    Explanation

    @@ -2281,7 +2281,7 @@
    Documentation Version
    -is_elementary(p)[source]
    +is_elementary(p)[source]

    Return True if the group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order \(p\), where \(p\) is a prime.

    @@ -2330,7 +2330,7 @@
    Documentation Version
    -is_normal(gr, strict=True)[source]
    +is_normal(gr, strict=True)[source]

    Test if G=self is a normal subgroup of gr.

    Explanation

    G is normal in gr if @@ -2384,7 +2384,7 @@

    Documentation Version
    -is_primitive(randomized=True)[source]
    +is_primitive(randomized=True)[source]

    Test if a group is primitive.

    Explanation

    A permutation group G acting on a set S is called primitive if @@ -2436,7 +2436,7 @@

    Documentation Version
    -is_subgroup(G, strict=True)[source]
    +is_subgroup(G, strict=True)[source]

    Return True if all elements of self belong to G.

    If strict is False then if self’s degree is smaller than G’s, the elements will be resized to have the same degree.

    @@ -2512,7 +2512,7 @@
    Documentation Version
    -is_transitive(strict=True)[source]
    +is_transitive(strict=True)[source]

    Test if the group is transitive.

    Explanation

    A group is transitive if it has a single orbit.

    @@ -2556,7 +2556,7 @@
    Documentation Version
    -lower_central_series()[source]
    +lower_central_series()[source]

    Return the lower central series for the group.

    The lower central series for a group \(G\) is the series \(G = G_0 > G_1 > G_2 > \ldots\) where @@ -2585,7 +2585,7 @@

    Documentation Version
    -make_perm(n, seed=None)[source]
    +make_perm(n, seed=None)[source]

    Multiply n randomly selected permutations from pgroup together, starting with the identity permutation. If n is a list of integers, those @@ -2639,7 +2639,7 @@

    Documentation Version
    -minimal_block(points)[source]
    +minimal_block(points)[source]

    For a transitive group, finds the block system generated by points.

    Explanation

    @@ -2681,7 +2681,7 @@
    Documentation Version
    -minimal_blocks(randomized=True)[source]
    +minimal_blocks(randomized=True)[source]

    For a transitive group, return the list of all minimal block systems. If a group is intransitive, return \(False\).

    Examples

    @@ -2702,7 +2702,7 @@
    Documentation Version
    -normal_closure(other, k=10)[source]
    +normal_closure(other, k=10)[source]

    Return the normal closure of a subgroup/set of permutations.

    Parameters:
    @@ -2749,7 +2749,7 @@
    Documentation Version
    -orbit(alpha, action='tuples')[source]
    +orbit(alpha, action='tuples')[source]

    Compute the orbit of alpha \(\{g(\alpha) | g \in G\}\) as a set.

    Explanation

    The time complexity of the algorithm used here is \(O(|Orb|*r)\) where @@ -2788,7 +2788,7 @@

    Documentation Version
    schreier_vector=None,
    -)[source] +)[source]

    Return a group element which sends alpha to beta.

    Explanation

    If beta is not in the orbit of alpha, the function returns @@ -2816,7 +2816,7 @@

    Documentation Version
    pairs=False,
    -)[source] +)[source]

    Computes a transversal for the orbit of alpha as a set.

    Explanation

    For a permutation group \(G\), a transversal for the orbit @@ -2840,7 +2840,7 @@

    Documentation Version
    -orbits(rep=False)[source]
    +orbits(rep=False)[source]

    Return the orbits of self, ordered according to lowest element in each orbit.

    Examples

    @@ -2856,7 +2856,7 @@
    Documentation Version
    -order()[source]
    +order()[source]

    Return the order of the group: the number of permutations that can be generated from elements of the group.

    The number of permutations comprising the group is given by @@ -2900,7 +2900,7 @@

    Documentation Version
    incremental=True,
    -)[source] +)[source]

    Return the pointwise stabilizer for a set of points.

    Explanation

    For a permutation group \(G\) and a set of points @@ -2930,7 +2930,7 @@

    Documentation Version
    -polycyclic_group()[source]
    +polycyclic_group()[source]

    Return the PolycyclicGroup instance with below parameters:

    Explanation

      @@ -2947,14 +2947,14 @@
      Documentation Version
      -presentation(eliminate_gens=True)[source]
      +presentation(eliminate_gens=True)[source]

      Return an \(FpGroup\) presentation of the group.

      The algorithm is described in [1], Chapter 6.1.

      -random(af=False)[source]
      +random(af=False)[source]

      Return a random group element

      @@ -2968,7 +2968,7 @@
      Documentation Version
      _random_prec=None,
    -)[source] +)[source]

    Return a random group element using product replacement.

    Explanation

    For the details of the product replacement algorithm, see @@ -2991,7 +2991,7 @@

    Documentation Version
    _random_prec=None,
    -)[source] +)[source]

    Random element from the stabilizer of alpha.

    The schreier vector for alpha is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p.81

    @@ -3003,7 +3003,7 @@
    Documentation Version
    -schreier_sims()[source]
    +schreier_sims()[source]

    Schreier-Sims algorithm.

    Explanation

    It computes the generators of the chain of stabilizers @@ -3036,7 +3036,7 @@

    Documentation Version
    slp_dict=False,
    -)[source] +)[source]

    Extend a sequence of points and generating set to a base and strong generating set.

    @@ -3107,7 +3107,7 @@
    Documentation Version
    _random_prec=None,
    -)[source] +)[source]

    Randomized Schreier-Sims algorithm.

    Parameters:
    @@ -3177,7 +3177,7 @@
    Documentation Version
    -schreier_vector(alpha)[source]
    +schreier_vector(alpha)[source]

    Computes the schreier vector for alpha.

    Explanation

    The Schreier vector efficiently stores information @@ -3206,7 +3206,7 @@

    Documentation Version
    -stabilizer(alpha)[source]
    +stabilizer(alpha)[source]

    Return the stabilizer subgroup of alpha.

    Explanation

    The stabilizer of \(\alpha\) is the group \(G_\alpha = @@ -3256,7 +3256,7 @@

    Documentation Version
    -strong_presentation()[source]
    +strong_presentation()[source]

    Return a strong finite presentation of group. The generators of the returned group are in the same order as the strong generators of group.

    @@ -3278,7 +3278,7 @@
    Documentation Version
    -subgroup(gens)[source]
    +subgroup(gens)[source]

    Return the subgroup generated by \(gens\) which is a list of elements of the group

    @@ -3295,7 +3295,7 @@
    Documentation Version
    init_subgroup=None,
    -)[source] +)[source]

    Find the subgroup of all elements satisfying the property prop.

    Parameters:
    @@ -3374,7 +3374,7 @@
    Documentation Version
    -sylow_subgroup(p)[source]
    +sylow_subgroup(p)[source]

    Return a p-Sylow subgroup of the group.

    The algorithm is described in [1], Chapter 4, Section 7

    Examples

    diff --git a/dev/modules/combinatorics/permutations.html b/dev/modules/combinatorics/permutations.html index 43c8262e1f3..9e5fea71d74 100644 --- a/dev/modules/combinatorics/permutations.html +++ b/dev/modules/combinatorics/permutations.html @@ -802,7 +802,7 @@
    Documentation Version

    Permutations

    -class sympy.combinatorics.permutations.Permutation(*args, size=None, **kwargs)[source]
    +class sympy.combinatorics.permutations.Permutation(*args, size=None, **kwargs)[source]

    A permutation, alternatively known as an ‘arrangement number’ or ‘ordering’ is an arrangement of the elements of an ordered list into a one-to-one mapping with itself. The permutation of a given arrangement is given by @@ -1206,7 +1206,7 @@

    Documentation Version
    -apply(i)[source]
    +apply(i)[source]

    Apply the permutation to an expression.

    Parameters:
    @@ -1260,7 +1260,7 @@
    Documentation Version
    -ascents()[source]
    +ascents()[source]

    Returns the positions of ascents in a permutation, ie, the location where p[i] < p[i+1]

    Examples

    @@ -1278,7 +1278,7 @@
    Documentation Version
    -atoms()[source]
    +atoms()[source]

    Returns all the elements of a permutation

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -1309,7 +1309,7 @@ 
    Documentation Version
    -commutator(x)[source]
    +commutator(x)[source]

    Return the commutator of self and x: ~x*~self*x*self

    If f and g are part of a group, G, then the commutator of f and g is the group identity iff f and g commute, i.e. fg == gf.

    @@ -1348,7 +1348,7 @@
    Documentation Version
    -commutes_with(other)[source]
    +commutes_with(other)[source]

    Checks if the elements are commuting.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -1421,7 +1421,7 @@ 
    Documentation Version
    -descents()[source]
    +descents()[source]

    Returns the positions of descents in a permutation, ie, the location where p[i] > p[i+1]

    Examples

    @@ -1439,7 +1439,7 @@
    Documentation Version
    -classmethod from_inversion_vector(inversion)[source]
    +classmethod from_inversion_vector(inversion)[source]

    Calculates the permutation from the inversion vector.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -1453,7 +1453,7 @@ 
    Documentation Version
    -classmethod from_sequence(i, key=None)[source]
    +classmethod from_sequence(i, key=None)[source]

    Return the permutation needed to obtain i from the sorted elements of i. If custom sorting is desired, a key can be given.

    Examples

    @@ -1484,7 +1484,7 @@
    Documentation Version
    -get_adjacency_distance(other)[source]
    +get_adjacency_distance(other)[source]

    Computes the adjacency distance between two permutations.

    Explanation

    This metric counts the number of times a pair i,j of jobs is @@ -1511,7 +1511,7 @@

    Documentation Version
    -get_adjacency_matrix()[source]
    +get_adjacency_matrix()[source]

    Computes the adjacency matrix of a permutation.

    Explanation

    If job i is adjacent to job j in a permutation p @@ -1545,7 +1545,7 @@

    Documentation Version
    -get_positional_distance(other)[source]
    +get_positional_distance(other)[source]

    Computes the positional distance between two permutations.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -1566,7 +1566,7 @@ 
    Documentation Version
    -get_precedence_distance(other)[source]
    +get_precedence_distance(other)[source]

    Computes the precedence distance between two permutations.

    Explanation

    Suppose p and p’ represent n jobs. The precedence metric @@ -1590,7 +1590,7 @@

    Documentation Version
    -get_precedence_matrix()[source]
    +get_precedence_matrix()[source]

    Gets the precedence matrix. This is used for computing the distance between two permutations.

    Examples

    @@ -1618,7 +1618,7 @@
    Documentation Version
    -index()[source]
    +index()[source]

    Returns the index of a permutation.

    The index of a permutation is the sum of all subscripts j such that p[j] is greater than p[j+1].

    @@ -1633,7 +1633,7 @@
    Documentation Version
    -inversion_vector()[source]
    +inversion_vector()[source]

    Return the inversion vector of the permutation.

    The inversion vector consists of elements whose value indicates the number of elements in the permutation @@ -1672,7 +1672,7 @@

    Documentation Version
    -inversions()[source]
    +inversions()[source]

    Computes the number of inversions of a permutation.

    Explanation

    An inversion is where i > j but p[i] < p[j].

    @@ -1807,7 +1807,7 @@
    Documentation Version
    -classmethod josephus(m, n, s=1)[source]
    +classmethod josephus(m, n, s=1)[source]

    Return as a permutation the shuffling of range(n) using the Josephus scheme in which every m-th item is selected until all have been chosen. The returned permutation has elements listed by the order in which they @@ -1852,7 +1852,7 @@

    Documentation Version
    -length()[source]
    +length()[source]

    Returns the number of integers moved by a permutation.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -1870,7 +1870,7 @@ 
    Documentation Version
    -list(size=None)[source]
    +list(size=None)[source]

    Return the permutation as an explicit list, possibly trimming unmoved elements if size is less than the maximum element in the permutation; if this is desired, setting @@ -1896,7 +1896,7 @@

    Documentation Version
    -max() int[source]
    +max() int[source]

    The maximum element moved by the permutation.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -1913,7 +1913,7 @@ 
    Documentation Version
    -min() int[source]
    +min() int[source]

    The minimum element moved by the permutation.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -1930,13 +1930,13 @@ 
    Documentation Version
    -mul_inv(other)[source]
    +mul_inv(other)[source]

    other*~self, self and other have _array_form

    -next_lex()[source]
    +next_lex()[source]

    Returns the next permutation in lexicographical order. If self is the last permutation in lexicographical order it returns None. @@ -1958,7 +1958,7 @@

    Documentation Version
    -next_nonlex()[source]
    +next_nonlex()[source]

    Returns the next permutation in nonlex order [3]. If self is the last permutation in this order it returns None.

    Examples

    @@ -1981,7 +1981,7 @@
    Documentation Version
    -next_trotterjohnson()[source]
    +next_trotterjohnson()[source]

    Returns the next permutation in Trotter-Johnson order. If self is the last permutation it returns None. See [4] section 2.4. If it is desired to generate all such @@ -2008,7 +2008,7 @@

    Documentation Version
    -order()[source]
    +order()[source]

    Computes the order of a permutation.

    When the permutation is raised to the power of its order it equals the identity permutation.

    @@ -2031,7 +2031,7 @@
    Documentation Version
    -parity()[source]
    +parity()[source]

    Computes the parity of a permutation.

    Explanation

    The parity of a permutation reflects the parity of the @@ -2055,7 +2055,7 @@

    Documentation Version
    -classmethod random(n)[source]
    +classmethod random(n)[source]

    Generates a random permutation of length n.

    Uses the underlying Python pseudo-random number generator.

    Examples

    @@ -2068,7 +2068,7 @@
    Documentation Version
    -rank()[source]
    +rank()[source]

    Returns the lexicographic rank of the permutation.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -2088,7 +2088,7 @@ 
    Documentation Version
    -rank_nonlex(inv_perm=None)[source]
    +rank_nonlex(inv_perm=None)[source]

    This is a linear time ranking algorithm that does not enforce lexicographic order [3].

    Examples

    @@ -2106,7 +2106,7 @@
    Documentation Version
    -rank_trotterjohnson()[source]
    +rank_trotterjohnson()[source]

    Returns the Trotter Johnson rank, which we get from the minimal change algorithm. See [4] section 2.4.

    Examples

    @@ -2127,7 +2127,7 @@
    Documentation Version
    -resize(n)[source]
    +resize(n)[source]

    Resize the permutation to the new size n.

    Parameters:
    @@ -2174,7 +2174,7 @@
    Documentation Version
    -static rmul(*args)[source]
    +static rmul(*args)[source]

    Return product of Permutations [a, b, c, …] as the Permutation whose ith value is a(b(c(i))).

    a, b, c, … can be Permutation objects or tuples.

    @@ -2210,14 +2210,14 @@
    Documentation Version
    -classmethod rmul_with_af(*args)[source]
    +classmethod rmul_with_af(*args)[source]

    same as rmul, but the elements of args are Permutation objects which have _array_form

    -runs()[source]
    +runs()[source]

    Returns the runs of a permutation.

    An ascending sequence in a permutation is called a run [5].

    Examples

    @@ -2234,7 +2234,7 @@
    Documentation Version
    -signature()[source]
    +signature()[source]

    Gives the signature of the permutation needed to place the elements of the permutation in canonical order.

    The signature is calculated as (-1)^<number of inversions>

    @@ -2276,7 +2276,7 @@
    Documentation Version
    -support()[source]
    +support()[source]

    Return the elements in permutation, P, for which P[i] != i.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -2291,7 +2291,7 @@ 
    Documentation Version
    -transpositions()[source]
    +transpositions()[source]

    Return the permutation decomposed into a list of transpositions.

    Explanation

    It is always possible to express a permutation as the product of @@ -2319,7 +2319,7 @@

    Documentation Version
    -classmethod unrank_lex(size, rank)[source]
    +classmethod unrank_lex(size, rank)[source]

    Lexicographic permutation unranking.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -2340,7 +2340,7 @@ 
    Documentation Version
    -classmethod unrank_nonlex(n, r)[source]
    +classmethod unrank_nonlex(n, r)[source]

    This is a linear time unranking algorithm that does not respect lexicographic order [3].

    Examples

    @@ -2361,7 +2361,7 @@
    Documentation Version
    -classmethod unrank_trotterjohnson(size, rank)[source]
    +classmethod unrank_trotterjohnson(size, rank)[source]

    Trotter Johnson permutation unranking. See [4] section 2.4.

    Examples

    >>> from sympy.combinatorics import Permutation
    @@ -2381,7 +2381,7 @@ 
    Documentation Version
    -class sympy.combinatorics.permutations.Cycle(*args)[source]
    +class sympy.combinatorics.permutations.Cycle(*args)[source]

    Wrapper around dict which provides the functionality of a disjoint cycle.

    Explanation

    A cycle shows the rule to use to move subsets of elements to obtain @@ -2452,7 +2452,7 @@

    Documentation Version
    -list(size=None)[source]
    +list(size=None)[source]

    Return the cycles as an explicit list starting from 0 up to the greater of the largest value in the cycles and size.

    Truncation of trailing unmoved items will occur when size @@ -2479,7 +2479,7 @@

    Documentation Version
    -sympy.combinatorics.permutations._af_parity(pi)[source]
    +sympy.combinatorics.permutations._af_parity(pi)[source]

    Computes the parity of a permutation in array form.

    Explanation

    The parity of a permutation reflects the parity of the @@ -2503,7 +2503,7 @@

    Documentation Version

    Generators

    -generators.symmetric()[source]
    +generators.symmetric()[source]

    Generates the symmetric group of order n, Sn.

    Examples

    >>> from sympy.combinatorics.generators import symmetric
    @@ -2515,7 +2515,7 @@ 
    Documentation Version
    -generators.cyclic()[source]
    +generators.cyclic()[source]

    Generates the cyclic group of order n, Cn.

    Examples

    >>> from sympy.combinatorics.generators import cyclic
    @@ -2532,7 +2532,7 @@ 
    Documentation Version
    -generators.alternating()[source]
    +generators.alternating()[source]

    Generates the alternating group of order n, An.

    Examples

    >>> from sympy.combinatorics.generators import alternating
    @@ -2544,7 +2544,7 @@ 
    Documentation Version
    -generators.dihedral()[source]
    +generators.dihedral()[source]

    Generates the dihedral group of order 2n, Dn.

    The result is given as a subgroup of Sn, except for the special cases n=1 (the group S2) and n=2 (the Klein 4-group) where that’s not possible diff --git a/dev/modules/combinatorics/polyhedron.html b/dev/modules/combinatorics/polyhedron.html index 1275b413192..dc0885e4d02 100644 --- a/dev/modules/combinatorics/polyhedron.html +++ b/dev/modules/combinatorics/polyhedron.html @@ -802,7 +802,7 @@

    Documentation Version

    Polyhedron

    -class sympy.combinatorics.polyhedron.Polyhedron(corners, faces=(), pgroup=())[source]
    +class sympy.combinatorics.polyhedron.Polyhedron(corners, faces=(), pgroup=())[source]

    Represents the polyhedral symmetry group (PSG).

    Explanation

    The PSG is one of the symmetry groups of the Platonic solids. @@ -902,7 +902,7 @@

    Documentation Version
    -reset()[source]
    +reset()[source]

    Return corners to their original positions.

    Examples

    >>> from sympy.combinatorics.polyhedron import tetrahedron as T
    @@ -921,7 +921,7 @@ 
    Documentation Version
    -rotate(perm)[source]
    +rotate(perm)[source]

    Apply a permutation to the polyhedron in place. The permutation may be given as a Permutation instance or an integer indicating which permutation from pgroup of the Polyhedron should be diff --git a/dev/modules/combinatorics/prufer.html b/dev/modules/combinatorics/prufer.html index b5e63785d1f..4e6840e5672 100644 --- a/dev/modules/combinatorics/prufer.html +++ b/dev/modules/combinatorics/prufer.html @@ -802,7 +802,7 @@

    Documentation Version

    Prufer Sequences

    -class sympy.combinatorics.prufer.Prufer(*args, **kw_args)[source]
    +class sympy.combinatorics.prufer.Prufer(*args, **kw_args)[source]

    The Prufer correspondence is an algorithm that describes the bijection between labeled trees and the Prufer code. A Prufer code of a labeled tree is unique up to isomorphism and has @@ -818,7 +818,7 @@

    Documentation Version
    -static edges(*runs)[source]
    +static edges(*runs)[source]

    Return a list of edges and the number of nodes from the given runs that connect nodes in an integer-labelled tree.

    All node numbers will be shifted so that the minimum node is 0. It is @@ -841,7 +841,7 @@

    Documentation Version
    -next(delta=1)[source]
    +next(delta=1)[source]

    Generates the Prufer sequence that is delta beyond the current one.

    Examples

    >>> from sympy.combinatorics.prufer import Prufer
    @@ -875,7 +875,7 @@ 
    Documentation Version
    -prev(delta=1)[source]
    +prev(delta=1)[source]

    Generates the Prufer sequence that is -delta before the current one.

    Examples

    >>> from sympy.combinatorics.prufer import Prufer
    @@ -897,7 +897,7 @@ 
    Documentation Version
    -prufer_rank()[source]
    +prufer_rank()[source]

    Computes the rank of a Prufer sequence.

    Examples

    >>> from sympy.combinatorics.prufer import Prufer
    @@ -972,7 +972,7 @@ 
    Documentation Version
    -static to_prufer(tree, n)[source]
    +static to_prufer(tree, n)[source]

    Return the Prufer sequence for a tree given as a list of edges where n is the number of nodes in the tree.

    Examples

    @@ -995,7 +995,7 @@
    Documentation Version
    -static to_tree(prufer)[source]
    +static to_tree(prufer)[source]

    Return the tree (as a list of edges) of the given Prufer sequence.

    Examples

    >>> from sympy.combinatorics.prufer import Prufer
    @@ -1042,7 +1042,7 @@ 
    Documentation Version
    -classmethod unrank(rank, n)[source]
    +classmethod unrank(rank, n)[source]

    Finds the unranked Prufer sequence.

    Examples

    >>> from sympy.combinatorics.prufer import Prufer
    diff --git a/dev/modules/combinatorics/subsets.html b/dev/modules/combinatorics/subsets.html
    index 5903b380611..a24afb3b901 100644
    --- a/dev/modules/combinatorics/subsets.html
    +++ b/dev/modules/combinatorics/subsets.html
    @@ -802,7 +802,7 @@ 
    Documentation Version

    Subsets

    -class sympy.combinatorics.subsets.Subset(subset, superset)[source]
    +class sympy.combinatorics.subsets.Subset(subset, superset)[source]

    Represents a basic subset object.

    Explanation

    We generate subsets using essentially two techniques, @@ -821,7 +821,7 @@

    Documentation Version
    -classmethod bitlist_from_subset(subset, superset)[source]
    +classmethod bitlist_from_subset(subset, superset)[source]

    Gets the bitlist corresponding to a subset.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -854,7 +854,7 @@ 
    Documentation Version
    -iterate_binary(k)[source]
    +iterate_binary(k)[source]

    This is a helper function. It iterates over the binary subsets by k steps. This variable can be both positive or negative.

    @@ -876,7 +876,7 @@
    Documentation Version
    -iterate_graycode(k)[source]
    +iterate_graycode(k)[source]

    Helper function used for prev_gray and next_gray. It performs k step overs to get the respective Gray codes.

    Examples

    @@ -896,7 +896,7 @@
    Documentation Version
    -next_binary()[source]
    +next_binary()[source]

    Generates the next binary ordered subset.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -916,7 +916,7 @@ 
    Documentation Version
    -next_gray()[source]
    +next_gray()[source]

    Generates the next Gray code ordered subset.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -933,7 +933,7 @@ 
    Documentation Version
    -next_lexicographic()[source]
    +next_lexicographic()[source]

    Generates the next lexicographically ordered subset.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -953,7 +953,7 @@ 
    Documentation Version
    -prev_binary()[source]
    +prev_binary()[source]

    Generates the previous binary ordered subset.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -973,7 +973,7 @@ 
    Documentation Version
    -prev_gray()[source]
    +prev_gray()[source]

    Generates the previous Gray code ordered subset.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -990,7 +990,7 @@ 
    Documentation Version
    -prev_lexicographic()[source]
    +prev_lexicographic()[source]

    Generates the previous lexicographically ordered subset.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -1100,7 +1100,7 @@ 
    Documentation Version
    -classmethod subset_from_bitlist(super_set, bitlist)[source]
    +classmethod subset_from_bitlist(super_set, bitlist)[source]

    Gets the subset defined by the bitlist.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -1116,7 +1116,7 @@ 
    Documentation Version
    -classmethod subset_indices(subset, superset)[source]
    +classmethod subset_indices(subset, superset)[source]

    Return indices of subset in superset in a list; the list is empty if all elements of subset are not in superset.

    Examples

    @@ -1168,7 +1168,7 @@
    Documentation Version
    -classmethod unrank_binary(rank, superset)[source]
    +classmethod unrank_binary(rank, superset)[source]

    Gets the binary ordered subset of the specified rank.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -1184,7 +1184,7 @@ 
    Documentation Version
    -classmethod unrank_gray(rank, superset)[source]
    +classmethod unrank_gray(rank, superset)[source]

    Gets the Gray code ordered subset of the specified rank.

    Examples

    >>> from sympy.combinatorics import Subset
    @@ -1204,7 +1204,7 @@ 
    Documentation Version
    -subsets.ksubsets(k)[source]
    +subsets.ksubsets(k)[source]

    Finds the subsets of size k in lexicographic order.

    This uses the itertools generator.

    Examples

    diff --git a/dev/modules/combinatorics/tensor_can.html b/dev/modules/combinatorics/tensor_can.html index db6afbc0eee..6313aaee20a 100644 --- a/dev/modules/combinatorics/tensor_can.html +++ b/dev/modules/combinatorics/tensor_can.html @@ -802,7 +802,7 @@
    Documentation Version

    Tensor Canonicalization

    -sympy.combinatorics.tensor_can.canonicalize(g, dummies, msym, *v)[source]
    +sympy.combinatorics.tensor_can.canonicalize(g, dummies, msym, *v)[source]

    canonicalize tensor formed by tensors

    Parameters:
    @@ -921,7 +921,7 @@
    Documentation Version
    g,
    -)[source] +)[source]

    Butler-Portugal algorithm for tensor canonicalization with dummy indices.

    Parameters:
    @@ -1113,7 +1113,7 @@
    Documentation Version
    -sympy.combinatorics.tensor_can.get_symmetric_group_sgs(n, antisym=False)[source]
    +sympy.combinatorics.tensor_can.get_symmetric_group_sgs(n, antisym=False)[source]

    Return base, gens of the minimal BSGS for (anti)symmetric tensor

    Parameters:
    @@ -1145,7 +1145,7 @@
    Documentation Version
    signed=True,
    -)[source] +)[source]

    Direct product of two BSGS.

    Parameters:
    diff --git a/dev/modules/combinatorics/testutil.html b/dev/modules/combinatorics/testutil.html index 7464be05025..2a98c5b60bb 100644 --- a/dev/modules/combinatorics/testutil.html +++ b/dev/modules/combinatorics/testutil.html @@ -802,7 +802,7 @@
    Documentation Version

    Test Utilities

    -sympy.combinatorics.testutil._cmp_perm_lists(first, second)[source]
    +sympy.combinatorics.testutil._cmp_perm_lists(first, second)[source]

    Compare two lists of permutations as sets.

    Explanation

    This is used for testing purposes. Since the array form of a @@ -824,12 +824,12 @@

    Documentation Version
    -sympy.combinatorics.testutil._naive_list_centralizer(self, other, af=False)[source]
    +sympy.combinatorics.testutil._naive_list_centralizer(self, other, af=False)[source]
    -sympy.combinatorics.testutil._verify_bsgs(group, base, gens)[source]
    +sympy.combinatorics.testutil._verify_bsgs(group, base, gens)[source]

    Verify the correctness of a base and strong generating set.

    Explanation

    This is a naive implementation using the definition of a base and a strong @@ -853,7 +853,7 @@

    Documentation Version
    -sympy.combinatorics.testutil._verify_centralizer(group, arg, centr=None)[source]
    +sympy.combinatorics.testutil._verify_centralizer(group, arg, centr=None)[source]

    Verify the centralizer of a group/set/element inside another group.

    This is used for testing .centralizer() from sympy.combinatorics.perm_groups

    @@ -878,7 +878,7 @@
    Documentation Version
    -sympy.combinatorics.testutil._verify_normal_closure(group, arg, closure=None)[source]
    +sympy.combinatorics.testutil._verify_normal_closure(group, arg, closure=None)[source]
    diff --git a/dev/modules/combinatorics/util.html b/dev/modules/combinatorics/util.html index 8d07bab2aa1..2325c98197a 100644 --- a/dev/modules/combinatorics/util.html +++ b/dev/modules/combinatorics/util.html @@ -802,7 +802,7 @@
    Documentation Version

    Utilities

    -sympy.combinatorics.util._base_ordering(base, degree)[source]
    +sympy.combinatorics.util._base_ordering(base, degree)[source]

    Order \(\{0, 1, \dots, n-1\}\) so that base points come first and in order.

    Parameters:
    @@ -843,7 +843,7 @@
    Documentation Version
    -sympy.combinatorics.util._check_cycles_alt_sym(perm)[source]
    +sympy.combinatorics.util._check_cycles_alt_sym(perm)[source]

    Checks for cycles of prime length p with n/2 < p < n-2.

    Explanation

    Here \(n\) is the degree of the permutation. This is a helper function for @@ -867,7 +867,7 @@

    Documentation Version
    -sympy.combinatorics.util._distribute_gens_by_base(base, gens)[source]
    +sympy.combinatorics.util._distribute_gens_by_base(base, gens)[source]

    Distribute the group elements gens by membership in basic stabilizers.

    Parameters:
    @@ -921,7 +921,7 @@
    Documentation Version
    strong_gens_distr=None,
    -)[source] +)[source]

    Calculate BSGS-related structures from those present.

    Parameters:
    @@ -971,7 +971,7 @@
    Documentation Version
    slp=False,
    -)[source] +)[source]

    Compute basic orbits and transversals from a base and strong generating set.

    Parameters:
    @@ -1022,7 +1022,7 @@
    Documentation Version
    strong_gens_distr=None,
    -)[source] +)[source]

    Remove redundant generators from a strong generating set.

    Parameters:
    @@ -1063,7 +1063,7 @@
    Documentation Version
    -sympy.combinatorics.util._strip(g, base, orbits, transversals)[source]
    +sympy.combinatorics.util._strip(g, base, orbits, transversals)[source]

    Attempt to decompose a permutation using a (possibly partial) BSGS structure.

    @@ -1123,7 +1123,7 @@
    Documentation Version
    -sympy.combinatorics.util._strong_gens_from_distr(strong_gens_distr)[source]
    +sympy.combinatorics.util._strong_gens_from_distr(strong_gens_distr)[source]

    Retrieve strong generating set from generators of basic stabilizers.

    This is just the union of the generators of the first and second basic stabilizers.

    diff --git a/dev/modules/concrete.html b/dev/modules/concrete.html index ff1de84a35d..b748656271d 100644 --- a/dev/modules/concrete.html +++ b/dev/modules/concrete.html @@ -880,7 +880,7 @@

    Hypergeometric termsConcrete Class Reference

    -class sympy.concrete.summations.Sum(function, *symbols, **assumptions)[source]
    +class sympy.concrete.summations.Sum(function, *symbols, **assumptions)[source]

    Represents unevaluated summation.

    Explanation

    Sum represents a finite or infinite series, with the first argument @@ -1015,7 +1015,7 @@

    Concrete Class Referenceeval_integral=True,

    -)[source] +)[source]

    Return an Euler-Maclaurin approximation of self, where m is the number of leading terms to sum directly and n is the number of terms in the tail.

    @@ -1058,7 +1058,7 @@

    Concrete Class Reference
    -eval_zeta_function(f, limits)[source]
    +eval_zeta_function(f, limits)[source]

    Check whether the function matches with the zeta function.

    If it matches, then return a \(Piecewise\) expression because zeta function does not converge unless \(s > 1\) and \(q > 0\)

    @@ -1066,7 +1066,7 @@

    Concrete Class Reference
    -is_absolutely_convergent()[source]
    +is_absolutely_convergent()[source]

    Checks for the absolute convergence of an infinite series.

    Same as checking convergence of absolute value of sequence_term of an infinite series.

    @@ -1094,7 +1094,7 @@

    Concrete Class Reference
    -is_convergent()[source]
    +is_convergent()[source]

    Checks for the convergence of a Sum.

    Explanation

    We divide the study of convergence of infinite sums and products in @@ -1159,7 +1159,7 @@

    Concrete Class Reference
    -reverse_order(*indices)[source]
    +reverse_order(*indices)[source]

    Reverse the order of a limit in a Sum.

    Explanation

    reverse_order(self, *indices) reverses some limits in the expression @@ -1222,7 +1222,7 @@

    Concrete Class Reference
    -class sympy.concrete.products.Product(function, *symbols, **assumptions)[source]
    +class sympy.concrete.products.Product(function, *symbols, **assumptions)[source]

    Represents unevaluated products.

    Explanation

    Product represents a finite or infinite product, with the first @@ -1390,7 +1390,7 @@

    Concrete Class Reference
    -is_convergent()[source]
    +is_convergent()[source]

    See docs of Sum.is_convergent() for explanation of convergence in SymPy.

    Explanation

    @@ -1435,7 +1435,7 @@

    Concrete Class Reference
    -reverse_order(*indices)[source]
    +reverse_order(*indices)[source]

    Reverse the order of a limit in a Product.

    Explanation

    reverse_order(expr, *indices) reverses some limits in the expression @@ -1510,7 +1510,7 @@

    Concrete Class Reference**assumptions,

    -)[source] +)[source]

    Superclass for Product and Sum.

    See also

    @@ -1526,7 +1526,7 @@

    Concrete Class Referencenewvar=None,

    -)[source] +)[source]

    Change index of a Sum or Product.

    Perform a linear transformation \(x \mapsto a x + b\) on the index variable \(x\). For \(a\) the only values allowed are \(\pm 1\). A new variable to be used @@ -1654,7 +1654,7 @@

    Concrete Class Reference
    -index(x)[source]
    +index(x)[source]

    Return the index of a dummy variable in the list of limits.

    Explanation

    index(expr, x) returns the index of the dummy variable x in the @@ -1681,7 +1681,7 @@

    Concrete Class Reference
    -reorder(*arg)[source]
    +reorder(*arg)[source]

    Reorder limits in a expression containing a Sum or a Product.

    Explanation

    expr.reorder(*arg) reorders the limits in the expression expr @@ -1726,7 +1726,7 @@

    Concrete Class Reference
    -reorder_limit(x, y)[source]
    +reorder_limit(x, y)[source]

    Interchange two limit tuples of a Sum or Product expression.

    Explanation

    expr.reorder_limit(x, y) interchanges two limit tuples. The @@ -1761,7 +1761,7 @@

    Concrete Class Reference

    -sympy.concrete.summations.summation(f, *symbols, **kwargs)[source]
    +sympy.concrete.summations.summation(f, *symbols, **kwargs)[source]

    Compute the summation of f with respect to symbols.

    Explanation

    The notation for symbols is similar to the notation used in Integral. @@ -1808,7 +1808,7 @@

    Concrete Functions Reference
    -sympy.concrete.products.product(*args, **kwargs)[source]
    +sympy.concrete.products.product(*args, **kwargs)[source]

    Compute the product.

    Explanation

    The notation for symbols is similar to the notation used in Sum or @@ -1842,7 +1842,7 @@

    Concrete Functions Reference
    -sympy.concrete.gosper.gosper_normal(f, g, n, polys=True)[source]
    +sympy.concrete.gosper.gosper_normal(f, g, n, polys=True)[source]

    Compute the Gosper’s normal form of f and g.

    Explanation

    Given relatively prime univariate polynomials f and g, @@ -1877,7 +1877,7 @@

    Concrete Functions Reference
    -sympy.concrete.gosper.gosper_term(f, n)[source]
    +sympy.concrete.gosper.gosper_term(f, n)[source]

    Compute Gosper’s hypergeometric term for f.

    Explanation

    Suppose f is a hypergeometric term such that:

    @@ -1901,7 +1901,7 @@

    Concrete Functions Reference
    -sympy.concrete.gosper.gosper_sum(f, k)[source]
    +sympy.concrete.gosper.gosper_sum(f, k)[source]

    Gosper’s hypergeometric summation algorithm.

    Explanation

    Given a hypergeometric term f such that:

    diff --git a/dev/modules/core.html b/dev/modules/core.html index 0fdb0b88957..922d480a61e 100644 --- a/dev/modules/core.html +++ b/dev/modules/core.html @@ -815,7 +815,7 @@
    Documentation Version
    evaluate=None,

    -)[source] +)[source]

    Converts an arbitrary expression to a type that can be used inside SymPy.

    Parameters:
    @@ -1296,7 +1296,7 @@

    References

    cache

    -sympy.core.cache.__cacheit(maxsize)[source]
    +sympy.core.cache.__cacheit(maxsize)[source]

    caching decorator.

    important: the result of cached function must be immutable

    Examples

    @@ -1320,7 +1320,7 @@

    References

    basic

    -class sympy.core.basic.Basic(*args)[source]
    +class sympy.core.basic.Basic(*args)[source]

    Base class for all SymPy objects.

    Notes And Conventions

      @@ -1411,7 +1411,7 @@

      Referencesclear=True,

    -)[source] +)[source]

    A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression.

    @@ -1422,7 +1422,7 @@

    References
    -as_dummy()[source]
    +as_dummy()[source]

    Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default @@ -1478,7 +1478,7 @@

    References
    -atoms(*types)[source]
    +atoms(*types)[source]

    Returns the atoms that form the current object.

    By default, only objects that are truly atomic and cannot be divided into smaller pieces are returned: symbols, numbers, @@ -1566,13 +1566,13 @@

    References
    -classmethod class_key()[source]
    +classmethod class_key()[source]

    Nice order of classes.

    -compare(other)[source]
    +compare(other)[source]

    Return -1, 0, 1 if the object is less than, equal, or greater than other in a canonical sense. Non-Basic are always greater than Basic. @@ -1600,19 +1600,19 @@

    References
    -count(query)[source]
    +count(query)[source]

    Count the number of matching subexpressions.

    -count_ops(visual=None)[source]
    +count_ops(visual=None)[source]

    Wrapper for count_ops that returns the operation count.

    -doit(**hints)[source]
    +doit(**hints)[source]

    Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ @@ -1637,7 +1637,7 @@

    References
    -dummy_eq(other, symbol=None)[source]
    +dummy_eq(other, symbol=None)[source]

    Compare two expressions and handle dummy symbols.

    Examples

    >>> from sympy import Dummy
    @@ -1663,7 +1663,7 @@ 

    References
    -find(query, group=False)[source]
    +find(query, group=False)[source]

    Find all subexpressions matching a query.

    @@ -1684,7 +1684,7 @@

    References
    -classmethod fromiter(args, **assumptions)[source]
    +classmethod fromiter(args, **assumptions)[source]

    Create a new object from an iterable.

    This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first.

    @@ -1721,7 +1721,7 @@

    References
    -has(*patterns)[source]
    +has(*patterns)[source]

    Test whether any subexpression matches any of the patterns.

    Examples

    >>> from sympy import sin
    @@ -1766,7 +1766,7 @@ 

    References
    -has_free(*patterns)[source]
    +has_free(*patterns)[source]

    Return True if self has object(s) x as a free expression else False.

    Examples

    @@ -1794,7 +1794,7 @@

    References
    -has_xfree(s: set[Basic])[source]
    +has_xfree(s: set[Basic])[source]

    Return True if self has any of the patterns in s as a free argument, else False. This is like \(Basic.has_free\) but this will only report exact argument matches.

    @@ -1845,7 +1845,7 @@

    References
    -is_same(b, approx=None)[source]
    +is_same(b, approx=None)[source]

    Return True if a and b are structurally the same, else False. If \(approx\) is supplied, it will be used to test whether two numbers are the same or not. By default, only numbers of the @@ -1899,7 +1899,7 @@

    References
    -match(pattern, old=False)[source]
    +match(pattern, old=False)[source]

    Pattern matching.

    Wild symbols match all.

    Return None when expression (self) does not match @@ -1948,7 +1948,7 @@

    References
    -matches(expr, repl_dict=None, old=False)[source]
    +matches(expr, repl_dict=None, old=False)[source]

    Helper method for match() that looks for a match between Wild symbols in self and expressions in expr.

    Examples

    @@ -1965,7 +1965,7 @@

    References
    -rcall(*args)[source]
    +rcall(*args)[source]

    Apply on the argument recursively through the expression tree.

    This method is used to simulate a common abuse of notation for operators. For instance, in SymPy the following will not work:

    @@ -1981,7 +1981,7 @@

    References
    -refine(assumption=True)[source]
    +refine(assumption=True)[source]

    See the refine function in sympy.assumptions

    @@ -1997,7 +1997,7 @@

    Referencesexact=None,

    -)[source] +)[source]

    Replace matching subexpressions of self with value.

    If map = True then also return the mapping {old: new} where old was a sub-expression found with query and new is the replacement @@ -2151,7 +2151,7 @@

    References
    -rewrite(*args, deep=True, **hints)[source]
    +rewrite(*args, deep=True, **hints)[source]

    Rewrite self using a defined rule.

    Rewriting transforms an expression to another, which is mathematically equivalent but structurally different. For example you can rewrite @@ -2225,13 +2225,13 @@

    References
    -simplify(**kwargs)[source]
    +simplify(**kwargs)[source]

    See the simplify function in sympy.simplify

    -sort_key(order=None)[source]
    +sort_key(order=None)[source]

    Return a sort key.

    Examples

    >>> from sympy import S, I
    @@ -2251,7 +2251,7 @@ 

    References
    -subs(*args, **kwargs)[source]
    +subs(*args, **kwargs)[source]

    Substitutes old for new in an expression after sympifying args.

    \(args\) is either:
    @@ -2643,7 +2643,7 @@

    References*deps,

    -) tuple[Expr, tuple[Expr, ...]][source] +) tuple[Expr, tuple[Expr, ...]][source]

    Return the tuple (c, args) where self is written as an Add, a.

    c should be a Rational added to any terms of the Add that are independent of deps.

    @@ -2681,7 +2681,7 @@

    Referencesx,

    -) tuple[Expr, Expr][source] +) tuple[Expr, Expr][source]

    c*x**e -> c,e where x can be any symbolic expression.

    @@ -2694,7 +2694,7 @@

    References**kwargs,

    -) tuple[Expr, tuple[Expr, ...]][source] +) tuple[Expr, tuple[Expr, ...]][source]

    Return the tuple (c, args) where self is written as a Mul, m.

    c should be a Rational multiplied by any factors of the Mul that are independent of deps.

    @@ -2726,7 +2726,7 @@

    References
    -as_coefficient(expr)[source]
    +as_coefficient(expr)[source]

    Extracts symbolic coefficient at the given expression. In other words, this functions separates ‘self’ into the product of ‘expr’ and ‘expr’-free coefficient. If such separation @@ -2798,7 +2798,7 @@

    References
    -as_coefficients_dict(*syms)[source]
    +as_coefficients_dict(*syms)[source]

    Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0.

    @@ -2831,7 +2831,7 @@

    Referencesclear=True,

    -)[source] +)[source]

    This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and Mul(*foo.as_content_primitive()) == foo. @@ -2889,7 +2889,7 @@

    References
    -as_expr(*gens)[source]
    +as_expr(*gens)[source]

    Convert a polynomial to a SymPy expression.

    Examples

    >>> from sympy import sin
    @@ -2916,7 +2916,7 @@ 

    References**hint,

    -) tuple[Expr, Expr][source] +) tuple[Expr, Expr][source]

    A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.:

    @@ -3047,7 +3047,7 @@

    References
    -as_leading_term(*symbols, logx=None, cdir=0)[source]
    +as_leading_term(*symbols, logx=None, cdir=0)[source]

    Returns the leading (nonzero) term of the series expansion of self.

    The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value.

    @@ -3063,7 +3063,7 @@

    References
    -as_numer_denom()[source]
    +as_numer_denom()[source]

    Return the numerator and the denominator of an expression.

    expression -> a/b -> a, b

    This is just a stub that should be defined by @@ -3079,13 +3079,13 @@

    References
    -as_ordered_factors(order=None)[source]
    +as_ordered_factors(order=None)[source]

    Return list of ordered factors (if Mul) else [self].

    -as_ordered_terms(order=None, data=False)[source]
    +as_ordered_terms(order=None, data=False)[source]

    Transform an expression to an ordered list of terms.

    Examples

    >>> from sympy import sin, cos
    @@ -3100,7 +3100,7 @@ 

    References
    -as_poly(*gens, **args)[source]
    +as_poly(*gens, **args)[source]

    Converts self to a polynomial or returns None.

    Explanation

    >>> from sympy import sin
    @@ -3123,7 +3123,7 @@ 

    References
    -as_powers_dict()[source]
    +as_powers_dict()[source]

    Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should @@ -3143,7 +3143,7 @@

    References
    -as_real_imag(deep=True, **hints)[source]
    +as_real_imag(deep=True, **hints)[source]

    Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method cannot be confused with re() and im() functions, @@ -3172,13 +3172,13 @@

    References
    -as_terms()[source]
    +as_terms()[source]

    Transform an expression to a list of terms.

    -aseries(x=None, n=6, bound=0, hir=False)[source]
    +aseries(x=None, n=6, bound=0, hir=False)[source]

    Asymptotic Series expansion of self. This is equivalent to self.series(x, oo, n).

    @@ -3284,13 +3284,13 @@

    References
    -cancel(*gens, **args)[source]
    +cancel(*gens, **args)[source]

    See the cancel function in sympy.polys

    -coeff(x, n=1, right=False, _first=True)[source]
    +coeff(x, n=1, right=False, _first=True)[source]

    Returns the coefficient from the term(s) containing x**n. If n is zero then all terms independent of x will be returned.

    Explanation

    @@ -3418,19 +3418,19 @@

    Referencesdistribute_order_term=True,

    -)[source] +)[source]

    See the collect function in sympy.simplify

    -combsimp()[source]
    +combsimp()[source]

    See the combsimp function in sympy.simplify

    -compute_leading_term(x, logx=None)[source]
    +compute_leading_term(x, logx=None)[source]

    Deprecated function to compute the leading term of a series.

    as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first.

    @@ -3438,13 +3438,13 @@

    References
    -conjugate()[source]
    +conjugate()[source]

    Returns the complex conjugate of ‘self’.

    -could_extract_minus_sign()[source]
    +could_extract_minus_sign()[source]

    Return True if self has -1 as a leading factor or has more literal negative signs than positive signs in a sum, otherwise False.

    @@ -3474,7 +3474,7 @@

    References
    -equals(other, failing_expression=False)[source]
    +equals(other, failing_expression=False)[source]

    Return True if self == other, False if it does not, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None.

    @@ -3504,7 +3504,7 @@

    References**hints,

    -)[source] +)[source]

    Expand an expression using hints.

    See the docstring of the expand() function in sympy.core.function for more information.

    @@ -3535,7 +3535,7 @@

    References
    -extract_additively(c)[source]
    +extract_additively(c)[source]

    Return self - c if it’s possible to subtract c from self and make all matching coefficients move towards zero, else return None.

    Examples

    @@ -3558,7 +3558,7 @@

    References
    -extract_branch_factor(allow_half=False)[source]
    +extract_branch_factor(allow_half=False)[source]

    Try to write self as exp_polar(2*pi*I*n)*z in a nice way. Return (z, n).

    >>> from sympy import exp_polar, I, pi
    @@ -3592,7 +3592,7 @@ 

    References
    -extract_multiplicatively(c)[source]
    +extract_multiplicatively(c)[source]

    Return None if it’s not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self.

    @@ -3625,13 +3625,13 @@

    References
    -factor(*gens, **args)[source]
    +factor(*gens, **args)[source]

    See the factor() function in sympy.polys.polytools

    -fourier_series(limits=None)[source]
    +fourier_series(limits=None)[source]

    Compute fourier sine/cosine series of self.

    See the docstring of the fourier_series() in sympy.series.fourier for more information.

    @@ -3651,7 +3651,7 @@

    Referencesfull=False,

    -)[source] +)[source]

    Compute formal power power series of self.

    See the docstring of the fps() function in sympy.series.formal for more information.

    @@ -3659,19 +3659,19 @@

    References
    -gammasimp()[source]
    +gammasimp()[source]

    See the gammasimp function in sympy.simplify

    -getO()[source]
    +getO()[source]

    Returns the additive O(..) symbol if there is one, else None.

    -getn()[source]
    +getn()[source]

    Returns the order of the expression.

    Explanation

    The order is determined either from the O(…) term. If there @@ -3688,13 +3688,13 @@

    References
    -integrate(*args, **kwargs)[source]
    +integrate(*args, **kwargs)[source]

    See the integrate function in sympy.integrals

    -invert(g, *gens, **args)[source]
    +invert(g, *gens, **args)[source]

    Return the multiplicative inverse of self mod g where self (and g) may be symbolic expressions).

    @@ -3705,7 +3705,7 @@

    References
    -is_algebraic_expr(*syms)[source]
    +is_algebraic_expr(*syms)[source]

    This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded @@ -3748,7 +3748,7 @@

    References
    -is_constant(*wrt, **flags)[source]
    +is_constant(*wrt, **flags)[source]

    Return True if self is constant, False if not, or None if the constancy could not be determined conclusively.

    Explanation

    @@ -3817,7 +3817,7 @@

    References
    -is_meromorphic(x, a)[source]
    +is_meromorphic(x, a)[source]

    This tests whether an expression is meromorphic as a function of the given symbol x at the point a.

    This method is intended as a quick test that will return @@ -3926,7 +3926,7 @@

    References
    -is_polynomial(*syms)[source]
    +is_polynomial(*syms)[source]

    Return True if self is a polynomial in syms and False otherwise.

    This checks if self is an exact polynomial in syms. This function returns False for expressions that are “polynomials” with symbolic @@ -3990,7 +3990,7 @@

    References
    -is_rational_function(*syms)[source]
    +is_rational_function(*syms)[source]

    Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of @@ -4042,7 +4042,7 @@

    References
    -leadterm(x, logx=None, cdir=0)[source]
    +leadterm(x, logx=None, cdir=0)[source]

    Returns the leading term a*x**b as a tuple (a, b).

    Examples

    >>> from sympy.abc import x
    @@ -4056,7 +4056,7 @@ 

    References
    -limit(x, xlim, dir='+')[source]
    +limit(x, xlim, dir='+')[source]

    Compute limit x->xlim.

    @@ -4072,7 +4072,7 @@

    Referencescdir=0,

    -)[source] +)[source]

    Wrapper for series yielding an iterator of the terms of the series.

    Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms @@ -4090,7 +4090,7 @@

    References
    -normal()[source]
    +normal()[source]

    Return the expression as a fraction.

    expression -> a/b

    @@ -4115,7 +4115,7 @@

    Referencescdir=0,

    -)[source] +)[source]

    Wrapper to _eval_nseries if assumptions allow, else to series.

    If x is given, x0 is 0, dir=’+’, and self has x, then _eval_nseries is called. This calculates “n” terms in the innermost expressions and @@ -4177,19 +4177,19 @@

    Referencesfull=False,

    -)[source] +)[source]

    See the nsimplify function in sympy.simplify

    -powsimp(*args, **kwargs)[source]
    +powsimp(*args, **kwargs)[source]

    See the powsimp function in sympy.simplify

    -primitive()[source]
    +primitive()[source]

    Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive @@ -4210,25 +4210,25 @@

    References
    -radsimp(**kwargs)[source]
    +radsimp(**kwargs)[source]

    See the radsimp function in sympy.simplify

    -ratsimp()[source]
    +ratsimp()[source]

    See the ratsimp function in sympy.simplify

    -removeO()[source]
    +removeO()[source]

    Removes the additive O(..) symbol if there is one

    -round(n=None)[source]
    +round(n=None)[source]

    Return x rounded to the given decimal place.

    If a complex number would results, apply round to the real and imaginary components of the number.

    @@ -4262,7 +4262,7 @@

    References
    -separate(deep=False, force=False)[source]
    +separate(deep=False, force=False)[source]

    See the separate function in sympy.simplify

    @@ -4279,7 +4279,7 @@

    Referencescdir=0,

    -)[source] +)[source]

    Series expansion of “self” around x = x0 yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None.

    @@ -4392,7 +4392,7 @@

    References
    -taylor_term(n, x, *previous_terms)[source]
    +taylor_term(n, x, *previous_terms)[source]

    General method for the taylor term.

    This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the “previous_terms”.

    @@ -4400,13 +4400,13 @@

    References
    -together(*args, **kwargs)[source]
    +together(*args, **kwargs)[source]

    See the together function in sympy.polys

    -trigsimp(**args)[source]
    +trigsimp(**args)[source]

    See the trigsimp function in sympy.simplify

    @@ -4414,7 +4414,7 @@

    References
    -class sympy.core.expr.UnevaluatedExpr(arg, **kwargs)[source]
    +class sympy.core.expr.UnevaluatedExpr(arg, **kwargs)[source]

    Expression that is not evaluated unless released.

    Examples

    >>> from sympy import UnevaluatedExpr
    @@ -4429,7 +4429,7 @@ 

    References
    -class sympy.core.expr.AtomicExpr(*args)[source]
    +class sympy.core.expr.AtomicExpr(*args)[source]

    A parent class for object which are both atoms and Exprs.

    For example: Symbol, Number, Rational, Integer, … But not: Add, Mul, Pow, …

    @@ -4440,7 +4440,7 @@

    References

    symbol

    -class sympy.core.symbol.Symbol(name, **assumptions)[source]
    +class sympy.core.symbol.Symbol(name, **assumptions)[source]

    Symbol class is used to create symbolic variables.

    Parameters:
    @@ -4496,7 +4496,7 @@

    References**assumptions,

    -)[source] +)[source]

    A Wild symbol matches anything, or anything without whatever is explicitly excluded.

    @@ -4587,7 +4587,7 @@

    References
    -class sympy.core.symbol.Dummy(name=None, dummy_index=None, **assumptions)[source]
    +class sympy.core.symbol.Dummy(name=None, dummy_index=None, **assumptions)[source]

    Dummy symbols are each unique, even if they have the same name:

    Examples

    >>> from sympy import Dummy
    @@ -4615,7 +4615,7 @@ 

    References**args,

    -) Any[source] +) Any[source]

    Transform strings into instances of Symbol class.

    symbols() function returns a sequence of symbols with names taken from names argument, which can be a comma or whitespace delimited @@ -4732,7 +4732,7 @@

    References
    -sympy.core.symbol.var(names, **args)[source]
    +sympy.core.symbol.var(names, **args)[source]

    Create symbols and inject them into the global namespace.

    Explanation

    This calls symbols() with the same arguments and puts the results @@ -4771,7 +4771,7 @@

    References

    intfunc

    -sympy.core.intfunc.num_digits(n, base=10)[source]
    +sympy.core.intfunc.num_digits(n, base=10)[source]

    Return the number of digits needed to express n in give base.

    Parameters:
    @@ -4803,7 +4803,7 @@

    References
    -sympy.core.intfunc.trailing(n)[source]
    +sympy.core.intfunc.trailing(n)[source]

    Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n.

    @@ -4823,7 +4823,7 @@

    References
    -sympy.core.intfunc.ilcm(*args)[source]
    +sympy.core.intfunc.ilcm(*args)[source]

    Computes integer least common multiple.

    Examples

    >>> from sympy import ilcm
    @@ -4865,7 +4865,7 @@ 

    References
    -sympy.core.intfunc.igcd_lehmer(a, b)[source]
    +sympy.core.intfunc.igcd_lehmer(a, b)[source]

    Computes greatest common divisor of two integers.

    Explanation

    Euclid’s algorithm for the computation of the greatest @@ -4908,7 +4908,7 @@

    References
    -sympy.core.intfunc.igcdex(a, b)[source]
    +sympy.core.intfunc.igcdex(a, b)[source]

    Returns x, y, g such that g = x*a + y*b = gcd(a, b).

    Examples

    >>> from sympy.core.intfunc import igcdex
    @@ -4929,7 +4929,7 @@ 

    References
    -sympy.core.intfunc.isqrt(n)[source]
    +sympy.core.intfunc.isqrt(n)[source]

    Return the largest integer less than or equal to \(\sqrt{n}\).

    Parameters:
    @@ -4973,7 +4973,7 @@

    References
    -sympy.core.intfunc.integer_nthroot(y, n)[source]
    +sympy.core.intfunc.integer_nthroot(y, n)[source]

    Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y).

    @@ -5000,7 +5000,7 @@

    References
    -sympy.core.intfunc.integer_log(n, b)[source]
    +sympy.core.intfunc.integer_log(n, b)[source]

    Returns (e, bool) where e is the largest nonnegative integer such that \(|n| \geq |b^e|\) and bool is True if \(n = b^e\).

    Examples

    @@ -5040,7 +5040,7 @@

    References
    -sympy.core.intfunc.mod_inverse(a, m)[source]
    +sympy.core.intfunc.mod_inverse(a, m)[source]

    Return the number \(c\) such that, \(a \times c = 1 \pmod{m}\) where \(c\) has the same sign as \(m\). If no such value exists, a ValueError is raised.

    @@ -5089,7 +5089,7 @@

    References

    numbers

    -class sympy.core.numbers.Number(*obj)[source]
    +class sympy.core.numbers.Number(*obj)[source]

    Represents atomic numbers in SymPy.

    Explanation

    Floating point numbers are represented by the Float class. @@ -5112,31 +5112,31 @@

    References
    -as_coeff_Add(rational=False)[source]
    +as_coeff_Add(rational=False)[source]

    Efficiently extract the coefficient of a summation.

    -as_coeff_Mul(rational=False)[source]
    +as_coeff_Mul(rational=False)[source]

    Efficiently extract the coefficient of a product.

    -cofactors(other)[source]
    +cofactors(other)[source]

    Compute GCD and cofactors of \(self\) and \(other\).

    -gcd(other)[source]
    +gcd(other)[source]

    Compute GCD of \(self\) and \(other\).

    -lcm(other)[source]
    +lcm(other)[source]

    Compute LCM of \(self\) and \(other\).

    @@ -5144,7 +5144,7 @@

    References
    -class sympy.core.numbers.Float(num, dps=None, precision=None)[source]
    +class sympy.core.numbers.Float(num, dps=None, precision=None)[source]

    Represent a floating-point number of arbitrary precision.

    Examples

    >>> from sympy import Float
    @@ -5308,7 +5308,7 @@ 

    References
    -class sympy.core.numbers.Rational(p, q=None, gcd=None)[source]
    +class sympy.core.numbers.Rational(p, q=None, gcd=None)[source]

    Represents rational numbers (p/q) of any size.

    Examples

    >>> from sympy import Rational, nsimplify, S, pi
    @@ -5398,13 +5398,13 @@ 

    References
    -as_coeff_Add(rational=False)[source]
    +as_coeff_Add(rational=False)[source]

    Efficiently extract the coefficient of a summation.

    -as_coeff_Mul(rational=False)[source]
    +as_coeff_Mul(rational=False)[source]

    Efficiently extract the coefficient of a product.

    @@ -5417,7 +5417,7 @@

    Referencesclear=True,

    -)[source] +)[source]

    Return the tuple (R, self/R) where R is the positive Rational extracted from self.

    Examples

    @@ -5442,7 +5442,7 @@

    Referencesvisual=False,

    -)[source] +)[source]

    A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used.

    @@ -5456,7 +5456,7 @@

    Referencesmax_denominator=1000000,

    -)[source] +)[source]

    Closest Rational to self with denominator at most max_denominator.

    Examples

    >>> from sympy import Rational
    @@ -5472,7 +5472,7 @@ 

    References
    -class sympy.core.numbers.Integer(i)[source]
    +class sympy.core.numbers.Integer(i)[source]

    Represents integer numbers of any size.

    Examples

    >>> from sympy import Integer
    @@ -5509,7 +5509,7 @@ 

    References**args,

    -)[source] +)[source]

    Class for representing algebraic numbers in SymPy.

    Symbolically, an instance of this class represents an element \(\alpha \in \mathbb{Q}(\theta) \hookrightarrow \mathbb{C}\). That is, the @@ -5534,7 +5534,7 @@

    References**args,

    -)[source] +)[source]

    Construct a new algebraic number \(\alpha\) belonging to a number field \(k = \mathbb{Q}(\theta)\).

    There are four instance attributes to be determined:

    @@ -5711,25 +5711,25 @@

    References
    -as_expr(x=None)[source]
    +as_expr(x=None)[source]

    Create a Basic expression from self.

    -as_poly(x=None)[source]
    +as_poly(x=None)[source]

    Create a Poly instance from self.

    -coeffs()[source]
    +coeffs()[source]

    Returns all SymPy coefficients of an algebraic number.

    -field_element(coeffs)[source]
    +field_element(coeffs)[source]

    Form another element of the same number field.

    Parameters:
    @@ -5780,7 +5780,7 @@

    References
    -minpoly_of_element()[source]
    +minpoly_of_element()[source]

    Compute the minimal polynomial for this algebraic number.

    Explanation

    Recall that we represent an element \(\alpha \in \mathbb{Q}(\theta)\). @@ -5791,13 +5791,13 @@

    References
    -native_coeffs()[source]
    +native_coeffs()[source]

    Returns all native coefficients of an algebraic number.

    -primitive_element()[source]
    +primitive_element()[source]

    Get the primitive element \(\theta\) for the number field \(\mathbb{Q}(\theta)\) to which this algebraic number \(\alpha\) belongs.

    @@ -5809,7 +5809,7 @@

    References
    -to_algebraic_integer()[source]
    +to_algebraic_integer()[source]

    Convert self to an algebraic integer.

    @@ -5821,7 +5821,7 @@

    Referencesradicals=True,

    -)[source] +)[source]

    Convert self to an AlgebraicNumber instance that is equal to its own primitive element.

    @@ -5886,7 +5886,7 @@

    Referencesminpoly=None,

    -)[source] +)[source]

    Convert to an Expr that is not an AlgebraicNumber, specifically, either a ComplexRootOf, or, optionally and where possible, an @@ -5912,10 +5912,10 @@

    References
    -class sympy.core.numbers.NumberSymbol[source]
    +class sympy.core.numbers.NumberSymbol[source]
    -approximation(number_cls)[source]
    +approximation(number_cls)[source]

    Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None.

    @@ -5925,13 +5925,13 @@

    References
    -sympy.core.numbers.RealNumber[source]
    +sympy.core.numbers.RealNumber[source]

    alias of Float

    -sympy.core.numbers.seterr(divide=False)[source]
    +sympy.core.numbers.seterr(divide=False)[source]

    Should SymPy raise an exception on 0/0 or return a nan?

    divide == True …. raise an exception divide == False … return nan

    @@ -5939,7 +5939,7 @@

    References
    -class sympy.core.numbers.Zero[source]
    +class sympy.core.numbers.Zero[source]

    The number zero.

    Zero is a singleton, and can be accessed by S.Zero

    Examples

    @@ -5961,7 +5961,7 @@

    References
    -class sympy.core.numbers.One[source]
    +class sympy.core.numbers.One[source]

    The number one.

    One is a singleton, and can be accessed by S.One.

    Examples

    @@ -5981,7 +5981,7 @@

    References
    -class sympy.core.numbers.NegativeOne[source]
    +class sympy.core.numbers.NegativeOne[source]

    The number negative one.

    NegativeOne is a singleton, and can be accessed by S.NegativeOne.

    Examples

    @@ -6005,7 +6005,7 @@

    References
    -class sympy.core.numbers.Half[source]
    +class sympy.core.numbers.Half[source]

    The rational number 1/2.

    Half is a singleton, and can be accessed by S.Half.

    Examples

    @@ -6025,7 +6025,7 @@

    References
    -class sympy.core.numbers.NaN[source]
    +class sympy.core.numbers.NaN[source]

    Not a Number.

    Explanation

    This serves as a place holder for numeric values that are indeterminate. @@ -6068,7 +6068,7 @@

    References
    -class sympy.core.numbers.Infinity[source]
    +class sympy.core.numbers.Infinity[source]

    Positive infinite quantity.

    Explanation

    In real analysis the symbol \(\infty\) denotes an unbounded @@ -6106,7 +6106,7 @@

    References
    -class sympy.core.numbers.NegativeInfinity[source]
    +class sympy.core.numbers.NegativeInfinity[source]

    Negative infinite quantity.

    NegativeInfinity is a singleton, and can be accessed by S.NegativeInfinity.

    @@ -6118,7 +6118,7 @@

    References
    -class sympy.core.numbers.ComplexInfinity[source]
    +class sympy.core.numbers.ComplexInfinity[source]

    Complex infinity.

    Explanation

    In complex analysis the symbol \(\tilde\infty\), called “complex @@ -6146,7 +6146,7 @@

    References
    -class sympy.core.numbers.Exp1[source]
    +class sympy.core.numbers.Exp1[source]

    The \(e\) constant.

    Explanation

    The transcendental number \(e = 2.718281828\ldots\) is the base of the @@ -6173,7 +6173,7 @@

    References
    -class sympy.core.numbers.ImaginaryUnit[source]
    +class sympy.core.numbers.ImaginaryUnit[source]

    The imaginary unit, \(i = \sqrt{-1}\).

    I is a singleton, and can be accessed by S.I, or can be imported as I.

    @@ -6198,7 +6198,7 @@

    References
    -class sympy.core.numbers.Pi[source]
    +class sympy.core.numbers.Pi[source]

    The \(\pi\) constant.

    Explanation

    The transcendental number \(\pi = 3.141592654\ldots\) represents the ratio @@ -6233,7 +6233,7 @@

    References
    -class sympy.core.numbers.EulerGamma[source]
    +class sympy.core.numbers.EulerGamma[source]

    The Euler-Mascheroni constant.

    Explanation

    \(\gamma = 0.5772157\ldots\) (also called Euler’s constant) is a mathematical @@ -6266,7 +6266,7 @@

    References
    -class sympy.core.numbers.Catalan[source]
    +class sympy.core.numbers.Catalan[source]

    Catalan’s constant.

    Explanation

    \(G = 0.91596559\ldots\) is given by the infinite series

    @@ -6295,7 +6295,7 @@

    References
    -class sympy.core.numbers.GoldenRatio[source]
    +class sympy.core.numbers.GoldenRatio[source]

    The golden ratio, \(\phi\).

    Explanation

    \(\phi = \frac{1 + \sqrt{5}}{2}\) is an algebraic number. Two quantities @@ -6323,7 +6323,7 @@

    References
    -class sympy.core.numbers.TribonacciConstant[source]
    +class sympy.core.numbers.TribonacciConstant[source]

    The tribonacci constant.

    Explanation

    The tribonacci numbers are like the Fibonacci numbers, but instead @@ -6358,7 +6358,7 @@

    References
    -sympy.core.numbers.mod_inverse(a, m)[source]
    +sympy.core.numbers.mod_inverse(a, m)[source]

    Return the number \(c\) such that, \(a \times c = 1 \pmod{m}\) where \(c\) has the same sign as \(m\). If no such value exists, a ValueError is raised.

    @@ -6404,7 +6404,7 @@

    References
    -sympy.core.numbers.equal_valued(x, y)[source]
    +sympy.core.numbers.equal_valued(x, y)[source]

    Compare expressions treating plain floats as rationals.

    Examples

    >>> from sympy import S, symbols, Rational, Float
    @@ -6461,7 +6461,7 @@ 

    References

    power

    -class sympy.core.power.Pow(b, e, evaluate=None)[source]
    +class sympy.core.power.Pow(b, e, evaluate=None)[source]

    Defines the expression x**y as “x raised to a power y”

    Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr in core @@ -6599,7 +6599,7 @@

    References
    -as_base_exp()[source]
    +as_base_exp()[source]

    Return base and exp of self.

    Explanation

    If base a Rational less than 1, then return 1/Rational, -exp. @@ -6627,7 +6627,7 @@

    Referencesclear=True,

    -)[source] +)[source]

    Return the tuple (R, self/R) where R is the positive Rational extracted from self.

    Examples

    @@ -6678,7 +6678,7 @@

    References

    mul

    -class sympy.core.mul.Mul(*args, evaluate=None, _sympify=True)[source]
    +class sympy.core.mul.Mul(*args, evaluate=None, _sympify=True)[source]

    Expression representing multiplication operation for algebraic field.

    Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr in core @@ -6750,7 +6750,7 @@

    References
    -as_coeff_Mul(rational=False)[source]
    +as_coeff_Mul(rational=False)[source]

    Efficiently extract the coefficient of a product.

    @@ -6763,7 +6763,7 @@

    Referencesclear=True,

    -)[source] +)[source]

    Return the tuple (R, self/R) where R is the positive Rational extracted from self.

    Examples

    @@ -6777,7 +6777,7 @@

    References
    -as_ordered_factors(order=None)[source]
    +as_ordered_factors(order=None)[source]

    Transform an expression into an ordered list of factors.

    Examples

    >>> from sympy import sin, cos
    @@ -6792,7 +6792,7 @@ 

    References
    -as_two_terms()[source]
    +as_two_terms()[source]

    Return head and tail of self.

    This is the most efficient way to get the head and tail of an expression.

    @@ -6814,7 +6814,7 @@

    References
    -classmethod flatten(seq)[source]
    +classmethod flatten(seq)[source]

    Return commutative, noncommutative and order arguments by combining related terms.

    Notes

    @@ -6897,7 +6897,7 @@

    References
    -sympy.core.mul.prod(a, start=1)[source]
    +sympy.core.mul.prod(a, start=1)[source]
    Return product of elements of a. Start with int 1 so if only

    ints are included then an int result is returned.

    @@ -6926,7 +6926,7 @@

    References

    add

    -class sympy.core.add.Add(*args, evaluate=None, _sympify=True)[source]
    +class sympy.core.add.Add(*args, evaluate=None, _sympify=True)[source]

    Expression representing addition operation for algebraic group.

    Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr in core @@ -7012,13 +7012,13 @@

    References
    -as_coeff_Add(rational=False, deps=None)[source]
    +as_coeff_Add(rational=False, deps=None)[source]

    Efficiently extract the coefficient of a summation.

    -as_coeff_add(*deps)[source]
    +as_coeff_add(*deps)[source]

    Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms.

    Examples

    @@ -7040,7 +7040,7 @@

    Referencesclear=True,

    -)[source] +)[source]

    Return the tuple (R, self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the @@ -7061,7 +7061,7 @@

    References
    -as_numer_denom()[source]
    +as_numer_denom()[source]

    Decomposes an expression to its numerator part and its denominator part.

    Examples

    @@ -7080,7 +7080,7 @@

    References
    -as_real_imag(deep=True, **hints)[source]
    +as_real_imag(deep=True, **hints)[source]

    Return a tuple representing a complex number.

    Examples

    >>> from sympy import I
    @@ -7096,7 +7096,7 @@ 

    References
    -as_two_terms()[source]
    +as_two_terms()[source]

    Return head and tail of self.

    This is the most efficient way to get the head and tail of an expression.

    @@ -7117,7 +7117,7 @@

    References
    -extract_leading_order(symbols, point=None)[source]
    +extract_leading_order(symbols, point=None)[source]

    Returns the leading term and its order.

    Examples

    >>> from sympy.abc import x
    @@ -7133,7 +7133,7 @@ 

    References
    -classmethod flatten(seq)[source]
    +classmethod flatten(seq)[source]

    Takes the sequence “seq” of nested Adds and returns a flatten list.

    Returns: (commutative_part, noncommutative_part, order_symbols)

    Applies associativity, all terms are commutable with respect to @@ -7147,7 +7147,7 @@

    References
    -primitive()[source]
    +primitive()[source]

    Return (R, self/R) where R` is the Rational GCD of self`.

    R is collected only from the leading coefficient of each term.

    Examples

    @@ -7187,7 +7187,7 @@

    References

    mod

    -class sympy.core.mod.Mod(p, q)[source]
    +class sympy.core.mod.Mod(p, q)[source]

    Represents a modulo operation on symbolic expressions.

    Parameters:
    @@ -7231,7 +7231,7 @@

    References

    relational

    -class sympy.core.relational.Relational(lhs, rhs, rop=None, **assumptions)[source]
    +class sympy.core.relational.Relational(lhs, rhs, rop=None, **assumptions)[source]

    Base class for all relation types.

    Parameters:
    @@ -7359,7 +7359,7 @@

    References
    -equals(other, failing_expression=False)[source]
    +equals(other, failing_expression=False)[source]

    Return True if the sides of the relationship are mathematically identical and the type of relationship is the same. If failing_expression is True, return the expression whose truth value @@ -7472,49 +7472,49 @@

    References
    -sympy.core.relational.Rel[source]
    +sympy.core.relational.Rel[source]

    alias of Relational

    -sympy.core.relational.Eq[source]
    +sympy.core.relational.Eq[source]

    alias of Equality

    -sympy.core.relational.Ne[source]
    +sympy.core.relational.Ne[source]

    alias of Unequality

    -sympy.core.relational.Lt[source]
    +sympy.core.relational.Lt[source]

    alias of StrictLessThan

    -sympy.core.relational.Le[source]
    +sympy.core.relational.Le[source]

    alias of LessThan

    -sympy.core.relational.Gt[source]
    +sympy.core.relational.Gt[source]

    alias of StrictGreaterThan

    -sympy.core.relational.Ge[source]
    +sympy.core.relational.Ge[source]

    alias of GreaterThan

    -class sympy.core.relational.Equality(lhs, rhs, **options)[source]
    +class sympy.core.relational.Equality(lhs, rhs, **options)[source]

    An equal relation between two objects.

    Explanation

    Represents that two objects are equal. If they can be easily shown @@ -7573,7 +7573,7 @@

    References
    -as_poly(*gens, **kwargs)[source]
    +as_poly(*gens, **kwargs)[source]

    Returns lhs-rhs as a Poly

    Examples

    >>> from sympy import Eq
    @@ -7586,7 +7586,7 @@ 

    References
    -integrate(*args, **kwargs)[source]
    +integrate(*args, **kwargs)[source]

    See the integrate function in sympy.integrals

    @@ -7594,7 +7594,7 @@

    References
    -class sympy.core.relational.GreaterThan(lhs, rhs, **options)[source]
    +class sympy.core.relational.GreaterThan(lhs, rhs, **options)[source]

    Class representations of inequalities.

    Explanation

    The *Than classes represent inequal relationships, where the left-hand @@ -7848,7 +7848,7 @@

    References
    -class sympy.core.relational.LessThan(lhs, rhs, **options)[source]
    +class sympy.core.relational.LessThan(lhs, rhs, **options)[source]

    Class representations of inequalities.

    Explanation

    The *Than classes represent inequal relationships, where the left-hand @@ -8102,7 +8102,7 @@

    References
    -class sympy.core.relational.Unequality(lhs, rhs, **options)[source]
    +class sympy.core.relational.Unequality(lhs, rhs, **options)[source]

    An unequal relation between two objects.

    Explanation

    Represents that two objects are not equal. If they can be shown to be @@ -8130,7 +8130,7 @@

    References
    -class sympy.core.relational.StrictGreaterThan(lhs, rhs, **options)[source]
    +class sympy.core.relational.StrictGreaterThan(lhs, rhs, **options)[source]

    Class representations of inequalities.

    Explanation

    The *Than classes represent inequal relationships, where the left-hand @@ -8384,7 +8384,7 @@

    References
    -class sympy.core.relational.StrictLessThan(lhs, rhs, **options)[source]
    +class sympy.core.relational.StrictLessThan(lhs, rhs, **options)[source]

    Class representations of inequalities.

    Explanation

    The *Than classes represent inequal relationships, where the left-hand @@ -8641,7 +8641,7 @@

    References

    multidimensional

    -class sympy.core.multidimensional.vectorize(*mdargs)[source]
    +class sympy.core.multidimensional.vectorize(*mdargs)[source]

    Generalizes a function taking scalars to accept multidimensional arguments.

    Examples

    >>> from sympy import vectorize, diff, sin, symbols, Function
    @@ -8674,7 +8674,7 @@ 

    References

    function

    -class sympy.core.function.Lambda(signature, expr)[source]
    +class sympy.core.function.Lambda(signature, expr)[source]

    Lambda(x, expr) represents a lambda function similar to Python’s ‘lambda x: expr’. A function of several variables is written as Lambda((x, y, …), expr).

    @@ -8741,7 +8741,7 @@

    References
    -class sympy.core.function.WildFunction(*args)[source]
    +class sympy.core.function.WildFunction(*args)[source]

    A WildFunction function matches any function (with its arguments).

    Examples

    >>> from sympy import WildFunction, Function, cos
    @@ -8788,7 +8788,7 @@ 

    References
    -class sympy.core.function.Derivative(expr, *variables, **kwargs)[source]
    +class sympy.core.function.Derivative(expr, *variables, **kwargs)[source]

    Carries out differentiation of the given expression with respect to symbols.

    Examples

    >>> from sympy import Derivative, Function, symbols, Subs
    @@ -8992,7 +8992,7 @@ 

    References
    -classmethod _sort_variable_count(vc)[source]
    +classmethod _sort_variable_count(vc)[source]

    Sort (variable, count) pairs into canonical order while retaining order of variables that do not commute during differentiation:

    @@ -9051,7 +9051,7 @@

    Referenceswrt=None,

    -)[source] +)[source]

    Expresses a Derivative instance as a finite difference.

    Parameters:
    @@ -9137,7 +9137,7 @@

    References
    -doit_numerically(z0)[source]
    +doit_numerically(z0)[source]

    Evaluate the derivative at z numerically.

    When we can represent derivatives at a point, this should be folded into the normal evalf. For now, we need a special method.

    @@ -9147,7 +9147,7 @@

    References
    -sympy.core.function.diff(f, *symbols, **kwargs)[source]
    +sympy.core.function.diff(f, *symbols, **kwargs)[source]

    Differentiate f with respect to symbols.

    Explanation

    This is just a wrapper to unify .diff() and the Derivative class; its @@ -9213,7 +9213,7 @@

    References
    -class sympy.core.function.FunctionClass(*args, **kwargs)[source]
    +class sympy.core.function.FunctionClass(*args, **kwargs)[source]

    Base class for function classes. FunctionClass is a subclass of type.

    Use Function(‘<function name>’ [ , signature ]) to create undefined function classes.

    @@ -9256,7 +9256,7 @@

    References
    -class sympy.core.function.Function(*args)[source]
    +class sympy.core.function.Function(*args)[source]

    Base class for applied mathematical functions.

    It also serves as a constructor for undefined function classes.

    See the Writing Custom Functions guide for details on how to subclass @@ -9304,19 +9304,19 @@

    References
    -as_base_exp()[source]
    +as_base_exp()[source]

    Returns the method as the 2-tuple (base, exponent).

    -fdiff(argindex=1)[source]
    +fdiff(argindex=1)[source]

    Returns the first derivative of the function.

    -classmethod is_singular(a)[source]
    +classmethod is_singular(a)[source]

    Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic.

    @@ -9353,7 +9353,7 @@

    References
    -class sympy.core.function.Subs(expr, variables, point, **assumptions)[source]
    +class sympy.core.function.Subs(expr, variables, point, **assumptions)[source]

    Represents unevaluated substitutions of an expression.

    Subs(expr, x, x0) represents the expression resulting from substituting x with x0 in expr.

    @@ -9475,7 +9475,7 @@

    References**hints,

    -)[source] +)[source]

    Expand an expression using methods given as hints.

    Explanation

    Hints evaluated unless explicitly set to False are: basic, log, @@ -9758,12 +9758,12 @@

    References
    -class sympy.core.function.PoleError[source]
    +class sympy.core.function.PoleError[source]

    -sympy.core.function.count_ops(expr, visual=False)[source]
    +sympy.core.function.count_ops(expr, visual=False)[source]

    Return a representation (integer or expression) of the operations in expr.

    Parameters:
    @@ -9838,7 +9838,7 @@

    References
    -sympy.core.function.expand_mul(expr, deep=True)[source]
    +sympy.core.function.expand_mul(expr, deep=True)[source]

    Wrapper around expand that only uses the mul hint. See the expand docstring for more information.

    Examples

    @@ -9861,7 +9861,7 @@

    Referencesfactor=False,

    -)[source] +)[source]

    Wrapper around expand that only uses the log hint. See the expand docstring for more information.

    Examples

    @@ -9875,7 +9875,7 @@

    References
    -sympy.core.function.expand_func(expr, deep=True)[source]
    +sympy.core.function.expand_func(expr, deep=True)[source]

    Wrapper around expand that only uses the func hint. See the expand docstring for more information.

    Examples

    @@ -9889,7 +9889,7 @@

    References
    -sympy.core.function.expand_trig(expr, deep=True)[source]
    +sympy.core.function.expand_trig(expr, deep=True)[source]

    Wrapper around expand that only uses the trig hint. See the expand docstring for more information.

    Examples

    @@ -9903,7 +9903,7 @@

    References
    -sympy.core.function.expand_complex(expr, deep=True)[source]
    +sympy.core.function.expand_complex(expr, deep=True)[source]

    Wrapper around expand that only uses the complex hint. See the expand docstring for more information.

    Examples

    @@ -9923,7 +9923,7 @@

    References
    -sympy.core.function.expand_multinomial(expr, deep=True)[source]
    +sympy.core.function.expand_multinomial(expr, deep=True)[source]

    Wrapper around expand that only uses the multinomial hint. See the expand docstring for more information.

    Examples

    @@ -9937,7 +9937,7 @@

    References
    -sympy.core.function.expand_power_exp(expr, deep=True)[source]
    +sympy.core.function.expand_power_exp(expr, deep=True)[source]

    Wrapper around expand that only uses the power_exp hint.

    See the expand docstring for more information.

    Examples

    @@ -9960,7 +9960,7 @@

    References
    -sympy.core.function.expand_power_base(expr, deep=True, force=False)[source]
    +sympy.core.function.expand_power_base(expr, deep=True, force=False)[source]

    Wrapper around expand that only uses the power_base hint.

    A wrapper to expand(power_base=True) which separates a power with a base that is a Mul into a product of powers, without performing any other @@ -10045,7 +10045,7 @@

    References
    -sympy.core.function.nfloat(expr, n=15, exponent=False, dkeys=False)[source]
    +sympy.core.function.nfloat(expr, n=15, exponent=False, dkeys=False)[source]

    Make all Rationals in expr Floats except those in exponents (unless the exponents flag is set to True) and those in undefined functions. When processing dictionaries, do not modify the keys @@ -10071,7 +10071,7 @@

    References

    evalf

    -class sympy.core.evalf.EvalfMixin[source]
    +class sympy.core.evalf.EvalfMixin[source]

    Mixin class adding evalf capability.

    @@ -10087,7 +10087,7 @@

    Referencesverbose=False,

    -)[source] +)[source]

    Evaluate the given formula to an accuracy of n digits.

    Parameters:
    @@ -10170,7 +10170,7 @@

    Referencesverbose=False,

    -)[source] +)[source]

    Evaluate the given formula to an accuracy of n digits.

    Parameters:
    @@ -10243,12 +10243,12 @@

    References
    -class sympy.core.evalf.PrecisionExhausted[source]
    +class sympy.core.evalf.PrecisionExhausted[source]

    -sympy.core.evalf.N(x, n=15, **options)[source]
    +sympy.core.evalf.N(x, n=15, **options)[source]

    Calls x.evalf(n, **options).

    Explanations

    Both .n() and N() are equivalent to .evalf(); use the one that you like better. @@ -10269,7 +10269,7 @@

    References

    containers

    -class sympy.core.containers.Tuple(*args, **kwargs)[source]
    +class sympy.core.containers.Tuple(*args, **kwargs)[source]

    Wrapper around the builtin tuple object.

    Parameters:
    @@ -10296,7 +10296,7 @@

    References
    -index(value, start=None, stop=None)[source]
    +index(value, start=None, stop=None)[source]

    Searches and returns the first index of the value.

    @@ -10324,7 +10324,7 @@

    References
    -tuple_count(value) int[source]
    +tuple_count(value) int[source]

    Return number of occurrences of value.

    @@ -10332,7 +10332,7 @@

    References
    -class sympy.core.containers.TupleKind(*args)[source]
    +class sympy.core.containers.TupleKind(*args)[source]

    TupleKind is a subclass of Kind, which is used to define Kind of Tuple.

    Parameters of TupleKind will be kinds of all the arguments in Tuples, for example

    @@ -10361,7 +10361,7 @@

    References
    -class sympy.core.containers.Dict(*args)[source]
    +class sympy.core.containers.Dict(*args)[source]

    Wrapper around the builtin dict object.

    Explanation

    The Dict is a subclass of Basic, so that it works well in the @@ -10394,25 +10394,25 @@

    References
    -get(key, default=None)[source]
    +get(key, default=None)[source]

    Returns the value for key if the key is in the dictionary.

    -items()[source]
    +items()[source]

    Returns a set-like object providing a view on dict’s items.

    -keys()[source]
    +keys()[source]

    Returns the list of the dict’s keys.

    -values()[source]
    +values()[source]

    Returns the list of the dict’s values.

    @@ -10432,7 +10432,7 @@

    Referencesfraction=True,

    -)[source] +)[source]

    Compute the GCD of terms and put them together.

    Parameters:
    @@ -10509,7 +10509,7 @@

    Referencessign=True,

    -)[source] +)[source]

    Remove common factors from terms in all arguments without changing the underlying structure of the expr. No expansion or simplification (and no processing of non-commutatives) is performed.

    @@ -10578,7 +10578,7 @@

    References

    kind

    -class sympy.core.kind.Kind(*args)[source]
    +class sympy.core.kind.Kind(*args)[source]

    Base class for kinds.

    Kind of the object represents the mathematical classification that the entity falls into. It is expected that functions and classes @@ -10622,7 +10622,7 @@

    References

    -sympy.core.sorting.default_sort_key(item, order=None)[source]
    +sympy.core.sorting.default_sort_key(item, order=None)[source]

    Return a key that can be used for sorting.

    The key has the structure:

    (class_key, (len(args), args), exponent.sort_key(), coefficient)

    @@ -10728,7 +10728,7 @@

    Sorting
    -sympy.core.sorting.ordered(seq, keys=None, default=True, warn=False)[source]
    +sympy.core.sorting.ordered(seq, keys=None, default=True, warn=False)[source]

    Return an iterator of the seq where keys are used to break ties in a conservative fashion: if, after applying a key, there are no ties then no other keys will be computed.

    @@ -10839,7 +10839,7 @@

    Examplestolerance=None,

    -)[source] +)[source]

    Return a random complex number.

    To reduce chance of hitting branch cuts or anything, we guarantee b <= Im z <= d, a <= Re z <= c

    @@ -10862,7 +10862,7 @@

    Examplesd=1,

    -)[source] +)[source]

    Test numerically that f and g agree when evaluated in the argument z.

    If z is None, all symbols will be tested. This routine does not test whether there are Floats present with precision higher than 15 digits @@ -10892,7 +10892,7 @@

    Examplesd=1,

    -)[source] +)[source]

    Test numerically that the symbolically computed derivative of f with respect to z is correct.

    This routine does not test whether there are Floats present with @@ -10910,7 +10910,7 @@

    Examples
    -sympy.core.random._randrange(seed=None)[source]
    +sympy.core.random._randrange(seed=None)[source]

    Return a randrange generator.

    seed can be

      @@ -10936,7 +10936,7 @@

      Examples
      -sympy.core.random._randint(seed=None)[source]
      +sympy.core.random._randint(seed=None)[source]

      Return a randint generator.

      seed can be

        @@ -10965,7 +10965,7 @@

        Examples

        Traversal

        -sympy.core.traversal.bottom_up(rv, F, atoms=False, nonbasic=False)[source]
        +sympy.core.traversal.bottom_up(rv, F, atoms=False, nonbasic=False)[source]

        Apply F to all expressions in an expression tree from the bottom up. If atoms is True, apply F even if there are no args; if nonbasic is True, try to apply F to non-Basic objects.

        @@ -10973,7 +10973,7 @@

        Examples
        -sympy.core.traversal.postorder_traversal(node, keys=None)[source]
        +sympy.core.traversal.postorder_traversal(node, keys=None)[source]

        Do a postorder traversal of a tree.

        This generator recursively yields nodes that it has visited in a postorder fashion. That is, it descends through the tree depth-first to yield all of @@ -11018,7 +11018,7 @@

        Examples
        -sympy.core.traversal.preorder_traversal(node, keys=None)[source]
        +sympy.core.traversal.preorder_traversal(node, keys=None)[source]

        Do a pre-order traversal of a tree.

        This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the @@ -11066,7 +11066,7 @@

        Examples
        -sympy.core.traversal.use(expr, func, level=0, args=(), kwargs={})[source]
        +sympy.core.traversal.use(expr, func, level=0, args=(), kwargs={})[source]

        Use func to transform expr at the given level.

        Examples

        >>> from sympy import use, expand
        @@ -11086,7 +11086,7 @@ 

        Examples
        -sympy.core.traversal.walk(e, *target)[source]
        +sympy.core.traversal.walk(e, *target)[source]

        Iterate through the args that are the given types (target) and return a list of the args that were traversed; arguments that are not of the specified types are not traversed.

        diff --git a/dev/modules/crypto.html b/dev/modules/crypto.html index 0c2d1e1dcb1..ac81a3416fc 100644 --- a/dev/modules/crypto.html +++ b/dev/modules/crypto.html @@ -835,7 +835,7 @@

        Cryptography
        -sympy.crypto.crypto.AZ(s=None)[source]
        +sympy.crypto.crypto.AZ(s=None)[source]

        Return the letters of s in uppercase. In case more than one string is passed, each of them will be processed and a list of upper case strings will be returned.

        @@ -855,7 +855,7 @@

        Cryptography
        -sympy.crypto.crypto.padded_key(key, symbols)[source]
        +sympy.crypto.crypto.padded_key(key, symbols)[source]

        Return a string of the distinct characters of symbols with those of key appearing first. A ValueError is raised if a) there are duplicate characters in symbols or @@ -874,7 +874,7 @@

        Cryptography
        -sympy.crypto.crypto.check_and_join(phrase, symbols=None, filter=None)[source]
        +sympy.crypto.crypto.check_and_join(phrase, symbols=None, filter=None)[source]

        Joins characters of phrase and if symbols is given, raises an error if any character in phrase is not in symbols.

        @@ -908,7 +908,7 @@

        Cryptography
        -sympy.crypto.crypto.cycle_list(k, n)[source]
        +sympy.crypto.crypto.cycle_list(k, n)[source]

        Returns the elements of the list range(n) shifted to the left by k (so the list starts with k (mod n)).

        Examples

        @@ -921,7 +921,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_shift(msg, key, symbols=None)[source]
        +sympy.crypto.crypto.encipher_shift(msg, key, symbols=None)[source]

        Performs shift cipher encryption on plaintext msg, and returns the ciphertext.

        @@ -1000,7 +1000,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_shift(msg, key, symbols=None)[source]
        +sympy.crypto.crypto.decipher_shift(msg, key, symbols=None)[source]

        Return the text by shifting the characters of msg to the left by the amount given by key.

        Examples

        @@ -1024,7 +1024,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_rot13(msg, symbols=None)[source]
        +sympy.crypto.crypto.encipher_rot13(msg, symbols=None)[source]

        Performs the ROT13 encryption on a given plaintext msg.

        Explanation

        ROT13 is a substitution cipher which substitutes each letter @@ -1047,7 +1047,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_rot13(msg, symbols=None)[source]
        +sympy.crypto.crypto.decipher_rot13(msg, symbols=None)[source]

        Performs the ROT13 decryption on a given plaintext msg.

        Explanation

        decipher_rot13 is equivalent to encipher_rot13 as both @@ -1081,7 +1081,7 @@

        Cryptography_inverse=False,

        -)[source] +)[source]

        Performs the affine cipher encryption on plaintext msg, and returns the ciphertext.

        @@ -1151,7 +1151,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_affine(msg, key, symbols=None)[source]
        +sympy.crypto.crypto.decipher_affine(msg, key, symbols=None)[source]

        Return the deciphered text that was made from the mapping, \(x \rightarrow ax+b\) (mod \(N\)), where N is the number of characters in the alphabet. Deciphering is done by @@ -1175,7 +1175,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_atbash(msg, symbols=None)[source]
        +sympy.crypto.crypto.encipher_atbash(msg, symbols=None)[source]

        Enciphers a given msg into its Atbash ciphertext and returns it.

        Explanation

        Atbash is a substitution cipher originally used to encrypt the Hebrew @@ -1191,7 +1191,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_atbash(msg, symbols=None)[source]
        +sympy.crypto.crypto.decipher_atbash(msg, symbols=None)[source]

        Deciphers a given msg using Atbash cipher and returns it.

        Explanation

        decipher_atbash is functionally equivalent to encipher_atbash. @@ -1225,7 +1225,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_substitution(msg, old, new=None)[source]
        +sympy.crypto.crypto.encipher_substitution(msg, old, new=None)[source]

        Returns the ciphertext obtained by replacing each character that appears in old with the corresponding character in new. If old is a mapping, then new is ignored and the replacements @@ -1280,7 +1280,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_vigenere(msg, key, symbols=None)[source]
        +sympy.crypto.crypto.encipher_vigenere(msg, key, symbols=None)[source]

        Performs the Vigenere cipher encryption on plaintext msg, and returns the ciphertext.

        Examples

        @@ -1437,7 +1437,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_vigenere(msg, key, symbols=None)[source]
        +sympy.crypto.crypto.decipher_vigenere(msg, key, symbols=None)[source]

        Decode using the Vigenere cipher.

        Examples

        >>> from sympy.crypto.crypto import decipher_vigenere
        @@ -1451,7 +1451,7 @@ 

        Cryptography
        -sympy.crypto.crypto.encipher_hill(msg, key, symbols=None, pad='Q')[source]
        +sympy.crypto.crypto.encipher_hill(msg, key, symbols=None, pad='Q')[source]

        Return the Hill cipher encryption of msg.

        Parameters:
        @@ -1536,7 +1536,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_hill(msg, key, symbols=None)[source]
        +sympy.crypto.crypto.decipher_hill(msg, key, symbols=None)[source]

        Deciphering is the same as enciphering but using the inverse of the key matrix.

        Examples

        @@ -1587,7 +1587,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_bifid(msg, key, symbols=None)[source]
        +sympy.crypto.crypto.encipher_bifid(msg, key, symbols=None)[source]

        Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.

        This is the version of the Bifid cipher that uses an \(n \times n\) @@ -1632,7 +1632,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_bifid(msg, key, symbols=None)[source]
        +sympy.crypto.crypto.decipher_bifid(msg, key, symbols=None)[source]

        Performs the Bifid cipher decryption on ciphertext msg, and returns the plaintext.

        This is the version of the Bifid cipher that uses the \(n \times n\) @@ -1711,7 +1711,7 @@

        Cryptography
        -sympy.crypto.crypto.bifid5_square(key=None)[source]
        +sympy.crypto.crypto.bifid5_square(key=None)[source]

        5x5 Polybius square.

        Produce the Polybius square for the \(5 \times 5\) Bifid cipher.

        Examples

        @@ -1729,7 +1729,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_bifid5(msg, key)[source]
        +sympy.crypto.crypto.encipher_bifid5(msg, key)[source]

        Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.

        @@ -1832,7 +1832,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_bifid5(msg, key)[source]
        +sympy.crypto.crypto.decipher_bifid5(msg, key)[source]

        Return the Bifid cipher decryption of msg.

        Parameters:
        @@ -1874,7 +1874,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_bifid6(msg, key)[source]
        +sympy.crypto.crypto.encipher_bifid6(msg, key)[source]

        Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.

        This is the version of the Bifid cipher that uses the \(6 \times 6\) @@ -1907,7 +1907,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_bifid6(msg, key)[source]
        +sympy.crypto.crypto.decipher_bifid6(msg, key)[source]

        Performs the Bifid cipher decryption on ciphertext msg, and returns the plaintext.

        This is the version of the Bifid cipher that uses the \(6 \times 6\) @@ -1946,7 +1946,7 @@

        Cryptography
        -sympy.crypto.crypto.bifid6_square(key=None)[source]
        +sympy.crypto.crypto.bifid6_square(key=None)[source]

        6x6 Polybius square.

        Produces the Polybius square for the \(6 \times 6\) Bifid cipher. Assumes alphabet of symbols is “A”, …, “Z”, “0”, …, “9”.

        @@ -1967,7 +1967,7 @@

        Cryptography
        -sympy.crypto.crypto.rsa_public_key(*args, **kwargs)[source]
        +sympy.crypto.crypto.rsa_public_key(*args, **kwargs)[source]

        Return the RSA public key pair, \((n, e)\)

        Parameters:
        @@ -2133,7 +2133,7 @@

        Cryptography
        -sympy.crypto.crypto.rsa_private_key(*args, **kwargs)[source]
        +sympy.crypto.crypto.rsa_private_key(*args, **kwargs)[source]

        Return the RSA private key pair, \((n, d)\)

        Parameters:
        @@ -2259,7 +2259,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_rsa(i, key, factors=None)[source]
        +sympy.crypto.crypto.encipher_rsa(i, key, factors=None)[source]

        Encrypt the plaintext with RSA.

        Parameters:
        @@ -2324,7 +2324,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_rsa(i, key, factors=None)[source]
        +sympy.crypto.crypto.decipher_rsa(i, key, factors=None)[source]

        Decrypt the ciphertext with RSA.

        Parameters:
        @@ -2419,7 +2419,7 @@

        Cryptography
        -sympy.crypto.crypto.kid_rsa_public_key(a, b, A, B)[source]
        +sympy.crypto.crypto.kid_rsa_public_key(a, b, A, B)[source]

        Kid RSA is a version of RSA useful to teach grade school children since it does not involve exponentiation.

        Explanation

        @@ -2447,7 +2447,7 @@

        Cryptography
        -sympy.crypto.crypto.kid_rsa_private_key(a, b, A, B)[source]
        +sympy.crypto.crypto.kid_rsa_private_key(a, b, A, B)[source]

        Compute \(M = a b - 1\), \(e = A M + a\), \(d = B M + b\), \(n = (e d - 1) / M\). The private key is \(d\), which Bob keeps secret.

        @@ -2462,7 +2462,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_kid_rsa(msg, key)[source]
        +sympy.crypto.crypto.encipher_kid_rsa(msg, key)[source]

        Here msg is the plaintext and key is the public key.

        Examples

        >>> from sympy.crypto.crypto import (
        @@ -2478,7 +2478,7 @@ 

        Cryptography
        -sympy.crypto.crypto.decipher_kid_rsa(msg, key)[source]
        +sympy.crypto.crypto.decipher_kid_rsa(msg, key)[source]

        Here msg is the plaintext and key is the private key.

        Examples

        >>> from sympy.crypto.crypto import (
        @@ -2498,7 +2498,7 @@ 

        Cryptography
        -sympy.crypto.crypto.encode_morse(msg, sep='|', mapping=None)[source]
        +sympy.crypto.crypto.encode_morse(msg, sep='|', mapping=None)[source]

        Encodes a plaintext into popular Morse Code with letters separated by sep and words by a double sep.

        Examples

        @@ -2519,7 +2519,7 @@

        Cryptography
        -sympy.crypto.crypto.decode_morse(msg, sep='|', mapping=None)[source]
        +sympy.crypto.crypto.decode_morse(msg, sep='|', mapping=None)[source]

        Decodes a Morse Code with letters separated by sep (default is ‘|’) and words by \(word_sep\) (default is ‘||) into plaintext.

        @@ -2541,7 +2541,7 @@

        Cryptography
        -sympy.crypto.crypto.lfsr_sequence(key, fill, n)[source]
        +sympy.crypto.crypto.lfsr_sequence(key, fill, n)[source]

        This function creates an LFSR sequence.

        Parameters:
        @@ -2630,7 +2630,7 @@

        Cryptography
        -sympy.crypto.crypto.lfsr_autocorrelation(L, P, k)[source]
        +sympy.crypto.crypto.lfsr_autocorrelation(L, P, k)[source]

        This function computes the LFSR autocorrelation function.

        Parameters:
        @@ -2673,7 +2673,7 @@

        Cryptography
        -sympy.crypto.crypto.lfsr_connection_polynomial(s)[source]
        +sympy.crypto.crypto.lfsr_connection_polynomial(s)[source]

        This function computes the LFSR connection polynomial.

        Parameters:
        @@ -2733,7 +2733,7 @@

        Cryptography
        -sympy.crypto.crypto.elgamal_public_key(key)[source]
        +sympy.crypto.crypto.elgamal_public_key(key)[source]

        Return three number tuple as public key.

        Parameters:
        @@ -2760,7 +2760,7 @@

        Cryptography
        -sympy.crypto.crypto.elgamal_private_key(digit=10, seed=None)[source]
        +sympy.crypto.crypto.elgamal_private_key(digit=10, seed=None)[source]

        Return three number tuple as private key.

        Parameters:
        @@ -2802,7 +2802,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_elgamal(i, key, seed=None)[source]
        +sympy.crypto.crypto.encipher_elgamal(i, key, seed=None)[source]

        Encrypt message with public key.

        Parameters:
        @@ -2848,7 +2848,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_elgamal(msg, key)[source]
        +sympy.crypto.crypto.decipher_elgamal(msg, key)[source]

        Decrypt message with private key.

        \(msg = (c_{1}, c_{2})\)

        \(key = (p, r, d)\)

        @@ -2876,7 +2876,7 @@

        Cryptography
        -sympy.crypto.crypto.dh_public_key(key)[source]
        +sympy.crypto.crypto.dh_public_key(key)[source]

        Return three number tuple as public key.

        This is the tuple that Alice sends to Bob.

        @@ -2908,7 +2908,7 @@

        Cryptography
        -sympy.crypto.crypto.dh_private_key(digit=10, seed=None)[source]
        +sympy.crypto.crypto.dh_private_key(digit=10, seed=None)[source]

        Return three integer tuple as private key.

        Parameters:
        @@ -2964,7 +2964,7 @@

        Cryptography
        -sympy.crypto.crypto.dh_shared_key(key, b)[source]
        +sympy.crypto.crypto.dh_shared_key(key, b)[source]

        Return an integer that is the shared key.

        This is what Bob and Alice can both calculate using the public keys they received from each other and their private keys.

        @@ -3001,7 +3001,7 @@

        Cryptography
        -sympy.crypto.crypto.gm_public_key(p, q, a=None, seed=None)[source]
        +sympy.crypto.crypto.gm_public_key(p, q, a=None, seed=None)[source]

        Compute public keys for p and q. Note that in Goldwasser-Micali Encryption, public keys are randomly selected.

        @@ -3025,7 +3025,7 @@

        Cryptography
        -sympy.crypto.crypto.gm_private_key(p, q, a=None)[source]
        +sympy.crypto.crypto.gm_private_key(p, q, a=None)[source]

        Check if p and q can be used as private keys for the Goldwasser-Micali encryption. The method works roughly as follows.

        @@ -3085,7 +3085,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_gm(i, key, seed=None)[source]
        +sympy.crypto.crypto.encipher_gm(i, key, seed=None)[source]

        Encrypt integer ‘i’ using public_key ‘key’ Note that gm uses random encryption.

        @@ -3110,7 +3110,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_gm(message, key)[source]
        +sympy.crypto.crypto.decipher_gm(message, key)[source]

        Decrypt message ‘message’ using public_key ‘key’.

        Parameters:
        @@ -3134,7 +3134,7 @@

        Cryptography
        -sympy.crypto.crypto.encipher_railfence(message, rails)[source]
        +sympy.crypto.crypto.encipher_railfence(message, rails)[source]

        Performs Railfence Encryption on plaintext and returns ciphertext

        Parameters:
        @@ -3163,7 +3163,7 @@

        Cryptography
        -sympy.crypto.crypto.decipher_railfence(ciphertext, rails)[source]
        +sympy.crypto.crypto.decipher_railfence(ciphertext, rails)[source]

        Decrypt the message using the given rails

        Parameters:
        diff --git a/dev/modules/diffgeom.html b/dev/modules/diffgeom.html index 7b9dea2003a..ae7412833b0 100644 --- a/dev/modules/diffgeom.html +++ b/dev/modules/diffgeom.html @@ -807,7 +807,7 @@

        Introduction

        -class sympy.diffgeom.Manifold(name, dim, **kwargs)[source]
        +class sympy.diffgeom.Manifold(name, dim, **kwargs)[source]

        A mathematical manifold.

        Parameters:
        @@ -846,7 +846,7 @@

        Base Class Reference
        -class sympy.diffgeom.Patch(name, manifold, **kwargs)[source]
        +class sympy.diffgeom.Patch(name, manifold, **kwargs)[source]

        A patch on a manifold.

        Parameters:
        @@ -900,7 +900,7 @@

        Base Class Reference**kwargs,

        -)[source] +)[source]

        A coordinate system defined on the patch.

        Parameters:
        @@ -1009,7 +1009,7 @@

        Base Class Reference
        -base_oneform(coord_index)[source]
        +base_oneform(coord_index)[source]

        Return a basis 1-form field. The basis one-form field for this coordinate system. It is also an operator on vector fields.

        @@ -1017,27 +1017,27 @@

        Base Class Reference
        -base_oneforms()[source]
        +base_oneforms()[source]

        Returns a list of all base oneforms. For more details see the base_oneform method of this class.

        -base_scalar(coord_index)[source]
        +base_scalar(coord_index)[source]

        Return BaseScalarField that takes a point and returns one of the coordinates.

        -base_scalars()[source]
        +base_scalars()[source]

        Returns a list of all coordinate functions. For more details see the base_scalar method of this class.

        -base_vector(coord_index)[source]
        +base_vector(coord_index)[source]

        Return a basis vector field. The basis vector field for this coordinate system. It is also an operator on scalar fields.

        @@ -1045,20 +1045,20 @@

        Base Class Reference
        -base_vectors()[source]
        +base_vectors()[source]

        Returns a list of all base vectors. For more details see the base_vector method of this class.

        -coord_function(coord_index)[source]
        +coord_function(coord_index)[source]

        Return BaseScalarField that takes a point and returns one of the coordinates.

        -coord_functions()[source]
        +coord_functions()[source]

        Returns a list of all coordinate functions. For more details see the base_scalar method of this class.

        @@ -1072,13 +1072,13 @@

        Base Class Referencecoords,

        -)[source] +)[source]

        Transform coords to coord system to_sys.

        -jacobian(sys, coordinates=None)[source]
        +jacobian(sys, coordinates=None)[source]

        Return the jacobian matrix of a transformation on given coordinates. If coordinates are not given, coordinate symbols of self are used.

        @@ -1113,7 +1113,7 @@

        Base Class Referencecoordinates=None,

        -)[source] +)[source]

        Return the jacobian determinant of a transformation on given coordinates. If coordinates are not given, coordinate symbols of self are used.

        @@ -1138,7 +1138,7 @@

        Base Class Reference
        -jacobian_matrix(sys, coordinates=None)[source]
        +jacobian_matrix(sys, coordinates=None)[source]

        Return the jacobian matrix of a transformation on given coordinates. If coordinates are not given, coordinate symbols of self are used.

        @@ -1166,19 +1166,19 @@

        Base Class Reference
        -point(coords)[source]
        +point(coords)[source]

        Create a Point with coordinates given in this coord system.

        -point_to_coords(point)[source]
        +point_to_coords(point)[source]

        Calculate the coordinates of a point in this coord system.

        -transform(sys, coordinates=None)[source]
        +transform(sys, coordinates=None)[source]

        Return the result of coordinate transformation from self to sys. If coordinates are not given, coordinate symbols of self are used.

        @@ -1206,7 +1206,7 @@

        Base Class Reference
        -transformation(sys)[source]
        +transformation(sys)[source]

        Return coordinate transformation function from self to sys.

        Parameters:
        @@ -1230,7 +1230,7 @@

        Base Class Reference
        -class sympy.diffgeom.CoordinateSymbol(coord_sys, index, **assumptions)[source]
        +class sympy.diffgeom.CoordinateSymbol(coord_sys, index, **assumptions)[source]

        A symbol which denotes an abstract value of i-th coordinate of the coordinate system with given context.

        @@ -1283,7 +1283,7 @@

        Base Class Reference
        -class sympy.diffgeom.Point(coord_sys, coords, **kwargs)[source]
        +class sympy.diffgeom.Point(coord_sys, coords, **kwargs)[source]

        Point defined in a coordinate system.

        Parameters:
        @@ -1329,7 +1329,7 @@

        Base Class Reference
        -coords(sys=None)[source]
        +coords(sys=None)[source]

        Coordinates of the point in given coordinate system. If coordinate system is not passed, it returns the coordinates in the coordinate system in which the poin was defined.

        @@ -1339,7 +1339,7 @@

        Base Class Reference
        -class sympy.diffgeom.BaseScalarField(coord_sys, index, **kwargs)[source]
        +class sympy.diffgeom.BaseScalarField(coord_sys, index, **kwargs)[source]

        Base scalar field over a manifold for a given coordinate system.

        Parameters:
        @@ -1389,7 +1389,7 @@

        Base Class Reference
        -class sympy.diffgeom.BaseVectorField(coord_sys, index, **kwargs)[source]
        +class sympy.diffgeom.BaseVectorField(coord_sys, index, **kwargs)[source]

        Base vector field over a manifold for a given coordinate system.

        Parameters:
        @@ -1445,7 +1445,7 @@

        Base Class Reference
        -class sympy.diffgeom.Commutator(v1, v2)[source]
        +class sympy.diffgeom.Commutator(v1, v2)[source]

        Commutator of two vector fields.

        Explanation

        The commutator of two vector fields \(v_1\) and \(v_2\) is defined as the @@ -1479,7 +1479,7 @@

        Base Class Reference
        -class sympy.diffgeom.Differential(form_field)[source]
        +class sympy.diffgeom.Differential(form_field)[source]

        Return the differential (exterior derivative) of a form field.

        Explanation

        The differential of a form (i.e. the exterior derivative) has a complicated @@ -1521,7 +1521,7 @@

        Base Class Reference
        -class sympy.diffgeom.TensorProduct(*args)[source]
        +class sympy.diffgeom.TensorProduct(*args)[source]

        Tensor product of forms.

        Explanation

        The tensor product permits the creation of multilinear functionals (i.e. @@ -1575,7 +1575,7 @@

        Base Class Reference
        -class sympy.diffgeom.WedgeProduct(*args)[source]
        +class sympy.diffgeom.WedgeProduct(*args)[source]

        Wedge product of forms.

        Explanation

        In the context of integration only completely antisymmetric forms make @@ -1610,7 +1610,7 @@

        Base Class Reference
        -class sympy.diffgeom.LieDerivative(v_field, expr)[source]
        +class sympy.diffgeom.LieDerivative(v_field, expr)[source]

        Lie derivative with respect to a vector field.

        Explanation

        The transport operator that defines the Lie derivative is the pushforward of @@ -1662,7 +1662,7 @@

        Base Class Referencechristoffel,

        -)[source] +)[source]

        Covariant derivative operator with respect to a base vector.

        Examples

        >>> from sympy.diffgeom.rn import R2_r
        @@ -1690,7 +1690,7 @@ 

        Base Class Reference
        -class sympy.diffgeom.CovarDerivativeOp(wrt, christoffel)[source]
        +class sympy.diffgeom.CovarDerivativeOp(wrt, christoffel)[source]

        Covariant derivative operator.

        Examples

        >>> from sympy.diffgeom.rn import R2_r
        @@ -1727,7 +1727,7 @@ 

        Base Class Referencecoeffs=False,

        -)[source] +)[source]

        Return the series expansion for an integral curve of the field.

        Parameters:
        @@ -1836,7 +1836,7 @@

        Base Class Referencecoord_sys=None,

        -)[source] +)[source]

        Return the differential equation for an integral curve of the field.

        Parameters:
        @@ -1908,7 +1908,7 @@

        Base Class Reference
        -sympy.diffgeom.vectors_in_basis(expr, to_sys)[source]
        +sympy.diffgeom.vectors_in_basis(expr, to_sys)[source]

        Transform all base vectors in base vectors of a specified coord basis. While the new base vectors are in the new coordinate system basis, any coefficients are kept in the old system.

        @@ -1927,7 +1927,7 @@

        Base Class Reference
        -sympy.diffgeom.twoform_to_matrix(expr)[source]
        +sympy.diffgeom.twoform_to_matrix(expr)[source]

        Return the matrix representing the twoform.

        For the twoform \(w\) return the matrix \(M\) such that \(M[i,j]=w(e_i, e_j)\), where \(e_i\) is the i-th base vector field for the coordinate system in @@ -1956,7 +1956,7 @@

        Base Class Reference
        -sympy.diffgeom.metric_to_Christoffel_1st(expr)[source]
        +sympy.diffgeom.metric_to_Christoffel_1st(expr)[source]

        Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of first kind that represents the Levi-Civita connection for the given metric.

        @@ -1976,7 +1976,7 @@

        Base Class Reference
        -sympy.diffgeom.metric_to_Christoffel_2nd(expr)[source]
        +sympy.diffgeom.metric_to_Christoffel_2nd(expr)[source]

        Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of second kind that represents the Levi-Civita connection for the given metric.

        @@ -1996,7 +1996,7 @@

        Base Class Reference
        -sympy.diffgeom.metric_to_Riemann_components(expr)[source]
        +sympy.diffgeom.metric_to_Riemann_components(expr)[source]

        Return the components of the Riemann tensor expressed in a given basis.

        Given a metric it calculates the components of the Riemann tensor in the canonical basis of the coordinate system in which the metric expression is @@ -2024,7 +2024,7 @@

        Base Class Reference
        -sympy.diffgeom.metric_to_Ricci_components(expr)[source]
        +sympy.diffgeom.metric_to_Ricci_components(expr)[source]

        Return the components of the Ricci tensor expressed in a given basis.

        Given a metric it calculates the components of the Ricci tensor in the canonical basis of the coordinate system in which the metric expression is diff --git a/dev/modules/discrete.html b/dev/modules/discrete.html index d0c65fd757b..8b9d07ba13a 100644 --- a/dev/modules/discrete.html +++ b/dev/modules/discrete.html @@ -821,7 +821,7 @@

        Discrete

        Fast Fourier Transform

        -sympy.discrete.transforms.fft(seq, dps=None)[source]
        +sympy.discrete.transforms.fft(seq, dps=None)[source]

        Performs the Discrete Fourier Transform (DFT) in the complex domain.

        The sequence is automatically padded to the right with zeros, as the radix-2 FFT requires the number of sample points to be a power of 2.

        @@ -876,7 +876,7 @@

        Fast Fourier Transform
        -sympy.discrete.transforms.ifft(seq, dps=None)[source]
        +sympy.discrete.transforms.ifft(seq, dps=None)[source]

        Performs the Discrete Fourier Transform (DFT) in the complex domain.

        The sequence is automatically padded to the right with zeros, as the radix-2 FFT requires the number of sample points to be a power of 2.

        @@ -934,7 +934,7 @@

        Fast Fourier TransformNumber Theoretic Transform

        -sympy.discrete.transforms.ntt(seq, prime)[source]
        +sympy.discrete.transforms.ntt(seq, prime)[source]

        Performs the Number Theoretic Transform (NTT), which specializes the Discrete Fourier Transform (DFT) over quotient ring \(Z/pZ\) for prime \(p\) instead of complex numbers \(C\).

        @@ -984,7 +984,7 @@

        Number Theoretic Transform
        -sympy.discrete.transforms.intt(seq, prime)[source]
        +sympy.discrete.transforms.intt(seq, prime)[source]

        Performs the Number Theoretic Transform (NTT), which specializes the Discrete Fourier Transform (DFT) over quotient ring \(Z/pZ\) for prime \(p\) instead of complex numbers \(C\).

        @@ -1037,7 +1037,7 @@

        Number Theoretic Transform

        -sympy.discrete.transforms.fwht(seq)[source]
        +sympy.discrete.transforms.fwht(seq)[source]

        Performs the Walsh Hadamard Transform (WHT), and uses Hadamard ordering for the sequence.

        The sequence is automatically padded to the right with zeros, as the @@ -1079,7 +1079,7 @@

        Fast Walsh Hadamard Transform
        -sympy.discrete.transforms.ifwht(seq)[source]
        +sympy.discrete.transforms.ifwht(seq)[source]

        Performs the Walsh Hadamard Transform (WHT), and uses Hadamard ordering for the sequence.

        The sequence is automatically padded to the right with zeros, as the @@ -1124,7 +1124,7 @@

        Fast Walsh Hadamard Transform

        -sympy.discrete.transforms.mobius_transform(seq, subset=True)[source]
        +sympy.discrete.transforms.mobius_transform(seq, subset=True)[source]

        Performs the Mobius Transform for subset lattice with indices of sequence as bitmasks.

        The indices of each argument, considered as bit strings, correspond @@ -1192,7 +1192,7 @@

        Möbius Transform
        -sympy.discrete.transforms.inverse_mobius_transform(seq, subset=True)[source]
        +sympy.discrete.transforms.inverse_mobius_transform(seq, subset=True)[source]

        Performs the Mobius Transform for subset lattice with indices of sequence as bitmasks.

        The indices of each argument, considered as bit strings, correspond @@ -1283,7 +1283,7 @@

        Convolutionsubset=None,

        -)[source] +)[source]

        Performs convolution by determining the type of desired convolution using hints.

        Exactly one of dps, prime, dyadic, subset arguments @@ -1357,7 +1357,7 @@

        Convolution

        -sympy.discrete.convolutions.convolution_fft(a, b, dps=None)[source]
        +sympy.discrete.convolutions.convolution_fft(a, b, dps=None)[source]

        Performs linear convolution using Fast Fourier Transform.

        Parameters:
        @@ -1402,7 +1402,7 @@

        Convolution using Fast Fourier Transform

        -sympy.discrete.convolutions.convolution_ntt(a, b, prime)[source]
        +sympy.discrete.convolutions.convolution_ntt(a, b, prime)[source]

        Performs linear convolution using Number Theoretic Transform.

        Parameters:
        @@ -1445,7 +1445,7 @@

        Convolution using Number Theoretic Transform

        -sympy.discrete.convolutions.convolution_fwht(a, b)[source]
        +sympy.discrete.convolutions.convolution_fwht(a, b)[source]

        Performs dyadic (bitwise-XOR) convolution using Fast Walsh Hadamard Transform.

        The convolution is automatically padded to the right with zeros, as the @@ -1496,7 +1496,7 @@

        Convolution using Fast Walsh Hadamard Transform

        -sympy.discrete.convolutions.convolution_subset(a, b)[source]
        +sympy.discrete.convolutions.convolution_subset(a, b)[source]

        Performs Subset Convolution of given sequences.

        The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

        @@ -1543,7 +1543,7 @@

        Subset Convolution

        -sympy.discrete.convolutions.covering_product(a, b)[source]
        +sympy.discrete.convolutions.covering_product(a, b)[source]

        Returns the covering product of given sequences.

        The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

        @@ -1592,7 +1592,7 @@

        Covering Product

        -sympy.discrete.convolutions.intersecting_product(a, b)[source]
        +sympy.discrete.convolutions.intersecting_product(a, b)[source]

        Returns the intersecting product of given sequences.

        The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

        diff --git a/dev/modules/functions/combinatorial.html b/dev/modules/functions/combinatorial.html index d4dd619dff6..11eaece9e41 100644 --- a/dev/modules/functions/combinatorial.html +++ b/dev/modules/functions/combinatorial.html @@ -803,7 +803,7 @@
        Documentation Version

        This module implements various combinatorial functions.

        -class sympy.functions.combinatorial.numbers.bell(n, k_sym=None, symbols=None)[source]
        +class sympy.functions.combinatorial.numbers.bell(n, k_sym=None, symbols=None)[source]

        Bell numbers / Bell polynomials

        The Bell numbers satisfy \(B_0 = 1\) and

        @@ -877,7 +877,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.bernoulli(n, x=None)[source]
        +class sympy.functions.combinatorial.numbers.bernoulli(n, x=None)[source]

        Bernoulli numbers / Bernoulli polynomials / Bernoulli function

        The Bernoulli numbers are a sequence of rational numbers defined by \(B_0 = 1\) and the recursive relation (\(n > 0\)):

        @@ -995,7 +995,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.factorials.binomial(n, k)[source]
        +class sympy.functions.combinatorial.factorials.binomial(n, k)[source]

        Implementation of the binomial coefficient. It can be defined in two ways depending on its desired interpretation:

        @@ -1104,7 +1104,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.catalan(n)[source]
        +class sympy.functions.combinatorial.numbers.catalan(n)[source]

        Catalan numbers

        The \(n^{th}\) catalan number is given by:

        @@ -1199,7 +1199,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.euler(n, x=None)[source]
        +class sympy.functions.combinatorial.numbers.euler(n, x=None)[source]

        Euler numbers / Euler polynomials / Euler function

        The Euler numbers are given by:

        @@ -1296,7 +1296,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.factorials.factorial(n)[source]
        +class sympy.functions.combinatorial.factorials.factorial(n)[source]

        Implementation of factorial function over nonnegative integers. By convention (consistent with the gamma function and the binomial coefficients), factorial of a negative integer is complex infinity.

        @@ -1348,7 +1348,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.factorials.subfactorial(arg)[source]
        +class sympy.functions.combinatorial.factorials.subfactorial(arg)[source]

        The subfactorial counts the derangements of \(n\) items and is defined for non-negative integers as:

        @@ -1396,7 +1396,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.factorials.factorial2(arg)[source]
        +class sympy.functions.combinatorial.factorials.factorial2(arg)[source]

        The double factorial \(n!!\), not to be confused with \((n!)!\)

        The double factorial is defined for nonnegative integers and for odd negative integers as:

        @@ -1437,7 +1437,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.factorials.FallingFactorial(x, k)[source]
        +class sympy.functions.combinatorial.factorials.FallingFactorial(x, k)[source]

        Falling factorial (related to rising factorial) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by

        @@ -1507,7 +1507,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.fibonacci(n, sym=None)[source]
        +class sympy.functions.combinatorial.numbers.fibonacci(n, sym=None)[source]

        Fibonacci numbers / Fibonacci polynomials

        The Fibonacci numbers are the integer sequence defined by the initial terms \(F_0 = 0\), \(F_1 = 1\) and the two-term recurrence @@ -1554,7 +1554,7 @@

        Documentation Version
        -class sympy.functions.combinatorial.numbers.tribonacci(n, sym=None)[source]
        +class sympy.functions.combinatorial.numbers.tribonacci(n, sym=None)[source]

        Tribonacci numbers / Tribonacci polynomials

        The Tribonacci numbers are the integer sequence defined by the initial terms \(T_0 = 0\), \(T_1 = 1\), \(T_2 = 1\) and the three-term @@ -1599,7 +1599,7 @@

        Documentation Version
        -class sympy.functions.combinatorial.numbers.harmonic(n, m=None)[source]
        +class sympy.functions.combinatorial.numbers.harmonic(n, m=None)[source]

        Harmonic numbers

        The nth harmonic number is given by \(\operatorname{H}_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}\).

        @@ -1750,7 +1750,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.lucas(n)[source]
        +class sympy.functions.combinatorial.numbers.lucas(n)[source]

        Lucas numbers

        Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the @@ -1786,7 +1786,7 @@

        Documentation Version
        -class sympy.functions.combinatorial.numbers.genocchi(n, x=None)[source]
        +class sympy.functions.combinatorial.numbers.genocchi(n, x=None)[source]

        Genocchi numbers / Genocchi polynomials / Genocchi function

        The Genocchi numbers are a sequence of integers \(G_n\) that satisfy the relation:

        @@ -1845,7 +1845,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.andre(n)[source]
        +class sympy.functions.combinatorial.numbers.andre(n)[source]

        Andre numbers / Andre function

        The Andre number \(\mathcal{A}_n\) is Luschny’s name for half the number of alternating permutations on \(n\) elements, where a permutation is alternating @@ -1914,7 +1914,7 @@

        Documentation Version
        -class sympy.functions.combinatorial.numbers.partition(n)[source]
        +class sympy.functions.combinatorial.numbers.partition(n)[source]

        Partition numbers

        The Partition numbers are a sequence of integers \(p_n\) that represent the number of distinct ways of representing \(n\) as a sum of natural numbers @@ -1951,7 +1951,7 @@

        Documentation Version
        -class sympy.functions.combinatorial.numbers.divisor_sigma(n, k=1)[source]
        +class sympy.functions.combinatorial.numbers.divisor_sigma(n, k=1)[source]

        Calculate the divisor function \(\sigma_k(n)\) for positive integer n

        divisor_sigma(n, k) is equal to sum([x**k for x in divisors(n)])

        If n’s prime factorization is:

        @@ -1992,7 +1992,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.udivisor_sigma(n, k=1)[source]
        +class sympy.functions.combinatorial.numbers.udivisor_sigma(n, k=1)[source]

        Calculate the unitary divisor function \(\sigma_k^*(n)\) for positive integer n

        udivisor_sigma(n, k) is equal to sum([x**k for x in udivisors(n)])

        If n’s prime factorization is:

        @@ -2043,7 +2043,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.legendre_symbol(a, p)[source]
        +class sympy.functions.combinatorial.numbers.legendre_symbol(a, p)[source]

        Returns the Legendre symbol \((a / p)\).

        For an integer a and an odd prime p, the Legendre symbol is defined as

        @@ -2071,7 +2071,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.jacobi_symbol(m, n)[source]
        +class sympy.functions.combinatorial.numbers.jacobi_symbol(m, n)[source]

        Returns the Jacobi symbol \((m / n)\).

        For any integer m and any positive odd integer n the Jacobi symbol is defined as the product of the Legendre symbols corresponding to the @@ -2120,7 +2120,7 @@

        Documentation Version
        -class sympy.functions.combinatorial.numbers.kronecker_symbol(a, n)[source]
        +class sympy.functions.combinatorial.numbers.kronecker_symbol(a, n)[source]

        Returns the Kronecker symbol \((a / n)\).

        Examples

        >>> from sympy.functions.combinatorial.numbers import kronecker_symbol
        @@ -2145,7 +2145,7 @@ 
        Documentation Version
        -class sympy.functions.combinatorial.numbers.mobius(n)[source]
        +class sympy.functions.combinatorial.numbers.mobius(n)[source]

        Mobius function maps natural number to {-1, 0, 1}

        It is defined as follows:
          @@ -2200,7 +2200,7 @@
          Documentation Version
          -class sympy.functions.combinatorial.numbers.primenu(n)[source]
          +class sympy.functions.combinatorial.numbers.primenu(n)[source]

          Calculate the number of distinct prime factors for a positive integer n.

          If n’s prime factorization is:

          @@ -2239,7 +2239,7 @@
          Documentation Version
          -class sympy.functions.combinatorial.numbers.primeomega(n)[source]
          +class sympy.functions.combinatorial.numbers.primeomega(n)[source]

          Calculate the number of prime factors counting multiplicities for a positive integer n.

          If n’s prime factorization is:

          @@ -2279,7 +2279,7 @@
          Documentation Version
          -class sympy.functions.combinatorial.numbers.totient(n)[source]
          +class sympy.functions.combinatorial.numbers.totient(n)[source]

          Calculate the Euler totient function phi(n)

          totient(n) or \(\phi(n)\) is the number of positive integers \(\leq\) n that are relatively prime to n.

          @@ -2316,7 +2316,7 @@
          Documentation Version
          -class sympy.functions.combinatorial.numbers.reduced_totient(n)[source]
          +class sympy.functions.combinatorial.numbers.reduced_totient(n)[source]

          Calculate the Carmichael reduced totient function lambda(n)

          reduced_totient(n) or \(\lambda(n)\) is the smallest m > 0 such that \(k^m \equiv 1 \mod n\) for all k relatively prime to n.

          @@ -2353,7 +2353,7 @@
          Documentation Version
          -class sympy.functions.combinatorial.numbers.primepi(n)[source]
          +class sympy.functions.combinatorial.numbers.primepi(n)[source]

          Represents the prime counting function pi(n) = the number of prime numbers less than or equal to n.

          Examples

          @@ -2396,12 +2396,12 @@
          Documentation Version
          -class sympy.functions.combinatorial.factorials.MultiFactorial(*args)[source]
          +class sympy.functions.combinatorial.factorials.MultiFactorial(*args)[source]
          -class sympy.functions.combinatorial.factorials.RisingFactorial(x, k)[source]
          +class sympy.functions.combinatorial.factorials.RisingFactorial(x, k)[source]

          Rising factorial (also called Pochhammer symbol [R268]) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by:

          @@ -2468,7 +2468,7 @@
          Documentation Version
          -sympy.functions.combinatorial.numbers.stirling(n, k, d=None, kind=2, signed=False)[source]
          +sympy.functions.combinatorial.numbers.stirling(n, k, d=None, kind=2, signed=False)[source]

          Return Stirling number \(S(n, k)\) of the first or second (default) kind.

          The sum of all Stirling numbers of the second kind for \(k = 1\) through \(n\) is bell(n). The recurrence relationship for these numbers @@ -2576,7 +2576,7 @@

          Enumeration
          -sympy.functions.combinatorial.numbers.nC(n, k=None, replacement=False)[source]
          +sympy.functions.combinatorial.numbers.nC(n, k=None, replacement=False)[source]

          Return the number of combinations of n items taken k at a time.

          Possible values for n:

          @@ -2642,7 +2642,7 @@

          Enumeration
          -sympy.functions.combinatorial.numbers.nP(n, k=None, replacement=False)[source]
          +sympy.functions.combinatorial.numbers.nP(n, k=None, replacement=False)[source]

          Return the number of permutations of n items taken k at a time.

          Possible values for n:

          @@ -2700,7 +2700,7 @@

          Enumeration
          -sympy.functions.combinatorial.numbers.nT(n, k=None)[source]
          +sympy.functions.combinatorial.numbers.nT(n, k=None)[source]

          Return the number of k-sized partitions of n items.

          Possible values for n:

          diff --git a/dev/modules/functions/elementary.html b/dev/modules/functions/elementary.html index dce8210a6d2..b04c75f1f85 100644 --- a/dev/modules/functions/elementary.html +++ b/dev/modules/functions/elementary.html @@ -806,7 +806,7 @@
          Documentation Version

          Complex Functions

          -class sympy.functions.elementary.complexes.re(arg)[source]
          +class sympy.functions.elementary.complexes.re(arg)[source]

          Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result @@ -847,7 +847,7 @@

          Complex Functions
          -as_real_imag(deep=True, **hints)[source]
          +as_real_imag(deep=True, **hints)[source]

          Returns the real number with a zero imaginary part.

          @@ -855,7 +855,7 @@

          Complex Functions
          -class sympy.functions.elementary.complexes.im(arg)[source]
          +class sympy.functions.elementary.complexes.im(arg)[source]

          Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then @@ -896,7 +896,7 @@

          Complex Functions
          -as_real_imag(deep=True, **hints)[source]
          +as_real_imag(deep=True, **hints)[source]

          Return the imaginary part with a zero real part.

          @@ -904,7 +904,7 @@

          Complex Functions
          -class sympy.functions.elementary.complexes.sign(arg)[source]
          +class sympy.functions.elementary.complexes.sign(arg)[source]

          Returns the complex sign of an expression:

          Parameters:
          @@ -962,7 +962,7 @@

          Complex Functions
          -class sympy.functions.elementary.complexes.Abs(arg)[source]
          +class sympy.functions.elementary.complexes.Abs(arg)[source]

          Return the absolute value of the argument.

          Parameters:
          @@ -1015,7 +1015,7 @@

          Complex Functions
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Get the first derivative of the argument to Abs().

          @@ -1023,7 +1023,7 @@

          Complex Functions
          -class sympy.functions.elementary.complexes.arg(arg)[source]
          +class sympy.functions.elementary.complexes.arg(arg)[source]

          Returns the argument (in radians) of a complex number. The argument is evaluated in consistent convention with atan2 where the branch-cut is taken along the negative real axis and arg(z) is in the interval @@ -1072,7 +1072,7 @@

          Complex Functions
          -class sympy.functions.elementary.complexes.conjugate(arg)[source]
          +class sympy.functions.elementary.complexes.conjugate(arg)[source]

          Returns the complex conjugate [R276] of an argument. In mathematics, the complex conjugate of a complex number is given by changing the sign of the imaginary part.

          @@ -1120,7 +1120,7 @@

          Complex Functions
          -class sympy.functions.elementary.complexes.polar_lift(arg)[source]
          +class sympy.functions.elementary.complexes.polar_lift(arg)[source]

          Lift argument to the Riemann surface of the logarithm, using the standard branch.

          @@ -1159,7 +1159,7 @@

          Complex Functions
          -class sympy.functions.elementary.complexes.periodic_argument(ar, period)[source]
          +class sympy.functions.elementary.complexes.periodic_argument(ar, period)[source]

          Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period \(P\), always return a value in \((-P/2, P/2]\), by using \(\exp(PI) = 1\).

          @@ -1205,7 +1205,7 @@

          Complex Functions
          -class sympy.functions.elementary.complexes.principal_branch(x, period)[source]
          +class sympy.functions.elementary.complexes.principal_branch(x, period)[source]

          Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm.

          @@ -1253,7 +1253,7 @@

          Trigonometric

          Trigonometric Functions

          -class sympy.functions.elementary.trigonometric.sin(arg)[source]
          +class sympy.functions.elementary.trigonometric.sin(arg)[source]

          The sine function.

          Returns the sine of x (measured in radians).

          Explanation

          @@ -1305,7 +1305,7 @@

          Trigonometric
          -class sympy.functions.elementary.trigonometric.cos(arg)[source]
          +class sympy.functions.elementary.trigonometric.cos(arg)[source]

          The cosine function.

          Returns the cosine of x (measured in radians).

          Explanation

          @@ -1350,7 +1350,7 @@

          Trigonometric
          -class sympy.functions.elementary.trigonometric.tan(arg)[source]
          +class sympy.functions.elementary.trigonometric.tan(arg)[source]

          The tangent function.

          Returns the tangent of x (measured in radians).

          Explanation

          @@ -1387,7 +1387,7 @@

          Trigonometric
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -1395,7 +1395,7 @@

          Trigonometric
          -class sympy.functions.elementary.trigonometric.cot(arg)[source]
          +class sympy.functions.elementary.trigonometric.cot(arg)[source]

          The cotangent function.

          Returns the cotangent of x (measured in radians).

          Explanation

          @@ -1432,7 +1432,7 @@

          Trigonometric
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -1440,7 +1440,7 @@

          Trigonometric
          -class sympy.functions.elementary.trigonometric.sec(arg)[source]
          +class sympy.functions.elementary.trigonometric.sec(arg)[source]

          The secant function.

          Returns the secant of x (measured in radians).

          Explanation

          @@ -1477,7 +1477,7 @@

          Trigonometric
          -class sympy.functions.elementary.trigonometric.csc(arg)[source]
          +class sympy.functions.elementary.trigonometric.csc(arg)[source]

          The cosecant function.

          Returns the cosecant of x (measured in radians).

          Explanation

          @@ -1514,7 +1514,7 @@

          Trigonometric
          -class sympy.functions.elementary.trigonometric.sinc(arg)[source]
          +class sympy.functions.elementary.trigonometric.sinc(arg)[source]

          Represents an unnormalized sinc function:

          @@ -1579,7 +1579,7 @@

          Trigonometric

          -class sympy.functions.elementary.trigonometric.asin(arg)[source]
          +class sympy.functions.elementary.trigonometric.asin(arg)[source]

          The inverse sine function.

          Returns the arcsine of x in radians.

          Explanation

          @@ -1620,7 +1620,7 @@

          Trigonometric Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -1628,7 +1628,7 @@

          Trigonometric Inverses
          -class sympy.functions.elementary.trigonometric.acos(arg)[source]
          +class sympy.functions.elementary.trigonometric.acos(arg)[source]

          The inverse cosine function.

          Explanation

          Returns the arc cosine of x (measured in radians).

          @@ -1669,7 +1669,7 @@

          Trigonometric Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -1677,7 +1677,7 @@

          Trigonometric Inverses
          -class sympy.functions.elementary.trigonometric.atan(arg)[source]
          +class sympy.functions.elementary.trigonometric.atan(arg)[source]

          The inverse tangent function.

          Returns the arc tangent of x (measured in radians).

          Explanation

          @@ -1715,7 +1715,7 @@

          Trigonometric Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -1723,7 +1723,7 @@

          Trigonometric Inverses
          -class sympy.functions.elementary.trigonometric.acot(arg)[source]
          +class sympy.functions.elementary.trigonometric.acot(arg)[source]

          The inverse cotangent function.

          Returns the arc cotangent of x (measured in radians).

          Explanation

          @@ -1761,7 +1761,7 @@

          Trigonometric Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -1769,7 +1769,7 @@

          Trigonometric Inverses
          -class sympy.functions.elementary.trigonometric.asec(arg)[source]
          +class sympy.functions.elementary.trigonometric.asec(arg)[source]

          The inverse secant function.

          Returns the arc secant of x (measured in radians).

          Explanation

          @@ -1830,7 +1830,7 @@

          Trigonometric Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -1838,7 +1838,7 @@

          Trigonometric Inverses
          -class sympy.functions.elementary.trigonometric.acsc(arg)[source]
          +class sympy.functions.elementary.trigonometric.acsc(arg)[source]

          The inverse cosecant function.

          Returns the arc cosecant of x (measured in radians).

          Explanation

          @@ -1880,7 +1880,7 @@

          Trigonometric Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -1888,7 +1888,7 @@

          Trigonometric Inverses
          -class sympy.functions.elementary.trigonometric.atan2(y, x)[source]
          +class sympy.functions.elementary.trigonometric.atan2(y, x)[source]

          The function atan2(y, x) computes \(\operatorname{atan}(y/x)\) taking two arguments \(y\) and \(x\). Signs of both \(y\) and \(x\) are considered to determine the appropriate quadrant of \(\operatorname{atan}(y/x)\). @@ -1999,7 +1999,7 @@

          Hyperbolic

          -class sympy.functions.elementary.hyperbolic.HyperbolicFunction(*args)[source]
          +class sympy.functions.elementary.hyperbolic.HyperbolicFunction(*args)[source]

          Base class for hyperbolic functions.

          See also

          @@ -2009,7 +2009,7 @@

          Hyperbolic Functions
          -class sympy.functions.elementary.hyperbolic.sinh(arg)[source]
          +class sympy.functions.elementary.hyperbolic.sinh(arg)[source]

          sinh(x) is the hyperbolic sine of x.

          The hyperbolic sine function is \(\frac{e^x - e^{-x}}{2}\).

          Examples

          @@ -2025,25 +2025,25 @@

          Hyperbolic Functions
          -as_real_imag(deep=True, **hints)[source]
          +as_real_imag(deep=True, **hints)[source]

          Returns this function as a complex coordinate.

          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Returns the first derivative of this function.

          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          -static taylor_term(n, x, *previous_terms)[source]
          +static taylor_term(n, x, *previous_terms)[source]

          Returns the next term in the Taylor series expansion.

          @@ -2051,7 +2051,7 @@

          Hyperbolic Functions
          -class sympy.functions.elementary.hyperbolic.cosh(arg)[source]
          +class sympy.functions.elementary.hyperbolic.cosh(arg)[source]

          cosh(x) is the hyperbolic cosine of x.

          The hyperbolic cosine function is \(\frac{e^x + e^{-x}}{2}\).

          Examples

          @@ -2069,7 +2069,7 @@

          Hyperbolic Functions
          -class sympy.functions.elementary.hyperbolic.tanh(arg)[source]
          +class sympy.functions.elementary.hyperbolic.tanh(arg)[source]

          tanh(x) is the hyperbolic tangent of x.

          The hyperbolic tangent function is \(\frac{\sinh(x)}{\cosh(x)}\).

          Examples

          @@ -2085,7 +2085,7 @@

          Hyperbolic Functions
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2093,7 +2093,7 @@

          Hyperbolic Functions
          -class sympy.functions.elementary.hyperbolic.coth(arg)[source]
          +class sympy.functions.elementary.hyperbolic.coth(arg)[source]

          coth(x) is the hyperbolic cotangent of x.

          The hyperbolic cotangent function is \(\frac{\cosh(x)}{\sinh(x)}\).

          Examples

          @@ -2109,7 +2109,7 @@

          Hyperbolic Functions
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2117,7 +2117,7 @@

          Hyperbolic Functions
          -class sympy.functions.elementary.hyperbolic.sech(arg)[source]
          +class sympy.functions.elementary.hyperbolic.sech(arg)[source]

          sech(x) is the hyperbolic secant of x.

          The hyperbolic secant function is \(\frac{2}{e^x + e^{-x}}\)

          Examples

          @@ -2135,7 +2135,7 @@

          Hyperbolic Functions
          -class sympy.functions.elementary.hyperbolic.csch(arg)[source]
          +class sympy.functions.elementary.hyperbolic.csch(arg)[source]

          csch(x) is the hyperbolic cosecant of x.

          The hyperbolic cosecant function is \(\frac{2}{e^x - e^{-x}}\)

          Examples

          @@ -2151,13 +2151,13 @@

          Hyperbolic Functions
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Returns the first derivative of this function

          -static taylor_term(n, x, *previous_terms)[source]
          +static taylor_term(n, x, *previous_terms)[source]

          Returns the next term in the Taylor series expansion

          @@ -2168,7 +2168,7 @@

          Hyperbolic FunctionsHyperbolic Inverses

          -class sympy.functions.elementary.hyperbolic.asinh(arg)[source]
          +class sympy.functions.elementary.hyperbolic.asinh(arg)[source]

          asinh(x) is the inverse hyperbolic sine of x.

          The inverse hyperbolic sine function.

          Examples

          @@ -2186,7 +2186,7 @@

          Hyperbolic Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2194,7 +2194,7 @@

          Hyperbolic Inverses
          -class sympy.functions.elementary.hyperbolic.acosh(arg)[source]
          +class sympy.functions.elementary.hyperbolic.acosh(arg)[source]

          acosh(x) is the inverse hyperbolic cosine of x.

          The inverse hyperbolic cosine function.

          Examples

          @@ -2212,7 +2212,7 @@

          Hyperbolic Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2220,7 +2220,7 @@

          Hyperbolic Inverses
          -class sympy.functions.elementary.hyperbolic.atanh(arg)[source]
          +class sympy.functions.elementary.hyperbolic.atanh(arg)[source]

          atanh(x) is the inverse hyperbolic tangent of x.

          The inverse hyperbolic tangent function.

          Examples

          @@ -2236,7 +2236,7 @@

          Hyperbolic Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2244,7 +2244,7 @@

          Hyperbolic Inverses
          -class sympy.functions.elementary.hyperbolic.acoth(arg)[source]
          +class sympy.functions.elementary.hyperbolic.acoth(arg)[source]

          acoth(x) is the inverse hyperbolic cotangent of x.

          The inverse hyperbolic cotangent function.

          Examples

          @@ -2260,7 +2260,7 @@

          Hyperbolic Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2268,7 +2268,7 @@

          Hyperbolic Inverses
          -class sympy.functions.elementary.hyperbolic.asech(arg)[source]
          +class sympy.functions.elementary.hyperbolic.asech(arg)[source]

          asech(x) is the inverse hyperbolic secant of x.

          The inverse hyperbolic secant function.

          Examples

          @@ -2309,7 +2309,7 @@

          Hyperbolic Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2317,7 +2317,7 @@

          Hyperbolic Inverses
          -class sympy.functions.elementary.hyperbolic.acsch(arg)[source]
          +class sympy.functions.elementary.hyperbolic.acsch(arg)[source]

          acsch(x) is the inverse hyperbolic cosecant of x.

          The inverse hyperbolic cosecant function.

          Examples

          @@ -2358,7 +2358,7 @@

          Hyperbolic Inverses
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2370,7 +2370,7 @@

          Hyperbolic Inverses

          -class sympy.functions.elementary.integers.ceiling(arg)[source]
          +class sympy.functions.elementary.integers.ceiling(arg)[source]

          Ceiling is a univariate function which returns the smallest integer value not less than its argument. This implementation generalizes ceiling to complex numbers by taking the ceiling of the @@ -2410,7 +2410,7 @@

          Integer Functions
          -class sympy.functions.elementary.integers.floor(arg)[source]
          +class sympy.functions.elementary.integers.floor(arg)[source]

          Floor is a univariate function which returns the largest integer value not greater than its argument. This implementation generalizes floor to complex numbers by taking the floor of the @@ -2450,13 +2450,13 @@

          Integer Functions
          -class sympy.functions.elementary.integers.RoundFunction(arg)[source]
          +class sympy.functions.elementary.integers.RoundFunction(arg)[source]

          Abstract base class for rounding functions.

          -class sympy.functions.elementary.integers.frac(arg)[source]
          +class sympy.functions.elementary.integers.frac(arg)[source]

          Represents the fractional part of x

          For real numbers it is defined [R328] as

          @@ -2513,7 +2513,7 @@

          Integer Functions

          -class sympy.functions.elementary.exponential.exp(arg)[source]
          +class sympy.functions.elementary.exponential.exp(arg)[source]

          The exponential function, \(e^x\).

          Parameters:
          @@ -2537,7 +2537,7 @@

          Exponential
          -as_real_imag(deep=True, **hints)[source]
          +as_real_imag(deep=True, **hints)[source]

          Returns this function as a 2-tuple representing a complex number.

          Examples

          >>> from sympy import exp, I
          @@ -2566,13 +2566,13 @@ 

          Exponential
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Returns the first derivative of this function.

          -static taylor_term(n, x, *previous_terms)[source]
          +static taylor_term(n, x, *previous_terms)[source]

          Calculates the next term in the Taylor series expansion.

          @@ -2580,7 +2580,7 @@

          Exponential
          -class sympy.functions.elementary.exponential.LambertW(x, k=None)[source]
          +class sympy.functions.elementary.exponential.LambertW(x, k=None)[source]

          The Lambert W function \(W(z)\) is defined as the inverse function of \(w \exp(w)\) [R330].

          Explanation

          @@ -2613,7 +2613,7 @@

          Exponential
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Return the first derivative of this function.

          @@ -2621,7 +2621,7 @@

          Exponential
          -class sympy.functions.elementary.exponential.log(arg, base=None)[source]
          +class sympy.functions.elementary.exponential.log(arg, base=None)[source]

          The natural logarithm function \(\ln(x)\) or \(\log(x)\).

          Explanation

          Logarithms are taken with the natural base, \(e\). To get @@ -2647,13 +2647,13 @@

          Exponential
          -as_base_exp()[source]
          +as_base_exp()[source]

          Returns this function in the form (base, exponent).

          -as_real_imag(deep=True, **hints)[source]
          +as_real_imag(deep=True, **hints)[source]

          Returns this function as a complex coordinate.

          Examples

          >>> from sympy import I, log
          @@ -2672,19 +2672,19 @@ 

          Exponential
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Returns the first derivative of the function.

          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns \(e^x\), the inverse function of \(\log(x)\).

          -static taylor_term(n, x, *previous_terms)[source]
          +static taylor_term(n, x, *previous_terms)[source]

          Returns the next term in the Taylor series expansion of \(\log(1+x)\).

          @@ -2692,7 +2692,7 @@

          Exponential
          -class sympy.functions.elementary.exponential.exp_polar(*args)[source]
          +class sympy.functions.elementary.exponential.exp_polar(*args)[source]

          Represent a polar number (see g-function Sphinx documentation).

          Explanation

          exp_polar represents the function @@ -2726,7 +2726,7 @@

          Exponential

          -class sympy.functions.elementary.piecewise.ExprCondPair(expr, cond)[source]
          +class sympy.functions.elementary.piecewise.ExprCondPair(expr, cond)[source]

          Represents an expression, condition pair.

          @@ -2744,7 +2744,7 @@

          Piecewise
          -class sympy.functions.elementary.piecewise.Piecewise(*_args)[source]
          +class sympy.functions.elementary.piecewise.Piecewise(*_args)[source]

          Represents a piecewise function.

          Usage:

          @@ -2806,7 +2806,7 @@

          Piecewise
          -_eval_integral(x, _first=True, **kwargs)[source]
          +_eval_integral(x, _first=True, **kwargs)[source]

          Return the indefinite integral of the Piecewise such that subsequent substitution of x with a value will give the value of the integral (not including @@ -2831,7 +2831,7 @@

          Piecewise
          -as_expr_set_pairs(domain=None)[source]
          +as_expr_set_pairs(domain=None)[source]

          Return tuples for each argument of self that give the expression and the interval in which it is valid which is contained within the given domain. @@ -2858,13 +2858,13 @@

          Piecewise
          -doit(**hints)[source]
          +doit(**hints)[source]

          Evaluate this piecewise function.

          -classmethod eval(*_args)[source]
          +classmethod eval(*_args)[source]

          Either return a modified version of the args or, if no modifications were made, return None.

          Modifications that are made here:

          @@ -2892,7 +2892,7 @@

          Piecewise
          -piecewise_integrate(x, **kwargs)[source]
          +piecewise_integrate(x, **kwargs)[source]

          Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the integrate() function or method.

          @@ -2939,7 +2939,7 @@

          Piecewisedeep=True,

          -)[source] +)[source]

          Rewrite Piecewise with mutually exclusive conditions.

          Parameters:
          @@ -3000,7 +3000,7 @@

          Piecewise
          -sympy.functions.elementary.piecewise.piecewise_fold(expr, evaluate=True)[source]
          +sympy.functions.elementary.piecewise.piecewise_fold(expr, evaluate=True)[source]

          Takes an expression containing a piecewise function and returns the expression in piecewise form. In addition, any ITE conditions are rewritten in negation normal form and simplified.

          @@ -3027,7 +3027,7 @@

          Piecewise

          -class sympy.functions.elementary.miscellaneous.IdentityFunction[source]
          +class sympy.functions.elementary.miscellaneous.IdentityFunction[source]

          The identity function

          Examples

          >>> from sympy import Id, Symbol
          @@ -3040,7 +3040,7 @@ 

          Miscellaneous
          -class sympy.functions.elementary.miscellaneous.Min(*args)[source]
          +class sympy.functions.elementary.miscellaneous.Min(*args)[source]

          Return, if possible, the minimum value of the list. It is named Min and not min to avoid conflicts with the built-in function min.

          @@ -3074,7 +3074,7 @@

          Miscellaneous
          -class sympy.functions.elementary.miscellaneous.Max(*args)[source]
          +class sympy.functions.elementary.miscellaneous.Max(*args)[source]

          Return, if possible, the maximum value of the list.

          When number of arguments is equal one, then return this argument.

          @@ -3160,7 +3160,7 @@

          Miscellaneous
          -sympy.functions.elementary.miscellaneous.root(arg, n, k=0, evaluate=None)[source]
          +sympy.functions.elementary.miscellaneous.root(arg, n, k=0, evaluate=None)[source]

          Returns the k-th n-th root of arg.

          Parameters:
          @@ -3276,7 +3276,7 @@

          Miscellaneous
          -sympy.functions.elementary.miscellaneous.sqrt(arg, evaluate=None)[source]
          +sympy.functions.elementary.miscellaneous.sqrt(arg, evaluate=None)[source]

          Returns the principal square root.

          Parameters:
          @@ -3371,7 +3371,7 @@

          Miscellaneous
          -sympy.functions.elementary.miscellaneous.cbrt(arg, evaluate=None)[source]
          +sympy.functions.elementary.miscellaneous.cbrt(arg, evaluate=None)[source]

          Returns the principal cube root.

          Parameters:
          @@ -3434,7 +3434,7 @@

          Miscellaneous
          -sympy.functions.elementary.miscellaneous.real_root(arg, n=None, evaluate=None)[source]
          +sympy.functions.elementary.miscellaneous.real_root(arg, n=None, evaluate=None)[source]

          Return the real n’th-root of arg if possible.

          Parameters:
          diff --git a/dev/modules/functions/index.html b/dev/modules/functions/index.html index a32786b6ee7..de2c64efc2c 100644 --- a/dev/modules/functions/index.html +++ b/dev/modules/functions/index.html @@ -804,7 +804,7 @@
          Documentation Version
          sympy.core.function.Function.

          -class sympy.core.function.Function(*args)[source]
          +class sympy.core.function.Function(*args)[source]

          Base class for applied mathematical functions.

          It also serves as a constructor for undefined function classes.

          See the Writing Custom Functions guide for details on how to subclass @@ -852,19 +852,19 @@

          Documentation Version
          to create a custom function.

          -as_base_exp()[source]
          +as_base_exp()[source]

          Returns the method as the 2-tuple (base, exponent).

          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Returns the first derivative of the function.

          -classmethod is_singular(a)[source]
          +classmethod is_singular(a)[source]

          Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic.

          diff --git a/dev/modules/functions/special.html b/dev/modules/functions/special.html index d5ac060ad88..6ebf60bc667 100644 --- a/dev/modules/functions/special.html +++ b/dev/modules/functions/special.html @@ -804,7 +804,7 @@
          Documentation Version

          Dirac Delta and Related Discontinuous Functions

          -class sympy.functions.special.delta_functions.DiracDelta(arg, k=0)[source]
          +class sympy.functions.special.delta_functions.DiracDelta(arg, k=0)[source]

          The DiracDelta function and its derivatives.

          Explanation

          DiracDelta is not an ordinary function. It can be rigorously defined either @@ -881,7 +881,7 @@

          Dirac Delta and Related Discontinuous Functions
          -classmethod eval(arg, k=0)[source]
          +classmethod eval(arg, k=0)[source]

          Returns a simplified form or a value of DiracDelta depending on the argument passed by the DiracDelta object.

          @@ -944,7 +944,7 @@

          Dirac Delta and Related Discontinuous Functions
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Returns the first derivative of a DiracDelta Function.

          Parameters:
          @@ -986,7 +986,7 @@

          Dirac Delta and Related Discontinuous Functions
          -is_simple(x)[source]
          +is_simple(x)[source]

          Tells whether the argument(args[0]) of DiracDelta is a linear expression in x.

          @@ -1023,7 +1023,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.delta_functions.Heaviside(arg, H0=1 / 2)[source]
          +class sympy.functions.special.delta_functions.Heaviside(arg, H0=1 / 2)[source]

          Heaviside step function.

          Explanation

          The Heaviside step function has the following properties:

          @@ -1076,7 +1076,7 @@

          Dirac Delta and Related Discontinuous Functions
          -classmethod eval(arg, H0=1 / 2)[source]
          +classmethod eval(arg, H0=1 / 2)[source]

          Returns a simplified form or a value of Heaviside depending on the argument passed by the Heaviside object.

          @@ -1132,7 +1132,7 @@

          Dirac Delta and Related Discontinuous Functions
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Returns the first derivative of a Heaviside Function.

          Parameters:
          @@ -1171,7 +1171,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.singularity_functions.SingularityFunction(variable, offset, exponent)[source]
          +class sympy.functions.special.singularity_functions.SingularityFunction(variable, offset, exponent)[source]

          Singularity functions are a class of discontinuous functions.

          Explanation

          Singularity functions take a variable, an offset, and an exponent as @@ -1244,7 +1244,7 @@

          Dirac Delta and Related Discontinuous Functionsexponent,

          -)[source] +)[source]

          Returns a simplified form or a value of Singularity Function depending on the argument passed by the object.

          Explanation

          @@ -1282,7 +1282,7 @@

          Dirac Delta and Related Discontinuous Functions
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Returns the first derivative of a DiracDelta Function.

          Explanation

          The difference between diff() and fdiff() is: diff() is the @@ -1300,7 +1300,7 @@

          Dirac Delta and Related Discontinuous Functions

          Gamma, Beta and Related Functions

          -class sympy.functions.special.gamma_functions.gamma(arg)[source]
          +class sympy.functions.special.gamma_functions.gamma(arg)[source]

          The gamma function

          @@ -1393,7 +1393,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.gamma_functions.loggamma(z)[source]
          +class sympy.functions.special.gamma_functions.loggamma(z)[source]

          The loggamma function implements the logarithm of the gamma function (i.e., \(\log\Gamma(x)\)).

          Examples

          @@ -1521,7 +1521,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.gamma_functions.polygamma(n, z)[source]
          +class sympy.functions.special.gamma_functions.polygamma(n, z)[source]

          The function polygamma(n, z) returns log(gamma(z)).diff(n + 1).

          Explanation

          It is a meromorphic function on \(\mathbb{C}\) and defined as the \((n+1)\)-th @@ -1650,7 +1650,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.gamma_functions.digamma(z)[source]
          +class sympy.functions.special.gamma_functions.digamma(z)[source]

          The digamma function is the first derivative of the loggamma function

          @@ -1714,7 +1714,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.gamma_functions.trigamma(z)[source]
          +class sympy.functions.special.gamma_functions.trigamma(z)[source]

          The trigamma function is the second derivative of the loggamma function

          @@ -1777,7 +1777,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.gamma_functions.uppergamma(a, z)[source]
          +class sympy.functions.special.gamma_functions.uppergamma(a, z)[source]

          The upper incomplete gamma function.

          Explanation

          It can be defined as the meromorphic continuation of

          @@ -1863,7 +1863,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.gamma_functions.lowergamma(a, x)[source]
          +class sympy.functions.special.gamma_functions.lowergamma(a, x)[source]

          The lower incomplete gamma function.

          Explanation

          It can be defined as the meromorphic continuation of

          @@ -1936,7 +1936,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.gamma_functions.multigamma(x, p)[source]
          +class sympy.functions.special.gamma_functions.multigamma(x, p)[source]

          The multivariate gamma function is a generalization of the gamma function

          @@ -1996,7 +1996,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.beta_functions.beta(x, y=None)[source]
          +class sympy.functions.special.beta_functions.beta(x, y=None)[source]

          The beta integral is called the Eulerian integral of the first kind by Legendre:

          @@ -2104,7 +2104,7 @@

          Dirac Delta and Related Discontinuous Functions

          Error Functions and Fresnel Integrals

          -class sympy.functions.special.error_functions.erf(arg)[source]
          +class sympy.functions.special.error_functions.erf(arg)[source]

          The Gauss error function.

          Explanation

          This function is defined as:

          @@ -2195,7 +2195,7 @@

          Dirac Delta and Related Discontinuous Functions
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2203,7 +2203,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.error_functions.erfc(arg)[source]
          +class sympy.functions.special.error_functions.erfc(arg)[source]

          Complementary Error Function.

          Explanation

          The function is defined as:

          @@ -2294,7 +2294,7 @@

          Dirac Delta and Related Discontinuous Functions
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2302,7 +2302,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.error_functions.erfi(z)[source]
          +class sympy.functions.special.error_functions.erfi(z)[source]

          Imaginary error function.

          Explanation

          The function erfi is defined as:

          @@ -2390,7 +2390,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.error_functions.erf2(x, y)[source]
          +class sympy.functions.special.error_functions.erf2(x, y)[source]

          Two-argument error function.

          Explanation

          This function is defined as:

          @@ -2465,7 +2465,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.error_functions.erfinv(z)[source]
          +class sympy.functions.special.error_functions.erfinv(z)[source]

          Inverse Error Function. The erfinv function is defined as:

          @@ -2525,7 +2525,7 @@

          Dirac Delta and Related Discontinuous Functions
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2533,7 +2533,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.error_functions.erfcinv(z)[source]
          +class sympy.functions.special.error_functions.erfcinv(z)[source]

          Inverse Complementary Error Function. The erfcinv function is defined as:

          @@ -2587,7 +2587,7 @@

          Dirac Delta and Related Discontinuous Functions
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Returns the inverse of this function.

          @@ -2595,7 +2595,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.error_functions.erf2inv(x, y)[source]
          +class sympy.functions.special.error_functions.erf2inv(x, y)[source]

          Two-argument Inverse error function. The erf2inv function is defined as:

          @@ -2655,13 +2655,13 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.error_functions.FresnelIntegral(z)[source]
          +class sympy.functions.special.error_functions.FresnelIntegral(z)[source]

          Base class for the Fresnel integrals.

          -class sympy.functions.special.error_functions.fresnels(z)[source]
          +class sympy.functions.special.error_functions.fresnels(z)[source]

          Fresnel integral S.

          Explanation

          This function is defined by

          @@ -2761,7 +2761,7 @@

          Dirac Delta and Related Discontinuous Functions
          -class sympy.functions.special.error_functions.fresnelc(z)[source]
          +class sympy.functions.special.error_functions.fresnelc(z)[source]

          Fresnel integral C.

          Explanation

          This function is defined by

          @@ -2864,7 +2864,7 @@

          Dirac Delta and Related Discontinuous Functions

          -class sympy.functions.special.error_functions.Ei(z)[source]
          +class sympy.functions.special.error_functions.Ei(z)[source]

          The classical exponential integral.

          Explanation

          For use in SymPy, this function is defined as

          @@ -2965,7 +2965,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.error_functions.expint(nu, z)[source]
          +class sympy.functions.special.error_functions.expint(nu, z)[source]

          Generalized exponential integral.

          Explanation

          This function is defined as

          @@ -3081,7 +3081,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -sympy.functions.special.error_functions.E1(z)[source]
          +sympy.functions.special.error_functions.E1(z)[source]

          Classical case of the generalized exponential integral.

          Explanation

          This is equivalent to expint(1, z).

          @@ -3120,7 +3120,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.error_functions.li(z)[source]
          +class sympy.functions.special.error_functions.li(z)[source]

          The classical logarithmic integral.

          Explanation

          For use in SymPy, this function is defined as

          @@ -3237,7 +3237,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.error_functions.Li(z)[source]
          +class sympy.functions.special.error_functions.Li(z)[source]

          The offset logarithmic integral.

          Explanation

          For use in SymPy, this function is defined as

          @@ -3317,7 +3317,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.error_functions.Si(z)[source]
          +class sympy.functions.special.error_functions.Si(z)[source]

          Sine integral.

          Explanation

          This function is defined by

          @@ -3397,7 +3397,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.error_functions.Ci(z)[source]
          +class sympy.functions.special.error_functions.Ci(z)[source]

          Cosine integral.

          Explanation

          This function is defined for positive \(x\) by

          @@ -3484,7 +3484,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.error_functions.Shi(z)[source]
          +class sympy.functions.special.error_functions.Shi(z)[source]

          Sinh integral.

          Explanation

          This function is defined by

          @@ -3556,7 +3556,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.error_functions.Chi(z)[source]
          +class sympy.functions.special.error_functions.Chi(z)[source]

          Cosh integral.

          Explanation

          This function is defined for positive \(x\) by

          @@ -3642,7 +3642,7 @@

          Exponential, Logarithmic and Trigonometric Integrals

          Bessel Type Functions

          -class sympy.functions.special.bessel.BesselBase(nu, z)[source]
          +class sympy.functions.special.bessel.BesselBase(nu, z)[source]

          Abstract base class for Bessel-type functions.

          This class is meant to reduce code duplication. All Bessel-type functions can 1) be differentiated, with the derivatives @@ -3667,7 +3667,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.bessel.besselj(nu, z)[source]
          +class sympy.functions.special.bessel.besselj(nu, z)[source]

          Bessel function of the first kind.

          Explanation

          The Bessel \(J\) function of order \(\nu\) is defined to be the function @@ -3742,7 +3742,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.bessel.bessely(nu, z)[source]
          +class sympy.functions.special.bessel.bessely(nu, z)[source]

          Bessel function of the second kind.

          Explanation

          The Bessel \(Y\) function of order \(\nu\) is defined as

          @@ -3779,7 +3779,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.bessel.besseli(nu, z)[source]
          +class sympy.functions.special.bessel.besseli(nu, z)[source]

          Modified Bessel function of the first kind.

          Explanation

          The Bessel \(I\) function is a solution to the modified Bessel equation

          @@ -3816,7 +3816,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.bessel.besselk(nu, z)[source]
          +class sympy.functions.special.bessel.besselk(nu, z)[source]

          Modified Bessel function of the second kind.

          Explanation

          The Bessel \(K\) function of order \(\nu\) is defined as

          @@ -3850,7 +3850,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.bessel.hankel1(nu, z)[source]
          +class sympy.functions.special.bessel.hankel1(nu, z)[source]

          Hankel function of the first kind.

          Explanation

          This function is defined as

          @@ -3883,7 +3883,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.bessel.hankel2(nu, z)[source]
          +class sympy.functions.special.bessel.hankel2(nu, z)[source]

          Hankel function of the second kind.

          Explanation

          This function is defined as

          @@ -3917,7 +3917,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.bessel.jn(nu, z)[source]
          +class sympy.functions.special.bessel.jn(nu, z)[source]

          Spherical Bessel function of the first kind.

          Explanation

          This function is a solution to the spherical Bessel equation

          @@ -3973,7 +3973,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.bessel.yn(nu, z)[source]
          +class sympy.functions.special.bessel.yn(nu, z)[source]

          Spherical Bessel function of the second kind.

          Explanation

          This function is another solution to the spherical Bessel equation, and @@ -4019,7 +4019,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -sympy.functions.special.bessel.jn_zeros(n, k, method='sympy', dps=15)[source]
          +sympy.functions.special.bessel.jn_zeros(n, k, method='sympy', dps=15)[source]

          Zeros of the spherical Bessel function of the first kind.

          Parameters:
          @@ -4062,7 +4062,7 @@

          Exponential, Logarithmic and Trigonometric Integrals
          -class sympy.functions.special.bessel.marcumq(m, a, b)[source]
          +class sympy.functions.special.bessel.marcumq(m, a, b)[source]

          The Marcum Q-function.

          Explanation

          The Marcum Q-function is defined by the meromorphic continuation of

          @@ -4116,14 +4116,14 @@

          Exponential, Logarithmic and Trigonometric IntegralsAiry Functions

          -class sympy.functions.special.bessel.AiryBase(*args)[source]
          +class sympy.functions.special.bessel.AiryBase(*args)[source]

          Abstract base class for Airy functions.

          This class is meant to reduce code duplication.

          -class sympy.functions.special.bessel.airyai(arg)[source]
          +class sympy.functions.special.bessel.airyai(arg)[source]

          The Airy function \(\operatorname{Ai}\) of the first kind.

          Explanation

          The Airy function \(\operatorname{Ai}(z)\) is defined to be the function @@ -4224,7 +4224,7 @@

          Airy Functions
          -class sympy.functions.special.bessel.airybi(arg)[source]
          +class sympy.functions.special.bessel.airybi(arg)[source]

          The Airy function \(\operatorname{Bi}\) of the second kind.

          Explanation

          The Airy function \(\operatorname{Bi}(z)\) is defined to be the function @@ -4327,7 +4327,7 @@

          Airy Functions
          -class sympy.functions.special.bessel.airyaiprime(arg)[source]
          +class sympy.functions.special.bessel.airyaiprime(arg)[source]

          The derivative \(\operatorname{Ai}^\prime\) of the Airy function of the first kind.

          Explanation

          @@ -4421,7 +4421,7 @@

          Airy Functions
          -class sympy.functions.special.bessel.airybiprime(arg)[source]
          +class sympy.functions.special.bessel.airybiprime(arg)[source]

          The derivative \(\operatorname{Bi}^\prime\) of the Airy function of the first kind.

          Explanation

          @@ -4600,7 +4600,7 @@

          B-Splines
          -sympy.functions.special.bsplines.bspline_basis_set(d, knots, x)[source]
          +sympy.functions.special.bsplines.bspline_basis_set(d, knots, x)[source]

          Return the len(knots)-d-1 B-splines at x of degree d with knots.

          @@ -4646,7 +4646,7 @@

          B-Splines
          -sympy.functions.special.bsplines.interpolating_spline(d, x, X, Y)[source]
          +sympy.functions.special.bsplines.interpolating_spline(d, x, X, Y)[source]

          Return spline of degree d, passing through the given X and Y values.

          @@ -4694,7 +4694,7 @@

          B-Splines

          Riemann Zeta and Related Functions

          -class sympy.functions.special.zeta_functions.zeta(s, a=None)[source]
          +class sympy.functions.special.zeta_functions.zeta(s, a=None)[source]

          Hurwitz zeta function (or Riemann zeta function).

          Explanation

          For \(\operatorname{Re}(a) > 0\) and \(\operatorname{Re}(s) > 1\), this @@ -4806,7 +4806,7 @@

          B-Splines
          -class sympy.functions.special.zeta_functions.dirichlet_eta(s, a=None)[source]
          +class sympy.functions.special.zeta_functions.dirichlet_eta(s, a=None)[source]

          Dirichlet eta function.

          Explanation

          For \(\operatorname{Re}(s) > 0\) and \(0 < x \le 1\), this function is defined as

          @@ -4855,7 +4855,7 @@

          B-Splines
          -class sympy.functions.special.zeta_functions.polylog(s, z)[source]
          +class sympy.functions.special.zeta_functions.polylog(s, z)[source]

          Polylogarithm function.

          Explanation

          For \(|z| < 1\) and \(s \in \mathbb{C}\), the polylogarithm is @@ -4922,7 +4922,7 @@

          B-Splines
          -class sympy.functions.special.zeta_functions.lerchphi(*args)[source]
          +class sympy.functions.special.zeta_functions.lerchphi(*args)[source]

          Lerch transcendent (Lerch phi function).

          Explanation

          For \(\operatorname{Re}(a) > 0\), \(|z| < 1\) and \(s \in \mathbb{C}\), the @@ -5031,7 +5031,7 @@

          B-Splines
          -class sympy.functions.special.zeta_functions.stieltjes(n, a=None)[source]
          +class sympy.functions.special.zeta_functions.stieltjes(n, a=None)[source]

          Represents Stieltjes constants, \(\gamma_{k}\) that occur in Laurent Series expansion of the Riemann zeta function.

          Examples

          @@ -5072,7 +5072,7 @@

          B-Splines

          -class sympy.functions.special.hyper.hyper(ap, bq, z)[source]
          +class sympy.functions.special.hyper.hyper(ap, bq, z)[source]

          The generalized hypergeometric function is defined by a series where the ratios of successive terms are a rational function of the summation index. When convergent, it is continued analytically to the largest @@ -5236,7 +5236,7 @@

          Hypergeometric Functions
          -class sympy.functions.special.hyper.meijerg(*args)[source]
          +class sympy.functions.special.hyper.meijerg(*args)[source]

          The Meijer G-function is defined by a Mellin-Barnes type integral that resembles an inverse Mellin transform. It generalizes the hypergeometric functions.

          @@ -5407,7 +5407,7 @@

          Hypergeometric Functions
          -get_period()[source]
          +get_period()[source]

          Return a number \(P\) such that \(G(x*exp(I*P)) == G(x)\).

          Examples

          >>> from sympy import meijerg, pi, S
          @@ -5428,7 +5428,7 @@ 

          Hypergeometric Functions
          -integrand(s)[source]
          +integrand(s)[source]

          Get the defining integrand D(s).

          @@ -5449,7 +5449,7 @@

          Hypergeometric Functions
          -class sympy.functions.special.hyper.appellf1(a, b1, b2, c, x, y)[source]
          +class sympy.functions.special.hyper.appellf1(a, b1, b2, c, x, y)[source]

          This is the Appell hypergeometric function of two variables as:

          @@ -5492,7 +5492,7 @@

          Hypergeometric Functions

          Elliptic integrals

          -class sympy.functions.special.elliptic_integrals.elliptic_k(m)[source]
          +class sympy.functions.special.elliptic_integrals.elliptic_k(m)[source]

          The complete elliptic integral of the first kind, defined by

          @@ -5537,7 +5537,7 @@

          Hypergeometric Functions
          -class sympy.functions.special.elliptic_integrals.elliptic_f(z, m)[source]
          +class sympy.functions.special.elliptic_integrals.elliptic_f(z, m)[source]

          The Legendre incomplete elliptic integral of the first kind, defined by

          @@ -5580,7 +5580,7 @@

          Hypergeometric Functions
          -class sympy.functions.special.elliptic_integrals.elliptic_e(m, z=None)[source]
          +class sympy.functions.special.elliptic_integrals.elliptic_e(m, z=None)[source]

          Called with two arguments \(z\) and \(m\), evaluates the incomplete elliptic integral of the second kind, defined by

          @@ -5634,7 +5634,7 @@

          Hypergeometric Functions
          -class sympy.functions.special.elliptic_integrals.elliptic_pi(n, m, z=None)[source]
          +class sympy.functions.special.elliptic_integrals.elliptic_pi(n, m, z=None)[source]

          Called with three arguments \(n\), \(z\) and \(m\), evaluates the Legendre incomplete elliptic integral of the third kind, defined by

          @@ -5689,14 +5689,14 @@

          Hypergeometric Functions

          Mathieu Functions

          -class sympy.functions.special.mathieu_functions.MathieuBase(*args)[source]
          +class sympy.functions.special.mathieu_functions.MathieuBase(*args)[source]

          Abstract base class for Mathieu functions.

          This class is meant to reduce code duplication.

          -class sympy.functions.special.mathieu_functions.mathieus(a, q, z)[source]
          +class sympy.functions.special.mathieu_functions.mathieus(a, q, z)[source]

          The Mathieu Sine function \(S(a,q,z)\).

          Explanation

          This function is one solution of the Mathieu differential equation:

          @@ -5756,7 +5756,7 @@

          Hypergeometric Functions
          -class sympy.functions.special.mathieu_functions.mathieuc(a, q, z)[source]
          +class sympy.functions.special.mathieu_functions.mathieuc(a, q, z)[source]

          The Mathieu Cosine function \(C(a,q,z)\).

          Explanation

          This function is one solution of the Mathieu differential equation:

          @@ -5816,7 +5816,7 @@

          Hypergeometric Functions
          -class sympy.functions.special.mathieu_functions.mathieusprime(a, q, z)[source]
          +class sympy.functions.special.mathieu_functions.mathieusprime(a, q, z)[source]

          The derivative \(S^{\prime}(a,q,z)\) of the Mathieu Sine function.

          Explanation

          This function is one solution of the Mathieu differential equation:

          @@ -5876,7 +5876,7 @@

          Hypergeometric Functions
          -class sympy.functions.special.mathieu_functions.mathieucprime(a, q, z)[source]
          +class sympy.functions.special.mathieu_functions.mathieucprime(a, q, z)[source]

          The derivative \(C^{\prime}(a,q,z)\) of the Mathieu Cosine function.

          Explanation

          This function is one solution of the Mathieu differential equation:

          @@ -5944,7 +5944,7 @@

          Hypergeometric Functions

          -class sympy.functions.special.polynomials.jacobi(n, a, b, x)[source]
          +class sympy.functions.special.polynomials.jacobi(n, a, b, x)[source]

          Jacobi polynomial \(P_n^{\left(\alpha, \beta\right)}(x)\).

          Explanation

          jacobi(n, alpha, beta, x) gives the \(n\)th Jacobi polynomial @@ -6026,7 +6026,7 @@

          Jacobi Polynomials
          -sympy.functions.special.polynomials.jacobi_normalized(n, a, b, x)[source]
          +sympy.functions.special.polynomials.jacobi_normalized(n, a, b, x)[source]

          Jacobi polynomial \(P_n^{\left(\alpha, \beta\right)}(x)\).

          Parameters:
          @@ -6085,7 +6085,7 @@

          Jacobi Polynomials

          -class sympy.functions.special.polynomials.gegenbauer(n, a, x)[source]
          +class sympy.functions.special.polynomials.gegenbauer(n, a, x)[source]

          Gegenbauer polynomial \(C_n^{\left(\alpha\right)}(x)\).

          Explanation

          gegenbauer(n, alpha, x) gives the \(n\)th Gegenbauer polynomial @@ -6151,7 +6151,7 @@

          Gegenbauer PolynomialsChebyshev Polynomials

          -class sympy.functions.special.polynomials.chebyshevt(n, x)[source]
          +class sympy.functions.special.polynomials.chebyshevt(n, x)[source]

          Chebyshev polynomial of the first kind, \(T_n(x)\).

          Explanation

          chebyshevt(n, x) gives the \(n\)th Chebyshev polynomial (of the first @@ -6218,7 +6218,7 @@

          Chebyshev Polynomials
          -class sympy.functions.special.polynomials.chebyshevu(n, x)[source]
          +class sympy.functions.special.polynomials.chebyshevu(n, x)[source]

          Chebyshev polynomial of the second kind, \(U_n(x)\).

          Explanation

          chebyshevu(n, x) gives the \(n\)th Chebyshev polynomial of the second @@ -6285,7 +6285,7 @@

          Chebyshev Polynomials
          -class sympy.functions.special.polynomials.chebyshevt_root(n, k)[source]
          +class sympy.functions.special.polynomials.chebyshevt_root(n, k)[source]

          chebyshev_root(n, k) returns the \(k\)th root (indexed from zero) of the \(n\)th Chebyshev polynomial of the first kind; that is, if \(0 \le k < n\), chebyshevt(n, chebyshevt_root(n, k)) == 0.

          @@ -6305,7 +6305,7 @@

          Chebyshev Polynomials
          -class sympy.functions.special.polynomials.chebyshevu_root(n, k)[source]
          +class sympy.functions.special.polynomials.chebyshevu_root(n, k)[source]

          chebyshevu_root(n, k) returns the \(k\)th root (indexed from zero) of the \(n\)th Chebyshev polynomial of the second kind; that is, if \(0 \le k < n\), chebyshevu(n, chebyshevu_root(n, k)) == 0.

          @@ -6328,7 +6328,7 @@

          Chebyshev PolynomialsLegendre Polynomials

          -class sympy.functions.special.polynomials.legendre(n, x)[source]
          +class sympy.functions.special.polynomials.legendre(n, x)[source]

          legendre(n, x) gives the \(n\)th Legendre polynomial of \(x\), \(P_n(x)\)

          Explanation

          The Legendre polynomials are orthogonal on \([-1, 1]\) with respect to @@ -6376,7 +6376,7 @@

          Legendre Polynomials
          -class sympy.functions.special.polynomials.assoc_legendre(n, m, x)[source]
          +class sympy.functions.special.polynomials.assoc_legendre(n, m, x)[source]

          assoc_legendre(n, m, x) gives \(P_n^m(x)\), where \(n\) and \(m\) are the degree and order or an expression which is related to the nth order Legendre polynomial, \(P_n(x)\) in the following manner:

          @@ -6434,7 +6434,7 @@

          Legendre PolynomialsHermite Polynomials

          -class sympy.functions.special.polynomials.hermite(n, x)[source]
          +class sympy.functions.special.polynomials.hermite(n, x)[source]

          hermite(n, x) gives the \(n\)th Hermite polynomial in \(x\), \(H_n(x)\).

          Explanation

          The Hermite polynomials are orthogonal on \((-\infty, \infty)\) @@ -6479,7 +6479,7 @@

          Hermite Polynomials
          -class sympy.functions.special.polynomials.hermite_prob(n, x)[source]
          +class sympy.functions.special.polynomials.hermite_prob(n, x)[source]

          hermite_prob(n, x) gives the \(n\)th probabilist’s Hermite polynomial in \(x\), \(He_n(x)\).

          Explanation

          @@ -6531,7 +6531,7 @@

          Hermite Polynomials

          -class sympy.functions.special.polynomials.laguerre(n, x)[source]
          +class sympy.functions.special.polynomials.laguerre(n, x)[source]

          Returns the \(n\)th Laguerre polynomial in \(x\), \(L_n(x)\).

          Parameters:
          @@ -6589,7 +6589,7 @@

          Laguerre Polynomials
          -class sympy.functions.special.polynomials.assoc_laguerre(n, alpha, x)[source]
          +class sympy.functions.special.polynomials.assoc_laguerre(n, alpha, x)[source]

          Returns the \(n\)th generalized Laguerre polynomial in \(x\), \(L_n(x)\).

          Parameters:
          @@ -6669,7 +6669,7 @@

          Laguerre PolynomialsSpherical Harmonics

          -class sympy.functions.special.spherical_harmonics.Ynm(n, m, theta, phi)[source]
          +class sympy.functions.special.spherical_harmonics.Ynm(n, m, theta, phi)[source]

          Spherical harmonics defined as

          @@ -6812,7 +6812,7 @@

          Spherical Harmonics
          -sympy.functions.special.spherical_harmonics.Ynm_c(n, m, theta, phi)[source]
          +sympy.functions.special.spherical_harmonics.Ynm_c(n, m, theta, phi)[source]

          Conjugate spherical harmonics defined as

          @@ -6860,7 +6860,7 @@

          Spherical Harmonics
          -class sympy.functions.special.spherical_harmonics.Znm(n, m, theta, phi)[source]
          +class sympy.functions.special.spherical_harmonics.Znm(n, m, theta, phi)[source]

          Real spherical harmonics defined as

          @@ -6926,7 +6926,7 @@

          Spherical Harmonics

          -sympy.functions.special.tensor_functions.Eijk(*args, **kwargs)[source]
          +sympy.functions.special.tensor_functions.Eijk(*args, **kwargs)[source]

          Represent the Levi-Civita symbol.

          This is a compatibility wrapper to LeviCivita().

          @@ -6937,13 +6937,13 @@

          Tensor Functions
          -sympy.functions.special.tensor_functions.eval_levicivita(*args)[source]
          +sympy.functions.special.tensor_functions.eval_levicivita(*args)[source]

          Evaluate Levi-Civita symbol.

          -class sympy.functions.special.tensor_functions.LeviCivita(*args)[source]
          +class sympy.functions.special.tensor_functions.LeviCivita(*args)[source]

          Represent the Levi-Civita symbol.

          Explanation

          For even permutations of indices it returns 1, for odd permutations -1, and @@ -6972,7 +6972,7 @@

          Tensor Functions
          -class sympy.functions.special.tensor_functions.KroneckerDelta(i, j, delta_range=None)[source]
          +class sympy.functions.special.tensor_functions.KroneckerDelta(i, j, delta_range=None)[source]

          The discrete, or Kronecker, delta function.

          Parameters:
          @@ -7023,7 +7023,7 @@

          Tensor Functions
          -classmethod eval(i, j, delta_range=None)[source]
          +classmethod eval(i, j, delta_range=None)[source]

          Evaluates the discrete delta function.

          Examples

          >>> from sympy import KroneckerDelta
          diff --git a/dev/modules/geometry/curves.html b/dev/modules/geometry/curves.html
          index 15c22ea9f94..85496c7556d 100644
          --- a/dev/modules/geometry/curves.html
          +++ b/dev/modules/geometry/curves.html
          @@ -802,7 +802,7 @@ 
          Documentation Version

          Curves

          -class sympy.geometry.curve.Curve(function, limits)[source]
          +class sympy.geometry.curve.Curve(function, limits)[source]

          A curve in space.

          A curve is defined by parametric functions for the coordinates, a parameter and the lower and upper bounds for the parameter value.

          @@ -884,7 +884,7 @@
          Documentation Version
          -arbitrary_point(parameter='t')[source]
          +arbitrary_point(parameter='t')[source]

          A parameterized point on the curve.

          Parameters:
          @@ -1045,7 +1045,7 @@
          Documentation Version
          -plot_interval(parameter='t')[source]
          +plot_interval(parameter='t')[source]

          The plot interval for the default geometric plot of the curve.

          Parameters:
          @@ -1085,7 +1085,7 @@
          Documentation Version
          -rotate(angle=0, pt=None)[source]
          +rotate(angle=0, pt=None)[source]

          This function is used to rotate a curve along given point pt at given angle(in radian).

          Parameters:
          @@ -1118,7 +1118,7 @@
          Documentation Version
          -scale(x=1, y=1, pt=None)[source]
          +scale(x=1, y=1, pt=None)[source]

          Override GeometryEntity.scale since Curve is not made up of Points.

          Returns:
          @@ -1139,7 +1139,7 @@
          Documentation Version
          -translate(x=0, y=0)[source]
          +translate(x=0, y=0)[source]

          Translate the Curve by (x, y).

          Returns:
          diff --git a/dev/modules/geometry/ellipses.html b/dev/modules/geometry/ellipses.html index 9a3ac3b8f78..9e0805f0575 100644 --- a/dev/modules/geometry/ellipses.html +++ b/dev/modules/geometry/ellipses.html @@ -812,7 +812,7 @@
          Documentation Version
          **kwargs,
          -)[source] +)[source]

          An elliptical GeometryEntity.

          Parameters:
          @@ -928,7 +928,7 @@
          Documentation Version
          -arbitrary_point(parameter='t')[source]
          +arbitrary_point(parameter='t')[source]

          A parameterized point on the ellipse.

          Parameters:
          @@ -981,7 +981,7 @@
          Documentation Version
          -auxiliary_circle()[source]
          +auxiliary_circle()[source]

          Returns a Circle whose diameter is the major axis of the ellipse.

          Examples

          >>> from sympy import Ellipse, Point, symbols
          @@ -1041,7 +1041,7 @@ 
          Documentation Version
          -director_circle()[source]
          +director_circle()[source]

          Returns a Circle consisting of all points where two perpendicular tangent lines to the ellipse cross each other.

          @@ -1092,7 +1092,7 @@
          Documentation Version
          -encloses_point(p)[source]
          +encloses_point(p)[source]

          Return True if p is enclosed by (is inside of) self.

          Parameters:
          @@ -1124,7 +1124,7 @@
          Documentation Version
          -equation(x='x', y='y', _slope=None)[source]
          +equation(x='x', y='y', _slope=None)[source]

          Returns the equation of an ellipse aligned with the x and y axes; when slope is given, the equation returned corresponds to an ellipse with a major axis having that slope.

          @@ -1191,7 +1191,7 @@
          Documentation Version
          -evolute(x='x', y='y')[source]
          +evolute(x='x', y='y')[source]

          The equation of evolute of the ellipse.

          Parameters:
          @@ -1298,7 +1298,7 @@
          Documentation Version
          -intersection(o)[source]
          +intersection(o)[source]

          The intersection of this ellipse and another geometrical entity \(o\).

          @@ -1346,7 +1346,7 @@
          Documentation Version
          -is_tangent(o)[source]
          +is_tangent(o)[source]

          Is \(o\) tangent to the ellipse?

          Parameters:
          @@ -1459,7 +1459,7 @@
          Documentation Version
          -normal_lines(p, prec=None)[source]
          +normal_lines(p, prec=None)[source]

          Normal lines between \(p\) and the ellipse.

          Parameters:
          @@ -1521,7 +1521,7 @@
          Documentation Version
          -plot_interval(parameter='t')[source]
          +plot_interval(parameter='t')[source]

          The plot interval for the default geometric plot of the Ellipse.

          Parameters:
          @@ -1548,7 +1548,7 @@
          Documentation Version
          -polar_second_moment_of_area()[source]
          +polar_second_moment_of_area()[source]

          Returns the polar second moment of area of an Ellipse

          It is a constituent of the second moment of area, linked through the perpendicular axis theorem. While the planar second moment of @@ -1580,7 +1580,7 @@

          Documentation Version
          -random_point(seed=None)[source]
          +random_point(seed=None)[source]

          A random point on the ellipse.

          Returns:
          @@ -1625,7 +1625,7 @@
          Documentation Version
          -reflect(line)[source]
          +reflect(line)[source]

          Override GeometryEntity.reflect since the radius is not a GeometryEntity.

          Examples

          @@ -1650,7 +1650,7 @@
          Documentation Version
          -rotate(angle=0, pt=None)[source]
          +rotate(angle=0, pt=None)[source]

          Rotate angle radians counterclockwise about Point pt.

          Note: since the general ellipse is not supported, only rotations that are integer multiples of pi/2 are allowed.

          @@ -1666,7 +1666,7 @@
          Documentation Version
          -scale(x=1, y=1, pt=None)[source]
          +scale(x=1, y=1, pt=None)[source]

          Override GeometryEntity.scale since it is the major and minor axes which must be scaled and they are not GeometryEntities.

          Examples

          @@ -1681,7 +1681,7 @@
          Documentation Version
          -second_moment_of_area(point=None)[source]
          +second_moment_of_area(point=None)[source]

          Returns the second moment and product moment area of an ellipse.

          Parameters:
          @@ -1719,7 +1719,7 @@
          Documentation Version
          -section_modulus(point=None)[source]
          +section_modulus(point=None)[source]

          Returns a tuple with the section modulus of an ellipse

          Section modulus is a geometric property of an ellipse defined as the ratio of second moment of area to the distance of the extreme end of @@ -1808,7 +1808,7 @@

          Documentation Version
          -tangent_lines(p)[source]
          +tangent_lines(p)[source]

          Tangent lines between \(p\) and the ellipse.

          If \(p\) is on the ellipse, returns the tangent line through point \(p\). Otherwise, returns the tangent line(s) from \(p\) to the ellipse, or @@ -1867,7 +1867,7 @@

          Documentation Version
          -class sympy.geometry.ellipse.Circle(*args, **kwargs)[source]
          +class sympy.geometry.ellipse.Circle(*args, **kwargs)[source]

          A circle in space.

          Constructed simply from a center and a radius, from three non-collinear points, or the equation of a circle.

          @@ -1955,7 +1955,7 @@
          Documentation Version
          -equation(x='x', y='y')[source]
          +equation(x='x', y='y')[source]

          The equation of the circle.

          Parameters:
          @@ -1983,7 +1983,7 @@
          Documentation Version
          -intersection(o)[source]
          +intersection(o)[source]

          The intersection of this circle with another geometrical entity.

          Parameters:
          @@ -2034,7 +2034,7 @@
          Documentation Version
          -reflect(line)[source]
          +reflect(line)[source]

          Override GeometryEntity.reflect since the radius is not a GeometryEntity.

          Examples

          @@ -2047,7 +2047,7 @@
          Documentation Version
          -scale(x=1, y=1, pt=None)[source]
          +scale(x=1, y=1, pt=None)[source]

          Override GeometryEntity.scale since the radius is not a GeometryEntity.

          Examples

          diff --git a/dev/modules/geometry/entities.html b/dev/modules/geometry/entities.html index 4887f0a70c4..7bf483da6e2 100644 --- a/dev/modules/geometry/entities.html +++ b/dev/modules/geometry/entities.html @@ -802,7 +802,7 @@
          Documentation Version

          Entities

          -class sympy.geometry.entity.GeometryEntity(*args, **kwargs)[source]
          +class sympy.geometry.entity.GeometryEntity(*args, **kwargs)[source]

          The base class for all geometrical entities.

          This class does not represent any particular geometric entity, it only provides the implementation of some methods common to all subclasses.

          @@ -821,7 +821,7 @@
          Documentation Version
          -encloses(o)[source]
          +encloses(o)[source]

          Return True if o is inside (not on or outside) the boundaries of self.

          The object will be decomposed into Points and individual Entities need only define an encloses_point method for their class.

          @@ -843,7 +843,7 @@
          Documentation Version
          -intersection(o)[source]
          +intersection(o)[source]

          Returns a list of all of the intersections of self with o.

          Notes

          An entity is not required to implement this method.

          @@ -858,7 +858,7 @@
          Documentation Version
          -is_similar(other)[source]
          +is_similar(other)[source]

          Is this geometrical entity similar to another geometrical entity?

          Two entities are similar if a uniform scaling (enlarging or shrinking) of one of the entities will allow one to obtain the other.

          @@ -876,7 +876,7 @@
          Documentation Version
          -parameter_value(other, t)[source]
          +parameter_value(other, t)[source]

          Return the parameter corresponding to the given point. Evaluating an arbitrary point of the entity at this parameter value will return the given point.

          @@ -895,7 +895,7 @@
          Documentation Version
          -reflect(line)[source]
          +reflect(line)[source]

          Reflects an object across a line.

          Parameters:
          @@ -923,7 +923,7 @@
          Documentation Version
          -rotate(angle, pt=None)[source]
          +rotate(angle, pt=None)[source]

          Rotate angle radians counterclockwise about Point pt.

          The default pt is the origin, Point(0, 0)

          Examples

          @@ -943,7 +943,7 @@
          Documentation Version
          -scale(x=1, y=1, pt=None)[source]
          +scale(x=1, y=1, pt=None)[source]

          Scale the object by multiplying the x,y-coordinates by x and y.

          If pt is given, the scaling is done relative to that point; the object is shifted by -pt, scaled, and shifted by pt.

          @@ -966,7 +966,7 @@
          Documentation Version
          -translate(x=0, y=0)[source]
          +translate(x=0, y=0)[source]

          Shift the object by adding to the x,y-coordinates the values x and y.

          Examples

          >>> from sympy import RegularPolygon, Point, Polygon
          diff --git a/dev/modules/geometry/lines.html b/dev/modules/geometry/lines.html
          index e769dfb9e30..36a78fd4a6e 100644
          --- a/dev/modules/geometry/lines.html
          +++ b/dev/modules/geometry/lines.html
          @@ -802,7 +802,7 @@ 
          Documentation Version

          Lines

          -class sympy.geometry.line.LinearEntity(p1, p2=None, **kwargs)[source]
          +class sympy.geometry.line.LinearEntity(p1, p2=None, **kwargs)[source]

          A base class for all linear entities (Line, Ray and Segment) in n-dimensional Euclidean space.

          Notes

          @@ -868,7 +868,7 @@
          Documentation Version
          -angle_between(l2)[source]
          +angle_between(l2)[source]

          Return the non-reflex angle formed by rays emanating from the origin with directions the same as the direction vectors of the linear entities.

          @@ -923,7 +923,7 @@
          Documentation Version
          -arbitrary_point(parameter='t')[source]
          +arbitrary_point(parameter='t')[source]

          A parameterized point on the Line.

          Parameters:
          @@ -966,7 +966,7 @@
          Documentation Version
          -static are_concurrent(*lines)[source]
          +static are_concurrent(*lines)[source]

          Is a sequence of linear entities concurrent?

          Two or more linear entities are concurrent if they all intersect at a single point.

          @@ -1011,7 +1011,7 @@
          Documentation Version
          -bisectors(other)[source]
          +bisectors(other)[source]

          Returns the perpendicular lines which pass through the intersections of self and other that are in the same plane.

          @@ -1034,7 +1034,7 @@
          Documentation Version
          -contains(other)[source]
          +contains(other)[source]

          Subclasses should implement this method and should return True if other is on the boundaries of self; False if not on the boundaries of self; @@ -1075,7 +1075,7 @@

          Documentation Version
          -intersection(other)[source]
          +intersection(other)[source]

          The intersection with another geometrical entity.

          Parameters:
          @@ -1122,7 +1122,7 @@
          Documentation Version
          -is_parallel(l2)[source]
          +is_parallel(l2)[source]

          Are two linear entities parallel?

          Parameters:
          @@ -1165,7 +1165,7 @@
          Documentation Version
          -is_perpendicular(l2)[source]
          +is_perpendicular(l2)[source]

          Are two linear entities perpendicular?

          Parameters:
          @@ -1206,7 +1206,7 @@
          Documentation Version
          -is_similar(other)[source]
          +is_similar(other)[source]

          Return True if self and other are contained in the same line.

          Examples

          >>> from sympy import Point, Line
          @@ -1271,7 +1271,7 @@ 
          Documentation Version
          -parallel_line(p)[source]
          +parallel_line(p)[source]

          Create a new Line parallel to this linear entity which passes through the point \(p\).

          @@ -1309,7 +1309,7 @@
          Documentation Version
          -perpendicular_line(p)[source]
          +perpendicular_line(p)[source]

          Create a new Line perpendicular to this linear entity which passes through the point \(p\).

          @@ -1345,7 +1345,7 @@
          Documentation Version
          -perpendicular_segment(p)[source]
          +perpendicular_segment(p)[source]

          Create a perpendicular line segment from \(p\) to this line.

          The endpoints of the segment are p and the closest point in the line containing self. (If self is not a line, the point might @@ -1414,7 +1414,7 @@

          Documentation Version
          -projection(other)[source]
          +projection(other)[source]

          Project a point, line, ray, or segment onto this linear entity.

          Parameters:
          @@ -1469,7 +1469,7 @@
          Documentation Version
          -random_point(seed=None)[source]
          +random_point(seed=None)[source]

          A random point on a LinearEntity.

          Returns:
          @@ -1499,7 +1499,7 @@
          Documentation Version
          -smallest_angle_between(l2)[source]
          +smallest_angle_between(l2)[source]

          Return the smallest angle formed at the intersection of the lines containing the linear entities.

          @@ -1529,7 +1529,7 @@
          Documentation Version
          -class sympy.geometry.line.Line(*args, **kwargs)[source]
          +class sympy.geometry.line.Line(*args, **kwargs)[source]

          An infinite line in space.

          A 2D line is declared with two distinct points, point and slope, or an equation. A 3D line may be defined with a point and a direction ratio.

          @@ -1594,7 +1594,7 @@
          Documentation Version
          -contains(other)[source]
          +contains(other)[source]

          Return True if \(other\) is on this Line, or False otherwise.

          Examples

          >>> from sympy import Line,Point
          @@ -1621,7 +1621,7 @@ 
          Documentation Version
          -distance(other)[source]
          +distance(other)[source]

          Finds the shortest distance between a line and a point.

          Raises:
          @@ -1648,13 +1648,13 @@
          Documentation Version
          -equals(other)[source]
          +equals(other)[source]

          Returns True if self and other are the same mathematical entities

          -plot_interval(parameter='t')[source]
          +plot_interval(parameter='t')[source]

          The plot interval for the default geometric plot of line. Gives values that will produce a line that is +/- 5 units long (where a unit is the distance between the two points that define the line).

          @@ -1686,7 +1686,7 @@
          Documentation Version
          -class sympy.geometry.line.Ray(p1, p2=None, **kwargs)[source]
          +class sympy.geometry.line.Ray(p1, p2=None, **kwargs)[source]

          A Ray is a semi-line in the space with a source point and a direction.

          Parameters:
          @@ -1740,7 +1740,7 @@
          Documentation Version
          -contains(other)[source]
          +contains(other)[source]

          Is other GeometryEntity contained in this Ray?

          Examples

          >>> from sympy import Ray,Point,Segment
          @@ -1770,7 +1770,7 @@ 
          Documentation Version
          -distance(other)[source]
          +distance(other)[source]

          Finds the shortest distance between the ray and a point.

          Raises:
          @@ -1799,13 +1799,13 @@
          Documentation Version
          -equals(other)[source]
          +equals(other)[source]

          Returns True if self and other are the same mathematical entities

          -plot_interval(parameter='t')[source]
          +plot_interval(parameter='t')[source]

          The plot interval for the default geometric plot of the Ray. Gives values that will produce a ray that is 10 units long (where a unit is the distance between the two points that define the ray).

          @@ -1858,7 +1858,7 @@
          Documentation Version
          -class sympy.geometry.line.Segment(p1, p2, **kwargs)[source]
          +class sympy.geometry.line.Segment(p1, p2, **kwargs)[source]

          A line segment in space.

          Parameters:
          @@ -1913,7 +1913,7 @@
          Documentation Version
          -contains(other)[source]
          +contains(other)[source]

          Is the other GeometryEntity contained within this Segment?

          Examples

          >>> from sympy import Point, Segment
          @@ -1936,7 +1936,7 @@ 
          Documentation Version
          -distance(other)[source]
          +distance(other)[source]

          Finds the shortest distance between a line segment and a point.

          Raises:
          @@ -1964,7 +1964,7 @@
          Documentation Version
          -equals(other)[source]
          +equals(other)[source]

          Returns True if self and other are the same mathematical entities

          @@ -2016,7 +2016,7 @@
          Documentation Version
          -perpendicular_bisector(p=None)[source]
          +perpendicular_bisector(p=None)[source]

          The perpendicular bisector of this segment.

          If no point is specified or the point specified is not on the bisector then the bisector is returned as a Line. Otherwise a @@ -2050,7 +2050,7 @@

          Documentation Version
          -plot_interval(parameter='t')[source]
          +plot_interval(parameter='t')[source]

          The plot interval for the default geometric plot of the Segment gives values that will produce the full segment in a plot.

          @@ -2081,7 +2081,7 @@
          Documentation Version
          -class sympy.geometry.line.LinearEntity2D(p1, p2=None, **kwargs)[source]
          +class sympy.geometry.line.LinearEntity2D(p1, p2=None, **kwargs)[source]

          A base class for all linear entities (line, ray and segment) in a 2-dimensional Euclidean space.

          Notes

          @@ -2121,7 +2121,7 @@
          Documentation Version
          -perpendicular_line(p)[source]
          +perpendicular_line(p)[source]

          Create a new Line perpendicular to this linear entity which passes through the point \(p\).

          @@ -2190,7 +2190,7 @@
          Documentation Version
          -class sympy.geometry.line.Line2D(p1, pt=None, slope=None, **kwargs)[source]
          +class sympy.geometry.line.Line2D(p1, pt=None, slope=None, **kwargs)[source]

          An infinite line in space 2D.

          A line is declared with two distinct points or a point and slope as defined using keyword \(slope\).

          @@ -2256,7 +2256,7 @@
          Documentation Version
          -equation(x='x', y='y')[source]
          +equation(x='x', y='y')[source]

          The equation of the line: ax + by + c.

          Parameters:
          @@ -2291,7 +2291,7 @@
          Documentation Version
          -class sympy.geometry.line.Ray2D(p1, pt=None, angle=None, **kwargs)[source]
          +class sympy.geometry.line.Ray2D(p1, pt=None, angle=None, **kwargs)[source]

          A Ray is a semi-line in the space with a source point and a direction.

          Parameters:
          @@ -2348,7 +2348,7 @@
          Documentation Version
          -closing_angle(r2)[source]
          +closing_angle(r2)[source]

          Return the angle by which r2 must be rotated so it faces the same direction as r1.

          @@ -2428,7 +2428,7 @@
          Documentation Version
          -class sympy.geometry.line.Segment2D(p1, p2, **kwargs)[source]
          +class sympy.geometry.line.Segment2D(p1, p2, **kwargs)[source]

          A line segment in 2D space.

          Parameters:
          @@ -2473,7 +2473,7 @@
          Documentation Version
          -class sympy.geometry.line.LinearEntity3D(p1, p2, **kwargs)[source]
          +class sympy.geometry.line.LinearEntity3D(p1, p2, **kwargs)[source]

          An base class for all linear entities (line, ray and segment) in a 3-dimensional Euclidean space.

          Notes

          @@ -2542,7 +2542,7 @@
          Documentation Version
          -class sympy.geometry.line.Line3D(p1, pt=None, direction_ratio=(), **kwargs)[source]
          +class sympy.geometry.line.Line3D(p1, pt=None, direction_ratio=(), **kwargs)[source]

          An infinite 3D line in space.

          A line is declared with two distinct points or a point and direction_ratio as defined using keyword \(direction_ratio\).

          @@ -2568,7 +2568,7 @@
          Documentation Version
          -distance(other)[source]
          +distance(other)[source]

          Finds the shortest distance between a line and another object.

          Parameters:
          @@ -2604,7 +2604,7 @@
          Documentation Version
          -equation(x='x', y='y', z='z')[source]
          +equation(x='x', y='y', z='z')[source]

          Return the equations that define the line in 3D.

          Parameters:
          @@ -2642,7 +2642,7 @@
          Documentation Version
          -class sympy.geometry.line.Ray3D(p1, pt=None, direction_ratio=(), **kwargs)[source]
          +class sympy.geometry.line.Ray3D(p1, pt=None, direction_ratio=(), **kwargs)[source]

          A Ray is a semi-line in the space with a source point and a direction.

          Parameters:
          @@ -2769,7 +2769,7 @@
          Documentation Version
          -class sympy.geometry.line.Segment3D(p1, p2, **kwargs)[source]
          +class sympy.geometry.line.Segment3D(p1, p2, **kwargs)[source]

          A line segment in a 3D space.

          Parameters:
          diff --git a/dev/modules/geometry/plane.html b/dev/modules/geometry/plane.html index 83c88ee07bb..95f9c93eeb1 100644 --- a/dev/modules/geometry/plane.html +++ b/dev/modules/geometry/plane.html @@ -802,7 +802,7 @@
          Documentation Version

          Plane

          -class sympy.geometry.plane.Plane(p1, a=None, b=None, **kwargs)[source]
          +class sympy.geometry.plane.Plane(p1, a=None, b=None, **kwargs)[source]

          A plane is a flat, two-dimensional surface. A plane is the two-dimensional analogue of a point (zero-dimensions), a line (one-dimension) and a solid (three-dimensions). A plane can generally be constructed by two types of @@ -834,7 +834,7 @@

          Documentation Version
          -angle_between(o)[source]
          +angle_between(o)[source]

          Angle between the plane and other geometric entity.

          Parameters:
          @@ -861,7 +861,7 @@
          Documentation Version
          -arbitrary_point(u=None, v=None)[source]
          +arbitrary_point(u=None, v=None)[source]

          Returns an arbitrary point on the Plane. If given two parameters, the point ranges over the entire plane. If given 1 or no parameters, returns a point with one parameter which, @@ -894,7 +894,7 @@

          Documentation Version
          -static are_concurrent(*planes)[source]
          +static are_concurrent(*planes)[source]

          Is a sequence of Planes concurrent?

          Two or more Planes are concurrent if their intersections are a common line.

          @@ -921,7 +921,7 @@
          Documentation Version
          -distance(o)[source]
          +distance(o)[source]

          Distance between the plane and another geometric entity.

          Parameters:
          @@ -951,7 +951,7 @@
          Documentation Version
          -equals(o)[source]
          +equals(o)[source]

          Returns True if self and o are the same mathematical entities.

          Examples

          >>> from sympy import Plane, Point3D
          @@ -970,7 +970,7 @@ 
          Documentation Version
          -equation(x=None, y=None, z=None)[source]
          +equation(x=None, y=None, z=None)[source]

          The equation of the Plane.

          Examples

          >>> from sympy import Point3D, Plane
          @@ -986,7 +986,7 @@ 
          Documentation Version
          -intersection(o)[source]
          +intersection(o)[source]

          The intersection with other geometrical entity.

          Parameters:
          @@ -1015,7 +1015,7 @@
          Documentation Version
          -is_coplanar(o)[source]
          +is_coplanar(o)[source]

          Returns True if \(o\) is coplanar with self, else False.

          Examples

          >>> from sympy import Plane
          @@ -1032,7 +1032,7 @@ 
          Documentation Version
          -is_parallel(l)[source]
          +is_parallel(l)[source]

          Is the given geometric entity parallel to the plane?

          Parameters:
          @@ -1054,7 +1054,7 @@
          Documentation Version
          -is_perpendicular(l)[source]
          +is_perpendicular(l)[source]

          Is the given geometric entity perpendicualar to the given plane?

          Parameters:
          @@ -1110,7 +1110,7 @@
          Documentation Version
          -parallel_plane(pt)[source]
          +parallel_plane(pt)[source]

          Plane parallel to the given plane and passing through the point pt.

          Parameters:
          @@ -1131,7 +1131,7 @@
          Documentation Version
          -parameter_value(other, u, v=None)[source]
          +parameter_value(other, u, v=None)[source]

          Return the parameter(s) corresponding to the given point.

          Examples

          >>> from sympy import pi, Plane
          @@ -1171,7 +1171,7 @@ 
          Documentation Version
          -perpendicular_line(pt)[source]
          +perpendicular_line(pt)[source]

          A line perpendicular to the given plane.

          Parameters:
          @@ -1192,7 +1192,7 @@
          Documentation Version
          -perpendicular_plane(*pts)[source]
          +perpendicular_plane(*pts)[source]

          Return a perpendicular passing through the given points. If the direction ratio between the points is the same as the Plane’s normal vector then, to select from the infinite number of possible planes, @@ -1224,7 +1224,7 @@

          Documentation Version
          -projection(pt)[source]
          +projection(pt)[source]

          Project the given point onto the plane along the plane normal.

          Parameters:
          @@ -1258,7 +1258,7 @@
          Documentation Version
          -projection_line(line)[source]
          +projection_line(line)[source]

          Project the given line onto the plane through the normal plane containing the line.

          @@ -1290,7 +1290,7 @@
          Documentation Version
          -random_point(seed=None)[source]
          +random_point(seed=None)[source]

          Returns a random point on the Plane.

          Returns:
          diff --git a/dev/modules/geometry/points.html b/dev/modules/geometry/points.html index 458a232f2f5..e77c0f72497 100644 --- a/dev/modules/geometry/points.html +++ b/dev/modules/geometry/points.html @@ -802,7 +802,7 @@
          Documentation Version

          Points

          -class sympy.geometry.point.Point(*args, **kwargs)[source]
          +class sympy.geometry.point.Point(*args, **kwargs)[source]

          A point in a n-dimensional Euclidean space.

          Parameters:
          @@ -880,7 +880,7 @@
          Documentation Version
          -static affine_rank(*args)[source]
          +static affine_rank(*args)[source]

          The affine rank of a set of points is the dimension of the smallest affine space containing all the points. For example, if the points lie on a line (and are not all @@ -897,7 +897,7 @@

          Documentation Version
          -classmethod are_coplanar(*points)[source]
          +classmethod are_coplanar(*points)[source]

          Return True if there exists a plane in which all the points lie. A trivial True value is returned if \(len(points) < 3\) or all Points are 2-dimensional.

          @@ -929,7 +929,7 @@
          Documentation Version
          -canberra_distance(p)[source]
          +canberra_distance(p)[source]

          The Canberra Distance from self to point p.

          Returns the weighted sum of horizontal and vertical distances to point p.

          @@ -964,7 +964,7 @@
          Documentation Version
          -distance(other)[source]
          +distance(other)[source]

          The Euclidean distance between self and another GeometricEntity.

          Returns:
          @@ -1002,19 +1002,19 @@
          Documentation Version
          -dot(p)[source]
          +dot(p)[source]

          Return dot product of self with another Point.

          -equals(other)[source]
          +equals(other)[source]

          Returns whether the coordinates of self and other agree.

          -intersection(other)[source]
          +intersection(other)[source]

          The intersection between this point and another GeometryEntity.

          Parameters:
          @@ -1040,7 +1040,7 @@
          Documentation Version
          -is_collinear(*args)[source]
          +is_collinear(*args)[source]

          Returns \(True\) if there exists a line that contains \(self\) and \(points\). Returns \(False\) otherwise. A trivially True value is returned if no points are given.

          @@ -1071,7 +1071,7 @@
          Documentation Version
          -is_concyclic(*args)[source]
          +is_concyclic(*args)[source]

          Do \(self\) and the given sequence of points lie in a circle?

          Returns True if the set of points are concyclic and False otherwise. A trivial value of True is returned @@ -1115,7 +1115,7 @@

          Documentation Version
          -is_scalar_multiple(p)[source]
          +is_scalar_multiple(p)[source]

          Returns whether each coordinate of \(self\) is a scalar multiple of the corresponding coordinate in point p.

          @@ -1142,7 +1142,7 @@
          Documentation Version
          -midpoint(p)[source]
          +midpoint(p)[source]

          The midpoint between self and point p.

          Parameters:
          @@ -1191,7 +1191,7 @@
          Documentation Version
          -static project(a, b)[source]
          +static project(a, b)[source]

          Project the point \(a\) onto the line between the origin and point \(b\) along the normal direction.

          @@ -1223,7 +1223,7 @@
          Documentation Version
          -taxicab_distance(p)[source]
          +taxicab_distance(p)[source]

          The Taxicab Distance from self to point p.

          Returns the sum of the horizontal and vertical distances to point p.

          @@ -1259,7 +1259,7 @@
          Documentation Version
          -class sympy.geometry.point.Point2D(*args, _nocheck=False, **kwargs)[source]
          +class sympy.geometry.point.Point2D(*args, _nocheck=False, **kwargs)[source]

          A point in a 2-dimensional Euclidean space.

          Parameters:
          @@ -1341,7 +1341,7 @@
          Documentation Version
          -rotate(angle, pt=None)[source]
          +rotate(angle, pt=None)[source]

          Rotate angle radians counterclockwise about Point pt.

          Examples

          >>> from sympy import Point2D, pi
          @@ -1360,7 +1360,7 @@ 
          Documentation Version
          -scale(x=1, y=1, pt=None)[source]
          +scale(x=1, y=1, pt=None)[source]

          Scale the coordinates of the Point by multiplying by x and y after subtracting pt – default is (0, 0) – and then adding pt back again (i.e. pt is the point of @@ -1382,7 +1382,7 @@

          Documentation Version
          -transform(matrix)[source]
          +transform(matrix)[source]

          Return the point after applying the transformation described by the 3x3 Matrix, matrix.

          @@ -1393,7 +1393,7 @@
          Documentation Version
          -translate(x=0, y=0)[source]
          +translate(x=0, y=0)[source]

          Shift the Point by adding x and y to the coordinates of the Point.

          Examples

          >>> from sympy import Point2D
          @@ -1442,7 +1442,7 @@ 
          Documentation Version
          -class sympy.geometry.point.Point3D(*args, _nocheck=False, **kwargs)[source]
          +class sympy.geometry.point.Point3D(*args, _nocheck=False, **kwargs)[source]

          A point in a 3-dimensional Euclidean space.

          Parameters:
          @@ -1499,7 +1499,7 @@
          Documentation Version
          -static are_collinear(*points)[source]
          +static are_collinear(*points)[source]

          Is a sequence of points collinear?

          Test whether or not a set of points are collinear. Returns True if the set of points are collinear, or False otherwise.

          @@ -1543,7 +1543,7 @@
          Documentation Version
          -direction_cosine(point)[source]
          +direction_cosine(point)[source]

          Gives the direction cosine between 2 points

          Parameters:
          @@ -1564,7 +1564,7 @@
          Documentation Version
          -direction_ratio(point)[source]
          +direction_ratio(point)[source]

          Gives the direction ratio between 2 points

          Parameters:
          @@ -1585,7 +1585,7 @@
          Documentation Version
          -intersection(other)[source]
          +intersection(other)[source]

          The intersection between this point and another GeometryEntity.

          Parameters:
          @@ -1611,7 +1611,7 @@
          Documentation Version
          -scale(x=1, y=1, z=1, pt=None)[source]
          +scale(x=1, y=1, z=1, pt=None)[source]

          Scale the coordinates of the Point by multiplying by x and y after subtracting pt – default is (0, 0) – and then adding pt back again (i.e. pt is the point of @@ -1633,7 +1633,7 @@

          Documentation Version
          -transform(matrix)[source]
          +transform(matrix)[source]

          Return the point after applying the transformation described by the 4x4 Matrix, matrix.

          @@ -1644,7 +1644,7 @@
          Documentation Version
          -translate(x=0, y=0, z=0)[source]
          +translate(x=0, y=0, z=0)[source]

          Shift the Point by adding x and y to the coordinates of the Point.

          Examples

          >>> from sympy import Point3D
          diff --git a/dev/modules/geometry/polygons.html b/dev/modules/geometry/polygons.html
          index 69878bb0922..5d257b95492 100644
          --- a/dev/modules/geometry/polygons.html
          +++ b/dev/modules/geometry/polygons.html
          @@ -802,7 +802,7 @@ 
          Documentation Version

          Polygons

          -class sympy.geometry.polygon.Polygon(*args, n=0, **kwargs)[source]
          +class sympy.geometry.polygon.Polygon(*args, n=0, **kwargs)[source]

          A two-dimensional polygon.

          A simple polygon in space. Can be constructed from a sequence of points or from a center, radius, number of sides and rotation angle.

          @@ -933,7 +933,7 @@
          Documentation Version
          -arbitrary_point(parameter='t')[source]
          +arbitrary_point(parameter='t')[source]

          A parameterized point on the polygon.

          The parameter, varying from 0 to 1, assigns points to the position on the perimeter that is that fraction of the total perimeter. So the @@ -1011,7 +1011,7 @@

          Documentation Version
          -bisectors(prec=None)[source]
          +bisectors(prec=None)[source]

          Returns angle bisectors of a polygon. If prec is given then approximate the point defining the ray to that precision.

          The distance between the points defining the bisector ray is 1.

          @@ -1059,7 +1059,7 @@
          Documentation Version
          -cut_section(line)[source]
          +cut_section(line)[source]

          Returns a tuple of two polygon segments that lie above and below the intersecting line respectively.

          @@ -1112,7 +1112,7 @@
          Documentation Version
          -distance(o)[source]
          +distance(o)[source]

          Returns the shortest distance between self and o.

          If o is a point, then self does not need to be convex. If o is another polygon self and o must be convex.

          @@ -1128,7 +1128,7 @@
          Documentation Version
          -encloses_point(p)[source]
          +encloses_point(p)[source]

          Return True if p is enclosed by (is inside of) self.

          Parameters:
          @@ -1166,7 +1166,7 @@
          Documentation Version
          -first_moment_of_area(point=None)[source]
          +first_moment_of_area(point=None)[source]

          Returns the first moment of area of a two-dimensional polygon with respect to a certain point of interest.

          First moment of area is a measure of the distribution of the area @@ -1221,7 +1221,7 @@

          Documentation Version
          -intersection(o)[source]
          +intersection(o)[source]

          The intersection of polygon and geometry entity.

          The intersection may be empty and can contain individual Points and complete Line Segments.

          @@ -1258,7 +1258,7 @@
          Documentation Version
          -is_convex()[source]
          +is_convex()[source]

          Is the polygon convex?

          A polygon is convex if all its interior angles are less than 180 degrees and there are no intersections between sides.

          @@ -1309,7 +1309,7 @@
          Documentation Version
          -plot_interval(parameter='t')[source]
          +plot_interval(parameter='t')[source]

          The plot interval for the default geometric plot of the polygon.

          Parameters:
          @@ -1336,7 +1336,7 @@
          Documentation Version
          -polar_second_moment_of_area()[source]
          +polar_second_moment_of_area()[source]

          Returns the polar modulus of a two-dimensional polygon

          It is a constituent of the second moment of area, linked through the perpendicular axis theorem. While the planar second moment of @@ -1365,7 +1365,7 @@

          Documentation Version
          -second_moment_of_area(point=None)[source]
          +second_moment_of_area(point=None)[source]

          Returns the second moment and product moment of area of a two dimensional polygon.

          Parameters:
          @@ -1406,7 +1406,7 @@
          Documentation Version
          -section_modulus(point=None)[source]
          +section_modulus(point=None)[source]

          Returns a tuple with the section modulus of a two-dimensional polygon.

          Section modulus is a geometric property of a polygon defined as the @@ -1512,7 +1512,7 @@

          Documentation Version
          -class sympy.geometry.polygon.RegularPolygon(c, r, n, rot=0, **kwargs)[source]
          +class sympy.geometry.polygon.RegularPolygon(c, r, n, rot=0, **kwargs)[source]

          A regular polygon.

          Such a polygon has all internal angles equal and all sides the same length.

          @@ -1758,7 +1758,7 @@
          Documentation Version
          -encloses_point(p)[source]
          +encloses_point(p)[source]

          Return True if p is enclosed by (is inside of) self.

          Parameters:
          @@ -1923,7 +1923,7 @@
          Documentation Version
          -reflect(line)[source]
          +reflect(line)[source]

          Override GeometryEntity.reflect since this is not made of only points.

          Examples

          @@ -1938,7 +1938,7 @@
          Documentation Version
          -rotate(angle, pt=None)[source]
          +rotate(angle, pt=None)[source]

          Override GeometryEntity.rotate to first rotate the RegularPolygon about its center.

          >>> from sympy import Point, RegularPolygon, pi
          @@ -1987,7 +1987,7 @@ 
          Documentation Version
          -scale(x=1, y=1, pt=None)[source]
          +scale(x=1, y=1, pt=None)[source]

          Override GeometryEntity.scale since it is the radius that must be scaled (if x == y) or else a new Polygon must be returned.

          >>> from sympy import RegularPolygon
          @@ -2007,7 +2007,7 @@ 
          Documentation Version
          -spin(angle)[source]
          +spin(angle)[source]

          Increment in place the virtual Polygon’s rotation by ccw angle.

          See also: rotate method which moves the center.

          >>> from sympy import Polygon, Point, pi
          @@ -2058,7 +2058,7 @@ 
          Documentation Version
          -class sympy.geometry.polygon.Triangle(*args, **kwargs)[source]
          +class sympy.geometry.polygon.Triangle(*args, **kwargs)[source]

          A polygon with three vertices and three sides.

          Parameters:
          @@ -2169,7 +2169,7 @@
          Documentation Version
          -bisectors()[source]
          +bisectors()[source]

          The angle bisectors of the triangle.

          An angle bisector of a triangle is a straight line through a vertex which cuts the corresponding angle in half.

          @@ -2441,7 +2441,7 @@
          Documentation Version
          -is_equilateral()[source]
          +is_equilateral()[source]

          Are all the sides the same length?

          Returns:
          @@ -2469,7 +2469,7 @@
          Documentation Version
          -is_isosceles()[source]
          +is_isosceles()[source]

          Are two or more of the sides the same length?

          Returns:
          @@ -2491,7 +2491,7 @@
          Documentation Version
          -is_right()[source]
          +is_right()[source]

          Is the triangle right-angled.

          Returns:
          @@ -2513,7 +2513,7 @@
          Documentation Version
          -is_scalene()[source]
          +is_scalene()[source]

          Are all the sides of the triangle of different lengths?

          Returns:
          @@ -2535,7 +2535,7 @@
          Documentation Version
          -is_similar(t2)[source]
          +is_similar(t2)[source]

          Is another triangle similar to this one.

          Two triangles are similar if one can be uniformly scaled to the other.

          diff --git a/dev/modules/geometry/utils.html b/dev/modules/geometry/utils.html index 859457ec3b7..4f86c6eda7b 100644 --- a/dev/modules/geometry/utils.html +++ b/dev/modules/geometry/utils.html @@ -802,7 +802,7 @@
          Documentation Version

          Utils

          -sympy.geometry.util.intersection(*entities, pairwise=False, **kwargs)[source]
          +sympy.geometry.util.intersection(*entities, pairwise=False, **kwargs)[source]

          The intersection of a collection of GeometryEntity instances.

          Parameters:
          @@ -859,7 +859,7 @@
          Documentation Version
          -sympy.geometry.util.convex_hull(*args, polygon=True)[source]
          +sympy.geometry.util.convex_hull(*args, polygon=True)[source]

          The convex hull surrounding the Points contained in the list of entities.

          Parameters:
          @@ -912,7 +912,7 @@
          Documentation Version
          -sympy.geometry.util.are_similar(e1, e2)[source]
          +sympy.geometry.util.are_similar(e1, e2)[source]

          Are two geometrical entities similar.

          Can one geometrical entity be uniformly scaled to the other?

          @@ -952,7 +952,7 @@
          Documentation Version
          -sympy.geometry.util.centroid(*args)[source]
          +sympy.geometry.util.centroid(*args)[source]

          Find the centroid (center of mass) of the collection containing only Points, Segments or Polygons. The centroid is the weighted average of the individual centroid where the weights are the lengths (of segments) or areas (of polygons). @@ -998,7 +998,7 @@

          Documentation Version
          -sympy.geometry.util.idiff(eq, y, x, n=1)[source]
          +sympy.geometry.util.idiff(eq, y, x, n=1)[source]

          Return dy/dx assuming that eq == 0.

          Parameters:
          diff --git a/dev/modules/holonomic/convert.html b/dev/modules/holonomic/convert.html index 1601a1d95de..094d4c756df 100644 --- a/dev/modules/holonomic/convert.html +++ b/dev/modules/holonomic/convert.html @@ -804,7 +804,7 @@

          Converting other representations to holonomic

          -sympy.holonomic.holonomic.from_hyper(func, x0=0, evalf=False)[source]
          +sympy.holonomic.holonomic.from_hyper(func, x0=0, evalf=False)[source]

          Converts a hypergeometric function to holonomic. func is the Hypergeometric Function and x0 is the point at which initial conditions are required.

          @@ -833,7 +833,7 @@

          Converting Meijer G-functionsdomain=QQ,

          -)[source] +)[source]

          Converts a Meijer G-function to Holonomic. func is the G-Function and x0 is the point at which initial conditions are required.

          @@ -864,7 +864,7 @@

          Converting symbolic expressionsinitcond=True,

          -)[source] +)[source]

          Converts a function or an expression to a holonomic function.

          Parameters:
          diff --git a/dev/modules/holonomic/internal.html b/dev/modules/holonomic/internal.html index e6951923368..ab8335c5628 100644 --- a/dev/modules/holonomic/internal.html +++ b/dev/modules/holonomic/internal.html @@ -802,7 +802,7 @@
          Documentation Version

          Internal API

          -sympy.holonomic.holonomic._create_table(table, domain=QQ)[source]
          +sympy.holonomic.holonomic._create_table(table, domain=QQ)[source]

          Creates the look-up table. For a similar implementation see meijerint._create_lookup_table.

          @@ -821,7 +821,7 @@

          Internal APIinitcond=True,

          -)[source] +)[source]

          Converts polynomials, rationals and algebraic functions to holonomic.

          diff --git a/dev/modules/holonomic/operations.html b/dev/modules/holonomic/operations.html index 3683509a4f7..b9a21386bb4 100644 --- a/dev/modules/holonomic/operations.html +++ b/dev/modules/holonomic/operations.html @@ -841,7 +841,7 @@

          Integration and Differentiationinitcond=False,

          -)[source] +)[source]

          Integrates the given holonomic function.

          Examples

          >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
          @@ -859,7 +859,7 @@ 

          Integration and Differentiation
          -HolonomicFunction.diff(*args, **kwargs)[source]
          +HolonomicFunction.diff(*args, **kwargs)[source]

          Differentiation of the given Holonomic function.

          Examples

          >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
          @@ -892,7 +892,7 @@ 

          Composition with polynomials**kwargs,

          -)[source] +)[source]

          Returns function after composition of a holonomic function with an algebraic function. The method cannot compute initial conditions for the result by itself, so they can be also be @@ -920,7 +920,7 @@

          Composition with polynomials

          -HolonomicFunction.to_sequence(lb=True)[source]
          +HolonomicFunction.to_sequence(lb=True)[source]

          Finds recurrence relation for the coefficients in the series expansion of the function about \(x_0\), where \(x_0\) is the point at which the initial condition is stored.

          @@ -982,7 +982,7 @@

          Series expansion_recur=None,

          -)[source] +)[source]

          Finds the power series expansion of given holonomic function about \(x_0\).

          Explanation

          A list of series might be returned if \(x_0\) is a regular point with @@ -1019,7 +1019,7 @@

          Numerical evaluationderivatives=False,

          -)[source] +)[source]

          Finds numerical value of a holonomic function using numerical methods. (RK4 by default). A set of points (real or complex) must be provided which will be the path for the numerical integration.

          @@ -1070,7 +1070,7 @@

          Convert to a linear combination of hypergeometric functions_recur=None,

          -)[source] +)[source]

          Returns a hypergeometric function (or linear combination of them) representing the given holonomic function.

          Explanation

          @@ -1103,7 +1103,7 @@

          Convert to a linear combination of hypergeometric functions

          -HolonomicFunction.to_meijerg()[source]
          +HolonomicFunction.to_meijerg()[source]

          Returns a linear combination of Meijer G-functions.

          Examples

          >>> from sympy.holonomic import expr_to_holonomic
          @@ -1126,7 +1126,7 @@ 

          Convert to a linear combination of Meijer G-functionsConvert to expressions

          -HolonomicFunction.to_expr()[source]
          +HolonomicFunction.to_expr()[source]

          Converts a Holonomic Function back to elementary functions.

          Examples

          >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
          diff --git a/dev/modules/holonomic/represent.html b/dev/modules/holonomic/represent.html
          index 9ac4c241717..68aee30a2e8 100644
          --- a/dev/modules/holonomic/represent.html
          +++ b/dev/modules/holonomic/represent.html
          @@ -833,7 +833,7 @@ 

          Representation of holonomic functions in SymPy
          -class sympy.holonomic.holonomic.HolonomicFunction(annihilator, x, x0=0, y0=None)[source]
          +class sympy.holonomic.holonomic.HolonomicFunction(annihilator, x, x0=0, y0=None)[source]

          A Holonomic Function is a solution to a linear homogeneous ordinary differential equation with polynomial coefficients. This differential equation can also be represented by an annihilator i.e. a Differential @@ -898,7 +898,7 @@

          Representation of holonomic functions in SymPy
          -class sympy.holonomic.holonomic.DifferentialOperator(list_of_poly, parent)[source]
          +class sympy.holonomic.holonomic.DifferentialOperator(list_of_poly, parent)[source]

          Differential Operators are elements of Weyl Algebra. The Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator i.e. the algebra it belongs to.

          @@ -929,7 +929,7 @@

          Representation of holonomic functions in SymPy
          -is_singular(x0)[source]
          +is_singular(x0)[source]

          Checks if the differential equation is singular at x0.

          @@ -937,7 +937,7 @@

          Representation of holonomic functions in SymPy
          -sympy.holonomic.holonomic.DifferentialOperators(base, generator)[source]
          +sympy.holonomic.holonomic.DifferentialOperators(base, generator)[source]

          This function is used to create annihilators using Dx.

          Parameters:
          @@ -972,7 +972,7 @@

          Representation of holonomic functions in SymPy
          -class sympy.holonomic.holonomic.DifferentialOperatorAlgebra(base, generator)[source]
          +class sympy.holonomic.holonomic.DifferentialOperatorAlgebra(base, generator)[source]

          An Ore Algebra is a set of noncommutative polynomials in the intermediate Dx and coefficients in a base polynomial ring \(A\). It follows the commutation rule:

          diff --git a/dev/modules/integrals/g-functions.html b/dev/modules/integrals/g-functions.html index 99af542d148..49397865823 100644 --- a/dev/modules/integrals/g-functions.html +++ b/dev/modules/integrals/g-functions.html @@ -1811,19 +1811,19 @@

          Implemented G-Function Formulae
          -exception sympy.integrals.meijerint._CoeffExpValueError[source]
          +exception sympy.integrals.meijerint._CoeffExpValueError[source]

          Exception raised by _get_coeff_exp, for internal use only.

          -sympy.integrals.meijerint._check_antecedents(g1, g2, x)[source]
          +sympy.integrals.meijerint._check_antecedents(g1, g2, x)[source]

          Return a condition under which the integral theorem applies.

          -sympy.integrals.meijerint._check_antecedents_1(g, x, helper=False)[source]
          +sympy.integrals.meijerint._check_antecedents_1(g, x, helper=False)[source]

          Return a condition under which the mellin transform of g exists. Any power of x has already been absorbed into the G function, so this is just \(\int_0^\infty g\, dx\).

          @@ -1834,13 +1834,13 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._check_antecedents_inversion(g, x)[source]
          +sympy.integrals.meijerint._check_antecedents_inversion(g, x)[source]

          Check antecedents for the laplace inversion integral.

          -sympy.integrals.meijerint._condsimp(cond, first=True)[source]
          +sympy.integrals.meijerint._condsimp(cond, first=True)[source]

          Do naive simplifications on cond.

          Explanation

          Note that this routine is completely ad-hoc, simplification rules being @@ -1857,13 +1857,13 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._create_lookup_table(table)[source]
          +sympy.integrals.meijerint._create_lookup_table(table)[source]

          Add formulae for the function -> meijerg lookup table.

          -sympy.integrals.meijerint._dummy(name, token, expr, **kwargs)[source]
          +sympy.integrals.meijerint._dummy(name, token, expr, **kwargs)[source]

          Return a dummy. This will return the same dummy if the same token+name is requested more than once, and it is not already in expr. This is for being cache-friendly.

          @@ -1871,20 +1871,20 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._dummy_(name, token, **kwargs)[source]
          +sympy.integrals.meijerint._dummy_(name, token, **kwargs)[source]

          Return a dummy associated to name and token. Same effect as declaring it globally.

          -sympy.integrals.meijerint._eval_cond(cond)[source]
          +sympy.integrals.meijerint._eval_cond(cond)[source]

          Re-evaluate the conditions.

          -sympy.integrals.meijerint._exponents(expr, x)[source]
          +sympy.integrals.meijerint._exponents(expr, x)[source]

          Find the exponents of x (not including zero) in expr.

          Examples

          >>> from sympy.integrals.meijerint import _exponents
          @@ -1904,7 +1904,7 @@ 

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._find_splitting_points(expr, x)[source]
          +sympy.integrals.meijerint._find_splitting_points(expr, x)[source]

          Find numbers a such that a linear substitution x -> x + a would (hopefully) simplify expr.

          Examples

          @@ -1923,20 +1923,20 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._flip_g(g)[source]
          +sympy.integrals.meijerint._flip_g(g)[source]

          Turn the G function into one of inverse argument (i.e. G(1/x) -> G’(x))

          -sympy.integrals.meijerint._functions(expr, x)[source]
          +sympy.integrals.meijerint._functions(expr, x)[source]

          Find the types of functions in expr, to estimate the complexity.

          -sympy.integrals.meijerint._get_coeff_exp(expr, x)[source]
          +sympy.integrals.meijerint._get_coeff_exp(expr, x)[source]

          When expr is known to be of the form c*x**b, with c and/or b possibly 1, return c, b.

          Examples

          @@ -1956,13 +1956,13 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._guess_expansion(f, x)[source]
          +sympy.integrals.meijerint._guess_expansion(f, x)[source]

          Try to guess sensible rewritings for integrand f(x).

          -sympy.integrals.meijerint._inflate_fox_h(g, a)[source]
          +sympy.integrals.meijerint._inflate_fox_h(g, a)[source]

          Let d denote the integrand in the definition of the G function g. Consider the function H which is defined in the same way, but with integrand d/Gamma(a*s) (contour conventions as usual).

          @@ -1973,14 +1973,14 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._inflate_g(g, n)[source]
          +sympy.integrals.meijerint._inflate_g(g, n)[source]

          Return C, h such that h is a G function of argument z**n and g = C*h.

          -sympy.integrals.meijerint._int0oo(g1, g2, x)[source]
          +sympy.integrals.meijerint._int0oo(g1, g2, x)[source]

          Express integral from zero to infinity g1*g2 using a G function, assuming the necessary conditions are fulfilled.

          Examples

          @@ -1997,7 +1997,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._int0oo_1(g, x)[source]
          +sympy.integrals.meijerint._int0oo_1(g, x)[source]

          Evaluate \(\int_0^\infty g\, dx\) using G functions, assuming the necessary conditions are fulfilled.

          Examples

          @@ -2012,20 +2012,20 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._int_inversion(g, x, t)[source]
          +sympy.integrals.meijerint._int_inversion(g, x, t)[source]

          Compute the laplace inversion integral, assuming the formula applies.

          -sympy.integrals.meijerint._is_analytic(f, x)[source]
          +sympy.integrals.meijerint._is_analytic(f, x)[source]

          Check if f(x), when expressed using G functions on the positive reals, will in fact agree with the G functions almost everywhere

          -sympy.integrals.meijerint._meijerint_definite_2(f, x)[source]
          +sympy.integrals.meijerint._meijerint_definite_2(f, x)[source]

          Try to integrate f dx from zero to infinity.

          The body of this function computes various ‘simplifications’ f1, f2, … of f (e.g. by calling expand_mul(), trigexpand() @@ -2037,7 +2037,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._meijerint_definite_3(f, x)[source]
          +sympy.integrals.meijerint._meijerint_definite_3(f, x)[source]

          Try to integrate f dx from zero to infinity.

          This function calls _meijerint_definite_4 to try to compute the integral. If this fails, it tries using linearity.

          @@ -2045,7 +2045,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._meijerint_definite_4(f, x, only_double=False)[source]
          +sympy.integrals.meijerint._meijerint_definite_4(f, x, only_double=False)[source]

          Try to integrate f dx from zero to infinity.

          Explanation

          This function tries to apply the integration theorems found in literature, @@ -2056,13 +2056,13 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._meijerint_indefinite_1(f, x)[source]
          +sympy.integrals.meijerint._meijerint_indefinite_1(f, x)[source]

          Helper that does not attempt any substitution.

          -sympy.integrals.meijerint._mul_args(f)[source]
          +sympy.integrals.meijerint._mul_args(f)[source]

          Return a list L such that Mul(*L) == f.

          If f is not a Mul or Pow, L=[f]. If f=g**n for an integer n, L=[g]*n. @@ -2071,7 +2071,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._mul_as_two_parts(f)[source]
          +sympy.integrals.meijerint._mul_as_two_parts(f)[source]

          Find all the ways to split f into a product of two terms. Return None on failure.

          Explanation

          @@ -2091,7 +2091,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._my_principal_branch(expr, period, full_pb=False)[source]
          +sympy.integrals.meijerint._my_principal_branch(expr, period, full_pb=False)[source]

          Bring expr nearer to its principal branch by removing superfluous factors. This function does not guarantee to yield the principal branch, @@ -2108,13 +2108,13 @@

          Implemented G-Function Formulaex: Symbol,

          -) tuple[type[Basic], ...][source] +) tuple[type[Basic], ...][source]

          Create a hashable entity describing the type of f.

          -sympy.integrals.meijerint._rewrite1(f, x, recursive=True)[source]
          +sympy.integrals.meijerint._rewrite1(f, x, recursive=True)[source]

          Try to rewrite f using a (sum of) single G functions with argument a*x**b. Return fac, po, g such that f = fac*po*g, fac is independent of x. and po = x**s. @@ -2124,7 +2124,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._rewrite2(f, x)[source]
          +sympy.integrals.meijerint._rewrite2(f, x)[source]

          Try to rewrite f as a product of two G functions of arguments a*x**b. Return fac, po, g1, g2 such that f = fac*po*g1*g2, where fac is independent of x and po is x**s. @@ -2134,13 +2134,13 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._rewrite_inversion(fac, po, g, x)[source]
          +sympy.integrals.meijerint._rewrite_inversion(fac, po, g, x)[source]

          Absorb po == x**s into g.

          -sympy.integrals.meijerint._rewrite_saxena(fac, po, g1, g2, x, full_pb=False)[source]
          +sympy.integrals.meijerint._rewrite_saxena(fac, po, g1, g2, x, full_pb=False)[source]

          Rewrite the integral fac*po*g1*g2 from 0 to oo in terms of G functions with argument c*x.

          Explanation

          @@ -2165,7 +2165,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._rewrite_saxena_1(fac, po, g, x)[source]
          +sympy.integrals.meijerint._rewrite_saxena_1(fac, po, g, x)[source]

          Rewrite the integral fac*po*g dx, from zero to infinity, as integral fac*G, where G has argument a*x. Note po=x**s. Return fac, G.

          @@ -2173,7 +2173,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._rewrite_single(f, x, recursive=True)[source]
          +sympy.integrals.meijerint._rewrite_single(f, x, recursive=True)[source]

          Try to rewrite f as a sum of single G functions of the form C*x**s*G(a*x**b), where b is a rational number and C is independent of x. We guarantee that result.argument.as_coeff_mul(x) returns (a, (x**b,)) @@ -2184,7 +2184,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint._split_mul(f, x)[source]
          +sympy.integrals.meijerint._split_mul(f, x)[source]

          Split expression f into fac, po, g, where fac is a constant factor, po = x**s for some s independent of s, and g is “the rest”.

          Examples

          @@ -2199,7 +2199,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint.meijerint_definite(f, x, a, b)[source]
          +sympy.integrals.meijerint.meijerint_definite(f, x, a, b)[source]

          Integrate f over the interval [a, b], by rewriting it as a product of two G functions, or as a single G function.

          Return res, cond, where cond are convergence conditions.

          @@ -2220,7 +2220,7 @@

          Implemented G-Function Formulae
          -sympy.integrals.meijerint.meijerint_indefinite(f, x)[source]
          +sympy.integrals.meijerint.meijerint_indefinite(f, x)[source]

          Compute an indefinite integral of f by rewriting it as a G function.

          Examples

          >>> from sympy.integrals.meijerint import meijerint_indefinite
          @@ -2234,7 +2234,7 @@ 

          Implemented G-Function Formulae
          -sympy.integrals.meijerint.meijerint_inversion(f, x, t)[source]
          +sympy.integrals.meijerint.meijerint_inversion(f, x, t)[source]

          Compute the inverse laplace transform \(\int_{c+i\infty}^{c-i\infty} f(x) e^{tx}\, dx\), for real c larger than the real part of all singularities of f.

          diff --git a/dev/modules/integrals/integrals.html b/dev/modules/integrals/integrals.html index dae3a40ddca..36a49091506 100644 --- a/dev/modules/integrals/integrals.html +++ b/dev/modules/integrals/integrals.html @@ -850,7 +850,7 @@

          Examples

          SymPy has special support for definite integrals, and integral transforms.

          -sympy.integrals.transforms.mellin_transform(f, x, s, **hints)[source]
          +sympy.integrals.transforms.mellin_transform(f, x, s, **hints)[source]

          Compute the Mellin transform \(F(s)\) of \(f(x)\),

          @@ -887,7 +887,7 @@

          Examples
          -class sympy.integrals.transforms.MellinTransform(*args)[source]
          +class sympy.integrals.transforms.MellinTransform(*args)[source]

          Class representing unevaluated Mellin transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute Mellin transforms, see the mellin_transform() @@ -896,7 +896,7 @@

          Examples
          -sympy.integrals.transforms.inverse_mellin_transform(F, s, x, strip, **hints)[source]
          +sympy.integrals.transforms.inverse_mellin_transform(F, s, x, strip, **hints)[source]

          Compute the inverse Mellin transform of \(F(s)\) over the fundamental strip given by strip=(a, b).

          Explanation

          @@ -942,7 +942,7 @@

          Examples
          -class sympy.integrals.transforms.InverseMellinTransform(*args)[source]
          +class sympy.integrals.transforms.InverseMellinTransform(*args)[source]

          Class representing unevaluated inverse Mellin transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute inverse Mellin transforms, see the @@ -961,7 +961,7 @@

          Examples
          **hints,

          -)[source] +)[source]

          Compute the Laplace Transform \(F(s)\) of \(f(t)\),

          @@ -1060,7 +1060,7 @@

          Examples
          -sympy.integrals.transforms.laplace_correspondence(f, fdict, /)[source]
          +sympy.integrals.transforms.laplace_correspondence(f, fdict, /)[source]

          This helper function takes a function \(f\) that is the result of a laplace_transform or an inverse_laplace_transform. It replaces all unevaluated LaplaceTransform(y(t), t, s) by \(Y(s)\) for any \(s\) and @@ -1101,7 +1101,7 @@

          Examples
          -sympy.integrals.transforms.laplace_initial_conds(f, t, fdict, /)[source]
          +sympy.integrals.transforms.laplace_initial_conds(f, t, fdict, /)[source]

          This helper function takes a function \(f\) that is the result of a laplace_transform. It takes an fdict of the form {y: [1, 4, 2]}, where the values in the list are the initial value, the initial slope, the @@ -1142,7 +1142,7 @@

          Examples
          -class sympy.integrals.transforms.LaplaceTransform(*args)[source]
          +class sympy.integrals.transforms.LaplaceTransform(*args)[source]

          Class representing unevaluated Laplace transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute Laplace transforms, see the laplace_transform() @@ -1152,7 +1152,7 @@

          Examples tuple containing the same expression, a convergence plane, and conditions.

          -doit(**hints)[source]
          +doit(**hints)[source]

          Try to evaluate the transform in closed form.

          Explanation

          Standard hints are the following: @@ -1176,7 +1176,7 @@

          Examples
          **hints,

          -)[source] +)[source]

          Compute the inverse Laplace transform of \(F(s)\), defined as

          @@ -1213,14 +1213,14 @@

          Examples
          -class sympy.integrals.transforms.InverseLaplaceTransform(*args)[source]
          +class sympy.integrals.transforms.InverseLaplaceTransform(*args)[source]

          Class representing unevaluated inverse Laplace transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute inverse Laplace transforms, see the inverse_laplace_transform() docstring.

          -doit(**hints)[source]
          +doit(**hints)[source]

          Try to evaluate the transform in closed form.

          Explanation

          Standard hints are the following: @@ -1234,7 +1234,7 @@

          Examples
          -sympy.integrals.transforms.fourier_transform(f, x, k, **hints)[source]
          +sympy.integrals.transforms.fourier_transform(f, x, k, **hints)[source]

          Compute the unitary, ordinary-frequency Fourier transform of f, defined as

          @@ -1278,7 +1278,7 @@

          Examples
          simplify=True,

          -)[source] +)[source]

          Compute a general Fourier-type transform

          @@ -1290,7 +1290,7 @@

          Examples
          -class sympy.integrals.transforms.FourierTransform(*args)[source]
          +class sympy.integrals.transforms.FourierTransform(*args)[source]

          Class representing unevaluated Fourier transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute Fourier transforms, see the fourier_transform() @@ -1299,7 +1299,7 @@

          Examples
          -sympy.integrals.transforms.inverse_fourier_transform(F, k, x, **hints)[source]
          +sympy.integrals.transforms.inverse_fourier_transform(F, k, x, **hints)[source]

          Compute the unitary, ordinary-frequency inverse Fourier transform of \(F\), defined as

          @@ -1331,7 +1331,7 @@

          Examples
          -class sympy.integrals.transforms.InverseFourierTransform(*args)[source]
          +class sympy.integrals.transforms.InverseFourierTransform(*args)[source]

          Class representing unevaluated inverse Fourier transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute inverse Fourier transforms, see the @@ -1340,7 +1340,7 @@

          Examples
          -sympy.integrals.transforms.sine_transform(f, x, k, **hints)[source]
          +sympy.integrals.transforms.sine_transform(f, x, k, **hints)[source]

          Compute the unitary, ordinary-frequency sine transform of \(f\), defined as

          @@ -1370,7 +1370,7 @@

          Examples
          -class sympy.integrals.transforms.SineTransform(*args)[source]
          +class sympy.integrals.transforms.SineTransform(*args)[source]

          Class representing unevaluated sine transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute sine transforms, see the sine_transform() @@ -1379,7 +1379,7 @@

          Examples
          -sympy.integrals.transforms.inverse_sine_transform(F, k, x, **hints)[source]
          +sympy.integrals.transforms.inverse_sine_transform(F, k, x, **hints)[source]

          Compute the unitary, ordinary-frequency inverse sine transform of \(F\), defined as

          @@ -1410,7 +1410,7 @@

          Examples
          -class sympy.integrals.transforms.InverseSineTransform(*args)[source]
          +class sympy.integrals.transforms.InverseSineTransform(*args)[source]

          Class representing unevaluated inverse sine transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute inverse sine transforms, see the @@ -1419,7 +1419,7 @@

          Examples
          -sympy.integrals.transforms.cosine_transform(f, x, k, **hints)[source]
          +sympy.integrals.transforms.cosine_transform(f, x, k, **hints)[source]

          Compute the unitary, ordinary-frequency cosine transform of \(f\), defined as

          @@ -1449,7 +1449,7 @@

          Examples
          -class sympy.integrals.transforms.CosineTransform(*args)[source]
          +class sympy.integrals.transforms.CosineTransform(*args)[source]

          Class representing unevaluated cosine transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute cosine transforms, see the cosine_transform() @@ -1458,7 +1458,7 @@

          Examples
          -sympy.integrals.transforms.inverse_cosine_transform(F, k, x, **hints)[source]
          +sympy.integrals.transforms.inverse_cosine_transform(F, k, x, **hints)[source]

          Compute the unitary, ordinary-frequency inverse cosine transform of \(F\), defined as

          @@ -1488,7 +1488,7 @@

          Examples
          -class sympy.integrals.transforms.InverseCosineTransform(*args)[source]
          +class sympy.integrals.transforms.InverseCosineTransform(*args)[source]

          Class representing unevaluated inverse cosine transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute inverse cosine transforms, see the @@ -1497,7 +1497,7 @@

          Examples
          -sympy.integrals.transforms.hankel_transform(f, r, k, nu, **hints)[source]
          +sympy.integrals.transforms.hankel_transform(f, r, k, nu, **hints)[source]

          Compute the Hankel transform of \(f\), defined as

          @@ -1541,7 +1541,7 @@

          Examples
          -class sympy.integrals.transforms.HankelTransform(*args)[source]
          +class sympy.integrals.transforms.HankelTransform(*args)[source]

          Class representing unevaluated Hankel transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute Hankel transforms, see the hankel_transform() @@ -1550,7 +1550,7 @@

          Examples
          -sympy.integrals.transforms.inverse_hankel_transform(F, k, r, nu, **hints)[source]
          +sympy.integrals.transforms.inverse_hankel_transform(F, k, r, nu, **hints)[source]

          Compute the inverse Hankel transform of \(F\) defined as

          @@ -1594,7 +1594,7 @@

          Examples
          -class sympy.integrals.transforms.InverseHankelTransform(*args)[source]
          +class sympy.integrals.transforms.InverseHankelTransform(*args)[source]

          Class representing unevaluated inverse Hankel transforms.

          For usage of this class, see the IntegralTransform docstring.

          For how to compute inverse Hankel transforms, see the @@ -1603,7 +1603,7 @@

          Examples
          -class sympy.integrals.transforms.IntegralTransform(*args)[source]
          +class sympy.integrals.transforms.IntegralTransform(*args)[source]

          Base class for integral transforms.

          Explanation

          This class represents unevaluated transforms.

          @@ -1620,7 +1620,7 @@

          Examples number and possibly a convergence condition.

          -doit(**hints)[source]
          +doit(**hints)[source]

          Try to evaluate the transform in closed form.

          Explanation

          This general function handles linearity, but apart from that leaves @@ -1662,7 +1662,7 @@

          Examples
          -exception sympy.integrals.transforms.IntegralTransformError(transform, function, msg)[source]
          +exception sympy.integrals.transforms.IntegralTransformError(transform, function, msg)[source]

          Exception raised in relation to problems computing transforms.

          Explanation

          This class is mostly used internally; if integrals cannot be computed @@ -1685,7 +1685,7 @@

          Internalsratint().

          -sympy.integrals.rationaltools.ratint(f, x, **flags)[source]
          +sympy.integrals.rationaltools.ratint(f, x, **flags)[source]

          Performs indefinite integration of rational functions.

          Explanation

          Given a field \(K\) and a rational function \(f = p/q\), @@ -1716,7 +1716,7 @@

          Internals
          -sympy.integrals.rationaltools.ratint_ratpart(f, g, x)[source]
          +sympy.integrals.rationaltools.ratint_ratpart(f, g, x)[source]

          Horowitz-Ostrogradsky algorithm.

          Explanation

          Given a field K and polynomials f and g in K[x], such that f and g @@ -1745,7 +1745,7 @@

          Internals
          -sympy.integrals.rationaltools.ratint_logpart(f, g, x, t=None)[source]
          +sympy.integrals.rationaltools.ratint_logpart(f, g, x, t=None)[source]

          Lazard-Rioboo-Trager algorithm.

          Explanation

          Given a field K and polynomials f and g in K[x], such that f and g @@ -1784,7 +1784,7 @@

          Internals
          -sympy.integrals.trigonometry.trigintegrate(f, x, conds='piecewise')[source]
          +sympy.integrals.trigonometry.trigintegrate(f, x, conds='piecewise')[source]

          Integrate f = Mul(trig) over x.

          Examples

          >>> from sympy import sin, cos, tan, sec
          @@ -1825,7 +1825,7 @@ 

          Internalsdeltaintegrate() solves integrals with DiracDelta objects.

          -sympy.integrals.deltafunctions.deltaintegrate(f, x)[source]
          +sympy.integrals.deltafunctions.deltaintegrate(f, x)[source]

          Explanation

          The idea for integration is the following:

            @@ -1875,7 +1875,7 @@

            Internalssingularityintegrate() is applied if the function contains a SingularityFunction

            -sympy.integrals.singularityfunctions.singularityintegrate(f, x)[source]
            +sympy.integrals.singularityfunctions.singularityintegrate(f, x)[source]

            This function handles the indefinite integrations of Singularity functions. The integrate function calls this function internally whenever an instance of SingularityFunction is passed as argument.

            @@ -1940,7 +1940,7 @@

            Internalsconds='piecewise',

            -)[source] +)[source]

            The Risch Integration Algorithm.

            Explanation

            Only transcendental functions are supported. Currently, only exponentials @@ -2048,7 +2048,7 @@

            Internals**assumptions,

          -)[source] +)[source]

          Represents a nonelementary Integral.

          Explanation

          If the result of integrate() is an instance of this class, it is @@ -2100,7 +2100,7 @@

          Internalsintegral_steps() function.

          -sympy.integrals.manualintegrate.manualintegrate(f, var)[source]
          +sympy.integrals.manualintegrate.manualintegrate(f, var)[source]

          Explanation

          Compute indefinite integral of a single variable using an algorithm that resembles what a student would do by hand.

          @@ -2143,7 +2143,7 @@

          Internals
          -sympy.integrals.manualintegrate.integral_steps(integrand, symbol, **options)[source]
          +sympy.integrals.manualintegrate.integral_steps(integrand, symbol, **options)[source]

          Returns the steps needed to compute an integral.

          Returns:
          @@ -2203,7 +2203,7 @@

          Internals_try_heurisch=None,

          -)[source] +)[source]

          Compute indefinite integral using heuristic Risch algorithm.

          Explanation

          This is a heuristic approach to indefinite integration in finite @@ -2289,7 +2289,7 @@

          Internals
          -sympy.integrals.heurisch.components(f, x)[source]
          +sympy.integrals.heurisch.components(f, x)[source]

          Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with @@ -2317,7 +2317,7 @@

          Internals

          -sympy.integrals.integrals.integrate(f, var, ...)[source]
          +sympy.integrals.integrals.integrate(f, var, ...)[source]

          Deprecated since version 1.6: Using integrate() with Poly is deprecated. Use Poly.integrate() instead. See Using integrate with Poly.

          @@ -2466,7 +2466,7 @@

          API reference
          -sympy.integrals.integrals.line_integrate(field, Curve, variables)[source]
          +sympy.integrals.integrals.line_integrate(field, Curve, variables)[source]

          Compute the line integral.

          Examples

          >>> from sympy import Curve, line_integrate, E, ln
          @@ -2485,7 +2485,7 @@ 

          API referenceIntegral represents an unevaluated integral and has some methods that help in the integration of an expression.

          -class sympy.integrals.integrals.Integral(function, *symbols, **assumptions)[source]
          +class sympy.integrals.integrals.Integral(function, *symbols, **assumptions)[source]

          Represents unevaluated integral.

          @@ -2503,7 +2503,7 @@

          API referenceevaluate=True,

          -)[source] +)[source]

          Approximates a definite integral by a sum.

          Parameters:
          @@ -2614,7 +2614,7 @@

          API reference
          -doit(**hints)[source]
          +doit(**hints)[source]

          Perform the integration using any hints given.

          Examples

          >>> from sympy import Piecewise, S
          @@ -2656,7 +2656,7 @@ 

          API reference
          -principal_value(**kwargs)[source]
          +principal_value(**kwargs)[source]

          Compute the Cauchy Principal Value of the definite integral of a real function in the given interval on the real axis.

          Explanation

          @@ -2691,7 +2691,7 @@

          API reference
          -transform(x, u)[source]
          +transform(x, u)[source]

          Performs a change of variables from \(x\) to \(u\) using the relationship given by \(x\) and \(u\) which will define the transformations \(f\) and \(F\) (which are inverses of each other) as follows:

          @@ -2798,7 +2798,7 @@

          API referenceIntegral and Sum.

          -class sympy.concrete.expr_with_limits.ExprWithLimits(function, *symbols, **assumptions)[source]
          +class sympy.concrete.expr_with_limits.ExprWithLimits(function, *symbols, **assumptions)[source]
          property bound_symbols
          @@ -2984,7 +2984,7 @@

          Numeric Integrals
          -sympy.integrals.quadrature.gauss_legendre(n, n_digits)[source]
          +sympy.integrals.quadrature.gauss_legendre(n, n_digits)[source]

          Computes the Gauss-Legendre quadrature [R578] points and weights.

          Parameters:
          @@ -3051,7 +3051,7 @@

          Numeric Integrals
          -sympy.integrals.quadrature.gauss_laguerre(n, n_digits)[source]
          +sympy.integrals.quadrature.gauss_laguerre(n, n_digits)[source]

          Computes the Gauss-Laguerre quadrature [R580] points and weights.

          Parameters:
          @@ -3118,7 +3118,7 @@

          Numeric Integrals
          -sympy.integrals.quadrature.gauss_hermite(n, n_digits)[source]
          +sympy.integrals.quadrature.gauss_hermite(n, n_digits)[source]

          Computes the Gauss-Hermite quadrature [R582] points and weights.

          Parameters:
          @@ -3192,7 +3192,7 @@

          Numeric Integrals
          -sympy.integrals.quadrature.gauss_gen_laguerre(n, alpha, n_digits)[source]
          +sympy.integrals.quadrature.gauss_gen_laguerre(n, alpha, n_digits)[source]

          Computes the generalized Gauss-Laguerre quadrature [R585] points and weights.

          Parameters:
          @@ -3268,7 +3268,7 @@

          Numeric Integrals
          -sympy.integrals.quadrature.gauss_chebyshev_t(n, n_digits)[source]
          +sympy.integrals.quadrature.gauss_chebyshev_t(n, n_digits)[source]

          Computes the Gauss-Chebyshev quadrature [R587] points and weights of the first kind.

          @@ -3339,7 +3339,7 @@

          Numeric Integrals
          -sympy.integrals.quadrature.gauss_chebyshev_u(n, n_digits)[source]
          +sympy.integrals.quadrature.gauss_chebyshev_u(n, n_digits)[source]

          Computes the Gauss-Chebyshev quadrature [R589] points and weights of the second kind.

          @@ -3404,7 +3404,7 @@

          Numeric Integrals
          -sympy.integrals.quadrature.gauss_jacobi(n, alpha, beta, n_digits)[source]
          +sympy.integrals.quadrature.gauss_jacobi(n, alpha, beta, n_digits)[source]

          Computes the Gauss-Jacobi quadrature [R591] points and weights.

          Parameters:
          @@ -3479,7 +3479,7 @@

          Numeric Integrals
          -sympy.integrals.quadrature.gauss_lobatto(n, n_digits)[source]
          +sympy.integrals.quadrature.gauss_lobatto(n, n_digits)[source]

          Computes the Gauss-Lobatto quadrature [R594] points and weights.

          Parameters:
          @@ -3645,7 +3645,7 @@

          API referencemax_degree=None,

          -)[source] +)[source]

          Integrates polynomials over 2/3-Polytopes.

          Parameters:
          diff --git a/dev/modules/interactive.html b/dev/modules/interactive.html index 2762e979ca9..e6cee07c347 100644 --- a/dev/modules/interactive.html +++ b/dev/modules/interactive.html @@ -806,13 +806,13 @@
          Documentation Version

          Tools for setting up interactive sessions.

          -sympy.interactive.session.enable_automatic_int_sympification(shell)[source]
          +sympy.interactive.session.enable_automatic_int_sympification(shell)[source]

          Allow IPython to automatically convert integer literals to Integer.

          -sympy.interactive.session.enable_automatic_symbols(shell)[source]
          +sympy.interactive.session.enable_automatic_symbols(shell)[source]

          Allow IPython to automatically create symbols (isympy -a).

          @@ -827,13 +827,13 @@
          Documentation Version
          auto_int_to_Integer=False,
          -)[source] +)[source]

          Construct new IPython session.

          -sympy.interactive.session.init_python_session()[source]
          +sympy.interactive.session.init_python_session()[source]

          Construct new Python session.

          @@ -856,7 +856,7 @@
          Documentation Version
          argv=[],

          -)[source] +)[source]

          Initialize an embedded IPython or Python session. The IPython session is initiated with the –pylab option, without the numpy imports, so that matplotlib plotting can be interactive.

          @@ -974,7 +974,7 @@
          Documentation Version
          -sympy.interactive.session.int_to_Integer(s)[source]
          +sympy.interactive.session.int_to_Integer(s)[source]

          Wrap integer literals with Integer.

          This is based on the decistmt example from https://docs.python.org/3/library/tokenize.html.

          @@ -1026,7 +1026,7 @@
          Documentation Version
          **settings,
          -)[source] +)[source]

          Initializes pretty-printer depending on the environment.

          Parameters:
          diff --git a/dev/modules/liealgebras/index.html b/dev/modules/liealgebras/index.html index 92f84b826cc..115894005bd 100644 --- a/dev/modules/liealgebras/index.html +++ b/dev/modules/liealgebras/index.html @@ -802,7 +802,7 @@
          Documentation Version

          Lie Algebra

          -class sympy.liealgebras.root_system.RootSystem(cartantype)[source]
          +class sympy.liealgebras.root_system.RootSystem(cartantype)[source]

          Represent the root system of a simple Lie algebra

          Every simple Lie algebra has a unique root system. To find the root system, we first consider the Cartan subalgebra of g, which is the maximal @@ -837,7 +837,7 @@

          Documentation Version

          -add_as_roots(root1, root2)[source]
          +add_as_roots(root1, root2)[source]

          Add two roots together if and only if their sum is also a root

          It takes as input two vectors which should be roots. It then computes their sum and checks if it is in the list of all possible roots. If it @@ -856,7 +856,7 @@

          Documentation Version
          -add_simple_roots(root1, root2)[source]
          +add_simple_roots(root1, root2)[source]

          Add two simple roots together

          The function takes as input two integers, root1 and root2. It then uses these integers as keys in the dictionary of simple roots, and gets @@ -873,7 +873,7 @@

          Documentation Version
          -all_roots()[source]
          +all_roots()[source]

          Generate all the roots of a given root system

          The result is a dictionary where the keys are integer numbers. It generates the roots by getting the dictionary of all positive roots @@ -884,7 +884,7 @@

          Documentation Version
          -cartan_matrix()[source]
          +cartan_matrix()[source]

          Cartan matrix of Lie algebra associated with this root system

          Examples

          >>> from sympy.liealgebras.root_system import RootSystem
          @@ -900,7 +900,7 @@ 
          Documentation Version
          -dynkin_diagram()[source]
          +dynkin_diagram()[source]

          Dynkin diagram of the Lie algebra associated with this root system

          Examples

          >>> from sympy.liealgebras.root_system import RootSystem
          @@ -914,7 +914,7 @@ 
          Documentation Version
          -root_space()[source]
          +root_space()[source]

          Return the span of the simple roots

          The root space is the vector space spanned by the simple roots, i.e. it is a vector space with a distinguished basis, the simple roots. This @@ -931,7 +931,7 @@

          Documentation Version
          -simple_roots()[source]
          +simple_roots()[source]

          Generate the simple roots of the Lie algebra

          The rank of the Lie algebra determines the number of simple roots that it has. This method obtains the rank of the Lie algebra, and then uses @@ -951,13 +951,13 @@

          Documentation Version
          -class sympy.liealgebras.type_a.TypeA(n)[source]
          +class sympy.liealgebras.type_a.TypeA(n)[source]

          This class contains the information about the A series of simple Lie algebras. ====

          -basic_root(i, j)[source]
          +basic_root(i, j)[source]

          This is a method just to generate roots with a 1 iin the ith position and a -1 in the jth position.

          @@ -965,13 +965,13 @@
          Documentation Version
          -basis()[source]
          +basis()[source]

          Returns the number of independent generators of A_n

          -cartan_matrix()[source]
          +cartan_matrix()[source]

          Returns the Cartan matrix for A_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -992,7 +992,7 @@

          Documentation Version
          -dimension()[source]
          +dimension()[source]

          Dimension of the vector space V underlying the Lie algebra

          Examples

          >>> from sympy.liealgebras.cartan_type import CartanType
          @@ -1005,19 +1005,19 @@ 
          Documentation Version
          -highest_root()[source]
          +highest_root()[source]

          Returns the highest weight root for A_n

          -lie_algebra()[source]
          +lie_algebra()[source]

          Returns the Lie algebra associated with A_n

          -positive_roots()[source]
          +positive_roots()[source]

          This method generates all the positive roots of A_n. This is half of all of the roots of A_n; by multiplying all the positive roots by -1 we @@ -1034,13 +1034,13 @@

          Documentation Version
          -roots()[source]
          +roots()[source]

          Returns the total number of roots for A_n

          -simple_root(i)[source]
          +simple_root(i)[source]

          Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1066,10 +1066,10 @@

          Documentation Version
          -class sympy.liealgebras.type_b.TypeB(n)[source]
          +class sympy.liealgebras.type_b.TypeB(n)[source]
          -basic_root(i, j)[source]
          +basic_root(i, j)[source]

          This is a method just to generate roots with a 1 iin the ith position and a -1 in the jth position.

          @@ -1077,13 +1077,13 @@
          Documentation Version
          -basis()[source]
          +basis()[source]

          Returns the number of independent generators of B_n

          -cartan_matrix()[source]
          +cartan_matrix()[source]

          Returns the Cartan matrix for B_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1104,7 +1104,7 @@

          Documentation Version
          -dimension()[source]
          +dimension()[source]

          Dimension of the vector space V underlying the Lie algebra

          Examples

          >>> from sympy.liealgebras.cartan_type import CartanType
          @@ -1117,13 +1117,13 @@ 
          Documentation Version
          -lie_algebra()[source]
          +lie_algebra()[source]

          Returns the Lie algebra associated with B_n

          -positive_roots()[source]
          +positive_roots()[source]

          This method generates all the positive roots of A_n. This is half of all of the roots of B_n; by multiplying all the positive roots by -1 we @@ -1140,13 +1140,13 @@

          Documentation Version
          -roots()[source]
          +roots()[source]

          Returns the total number of roots for B_n”

          -simple_root(i)[source]
          +simple_root(i)[source]

          Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1174,22 +1174,22 @@

          Documentation Version
          -class sympy.liealgebras.type_c.TypeC(n)[source]
          +class sympy.liealgebras.type_c.TypeC(n)[source]
          -basic_root(i, j)[source]
          +basic_root(i, j)[source]

          Generate roots with 1 in ith position and a -1 in jth position

          -basis()[source]
          +basis()[source]

          Returns the number of independent generators of C_n

          -cartan_matrix()[source]
          +cartan_matrix()[source]

          The Cartan matrix for C_n

          The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1210,7 +1210,7 @@

          Documentation Version
          -dimension()[source]
          +dimension()[source]

          Dimension of the vector space V underlying the Lie algebra

          Examples

          >>> from sympy.liealgebras.cartan_type import CartanType
          @@ -1223,13 +1223,13 @@ 
          Documentation Version
          -lie_algebra()[source]
          +lie_algebra()[source]

          Returns the Lie algebra associated with C_n”

          -positive_roots()[source]
          +positive_roots()[source]

          Generates all the positive roots of A_n

          This is half of all of the roots of C_n; by multiplying all the positive roots by -1 we get the negative roots.

          @@ -1245,13 +1245,13 @@
          Documentation Version
          -roots()[source]
          +roots()[source]

          Returns the total number of roots for C_n”

          -simple_root(i)[source]
          +simple_root(i)[source]

          The ith simple root for the C series

          Every lie algebra has a unique root system. Given a root system Q, there is a subset of the @@ -1279,10 +1279,10 @@

          Documentation Version
          -class sympy.liealgebras.type_d.TypeD(n)[source]
          +class sympy.liealgebras.type_d.TypeD(n)[source]
          -basic_root(i, j)[source]
          +basic_root(i, j)[source]

          This is a method just to generate roots with a 1 iin the ith position and a -1 in the jth position.

          @@ -1290,13 +1290,13 @@
          Documentation Version
          -basis()[source]
          +basis()[source]

          Returns the number of independent generators of D_n

          -cartan_matrix()[source]
          +cartan_matrix()[source]

          Returns the Cartan matrix for D_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1317,7 +1317,7 @@

          Documentation Version
          -dimension()[source]
          +dimension()[source]

          Dmension of the vector space V underlying the Lie algebra

          Examples

          >>> from sympy.liealgebras.cartan_type import CartanType
          @@ -1330,13 +1330,13 @@ 
          Documentation Version
          -lie_algebra()[source]
          +lie_algebra()[source]

          Returns the Lie algebra associated with D_n”

          -positive_roots()[source]
          +positive_roots()[source]

          This method generates all the positive roots of A_n. This is half of all of the roots of D_n by multiplying all the positive roots by -1 we @@ -1353,13 +1353,13 @@

          Documentation Version
          -roots()[source]
          +roots()[source]

          Returns the total number of roots for D_n”

          -simple_root(i)[source]
          +simple_root(i)[source]

          Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1387,10 +1387,10 @@

          Documentation Version
          -class sympy.liealgebras.type_e.TypeE(n)[source]
          +class sympy.liealgebras.type_e.TypeE(n)[source]
          -basic_root(i, j)[source]
          +basic_root(i, j)[source]

          This is a method just to generate roots with a -1 in the ith position and a 1 in the jth position.

          @@ -1398,13 +1398,13 @@
          Documentation Version
          -basis()[source]
          +basis()[source]

          Returns the number of independent generators of E_n

          -cartan_matrix()[source]
          +cartan_matrix()[source]

          Returns the Cartan matrix for G_2 The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1425,7 +1425,7 @@

          Documentation Version
          -dimension()[source]
          +dimension()[source]

          Dimension of the vector space V underlying the Lie algebra

          Examples

          >>> from sympy.liealgebras.cartan_type import CartanType
          @@ -1438,7 +1438,7 @@ 
          Documentation Version
          -positive_roots()[source]
          +positive_roots()[source]

          This method generates all the positive roots of A_n. This is half of all of the roots of E_n; by multiplying all the positive roots by -1 we @@ -1455,13 +1455,13 @@

          Documentation Version
          -roots()[source]
          +roots()[source]

          Returns the total number of roots of E_n

          -simple_root(i)[source]
          +simple_root(i)[source]

          Every Lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1484,22 +1484,22 @@

          Documentation Version
          -class sympy.liealgebras.type_f.TypeF(n)[source]
          +class sympy.liealgebras.type_f.TypeF(n)[source]
          -basic_root(i, j)[source]
          +basic_root(i, j)[source]

          Generate roots with 1 in ith position and -1 in jth position

          -basis()[source]
          +basis()[source]

          Returns the number of independent generators of F_4

          -cartan_matrix()[source]
          +cartan_matrix()[source]

          The Cartan matrix for F_4

          The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1520,7 +1520,7 @@

          Documentation Version
          -dimension()[source]
          +dimension()[source]

          Dimension of the vector space V underlying the Lie algebra

          Examples

          >>> from sympy.liealgebras.cartan_type import CartanType
          @@ -1533,7 +1533,7 @@ 
          Documentation Version
          -positive_roots()[source]
          +positive_roots()[source]

          Generate all the positive roots of A_n

          This is half of all of the roots of F_4; by multiplying all the positive roots by -1 we get the negative roots.

          @@ -1549,13 +1549,13 @@
          Documentation Version
          -roots()[source]
          +roots()[source]

          Returns the total number of roots for F_4

          -simple_root(i)[source]
          +simple_root(i)[source]

          The ith simple root of F_4

          Every lie algebra has a unique root system. Given a root system Q, there is a subset of the @@ -1578,16 +1578,16 @@

          Documentation Version
          -class sympy.liealgebras.type_g.TypeG(n)[source]
          +class sympy.liealgebras.type_g.TypeG(n)[source]
          -basis()[source]
          +basis()[source]

          Returns the number of independent generators of G_2

          -cartan_matrix()[source]
          +cartan_matrix()[source]

          The Cartan matrix for G_2

          The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1606,7 +1606,7 @@

          Documentation Version
          -dimension()[source]
          +dimension()[source]

          Dimension of the vector space V underlying the Lie algebra

          Examples

          >>> from sympy.liealgebras.cartan_type import CartanType
          @@ -1619,7 +1619,7 @@ 
          Documentation Version
          -positive_roots()[source]
          +positive_roots()[source]

          Generate all the positive roots of A_n

          This is half of all of the roots of A_n; by multiplying all the positive roots by -1 we get the negative roots.

          @@ -1635,13 +1635,13 @@
          Documentation Version
          -roots()[source]
          +roots()[source]

          Returns the total number of roots of G_2”

          -simple_root(i)[source]
          +simple_root(i)[source]

          The ith simple root of G_2

          Every lie algebra has a unique root system. Given a root system Q, there is a subset of the @@ -1664,7 +1664,7 @@

          Documentation Version
          -class sympy.liealgebras.weyl_group.WeylGroup(cartantype)[source]
          +class sympy.liealgebras.weyl_group.WeylGroup(cartantype)[source]

          For each semisimple Lie group, we have a Weyl group. It is a subgroup of the isometry group of the root system. Specifically, it’s the subgroup that is generated by reflections through the hyperplanes orthogonal to @@ -1672,7 +1672,7 @@

          Documentation Version
          group is a finite Coxeter group.

          -coxeter_diagram()[source]
          +coxeter_diagram()[source]

          This method returns the Coxeter diagram corresponding to a Weyl group. The Coxeter diagram can be obtained from a Lie algebra’s Dynkin diagram by deleting all arrows; the Coxeter diagram is the undirected graph. @@ -1693,7 +1693,7 @@

          Documentation Version
          -delete_doubles(reflections)[source]
          +delete_doubles(reflections)[source]

          This is a helper method for determining the order of an element in the Weyl group of G2. It takes a Weyl element and if repeated simple reflections in it, it deletes them.

          @@ -1701,7 +1701,7 @@
          Documentation Version
          -element_order(weylelt)[source]
          +element_order(weylelt)[source]

          This method returns the order of a given Weyl group element, which should be specified by the user in the form of products of the generating reflections, i.e. of the form r1*r2 etc.

          @@ -1719,7 +1719,7 @@
          Documentation Version
          -generators()[source]
          +generators()[source]

          This method creates the generating reflections of the Weyl group for a given Lie algebra. For a Lie algebra of rank n, there are n different generating reflections. This function returns them as @@ -1735,7 +1735,7 @@

          Documentation Version
          -group_name()[source]
          +group_name()[source]

          This method returns some general information about the Weyl group for a given Lie algebra. It returns the name of the group and the elements it acts on, if relevant.

          @@ -1743,7 +1743,7 @@
          Documentation Version
          -group_order()[source]
          +group_order()[source]

          This method returns the order of the Weyl group. For types A, B, C, D, and E the order depends on the rank of the Lie algebra. For types F and G, @@ -1759,7 +1759,7 @@

          Documentation Version
          -matrix_form(weylelt)[source]
          +matrix_form(weylelt)[source]

          This method takes input from the user in the form of products of the generating reflections, and returns the matrix corresponding to the element of the Weyl group. Since each element of the Weyl group is @@ -1783,23 +1783,23 @@

          Documentation Version
          -class sympy.liealgebras.cartan_type.CartanType_generator[source]
          +class sympy.liealgebras.cartan_type.CartanType_generator[source]

          Constructor for actually creating things

          -class sympy.liealgebras.cartan_type.Standard_Cartan(series, n)[source]
          +class sympy.liealgebras.cartan_type.Standard_Cartan(series, n)[source]

          Concrete base class for Cartan types such as A4, etc

          -rank()[source]
          +rank()[source]

          Returns the rank of the Lie algebra

          -series()[source]
          +series()[source]

          Returns the type of the Lie algebra

          @@ -1807,7 +1807,7 @@
          Documentation Version
          -sympy.liealgebras.dynkin_diagram.DynkinDiagram(t)[source]
          +sympy.liealgebras.dynkin_diagram.DynkinDiagram(t)[source]

          Display the Dynkin diagram of a given Lie algebra

          Works by generating the CartanType for the input, t, and then returning the Dynkin diagram method from the individual classes.

          @@ -1827,7 +1827,7 @@
          Documentation Version
          -sympy.liealgebras.cartan_matrix.CartanMatrix(ct)[source]
          +sympy.liealgebras.cartan_matrix.CartanMatrix(ct)[source]

          Access the Cartan matrix of a specific Lie algebra

          Examples

          >>> from sympy.liealgebras.cartan_matrix import CartanMatrix
          diff --git a/dev/modules/logic.html b/dev/modules/logic.html
          index c9b86137fab..84d4d34ba34 100644
          --- a/dev/modules/logic.html
          +++ b/dev/modules/logic.html
          @@ -837,7 +837,7 @@ 

          Forming logical expressions
          -sympy.logic.boolalg.SOPform(variables, minterms, dontcares=None)[source]
          +sympy.logic.boolalg.SOPform(variables, minterms, dontcares=None)[source]

          The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate ‘1’ (the minterms) into the smallest sum-of-products form.

          @@ -898,7 +898,7 @@

          Forming logical expressions
          -sympy.logic.boolalg.POSform(variables, minterms, dontcares=None)[source]
          +sympy.logic.boolalg.POSform(variables, minterms, dontcares=None)[source]

          The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate ‘1’ (the minterms) into the smallest product-of-sums form.

          @@ -959,7 +959,7 @@

          Forming logical expressions
          -sympy.logic.boolalg.ANFform(variables, truthvalues)[source]
          +sympy.logic.boolalg.ANFform(variables, truthvalues)[source]

          The ANFform function converts the list of truth values to Algebraic Normal Form (ANF).

          The variables must be given as the first argument.

          @@ -1003,11 +1003,11 @@

          Forming logical expressions

          -class sympy.logic.boolalg.Boolean(*args)[source]
          +class sympy.logic.boolalg.Boolean(*args)[source]

          A Boolean object is an object for which logic operations make sense.

          -as_set()[source]
          +as_set()[source]

          Rewrites Boolean expression in terms of real sets.

          Examples

          >>> from sympy import Symbol, Eq, Or, And
          @@ -1026,7 +1026,7 @@ 

          Boolean functions
          -equals(other)[source]
          +equals(other)[source]

          Returns True if the given formulas have the same truth table. For two formulas to be equal they must have the same literals.

          Examples

          @@ -1046,7 +1046,7 @@

          Boolean functions
          -class sympy.logic.boolalg.BooleanTrue[source]
          +class sympy.logic.boolalg.BooleanTrue[source]

          SymPy version of True, a singleton that can be accessed via S.true.

          This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand Boolean @@ -1119,7 +1119,7 @@

          Boolean functions
          -as_set()[source]
          +as_set()[source]

          Rewrite logic operators and relationals in terms of real sets.

          Examples

          >>> from sympy import true
          @@ -1133,7 +1133,7 @@ 

          Boolean functions
          -class sympy.logic.boolalg.BooleanFalse[source]
          +class sympy.logic.boolalg.BooleanFalse[source]

          SymPy version of False, a singleton that can be accessed via S.false.

          This is the SymPy version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand @@ -1170,7 +1170,7 @@

          Boolean functions
          -as_set()[source]
          +as_set()[source]

          Rewrite logic operators and relationals in terms of real sets.

          Examples

          >>> from sympy import false
          @@ -1184,7 +1184,7 @@ 

          Boolean functions
          -class sympy.logic.boolalg.And(*args)[source]
          +class sympy.logic.boolalg.And(*args)[source]

          Logical AND function.

          It evaluates its arguments in order, returning false immediately when an argument is false and true if they are all true.

          @@ -1208,7 +1208,7 @@

          Boolean functions
          -class sympy.logic.boolalg.Or(*args)[source]
          +class sympy.logic.boolalg.Or(*args)[source]

          Logical OR function

          It evaluates its arguments in order, returning true immediately when an argument is true, and false if they are all false.

          @@ -1232,7 +1232,7 @@

          Boolean functions
          -class sympy.logic.boolalg.Not(arg)[source]
          +class sympy.logic.boolalg.Not(arg)[source]

          Logical Not function (negation)

          Returns true if the statement is false or False. Returns false if the statement is true or True.

          @@ -1278,7 +1278,7 @@

          Boolean functions
          -class sympy.logic.boolalg.Xor(*args)[source]
          +class sympy.logic.boolalg.Xor(*args)[source]

          Logical XOR (exclusive OR) function.

          Returns True if an odd number of the arguments are True and the rest are False.

          @@ -1313,7 +1313,7 @@

          Boolean functions
          -class sympy.logic.boolalg.Nand(*args)[source]
          +class sympy.logic.boolalg.Nand(*args)[source]

          Logical NAND function.

          It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True.

          @@ -1335,7 +1335,7 @@

          Boolean functions
          -class sympy.logic.boolalg.Nor(*args)[source]
          +class sympy.logic.boolalg.Nor(*args)[source]

          Logical NOR function.

          It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False.

          @@ -1363,7 +1363,7 @@

          Boolean functions
          -class sympy.logic.boolalg.Xnor(*args)[source]
          +class sympy.logic.boolalg.Xnor(*args)[source]

          Logical XNOR function.

          Returns False if an odd number of the arguments are True and the rest are False.

          @@ -1387,7 +1387,7 @@

          Boolean functions
          -class sympy.logic.boolalg.Implies(*args)[source]
          +class sympy.logic.boolalg.Implies(*args)[source]

          Logical implication.

          A implies B is equivalent to if A then B. Mathematically, it is written as \(A \Rightarrow B\) and is equivalent to \(\neg A \vee B\) or ~A | B.

          @@ -1433,7 +1433,7 @@

          Boolean functions
          -class sympy.logic.boolalg.Equivalent(*args)[source]
          +class sympy.logic.boolalg.Equivalent(*args)[source]

          Equivalence relation.

          Equivalent(A, B) is True iff A and B are both True or both False.

          Returns True if all of the arguments are logically equivalent. @@ -1454,7 +1454,7 @@

          Boolean functions
          -class sympy.logic.boolalg.ITE(*args)[source]
          +class sympy.logic.boolalg.ITE(*args)[source]

          If-then-else clause.

          ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans.

          @@ -1488,7 +1488,7 @@

          Boolean functions
          -class sympy.logic.boolalg.Exclusive(*args)[source]
          +class sympy.logic.boolalg.Exclusive(*args)[source]

          True if only one or no argument is true.

          Exclusive(A, B, C) is equivalent to ~(A & B) & ~(A & C) & ~(B & C).

          For two arguments, this is equivalent to Xor.

          @@ -1508,7 +1508,7 @@

          Boolean functions
          -sympy.logic.boolalg.to_anf(expr, deep=True)[source]
          +sympy.logic.boolalg.to_anf(expr, deep=True)[source]

          Converts expr to Algebraic Normal Form (ANF).

          ANF is a canonical normal form, which means that two equivalent formulas will convert to the same ANF.

          @@ -1547,7 +1547,7 @@

          Boolean functions
          -sympy.logic.boolalg.to_cnf(expr, simplify=False, force=False)[source]
          +sympy.logic.boolalg.to_cnf(expr, simplify=False, force=False)[source]

          Convert a propositional logical sentence expr to conjunctive normal form: ((A | ~B | ...) & (B | C | ...) & ...). If simplify is True, expr is evaluated to its simplest CNF @@ -1567,7 +1567,7 @@

          Boolean functions
          -sympy.logic.boolalg.to_dnf(expr, simplify=False, force=False)[source]
          +sympy.logic.boolalg.to_dnf(expr, simplify=False, force=False)[source]

          Convert a propositional logical sentence expr to disjunctive normal form: ((A & ~B & ...) | (B & C & ...) | ...). If simplify is True, expr is evaluated to its simplest DNF form using @@ -1587,7 +1587,7 @@

          Boolean functions
          -sympy.logic.boolalg.to_nnf(expr, simplify=True)[source]
          +sympy.logic.boolalg.to_nnf(expr, simplify=True)[source]

          Converts expr to Negation Normal Form (NNF).

          A logical expression is in NNF if it contains only And, Or and Not, @@ -1606,7 +1606,7 @@

          Boolean functions
          -sympy.logic.boolalg.is_anf(expr)[source]
          +sympy.logic.boolalg.is_anf(expr)[source]

          Checks if expr is in Algebraic Normal Form (ANF).

          A logical expression is in ANF if it has the form

          @@ -1634,7 +1634,7 @@

          Boolean functions
          -sympy.logic.boolalg.is_cnf(expr)[source]
          +sympy.logic.boolalg.is_cnf(expr)[source]

          Test whether or not an expression is in conjunctive normal form.

          Examples

          >>> from sympy.logic.boolalg import is_cnf
          @@ -1651,7 +1651,7 @@ 

          Boolean functions
          -sympy.logic.boolalg.is_dnf(expr)[source]
          +sympy.logic.boolalg.is_dnf(expr)[source]

          Test whether or not an expression is in disjunctive normal form.

          Examples

          >>> from sympy.logic.boolalg import is_dnf
          @@ -1670,7 +1670,7 @@ 

          Boolean functions
          -sympy.logic.boolalg.is_nnf(expr, simplified=True)[source]
          +sympy.logic.boolalg.is_nnf(expr, simplified=True)[source]

          Checks if expr is in Negation Normal Form (NNF).

          A logical expression is in NNF if it contains only And, Or and Not, @@ -1695,7 +1695,7 @@

          Boolean functions
          -sympy.logic.boolalg.gateinputcount(expr)[source]
          +sympy.logic.boolalg.gateinputcount(expr)[source]

          Return the total number of inputs for the logic gates realizing the Boolean expression.

          @@ -1759,7 +1759,7 @@

          Simplification and equivalence-testingdontcare=None,

          -)[source] +)[source]

          This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy.

          @@ -1820,7 +1820,7 @@

          Simplification and equivalence-testing
          -sympy.logic.boolalg.bool_map(bool1, bool2)[source]
          +sympy.logic.boolalg.bool_map(bool1, bool2)[source]

          Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables @@ -1858,7 +1858,7 @@

          Manipulating expressions
          -sympy.logic.boolalg.distribute_and_over_or(expr)[source]
          +sympy.logic.boolalg.distribute_and_over_or(expr)[source]

          Given a sentence expr consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF.

          Examples

          @@ -1872,7 +1872,7 @@

          Manipulating expressions
          -sympy.logic.boolalg.distribute_or_over_and(expr)[source]
          +sympy.logic.boolalg.distribute_or_over_and(expr)[source]

          Given a sentence expr consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF.

          Note that the output is NOT simplified.

          @@ -1887,7 +1887,7 @@

          Manipulating expressions
          -sympy.logic.boolalg.distribute_xor_over_and(expr)[source]
          +sympy.logic.boolalg.distribute_xor_over_and(expr)[source]

          Given a sentence expr consisting of conjunction and exclusive disjunctions of literals, return an equivalent exclusive disjunction.

          @@ -1903,7 +1903,7 @@

          Manipulating expressions
          -sympy.logic.boolalg.eliminate_implications(expr)[source]
          +sympy.logic.boolalg.eliminate_implications(expr)[source]

          Change Implies and Equivalent into And, Or, and Not. That is, return an expression that is equivalent to expr, but has only @@ -1928,7 +1928,7 @@

          Truth tables and related functions
          -sympy.logic.boolalg.truth_table(expr, variables, input=True)[source]
          +sympy.logic.boolalg.truth_table(expr, variables, input=True)[source]

          Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values.

          @@ -1984,7 +1984,7 @@

          Truth tables and related functions
          -sympy.logic.boolalg.integer_to_term(n, bits=None, str=False)[source]
          +sympy.logic.boolalg.integer_to_term(n, bits=None, str=False)[source]

          Return a list of length bits corresponding to the binary value of n with small bits to the right (last). If bits is omitted, the length will be the number required to represent n. If the bits are @@ -2027,7 +2027,7 @@

          Truth tables and related functions
          -sympy.logic.boolalg.term_to_integer(term)[source]
          +sympy.logic.boolalg.term_to_integer(term)[source]

          Return an integer corresponding to the base-2 digits given by term.

          Parameters:
          @@ -2046,7 +2046,7 @@

          Truth tables and related functions
          -sympy.logic.boolalg.bool_maxterm(k, variables)[source]
          +sympy.logic.boolalg.bool_maxterm(k, variables)[source]

          Return the k-th maxterm.

          Each maxterm is assigned an index based on the opposite conventional binary encoding used for minterms. The maxterm @@ -2078,7 +2078,7 @@

          Truth tables and related functions
          -sympy.logic.boolalg.bool_minterm(k, variables)[source]
          +sympy.logic.boolalg.bool_minterm(k, variables)[source]

          Return the k-th minterm.

          Minterms are numbered by a binary encoding of the complementation pattern of the variables. This convention assigns the value 1 to @@ -2109,7 +2109,7 @@

          Truth tables and related functions
          -sympy.logic.boolalg.bool_monomial(k, variables)[source]
          +sympy.logic.boolalg.bool_monomial(k, variables)[source]

          Return the k-th monomial.

          Monomials are numbered by a binary encoding of the presence and absences of the variables. This convention assigns the value @@ -2142,7 +2142,7 @@

          Truth tables and related functions
          -sympy.logic.boolalg.anf_coeffs(truthvalues)[source]
          +sympy.logic.boolalg.anf_coeffs(truthvalues)[source]

          Convert a list of truth values of some boolean expression to the list of coefficients of the polynomial mod 2 (exclusive disjunction) representing the boolean expression in ANF @@ -2175,7 +2175,7 @@

          Truth tables and related functions
          -sympy.logic.boolalg.to_int_repr(clauses, symbols)[source]
          +sympy.logic.boolalg.to_int_repr(clauses, symbols)[source]

          Takes clauses in CNF format and puts them into an integer representation.

          Examples

          >>> from sympy.logic.boolalg import to_int_repr
          @@ -2220,7 +2220,7 @@ 

          Truth tables and related functionsuse_lra_theory=False,

          -)[source] +)[source]

          Check satisfiability of a propositional sentence. Returns a model when it succeeds. Returns {true: true} for trivially true expressions.

          diff --git a/dev/modules/matrices/dense.html b/dev/modules/matrices/dense.html index 49d1c5710c1..4066b1d7718 100644 --- a/dev/modules/matrices/dense.html +++ b/dev/modules/matrices/dense.html @@ -802,17 +802,17 @@
          Documentation Version

          Dense Matrices

          -sympy.matrices.dense.Matrix[source]
          +sympy.matrices.dense.Matrix[source]

          alias of MutableDenseMatrix

          -class sympy.matrices.dense.DenseMatrix[source]
          +class sympy.matrices.dense.DenseMatrix[source]

          Matrix implementation based on DomainMatrix as the internal representation

          -LDLdecomposition(hermitian=True)[source]
          +LDLdecomposition(hermitian=True)[source]

          Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. @@ -862,13 +862,13 @@

          Dense Matrices
          -as_immutable()[source]
          +as_immutable()[source]

          Returns an Immutable version of this Matrix

          -as_mutable()[source]
          +as_mutable()[source]

          Returns a mutable version of this matrix

          Examples

          >>> from sympy import ImmutableMatrix
          @@ -885,7 +885,7 @@ 

          Dense Matrices
          -cholesky(hermitian=True)[source]
          +cholesky(hermitian=True)[source]

          Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False.

          @@ -939,7 +939,7 @@

          Dense Matrices
          -lower_triangular_solve(rhs)[source]
          +lower_triangular_solve(rhs)[source]

          Solves Ax = B, where A is a lower triangular matrix.

          See also

          @@ -949,7 +949,7 @@

          Dense Matrices
          -upper_triangular_solve(rhs)[source]
          +upper_triangular_solve(rhs)[source]

          Solves Ax = B, where A is an upper triangular matrix.

          See also

          @@ -961,10 +961,10 @@

          Dense Matrices
          -class sympy.matrices.dense.MutableDenseMatrix(*args, **kwargs)[source]
          +class sympy.matrices.dense.MutableDenseMatrix(*args, **kwargs)[source]
          -simplify(**kwargs)[source]
          +simplify(**kwargs)[source]

          Applies simplify to the elements of a matrix in place.

          This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))

          @@ -977,7 +977,7 @@

          Dense Matrices
          -class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]
          +class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]

          Create an immutable version of a matrix.

          Examples

          >>> from sympy import eye, ImmutableMatrix
          diff --git a/dev/modules/matrices/expressions.html b/dev/modules/matrices/expressions.html
          index 39b1b749778..a53f7559f19 100644
          --- a/dev/modules/matrices/expressions.html
          +++ b/dev/modules/matrices/expressions.html
          @@ -839,7 +839,7 @@ 
          Documentation Version

          Matrix Expressions Core Reference

          -class sympy.matrices.expressions.MatrixExpr(*args, **kwargs)[source]
          +class sympy.matrices.expressions.MatrixExpr(*args, **kwargs)[source]

          Superclass for Matrix Expressions

          MatrixExprs represent abstract matrices, linear transformations represented within a particular basis.

          @@ -862,13 +862,13 @@

          Matrix Expressions Core Reference
          -as_coeff_Mul(rational=False)[source]
          +as_coeff_Mul(rational=False)[source]

          Efficiently extract the coefficient of a product.

          -as_explicit()[source]
          +as_explicit()[source]

          Returns a dense Matrix with elements represented explicitly

          Returns an object of type ImmutableDenseMatrix.

          Examples

          @@ -894,7 +894,7 @@

          Matrix Expressions Core Reference
          -as_mutable()[source]
          +as_mutable()[source]

          Returns a dense, mutable matrix with elements represented explicitly

          Examples

          >>> from sympy import Identity
          @@ -921,7 +921,7 @@ 

          Matrix Expressions Core Reference
          -equals(other)[source]
          +equals(other)[source]

          Test elementwise equality between matrices, potentially of different types

          >>> from sympy import Identity, eye
          @@ -942,7 +942,7 @@ 

          Matrix Expressions Core Referencedimensions=None,

          -)[source] +)[source]

          Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible.

          This transformation expressed in mathematical notation:

          @@ -983,7 +983,7 @@

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.MatrixSymbol(name, n, m)[source]
          +class sympy.matrices.expressions.MatrixSymbol(name, n, m)[source]

          Symbolic representation of a Matrix object

          Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions

          @@ -1010,7 +1010,7 @@

          Matrix Expressions Core Reference_sympify=True,

          -)[source] +)[source]

          A Sum of Matrix Expressions

          MatAdd inherits from and operates like SymPy Add

          Examples

          @@ -1035,7 +1035,7 @@

          Matrix Expressions Core Reference_sympify=True,

          -)[source] +)[source]

          A product of matrix expressions

          Examples

          >>> from sympy import MatMul, MatrixSymbol
          @@ -1050,12 +1050,12 @@ 

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.MatPow(base, exp, evaluate=False, **options)[source]
          +class sympy.matrices.expressions.MatPow(base, exp, evaluate=False, **options)[source]

          -sympy.matrices.expressions.hadamard_product(*matrices)[source]
          +sympy.matrices.expressions.hadamard_product(*matrices)[source]

          Return the elementwise (aka Hadamard) product of matrices.

          Examples

          >>> from sympy import hadamard_product, MatrixSymbol
          @@ -1073,7 +1073,7 @@ 

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.HadamardProduct(*args, evaluate=False, check=None)[source]
          +class sympy.matrices.expressions.HadamardProduct(*args, evaluate=False, check=None)[source]

          Elementwise product of matrix expressions

          Examples

          Hadamard product for matrix symbols:

          @@ -1092,7 +1092,7 @@

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.HadamardPower(base, exp)[source]
          +class sympy.matrices.expressions.HadamardPower(base, exp)[source]

          Elementwise power of matrix expressions

          Parameters:
          @@ -1146,7 +1146,7 @@

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.Inverse(mat, exp=-1)[source]
          +class sympy.matrices.expressions.Inverse(mat, exp=-1)[source]

          The multiplicative inverse of a matrix expression

          This is a symbolic object that simply stores its argument without evaluating it. To actually compute the inverse, use the .inverse() @@ -1169,7 +1169,7 @@

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.Transpose(*args, **kwargs)[source]
          +class sympy.matrices.expressions.Transpose(*args, **kwargs)[source]

          The transpose of a matrix expression.

          This is a symbolic object that simply stores its argument without evaluating it. To actually compute the transpose, use the transpose() @@ -1192,7 +1192,7 @@

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.Trace(mat)[source]
          +class sympy.matrices.expressions.Trace(mat)[source]

          Matrix Trace

          Represents the trace of a matrix expression.

          Examples

          @@ -1213,7 +1213,7 @@

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.FunctionMatrix(rows, cols, lamda)[source]
          +class sympy.matrices.expressions.FunctionMatrix(rows, cols, lamda)[source]

          Represents a matrix using a function (Lambda) which gives outputs according to the coordinates of each matrix entries.

          @@ -1281,7 +1281,7 @@

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.PermutationMatrix(perm)[source]
          +class sympy.matrices.expressions.PermutationMatrix(perm)[source]

          A Permutation Matrix

          Parameters:
          @@ -1332,7 +1332,7 @@

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.MatrixPermute(mat, perm, axis=0)[source]
          +class sympy.matrices.expressions.MatrixPermute(mat, perm, axis=0)[source]

          Symbolic representation for permuting matrix rows or columns.

          Parameters:
          @@ -1385,7 +1385,7 @@

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.Identity(n)[source]
          +class sympy.matrices.expressions.Identity(n)[source]

          The Matrix Identity I - multiplicative identity

          Examples

          >>> from sympy import Identity, MatrixSymbol
          @@ -1399,7 +1399,7 @@ 

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.ZeroMatrix(m, n)[source]
          +class sympy.matrices.expressions.ZeroMatrix(m, n)[source]

          The Matrix Zero 0 - additive identity

          Examples

          >>> from sympy import MatrixSymbol, ZeroMatrix
          @@ -1415,7 +1415,7 @@ 

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.CompanionMatrix(poly)[source]
          +class sympy.matrices.expressions.CompanionMatrix(poly)[source]

          A symbolic companion matrix of a polynomial.

          Examples

          >>> from sympy import Poly, Symbol, symbols
          @@ -1432,7 +1432,7 @@ 

          Matrix Expressions Core Reference
          -class sympy.matrices.expressions.MatrixSet(n, m, set)[source]
          +class sympy.matrices.expressions.MatrixSet(n, m, set)[source]

          MatrixSet represents the set of matrices with shape = (n, m) over the given set.

          Examples

          @@ -1457,7 +1457,7 @@

          Block MatricesImmutableMatrix objects.

          -class sympy.matrices.expressions.blockmatrix.BlockMatrix(*args, **kwargs)[source]
          +class sympy.matrices.expressions.blockmatrix.BlockMatrix(*args, **kwargs)[source]

          A BlockMatrix is a Matrix comprised of other matrices.

          The submatrices are stored in a SymPy Matrix object but accessed as part of a Matrix Expression

          @@ -1516,7 +1516,7 @@

          Block Matrices
          -LDUdecomposition()[source]
          +LDUdecomposition()[source]

          Returns the Block LDU decomposition of a 2x2 Block Matrix

          @@ -1562,7 +1562,7 @@

          Block Matrices
          -LUdecomposition()[source]
          +LUdecomposition()[source]

          Returns the Block LU decomposition of a 2x2 Block Matrix

          @@ -1607,7 +1607,7 @@

          Block Matrices
          -UDLdecomposition()[source]
          +UDLdecomposition()[source]

          Returns the Block UDL decomposition of a 2x2 Block Matrix

          @@ -1653,7 +1653,7 @@

          Block Matrices
          -schur(mat='A', generalized=False)[source]
          +schur(mat='A', generalized=False)[source]

          Return the Schur Complement of the 2x2 BlockMatrix

          Parameters:
          @@ -1728,7 +1728,7 @@

          Block Matrices
          -transpose()[source]
          +transpose()[source]

          Return transpose of matrix.

          Examples

          >>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix
          @@ -1753,7 +1753,7 @@ 

          Block Matrices
          -class sympy.matrices.expressions.blockmatrix.BlockDiagMatrix(*mats)[source]
          +class sympy.matrices.expressions.blockmatrix.BlockDiagMatrix(*mats)[source]

          A sparse matrix with block matrices along its diagonals

          Examples

          >>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols
          @@ -1775,7 +1775,7 @@ 

          Block Matrices
          -get_diag_blocks()[source]
          +get_diag_blocks()[source]

          Return the list of diagonal blocks of the matrix.

          Examples

          >>> from sympy import BlockDiagMatrix, Matrix
          @@ -1804,7 +1804,7 @@ 

          Block Matrices
          -sympy.matrices.expressions.blockmatrix.block_collapse(expr)[source]
          +sympy.matrices.expressions.blockmatrix.block_collapse(expr)[source]

          Evaluates a block matrix expression

          >>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity, ZeroMatrix, block_collapse
           >>> n,m,l = symbols('n m l')
          diff --git a/dev/modules/matrices/immutablematrices.html b/dev/modules/matrices/immutablematrices.html
          index 23efc30bc50..6baf71b4b3e 100644
          --- a/dev/modules/matrices/immutablematrices.html
          +++ b/dev/modules/matrices/immutablematrices.html
          @@ -832,13 +832,13 @@ 

          Immutable Matrices

          ImmutableMatrix Class Reference

          -sympy.matrices.immutable.ImmutableMatrix[source]
          +sympy.matrices.immutable.ImmutableMatrix[source]

          alias of ImmutableDenseMatrix

          -class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]
          +class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]

          Create an immutable version of a matrix.

          Examples

          >>> from sympy import eye, ImmutableMatrix
          diff --git a/dev/modules/matrices/kind.html b/dev/modules/matrices/kind.html
          index 579bb95a78c..8e6bf8f7604 100644
          --- a/dev/modules/matrices/kind.html
          +++ b/dev/modules/matrices/kind.html
          @@ -802,7 +802,7 @@ 
          Documentation Version

          Matrix Kind

          -class sympy.matrices.kind.MatrixKind(element_kind=NumberKind)[source]
          +class sympy.matrices.kind.MatrixKind(element_kind=NumberKind)[source]

          Kind for all matrices in SymPy.

          Basic class for this kind is MatrixBase and MatrixExpr, but any expression representing the matrix can have this.

          diff --git a/dev/modules/matrices/matrices.html b/dev/modules/matrices/matrices.html index 347d2bfc46c..10b47e501d5 100644 --- a/dev/modules/matrices/matrices.html +++ b/dev/modules/matrices/matrices.html @@ -1324,7 +1324,7 @@

          Matrix Base ClassesSparse Matrices.

          -class sympy.matrices.matrixbase.MatrixBase[source]
          +class sympy.matrices.matrixbase.MatrixBase[source]

          All common matrix operations including basic arithmetic, shaping, and special matrices like \(zeros\), and \(eye\).

          @@ -1401,7 +1401,7 @@

          Matrix Base Classes
          -LDLdecomposition(hermitian=True)[source]
          +LDLdecomposition(hermitian=True)[source]

          Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. @@ -1451,7 +1451,7 @@

          Matrix Base Classes
          -LDLsolve(rhs)[source]
          +LDLsolve(rhs)[source]

          Solves Ax = B using LDL decomposition, for a general square and non-singular matrix.

          For a non-square matrix with rows > cols, @@ -1480,7 +1480,7 @@

          Matrix Base Classesrankcheck=False,

          -)[source] +)[source]

          Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then @@ -1543,7 +1543,7 @@

          Matrix Base Classes
          -LUdecompositionFF()[source]
          +LUdecompositionFF()[source]

          Compute a fraction-free LU decomposition.

          Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all @@ -1573,7 +1573,7 @@

          Matrix Base Classesrankcheck=False,

          -)[source] +)[source]

          Compute the PLU decomposition of the matrix.

          Parameters:
          @@ -1843,7 +1843,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Solve the linear system Ax = rhs for x where A = M.

          This is for symbolic matrices, for real or complex ones use mpmath.lu_solve or mpmath.qr_solve.

          @@ -1855,7 +1855,7 @@

          Matrix Base Classes
          -QRdecomposition()[source]
          +QRdecomposition()[source]

          Returns a QR decomposition.

          Explanation

          A QR decomposition is a decomposition in the form \(A = Q R\) @@ -2027,7 +2027,7 @@

          Matrix Base Classes
          -QRsolve(b)[source]
          +QRsolve(b)[source]

          Solve the linear system Ax = b.

          M is the matrix A, the method argument is the vector b. The method returns the solution vector x. If b is a @@ -2053,19 +2053,19 @@

          Matrix Base Classes
          -__abs__()[source]
          +__abs__()[source]

          Returns a new matrix with entry-wise absolute values.

          -__add__(other)[source]
          +__add__(other)[source]

          Return self + other, raising ShapeError if shapes do not match.

          -__getitem__(key)[source]
          +__getitem__(key)[source]

          Implementations of __getitem__ should accept ints, in which case the matrix is indexed as a flat list, tuples (i,j) in which case the (i,j) entry is returned, slices, or mixed tuples (a,b) @@ -2074,14 +2074,14 @@

          Matrix Base Classes
          -__len__()[source]
          +__len__()[source]

          Return the number of elements of self.

          Implemented mainly so bool(Matrix()) == False.

          -__mul__(other)[source]
          +__mul__(other)[source]

          Return self*other where other is either a scalar or a matrix of compatible dimensions.

          Examples

          @@ -2109,7 +2109,7 @@

          Matrix Base Classes
          -__pow__(exp)[source]
          +__pow__(exp)[source]

          Return self**exp a scalar or symbol.

          @@ -2121,19 +2121,19 @@

          Matrix Base Classes
          -add(b)[source]
          +add(b)[source]

          Return self + b.

          -adjoint()[source]
          +adjoint()[source]

          Conjugate transpose or Hermitian conjugation.

          -adjugate(method='berkowitz')[source]
          +adjugate(method='berkowitz')[source]

          Returns the adjugate, or classical adjoint, of a matrix. That is, the transpose of the matrix of cofactors.

          https://en.wikipedia.org/wiki/Adjugate

          @@ -2163,7 +2163,7 @@

          Matrix Base Classes
          -analytic_func(f, x)[source]
          +analytic_func(f, x)[source]

          Computes f(A) where A is a Square Matrix and f is an analytic function.

          @@ -2195,7 +2195,7 @@

          Matrix Base Classes
          -applyfunc(f)[source]
          +applyfunc(f)[source]

          Apply a function to each element of the matrix.

          Examples

          >>> from sympy import Matrix
          @@ -2214,13 +2214,13 @@ 

          Matrix Base Classes
          -as_real_imag(deep=True, **hints)[source]
          +as_real_imag(deep=True, **hints)[source]

          Returns a tuple containing the (real, imaginary) part of matrix.

          -atoms(*types)[source]
          +atoms(*types)[source]

          Returns the atoms that form the current object.

          Examples

          >>> from sympy.abc import x, y
          @@ -2241,7 +2241,7 @@ 

          Matrix Base Classes
          -berkowitz_det()[source]
          +berkowitz_det()[source]

          Computes determinant using Berkowitz method.

          See also

          @@ -2251,19 +2251,19 @@

          Matrix Base Classes
          -berkowitz_eigenvals(**flags)[source]
          +berkowitz_eigenvals(**flags)[source]

          Computes eigenvalues of a Matrix using Berkowitz method.

          -berkowitz_minors()[source]
          +berkowitz_minors()[source]

          Computes principal minors using Berkowitz method.

          -bidiagonal_decomposition(upper=True)[source]
          +bidiagonal_decomposition(upper=True)[source]

          Returns \((U,B,V.H)\) for

          @@ -2295,7 +2295,7 @@

          Matrix Base Classes
          -bidiagonalize(upper=True)[source]
          +bidiagonalize(upper=True)[source]

          Returns \(B\), the Bidiagonalized form of the input matrix.

          Note: Bidiagonal Computation can hang for symbolic matrices.

          @@ -2328,7 +2328,7 @@

          Matrix Base Classessimplify=<function _simplify>,

          -)[source] +)[source]

          Computes characteristic polynomial det(x*I - M) where I is the identity matrix.

          A PurePoly is returned, so using different variables for x does @@ -2397,7 +2397,7 @@

          Matrix Base Classes
          -cholesky(hermitian=True)[source]
          +cholesky(hermitian=True)[source]

          Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False.

          @@ -2451,7 +2451,7 @@

          Matrix Base Classes
          -cholesky_solve(rhs)[source]
          +cholesky_solve(rhs)[source]

          Solves Ax = B using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows > cols, @@ -2464,7 +2464,7 @@

          Matrix Base Classes
          -cofactor(i, j, method='berkowitz')[source]
          +cofactor(i, j, method='berkowitz')[source]

          Calculate the cofactor of an element.

          Parameters:
          @@ -2490,7 +2490,7 @@

          Matrix Base Classes
          -cofactor_matrix(method='berkowitz')[source]
          +cofactor_matrix(method='berkowitz')[source]

          Return a matrix containing the cofactor of each element.

          Parameters:
          @@ -2518,7 +2518,7 @@

          Matrix Base Classes
          -col(j)[source]
          +col(j)[source]

          Elementary column selector.

          Examples

          >>> from sympy import eye
          @@ -2536,13 +2536,13 @@ 

          Matrix Base Classes
          -col_del(col)[source]
          +col_del(col)[source]

          Delete the specified column.

          -col_insert(pos, other)[source]
          +col_insert(pos, other)[source]

          Insert one or more columns at the given column position.

          Examples

          >>> from sympy import zeros, ones
          @@ -2563,7 +2563,7 @@ 

          Matrix Base Classes
          -col_join(other)[source]
          +col_join(other)[source]

          Concatenates two matrices along self’s last and other’s first row.

          Examples

          >>> from sympy import zeros, ones
          @@ -2585,7 +2585,7 @@ 

          Matrix Base Classes
          -columnspace(simplify=False)[source]
          +columnspace(simplify=False)[source]

          Returns a list of vectors (Matrix objects) that span columnspace of M

          Examples

          >>> from sympy import Matrix
          @@ -2613,7 +2613,7 @@ 

          Matrix Base Classes
          -classmethod companion(poly)[source]
          +classmethod companion(poly)[source]

          Returns a companion matrix of a polynomial.

          Examples

          >>> from sympy import Matrix, Poly, Symbol, symbols
          @@ -2633,7 +2633,7 @@ 

          Matrix Base Classes
          -condition_number()[source]
          +condition_number()[source]

          Returns the condition number of a matrix.

          This is the maximum singular value divided by the minimum singular value

          Examples

          @@ -2651,7 +2651,7 @@

          Matrix Base Classes
          -conjugate()[source]
          +conjugate()[source]

          Return the by-element conjugation.

          Examples

          >>> from sympy import SparseMatrix, I
          @@ -2683,7 +2683,7 @@ 

          Matrix Base Classes
          -connected_components()[source]
          +connected_components()[source]

          Returns the list of connected vertices of the graph when a square matrix is viewed as a weighted graph.

          Examples

          @@ -2711,7 +2711,7 @@

          Matrix Base Classes
          -connected_components_decomposition()[source]
          +connected_components_decomposition()[source]

          Decomposes a square matrix into block diagonal form only using the permutations.

          @@ -2780,7 +2780,7 @@

          Matrix Base Classes
          -copy()[source]
          +copy()[source]

          Returns the copy of a matrix.

          Examples

          >>> from sympy import Matrix
          @@ -2795,7 +2795,7 @@ 

          Matrix Base Classes
          -cramer_solve(rhs, det_method='laplace')[source]
          +cramer_solve(rhs, det_method='laplace')[source]

          Solves system of linear equations using Cramer’s rule.

          This method is relatively inefficient compared to other methods. However it only uses a single division, assuming a division-free determinant @@ -2849,7 +2849,7 @@

          Matrix Base Classes
          -cross(b)[source]
          +cross(b)[source]

          Return the cross product of self and b relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as self will be returned. If b has the same @@ -2868,7 +2868,7 @@

          Matrix Base Classes
          -det(method='bareiss', iszerofunc=None)[source]
          +det(method='bareiss', iszerofunc=None)[source]

          Computes the determinant of a matrix if M is a concrete matrix object otherwise return an expressions Determinant(M) if M is a MatrixSymbol or other expression.

          @@ -2956,7 +2956,7 @@

          Matrix Base Classes
          -det_LU_decomposition()[source]
          +det_LU_decomposition()[source]

          Compute matrix determinant using LU decomposition.

          Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method @@ -2982,7 +2982,7 @@

          Matrix Base Classes**kwargs,

          -)[source] +)[source]

          Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created (i.e. the “direct sum” of the matrices).

          @@ -3066,7 +3066,7 @@

          Matrix Base Classes
          -diagonal(k=0)[source]
          +diagonal(k=0)[source]

          Returns the kth diagonal of self. The main diagonal corresponds to \(k=0\); diagonals above and below correspond to \(k > 0\) and \(k < 0\), respectively. The values of \(self[i, j]\) @@ -3101,7 +3101,7 @@

          Matrix Base Classes
          -diagonal_solve(rhs)[source]
          +diagonal_solve(rhs)[source]

          Solves Ax = B efficiently, where A is a diagonal Matrix, with non-zero diagonal entries.

          Examples

          @@ -3128,7 +3128,7 @@

          Matrix Base Classesnormalize=False,

          -)[source] +)[source]

          Return (P, D), where D is diagonal and

          D = P^-1 * M * P

          @@ -3178,7 +3178,7 @@

          Matrix Base Classes
          -diff(*args, evaluate=True, **kwargs)[source]
          +diff(*args, evaluate=True, **kwargs)[source]

          Calculate the derivative of each element in the matrix.

          Examples

          >>> from sympy import Matrix
          @@ -3206,7 +3206,7 @@ 

          Matrix Base Classesconjugate_convention=None,

          -)[source] +)[source]

          Return the dot or inner product of two vectors of equal length. Here self must be a Matrix of size 1 x n or n x 1, and b must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. @@ -3256,7 +3256,7 @@

          Matrix Base Classes
          -dual()[source]
          +dual()[source]

          Returns the dual of a matrix.

          A dual of a matrix is:

          (1/2)*levicivita(i, j, k, l)*M(k, l) summed over indices \(k\) and \(l\)

          @@ -3277,7 +3277,7 @@

          Matrix Base Classeswith_pivots=False,

          -)[source] +)[source]

          Returns a matrix row-equivalent to M that is in echelon form. Note that echelon form of a matrix is not unique, however, properties like the row space and the null space are preserved.

          @@ -3301,7 +3301,7 @@

          Matrix Base Classes**flags,

          -)[source] +)[source]

          Compute eigenvalues of the matrix.

          Parameters:
          @@ -3385,7 +3385,7 @@

          Matrix Base Classes**flags,

          -)[source] +)[source]

          Compute eigenvectors of the matrix.

          Parameters:
          @@ -3471,7 +3471,7 @@

          Matrix Base Classescol2=None,

          -)[source] +)[source]

          Performs the elementary column operation \(op\).

          \(op\) may be one of

          @@ -3507,7 +3507,7 @@

          Matrix Base Classesrow2=None,

          -)[source] +)[source]

          Performs the elementary row operation \(op\).

          \(op\) may be one of

          @@ -3545,13 +3545,13 @@

          Matrix Base Classesverbose=False,

          -)[source] +)[source]

          Apply evalf() to each element of self.

          -exp()[source]
          +exp()[source]

          Return the exponential of a square matrix.

          Examples

          >>> from sympy import Symbol, Matrix
          @@ -3583,7 +3583,7 @@ 

          Matrix Base Classes**hints,

          -)[source] +)[source]

          Apply core.function.expand to each entry of the matrix.

          Examples

          >>> from sympy.abc import x
          @@ -3598,7 +3598,7 @@ 

          Matrix Base Classes
          -extract(rowsList, colsList)[source]
          +extract(rowsList, colsList)[source]

          Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range \(-n \le i < n\) where \(n\) is the number of rows or columns.

          @@ -3647,7 +3647,7 @@

          Matrix Base Classes
          -classmethod eye(rows, cols=None, **kwargs)[source]
          +classmethod eye(rows, cols=None, **kwargs)[source]

          Returns an identity matrix.

          Parameters:
          @@ -3661,7 +3661,7 @@

          Matrix Base Classes
          -flat()[source]
          +flat()[source]

          Returns a flat list of all elements in the matrix.

          Examples

          >>> from sympy import Matrix
          @@ -3691,7 +3691,7 @@ 

          Matrix Base Classes
          -classmethod from_dok(rows, cols, dok)[source]
          +classmethod from_dok(rows, cols, dok)[source]

          Create a matrix from a dictionary of keys.

          Examples

          >>> from sympy import Matrix
          @@ -3707,7 +3707,7 @@ 

          Matrix Base Classes
          -gauss_jordan_solve(B, freevar=False)[source]
          +gauss_jordan_solve(B, freevar=False)[source]

          Solves Ax = B using Gauss Jordan elimination.

          There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, it will @@ -3833,7 +3833,7 @@

          Matrix Base Classes
          -get_diag_blocks()[source]
          +get_diag_blocks()[source]

          Obtains the square sub-matrices on the main diagonal of a square matrix.

          Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal @@ -3857,7 +3857,7 @@

          Matrix Base Classes
          -has(*patterns)[source]
          +has(*patterns)[source]

          Test whether any subexpression matches any of the patterns.

          Examples

          >>> from sympy import Matrix, SparseMatrix, Float
          @@ -3882,7 +3882,7 @@ 

          Matrix Base Classes
          -hat()[source]
          +hat()[source]

          Return the skew-symmetric matrix representing the cross product, so that self.hat() * b is equivalent to self.cross(b).

          Examples

          @@ -3921,7 +3921,7 @@

          Matrix Base Classes
          -classmethod hstack(*args)[source]
          +classmethod hstack(*args)[source]

          Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join).

          Examples

          @@ -3936,7 +3936,7 @@

          Matrix Base Classes
          -integrate(*args, **kwargs)[source]
          +integrate(*args, **kwargs)[source]

          Integrate each element of the matrix. args will be passed to the integrate function.

          Examples

          @@ -3969,7 +3969,7 @@

          Matrix Base Classestry_block_diag=False,

          -)[source] +)[source]

          Return the inverse of a matrix using the method indicated. The default is DM if a suitable domain is found or otherwise GE for dense matrices LDL for sparse matrices.

          @@ -4058,7 +4058,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Calculates the inverse using the adjugate matrix and a determinant.

          See also

          @@ -4074,7 +4074,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Calculates the inverse using BLOCKWISE inversion.

          See also

          @@ -4090,7 +4090,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Calculates the inverse using cholesky decomposition.

          See also

          @@ -4106,7 +4106,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Calculates the inverse using Gaussian elimination.

          See also

          @@ -4122,7 +4122,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Calculates the inverse using LDL decomposition.

          See also

          @@ -4138,7 +4138,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Calculates the inverse using LU decomposition.

          See also

          @@ -4154,7 +4154,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Calculates the inverse using QR decomposition.

          See also

          @@ -4164,7 +4164,7 @@

          Matrix Base Classes
          -classmethod irregular(ntop, *matrices, **kwargs)[source]
          +classmethod irregular(ntop, *matrices, **kwargs)[source]

          Return a matrix filled by the given matrices which are listed in order of appearance from left to right, top to bottom as they first appear in the matrix. They must fill the @@ -4184,7 +4184,7 @@

          Matrix Base Classes
          -is_anti_symmetric(simplify=True)[source]
          +is_anti_symmetric(simplify=True)[source]

          Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i].

          When simplify=True (default), the sum M[i, j] + M[j, i] is @@ -4248,7 +4248,7 @@

          Matrix Base Classes
          -is_diagonal()[source]
          +is_diagonal()[source]

          Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero.

          Examples

          @@ -4296,7 +4296,7 @@

          Matrix Base Classes**kwargs,

          -)[source] +)[source]

          Returns True if a matrix is diagonalizable.

          Parameters:
          @@ -4957,7 +4957,7 @@

          Matrix Base Classes
          -is_nilpotent()[source]
          +is_nilpotent()[source]

          Checks if a matrix is nilpotent.

          A matrix B is nilpotent if for some integer k, B**k is a zero matrix.

          @@ -5375,7 +5375,7 @@

          Matrix Base Classes
          -is_symbolic()[source]
          +is_symbolic()[source]

          Checks if any elements contain Symbols.

          Examples

          >>> from sympy import Matrix
          @@ -5389,7 +5389,7 @@ 

          Matrix Base Classes
          -is_symmetric(simplify=True)[source]
          +is_symmetric(simplify=True)[source]

          Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose.

          By default, simplifications occur before testing symmetry. @@ -5578,7 +5578,7 @@

          Matrix Base Classes
          -iter_items()[source]
          +iter_items()[source]

          Iterate over indices and values of nonzero items.

          Examples

          >>> from sympy import Matrix
          @@ -5595,7 +5595,7 @@ 

          Matrix Base Classes
          -iter_values()[source]
          +iter_values()[source]

          Iterate over non-zero values of self.

          Examples

          >>> from sympy import Matrix
          @@ -5612,7 +5612,7 @@ 

          Matrix Base Classes
          -jacobian(X)[source]
          +jacobian(X)[source]

          Calculates the Jacobian matrix (derivative of a vector-valued function).

          Parameters:
          @@ -5657,7 +5657,7 @@

          Matrix Base Classes**kwargs,

          -)[source] +)[source]

          Returns a Jordan block

          Parameters:
          @@ -5749,7 +5749,7 @@

          Matrix Base Classes**kwargs,

          -)[source] +)[source]

          Return \((P, J)\) where \(J\) is a Jordan block matrix and \(P\) is a matrix such that \(M = P J P^{-1}\)

          @@ -5787,7 +5787,7 @@

          Matrix Base Classes
          -key2bounds(keys)[source]
          +key2bounds(keys)[source]

          Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of self’s range.

          @@ -5799,7 +5799,7 @@

          Matrix Base Classes
          -key2ij(key)[source]
          +key2ij(key)[source]

          Converts key into canonical form, converting integers or indexable items into valid integers for self’s range or returning slices unchanged.

          @@ -5811,7 +5811,7 @@

          Matrix Base Classes
          -left_eigenvects(**flags)[source]
          +left_eigenvects(**flags)[source]

          Returns left eigenvectors and eigenvalues.

          This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for @@ -5840,7 +5840,7 @@

          Matrix Base Classes
          -limit(*args)[source]
          +limit(*args)[source]

          Calculate the limit of each element in the matrix. args will be passed to the limit function.

          Examples

          @@ -5861,7 +5861,7 @@

          Matrix Base Classes
          -log(simplify=<function cancel>)[source]
          +log(simplify=<function cancel>)[source]

          Return the logarithm of a square matrix.

          Parameters:
          @@ -5918,7 +5918,7 @@

          Matrix Base Classes
          -lower_triangular(k=0)[source]
          +lower_triangular(k=0)[source]

          Return the elements on and below the kth diagonal of a matrix. If k is not specified then simply returns lower-triangular portion of a matrix

          @@ -5953,7 +5953,7 @@

          Matrix Base Classes
          -lower_triangular_solve(rhs)[source]
          +lower_triangular_solve(rhs)[source]

          Solves Ax = B, where A is a lower triangular matrix.

          See also

          @@ -5963,7 +5963,7 @@

          Matrix Base Classes
          -minor(i, j, method='berkowitz')[source]
          +minor(i, j, method='berkowitz')[source]

          Return the (i,j) minor of M. That is, return the determinant of the matrix obtained by deleting the \(i`th row and `j`th column from ``M`\).

          @@ -5995,7 +5995,7 @@

          Matrix Base Classes
          -minor_submatrix(i, j)[source]
          +minor_submatrix(i, j)[source]

          Return the submatrix obtained by removing the \(i`th row and `j`th column from ``M`\) (works with Pythonic negative indices).

          @@ -6023,7 +6023,7 @@

          Matrix Base Classes
          -multiply(other, dotprodsimp=None)[source]
          +multiply(other, dotprodsimp=None)[source]

          Same as __mul__() but with optional simplification.

          Parameters:
          @@ -6039,7 +6039,7 @@

          Matrix Base Classes
          -multiply_elementwise(other)[source]
          +multiply_elementwise(other)[source]

          Return the Hadamard product (elementwise product) of A and B

          Examples

          >>> from sympy import Matrix
          @@ -6059,13 +6059,13 @@ 

          Matrix Base Classes
          -n(*args, **kwargs)[source]
          +n(*args, **kwargs)[source]

          Apply evalf() to each element of self.

          -norm(ord=None)[source]
          +norm(ord=None)[source]

          Return the Norm of a Matrix or Vector.

          In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter

          @@ -6162,7 +6162,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Return the normalized version of self.

          Parameters:
          @@ -6203,7 +6203,7 @@

          Matrix Base Classesiszerofunc=<function _iszero>,

          -)[source] +)[source]

          Returns list of vectors (Matrix objects) that span nullspace of M

          Examples

          >>> from sympy import Matrix
          @@ -6228,7 +6228,7 @@ 

          Matrix Base Classes
          -classmethod ones(rows, cols=None, **kwargs)[source]
          +classmethod ones(rows, cols=None, **kwargs)[source]

          Returns a matrix of ones.

          Parameters:
          @@ -6242,7 +6242,7 @@

          Matrix Base Classes
          -classmethod orthogonalize(*vecs, **kwargs)[source]
          +classmethod orthogonalize(*vecs, **kwargs)[source]

          Apply the Gram-Schmidt orthogonalization procedure to vectors supplied in vecs.

          @@ -6296,7 +6296,7 @@

          Matrix Base Classes
          -per()[source]
          +per()[source]

          Returns the permanent of a matrix. Unlike determinant, permanent is defined for both square and non-square matrices.

          For an m x n matrix, with m less than or equal to n, @@ -6349,7 +6349,7 @@

          Matrix Base Classesdirection='forward',

          -)[source] +)[source]

          Permute the rows or columns of a matrix by the given list of swaps.

          @@ -6443,13 +6443,13 @@

          Matrix Base Classes
          -permuteBkwd(perm)[source]
          +permuteBkwd(perm)[source]

          Permute the rows of the matrix with the given permutation in reverse.

          -permuteFwd(perm)[source]
          +permuteFwd(perm)[source]

          Permute the rows of the matrix with the given permutation.

          @@ -6462,7 +6462,7 @@

          Matrix Base Classesdirection='forward',

          -)[source] +)[source]

          Alias for self.permute(swaps, orientation='cols', direction=direction)

          @@ -6480,7 +6480,7 @@

          Matrix Base Classesdirection='forward',

          -)[source] +)[source]

          Alias for self.permute(swaps, orientation='rows', direction=direction)

          @@ -6491,7 +6491,7 @@

          Matrix Base Classes
          -pinv(method='RD')[source]
          +pinv(method='RD')[source]

          Calculate the Moore-Penrose pseudoinverse of the matrix.

          The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the @@ -6542,7 +6542,7 @@

          Matrix Base Classes
          -pinv_solve(B, arbitrary_matrix=None)[source]
          +pinv_solve(B, arbitrary_matrix=None)[source]

          Solve Ax = B using the Moore-Penrose pseudoinverse.

          There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, one will @@ -6613,7 +6613,7 @@

          Matrix Base Classes
          -pow(exp, method=None)[source]
          +pow(exp, method=None)[source]

          Return self**exp a scalar or symbol.

          Parameters:
          @@ -6635,7 +6635,7 @@

          Matrix Base Classes
          -print_nonzero(symb='X')[source]
          +print_nonzero(symb='X')[source]

          Shows location of non-zero entries for fast shape lookup.

          Examples

          >>> from sympy import Matrix, eye
          @@ -6659,7 +6659,7 @@ 

          Matrix Base Classes
          -project(v)[source]
          +project(v)[source]

          Return the projection of self onto the line containing v.

          Examples

          >>> from sympy import Matrix, S, sqrt
          @@ -6682,7 +6682,7 @@ 

          Matrix Base Classessimplify=False,

          -)[source] +)[source]

          Returns the rank of a matrix.

          Examples

          >>> from sympy import Matrix
          @@ -6706,7 +6706,7 @@ 

          Matrix Base Classessimplify=False,

          -)[source] +)[source]

          Returns a pair of matrices (\(C\), \(F\)) with matching rank such that \(A = C F\).

          @@ -6794,7 +6794,7 @@

          Matrix Base Classes
          -refine(assumptions=True)[source]
          +refine(assumptions=True)[source]

          Apply refine to each element of the matrix.

          Examples

          >>> from sympy import Symbol, Matrix, Abs, sqrt, Q
          @@ -6823,7 +6823,7 @@ 

          Matrix Base Classesexact=None,

          -)[source] +)[source]

          Replaces Function F in Matrix entries with Function G.

          Examples

          >>> from sympy import symbols, Function, Matrix
          @@ -6843,7 +6843,7 @@ 

          Matrix Base Classes
          -reshape(rows, cols)[source]
          +reshape(rows, cols)[source]

          Reshape the matrix. Total number of elements must remain the same.

          Examples

          >>> from sympy import Matrix
          @@ -6865,7 +6865,7 @@ 

          Matrix Base Classes
          -rmultiply(other, dotprodsimp=None)[source]
          +rmultiply(other, dotprodsimp=None)[source]

          Same as __rmul__() but with optional simplification.

          Parameters:
          @@ -6881,7 +6881,7 @@

          Matrix Base Classes
          -rot90(k=1)[source]
          +rot90(k=1)[source]

          Rotates Matrix by 90 degrees

          Parameters:
          @@ -6919,7 +6919,7 @@

          Matrix Base Classes
          -row(i)[source]
          +row(i)[source]

          Elementary row selector.

          Examples

          >>> from sympy import eye
          @@ -6935,13 +6935,13 @@ 

          Matrix Base Classes
          -row_del(row)[source]
          +row_del(row)[source]

          Delete the specified row.

          -row_insert(pos, other)[source]
          +row_insert(pos, other)[source]

          Insert one or more rows at the given row position.

          Examples

          >>> from sympy import zeros, ones
          @@ -6963,7 +6963,7 @@ 

          Matrix Base Classes
          -row_join(other)[source]
          +row_join(other)[source]

          Concatenates two matrices along self’s last and rhs’s first column

          Examples

          >>> from sympy import zeros, ones
          @@ -6984,7 +6984,7 @@ 

          Matrix Base Classes
          -rowspace(simplify=False)[source]
          +rowspace(simplify=False)[source]

          Returns a list of vectors that span the row space of M.

          Examples

          >>> from sympy import Matrix
          @@ -7011,7 +7011,7 @@ 

          Matrix Base Classesnormalize_last=True,

          -)[source] +)[source]

          Return reduced row-echelon form of matrix and indices of pivot vars.

          @@ -7087,7 +7087,7 @@

          Matrix Base Classes
          -rref_rhs(rhs)[source]
          +rref_rhs(rhs)[source]

          Return reduced row-echelon form of matrix, matrix showing rhs after reduction steps. rhs must have the same number of rows as self.

          @@ -7123,7 +7123,7 @@

          Matrix Base Classes
          -simplify(**kwargs)[source]
          +simplify(**kwargs)[source]

          Apply simplify to each element of the matrix.

          Examples

          >>> from sympy.abc import x, y
          @@ -7138,7 +7138,7 @@ 

          Matrix Base Classes
          -singular_value_decomposition()[source]
          +singular_value_decomposition()[source]

          Returns a Condensed Singular Value decomposition.

          Explanation

          A Singular Value decomposition is a decomposition in the form \(A = U \Sigma V^H\) @@ -7309,7 +7309,7 @@

          Matrix Base Classes
          -singular_values()[source]
          +singular_values()[source]

          Compute the singular values of a Matrix

          Examples

          >>> from sympy import Matrix, Symbol
          @@ -7327,7 +7327,7 @@ 

          Matrix Base Classes
          -solve(rhs, method='GJ')[source]
          +solve(rhs, method='GJ')[source]

          Solves linear equation where the unique solution exists.

          Parameters:
          @@ -7371,7 +7371,7 @@

          Matrix Base Classes
          -solve_least_squares(rhs, method='CH')[source]
          +solve_least_squares(rhs, method='CH')[source]

          Return the least-square fit to the data.

          Parameters:
          @@ -7446,7 +7446,7 @@

          Matrix Base Classes
          -strongly_connected_components()[source]
          +strongly_connected_components()[source]

          Returns the list of strongly connected vertices of the graph when a square matrix is viewed as a weighted graph.

          Examples

          @@ -7475,7 +7475,7 @@

          Matrix Base Classeslower=True,

          -)[source] +)[source]

          Decomposes a square matrix into block triangular form only using the permutations.

          @@ -7576,7 +7576,7 @@

          Matrix Base Classes
          -subs(*args, **kwargs)[source]
          +subs(*args, **kwargs)[source]

          Return a new matrix with subs applied to each entry.

          Examples

          >>> from sympy.abc import x, y
          @@ -7604,7 +7604,7 @@ 

          Matrix Base Classesalign='right',

          -)[source] +)[source]

          String form of Matrix as a table.

          printer is the printer to use for on the elements (generally something like StrPrinter())

          @@ -7646,7 +7646,7 @@

          Matrix Base Classes
          -todod()[source]
          +todod()[source]

          Returns matrix as dict of dicts containing non-zero elements of the Matrix

          Examples

          >>> from sympy import Matrix
          @@ -7663,7 +7663,7 @@ 

          Matrix Base Classes
          -todok()[source]
          +todok()[source]

          Return the matrix as dictionary of keys.

          Examples

          >>> from sympy import Matrix
          @@ -7676,7 +7676,7 @@ 

          Matrix Base Classes
          -tolist()[source]
          +tolist()[source]

          Return the Matrix as a nested Python list.

          Examples

          >>> from sympy import Matrix, ones
          @@ -7702,7 +7702,7 @@ 

          Matrix Base Classes
          -trace()[source]
          +trace()[source]

          Returns the trace of a square matrix i.e. the sum of the diagonal elements.

          Examples

          @@ -7716,7 +7716,7 @@

          Matrix Base Classes
          -transpose()[source]
          +transpose()[source]

          Returns the transpose of the matrix.

          Examples

          >>> from sympy import Matrix
          @@ -7752,7 +7752,7 @@ 

          Matrix Base Classes
          -upper_hessenberg_decomposition()[source]
          +upper_hessenberg_decomposition()[source]

          Converts a matrix into Hessenberg matrix H.

          Returns 2 matrices H, P s.t. \(P H P^{T} = A\), where H is an upper hessenberg matrix @@ -7790,7 +7790,7 @@

          Matrix Base Classes
          -upper_triangular(k=0)[source]
          +upper_triangular(k=0)[source]

          Return the elements on and above the kth diagonal of a matrix. If k is not specified then simply returns upper-triangular portion of a matrix

          @@ -7825,7 +7825,7 @@

          Matrix Base Classes
          -upper_triangular_solve(rhs)[source]
          +upper_triangular_solve(rhs)[source]

          Solves Ax = B, where A is an upper triangular matrix.

          See also

          @@ -7835,7 +7835,7 @@

          Matrix Base Classes
          -values()[source]
          +values()[source]

          Return non-zero values of self.

          Examples

          >>> from sympy import Matrix
          @@ -7852,7 +7852,7 @@ 

          Matrix Base Classes
          -vec()[source]
          +vec()[source]

          Return the Matrix converted into a one column matrix by stacking columns

          Examples

          >>> from sympy import Matrix
          @@ -7884,7 +7884,7 @@ 

          Matrix Base Classescheck_symmetry=True,

          -)[source] +)[source]

          Reshapes the matrix into a column vector by stacking the elements in the lower triangle.

          @@ -7927,7 +7927,7 @@

          Matrix Base Classes
          -vee()[source]
          +vee()[source]

          Return a 3x1 vector from a skew-symmetric matrix representing the cross product, so that self * b is equivalent to self.vee().cross(b).

          Examples

          @@ -7990,7 +7990,7 @@

          Matrix Base Classes
          -classmethod vstack(*args)[source]
          +classmethod vstack(*args)[source]

          Return a matrix formed by joining args vertically (i.e. by repeated application of col_join).

          Examples

          @@ -8007,7 +8007,7 @@

          Matrix Base Classes
          -classmethod wilkinson(n, **kwargs)[source]
          +classmethod wilkinson(n, **kwargs)[source]

          Returns two square Wilkinson Matrix of size 2*n + 1 \(W_{2n + 1}^-, W_{2n + 1}^+ =\) Wilkinson(n)

          Examples

          @@ -8053,7 +8053,7 @@

          Matrix Base Classes
          -xreplace(rule)[source]
          +xreplace(rule)[source]

          Return a new matrix with xreplace applied to each entry.

          Examples

          >>> from sympy.abc import x, y
          @@ -8070,7 +8070,7 @@ 

          Matrix Base Classes
          -classmethod zeros(rows, cols=None, **kwargs)[source]
          +classmethod zeros(rows, cols=None, **kwargs)[source]

          Returns a matrix of zeros.

          Parameters:
          @@ -8089,18 +8089,18 @@

          Matrix Base Classes

          -class sympy.matrices.matrixbase.MatrixError[source]
          +class sympy.matrices.matrixbase.MatrixError[source]
          -class sympy.matrices.matrixbase.ShapeError[source]
          +class sympy.matrices.matrixbase.ShapeError[source]

          Wrong matrix shape

          -class sympy.matrices.matrixbase.NonSquareMatrixError[source]
          +class sympy.matrices.matrixbase.NonSquareMatrixError[source]
          @@ -8108,7 +8108,7 @@

          Matrix Exceptions

          -sympy.matrices.dense.matrix_multiply_elementwise(A, B)[source]
          +sympy.matrices.dense.matrix_multiply_elementwise(A, B)[source]

          Return the Hadamard product (elementwise product) of A and B

          >>> from sympy import Matrix, matrix_multiply_elementwise
           >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
          @@ -8127,7 +8127,7 @@ 

          Matrix Functions
          -sympy.matrices.dense.zeros(*args, **kwargs)[source]
          +sympy.matrices.dense.zeros(*args, **kwargs)[source]

          Returns a matrix of zeros with rows rows and cols columns; if cols is omitted a square matrix will be returned.

          @@ -8138,7 +8138,7 @@

          Matrix Functions
          -sympy.matrices.dense.ones(*args, **kwargs)[source]
          +sympy.matrices.dense.ones(*args, **kwargs)[source]

          Returns a matrix of ones with rows rows and cols columns; if cols is omitted a square matrix will be returned.

          @@ -8149,7 +8149,7 @@

          Matrix Functions
          -sympy.matrices.dense.eye(*args, **kwargs)[source]
          +sympy.matrices.dense.eye(*args, **kwargs)[source]

          Create square identity matrix n x n

          See also

          @@ -8159,7 +8159,7 @@

          Matrix Functions
          -sympy.matrices.dense.diag(*values, strict=True, unpack=False, **kwargs)[source]
          +sympy.matrices.dense.diag(*values, strict=True, unpack=False, **kwargs)[source]

          Returns a matrix with the provided values placed on the diagonal. If non-square matrices are included, they will produce a block-diagonal matrix.

          @@ -8193,7 +8193,7 @@

          Matrix Functions
          -sympy.matrices.dense.jordan_cell(eigenval, n)[source]
          +sympy.matrices.dense.jordan_cell(eigenval, n)[source]

          Create a Jordan block:

          Examples

          >>> from sympy import jordan_cell
          @@ -8210,7 +8210,7 @@ 

          Matrix Functions
          -sympy.matrices.dense.hessian(f, varlist, constraints=())[source]
          +sympy.matrices.dense.hessian(f, varlist, constraints=())[source]

          Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given.

          @@ -8255,7 +8255,7 @@

          Matrix Functions
          -sympy.matrices.dense.GramSchmidt(vlist, orthonormal=False)[source]
          +sympy.matrices.dense.GramSchmidt(vlist, orthonormal=False)[source]

          Apply the Gram-Schmidt process to a set of vectors.

          Parameters:
          @@ -8295,7 +8295,7 @@

          Matrix Functions
          -sympy.matrices.dense.wronskian(functions, var, method='bareiss')[source]
          +sympy.matrices.dense.wronskian(functions, var, method='bareiss')[source]

          Compute Wronskian for [] of functions

                           | f1       f2        ...   fn      |
                            | f1'      f2'       ...   fn'     |
          @@ -8315,7 +8315,7 @@ 

          Matrix Functions
          -sympy.matrices.dense.casoratian(seqs, n, zero=True)[source]
          +sympy.matrices.dense.casoratian(seqs, n, zero=True)[source]

          Given linear difference operator L of order ‘k’ and homogeneous equation Ly = 0 we want to compute kernel of L, which is a set of ‘k’ sequences: a(n), b(n), … z(n).

          @@ -8359,7 +8359,7 @@

          Matrix Functionsprng=None,

          -)[source] +)[source]

          Create random matrix with dimensions r x c. If c is omitted the matrix will be square. If symmetric is True the matrix must be square. If percent is less than 100 then only approximately the given @@ -8411,7 +8411,7 @@

          Matrix Functions

          -sympy.matrices.dense.rot_givens(i, j, theta, dim=3)[source]
          +sympy.matrices.dense.rot_givens(i, j, theta, dim=3)[source]

          Returns a a Givens rotation matrix, a a rotation in the plane spanned by two coordinates axes.

          @@ -8514,7 +8514,7 @@

          Rotation matrices
          -sympy.matrices.dense.rot_axis1(theta)[source]
          +sympy.matrices.dense.rot_axis1(theta)[source]

          Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis.

          Explanation

          @@ -8566,7 +8566,7 @@

          Rotation matrices
          -sympy.matrices.dense.rot_axis2(theta)[source]
          +sympy.matrices.dense.rot_axis2(theta)[source]

          Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis.

          Explanation

          @@ -8618,7 +8618,7 @@

          Rotation matrices
          -sympy.matrices.dense.rot_axis3(theta)[source]
          +sympy.matrices.dense.rot_axis3(theta)[source]

          Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis.

          Explanation

          @@ -8670,7 +8670,7 @@

          Rotation matrices
          -sympy.matrices.dense.rot_ccw_axis1(theta)[source]
          +sympy.matrices.dense.rot_ccw_axis1(theta)[source]

          Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis.

          Explanation

          @@ -8722,7 +8722,7 @@

          Rotation matrices
          -sympy.matrices.dense.rot_ccw_axis2(theta)[source]
          +sympy.matrices.dense.rot_ccw_axis2(theta)[source]

          Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis.

          Explanation

          @@ -8774,7 +8774,7 @@

          Rotation matrices
          -sympy.matrices.dense.rot_ccw_axis3(theta)[source]
          +sympy.matrices.dense.rot_ccw_axis3(theta)[source]

          Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis.

          Explanation

          @@ -8829,7 +8829,7 @@

          Rotation matrices

          -sympy.matrices.dense.list2numpy(l, dtype=<class 'object'>)[source]
          +sympy.matrices.dense.list2numpy(l, dtype=<class 'object'>)[source]

          Converts Python list of SymPy expressions to a NumPy array.

          See also

          @@ -8839,7 +8839,7 @@

          Numpy Utility Functions
          -sympy.matrices.dense.matrix2numpy(m, dtype=<class 'object'>)[source]
          +sympy.matrices.dense.matrix2numpy(m, dtype=<class 'object'>)[source]

          Converts SymPy’s matrix to a NumPy array.

          See also

          @@ -8849,7 +8849,7 @@

          Numpy Utility Functions
          -sympy.matrices.dense.symarray(prefix, shape, **kwargs)[source]
          +sympy.matrices.dense.symarray(prefix, shape, **kwargs)[source]

          Create a numpy ndarray of symbols (as an object array).

          The created symbols are named prefix_i1_i2_… You should thus provide a non-empty prefix if you want your symbols to be unique for different output @@ -8918,7 +8918,7 @@

          Numpy Utility Functions
          -sympy.matrices.matrixbase.a2idx(j, n=None)[source]
          +sympy.matrices.matrixbase.a2idx(j, n=None)[source]

          Return integer after making positive and validating against n.

          diff --git a/dev/modules/matrices/normalforms.html b/dev/modules/matrices/normalforms.html index 54d8d655f89..61ddbda2ae5 100644 --- a/dev/modules/matrices/normalforms.html +++ b/dev/modules/matrices/normalforms.html @@ -802,7 +802,7 @@
          Documentation Version

          Matrix Normal Forms

          -sympy.matrices.normalforms.smith_normal_form(m, domain=None)[source]
          +sympy.matrices.normalforms.smith_normal_form(m, domain=None)[source]

          Return the Smith Normal Form of a matrix \(m\) over the ring \(domain\). This will only work if the ring is a principal ideal domain.

          Examples

          @@ -826,7 +826,7 @@
          Documentation Version
          check_rank=False,
          -)[source] +)[source]

          Compute the Hermite Normal Form of a Matrix A of integers.

          Parameters:
          diff --git a/dev/modules/matrices/sparse.html b/dev/modules/matrices/sparse.html index 7641789d796..c1464718e30 100644 --- a/dev/modules/matrices/sparse.html +++ b/dev/modules/matrices/sparse.html @@ -804,13 +804,13 @@
          Documentation Version

          SparseMatrix Class Reference

          -sympy.matrices.sparse.SparseMatrix[source]
          +sympy.matrices.sparse.SparseMatrix[source]

          alias of MutableSparseMatrix

          -class sympy.matrices.sparse.MutableSparseMatrix(*args, **kwargs)[source]
          +class sympy.matrices.sparse.MutableSparseMatrix(*args, **kwargs)[source]
          @@ -818,7 +818,7 @@

          SparseMatrix Class Reference

          -class sympy.matrices.immutable.ImmutableSparseMatrix(*args, **kwargs)[source]
          +class sympy.matrices.immutable.ImmutableSparseMatrix(*args, **kwargs)[source]

          Create an immutable version of a sparse matrix.

          Examples

          >>> from sympy import eye, ImmutableSparseMatrix
          diff --git a/dev/modules/matrices/sparsetools.html b/dev/modules/matrices/sparsetools.html
          index 4080172334e..dfe7054010f 100644
          --- a/dev/modules/matrices/sparsetools.html
          +++ b/dev/modules/matrices/sparsetools.html
          @@ -802,7 +802,7 @@ 
          Documentation Version

          Sparse Tools

          -sympy.matrices.sparsetools._doktocsr()[source]
          +sympy.matrices.sparsetools._doktocsr()[source]

          Converts a sparse matrix to Compressed Sparse Row (CSR) format.

          Parameters:
          @@ -829,7 +829,7 @@
          Documentation Version
          -sympy.matrices.sparsetools._csrtodok()[source]
          +sympy.matrices.sparsetools._csrtodok()[source]

          Converts a CSR representation to DOK representation.

          Examples

          >>> from sympy.matrices.sparsetools import _csrtodok
          @@ -845,7 +845,7 @@ 
          Documentation Version
          -sympy.matrices.sparsetools.banded(**kwargs)[source]
          +sympy.matrices.sparsetools.banded(**kwargs)[source]

          Returns a SparseMatrix from the given dictionary describing the diagonals of the matrix. The keys are positive for upper diagonals and negative for those below the main diagonal. The diff --git a/dev/modules/ntheory.html b/dev/modules/ntheory.html index bcdafbf02a9..7f13bcf62da 100644 --- a/dev/modules/ntheory.html +++ b/dev/modules/ntheory.html @@ -804,7 +804,7 @@

          Documentation Version

          Ntheory Class Reference

          -class sympy.ntheory.generate.Sieve(sieve_interval=1000000)[source]
          +class sympy.ntheory.generate.Sieve(sieve_interval=1000000)[source]

          A list of prime numbers, implemented as a dynamically growing sieve of Eratosthenes. When a lookup is requested involving an odd number that has not been sieved, the sieve is automatically @@ -821,7 +821,7 @@

          Ntheory Class Reference
          -extend(n)[source]
          +extend(n)[source]

          Grow the sieve to cover all primes <= n.

          Examples

          >>> from sympy import sieve
          @@ -835,7 +835,7 @@ 

          Ntheory Class Reference
          -extend_to_no(i)[source]
          +extend_to_no(i)[source]

          Extend to include the ith prime number.

          Parameters:
          @@ -857,7 +857,7 @@

          Ntheory Class Reference
          -mobiusrange(a, b)[source]
          +mobiusrange(a, b)[source]

          Generate all mobius numbers for the range [a, b).

          Parameters:
          @@ -881,7 +881,7 @@

          Ntheory Class Reference
          -primerange(a, b=None)[source]
          +primerange(a, b=None)[source]

          Generate all prime numbers in the range [2, a) or [a, b).

          Examples

          >>> from sympy import sieve, prime
          @@ -906,7 +906,7 @@ 

          Ntheory Class Reference
          -search(n)[source]
          +search(n)[source]

          Return the indices i, j of the primes that bound n.

          If n is prime then i == j.

          Although n can be an expression, if ceiling cannot convert @@ -923,7 +923,7 @@

          Ntheory Class Reference
          -totientrange(a, b)[source]
          +totientrange(a, b)[source]

          Generate all totient numbers for the range [a, b).

          Examples

          >>> from sympy import sieve
          @@ -940,7 +940,7 @@ 

          Ntheory Class ReferenceNtheory Functions Reference

          -sympy.ntheory.generate.prime(nth)[source]
          +sympy.ntheory.generate.prime(nth)[source]

          Return the nth prime, with the primes indexed as prime(1) = 2, prime(2) = 3, etc…. The nth prime is approximately \(n\log(n)\).

          Logarithmic integral of \(x\) is a pretty nice approximation for number of @@ -997,7 +997,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.generate.primepi(n)[source]
          +sympy.ntheory.generate.primepi(n)[source]

          Represents the prime counting function pi(n) = the number of prime numbers less than or equal to n.

          @@ -1073,7 +1073,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.generate.nextprime(n, ith=1)[source]
          +sympy.ntheory.generate.nextprime(n, ith=1)[source]

          Return the ith prime greater than n.

          Parameters:
          @@ -1114,7 +1114,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.generate.prevprime(n)[source]
          +sympy.ntheory.generate.prevprime(n)[source]

          Return the largest prime smaller than n.

          Notes

          Potential primes are located at 6*j +/- 1. This @@ -1137,7 +1137,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.generate.primerange(a, b=None)[source]
          +sympy.ntheory.generate.primerange(a, b=None)[source]

          Generate a list of all prime numbers in the range [2, a), or [a, b).

          If the range exists in the default sieve, the values will @@ -1234,7 +1234,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.generate.randprime(a, b)[source]
          +sympy.ntheory.generate.randprime(a, b)[source]

          Return a random prime number in the range [a, b).

          Bertrand’s postulate assures that randprime(a, 2*a) will always succeed for a > 1.

          @@ -1269,7 +1269,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.generate.primorial(n, nth=True)[source]
          +sympy.ntheory.generate.primorial(n, nth=True)[source]

          Returns the product of the first n primes (default) or the primes less than or equal to n (when nth=False).

          Examples

          @@ -1320,7 +1320,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.generate.cycle_length(f, x0, nmax=None, values=False)[source]
          +sympy.ntheory.generate.cycle_length(f, x0, nmax=None, values=False)[source]

          For a given iterated sequence, return a generator that gives the length of the iterated cycle (lambda) and the length of terms before the cycle begins (mu); if values is True then the @@ -1373,7 +1373,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.generate.composite(nth)[source]
          +sympy.ntheory.generate.composite(nth)[source]

          Return the nth composite number, with the composite numbers indexed as composite(1) = 4, composite(2) = 6, etc….

          Examples

          @@ -1405,7 +1405,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.generate.compositepi(n)[source]
          +sympy.ntheory.generate.compositepi(n)[source]

          Return the number of positive composite numbers less than or equal to n. The first positive composite is 4, i.e. compositepi(4) = 1.

          Examples

          @@ -1435,7 +1435,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.smoothness(n)[source]
          +sympy.ntheory.factor_.smoothness(n)[source]

          Return the B-smooth and B-power smooth values of n.

          The smoothness of n is the largest prime factor of n; the power- smoothness is the largest divisor raised to its multiplicity.

          @@ -1457,7 +1457,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.smoothness_p(n, m=-1, power=0, visual=None)[source]
          +sympy.ntheory.factor_.smoothness_p(n, m=-1, power=0, visual=None)[source]

          Return a list of [m, (p, (M, sm(p + m), psm(p + m)))…] where:

            @@ -1550,7 +1550,7 @@

            Ntheory Functions Reference
            -sympy.ntheory.factor_.multiplicity(p, n)[source]
            +sympy.ntheory.factor_.multiplicity(p, n)[source]

            Find the greatest integer m such that p**m divides n.

            Examples

            >>> from sympy import multiplicity, Rational
            @@ -1591,7 +1591,7 @@ 

            Ntheory Functions Referencefactor=True,

          -)[source] +)[source]

          Return (b, e) such that n == b**e if n is a unique perfect power with e > 1, else False (e.g. 1 is not a perfect power). A ValueError is raised if n is not Rational.

          @@ -1667,7 +1667,7 @@

          Ntheory Functions ReferenceF=None,

          -)[source] +)[source]

          Use Pollard’s rho method to try to extract a nontrivial factor of n. The returned factor may be a composite number. If no factor is found, None is returned.

          @@ -1753,7 +1753,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.pollard_pm1(n, B=10, a=2, retries=0, seed=1234)[source]
          +sympy.ntheory.factor_.pollard_pm1(n, B=10, a=2, retries=0, seed=1234)[source]

          Use Pollard’s p-1 method to try to extract a nontrivial factor of n. Either a divisor (perhaps composite) or None is returned.

          The value of a is the base that is used in the test gcd(a**M - 1, n). @@ -1898,7 +1898,7 @@

          Ntheory Functions Referencemultiple=False,

          -)[source] +)[source]

          Given a positive integer n, factorint(n) returns a dict containing the prime factors of n as keys and their respective multiplicities as values. For example:

          @@ -2075,7 +2075,7 @@

          Ntheory Functions Referencemultiple=False,

          -)[source] +)[source]

          Given a Rational r, factorrat(r) returns a dict containing the prime factors of r as keys and their respective multiplicities as values. For example:

          @@ -2112,7 +2112,7 @@

          Ntheory Functions Reference**kwargs,

          -)[source] +)[source]

          Return a sorted list of n’s prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does @@ -2161,7 +2161,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.divisors(n, generator=False, proper=False)[source]
          +sympy.ntheory.factor_.divisors(n, generator=False, proper=False)[source]

          Return all divisors of n sorted from 1..n by default. If generator is True an unordered generator is returned.

          The number of divisors of n can be quite large if there are many @@ -2190,7 +2190,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.proper_divisors(n, generator=False)[source]
          +sympy.ntheory.factor_.proper_divisors(n, generator=False)[source]

          Return all divisors of n except n, sorted by default. If generator is True an unordered generator is returned.

          Examples

          @@ -2211,7 +2211,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.divisor_count(n, modulus=1, proper=False)[source]
          +sympy.ntheory.factor_.divisor_count(n, modulus=1, proper=False)[source]

          Return the number of divisors of n. If modulus is not 1 then only those that are divisible by modulus are counted. If proper is True then the divisor of n will not be counted.

          @@ -2233,7 +2233,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.proper_divisor_count(n, modulus=1)[source]
          +sympy.ntheory.factor_.proper_divisor_count(n, modulus=1)[source]

          Return the number of proper divisors of n.

          Examples

          >>> from sympy import proper_divisor_count
          @@ -2251,7 +2251,7 @@ 

          Ntheory Functions Reference
          -sympy.ntheory.factor_.udivisors(n, generator=False)[source]
          +sympy.ntheory.factor_.udivisors(n, generator=False)[source]

          Return all unitary divisors of n sorted from 1..n by default. If generator is True an unordered generator is returned.

          The number of unitary divisors of n can be quite large if there are many @@ -2288,7 +2288,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.udivisor_count(n)[source]
          +sympy.ntheory.factor_.udivisor_count(n)[source]

          Return the number of unitary divisors of n.

          Parameters:
          @@ -2316,7 +2316,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.antidivisors(n, generator=False)[source]
          +sympy.ntheory.factor_.antidivisors(n, generator=False)[source]

          Return all antidivisors of n sorted from 1..n by default.

          Antidivisors [R661] of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned.

          @@ -2346,7 +2346,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.antidivisor_count(n)[source]
          +sympy.ntheory.factor_.antidivisor_count(n)[source]

          Return the number of antidivisors [R662] of n.

          Parameters:
          @@ -2377,7 +2377,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.totient(n)[source]
          +sympy.ntheory.factor_.totient(n)[source]

          Calculate the Euler totient function phi(n)

          Deprecated since version 1.13: The totient function is deprecated. Use sympy.functions.combinatorial.numbers.totient @@ -2420,7 +2420,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.reduced_totient(n)[source]
          +sympy.ntheory.factor_.reduced_totient(n)[source]

          Calculate the Carmichael reduced totient function lambda(n)

          Deprecated since version 1.13: The reduced_totient function is deprecated. Use sympy.functions.combinatorial.numbers.reduced_totient @@ -2458,7 +2458,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.divisor_sigma(n, k=1)[source]
          +sympy.ntheory.factor_.divisor_sigma(n, k=1)[source]

          Calculate the divisor function \(\sigma_k(n)\) for positive integer n

          Deprecated since version 1.13: The divisor_sigma function is deprecated. Use sympy.functions.combinatorial.numbers.divisor_sigma @@ -2517,7 +2517,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.udivisor_sigma(n, k=1)[source]
          +sympy.ntheory.factor_.udivisor_sigma(n, k=1)[source]

          Calculate the unitary divisor function \(\sigma_k^*(n)\) for positive integer n

          Deprecated since version 1.13: The udivisor_sigma function is deprecated. Use sympy.functions.combinatorial.numbers.udivisor_sigma @@ -2573,7 +2573,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.core(n, t=2)[source]
          +sympy.ntheory.factor_.core(n, t=2)[source]

          Calculate core(n, t) = \(core_t(n)\) of a positive integer n

          core_2(n) is equal to the squarefree part of n

          If n’s prime factorization is:

          @@ -2625,7 +2625,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.digits(n, b=10, digits=None)[source]
          +sympy.ntheory.factor_.digits(n, b=10, digits=None)[source]

          Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative).

          @@ -2675,7 +2675,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.primenu(n)[source]
          +sympy.ntheory.factor_.primenu(n)[source]

          Calculate the number of distinct prime factors for a positive integer n.

          Deprecated since version 1.13: The primenu function is deprecated. Use sympy.functions.combinatorial.numbers.primenu @@ -2715,7 +2715,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.primeomega(n)[source]
          +sympy.ntheory.factor_.primeomega(n)[source]

          Calculate the number of prime factors counting multiplicities for a positive integer n.

          @@ -2756,7 +2756,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.mersenne_prime_exponent(nth)[source]
          +sympy.ntheory.factor_.mersenne_prime_exponent(nth)[source]

          Returns the exponent i for the nth Mersenne prime (which has the form \(2^i - 1\)).

          Examples

          @@ -2771,7 +2771,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.is_perfect(n)[source]
          +sympy.ntheory.factor_.is_perfect(n)[source]

          Returns True if n is a perfect number, else False.

          A perfect number is equal to the sum of its positive, proper divisors.

          Examples

          @@ -2800,7 +2800,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.abundance(n)[source]
          +sympy.ntheory.factor_.abundance(n)[source]

          Returns the difference between the sum of the positive proper divisors of a number and the number.

          Examples

          @@ -2819,7 +2819,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.is_abundant(n)[source]
          +sympy.ntheory.factor_.is_abundant(n)[source]

          Returns True if n is an abundant number, else False.

          A abundant number is smaller than the sum of its positive proper divisors.

          Examples

          @@ -2841,7 +2841,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.is_deficient(n)[source]
          +sympy.ntheory.factor_.is_deficient(n)[source]

          Returns True if n is a deficient number, else False.

          A deficient number is greater than the sum of its positive proper divisors.

          Examples

          @@ -2863,7 +2863,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.is_amicable(m, n)[source]
          +sympy.ntheory.factor_.is_amicable(m, n)[source]

          Returns True if the numbers \(m\) and \(n\) are “amicable”, else False.

          Amicable numbers are two different numbers so related that the sum of the proper divisors of each is equal to that of the other.

          @@ -2887,7 +2887,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.is_carmichael(n)[source]
          +sympy.ntheory.factor_.is_carmichael(n)[source]

          Returns True if the numbers \(n\) is Carmichael number, else False.

          Parameters:
          @@ -2909,7 +2909,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.find_carmichael_numbers_in_range(x, y)[source]
          +sympy.ntheory.factor_.find_carmichael_numbers_in_range(x, y)[source]

          Returns a list of the number of Carmichael in the range

          See also

          @@ -2919,7 +2919,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.factor_.find_first_n_carmichaels(n)[source]
          +sympy.ntheory.factor_.find_first_n_carmichaels(n)[source]

          Returns the first n Carmichael numbers.

          Parameters:
          @@ -2934,7 +2934,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.modular.symmetric_residue(a, m)[source]
          +sympy.ntheory.modular.symmetric_residue(a, m)[source]

          Return the residual mod m such that it is within half of the modulus.

          >>> from sympy.ntheory.modular import symmetric_residue
           >>> symmetric_residue(1, 6)
          @@ -2947,7 +2947,7 @@ 

          Ntheory Functions Reference
          -sympy.ntheory.modular.crt(m, v, symmetric=False, check=True)[source]
          +sympy.ntheory.modular.crt(m, v, symmetric=False, check=True)[source]

          Chinese Remainder Theorem.

          The moduli in m are assumed to be pairwise coprime. The output is then an integer f, such that f = v_i mod m_i for each pair out @@ -3003,7 +3003,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.modular.crt1(m)[source]
          +sympy.ntheory.modular.crt1(m)[source]

          First part of Chinese Remainder Theorem, for multiple application.

          Examples

          >>> from sympy.ntheory.modular import crt, crt1, crt2
          @@ -3043,7 +3043,7 @@ 

          Ntheory Functions Reference
          -sympy.ntheory.modular.crt2(m, v, mm, e, s, symmetric=False)[source]
          +sympy.ntheory.modular.crt2(m, v, mm, e, s, symmetric=False)[source]

          Second part of Chinese Remainder Theorem, for multiple application.

          See crt1 for usage.

          Examples

          @@ -3065,7 +3065,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.modular.solve_congruence(*remainder_modulus_pairs, **hint)[source]
          +sympy.ntheory.modular.solve_congruence(*remainder_modulus_pairs, **hint)[source]

          Compute the integer n that has the residual ai when it is divided by mi where the ai and mi are given as pairs to this function: ((a1, m1), (a2, m2), …). If there is no solution, @@ -3119,7 +3119,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.multinomial.binomial_coefficients(n)[source]
          +sympy.ntheory.multinomial.binomial_coefficients(n)[source]

          Return a dictionary containing pairs \({(k1,k2) : C_kn}\) where \(C_kn\) are binomial coefficients and \(n=k1+k2\).

          Examples

          @@ -3137,7 +3137,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.multinomial.binomial_coefficients_list(n)[source]
          +sympy.ntheory.multinomial.binomial_coefficients_list(n)[source]

          Return a list of binomial coefficients as rows of the Pascal’s triangle.

          Examples

          @@ -3154,7 +3154,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.multinomial.multinomial_coefficients(m, n)[source]
          +sympy.ntheory.multinomial.multinomial_coefficients(m, n)[source]

          Return a dictionary containing pairs {(k1,k2,..,km) : C_kn} where C_kn are multinomial coefficients such that n=k1+k2+..+km.

          @@ -3189,7 +3189,7 @@

          Ntheory Functions Reference_tuple=<class 'tuple'>,

          -)[source] +)[source]

          multinomial coefficient iterator

          This routine has been optimized for \(m\) large with respect to \(n\) by taking advantage of the fact that when the monomial tuples \(t\) are stripped of @@ -3213,7 +3213,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.partitions_.npartitions(n, verbose=False)[source]
          +sympy.ntheory.partitions_.npartitions(n, verbose=False)[source]

          Calculate the partition function P(n), i.e. the number of ways that n can be written as a sum of positive integers.

          @@ -3241,7 +3241,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.is_fermat_pseudoprime(n, a)[source]
          +sympy.ntheory.primetest.is_fermat_pseudoprime(n, a)[source]

          Returns True if n is prime or is an odd composite integer that is coprime to a and satisfy the modular arithmetic congruence relation:

          @@ -3290,7 +3290,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.is_euler_pseudoprime(n, a)[source]
          +sympy.ntheory.primetest.is_euler_pseudoprime(n, a)[source]

          Returns True if n is prime or is an odd composite integer that is coprime to a and satisfy the modular arithmetic congruence relation:

          @@ -3338,7 +3338,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.is_euler_jacobi_pseudoprime(n, a)[source]
          +sympy.ntheory.primetest.is_euler_jacobi_pseudoprime(n, a)[source]

          Returns True if n is prime or is an odd composite integer that is coprime to a and satisfy the modular arithmetic congruence relation:

          @@ -3385,7 +3385,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.is_square(n, prep=True)[source]
          +sympy.ntheory.primetest.is_square(n, prep=True)[source]

          Return True if n == a * a for some integer a, else False. If n is suspected of not being a square then this is a quick method of confirming that it is not.

          @@ -3412,7 +3412,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.mr(n, bases)[source]
          +sympy.ntheory.primetest.mr(n, bases)[source]

          Perform a Miller-Rabin strong pseudoprime test on n using a given list of bases/witnesses.

          Examples

          @@ -3437,7 +3437,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.is_lucas_prp(n)[source]
          +sympy.ntheory.primetest.is_lucas_prp(n)[source]

          Standard Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a Lucas probable prime.

          @@ -3481,7 +3481,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.is_strong_lucas_prp(n)[source]
          +sympy.ntheory.primetest.is_strong_lucas_prp(n)[source]

          Strong Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a strong Lucas probable prime.

          @@ -3526,7 +3526,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.is_extra_strong_lucas_prp(n)[source]
          +sympy.ntheory.primetest.is_extra_strong_lucas_prp(n)[source]

          Extra Strong Lucas compositeness test. Returns False if n is definitely composite, and True if n is an “extra strong” Lucas probable prime.

          @@ -3573,7 +3573,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.proth_test(n)[source]
          +sympy.ntheory.primetest.proth_test(n)[source]

          Test if the Proth number \(n = k2^m + 1\) is prime. where k is a positive odd number and \(2^m > k\).

          Parameters:
          @@ -3611,7 +3611,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.is_mersenne_prime(n)[source]
          +sympy.ntheory.primetest.is_mersenne_prime(n)[source]

          Returns True if n is a Mersenne prime, else False.

          A Mersenne prime is a prime number having the form \(2^i - 1\).

          Examples

          @@ -3633,7 +3633,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.isprime(n)[source]
          +sympy.ntheory.primetest.isprime(n)[source]

          Test if n is a prime number (True) or not (False). For n < 2^64 the answer is definitive; larger n values have a small probability of actually being pseudoprimes.

          @@ -3713,7 +3713,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.primetest.is_gaussian_prime(num)[source]
          +sympy.ntheory.primetest.is_gaussian_prime(num)[source]

          Test if num is a Gaussian prime number.

          References

          @@ -3726,7 +3726,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.n_order(a, n)[source]
          +sympy.ntheory.residue_ntheory.n_order(a, n)[source]

          Returns the order of a modulo n.

          Parameters:
          @@ -3766,7 +3766,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.is_primitive_root(a, p)[source]
          +sympy.ntheory.residue_ntheory.is_primitive_root(a, p)[source]

          Returns True if a is a primitive root of p.

          Parameters:
          @@ -3818,7 +3818,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.primitive_root(p, smallest=True)[source]
          +sympy.ntheory.residue_ntheory.primitive_root(p, smallest=True)[source]

          Returns a primitive root of p or None.

          Parameters:
          @@ -3885,7 +3885,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.sqrt_mod(a, p, all_roots=False)[source]
          +sympy.ntheory.residue_ntheory.sqrt_mod(a, p, all_roots=False)[source]

          Find a root of x**2 = a mod p.

          Parameters:
          @@ -3912,7 +3912,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.sqrt_mod_iter(a, p, domain=<class 'int'>)[source]
          +sympy.ntheory.residue_ntheory.sqrt_mod_iter(a, p, domain=<class 'int'>)[source]

          Iterate over solutions to x**2 = a mod p.

          Parameters:
          @@ -3938,7 +3938,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.quadratic_residues(p) list[int][source]
          +sympy.ntheory.residue_ntheory.quadratic_residues(p) list[int][source]

          Returns the list of quadratic residues.

          Examples

          >>> from sympy.ntheory.residue_ntheory import quadratic_residues
          @@ -3950,7 +3950,7 @@ 

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.nthroot_mod(a, n, p, all_roots=False)[source]
          +sympy.ntheory.residue_ntheory.nthroot_mod(a, n, p, all_roots=False)[source]

          Find the solutions to x**n = a mod p.

          Parameters:
          @@ -4025,7 +4025,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.is_nthpow_residue(a, n, m)[source]
          +sympy.ntheory.residue_ntheory.is_nthpow_residue(a, n, m)[source]

          Returns True if x**n == a (mod m) has solutions.

          References

          @@ -4040,7 +4040,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.is_quad_residue(a, p)[source]
          +sympy.ntheory.residue_ntheory.is_quad_residue(a, p)[source]

          Returns True if a (mod p) is in the set of squares mod p, i.e a % p in set([i**2 % p for i in range(p)]).

          @@ -4088,7 +4088,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.legendre_symbol(a, p)[source]
          +sympy.ntheory.residue_ntheory.legendre_symbol(a, p)[source]

          Returns the Legendre symbol \((a / p)\).

          Deprecated since version 1.13: The legendre_symbol function is deprecated. Use sympy.functions.combinatorial.numbers.legendre_symbol @@ -4127,7 +4127,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.jacobi_symbol(m, n)[source]
          +sympy.ntheory.residue_ntheory.jacobi_symbol(m, n)[source]

          Returns the Jacobi symbol \((m / n)\).

          Deprecated since version 1.13: The jacobi_symbol function is deprecated. Use sympy.functions.combinatorial.numbers.jacobi_symbol @@ -4187,7 +4187,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.mobius(n)[source]
          +sympy.ntheory.residue_ntheory.mobius(n)[source]

          Mobius function maps natural number to {-1, 0, 1}

          Deprecated since version 1.13: The mobius function is deprecated. Use sympy.functions.combinatorial.numbers.mobius @@ -4249,7 +4249,7 @@

          Ntheory Functions Referenceprime_order=None,

          -)[source] +)[source]

          Compute the discrete logarithm of a to the base b modulo n.

          This is a recursive function to reduce the discrete logarithm problem in cyclic groups of composite order to the problem in cyclic groups of prime @@ -4287,7 +4287,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.quadratic_congruence(a, b, c, n)[source]
          +sympy.ntheory.residue_ntheory.quadratic_congruence(a, b, c, n)[source]

          Find the solutions to \(a x^2 + b x + c \equiv 0 \pmod{n}\).

          Parameters:
          @@ -4325,7 +4325,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.polynomial_congruence(expr, m)[source]
          +sympy.ntheory.residue_ntheory.polynomial_congruence(expr, m)[source]

          Find the solutions to a polynomial congruence equation modulo m.

          Parameters:
          @@ -4352,7 +4352,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.residue_ntheory.binomial_mod(n, m, k)[source]
          +sympy.ntheory.residue_ntheory.binomial_mod(n, m, k)[source]

          Compute binomial(n, m) % k.

          Parameters:
          @@ -4387,7 +4387,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.continued_fraction.continued_fraction(a) list[source]
          +sympy.ntheory.continued_fraction.continued_fraction(a) list[source]

          Return the continued fraction representation of a Rational or quadratic irrational.

          Examples

          @@ -4405,7 +4405,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.continued_fraction.continued_fraction_convergents(cf)[source]
          +sympy.ntheory.continued_fraction.continued_fraction_convergents(cf)[source]

          Return an iterator over the convergents of a continued fraction (cf).

          The parameter should be in either of the following to forms: - A list of partial quotients, possibly with the last element being a list @@ -4462,7 +4462,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.continued_fraction.continued_fraction_iterator(x)[source]
          +sympy.ntheory.continued_fraction.continued_fraction_iterator(x)[source]

          Return continued fraction expansion of x as iterator.

          Examples

          >>> from sympy import Rational, pi
          @@ -4509,7 +4509,7 @@ 

          Ntheory Functions References=1,

          -) list[source] +) list[source]

          Find the periodic continued fraction expansion of a quadratic irrational.

          Compute the continued fraction expansion of a rational or a quadratic irrational number, i.e. \(\frac{p + s\sqrt{d}}{q}\), where @@ -4576,7 +4576,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.continued_fraction.continued_fraction_reduce(cf)[source]
          +sympy.ntheory.continued_fraction.continued_fraction_reduce(cf)[source]

          Reduce a continued fraction to a rational or quadratic irrational.

          Compute the rational or quadratic irrational number from its terminating or periodic continued fraction expansion. The @@ -4616,7 +4616,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.digits.count_digits(n, b=10)[source]
          +sympy.ntheory.digits.count_digits(n, b=10)[source]

          Return a dictionary whose keys are the digits of n in the given base, b, with keys indicating the digits appearing in the number and values indicating how many times that digit appeared.

          @@ -4657,7 +4657,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.digits.digits(n, b=10, digits=None)[source]
          +sympy.ntheory.digits.digits(n, b=10, digits=None)[source]

          Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative).

          @@ -4707,7 +4707,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.digits.is_palindromic(n, b=10)[source]
          +sympy.ntheory.digits.is_palindromic(n, b=10)[source]

          return True if n is the same when read from left to right or right to left in the given base, b.

          Examples

          @@ -4740,7 +4740,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.egyptian_fraction.egyptian_fraction(r, algorithm='Greedy')[source]
          +sympy.ntheory.egyptian_fraction.egyptian_fraction(r, algorithm='Greedy')[source]

          Return the list of denominators of an Egyptian fraction expansion [R713] of the said rational \(r\).

          @@ -4847,7 +4847,7 @@

          Ntheory Functions Reference
          -sympy.ntheory.bbp_pi.pi_hex_digits(n, prec=14)[source]
          +sympy.ntheory.bbp_pi.pi_hex_digits(n, prec=14)[source]

          Returns a string containing prec (default 14) digits starting at the nth digit of pi in hex. Counting of digits starts at 0 and the decimal is not counted, so for n = 0 the @@ -4921,7 +4921,7 @@

          Ntheory Functions Referenceseed=1234,

          -)[source] +)[source]

          Performs factorization using Lenstra’s Elliptic curve method.

          This function repeatedly calls _ecm_one_factor to compute the factors of n. First all the small factors are taken out using trial division. @@ -4972,7 +4972,7 @@

          Examples with two 25 digit factors. \(qs\) is able to factorize this in around 248s.

          -sympy.ntheory.qs.qs(N, prime_bound, M, ERROR_TERM=25, seed=1234)[source]
          +sympy.ntheory.qs.qs(N, prime_bound, M, ERROR_TERM=25, seed=1234)[source]

          Performs factorization using Self-Initializing Quadratic Sieve. In SIQS, let N be a number to be factored, and this N should not be a perfect power. If we find two integers such that X**2 = Y**2 modN and diff --git a/dev/modules/parsing.html b/dev/modules/parsing.html index ff976ea2a21..276113a6271 100644 --- a/dev/modules/parsing.html +++ b/dev/modules/parsing.html @@ -804,7 +804,7 @@

          Documentation Version

          Parsing Functions Reference

          -sympy.parsing.sympy_parser.parse_expr(s: str, local_dict: ~typing.Dict[str, ~typing.Any] | None = None, transformations: ~typing.Tuple[~typing.Callable[[~typing.List[~typing.Tuple[int, str]], ~typing.Dict[str, ~typing.Any], ~typing.Dict[str, ~typing.Any]], ~typing.List[~typing.Tuple[int, str]]], ...] | str = (<function lambda_notation>, <function auto_symbol>, <function repeated_decimals>, <function auto_number>, <function factorial_notation>), global_dict: ~typing.Dict[str, ~typing.Any] | None = None, evaluate=True)[source]
          +sympy.parsing.sympy_parser.parse_expr(s: str, local_dict: ~typing.Dict[str, ~typing.Any] | None = None, transformations: ~typing.Tuple[~typing.Callable[[~typing.List[~typing.Tuple[int, str]], ~typing.Dict[str, ~typing.Any], ~typing.Dict[str, ~typing.Any]], ~typing.List[~typing.Tuple[int, str]]], ...] | str = (<function lambda_notation>, <function auto_symbol>, <function repeated_decimals>, <function auto_number>, <function factorial_notation>), global_dict: ~typing.Dict[str, ~typing.Any] | None = None, evaluate=True)[source]

          Converts the string s to a SymPy expression, in local_dict.

          Parameters:
          @@ -944,7 +944,7 @@

          Parsing Functions Referencetransformations: Tuple[Callable[[List[Tuple[int, str]], Dict[str, Any], Dict[str, Any]], List[Tuple[int, str]]], ...],

          -) str[source] +) str[source]

          Converts the string s to Python code, in local_dict

          Generally, parse_expr should be used.

          @@ -959,19 +959,19 @@

          Parsing Functions Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Evaluate Python code generated by stringify_expr.

          Generally, parse_expr should be used.

          -sympy.parsing.maxima.parse_maxima(str, globals=None, name_dict={})[source]
          +sympy.parsing.maxima.parse_maxima(str, globals=None, name_dict={})[source]
          -sympy.parsing.mathematica.parse_mathematica(s)[source]
          +sympy.parsing.mathematica.parse_mathematica(s)[source]

          Translate a string containing a Wolfram Mathematica expression to a SymPy expression.

          If the translator is unable to find a suitable SymPy expression, the @@ -1044,7 +1044,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Splits symbol names for implicit multiplication.

          Intended to let expressions like xyz be parsed as x*y*z. Does not split Greek character names, so theta will not become @@ -1060,7 +1060,7 @@

          Parsing Transformations Referencepredicate: Callable[[str], bool],

          -)[source] +)[source]

          Creates a transformation that splits symbol names.

          predicate should return True if the symbol name is to be split.

          For instance, to retain the default behavior but avoid splitting certain @@ -1091,7 +1091,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -) List[Tuple[int, str]][source] +) List[Tuple[int, str]][source]

          Makes the multiplication operator optional in most cases.

          Use this before implicit_application(), otherwise expressions like sin 2x will be parsed as x * sin(2) rather than sin(2*x).

          @@ -1115,7 +1115,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -) List[Tuple[int, str]][source] +) List[Tuple[int, str]][source]

          Makes parentheses optional in some cases for function calls.

          Use this after implicit_multiplication(), otherwise expressions like sin 2x will be parsed as x * sin(2) rather than @@ -1140,7 +1140,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Allows functions to be exponentiated, e.g. cos**2(x).

          Examples

          >>> from sympy.parsing.sympy_parser import (parse_expr,
          @@ -1162,7 +1162,7 @@ 

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -) List[Tuple[int, str]][source] +) List[Tuple[int, str]][source]

          Allows a slightly relaxed syntax.

          • Parentheses for single-argument method calls are optional.

          • @@ -1192,7 +1192,7 @@

            Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Converts floats into Rational. Run AFTER auto_number.

          @@ -1206,7 +1206,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Treats XOR, ^, as exponentiation, **.

          @@ -1223,7 +1223,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Substitutes “lambda” with its SymPy equivalent Lambda(). However, the conversion does not take place if only “lambda” is passed because that is a syntax error.

          @@ -1239,7 +1239,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Inserts calls to Symbol/Function for undefined variables.

          @@ -1253,7 +1253,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Allows 0.2[1] notation to represent the repeated decimal 0.2111… (19/90)

          Run this before auto_number.

          @@ -1268,7 +1268,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Converts numeric literals to use SymPy equivalents.

          Complex numbers use I, integer literals use Integer, and float literals use Float.

          @@ -1284,7 +1284,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

          -)[source] +)[source]

          Allows standard notation for factorial.

          @@ -1300,7 +1300,7 @@

          Experimental \(\mathrm{\LaTeX}\)<

          \(\mathrm{\LaTeX}\) Parsing Functions Reference

          -sympy.parsing.latex.parse_latex(s, strict=False, backend='antlr')[source]
          +sympy.parsing.latex.parse_latex(s, strict=False, backend='antlr')[source]

          Converts the input LaTeX string s to a SymPy Expr.

          Parameters:
          @@ -1474,7 +1474,7 @@

          Lark \(\mathrm{\LaTeX}\) P

          Lark \(\mathrm{\LaTeX}\) Parser Functions

          -sympy.parsing.latex.parse_latex_lark(s: str)[source]
          +sympy.parsing.latex.parse_latex_lark(s: str)[source]

          Experimental LaTeX parser using Lark.

          This function is still under development and its API may change with the next releases of SymPy.

          @@ -1494,7 +1494,7 @@

          Lark \(\mathrm{\LaTeX}\) P
          transformer=None,

          -)[source] +)[source]

          Class for converting input \(\mathrm{\LaTeX}\) strings into SymPy Expressions. It holds all the necessary internal data for doing so, and exposes hooks for customizing its behavior.

          @@ -1527,7 +1527,7 @@

          Lark \(\mathrm{\LaTeX}\) P
          -class sympy.parsing.latex.lark.TransformToSymPyExpr[source]
          +class sympy.parsing.latex.lark.TransformToSymPyExpr[source]

          Returns a SymPy expression that is generated by traversing the lark.Tree passed to the .transform() function.

          @@ -1554,7 +1554,7 @@

          Lark \(\mathrm{\LaTeX}\) P

          \(\mathrm{\LaTeX}\) Parsing Exceptions Reference

          -class sympy.parsing.latex.LaTeXParsingError[source]
          +class sympy.parsing.latex.LaTeXParsingError[source]
          @@ -1562,7 +1562,7 @@

          \(\mathrm{\LaTeX}\) Parsin

          SymPy Expression Reference

          -class sympy.parsing.sym_expr.SymPyExpression(source_code=None, mode=None)[source]
          +class sympy.parsing.sym_expr.SymPyExpression(source_code=None, mode=None)[source]

          Class to store and handle SymPy expressions

          This class will hold SymPy Expressions and handle the API for the conversion to and from different languages.

          @@ -1633,7 +1633,7 @@

          \(\mathrm{\LaTeX}\) Parsin

          -convert_to_c()[source]
          +convert_to_c()[source]

          Returns a list with the c source code for the SymPy expressions

          Examples

          >>> from sympy.parsing.sym_expr import SymPyExpression
          @@ -1655,7 +1655,7 @@ 

          \(\mathrm{\LaTeX}\) Parsin
          -convert_to_expr(src_code, mode)[source]
          +convert_to_expr(src_code, mode)[source]

          Converts the given source code to SymPy Expressions

          Examples

          >>> from sympy.parsing.sym_expr import SymPyExpression
          @@ -1694,7 +1694,7 @@ 

          \(\mathrm{\LaTeX}\) Parsin
          -convert_to_fortran()[source]
          +convert_to_fortran()[source]

          Returns a list with the fortran source code for the SymPy expressions

          Examples

          >>> from sympy.parsing.sym_expr import SymPyExpression
          @@ -1715,7 +1715,7 @@ 

          \(\mathrm{\LaTeX}\) Parsin
          -convert_to_python()[source]
          +convert_to_python()[source]

          Returns a list with Python code for the SymPy expressions

          Examples

          >>> from sympy.parsing.sym_expr import SymPyExpression
          @@ -1736,7 +1736,7 @@ 

          \(\mathrm{\LaTeX}\) Parsin
          -return_expr()[source]
          +return_expr()[source]

          Returns the expression list

          Examples

          >>> from sympy.parsing.sym_expr import SymPyExpression
          diff --git a/dev/modules/physics/biomechanics/api/activation.html b/dev/modules/physics/biomechanics/api/activation.html
          index 8886734a6a9..94ce7ee201b 100644
          --- a/dev/modules/physics/biomechanics/api/activation.html
          +++ b/dev/modules/physics/biomechanics/api/activation.html
          @@ -811,7 +811,7 @@ 
          Documentation Version
          module.

          -class sympy.physics.biomechanics.activation.ActivationBase(name)[source]
          +class sympy.physics.biomechanics.activation.ActivationBase(name)[source]

          Abstract base class for all activation dynamics classes to inherit from.

          Notes

          Instances of this class cannot be directly instantiated by users. However, @@ -925,7 +925,7 @@

          Documentation Version
          -abstract rhs()[source]
          +abstract rhs()[source]

          Explanation

          The solution to the linear system of ordinary differential equations governing the activation dynamics:

          @@ -943,7 +943,7 @@
          Documentation Version
          -abstract classmethod with_defaults(name)[source]
          +abstract classmethod with_defaults(name)[source]

          Alternate constructor that provides recommended defaults for constants.

          @@ -970,7 +970,7 @@
          Documentation Version
          smoothing_rate=None,
          -)[source] +)[source]

          First-order activation dynamics based on De Groote et al., 2016 [R720].

          Explanation

          Gives the first-order activation dynamics equation for the rate of change @@ -1103,7 +1103,7 @@

          Documentation Version
          -rhs()[source]
          +rhs()[source]

          Ordered column matrix of equations for the solution of M x' = F.

          Explanation

          The solution to the linear system of ordinary differential equations @@ -1154,7 +1154,7 @@

          Documentation Version
          name,
          -)[source] +)[source]

          Alternate constructor that will use the published constants.

          Explanation

          Returns an instance of FirstOrderActivationDeGroote2016 using the @@ -1178,7 +1178,7 @@

          Documentation Version
          -class sympy.physics.biomechanics.activation.ZerothOrderActivation(name)[source]
          +class sympy.physics.biomechanics.activation.ZerothOrderActivation(name)[source]

          Simple zeroth-order activation dynamics mapping excitation to activation.

          Explanation

          @@ -1282,7 +1282,7 @@
          Documentation Version
          -rhs()[source]
          +rhs()[source]

          Ordered column matrix of equations for the solution of M x' = F.

          Explanation

          The solution to the linear system of ordinary differential equations @@ -1307,7 +1307,7 @@

          Documentation Version
          -classmethod with_defaults(name)[source]
          +classmethod with_defaults(name)[source]

          Alternate constructor that provides recommended defaults for constants.

          Explanation

          diff --git a/dev/modules/physics/biomechanics/api/curve.html b/dev/modules/physics/biomechanics/api/curve.html index acc0c8551d0..c6a3fea0e03 100644 --- a/dev/modules/physics/biomechanics/api/curve.html +++ b/dev/modules/physics/biomechanics/api/curve.html @@ -815,13 +815,13 @@
          Documentation Version
          fiber_force_velocity_inverse: CharacteristicCurveFunction,
          -)[source] +)[source]

          Simple data container to group together related characteristic curves.

          -class sympy.physics.biomechanics.curve.CharacteristicCurveFunction[source]
          +class sympy.physics.biomechanics.curve.CharacteristicCurveFunction[source]

          Base class for all musculotendon characteristic curve functions.

          @@ -845,7 +845,7 @@
          Documentation Version
          c11,
          -)[source] +)[source]

          Active muscle fiber force-length curve based on De Groote et al., 2016 [R721].

          Explanation

          @@ -948,7 +948,7 @@
          Documentation Version
          **hints,
          -)[source] +)[source]

          Evaluate the expression defining the function.

          Parameters:
          @@ -993,7 +993,7 @@
          Documentation Version
          c11,
          -)[source] +)[source]

          Evaluation of basic inputs.

          Parameters:
          @@ -1073,7 +1073,7 @@
          Documentation Version
          argindex=1,
          -)[source] +)[source]

          Derivative of the function with respect to a single argument.

          Parameters:
          @@ -1095,7 +1095,7 @@
          Documentation Version
          l_M_tilde,
          -)[source] +)[source]

          Recommended constructor that will use the published constants.

          Parameters:
          @@ -1137,7 +1137,7 @@
          Documentation Version
          c1,
          -)[source] +)[source]

          Passive muscle fiber force-length curve based on De Groote et al., 2016 [R722].

          Explanation

          @@ -1220,7 +1220,7 @@
          Documentation Version
          **hints,
          -)[source] +)[source]

          Evaluate the expression defining the function.

          Parameters:
          @@ -1255,7 +1255,7 @@
          Documentation Version
          c1,
          -)[source] +)[source]

          Evaluation of basic inputs.

          Parameters:
          @@ -1285,7 +1285,7 @@
          Documentation Version
          argindex=1,
          -)[source] +)[source]

          Derivative of the function with respect to a single argument.

          Parameters:
          @@ -1307,7 +1307,7 @@
          Documentation Version
          argindex=1,
          -)[source] +)[source]

          Inverse function.

          Parameters:
          @@ -1327,7 +1327,7 @@
          Documentation Version
          l_M_tilde,
          -)[source] +)[source]

          Recommended constructor that will use the published constants.

          Parameters:
          @@ -1358,7 +1358,7 @@
          Documentation Version
          c1,
          -)[source] +)[source]

          Inverse passive muscle fiber force-length curve based on De Groote et al., 2016 [R723].

          Explanation

          @@ -1435,7 +1435,7 @@
          Documentation Version
          **hints,

          -)[source] +)[source]

          Evaluate the expression defining the function.

          Parameters:
          @@ -1470,7 +1470,7 @@
          Documentation Version
          c1,
          -)[source] +)[source]

          Evaluation of basic inputs.

          Parameters:
          @@ -1500,7 +1500,7 @@
          Documentation Version
          argindex=1,
          -)[source] +)[source]

          Derivative of the function with respect to a single argument.

          Parameters:
          @@ -1522,7 +1522,7 @@
          Documentation Version
          argindex=1,
          -)[source] +)[source]

          Inverse function.

          Parameters:
          @@ -1542,7 +1542,7 @@
          Documentation Version
          fl_M_pas,
          -)[source] +)[source]

          Recommended constructor that will use the published constants.

          Parameters:
          @@ -1576,7 +1576,7 @@
          Documentation Version
          c3,
          -)[source] +)[source]

          Muscle fiber force-velocity curve based on De Groote et al., 2016 [R724].

          Explanation

          Gives the normalized muscle fiber force produced as a function of @@ -1662,7 +1662,7 @@

          Documentation Version
          **hints,

          -)[source] +)[source]

          Evaluate the expression defining the function.

          Parameters:
          @@ -1699,7 +1699,7 @@
          Documentation Version
          c3,
          -)[source] +)[source]

          Evaluation of basic inputs.

          Parameters:
          @@ -1733,7 +1733,7 @@
          Documentation Version
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Derivative of the function with respect to a single argument.

          Parameters:
          @@ -1749,7 +1749,7 @@
          Documentation Version
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Inverse function.

          Parameters:
          @@ -1769,7 +1769,7 @@
          Documentation Version
          v_M_tilde,
          -)[source] +)[source]

          Recommended constructor that will use the published constants.

          Parameters:
          @@ -1803,7 +1803,7 @@
          Documentation Version
          c3,
          -)[source] +)[source]

          Inverse muscle fiber force-velocity curve based on De Groote et al., 2016 [R725].

          Explanation

          @@ -1879,7 +1879,7 @@
          Documentation Version
          **hints,
          -)[source] +)[source]

          Evaluate the expression defining the function.

          Parameters:
          @@ -1916,7 +1916,7 @@
          Documentation Version
          c3,
          -)[source] +)[source]

          Evaluation of basic inputs.

          Parameters:
          @@ -1957,7 +1957,7 @@
          Documentation Version
          argindex=1,
          -)[source] +)[source]

          Derivative of the function with respect to a single argument.

          Parameters:
          @@ -1979,7 +1979,7 @@
          Documentation Version
          argindex=1,
          -)[source] +)[source]

          Inverse function.

          Parameters:
          @@ -1999,7 +1999,7 @@
          Documentation Version
          fv_M,
          -)[source] +)[source]

          Recommended constructor that will use the published constants.

          Parameters:
          @@ -2034,7 +2034,7 @@
          Documentation Version
          c3,
          -)[source] +)[source]

          Tendon force-length curve based on De Groote et al., 2016 [R726].

          Explanation

          Gives the normalized tendon force produced as a function of normalized @@ -2121,7 +2121,7 @@

          Documentation Version
          **hints,
          -)[source] +)[source]

          Evaluate the expression defining the function.

          Parameters:
          @@ -2158,7 +2158,7 @@
          Documentation Version
          c3,
          -)[source] +)[source]

          Evaluation of basic inputs.

          Parameters:
          @@ -2192,7 +2192,7 @@
          Documentation Version
          -fdiff(argindex=1)[source]
          +fdiff(argindex=1)[source]

          Derivative of the function with respect to a single argument.

          Parameters:
          @@ -2208,7 +2208,7 @@
          Documentation Version
          -inverse(argindex=1)[source]
          +inverse(argindex=1)[source]

          Inverse function.

          Parameters:
          @@ -2228,7 +2228,7 @@
          Documentation Version
          l_T_tilde,
          -)[source] +)[source]

          Recommended constructor that will use the published constants.

          Parameters:
          @@ -2262,7 +2262,7 @@
          Documentation Version
          c3,
          -)[source] +)[source]

          Inverse tendon force-length curve based on De Groote et al., 2016 [R727].

          Explanation

          Gives the normalized tendon length that produces a specific normalized @@ -2338,7 +2338,7 @@

          Documentation Version
          **hints,
          -)[source] +)[source]

          Evaluate the expression defining the function.

          Parameters:
          @@ -2375,7 +2375,7 @@
          Documentation Version
          c3,
          -)[source] +)[source]

          Evaluation of basic inputs.

          Parameters:
          @@ -2415,7 +2415,7 @@
          Documentation Version
          argindex=1,
          -)[source] +)[source]

          Derivative of the function with respect to a single argument.

          Parameters:
          @@ -2437,7 +2437,7 @@
          Documentation Version
          argindex=1,
          -)[source] +)[source]

          Inverse function.

          Parameters:
          @@ -2457,7 +2457,7 @@
          Documentation Version
          fl_T,
          -)[source] +)[source]

          Recommended constructor that will use the published constants.

          Parameters:
          diff --git a/dev/modules/physics/biomechanics/api/musculotendon.html b/dev/modules/physics/biomechanics/api/musculotendon.html index b9aa167ee94..89f2627af35 100644 --- a/dev/modules/physics/biomechanics/api/musculotendon.html +++ b/dev/modules/physics/biomechanics/api/musculotendon.html @@ -827,7 +827,7 @@
          Documentation Version
          with_defaults=False,
          -)[source] +)[source]

          Abstract base class for all musculotendon classes to inherit from.

          Parameters:
          @@ -1032,7 +1032,7 @@
          Documentation Version
          -abstract curves()[source]
          +abstract curves()[source]

          Return a CharacteristicCurveCollection of the curves related to the specific model.

          @@ -1201,7 +1201,7 @@
          Documentation Version
          -rhs()[source]
          +rhs()[source]

          Ordered column matrix of equations for the solution of M x' = F.

          Explanation

          The solution to the linear system of ordinary differential equations @@ -1265,7 +1265,7 @@

          Documentation Version
          fiber_damping_coefficient=0.100000000000000,
          -)[source] +)[source]

          Recommended constructor that will use the published constants.

          Parameters:
          @@ -1396,7 +1396,7 @@
          Documentation Version
          with_defaults=False,
          -)[source] +)[source]

          Musculotendon model using the curves of De Groote et al., 2016 [R728].

          Parameters:
          @@ -1784,7 +1784,7 @@
          Documentation Version
          boundary=None,
          -)[source] +)[source]

          Enumeration of types of musculotendon dynamics formulations.

          Explanation

          An (integer) enumeration is used as it allows for clearer selection of the diff --git a/dev/modules/physics/continuum_mechanics/beam.html b/dev/modules/physics/continuum_mechanics/beam.html index 2a4f3ec7636..97d3ed9866f 100644 --- a/dev/modules/physics/continuum_mechanics/beam.html +++ b/dev/modules/physics/continuum_mechanics/beam.html @@ -816,7 +816,7 @@

          Documentation Version
          ild_variable=a,
          -)[source] +)[source]

          A Beam is a structural element that is capable of withstanding load primarily by resisting against bending. Beams are characterized by their cross sectional profile(Second moment of area), their length @@ -933,7 +933,7 @@

          Documentation Version
          -apply_load(value, start, order, end=None)[source]
          +apply_load(value, start, order, end=None)[source]

          This method adds up the loads given to a particular beam object.

          Parameters:
          @@ -1001,7 +1001,7 @@
          Documentation Version
          -apply_rotation_hinge(loc)[source]
          +apply_rotation_hinge(loc)[source]

          This method applies a rotation hinge at a single location on the beam.

          Parameters:
          @@ -1055,7 +1055,7 @@
          Documentation Version
          -apply_sliding_hinge(loc)[source]
          +apply_sliding_hinge(loc)[source]

          This method applies a sliding hinge at a single location on the beam.

          Parameters:
          @@ -1102,7 +1102,7 @@
          Documentation Version
          -apply_support(loc, type='fixed')[source]
          +apply_support(loc, type='fixed')[source]

          This method applies support to a particular beam object and returns the symbol of the unknown reaction load(s).

          @@ -1165,7 +1165,7 @@
          Documentation Version
          -bending_moment()[source]
          +bending_moment()[source]

          Returns a Singularity Function expression which represents the bending moment curve of the Beam object.

          Examples

          @@ -1228,7 +1228,7 @@
          Documentation Version
          -deflection()[source]
          +deflection()[source]

          Returns a Singularity Function expression which represents the elastic curve or deflection of the Beam object.

          Examples

          @@ -1268,7 +1268,7 @@
          Documentation Version
          -draw(pictorial=True)[source]
          +draw(pictorial=True)[source]

          Returns a plot object representing the beam diagram of the beam. In particular, the diagram might include:

            @@ -1383,7 +1383,7 @@
            Documentation Version
            -join(beam, via='fixed')[source]
            +join(beam, via='fixed')[source]

            This method joins two beams to make a new composite beam system. Passed Beam class instance is attached to the right end of calling object. This method can be used to form beams having Discontinuous @@ -1463,28 +1463,28 @@

            Documentation Version
            -max_bmoment()[source]
            +max_bmoment()[source]

            Returns maximum Shear force and its coordinate in the Beam object.

            -max_deflection()[source]
            +max_deflection()[source]

            Returns point of max deflection and its corresponding deflection value in a Beam object.

            -max_shear_force()[source]
            +max_shear_force()[source]

            Returns maximum Shear force and its coordinate in the Beam object.

            -plot_bending_moment(subs=None)[source]
            +plot_bending_moment(subs=None)[source]

            Returns a plot for Bending moment present in the Beam object.

            Parameters:
            @@ -1528,7 +1528,7 @@
            Documentation Version
            -plot_deflection(subs=None)[source]
            +plot_deflection(subs=None)[source]

            Returns a plot for deflection curve of the Beam object.

            Parameters:
            @@ -1573,7 +1573,7 @@
            Documentation Version
            -plot_ild_moment(subs=None)[source]
            +plot_ild_moment(subs=None)[source]

            Plots the Influence Line Diagram for Moment under the effect of a moving load. This function should be called after calling solve_for_ild_moment().

            @@ -1623,7 +1623,7 @@
            Documentation Version
            -plot_ild_reactions(subs=None)[source]
            +plot_ild_reactions(subs=None)[source]

            Plots the Influence Line Diagram of Reaction Forces under the effect of a moving load. This function should be called after calling solve_for_ild_reactions().

            @@ -1679,7 +1679,7 @@
            Documentation Version
            -plot_ild_shear(subs=None)[source]
            +plot_ild_shear(subs=None)[source]

            Plots the Influence Line Diagram for Shear under the effect of a moving load. This function should be called after calling solve_for_ild_shear().

            @@ -1729,7 +1729,7 @@
            Documentation Version
            -plot_loading_results(subs=None)[source]
            +plot_loading_results(subs=None)[source]

            Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object.

            @@ -1770,7 +1770,7 @@
            Documentation Version
            -plot_shear_force(subs=None)[source]
            +plot_shear_force(subs=None)[source]

            Returns a plot for Shear force present in the Beam object.

            Parameters:
            @@ -1814,7 +1814,7 @@
            Documentation Version
            -plot_shear_stress(subs=None)[source]
            +plot_shear_stress(subs=None)[source]

            Returns a plot of shear stress present in the beam object.

            Parameters:
            @@ -1859,7 +1859,7 @@
            Documentation Version
            -plot_slope(subs=None)[source]
            +plot_slope(subs=None)[source]

            Returns a plot for slope of deflection curve of the Beam object.

            Parameters:
            @@ -1903,7 +1903,7 @@
            Documentation Version
            -point_cflexure()[source]
            +point_cflexure()[source]

            Returns a Set of point(s) with zero bending moment and where bending moment curve of the beam object changes its sign from negative to positive or vice versa.

            @@ -1941,7 +1941,7 @@
            Documentation Version
            -remove_load(value, start, order, end=None)[source]
            +remove_load(value, start, order, end=None)[source]

            This method removes a particular load present on the beam object. Returns a ValueError if the load passed as an argument is not present on the beam.

            @@ -2012,7 +2012,7 @@
            Documentation Version
            -shear_force()[source]
            +shear_force()[source]

            Returns a Singularity Function expression which represents the shear force curve of the Beam object.

            Examples

            @@ -2043,14 +2043,14 @@
            Documentation Version
            -shear_stress()[source]
            +shear_stress()[source]

            Returns an expression representing the Shear Stress curve of the Beam object.

            -slope()[source]
            +slope()[source]

            Returns a Singularity Function expression which represents the slope the elastic curve of the Beam object.

            Examples

            @@ -2090,7 +2090,7 @@
            Documentation Version
            *reactions,
            -)[source] +)[source]

            Determines the Influence Line Diagram equations for moment at a specified point under the effect of a moving load.

            @@ -2138,7 +2138,7 @@
            Documentation Version
            -solve_for_ild_reactions(value, *reactions)[source]
            +solve_for_ild_reactions(value, *reactions)[source]

            Determines the Influence Line Diagram equations for reaction forces under the effect of a moving load.

            @@ -2187,7 +2187,7 @@
            Documentation Version
            *reactions,
            -)[source] +)[source]

            Determines the Influence Line Diagram equations for shear at a specified point under the effect of a moving load.

            @@ -2235,7 +2235,7 @@
            Documentation Version
            -solve_for_reaction_loads(*reactions)[source]
            +solve_for_reaction_loads(*reactions)[source]

            Solves for the reaction forces.

            Examples

            There is a beam of length 30 meters. A moment of magnitude 120 Nm is @@ -2309,7 +2309,7 @@

            Documentation Version
            variable=x,
            -)[source] +)[source]

            This class handles loads applied in any direction of a 3D space along with unequal values of Second moment along different axes.

            @@ -2363,14 +2363,14 @@
            Documentation Version
            -angular_deflection()[source]
            +angular_deflection()[source]

            Returns a function in x depicting how the angular deflection, due to moments in the x-axis on the beam, varies with x.

            -apply_load(value, start, order, dir='y')[source]
            +apply_load(value, start, order, dir='y')[source]

            This method adds up the force load to a particular beam object.

            Parameters:
            @@ -2406,7 +2406,7 @@
            Documentation Version
            dir='y',
            -)[source] +)[source]

            This method adds up the moment loads to a particular beam object.

            Parameters:
            @@ -2439,19 +2439,19 @@
            Documentation Version
            -axial_force()[source]
            +axial_force()[source]

            Returns expression of Axial shear force present inside the Beam object.

            -axial_stress()[source]
            +axial_stress()[source]

            Returns expression of Axial stress present inside the Beam object.

            -bending_moment()[source]
            +bending_moment()[source]

            Returns a list of three expressions which represents the bending moment curve of the Beam object along all three axes.

            @@ -2486,7 +2486,7 @@
            Documentation Version
            -deflection()[source]
            +deflection()[source]

            Returns a three element list representing deflection curve along all the three axes.

            @@ -2499,7 +2499,7 @@
            Documentation Version
            -max_bending_moment()[source]
            +max_bending_moment()[source]

            Returns point of max bending moment and its corresponding bending moment value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

            @@ -2529,7 +2529,7 @@
            Documentation Version
            -max_bmoment()[source]
            +max_bmoment()[source]

            Returns point of max bending moment and its corresponding bending moment value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

            @@ -2559,7 +2559,7 @@
            Documentation Version
            -max_deflection()[source]
            +max_deflection()[source]

            Returns point of max deflection and its corresponding deflection value along all directions in a Beam object as a list. solve_for_reaction_loads() and solve_slope_deflection() must be called @@ -2591,7 +2591,7 @@

            Documentation Version
            -max_shear_force()[source]
            +max_shear_force()[source]

            Returns point of max shear force and its corresponding shear value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

            @@ -2627,7 +2627,7 @@
            Documentation Version
            -plot_bending_moment(dir='all', subs=None)[source]
            +plot_bending_moment(dir='all', subs=None)[source]

            Returns a plot for bending moment along all three directions present in the Beam object.

            @@ -2680,7 +2680,7 @@
            Documentation Version
            -plot_deflection(dir='all', subs=None)[source]
            +plot_deflection(dir='all', subs=None)[source]

            Returns a plot for Deflection along all three directions present in the Beam object.

            @@ -2734,7 +2734,7 @@
            Documentation Version
            -plot_loading_results(dir='x', subs=None)[source]
            +plot_loading_results(dir='x', subs=None)[source]

            Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object along the direction specified.

            @@ -2791,7 +2791,7 @@
            Documentation Version
            -plot_shear_force(dir='all', subs=None)[source]
            +plot_shear_force(dir='all', subs=None)[source]

            Returns a plot for Shear force along all three directions present in the Beam object.

            @@ -2844,7 +2844,7 @@
            Documentation Version
            -plot_shear_stress(dir='all', subs=None)[source]
            +plot_shear_stress(dir='all', subs=None)[source]

            Returns a plot for Shear Stress along all three directions present in the Beam object.

            @@ -2897,7 +2897,7 @@
            Documentation Version
            -plot_slope(dir='all', subs=None)[source]
            +plot_slope(dir='all', subs=None)[source]

            Returns a plot for Slope along all three directions present in the Beam object.

            @@ -2951,7 +2951,7 @@
            Documentation Version
            -polar_moment()[source]
            +polar_moment()[source]

            Returns the polar moment of area of the beam about the X axis with respect to the centroid.

            Examples

            @@ -2977,7 +2977,7 @@
            Documentation Version
            -shear_force()[source]
            +shear_force()[source]

            Returns a list of three expressions which represents the shear force curve of the Beam object along all three axes.

            @@ -2990,21 +2990,21 @@
            Documentation Version
            -shear_stress()[source]
            +shear_stress()[source]

            Returns a list of three expressions which represents the shear stress curve of the Beam object along all three axes.

            -slope()[source]
            +slope()[source]

            Returns a three element list representing slope of deflection curve along all the three axes.

            -solve_for_reaction_loads(*reaction)[source]
            +solve_for_reaction_loads(*reaction)[source]

            Solves for the reaction forces.

            Examples

            There is a beam of length 30 meters. It it supported by rollers at @@ -3032,7 +3032,7 @@

            Documentation Version
            -solve_for_torsion()[source]
            +solve_for_torsion()[source]

            Solves for the angular deflection due to the torsional effects of moments being applied in the x-direction i.e. out of or into the beam.

            Here, a positive torque means the direction of the torque is positive @@ -3055,7 +3055,7 @@

            Documentation Version
            -torsional_moment()[source]
            +torsional_moment()[source]

            Returns expression of Torsional moment present inside the Beam object.

            diff --git a/dev/modules/physics/continuum_mechanics/cable.html b/dev/modules/physics/continuum_mechanics/cable.html index 0ed34e66086..b982a4e0c91 100644 --- a/dev/modules/physics/continuum_mechanics/cable.html +++ b/dev/modules/physics/continuum_mechanics/cable.html @@ -806,7 +806,7 @@

            Cable (Docstrings)
            -class sympy.physics.continuum_mechanics.cable.Cable(support_1, support_2)[source]
            +class sympy.physics.continuum_mechanics.cable.Cable(support_1, support_2)[source]

            Cables are structures in engineering that support the applied transverse loads through the tensile resistance developed in its members.

            @@ -831,7 +831,7 @@

            Cable (Docstrings)
            -apply_length(length)[source]
            +apply_length(length)[source]

            This method specifies the length of the cable

            Parameters:
            @@ -853,7 +853,7 @@

            Cable (Docstrings)
            -apply_load(order, load)[source]
            +apply_load(order, load)[source]

            This method adds load to the cable.

            Parameters:
            @@ -921,7 +921,7 @@

            Cable (Docstrings)
            -change_support(label, new_support)[source]
            +change_support(label, new_support)[source]

            This method changes the mentioned support with a new support.

            Parameters:
            @@ -956,7 +956,7 @@

            Cable (Docstrings)
            -draw()[source]
            +draw()[source]

            This method is used to obtain a plot for the specified cable with its supports, shape and loads.

            Examples

            @@ -1018,7 +1018,7 @@

            Cable (Docstrings)
            -plot_tension()[source]
            +plot_tension()[source]

            Returns the diagram/plot of the tension generated in the cable at various points.

            Examples

            For point loads,

            @@ -1057,7 +1057,7 @@

            Cable (Docstrings)
            -remove_loads(*args)[source]
            +remove_loads(*args)[source]

            This methods removes the specified loads.

            Parameters:
            @@ -1089,7 +1089,7 @@

            Cable (Docstrings)
            -solve(*args)[source]
            +solve(*args)[source]

            This method solves for the reaction forces at the supports, the tension developed in the cable, and updates the length of the cable.

            @@ -1153,7 +1153,7 @@

            Cable (Docstrings)
            -tension_at(x)[source]
            +tension_at(x)[source]

            Returns the tension at a given value of x developed due to distributed load.

            diff --git a/dev/modules/physics/continuum_mechanics/truss.html b/dev/modules/physics/continuum_mechanics/truss.html index a65f077314a..a2df258d090 100644 --- a/dev/modules/physics/continuum_mechanics/truss.html +++ b/dev/modules/physics/continuum_mechanics/truss.html @@ -804,7 +804,7 @@
            Documentation Version
            to 2D Trusses.

            -class sympy.physics.continuum_mechanics.truss.Truss[source]
            +class sympy.physics.continuum_mechanics.truss.Truss[source]

            A Truss is an assembly of members such as beams, connected by nodes, that create a rigid structure. In engineering, a truss is a structure that @@ -828,7 +828,7 @@

            Documentation Version

          -add_member(*args)[source]
          +add_member(*args)[source]

          This method adds a member between any two nodes in the given truss.

          Parameters:
          @@ -860,7 +860,7 @@
          Documentation Version
          -add_node(*args)[source]
          +add_node(*args)[source]

          This method adds a node to the truss along with its name/label and its location. Multiple nodes can be added at the same time.

          @@ -895,7 +895,7 @@
          Documentation Version
          -apply_load(*args)[source]
          +apply_load(*args)[source]

          This method applies external load(s) at the specified node(s).

          Parameters:
          @@ -932,7 +932,7 @@
          Documentation Version
          -apply_support(*args)[source]
          +apply_support(*args)[source]

          This method adds a pinned or roller support at specified node(s).

          Parameters:
          @@ -960,7 +960,7 @@
          Documentation Version
          -change_member_label(*args)[source]
          +change_member_label(*args)[source]

          This method changes the label(s) of the specified member(s).

          Parameters:
          @@ -997,7 +997,7 @@
          Documentation Version
          -change_node_label(*args)[source]
          +change_node_label(*args)[source]

          This method changes the label(s) of the specified node(s).

          Parameters:
          @@ -1028,7 +1028,7 @@
          Documentation Version
          -draw(subs_dict=None)[source]
          +draw(subs_dict=None)[source]

          Returns a plot object of the Truss with all its nodes, members, supports and loads.

          @@ -1124,7 +1124,7 @@
          Documentation Version
          -remove_load(*args)[source]
          +remove_load(*args)[source]

          This method removes already present external load(s) at specified node(s).

          @@ -1164,7 +1164,7 @@
          Documentation Version
          -remove_member(*args)[source]
          +remove_member(*args)[source]

          This method removes members from the given truss.

          Parameters:
          @@ -1190,7 +1190,7 @@
          Documentation Version
          -remove_node(*args)[source]
          +remove_node(*args)[source]

          This method removes a node from the truss. Multiple nodes can be removed at the same time.

          @@ -1217,7 +1217,7 @@
          Documentation Version
          -remove_support(*args)[source]
          +remove_support(*args)[source]

          This method removes support from specified node(s.)

          Parameters:
          @@ -1243,7 +1243,7 @@
          Documentation Version
          -solve()[source]
          +solve()[source]

          This method solves for all reaction forces of all supports and all internal forces of all the members in the truss, provided the Truss is solvable.

          A Truss is solvable if the following condition is met,

          diff --git a/dev/modules/physics/control/control_plots.html b/dev/modules/physics/control/control_plots.html index f8e5cdf5cb1..6283fe68c64 100644 --- a/dev/modules/physics/control/control_plots.html +++ b/dev/modules/physics/control/control_plots.html @@ -821,7 +821,7 @@

          Pole-Zero Plot**kwargs,

          -)[source] +)[source]

          Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.

          A Pole-Zero plot is a graphical representation of a system’s poles and zeros. It is plotted on a complex plane, with circular markers representing @@ -897,7 +897,7 @@

          Pole-Zero Plot
          -control_plots.pole_zero_numerical_data()[source]
          +control_plots.pole_zero_numerical_data()[source]

          Returns the numerical data of poles and zeros of the system. It is internally used by pole_zero_plot to get the data for plotting poles and zeros. Users can use this data to further @@ -965,7 +965,7 @@

          Bode Plot**kwargs,

          -)[source] +)[source]

          Returns the Bode phase and magnitude plots of a continuous-time system.

          Parameters:
          @@ -1043,7 +1043,7 @@

          Bode Plot**kwargs,

          -)[source] +)[source]

          Returns the Bode magnitude plot of a continuous-time system.

          See bode_plot for all the parameters.

          @@ -1065,7 +1065,7 @@

          Bode Plot**kwargs,

          -)[source] +)[source]

          Returns the Bode phase plot of a continuous-time system.

          See bode_plot for all the parameters.

          @@ -1081,7 +1081,7 @@

          Bode Plot**kwargs,

          -)[source] +)[source]

          Returns the numerical data of the Bode magnitude plot of the system. It is internally used by bode_magnitude_plot to get the data for plotting Bode magnitude plot. Users can use this data to further @@ -1157,7 +1157,7 @@

          Bode Plot**kwargs,

          -)[source] +)[source]

          Returns the numerical data of the Bode phase plot of the system. It is internally used by bode_phase_plot to get the data for plotting Bode phase plot. Users can use this data to further @@ -1246,7 +1246,7 @@

          Impulse-Response Plot**kwargs,

          -)[source] +)[source]

          Returns the unit impulse response (Input is the Dirac-Delta Function) of a continuous-time system.

          @@ -1324,7 +1324,7 @@

          Impulse-Response Plot**kwargs,

          -)[source] +)[source]

          Returns the numerical values of the points in the impulse response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly @@ -1413,7 +1413,7 @@

          Step-Response Plot**kwargs,

          -)[source] +)[source]

          Returns the unit step response of a continuous-time system. It is the response of the system when the input signal is a step function.

          @@ -1491,7 +1491,7 @@

          Step-Response Plot**kwargs,

          -)[source] +)[source]

          Returns the numerical values of the points in the step response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly @@ -1581,7 +1581,7 @@

          Ramp-Response Plot**kwargs,

          -)[source] +)[source]

          Returns the ramp response of a continuous-time system.

          Ramp function is defined as the straight line passing through origin (\(f(x) = mx\)). The slope of @@ -1667,7 +1667,7 @@

          Ramp-Response Plot**kwargs,

          -)[source] +)[source]

          Returns the numerical values of the points in the ramp response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly diff --git a/dev/modules/physics/control/lti.html b/dev/modules/physics/control/lti.html index 86f76bce6b3..695d154c2ca 100644 --- a/dev/modules/physics/control/lti.html +++ b/dev/modules/physics/control/lti.html @@ -804,7 +804,7 @@

          Control API

          lti

          -class sympy.physics.control.lti.TransferFunction(num, den, var)[source]
          +class sympy.physics.control.lti.TransferFunction(num, den, var)[source]

          A class for representing LTI (Linear, time-invariant) systems that can be strictly described by ratio of polynomials in the Laplace transform complex variable. The arguments are num, den, and var, where num and den are numerator and @@ -995,7 +995,7 @@

          Control API
          -dc_gain()[source]
          +dc_gain()[source]

          Computes the gain of the response as the frequency approaches zero.

          The DC gain is infinite for systems with pure integrators.

          Examples

          @@ -1036,7 +1036,7 @@

          Control API
          -eval_frequency(other)[source]
          +eval_frequency(other)[source]

          Returns the system response at any point in the real or complex plane.

          Examples

          >>> from sympy.abc import s, p, a
          @@ -1057,7 +1057,7 @@ 

          Control API
          -expand()[source]
          +expand()[source]

          Returns the transfer function with numerator and denominator in expanded form.

          Examples

          @@ -1083,7 +1083,7 @@

          Control APIvar,

          -)[source] +)[source]

          Creates a new TransferFunction efficiently from a list of coefficients.

          Parameters:
          @@ -1133,7 +1133,7 @@

          Control APIvar=None,

          -)[source] +)[source]

          Creates a new TransferFunction efficiently from a rational expression.

          Parameters:
          @@ -1199,7 +1199,7 @@

          Control API
          -classmethod from_zpk(zeros, poles, gain, var)[source]
          +classmethod from_zpk(zeros, poles, gain, var)[source]

          Creates a new TransferFunction from given zeros, poles and gain.

          Parameters:
          @@ -1281,7 +1281,7 @@

          Control API
          -is_stable()[source]
          +is_stable()[source]

          Returns True if the transfer function is asymptotically stable; else False.

          This would not check the marginal or conditional stability of the system.

          Examples

          @@ -1342,7 +1342,7 @@

          Control API
          -poles()[source]
          +poles()[source]

          Returns the poles of a transfer function.

          Examples

          >>> from sympy.abc import s, p, a
          @@ -1362,7 +1362,7 @@ 

          Control API
          -to_expr()[source]
          +to_expr()[source]

          Converts a TransferFunction object to SymPy Expr.

          Examples

          >>> from sympy.abc import s, p, a, b
          @@ -1403,7 +1403,7 @@ 

          Control API
          -zeros()[source]
          +zeros()[source]

          Returns the zeros of a transfer function.

          Examples

          >>> from sympy.abc import s, p, a
          @@ -1425,7 +1425,7 @@ 

          Control API
          -class sympy.physics.control.lti.Series(*args, evaluate=False)[source]
          +class sympy.physics.control.lti.Series(*args, evaluate=False)[source]

          A class for representing a series configuration of SISO systems.

          Parameters:
          @@ -1518,7 +1518,7 @@

          Control API
          -doit(**hints)[source]
          +doit(**hints)[source]

          Returns the resultant transfer function or StateSpace obtained after evaluating the series interconnection.

          Examples

          @@ -1606,7 +1606,7 @@

          Control API
          -to_expr()[source]
          +to_expr()[source]

          Returns the equivalent Expr object.

          @@ -1632,7 +1632,7 @@

          Control API
          -class sympy.physics.control.lti.Parallel(*args, evaluate=False)[source]
          +class sympy.physics.control.lti.Parallel(*args, evaluate=False)[source]

          A class for representing a parallel configuration of SISO systems.

          Parameters:
          @@ -1728,7 +1728,7 @@

          Control API
          -doit(**hints)[source]
          +doit(**hints)[source]

          Returns the resultant transfer function or state space obtained by parallel connection of transfer functions or state space objects.

          Examples

          @@ -1812,7 +1812,7 @@

          Control API
          -to_expr()[source]
          +to_expr()[source]

          Returns the equivalent Expr object.

          @@ -1838,7 +1838,7 @@

          Control API
          -class sympy.physics.control.lti.Feedback(sys1, sys2=None, sign=-1)[source]
          +class sympy.physics.control.lti.Feedback(sys1, sys2=None, sign=-1)[source]

          A class for representing closed-loop feedback interconnection between two SISO input/output systems.

          The first argument, sys1, is the feedforward part of the closed-loop @@ -1932,7 +1932,7 @@

          Control API
          -doit(cancel=False, expand=False, **hints)[source]
          +doit(cancel=False, expand=False, **hints)[source]

          Returns the resultant transfer function obtained by the feedback interconnection.

          Examples

          @@ -2043,7 +2043,7 @@

          Control API
          -to_expr()[source]
          +to_expr()[source]

          Converts a Feedback object to SymPy Expr.

          Examples

          >>> from sympy.abc import s, a, b
          @@ -2087,7 +2087,7 @@ 

          Control API
          -class sympy.physics.control.lti.TransferFunctionMatrix(arg)[source]
          +class sympy.physics.control.lti.TransferFunctionMatrix(arg)[source]

          A class for representing the MIMO (multiple-input and multiple-output) generalization of the SISO (single-input and single-output) transfer function.

          It is a matrix of transfer functions (TransferFunction, SISO-Series or SISO-Parallel). @@ -2441,7 +2441,7 @@

          Control API
          -elem_poles()[source]
          +elem_poles()[source]

          Returns the poles of each element of the TransferFunctionMatrix.

          Note

          @@ -2469,7 +2469,7 @@

          Control API
          -elem_zeros()[source]
          +elem_zeros()[source]

          Returns the zeros of each element of the TransferFunctionMatrix.

          Note

          @@ -2497,7 +2497,7 @@

          Control API
          -eval_frequency(other)[source]
          +eval_frequency(other)[source]

          Evaluates system response of each transfer function in the TransferFunctionMatrix at any point in the real or complex plane.

          Examples

          >>> from sympy.abc import s
          @@ -2524,13 +2524,13 @@ 

          Control API
          -expand(**hints)[source]
          +expand(**hints)[source]

          Expands the transfer function matrix

          -classmethod from_Matrix(matrix, var)[source]
          +classmethod from_Matrix(matrix, var)[source]

          Creates a new TransferFunctionMatrix efficiently from a SymPy Matrix of Expr objects.

          Parameters:
          @@ -2629,7 +2629,7 @@

          Control API
          -transpose()[source]
          +transpose()[source]

          Returns the transpose of the TransferFunctionMatrix (switched input and output layers).

          @@ -2664,7 +2664,7 @@

          Control API
          -class sympy.physics.control.lti.MIMOSeries(*args, evaluate=False)[source]
          +class sympy.physics.control.lti.MIMOSeries(*args, evaluate=False)[source]

          A class for representing a series configuration of MIMO systems.

          Parameters:
          @@ -2788,7 +2788,7 @@

          Control API
          -doit(cancel=False, **kwargs)[source]
          +doit(cancel=False, **kwargs)[source]

          Returns the resultant obtained after evaluating the MIMO systems arranged in a series configuration. For TransferFunction systems it returns a TransferFunctionMatrix and for StateSpace systems it returns the resultant StateSpace system.

          @@ -2845,7 +2845,7 @@

          Control API
          -class sympy.physics.control.lti.MIMOParallel(*args, evaluate=False)[source]
          +class sympy.physics.control.lti.MIMOParallel(*args, evaluate=False)[source]

          A class for representing a parallel configuration of MIMO systems.

          Parameters:
          @@ -2976,7 +2976,7 @@

          Control API
          -doit(**hints)[source]
          +doit(**hints)[source]

          Returns the resultant transfer function matrix or StateSpace obtained after evaluating the MIMO systems arranged in a parallel configuration.

          Examples

          @@ -3033,7 +3033,7 @@

          Control API
          -class sympy.physics.control.lti.MIMOFeedback(sys1, sys2, sign=-1)[source]
          +class sympy.physics.control.lti.MIMOFeedback(sys1, sys2, sign=-1)[source]

          A class for representing closed-loop feedback interconnection between two MIMO input/output systems.

          @@ -3127,7 +3127,7 @@

          Control API**hints,

          -)[source] +)[source]

          Returns the resultant transfer function matrix obtained by the feedback interconnection.

          Examples

          @@ -3333,7 +3333,7 @@

          Control API
          -sympy.physics.control.lti.gbt(tf, sample_per, alpha)[source]
          +sympy.physics.control.lti.gbt(tf, sample_per, alpha)[source]

          Returns falling coefficients of H(z) from numerator and denominator.

          Explanation

          Where H(z) is the corresponding discretized transfer function, @@ -3388,7 +3388,7 @@

          Control API
          -sympy.physics.control.lti.bilinear(tf, sample_per)[source]
          +sympy.physics.control.lti.bilinear(tf, sample_per)[source]

          Returns falling coefficients of H(z) from numerator and denominator.

          Explanation

          Where H(z) is the corresponding discretized transfer function, @@ -3415,7 +3415,7 @@

          Control API
          -sympy.physics.control.lti.forward_diff(tf, sample_per)[source]
          +sympy.physics.control.lti.forward_diff(tf, sample_per)[source]

          Returns falling coefficients of H(z) from numerator and denominator.

          Explanation

          Where H(z) is the corresponding discretized transfer function, @@ -3442,7 +3442,7 @@

          Control API
          -sympy.physics.control.lti.backward_diff(tf, sample_per)[source]
          +sympy.physics.control.lti.backward_diff(tf, sample_per)[source]

          Returns falling coefficients of H(z) from numerator and denominator.

          Explanation

          Where H(z) is the corresponding discretized transfer function, diff --git a/dev/modules/physics/hep/index.html b/dev/modules/physics/hep/index.html index 40ff672300d..1eb1bb5dd3f 100644 --- a/dev/modules/physics/hep/index.html +++ b/dev/modules/physics/hep/index.html @@ -833,7 +833,7 @@

          Examples
          -sympy.physics.hep.gamma_matrices.extract_type_tens(expression, component)[source]
          +sympy.physics.hep.gamma_matrices.extract_type_tens(expression, component)[source]

          Extract from a TensExpr all tensors with \(component\).

          Returns two tensor expressions:

            @@ -844,7 +844,7 @@

            Examples
            -sympy.physics.hep.gamma_matrices.gamma_trace(t)[source]
            +sympy.physics.hep.gamma_matrices.gamma_trace(t)[source]

            trace of a single line of gamma matrices

            Examples

            >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G,         gamma_trace, LorentzIndex
            @@ -865,7 +865,7 @@ 

            Examples
            -sympy.physics.hep.gamma_matrices.kahane_simplify(expression)[source]
            +sympy.physics.hep.gamma_matrices.kahane_simplify(expression)[source]

            This function cancels contracted elements in a product of four dimensional gamma matrices, resulting in an expression equal to the given one, without the contracted gamma matrices.

            @@ -932,7 +932,7 @@

            Examples
            -sympy.physics.hep.gamma_matrices.simplify_gpgp(ex, sort=True)[source]
            +sympy.physics.hep.gamma_matrices.simplify_gpgp(ex, sort=True)[source]

            simplify products G(i)*p(-i)*G(j)*p(-j) -> p(i)*p(-i)

            Examples

            >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G,         LorentzIndex, simplify_gpgp
            diff --git a/dev/modules/physics/hydrogen.html b/dev/modules/physics/hydrogen.html
            index bb70b481f4d..ca85bd29215 100644
            --- a/dev/modules/physics/hydrogen.html
            +++ b/dev/modules/physics/hydrogen.html
            @@ -802,7 +802,7 @@ 
            Documentation Version

            Hydrogen Wavefunctions

            -sympy.physics.hydrogen.E_nl(n, Z=1)[source]
            +sympy.physics.hydrogen.E_nl(n, Z=1)[source]

            Returns the energy of the state (n, l) in Hartree atomic units.

            The energy does not depend on “l”.

            @@ -847,7 +847,7 @@
            Documentation Version
            c=137.035999037000,
            -)[source] +)[source]

            Returns the relativistic energy of the state (n, l, spin) in Hartree atomic units.

            The energy is calculated from the Dirac equation. The rest mass energy is @@ -909,7 +909,7 @@

            Documentation Version
            -sympy.physics.hydrogen.Psi_nlm(n, l, m, r, phi, theta, Z=1)[source]
            +sympy.physics.hydrogen.Psi_nlm(n, l, m, r, phi, theta, Z=1)[source]

            Returns the Hydrogen wave function psi_{nlm}. It’s the product of the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}.

            @@ -976,7 +976,7 @@
            Documentation Version
            -sympy.physics.hydrogen.R_nl(n, l, r, Z=1)[source]
            +sympy.physics.hydrogen.R_nl(n, l, r, Z=1)[source]

            Returns the Hydrogen radial wavefunction R_{nl}.

            Parameters:
            diff --git a/dev/modules/physics/matrices.html b/dev/modules/physics/matrices.html index 21efca26130..46702fb719d 100644 --- a/dev/modules/physics/matrices.html +++ b/dev/modules/physics/matrices.html @@ -803,7 +803,7 @@
            Documentation Version

            Known matrices related to physics

            -sympy.physics.matrices.mdft(n)[source]
            +sympy.physics.matrices.mdft(n)[source]

            Deprecated since version 1.9: Use DFT from sympy.matrices.expressions.fourier instead.

            To get identical behavior to mdft(n), use DFT(n).as_explicit().

            @@ -812,7 +812,7 @@
            Documentation Version
            -sympy.physics.matrices.mgamma(mu, lower=False)[source]
            +sympy.physics.matrices.mgamma(mu, lower=False)[source]

            Returns a Dirac gamma matrix \(\gamma^\mu\) in the standard (Dirac) representation.

            Explanation

            @@ -841,7 +841,7 @@
            Documentation Version
            -sympy.physics.matrices.msigma(i)[source]
            +sympy.physics.matrices.msigma(i)[source]

            Returns a Pauli matrix \(\sigma_i\) with \(i=1,2,3\).

            Examples

            >>> from sympy.physics.matrices import msigma
            @@ -862,7 +862,7 @@ 
            Documentation Version
            -sympy.physics.matrices.pat_matrix(m, dx, dy, dz)[source]
            +sympy.physics.matrices.pat_matrix(m, dx, dy, dz)[source]

            Returns the Parallel Axis Theorem matrix to translate the inertia matrix a distance of \((dx, dy, dz)\) for a body of mass m.

            Examples

            diff --git a/dev/modules/physics/mechanics/api/actuator.html b/dev/modules/physics/mechanics/api/actuator.html index 43725e0ee45..354cfa4beb5 100644 --- a/dev/modules/physics/mechanics/api/actuator.html +++ b/dev/modules/physics/mechanics/api/actuator.html @@ -803,14 +803,14 @@
            Documentation Version

            Implementations of actuators for linked force and torque application.

            -class sympy.physics.mechanics.actuator.ActuatorBase[source]
            +class sympy.physics.mechanics.actuator.ActuatorBase[source]

            Abstract base class for all actuator classes to inherit from.

            Notes

            Instances of this class cannot be directly instantiated by users. However, it can be used to created custom actuator types through subclassing.

            -abstract to_loads()[source]
            +abstract to_loads()[source]

            Loads required by the equations of motion method classes.

            Explanation

            KanesMethod requires a list of Point-Vector tuples to be @@ -839,7 +839,7 @@

            Documentation Version
            mu_s=None,
            -)[source] +)[source]

            Coulomb kinetic friction with Stribeck and viscous effects.

            Parameters:
            @@ -998,7 +998,7 @@
            Documentation Version
            equilibrium_length=0,
            -)[source] +)[source]

            A nonlinear spring based on the Duffing equation.

            Parameters:
            @@ -1034,7 +1034,7 @@
            Documentation Version
            -class sympy.physics.mechanics.actuator.ForceActuator(force, pathway)[source]
            +class sympy.physics.mechanics.actuator.ForceActuator(force, pathway)[source]

            Force-producing actuator.

            Parameters:
            @@ -1112,7 +1112,7 @@
            Documentation Version
            -to_loads()[source]
            +to_loads()[source]

            Loads required by the equations of motion method classes.

            Explanation

            KanesMethod requires a list of Point-Vector tuples to be @@ -1183,7 +1183,7 @@

            Documentation Version
            -class sympy.physics.mechanics.actuator.LinearDamper(damping, pathway)[source]
            +class sympy.physics.mechanics.actuator.LinearDamper(damping, pathway)[source]

            A damper whose force is a linear function of its extension velocity.

            Parameters:
            @@ -1301,7 +1301,7 @@
            Documentation Version
            equilibrium_length=0,
            -)[source] +)[source]

            A spring with its spring force as a linear function of its length.

            Parameters:
            @@ -1438,7 +1438,7 @@
            Documentation Version
            reaction_frame=None,
            -)[source] +)[source]

            Torque-producing actuator.

            Parameters:
            @@ -1489,7 +1489,7 @@
            Documentation Version
            when one is passed instead of a ReferenceFrame.

            -classmethod at_pin_joint(torque, pin_joint)[source]
            +classmethod at_pin_joint(torque, pin_joint)[source]

            Alternate construtor to instantiate from a PinJoint instance.

            Parameters:
            @@ -1568,7 +1568,7 @@
            Documentation Version
            -to_loads()[source]
            +to_loads()[source]

            Loads required by the equations of motion method classes.

            Explanation

            KanesMethod requires a list of Point-Vector tuples to be diff --git a/dev/modules/physics/mechanics/api/deprecated_classes.html b/dev/modules/physics/mechanics/api/deprecated_classes.html index a37746a482e..09cae4248ed 100644 --- a/dev/modules/physics/mechanics/api/deprecated_classes.html +++ b/dev/modules/physics/mechanics/api/deprecated_classes.html @@ -818,7 +818,7 @@

            Deprecated Classes (Docstrings)central_inertia=None,

            -)[source] +)[source]

            Body is a common representation of either a RigidBody or a Particle SymPy object depending on what is passed in during initialization. If a mass is passed in and central_inertia is left as None, the Particle object is @@ -929,7 +929,7 @@

            Deprecated Classes (Docstrings)
            -ang_vel_in(body)[source]
            +ang_vel_in(body)[source]

            Returns this body’s angular velocity with respect to the provided rigid body or reference frame.

            @@ -963,7 +963,7 @@

            Deprecated Classes (Docstrings)
            -angular_momentum(point, frame)[source]
            +angular_momentum(point, frame)[source]

            Returns the angular momentum of the rigid body about a point in the given frame.

            @@ -1016,7 +1016,7 @@

            Deprecated Classes (Docstrings)reaction_point=None,

            -)[source] +)[source]

            Add force to the body(s).

            Parameters:
            @@ -1110,7 +1110,7 @@

            Deprecated Classes (Docstrings)
            -apply_torque(torque, reaction_body=None)[source]
            +apply_torque(torque, reaction_body=None)[source]

            Add torque to the body(s).

            Parameters:
            @@ -1196,7 +1196,7 @@

            Deprecated Classes (Docstrings)
            -clear_loads()[source]
            +clear_loads()[source]

            Clears the Body’s loads list.

            Example

            As Body has been deprecated, the following examples are for illustrative @@ -1220,7 +1220,7 @@

            Deprecated Classes (Docstrings)
            -dcm(body)[source]
            +dcm(body)[source]

            Returns the direction cosine matrix of this body relative to the provided rigid body or reference frame.

            @@ -1270,7 +1270,7 @@

            Deprecated Classes (Docstrings)
            -kinetic_energy(frame)[source]
            +kinetic_energy(frame)[source]

            Kinetic energy of the body.

            Parameters:
            @@ -1322,7 +1322,7 @@

            Deprecated Classes (Docstrings)
            -linear_momentum(frame)[source]
            +linear_momentum(frame)[source]

            Linear momentum of the rigid body.

            Parameters:
            @@ -1370,7 +1370,7 @@

            Deprecated Classes (Docstrings)
            -masscenter_vel(body)[source]
            +masscenter_vel(body)[source]

            Returns the velocity of the mass center with respect to the provided rigid body or reference frame.

            @@ -1408,7 +1408,7 @@

            Deprecated Classes (Docstrings)
            -parallel_axis(point, frame=None)[source]
            +parallel_axis(point, frame=None)[source]

            Returns the inertia dyadic of the body with respect to another point.

            @@ -1474,7 +1474,7 @@

            Deprecated Classes (Docstrings)
            -remove_load(about=None)[source]
            +remove_load(about=None)[source]

            Remove load about a point or frame.

            Parameters:
            @@ -1534,7 +1534,7 @@

            Deprecated Classes (Docstrings)
            -class sympy.physics.mechanics.jointsmethod.JointsMethod(newtonion, *joints)[source]
            +class sympy.physics.mechanics.jointsmethod.JointsMethod(newtonion, *joints)[source]

            Method for formulating the equations of motion using a set of interconnected bodies with joints.

            Deprecated since version 1.13: The JointsMethod class is deprecated. Its functionality has been @@ -1650,7 +1650,7 @@

            Deprecated Classes (Docstrings)method=<class 'sympy.physics.mechanics.kane.KanesMethod'>,

            -)[source] +)[source]

            Method to form system’s equation of motions.

            Parameters:
            @@ -1743,7 +1743,7 @@

            Deprecated Classes (Docstrings)
            -rhs(inv_method=None)[source]
            +rhs(inv_method=None)[source]

            Returns equations that can be solved numerically.

            Parameters:
            diff --git a/dev/modules/physics/mechanics/api/expr_manip.html b/dev/modules/physics/mechanics/api/expr_manip.html index c744c7250c2..de1263dd3e8 100644 --- a/dev/modules/physics/mechanics/api/expr_manip.html +++ b/dev/modules/physics/mechanics/api/expr_manip.html @@ -802,7 +802,7 @@
            Documentation Version

            Expression Manipulation (Docstrings)

            -sympy.physics.mechanics.msubs(expr, *sub_dicts, smart=False, **kwargs)[source]
            +sympy.physics.mechanics.msubs(expr, *sub_dicts, smart=False, **kwargs)[source]

            A custom subs for use on expressions derived in physics.mechanics.

            Traverses the expression tree once, performing the subs found in sub_dicts. Terms inside Derivative expressions are ignored:

            @@ -848,7 +848,7 @@

            Expression Manipulation (Docstrings)reference_frame=None,

            -)[source] +)[source]

            Find all dynamicsymbols in expression.

            Parameters:
            diff --git a/dev/modules/physics/mechanics/api/joint.html b/dev/modules/physics/mechanics/api/joint.html index bb02d278c21..32a2c93524f 100644 --- a/dev/modules/physics/mechanics/api/joint.html +++ b/dev/modules/physics/mechanics/api/joint.html @@ -822,7 +822,7 @@

            Joints Framework (Docstrings)child_joint_pos=None,

            -)[source] +)[source]

            Abstract base class for all specific joints.

            Parameters:
            @@ -1056,7 +1056,7 @@

            Joints Framework (Docstrings)child_joint_pos=None,

            -)[source] +)[source]

            Pin (Revolute) Joint.

            @@ -1387,7 +1387,7 @@

            Joints Framework (Docstrings)child_joint_pos=None,

            -)[source] +)[source]

            Prismatic (Sliding) Joint.

            ../../../../_images/PrismaticJoint.svg
            @@ -1674,7 +1674,7 @@

            Joints Framework (Docstrings)joint_axis=None,

            -)[source] +)[source]

            Cylindrical Joint.

            ../../../../_images/CylindricalJoint.svg @@ -1980,7 +1980,7 @@

            Joints Framework (Docstrings)child_interframe=None,

            -)[source] +)[source]

            Planar Joint.

            Joints Framework (Docstrings)rot_order=123,

            -)[source] +)[source]

            Spherical (Ball-and-Socket) Joint.

            ../../../../_images/SphericalJoint.svg @@ -2747,7 +2747,7 @@

            Joints Framework (Docstrings)child_interframe=None,

            -)[source] +)[source]

            Weld Joint.

            diff --git a/dev/modules/physics/mechanics/api/kane_lagrange.html b/dev/modules/physics/mechanics/api/kane_lagrange.html index 25436caa6fa..7681623b32a 100644 --- a/dev/modules/physics/mechanics/api/kane_lagrange.html +++ b/dev/modules/physics/mechanics/api/kane_lagrange.html @@ -822,7 +822,7 @@
            Documentation Version
            constraint_solver='LU',

            -)[source] +)[source]

            Kane’s method object.

            Parameters:
            @@ -1067,7 +1067,7 @@
            Documentation Version
            loads=None,
            -)[source] +)[source]

            Method to form Kane’s equations, Fr + Fr* = 0.

            Parameters:
            @@ -1096,7 +1096,7 @@
            Documentation Version
            -kindiffdict()[source]
            +kindiffdict()[source]

            Returns a dictionary mapping q’ to u.

            @@ -1111,7 +1111,7 @@
            Documentation Version
            **kwargs,
            -)[source] +)[source]

            Linearize the equations of motion about a symbolic operating point.

            Parameters:
            @@ -1179,7 +1179,7 @@
            Documentation Version
            -rhs(inv_method=None)[source]
            +rhs(inv_method=None)[source]

            Returns the system’s equations of motion in first order form. The output is the right hand side of:

            x' = |q'| =: f(q, u, r, p, t)
            @@ -1202,7 +1202,7 @@ 
            Documentation Version
            -to_linearizer(linear_solver='LU')[source]
            +to_linearizer(linear_solver='LU')[source]

            Returns an instance of the Linearizer class, initiated from the data in the KanesMethod class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more @@ -1248,7 +1248,7 @@

            Documentation Version
            nonhol_coneqs=None,
            -)[source] +)[source]

            Lagrange’s method object.

            Explanation

            This object generates the equations of motion in a two step procedure. The @@ -1352,7 +1352,7 @@

            Documentation Version
            -form_lagranges_equations()[source]
            +form_lagranges_equations()[source]

            Method to form Lagrange’s equations of motion.

            Returns a vector of equations of motion using Lagrange’s equations of the second kind.

            @@ -1371,7 +1371,7 @@
            Documentation Version
            **kwargs,
            -)[source] +)[source]

            Linearize the equations of motion about a symbolic operating point.

            Parameters:
            @@ -1436,7 +1436,7 @@
            Documentation Version
            -rhs(inv_method=None, **kwargs)[source]
            +rhs(inv_method=None, **kwargs)[source]

            Returns equations that can be solved numerically.

            Parameters:
            @@ -1459,7 +1459,7 @@
            Documentation Version
            sol_type='dict',
            -)[source] +)[source]

            Solves for the values of the lagrange multipliers symbolically at the specified operating point.

            @@ -1492,7 +1492,7 @@
            Documentation Version
            linear_solver='LU',
            -)[source] +)[source]

            Returns an instance of the Linearizer class, initiated from the data in the LagrangesMethod class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more diff --git a/dev/modules/physics/mechanics/api/linearize.html b/dev/modules/physics/mechanics/api/linearize.html index 9baedee5d27..d08bde9e1d5 100644 --- a/dev/modules/physics/mechanics/api/linearize.html +++ b/dev/modules/physics/mechanics/api/linearize.html @@ -824,7 +824,7 @@

            Documentation Version
            linear_solver='LU',
            -)[source] +)[source]

            This object holds the general model form for a dynamic system. This model is used for computing the linearized form of the system, while properly dealing with constraints leading to dependent coordinates and @@ -886,7 +886,7 @@

            Documentation Version
            linear_solver='LU',
            -)[source] +)[source]
            Parameters:

            f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a : array_like

            @@ -945,7 +945,7 @@
            Documentation Version
            simplify=False,
            -)[source] +)[source]

            Linearize the system about the operating point. Note that q_op, u_op, qd_op, ud_op must satisfy the equations of motion. These may be either symbolic or numeric.

            diff --git a/dev/modules/physics/mechanics/api/part_bod.html b/dev/modules/physics/mechanics/api/part_bod.html index 1c9201a5535..67540e56cd3 100644 --- a/dev/modules/physics/mechanics/api/part_bod.html +++ b/dev/modules/physics/mechanics/api/part_bod.html @@ -804,7 +804,7 @@
            Documentation Version

            Bodies

            -class sympy.physics.mechanics.particle.Particle(name, point=None, mass=None)[source]
            +class sympy.physics.mechanics.particle.Particle(name, point=None, mass=None)[source]

            A particle.

            Parameters:
            @@ -844,7 +844,7 @@

            Bodies
            -angular_momentum(point, frame)[source]
            +angular_momentum(point, frame)[source]

            Angular momentum of the particle about the point.

            Parameters:
            @@ -884,7 +884,7 @@

            Bodies
            -kinetic_energy(frame)[source]
            +kinetic_energy(frame)[source]

            Kinetic energy of the particle.

            Parameters:
            @@ -917,7 +917,7 @@

            Bodies
            -linear_momentum(frame)[source]
            +linear_momentum(frame)[source]

            Linear momentum of the particle.

            Parameters:
            @@ -969,7 +969,7 @@

            Bodies
            -parallel_axis(point, frame)[source]
            +parallel_axis(point, frame)[source]

            Returns an inertia dyadic of the particle with respect to another point and frame.

            @@ -1030,7 +1030,7 @@

            Bodiesinertia=None,

            -)[source] +)[source]

            An idealized rigid body.

            Explanation

            This is essentially a container which holds the various components which @@ -1080,7 +1080,7 @@

            Bodies
            -angular_momentum(point, frame)[source]
            +angular_momentum(point, frame)[source]

            Returns the angular momentum of the rigid body about a point in the given frame.

            @@ -1142,7 +1142,7 @@

            Bodies
            -kinetic_energy(frame)[source]
            +kinetic_energy(frame)[source]

            Kinetic energy of the rigid body.

            Parameters:
            @@ -1182,7 +1182,7 @@

            Bodies
            -linear_momentum(frame)[source]
            +linear_momentum(frame)[source]

            Linear momentum of the rigid body.

            Parameters:
            @@ -1236,7 +1236,7 @@

            Bodies
            -parallel_axis(point, frame=None)[source]
            +parallel_axis(point, frame=None)[source]

            Returns the inertia dyadic of the body with respect to another point.

            Parameters:
            @@ -1301,7 +1301,7 @@

            BodiesInertias

            -class sympy.physics.mechanics.inertia.Inertia(dyadic, point)[source]
            +class sympy.physics.mechanics.inertia.Inertia(dyadic, point)[source]

            Inertia object consisting of a Dyadic and a Point of reference.

            Explanation

            This is a simple class to store the Point and Dyadic, belonging to an @@ -1349,7 +1349,7 @@

            Inertias
            izx=0,

            -)[source] +)[source]

            Simple way to create an Inertia object based on the tensor values.

            Parameters:
            @@ -1414,7 +1414,7 @@

            Inertias
            -sympy.physics.mechanics.inertia.inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0)[source]
            +sympy.physics.mechanics.inertia.inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0)[source]

            Simple way to create inertia Dyadic object.

            Parameters:
            @@ -1462,7 +1462,7 @@

            Inertias
            -sympy.physics.mechanics.inertia.inertia_of_point_mass(mass, pos_vec, frame)[source]
            +sympy.physics.mechanics.inertia.inertia_of_point_mass(mass, pos_vec, frame)[source]

            Inertia dyadic of a point mass relative to point O.

            Parameters:
            @@ -1497,7 +1497,7 @@

            Inertias

            Loads

            -class sympy.physics.mechanics.loads.Force(point, force)[source]
            +class sympy.physics.mechanics.loads.Force(point, force)[source]

            Force acting upon a point.

            Explanation

            A force is a vector that is bound to a line of action. This class stores @@ -1525,7 +1525,7 @@

            Loads
            -class sympy.physics.mechanics.loads.Torque(frame, torque)[source]
            +class sympy.physics.mechanics.loads.Torque(frame, torque)[source]

            Torque acting upon a frame.

            Explanation

            A torque is a free vector that is acting on a reference frame, which is @@ -1555,7 +1555,7 @@

            Loads

            Other Functions

            -sympy.physics.mechanics.functions.center_of_mass(point, *bodies)[source]
            +sympy.physics.mechanics.functions.center_of_mass(point, *bodies)[source]

            Returns the position vector from the given point to the center of mass of the given bodies(particles or rigidbodies).

            Example

            @@ -1588,7 +1588,7 @@

            Other Functions
            -sympy.physics.mechanics.functions.linear_momentum(frame, *body)[source]
            +sympy.physics.mechanics.functions.linear_momentum(frame, *body)[source]

            Linear momentum of the system.

            Parameters:
            @@ -1629,7 +1629,7 @@

            Other Functions
            -sympy.physics.mechanics.functions.angular_momentum(point, frame, *body)[source]
            +sympy.physics.mechanics.functions.angular_momentum(point, frame, *body)[source]

            Angular momentum of a system.

            Parameters:
            @@ -1678,7 +1678,7 @@

            Other Functions
            -sympy.physics.mechanics.functions.kinetic_energy(frame, *body)[source]
            +sympy.physics.mechanics.functions.kinetic_energy(frame, *body)[source]

            Kinetic energy of a multibody system.

            Parameters:
            @@ -1725,7 +1725,7 @@

            Other Functions
            -sympy.physics.mechanics.functions.potential_energy(*body)[source]
            +sympy.physics.mechanics.functions.potential_energy(*body)[source]

            Potential energy of a multibody system.

            Parameters:
            @@ -1768,7 +1768,7 @@

            Other Functions
            -sympy.physics.mechanics.functions.Lagrangian(frame, *body)[source]
            +sympy.physics.mechanics.functions.Lagrangian(frame, *body)[source]

            Lagrangian of a multibody system.

            Parameters:
            @@ -1826,7 +1826,7 @@

            Other Functionsreference_frame=None,

            -)[source] +)[source]

            Find all dynamicsymbols in expression.

            Parameters:
            diff --git a/dev/modules/physics/mechanics/api/pathway.html b/dev/modules/physics/mechanics/api/pathway.html index ebe6459c51c..b258f0ad926 100644 --- a/dev/modules/physics/mechanics/api/pathway.html +++ b/dev/modules/physics/mechanics/api/pathway.html @@ -803,7 +803,7 @@
            Documentation Version

            Implementations of pathways for use by actuators.

            -class sympy.physics.mechanics.pathway.LinearPathway(*attachments)[source]
            +class sympy.physics.mechanics.pathway.LinearPathway(*attachments)[source]

            Linear pathway between a pair of attachment points.

            Parameters:
            @@ -893,7 +893,7 @@
            Documentation Version
            -to_loads(force)[source]
            +to_loads(force)[source]

            Loads required by the equations of motion method classes.

            Parameters:
            @@ -947,7 +947,7 @@
            Documentation Version
            -class sympy.physics.mechanics.pathway.ObstacleSetPathway(*attachments)[source]
            +class sympy.physics.mechanics.pathway.ObstacleSetPathway(*attachments)[source]

            Obstacle-set pathway between a set of attachment points.

            Parameters:
            @@ -1028,7 +1028,7 @@
            Documentation Version
            -to_loads(force)[source]
            +to_loads(force)[source]

            Loads required by the equations of motion method classes.

            Parameters:
            @@ -1095,7 +1095,7 @@
            Documentation Version
            -class sympy.physics.mechanics.pathway.PathwayBase(*attachments)[source]
            +class sympy.physics.mechanics.pathway.PathwayBase(*attachments)[source]

            Abstract base class for all pathway classes to inherit from.

            Notes

            Instances of this class cannot be directly instantiated by users. However, @@ -1120,7 +1120,7 @@

            Documentation Version
            -abstract to_loads(force)[source]
            +abstract to_loads(force)[source]

            Loads required by the equations of motion method classes.

            Explanation

            KanesMethod requires a list of Point-Vector tuples to be @@ -1145,7 +1145,7 @@

            Documentation Version
            geometry,
            -)[source] +)[source]

            Pathway that wraps a geometry object.

            Parameters:
            @@ -1232,7 +1232,7 @@
            Documentation Version
            -to_loads(force)[source]
            +to_loads(force)[source]

            Loads required by the equations of motion method classes.

            Parameters:
            diff --git a/dev/modules/physics/mechanics/api/system.html b/dev/modules/physics/mechanics/api/system.html index 1df7a66418c..9d925b91b64 100644 --- a/dev/modules/physics/mechanics/api/system.html +++ b/dev/modules/physics/mechanics/api/system.html @@ -818,7 +818,7 @@

            System (Docstrings)loads=None,

            -)[source] +)[source]

            SymbolicSystem is a class that contains all the information about a system in a symbolic format such as the equations of motions and the bodies and loads in the system.

            @@ -1020,7 +1020,7 @@

            System (Docstrings)
            -compute_explicit_form()[source]
            +compute_explicit_form()[source]

            If the explicit right hand side of the combined equations of motion is to provided upon initialization, this method will calculate it. This calculation can potentially take awhile to compute.

            @@ -1028,7 +1028,7 @@

            System (Docstrings)
            -constant_symbols()[source]
            +constant_symbols()[source]

            Returns a column matrix containing all of the symbols in the system that do not depend on time

            @@ -1057,7 +1057,7 @@

            System (Docstrings)
            -dynamic_symbols()[source]
            +dynamic_symbols()[source]

            Returns a column matrix containing all of the symbols in the system that depend on time

            @@ -1091,7 +1091,7 @@

            System (Docstrings)
            -class sympy.physics.mechanics.system.System(frame=None, fixed_point=None)[source]
            +class sympy.physics.mechanics.system.System(frame=None, fixed_point=None)[source]

            Class to define a multibody system and form its equations of motion.

            Explanation

            A System instance stores the different objects associated with a model, @@ -1306,7 +1306,7 @@

            System (Docstrings)
            -add_actuators(*actuators)[source]
            +add_actuators(*actuators)[source]

            Add actuator(s) to the system.

            Parameters:
            @@ -1320,7 +1320,7 @@

            System (Docstrings)
            -add_auxiliary_speeds(*speeds)[source]
            +add_auxiliary_speeds(*speeds)[source]

            Add auxiliary speed(s) to the system.

            Parameters:
            @@ -1334,7 +1334,7 @@

            System (Docstrings)
            -add_bodies(*bodies)[source]
            +add_bodies(*bodies)[source]

            Add body(ies) to the system.

            Parameters:
            @@ -1355,7 +1355,7 @@

            System (Docstrings)independent=True,

            -)[source] +)[source]

            Add generalized coordinate(s) to the system.

            Parameters:
            @@ -1375,7 +1375,7 @@

            System (Docstrings)
            -add_holonomic_constraints(*constraints)[source]
            +add_holonomic_constraints(*constraints)[source]

            Add holonomic constraint(s) to the system.

            Parameters:
            @@ -1390,7 +1390,7 @@

            System (Docstrings)
            -add_joints(*joints)[source]
            +add_joints(*joints)[source]

            Add joint(s) to the system.

            Parameters:
            @@ -1414,7 +1414,7 @@

            System (Docstrings)
            -add_kdes(*kdes)[source]
            +add_kdes(*kdes)[source]

            Add kinematic differential equation(s) to the system.

            Parameters:
            @@ -1428,7 +1428,7 @@

            System (Docstrings)
            -add_loads(*loads)[source]
            +add_loads(*loads)[source]

            Add load(s) to the system.

            Parameters:
            @@ -1442,7 +1442,7 @@

            System (Docstrings)
            -add_nonholonomic_constraints(*constraints)[source]
            +add_nonholonomic_constraints(*constraints)[source]

            Add nonholonomic constraint(s) to the system.

            Parameters:
            @@ -1457,7 +1457,7 @@

            System (Docstrings)
            -add_speeds(*speeds, independent=True)[source]
            +add_speeds(*speeds, independent=True)[source]

            Add generalized speed(s) to the system.

            Parameters:
            @@ -1476,7 +1476,7 @@

            System (Docstrings)
            -apply_uniform_gravity(acceleration)[source]
            +apply_uniform_gravity(acceleration)[source]

            Apply uniform gravity to all bodies in the system by adding loads.

            Parameters:
            @@ -1528,7 +1528,7 @@

            System (Docstrings)**kwargs,

            -)[source] +)[source]

            Form the equations of motion of the system.

            Parameters:
            @@ -1582,13 +1582,13 @@

            System (Docstrings)
            -classmethod from_newtonian(newtonian)[source]
            +classmethod from_newtonian(newtonian)[source]

            Constructs the system with respect to a Newtonian body.

            -get_body(name)[source]
            +get_body(name)[source]

            Retrieve a body from the system by name.

            Parameters:
            @@ -1608,7 +1608,7 @@

            System (Docstrings)
            -get_joint(name)[source]
            +get_joint(name)[source]

            Retrieve a joint from the system by name.

            Parameters:
            @@ -1711,7 +1711,7 @@

            System (Docstrings)
            -rhs(inv_method=None)[source]
            +rhs(inv_method=None)[source]

            Compute the equations of motion in the explicit form.

            Parameters:
            @@ -1774,7 +1774,7 @@

            System (Docstrings)check_duplicates=False,

            -)[source] +)[source]

            Validates the system using some basic checks.

            Parameters:
            diff --git a/dev/modules/physics/mechanics/api/wrapping_geometry.html b/dev/modules/physics/mechanics/api/wrapping_geometry.html index e82103a8b45..2e9fa6dc085 100644 --- a/dev/modules/physics/mechanics/api/wrapping_geometry.html +++ b/dev/modules/physics/mechanics/api/wrapping_geometry.html @@ -803,7 +803,7 @@
            Documentation Version

            Geometry objects for use by wrapping pathways.

            -class sympy.physics.mechanics.wrapping_geometry.WrappingCylinder(radius, point, axis)[source]
            +class sympy.physics.mechanics.wrapping_geometry.WrappingCylinder(radius, point, axis)[source]

            A solid (infinite) cylindrical object.

            Parameters:
            @@ -870,7 +870,7 @@
            Documentation Version
            point_2,
            -)[source] +)[source]

            The vectors parallel to the geodesic at the two end points.

            Parameters:
            @@ -888,7 +888,7 @@
            Documentation Version
            -geodesic_length(point_1, point_2)[source]
            +geodesic_length(point_1, point_2)[source]

            The shortest distance between two points on a geometry’s surface.

            Parameters:
            @@ -961,7 +961,7 @@
            Documentation Version
            -point_on_surface(point)[source]
            +point_on_surface(point)[source]

            Returns True if a point is on the cylinder’s surface.

            Parameters:
            @@ -986,7 +986,7 @@
            Documentation Version
            -class sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase[source]
            +class sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase[source]

            Abstract base class for all geometry classes to inherit from.

            Notes

            Instances of this class cannot be directly instantiated by users. However, @@ -1000,7 +1000,7 @@

            Documentation Version
            point_2,
            -)[source] +)[source]

            The vectors parallel to the geodesic at the two end points.

            Parameters:
            @@ -1025,7 +1025,7 @@
            Documentation Version
            point_2,
            -)[source] +)[source]

            Returns the shortest distance between two points on a geometry’s surface.

            @@ -1050,7 +1050,7 @@
            Documentation Version
            -abstract point_on_surface(point)[source]
            +abstract point_on_surface(point)[source]

            Returns True if a point is on the geometry’s surface.

            Parameters:
            @@ -1067,7 +1067,7 @@
            Documentation Version
            -class sympy.physics.mechanics.wrapping_geometry.WrappingSphere(radius, point)[source]
            +class sympy.physics.mechanics.wrapping_geometry.WrappingSphere(radius, point)[source]

            A solid spherical object.

            Parameters:
            @@ -1116,7 +1116,7 @@
            Documentation Version
            point_2,
            -)[source] +)[source]

            The vectors parallel to the geodesic at the two end points.

            Parameters:
            @@ -1134,7 +1134,7 @@
            Documentation Version
            -geodesic_length(point_1, point_2)[source]
            +geodesic_length(point_1, point_2)[source]

            Returns the shortest distance between two points on the sphere’s surface.

            @@ -1207,7 +1207,7 @@
            Documentation Version
            -point_on_surface(point)[source]
            +point_on_surface(point)[source]

            Returns True if a point is on the sphere’s surface.

            Parameters:
            diff --git a/dev/modules/physics/optics/gaussopt.html b/dev/modules/physics/optics/gaussopt.html index 9bf9eca77f8..d2fe6f2d116 100644 --- a/dev/modules/physics/optics/gaussopt.html +++ b/dev/modules/physics/optics/gaussopt.html @@ -821,7 +821,7 @@
            Documentation Version
            -class sympy.physics.optics.gaussopt.BeamParameter(wavelen, z, z_r=None, w=None, n=1)[source]
            +class sympy.physics.optics.gaussopt.BeamParameter(wavelen, z, z_r=None, w=None, n=1)[source]

            Representation for a gaussian ray in the Ray Transfer Matrix formalism.

            Parameters:
            @@ -986,7 +986,7 @@
            Documentation Version
            -class sympy.physics.optics.gaussopt.CurvedMirror(R)[source]
            +class sympy.physics.optics.gaussopt.CurvedMirror(R)[source]

            Ray Transfer Matrix for reflection from curved surface.

            Parameters:
            @@ -1011,7 +1011,7 @@
            Documentation Version
            -class sympy.physics.optics.gaussopt.CurvedRefraction(R, n1, n2)[source]
            +class sympy.physics.optics.gaussopt.CurvedRefraction(R, n1, n2)[source]

            Ray Transfer Matrix for refraction on curved interface.

            Parameters:
            @@ -1047,7 +1047,7 @@
            Documentation Version
            -class sympy.physics.optics.gaussopt.FlatMirror[source]
            +class sympy.physics.optics.gaussopt.FlatMirror[source]

            Ray Transfer Matrix for reflection.

            Examples

            >>> from sympy.physics.optics import FlatMirror
            @@ -1065,7 +1065,7 @@ 
            Documentation Version
            -class sympy.physics.optics.gaussopt.FlatRefraction(n1, n2)[source]
            +class sympy.physics.optics.gaussopt.FlatRefraction(n1, n2)[source]

            Ray Transfer Matrix for refraction.

            Parameters:
            @@ -1097,7 +1097,7 @@
            Documentation Version
            -class sympy.physics.optics.gaussopt.FreeSpace(d)[source]
            +class sympy.physics.optics.gaussopt.FreeSpace(d)[source]

            Ray Transfer Matrix for free space.

            Parameters:
            @@ -1122,7 +1122,7 @@
            Documentation Version
            -class sympy.physics.optics.gaussopt.GeometricRay(*args)[source]
            +class sympy.physics.optics.gaussopt.GeometricRay(*args)[source]

            Representation for a geometric ray in the Ray Transfer Matrix formalism.

            Parameters:
            @@ -1193,7 +1193,7 @@
            Documentation Version
            -class sympy.physics.optics.gaussopt.RayTransferMatrix(*args)[source]
            +class sympy.physics.optics.gaussopt.RayTransferMatrix(*args)[source]

            Base class for a Ray Transfer Matrix.

            It should be used if there is not already a more specific subclass mentioned in See Also.

            @@ -1306,7 +1306,7 @@
            Documentation Version
            -class sympy.physics.optics.gaussopt.ThinLens(f)[source]
            +class sympy.physics.optics.gaussopt.ThinLens(f)[source]

            Ray Transfer Matrix for a thin lens.

            Parameters:
            @@ -1343,7 +1343,7 @@
            Documentation Version
            **kwargs,
            -)[source] +)[source]

            Find the optical setup conjugating the object/image waists.

            Parameters:
            @@ -1399,7 +1399,7 @@
            Documentation Version
            -sympy.physics.optics.gaussopt.gaussian_conj(s_in, z_r_in, f)[source]
            +sympy.physics.optics.gaussopt.gaussian_conj(s_in, z_r_in, f)[source]

            Conjugation relation for gaussian beams.

            Parameters:
            @@ -1454,7 +1454,7 @@
            Documentation Version
            -sympy.physics.optics.gaussopt.geometric_conj_ab(a, b)[source]
            +sympy.physics.optics.gaussopt.geometric_conj_ab(a, b)[source]

            Conjugation relation for geometrical beams under paraxial conditions.

            Explanation

            Takes the distances to the optical element and returns the needed @@ -1475,7 +1475,7 @@

            Documentation Version
            -sympy.physics.optics.gaussopt.geometric_conj_af(a, f)[source]
            +sympy.physics.optics.gaussopt.geometric_conj_af(a, f)[source]

            Conjugation relation for geometrical beams under paraxial conditions.

            Explanation

            Takes the object distance (for geometric_conj_af) or the image distance @@ -1499,7 +1499,7 @@

            Documentation Version
            -sympy.physics.optics.gaussopt.geometric_conj_bf(a, f)[source]
            +sympy.physics.optics.gaussopt.geometric_conj_bf(a, f)[source]

            Conjugation relation for geometrical beams under paraxial conditions.

            Explanation

            Takes the object distance (for geometric_conj_af) or the image distance @@ -1523,7 +1523,7 @@

            Documentation Version
            -sympy.physics.optics.gaussopt.rayleigh2waist(z_r, wavelen)[source]
            +sympy.physics.optics.gaussopt.rayleigh2waist(z_r, wavelen)[source]

            Calculate the waist from the rayleigh range of a gaussian beam.

            Examples

            >>> from sympy.physics.optics import rayleigh2waist
            @@ -1541,7 +1541,7 @@ 
            Documentation Version
            -sympy.physics.optics.gaussopt.waist2rayleigh(w, wavelen, n=1)[source]
            +sympy.physics.optics.gaussopt.waist2rayleigh(w, wavelen, n=1)[source]

            Calculate the rayleigh range from the waist of a gaussian beam.

            Examples

            >>> from sympy.physics.optics import waist2rayleigh
            diff --git a/dev/modules/physics/optics/medium.html b/dev/modules/physics/optics/medium.html
            index 05bd315519b..2ccf9fd398d 100644
            --- a/dev/modules/physics/optics/medium.html
            +++ b/dev/modules/physics/optics/medium.html
            @@ -815,7 +815,7 @@ 
            Documentation Version
            n=None,
            -)[source] +)[source]

            This class represents an optical medium. The prime reason to implement this is to facilitate refraction, Fermat’s principle, etc.

            diff --git a/dev/modules/physics/optics/polarization.html b/dev/modules/physics/optics/polarization.html index e8dbd31c892..f152aeb4dca 100644 --- a/dev/modules/physics/optics/polarization.html +++ b/dev/modules/physics/optics/polarization.html @@ -890,7 +890,7 @@

            References
            -sympy.physics.optics.polarization.half_wave_retarder(theta)[source]
            +sympy.physics.optics.polarization.half_wave_retarder(theta)[source]

            A half-wave retarder Jones matrix at angle theta.

            Parameters:
            @@ -924,7 +924,7 @@

            References
            -sympy.physics.optics.polarization.jones_2_stokes(e)[source]
            +sympy.physics.optics.polarization.jones_2_stokes(e)[source]

            Return the Stokes vector for a Jones vector e.

            Parameters:
            @@ -966,7 +966,7 @@

            References
            -sympy.physics.optics.polarization.jones_vector(psi, chi)[source]
            +sympy.physics.optics.polarization.jones_vector(psi, chi)[source]

            A Jones vector corresponding to a polarization ellipse with \(psi\) tilt, and \(chi\) circularity.

            @@ -1063,7 +1063,7 @@

            References
            -sympy.physics.optics.polarization.linear_polarizer(theta=0)[source]
            +sympy.physics.optics.polarization.linear_polarizer(theta=0)[source]

            A linear polarizer Jones matrix with transmission axis at an angle theta.

            @@ -1098,7 +1098,7 @@

            References
            -sympy.physics.optics.polarization.mueller_matrix(J)[source]
            +sympy.physics.optics.polarization.mueller_matrix(J)[source]

            The Mueller matrix corresponding to Jones matrix \(J\).

            Parameters:
            @@ -1171,7 +1171,7 @@

            References
            -sympy.physics.optics.polarization.phase_retarder(theta=0, delta=0)[source]
            +sympy.physics.optics.polarization.phase_retarder(theta=0, delta=0)[source]

            A phase retarder Jones matrix with retardance delta at angle theta.

            Parameters:
            @@ -1225,7 +1225,7 @@

            Referencesphib=0,

            -)[source] +)[source]

            A polarizing beam splitter Jones matrix at angle \(theta\).

            Parameters:
            @@ -1294,7 +1294,7 @@

            References
            -sympy.physics.optics.polarization.quarter_wave_retarder(theta)[source]
            +sympy.physics.optics.polarization.quarter_wave_retarder(theta)[source]

            A quarter-wave retarder Jones matrix at angle theta.

            Parameters:
            @@ -1332,7 +1332,7 @@

            References
            -sympy.physics.optics.polarization.reflective_filter(R)[source]
            +sympy.physics.optics.polarization.reflective_filter(R)[source]

            A reflective filter Jones matrix with reflectance R.

            Parameters:
            @@ -1363,7 +1363,7 @@

            References
            -sympy.physics.optics.polarization.stokes_vector(psi, chi, p=1, I=1)[source]
            +sympy.physics.optics.polarization.stokes_vector(psi, chi, p=1, I=1)[source]

            A Stokes vector corresponding to a polarization ellipse with psi tilt, and chi circularity.

            @@ -1488,7 +1488,7 @@

            References
            -sympy.physics.optics.polarization.transmissive_filter(T)[source]
            +sympy.physics.optics.polarization.transmissive_filter(T)[source]

            An attenuator Jones matrix with transmittance T.

            Parameters:
            diff --git a/dev/modules/physics/optics/utils.html b/dev/modules/physics/optics/utils.html index b2bb961f16a..3d1a705b4c0 100644 --- a/dev/modules/physics/optics/utils.html +++ b/dev/modules/physics/optics/utils.html @@ -815,7 +815,7 @@
            Documentation Version

          -sympy.physics.optics.utils.brewster_angle(medium1, medium2)[source]
          +sympy.physics.optics.utils.brewster_angle(medium1, medium2)[source]

          This function calculates the Brewster’s angle of incidence to Medium 2 from Medium 1 in radians.

          @@ -840,7 +840,7 @@
          Documentation Version
          -sympy.physics.optics.utils.critical_angle(medium1, medium2)[source]
          +sympy.physics.optics.utils.critical_angle(medium1, medium2)[source]

          This function calculates the critical angle of incidence (marking the onset of total internal) to Medium 2 from Medium 1 in radians.

          @@ -875,7 +875,7 @@
          Documentation Version
          plane=None,
          -)[source] +)[source]

          This function calculates the angle of deviation of a ray due to refraction at planar surface.

          @@ -932,7 +932,7 @@
          Documentation Version
          medium2,
          -)[source] +)[source]

          This function uses Fresnel equations to calculate reflection and transmission coefficients. Those are obtained for both polarisations when the electric field vector is in the plane of incidence (labelled ‘p’) @@ -984,7 +984,7 @@

          Documentation Version
          -sympy.physics.optics.utils.hyperfocal_distance(f, N, c)[source]
          +sympy.physics.optics.utils.hyperfocal_distance(f, N, c)[source]
          Parameters:

          f: sympifiable

          @@ -1011,7 +1011,7 @@
          Documentation Version
          -sympy.physics.optics.utils.lens_formula(focal_length=None, u=None, v=None)[source]
          +sympy.physics.optics.utils.lens_formula(focal_length=None, u=None, v=None)[source]

          This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays.

          @@ -1048,7 +1048,7 @@
          Documentation Version
          -sympy.physics.optics.utils.lens_makers_formula(n_lens, n_surr, r1, r2, d=0)[source]
          +sympy.physics.optics.utils.lens_makers_formula(n_lens, n_surr, r1, r2, d=0)[source]

          This function calculates focal length of a lens. It follows cartesian sign convention.

          @@ -1090,7 +1090,7 @@
          Documentation Version
          -sympy.physics.optics.utils.mirror_formula(focal_length=None, u=None, v=None)[source]
          +sympy.physics.optics.utils.mirror_formula(focal_length=None, u=None, v=None)[source]

          This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays.

          @@ -1137,7 +1137,7 @@
          Documentation Version
          plane=None,
          -)[source] +)[source]

          This function calculates transmitted vector after refraction at planar surface. medium1 and medium2 can be Medium or any sympifiable object. If incident is a number then treated as angle of incidence (in radians) @@ -1211,7 +1211,7 @@

          Documentation Version
          -sympy.physics.optics.utils.transverse_magnification(si, so)[source]
          +sympy.physics.optics.utils.transverse_magnification(si, so)[source]

          Calculates the transverse magnification upon reflection in a mirror, which is the ratio of the image size to the object size.

          diff --git a/dev/modules/physics/optics/waves.html b/dev/modules/physics/optics/waves.html index 5f9a48a5b4d..81264dc35e3 100644 --- a/dev/modules/physics/optics/waves.html +++ b/dev/modules/physics/optics/waves.html @@ -817,7 +817,7 @@
          Documentation Version
          n=n,
          -)[source] +)[source]

          This is a simple transverse sine wave travelling in a one-dimensional space. Basic properties are required at the time of creation of the object, but they can be changed later with respective methods provided.

          diff --git a/dev/modules/physics/paulialgebra.html b/dev/modules/physics/paulialgebra.html index 92655825c53..23f7451aaa8 100644 --- a/dev/modules/physics/paulialgebra.html +++ b/dev/modules/physics/paulialgebra.html @@ -814,7 +814,7 @@

          References
          -sympy.physics.paulialgebra.evaluate_pauli_product(arg)[source]
          +sympy.physics.paulialgebra.evaluate_pauli_product(arg)[source]

          Help function to evaluate Pauli matrices product with symbolic objects.

          diff --git a/dev/modules/physics/qho_1d.html b/dev/modules/physics/qho_1d.html index 5779303ac64..44b5f92f13e 100644 --- a/dev/modules/physics/qho_1d.html +++ b/dev/modules/physics/qho_1d.html @@ -802,7 +802,7 @@
          Documentation Version

          Quantum Harmonic Oscillator in 1-D

          -sympy.physics.qho_1d.E_n(n, omega)[source]
          +sympy.physics.qho_1d.E_n(n, omega)[source]

          Returns the Energy of the One-dimensional harmonic oscillator.

          Parameters:
          @@ -833,7 +833,7 @@
          Documentation Version
          -sympy.physics.qho_1d.coherent_state(n, alpha)[source]
          +sympy.physics.qho_1d.coherent_state(n, alpha)[source]

          Returns <n|alpha> for the coherent states of 1D harmonic oscillator. See https://en.wikipedia.org/wiki/Coherent_states

          @@ -852,7 +852,7 @@
          Documentation Version
          -sympy.physics.qho_1d.psi_n(n, x, m, omega)[source]
          +sympy.physics.qho_1d.psi_n(n, x, m, omega)[source]

          Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator.

          Parameters:
          diff --git a/dev/modules/physics/quantum/anticommutator.html b/dev/modules/physics/quantum/anticommutator.html index 8a1f02fe541..b6ebac70546 100644 --- a/dev/modules/physics/quantum/anticommutator.html +++ b/dev/modules/physics/quantum/anticommutator.html @@ -803,7 +803,7 @@
          Documentation Version

          The anti-commutator: {A,B} = A*B + B*A.

          -class sympy.physics.quantum.anticommutator.AntiCommutator(A, B)[source]
          +class sympy.physics.quantum.anticommutator.AntiCommutator(A, B)[source]

          The standard anticommutator, in an unevaluated state.

          Parameters:
          @@ -866,7 +866,7 @@
          Documentation Version

          -doit(**hints)[source]
          +doit(**hints)[source]

          Evaluate anticommutator

          diff --git a/dev/modules/physics/quantum/cartesian.html b/dev/modules/physics/quantum/cartesian.html index 324a50a2286..e6c5e3ca303 100644 --- a/dev/modules/physics/quantum/cartesian.html +++ b/dev/modules/physics/quantum/cartesian.html @@ -807,19 +807,19 @@
          Documentation Version

      -class sympy.physics.quantum.cartesian.PositionBra3D(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.PositionBra3D(*args, **kwargs)[source]

      3D cartesian position eigenbra

      -class sympy.physics.quantum.cartesian.PositionKet3D(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.PositionKet3D(*args, **kwargs)[source]

      3D cartesian position eigenket

      -class sympy.physics.quantum.cartesian.PositionState3D(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.PositionState3D(*args, **kwargs)[source]

      Base class for 3D cartesian position eigenstates

      @@ -843,7 +843,7 @@
      Documentation Version
      -class sympy.physics.quantum.cartesian.PxBra(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.PxBra(*args, **kwargs)[source]

      1D cartesian momentum eigenbra.

      @@ -855,7 +855,7 @@
      Documentation Version
      -class sympy.physics.quantum.cartesian.PxKet(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.PxKet(*args, **kwargs)[source]

      1D cartesian momentum eigenket.

      @@ -867,13 +867,13 @@
      Documentation Version
      -class sympy.physics.quantum.cartesian.PxOp(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.PxOp(*args, **kwargs)[source]

      1D cartesian momentum operator.

      -class sympy.physics.quantum.cartesian.XBra(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.XBra(*args, **kwargs)[source]

      1D cartesian position eigenbra.

      @@ -885,7 +885,7 @@
      Documentation Version
      -class sympy.physics.quantum.cartesian.XKet(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.XKet(*args, **kwargs)[source]

      1D cartesian position eigenket.

      @@ -897,19 +897,19 @@
      Documentation Version
      -class sympy.physics.quantum.cartesian.XOp(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.XOp(*args, **kwargs)[source]

      1D cartesian position operator.

      -class sympy.physics.quantum.cartesian.YOp(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.YOp(*args, **kwargs)[source]

      Y cartesian coordinate operator (for 2D or 3D systems)

      -class sympy.physics.quantum.cartesian.ZOp(*args, **kwargs)[source]
      +class sympy.physics.quantum.cartesian.ZOp(*args, **kwargs)[source]

      Z cartesian coordinate operator (for 3D systems)

      diff --git a/dev/modules/physics/quantum/cg.html b/dev/modules/physics/quantum/cg.html index f10130006a4..a61f2f680f2 100644 --- a/dev/modules/physics/quantum/cg.html +++ b/dev/modules/physics/quantum/cg.html @@ -803,7 +803,7 @@
      Documentation Version

      Clebsch-Gordon Coefficients.

      -class sympy.physics.quantum.cg.CG(j1, m1, j2, m2, j3, m3)[source]
      +class sympy.physics.quantum.cg.CG(j1, m1, j2, m2, j3, m3)[source]

      Class for Clebsch-Gordan coefficient.

      Parameters:
      @@ -866,7 +866,7 @@
      Documentation Version
      -class sympy.physics.quantum.cg.Wigner3j(j1, m1, j2, m2, j3, m3)[source]
      +class sympy.physics.quantum.cg.Wigner3j(j1, m1, j2, m2, j3, m3)[source]

      Class for the Wigner-3j symbols.

      Parameters:
      @@ -911,7 +911,7 @@
      Documentation Version
      -class sympy.physics.quantum.cg.Wigner6j(j1, j2, j12, j3, j, j23)[source]
      +class sympy.physics.quantum.cg.Wigner6j(j1, j2, j12, j3, j, j23)[source]

      Class for the Wigner-6j symbols

      See also

      @@ -924,7 +924,7 @@
      Documentation Version
      -class sympy.physics.quantum.cg.Wigner9j(j1, j2, j12, j3, j4, j34, j13, j24, j)[source]
      +class sympy.physics.quantum.cg.Wigner9j(j1, j2, j12, j3, j4, j34, j13, j24, j)[source]

      Class for the Wigner-9j symbols

      See also

      @@ -937,7 +937,7 @@
      Documentation Version
      -sympy.physics.quantum.cg.cg_simp(e)[source]
      +sympy.physics.quantum.cg.cg_simp(e)[source]

      Simplify and combine CG coefficients.

      Explanation

      This function uses various symmetry and properties of sums and diff --git a/dev/modules/physics/quantum/circuitplot.html b/dev/modules/physics/quantum/circuitplot.html index 6ffe74c18f4..799d696fed7 100644 --- a/dev/modules/physics/quantum/circuitplot.html +++ b/dev/modules/physics/quantum/circuitplot.html @@ -816,7 +816,7 @@

      Documentation Version

    -class sympy.physics.quantum.circuitplot.CircuitPlot(c, nqubits, **kwargs)[source]
    +class sympy.physics.quantum.circuitplot.CircuitPlot(c, nqubits, **kwargs)[source]

    A class for managing a circuit plot.

    @@ -828,43 +828,43 @@
    Documentation Version
    max_wire,
    -)[source] +)[source]

    Draw a vertical control line.

    -control_point(gate_idx, wire_idx)[source]
    +control_point(gate_idx, wire_idx)[source]

    Draw a control point.

    -not_point(gate_idx, wire_idx)[source]
    +not_point(gate_idx, wire_idx)[source]

    Draw a NOT gates as the circle with plus in the middle.

    -one_qubit_box(t, gate_idx, wire_idx)[source]
    +one_qubit_box(t, gate_idx, wire_idx)[source]

    Draw a box for a single qubit gate.

    -swap_point(gate_idx, wire_idx)[source]
    +swap_point(gate_idx, wire_idx)[source]

    Draw a swap point as a cross.

    -two_qubit_box(t, gate_idx, wire_idx)[source]
    +two_qubit_box(t, gate_idx, wire_idx)[source]

    Draw a box for a two qubit gate. Does not work yet.

    -update(kwargs)[source]
    +update(kwargs)[source]

    Load the kwargs into the instance dict.

    @@ -872,13 +872,13 @@
    Documentation Version
    -sympy.physics.quantum.circuitplot.CreateCGate(name, latexname=None)[source]
    +sympy.physics.quantum.circuitplot.CreateCGate(name, latexname=None)[source]

    Use a lexical closure to make a controlled gate.

    -class sympy.physics.quantum.circuitplot.Mx(*args, **kwargs)[source]
    +class sympy.physics.quantum.circuitplot.Mx(*args, **kwargs)[source]

    Mock-up of an x measurement gate.

    This is in circuitplot rather than gate.py because it’s not a real gate, it just draws one.

    @@ -886,7 +886,7 @@
    Documentation Version
    -class sympy.physics.quantum.circuitplot.Mz(*args, **kwargs)[source]
    +class sympy.physics.quantum.circuitplot.Mz(*args, **kwargs)[source]

    Mock-up of a z measurement gate.

    This is in circuitplot rather than gate.py because it’s not a real gate, it just draws one.

    @@ -894,7 +894,7 @@
    Documentation Version
    -sympy.physics.quantum.circuitplot.circuit_plot(c, nqubits, **kwargs)[source]
    +sympy.physics.quantum.circuitplot.circuit_plot(c, nqubits, **kwargs)[source]

    Draw the circuit diagram for the circuit with nqubits.

    Parameters:
    @@ -913,7 +913,7 @@
    Documentation Version
    -sympy.physics.quantum.circuitplot.labeller(n, symbol='q')[source]
    +sympy.physics.quantum.circuitplot.labeller(n, symbol='q')[source]

    Autogenerate labels for wires of quantum circuits.

    Parameters:
    diff --git a/dev/modules/physics/quantum/commutator.html b/dev/modules/physics/quantum/commutator.html index 90341c72395..58b3bc0f6e8 100644 --- a/dev/modules/physics/quantum/commutator.html +++ b/dev/modules/physics/quantum/commutator.html @@ -803,7 +803,7 @@
    Documentation Version

    The commutator: [A,B] = A*B - B*A.

    -class sympy.physics.quantum.commutator.Commutator(A, B)[source]
    +class sympy.physics.quantum.commutator.Commutator(A, B)[source]

    The standard commutator, in an unevaluated state.

    Parameters:
    @@ -878,7 +878,7 @@
    Documentation Version

    -doit(**hints)[source]
    +doit(**hints)[source]

    Evaluate commutator

    diff --git a/dev/modules/physics/quantum/constants.html b/dev/modules/physics/quantum/constants.html index 59739262102..b58e47d2899 100644 --- a/dev/modules/physics/quantum/constants.html +++ b/dev/modules/physics/quantum/constants.html @@ -803,7 +803,7 @@
    Documentation Version

    Constants (like hbar) related to quantum mechanics.

    -class sympy.physics.quantum.constants.HBar[source]
    +class sympy.physics.quantum.constants.HBar[source]

    Reduced Plank’s constant in numerical and symbolic form [R755].

    Examples

    >>> from sympy.physics.quantum.constants import hbar
    diff --git a/dev/modules/physics/quantum/dagger.html b/dev/modules/physics/quantum/dagger.html
    index 4ad860cb801..9a14ef52e5a 100644
    --- a/dev/modules/physics/quantum/dagger.html
    +++ b/dev/modules/physics/quantum/dagger.html
    @@ -803,7 +803,7 @@ 
    Documentation Version

    Hermitian conjugation.

    -class sympy.physics.quantum.dagger.Dagger(arg)[source]
    +class sympy.physics.quantum.dagger.Dagger(arg)[source]

    General Hermitian conjugate operation.

    Parameters:
    diff --git a/dev/modules/physics/quantum/gate.html b/dev/modules/physics/quantum/gate.html index 40856d05f0b..c0f9262da56 100644 --- a/dev/modules/physics/quantum/gate.html +++ b/dev/modules/physics/quantum/gate.html @@ -814,7 +814,7 @@
    Documentation Version
    -class sympy.physics.quantum.gate.CGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.CGate(*args, **kwargs)[source]

    A general unitary gate with control qubits.

    A general control gate applies a target gate to a set of targets if all of the control qubits have a particular values (set by @@ -837,13 +837,13 @@

    Documentation Version
    -decompose(**options)[source]
    +decompose(**options)[source]

    Decompose the controlled gate into CNOT and single qubits gates.

    -eval_controls(qubit)[source]
    +eval_controls(qubit)[source]

    Return True/False to indicate if the controls are satisfied.

    @@ -869,7 +869,7 @@
    Documentation Version
    -plot_gate(circ_plot, gate_idx)[source]
    +plot_gate(circ_plot, gate_idx)[source]

    Plot the controlled gate. If simplify_cgate is true, simplify C-X and C-Z gates into their more familiar forms.

    @@ -884,20 +884,20 @@
    Documentation Version
    -class sympy.physics.quantum.gate.CGateS(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.CGateS(*args, **kwargs)[source]

    Version of CGate that allows gate simplifications. I.e. cnot looks like an oplus, cphase has dots, etc.

    -sympy.physics.quantum.gate.CNOT[source]
    +sympy.physics.quantum.gate.CNOT[source]

    alias of CNotGate

    -class sympy.physics.quantum.gate.CNotGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.CNotGate(*args, **kwargs)[source]

    Two qubit controlled-NOT.

    This gate performs the NOT or X gate on the target qubit if the control qubits all have the value 1.

    @@ -946,7 +946,7 @@
    Documentation Version
    -class sympy.physics.quantum.gate.Gate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.Gate(*args, **kwargs)[source]

    Non-controlled unitary gate operator that acts on qubits.

    This is a general abstract gate that needs to be subclassed to do anything useful.

    @@ -960,7 +960,7 @@
    Documentation Version
    -get_target_matrix(format='sympy')[source]
    +get_target_matrix(format='sympy')[source]

    The matrix representation of the target part of the gate.

    Parameters:
    @@ -996,13 +996,13 @@
    Documentation Version
    -sympy.physics.quantum.gate.H[source]
    +sympy.physics.quantum.gate.H[source]

    alias of HadamardGate

    -class sympy.physics.quantum.gate.HadamardGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.HadamardGate(*args, **kwargs)[source]

    The single qubit Hadamard gate.

    Parameters:
    @@ -1029,7 +1029,7 @@
    Documentation Version
    -class sympy.physics.quantum.gate.IdentityGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.IdentityGate(*args, **kwargs)[source]

    The single qubit identity gate.

    Parameters:
    @@ -1043,19 +1043,19 @@
    Documentation Version
    -class sympy.physics.quantum.gate.OneQubitGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.OneQubitGate(*args, **kwargs)[source]

    A single qubit unitary gate base class.

    -sympy.physics.quantum.gate.Phase[source]
    +sympy.physics.quantum.gate.Phase[source]

    alias of PhaseGate

    -class sympy.physics.quantum.gate.PhaseGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.PhaseGate(*args, **kwargs)[source]

    The single qubit phase, or S, gate.

    This gate rotates the phase of the state by pi/2 if the state is |1> and does nothing if the state is |0>.

    @@ -1071,19 +1071,19 @@
    Documentation Version
    -sympy.physics.quantum.gate.S[source]
    +sympy.physics.quantum.gate.S[source]

    alias of PhaseGate

    -sympy.physics.quantum.gate.SWAP[source]
    +sympy.physics.quantum.gate.SWAP[source]

    alias of SwapGate

    -class sympy.physics.quantum.gate.SwapGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.SwapGate(*args, **kwargs)[source]

    Two qubit SWAP gate.

    This gate swap the values of the two qubits.

    @@ -1096,7 +1096,7 @@
    Documentation Version
    -decompose(**options)[source]
    +decompose(**options)[source]

    Decompose the SWAP gate into CNOT gates.

    @@ -1104,13 +1104,13 @@
    Documentation Version
    -sympy.physics.quantum.gate.T[source]
    +sympy.physics.quantum.gate.T[source]

    alias of TGate

    -class sympy.physics.quantum.gate.TGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.TGate(*args, **kwargs)[source]

    The single qubit pi/8 gate.

    This gate rotates the phase of the state by pi/4 if the state is |1> and does nothing if the state is |0>.

    @@ -1126,13 +1126,13 @@
    Documentation Version
    -class sympy.physics.quantum.gate.TwoQubitGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.TwoQubitGate(*args, **kwargs)[source]

    A two qubit unitary gate base class.

    -class sympy.physics.quantum.gate.UGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.UGate(*args, **kwargs)[source]

    General gate specified by a set of targets and a target matrix.

    Parameters:
    @@ -1146,7 +1146,7 @@
    Documentation Version
    -get_target_matrix(format='sympy')[source]
    +get_target_matrix(format='sympy')[source]

    The matrix rep. of the target part of the gate.

    Parameters:
    @@ -1168,13 +1168,13 @@
    Documentation Version
    -sympy.physics.quantum.gate.X[source]
    +sympy.physics.quantum.gate.X[source]

    alias of XGate

    -class sympy.physics.quantum.gate.XGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.XGate(*args, **kwargs)[source]

    The single qubit X, or NOT, gate.

    Parameters:
    @@ -1188,13 +1188,13 @@
    Documentation Version
    -sympy.physics.quantum.gate.Y[source]
    +sympy.physics.quantum.gate.Y[source]

    alias of YGate

    -class sympy.physics.quantum.gate.YGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.YGate(*args, **kwargs)[source]

    The single qubit Y gate.

    Parameters:
    @@ -1208,13 +1208,13 @@
    Documentation Version
    -sympy.physics.quantum.gate.Z[source]
    +sympy.physics.quantum.gate.Z[source]

    alias of ZGate

    -class sympy.physics.quantum.gate.ZGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.gate.ZGate(*args, **kwargs)[source]

    The single qubit Z gate.

    Parameters:
    @@ -1228,7 +1228,7 @@
    Documentation Version
    -sympy.physics.quantum.gate.gate_simp(circuit)[source]
    +sympy.physics.quantum.gate.gate_simp(circuit)[source]

    Simplifies gates symbolically

    It first sorts gates using gate_sort. It then applies basic simplification rules to the circuit, e.g., XGate**2 = Identity

    @@ -1236,7 +1236,7 @@
    Documentation Version
    -sympy.physics.quantum.gate.gate_sort(circuit)[source]
    +sympy.physics.quantum.gate.gate_sort(circuit)[source]

    Sorts the gates while keeping track of commutation relations

    This function uses a bubble sort to rearrange the order of gate application. Keeps track of Quantum computations special commutation @@ -1247,7 +1247,7 @@

    Documentation Version
    -sympy.physics.quantum.gate.normalized(normalize)[source]
    +sympy.physics.quantum.gate.normalized(normalize)[source]

    Set flag controlling normalization of Hadamard gates by \(1/\sqrt{2}\).

    This is a global setting that can be used to simplify the look of various expressions, by leaving off the leading \(1/\sqrt{2}\) of the Hadamard gate.

    @@ -1280,7 +1280,7 @@
    Documentation Version
    <class 'sympy.physics.quantum.gate.SwapGate'>),
    -)[source] +)[source]

    Return a random circuit of ngates and nqubits.

    This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP) gates.

    diff --git a/dev/modules/physics/quantum/grover.html b/dev/modules/physics/quantum/grover.html index f2e382b9fab..947f79bcd82 100644 --- a/dev/modules/physics/quantum/grover.html +++ b/dev/modules/physics/quantum/grover.html @@ -810,7 +810,7 @@
    Documentation Version
    -class sympy.physics.quantum.grover.OracleGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.grover.OracleGate(*args, **kwargs)[source]

    A black box gate.

    The gate marks the desired qubits of an unknown function by flipping the sign of the qubits. The unknown function returns true when it @@ -856,7 +856,7 @@

    Documentation Version
    -class sympy.physics.quantum.grover.WGate(*args, **kwargs)[source]
    +class sympy.physics.quantum.grover.WGate(*args, **kwargs)[source]

    General n qubit W Gate in Grover’s algorithm.

    The gate performs the operation 2|phi><phi| - 1 on some qubits. |phi> = (tensor product of n Hadamards)*(|0> with n qubits)

    @@ -872,7 +872,7 @@
    Documentation Version
    -sympy.physics.quantum.grover.apply_grover(oracle, nqubits, iterations=None)[source]
    +sympy.physics.quantum.grover.apply_grover(oracle, nqubits, iterations=None)[source]

    Applies grover’s algorithm.

    Parameters:
    @@ -903,7 +903,7 @@
    Documentation Version
    -sympy.physics.quantum.grover.grover_iteration(qstate, oracle)[source]
    +sympy.physics.quantum.grover.grover_iteration(qstate, oracle)[source]

    Applies one application of the Oracle and W Gate, WV.

    Parameters:
    @@ -939,7 +939,7 @@
    Documentation Version
    -sympy.physics.quantum.grover.superposition_basis(nqubits)[source]
    +sympy.physics.quantum.grover.superposition_basis(nqubits)[source]

    Creates an equal superposition of the computational basis.

    Parameters:
    diff --git a/dev/modules/physics/quantum/hilbert.html b/dev/modules/physics/quantum/hilbert.html index 024f89e4f58..cb3ffeb9d98 100644 --- a/dev/modules/physics/quantum/hilbert.html +++ b/dev/modules/physics/quantum/hilbert.html @@ -806,7 +806,7 @@
    Documentation Version
    * Matt Curry

    -class sympy.physics.quantum.hilbert.ComplexSpace(dimension)[source]
    +class sympy.physics.quantum.hilbert.ComplexSpace(dimension)[source]

    Finite dimensional Hilbert space of complex vectors.

    The elements of this Hilbert space are n-dimensional complex valued vectors with the usual inner product that takes the complex conjugate @@ -837,7 +837,7 @@

    Documentation Version
    -class sympy.physics.quantum.hilbert.DirectSumHilbertSpace(*args)[source]
    +class sympy.physics.quantum.hilbert.DirectSumHilbertSpace(*args)[source]

    A direct sum of Hilbert spaces [R758].

    This class uses the + operator to represent direct sums between different Hilbert spaces.

    @@ -869,7 +869,7 @@
    Documentation Version
    -classmethod eval(args)[source]
    +classmethod eval(args)[source]

    Evaluates the direct product.

    @@ -883,7 +883,7 @@
    Documentation Version
    -class sympy.physics.quantum.hilbert.FockSpace[source]
    +class sympy.physics.quantum.hilbert.FockSpace[source]

    The Hilbert space for second quantization.

    Technically, this Hilbert space is a infinite direct sum of direct products of single particle Hilbert spaces [R759]. This is a mess, so we have @@ -909,7 +909,7 @@

    Documentation Version
    -class sympy.physics.quantum.hilbert.HilbertSpace[source]
    +class sympy.physics.quantum.hilbert.HilbertSpace[source]

    An abstract Hilbert space for quantum mechanics.

    In short, a Hilbert space is an abstract vector space that is complete with inner products defined [R760].

    @@ -938,7 +938,7 @@
    Documentation Version
    -class sympy.physics.quantum.hilbert.L2(interval)[source]
    +class sympy.physics.quantum.hilbert.L2(interval)[source]

    The Hilbert space of square integrable functions on an interval.

    An L2 object takes in a single SymPy Interval argument which represents the interval its functions (vectors) are defined on.

    @@ -958,7 +958,7 @@
    Documentation Version
    -class sympy.physics.quantum.hilbert.TensorPowerHilbertSpace(*args)[source]
    +class sympy.physics.quantum.hilbert.TensorPowerHilbertSpace(*args)[source]

    An exponentiated Hilbert space [R761].

    Tensor powers (repeated tensor products) are represented by the operator ** Identical Hilbert spaces that are multiplied together @@ -1000,7 +1000,7 @@

    Documentation Version
    -class sympy.physics.quantum.hilbert.TensorProductHilbertSpace(*args)[source]
    +class sympy.physics.quantum.hilbert.TensorProductHilbertSpace(*args)[source]

    A tensor product of Hilbert spaces [R762].

    The tensor product between Hilbert spaces is represented by the operator * Products of the same Hilbert space will be combined into @@ -1045,7 +1045,7 @@

    Documentation Version
    -classmethod eval(args)[source]
    +classmethod eval(args)[source]

    Evaluates the direct product.

    diff --git a/dev/modules/physics/quantum/innerproduct.html b/dev/modules/physics/quantum/innerproduct.html index 486161da0cf..87cd9eeb43b 100644 --- a/dev/modules/physics/quantum/innerproduct.html +++ b/dev/modules/physics/quantum/innerproduct.html @@ -803,7 +803,7 @@
    Documentation Version

    Symbolic inner product.

    -class sympy.physics.quantum.innerproduct.InnerProduct(bra, ket)[source]
    +class sympy.physics.quantum.innerproduct.InnerProduct(bra, ket)[source]

    An unevaluated inner product between a Bra and a Ket [1].

    Parameters:
    diff --git a/dev/modules/physics/quantum/operator.html b/dev/modules/physics/quantum/operator.html index 23eb4ae5a03..c30886a9c56 100644 --- a/dev/modules/physics/quantum/operator.html +++ b/dev/modules/physics/quantum/operator.html @@ -811,7 +811,7 @@
    Documentation Version
    -class sympy.physics.quantum.operator.DifferentialOperator(*args, **kwargs)[source]
    +class sympy.physics.quantum.operator.DifferentialOperator(*args, **kwargs)[source]

    An operator for representing the differential operator, i.e. d/dx

    It is initialized by passing two arguments. The first is an arbitrary expression that involves a function, such as Derivative(f(x), x). The @@ -925,7 +925,7 @@

    Documentation Version
    -class sympy.physics.quantum.operator.HermitianOperator(*args, **kwargs)[source]
    +class sympy.physics.quantum.operator.HermitianOperator(*args, **kwargs)[source]

    A Hermitian operator that satisfies H == Dagger(H).

    Parameters:
    @@ -947,7 +947,7 @@
    Documentation Version
    -class sympy.physics.quantum.operator.IdentityOperator(*args, **kwargs)[source]
    +class sympy.physics.quantum.operator.IdentityOperator(*args, **kwargs)[source]

    An identity operator I that satisfies op * I == I * op == op for any operator op.

    @@ -969,7 +969,7 @@
    Documentation Version
    -class sympy.physics.quantum.operator.Operator(*args, **kwargs)[source]
    +class sympy.physics.quantum.operator.Operator(*args, **kwargs)[source]

    Base class for non-commuting quantum operators.

    An operator maps between quantum states [R764]. In quantum mechanics, observables (including, but not limited to, measured physical values) are @@ -1044,7 +1044,7 @@

    Documentation Version
    -class sympy.physics.quantum.operator.OuterProduct(*args, **old_assumptions)[source]
    +class sympy.physics.quantum.operator.OuterProduct(*args, **old_assumptions)[source]

    An unevaluated outer product between a ket and bra.

    This constructs an outer product between any subclass of KetBase and BraBase as |a><b|. An OuterProduct inherits from Operator as they act as @@ -1124,7 +1124,7 @@

    Documentation Version
    -class sympy.physics.quantum.operator.UnitaryOperator(*args, **kwargs)[source]
    +class sympy.physics.quantum.operator.UnitaryOperator(*args, **kwargs)[source]

    A unitary operator that satisfies U*Dagger(U) == 1.

    Parameters:
    diff --git a/dev/modules/physics/quantum/operatorset.html b/dev/modules/physics/quantum/operatorset.html index 7c480be74e8..2b4ba274984 100644 --- a/dev/modules/physics/quantum/operatorset.html +++ b/dev/modules/physics/quantum/operatorset.html @@ -813,7 +813,7 @@
    Documentation Version
    - Update the dictionary with a complete list of state-operator pairs

    -sympy.physics.quantum.operatorset.operators_to_state(operators, **options)[source]
    +sympy.physics.quantum.operatorset.operators_to_state(operators, **options)[source]

    Returns the eigenstate of the given operator or set of operators

    A global function for mapping operator classes to their associated states. It takes either an Operator or a set of operators and @@ -864,7 +864,7 @@

    Documentation Version
    -sympy.physics.quantum.operatorset.state_to_operators(state, **options)[source]
    +sympy.physics.quantum.operatorset.state_to_operators(state, **options)[source]

    Returns the operator or set of operators corresponding to the given eigenstate

    A global function for mapping state classes to their associated diff --git a/dev/modules/physics/quantum/piab.html b/dev/modules/physics/quantum/piab.html index 9523bec68b5..17f8acba6fa 100644 --- a/dev/modules/physics/quantum/piab.html +++ b/dev/modules/physics/quantum/piab.html @@ -803,19 +803,19 @@

    Documentation Version

    1D quantum particle in a box.

    -class sympy.physics.quantum.piab.PIABBra(*args, **kwargs)[source]
    +class sympy.physics.quantum.piab.PIABBra(*args, **kwargs)[source]

    Particle in a box eigenbra.

    -class sympy.physics.quantum.piab.PIABHamiltonian(*args, **kwargs)[source]
    +class sympy.physics.quantum.piab.PIABHamiltonian(*args, **kwargs)[source]

    Particle in a box Hamiltonian operator.

    -class sympy.physics.quantum.piab.PIABKet(*args, **kwargs)[source]
    +class sympy.physics.quantum.piab.PIABKet(*args, **kwargs)[source]

    Particle in a box eigenket.

    diff --git a/dev/modules/physics/quantum/qapply.html b/dev/modules/physics/quantum/qapply.html index 35434b5f405..f871d7de00d 100644 --- a/dev/modules/physics/quantum/qapply.html +++ b/dev/modules/physics/quantum/qapply.html @@ -805,7 +805,7 @@
    Documentation Version
    * Sometimes the final result needs to be expanded, we should do this by hand.

    -sympy.physics.quantum.qapply.qapply(e, **options)[source]
    +sympy.physics.quantum.qapply.qapply(e, **options)[source]

    Apply operators to states in a quantum expression.

    Parameters:
    diff --git a/dev/modules/physics/quantum/qft.html b/dev/modules/physics/quantum/qft.html index d6c4df8cbd8..1d6f2196169 100644 --- a/dev/modules/physics/quantum/qft.html +++ b/dev/modules/physics/quantum/qft.html @@ -813,11 +813,11 @@
    Documentation Version
    -class sympy.physics.quantum.qft.IQFT(*args, **kwargs)[source]
    +class sympy.physics.quantum.qft.IQFT(*args, **kwargs)[source]

    The inverse quantum Fourier transform.

    -decompose()[source]
    +decompose()[source]

    Decomposes IQFT into elementary gates.

    @@ -825,11 +825,11 @@
    Documentation Version
    -class sympy.physics.quantum.qft.QFT(*args, **kwargs)[source]
    +class sympy.physics.quantum.qft.QFT(*args, **kwargs)[source]

    The forward quantum Fourier transform.

    -decompose()[source]
    +decompose()[source]

    Decomposes QFT into elementary gates.

    @@ -837,13 +837,13 @@
    Documentation Version
    -sympy.physics.quantum.qft.Rk[source]
    +sympy.physics.quantum.qft.Rk[source]

    alias of RkGate

    -class sympy.physics.quantum.qft.RkGate(*args)[source]
    +class sympy.physics.quantum.qft.RkGate(*args)[source]

    This is the R_k gate of the QTF.

    diff --git a/dev/modules/physics/quantum/qubit.html b/dev/modules/physics/quantum/qubit.html index ffd3738936a..704dd93d7c6 100644 --- a/dev/modules/physics/quantum/qubit.html +++ b/dev/modules/physics/quantum/qubit.html @@ -807,7 +807,7 @@
    Documentation Version
    * Update tests.

    -class sympy.physics.quantum.qubit.IntQubit(*args, **kwargs)[source]
    +class sympy.physics.quantum.qubit.IntQubit(*args, **kwargs)[source]

    A qubit ket that store integers as binary numbers in qubit values.

    The differences between this class and Qubit are:

      @@ -882,13 +882,13 @@
      Documentation Version
      -class sympy.physics.quantum.qubit.IntQubitBra(*args, **kwargs)[source]
      +class sympy.physics.quantum.qubit.IntQubitBra(*args, **kwargs)[source]

      A qubit bra that store integers as binary numbers in qubit values.

      -class sympy.physics.quantum.qubit.Qubit(*args, **kwargs)[source]
      +class sympy.physics.quantum.qubit.Qubit(*args, **kwargs)[source]

      A multi-qubit ket in the computational (z) basis.

      We use the normal convention that the least significant qubit is on the right, so |00001> has a 1 in the least significant qubit.

      @@ -945,7 +945,7 @@
      Documentation Version
      -class sympy.physics.quantum.qubit.QubitBra(*args, **kwargs)[source]
      +class sympy.physics.quantum.qubit.QubitBra(*args, **kwargs)[source]

      A multi-qubit bra in the computational (z) basis.

      We use the normal convention that the least significant qubit is on the right, so |00001> has a 1 in the least significant qubit.

      @@ -968,7 +968,7 @@
      Documentation Version
      -sympy.physics.quantum.qubit.matrix_to_density(mat)[source]
      +sympy.physics.quantum.qubit.matrix_to_density(mat)[source]

      Works by finding the eigenvectors and eigenvalues of the matrix. We know we can decompose rho by doing: sum(EigenVal*|Eigenvect><Eigenvect|)

      @@ -976,7 +976,7 @@
      Documentation Version
      -sympy.physics.quantum.qubit.matrix_to_qubit(matrix)[source]
      +sympy.physics.quantum.qubit.matrix_to_qubit(matrix)[source]

      Convert from the matrix repr. to a sum of Qubit objects.

      Parameters:
      @@ -1000,7 +1000,7 @@
      Documentation Version
      -sympy.physics.quantum.qubit.measure_all(qubit, format='sympy', normalize=True)[source]
      +sympy.physics.quantum.qubit.measure_all(qubit, format='sympy', normalize=True)[source]

      Perform an ensemble measurement of all qubits.

      Parameters:
      @@ -1041,7 +1041,7 @@
      Documentation Version
      -sympy.physics.quantum.qubit.measure_all_oneshot(qubit, format='sympy')[source]
      +sympy.physics.quantum.qubit.measure_all_oneshot(qubit, format='sympy')[source]

      Perform a oneshot ensemble measurement on all qubits.

      A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities @@ -1082,7 +1082,7 @@

      Documentation Version
      normalize=True,
      -)[source] +)[source]

      Perform a partial ensemble measure on the specified qubits.

      Parameters:
      @@ -1135,7 +1135,7 @@
      Documentation Version
      format='sympy',
      -)[source] +)[source]

      Perform a partial oneshot measurement on the specified qubits.

      A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities @@ -1171,7 +1171,7 @@

      Documentation Version
      -sympy.physics.quantum.qubit.qubit_to_matrix(qubit, format='sympy')[source]
      +sympy.physics.quantum.qubit.qubit_to_matrix(qubit, format='sympy')[source]

      Converts an Add/Mul of Qubit objects into it’s matrix representation

      This function is the inverse of matrix_to_qubit and is a shorthand for represent(qubit).

      diff --git a/dev/modules/physics/quantum/represent.html b/dev/modules/physics/quantum/represent.html index 9f0b7b2c459..f30607c547c 100644 --- a/dev/modules/physics/quantum/represent.html +++ b/dev/modules/physics/quantum/represent.html @@ -808,7 +808,7 @@
      Documentation Version
    -sympy.physics.quantum.represent.enumerate_states(*args, **options)[source]
    +sympy.physics.quantum.represent.enumerate_states(*args, **options)[source]

    Returns instances of the given state with dummy indices appended

    Operates in two different modes:

      @@ -852,7 +852,7 @@
      Documentation Version
      **options,
    -)[source] +)[source]

    Returns a basis state instance corresponding to the basis specified in options=s. If no basis is specified, the function tries to form a default basis state of the given expression.

    @@ -899,7 +899,7 @@
    Documentation Version
    -sympy.physics.quantum.represent.integrate_result(orig_expr, result, **options)[source]
    +sympy.physics.quantum.represent.integrate_result(orig_expr, result, **options)[source]

    Returns the result of integrating over any unities (|x><x|) in the given expression. Intended for integrating over the result of representations in continuous bases.

    @@ -941,7 +941,7 @@
    Documentation Version
    -sympy.physics.quantum.represent.rep_expectation(expr, **options)[source]
    +sympy.physics.quantum.represent.rep_expectation(expr, **options)[source]

    Returns an <x'|A|x> type representation for the given operator.

    Parameters:
    @@ -966,7 +966,7 @@
    Documentation Version
    -sympy.physics.quantum.represent.rep_innerproduct(expr, **options)[source]
    +sympy.physics.quantum.represent.rep_innerproduct(expr, **options)[source]

    Returns an innerproduct like representation (e.g. <x'|x>) for the given state.

    Attempts to calculate inner product with a bra from the specified @@ -994,7 +994,7 @@

    Documentation Version
    -sympy.physics.quantum.represent.represent(expr, **options)[source]
    +sympy.physics.quantum.represent.represent(expr, **options)[source]

    Represent the quantum expression in the given basis.

    In quantum mechanics abstract states and operators can be represented in various basis sets. Under this operation the follow transforms happen:

    diff --git a/dev/modules/physics/quantum/shor.html b/dev/modules/physics/quantum/shor.html index 6e8c36acb8e..52b3fa8527c 100644 --- a/dev/modules/physics/quantum/shor.html +++ b/dev/modules/physics/quantum/shor.html @@ -809,7 +809,7 @@
    Documentation Version
    -class sympy.physics.quantum.shor.CMod(*args, **kwargs)[source]
    +class sympy.physics.quantum.shor.CMod(*args, **kwargs)[source]

    A controlled mod gate.

    This is black box controlled Mod function for use by shor’s algorithm. TODO: implement a decompose property that returns how to do this in terms @@ -836,7 +836,7 @@

    Documentation Version
    -sympy.physics.quantum.shor.period_find(a, N)[source]
    +sympy.physics.quantum.shor.period_find(a, N)[source]

    Finds the period of a in modulo N arithmetic

    This is quantum part of Shor’s algorithm. It takes two registers, puts first in superposition of states with Hadamards so: |k>|0> @@ -846,7 +846,7 @@

    Documentation Version
    -sympy.physics.quantum.shor.shor(N)[source]
    +sympy.physics.quantum.shor.shor(N)[source]

    This function implements Shor’s factoring algorithm on the Integer N

    The algorithm starts by picking a random number (a) and seeing if it is coprime with N. If it is not, then the gcd of the two numbers is a factor diff --git a/dev/modules/physics/quantum/spin.html b/dev/modules/physics/quantum/spin.html index 7fd6e2028b0..eedc35b884a 100644 --- a/dev/modules/physics/quantum/spin.html +++ b/dev/modules/physics/quantum/spin.html @@ -803,13 +803,13 @@

    Documentation Version

    Quantum mechanical angular momemtum.

    -class sympy.physics.quantum.spin.J2Op(*args, **kwargs)[source]
    +class sympy.physics.quantum.spin.J2Op(*args, **kwargs)[source]

    The J^2 operator.

    -class sympy.physics.quantum.spin.JxBra(j, m)[source]
    +class sympy.physics.quantum.spin.JxBra(j, m)[source]

    Eigenbra of Jx.

    See JzKet for the usage of spin eigenstates.

    @@ -823,7 +823,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JxBraCoupled(j, m, jn, *jcoupling)[source]
    +class sympy.physics.quantum.spin.JxBraCoupled(j, m, jn, *jcoupling)[source]

    Coupled eigenbra of Jx.

    See JzKetCoupled for the usage of coupled spin eigenstates.

    @@ -837,7 +837,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JxKet(j, m)[source]
    +class sympy.physics.quantum.spin.JxKet(j, m)[source]

    Eigenket of Jx.

    See JzKet for the usage of spin eigenstates.

    @@ -851,7 +851,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JxKetCoupled(j, m, jn, *jcoupling)[source]
    +class sympy.physics.quantum.spin.JxKetCoupled(j, m, jn, *jcoupling)[source]

    Coupled eigenket of Jx.

    See JzKetCoupled for the usage of coupled spin eigenstates.

    @@ -865,7 +865,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JyBra(j, m)[source]
    +class sympy.physics.quantum.spin.JyBra(j, m)[source]

    Eigenbra of Jy.

    See JzKet for the usage of spin eigenstates.

    @@ -879,7 +879,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JyBraCoupled(j, m, jn, *jcoupling)[source]
    +class sympy.physics.quantum.spin.JyBraCoupled(j, m, jn, *jcoupling)[source]

    Coupled eigenbra of Jy.

    See JzKetCoupled for the usage of coupled spin eigenstates.

    @@ -893,7 +893,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JyKet(j, m)[source]
    +class sympy.physics.quantum.spin.JyKet(j, m)[source]

    Eigenket of Jy.

    See JzKet for the usage of spin eigenstates.

    @@ -907,7 +907,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JyKetCoupled(j, m, jn, *jcoupling)[source]
    +class sympy.physics.quantum.spin.JyKetCoupled(j, m, jn, *jcoupling)[source]

    Coupled eigenket of Jy.

    See JzKetCoupled for the usage of coupled spin eigenstates.

    @@ -921,7 +921,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JzBra(j, m)[source]
    +class sympy.physics.quantum.spin.JzBra(j, m)[source]

    Eigenbra of Jz.

    See the JzKet for the usage of spin eigenstates.

    @@ -935,7 +935,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JzBraCoupled(j, m, jn, *jcoupling)[source]
    +class sympy.physics.quantum.spin.JzBraCoupled(j, m, jn, *jcoupling)[source]

    Coupled eigenbra of Jz.

    See the JzKetCoupled for the usage of coupled spin eigenstates.

    @@ -949,7 +949,7 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JzKet(j, m)[source]
    +class sympy.physics.quantum.spin.JzKet(j, m)[source]

    Eigenket of Jz.

    Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin @@ -1065,7 +1065,7 @@

    Documentation Version
    -class sympy.physics.quantum.spin.JzKetCoupled(j, m, jn, *jcoupling)[source]
    +class sympy.physics.quantum.spin.JzKetCoupled(j, m, jn, *jcoupling)[source]

    Coupled eigenket of Jz

    Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces.

    @@ -1183,13 +1183,13 @@
    Documentation Version
    -class sympy.physics.quantum.spin.JzOp(*args, **kwargs)[source]
    +class sympy.physics.quantum.spin.JzOp(*args, **kwargs)[source]

    The Jz operator.

    -class sympy.physics.quantum.spin.Rotation(*args, **kwargs)[source]
    +class sympy.physics.quantum.spin.Rotation(*args, **kwargs)[source]

    Wigner D operator in terms of Euler angles.

    Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate @@ -1251,7 +1251,7 @@

    Documentation Version
    -classmethod D(j, m, mp, alpha, beta, gamma)[source]
    +classmethod D(j, m, mp, alpha, beta, gamma)[source]

    Wigner D-function.

    Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters.

    @@ -1304,7 +1304,7 @@
    Documentation Version
    -classmethod d(j, m, mp, beta)[source]
    +classmethod d(j, m, mp, beta)[source]

    Wigner small-d function.

    Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters with the alpha and gamma angles @@ -1352,7 +1352,7 @@

    Documentation Version
    -class sympy.physics.quantum.spin.WignerD(*args, **hints)[source]
    +class sympy.physics.quantum.spin.WignerD(*args, **hints)[source]

    Wigner-D function

    The Wigner D-function gives the matrix elements of the rotation operator in the jm-representation. For the Euler angles \(\alpha\), @@ -1445,7 +1445,7 @@

    Documentation Version
    -sympy.physics.quantum.spin.couple(expr, jcoupling_list=None)[source]
    +sympy.physics.quantum.spin.couple(expr, jcoupling_list=None)[source]

    Couple a tensor product of spin states

    This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It @@ -1504,7 +1504,7 @@

    Documentation Version
    -sympy.physics.quantum.spin.uncouple(expr, jn=None, jcoupling_list=None)[source]
    +sympy.physics.quantum.spin.uncouple(expr, jn=None, jcoupling_list=None)[source]

    Uncouple a coupled spin state

    Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin diff --git a/dev/modules/physics/quantum/state.html b/dev/modules/physics/quantum/state.html index e7c52a3ea18..9d3c04e1e67 100644 --- a/dev/modules/physics/quantum/state.html +++ b/dev/modules/physics/quantum/state.html @@ -803,7 +803,7 @@

    Documentation Version

    Dirac notation for states.

    -class sympy.physics.quantum.state.Bra(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.Bra(*args, **kwargs)[source]

    A general time-independent Bra in quantum mechanics.

    Inherits from State and BraBase. A Bra is the dual of a Ket [R769]. This class and its subclasses will be the main classes that users will use for @@ -863,7 +863,7 @@

    Documentation Version
    -class sympy.physics.quantum.state.BraBase(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.BraBase(*args, **kwargs)[source]

    Base class for Bras.

    This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, @@ -872,7 +872,7 @@

    Documentation Version
    -class sympy.physics.quantum.state.Ket(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.Ket(*args, **kwargs)[source]

    A general time-independent Ket in quantum mechanics.

    Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class @@ -936,7 +936,7 @@

    Documentation Version
    -class sympy.physics.quantum.state.KetBase(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.KetBase(*args, **kwargs)[source]

    Base class for Kets.

    This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead @@ -945,13 +945,13 @@

    Documentation Version
    -class sympy.physics.quantum.state.OrthogonalBra(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.OrthogonalBra(*args, **kwargs)[source]

    Orthogonal Bra in quantum mechanics.

    -class sympy.physics.quantum.state.OrthogonalKet(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.OrthogonalKet(*args, **kwargs)[source]

    Orthogonal Ket in quantum mechanics.

    The inner product of two states with different labels will give zero, states with the same label will give one.

    @@ -969,19 +969,19 @@
    Documentation Version
    -class sympy.physics.quantum.state.OrthogonalState(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.OrthogonalState(*args, **kwargs)[source]

    General abstract quantum state used as a base class for Ket and Bra.

    -class sympy.physics.quantum.state.State(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.State(*args, **kwargs)[source]

    General abstract quantum state used as a base class for Ket and Bra.

    -class sympy.physics.quantum.state.StateBase(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.StateBase(*args, **kwargs)[source]

    Abstract base class for general abstract states in quantum mechanics.

    All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint @@ -996,7 +996,7 @@

    Documentation Version
    -classmethod dual_class()[source]
    +classmethod dual_class()[source]

    Return the class used to construct the dual.

    @@ -1010,7 +1010,7 @@
    Documentation Version
    -class sympy.physics.quantum.state.TimeDepBra(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.TimeDepBra(*args, **kwargs)[source]

    General time-dependent Bra in quantum mechanics.

    This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra.

    @@ -1043,7 +1043,7 @@
    Documentation Version
    -class sympy.physics.quantum.state.TimeDepKet(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.TimeDepKet(*args, **kwargs)[source]

    General time-dependent Ket in quantum mechanics.

    This inherits from TimeDepState and KetBase and is the main class that should be used for Kets that vary with time. Its dual is a @@ -1083,7 +1083,7 @@

    Documentation Version
    -class sympy.physics.quantum.state.TimeDepState(*args, **kwargs)[source]
    +class sympy.physics.quantum.state.TimeDepState(*args, **kwargs)[source]

    Base class for a general time-dependent quantum state.

    This class is used as a base class for any time-dependent state. The main difference between this class and the time-independent state is that this @@ -1115,7 +1115,7 @@

    Documentation Version
    -class sympy.physics.quantum.state.Wavefunction(*args)[source]
    +class sympy.physics.quantum.state.Wavefunction(*args)[source]

    Class for representations in continuous bases

    This class takes an expression and coordinates in its constructor. It can be used to easily calculate normalizations and probabilities.

    @@ -1285,7 +1285,7 @@
    Documentation Version
    -normalize()[source]
    +normalize()[source]

    Return a normalized version of the Wavefunction

    Examples

    >>> from sympy import symbols, pi
    @@ -1304,7 +1304,7 @@ 
    Documentation Version
    -prob()[source]
    +prob()[source]

    Return the absolute magnitude of the w.f., \(|\psi(x)|^2\)

    Examples

    >>> from sympy import symbols, pi
    diff --git a/dev/modules/physics/quantum/tensorproduct.html b/dev/modules/physics/quantum/tensorproduct.html
    index b14d4bdb6a7..9ac51fc9c50 100644
    --- a/dev/modules/physics/quantum/tensorproduct.html
    +++ b/dev/modules/physics/quantum/tensorproduct.html
    @@ -803,7 +803,7 @@ 
    Documentation Version

    Abstract tensor product.

    -class sympy.physics.quantum.tensorproduct.TensorProduct(*args)[source]
    +class sympy.physics.quantum.tensorproduct.TensorProduct(*args)[source]

    The tensor product of two or more arguments.

    For matrices, this uses matrix_tensor_product to compute the Kronecker or tensor product matrix. For other objects a symbolic TensorProduct @@ -872,7 +872,7 @@

    Documentation Version
    -sympy.physics.quantum.tensorproduct.tensor_product_simp(e, **hints)[source]
    +sympy.physics.quantum.tensorproduct.tensor_product_simp(e, **hints)[source]

    Try to simplify and combine TensorProducts.

    In general this will try to pull expressions inside of TensorProducts. It currently only works for relatively simple cases where the products have diff --git a/dev/modules/physics/secondquant.html b/dev/modules/physics/secondquant.html index c7fb1ea7208..8c602d650ae 100644 --- a/dev/modules/physics/secondquant.html +++ b/dev/modules/physics/secondquant.html @@ -805,7 +805,7 @@

    Documentation Version
    of Many-Particle Systems.”

    -class sympy.physics.secondquant.AnnihilateBoson(k)[source]
    +class sympy.physics.secondquant.AnnihilateBoson(k)[source]

    Bosonic annihilation operator.

    Examples

    >>> from sympy.physics.secondquant import B
    @@ -816,7 +816,7 @@ 
    Documentation Version
    -apply_operator(state)[source]
    +apply_operator(state)[source]

    Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

    Examples

    @@ -834,11 +834,11 @@
    Documentation Version
    -class sympy.physics.secondquant.AnnihilateFermion(k)[source]
    +class sympy.physics.secondquant.AnnihilateFermion(k)[source]

    Fermionic annihilation operator.

    -apply_operator(state)[source]
    +apply_operator(state)[source]

    Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

    Examples

    @@ -946,7 +946,7 @@
    Documentation Version
    -class sympy.physics.secondquant.AntiSymmetricTensor(symbol, upper, lower)[source]
    +class sympy.physics.secondquant.AntiSymmetricTensor(symbol, upper, lower)[source]

    Stores upper and lower indices in separate Tuple’s.

    Each group of indices is assumed to be antisymmetric.

    Examples

    @@ -1016,37 +1016,37 @@
    Documentation Version
    -sympy.physics.secondquant.B[source]
    +sympy.physics.secondquant.B[source]

    alias of AnnihilateBoson

    -sympy.physics.secondquant.BBra[source]
    +sympy.physics.secondquant.BBra[source]

    alias of FockStateBosonBra

    -sympy.physics.secondquant.BKet[source]
    +sympy.physics.secondquant.BKet[source]

    alias of FockStateBosonKet

    -sympy.physics.secondquant.Bd[source]
    +sympy.physics.secondquant.Bd[source]

    alias of CreateBoson

    -class sympy.physics.secondquant.BosonicBasis[source]
    +class sympy.physics.secondquant.BosonicBasis[source]

    Base class for a basis set of bosonic Fock states.

    -class sympy.physics.secondquant.Commutator(a, b)[source]
    +class sympy.physics.secondquant.Commutator(a, b)[source]

    The Commutator: [A, B] = A*B - B*A

    The arguments are ordered according to .__cmp__()

    Examples

    @@ -1087,7 +1087,7 @@
    Documentation Version
    -doit(**hints)[source]
    +doit(**hints)[source]

    Enables the computation of complex expressions.

    Examples

    >>> from sympy.physics.secondquant import Commutator, F, Fd
    @@ -1103,7 +1103,7 @@ 
    Documentation Version
    -classmethod eval(a, b)[source]
    +classmethod eval(a, b)[source]

    The Commutator [A,B] is on canonical form if A < B.

    Examples

    >>> from sympy.physics.secondquant import Commutator, F, Fd
    @@ -1120,11 +1120,11 @@ 
    Documentation Version
    -class sympy.physics.secondquant.CreateBoson(k)[source]
    +class sympy.physics.secondquant.CreateBoson(k)[source]

    Bosonic creation operator.

    -apply_operator(state)[source]
    +apply_operator(state)[source]

    Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

    Examples

    @@ -1142,11 +1142,11 @@
    Documentation Version
    -class sympy.physics.secondquant.CreateFermion(k)[source]
    +class sympy.physics.secondquant.CreateFermion(k)[source]

    Fermionic creation operator.

    -apply_operator(state)[source]
    +apply_operator(state)[source]

    Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

    Examples

    @@ -1254,7 +1254,7 @@
    Documentation Version
    -class sympy.physics.secondquant.Dagger(arg)[source]
    +class sympy.physics.secondquant.Dagger(arg)[source]

    Hermitian conjugate of creation/annihilation operators.

    Examples

    >>> from sympy import I
    @@ -1269,7 +1269,7 @@ 
    Documentation Version
    -classmethod eval(arg)[source]
    +classmethod eval(arg)[source]

    Evaluates the Dagger instance.

    Examples

    >>> from sympy import I
    @@ -1289,31 +1289,31 @@ 
    Documentation Version
    -sympy.physics.secondquant.F[source]
    +sympy.physics.secondquant.F[source]

    alias of AnnihilateFermion

    -sympy.physics.secondquant.FBra[source]
    +sympy.physics.secondquant.FBra[source]

    alias of FockStateFermionBra

    -sympy.physics.secondquant.FKet[source]
    +sympy.physics.secondquant.FKet[source]

    alias of FockStateFermionKet

    -sympy.physics.secondquant.Fd[source]
    +sympy.physics.secondquant.Fd[source]

    alias of CreateFermion

    -class sympy.physics.secondquant.FixedBosonicBasis(n_particles, n_levels)[source]
    +class sympy.physics.secondquant.FixedBosonicBasis(n_particles, n_levels)[source]

    Fixed particle number basis set.

    Examples

    >>> from sympy.physics.secondquant import FixedBosonicBasis
    @@ -1329,7 +1329,7 @@ 
    Documentation Version
    -index(state)[source]
    +index(state)[source]

    Returns the index of state in basis.

    Examples

    >>> from sympy.physics.secondquant import FixedBosonicBasis
    @@ -1342,7 +1342,7 @@ 
    Documentation Version
    -state(i)[source]
    +state(i)[source]

    Returns the state that lies at index i of the basis

    Examples

    >>> from sympy.physics.secondquant import FixedBosonicBasis
    @@ -1357,7 +1357,7 @@ 
    Documentation Version
    -class sympy.physics.secondquant.FockState(occupations)[source]
    +class sympy.physics.secondquant.FockState(occupations)[source]

    Many particle Fock state with a sequence of occupation numbers.

    Anywhere you can have a FockState, you can also have S.Zero. All code must check for this!

    @@ -1366,7 +1366,7 @@
    Documentation Version
    -class sympy.physics.secondquant.FockStateBosonBra(occupations)[source]
    +class sympy.physics.secondquant.FockStateBosonBra(occupations)[source]

    Describes a collection of BosonBra particles.

    Examples

    >>> from sympy.physics.secondquant import BBra
    @@ -1378,7 +1378,7 @@ 
    Documentation Version
    -class sympy.physics.secondquant.FockStateBosonKet(occupations)[source]
    +class sympy.physics.secondquant.FockStateBosonKet(occupations)[source]

    Many particle Fock state with a sequence of occupation numbers.

    Occupation numbers can be any integer >= 0.

    Examples

    @@ -1391,13 +1391,13 @@
    Documentation Version
    -class sympy.physics.secondquant.FockStateBra(occupations)[source]
    +class sympy.physics.secondquant.FockStateBra(occupations)[source]

    Representation of a bra.

    -class sympy.physics.secondquant.FockStateFermionBra(occupations, fermi_level=0)[source]
    +class sympy.physics.secondquant.FockStateFermionBra(occupations, fermi_level=0)[source]

    Examples

    >>> from sympy.physics.secondquant import FBra
     >>> FBra([1, 2])
    @@ -1412,7 +1412,7 @@ 
    Documentation Version
    -class sympy.physics.secondquant.FockStateFermionKet(occupations, fermi_level=0)[source]
    +class sympy.physics.secondquant.FockStateFermionKet(occupations, fermi_level=0)[source]

    Many-particle Fock state with a sequence of occupied orbits.

    Explanation

    Each state can only have one particle, so we choose to store a list of @@ -1431,13 +1431,13 @@

    Documentation Version
    -class sympy.physics.secondquant.FockStateKet(occupations)[source]
    +class sympy.physics.secondquant.FockStateKet(occupations)[source]

    Representation of a ket.

    -class sympy.physics.secondquant.InnerProduct(bra, ket)[source]
    +class sympy.physics.secondquant.InnerProduct(bra, ket)[source]

    An unevaluated inner product between a bra and ket.

    Explanation

    Currently this class just reduces things to a product of @@ -1460,7 +1460,7 @@

    Documentation Version
    -class sympy.physics.secondquant.KroneckerDelta(i, j, delta_range=None)[source]
    +class sympy.physics.secondquant.KroneckerDelta(i, j, delta_range=None)[source]

    The discrete, or Kronecker, delta function.

    Parameters:
    @@ -1511,7 +1511,7 @@
    Documentation Version
    -classmethod eval(i, j, delta_range=None)[source]
    +classmethod eval(i, j, delta_range=None)[source]

    Evaluates the discrete delta function.

    Examples

    >>> from sympy import KroneckerDelta
    @@ -1708,7 +1708,7 @@ 
    Documentation Version
    -class sympy.physics.secondquant.NO(arg)[source]
    +class sympy.physics.secondquant.NO(arg)[source]

    This Object is used to represent normal ordering brackets.

    i.e. {abcd} sometimes written :abcd:

    Explanation

    @@ -1733,7 +1733,7 @@
    Documentation Version
    Nothing more, nothing less.

    -doit(**hints)[source]
    +doit(**hints)[source]

    Either removes the brackets or enables complex computations in its arguments.

    Examples

    @@ -1754,7 +1754,7 @@
    Documentation Version
    -get_subNO(i)[source]
    +get_subNO(i)[source]

    Returns a NO() without FermionicOperator at index i.

    Examples

    >>> from sympy import symbols
    @@ -1814,7 +1814,7 @@ 
    Documentation Version
    -iter_q_annihilators()[source]
    +iter_q_annihilators()[source]

    Iterates over the annihilation operators.

    Examples

    >>> from sympy import symbols
    @@ -1836,7 +1836,7 @@ 
    Documentation Version
    -iter_q_creators()[source]
    +iter_q_creators()[source]

    Iterates over the creation operators.

    Examples

    >>> from sympy import symbols
    @@ -1860,12 +1860,12 @@ 
    Documentation Version
    -class sympy.physics.secondquant.PermutationOperator(i, j)[source]
    +class sympy.physics.secondquant.PermutationOperator(i, j)[source]

    Represents the index permutation operator P(ij).

    P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i)

    -get_permuted(expr)[source]
    +get_permuted(expr)[source]

    Returns -expr with permuted indices.

    Explanation

    >>> from sympy import symbols, Function
    @@ -1882,7 +1882,7 @@ 
    Documentation Version
    -class sympy.physics.secondquant.VarBosonicBasis(n_max)[source]
    +class sympy.physics.secondquant.VarBosonicBasis(n_max)[source]

    A single state, variable particle number basis set.

    Examples

    >>> from sympy.physics.secondquant import VarBosonicBasis
    @@ -1894,7 +1894,7 @@ 
    Documentation Version
    -index(state)[source]
    +index(state)[source]

    Returns the index of state in basis.

    Examples

    >>> from sympy.physics.secondquant import VarBosonicBasis
    @@ -1912,7 +1912,7 @@ 
    Documentation Version
    -state(i)[source]
    +state(i)[source]

    The state of a single basis.

    Examples

    >>> from sympy.physics.secondquant import VarBosonicBasis
    @@ -1927,7 +1927,7 @@ 
    Documentation Version
    -sympy.physics.secondquant.apply_operators(e)[source]
    +sympy.physics.secondquant.apply_operators(e)[source]

    Take a SymPy expression with operators and states and apply the operators.

    Examples

    >>> from sympy.physics.secondquant import apply_operators
    @@ -1940,7 +1940,7 @@ 
    Documentation Version
    -sympy.physics.secondquant.contraction(a, b)[source]
    +sympy.physics.secondquant.contraction(a, b)[source]

    Calculates contraction of Fermionic operators a and b.

    Examples

    >>> from sympy import symbols
    @@ -1977,7 +1977,7 @@ 
    Documentation Version
    -sympy.physics.secondquant.evaluate_deltas(e)[source]
    +sympy.physics.secondquant.evaluate_deltas(e)[source]

    We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.

    Explanation

    If one index is repeated it is summed over and in effect substituted with @@ -2037,7 +2037,7 @@

    Documentation Version
    -sympy.physics.secondquant.matrix_rep(op, basis)[source]
    +sympy.physics.secondquant.matrix_rep(op, basis)[source]

    Find the representation of an operator in a basis.

    Examples

    >>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep
    @@ -2063,7 +2063,7 @@ 
    Documentation Version
    permutation_operators,
    -)[source] +)[source]

    Performs simplification by introducing PermutationOperators where appropriate.

    Explanation

    @@ -2106,7 +2106,7 @@
    Documentation Version
    pretty_indices={},
    -)[source] +)[source]

    Collect terms by substitution of dummy variables.

    Explanation

    This routine allows simplification of Add expressions containing terms @@ -2165,7 +2165,7 @@

    Documentation Version
    -sympy.physics.secondquant.wicks(e, **kw_args)[source]
    +sympy.physics.secondquant.wicks(e, **kw_args)[source]

    Returns the normal ordered equivalent of an expression using Wicks Theorem.

    Examples

    >>> from sympy import symbols, Dummy
    diff --git a/dev/modules/physics/sho.html b/dev/modules/physics/sho.html
    index 634bab79353..7259967c3f2 100644
    --- a/dev/modules/physics/sho.html
    +++ b/dev/modules/physics/sho.html
    @@ -802,7 +802,7 @@ 
    Documentation Version

    Quantum Harmonic Oscillator in 3-D

    -sympy.physics.sho.E_nl(n, l, hw)[source]
    +sympy.physics.sho.E_nl(n, l, hw)[source]

    Returns the Energy of an isotropic harmonic oscillator.

    Parameters:
    @@ -838,7 +838,7 @@
    Documentation Version
    -sympy.physics.sho.R_nl(n, l, nu, r)[source]
    +sympy.physics.sho.R_nl(n, l, nu, r)[source]

    Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic oscillator.

    diff --git a/dev/modules/physics/units/dimensions.html b/dev/modules/physics/units/dimensions.html index 289f270a60f..df9fc670ab5 100644 --- a/dev/modules/physics/units/dimensions.html +++ b/dev/modules/physics/units/dimensions.html @@ -809,7 +809,7 @@
    Documentation Version
    question of adding time to length has no meaning.

    -class sympy.physics.units.dimensions.Dimension(name, symbol=None)[source]
    +class sympy.physics.units.dimensions.Dimension(name, symbol=None)[source]

    This class represent the dimension of a physical quantities.

    The Dimension constructor takes as parameters a name and an optional symbol.

    @@ -850,7 +850,7 @@
    Documentation Version
    -has_integer_powers(dim_sys)[source]
    +has_integer_powers(dim_sys)[source]

    Check if the dimension object has only integer powers.

    All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the @@ -869,7 +869,7 @@

    Documentation Version
    dimensional_dependencies={},
    -)[source] +)[source]

    DimensionSystem represents a coherent set of dimensions.

    The constructor takes three parameters:

      @@ -902,7 +902,7 @@
      Documentation Version
      -dim_can_vector(dim)[source]
      +dim_can_vector(dim)[source]

      Useless method, kept for compatibility with previous versions.

      DO NOT USE.

      Dimensional representation in terms of the canonical base dimensions.

      @@ -910,7 +910,7 @@
      Documentation Version
      -dim_vector(dim)[source]
      +dim_vector(dim)[source]

      Useless method, kept for compatibility with previous versions.

      DO NOT USE.

      Vector representation in terms of the base dimensions.

      @@ -941,7 +941,7 @@
      Documentation Version
      -is_dimensionless(dimension)[source]
      +is_dimensionless(dimension)[source]

      Check if the dimension object really has a dimension.

      A dimension should have at least one component with non-zero power.

      @@ -956,7 +956,7 @@
      Documentation Version
      -print_dim_base(dim)[source]
      +print_dim_base(dim)[source]

      Give the string expression of a dimension in term of the basis symbols.

      diff --git a/dev/modules/physics/units/prefixes.html b/dev/modules/physics/units/prefixes.html index e3118af2e39..b8c34999d17 100644 --- a/dev/modules/physics/units/prefixes.html +++ b/dev/modules/physics/units/prefixes.html @@ -815,7 +815,7 @@
      Documentation Version
      latex_repr=None,
      -)[source] +)[source]

      This class represent prefixes, with their name, symbol and factor.

      Prefixes are used to create derived units from a given unit. They should always be encapsulated into units.

      diff --git a/dev/modules/physics/units/quantities.html b/dev/modules/physics/units/quantities.html index 2a9a9bc5445..f5d7527d4fd 100644 --- a/dev/modules/physics/units/quantities.html +++ b/dev/modules/physics/units/quantities.html @@ -816,7 +816,7 @@
      Documentation Version
      **assumptions,
      -)[source] +)[source]

      Physical quantity: can be a unit of measure, a constant or a generic quantity.

      @@ -827,7 +827,7 @@
      Documentation Version
      -convert_to(other, unit_system='SI')[source]
      +convert_to(other, unit_system='SI')[source]

      Convert the quantity to another quantity of same dimensions.

      Examples

      >>> from sympy.physics.units import speed_of_light, meter, second
      @@ -871,7 +871,7 @@ 
      Documentation Version
      reference_quantity,
      -)[source] +)[source]

      Setting a scale factor that is valid across all unit system.

    @@ -882,7 +882,7 @@
    Documentation Version

    Several methods to simplify expressions involving unit objects.

    -sympy.physics.units.util.convert_to(expr, target_units, unit_system='SI')[source]
    +sympy.physics.units.util.convert_to(expr, target_units, unit_system='SI')[source]

    Convert expr to the same expression with all of its units and quantities represented as factors of target_units, whenever the dimension is compatible.

    target_units may be a single unit/quantity, or a collection of diff --git a/dev/modules/physics/units/unitsystem.html b/dev/modules/physics/units/unitsystem.html index a4f0163854e..31da17fcccf 100644 --- a/dev/modules/physics/units/unitsystem.html +++ b/dev/modules/physics/units/unitsystem.html @@ -814,7 +814,7 @@

    Documentation Version
    derived_units: Dict[Dimension, Quantity] = {},
    -)[source] +)[source]

    UnitSystem represents a coherent set of units.

    A unit system is basically a dimension system with notions of scales. Many of the methods are defined in the same way.

    @@ -839,7 +839,7 @@
    Documentation Version
    derived_units: Dict[Dimension, Quantity] = {},
    -)[source] +)[source]

    Extend the current system into a new one.

    Take the base and normal units of the current system to merge them to the base and normal units given in argument. @@ -848,7 +848,7 @@

    Documentation Version
    -get_units_non_prefixed() Set[Quantity][source]
    +get_units_non_prefixed() Set[Quantity][source]

    Return the units of the system that do not have a prefix.

    diff --git a/dev/modules/physics/vector/api/classes.html b/dev/modules/physics/vector/api/classes.html index 6add956c599..cab67fb422f 100644 --- a/dev/modules/physics/vector/api/classes.html +++ b/dev/modules/physics/vector/api/classes.html @@ -802,7 +802,7 @@
    Documentation Version

    Essential Classes

    -class sympy.physics.vector.frame.CoordinateSym(name, frame, index)[source]
    +class sympy.physics.vector.frame.CoordinateSym(name, frame, index)[source]

    A coordinate symbol/base scalar associated wrt a Reference Frame.

    Ideally, users should not instantiate this class. Instances of this class must only be accessed through the corresponding frame @@ -850,7 +850,7 @@

    Essential Classesvariables=None,

    -)[source] +)[source]

    A reference frame in classical mechanics.

    ReferenceFrame is a class used to represent a reference frame in classical mechanics. It has a standard basis of three unit vectors in the frame’s @@ -861,7 +861,7 @@

    Essential Classes
    -ang_acc_in(otherframe)[source]
    +ang_acc_in(otherframe)[source]

    Returns the angular acceleration Vector of the ReferenceFrame.

    Effectively returns the Vector:

    N_alpha_B

    @@ -889,7 +889,7 @@

    Essential Classes
    -ang_vel_in(otherframe)[source]
    +ang_vel_in(otherframe)[source]

    Returns the angular velocity Vector of the ReferenceFrame.

    Effectively returns the Vector:

    ^N omega ^B

    @@ -917,7 +917,7 @@

    Essential Classes
    -dcm(otherframe)[source]
    +dcm(otherframe)[source]

    Returns the direction cosine matrix of this reference frame relative to the provided reference frame.

    The returned matrix can be used to express the orthogonal unit vectors @@ -994,7 +994,7 @@

    Essential Classesrot_order='',

    -)[source] +)[source]

    Sets the orientation of this reference frame relative to another (parent) reference frame.

    @@ -1057,7 +1057,7 @@

    Essential Classes
    -orient_axis(parent, axis, angle)[source]
    +orient_axis(parent, axis, angle)[source]

    Sets the orientation of this reference frame with respect to a parent reference frame by rotating through an angle about an axis fixed in the parent reference frame.

    @@ -1131,7 +1131,7 @@

    Essential Classesrotation_order,

    -)[source] +)[source]

    Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive body fixed simple axis rotations. Each subsequent axis of rotation is about the “body fixed” @@ -1216,7 +1216,7 @@

    Essential Classes
    -orient_dcm(parent, dcm)[source]
    +orient_dcm(parent, dcm)[source]

    Sets the orientation of this reference frame relative to another (parent) reference frame using a direction cosine matrix that describes the rotation from the child to the parent.

    @@ -1275,7 +1275,7 @@

    Essential Classes
    -orient_quaternion(parent, numbers)[source]
    +orient_quaternion(parent, numbers)[source]

    Sets the orientation of this reference frame relative to a parent reference frame via an orientation quaternion. An orientation quaternion is defined as a finite rotation a unit vector, (lambda_x, @@ -1339,7 +1339,7 @@

    Essential Classesrotation_order,

    -)[source] +)[source]

    Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive space fixed simple axis rotations. Each subsequent axis of rotation is about the “space fixed” @@ -1439,7 +1439,7 @@

    Essential Classeslatexs=None,

    -)[source] +)[source]

    Returns a new reference frame oriented with respect to this reference frame.

    See ReferenceFrame.orient() for detailed examples of how to orient @@ -1538,7 +1538,7 @@

    Essential Classes*gen_speeds,

    -)[source] +)[source]

    Returns the partial angular velocities of this frame in the given frame with respect to one or more provided generalized speeds.

    @@ -1576,7 +1576,7 @@

    Essential Classes
    -set_ang_acc(otherframe, value)[source]
    +set_ang_acc(otherframe, value)[source]

    Define the angular acceleration Vector in a ReferenceFrame.

    Defines the angular acceleration of this ReferenceFrame, in another. Angular acceleration can be defined with respect to multiple different @@ -1608,7 +1608,7 @@

    Essential Classes
    -set_ang_vel(otherframe, value)[source]
    +set_ang_vel(otherframe, value)[source]

    Define the angular velocity vector in a ReferenceFrame.

    Defines the angular velocity of this ReferenceFrame, in another. Angular velocity can be defined with respect to multiple different @@ -1646,7 +1646,7 @@

    Essential Classes
    -variable_map(otherframe)[source]
    +variable_map(otherframe)[source]

    Returns a dictionary which expresses the coordinate variables of this frame in terms of the variables of otherframe.

    If Vector.simp is True, returns a simplified version of the mapped @@ -1747,7 +1747,7 @@

    Essential Classes
    -class sympy.physics.vector.vector.Vector(inlist)[source]
    +class sympy.physics.vector.vector.Vector(inlist)[source]

    The class used to define vectors.

    It along with ReferenceFrame are the building blocks of describing a classical mechanics system in PyDy and sympy.physics.vector.

    @@ -1763,7 +1763,7 @@

    Essential Classes
    -angle_between(vec)[source]
    +angle_between(vec)[source]

    Returns the smallest angle between Vector ‘vec’ and self.

    Warning

    @@ -1794,13 +1794,13 @@

    Essential Classes
    -applyfunc(f)[source]
    +applyfunc(f)[source]

    Apply a function to each component of a vector.

    -cross(other)[source]
    +cross(other)[source]

    The cross product operator for two Vectors.

    Returns a Vector, expressed in the same ReferenceFrames as self.

    @@ -1830,7 +1830,7 @@

    Essential Classes
    -diff(var, frame, var_in_dcm=True)[source]
    +diff(var, frame, var_in_dcm=True)[source]

    Returns the partial derivative of the vector with respect to a variable in the provided reference frame.

    @@ -1878,13 +1878,13 @@

    Essential Classes
    -doit(**hints)[source]
    +doit(**hints)[source]

    Calls .doit() on each term in the Vector

    -dot(other)[source]
    +dot(other)[source]

    Dot product of two vectors.

    Returns a scalar, the dot product of the two Vectors

    @@ -1913,7 +1913,7 @@

    Essential Classes
    -dt(otherframe)[source]
    +dt(otherframe)[source]

    Returns a Vector which is the time derivative of the self Vector, taken in frame otherframe.

    Calls the global time_derivative method

    @@ -1929,7 +1929,7 @@

    Essential Classes
    -express(otherframe, variables=False)[source]
    +express(otherframe, variables=False)[source]

    Returns a Vector equivalent to this one, expressed in otherframe. Uses the global express method.

    @@ -1960,7 +1960,7 @@

    Essential Classes
    -free_dynamicsymbols(reference_frame)[source]
    +free_dynamicsymbols(reference_frame)[source]

    Returns the free dynamic symbols (functions of time t) in the measure numbers of the vector expressed in the given reference frame.

    @@ -1983,7 +1983,7 @@

    Essential Classes
    -free_symbols(reference_frame)[source]
    +free_symbols(reference_frame)[source]

    Returns the free symbols in the measure numbers of the vector expressed in the given reference frame.

    @@ -2012,7 +2012,7 @@

    Essential Classes
    -magnitude()[source]
    +magnitude()[source]

    Returns the magnitude (Euclidean norm) of self.

    Warning

    @@ -2025,13 +2025,13 @@

    Essential Classes
    -normalize()[source]
    +normalize()[source]

    Returns a Vector of magnitude 1, codirectional with self.

    -outer(other)[source]
    +outer(other)[source]

    Outer product between two Vectors.

    A rank increasing operation, which returns a Dyadic from two Vectors

    @@ -2053,7 +2053,7 @@

    Essential Classes
    -separate()[source]
    +separate()[source]

    The constituents of this vector in different reference frames, as per its definition.

    Returns a dict mapping each ReferenceFrame to the corresponding @@ -2071,13 +2071,13 @@

    Essential Classes
    -simplify()[source]
    +simplify()[source]

    Returns a simplified Vector.

    -subs(*args, **kwargs)[source]
    +subs(*args, **kwargs)[source]

    Substitution on the Vector.

    Examples

    >>> from sympy.physics.vector import ReferenceFrame
    @@ -2093,7 +2093,7 @@ 

    Essential Classes
    -to_matrix(reference_frame)[source]
    +to_matrix(reference_frame)[source]

    Returns the matrix form of the vector with respect to the given frame.

    @@ -2134,7 +2134,7 @@

    Essential Classes
    -xreplace(rule)[source]
    +xreplace(rule)[source]

    Replace occurrences of objects within the measure numbers of the vector.

    @@ -2176,7 +2176,7 @@

    Essential Classes
    -class sympy.physics.vector.dyadic.Dyadic(inlist)[source]
    +class sympy.physics.vector.dyadic.Dyadic(inlist)[source]

    A Dyadic object.

    See: https://en.wikipedia.org/wiki/Dyadic_tensor @@ -2186,13 +2186,13 @@

    Essential Classes
    -applyfunc(f)[source]
    +applyfunc(f)[source]

    Apply a function to each component of a Dyadic.

    -cross(other)[source]
    +cross(other)[source]

    Returns the dyadic resulting from the dyadic vector cross product: Dyadic x Vector.

    @@ -2215,13 +2215,13 @@

    Essential Classes
    -doit(**hints)[source]
    +doit(**hints)[source]

    Calls .doit() on each term in the Dyadic

    -dot(other)[source]
    +dot(other)[source]

    The inner product operator for a Dyadic and a Dyadic or Vector.

    Parameters:
    @@ -2246,7 +2246,7 @@

    Essential Classes
    -dt(frame)[source]
    +dt(frame)[source]

    Take the time derivative of this Dyadic in a frame.

    This function calls the global time_derivative method

    @@ -2273,7 +2273,7 @@

    Essential Classes
    -express(frame1, frame2=None)[source]
    +express(frame1, frame2=None)[source]

    Expresses this Dyadic in alternate frame(s)

    The first frame is the list side expression, the second frame is the right side; if Dyadic is in form A.x|B.y, you can express it in two @@ -2314,13 +2314,13 @@

    Essential Classes
    -simplify()[source]
    +simplify()[source]

    Returns a simplified Dyadic.

    -subs(*args, **kwargs)[source]
    +subs(*args, **kwargs)[source]

    Substitution on the Dyadic.

    Examples

    >>> from sympy.physics.vector import ReferenceFrame
    @@ -2343,7 +2343,7 @@ 

    Essential Classessecond_reference_frame=None,

    -)[source] +)[source]

    Returns the matrix form of the dyadic with respect to one or two reference frames.

    @@ -2392,7 +2392,7 @@

    Essential Classes
    -xreplace(rule)[source]
    +xreplace(rule)[source]

    Replace occurrences of objects within the measure numbers of the Dyadic.

    diff --git a/dev/modules/physics/vector/api/fieldfunctions.html b/dev/modules/physics/vector/api/fieldfunctions.html index 8ab43d29ef6..a3d23f63cc5 100644 --- a/dev/modules/physics/vector/api/fieldfunctions.html +++ b/dev/modules/physics/vector/api/fieldfunctions.html @@ -806,7 +806,7 @@

    Field operation functions
    -sympy.physics.vector.fieldfunctions.curl(vect, frame)[source]
    +sympy.physics.vector.fieldfunctions.curl(vect, frame)[source]

    Returns the curl of a vector field computed wrt the coordinate symbols of the given frame.

    @@ -837,7 +837,7 @@

    Field operation functions
    -sympy.physics.vector.fieldfunctions.divergence(vect, frame)[source]
    +sympy.physics.vector.fieldfunctions.divergence(vect, frame)[source]

    Returns the divergence of a vector field computed wrt the coordinate symbols of the given frame.

    @@ -868,7 +868,7 @@

    Field operation functions
    -sympy.physics.vector.fieldfunctions.gradient(scalar, frame)[source]
    +sympy.physics.vector.fieldfunctions.gradient(scalar, frame)[source]

    Returns the vector gradient of a scalar field computed wrt the coordinate symbols of the given frame.

    @@ -899,7 +899,7 @@

    Field operation functions
    -sympy.physics.vector.fieldfunctions.scalar_potential(field, frame)[source]
    +sympy.physics.vector.fieldfunctions.scalar_potential(field, frame)[source]

    Returns the scalar potential function of a field in a given frame (without the added integration constant).

    @@ -941,7 +941,7 @@

    Field operation functionsorigin,

    -)[source] +)[source]

    Returns the scalar potential difference between two points in a certain frame, wrt a given field.

    If a scalar field is provided, its values at the two points are @@ -994,7 +994,7 @@

    Field operation functions

    -sympy.physics.vector.fieldfunctions.is_conservative(field)[source]
    +sympy.physics.vector.fieldfunctions.is_conservative(field)[source]

    Checks if a field is conservative.

    Parameters:
    @@ -1018,7 +1018,7 @@

    Checking the type of vector field
    -sympy.physics.vector.fieldfunctions.is_solenoidal(field)[source]
    +sympy.physics.vector.fieldfunctions.is_solenoidal(field)[source]

    Checks if a field is solenoidal.

    Parameters:
    diff --git a/dev/modules/physics/vector/api/functions.html b/dev/modules/physics/vector/api/functions.html index 087e0560956..381bab9cd09 100644 --- a/dev/modules/physics/vector/api/functions.html +++ b/dev/modules/physics/vector/api/functions.html @@ -802,7 +802,7 @@
    Documentation Version

    Essential Functions (Docstrings)

    -sympy.physics.vector.dynamicsymbols(names, level=0, **assumptions)[source]
    +sympy.physics.vector.dynamicsymbols(names, level=0, **assumptions)[source]

    Uses symbols and Function for functions of time.

    Creates a SymPy UndefinedFunction, which is then initialized as a function of a variable, the default being Symbol(‘t’).

    @@ -871,7 +871,7 @@

    Essential Functions (Docstrings)
    -sympy.physics.vector.functions.dot(vec1, vec2)[source]
    +sympy.physics.vector.functions.dot(vec1, vec2)[source]

    Dot product convenience wrapper for Vector.dot(): Dot product of two vectors.

    @@ -903,7 +903,7 @@

    Essential Functions (Docstrings)
    -sympy.physics.vector.functions.cross(vec1, vec2)[source]
    +sympy.physics.vector.functions.cross(vec1, vec2)[source]

    Cross product convenience wrapper for Vector.cross(): The cross product operator for two Vectors.

    @@ -936,7 +936,7 @@

    Essential Functions (Docstrings)
    -sympy.physics.vector.functions.outer(vec1, vec2)[source]
    +sympy.physics.vector.functions.outer(vec1, vec2)[source]

    Outer product convenience wrapper for Vector.outer(): Outer product between two Vectors.

    @@ -961,7 +961,7 @@

    Essential Functions (Docstrings)
    -sympy.physics.vector.functions.express(expr, frame, frame2=None, variables=False)[source]
    +sympy.physics.vector.functions.express(expr, frame, frame2=None, variables=False)[source]

    Global function for ‘express’ functionality.

    Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame.

    Refer to the local methods of Vector and Dyadic for details. @@ -1011,7 +1011,7 @@

    Essential Functions (Docstrings)
    -sympy.physics.vector.functions.time_derivative(expr, frame, order=1)[source]
    +sympy.physics.vector.functions.time_derivative(expr, frame, order=1)[source]

    Calculate the time derivative of a vector/scalar field function or dyadic expression in given frame.

    diff --git a/dev/modules/physics/vector/api/kinematics.html b/dev/modules/physics/vector/api/kinematics.html index 10f69b54ce6..e9794671826 100644 --- a/dev/modules/physics/vector/api/kinematics.html +++ b/dev/modules/physics/vector/api/kinematics.html @@ -802,7 +802,7 @@
    Documentation Version

    Kinematics (Docstrings)

    -class sympy.physics.vector.point.Point(name)[source]
    +class sympy.physics.vector.point.Point(name)[source]

    This object represents a point in a dynamic system.

    It stores the: position, velocity, and acceleration of a point. The position is a vector defined as the vector distance from a parent @@ -855,7 +855,7 @@

    Documentation Version
    interframe,
    -)[source] +)[source]

    Sets the acceleration of this point with the 1-point theory.

    The 1-point theory for point acceleration looks like this:

    ^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B @@ -910,7 +910,7 @@

    Documentation Version
    fixedframe,
    -)[source] +)[source]

    Sets the acceleration of this point with the 2-point theory.

    The 2-point theory for point acceleration looks like this:

    ^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP)

    @@ -951,7 +951,7 @@
    Documentation Version
    -acc(frame)[source]
    +acc(frame)[source]

    The acceleration Vector of this Point in a ReferenceFrame.

    Parameters:
    @@ -975,7 +975,7 @@
    Documentation Version
    -locatenew(name, value)[source]
    +locatenew(name, value)[source]

    Creates a new point with a position defined from this point.

    Parameters:
    @@ -1000,7 +1000,7 @@
    Documentation Version
    -partial_velocity(frame, *gen_speeds)[source]
    +partial_velocity(frame, *gen_speeds)[source]

    Returns the partial velocities of the linear velocity vector of this point in the given frame with respect to one or more provided generalized speeds.

    @@ -1041,7 +1041,7 @@
    Documentation Version
    -pos_from(otherpoint)[source]
    +pos_from(otherpoint)[source]

    Returns a Vector distance between this Point and the other Point.

    Parameters:
    @@ -1065,7 +1065,7 @@
    Documentation Version
    -set_acc(frame, value)[source]
    +set_acc(frame, value)[source]

    Used to set the acceleration of this Point in a ReferenceFrame.

    Parameters:
    @@ -1092,7 +1092,7 @@
    Documentation Version
    -set_pos(otherpoint, value)[source]
    +set_pos(otherpoint, value)[source]

    Used to set the position of this point w.r.t. another point.

    Parameters:
    @@ -1120,7 +1120,7 @@
    Documentation Version
    -set_vel(frame, value)[source]
    +set_vel(frame, value)[source]

    Sets the velocity Vector of this Point in a ReferenceFrame.

    Parameters:
    @@ -1155,7 +1155,7 @@
    Documentation Version
    interframe,
    -)[source] +)[source]

    Sets the velocity of this point with the 1-point theory.

    The 1-point theory for point velocity looks like this:

    ^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP

    @@ -1209,7 +1209,7 @@
    Documentation Version
    fixedframe,
    -)[source] +)[source]

    Sets the velocity of this point with the 2-point theory.

    The 2-point theory for point velocity looks like this:

    ^N v^P = ^N v^O + ^N omega^B x r^OP

    @@ -1250,7 +1250,7 @@
    Documentation Version
    -vel(frame)[source]
    +vel(frame)[source]

    The velocity Vector of this Point in the ReferenceFrame.

    Parameters:
    @@ -1293,7 +1293,7 @@
    Documentation Version

    kinematic_equations

    -sympy.physics.vector.functions.get_motion_params(frame, **kwargs)[source]
    +sympy.physics.vector.functions.get_motion_params(frame, **kwargs)[source]

    Returns the three motion parameters - (acceleration, velocity, and position) as vectorial functions of time in the given frame.

    If a higher order differential function is provided, the lower order @@ -1374,7 +1374,7 @@

    Documentation Version
    rot_order='',
    -)[source] +)[source]

    Gives equations relating the qdot’s to u’s for a rotation type.

    Supply rotation type and order as in orient. Speeds are assumed to be body-fixed; if we are defining the orientation of B in A using by rot_type, @@ -1415,7 +1415,7 @@

    Documentation Version
    -sympy.physics.vector.functions.partial_velocity(vel_vecs, gen_speeds, frame)[source]
    +sympy.physics.vector.functions.partial_velocity(vel_vecs, gen_speeds, frame)[source]

    Returns a list of partial velocities with respect to the provided generalized speeds in the given reference frame for each of the supplied velocity vectors.

    diff --git a/dev/modules/physics/vector/api/printing.html b/dev/modules/physics/vector/api/printing.html index e030c258216..759b9531388 100644 --- a/dev/modules/physics/vector/api/printing.html +++ b/dev/modules/physics/vector/api/printing.html @@ -802,7 +802,7 @@
    Documentation Version

    Printing (Docstrings)

    -sympy.physics.vector.printing.init_vprinting(**kwargs)[source]
    +sympy.physics.vector.printing.init_vprinting(**kwargs)[source]

    Initializes time derivative printing for all SymPy objects, i.e. any functions of time will be displayed in a more compact notation. The main benefit of this is for printing of time derivatives; instead of @@ -950,7 +950,7 @@

    Printing (Docstrings)
    -sympy.physics.vector.printing.vprint(expr, **settings)[source]
    +sympy.physics.vector.printing.vprint(expr, **settings)[source]

    Function for printing of expressions generated in the sympy.physics vector package.

    Extends SymPy’s StrPrinter, takes the same setting accepted by SymPy’s @@ -980,7 +980,7 @@

    Printing (Docstrings)
    -sympy.physics.vector.printing.vpprint(expr, **settings)[source]
    +sympy.physics.vector.printing.vpprint(expr, **settings)[source]

    Function for pretty printing of expressions generated in the sympy.physics vector package.

    Mainly used for expressions not inside a vector; the output of running @@ -1002,7 +1002,7 @@

    Printing (Docstrings)
    -sympy.physics.vector.printing.vlatex(expr, **settings)[source]
    +sympy.physics.vector.printing.vlatex(expr, **settings)[source]

    Function for printing latex representation of sympy.physics.vector objects.

    For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the diff --git a/dev/modules/physics/wigner.html b/dev/modules/physics/wigner.html index 531ff9a1186..784aab6833d 100644 --- a/dev/modules/physics/wigner.html +++ b/dev/modules/physics/wigner.html @@ -868,7 +868,7 @@

    Authors
    -sympy.physics.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3)[source]
    +sympy.physics.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3)[source]

    Calculates the Clebsch-Gordan coefficient. \(\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle\).

    The reference for this function is [Edmonds74].

    @@ -913,7 +913,7 @@

    Authors
    -sympy.physics.wigner.dot_rot_grad_Ynm(j, p, l, m, theta, phi)[source]
    +sympy.physics.wigner.dot_rot_grad_Ynm(j, p, l, m, theta, phi)[source]

    Returns dot product of rotational gradients of spherical harmonics.

    Explanation

    This function returns the right hand side of the following expression:

    @@ -938,7 +938,7 @@

    Authors
    -sympy.physics.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)[source]
    +sympy.physics.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)[source]

    Calculate the Gaunt coefficient.

    Parameters:
    @@ -1033,7 +1033,7 @@

    Authors
    -sympy.physics.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)[source]
    +sympy.physics.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)[source]

    Calculate the Racah symbol \(W(a,b,c,d;e,f)\).

    Parameters:
    @@ -1093,7 +1093,7 @@

    Authors
    prec=None,

    -)[source] +)[source]

    Calculate the real Gaunt coefficient.

    Parameters:
    @@ -1209,7 +1209,7 @@

    Authors
    -sympy.physics.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3)[source]
    +sympy.physics.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3)[source]

    Calculate the Wigner 3j symbol \(\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)\).

    Parameters:
    @@ -1292,7 +1292,7 @@

    Authors
    -sympy.physics.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)[source]
    +sympy.physics.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)[source]

    Calculate the Wigner 6j symbol \(\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)\).

    Parameters:
    @@ -1396,7 +1396,7 @@

    Authors
    prec=None,

    -)[source] +)[source]

    Calculate the Wigner 9j symbol \(\operatorname{Wigner9j}(j_1,j_2,j_3,j_4,j_5,j_6,j_7,j_8,j_9)\).

    @@ -1448,7 +1448,7 @@

    Authors
    -sympy.physics.wigner.wigner_d(J, alpha, beta, gamma)[source]
    +sympy.physics.wigner.wigner_d(J, alpha, beta, gamma)[source]

    Return the Wigner D matrix for angular momentum J.

    Returns:
    @@ -1498,7 +1498,7 @@

    Authors
    -sympy.physics.wigner.wigner_d_small(J, beta)[source]
    +sympy.physics.wigner.wigner_d_small(J, beta)[source]

    Return the small Wigner d matrix for angular momentum J.

    Returns:
    diff --git a/dev/modules/plotting.html b/dev/modules/plotting.html index 76cd7311771..099f3d0f8bb 100644 --- a/dev/modules/plotting.html +++ b/dev/modules/plotting.html @@ -850,7 +850,7 @@

    Plot Class**kwargs,

    -)[source] +)[source]

    Base class for all backends. A backend represents the plotting library, which implements the necessary functionalities in order to use SymPy plotting functions.

    @@ -1007,7 +1007,7 @@

    Plot Class
    -append(arg)[source]
    +append(arg)[source]

    Adds an element from a plot’s series to an existing plot.

    Examples

    Consider two Plot objects, p1 and p2. To add the @@ -1038,7 +1038,7 @@

    Plot Class
    -extend(arg)[source]
    +extend(arg)[source]

    Adds all series from another plot.

    Examples

    Consider two Plot objects, p1 and p2. To add the @@ -1094,7 +1094,7 @@

    Plot Class

    -sympy.plotting.plot.plot(*args, show=True, **kwargs)[source]
    +sympy.plotting.plot.plot(*args, show=True, **kwargs)[source]

    Plots a function of a single variable as a curve.

    Parameters:
    @@ -1303,7 +1303,7 @@

    Plotting Function Reference
    -sympy.plotting.plot.plot_parametric(*args, show=True, **kwargs)[source]
    +sympy.plotting.plot.plot_parametric(*args, show=True, **kwargs)[source]

    Plots a 2D parametric curve.

    Parameters:
    @@ -1488,7 +1488,7 @@

    Plotting Function Reference
    -sympy.plotting.plot.plot3d(*args, show=True, **kwargs)[source]
    +sympy.plotting.plot.plot3d(*args, show=True, **kwargs)[source]

    Plots a 3D surface plot.

    Usage

    Single plot

    @@ -1587,7 +1587,7 @@

    Plotting Function Reference
    -sympy.plotting.plot.plot3d_parametric_line(*args, show=True, **kwargs)[source]
    +sympy.plotting.plot.plot3d_parametric_line(*args, show=True, **kwargs)[source]

    Plots a 3D parametric line plot.

    Usage

    Single plot:

    @@ -1681,7 +1681,7 @@

    Plotting Function Reference**kwargs,

    -)[source] +)[source]

    Plots a 3D parametric surface plot.

    Explanation

    Single plot.

    @@ -1771,7 +1771,7 @@

    Plotting Function Reference**kwargs,

    -)[source] +)[source]

    A plot function to plot implicit equations / inequalities.

    Arguments

      @@ -1930,7 +1930,7 @@

      PlotGrid Class**kwargs,

    -)[source] +)[source]

    This class helps to plot subplots from already created SymPy plots in a single figure.

    Examples

    @@ -2026,7 +2026,7 @@

    PlotGrid Class

    -class sympy.plotting.series.BaseSeries(*args, **kwargs)[source]
    +class sympy.plotting.series.BaseSeries(*args, **kwargs)[source]

    Base class for the data objects containing stuff to be plotted.

    Notes

    The backend should check if it supports the data series that is given. @@ -2041,7 +2041,7 @@

    Series Classes
    -eval_color_func(*args)[source]
    +eval_color_func(*args)[source]

    Evaluate the color function.

    Parameters:
    @@ -2067,7 +2067,7 @@

    Series Classes
    -get_data()[source]
    +get_data()[source]

    Compute and returns the numerical data.

    The number of parameters returned by this method depends on the specific instance. If s is the series, make sure to read @@ -2083,7 +2083,7 @@

    Series Classeswrapper='$%s$',

    -)[source] +)[source]

    Return the label to be used to display the expression.

    Parameters:
    @@ -2131,7 +2131,7 @@

    Series Classes
    -class sympy.plotting.series.Line2DBaseSeries(**kwargs)[source]
    +class sympy.plotting.series.Line2DBaseSeries(**kwargs)[source]

    A base class for 2D lines.

    • adding the label, steps and only_integers options

    • @@ -2140,7 +2140,7 @@

      Series Classes
      -get_data()[source]
      +get_data()[source]

      Return coordinates for plotting the line.

      Returns:
      @@ -2180,11 +2180,11 @@

      Series Classes**kwargs,

    -)[source] +)[source]

    Representation for a line consisting of a SymPy expression over a range.

    -get_points()[source]
    +get_points()[source]

    Return lists of coordinates for plotting. Depending on the adaptive option, this function will either use an adaptive algorithm or it will uniformly sample the expression over the provided range.

    @@ -2220,14 +2220,14 @@

    Series Classes**kwargs,

    -)[source] +)[source]

    Representation for a line consisting of two parametric SymPy expressions over a range.

    -class sympy.plotting.series.Line3DBaseSeries[source]
    +class sympy.plotting.series.Line3DBaseSeries[source]

    A base class for 3D lines.

    Most of the stuff is derived from Line2DBaseSeries.

    @@ -2245,14 +2245,14 @@

    Series Classes**kwargs,

    -)[source] +)[source]

    Representation for a 3D line consisting of three parametric SymPy expressions and a range.

    -class sympy.plotting.series.SurfaceBaseSeries(*args, **kwargs)[source]
    +class sympy.plotting.series.SurfaceBaseSeries(*args, **kwargs)[source]

    A base class for 3D surfaces.

    @@ -2268,12 +2268,12 @@

    Series Classes**kwargs,

    -)[source] +)[source]

    Representation for a 3D surface consisting of a SymPy expression and 2D range.

    -get_data()[source]
    +get_data()[source]

    Return arrays of coordinates for plotting.

    Returns:
    @@ -2295,7 +2295,7 @@

    Series Classes
    -get_meshes()[source]
    +get_meshes()[source]

    Return the x,y,z coordinates for plotting the surface. This function is available for back-compatibility purposes. Consider using get_data() instead.

    @@ -2317,12 +2317,12 @@

    Series Classes**kwargs,

    -)[source] +)[source]

    Representation for a 3D surface consisting of three parametric SymPy expressions and a range.

    -get_data()[source]
    +get_data()[source]

    Return arrays of coordinates for plotting.

    Returns:
    @@ -2352,7 +2352,7 @@

    Series Classes
    -get_meshes()[source]
    +get_meshes()[source]

    Return the x,y,z coordinates for plotting the surface. This function is available for back-compatibility purposes. Consider using get_data() instead.

    @@ -2372,11 +2372,11 @@

    Series Classes**kwargs,

    -)[source] +)[source]

    Representation for 2D Implicit plot.

    -get_data()[source]
    +get_data()[source]

    Returns numerical data.

    Returns:
    @@ -2413,7 +2413,7 @@

    Series Classeswrapper='$%s$',

    -)[source] +)[source]

    Return the label to be used to display the expression.

    Parameters:
    @@ -2441,12 +2441,12 @@

    Series Classes

    -class sympy.plotting.plot.MatplotlibBackend(*series, **kwargs)[source]
    +class sympy.plotting.plot.MatplotlibBackend(*series, **kwargs)[source]

    This class implements the functionalities to use Matplotlib with SymPy plotting functions.

    -static get_segments(x, y, z=None)[source]
    +static get_segments(x, y, z=None)[source]

    Convert two list of coordinates to a list of segments to be used with Matplotlib’s LineCollection.

    @@ -2469,7 +2469,7 @@

    Backends
    -process_series()[source]
    +process_series()[source]

    Iterates over every Plot object and further calls _process_series()

    @@ -2478,7 +2478,7 @@

    Backends
    -class sympy.plotting.plot.TextBackend(*args, **kwargs)[source]
    +class sympy.plotting.plot.TextBackend(*args, **kwargs)[source]
    @@ -2712,7 +2712,7 @@

    Using Custom Color Functions

    -sympy.plotting.textplot.textplot(expr, a, b, W=55, H=21)[source]
    +sympy.plotting.textplot.textplot(expr, a, b, W=55, H=21)[source]

    Print a crude ASCII art plot of the SymPy expression ‘expr’ (which should contain a single symbol, e.g. x or something else) over the interval [a, b].

    diff --git a/dev/modules/polys/agca.html b/dev/modules/polys/agca.html index 6d1d4259491..1b38a5026f5 100644 --- a/dev/modules/polys/agca.html +++ b/dev/modules/polys/agca.html @@ -900,11 +900,11 @@

    Base Rings
    -class sympy.polys.domains.ring.Ring[source]
    +class sympy.polys.domains.ring.Ring[source]

    Represents a ring domain.

    -free_module(rank)[source]
    +free_module(rank)[source]

    Generate a free module of rank rank over self.

    >>> from sympy.abc import x
     >>> from sympy import QQ
    @@ -916,7 +916,7 @@ 

    Base Rings
    -ideal(*gens)[source]
    +ideal(*gens)[source]

    Generate an ideal of self.

    >>> from sympy.abc import x
     >>> from sympy import QQ
    @@ -928,7 +928,7 @@ 

    Base Rings
    -quotient_ring(e)[source]
    +quotient_ring(e)[source]

    Form a quotient ring of self.

    Here e can be an ideal or an iterable.

    >>> from sympy.abc import x
    @@ -958,13 +958,13 @@ 

    Base Ringsorder=None,

    -)[source] +)[source]

    A class for representing multivariate polynomial rings.

    -class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]
    +class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]

    Class representing (commutative) quotient rings.

    You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction.

    @@ -1044,7 +1044,7 @@

    Modules, Ideals and their Elementary Properties
    -class sympy.polys.agca.modules.Module(ring)[source]
    +class sympy.polys.agca.modules.Module(ring)[source]

    Abstract base class for modules.

    Do not instantiate - use ring explicit constructors instead:

    >>> from sympy import QQ
    @@ -1069,56 +1069,56 @@ 

    Modules, Ideals and their Elementary Properties
    -contains(elem)[source]
    +contains(elem)[source]

    Return True if elem is an element of this module.

    -convert(elem, M=None)[source]
    +convert(elem, M=None)[source]

    Convert elem into internal representation of this module.

    If M is not None, it should be a module containing it.

    -identity_hom()[source]
    +identity_hom()[source]

    Return the identity homomorphism on self.

    -is_submodule(other)[source]
    +is_submodule(other)[source]

    Returns True if other is a submodule of self.

    -is_zero()[source]
    +is_zero()[source]

    Returns True if self is a zero module.

    -multiply_ideal(other)[source]
    +multiply_ideal(other)[source]

    Multiply self by the ideal other.

    -quotient_module(other)[source]
    +quotient_module(other)[source]

    Generate a quotient module.

    -submodule(*gens)[source]
    +submodule(*gens)[source]

    Generate a submodule.

    -subset(other)[source]
    +subset(other)[source]

    Returns True if other is is a subset of self.

    Examples

    >>> from sympy.abc import x
    @@ -1136,7 +1136,7 @@ 

    Modules, Ideals and their Elementary Properties
    -class sympy.polys.agca.modules.FreeModule(ring, rank)[source]
    +class sympy.polys.agca.modules.FreeModule(ring, rank)[source]

    Abstract base class for free modules.

    Additional attributes:

      @@ -1148,7 +1148,7 @@

      Modules, Ideals and their Elementary Properties
      -basis()[source]
      +basis()[source]

      Return a set of basis elements.

      Examples

      >>> from sympy.abc import x
      @@ -1161,7 +1161,7 @@ 

      Modules, Ideals and their Elementary Properties
      -convert(elem, M=None)[source]
      +convert(elem, M=None)[source]

      Convert elem into the internal representation.

      This method is called implicitly whenever computations involve elements not in the internal representation.

      @@ -1177,13 +1177,13 @@

      Modules, Ideals and their Elementary Properties
      -dtype[source]
      +dtype[source]

      alias of FreeModuleElement

    -identity_hom()[source]
    +identity_hom()[source]

    Return the identity homomorphism on self.

    Examples

    >>> from sympy.abc import x
    @@ -1198,7 +1198,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_submodule(other)[source]
    +is_submodule(other)[source]

    Returns True if other is a submodule of self.

    Examples

    >>> from sympy.abc import x
    @@ -1217,7 +1217,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_zero()[source]
    +is_zero()[source]

    Returns True if self is a zero module.

    (If, as this implementation assumes, the coefficient ring is not the zero ring, then this is equivalent to the rank being zero.)

    @@ -1234,7 +1234,7 @@

    Modules, Ideals and their Elementary Properties
    -multiply_ideal(other)[source]
    +multiply_ideal(other)[source]

    Multiply self by the ideal other.

    Examples

    >>> from sympy.abc import x
    @@ -1249,7 +1249,7 @@ 

    Modules, Ideals and their Elementary Properties
    -quotient_module(submodule)[source]
    +quotient_module(submodule)[source]

    Return a quotient module.

    Examples

    >>> from sympy.abc import x
    @@ -1270,13 +1270,13 @@ 

    Modules, Ideals and their Elementary Properties
    -class sympy.polys.agca.modules.FreeModuleElement(module, data)[source]
    +class sympy.polys.agca.modules.FreeModuleElement(module, data)[source]

    Element of a free module. Data stored as a tuple.

    -class sympy.polys.agca.modules.SubModule(gens, container)[source]
    +class sympy.polys.agca.modules.SubModule(gens, container)[source]

    Base class for submodules.

    Attributes:

      @@ -1298,7 +1298,7 @@

      Modules, Ideals and their Elementary Properties
      -convert(elem, M=None)[source]
      +convert(elem, M=None)[source]

      Convert elem into the internal represantition.

      Mostly called implicitly.

      Examples

      @@ -1313,7 +1313,7 @@

      Modules, Ideals and their Elementary Properties
      -identity_hom()[source]
      +identity_hom()[source]

      Return the identity homomorphism on self.

      Examples

      >>> from sympy.abc import x
      @@ -1328,7 +1328,7 @@ 

      Modules, Ideals and their Elementary Properties
      -in_terms_of_generators(e)[source]
      +in_terms_of_generators(e)[source]

      Express element e of self in terms of the generators.

      Examples

      >>> from sympy.abc import x
      @@ -1343,7 +1343,7 @@ 

      Modules, Ideals and their Elementary Properties
      -inclusion_hom()[source]
      +inclusion_hom()[source]

      Return a homomorphism representing the inclusion map of self.

      That is, the natural map from self to self.container.

      Examples

      @@ -1359,7 +1359,7 @@

      Modules, Ideals and their Elementary Properties
      -intersect(other, **options)[source]
      +intersect(other, **options)[source]

      Returns the intersection of self with submodule other.

      Examples

      >>> from sympy.abc import x, y
      @@ -1387,7 +1387,7 @@ 

      Modules, Ideals and their Elementary Properties
      -is_full_module()[source]
      +is_full_module()[source]

      Return True if self is the entire free module.

      Examples

      >>> from sympy.abc import x
      @@ -1403,7 +1403,7 @@ 

      Modules, Ideals and their Elementary Properties
      -is_submodule(other)[source]
      +is_submodule(other)[source]

      Returns True if other is a submodule of self.

      >>> from sympy.abc import x
       >>> from sympy import QQ
      @@ -1422,7 +1422,7 @@ 

      Modules, Ideals and their Elementary Properties
      -is_zero()[source]
      +is_zero()[source]

      Return True if self is a zero module.

      Examples

      >>> from sympy.abc import x
      @@ -1438,7 +1438,7 @@ 

      Modules, Ideals and their Elementary Properties
      -module_quotient(other, **options)[source]
      +module_quotient(other, **options)[source]

      Returns the module quotient of self by submodule other.

      That is, if self is the module \(M\) and other is \(N\), then return the ideal \(\{f \in R | fN \subset M\}\).

      @@ -1470,7 +1470,7 @@

      Modules, Ideals and their Elementary Properties
      -multiply_ideal(I)[source]
      +multiply_ideal(I)[source]

      Multiply self by the ideal I.

      Examples

      >>> from sympy.abc import x
      @@ -1485,7 +1485,7 @@ 

      Modules, Ideals and their Elementary Properties
      -quotient_module(other, **opts)[source]
      +quotient_module(other, **opts)[source]

      Return a quotient module.

      This is the same as taking a submodule of a quotient of the containing module.

      @@ -1508,7 +1508,7 @@

      Modules, Ideals and their Elementary Properties
      -reduce_element(x)[source]
      +reduce_element(x)[source]

      Reduce the element x of our ring modulo the ideal self.

      Here “reduce” has no specific meaning, it could return a unique normal form, simplify the expression a bit, or just do nothing.

      @@ -1516,7 +1516,7 @@

      Modules, Ideals and their Elementary Properties
      -submodule(*gens)[source]
      +submodule(*gens)[source]

      Generate a submodule.

      Examples

      >>> from sympy.abc import x
      @@ -1530,7 +1530,7 @@ 

      Modules, Ideals and their Elementary Properties
      -syzygy_module(**opts)[source]
      +syzygy_module(**opts)[source]

      Compute the syzygy module of the generators of self.

      Suppose \(M\) is generated by \(f_1, \ldots, f_n\) over the ring \(R\). Consider the homomorphism \(\phi: R^n \to M\), given by @@ -1556,7 +1556,7 @@

      Modules, Ideals and their Elementary Properties
      -union(other)[source]
      +union(other)[source]

      Returns the module generated by the union of self and other.

      Examples

      >>> from sympy.abc import x
      @@ -1590,7 +1590,7 @@ 

      Modules, Ideals and their Elementary Properties
      -class sympy.polys.agca.ideals.Ideal(ring)[source]
      +class sympy.polys.agca.ideals.Ideal(ring)[source]

      Abstract base class for ideals.

      Do not instantiate - use explicit constructors in the ring class instead:

      >>> from sympy import QQ
      @@ -1624,7 +1624,7 @@ 

      Modules, Ideals and their Elementary Properties
      -contains(elem)[source]
      +contains(elem)[source]

      Return True if elem is an element of this ideal.

      Examples

      >>> from sympy.abc import x
      @@ -1639,19 +1639,19 @@ 

      Modules, Ideals and their Elementary Properties
      -depth()[source]
      +depth()[source]

      Compute the depth of self.

    -height()[source]
    +height()[source]

    Compute the height of self.

    -intersect(J)[source]
    +intersect(J)[source]

    Compute the intersection of self with ideal J.

    Examples

    >>> from sympy.abc import x, y
    @@ -1665,49 +1665,49 @@ 

    Modules, Ideals and their Elementary Properties
    -is_maximal()[source]
    +is_maximal()[source]

    Return True if self is a maximal ideal.

    -is_primary()[source]
    +is_primary()[source]

    Return True if self is a primary ideal.

    -is_prime()[source]
    +is_prime()[source]

    Return True if self is a prime ideal.

    -is_principal()[source]
    +is_principal()[source]

    Return True if self is a principal ideal.

    -is_radical()[source]
    +is_radical()[source]

    Return True if self is a radical ideal.

    -is_whole_ring()[source]
    +is_whole_ring()[source]

    Return True if self is the whole ring.

    -is_zero()[source]
    +is_zero()[source]

    Return True if self is the zero ideal.

    -product(J)[source]
    +product(J)[source]

    Compute the ideal product of self and J.

    That is, compute the ideal generated by products \(xy\), for \(x\) an element of self and \(y \in J\).

    @@ -1722,7 +1722,7 @@

    Modules, Ideals and their Elementary Properties
    -quotient(J, **opts)[source]
    +quotient(J, **opts)[source]

    Compute the ideal quotient of self by J.

    That is, if self is the ideal \(I\), compute the set \(I : J = \{x \in R | xJ \subset I \}\).

    @@ -1738,13 +1738,13 @@

    Modules, Ideals and their Elementary Properties
    -radical()[source]
    +radical()[source]

    Compute the radical of self.

    -reduce_element(x)[source]
    +reduce_element(x)[source]

    Reduce the element x of our ring modulo the ideal self.

    Here “reduce” has no specific meaning: it could return a unique normal form, simplify the expression a bit, or just do nothing.

    @@ -1752,7 +1752,7 @@

    Modules, Ideals and their Elementary Properties
    -saturate(J)[source]
    +saturate(J)[source]

    Compute the ideal saturation of self by J.

    That is, if self is the ideal \(I\), compute the set \(I : J^\infty = \{x \in R | xJ^n \subset I \text{ for some } n\}\).

    @@ -1760,7 +1760,7 @@

    Modules, Ideals and their Elementary Properties
    -subset(other)[source]
    +subset(other)[source]

    Returns True if other is is a subset of self.

    Here other may be an ideal.

    Examples

    @@ -1779,7 +1779,7 @@

    Modules, Ideals and their Elementary Properties
    -union(J)[source]
    +union(J)[source]

    Compute the ideal generated by the union of self and J.

    Examples

    >>> from sympy.abc import x
    @@ -1801,7 +1801,7 @@ 

    Modules, Ideals and their Elementary Properties
    -class sympy.polys.agca.modules.QuotientModule(ring, base, submodule)[source]
    +class sympy.polys.agca.modules.QuotientModule(ring, base, submodule)[source]

    Class for quotient modules.

    Do not instantiate this directly. For subquotients, see the SubQuotientModule class.

    @@ -1813,7 +1813,7 @@

    Modules, Ideals and their Elementary Properties
    -convert(elem, M=None)[source]
    +convert(elem, M=None)[source]

    Convert elem into the internal representation.

    This method is called implicitly whenever computations involve elements not in the internal representation.

    @@ -1829,13 +1829,13 @@

    Modules, Ideals and their Elementary Properties
    -dtype[source]
    +dtype[source]

    alias of QuotientModuleElement

    -identity_hom()[source]
    +identity_hom()[source]

    Return the identity homomorphism on self.

    Examples

    >>> from sympy.abc import x
    @@ -1851,7 +1851,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_submodule(other)[source]
    +is_submodule(other)[source]

    Return True if other is a submodule of self.

    Examples

    >>> from sympy.abc import x
    @@ -1868,7 +1868,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_zero()[source]
    +is_zero()[source]

    Return True if self is a zero module.

    This happens if and only if the base module is the same as the submodule being killed.

    @@ -1886,7 +1886,7 @@

    Modules, Ideals and their Elementary Properties
    -quotient_hom()[source]
    +quotient_hom()[source]

    Return the quotient homomorphism to self.

    That is, return a homomorphism representing the natural map from self.base to self.

    @@ -1904,7 +1904,7 @@

    Modules, Ideals and their Elementary Properties
    -submodule(*gens, **opts)[source]
    +submodule(*gens, **opts)[source]

    Generate a submodule.

    This is the same as taking a quotient of a submodule of the base module.

    @@ -1922,11 +1922,11 @@

    Modules, Ideals and their Elementary Properties
    -class sympy.polys.agca.modules.QuotientModuleElement(module, data)[source]
    +class sympy.polys.agca.modules.QuotientModuleElement(module, data)[source]

    Element of a quotient module.

    -eq(d1, d2)[source]
    +eq(d1, d2)[source]

    Equality comparison.

    @@ -1934,7 +1934,7 @@

    Modules, Ideals and their Elementary Properties
    -class sympy.polys.agca.modules.SubQuotientModule(gens, container, **opts)[source]
    +class sympy.polys.agca.modules.SubQuotientModule(gens, container, **opts)[source]

    Submodule of a quotient module.

    Equivalently, quotient module of a submodule.

    Do not instantiate this, instead use the submodule or quotient_module @@ -1955,7 +1955,7 @@

    Modules, Ideals and their Elementary Properties
    -is_full_module()[source]
    +is_full_module()[source]

    Return True if self is the entire free module.

    Examples

    >>> from sympy.abc import x
    @@ -1971,7 +1971,7 @@ 

    Modules, Ideals and their Elementary Properties
    -quotient_hom()[source]
    +quotient_hom()[source]

    Return the quotient homomorphism to self.

    That is, return the natural map from self.base to self.

    Examples

    @@ -2050,7 +2050,7 @@

    Module Homomorphisms and Syzygies
    -sympy.polys.agca.homomorphisms.homomorphism(domain, codomain, matrix)[source]
    +sympy.polys.agca.homomorphisms.homomorphism(domain, codomain, matrix)[source]

    Create a homomorphism object.

    This function tries to build a homomorphism from domain to codomain via the matrix matrix.

    @@ -2111,7 +2111,7 @@

    Module Homomorphisms and Syzygies
    -class sympy.polys.agca.homomorphisms.ModuleHomomorphism(domain, codomain)[source]
    +class sympy.polys.agca.homomorphisms.ModuleHomomorphism(domain, codomain)[source]

    Abstract base class for module homomoprhisms. Do not instantiate.

    Instead, use the homomorphism function:

    >>> from sympy import QQ
    @@ -2149,7 +2149,7 @@ 

    Module Homomorphisms and Syzygies
    -image()[source]
    +image()[source]

    Compute the image of self.

    That is, if self is the homomorphism \(\phi: M \to N\), then compute \(im(\phi) = \{\phi(x) | x \in M \}\). This is a submodule of \(N\).

    @@ -2168,7 +2168,7 @@

    Module Homomorphisms and Syzygies
    -is_injective()[source]
    +is_injective()[source]

    Return True if self is injective.

    That is, check if the elements of the domain are mapped to the same codomain element.

    @@ -2190,7 +2190,7 @@

    Module Homomorphisms and Syzygies
    -is_isomorphism()[source]
    +is_isomorphism()[source]

    Return True if self is an isomorphism.

    That is, check if every element of the codomain has precisely one preimage. Equivalently, self is both injective and surjective.

    @@ -2213,7 +2213,7 @@

    Module Homomorphisms and Syzygies
    -is_surjective()[source]
    +is_surjective()[source]

    Return True if self is surjective.

    That is, check if every element of the codomain has at least one preimage.

    @@ -2235,7 +2235,7 @@

    Module Homomorphisms and Syzygies
    -is_zero()[source]
    +is_zero()[source]

    Return True if self is a zero morphism.

    That is, check if every element of the domain is mapped to zero under self.

    @@ -2259,7 +2259,7 @@

    Module Homomorphisms and Syzygies
    -kernel()[source]
    +kernel()[source]

    Compute the kernel of self.

    That is, if self is the homomorphism \(\phi: M \to N\), then compute \(ker(\phi) = \{x \in M | \phi(x) = 0\}\). This is a submodule of \(M\).

    @@ -2278,7 +2278,7 @@

    Module Homomorphisms and Syzygies
    -quotient_codomain(sm)[source]
    +quotient_codomain(sm)[source]

    Return self with codomain replaced by codomain/sm.

    Here sm must be a submodule of self.codomain.

    Examples

    @@ -2310,7 +2310,7 @@

    Module Homomorphisms and Syzygies
    -quotient_domain(sm)[source]
    +quotient_domain(sm)[source]

    Return self with domain replaced by domain/sm.

    Here sm must be a submodule of self.kernel().

    Examples

    @@ -2335,7 +2335,7 @@

    Module Homomorphisms and Syzygies
    -restrict_codomain(sm)[source]
    +restrict_codomain(sm)[source]

    Return self, with codomain restricted to to sm.

    Here sm has to be a submodule of self.codomain containing the image.

    @@ -2361,7 +2361,7 @@

    Module Homomorphisms and Syzygies
    -restrict_domain(sm)[source]
    +restrict_domain(sm)[source]

    Return self, with the domain restricted to sm.

    Here sm has to be a submodule of self.domain.

    Examples

    @@ -2414,7 +2414,7 @@

    Finite Extensions\(t\).

    -class sympy.polys.agca.extensions.MonogenicFiniteExtension(mod)[source]
    +class sympy.polys.agca.extensions.MonogenicFiniteExtension(mod)[source]

    Finite extension generated by an integral element.

    The generator is defined by a monic univariate polynomial derived from the argument mod.

    @@ -2450,7 +2450,7 @@

    Finite Extensions
    -dtype[source]
    +dtype[source]

    alias of ExtensionElement

    @@ -2458,7 +2458,7 @@

    Finite Extensions
    -class sympy.polys.agca.extensions.ExtensionElement(rep, ext)[source]
    +class sympy.polys.agca.extensions.ExtensionElement(rep, ext)[source]

    Element of a finite extension.

    A class of univariate polynomials modulo the modulus of the extension ext. It is represented by the @@ -2467,7 +2467,7 @@

    Finite Extensions
    -inverse()[source]
    +inverse()[source]

    Multiplicative inverse.

    Raises:
    diff --git a/dev/modules/polys/domainmatrix.html b/dev/modules/polys/domainmatrix.html index 7473d7243b7..36dcc0307fd 100644 --- a/dev/modules/polys/domainmatrix.html +++ b/dev/modules/polys/domainmatrix.html @@ -833,7 +833,7 @@

    What is domainmatrix?
    -sympy.polys.matrices.domainmatrix.DM(rows, domain)[source]
    +sympy.polys.matrices.domainmatrix.DM(rows, domain)[source]

    Convenient alias for DomainMatrix.from_list

    Examples

    >>> from sympy import ZZ
    @@ -850,7 +850,7 @@ 

    What is domainmatrix?
    -class sympy.polys.matrices.domainmatrix.DomainMatrix(rows, shape, domain, *, fmt=None)[source]
    +class sympy.polys.matrices.domainmatrix.DomainMatrix(rows, shape, domain, *, fmt=None)[source]

    Associate Matrix with Domain

    Explanation

    DomainMatrix uses Domain for its internal representation @@ -887,7 +887,7 @@

    What is domainmatrix?
    -add(B)[source]
    +add(B)[source]

    Adds two DomainMatrix matrices of the same Domain

    Parameters:
    @@ -936,7 +936,7 @@

    What is domainmatrix?
    -adj_det()[source]
    +adj_det()[source]

    Adjugate and determinant of a square DomainMatrix.

    Returns:
    @@ -974,7 +974,7 @@

    What is domainmatrix?
    -adj_poly_det(cp=None)[source]
    +adj_poly_det(cp=None)[source]

    Return the polynomial \(p\) such that \(p(A) = adj(A)\) and also the determinant of \(A\).

    Examples

    @@ -1003,7 +1003,7 @@

    What is domainmatrix?
    -adjugate()[source]
    +adjugate()[source]

    Adjugate of a square DomainMatrix.

    The adjugate matrix is the transpose of the cofactor matrix and is related to the inverse by:

    @@ -1036,7 +1036,7 @@

    What is domainmatrix?
    -cancel_denom(denom)[source]
    +cancel_denom(denom)[source]

    Cancel factors between a matrix and a denominator.

    Returns a matrix and denominator on lowest terms.

    Requires gcd in the ground domain.

    @@ -1104,7 +1104,7 @@

    What is domainmatrix?
    -cancel_denom_elementwise(denom)[source]
    +cancel_denom_elementwise(denom)[source]

    Cancel factors between the elements of a matrix and a denominator.

    Returns a matrix of numerators and matrix of denominators.

    Requires gcd in the ground domain.

    @@ -1143,7 +1143,7 @@

    What is domainmatrix?
    -charpoly()[source]
    +charpoly()[source]

    Characteristic polynomial of a square matrix.

    Computes the characteristic polynomial in a fully expanded form using division free arithmetic. If a factorization of the characteristic @@ -1183,7 +1183,7 @@

    What is domainmatrix?
    -charpoly_base()[source]
    +charpoly_base()[source]

    Base case for charpoly_factor_blocks() after block decomposition.

    This method is used internally by charpoly_factor_blocks() as the base case for computing the characteristic polynomial of a block. It is @@ -1201,7 +1201,7 @@

    What is domainmatrix?
    -charpoly_berk()[source]
    +charpoly_berk()[source]

    Compute the characteristic polynomial using the Berkowitz algorithm.

    This method directly calls the underlying implementation of the Berkowitz algorithm (sympy.polys.matrices.dense.ddm_berk() or @@ -1232,7 +1232,7 @@

    What is domainmatrix?
    -charpoly_factor_blocks()[source]
    +charpoly_factor_blocks()[source]

    Partial factorisation of the characteristic polynomial.

    This factorisation arises from a block structure of the matrix (if any) and so the factors are not guaranteed to be irreducible. The @@ -1293,7 +1293,7 @@

    What is domainmatrix?
    -charpoly_factor_list()[source]
    +charpoly_factor_list()[source]

    Full factorization of the characteristic polynomial.

    Returns:
    @@ -1342,7 +1342,7 @@

    What is domainmatrix?
    -choose_domain(**opts)[source]
    +choose_domain(**opts)[source]

    Convert to a domain found by construct_domain().

    Examples

    >>> from sympy import ZZ
    @@ -1369,7 +1369,7 @@ 

    What is domainmatrix?
    -clear_denoms(convert=False)[source]
    +clear_denoms(convert=False)[source]

    Clear denominators, but keep the domain unchanged.

    Examples

    >>> from sympy import QQ
    @@ -1409,7 +1409,7 @@ 

    What is domainmatrix?
    -clear_denoms_rowwise(convert=False)[source]
    +clear_denoms_rowwise(convert=False)[source]

    Clear denominators from each row of the matrix.

    Examples

    >>> from sympy import QQ
    @@ -1455,7 +1455,7 @@ 

    What is domainmatrix?
    -columnspace()[source]
    +columnspace()[source]

    Returns the columnspace for the DomainMatrix

    Returns:
    @@ -1479,7 +1479,7 @@

    What is domainmatrix?
    -content()[source]
    +content()[source]

    Return the gcd of the elements of the matrix.

    Requires gcd in the ground domain.

    Examples

    @@ -1498,7 +1498,7 @@

    What is domainmatrix?
    -convert_to(K)[source]
    +convert_to(K)[source]

    Change the domain of DomainMatrix to desired domain or field

    Parameters:
    @@ -1531,7 +1531,7 @@

    What is domainmatrix?
    -det()[source]
    +det()[source]

    Returns the determinant of a square DomainMatrix.

    Returns:
    @@ -1563,7 +1563,7 @@

    What is domainmatrix?
    -classmethod diag(diagonal, domain, shape=None)[source]
    +classmethod diag(diagonal, domain, shape=None)[source]

    Return diagonal matrix with entries from diagonal.

    Examples

    >>> from sympy.polys.matrices import DomainMatrix
    @@ -1576,7 +1576,7 @@ 

    What is domainmatrix?
    -diagonal()[source]
    +diagonal()[source]

    Get the diagonal entries of the matrix as a list.

    Examples

    >>> from sympy import ZZ
    @@ -1594,7 +1594,7 @@ 

    What is domainmatrix?
    -eval_poly(p)[source]
    +eval_poly(p)[source]

    Evaluate polynomial function of a matrix \(p(A)\).

    Examples

    >>> from sympy import QQ
    @@ -1616,7 +1616,7 @@ 

    What is domainmatrix?
    -eval_poly_mul(p, B)[source]
    +eval_poly_mul(p, B)[source]

    Evaluate polynomial matrix product \(p(A) \times B\).

    Evaluate the polynomial matrix product \(p(A) \times B\) using Horner’s method without creating the matrix \(p(A)\) explicitly. If \(B\) is a @@ -1648,7 +1648,7 @@

    What is domainmatrix?
    -classmethod eye(shape, domain)[source]
    +classmethod eye(shape, domain)[source]

    Return identity matrix of size n or shape (m, n).

    Examples

    >>> from sympy.polys.matrices import DomainMatrix
    @@ -1669,7 +1669,7 @@ 

    What is domainmatrix?**kwargs,

    -)[source] +)[source]

    Convert Matrix to DomainMatrix

    Parameters:
    @@ -1713,7 +1713,7 @@

    What is domainmatrix?**kwargs,

    -)[source] +)[source]
    Parameters:

    nrows: number of rows

    @@ -1741,7 +1741,7 @@

    What is domainmatrix?
    -classmethod from_dod(dod, shape, domain)[source]
    +classmethod from_dod(dod, shape, domain)[source]

    Create sparse DomainMatrix from dict of dict (dod) format.

    See to_dod() for explanation.

    @@ -1752,7 +1752,7 @@

    What is domainmatrix?
    -from_dod_like(dod, domain=None)[source]
    +from_dod_like(dod, domain=None)[source]

    Create DomainMatrix like self from dict of dict (dod) format.

    See to_dod() for explanation.

    @@ -1763,7 +1763,7 @@

    What is domainmatrix?
    -classmethod from_dok(dok, shape, domain)[source]
    +classmethod from_dok(dok, shape, domain)[source]

    Create DomainMatrix from dictionary of keys (dok) format.

    See to_dok() for explanation.

    @@ -1774,7 +1774,7 @@

    What is domainmatrix?
    -from_flat_nz(elements, data, domain)[source]
    +from_flat_nz(elements, data, domain)[source]

    Reconstruct DomainMatrix after calling to_flat_nz().

    See to_flat_nz() for explanation.

    @@ -1785,7 +1785,7 @@

    What is domainmatrix?
    -classmethod from_list(rows, domain)[source]
    +classmethod from_list(rows, domain)[source]

    Convert a list of lists into a DomainMatrix

    Parameters:
    @@ -1830,7 +1830,7 @@

    What is domainmatrix?domain,

    -)[source] +)[source]

    Create DomainMatrix from flat list.

    Examples

    >>> from sympy import ZZ
    @@ -1860,7 +1860,7 @@ 

    What is domainmatrix?**kwargs,

    -)[source] +)[source]

    Convert a list of lists of Expr into a DomainMatrix using construct_domain

    Parameters:
    @@ -1888,7 +1888,7 @@

    What is domainmatrix?
    -classmethod from_rep(rep)[source]
    +classmethod from_rep(rep)[source]

    Create a new DomainMatrix efficiently from DDM/SDM.

    Parameters:
    @@ -1936,7 +1936,7 @@

    What is domainmatrix?
    -hstack(*B)[source]
    +hstack(*B)[source]

    Horizontally stack the given matrices.

    Parameters:
    @@ -1976,7 +1976,7 @@

    What is domainmatrix?
    -inv()[source]
    +inv()[source]

    Finds the inverse of the DomainMatrix if exists

    Returns:
    @@ -2015,7 +2015,7 @@

    What is domainmatrix?
    -inv_den(method=None)[source]
    +inv_den(method=None)[source]

    Return the inverse as a DomainMatrix with denominator.

    Parameters:
    @@ -2109,7 +2109,7 @@

    What is domainmatrix?
    -iter_items()[source]
    +iter_items()[source]

    Iterate over indices and values of nonzero elements of the matrix.

    Examples

    >>> from sympy import ZZ
    @@ -2127,7 +2127,7 @@ 

    What is domainmatrix?
    -iter_values()[source]
    +iter_values()[source]

    Iterate over nonzero elements of the matrix.

    Examples

    >>> from sympy import ZZ
    @@ -2145,7 +2145,7 @@ 

    What is domainmatrix?
    -lll(delta=MPQ(3, 4))[source]
    +lll(delta=MPQ(3, 4))[source]

    Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm. See [R772] and [R773].

    @@ -2210,7 +2210,7 @@

    What is domainmatrix?
    -lll_transform(delta=MPQ(3, 4))[source]
    +lll_transform(delta=MPQ(3, 4))[source]

    Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm and returns the reduced basis and transformation matrix.

    Explanation

    @@ -2239,7 +2239,7 @@

    What is domainmatrix?
    -lu()[source]
    +lu()[source]

    Returns Lower and Upper decomposition of the DomainMatrix

    Returns:
    @@ -2280,7 +2280,7 @@

    What is domainmatrix?
    -lu_solve(rhs)[source]
    +lu_solve(rhs)[source]

    Solver for DomainMatrix x in the A*x = B

    Parameters:
    @@ -2326,7 +2326,7 @@

    What is domainmatrix?
    -matmul(B)[source]
    +matmul(B)[source]

    Performs matrix multiplication of two DomainMatrix matrices

    Parameters:
    @@ -2365,7 +2365,7 @@

    What is domainmatrix?
    -mul(b)[source]
    +mul(b)[source]

    Performs term by term multiplication for the second DomainMatrix w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are list of DomainMatrix matrices created after term by term multiplication.

    @@ -2404,7 +2404,7 @@

    What is domainmatrix?
    -neg()[source]
    +neg()[source]

    Returns the negative of DomainMatrix

    Parameters:
    @@ -2433,7 +2433,7 @@

    What is domainmatrix?
    -nnz()[source]
    +nnz()[source]

    Number of nonzero elements in the matrix.

    Examples

    >>> from sympy import ZZ
    @@ -2447,7 +2447,7 @@ 

    What is domainmatrix?
    -nullspace(divide_last=False)[source]
    +nullspace(divide_last=False)[source]

    Returns the nullspace for the DomainMatrix

    Parameters:
    @@ -2539,7 +2539,7 @@

    What is domainmatrix?
    -nullspace_from_rref(pivots=None)[source]
    +nullspace_from_rref(pivots=None)[source]

    Compute nullspace from rref and pivots.

    The domain of the matrix can be any domain.

    The matrix must be in reduced row echelon form already. Otherwise the @@ -2553,7 +2553,7 @@

    What is domainmatrix?
    -classmethod ones(shape, domain)[source]
    +classmethod ones(shape, domain)[source]

    Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain

    Examples

    >>> from sympy.polys.matrices import DomainMatrix
    @@ -2566,7 +2566,7 @@ 

    What is domainmatrix?
    -pow(n)[source]
    +pow(n)[source]

    Computes A**n

    Parameters:
    @@ -2606,7 +2606,7 @@

    What is domainmatrix?
    -primitive()[source]
    +primitive()[source]

    Factor out gcd of the elements of a matrix.

    Requires gcd in the ground domain.

    Examples

    @@ -2632,7 +2632,7 @@

    What is domainmatrix?
    -rowspace()[source]
    +rowspace()[source]

    Returns the rowspace for the DomainMatrix

    Returns:
    @@ -2656,7 +2656,7 @@

    What is domainmatrix?
    -rref(*, method='auto')[source]
    +rref(*, method='auto')[source]

    Returns reduced-row echelon form (RREF) and list of pivots.

    If the domain is not a field then it will be converted to a field. See rref_den() for the fraction-free version of this routine that @@ -2751,7 +2751,7 @@

    What is domainmatrix?keep_domain=True,

    -)[source] +)[source]

    Returns reduced-row echelon form with denominator and list of pivots.

    Requires exact division in the ground domain (exquo).

    @@ -2856,7 +2856,7 @@

    What is domainmatrix?
    -scc()[source]
    +scc()[source]

    Compute the strongly connected components of a DomainMatrix

    Returns:
    @@ -2924,7 +2924,7 @@

    What is domainmatrix?
    -solve_den(b, method=None)[source]
    +solve_den(b, method=None)[source]

    Solve matrix equation \(Ax = b\) without fractions in the ground domain.

    Parameters:
    @@ -3058,7 +3058,7 @@

    What is domainmatrix?check=True,

    -)[source] +)[source]

    Solve matrix equation \(Ax = b\) using the characteristic polynomial.

    This method solves the square matrix equation \(Ax = b\) for \(x\) using the characteristic polynomial without any division or fractions in the @@ -3129,7 +3129,7 @@

    What is domainmatrix?
    -solve_den_rref(b)[source]
    +solve_den_rref(b)[source]

    Solve matrix equation \(Ax = b\) using fraction-free RREF

    Solves the matrix equation \(Ax = b\) for \(x\) and returns the solution as a numerator/denominator pair.

    @@ -3155,7 +3155,7 @@

    What is domainmatrix?
    -sub(B)[source]
    +sub(B)[source]

    Subtracts two DomainMatrix matrices of the same Domain

    Parameters:
    @@ -3204,7 +3204,7 @@

    What is domainmatrix?
    -to_Matrix()[source]
    +to_Matrix()[source]

    Convert DomainMatrix to Matrix

    Returns:
    @@ -3236,7 +3236,7 @@

    What is domainmatrix?
    -to_ddm()[source]
    +to_ddm()[source]

    Return a DDM representation of self.

    Examples

    >>> from sympy.polys.matrices import DomainMatrix
    @@ -3257,7 +3257,7 @@ 

    What is domainmatrix?
    -to_dense()[source]
    +to_dense()[source]

    Return a dense DomainMatrix representation of self.

    Examples

    >>> from sympy.polys.matrices import DomainMatrix
    @@ -3274,7 +3274,7 @@ 

    What is domainmatrix?
    -to_dfm()[source]
    +to_dfm()[source]

    Return a DFM representation of self.

    Examples

    >>> from sympy.polys.matrices import DomainMatrix
    @@ -3295,7 +3295,7 @@ 

    What is domainmatrix?
    -to_dfm_or_ddm()[source]
    +to_dfm_or_ddm()[source]

    Return a DFM or DDM representation of self.

    Explanation

    The DFM representation can only be used if the ground types @@ -3332,7 +3332,7 @@

    What is domainmatrix?
    -to_dod()[source]
    +to_dod()[source]

    Convert DomainMatrix to dictionary of dictionaries (dod) format.

    Explanation

    Returns a dictionary of dictionaries representing the matrix.

    @@ -3356,7 +3356,7 @@

    What is domainmatrix?
    -to_dok()[source]
    +to_dok()[source]

    Convert DomainMatrix to dictionary of keys (dok) format.

    Examples

    >>> from sympy import ZZ
    @@ -3382,7 +3382,7 @@ 

    What is domainmatrix?
    -to_field()[source]
    +to_field()[source]

    Returns a DomainMatrix with the appropriate field

    Returns:
    @@ -3408,7 +3408,7 @@

    What is domainmatrix?
    -to_flat_nz()[source]
    +to_flat_nz()[source]

    Convert DomainMatrix to list of nonzero elements and data.

    Explanation

    Returns a tuple (elements, data) where elements is a list of @@ -3451,7 +3451,7 @@

    What is domainmatrix?
    -to_list()[source]
    +to_list()[source]

    Convert DomainMatrix to list of lists.

    See also

    @@ -3461,7 +3461,7 @@

    What is domainmatrix?
    -to_list_flat()[source]
    +to_list_flat()[source]

    Convert DomainMatrix to flat list.

    Examples

    >>> from sympy import ZZ
    @@ -3479,7 +3479,7 @@ 

    What is domainmatrix?
    -to_sdm()[source]
    +to_sdm()[source]

    Return a SDM representation of self.

    Examples

    >>> from sympy.polys.matrices import DomainMatrix
    @@ -3500,7 +3500,7 @@ 

    What is domainmatrix?
    -to_sparse()[source]
    +to_sparse()[source]

    Return a sparse DomainMatrix representation of self.

    Examples

    >>> from sympy.polys.matrices import DomainMatrix
    @@ -3517,13 +3517,13 @@ 

    What is domainmatrix?
    -transpose()[source]
    +transpose()[source]

    Matrix transpose of self

    -unify(*others, fmt=None)[source]
    +unify(*others, fmt=None)[source]

    Unifies the domains and the format of self and other matrices.

    @@ -3576,7 +3576,7 @@

    What is domainmatrix?
    -vstack(*B)[source]
    +vstack(*B)[source]

    Vertically stack the given matrices.

    Parameters:
    @@ -3616,7 +3616,7 @@

    What is domainmatrix?
    -classmethod zeros(shape, domain, *, fmt='sparse')[source]
    +classmethod zeros(shape, domain, *, fmt='sparse')[source]

    Returns a zero DomainMatrix of size shape, belonging to the specified domain

    Examples

    >>> from sympy.polys.matrices import DomainMatrix
    @@ -3686,31 +3686,31 @@ 

    What is domainmatrix?
    -class sympy.polys.matrices.ddm.DDM(rowslist, shape, domain)[source]
    +class sympy.polys.matrices.ddm.DDM(rowslist, shape, domain)[source]

    Dense matrix based on polys domain elements

    This is a list subclass and is a wrapper for a list of lists that supports basic matrix arithmetic +, -, , *.

    -add(b)[source]
    +add(b)[source]

    a + b

    -charpoly()[source]
    +charpoly()[source]

    Coefficients of characteristic polynomial of a

    -det()[source]
    +det()[source]

    Determinant of a

    -classmethod diag(values, domain)[source]
    +classmethod diag(values, domain)[source]

    Returns a square diagonal matrix with values on the diagonal.

    Examples

    >>> from sympy import ZZ
    @@ -3727,13 +3727,13 @@ 

    What is domainmatrix?
    -diagonal()[source]
    +diagonal()[source]

    Returns a list of the elements from the diagonal of the matrix.

    -classmethod from_dod(dod, shape, domain)[source]
    +classmethod from_dod(dod, shape, domain)[source]

    Create a DDM from a dictionary of dictionaries (dod) format.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -3752,7 +3752,7 @@ 

    What is domainmatrix?
    -classmethod from_dok(dok, shape, domain)[source]
    +classmethod from_dok(dok, shape, domain)[source]

    Create a DDM from a dictionary of keys (dok) format.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -3771,7 +3771,7 @@ 

    What is domainmatrix?
    -classmethod from_flat_nz(elements, data, domain)[source]
    +classmethod from_flat_nz(elements, data, domain)[source]

    Reconstruct a DDM after calling to_flat_nz().

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -3792,7 +3792,7 @@ 

    What is domainmatrix?
    -classmethod from_list(rowslist, shape, domain)[source]
    +classmethod from_list(rowslist, shape, domain)[source]

    Create a DDM from a list of lists.

    Examples

    >>> from sympy import ZZ
    @@ -3812,7 +3812,7 @@ 

    What is domainmatrix?
    -classmethod from_list_flat(flat, shape, domain)[source]
    +classmethod from_list_flat(flat, shape, domain)[source]

    Create a DDM from a flat list of elements.

    Examples

    >>> from sympy import QQ
    @@ -3832,7 +3832,7 @@ 

    What is domainmatrix?
    -hstack(*B)[source]
    +hstack(*B)[source]

    Horizontally stacks DDM matrices.

    Examples

    >>> from sympy import ZZ
    @@ -3854,40 +3854,40 @@ 

    What is domainmatrix?
    -inv()[source]
    +inv()[source]

    Inverse of a

    -is_diagonal()[source]
    +is_diagonal()[source]

    Says whether this matrix is diagonal. True can be returned even if the matrix is not square.

    -is_lower()[source]
    +is_lower()[source]

    Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.

    -is_upper()[source]
    +is_upper()[source]

    Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.

    -is_zero_matrix()[source]
    +is_zero_matrix()[source]

    Says whether this matrix has all zero entries.

    -iter_items()[source]
    +iter_items()[source]

    Iterate over indices and values of nonzero elements of the matrix.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -3905,7 +3905,7 @@ 

    What is domainmatrix?
    -iter_values()[source]
    +iter_values()[source]

    Iterater over the non-zero values of the matrix.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -3923,31 +3923,31 @@ 

    What is domainmatrix?
    -lu()[source]
    +lu()[source]

    L, U decomposition of a

    -lu_solve(b)[source]
    +lu_solve(b)[source]

    x where a*x = b

    -matmul(b)[source]
    +matmul(b)[source]

    a @ b (matrix product)

    -neg()[source]
    +neg()[source]

    -a

    -nnz()[source]
    +nnz()[source]

    Number of non-zero entries in DDM matrix.

    See also

    @@ -3957,7 +3957,7 @@

    What is domainmatrix?
    -nullspace()[source]
    +nullspace()[source]

    Returns a basis for the nullspace of a.

    The domain of the matrix must be a field.

    @@ -3968,7 +3968,7 @@

    What is domainmatrix?
    -nullspace_from_rref(pivots=None)[source]
    +nullspace_from_rref(pivots=None)[source]

    Compute the nullspace of a matrix from its rref.

    The domain of the matrix can be any domain.

    Returns a tuple (basis, nonpivots).

    @@ -3983,7 +3983,7 @@

    What is domainmatrix?
    -rref()[source]
    +rref()[source]

    Reduced-row echelon form of a and list of pivots.

    See also

    @@ -3998,7 +3998,7 @@

    What is domainmatrix?
    -rref_den()[source]
    +rref_den()[source]

    Reduced-row echelon form of a with denominator and list of pivots

    See also

    @@ -4013,7 +4013,7 @@

    What is domainmatrix?
    -scc()[source]
    +scc()[source]

    Strongly connected components of a square matrix a.

    Examples

    >>> from sympy import ZZ
    @@ -4031,13 +4031,13 @@ 

    What is domainmatrix?
    -sub(b)[source]
    +sub(b)[source]

    a - b

    -to_ddm()[source]
    +to_ddm()[source]

    Convert to a DDM.

    This just returns self but exists to parallel the corresponding method in other matrix types like SDM.

    @@ -4049,7 +4049,7 @@

    What is domainmatrix?
    -to_dfm()[source]
    +to_dfm()[source]

    Convert to DDM to DFM.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -4069,7 +4069,7 @@ 

    What is domainmatrix?
    -to_dfm_or_ddm()[source]
    +to_dfm_or_ddm()[source]

    Convert to DFM if possible or otherwise return self.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -4089,7 +4089,7 @@ 

    What is domainmatrix?
    -to_dod()[source]
    +to_dod()[source]

    Convert to a dictionary of dictionaries (dod) format.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -4107,7 +4107,7 @@ 

    What is domainmatrix?
    -to_dok()[source]
    +to_dok()[source]

    Convert DDM to dictionary of keys (dok) format.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -4125,7 +4125,7 @@ 

    What is domainmatrix?
    -to_flat_nz()[source]
    +to_flat_nz()[source]

    Convert to a flat list of nonzero elements and data.

    Explanation

    This is used to operate on a list of the elements of a matrix and then @@ -4150,7 +4150,7 @@

    What is domainmatrix?
    -to_list()[source]
    +to_list()[source]

    Convert to a list of lists.

    Examples

    >>> from sympy import QQ
    @@ -4168,7 +4168,7 @@ 

    What is domainmatrix?
    -to_list_flat()[source]
    +to_list_flat()[source]

    Convert to a flat list of elements.

    Examples

    >>> from sympy import QQ
    @@ -4188,7 +4188,7 @@ 

    What is domainmatrix?
    -to_sdm()[source]
    +to_sdm()[source]

    Convert to a SDM.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -4208,7 +4208,7 @@ 

    What is domainmatrix?
    -vstack(*B)[source]
    +vstack(*B)[source]

    Vertically stacks DDM matrices.

    Examples

    >>> from sympy import ZZ
    @@ -4277,7 +4277,7 @@ 

    What is domainmatrix?
    -sympy.polys.matrices.dense.ddm_berk(M, K)[source]
    +sympy.polys.matrices.dense.ddm_berk(M, K)[source]

    Berkowitz algorithm for computing the characteristic polynomial.

    Explanation

    The Berkowitz algorithm is a division-free algorithm for computing the @@ -4319,13 +4319,13 @@

    What is domainmatrix?b: Sequence[Sequence[R]],

    -) None[source] +) None[source]

    a += b

    -sympy.polys.matrices.dense.ddm_idet(a, K)[source]
    +sympy.polys.matrices.dense.ddm_idet(a, K)[source]

    a <– echelon(a); return det

    Explanation

    Compute the determinant of \(a\) using the Bareiss fraction-free algorithm. @@ -4368,7 +4368,7 @@

    What is domainmatrix?
    -sympy.polys.matrices.dense.ddm_iinv(ainv, a, K)[source]
    +sympy.polys.matrices.dense.ddm_iinv(ainv, a, K)[source]

    ainv <– inv(a)

    Compute the inverse of a matrix \(a\) over a field \(K\) using Gauss-Jordan elimination. The result is stored in \(ainv\).

    @@ -4398,7 +4398,7 @@

    What is domainmatrix?
    -sympy.polys.matrices.dense.ddm_ilu(a)[source]
    +sympy.polys.matrices.dense.ddm_ilu(a)[source]

    a <– LU(a)

    Computes the LU decomposition of a matrix in place. Returns a list of row swaps that were performed.

    @@ -4443,7 +4443,7 @@

    What is domainmatrix?
    -sympy.polys.matrices.dense.ddm_ilu_solve(x, L, U, swaps, b)[source]
    +sympy.polys.matrices.dense.ddm_ilu_solve(x, L, U, swaps, b)[source]

    x <– solve(L*U*x = swaps(b))

    Solve a linear system, \(A*x = b\), given an LU factorization of \(A\).

    Uses division in the ground domain which must be a field.

    @@ -4482,7 +4482,7 @@

    What is domainmatrix?
    -sympy.polys.matrices.dense.ddm_ilu_split(L, U, K)[source]
    +sympy.polys.matrices.dense.ddm_ilu_split(L, U, K)[source]

    L, U <– LU(U)

    Compute the LU decomposition of a matrix \(L\) in place and store the lower and upper triangular matrices in \(L\) and \(U\), respectively. Returns a list @@ -4518,7 +4518,7 @@

    What is domainmatrix?c: Sequence[Sequence[R]],

    -) None[source] +) None[source]

    a += b @ c

    @@ -4531,7 +4531,7 @@

    What is domainmatrix?b: R,

    -) None[source] +) None[source]

    a <– a*b

    @@ -4543,7 +4543,7 @@

    What is domainmatrix?a: list[list[R]],

    -) None[source] +) None[source]

    a <– -a

    @@ -4556,13 +4556,13 @@

    What is domainmatrix?b: R,

    -) None[source] +) None[source]

    a <– b*a

    -sympy.polys.matrices.dense.ddm_irref(a, _partial_pivot=False)[source]
    +sympy.polys.matrices.dense.ddm_irref(a, _partial_pivot=False)[source]

    In-place reduced row echelon form of a matrix.

    Compute the reduced row echelon form of \(a\). Modifies \(a\) in place and returns a list of the pivot columns.

    @@ -4611,7 +4611,7 @@

    What is domainmatrix?
    -sympy.polys.matrices.dense.ddm_irref_den(a, K)[source]
    +sympy.polys.matrices.dense.ddm_irref_den(a, K)[source]

    a <– rref(a); return (den, pivots)

    Compute the fraction-free reduced row echelon form (RREF) of \(a\). Modifies \(a\) in place and returns a tuple containing the denominator of the RREF and @@ -4677,7 +4677,7 @@

    What is domainmatrix?b: Sequence[Sequence[R]],

    -) None[source] +) None[source]

    a -= b

    @@ -4689,13 +4689,13 @@

    What is domainmatrix?matrix: Sequence[Sequence[T]],

    -) list[list[T]][source] +) list[list[T]][source]

    matrix transpose

    -class sympy.polys.matrices._typing.RingElement(*args, **kwargs)[source]
    +class sympy.polys.matrices._typing.RingElement(*args, **kwargs)[source]

    A ring element.

    Must support +, -, *, ** and -.

    @@ -4703,7 +4703,7 @@

    What is domainmatrix?Module for the SDM class.

    -class sympy.polys.matrices.sdm.SDM(elemsdict, shape, domain)[source]
    +class sympy.polys.matrices.sdm.SDM(elemsdict, shape, domain)[source]

    Sparse matrix based on polys domain elements

    This is a dict subclass and is a wrapper for a dict of dicts that supports basic matrix arithmetic +, -, , *.

    @@ -4747,7 +4747,7 @@

    What is domainmatrix?
    -add(B)[source]
    +add(B)[source]

    Adds two SDM matrices

    Examples

    >>> from sympy import ZZ
    @@ -4762,7 +4762,7 @@ 

    What is domainmatrix?
    -charpoly()[source]
    +charpoly()[source]

    Returns the coefficients of the characteristic polynomial of the SDM matrix. These elements will be domain elements. The domain of the elements will be same as domain of the SDM.

    @@ -4787,7 +4787,7 @@

    What is domainmatrix?
    -convert_to(K)[source]
    +convert_to(K)[source]

    Converts the Domain of a SDM matrix to K

    Examples

    >>> from sympy import ZZ, QQ
    @@ -4801,7 +4801,7 @@ 

    What is domainmatrix?
    -copy()[source]
    +copy()[source]

    Returns the copy of a SDM object

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -4817,7 +4817,7 @@ 

    What is domainmatrix?
    -det()[source]
    +det()[source]

    Returns determinant of A

    Examples

    >>> from sympy import QQ
    @@ -4831,13 +4831,13 @@ 

    What is domainmatrix?
    -diagonal()[source]
    +diagonal()[source]

    Returns the diagonal of the matrix as a list.

    -classmethod eye(shape, domain)[source]
    +classmethod eye(shape, domain)[source]

    Returns a identity SDM matrix of dimensions size x size, belonging to the specified domain

    Examples

    @@ -4852,7 +4852,7 @@

    What is domainmatrix?
    -classmethod from_ddm(ddm)[source]
    +classmethod from_ddm(ddm)[source]

    Create SDM from a DDM.

    Examples

    >>> from sympy.polys.matrices.ddm import DDM
    @@ -4874,7 +4874,7 @@ 

    What is domainmatrix?
    -classmethod from_dod(dod, shape, domain)[source]
    +classmethod from_dod(dod, shape, domain)[source]

    Create SDM from dictionary of dictionaries (dod) format.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -4895,7 +4895,7 @@ 

    What is domainmatrix?
    -classmethod from_dok(dok, shape, domain)[source]
    +classmethod from_dok(dok, shape, domain)[source]

    Create SDM from dictionary of keys (dok) format.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -4916,7 +4916,7 @@ 

    What is domainmatrix?
    -classmethod from_flat_nz(elements, data, domain)[source]
    +classmethod from_flat_nz(elements, data, domain)[source]

    Reconstruct a SDM after calling to_flat_nz().

    See to_flat_nz() for explanation.

    @@ -4927,7 +4927,7 @@

    What is domainmatrix?
    -classmethod from_list(ddm, shape, domain)[source]
    +classmethod from_list(ddm, shape, domain)[source]

    Create SDM object from a list of lists.

    Parameters:
    @@ -4965,7 +4965,7 @@

    What is domainmatrix?
    -classmethod from_list_flat(elements, shape, domain)[source]
    +classmethod from_list_flat(elements, shape, domain)[source]

    Create SDM from a flat list of elements.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -4985,7 +4985,7 @@ 

    What is domainmatrix?
    -hstack(*B)[source]
    +hstack(*B)[source]

    Horizontally stacks SDM matrices.

    Examples

    >>> from sympy import ZZ
    @@ -5007,7 +5007,7 @@ 

    What is domainmatrix?
    -inv()[source]
    +inv()[source]

    Returns inverse of a matrix A

    Examples

    >>> from sympy import QQ
    @@ -5021,34 +5021,34 @@ 

    What is domainmatrix?
    -is_diagonal()[source]
    +is_diagonal()[source]

    Says whether this matrix is diagonal. True can be returned even if the matrix is not square.

    -is_lower()[source]
    +is_lower()[source]

    Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.

    -is_upper()[source]
    +is_upper()[source]

    Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.

    -is_zero_matrix()[source]
    +is_zero_matrix()[source]

    Says whether this matrix has all zero entries.

    -iter_items()[source]
    +iter_items()[source]

    Iterate over indices and values of the nonzero elements.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5066,7 +5066,7 @@ 

    What is domainmatrix?
    -iter_values()[source]
    +iter_values()[source]

    Iterate over the nonzero values of a SDM matrix.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5080,19 +5080,19 @@ 

    What is domainmatrix?
    -lll(delta=MPQ(3, 4))[source]
    +lll(delta=MPQ(3, 4))[source]

    Returns the LLL-reduced basis for the SDM matrix.

    -lll_transform(delta=MPQ(3, 4))[source]
    +lll_transform(delta=MPQ(3, 4))[source]

    Returns the LLL-reduced basis and transformation matrix.

    -lu()[source]
    +lu()[source]

    Returns LU decomposition for a matrix A

    Examples

    >>> from sympy import QQ
    @@ -5106,7 +5106,7 @@ 

    What is domainmatrix?
    -lu_solve(b)[source]
    +lu_solve(b)[source]

    Uses LU decomposition to solve Ax = b,

    Examples

    >>> from sympy import QQ
    @@ -5121,7 +5121,7 @@ 

    What is domainmatrix?
    -matmul(B)[source]
    +matmul(B)[source]

    Performs matrix multiplication of two SDM matrices

    Parameters:
    @@ -5154,7 +5154,7 @@

    What is domainmatrix?
    -mul(b)[source]
    +mul(b)[source]

    Multiplies each element of A with a scalar b

    Examples

    >>> from sympy import ZZ
    @@ -5168,7 +5168,7 @@ 

    What is domainmatrix?
    -neg()[source]
    +neg()[source]

    Returns the negative of a SDM matrix

    Examples

    >>> from sympy import ZZ
    @@ -5182,7 +5182,7 @@ 

    What is domainmatrix?
    -classmethod new(sdm, shape, domain)[source]
    +classmethod new(sdm, shape, domain)[source]
    Parameters:

    sdm: A dict of dicts for non-zero elements in SDM

    @@ -5206,7 +5206,7 @@

    What is domainmatrix?
    -nnz()[source]
    +nnz()[source]

    Number of non-zero elements in the SDM matrix.

    Examples

    >>> from sympy import ZZ
    @@ -5224,7 +5224,7 @@ 

    What is domainmatrix?
    -nullspace()[source]
    +nullspace()[source]

    Nullspace of a SDM matrix A.

    The domain of the matrix must be a field.

    It is better to use the nullspace() method rather @@ -5248,7 +5248,7 @@

    What is domainmatrix?
    -nullspace_from_rref(pivots=None)[source]
    +nullspace_from_rref(pivots=None)[source]

    Returns nullspace for a SDM matrix A in RREF.

    The domain of the matrix can be any domain.

    The matrix must already be in reduced row echelon form (RREF).

    @@ -5281,7 +5281,7 @@

    What is domainmatrix?
    -rref()[source]
    +rref()[source]

    Returns reduced-row echelon form and list of pivots for the SDM

    Examples

    >>> from sympy import QQ
    @@ -5295,7 +5295,7 @@ 

    What is domainmatrix?
    -rref_den()[source]
    +rref_den()[source]

    Returns reduced-row echelon form (RREF) with denominator and pivots.

    Examples

    >>> from sympy import QQ
    @@ -5309,7 +5309,7 @@ 

    What is domainmatrix?
    -scc()[source]
    +scc()[source]

    Strongly connected components of a square matrix A.

    Examples

    >>> from sympy import ZZ
    @@ -5327,7 +5327,7 @@ 

    What is domainmatrix?
    -sub(B)[source]
    +sub(B)[source]

    Subtracts two SDM matrices

    Examples

    >>> from sympy import ZZ
    @@ -5342,7 +5342,7 @@ 

    What is domainmatrix?
    -to_ddm()[source]
    +to_ddm()[source]

    Convert a SDM object to a DDM object

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5356,7 +5356,7 @@ 

    What is domainmatrix?
    -to_dfm()[source]
    +to_dfm()[source]

    Convert a SDM object to a DFM object

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5374,7 +5374,7 @@ 

    What is domainmatrix?
    -to_dfm_or_ddm()[source]
    +to_dfm_or_ddm()[source]

    Convert to DFM if possible, else DDM.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5394,7 +5394,7 @@ 

    What is domainmatrix?
    -to_dod()[source]
    +to_dod()[source]

    Convert to dictionary of dictionaries (dod) format.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5412,7 +5412,7 @@ 

    What is domainmatrix?
    -to_dok()[source]
    +to_dok()[source]

    Convert to dictionary of keys (dok) format.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5430,7 +5430,7 @@ 

    What is domainmatrix?
    -to_flat_nz()[source]
    +to_flat_nz()[source]

    Convert SDM to a flat list of nonzero elements and data.

    Explanation

    This is used to operate on a list of the elements of a matrix and then @@ -5455,7 +5455,7 @@

    What is domainmatrix?
    -to_list()[source]
    +to_list()[source]

    Convert a SDM object to a list of lists.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5470,7 +5470,7 @@ 

    What is domainmatrix?
    -to_list_flat()[source]
    +to_list_flat()[source]

    Convert SDM to a flat list.

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5490,13 +5490,13 @@ 

    What is domainmatrix?
    -to_sdm()[source]
    +to_sdm()[source]

    Convert to SDM format (returns self).

    -transpose()[source]
    +transpose()[source]

    Returns the transpose of a SDM matrix

    Examples

    >>> from sympy.polys.matrices.sdm import SDM
    @@ -5510,7 +5510,7 @@ 

    What is domainmatrix?
    -vstack(*B)[source]
    +vstack(*B)[source]

    Vertically stacks SDM matrices.

    Examples

    >>> from sympy import ZZ
    @@ -5532,7 +5532,7 @@ 

    What is domainmatrix?
    -classmethod zeros(shape, domain)[source]
    +classmethod zeros(shape, domain)[source]

    Returns a SDM of size shape, belonging to the specified domain

    In the example below we declare a matrix A where,

    @@ -5555,7 +5555,7 @@

    What is domainmatrix?
    -sympy.polys.matrices.sdm.sdm_berk(M, n, K)[source]
    +sympy.polys.matrices.sdm.sdm_berk(M, n, K)[source]

    Berkowitz algorithm for computing the characteristic polynomial.

    Explanation

    The Berkowitz algorithm is a division-free algorithm for computing the @@ -5593,7 +5593,7 @@

    What is domainmatrix?
    -sympy.polys.matrices.sdm.sdm_irref(A)[source]
    +sympy.polys.matrices.sdm.sdm_irref(A)[source]

    RREF and pivots of a sparse matrix A.

    Compute the reduced row echelon form (RREF) of the matrix A and return a list of the pivot columns. This routine does not work in place and leaves @@ -5660,19 +5660,19 @@

    What is domainmatrix?nonzero_cols,

    -)[source] +)[source]

    Get nullspace from A which is in RREF

    -sympy.polys.matrices.sdm.sdm_particular_from_rref(A, ncols, pivots)[source]
    +sympy.polys.matrices.sdm.sdm_particular_from_rref(A, ncols, pivots)[source]

    Get a particular solution from A which is in RREF

    -sympy.polys.matrices.sdm.sdm_rref_den(A, K)[source]
    +sympy.polys.matrices.sdm.sdm_rref_den(A, K)[source]

    Return the reduced row echelon form (RREF) of A with denominator.

    The RREF is computed using fraction-free Gauss-Jordan elimination.

    Explanation

    @@ -5726,7 +5726,7 @@

    What is domainmatrix?
    -class sympy.polys.matrices._dfm.DFM(rowslist, shape, domain)[source]
    +class sympy.polys.matrices._dfm.DFM(rowslist, shape, domain)[source]

    Dense FLINT matrix. This class is a wrapper for matrices from python-flint.

    >>> from sympy.polys.domains import ZZ
     >>> from sympy.polys.matrices.dfm import DFM
    @@ -5760,19 +5760,19 @@ 

    What is domainmatrix?
    -add(other)[source]
    +add(other)[source]

    Add two DFM matrices.

    -applyfunc(func, domain)[source]
    +applyfunc(func, domain)[source]

    Apply a function to each entry of a DFM matrix.

    -charpoly()[source]
    +charpoly()[source]

    Compute the characteristic polynomial of the matrix using FLINT.

    Examples

    >>> from sympy import Matrix
    @@ -5807,19 +5807,19 @@ 

    What is domainmatrix?
    -convert_to(domain)[source]
    +convert_to(domain)[source]

    Convert to a new domain.

    -copy()[source]
    +copy()[source]

    Return a copy of self.

    -det()[source]
    +det()[source]

    Compute the determinant of the matrix using FLINT.

    Examples

    >>> from sympy import Matrix
    @@ -5860,85 +5860,85 @@ 

    What is domainmatrix?
    -classmethod diag(elements, domain)[source]
    +classmethod diag(elements, domain)[source]

    Return a diagonal matrix.

    -diagonal()[source]
    +diagonal()[source]

    Return the diagonal of a DFM matrix.

    -extract(rowslist, colslist)[source]
    +extract(rowslist, colslist)[source]

    Extract a submatrix.

    -extract_slice(rowslice, colslice)[source]
    +extract_slice(rowslice, colslice)[source]

    Slice a DFM.

    -classmethod eye(n, domain)[source]
    +classmethod eye(n, domain)[source]

    Return the identity matrix of size n.

    -classmethod from_ddm(ddm)[source]
    +classmethod from_ddm(ddm)[source]

    Convert from a DDM.

    -classmethod from_dod(dod, shape, domain)[source]
    +classmethod from_dod(dod, shape, domain)[source]

    Inverse of to_dod().

    -classmethod from_dok(dok, shape, domain)[source]
    +classmethod from_dok(dok, shape, domain)[source]

    Inverse of \(to_dod\).

    -classmethod from_flat_nz(elements, data, domain)[source]
    +classmethod from_flat_nz(elements, data, domain)[source]

    Inverse of to_flat_nz().

    -classmethod from_list(rowslist, shape, domain)[source]
    +classmethod from_list(rowslist, shape, domain)[source]

    Construct from a nested list.

    -classmethod from_list_flat(elements, shape, domain)[source]
    +classmethod from_list_flat(elements, shape, domain)[source]

    Inverse of to_list_flat().

    -getitem(i, j)[source]
    +getitem(i, j)[source]

    Get the (i, j)-th entry.

    -hstack(*others)[source]
    +hstack(*others)[source]

    Horizontally stack matrices.

    -inv()[source]
    +inv()[source]

    Compute the inverse of a matrix using FLINT.

    Examples

    >>> from sympy import Matrix, QQ
    @@ -5974,43 +5974,43 @@ 

    What is domainmatrix?
    -is_diagonal()[source]
    +is_diagonal()[source]

    Return True if the matrix is diagonal.

    -is_lower()[source]
    +is_lower()[source]

    Return True if the matrix is lower triangular.

    -is_upper()[source]
    +is_upper()[source]

    Return True if the matrix is upper triangular.

    -is_zero_matrix()[source]
    +is_zero_matrix()[source]

    Return True if the matrix is the zero matrix.

    -iter_items()[source]
    +iter_items()[source]

    Iterate over indices and values of nonzero elements of the matrix.

    -iter_values()[source]
    +iter_values()[source]

    Iterater over the non-zero values of the matrix.

    -lll(delta=0.75)[source]
    +lll(delta=0.75)[source]

    Compute LLL-reduced basis using FLINT.

    See lll_transform() for more information.

    Examples

    @@ -6033,7 +6033,7 @@

    What is domainmatrix?
    -lll_transform(delta=0.75)[source]
    +lll_transform(delta=0.75)[source]

    Compute LLL-reduced basis and transform using FLINT.

    Examples

    >>> from sympy import Matrix
    @@ -6060,13 +6060,13 @@ 

    What is domainmatrix?
    -lu()[source]
    +lu()[source]

    Return the LU decomposition of the matrix.

    -lu_solve(rhs)[source]
    +lu_solve(rhs)[source]

    Solve a matrix equation using FLINT.

    Examples

    >>> from sympy import Matrix, QQ
    @@ -6109,97 +6109,97 @@ 

    What is domainmatrix?
    -matmul(other)[source]
    +matmul(other)[source]

    Multiply two DFM matrices.

    -mul(other)[source]
    +mul(other)[source]

    Multiply a DFM matrix from the right by a scalar.

    -mul_elementwise(other)[source]
    +mul_elementwise(other)[source]

    Elementwise multiplication of two DFM matrices.

    -neg()[source]
    +neg()[source]

    Negate a DFM matrix.

    -nnz()[source]
    +nnz()[source]

    Return the number of non-zero elements in the matrix.

    -nullspace()[source]
    +nullspace()[source]

    Return a basis for the nullspace of the matrix.

    -nullspace_from_rref(pivots=None)[source]
    +nullspace_from_rref(pivots=None)[source]

    Return a basis for the nullspace of the matrix.

    -classmethod ones(shape, domain)[source]
    +classmethod ones(shape, domain)[source]

    Return a one DFM matrix.

    -particular()[source]
    +particular()[source]

    Return a particular solution to the system.

    -rmul(other)[source]
    +rmul(other)[source]

    Multiply a DFM matrix from the left by a scalar.

    -scc()[source]
    +scc()[source]

    Return the strongly connected components of the matrix.

    -setitem(i, j, value)[source]
    +setitem(i, j, value)[source]

    Set the (i, j)-th entry.

    -sub(other)[source]
    +sub(other)[source]

    Subtract two DFM matrices.

    -to_ddm()[source]
    +to_ddm()[source]

    Convert to a DDM.

    -to_dfm()[source]
    +to_dfm()[source]

    Return self.

    -to_dfm_or_ddm()[source]
    +to_dfm_or_ddm()[source]

    Convert to a DFM.

    This DFM method exists to parallel the DDM and SDM methods. For DFM it will always return self.

    @@ -6211,55 +6211,55 @@

    What is domainmatrix?
    -to_dod()[source]
    +to_dod()[source]

    Convert to a DOD.

    -to_dok()[source]
    +to_dok()[source]

    Convert to a DOK.

    -to_flat_nz()[source]
    +to_flat_nz()[source]

    Convert to a flat list of non-zeros.

    -to_list()[source]
    +to_list()[source]

    Convert to a nested list.

    -to_list_flat()[source]
    +to_list_flat()[source]

    Convert to a flat list.

    -to_sdm()[source]
    +to_sdm()[source]

    Convert to a SDM.

    -transpose()[source]
    +transpose()[source]

    Transpose a DFM matrix.

    -vstack(*others)[source]
    +vstack(*others)[source]

    Vertically stack matrices.

    -classmethod zeros(shape, domain)[source]
    +classmethod zeros(shape, domain)[source]

    Return a zero DFM matrix.

    @@ -6267,7 +6267,7 @@

    What is domainmatrix?
    -sympy.polys.matrices.normalforms.smith_normal_form(m)[source]
    +sympy.polys.matrices.normalforms.smith_normal_form(m)[source]

    Return the Smith Normal Form of a matrix \(m\) over the ring \(domain\). This will only work if the ring is a principal ideal domain.

    Examples

    @@ -6294,7 +6294,7 @@

    What is domainmatrix?check_rank=False,

    -)[source] +)[source]

    Compute the Hermite Normal Form of DomainMatrix A over ZZ.

    diff --git a/dev/modules/polys/domainsref.html b/dev/modules/polys/domainsref.html index c4809714b78..1052a6a5ac3 100644 --- a/dev/modules/polys/domainsref.html +++ b/dev/modules/polys/domainsref.html @@ -827,7 +827,7 @@

    Domains

    Abstract Domains

    -class sympy.polys.domains.domain.Domain[source]
    +class sympy.polys.domains.domain.Domain[source]

    Superclass for all domains in the polys domains system.

    See Introducing the Domains of the poly module for an introductory explanation of the domains system.

    @@ -998,13 +998,13 @@

    Abstract Domains
    -abs(a)[source]
    +abs(a)[source]

    Absolute value of a, implies __abs__.

    -add(a, b)[source]
    +add(a, b)[source]

    Sum of a and b, implies __add__.

    @@ -1018,7 +1018,7 @@

    Abstract Domainsroot_index=-1,

    -)[source] +)[source]

    Convenience method to construct an algebraic extension on a root of a polynomial, chosen by root index.

    @@ -1061,37 +1061,37 @@

    Abstract Domains
    -algebraic_field(*extension, alias=None)[source]
    +algebraic_field(*extension, alias=None)[source]

    Returns an algebraic field, i.e. \(K(\alpha, \ldots)\).

    -almosteq(a, b, tolerance=None)[source]
    +almosteq(a, b, tolerance=None)[source]

    Check if a and b are almost equal.

    -characteristic()[source]
    +characteristic()[source]

    Return the characteristic of this domain.

    -cofactors(a, b)[source]
    +cofactors(a, b)[source]

    Returns GCD and cofactors of a and b.

    -convert(element, base=None)[source]
    +convert(element, base=None)[source]

    Convert element to self.dtype.

    -convert_from(element, base)[source]
    +convert_from(element, base)[source]

    Convert element to self.dtype given the base domain.

    @@ -1107,7 +1107,7 @@

    Abstract Domainsroot_index=-1,

    -)[source] +)[source]

    Convenience method to construct a cyclotomic field.

    Parameters:
    @@ -1153,13 +1153,13 @@

    Abstract Domains
    -denom(a)[source]
    +denom(a)[source]

    Returns denominator of a.

    -div(a, b)[source]
    +div(a, b)[source]

    Quotient and remainder for a and b. Analogue of divmod(a, b)

    Parameters:
    @@ -1241,7 +1241,7 @@

    Abstract Domains
    -drop(*symbols)[source]
    +drop(*symbols)[source]

    Drop generators from this domain.

    @@ -1271,13 +1271,13 @@

    Abstract Domains
    -evalf(a, prec=None, **options)[source]
    +evalf(a, prec=None, **options)[source]

    Returns numerical approximation of a.

    -exquo(a, b)[source]
    +exquo(a, b)[source]

    Exact quotient of a and b. Analogue of a / b.

    Parameters:
    @@ -1365,7 +1365,7 @@

    Abstract Domains
    -exsqrt(a)[source]
    +exsqrt(a)[source]

    Principal square root of a within the domain if a is square.

    Explanation

    The implementation of this method should return an element b in the @@ -1381,109 +1381,109 @@

    Abstract Domains
    -frac_field(*symbols, order=LexOrder())[source]
    +frac_field(*symbols, order=LexOrder())[source]

    Returns a fraction field, i.e. \(K(X)\).

    -from_AlgebraicField(a, K0)[source]
    +from_AlgebraicField(a, K0)[source]

    Convert an algebraic number to dtype.

    -from_ComplexField(a, K0)[source]
    +from_ComplexField(a, K0)[source]

    Convert a complex element to dtype.

    -from_ExpressionDomain(a, K0)[source]
    +from_ExpressionDomain(a, K0)[source]

    Convert a EX object to dtype.

    -from_ExpressionRawDomain(a, K0)[source]
    +from_ExpressionRawDomain(a, K0)[source]

    Convert a EX object to dtype.

    -from_FF(a, K0)[source]
    +from_FF(a, K0)[source]

    Convert ModularInteger(int) to dtype.

    -from_FF_gmpy(a, K0)[source]
    +from_FF_gmpy(a, K0)[source]

    Convert ModularInteger(mpz) to dtype.

    -from_FF_python(a, K0)[source]
    +from_FF_python(a, K0)[source]

    Convert ModularInteger(int) to dtype.

    -from_FractionField(a, K0)[source]
    +from_FractionField(a, K0)[source]

    Convert a rational function to dtype.

    -from_GlobalPolynomialRing(a, K0)[source]
    +from_GlobalPolynomialRing(a, K0)[source]

    Convert a polynomial to dtype.

    -from_MonogenicFiniteExtension(a, K0)[source]
    +from_MonogenicFiniteExtension(a, K0)[source]

    Convert an ExtensionElement to dtype.

    -from_PolynomialRing(a, K0)[source]
    +from_PolynomialRing(a, K0)[source]

    Convert a polynomial to dtype.

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert a GMPY mpq object to dtype.

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert a real element object to dtype.

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert a GMPY mpz object to dtype.

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert a Python int object to dtype.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert a SymPy expression to an element of this domain.

    Parameters:
    @@ -1509,37 +1509,37 @@

    Abstract Domains
    -gcd(a, b)[source]
    +gcd(a, b)[source]

    Returns GCD of a and b.

    -gcdex(a, b)[source]
    +gcdex(a, b)[source]

    Extended GCD of a and b.

    -get_exact()[source]
    +get_exact()[source]

    Returns an exact domain associated with self.

    -get_field()[source]
    +get_field()[source]

    Returns a field associated with self.

    -get_ring()[source]
    +get_ring()[source]

    Returns a ring associated with self.

    -half_gcdex(a, b)[source]
    +half_gcdex(a, b)[source]

    Half extended GCD of a and b.

    @@ -1581,13 +1581,13 @@

    Abstract Domains
    -inject(*symbols)[source]
    +inject(*symbols)[source]

    Inject generators into this domain.

    -invert(a, b)[source]
    +invert(a, b)[source]

    Returns inversion of a mod b, implies something.

    @@ -1644,37 +1644,37 @@

    Abstract Domains
    -is_negative(a)[source]
    +is_negative(a)[source]

    Returns True if a is negative.

    -is_nonnegative(a)[source]
    +is_nonnegative(a)[source]

    Returns True if a is non-negative.

    -is_nonpositive(a)[source]
    +is_nonpositive(a)[source]

    Returns True if a is non-positive.

    -is_one(a)[source]
    +is_one(a)[source]

    Returns True if a is one.

    -is_positive(a)[source]
    +is_positive(a)[source]

    Returns True if a is positive.

    -is_square(a)[source]
    +is_square(a)[source]

    Returns whether a is a square in the domain.

    Explanation

    Returns True if there is an element b in the domain such that @@ -1689,67 +1689,67 @@

    Abstract Domains
    -is_zero(a)[source]
    +is_zero(a)[source]

    Returns True if a is zero.

    -lcm(a, b)[source]
    +lcm(a, b)[source]

    Returns LCM of a and b.

    -log(a, b)[source]
    +log(a, b)[source]

    Returns b-base logarithm of a.

    -map(seq)[source]
    +map(seq)[source]

    Rersively apply self to all elements of seq.

    -mul(a, b)[source]
    +mul(a, b)[source]

    Product of a and b, implies __mul__.

    -n(a, prec=None, **options)[source]
    +n(a, prec=None, **options)[source]

    Returns numerical approximation of a.

    -neg(a)[source]
    +neg(a)[source]

    Returns a negated, implies __neg__.

    -numer(a)[source]
    +numer(a)[source]

    Returns numerator of a.

    -of_type(element)[source]
    +of_type(element)[source]

    Check if a is of type dtype.

    -old_frac_field(*symbols, **kwargs)[source]
    +old_frac_field(*symbols, **kwargs)[source]

    Returns a fraction field, i.e. \(K(X)\).

    -old_poly_ring(*symbols, **kwargs)[source]
    +old_poly_ring(*symbols, **kwargs)[source]

    Returns a polynomial ring, i.e. \(K[X]\).

    @@ -1772,25 +1772,25 @@

    Abstract Domains
    -poly_ring(*symbols, order=LexOrder())[source]
    +poly_ring(*symbols, order=LexOrder())[source]

    Returns a polynomial ring, i.e. \(K[X]\).

    -pos(a)[source]
    +pos(a)[source]

    Returns a positive, implies __pos__.

    -pow(a, b)[source]
    +pow(a, b)[source]

    Raise a to power b, implies __pow__.

    -quo(a, b)[source]
    +quo(a, b)[source]

    Quotient of a and b. Analogue of a // b.

    K.quo(a, b) is equivalent to K.div(a, b)[0]. See div() for more explanation.

    @@ -1809,7 +1809,7 @@

    Abstract Domains
    -rem(a, b)[source]
    +rem(a, b)[source]

    Modulo division of a and b. Analogue of a % b.

    K.rem(a, b) is equivalent to K.div(a, b)[1]. See div() for more explanation.

    @@ -1828,13 +1828,13 @@

    Abstract Domains
    -revert(a)[source]
    +revert(a)[source]

    Returns a**(-1) if possible.

    -sqrt(a)[source]
    +sqrt(a)[source]

    Returns a (possibly inexact) square root of a.

    Explanation

    There is no universal definition of “inexact square root” for all @@ -1848,13 +1848,13 @@

    Abstract Domains
    -sub(a, b)[source]
    +sub(a, b)[source]

    Difference of a and b, implies __sub__.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert domain element a to a SymPy expression (Expr).

    Parameters:
    @@ -1949,7 +1949,7 @@

    Abstract Domains
    -unify(K1, symbols=None)[source]
    +unify(K1, symbols=None)[source]

    Construct a minimal domain that contains elements of K0 and K1.

    Known domains (from smallest to largest):

    @@ -1992,13 +1992,13 @@

    Abstract Domains
    -class sympy.polys.domains.domainelement.DomainElement[source]
    +class sympy.polys.domains.domainelement.DomainElement[source]

    Represents an element of a domain.

    Mix in this trait into a class whose instances should be recognized as elements of a domain. Method parent() gives that domain.

    -parent()[source]
    +parent()[source]

    Get the domain associated with self

    Examples

    >>> from sympy import ZZ, symbols
    @@ -2020,23 +2020,23 @@ 

    Abstract Domains
    -class sympy.polys.domains.field.Field[source]
    +class sympy.polys.domains.field.Field[source]

    Represents a field domain.

    -div(a, b)[source]
    +div(a, b)[source]

    Division of a and b, implies __truediv__.

    -exquo(a, b)[source]
    +exquo(a, b)[source]

    Exact quotient of a and b, implies __truediv__.

    -gcd(a, b)[source]
    +gcd(a, b)[source]

    Returns GCD of a and b.

    This definition of GCD over fields allows to clear denominators in \(primitive()\).

    @@ -2058,25 +2058,25 @@

    Abstract Domains
    -get_field()[source]
    +get_field()[source]

    Returns a field associated with self.

    -get_ring()[source]
    +get_ring()[source]

    Returns a ring associated with self.

    -is_unit(a)[source]
    +is_unit(a)[source]

    Return true if a is a invertible

    -lcm(a, b)[source]
    +lcm(a, b)[source]

    Returns LCM of a and b.

    >>> from sympy.polys.domains import QQ
     >>> from sympy import S, lcm
    @@ -2092,19 +2092,19 @@ 

    Abstract Domains
    -quo(a, b)[source]
    +quo(a, b)[source]

    Quotient of a and b, implies __truediv__.

    -rem(a, b)[source]
    +rem(a, b)[source]

    Remainder of a and b, implies nothing.

    -revert(a)[source]
    +revert(a)[source]

    Returns a**(-1) if possible.

    @@ -2112,29 +2112,29 @@

    Abstract Domains
    -class sympy.polys.domains.ring.Ring[source]
    +class sympy.polys.domains.ring.Ring[source]

    Represents a ring domain.

    -denom(a)[source]
    +denom(a)[source]

    Returns denominator of \(a\).

    -div(a, b)[source]
    +div(a, b)[source]

    Division of a and b, implies __divmod__.

    -exquo(a, b)[source]
    +exquo(a, b)[source]

    Exact quotient of a and b, implies __floordiv__.

    -free_module(rank)[source]
    +free_module(rank)[source]

    Generate a free module of rank rank over self.

    >>> from sympy.abc import x
     >>> from sympy import QQ
    @@ -2146,13 +2146,13 @@ 

    Abstract Domains
    -get_ring()[source]
    +get_ring()[source]

    Returns a ring associated with self.

    -ideal(*gens)[source]
    +ideal(*gens)[source]

    Generate an ideal of self.

    >>> from sympy.abc import x
     >>> from sympy import QQ
    @@ -2164,25 +2164,25 @@ 

    Abstract Domains
    -invert(a, b)[source]
    +invert(a, b)[source]

    Returns inversion of a mod b.

    -numer(a)[source]
    +numer(a)[source]

    Returns numerator of a.

    -quo(a, b)[source]
    +quo(a, b)[source]

    Quotient of a and b, implies __floordiv__.

    -quotient_ring(e)[source]
    +quotient_ring(e)[source]

    Form a quotient ring of self.

    Here e can be an ideal or an iterable.

    >>> from sympy.abc import x
    @@ -2202,13 +2202,13 @@ 

    Abstract Domains
    -rem(a, b)[source]
    +rem(a, b)[source]

    Remainder of a and b, implies __mod__.

    -revert(a)[source]
    +revert(a)[source]

    Returns a**(-1) if possible.

    @@ -2216,11 +2216,11 @@

    Abstract Domains
    -class sympy.polys.domains.simpledomain.SimpleDomain[source]
    +class sympy.polys.domains.simpledomain.SimpleDomain[source]

    Base class for simple domains, e.g. ZZ, QQ.

    -inject(*gens)[source]
    +inject(*gens)[source]

    Inject generators into this domain.

    @@ -2228,23 +2228,23 @@

    Abstract Domains
    -class sympy.polys.domains.compositedomain.CompositeDomain[source]
    +class sympy.polys.domains.compositedomain.CompositeDomain[source]

    Base class for composite domains, e.g. ZZ[x], ZZ(X).

    -drop(*symbols)[source]
    +drop(*symbols)[source]

    Drop generators from this domain.

    -get_exact()[source]
    +get_exact()[source]

    Returns an exact version of this domain.

    -inject(*symbols)[source]
    +inject(*symbols)[source]

    Inject generators into this domain.

    @@ -2256,7 +2256,7 @@

    Abstract Domains
    -set_domain(domain)[source]
    +set_domain(domain)[source]

    Set the ground domain of this domain.

    @@ -2267,7 +2267,7 @@

    Abstract Domains

    GF(p)

    -class sympy.polys.domains.FiniteField(mod, symmetric=True)[source]
    +class sympy.polys.domains.FiniteField(mod, symmetric=True)[source]

    Finite field of prime order GF(p)

    A GF(p) domain represents a finite field \(\mathbb{F}_p\) of prime order as Domain in the domain system (see @@ -2350,13 +2350,13 @@

    Abstract DomainsGF(p**n)) but these are not yet implemented in SymPY.

    -characteristic()[source]
    +characteristic()[source]

    Return the characteristic of this domain.

    -exsqrt(a)[source]
    +exsqrt(a)[source]

    Square root modulo p of a if it is a quadratic residue.

    Explanation

    Always returns the square root that is no larger than p // 2.

    @@ -2364,115 +2364,115 @@

    Abstract Domains
    -from_FF(a, K0=None)[source]
    +from_FF(a, K0=None)[source]

    Convert ModularInteger(int) to dtype.

    -from_FF_gmpy(a, K0=None)[source]
    +from_FF_gmpy(a, K0=None)[source]

    Convert ModularInteger(mpz) to dtype.

    -from_FF_python(a, K0=None)[source]
    +from_FF_python(a, K0=None)[source]

    Convert ModularInteger(int) to dtype.

    -from_QQ(a, K0=None)[source]
    +from_QQ(a, K0=None)[source]

    Convert Python’s Fraction to dtype.

    -from_QQ_gmpy(a, K0=None)[source]
    +from_QQ_gmpy(a, K0=None)[source]

    Convert GMPY’s mpq to dtype.

    -from_QQ_python(a, K0=None)[source]
    +from_QQ_python(a, K0=None)[source]

    Convert Python’s Fraction to dtype.

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert mpmath’s mpf to dtype.

    -from_ZZ(a, K0=None)[source]
    +from_ZZ(a, K0=None)[source]

    Convert Python’s int to dtype.

    -from_ZZ_gmpy(a, K0=None)[source]
    +from_ZZ_gmpy(a, K0=None)[source]

    Convert GMPY’s mpz to dtype.

    -from_ZZ_python(a, K0=None)[source]
    +from_ZZ_python(a, K0=None)[source]

    Convert Python’s int to dtype.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert SymPy’s Integer to SymPy’s Integer.

    -get_field()[source]
    +get_field()[source]

    Returns a field associated with self.

    -is_negative(a)[source]
    +is_negative(a)[source]

    Returns True if a is negative.

    -is_nonnegative(a)[source]
    +is_nonnegative(a)[source]

    Returns True if a is non-negative.

    -is_nonpositive(a)[source]
    +is_nonpositive(a)[source]

    Returns True if a is non-positive.

    -is_positive(a)[source]
    +is_positive(a)[source]

    Returns True if a is positive.

    -is_square(a)[source]
    +is_square(a)[source]

    Returns True if a is a quadratic residue modulo p.

    -to_int(a)[source]
    +to_int(a)[source]

    Convert val to a Python int object.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert a to a SymPy object.

    @@ -2480,13 +2480,13 @@

    Abstract Domains
    -class sympy.polys.domains.PythonFiniteField(mod, symmetric=True)[source]
    +class sympy.polys.domains.PythonFiniteField(mod, symmetric=True)[source]

    Finite field based on Python’s integers.

    -class sympy.polys.domains.GMPYFiniteField(mod, symmetric=True)[source]
    +class sympy.polys.domains.GMPYFiniteField(mod, symmetric=True)[source]

    Finite field based on GMPY integers.

    @@ -2542,7 +2542,7 @@

    Abstract Domains
    -class sympy.polys.domains.IntegerRing[source]
    +class sympy.polys.domains.IntegerRing[source]

    The domain ZZ representing the integers \(\mathbb{Z}\).

    The IntegerRing class represents the ring of integers as a Domain in the domain system. IntegerRing is a @@ -2562,7 +2562,7 @@

    Abstract Domainsalias=None,

    -)[source] +)[source]

    Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots)\).

    Parameters:
    @@ -2594,7 +2594,7 @@

    Abstract Domains
    -exsqrt(a)[source]
    +exsqrt(a)[source]

    Non-negative square root of a if a is a square.

    See also

    @@ -2604,104 +2604,104 @@

    Abstract Domains
    -factorial(a)[source]
    +factorial(a)[source]

    Compute factorial of a.

    -from_AlgebraicField(a, K0)[source]
    +from_AlgebraicField(a, K0)[source]

    Convert a ANP object to ZZ.

    See convert().

    -from_EX(a, K0)[source]
    +from_EX(a, K0)[source]

    Convert Expression to GMPY’s mpz.

    -from_FF(a, K0)[source]
    +from_FF(a, K0)[source]

    Convert ModularInteger(int) to GMPY’s mpz.

    -from_FF_gmpy(a, K0)[source]
    +from_FF_gmpy(a, K0)[source]

    Convert ModularInteger(mpz) to GMPY’s mpz.

    -from_FF_python(a, K0)[source]
    +from_FF_python(a, K0)[source]

    Convert ModularInteger(int) to GMPY’s mpz.

    -from_QQ(a, K0)[source]
    +from_QQ(a, K0)[source]

    Convert Python’s Fraction to GMPY’s mpz.

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert GMPY mpq to GMPY’s mpz.

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert Python’s Fraction to GMPY’s mpz.

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert mpmath’s mpf to GMPY’s mpz.

    -from_ZZ(a, K0)[source]
    +from_ZZ(a, K0)[source]

    Convert Python’s int to GMPY’s mpz.

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert GMPY’s mpz to GMPY’s mpz.

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert Python’s int to GMPY’s mpz.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert SymPy’s Integer to dtype.

    -gcd(a, b)[source]
    +gcd(a, b)[source]

    Compute GCD of a and b.

    -gcdex(a, b)[source]
    +gcdex(a, b)[source]

    Compute extended GCD of a and b.

    -get_field()[source]
    +get_field()[source]

    Return the associated field of fractions QQ

    Returns:
    @@ -2723,7 +2723,7 @@

    Abstract Domains
    -is_square(a)[source]
    +is_square(a)[source]

    Return True if a is a square.

    Explanation

    An integer is a square if and only if there exists an integer @@ -2732,13 +2732,13 @@

    Abstract Domains
    -lcm(a, b)[source]
    +lcm(a, b)[source]

    Compute LCM of a and b.

    -log(a, b)[source]
    +log(a, b)[source]

    Logarithm of a to the base b.

    Parameters:
    @@ -2767,13 +2767,13 @@

    Abstract Domains
    -sqrt(a)[source]
    +sqrt(a)[source]

    Compute square root of a.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert a to a SymPy object.

    @@ -2781,7 +2781,7 @@

    Abstract Domains
    -class sympy.polys.domains.PythonIntegerRing[source]
    +class sympy.polys.domains.PythonIntegerRing[source]

    Integer ring based on Python’s int type.

    This will be used as ZZ if gmpy and gmpy2 are not installed. Elements are instances of the standard Python int type.

    @@ -2789,97 +2789,97 @@

    Abstract Domains
    -class sympy.polys.domains.GMPYIntegerRing[source]
    +class sympy.polys.domains.GMPYIntegerRing[source]

    Integer ring based on GMPY’s mpz type.

    This will be the implementation of ZZ if gmpy or gmpy2 is installed. Elements will be of type gmpy.mpz.

    -factorial(a)[source]
    +factorial(a)[source]

    Compute factorial of a.

    -from_FF_gmpy(a, K0)[source]
    +from_FF_gmpy(a, K0)[source]

    Convert ModularInteger(mpz) to GMPY’s mpz.

    -from_FF_python(a, K0)[source]
    +from_FF_python(a, K0)[source]

    Convert ModularInteger(int) to GMPY’s mpz.

    -from_QQ(a, K0)[source]
    +from_QQ(a, K0)[source]

    Convert Python’s Fraction to GMPY’s mpz.

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert GMPY mpq to GMPY’s mpz.

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert Python’s Fraction to GMPY’s mpz.

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert mpmath’s mpf to GMPY’s mpz.

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert GMPY’s mpz to GMPY’s mpz.

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert Python’s int to GMPY’s mpz.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert SymPy’s Integer to dtype.

    -gcd(a, b)[source]
    +gcd(a, b)[source]

    Compute GCD of a and b.

    -gcdex(a, b)[source]
    +gcdex(a, b)[source]

    Compute extended GCD of a and b.

    -lcm(a, b)[source]
    +lcm(a, b)[source]

    Compute LCM of a and b.

    -sqrt(a)[source]
    +sqrt(a)[source]

    Compute square root of a.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert a to a SymPy object.

    @@ -2929,7 +2929,7 @@

    Abstract Domains
    -class sympy.polys.domains.RationalField[source]
    +class sympy.polys.domains.RationalField[source]

    Abstract base class for the domain QQ.

    The RationalField class represents the field of rational numbers \(\mathbb{Q}\) as a Domain in the domain system. @@ -2950,7 +2950,7 @@

    Abstract Domainsalias=None,

    -)[source] +)[source]

    Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots)\).

    Parameters:
    @@ -2982,25 +2982,25 @@

    Abstract Domains
    -denom(a)[source]
    +denom(a)[source]

    Returns denominator of a.

    -div(a, b)[source]
    +div(a, b)[source]

    Division of a and b, implies __truediv__.

    -exquo(a, b)[source]
    +exquo(a, b)[source]

    Exact quotient of a and b, implies __truediv__.

    -exsqrt(a)[source]
    +exsqrt(a)[source]

    Non-negative square root of a if a is a square.

    See also

    @@ -3010,74 +3010,74 @@

    Abstract Domains
    -from_AlgebraicField(a, K0)[source]
    +from_AlgebraicField(a, K0)[source]

    Convert a ANP object to QQ.

    See convert()

    -from_GaussianRationalField(a, K0)[source]
    +from_GaussianRationalField(a, K0)[source]

    Convert a GaussianElement object to dtype.

    -from_QQ(a, K0)[source]
    +from_QQ(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert a GMPY mpq object to dtype.

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert a mpmath mpf object to dtype.

    -from_ZZ(a, K0)[source]
    +from_ZZ(a, K0)[source]

    Convert a Python int object to dtype.

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert a GMPY mpz object to dtype.

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert a Python int object to dtype.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert SymPy’s Integer to dtype.

    -get_ring()[source]
    +get_ring()[source]

    Returns ring associated with self.

    -is_square(a)[source]
    +is_square(a)[source]

    Return True if a is a square.

    Explanation

    A rational number is a square if and only if there exists @@ -3086,25 +3086,25 @@

    Abstract Domains
    -numer(a)[source]
    +numer(a)[source]

    Returns numerator of a.

    -quo(a, b)[source]
    +quo(a, b)[source]

    Quotient of a and b, implies __truediv__.

    -rem(a, b)[source]
    +rem(a, b)[source]

    Remainder of a and b, implies nothing.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert a to a SymPy object.

    @@ -3112,7 +3112,7 @@

    Abstract Domains
    -class sympy.polys.domains.PythonRationalField[source]
    +class sympy.polys.domains.PythonRationalField[source]

    Rational field based on MPQ.

    This will be used as QQ if gmpy and gmpy2 are not installed. Elements are instances of MPQ.

    @@ -3120,31 +3120,31 @@

    Abstract Domains
    -class sympy.polys.domains.GMPYRationalField[source]
    +class sympy.polys.domains.GMPYRationalField[source]

    Rational field based on GMPY’s mpq type.

    This will be the implementation of QQ if gmpy or gmpy2 is installed. Elements will be of type gmpy.mpq.

    -denom(a)[source]
    +denom(a)[source]

    Returns denominator of a.

    -div(a, b)[source]
    +div(a, b)[source]

    Division of a and b, implies __truediv__.

    -exquo(a, b)[source]
    +exquo(a, b)[source]

    Exact quotient of a and b, implies __truediv__.

    -factorial(a)[source]
    +factorial(a)[source]

    Returns factorial of a.

    @@ -3157,73 +3157,73 @@

    Abstract DomainsK0,

    -)[source] +)[source]

    Convert a GaussianElement object to dtype.

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert a GMPY mpq object to dtype.

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert a mpmath mpf object to dtype.

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert a GMPY mpz object to dtype.

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert a Python int object to dtype.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert SymPy’s Integer to dtype.

    -get_ring()[source]
    +get_ring()[source]

    Returns ring associated with self.

    -numer(a)[source]
    +numer(a)[source]

    Returns numerator of a.

    -quo(a, b)[source]
    +quo(a, b)[source]

    Quotient of a and b, implies __truediv__.

    -rem(a, b)[source]
    +rem(a, b)[source]

    Remainder of a and b, implies nothing.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert a to a SymPy object.

    @@ -3231,7 +3231,7 @@

    Abstract Domains
    -class sympy.external.pythonmpq.PythonMPQ(numerator, denominator=None)[source]
    +class sympy.external.pythonmpq.PythonMPQ(numerator, denominator=None)[source]

    Rational number implementation that is intended to be compatible with gmpy2’s mpq.

    Also slightly faster than fractions.Fraction.

    @@ -3252,89 +3252,89 @@

    Gaussian domainsGaussianDomain for the domains themselves.

    -class sympy.polys.domains.gaussiandomains.GaussianDomain[source]
    +class sympy.polys.domains.gaussiandomains.GaussianDomain[source]

    Base class for Gaussian domains.

    -from_AlgebraicField(a, K0)[source]
    +from_AlgebraicField(a, K0)[source]

    Convert an element from ZZ<I> or QQ<I> to self.dtype.

    -from_QQ(a, K0)[source]
    +from_QQ(a, K0)[source]

    Convert a GMPY mpq to self.dtype.

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert a GMPY mpq to self.dtype.

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert a QQ_python element to self.dtype.

    -from_ZZ(a, K0)[source]
    +from_ZZ(a, K0)[source]

    Convert a ZZ_python element to self.dtype.

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert a GMPY mpz to self.dtype.

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert a ZZ_python element to self.dtype.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert a SymPy object to self.dtype.

    -inject(*gens)[source]
    +inject(*gens)[source]

    Inject generators into this domain.

    -is_negative(element)[source]
    +is_negative(element)[source]

    Returns False for any GaussianElement.

    -is_nonnegative(element)[source]
    +is_nonnegative(element)[source]

    Returns False for any GaussianElement.

    -is_nonpositive(element)[source]
    +is_nonpositive(element)[source]

    Returns False for any GaussianElement.

    -is_positive(element)[source]
    +is_positive(element)[source]

    Returns False for any GaussianElement.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert a to a SymPy object.

    @@ -3342,23 +3342,23 @@

    Gaussian domains
    -class sympy.polys.domains.gaussiandomains.GaussianElement(x, y=0)[source]
    +class sympy.polys.domains.gaussiandomains.GaussianElement(x, y=0)[source]

    Base class for elements of Gaussian type domains.

    -classmethod new(x, y)[source]
    +classmethod new(x, y)[source]

    Create a new GaussianElement of the same domain.

    -parent()[source]
    +parent()[source]

    The domain that this is an element of (ZZ_I or QQ_I)

    -quadrant()[source]
    +quadrant()[source]

    Return quadrant index 0-3.

    0 is included in quadrant 0.

    @@ -3370,7 +3370,7 @@

    Gaussian domains

    ZZ_I

    -class sympy.polys.domains.gaussiandomains.GaussianIntegerRing[source]
    +class sympy.polys.domains.gaussiandomains.GaussianIntegerRing[source]

    Ring of Gaussian integers ZZ_I

    The ZZ_I domain represents the Gaussian integers \(\mathbb{Z}[i]\) as a Domain in the domain system (see @@ -3466,7 +3466,7 @@

    Gaussian domains
    -dtype[source]
    +dtype[source]

    alias of GaussianInteger

    @@ -3479,7 +3479,7 @@

    Gaussian domainsK0,

    -)[source] +)[source]

    Convert a ZZ_I element to ZZ_I.

    @@ -3492,37 +3492,37 @@

    Gaussian domainsK0,

    -)[source] +)[source]

    Convert a QQ_I element to ZZ_I.

    -gcd(a, b)[source]
    +gcd(a, b)[source]

    Greatest common divisor of a and b over ZZ_I.

    -get_field()[source]
    +get_field()[source]

    Returns a field associated with self.

    -get_ring()[source]
    +get_ring()[source]

    Returns a ring associated with self.

    -lcm(a, b)[source]
    +lcm(a, b)[source]

    Least common multiple of a and b over ZZ_I.

    -normalize(d, *args)[source]
    +normalize(d, *args)[source]

    Return first quadrant element associated with d.

    Also multiply the other arguments by the same power of i.

    @@ -3531,7 +3531,7 @@

    Gaussian domains
    -class sympy.polys.domains.gaussiandomains.GaussianInteger(x, y=0)[source]
    +class sympy.polys.domains.gaussiandomains.GaussianInteger(x, y=0)[source]

    Gaussian integer: domain element for ZZ_I

    >>> from sympy import ZZ_I
     >>> z = ZZ_I(2, 3)
    @@ -3548,7 +3548,7 @@ 

    Gaussian domains

    QQ_I

    -class sympy.polys.domains.gaussiandomains.GaussianRationalField[source]
    +class sympy.polys.domains.gaussiandomains.GaussianRationalField[source]

    Field of Gaussian rationals QQ_I

    The QQ_I domain represents the Gaussian rationals \(\mathbb{Q}(i)\) as a Domain in the domain system (see @@ -3663,25 +3663,25 @@

    Gaussian domains
    -as_AlgebraicField()[source]
    +as_AlgebraicField()[source]

    Get equivalent domain as an AlgebraicField.

    -denom(a)[source]
    +denom(a)[source]

    Get the denominator of a.

    -dtype[source]
    +dtype[source]

    alias of GaussianRational

    -from_ComplexField(a, K0)[source]
    +from_ComplexField(a, K0)[source]

    Convert a ComplexField element to QQ_I.

    @@ -3694,7 +3694,7 @@

    Gaussian domainsK0,

    -)[source] +)[source]

    Convert a ZZ_I element to QQ_I.

    @@ -3707,25 +3707,25 @@

    Gaussian domainsK0,

    -)[source] +)[source]

    Convert a QQ_I element to QQ_I.

    -get_field()[source]
    +get_field()[source]

    Returns a field associated with self.

    -get_ring()[source]
    +get_ring()[source]

    Returns a ring associated with self.

    -numer(a)[source]
    +numer(a)[source]

    Get the numerator of a.

    @@ -3733,7 +3733,7 @@

    Gaussian domains
    -class sympy.polys.domains.gaussiandomains.GaussianRational(x, y=0)[source]
    +class sympy.polys.domains.gaussiandomains.GaussianRational(x, y=0)[source]

    Gaussian rational: domain element for QQ_I

    >>> from sympy import QQ_I, QQ
     >>> z = QQ_I(QQ(2, 3), QQ(4, 5))
    @@ -3750,7 +3750,7 @@ 

    Gaussian domains

    QQ<a>

    -class sympy.polys.domains.AlgebraicField(dom, *ext, alias=None)[source]
    +class sympy.polys.domains.AlgebraicField(dom, *ext, alias=None)[source]

    Algebraic number field QQ<a>

    A QQ<a> domain represents an algebraic number field \(\mathbb{Q}(a)\) as a Domain in the domain system (see @@ -3975,25 +3975,25 @@

    Gaussian domainsalias=None,

    -)[source] +)[source]

    Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots)\).

    -denom(a)[source]
    +denom(a)[source]

    Returns denominator of a.

    -discriminant()[source]
    +discriminant()[source]

    Get the discriminant of the field.

    -dtype[source]
    +dtype[source]

    alias of ANP

    @@ -4011,67 +4011,67 @@

    Gaussian domains
    -from_AlgebraicField(a, K0)[source]
    +from_AlgebraicField(a, K0)[source]

    Convert AlgebraicField element ‘a’ to another AlgebraicField

    -from_GaussianIntegerRing(a, K0)[source]
    +from_GaussianIntegerRing(a, K0)[source]

    Convert a GaussianInteger element ‘a’ to dtype.

    -from_GaussianRationalField(a, K0)[source]
    +from_GaussianRationalField(a, K0)[source]

    Convert a GaussianRational element ‘a’ to dtype.

    -from_QQ(a, K0)[source]
    +from_QQ(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert a GMPY mpq object to dtype.

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert a mpmath mpf object to dtype.

    -from_ZZ(a, K0)[source]
    +from_ZZ(a, K0)[source]

    Convert a Python int object to dtype.

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert a GMPY mpz object to dtype.

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert a Python int object to dtype.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert SymPy’s expression to dtype.

    @@ -4085,7 +4085,7 @@

    Gaussian domainsrandomize=False,

    -)[source] +)[source]

    Compute the Galois group of the Galois closure of this field.

    Examples

    If the field is Galois, the order of the group will equal the degree @@ -4115,13 +4115,13 @@

    Gaussian domains
    -get_ring()[source]
    +get_ring()[source]

    Returns a ring associated with self.

    -integral_basis(fmt=None)[source]
    +integral_basis(fmt=None)[source]

    Get an integral basis for the field.

    Parameters:
    @@ -4166,31 +4166,31 @@

    Gaussian domains
    -is_negative(a)[source]
    +is_negative(a)[source]

    Returns True if a is negative.

    -is_nonnegative(a)[source]
    +is_nonnegative(a)[source]

    Returns True if a is non-negative.

    -is_nonpositive(a)[source]
    +is_nonpositive(a)[source]

    Returns True if a is non-positive.

    -is_positive(a)[source]
    +is_positive(a)[source]

    Returns True if a is positive.

    -maximal_order()[source]
    +maximal_order()[source]

    Compute the maximal order, or ring of integers, of the field.

    Returns:
    @@ -4217,7 +4217,7 @@

    Gaussian domains
    -numer(a)[source]
    +numer(a)[source]

    Returns numerator of a.

    @@ -4235,19 +4235,19 @@

    Gaussian domains
    -primes_above(p)[source]
    +primes_above(p)[source]

    Compute the prime ideals lying above a given rational prime p.

    -to_alg_num(a)[source]
    +to_alg_num(a)[source]

    Convert a of dtype to an AlgebraicNumber.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert a of dtype to a SymPy object.

    @@ -4258,17 +4258,17 @@

    Gaussian domains

    RR

    -class sympy.polys.domains.RealField(prec=None, dps=None, tol=None)[source]
    +class sympy.polys.domains.RealField(prec=None, dps=None, tol=None)[source]

    Real numbers up to the given precision.

    -almosteq(a, b, tolerance=None)[source]
    +almosteq(a, b, tolerance=None)[source]

    Check if a and b are almost equal.

    -exsqrt(a)[source]
    +exsqrt(a)[source]

    Non-negative square root for a >= 0 and None otherwise.

    Explanation

    The square root may be slightly inaccurate due to floating point @@ -4277,49 +4277,49 @@

    Gaussian domains
    -from_sympy(expr)[source]
    +from_sympy(expr)[source]

    Convert SymPy’s number to dtype.

    -gcd(a, b)[source]
    +gcd(a, b)[source]

    Returns GCD of a and b.

    -get_exact()[source]
    +get_exact()[source]

    Returns an exact domain associated with self.

    -get_ring()[source]
    +get_ring()[source]

    Returns a ring associated with self.

    -is_square(a)[source]
    +is_square(a)[source]

    Returns True if a >= 0 and False otherwise.

    -lcm(a, b)[source]
    +lcm(a, b)[source]

    Returns LCM of a and b.

    -to_rational(element, limit=True)[source]
    +to_rational(element, limit=True)[source]

    Convert a real number to rational number.

    -to_sympy(element)[source]
    +to_sympy(element)[source]

    Convert element to SymPy number.

    @@ -4330,17 +4330,17 @@

    Gaussian domains

    CC

    -class sympy.polys.domains.ComplexField(prec=None, dps=None, tol=None)[source]
    +class sympy.polys.domains.ComplexField(prec=None, dps=None, tol=None)[source]

    Complex numbers up to the given precision.

    -almosteq(a, b, tolerance=None)[source]
    +almosteq(a, b, tolerance=None)[source]

    Check if a and b are almost equal.

    -exsqrt(a)[source]
    +exsqrt(a)[source]

    Returns the principal complex square root of a.

    Explanation

    The argument of the principal square root is always within @@ -4350,67 +4350,67 @@

    Gaussian domains
    -from_sympy(expr)[source]
    +from_sympy(expr)[source]

    Convert SymPy’s number to dtype.

    -gcd(a, b)[source]
    +gcd(a, b)[source]

    Returns GCD of a and b.

    -get_exact()[source]
    +get_exact()[source]

    Returns an exact domain associated with self.

    -get_ring()[source]
    +get_ring()[source]

    Returns a ring associated with self.

    -is_negative(element)[source]
    +is_negative(element)[source]

    Returns False for any ComplexElement.

    -is_nonnegative(element)[source]
    +is_nonnegative(element)[source]

    Returns False for any ComplexElement.

    -is_nonpositive(element)[source]
    +is_nonpositive(element)[source]

    Returns False for any ComplexElement.

    -is_positive(element)[source]
    +is_positive(element)[source]

    Returns False for any ComplexElement.

    -is_square(a)[source]
    +is_square(a)[source]

    Returns True. Every complex number has a complex square root.

    -lcm(a, b)[source]
    +lcm(a, b)[source]

    Returns LCM of a and b.

    -to_sympy(element)[source]
    +to_sympy(element)[source]

    Convert element to SymPy number.

    @@ -4429,161 +4429,161 @@

    Gaussian domainsorder=None,

    -)[source] +)[source]

    A class for representing multivariate polynomial rings.

    -factorial(a)[source]
    +factorial(a)[source]

    Returns factorial of \(a\).

    -from_AlgebraicField(a, K0)[source]
    +from_AlgebraicField(a, K0)[source]

    Convert an algebraic number to dtype.

    -from_ComplexField(a, K0)[source]
    +from_ComplexField(a, K0)[source]

    Convert a mpmath \(mpf\) object to \(dtype\).

    -from_FractionField(a, K0)[source]
    +from_FractionField(a, K0)[source]

    Convert a rational function to dtype.

    -from_GaussianIntegerRing(a, K0)[source]
    +from_GaussianIntegerRing(a, K0)[source]

    Convert a \(GaussianInteger\) object to \(dtype\).

    -from_GaussianRationalField(a, K0)[source]
    +from_GaussianRationalField(a, K0)[source]

    Convert a \(GaussianRational\) object to \(dtype\).

    -from_GlobalPolynomialRing(a, K0)[source]
    +from_GlobalPolynomialRing(a, K0)[source]

    Convert from old poly ring to dtype.

    -from_PolynomialRing(a, K0)[source]
    +from_PolynomialRing(a, K0)[source]

    Convert a polynomial to dtype.

    -from_QQ(a, K0)[source]
    +from_QQ(a, K0)[source]

    Convert a Python \(Fraction\) object to \(dtype\).

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert a GMPY \(mpq\) object to \(dtype\).

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert a Python \(Fraction\) object to \(dtype\).

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert a mpmath \(mpf\) object to \(dtype\).

    -from_ZZ(a, K0)[source]
    +from_ZZ(a, K0)[source]

    Convert a Python \(int\) object to \(dtype\).

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert a GMPY \(mpz\) object to \(dtype\).

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert a Python \(int\) object to \(dtype\).

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert SymPy’s expression to \(dtype\).

    -gcd(a, b)[source]
    +gcd(a, b)[source]

    Returns GCD of \(a\) and \(b\).

    -gcdex(a, b)[source]
    +gcdex(a, b)[source]

    Extended GCD of \(a\) and \(b\).

    -get_field()[source]
    +get_field()[source]

    Returns a field associated with \(self\).

    -is_negative(a)[source]
    +is_negative(a)[source]

    Returns True if \(LC(a)\) is negative.

    -is_nonnegative(a)[source]
    +is_nonnegative(a)[source]

    Returns True if \(LC(a)\) is non-negative.

    -is_nonpositive(a)[source]
    +is_nonpositive(a)[source]

    Returns True if \(LC(a)\) is non-positive.

    -is_positive(a)[source]
    +is_positive(a)[source]

    Returns True if \(LC(a)\) is positive.

    -is_unit(a)[source]
    +is_unit(a)[source]

    Returns True if a is a unit of self

    -lcm(a, b)[source]
    +lcm(a, b)[source]

    Returns LCM of \(a\) and \(b\).

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert \(a\) to a SymPy object.

    @@ -4602,143 +4602,143 @@

    Gaussian domainsorder=None,

    -)[source] +)[source]

    A class for representing multivariate rational function fields.

    -denom(a)[source]
    +denom(a)[source]

    Returns denominator of a.

    -factorial(a)[source]
    +factorial(a)[source]

    Returns factorial of a.

    -from_AlgebraicField(a, K0)[source]
    +from_AlgebraicField(a, K0)[source]

    Convert an algebraic number to dtype.

    -from_ComplexField(a, K0)[source]
    +from_ComplexField(a, K0)[source]

    Convert a mpmath mpf object to dtype.

    -from_FractionField(a, K0)[source]
    +from_FractionField(a, K0)[source]

    Convert a rational function to dtype.

    -from_GaussianIntegerRing(a, K0)[source]
    +from_GaussianIntegerRing(a, K0)[source]

    Convert a GaussianInteger object to dtype.

    -from_GaussianRationalField(a, K0)[source]
    +from_GaussianRationalField(a, K0)[source]

    Convert a GaussianRational object to dtype.

    -from_PolynomialRing(a, K0)[source]
    +from_PolynomialRing(a, K0)[source]

    Convert a polynomial to dtype.

    -from_QQ(a, K0)[source]
    +from_QQ(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert a GMPY mpq object to dtype.

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert a mpmath mpf object to dtype.

    -from_ZZ(a, K0)[source]
    +from_ZZ(a, K0)[source]

    Convert a Python int object to dtype.

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert a GMPY mpz object to dtype.

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert a Python int object to dtype.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert SymPy’s expression to dtype.

    -get_ring()[source]
    +get_ring()[source]

    Returns a field associated with self.

    -is_negative(a)[source]
    +is_negative(a)[source]

    Returns True if LC(a) is negative.

    -is_nonnegative(a)[source]
    +is_nonnegative(a)[source]

    Returns True if LC(a) is non-negative.

    -is_nonpositive(a)[source]
    +is_nonpositive(a)[source]

    Returns True if LC(a) is non-positive.

    -is_positive(a)[source]
    +is_positive(a)[source]

    Returns True if LC(a) is positive.

    -numer(a)[source]
    +numer(a)[source]

    Returns numerator of a.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert a to a SymPy object.

    @@ -4749,161 +4749,161 @@

    Gaussian domains

    EX

    -class sympy.polys.domains.ExpressionDomain[source]
    +class sympy.polys.domains.ExpressionDomain[source]

    A class for arbitrary expressions.

    -class Expression(ex)[source]
    +class Expression(ex)[source]

    An arbitrary expression.

    -denom(a)[source]
    +denom(a)[source]

    Returns denominator of a.

    -dtype[source]
    +dtype[source]

    alias of Expression

    -from_AlgebraicField(a, K0)[source]
    +from_AlgebraicField(a, K0)[source]

    Convert an ANP object to dtype.

    -from_ComplexField(a, K0)[source]
    +from_ComplexField(a, K0)[source]

    Convert a mpmath mpc object to dtype.

    -from_ExpressionDomain(a, K0)[source]
    +from_ExpressionDomain(a, K0)[source]

    Convert a EX object to dtype.

    -from_FractionField(a, K0)[source]
    +from_FractionField(a, K0)[source]

    Convert a DMF object to dtype.

    -from_GaussianIntegerRing(a, K0)[source]
    +from_GaussianIntegerRing(a, K0)[source]

    Convert a GaussianRational object to dtype.

    -from_GaussianRationalField(a, K0)[source]
    +from_GaussianRationalField(a, K0)[source]

    Convert a GaussianRational object to dtype.

    -from_PolynomialRing(a, K0)[source]
    +from_PolynomialRing(a, K0)[source]

    Convert a DMP object to dtype.

    -from_QQ(a, K0)[source]
    +from_QQ(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_QQ_gmpy(a, K0)[source]
    +from_QQ_gmpy(a, K0)[source]

    Convert a GMPY mpq object to dtype.

    -from_QQ_python(a, K0)[source]
    +from_QQ_python(a, K0)[source]

    Convert a Python Fraction object to dtype.

    -from_RealField(a, K0)[source]
    +from_RealField(a, K0)[source]

    Convert a mpmath mpf object to dtype.

    -from_ZZ(a, K0)[source]
    +from_ZZ(a, K0)[source]

    Convert a Python int object to dtype.

    -from_ZZ_gmpy(a, K0)[source]
    +from_ZZ_gmpy(a, K0)[source]

    Convert a GMPY mpz object to dtype.

    -from_ZZ_python(a, K0)[source]
    +from_ZZ_python(a, K0)[source]

    Convert a Python int object to dtype.

    -from_sympy(a)[source]
    +from_sympy(a)[source]

    Convert SymPy’s expression to dtype.

    -get_field()[source]
    +get_field()[source]

    Returns a field associated with self.

    -get_ring()[source]
    +get_ring()[source]

    Returns a ring associated with self.

    -is_negative(a)[source]
    +is_negative(a)[source]

    Returns True if a is negative.

    -is_nonnegative(a)[source]
    +is_nonnegative(a)[source]

    Returns True if a is non-negative.

    -is_nonpositive(a)[source]
    +is_nonpositive(a)[source]

    Returns True if a is non-positive.

    -is_positive(a)[source]
    +is_positive(a)[source]

    Returns True if a is positive.

    -numer(a)[source]
    +numer(a)[source]

    Returns numerator of a.

    -to_sympy(a)[source]
    +to_sympy(a)[source]

    Convert a to a SymPy object.

    @@ -4911,7 +4911,7 @@

    Gaussian domains
    -class ExpressionDomain.Expression(ex)[source]
    +class ExpressionDomain.Expression(ex)[source]

    An arbitrary expression.

    @@ -4920,7 +4920,7 @@

    Gaussian domains

    -class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]
    +class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]

    Class representing (commutative) quotient rings.

    You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction.

    @@ -4953,7 +4953,7 @@

    Sparse polynomials
    -sympy.polys.rings.ring(symbols, domain, order=LexOrder())[source]
    +sympy.polys.rings.ring(symbols, domain, order=LexOrder())[source]

    Construct a polynomial ring returning (ring, x_1, ..., x_n).

    Parameters:
    @@ -4984,7 +4984,7 @@

    Sparse polynomials
    -sympy.polys.rings.xring(symbols, domain, order=LexOrder())[source]
    +sympy.polys.rings.xring(symbols, domain, order=LexOrder())[source]

    Construct a polynomial ring returning (ring, (x_1, ..., x_n)).

    Parameters:
    @@ -5015,7 +5015,7 @@

    Sparse polynomials
    -sympy.polys.rings.vring(symbols, domain, order=LexOrder())[source]
    +sympy.polys.rings.vring(symbols, domain, order=LexOrder())[source]

    Construct a polynomial ring and inject x_1, ..., x_n into the global namespace.

    Parameters:
    @@ -5045,7 +5045,7 @@

    Sparse polynomials
    -sympy.polys.rings.sring(exprs, *symbols, **options)[source]
    +sympy.polys.rings.sring(exprs, *symbols, **options)[source]

    Construct a ring deriving generators and domain from options and input expressions.

    Parameters:
    @@ -5072,11 +5072,11 @@

    Sparse polynomials
    -class sympy.polys.rings.PolyRing(symbols, domain, order=LexOrder())[source]
    +class sympy.polys.rings.PolyRing(symbols, domain, order=LexOrder())[source]

    Multivariate distributed polynomial ring.

    -add(*objs)[source]
    +add(*objs)[source]

    Add a sequence of polynomials or containers of polynomials.

    Examples

    >>> from sympy.polys.rings import ring
    @@ -5094,44 +5094,44 @@ 

    Sparse polynomials
    -add_gens(symbols)[source]
    +add_gens(symbols)[source]

    Add the elements of symbols as generators to self

    -compose(other)[source]
    +compose(other)[source]

    Add the generators of other to self

    -drop(*gens)[source]
    +drop(*gens)[source]

    Remove specified generators from this ring.

    -drop_to_ground(*gens)[source]
    +drop_to_ground(*gens)[source]

    Remove specified generators from the ring and inject them into its domain.

    -index(gen)[source]
    +index(gen)[source]

    Compute index of gen in self.gens.

    -monomial_basis(i)[source]
    +monomial_basis(i)[source]

    Return the ith-basis element.

    -mul(*objs)[source]
    +mul(*objs)[source]

    Multiply a sequence of polynomials or containers of polynomials.

    Examples

    >>> from sympy.polys.rings import ring
    @@ -5149,7 +5149,7 @@ 

    Sparse polynomials
    -symmetric_poly(n)[source]
    +symmetric_poly(n)[source]

    Return the elementary symmetric polynomial of degree n over this ring’s generators.

    @@ -5158,17 +5158,17 @@

    Sparse polynomials
    -class sympy.polys.rings.PolyElement[source]
    +class sympy.polys.rings.PolyElement[source]

    Element of multivariate distributed polynomial ring.

    -almosteq(p2, tolerance=None)[source]
    +almosteq(p2, tolerance=None)[source]

    Approximate equality test for polynomials.

    -cancel(g)[source]
    +cancel(g)[source]

    Cancel common factors in a rational function f/g.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5183,7 +5183,7 @@ 

    Sparse polynomials
    -coeff(element)[source]
    +coeff(element)[source]

    Returns the coefficient that stands next to the given monomial.

    Parameters:
    @@ -5211,7 +5211,7 @@

    Sparse polynomials
    -coeff_wrt(x, deg)[source]
    +coeff_wrt(x, deg)[source]

    Coefficient of self with respect to x**deg.

    Treating self as a univariate polynomial in x this finds the coefficient of x**deg as a polynomial in the other generators.

    @@ -5256,7 +5256,7 @@

    Sparse polynomials
    -coeffs(order=None)[source]
    +coeffs(order=None)[source]

    Ordered list of polynomial coefficients.

    Parameters:
    @@ -5283,19 +5283,19 @@

    Sparse polynomials
    -const()[source]
    +const()[source]

    Returns the constant coefficient.

    -content()[source]
    +content()[source]

    Returns GCD of polynomial’s coefficients.

    -copy()[source]
    +copy()[source]

    Return a copy of polynomial self.

    Polynomials are mutable; if one is interested in preserving a polynomial, and one plans to use inplace operations, one @@ -5322,21 +5322,21 @@

    Sparse polynomials
    -degree(x=None)[source]
    +degree(x=None)[source]

    The leading degree in x or the main variable.

    Note that the degree of 0 is negative infinity (float('-inf'))

    -degrees()[source]
    +degrees()[source]

    A tuple containing leading degrees in all variables.

    Note that the degree of 0 is negative infinity (float('-inf'))

    -diff(x)[source]
    +diff(x)[source]

    Computes partial derivative in x.

    Examples

    >>> from sympy.polys.rings import ring
    @@ -5353,7 +5353,7 @@ 

    Sparse polynomials
    -div(fv)[source]
    +div(fv)[source]

    Division algorithm, see [CLO] p64.

    fv array of polynomials

    return qv, r such that @@ -5383,7 +5383,7 @@

    Sparse polynomials
    -imul_num(c)[source]
    +imul_num(c)[source]

    multiply inplace the polynomial p by an element in the coefficient ring, provided p is not one of the generators; else multiply not inplace

    @@ -5411,25 +5411,25 @@

    Sparse polynomials
    -itercoeffs()[source]
    +itercoeffs()[source]

    Iterator over coefficients of a polynomial.

    -itermonoms()[source]
    +itermonoms()[source]

    Iterator over monomials of a polynomial.

    -iterterms()[source]
    +iterterms()[source]

    Iterator over terms of a polynomial.

    -leading_expv()[source]
    +leading_expv()[source]

    Leading monomial tuple according to the monomial ordering.

    Examples

    >>> from sympy.polys.rings import ring
    @@ -5446,7 +5446,7 @@ 

    Sparse polynomials
    -leading_monom()[source]
    +leading_monom()[source]

    Leading monomial as a polynomial element.

    Examples

    >>> from sympy.polys.rings import ring
    @@ -5462,7 +5462,7 @@ 

    Sparse polynomials
    -leading_term()[source]
    +leading_term()[source]

    Leading term as a polynomial element.

    Examples

    >>> from sympy.polys.rings import ring
    @@ -5478,31 +5478,31 @@ 

    Sparse polynomials
    -listcoeffs()[source]
    +listcoeffs()[source]

    Unordered list of polynomial coefficients.

    -listmonoms()[source]
    +listmonoms()[source]

    Unordered list of polynomial monomials.

    -listterms()[source]
    +listterms()[source]

    Unordered list of polynomial terms.

    -monic()[source]
    +monic()[source]

    Divides all coefficients by the leading coefficient.

    -monoms(order=None)[source]
    +monoms(order=None)[source]

    Ordered list of polynomial monomials.

    Parameters:
    @@ -5529,7 +5529,7 @@

    Sparse polynomials
    -pdiv(g, x=None)[source]
    +pdiv(g, x=None)[source]

    Computes the pseudo-division of the polynomial self with respect to g.

    The pseudo-division algorithm is used to find the pseudo-quotient q and pseudo-remainder r such that m*f = g*q + r, where m @@ -5606,7 +5606,7 @@

    Sparse polynomials
    -pexquo(g, x=None)[source]
    +pexquo(g, x=None)[source]

    Polynomial exact pseudo-quotient in multivariate polynomial ring.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5636,7 +5636,7 @@ 

    Sparse polynomials
    -pquo(g, x=None)[source]
    +pquo(g, x=None)[source]

    Polynomial pseudo-quotient in multivariate polynomial ring.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5664,7 +5664,7 @@ 

    Sparse polynomials
    -prem(g, x=None)[source]
    +prem(g, x=None)[source]

    Pseudo-remainder of the polynomial self with respect to g.

    The pseudo-quotient q and pseudo-remainder r with respect to z when dividing f by g satisfy m*f = g*q + r, @@ -5717,13 +5717,13 @@

    Sparse polynomials
    -primitive()[source]
    +primitive()[source]

    Returns content and a primitive polynomial.

    -square()[source]
    +square()[source]

    square of a polynomial

    Examples

    >>> from sympy.polys.rings import ring
    @@ -5740,13 +5740,13 @@ 

    Sparse polynomials
    -strip_zero()[source]
    +strip_zero()[source]

    Eliminate monomials with zero coefficient.

    -subresultants(g, x=None)[source]
    +subresultants(g, x=None)[source]

    Computes the subresultant PRS of two polynomials self and g.

    Parameters:
    @@ -5785,7 +5785,7 @@

    Sparse polynomials
    -symmetrize()[source]
    +symmetrize()[source]

    Rewrite self in terms of elementary symmetric polynomials.

    Returns:
    @@ -5843,21 +5843,21 @@

    Sparse polynomials
    -tail_degree(x=None)[source]
    +tail_degree(x=None)[source]

    The tail degree in x or the main variable.

    Note that the degree of 0 is negative infinity (float('-inf'))

    -tail_degrees()[source]
    +tail_degrees()[source]

    A tuple containing tail degrees in all variables.

    Note that the degree of 0 is negative infinity (float('-inf'))

    -terms(order=None)[source]
    +terms(order=None)[source]

    Ordered list of polynomial terms.

    Parameters:
    @@ -5890,25 +5890,25 @@

    Sparse rational functions
    -sympy.polys.fields.field(symbols, domain, order=LexOrder())[source]
    +sympy.polys.fields.field(symbols, domain, order=LexOrder())[source]

    Construct new rational function field returning (field, x1, …, xn).

    -sympy.polys.fields.xfield(symbols, domain, order=LexOrder())[source]
    +sympy.polys.fields.xfield(symbols, domain, order=LexOrder())[source]

    Construct new rational function field returning (field, (x1, …, xn)).

    -sympy.polys.fields.vfield(symbols, domain, order=LexOrder())[source]
    +sympy.polys.fields.vfield(symbols, domain, order=LexOrder())[source]

    Construct new rational function field and inject generators into global namespace.

    -sympy.polys.fields.sfield(exprs, *symbols, **options)[source]
    +sympy.polys.fields.sfield(exprs, *symbols, **options)[source]

    Construct a field deriving generators and domain from options and input expressions.

    @@ -5934,17 +5934,17 @@

    Sparse rational functions
    -class sympy.polys.fields.FracField(symbols, domain, order=LexOrder())[source]
    +class sympy.polys.fields.FracField(symbols, domain, order=LexOrder())[source]

    Multivariate distributed rational function field.

    -class sympy.polys.fields.FracElement(numer, denom=None)[source]
    +class sympy.polys.fields.FracElement(numer, denom=None)[source]

    Element of multivariate distributed rational function field.

    -diff(x)[source]
    +diff(x)[source]

    Computes partial derivative in x.

    Examples

    >>> from sympy.polys.fields import field
    @@ -5965,179 +5965,179 @@ 

    Sparse rational functions

    -class sympy.polys.polyclasses.DMP(rep, dom, lev=None)[source]
    +class sympy.polys.polyclasses.DMP(rep, dom, lev=None)[source]

    Dense Multivariate Polynomials over \(K\).

    -LC()[source]
    +LC()[source]

    Returns the leading coefficient of f.

    -TC()[source]
    +TC()[source]

    Returns the trailing coefficient of f.

    -abs()[source]
    +abs()[source]

    Make all coefficients in f positive.

    -add(g)[source]
    +add(g)[source]

    Add two multivariate polynomials f and g.

    -add_ground(c)[source]
    +add_ground(c)[source]

    Add an element of the ground domain to f.

    -all_coeffs()[source]
    +all_coeffs()[source]

    Returns all coefficients from f.

    -all_monoms()[source]
    +all_monoms()[source]

    Returns all monomials from f.

    -all_terms()[source]
    +all_terms()[source]

    Returns all terms from a f.

    -cancel(g, include=True)[source]
    +cancel(g, include=True)[source]

    Cancel common factors in a rational function f/g.

    -cauchy_lower_bound()[source]
    +cauchy_lower_bound()[source]

    Computes the Cauchy lower bound on the nonzero roots of f.

    -cauchy_upper_bound()[source]
    +cauchy_upper_bound()[source]

    Computes the Cauchy upper bound on the roots of f.

    -clear_denoms()[source]
    +clear_denoms()[source]

    Clear denominators, but keep the ground domain.

    -coeffs(order=None)[source]
    +coeffs(order=None)[source]

    Returns all non-zero coefficients from f in lex order.

    -cofactors(g)[source]
    +cofactors(g)[source]

    Returns GCD of f and g and their cofactors.

    -compose(g)[source]
    +compose(g)[source]

    Computes functional composition of f and g.

    -content()[source]
    +content()[source]

    Returns GCD of polynomial coefficients.

    -convert(dom)[source]
    +convert(dom)[source]

    Convert f to a DMP over the new domain.

    -count_complex_roots(inf=None, sup=None)[source]
    +count_complex_roots(inf=None, sup=None)[source]

    Return the number of complex roots of f in [inf, sup].

    -count_real_roots(inf=None, sup=None)[source]
    +count_real_roots(inf=None, sup=None)[source]

    Return the number of real roots of f in [inf, sup].

    -decompose()[source]
    +decompose()[source]

    Computes functional decomposition of f.

    -deflate()[source]
    +deflate()[source]

    Reduce degree of \(f\) by mapping \(x_i^m\) to \(y_i\).

    -degree(j=0)[source]
    +degree(j=0)[source]

    Returns the leading degree of f in x_j.

    -degree_list()[source]
    +degree_list()[source]

    Returns a list of degrees of f.

    -diff(m=1, j=0)[source]
    +diff(m=1, j=0)[source]

    Computes the m-th order derivative of f in x_j.

    -discriminant()[source]
    +discriminant()[source]

    Computes discriminant of f.

    -div(g)[source]
    +div(g)[source]

    Polynomial division with remainder of f and g.

    -eject(dom, front=False)[source]
    +eject(dom, front=False)[source]

    Eject selected generators into the ground domain.

    -eval(a, j=0)[source]
    +eval(a, j=0)[source]

    Evaluates f at the given point a in x_j.

    -exclude()[source]
    +exclude()[source]

    Remove useless generators from f.

    Returns the removed generators and the new excluded f.

    Examples

    @@ -6153,91 +6153,91 @@

    Dense polynomials
    -exquo(g)[source]
    +exquo(g)[source]

    Computes polynomial exact quotient of f and g.

    -exquo_ground(c)[source]
    +exquo_ground(c)[source]

    Exact quotient of f by a an element of the ground domain.

    -factor_list()[source]
    +factor_list()[source]

    Returns a list of irreducible factors of f.

    -factor_list_include()[source]
    +factor_list_include()[source]

    Returns a list of irreducible factors of f.

    -classmethod from_list(rep, lev, dom)[source]
    +classmethod from_list(rep, lev, dom)[source]

    Create an instance of cls given a list of native coefficients.

    -classmethod from_sympy_list(rep, lev, dom)[source]
    +classmethod from_sympy_list(rep, lev, dom)[source]

    Create an instance of cls given a list of SymPy coefficients.

    -gcd(g)[source]
    +gcd(g)[source]

    Returns polynomial GCD of f and g.

    -gcdex(g)[source]
    +gcdex(g)[source]

    Extended Euclidean algorithm, if univariate.

    -gff_list()[source]
    +gff_list()[source]

    Computes greatest factorial factorization of f.

    -ground_new(coeff)[source]
    +ground_new(coeff)[source]

    Construct a new ground instance of f.

    -half_gcdex(g)[source]
    +half_gcdex(g)[source]

    Half extended Euclidean algorithm, if univariate.

    -homogeneous_order()[source]
    +homogeneous_order()[source]

    Returns the homogeneous order of f.

    -homogenize(s)[source]
    +homogenize(s)[source]

    Return homogeneous polynomial of f

    -inject(front=False)[source]
    +inject(front=False)[source]

    Inject ground domain generators into f.

    -integrate(m=1, j=0)[source]
    +integrate(m=1, j=0)[source]

    Computes the m-th order indefinite integral of f in x_j.

    @@ -6254,13 +6254,13 @@

    Dense polynomialssqf=False,

    -)[source] +)[source]

    Compute isolating intervals for roots of f.

    -invert(g)[source]
    +invert(g)[source]

    Invert f modulo g, if possible.

    @@ -6338,91 +6338,91 @@

    Dense polynomials
    -l1_norm()[source]
    +l1_norm()[source]

    Returns l1 norm of f.

    -l2_norm_squared()[source]
    +l2_norm_squared()[source]

    Return squared l2 norm of f.

    -lcm(g)[source]
    +lcm(g)[source]

    Returns polynomial LCM of f and g.

    -lift()[source]
    +lift()[source]

    Convert algebraic coefficients to rationals.

    -max_norm()[source]
    +max_norm()[source]

    Returns maximum norm of f.

    -mignotte_sep_bound_squared()[source]
    +mignotte_sep_bound_squared()[source]

    Computes the squared Mignotte bound on root separations of f.

    -monic()[source]
    +monic()[source]

    Divides all coefficients by LC(f).

    -monoms(order=None)[source]
    +monoms(order=None)[source]

    Returns all non-zero monomials from f in lex order.

    -mul(g)[source]
    +mul(g)[source]

    Multiply two multivariate polynomials f and g.

    -mul_ground(c)[source]
    +mul_ground(c)[source]

    Multiply f by a an element of the ground domain.

    -neg()[source]
    +neg()[source]

    Negate all coefficients in f.

    -norm()[source]
    +norm()[source]

    Computes Norm(f).

    -nth(*N)[source]
    +nth(*N)[source]

    Returns the n-th coefficient of f.

    -pdiv(g)[source]
    +pdiv(g)[source]

    Polynomial pseudo-division of f and g.

    -permute(P)[source]
    +permute(P)[source]

    Returns a polynomial in \(K[x_{P(1)}, ..., x_{P(n)}]\).

    Examples

    >>> from sympy.polys.polyclasses import DMP
    @@ -6441,43 +6441,43 @@ 

    Dense polynomials
    -pexquo(g)[source]
    +pexquo(g)[source]

    Polynomial exact pseudo-quotient of f and g.

    -pow(n)[source]
    +pow(n)[source]

    Raise f to a non-negative power n.

    -pquo(g)[source]
    +pquo(g)[source]

    Polynomial pseudo-quotient of f and g.

    -prem(g)[source]
    +prem(g)[source]

    Polynomial pseudo-remainder of f and g.

    -primitive()[source]
    +primitive()[source]

    Returns content and a primitive form of f.

    -quo(g)[source]
    +quo(g)[source]

    Computes polynomial quotient of f and g.

    -quo_ground(c)[source]
    +quo_ground(c)[source]

    Quotient of f by a an element of the ground domain.

    @@ -6493,14 +6493,14 @@

    Dense polynomialsfast=False,

    -)[source] +)[source]

    Refine an isolating interval to the given precision.

    eps should be a rational number.

    -rem(g)[source]
    +rem(g)[source]

    Computes polynomial remainder of f and g.

    @@ -6512,103 +6512,103 @@

    Dense polynomials
    -resultant(g, includePRS=False)[source]
    +resultant(g, includePRS=False)[source]

    Computes resultant of f and g via PRS.

    -revert(n)[source]
    +revert(n)[source]

    Compute f**(-1) mod x**n.

    -shift(a)[source]
    +shift(a)[source]

    Efficiently compute Taylor shift f(x + a).

    -shift_list(a)[source]
    +shift_list(a)[source]

    Efficiently compute Taylor shift f(X + A).

    -slice(m, n, j=0)[source]
    +slice(m, n, j=0)[source]

    Take a continuous subsequence of terms of f.

    -sqf_list(all=False)[source]
    +sqf_list(all=False)[source]

    Returns a list of square-free factors of f.

    -sqf_list_include(all=False)[source]
    +sqf_list_include(all=False)[source]

    Returns a list of square-free factors of f.

    -sqf_norm()[source]
    +sqf_norm()[source]

    Computes square-free norm of f.

    -sqf_part()[source]
    +sqf_part()[source]

    Computes square-free part of f.

    -sqr()[source]
    +sqr()[source]

    Square a multivariate polynomial f.

    -sturm()[source]
    +sturm()[source]

    Computes the Sturm sequence of f.

    -sub(g)[source]
    +sub(g)[source]

    Subtract two multivariate polynomials f and g.

    -sub_ground(c)[source]
    +sub_ground(c)[source]

    Subtract an element of the ground domain from f.

    -subresultants(g)[source]
    +subresultants(g)[source]

    Computes subresultant PRS sequence of f and g.

    -terms(order=None)[source]
    +terms(order=None)[source]

    Returns all non-zero terms from f in lex order.

    -terms_gcd()[source]
    +terms_gcd()[source]

    Remove GCD of terms from the polynomial f.

    -to_best()[source]
    +to_best()[source]

    Convert to DUP_Flint if possible.

    This method should be used when the domain or level is changed and it potentially becomes possible to convert from DMP_Python to DUP_Flint.

    @@ -6616,74 +6616,74 @@

    Dense polynomials
    -to_dict(zero=False)[source]
    +to_dict(zero=False)[source]

    Convert f to a dict representation with native coefficients.

    -to_exact()[source]
    +to_exact()[source]

    Make the ground domain exact.

    -to_field()[source]
    +to_field()[source]

    Make the ground domain a field.

    -to_list()[source]
    +to_list()[source]

    Convert f to a list representation with native coefficients.

    -to_ring()[source]
    +to_ring()[source]

    Make the ground domain a ring.

    -to_sympy_dict(zero=False)[source]
    +to_sympy_dict(zero=False)[source]

    Convert f to a dict representation with SymPy coefficients.

    -to_sympy_list()[source]
    +to_sympy_list()[source]

    Convert f to a list representation with SymPy coefficients.

    -to_tuple()[source]
    +to_tuple()[source]

    Convert f to a tuple representation with native coefficients.

    This is needed for hashing.

    -total_degree()[source]
    +total_degree()[source]

    Returns the total degree of f.

    -transform(p, q)[source]
    +transform(p, q)[source]

    Evaluate functional transformation q**n * f(p/q).

    -trunc(p)[source]
    +trunc(p)[source]

    Reduce f modulo a constant p.

    -unify_DMP(g)[source]
    +unify_DMP(g)[source]

    Unify and return DMP instances of f and g.

    @@ -6691,53 +6691,53 @@

    Dense polynomials
    -class sympy.polys.polyclasses.DMF(rep, dom, lev=None)[source]
    +class sympy.polys.polyclasses.DMF(rep, dom, lev=None)[source]

    Dense Multivariate Fractions over \(K\).

    -add(g)[source]
    +add(g)[source]

    Add two multivariate fractions f and g.

    -add_ground(c)[source]
    +add_ground(c)[source]

    Add an element of the ground domain to f.

    -cancel()[source]
    +cancel()[source]

    Remove common factors from f.num and f.den.

    -denom()[source]
    +denom()[source]

    Returns the denominator of f.

    -exquo(g)[source]
    +exquo(g)[source]

    Computes quotient of fractions f and g.

    -frac_unify(g)[source]
    +frac_unify(g)[source]

    Unify representations of two multivariate fractions.

    -half_per(rep, kill=False)[source]
    +half_per(rep, kill=False)[source]

    Create a DMP out of the given representation.

    -invert(check=True)[source]
    +invert(check=True)[source]

    Computes inverse of a fraction f.

    @@ -6755,49 +6755,49 @@

    Dense polynomials
    -mul(g)[source]
    +mul(g)[source]

    Multiply two multivariate fractions f and g.

    -neg()[source]
    +neg()[source]

    Negate all coefficients in f.

    -numer()[source]
    +numer()[source]

    Returns the numerator of f.

    -per(num, den, cancel=True, kill=False)[source]
    +per(num, den, cancel=True, kill=False)[source]

    Create a DMF out of the given representation.

    -poly_unify(g)[source]
    +poly_unify(g)[source]

    Unify a multivariate fraction and a polynomial.

    -pow(n)[source]
    +pow(n)[source]

    Raise f to a non-negative power n.

    -quo(g)[source]
    +quo(g)[source]

    Computes quotient of fractions f and g.

    -sub(g)[source]
    +sub(g)[source]

    Subtract two multivariate fractions f and g.

    @@ -6805,29 +6805,29 @@

    Dense polynomials
    -class sympy.polys.polyclasses.ANP(rep, mod, dom)[source]
    +class sympy.polys.polyclasses.ANP(rep, mod, dom)[source]

    Dense Algebraic Number Polynomials over a field.

    -LC()[source]
    +LC()[source]

    Returns the leading coefficient of f.

    -TC()[source]
    +TC()[source]

    Returns the trailing coefficient of f.

    -add_ground(c)[source]
    +add_ground(c)[source]

    Add an element of the ground domain to f.

    -convert(dom)[source]
    +convert(dom)[source]

    Convert f to a ANP over a new domain.

    @@ -6851,74 +6851,74 @@

    Dense polynomials
    -mod_to_list()[source]
    +mod_to_list()[source]

    Return f.mod as a list with native coefficients.

    -mul_ground(c)[source]
    +mul_ground(c)[source]

    Multiply f by an element of the ground domain.

    -pow(n)[source]
    +pow(n)[source]

    Raise f to a non-negative power n.

    -quo_ground(c)[source]
    +quo_ground(c)[source]

    Quotient of f by an element of the ground domain.

    -sub_ground(c)[source]
    +sub_ground(c)[source]

    Subtract an element of the ground domain from f.

    -to_dict()[source]
    +to_dict()[source]

    Convert f to a dict representation with native coefficients.

    -to_list()[source]
    +to_list()[source]

    Convert f to a list representation with native coefficients.

    -to_sympy_dict()[source]
    +to_sympy_dict()[source]

    Convert f to a dict representation with SymPy coefficients.

    -to_sympy_list()[source]
    +to_sympy_list()[source]

    Convert f to a list representation with SymPy coefficients.

    -to_tuple()[source]
    +to_tuple()[source]

    Convert f to a tuple representation with native coefficients.

    This is needed for hashing.

    -unify(g)[source]
    +unify(g)[source]

    Unify representations of two algebraic numbers.

    -unify_ANP(g)[source]
    +unify_ANP(g)[source]

    Unify and return DMP instances of f and g.

    diff --git a/dev/modules/polys/internals.html b/dev/modules/polys/internals.html index 02509263cfa..c799569a97b 100644 --- a/dev/modules/polys/internals.html +++ b/dev/modules/polys/internals.html @@ -850,7 +850,7 @@

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_LC(f, K)[source]
    +sympy.polys.densebasic.dmp_LC(f, K)[source]

    Return leading coefficient of f.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -867,7 +867,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_TC(f, K)[source]
    +sympy.polys.densebasic.dmp_TC(f, K)[source]

    Return trailing coefficient of f.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -884,7 +884,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_ground_LC(f, u, K)[source]
    +sympy.polys.densebasic.dmp_ground_LC(f, u, K)[source]

    Return the ground leading coefficient.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -902,7 +902,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_ground_TC(f, u, K)[source]
    +sympy.polys.densebasic.dmp_ground_TC(f, u, K)[source]

    Return the ground trailing coefficient.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -920,7 +920,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_true_LT(f, u, K)[source]
    +sympy.polys.densebasic.dmp_true_LT(f, u, K)[source]

    Return the leading term c * x_1**n_1 ... x_k**n_k.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -938,7 +938,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_degree(f, u)[source]
    +sympy.polys.densebasic.dmp_degree(f, u)[source]

    Return the leading degree of f in x_0 in K[X].

    Note that the degree of 0 is negative infinity (float('-inf')).

    Examples

    @@ -961,7 +961,7 @@

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_degree_in(f, j, u)[source]
    +sympy.polys.densebasic.dmp_degree_in(f, j, u)[source]

    Return the leading degree of f in x_j in K[X].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -981,7 +981,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_degree_list(f, u)[source]
    +sympy.polys.densebasic.dmp_degree_list(f, u)[source]

    Return a list of degrees of f in K[X].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -999,7 +999,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_strip(f, u)[source]
    +sympy.polys.densebasic.dmp_strip(f, u)[source]

    Remove leading zeros from f in K[X].

    Examples

    >>> from sympy.polys.densebasic import dmp_strip
    @@ -1013,7 +1013,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_validate(f, K=None)[source]
    +sympy.polys.densebasic.dmp_validate(f, K=None)[source]

    Return the number of levels in f and recursively strip it.

    Examples

    >>> from sympy.polys.densebasic import dmp_validate
    @@ -1033,7 +1033,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dup_reverse(f)[source]
    +sympy.polys.densebasic.dup_reverse(f)[source]

    Compute x**n * f(1/x), i.e.: reverse f in K[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1051,7 +1051,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_copy(f, u)[source]
    +sympy.polys.densebasic.dmp_copy(f, u)[source]

    Create a new copy of a polynomial f in K[X].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1069,7 +1069,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_to_tuple(f, u)[source]
    +sympy.polys.densebasic.dmp_to_tuple(f, u)[source]

    Convert \(f\) into a nested tuple of tuples.

    This is needed for hashing. This is similar to dmp_copy().

    Examples

    @@ -1088,7 +1088,7 @@

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_normal(f, u, K)[source]
    +sympy.polys.densebasic.dmp_normal(f, u, K)[source]

    Normalize a multivariate polynomial in the given domain.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1103,7 +1103,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_convert(f, u, K0, K1)[source]
    +sympy.polys.densebasic.dmp_convert(f, u, K0, K1)[source]

    Convert the ground domain of f from K0 to K1.

    Examples

    >>> from sympy.polys.rings import ring
    @@ -1124,7 +1124,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_from_sympy(f, u, K)[source]
    +sympy.polys.densebasic.dmp_from_sympy(f, u, K)[source]

    Convert the ground domain of f from SymPy to K.

    Examples

    >>> from sympy import S
    @@ -1140,7 +1140,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_nth(f, n, u, K)[source]
    +sympy.polys.densebasic.dmp_nth(f, n, u, K)[source]

    Return the n-th coefficient of f in K[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1160,7 +1160,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_ground_nth(f, N, u, K)[source]
    +sympy.polys.densebasic.dmp_ground_nth(f, N, u, K)[source]

    Return the ground n-th coefficient of f in K[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1178,7 +1178,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_zero_p(f, u)[source]
    +sympy.polys.densebasic.dmp_zero_p(f, u)[source]

    Return True if f is zero in K[X].

    Examples

    >>> from sympy.polys.densebasic import dmp_zero_p
    @@ -1194,7 +1194,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_zero(u)[source]
    +sympy.polys.densebasic.dmp_zero(u)[source]

    Return a multivariate zero.

    Examples

    >>> from sympy.polys.densebasic import dmp_zero
    @@ -1208,7 +1208,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_one_p(f, u, K)[source]
    +sympy.polys.densebasic.dmp_one_p(f, u, K)[source]

    Return True if f is one in K[X].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1223,7 +1223,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_one(u, K)[source]
    +sympy.polys.densebasic.dmp_one(u, K)[source]

    Return a multivariate one over K.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1238,7 +1238,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_ground_p(f, c, u)[source]
    +sympy.polys.densebasic.dmp_ground_p(f, c, u)[source]

    Return True if f is constant in K[X].

    Examples

    >>> from sympy.polys.densebasic import dmp_ground_p
    @@ -1254,7 +1254,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_ground(c, u)[source]
    +sympy.polys.densebasic.dmp_ground(c, u)[source]

    Return a multivariate constant.

    Examples

    >>> from sympy.polys.densebasic import dmp_ground
    @@ -1270,7 +1270,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_zeros(n, u, K)[source]
    +sympy.polys.densebasic.dmp_zeros(n, u, K)[source]

    Return a list of multivariate zeros.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1287,7 +1287,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_grounds(c, n, u)[source]
    +sympy.polys.densebasic.dmp_grounds(c, n, u)[source]

    Return a list of multivariate constants.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1304,7 +1304,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_negative_p(f, u, K)[source]
    +sympy.polys.densebasic.dmp_negative_p(f, u, K)[source]

    Return True if LC(f) is negative.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1321,7 +1321,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_positive_p(f, u, K)[source]
    +sympy.polys.densebasic.dmp_positive_p(f, u, K)[source]

    Return True if LC(f) is positive.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1338,7 +1338,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_from_dict(f, u, K)[source]
    +sympy.polys.densebasic.dmp_from_dict(f, u, K)[source]

    Create a K[X] polynomial from a dict.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1355,7 +1355,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_to_dict(f, u, K=None, zero=False)[source]
    +sympy.polys.densebasic.dmp_to_dict(f, u, K=None, zero=False)[source]

    Convert a K[X] polynomial to a dict``.

    Examples

    >>> from sympy.polys.densebasic import dmp_to_dict
    @@ -1371,7 +1371,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_swap(f, i, j, u, K)[source]
    +sympy.polys.densebasic.dmp_swap(f, i, j, u, K)[source]

    Transform K[..x_i..x_j..] to K[..x_j..x_i..].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1393,7 +1393,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_permute(f, P, u, K)[source]
    +sympy.polys.densebasic.dmp_permute(f, P, u, K)[source]

    Return a polynomial in K[x_{P(1)},..,x_{P(n)}].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1413,7 +1413,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_nest(f, l, K)[source]
    +sympy.polys.densebasic.dmp_nest(f, l, K)[source]

    Return a multivariate value nested l-levels.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1428,7 +1428,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_raise(f, l, u, K)[source]
    +sympy.polys.densebasic.dmp_raise(f, l, u, K)[source]

    Return a multivariate polynomial raised l-levels.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1446,7 +1446,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_deflate(f, u, K)[source]
    +sympy.polys.densebasic.dmp_deflate(f, u, K)[source]

    Map x_i**m_i to y_i in a polynomial in K[X].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1464,7 +1464,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_multi_deflate(polys, u, K)[source]
    +sympy.polys.densebasic.dmp_multi_deflate(polys, u, K)[source]

    Map x_i**m_i to y_i in a set of polynomials in K[X].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1483,7 +1483,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_inflate(f, M, u, K)[source]
    +sympy.polys.densebasic.dmp_inflate(f, M, u, K)[source]

    Map y_i to x_i**k_i in a polynomial in K[X].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1501,7 +1501,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_exclude(f, u, K)[source]
    +sympy.polys.densebasic.dmp_exclude(f, u, K)[source]

    Exclude useless levels from f.

    Return the levels excluded, the new excluded f, and the new u.

    Examples

    @@ -1520,7 +1520,7 @@

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_include(f, J, u, K)[source]
    +sympy.polys.densebasic.dmp_include(f, J, u, K)[source]

    Include useless levels in f.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1538,7 +1538,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_inject(f, u, K, front=False)[source]
    +sympy.polys.densebasic.dmp_inject(f, u, K, front=False)[source]

    Convert f from K[X][Y] to K[X,Y].

    Examples

    >>> from sympy.polys.rings import ring
    @@ -1559,7 +1559,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_eject(f, u, K, front=False)[source]
    +sympy.polys.densebasic.dmp_eject(f, u, K, front=False)[source]

    Convert f from K[X,Y] to K[X][Y].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1574,7 +1574,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_terms_gcd(f, u, K)[source]
    +sympy.polys.densebasic.dmp_terms_gcd(f, u, K)[source]

    Remove GCD of terms from f in K[X].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1592,7 +1592,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_list_terms(f, u, K, order=None)[source]
    +sympy.polys.densebasic.dmp_list_terms(f, u, K, order=None)[source]

    List all non-zero terms from f in the given order order.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1612,7 +1612,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_apply_pairs(f, g, h, args, u, K)[source]
    +sympy.polys.densebasic.dmp_apply_pairs(f, g, h, args, u, K)[source]

    Apply h to pairs of coefficients of f and g.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1630,13 +1630,13 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densebasic.dmp_slice(f, m, n, u, K)[source]
    +sympy.polys.densebasic.dmp_slice(f, m, n, u, K)[source]

    Take a continuous subsequence of terms of f in K[X].

    -sympy.polys.densebasic.dup_random(n, a, b, K)[source]
    +sympy.polys.densebasic.dup_random(n, a, b, K)[source]

    Return a polynomial of degree n with coefficients in [a, b].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -1652,7 +1652,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_add_term(f, c, i, u, K)[source]
    +sympy.polys.densearith.dmp_add_term(f, c, i, u, K)[source]

    Add c(x_2..x_u)*x_0**i to f in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1667,7 +1667,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_sub_term(f, c, i, u, K)[source]
    +sympy.polys.densearith.dmp_sub_term(f, c, i, u, K)[source]

    Subtract c(x_2..x_u)*x_0**i from f in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1682,7 +1682,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_mul_term(f, c, i, u, K)[source]
    +sympy.polys.densearith.dmp_mul_term(f, c, i, u, K)[source]

    Multiply f by c(x_2..x_u)*x_0**i in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1697,7 +1697,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_add_ground(f, c, u, K)[source]
    +sympy.polys.densearith.dmp_add_ground(f, c, u, K)[source]

    Add an element of the ground domain to f.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1712,7 +1712,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_sub_ground(f, c, u, K)[source]
    +sympy.polys.densearith.dmp_sub_ground(f, c, u, K)[source]

    Subtract an element of the ground domain from f.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1727,7 +1727,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_mul_ground(f, c, u, K)[source]
    +sympy.polys.densearith.dmp_mul_ground(f, c, u, K)[source]

    Multiply f by a constant value in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1742,7 +1742,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_quo_ground(f, c, u, K)[source]
    +sympy.polys.densearith.dmp_quo_ground(f, c, u, K)[source]

    Quotient by a constant in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -1762,7 +1762,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_exquo_ground(f, c, u, K)[source]
    +sympy.polys.densearith.dmp_exquo_ground(f, c, u, K)[source]

    Exact quotient by a constant in K[X].

    Examples

    >>> from sympy.polys import ring, QQ
    @@ -1777,7 +1777,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dup_lshift(f, n, K)[source]
    +sympy.polys.densearith.dup_lshift(f, n, K)[source]

    Efficiently multiply f by x**n in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1792,7 +1792,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dup_rshift(f, n, K)[source]
    +sympy.polys.densearith.dup_rshift(f, n, K)[source]

    Efficiently divide f by x**n in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1809,7 +1809,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_abs(f, u, K)[source]
    +sympy.polys.densearith.dmp_abs(f, u, K)[source]

    Make all coefficients positive in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1824,7 +1824,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_neg(f, u, K)[source]
    +sympy.polys.densearith.dmp_neg(f, u, K)[source]

    Negate a polynomial in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1839,7 +1839,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_add(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_add(f, g, u, K)[source]

    Add dense polynomials in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1854,7 +1854,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_sub(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_sub(f, g, u, K)[source]

    Subtract dense polynomials in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1869,7 +1869,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_add_mul(f, g, h, u, K)[source]
    +sympy.polys.densearith.dmp_add_mul(f, g, h, u, K)[source]

    Returns f + g*h where f, g, h are in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1884,7 +1884,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_sub_mul(f, g, h, u, K)[source]
    +sympy.polys.densearith.dmp_sub_mul(f, g, h, u, K)[source]

    Returns f - g*h where f, g, h are in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1899,7 +1899,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_mul(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_mul(f, g, u, K)[source]

    Multiply dense polynomials in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1914,7 +1914,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_sqr(f, u, K)[source]
    +sympy.polys.densearith.dmp_sqr(f, u, K)[source]

    Square dense polynomials in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1929,7 +1929,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_pow(f, n, u, K)[source]
    +sympy.polys.densearith.dmp_pow(f, n, u, K)[source]

    Raise f to the n-th power in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1944,7 +1944,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_pdiv(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_pdiv(f, g, u, K)[source]

    Polynomial pseudo-division in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1959,7 +1959,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_prem(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_prem(f, g, u, K)[source]

    Polynomial pseudo-remainder in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1974,7 +1974,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_pquo(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_pquo(f, g, u, K)[source]

    Polynomial exact pseudo-quotient in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -1998,7 +1998,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_pexquo(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_pexquo(f, g, u, K)[source]

    Polynomial pseudo-quotient in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2024,7 +2024,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_rr_div(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_rr_div(f, g, u, K)[source]

    Multivariate division with remainder over a ring.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2039,7 +2039,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_ff_div(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_ff_div(f, g, u, K)[source]

    Polynomial division with remainder over a field.

    Examples

    >>> from sympy.polys import ring, QQ
    @@ -2054,7 +2054,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_div(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_div(f, g, u, K)[source]

    Polynomial division with remainder in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -2074,7 +2074,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_rem(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_rem(f, g, u, K)[source]

    Returns polynomial remainder in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -2094,7 +2094,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_quo(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_quo(f, g, u, K)[source]

    Returns exact polynomial quotient in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -2114,7 +2114,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_exquo(f, g, u, K)[source]
    +sympy.polys.densearith.dmp_exquo(f, g, u, K)[source]

    Returns polynomial quotient in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2140,7 +2140,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_max_norm(f, u, K)[source]
    +sympy.polys.densearith.dmp_max_norm(f, u, K)[source]

    Returns maximum norm of a polynomial in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2155,7 +2155,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_l1_norm(f, u, K)[source]
    +sympy.polys.densearith.dmp_l1_norm(f, u, K)[source]

    Returns l1 norm of a polynomial in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2170,7 +2170,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densearith.dmp_expand(polys, u, K)[source]
    +sympy.polys.densearith.dmp_expand(polys, u, K)[source]

    Multiply together several polynomials in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2186,7 +2186,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_integrate(f, m, u, K)[source]
    +sympy.polys.densetools.dmp_integrate(f, m, u, K)[source]

    Computes the indefinite integral of f in x_0 in K[X].

    Examples

    >>> from sympy.polys import ring, QQ
    @@ -2203,7 +2203,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_integrate_in(f, m, j, u, K)[source]
    +sympy.polys.densetools.dmp_integrate_in(f, m, j, u, K)[source]

    Computes the indefinite integral of f in x_j in K[X].

    Examples

    >>> from sympy.polys import ring, QQ
    @@ -2220,7 +2220,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_diff(f, m, u, K)[source]
    +sympy.polys.densetools.dmp_diff(f, m, u, K)[source]

    m-th order derivative in x_0 of a polynomial in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2240,7 +2240,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_diff_in(f, m, j, u, K)[source]
    +sympy.polys.densetools.dmp_diff_in(f, m, j, u, K)[source]

    m-th order derivative in x_j of a polynomial in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2260,7 +2260,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_eval(f, a, u, K)[source]
    +sympy.polys.densetools.dmp_eval(f, a, u, K)[source]

    Evaluate a polynomial at x_0 = a in K[X] using the Horner scheme.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2275,7 +2275,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_eval_in(f, a, j, u, K)[source]
    +sympy.polys.densetools.dmp_eval_in(f, a, j, u, K)[source]

    Evaluate a polynomial at x_j = a in K[X] using the Horner scheme.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2295,7 +2295,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_eval_tail(f, A, u, K)[source]
    +sympy.polys.densetools.dmp_eval_tail(f, A, u, K)[source]

    Evaluate a polynomial at x_j = a_j, ... in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2315,7 +2315,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_diff_eval_in(f, m, a, j, u, K)[source]
    +sympy.polys.densetools.dmp_diff_eval_in(f, m, a, j, u, K)[source]

    Differentiate and evaluate a polynomial in x_j at a in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2335,7 +2335,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_trunc(f, p, u, K)[source]
    +sympy.polys.densetools.dmp_trunc(f, p, u, K)[source]

    Reduce a K[X] polynomial modulo a polynomial p in K[Y].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2354,7 +2354,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_ground_trunc(f, p, u, K)[source]
    +sympy.polys.densetools.dmp_ground_trunc(f, p, u, K)[source]

    Reduce a K[X] polynomial modulo a constant p in K.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2372,7 +2372,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_monic(f, K)[source]
    +sympy.polys.densetools.dup_monic(f, K)[source]

    Divide all coefficients by LC(f) in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -2392,7 +2392,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_ground_monic(f, u, K)[source]
    +sympy.polys.densetools.dmp_ground_monic(f, u, K)[source]

    Divide all coefficients by LC(f) in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -2418,7 +2418,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_content(f, K)[source]
    +sympy.polys.densetools.dup_content(f, K)[source]

    Compute the GCD of coefficients of f in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -2444,7 +2444,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_ground_content(f, u, K)[source]
    +sympy.polys.densetools.dmp_ground_content(f, u, K)[source]

    Compute the GCD of coefficients of f in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -2470,7 +2470,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_primitive(f, K)[source]
    +sympy.polys.densetools.dup_primitive(f, K)[source]

    Compute content and the primitive form of f in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -2496,7 +2496,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_ground_primitive(f, u, K)[source]
    +sympy.polys.densetools.dmp_ground_primitive(f, u, K)[source]

    Compute content and the primitive form of f in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ, QQ
    @@ -2522,7 +2522,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_extract(f, g, K)[source]
    +sympy.polys.densetools.dup_extract(f, g, K)[source]

    Extract common content from a pair of polynomials in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2537,7 +2537,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_ground_extract(f, g, u, K)[source]
    +sympy.polys.densetools.dmp_ground_extract(f, g, u, K)[source]

    Extract common content from a pair of polynomials in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2552,7 +2552,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_real_imag(f, K)[source]
    +sympy.polys.densetools.dup_real_imag(f, K)[source]

    Find f1 and f2, such that f(x+I*y) = f1(x,y) + f2(x,y)*I.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2573,7 +2573,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_mirror(f, K)[source]
    +sympy.polys.densetools.dup_mirror(f, K)[source]

    Evaluate efficiently the composition f(-x) in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2588,7 +2588,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_scale(f, a, K)[source]
    +sympy.polys.densetools.dup_scale(f, a, K)[source]

    Evaluate efficiently composition f(a*x) in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2603,7 +2603,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_shift(f, a, K)[source]
    +sympy.polys.densetools.dup_shift(f, a, K)[source]

    Evaluate efficiently Taylor shift f(x + a) in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2618,7 +2618,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_transform(f, p, q, K)[source]
    +sympy.polys.densetools.dup_transform(f, p, q, K)[source]

    Evaluate functional transformation q**n * f(p/q) in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2633,7 +2633,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_compose(f, g, u, K)[source]
    +sympy.polys.densetools.dmp_compose(f, g, u, K)[source]

    Evaluate functional composition f(g) in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2648,7 +2648,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_decompose(f, K)[source]
    +sympy.polys.densetools.dup_decompose(f, K)[source]

    Computes functional decomposition of f in K[x].

    Given a univariate polynomial f with coefficients in a field of characteristic zero, returns list [f_1, f_2, ..., f_n], where:

    @@ -2685,7 +2685,7 @@

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_lift(f, u, K)[source]
    +sympy.polys.densetools.dmp_lift(f, u, K)[source]

    Convert algebraic coefficients to integers in K[X].

    Examples

    >>> from sympy.polys import ring, QQ
    @@ -2707,7 +2707,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dup_sign_variations(f, K)[source]
    +sympy.polys.densetools.dup_sign_variations(f, K)[source]

    Compute the number of sign variations of f in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -2722,7 +2722,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_clear_denoms(f, u, K0, K1=None, convert=False)[source]
    +sympy.polys.densetools.dmp_clear_denoms(f, u, K0, K1=None, convert=False)[source]

    Clear denominators, i.e. transform K_0 to K_1.

    Examples

    >>> from sympy.polys import ring, QQ
    @@ -2742,7 +2742,7 @@ 

    Manipulation of dense, multivariate polynomials
    -sympy.polys.densetools.dmp_revert(f, g, u, K)[source]
    +sympy.polys.densetools.dmp_revert(f, g, u, K)[source]

    Compute f**(-1) mod x**n using Newton iteration.

    Examples

    >>> from sympy.polys import ring, QQ
    @@ -2762,7 +2762,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients fields.

    -sympy.polys.galoistools.gf_crt(U, M, K=None)[source]
    +sympy.polys.galoistools.gf_crt(U, M, K=None)[source]

    Chinese Remainder Theorem.

    Given a set of integer residues u_0,...,u_n and a set of co-prime integer moduli m_0,...,m_n, returns an integer @@ -2795,7 +2795,7 @@

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_crt1(M, K)[source]
    +sympy.polys.galoistools.gf_crt1(M, K)[source]

    First part of the Chinese Remainder Theorem.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -2836,7 +2836,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_crt2(U, M, p, E, S, K)[source]
    +sympy.polys.galoistools.gf_crt2(U, M, p, E, S, K)[source]

    Second part of the Chinese Remainder Theorem.

    See gf_crt1 for usage.

    Examples

    @@ -2867,7 +2867,7 @@

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_int(a, p)[source]
    +sympy.polys.galoistools.gf_int(a, p)[source]

    Coerce a mod p to an integer in the range [-p/2, p/2].

    Examples

    >>> from sympy.polys.galoistools import gf_int
    @@ -2883,7 +2883,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_degree(f)[source]
    +sympy.polys.galoistools.gf_degree(f)[source]

    Return the leading degree of f.

    Examples

    >>> from sympy.polys.galoistools import gf_degree
    @@ -2899,7 +2899,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_LC(f, K)[source]
    +sympy.polys.galoistools.gf_LC(f, K)[source]

    Return the leading coefficient of f.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -2914,7 +2914,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_TC(f, K)[source]
    +sympy.polys.galoistools.gf_TC(f, K)[source]

    Return the trailing coefficient of f.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -2929,7 +2929,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_strip(f)[source]
    +sympy.polys.galoistools.gf_strip(f)[source]

    Remove leading zeros from f.

    Examples

    >>> from sympy.polys.galoistools import gf_strip
    @@ -2943,7 +2943,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_trunc(f, p)[source]
    +sympy.polys.galoistools.gf_trunc(f, p)[source]

    Reduce all coefficients modulo p.

    Examples

    >>> from sympy.polys.galoistools import gf_trunc
    @@ -2957,7 +2957,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_normal(f, p, K)[source]
    +sympy.polys.galoistools.gf_normal(f, p, K)[source]

    Normalize all coefficients in K.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -2972,7 +2972,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_from_dict(f, p, K)[source]
    +sympy.polys.galoistools.gf_from_dict(f, p, K)[source]

    Create a GF(p)[x] polynomial from a dict.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -2987,7 +2987,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_to_dict(f, p, symmetric=True)[source]
    +sympy.polys.galoistools.gf_to_dict(f, p, symmetric=True)[source]

    Convert a GF(p)[x] polynomial to a dict.

    Examples

    >>> from sympy.polys.galoistools import gf_to_dict
    @@ -3003,7 +3003,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_from_int_poly(f, p)[source]
    +sympy.polys.galoistools.gf_from_int_poly(f, p)[source]

    Create a GF(p)[x] polynomial from Z[x].

    Examples

    >>> from sympy.polys.galoistools import gf_from_int_poly
    @@ -3017,7 +3017,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_to_int_poly(f, p, symmetric=True)[source]
    +sympy.polys.galoistools.gf_to_int_poly(f, p, symmetric=True)[source]

    Convert a GF(p)[x] polynomial to Z[x].

    Examples

    >>> from sympy.polys.galoistools import gf_to_int_poly
    @@ -3033,7 +3033,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_neg(f, p, K)[source]
    +sympy.polys.galoistools.gf_neg(f, p, K)[source]

    Negate a polynomial in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3048,7 +3048,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_add_ground(f, a, p, K)[source]
    +sympy.polys.galoistools.gf_add_ground(f, a, p, K)[source]

    Compute f + a where f in GF(p)[x] and a in GF(p).

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3063,7 +3063,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_sub_ground(f, a, p, K)[source]
    +sympy.polys.galoistools.gf_sub_ground(f, a, p, K)[source]

    Compute f - a where f in GF(p)[x] and a in GF(p).

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3078,7 +3078,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_mul_ground(f, a, p, K)[source]
    +sympy.polys.galoistools.gf_mul_ground(f, a, p, K)[source]

    Compute f * a where f in GF(p)[x] and a in GF(p).

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3093,7 +3093,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_quo_ground(f, a, p, K)[source]
    +sympy.polys.galoistools.gf_quo_ground(f, a, p, K)[source]

    Compute f/a where f in GF(p)[x] and a in GF(p).

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3108,7 +3108,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_add(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_add(f, g, p, K)[source]

    Add polynomials in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3123,7 +3123,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_sub(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_sub(f, g, p, K)[source]

    Subtract polynomials in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3138,7 +3138,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_mul(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_mul(f, g, p, K)[source]

    Multiply polynomials in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3153,7 +3153,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_sqr(f, p, K)[source]
    +sympy.polys.galoistools.gf_sqr(f, p, K)[source]

    Square polynomials in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3168,7 +3168,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_add_mul(f, g, h, p, K)[source]
    +sympy.polys.galoistools.gf_add_mul(f, g, h, p, K)[source]

    Returns f + g*h where f, g, h in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3181,7 +3181,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_sub_mul(f, g, h, p, K)[source]
    +sympy.polys.galoistools.gf_sub_mul(f, g, h, p, K)[source]

    Compute f - g*h where f, g, h in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3196,7 +3196,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_expand(F, p, K)[source]
    +sympy.polys.galoistools.gf_expand(F, p, K)[source]

    Expand results of factor() in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3211,7 +3211,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_div(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_div(f, g, p, K)[source]

    Division with remainder in GF(p)[x].

    Given univariate polynomials f and g with coefficients in a finite field with p elements, returns polynomials q and r @@ -3244,7 +3244,7 @@

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_rem(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_rem(f, g, p, K)[source]

    Compute polynomial remainder in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3259,7 +3259,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_quo(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_quo(f, g, p, K)[source]

    Compute exact quotient in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3276,7 +3276,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_exquo(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_exquo(f, g, p, K)[source]

    Compute polynomial quotient in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3297,7 +3297,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_lshift(f, n, K)[source]
    +sympy.polys.galoistools.gf_lshift(f, n, K)[source]

    Efficiently multiply f by x**n.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3312,7 +3312,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_rshift(f, n, K)[source]
    +sympy.polys.galoistools.gf_rshift(f, n, K)[source]

    Efficiently divide f by x**n.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3327,7 +3327,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_pow(f, n, p, K)[source]
    +sympy.polys.galoistools.gf_pow(f, n, p, K)[source]

    Compute f**n in GF(p)[x] using repeated squaring.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3342,7 +3342,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_pow_mod(f, n, g, p, K)[source]
    +sympy.polys.galoistools.gf_pow_mod(f, n, g, p, K)[source]

    Compute f**n in GF(p)[x]/(g) using repeated squaring.

    Given polynomials f and g in GF(p)[x] and a non-negative integer n, efficiently computes f**n (mod g) i.e. the remainder @@ -3367,7 +3367,7 @@

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_gcd(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_gcd(f, g, p, K)[source]

    Euclidean Algorithm in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3382,7 +3382,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_lcm(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_lcm(f, g, p, K)[source]

    Compute polynomial LCM in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3397,7 +3397,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_cofactors(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_cofactors(f, g, p, K)[source]

    Compute polynomial GCD and cofactors in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3412,7 +3412,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_gcdex(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_gcdex(f, g, p, K)[source]

    Extended Euclidean Algorithm in GF(p)[x].

    Given polynomials f and g in GF(p)[x], computes polynomials s, t and h, such that h = gcd(f, g) and s*f + t*g = h. @@ -3447,7 +3447,7 @@

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_monic(f, p, K)[source]
    +sympy.polys.galoistools.gf_monic(f, p, K)[source]

    Compute LC and a monic polynomial in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3462,7 +3462,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_diff(f, p, K)[source]
    +sympy.polys.galoistools.gf_diff(f, p, K)[source]

    Differentiate polynomial in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3477,7 +3477,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_eval(f, a, p, K)[source]
    +sympy.polys.galoistools.gf_eval(f, a, p, K)[source]

    Evaluate f(a) in GF(p) using Horner scheme.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3492,7 +3492,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_multi_eval(f, A, p, K)[source]
    +sympy.polys.galoistools.gf_multi_eval(f, A, p, K)[source]

    Evaluate f(a) for a in [a_1, ..., a_n].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3507,7 +3507,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_compose(f, g, p, K)[source]
    +sympy.polys.galoistools.gf_compose(f, g, p, K)[source]

    Compute polynomial composition f(g) in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3522,7 +3522,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_compose_mod(g, h, f, p, K)[source]
    +sympy.polys.galoistools.gf_compose_mod(g, h, f, p, K)[source]

    Compute polynomial composition g(h) in GF(p)[x]/(f).

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3537,7 +3537,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_trace_map(a, b, c, n, f, p, K)[source]
    +sympy.polys.galoistools.gf_trace_map(a, b, c, n, f, p, K)[source]

    Compute polynomial trace map in GF(p)[x]/(f).

    Given a polynomial f in GF(p)[x], polynomials a, b, c in the quotient ring GF(p)[x]/(f) such that b = c**t @@ -3570,7 +3570,7 @@

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_random(n, p, K)[source]
    +sympy.polys.galoistools.gf_random(n, p, K)[source]

    Generate a random polynomial in GF(p)[x] of degree n.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3583,7 +3583,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_irreducible(n, p, K)[source]
    +sympy.polys.galoistools.gf_irreducible(n, p, K)[source]

    Generate random irreducible polynomial of degree n in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3596,7 +3596,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_irreducible_p(f, p, K)[source]
    +sympy.polys.galoistools.gf_irreducible_p(f, p, K)[source]

    Test irreducibility of a polynomial f in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3613,7 +3613,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_sqf_p(f, p, K)[source]
    +sympy.polys.galoistools.gf_sqf_p(f, p, K)[source]

    Return True if f is square-free in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3630,7 +3630,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_sqf_part(f, p, K)[source]
    +sympy.polys.galoistools.gf_sqf_part(f, p, K)[source]

    Return square-free part of a GF(p)[x] polynomial.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3645,7 +3645,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_sqf_list(f, p, K, all=False)[source]
    +sympy.polys.galoistools.gf_sqf_list(f, p, K, all=False)[source]

    Return the square-free decomposition of a GF(p)[x] polynomial.

    Given a polynomial f in GF(p)[x], returns the leading coefficient of f and a square-free decomposition f_1**e_1 f_2**e_2 ... f_k**e_k @@ -3690,7 +3690,7 @@

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_Qmatrix(f, p, K)[source]
    +sympy.polys.galoistools.gf_Qmatrix(f, p, K)[source]

    Calculate Berlekamp’s Q matrix.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3713,7 +3713,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_Qbasis(Q, p, K)[source]
    +sympy.polys.galoistools.gf_Qbasis(Q, p, K)[source]

    Compute a basis of the kernel of Q.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3732,7 +3732,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_berlekamp(f, p, K)[source]
    +sympy.polys.galoistools.gf_berlekamp(f, p, K)[source]

    Factor a square-free f in GF(p)[x] for small p.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3747,7 +3747,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_zassenhaus(f, p, K)[source]
    +sympy.polys.galoistools.gf_zassenhaus(f, p, K)[source]

    Factor a square-free f in GF(p)[x] for medium p.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3762,7 +3762,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_shoup(f, p, K)[source]
    +sympy.polys.galoistools.gf_shoup(f, p, K)[source]

    Factor a square-free f in GF(p)[x] for large p.

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3777,7 +3777,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_factor_sqf(f, p, K, method=None)[source]
    +sympy.polys.galoistools.gf_factor_sqf(f, p, K, method=None)[source]

    Factor a square-free polynomial f in GF(p)[x].

    Examples

    >>> from sympy.polys.domains import ZZ
    @@ -3792,7 +3792,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_factor(f, p, K)[source]
    +sympy.polys.galoistools.gf_factor(f, p, K)[source]

    Factor (non square-free) polynomials in GF(p)[x].

    Given a possibly non square-free polynomial f in GF(p)[x], returns its complete factorization into irreducibles:

    @@ -3841,7 +3841,7 @@

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_value(f, a)[source]
    +sympy.polys.galoistools.gf_value(f, a)[source]

    Value of polynomial ‘f’ at ‘a’ in field R.

    Examples

    >>> from sympy.polys.galoistools import gf_value
    @@ -3855,7 +3855,7 @@ 

    Manipulation of dense, univariate polynomials with finite field coefficients
    -sympy.polys.galoistools.gf_csolve(f, n)[source]
    +sympy.polys.galoistools.gf_csolve(f, n)[source]

    To solve f(x) congruent 0 mod(n).

    n is divided into canonical factors and f(x) cong 0 mod(p**e) will be solved for each factor. Applying the Chinese Remainder Theorem to the @@ -3901,7 +3901,7 @@

    Manipulation of sparse, distributed polynomials and vectors\(f_1, f_2, \ldots\).

    -sympy.polys.distributedmodules.sdm_monomial_mul(M, X)[source]
    +sympy.polys.distributedmodules.sdm_monomial_mul(M, X)[source]

    Multiply tuple X representing a monomial of \(K[X]\) into the tuple M representing a monomial of \(F\).

    Examples

    @@ -3915,7 +3915,7 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_monomial_deg(M)[source]
    +sympy.polys.distributedmodules.sdm_monomial_deg(M)[source]

    Return the total degree of M.

    Examples

    For example, the total degree of \(x^2 y f_5\) is 3:

    @@ -3928,7 +3928,7 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_monomial_divides(A, B)[source]
    +sympy.polys.distributedmodules.sdm_monomial_divides(A, B)[source]

    Does there exist a (polynomial) monomial X such that XA = B?

    Examples

    Positive examples:

    @@ -3974,19 +3974,19 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_LC(f, K)[source]
    +sympy.polys.distributedmodules.sdm_LC(f, K)[source]

    Returns the leading coefficient of f.

    -sympy.polys.distributedmodules.sdm_to_dict(f)[source]
    +sympy.polys.distributedmodules.sdm_to_dict(f)[source]

    Make a dictionary from a distributed polynomial.

    -sympy.polys.distributedmodules.sdm_from_dict(d, O)[source]
    +sympy.polys.distributedmodules.sdm_from_dict(d, O)[source]

    Create an sdm from a dictionary.

    Here O is the monomial order to use.

    Examples

    @@ -4001,7 +4001,7 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_add(f, g, O, K)[source]
    +sympy.polys.distributedmodules.sdm_add(f, g, O, K)[source]

    Add two module elements f, g.

    Addition is done over the ground field K, monomials are ordered according to O.

    @@ -4033,7 +4033,7 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_LM(f)[source]
    +sympy.polys.distributedmodules.sdm_LM(f)[source]

    Returns the leading monomial of f.

    Only valid if \(f \ne 0\).

    Examples

    @@ -4048,7 +4048,7 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_LT(f)[source]
    +sympy.polys.distributedmodules.sdm_LT(f)[source]

    Returns the leading term of f.

    Only valid if \(f \ne 0\).

    Examples

    @@ -4063,7 +4063,7 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_mul_term(f, term, O, K)[source]
    +sympy.polys.distributedmodules.sdm_mul_term(f, term, O, K)[source]

    Multiply a distributed module element f by a (polynomial) term term.

    Multiplication of coefficients is done over the ground field K, and monomials are ordered according to O.

    @@ -4095,13 +4095,13 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_zero()[source]
    +sympy.polys.distributedmodules.sdm_zero()[source]

    Return the zero module element.

    -sympy.polys.distributedmodules.sdm_deg(f)[source]
    +sympy.polys.distributedmodules.sdm_deg(f)[source]

    Degree of f.

    This is the maximum of the degrees of all its monomials. Invalid if f is zero.

    @@ -4115,7 +4115,7 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_from_vector(vec, O, K, **opts)[source]
    +sympy.polys.distributedmodules.sdm_from_vector(vec, O, K, **opts)[source]

    Create an sdm from an iterable of expressions.

    Coefficients are created in the ground field K, and terms are ordered according to monomial order O. Named arguments are passed on to the @@ -4132,7 +4132,7 @@

    Manipulation of sparse, distributed polynomials and vectors
    -sympy.polys.distributedmodules.sdm_to_vector(f, gens, K, n=None)[source]
    +sympy.polys.distributedmodules.sdm_to_vector(f, gens, K, n=None)[source]

    Convert sdm f into a list of polynomial expressions.

    The generators for the polynomial ring are specified via gens. The rank of the module is guessed, or passed via n. The ground field is assumed @@ -4206,7 +4206,7 @@

    Classical remainder sequence
    -sympy.polys.euclidtools.dmp_half_gcdex(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_half_gcdex(f, g, u, K)[source]

    Half extended Euclidean algorithm in \(F[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4217,7 +4217,7 @@ 

    Classical remainder sequence
    -sympy.polys.euclidtools.dmp_gcdex(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_gcdex(f, g, u, K)[source]

    Extended Euclidean algorithm in \(F[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4228,7 +4228,7 @@ 

    Classical remainder sequence
    -sympy.polys.euclidtools.dmp_invert(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_invert(f, g, u, K)[source]

    Compute multiplicative inverse of \(f\) modulo \(g\) in \(F[X]\).

    Examples

    >>> from sympy.polys import ring, QQ
    @@ -4239,7 +4239,7 @@ 

    Classical remainder sequence
    -sympy.polys.euclidtools.dmp_euclidean_prs(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_euclidean_prs(f, g, u, K)[source]

    Euclidean polynomial remainder sequence (PRS) in \(K[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4279,7 +4279,7 @@ 

    Simplified remainder sequences
    -sympy.polys.euclidtools.dmp_primitive_prs(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_primitive_prs(f, g, u, K)[source]

    Primitive polynomial remainder sequence (PRS) in \(K[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4397,7 +4397,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_inner_subresultants(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_inner_subresultants(f, g, u, K)[source]

    Subresultant PRS algorithm in \(K[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4424,7 +4424,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_subresultants(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_subresultants(f, g, u, K)[source]

    Computes subresultant PRS of two polynomials in \(K[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4447,7 +4447,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_prs_resultant(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_prs_resultant(f, g, u, K)[source]

    Resultant algorithm in \(K[X]\) using subresultant PRS.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4477,7 +4477,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_zz_modular_resultant(f, g, p, u, K)[source]
    +sympy.polys.euclidtools.dmp_zz_modular_resultant(f, g, p, u, K)[source]

    Compute resultant of \(f\) and \(g\) modulo a prime \(p\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4496,7 +4496,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_zz_collins_resultant(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_zz_collins_resultant(f, g, u, K)[source]

    Collins’s modular resultant algorithm in \(Z[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4515,7 +4515,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_qq_collins_resultant(f, g, u, K0)[source]
    +sympy.polys.euclidtools.dmp_qq_collins_resultant(f, g, u, K0)[source]

    Collins’s modular resultant algorithm in \(Q[X]\).

    Examples

    >>> from sympy.polys import ring, QQ
    @@ -4534,7 +4534,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_resultant(f, g, u, K, includePRS=False)[source]
    +sympy.polys.euclidtools.dmp_resultant(f, g, u, K, includePRS=False)[source]

    Computes resultant of two polynomials in \(K[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4553,7 +4553,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_discriminant(f, u, K)[source]
    +sympy.polys.euclidtools.dmp_discriminant(f, u, K)[source]

    Computes discriminant of a polynomial in \(K[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4568,7 +4568,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_rr_prs_gcd(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_rr_prs_gcd(f, g, u, K)[source]

    Computes polynomial GCD using subresultants over a ring.

    Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

    @@ -4589,7 +4589,7 @@

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_ff_prs_gcd(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_ff_prs_gcd(f, g, u, K)[source]

    Computes polynomial GCD using subresultants over a field.

    Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

    @@ -4610,7 +4610,7 @@

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_zz_heu_gcd(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_zz_heu_gcd(f, g, u, K)[source]

    Heuristic polynomial GCD in \(Z[X]\).

    Given univariate polynomials \(f\) and \(g\) in \(Z[X]\), returns their GCD and cofactors, i.e. polynomials h, cff and cfg @@ -4652,7 +4652,7 @@

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_qq_heu_gcd(f, g, u, K0)[source]
    +sympy.polys.euclidtools.dmp_qq_heu_gcd(f, g, u, K0)[source]

    Heuristic polynomial GCD in \(Q[X]\).

    Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

    @@ -4673,7 +4673,7 @@

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_inner_gcd(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_inner_gcd(f, g, u, K)[source]

    Computes polynomial GCD and cofactors of \(f\) and \(g\) in \(K[X]\).

    Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

    @@ -4694,7 +4694,7 @@

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_gcd(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_gcd(f, g, u, K)[source]

    Computes polynomial GCD of \(f\) and \(g\) in \(K[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4713,7 +4713,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_lcm(f, g, u, K)[source]
    +sympy.polys.euclidtools.dmp_lcm(f, g, u, K)[source]

    Computes polynomial LCM of \(f\) and \(g\) in \(K[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4732,7 +4732,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_content(f, u, K)[source]
    +sympy.polys.euclidtools.dmp_content(f, u, K)[source]

    Returns GCD of multivariate coefficients.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4747,7 +4747,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_primitive(f, u, K)[source]
    +sympy.polys.euclidtools.dmp_primitive(f, u, K)[source]

    Returns multivariate content and a primitive polynomial.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4762,7 +4762,7 @@ 

    Subresultant sequence
    -sympy.polys.euclidtools.dmp_cancel(f, g, u, K, include=True)[source]
    +sympy.polys.euclidtools.dmp_cancel(f, g, u, K, include=True)[source]

    Cancel common factors in a rational function \(f/g\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4778,7 +4778,7 @@ 

    Subresultant sequencePolynomial factorization in characteristic zero:

    -sympy.polys.factortools.dup_trial_division(f, factors, K)[source]
    +sympy.polys.factortools.dup_trial_division(f, factors, K)[source]

    Determine multiplicities of factors for a univariate polynomial using trial division.

    An error will be raised if any factor does not divide f.

    @@ -4786,7 +4786,7 @@

    Subresultant sequence
    -sympy.polys.factortools.dmp_trial_division(f, factors, u, K)[source]
    +sympy.polys.factortools.dmp_trial_division(f, factors, u, K)[source]

    Determine multiplicities of factors for a multivariate polynomial using trial division.

    An error will be raised if any factor does not divide f.

    @@ -4794,7 +4794,7 @@

    Subresultant sequence
    -sympy.polys.factortools.dup_zz_mignotte_bound(f, K)[source]
    +sympy.polys.factortools.dup_zz_mignotte_bound(f, K)[source]

    The Knuth-Cohen variant of Mignotte bound for univariate polynomials in K[x].

    Examples

    @@ -4830,13 +4830,13 @@

    Subresultant sequence
    -sympy.polys.factortools.dmp_zz_mignotte_bound(f, u, K)[source]
    +sympy.polys.factortools.dmp_zz_mignotte_bound(f, u, K)[source]

    Mignotte bound for multivariate polynomials in \(K[X]\).

    -sympy.polys.factortools.dup_zz_hensel_step(m, f, g, h, s, t, K)[source]
    +sympy.polys.factortools.dup_zz_hensel_step(m, f, g, h, s, t, K)[source]

    One step in Hensel lifting in \(Z[x]\).

    Given positive integer \(m\) and \(Z[x]\) polynomials \(f\), \(g\), \(h\), \(s\) and \(t\) such that:

    @@ -4867,7 +4867,7 @@

    Subresultant sequence
    -sympy.polys.factortools.dup_zz_hensel_lift(p, f, f_list, l, K)[source]
    +sympy.polys.factortools.dup_zz_hensel_lift(p, f, f_list, l, K)[source]

    Multifactor Hensel lifting in \(Z[x]\).

    Given a prime \(p\), polynomial \(f\) over \(Z[x]\) such that \(lc(f)\) is a unit modulo \(p\), monic pair-wise coprime polynomials \(f_i\) @@ -4893,19 +4893,19 @@

    Subresultant sequence
    -sympy.polys.factortools.dup_zz_zassenhaus(f, K)[source]
    +sympy.polys.factortools.dup_zz_zassenhaus(f, K)[source]

    Factor primitive square-free polynomials in \(Z[x]\).

    -sympy.polys.factortools.dup_zz_irreducible_p(f, K)[source]
    +sympy.polys.factortools.dup_zz_irreducible_p(f, K)[source]

    Test irreducibility using Eisenstein’s criterion.

    -sympy.polys.factortools.dup_cyclotomic_p(f, K, irreducible=False)[source]
    +sympy.polys.factortools.dup_cyclotomic_p(f, K, irreducible=False)[source]

    Efficiently test if f is a cyclotomic polynomial.

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -4930,13 +4930,13 @@ 

    Subresultant sequence
    -sympy.polys.factortools.dup_zz_cyclotomic_poly(n, K)[source]
    +sympy.polys.factortools.dup_zz_cyclotomic_poly(n, K)[source]

    Efficiently generate n-th cyclotomic polynomial.

    -sympy.polys.factortools.dup_zz_cyclotomic_factor(f, K)[source]
    +sympy.polys.factortools.dup_zz_cyclotomic_factor(f, K)[source]

    Efficiently factor polynomials \(x**n - 1\) and \(x**n + 1\) in \(Z[x]\).

    Given a univariate polynomial \(f\) in \(Z[x]\) returns a list of factors of \(f\), provided that \(f\) is in the form \(x**n - 1\) or \(x**n + 1\) for @@ -4955,13 +4955,13 @@

    Subresultant sequence
    -sympy.polys.factortools.dup_zz_factor_sqf(f, K)[source]
    +sympy.polys.factortools.dup_zz_factor_sqf(f, K)[source]

    Factor square-free (non-primitive) polynomials in \(Z[x]\).

    -sympy.polys.factortools.dup_zz_factor(f, K)[source]
    +sympy.polys.factortools.dup_zz_factor(f, K)[source]

    Factor (non square-free) polynomials in \(Z[x]\).

    Given a univariate polynomial \(f\) in \(Z[x]\) computes its complete factorization \(f_1, ..., f_n\) into irreducibles over integers:

    @@ -5005,43 +5005,43 @@

    Subresultant sequence
    -sympy.polys.factortools.dmp_zz_wang_non_divisors(E, cs, ct, K)[source]
    +sympy.polys.factortools.dmp_zz_wang_non_divisors(E, cs, ct, K)[source]

    Wang/EEZ: Compute a set of valid divisors.

    -sympy.polys.factortools.dmp_zz_wang_test_points(f, T, ct, A, u, K)[source]
    +sympy.polys.factortools.dmp_zz_wang_test_points(f, T, ct, A, u, K)[source]

    Wang/EEZ: Test evaluation points for suitability.

    -sympy.polys.factortools.dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)[source]
    +sympy.polys.factortools.dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)[source]

    Wang/EEZ: Compute correct leading coefficients.

    -sympy.polys.factortools.dup_zz_diophantine(F, m, p, K)[source]
    +sympy.polys.factortools.dup_zz_diophantine(F, m, p, K)[source]

    Wang/EEZ: Solve univariate Diophantine equations.

    -sympy.polys.factortools.dmp_zz_diophantine(F, c, A, d, p, u, K)[source]
    +sympy.polys.factortools.dmp_zz_diophantine(F, c, A, d, p, u, K)[source]

    Wang/EEZ: Solve multivariate Diophantine equations.

    -sympy.polys.factortools.dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)[source]
    +sympy.polys.factortools.dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)[source]

    Wang/EEZ: Parallel Hensel lifting algorithm.

    -sympy.polys.factortools.dmp_zz_wang(f, u, K, mod=None, seed=None)[source]
    +sympy.polys.factortools.dmp_zz_wang(f, u, K, mod=None, seed=None)[source]

    Factor primitive square-free polynomials in \(Z[X]\).

    Given a multivariate polynomial \(f\) in \(Z[x_1,...,x_n]\), which is primitive and square-free in \(x_1\), computes factorization of \(f\) into @@ -5074,7 +5074,7 @@

    Subresultant sequence
    -sympy.polys.factortools.dmp_zz_factor(f, u, K)[source]
    +sympy.polys.factortools.dmp_zz_factor(f, u, K)[source]

    Factor (non square-free) polynomials in \(Z[X]\).

    Given a multivariate polynomial \(f\) in \(Z[x]\) computes its complete factorization \(f_1, \dots, f_n\) into irreducibles over integers:

    @@ -5112,31 +5112,31 @@

    Subresultant sequence
    -sympy.polys.factortools.dup_qq_i_factor(f, K0)[source]
    +sympy.polys.factortools.dup_qq_i_factor(f, K0)[source]

    Factor univariate polynomials into irreducibles in \(QQ_I[x]\).

    -sympy.polys.factortools.dup_zz_i_factor(f, K0)[source]
    +sympy.polys.factortools.dup_zz_i_factor(f, K0)[source]

    Factor univariate polynomials into irreducibles in \(ZZ_I[x]\).

    -sympy.polys.factortools.dmp_qq_i_factor(f, u, K0)[source]
    +sympy.polys.factortools.dmp_qq_i_factor(f, u, K0)[source]

    Factor multivariate polynomials into irreducibles in \(QQ_I[X]\).

    -sympy.polys.factortools.dmp_zz_i_factor(f, u, K0)[source]
    +sympy.polys.factortools.dmp_zz_i_factor(f, u, K0)[source]

    Factor multivariate polynomials into irreducibles in \(ZZ_I[X]\).

    -sympy.polys.factortools.dup_ext_factor(f, K)[source]
    +sympy.polys.factortools.dup_ext_factor(f, K)[source]

    Factor univariate polynomials over algebraic number fields.

    The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

    Examples

    @@ -5196,7 +5196,7 @@

    Subresultant sequence
    -sympy.polys.factortools.dmp_ext_factor(f, u, K)[source]
    +sympy.polys.factortools.dmp_ext_factor(f, u, K)[source]

    Factor multivariate polynomials over algebraic number fields.

    The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

    Examples

    @@ -5240,50 +5240,50 @@

    Subresultant sequence
    -sympy.polys.factortools.dup_gf_factor(f, K)[source]
    +sympy.polys.factortools.dup_gf_factor(f, K)[source]

    Factor univariate polynomials over finite fields.

    -sympy.polys.factortools.dmp_gf_factor(f, u, K)[source]
    +sympy.polys.factortools.dmp_gf_factor(f, u, K)[source]

    Factor multivariate polynomials over finite fields.

    -sympy.polys.factortools.dup_factor_list(f, K0)[source]
    +sympy.polys.factortools.dup_factor_list(f, K0)[source]

    Factor univariate polynomials into irreducibles in \(K[x]\).

    -sympy.polys.factortools.dup_factor_list_include(f, K)[source]
    +sympy.polys.factortools.dup_factor_list_include(f, K)[source]

    Factor univariate polynomials into irreducibles in \(K[x]\).

    -sympy.polys.factortools.dmp_factor_list(f, u, K0)[source]
    +sympy.polys.factortools.dmp_factor_list(f, u, K0)[source]

    Factor multivariate polynomials into irreducibles in \(K[X]\).

    -sympy.polys.factortools.dmp_factor_list_include(f, u, K)[source]
    +sympy.polys.factortools.dmp_factor_list_include(f, u, K)[source]

    Factor multivariate polynomials into irreducibles in \(K[X]\).

    -sympy.polys.factortools.dup_irreducible_p(f, K)[source]
    +sympy.polys.factortools.dup_irreducible_p(f, K)[source]

    Returns True if a univariate polynomial f has no factors over its domain.

    -sympy.polys.factortools.dmp_irreducible_p(f, u, K)[source]
    +sympy.polys.factortools.dmp_irreducible_p(f, u, K)[source]

    Returns True if a multivariate polynomial f has no factors over its domain.

    @@ -5291,7 +5291,7 @@

    Subresultant sequenceSquare-free factorization:

    -sympy.polys.sqfreetools.dup_sqf_p(f, K)[source]
    +sympy.polys.sqfreetools.dup_sqf_p(f, K)[source]

    Return True if f is a square-free polynomial in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5308,7 +5308,7 @@ 

    Subresultant sequence
    -sympy.polys.sqfreetools.dmp_sqf_p(f, u, K)[source]
    +sympy.polys.sqfreetools.dmp_sqf_p(f, u, K)[source]

    Return True if f is a square-free polynomial in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5325,7 +5325,7 @@ 

    Subresultant sequence
    -sympy.polys.sqfreetools.dup_sqf_norm(f, K)[source]
    +sympy.polys.sqfreetools.dup_sqf_norm(f, K)[source]

    Find a shift of \(f\) in \(K[x]\) that has square-free norm.

    The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

    Returns \((s,g,r)\), such that \(g(x)=f(x-sa)\), \(r(x)=\text{Norm}(g(x))\) and @@ -5387,7 +5387,7 @@

    Subresultant sequence
    -sympy.polys.sqfreetools.dmp_sqf_norm(f, u, K)[source]
    +sympy.polys.sqfreetools.dmp_sqf_norm(f, u, K)[source]

    Find a shift of f in K[X] that has square-free norm.

    The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

    Returns \((s,g,r)\), such that \(g(x_1,x_2,\cdots)=f(x_1-s_1 a, x_2 - s_2 a, @@ -5450,7 +5450,7 @@

    Subresultant sequence
    -sympy.polys.sqfreetools.dmp_norm(f, u, K)[source]
    +sympy.polys.sqfreetools.dmp_norm(f, u, K)[source]

    Norm of f in K[X], often not square-free.

    The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

    Examples

    @@ -5518,19 +5518,19 @@

    Subresultant sequence
    -sympy.polys.sqfreetools.dup_gf_sqf_part(f, K)[source]
    +sympy.polys.sqfreetools.dup_gf_sqf_part(f, K)[source]

    Compute square-free part of f in GF(p)[x].

    -sympy.polys.sqfreetools.dmp_gf_sqf_part(f, u, K)[source]
    +sympy.polys.sqfreetools.dmp_gf_sqf_part(f, u, K)[source]

    Compute square-free part of f in GF(p)[X].

    -sympy.polys.sqfreetools.dup_sqf_part(f, K)[source]
    +sympy.polys.sqfreetools.dup_sqf_part(f, K)[source]

    Returns square-free part of a polynomial in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5549,7 +5549,7 @@ 

    Subresultant sequence
    -sympy.polys.sqfreetools.dmp_sqf_part(f, u, K)[source]
    +sympy.polys.sqfreetools.dmp_sqf_part(f, u, K)[source]

    Returns square-free part of a polynomial in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5564,19 +5564,19 @@ 

    Subresultant sequence
    -sympy.polys.sqfreetools.dup_gf_sqf_list(f, K, all=False)[source]
    +sympy.polys.sqfreetools.dup_gf_sqf_list(f, K, all=False)[source]

    Compute square-free decomposition of f in GF(p)[x].

    -sympy.polys.sqfreetools.dmp_gf_sqf_list(f, u, K, all=False)[source]
    +sympy.polys.sqfreetools.dmp_gf_sqf_list(f, u, K, all=False)[source]

    Compute square-free decomposition of f in GF(p)[X].

    -sympy.polys.sqfreetools.dup_sqf_list(f, K, all=False)[source]
    +sympy.polys.sqfreetools.dup_sqf_list(f, K, all=False)[source]

    Return square-free decomposition of a polynomial in K[x].

    Uses Yun’s algorithm from [Yun76].

    Examples

    @@ -5610,7 +5610,7 @@

    Subresultant sequence
    -sympy.polys.sqfreetools.dup_sqf_list_include(f, K, all=False)[source]
    +sympy.polys.sqfreetools.dup_sqf_list_include(f, K, all=False)[source]

    Return square-free decomposition of a polynomial in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5630,7 +5630,7 @@ 

    Subresultant sequence
    -sympy.polys.sqfreetools.dmp_sqf_list(f, u, K, all=False)[source]
    +sympy.polys.sqfreetools.dmp_sqf_list(f, u, K, all=False)[source]

    Return square-free decomposition of a polynomial in \(K[X]\).

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5668,7 +5668,7 @@ 

    Subresultant sequence
    -sympy.polys.sqfreetools.dmp_sqf_list_include(f, u, K, all=False)[source]
    +sympy.polys.sqfreetools.dmp_sqf_list_include(f, u, K, all=False)[source]

    Return square-free decomposition of a polynomial in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5688,7 +5688,7 @@ 

    Subresultant sequence
    -sympy.polys.sqfreetools.dup_gff_list(f, K)[source]
    +sympy.polys.sqfreetools.dup_gff_list(f, K)[source]

    Compute greatest factorial factorization of f in K[x].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5703,7 +5703,7 @@ 

    Subresultant sequence
    -sympy.polys.sqfreetools.dmp_gff_list(f, u, K)[source]
    +sympy.polys.sqfreetools.dmp_gff_list(f, u, K)[source]

    Compute greatest factorial factorization of f in K[X].

    Examples

    >>> from sympy.polys import ring, ZZ
    @@ -5723,7 +5723,7 @@ 

    Groebner basis algorithms
    -sympy.polys.groebnertools.groebner(seq, ring, method=None)[source]
    +sympy.polys.groebnertools.groebner(seq, ring, method=None)[source]

    Computes Groebner basis for a set of polynomials in \(K[X]\).

    Wrapper around the (default) improved Buchberger and the other algorithms for computing Groebner bases. The choice of algorithm can be changed via @@ -5733,14 +5733,14 @@

    Groebner basis algorithms
    -sympy.polys.groebnertools.spoly(p1, p2, ring)[source]
    +sympy.polys.groebnertools.spoly(p1, p2, ring)[source]

    Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2 This is the S-poly provided p1 and p2 are monic

    -sympy.polys.groebnertools.red_groebner(G, ring)[source]
    +sympy.polys.groebnertools.red_groebner(G, ring)[source]

    Compute reduced Groebner basis, from BeckerWeispfenning93, p. 216

    Selects a subset of generators, that already generate the ideal and computes a reduced Groebner basis for them.

    @@ -5748,25 +5748,25 @@

    Groebner basis algorithms
    -sympy.polys.groebnertools.is_groebner(G, ring)[source]
    +sympy.polys.groebnertools.is_groebner(G, ring)[source]

    Check if G is a Groebner basis.

    -sympy.polys.groebnertools.is_minimal(G, ring)[source]
    +sympy.polys.groebnertools.is_minimal(G, ring)[source]

    Checks if G is a minimal Groebner basis.

    -sympy.polys.groebnertools.is_reduced(G, ring)[source]
    +sympy.polys.groebnertools.is_reduced(G, ring)[source]

    Checks if G is a reduced Groebner basis.

    -sympy.polys.fglmtools.matrix_fglm(F, ring, O_to)[source]
    +sympy.polys.fglmtools.matrix_fglm(F, ring, O_to)[source]

    Converts the reduced Groebner basis F of a zero-dimensional ideal w.r.t. O_from to a reduced Groebner basis w.r.t. O_to.

    @@ -5784,7 +5784,7 @@

    Groebner basis algorithms
    -sympy.polys.distributedmodules.sdm_spoly(f, g, O, K, phantom=None)[source]
    +sympy.polys.distributedmodules.sdm_spoly(f, g, O, K, phantom=None)[source]

    Compute the generalized s-polynomial of f and g.

    The ground field is assumed to be K, and monomials ordered according to O.

    @@ -5812,7 +5812,7 @@

    Groebner basis algorithms
    -sympy.polys.distributedmodules.sdm_ecart(f)[source]
    +sympy.polys.distributedmodules.sdm_ecart(f)[source]

    Compute the ecart of f.

    This is defined to be the difference of the total degree of \(f\) and the total degree of the leading monomial of \(f\) [SCA, defn 2.3.7].

    @@ -5829,7 +5829,7 @@

    Groebner basis algorithms
    -sympy.polys.distributedmodules.sdm_nf_mora(f, G, O, K, phantom=None)[source]
    +sympy.polys.distributedmodules.sdm_nf_mora(f, G, O, K, phantom=None)[source]

    Compute a weak normal form of f with respect to G and order O.

    The ground field is assumed to be K, and monomials ordered according to O.

    @@ -5851,7 +5851,7 @@

    Groebner basis algorithms
    -sympy.polys.distributedmodules.sdm_groebner(G, NF, O, K, extended=False)[source]
    +sympy.polys.distributedmodules.sdm_groebner(G, NF, O, K, extended=False)[source]

    Compute a minimal standard basis of G with respect to order O.

    The algorithm uses a normal form NF, for example sdm_nf_mora. The ground field is assumed to be K, and monomials ordered according @@ -5880,7 +5880,7 @@

    Groebner basis algorithmsPoly and public API functions.

    -class sympy.polys.polyoptions.Options(gens, args, flags=None, strict=False)[source]
    +class sympy.polys.polyoptions.Options(gens, args, flags=None, strict=False)[source]

    Options manager for polynomial manipulation module.

    Examples

    >>> from sympy.polys.polyoptions import Options
    @@ -5928,7 +5928,7 @@ 

    Groebner basis algorithms
    -clone(updates={})[source]
    +clone(updates={})[source]

    Clone self and update specified options.

    @@ -5936,7 +5936,7 @@

    Groebner basis algorithms
    -sympy.polys.polyoptions.build_options(gens, args=None)[source]
    +sympy.polys.polyoptions.build_options(gens, args=None)[source]

    Construct options from keyword arguments or … options.

    @@ -5946,7 +5946,7 @@

    Groebner basis algorithms
    -sympy.polys.polyconfig.setup(key, value=None)[source]
    +sympy.polys.polyconfig.setup(key, value=None)[source]

    Assign a value to (or reset) a configuration item.

    @@ -5957,123 +5957,123 @@

    Exceptions
    -class sympy.polys.polyerrors.BasePolynomialError[source]
    +class sympy.polys.polyerrors.BasePolynomialError[source]

    Base class for polynomial related exceptions.

    -class sympy.polys.polyerrors.ExactQuotientFailed(f, g, dom=None)[source]
    +class sympy.polys.polyerrors.ExactQuotientFailed(f, g, dom=None)[source]
    -class sympy.polys.polyerrors.OperationNotSupported(poly, func)[source]
    +class sympy.polys.polyerrors.OperationNotSupported(poly, func)[source]
    -class sympy.polys.polyerrors.HeuristicGCDFailed[source]
    +class sympy.polys.polyerrors.HeuristicGCDFailed[source]
    -class sympy.polys.polyerrors.HomomorphismFailed[source]
    +class sympy.polys.polyerrors.HomomorphismFailed[source]
    -class sympy.polys.polyerrors.IsomorphismFailed[source]
    +class sympy.polys.polyerrors.IsomorphismFailed[source]
    -class sympy.polys.polyerrors.ExtraneousFactors[source]
    +class sympy.polys.polyerrors.ExtraneousFactors[source]
    -class sympy.polys.polyerrors.EvaluationFailed[source]
    +class sympy.polys.polyerrors.EvaluationFailed[source]
    -class sympy.polys.polyerrors.RefinementFailed[source]
    +class sympy.polys.polyerrors.RefinementFailed[source]
    -class sympy.polys.polyerrors.CoercionFailed[source]
    +class sympy.polys.polyerrors.CoercionFailed[source]
    -class sympy.polys.polyerrors.NotInvertible[source]
    +class sympy.polys.polyerrors.NotInvertible[source]
    -class sympy.polys.polyerrors.NotReversible[source]
    +class sympy.polys.polyerrors.NotReversible[source]
    -class sympy.polys.polyerrors.NotAlgebraic[source]
    +class sympy.polys.polyerrors.NotAlgebraic[source]
    -class sympy.polys.polyerrors.DomainError[source]
    +class sympy.polys.polyerrors.DomainError[source]
    -class sympy.polys.polyerrors.PolynomialError[source]
    +class sympy.polys.polyerrors.PolynomialError[source]
    -class sympy.polys.polyerrors.UnificationFailed[source]
    +class sympy.polys.polyerrors.UnificationFailed[source]
    -class sympy.polys.polyerrors.GeneratorsNeeded[source]
    +class sympy.polys.polyerrors.GeneratorsNeeded[source]
    -class sympy.polys.polyerrors.ComputationFailed(func, nargs, exc)[source]
    +class sympy.polys.polyerrors.ComputationFailed(func, nargs, exc)[source]
    -class sympy.polys.polyerrors.GeneratorsError[source]
    +class sympy.polys.polyerrors.GeneratorsError[source]
    -class sympy.polys.polyerrors.UnivariatePolynomialError[source]
    +class sympy.polys.polyerrors.UnivariatePolynomialError[source]
    -class sympy.polys.polyerrors.MultivariatePolynomialError[source]
    +class sympy.polys.polyerrors.MultivariatePolynomialError[source]
    -class sympy.polys.polyerrors.PolificationFailed(opt, origs, exprs, seq=False)[source]
    +class sympy.polys.polyerrors.PolificationFailed(opt, origs, exprs, seq=False)[source]
    -class sympy.polys.polyerrors.OptionError[source]
    +class sympy.polys.polyerrors.OptionError[source]
    -class sympy.polys.polyerrors.FlagError[source]
    +class sympy.polys.polyerrors.FlagError[source]
    @@ -6083,7 +6083,7 @@

    Reference

    -sympy.polys.modulargcd.modgcd_univariate(f, g)[source]
    +sympy.polys.modulargcd.modgcd_univariate(f, g)[source]

    Computes the GCD of two polynomials in \(\mathbb{Z}[x]\) using a modular algorithm.

    The algorithm computes the GCD of two univariate integer polynomials @@ -6163,7 +6163,7 @@

    Modular GCD
    -sympy.polys.modulargcd.modgcd_bivariate(f, g)[source]
    +sympy.polys.modulargcd.modgcd_bivariate(f, g)[source]

    Computes the GCD of two polynomials in \(\mathbb{Z}[x, y]\) using a modular algorithm.

    The algorithm computes the GCD of two bivariate integer polynomials @@ -6249,7 +6249,7 @@

    Modular GCD
    -sympy.polys.modulargcd.modgcd_multivariate(f, g)[source]
    +sympy.polys.modulargcd.modgcd_multivariate(f, g)[source]

    Compute the GCD of two polynomials in \(\mathbb{Z}[x_0, \ldots, x_{k-1}]\) using a modular algorithm.

    The algorithm computes the GCD of two multivariate integer polynomials @@ -6350,7 +6350,7 @@

    Modular GCDcontbound,

    -)[source] +)[source]

    Compute the GCD of two polynomials in \(\mathbb{Z}_p[x_0, \ldots, x_{k-1}]\).

    The algorithm reduces the problem step by step by evaluating the @@ -6407,7 +6407,7 @@

    Modular GCD
    -sympy.polys.modulargcd.func_field_modgcd(f, g)[source]
    +sympy.polys.modulargcd.func_field_modgcd(f, g)[source]

    Compute the GCD of two polynomials \(f\) and \(g\) in \(\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]\) using a modular algorithm.

    The algorithm first computes the primitive associate diff --git a/dev/modules/polys/numberfields.html b/dev/modules/polys/numberfields.html index de8eb4564d1..978fbd688e7 100644 --- a/dev/modules/polys/numberfields.html +++ b/dev/modules/polys/numberfields.html @@ -923,7 +923,7 @@

    Solving the Main Problems

    -sympy.polys.numberfields.basis.round_two(T, radicals=None)[source]
    +sympy.polys.numberfields.basis.round_two(T, radicals=None)[source]

    Zassenhaus’s “Round 2” algorithm.

    Parameters:
    @@ -1025,7 +1025,7 @@

    Prime Decompositionradical=None,

    -)[source] +)[source]

    Compute the decomposition of rational prime p in a number field.

    Parameters:
    @@ -1082,11 +1082,11 @@

    Prime Decomposition
    -class sympy.polys.numberfields.primes.PrimeIdeal(ZK, p, alpha, f, e=None)[source]
    +class sympy.polys.numberfields.primes.PrimeIdeal(ZK, p, alpha, f, e=None)[source]

    A prime ideal in a ring of algebraic integers.

    -__init__(ZK, p, alpha, f, e=None)[source]
    +__init__(ZK, p, alpha, f, e=None)[source]
    Parameters:

    ZK : Submodule

    @@ -1116,7 +1116,7 @@

    Prime Decomposition
    -__add__(other)[source]
    +__add__(other)[source]

    Convert to a Submodule and add to another Submodule.

    @@ -1127,7 +1127,7 @@

    Prime Decomposition
    -__mul__(other)[source]
    +__mul__(other)[source]

    Convert to a Submodule and multiply by another Submodule or a rational number.

    @@ -1138,7 +1138,7 @@

    Prime Decomposition
    -as_submodule()[source]
    +as_submodule()[source]

    Represent this prime ideal as a Submodule.

    Returns:
    @@ -1194,7 +1194,7 @@

    Prime Decomposition
    -reduce_ANP(a)[source]
    +reduce_ANP(a)[source]

    Reduce an ANP to a “small representative” modulo this prime ideal.

    @@ -1219,7 +1219,7 @@

    Prime Decomposition
    -reduce_alg_num(a)[source]
    +reduce_alg_num(a)[source]

    Reduce an AlgebraicNumber to a “small representative” modulo this prime ideal.

    @@ -1244,7 +1244,7 @@

    Prime Decomposition
    -reduce_element(elt)[source]
    +reduce_element(elt)[source]

    Reduce a PowerBasisElement to a “small representative” modulo this prime ideal.

    @@ -1269,7 +1269,7 @@

    Prime Decomposition
    -repr(field_gen=None, just_gens=False)[source]
    +repr(field_gen=None, just_gens=False)[source]

    Print a representation of this prime ideal.

    Parameters:
    @@ -1306,7 +1306,7 @@

    Prime Decomposition
    -test_factor()[source]
    +test_factor()[source]

    Compute a test factor for this prime ideal.

    Explanation

    Write \(\mathfrak{p}\) for this prime ideal, \(p\) for the rational prime @@ -1320,7 +1320,7 @@

    Prime Decomposition
    -valuation(I)[source]
    +valuation(I)[source]

    Compute the \(\mathfrak{p}\)-adic valuation of integral ideal I at this prime ideal.

    @@ -1341,7 +1341,7 @@

    Prime Decomposition

    -sympy.polys.numberfields.primes.prime_valuation(I, P)[source]
    +sympy.polys.numberfields.primes.prime_valuation(I, P)[source]

    Compute the P-adic valuation for an integral ideal I.

    Parameters:
    @@ -1398,7 +1398,7 @@

    Galois Groups**args,

    -)[source] +)[source]

    Compute the Galois group for polynomials f up to degree 6.

    Parameters:
    @@ -1518,7 +1518,7 @@

    Finding Minimal Polynomialsdomain=None,

    -)[source] +)[source]

    Computes the minimal polynomial of an algebraic element.

    Parameters:
    @@ -1584,7 +1584,7 @@

    Finding Minimal Polynomialsdomain=None,

    -)[source] +)[source]

    This is a synonym for minimal_polynomial().

    @@ -1622,7 +1622,7 @@

    The Subfield Problem
    -sympy.polys.numberfields.subfield.field_isomorphism(a, b, *, fast=True)[source]
    +sympy.polys.numberfields.subfield.field_isomorphism(a, b, *, fast=True)[source]

    Find an embedding of one number field into another.

    Parameters:
    @@ -1679,7 +1679,7 @@

    The Subfield Problempolys=False,

    -)[source] +)[source]

    Find a single generator for a number field given by several generators.

    Parameters:
    @@ -1774,7 +1774,7 @@

    The Subfield Problemalias=None,

    -)[source] +)[source]

    Express one algebraic number in the field generated by another.

    Parameters:
    @@ -2059,7 +2059,7 @@

    Module HomomorphismsClass Reference

    -class sympy.polys.numberfields.modules.Module[source]
    +class sympy.polys.numberfields.modules.Module[source]

    Generic finitely-generated module.

    This is an abstract base class, and should not be instantiated directly. The two concrete subclasses are PowerBasis and @@ -2072,7 +2072,7 @@

    Class ReferencePowerBasis.

    -__call__(spec, denom=1)[source]
    +__call__(spec, denom=1)[source]

    Generate a ModuleElement belonging to this module.

    Parameters:
    @@ -2116,7 +2116,7 @@

    Class Reference
    -ancestors(include_self=False)[source]
    +ancestors(include_self=False)[source]

    Return the list of ancestor modules of this module, from the foundational PowerBasis downward, optionally including self.

    @@ -2128,14 +2128,14 @@

    Class Reference
    -basis_elements()[source]
    +basis_elements()[source]

    Get list of ModuleElement being the generators of this module.

    -element_from_rational(a)[source]
    +element_from_rational(a)[source]

    Return a ModuleElement representing a rational number.

    Parameters:
    @@ -2163,19 +2163,19 @@

    Class Reference
    -endomorphism_ring()[source]
    +endomorphism_ring()[source]

    Form the EndomorphismRing for this module.

    -is_compat_col(col)[source]
    +is_compat_col(col)[source]

    Say whether col is a suitable column vector for this module.

    -mult_tab()[source]
    +mult_tab()[source]

    Get the multiplication table for this module (if closed under mult).

    Returns:
    @@ -2218,7 +2218,7 @@

    Class Reference
    -nearest_common_ancestor(other)[source]
    +nearest_common_ancestor(other)[source]

    Locate the nearest common ancestor of this module and another.

    Returns:
    @@ -2250,7 +2250,7 @@

    Class Reference
    -one()[source]
    +one()[source]

    Return a ModuleElement representing unity, and belonging to the first ancestor of this module (including itself) that starts with unity.

    @@ -2276,7 +2276,7 @@

    Class Reference
    -power_basis_ancestor()[source]
    +power_basis_ancestor()[source]

    Return the PowerBasis that is an ancestor of this module.

    See also

    @@ -2286,7 +2286,7 @@

    Class Reference
    -represent(elt)[source]
    +represent(elt)[source]

    Represent a module element as an integer-linear combination over the generators of this module.

    @@ -2367,7 +2367,7 @@

    Class Reference
    -starts_with_unity()[source]
    +starts_with_unity()[source]

    Say whether the module’s first generator equals unity.

    @@ -2381,7 +2381,7 @@

    Class Referencehnf_modulus=None,

    -)[source] +)[source]

    Form the submodule generated by a list of ModuleElement belonging to this module.

    @@ -2421,7 +2421,7 @@

    Class Reference
    -submodule_from_matrix(B, denom=1)[source]
    +submodule_from_matrix(B, denom=1)[source]

    Form the submodule generated by the elements of this module indicated by the columns of a matrix, with an optional denominator.

    @@ -2470,7 +2470,7 @@

    Class Reference
    -whole_submodule()[source]
    +whole_submodule()[source]

    Return a submodule equal to this entire module.

    Explanation

    This is useful when you have a PowerBasis and want to @@ -2480,7 +2480,7 @@

    Class Reference
    -zero()[source]
    +zero()[source]

    Return a ModuleElement representing zero.

    @@ -2488,11 +2488,11 @@

    Class Reference
    -class sympy.polys.numberfields.modules.PowerBasis(T)[source]
    +class sympy.polys.numberfields.modules.PowerBasis(T)[source]

    The module generated by the powers of an algebraic integer.

    -__init__(T)[source]
    +__init__(T)[source]
    Parameters:

    T : Poly, AlgebraicField

    @@ -2508,19 +2508,19 @@

    Class Reference
    -element_from_ANP(a)[source]
    +element_from_ANP(a)[source]

    Convert an ANP into a PowerBasisElement.

    -element_from_alg_num(a)[source]
    +element_from_alg_num(a)[source]

    Convert an AlgebraicNumber into a PowerBasisElement.

    -element_from_poly(f)[source]
    +element_from_poly(f)[source]

    Produce an element of this module, representing f after reduction mod our defining minimal polynomial.

    @@ -2535,7 +2535,7 @@

    Class Reference
    -represent(elt)[source]
    +represent(elt)[source]

    Represent a module element as an integer-linear combination over the generators of this module.

    @@ -2548,7 +2548,7 @@

    Class Reference
    -class sympy.polys.numberfields.modules.Submodule(parent, matrix, denom=1, mult_tab=None)[source]
    +class sympy.polys.numberfields.modules.Submodule(parent, matrix, denom=1, mult_tab=None)[source]

    A submodule of another module.

    @@ -2561,7 +2561,7 @@

    Class Referencemult_tab=None,

    -)[source] +)[source]
    Parameters:

    parent : Module

    @@ -2618,7 +2618,7 @@

    Class Reference
    -add(other, hnf=True, hnf_modulus=None)[source]
    +add(other, hnf=True, hnf_modulus=None)[source]

    Add this Submodule to another.

    Parameters:
    @@ -2646,21 +2646,21 @@

    Class Reference
    -basis_element_pullbacks()[source]
    +basis_element_pullbacks()[source]

    Return list of this submodule’s basis elements as elements of the submodule’s parent module.

    -discard_before(r)[source]
    +discard_before(r)[source]

    Produce a new module by discarding all generators before a given index r.

    -mul(other, hnf=True, hnf_modulus=None)[source]
    +mul(other, hnf=True, hnf_modulus=None)[source]

    Multiply this Submodule by a rational number, a ModuleElement, or another Submodule.

    @@ -2693,7 +2693,7 @@

    Class Reference
    -reduce_element(elt)[source]
    +reduce_element(elt)[source]

    If this submodule \(B\) has defining matrix \(W\) in square, maximal-rank Hermite normal form, then, given an element \(x\) of the parent module \(A\), we produce an element \(y \in A\) such that \(x - y \in B\), and the @@ -2756,7 +2756,7 @@

    Class Reference
    -reduced()[source]
    +reduced()[source]

    Produce a reduced version of this submodule.

    Returns:
    @@ -2771,7 +2771,7 @@

    Class Reference
    -represent(elt)[source]
    +represent(elt)[source]

    Represent a module element as an integer-linear combination over the generators of this module.

    @@ -2784,14 +2784,14 @@

    Class Reference
    -class sympy.polys.numberfields.modules.ModuleElement(module, col, denom=1)[source]
    +class sympy.polys.numberfields.modules.ModuleElement(module, col, denom=1)[source]

    Represents an element of a Module.

    NOTE: Should not be constructed directly. Use the __call__() method or the make_mod_elt() factory function instead.

    -__init__(module, col, denom=1)[source]
    +__init__(module, col, denom=1)[source]
    Parameters:

    module : Module

    @@ -2813,7 +2813,7 @@

    Class Reference
    -__add__(other)[source]
    +__add__(other)[source]

    A ModuleElement can be added to a rational number, or to another ModuleElement.

    Explanation

    @@ -2827,7 +2827,7 @@

    Class Reference
    -__mul__(other)[source]
    +__mul__(other)[source]

    A ModuleElement can be multiplied by a rational number, or by another ModuleElement.

    Explanation

    @@ -2843,7 +2843,7 @@

    Class Reference
    -__mod__(m)[source]
    +__mod__(m)[source]

    Reduce this ModuleElement mod a Submodule.

    Parameters:
    @@ -2874,13 +2874,13 @@

    Class Reference
    -column(domain=None)[source]
    +column(domain=None)[source]

    Get a copy of this element’s column, optionally converting to a domain.

    -equiv(other)[source]
    +equiv(other)[source]

    A ModuleElement may test as equivalent to a rational number or another ModuleElement, if they represent the same algebraic number.

    @@ -2918,14 +2918,14 @@

    Class Referencedenom=1,

    -)[source] +)[source]

    Make a ModuleElement from a list of ints (instead of a column vector).

    -is_compat(other)[source]
    +is_compat(other)[source]

    Test whether other is another ModuleElement with same module.

    @@ -2938,28 +2938,28 @@

    Class Reference
    -over_power_basis()[source]
    +over_power_basis()[source]

    Transform into a PowerBasisElement over our PowerBasis ancestor.

    -reduced()[source]
    +reduced()[source]

    Produce a reduced version of this ModuleElement, i.e. one in which the gcd of the denominator together with all numerator coefficients is 1.

    -reduced_mod_p(p)[source]
    +reduced_mod_p(p)[source]

    Produce a version of this ModuleElement in which all numerator coefficients have been reduced mod p.

    -to_ancestor(anc)[source]
    +to_ancestor(anc)[source]

    Transform into a ModuleElement belonging to a given ancestor of this element’s module.

    @@ -2971,14 +2971,14 @@

    Class Reference
    -to_parent()[source]
    +to_parent()[source]

    Transform into a ModuleElement belonging to the parent of this element’s module.

    -unify(other)[source]
    +unify(other)[source]

    Try to make a compatible pair of ModuleElement, one equivalent to this one, and one equivalent to the other.

    @@ -3006,7 +3006,7 @@

    Class Reference
    -class sympy.polys.numberfields.modules.PowerBasisElement(module, col, denom=1)[source]
    +class sympy.polys.numberfields.modules.PowerBasisElement(module, col, denom=1)[source]

    Subclass for ModuleElement instances whose module is a PowerBasis.

    @@ -3017,7 +3017,7 @@

    Class Reference
    -as_expr(x=None)[source]
    +as_expr(x=None)[source]

    Create a Basic expression from self.

    @@ -3039,31 +3039,31 @@

    Class Reference
    -norm(T=None)[source]
    +norm(T=None)[source]

    Compute the norm of this number.

    -numerator(x=None)[source]
    +numerator(x=None)[source]

    Obtain the numerator as a polynomial over ZZ.

    -poly(x=None)[source]
    +poly(x=None)[source]

    Obtain the number as a polynomial over QQ.

    -to_ANP()[source]
    +to_ANP()[source]

    Convert to an equivalent ANP.

    -to_alg_num()[source]
    +to_alg_num()[source]

    Try to convert to an equivalent AlgebraicNumber.

    Returns:
    @@ -3092,7 +3092,7 @@

    Class Reference
    -sympy.polys.numberfields.modules.make_mod_elt(module, col, denom=1)[source]
    +sympy.polys.numberfields.modules.make_mod_elt(module, col, denom=1)[source]

    Factory function which builds a ModuleElement, but ensures that it is a PowerBasisElement if the module is a PowerBasis.

    @@ -3100,7 +3100,7 @@

    Class Reference
    -class sympy.polys.numberfields.modules.ModuleHomomorphism(domain, codomain, mapping)[source]
    +class sympy.polys.numberfields.modules.ModuleHomomorphism(domain, codomain, mapping)[source]

    A homomorphism from one module to another.

    @@ -3112,7 +3112,7 @@

    Class Referencemapping,

    -)[source] +)[source]
    Parameters:

    domain : Module

    @@ -3146,7 +3146,7 @@

    Class Reference
    -kernel(modulus=None)[source]
    +kernel(modulus=None)[source]

    Compute a Submodule representing the kernel of this homomorphism.

    Parameters:
    @@ -3169,7 +3169,7 @@

    Class Reference
    -matrix(modulus=None)[source]
    +matrix(modulus=None)[source]

    Compute the matrix of this homomorphism.

    Parameters:
    @@ -3193,11 +3193,11 @@

    Class Reference
    -class sympy.polys.numberfields.modules.ModuleEndomorphism(domain, mapping)[source]
    +class sympy.polys.numberfields.modules.ModuleEndomorphism(domain, mapping)[source]

    A homomorphism from one module to itself.

    -__init__(domain, mapping)[source]
    +__init__(domain, mapping)[source]
    Parameters:

    domain : Module

    @@ -3218,12 +3218,12 @@

    Class Reference
    -class sympy.polys.numberfields.modules.InnerEndomorphism(domain, multiplier)[source]
    +class sympy.polys.numberfields.modules.InnerEndomorphism(domain, multiplier)[source]

    An inner endomorphism on a module, i.e. the endomorphism corresponding to multiplication by a fixed element.

    -__init__(domain, multiplier)[source]
    +__init__(domain, multiplier)[source]
    Parameters:

    domain : Module

    @@ -3242,11 +3242,11 @@

    Class Reference
    -class sympy.polys.numberfields.modules.EndomorphismRing(domain)[source]
    +class sympy.polys.numberfields.modules.EndomorphismRing(domain)[source]

    The ring of endomorphisms on a module.

    -__init__(domain)[source]
    +__init__(domain)[source]
    Parameters:

    domain : Module

    @@ -3259,7 +3259,7 @@

    Class Reference
    -inner_endomorphism(multiplier)[source]
    +inner_endomorphism(multiplier)[source]

    Form an inner endomorphism belonging to this endomorphism ring.

    Parameters:
    @@ -3276,7 +3276,7 @@

    Class Reference
    -represent(element)[source]
    +represent(element)[source]

    Represent an element of this endomorphism ring, as a single column vector.

    @@ -3358,7 +3358,7 @@

    Class Reference
    -sympy.polys.numberfields.modules.find_min_poly(alpha, domain, x=None, powers=None)[source]
    +sympy.polys.numberfields.modules.find_min_poly(alpha, domain, x=None, powers=None)[source]

    Find a polynomial of least degree (not necessarily irreducible) satisfied by an element of a finitely-generated ring with unity.

    @@ -3434,7 +3434,7 @@

    Class Reference

    -sympy.polys.numberfields.utilities.is_rat(c)[source]
    +sympy.polys.numberfields.utilities.is_rat(c)[source]

    Test whether an argument is of an acceptable type to be used as a rational number.

    Explanation

    @@ -3447,7 +3447,7 @@

    Utilities
    -sympy.polys.numberfields.utilities.is_int(c)[source]
    +sympy.polys.numberfields.utilities.is_int(c)[source]

    Test whether an argument is of an acceptable type to be used as an integer.

    Explanation

    Returns True on any argument of type int or ZZ.

    @@ -3459,7 +3459,7 @@

    Utilities
    -sympy.polys.numberfields.utilities.get_num_denom(c)[source]
    +sympy.polys.numberfields.utilities.get_num_denom(c)[source]

    Given any argument on which is_rat() is True, return the numerator and denominator of this number.

    @@ -3470,7 +3470,7 @@

    Utilities
    -sympy.polys.numberfields.utilities.extract_fundamental_discriminant(a)[source]
    +sympy.polys.numberfields.utilities.extract_fundamental_discriminant(a)[source]

    Extract a fundamental discriminant from an integer a.

    Parameters:
    @@ -3519,7 +3519,7 @@

    Utilities
    -class sympy.polys.numberfields.utilities.AlgIntPowers(T, modulus=None)[source]
    +class sympy.polys.numberfields.utilities.AlgIntPowers(T, modulus=None)[source]

    Compute the powers of an algebraic integer.

    Explanation

    Given an algebraic integer \(\theta\) by its monic irreducible polynomial @@ -3553,7 +3553,7 @@

    Utilities
    -__init__(T, modulus=None)[source]
    +__init__(T, modulus=None)[source]
    Parameters:

    T : Poly

    @@ -3573,7 +3573,7 @@

    Utilities +sympy.polys.numberfields.utilities.coeff_search(m, R)[source]

    Generate coefficients for searching through polynomials.

    Parameters:
    @@ -3610,7 +3610,7 @@

    Utilities
    -sympy.polys.numberfields.utilities.supplement_a_subspace(M)[source]
    +sympy.polys.numberfields.utilities.supplement_a_subspace(M)[source]

    Extend a basis for a subspace to a basis for the whole space.

    Parameters:
    @@ -3676,7 +3676,7 @@

    Utilities
    -sympy.polys.numberfields.utilities.isolate(alg, eps=None, fast=False)[source]
    +sympy.polys.numberfields.utilities.isolate(alg, eps=None, fast=False)[source]

    Find a rational isolating interval for a real algebraic number.

    Parameters:
    diff --git a/dev/modules/polys/reference.html b/dev/modules/polys/reference.html index 82313066af6..342e9ba0016 100644 --- a/dev/modules/polys/reference.html +++ b/dev/modules/polys/reference.html @@ -807,7 +807,7 @@
    Documentation Version

    Basic polynomial manipulation functions

    -sympy.polys.polytools.poly(expr, *gens, **args)[source]
    +sympy.polys.polytools.poly(expr, *gens, **args)[source]

    Efficiently transform an expression into a polynomial.

    Examples

    >>> from sympy import poly
    @@ -822,19 +822,19 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.poly_from_expr(expr, *gens, **args)[source]
    +sympy.polys.polytools.poly_from_expr(expr, *gens, **args)[source]

    Construct a polynomial from an expression.

    -sympy.polys.polytools.parallel_poly_from_expr(exprs, *gens, **args)[source]
    +sympy.polys.polytools.parallel_poly_from_expr(exprs, *gens, **args)[source]

    Construct polynomials from expressions.

    -sympy.polys.polytools.degree(f, gen=0)[source]
    +sympy.polys.polytools.degree(f, gen=0)[source]

    Return the degree of f in the given variable.

    The degree of 0 is negative infinity.

    Examples

    @@ -858,7 +858,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.degree_list(f, *gens, **args)[source]
    +sympy.polys.polytools.degree_list(f, *gens, **args)[source]

    Return a list of degrees of f in all variables.

    Examples

    >>> from sympy import degree_list
    @@ -873,7 +873,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.LC(f, *gens, **args)[source]
    +sympy.polys.polytools.LC(f, *gens, **args)[source]

    Return the leading coefficient of f.

    Examples

    >>> from sympy import LC
    @@ -888,7 +888,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.LM(f, *gens, **args)[source]
    +sympy.polys.polytools.LM(f, *gens, **args)[source]

    Return the leading monomial of f.

    Examples

    >>> from sympy import LM
    @@ -903,7 +903,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.LT(f, *gens, **args)[source]
    +sympy.polys.polytools.LT(f, *gens, **args)[source]

    Return the leading term of f.

    Examples

    >>> from sympy import LT
    @@ -918,7 +918,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.pdiv(f, g, *gens, **args)[source]
    +sympy.polys.polytools.pdiv(f, g, *gens, **args)[source]

    Compute polynomial pseudo-division of f and g.

    Examples

    >>> from sympy import pdiv
    @@ -933,7 +933,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.prem(f, g, *gens, **args)[source]
    +sympy.polys.polytools.prem(f, g, *gens, **args)[source]

    Compute polynomial pseudo-remainder of f and g.

    Examples

    >>> from sympy import prem
    @@ -948,7 +948,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.pquo(f, g, *gens, **args)[source]
    +sympy.polys.polytools.pquo(f, g, *gens, **args)[source]

    Compute polynomial pseudo-quotient of f and g.

    Examples

    >>> from sympy import pquo
    @@ -965,7 +965,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.pexquo(f, g, *gens, **args)[source]
    +sympy.polys.polytools.pexquo(f, g, *gens, **args)[source]

    Compute polynomial exact pseudo-quotient of f and g.

    Examples

    >>> from sympy import pexquo
    @@ -986,7 +986,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.div(f, g, *gens, **args)[source]
    +sympy.polys.polytools.div(f, g, *gens, **args)[source]

    Compute polynomial division of f and g.

    Examples

    >>> from sympy import div, ZZ, QQ
    @@ -1003,7 +1003,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.rem(f, g, *gens, **args)[source]
    +sympy.polys.polytools.rem(f, g, *gens, **args)[source]

    Compute polynomial remainder of f and g.

    Examples

    >>> from sympy import rem, ZZ, QQ
    @@ -1020,7 +1020,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.quo(f, g, *gens, **args)[source]
    +sympy.polys.polytools.quo(f, g, *gens, **args)[source]

    Compute polynomial quotient of f and g.

    Examples

    >>> from sympy import quo
    @@ -1037,7 +1037,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.exquo(f, g, *gens, **args)[source]
    +sympy.polys.polytools.exquo(f, g, *gens, **args)[source]

    Compute polynomial exact quotient of f and g.

    Examples

    >>> from sympy import exquo
    @@ -1058,7 +1058,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.half_gcdex(f, g, *gens, **args)[source]
    +sympy.polys.polytools.half_gcdex(f, g, *gens, **args)[source]

    Half extended Euclidean algorithm of f and g.

    Returns (s, h) such that h = gcd(f, g) and s*f = h (mod g).

    Examples

    @@ -1074,7 +1074,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.gcdex(f, g, *gens, **args)[source]
    +sympy.polys.polytools.gcdex(f, g, *gens, **args)[source]

    Extended Euclidean algorithm of f and g.

    Returns (s, t, h) such that h = gcd(f, g) and s*f + t*g = h.

    Examples

    @@ -1090,7 +1090,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.invert(f, g, *gens, **args)[source]
    +sympy.polys.polytools.invert(f, g, *gens, **args)[source]

    Invert f modulo g when possible.

    Examples

    >>> from sympy import invert, S, mod_inverse
    @@ -1123,7 +1123,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.subresultants(f, g, *gens, **args)[source]
    +sympy.polys.polytools.subresultants(f, g, *gens, **args)[source]

    Compute subresultant PRS of f and g.

    Examples

    >>> from sympy import subresultants
    @@ -1138,7 +1138,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.resultant(f, g, *gens, includePRS=False, **args)[source]
    +sympy.polys.polytools.resultant(f, g, *gens, includePRS=False, **args)[source]

    Compute resultant of f and g.

    Examples

    >>> from sympy import resultant
    @@ -1153,7 +1153,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.discriminant(f, *gens, **args)[source]
    +sympy.polys.polytools.discriminant(f, *gens, **args)[source]

    Compute discriminant of f.

    Examples

    >>> from sympy import discriminant
    @@ -1168,7 +1168,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.terms_gcd(f, *gens, **args)[source]
    +sympy.polys.polytools.terms_gcd(f, *gens, **args)[source]

    Remove GCD of terms from f.

    If the deep flag is True, then the arguments of f will have terms_gcd applied to them.

    @@ -1231,7 +1231,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.cofactors(f, g, *gens, **args)[source]
    +sympy.polys.polytools.cofactors(f, g, *gens, **args)[source]

    Compute GCD and cofactors of f and g.

    Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors @@ -1249,7 +1249,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.gcd(f, g=None, *gens, **args)[source]
    +sympy.polys.polytools.gcd(f, g=None, *gens, **args)[source]

    Compute GCD of f and g.

    Examples

    >>> from sympy import gcd
    @@ -1264,7 +1264,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.gcd_list(seq, *gens, **args)[source]
    +sympy.polys.polytools.gcd_list(seq, *gens, **args)[source]

    Compute GCD of a list of polynomials.

    Examples

    >>> from sympy import gcd_list
    @@ -1279,7 +1279,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.lcm(f, g=None, *gens, **args)[source]
    +sympy.polys.polytools.lcm(f, g=None, *gens, **args)[source]

    Compute LCM of f and g.

    Examples

    >>> from sympy import lcm
    @@ -1294,7 +1294,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.lcm_list(seq, *gens, **args)[source]
    +sympy.polys.polytools.lcm_list(seq, *gens, **args)[source]

    Compute LCM of a list of polynomials.

    Examples

    >>> from sympy import lcm_list
    @@ -1309,7 +1309,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.trunc(f, p, *gens, **args)[source]
    +sympy.polys.polytools.trunc(f, p, *gens, **args)[source]

    Reduce f modulo a constant p.

    Examples

    >>> from sympy import trunc
    @@ -1324,7 +1324,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.monic(f, *gens, **args)[source]
    +sympy.polys.polytools.monic(f, *gens, **args)[source]

    Divide all coefficients of f by LC(f).

    Examples

    >>> from sympy import monic
    @@ -1339,7 +1339,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.content(f, *gens, **args)[source]
    +sympy.polys.polytools.content(f, *gens, **args)[source]

    Compute GCD of coefficients of f.

    Examples

    >>> from sympy import content
    @@ -1354,7 +1354,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.primitive(f, *gens, **args)[source]
    +sympy.polys.polytools.primitive(f, *gens, **args)[source]

    Compute content and the primitive form of f.

    Examples

    >>> from sympy.polys.polytools import primitive
    @@ -1388,7 +1388,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.compose(f, g, *gens, **args)[source]
    +sympy.polys.polytools.compose(f, g, *gens, **args)[source]

    Compute functional composition f(g).

    Examples

    >>> from sympy import compose
    @@ -1403,7 +1403,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.decompose(f, *gens, **args)[source]
    +sympy.polys.polytools.decompose(f, *gens, **args)[source]

    Compute functional decomposition of f.

    Examples

    >>> from sympy import decompose
    @@ -1418,7 +1418,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.sturm(f, *gens, **args)[source]
    +sympy.polys.polytools.sturm(f, *gens, **args)[source]

    Compute Sturm sequence of f.

    Examples

    >>> from sympy import sturm
    @@ -1433,7 +1433,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.gff_list(f, *gens, **args)[source]
    +sympy.polys.polytools.gff_list(f, *gens, **args)[source]

    Compute a list of greatest factorial factors of f.

    Note that the input to ff() and rf() should be Poly instances to use the definitions here.

    @@ -1468,13 +1468,13 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.gff(f, *gens, **args)[source]
    +sympy.polys.polytools.gff(f, *gens, **args)[source]

    Compute greatest factorial factorization of f.

    -sympy.polys.polytools.sqf_norm(f, *gens, **args)[source]
    +sympy.polys.polytools.sqf_norm(f, *gens, **args)[source]

    Compute square-free norm of f.

    Returns s, f, r, such that g(x) = f(x-sa) and r(x) = Norm(g(x)) is a square-free polynomial over K, @@ -1492,7 +1492,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.sqf_part(f, *gens, **args)[source]
    +sympy.polys.polytools.sqf_part(f, *gens, **args)[source]

    Compute square-free part of f.

    Examples

    >>> from sympy import sqf_part
    @@ -1507,7 +1507,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.sqf_list(f, *gens, **args)[source]
    +sympy.polys.polytools.sqf_list(f, *gens, **args)[source]

    Compute a list of square-free factors of f.

    Examples

    >>> from sympy import sqf_list
    @@ -1522,7 +1522,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.sqf(f, *gens, **args)[source]
    +sympy.polys.polytools.sqf(f, *gens, **args)[source]

    Compute square-free factorization of f.

    Examples

    >>> from sympy import sqf
    @@ -1537,7 +1537,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.factor_list(f, *gens, **args)[source]
    +sympy.polys.polytools.factor_list(f, *gens, **args)[source]

    Compute a list of irreducible factors of f.

    Examples

    >>> from sympy import factor_list
    @@ -1552,7 +1552,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.factor(f, *gens, deep=False, **args)[source]
    +sympy.polys.polytools.factor(f, *gens, deep=False, **args)[source]

    Compute the factorization of expression, f, into irreducibles. (To factor an integer into primes, use factorint.)

    There two modes implemented: symbolic and formal. If f is not an @@ -1633,7 +1633,7 @@

    Basic polynomial manipulation functionssqf=False,

    -)[source] +)[source]

    Compute isolating intervals for roots of f.

    Examples

    >>> from sympy import intervals
    @@ -1662,7 +1662,7 @@ 

    Basic polynomial manipulation functionscheck_sqf=False,

    -)[source] +)[source]

    Refine an isolating interval of a root to the given precision.

    Examples

    >>> from sympy import refine_root
    @@ -1677,7 +1677,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.count_roots(f, inf=None, sup=None)[source]
    +sympy.polys.polytools.count_roots(f, inf=None, sup=None)[source]

    Return the number of roots of f in [inf, sup] interval.

    If one of inf or sup is complex, it will return the number of roots in the complex rectangle with corners at inf and sup.

    @@ -1696,7 +1696,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.all_roots(f, multiple=True, radicals=True)[source]
    +sympy.polys.polytools.all_roots(f, multiple=True, radicals=True)[source]

    Returns the real and complex roots of f with multiplicities.

    Parameters:
    @@ -1828,7 +1828,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.real_roots(f, multiple=True, radicals=True)[source]
    +sympy.polys.polytools.real_roots(f, multiple=True, radicals=True)[source]

    Returns the real roots of f with multiplicities.

    Parameters:
    @@ -1990,7 +1990,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.nroots(f, n=15, maxsteps=50, cleanup=True)[source]
    +sympy.polys.polytools.nroots(f, n=15, maxsteps=50, cleanup=True)[source]

    Compute numerical approximations of roots of f.

    Examples

    >>> from sympy import nroots
    @@ -2007,7 +2007,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.ground_roots(f, *gens, **args)[source]
    +sympy.polys.polytools.ground_roots(f, *gens, **args)[source]

    Compute roots of f by factorization in the ground domain.

    Examples

    >>> from sympy import ground_roots
    @@ -2022,7 +2022,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.nth_power_roots_poly(f, n, *gens, **args)[source]
    +sympy.polys.polytools.nth_power_roots_poly(f, n, *gens, **args)[source]

    Construct a polynomial with n-th powers of roots of f.

    Examples

    >>> from sympy import nth_power_roots_poly, factor, roots
    @@ -2049,7 +2049,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.cancel(f, *gens, _signsimp=True, **args)[source]
    +sympy.polys.polytools.cancel(f, *gens, _signsimp=True, **args)[source]

    Cancel common factors in a rational function f.

    Examples

    >>> from sympy import cancel, sqrt, Symbol, together
    @@ -2075,7 +2075,7 @@ 

    Basic polynomial manipulation functions
    -sympy.polys.polytools.reduced(f, G, *gens, **args)[source]
    +sympy.polys.polytools.reduced(f, G, *gens, **args)[source]

    Reduces a polynomial f modulo a set of polynomials G.

    Given a polynomial f and a set of polynomials G = (g_1, ..., g_n), computes a set of quotients q = (q_1, ..., q_n) and the remainder r @@ -2094,7 +2094,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.groebner(F, *gens, **args)[source]
    +sympy.polys.polytools.groebner(F, *gens, **args)[source]

    Computes the reduced Groebner basis for a set of polynomials.

    Use the order argument to set the monomial ordering that will be used to compute the basis. Allowed orders are lex, grlex and @@ -2143,7 +2143,7 @@

    Basic polynomial manipulation functions
    -sympy.polys.polytools.is_zero_dimensional(F, *gens, **args)[source]
    +sympy.polys.polytools.is_zero_dimensional(F, *gens, **args)[source]

    Checks if the ideal generated by a Groebner basis is zero-dimensional.

    The algorithm checks if the set of monomials not divisible by the leading monomial of any element of F is bounded.

    @@ -2154,7 +2154,7 @@

    Basic polynomial manipulation functions
    -class sympy.polys.polytools.Poly(rep, *gens, **args)[source]
    +class sympy.polys.polytools.Poly(rep, *gens, **args)[source]

    Generic class for representing and operating on polynomial expressions.

    See Polynomial Manipulation for general documentation.

    Poly is a subclass of Basic rather than Expr but instances can be @@ -2201,7 +2201,7 @@

    Basic polynomial manipulation functions
    -EC(order=None)[source]
    +EC(order=None)[source]

    Returns the last non-zero coefficient of f.

    Examples

    >>> from sympy import Poly
    @@ -2216,7 +2216,7 @@ 

    Basic polynomial manipulation functions
    -EM(order=None)[source]
    +EM(order=None)[source]

    Returns the last non-zero monomial of f.

    Examples

    >>> from sympy import Poly
    @@ -2231,7 +2231,7 @@ 

    Basic polynomial manipulation functions
    -ET(order=None)[source]
    +ET(order=None)[source]

    Returns the last non-zero term of f.

    Examples

    >>> from sympy import Poly
    @@ -2246,7 +2246,7 @@ 

    Basic polynomial manipulation functions
    -LC(order=None)[source]
    +LC(order=None)[source]

    Returns the leading coefficient of f.

    Examples

    >>> from sympy import Poly
    @@ -2261,7 +2261,7 @@ 

    Basic polynomial manipulation functions
    -LM(order=None)[source]
    +LM(order=None)[source]

    Returns the leading monomial of f.

    The Leading monomial signifies the monomial having the highest power of the principal generator in the @@ -2279,7 +2279,7 @@

    Basic polynomial manipulation functions
    -LT(order=None)[source]
    +LT(order=None)[source]

    Returns the leading term of f.

    The Leading term signifies the term having the highest power of the principal generator in the @@ -2297,7 +2297,7 @@

    Basic polynomial manipulation functions
    -TC()[source]
    +TC()[source]

    Returns the trailing coefficient of f.

    Examples

    >>> from sympy import Poly
    @@ -2312,7 +2312,7 @@ 

    Basic polynomial manipulation functions
    -abs()[source]
    +abs()[source]

    Make all coefficients in f positive.

    Examples

    >>> from sympy import Poly
    @@ -2327,7 +2327,7 @@ 

    Basic polynomial manipulation functions
    -add(g)[source]
    +add(g)[source]

    Add two polynomials f and g.

    Examples

    >>> from sympy import Poly
    @@ -2346,7 +2346,7 @@ 

    Basic polynomial manipulation functions
    -add_ground(coeff)[source]
    +add_ground(coeff)[source]

    Add an element of the ground domain to f.

    Examples

    >>> from sympy import Poly
    @@ -2361,7 +2361,7 @@ 

    Basic polynomial manipulation functions
    -all_coeffs()[source]
    +all_coeffs()[source]

    Returns all coefficients from a univariate polynomial f.

    Examples

    >>> from sympy import Poly
    @@ -2376,7 +2376,7 @@ 

    Basic polynomial manipulation functions
    -all_monoms()[source]
    +all_monoms()[source]

    Returns all monomials from a univariate polynomial f.

    Examples

    >>> from sympy import Poly
    @@ -2395,7 +2395,7 @@ 

    Basic polynomial manipulation functions
    -all_roots(multiple=True, radicals=True)[source]
    +all_roots(multiple=True, radicals=True)[source]

    Return a list of real and complex roots with multiplicities.

    See all_roots() for more explanation.

    Examples

    @@ -2415,7 +2415,7 @@

    Basic polynomial manipulation functions
    -all_terms()[source]
    +all_terms()[source]

    Returns all terms from a univariate polynomial f.

    Examples

    >>> from sympy import Poly
    @@ -2430,7 +2430,7 @@ 

    Basic polynomial manipulation functions
    -as_dict(native=False, zero=False)[source]
    +as_dict(native=False, zero=False)[source]

    Switch to a dict representation.

    Examples

    >>> from sympy import Poly
    @@ -2445,7 +2445,7 @@ 

    Basic polynomial manipulation functions
    -as_expr(*gens)[source]
    +as_expr(*gens)[source]

    Convert a Poly instance to an Expr instance.

    Examples

    >>> from sympy import Poly
    @@ -2467,13 +2467,13 @@ 

    Basic polynomial manipulation functions
    -as_list(native=False)[source]
    +as_list(native=False)[source]

    Switch to a list representation.

    -as_poly(*gens, **args)[source]
    +as_poly(*gens, **args)[source]

    Converts self to a polynomial or returns None.

    >>> from sympy import sin
     >>> from sympy.abc import x, y
    @@ -2495,7 +2495,7 @@ 

    Basic polynomial manipulation functions
    -cancel(g, include=False)[source]
    +cancel(g, include=False)[source]

    Cancel common factors in a rational function f/g.

    Examples

    >>> from sympy import Poly
    @@ -2514,7 +2514,7 @@ 

    Basic polynomial manipulation functions
    -clear_denoms(convert=False)[source]
    +clear_denoms(convert=False)[source]

    Clear denominators, but keep the ground domain.

    Examples

    >>> from sympy import Poly, S, QQ
    @@ -2534,7 +2534,7 @@ 

    Basic polynomial manipulation functions
    -coeff_monomial(monom)[source]
    +coeff_monomial(monom)[source]

    Returns the coefficient of monom in f if there, else None.

    Examples

    >>> from sympy import Poly, exp
    @@ -2574,7 +2574,7 @@ 

    Basic polynomial manipulation functions
    -coeffs(order=None)[source]
    +coeffs(order=None)[source]

    Returns all non-zero coefficients from f in lex order.

    Examples

    >>> from sympy import Poly
    @@ -2593,7 +2593,7 @@ 

    Basic polynomial manipulation functions
    -cofactors(g)[source]
    +cofactors(g)[source]

    Returns the GCD of f and g and their cofactors.

    Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors @@ -2613,7 +2613,7 @@

    Basic polynomial manipulation functions
    -compose(g)[source]
    +compose(g)[source]

    Computes the functional composition of f and g.

    Examples

    >>> from sympy import Poly
    @@ -2628,7 +2628,7 @@ 

    Basic polynomial manipulation functions
    -content()[source]
    +content()[source]

    Returns the GCD of polynomial coefficients.

    Examples

    >>> from sympy import Poly
    @@ -2643,7 +2643,7 @@ 

    Basic polynomial manipulation functions
    -count_roots(inf=None, sup=None)[source]
    +count_roots(inf=None, sup=None)[source]

    Return the number of roots of f in [inf, sup] interval.

    Examples

    >>> from sympy import Poly, I
    @@ -2660,7 +2660,7 @@ 

    Basic polynomial manipulation functions
    -decompose()[source]
    +decompose()[source]

    Computes a functional decomposition of f.

    Examples

    >>> from sympy import Poly
    @@ -2675,7 +2675,7 @@ 

    Basic polynomial manipulation functions
    -deflate()[source]
    +deflate()[source]

    Reduce degree of f by mapping x_i**m to y_i.

    Examples

    >>> from sympy import Poly
    @@ -2690,7 +2690,7 @@ 

    Basic polynomial manipulation functions
    -degree(gen=0)[source]
    +degree(gen=0)[source]

    Returns degree of f in x_j.

    The degree of 0 is negative infinity.

    Examples

    @@ -2710,7 +2710,7 @@

    Basic polynomial manipulation functions
    -degree_list()[source]
    +degree_list()[source]

    Returns a list of degrees of f.

    Examples

    >>> from sympy import Poly
    @@ -2725,7 +2725,7 @@ 

    Basic polynomial manipulation functions
    -diff(*specs, **kwargs)[source]
    +diff(*specs, **kwargs)[source]

    Computes partial derivative of f.

    Examples

    >>> from sympy import Poly
    @@ -2744,7 +2744,7 @@ 

    Basic polynomial manipulation functions
    -discriminant()[source]
    +discriminant()[source]

    Computes the discriminant of f.

    Examples

    >>> from sympy import Poly
    @@ -2759,7 +2759,7 @@ 

    Basic polynomial manipulation functions
    -dispersion(g=None)[source]
    +dispersion(g=None)[source]

    Compute the dispersion of polynomials.

    For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\operatorname{dis}(f, g)\) is defined as:

    @@ -2830,7 +2830,7 @@

    Basic polynomial manipulation functions
    -dispersionset(g=None)[source]
    +dispersionset(g=None)[source]

    Compute the dispersion set of two polynomials.

    For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion set \(\operatorname{J}(f, g)\) is defined as:

    @@ -2901,7 +2901,7 @@

    Basic polynomial manipulation functions
    -div(g, auto=True)[source]
    +div(g, auto=True)[source]

    Polynomial division with remainder of f by g.

    Examples

    >>> from sympy import Poly
    @@ -2944,7 +2944,7 @@ 

    Basic polynomial manipulation functions
    -eject(*gens)[source]
    +eject(*gens)[source]

    Eject selected generators into the ground domain.

    Examples

    >>> from sympy import Poly
    @@ -2964,7 +2964,7 @@ 

    Basic polynomial manipulation functions
    -eval(x, a=None, auto=True)[source]
    +eval(x, a=None, auto=True)[source]

    Evaluate f at a in the given variable.

    Examples

    >>> from sympy import Poly
    @@ -3000,7 +3000,7 @@ 

    Basic polynomial manipulation functions
    -exclude()[source]
    +exclude()[source]

    Remove unnecessary generators from f.

    Examples

    >>> from sympy import Poly
    @@ -3015,7 +3015,7 @@ 

    Basic polynomial manipulation functions
    -exquo(g, auto=True)[source]
    +exquo(g, auto=True)[source]

    Computes polynomial exact quotient of f by g.

    Examples

    >>> from sympy import Poly
    @@ -3036,7 +3036,7 @@ 

    Basic polynomial manipulation functions
    -exquo_ground(coeff)[source]
    +exquo_ground(coeff)[source]

    Exact quotient of f by a an element of the ground domain.

    Examples

    >>> from sympy import Poly
    @@ -3057,7 +3057,7 @@ 

    Basic polynomial manipulation functions
    -factor_list()[source]
    +factor_list()[source]

    Returns a list of irreducible factors of f.

    Examples

    >>> from sympy import Poly
    @@ -3076,7 +3076,7 @@ 

    Basic polynomial manipulation functions
    -factor_list_include()[source]
    +factor_list_include()[source]

    Returns a list of irreducible factors of f.

    Examples

    >>> from sympy import Poly
    @@ -3135,25 +3135,25 @@ 

    Basic polynomial manipulation functions
    -classmethod from_dict(rep, *gens, **args)[source]
    +classmethod from_dict(rep, *gens, **args)[source]

    Construct a polynomial from a dict.

    -classmethod from_expr(rep, *gens, **args)[source]
    +classmethod from_expr(rep, *gens, **args)[source]

    Construct a polynomial from an expression.

    -classmethod from_list(rep, *gens, **args)[source]
    +classmethod from_list(rep, *gens, **args)[source]

    Construct a polynomial from a list.

    -classmethod from_poly(rep, *gens, **args)[source]
    +classmethod from_poly(rep, *gens, **args)[source]

    Construct a polynomial from a polynomial.

    @@ -3167,7 +3167,7 @@

    Basic polynomial manipulation functionsrandomize=False,

    -)[source] +)[source]

    Compute the Galois group of this polynomial.

    Examples

    >>> from sympy import Poly
    @@ -3186,7 +3186,7 @@ 

    Basic polynomial manipulation functions
    -gcd(g)[source]
    +gcd(g)[source]

    Returns the polynomial GCD of f and g.

    Examples

    >>> from sympy import Poly
    @@ -3201,7 +3201,7 @@ 

    Basic polynomial manipulation functions
    -gcdex(g, auto=True)[source]
    +gcdex(g, auto=True)[source]

    Extended Euclidean algorithm of f and g.

    Returns (s, t, h) such that h = gcd(f, g) and s*f + t*g = h.

    Examples

    @@ -3238,13 +3238,13 @@

    Basic polynomial manipulation functions
    -get_domain()[source]
    +get_domain()[source]

    Get the ground domain of f.

    -get_modulus()[source]
    +get_modulus()[source]

    Get the modulus of f.

    Examples

    >>> from sympy import Poly
    @@ -3259,7 +3259,7 @@ 

    Basic polynomial manipulation functions
    -gff_list()[source]
    +gff_list()[source]

    Computes greatest factorial factorization of f.

    Examples

    >>> from sympy import Poly
    @@ -3277,7 +3277,7 @@ 

    Basic polynomial manipulation functions
    -ground_roots()[source]
    +ground_roots()[source]

    Compute roots of f by factorization in the ground domain.

    Examples

    >>> from sympy import Poly
    @@ -3292,7 +3292,7 @@ 

    Basic polynomial manipulation functions
    -half_gcdex(g, auto=True)[source]
    +half_gcdex(g, auto=True)[source]

    Half extended Euclidean algorithm of f and g.

    Returns (s, h) such that h = gcd(f, g) and s*f = h (mod g).

    Examples

    @@ -3312,7 +3312,7 @@

    Basic polynomial manipulation functions
    -has_only_gens(*gens)[source]
    +has_only_gens(*gens)[source]

    Return True if Poly(f, *gens) retains ground domain.

    Examples

    >>> from sympy import Poly
    @@ -3329,7 +3329,7 @@ 

    Basic polynomial manipulation functions
    -homogeneous_order()[source]
    +homogeneous_order()[source]

    Returns the homogeneous order of f.

    A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. This degree is @@ -3349,7 +3349,7 @@

    Basic polynomial manipulation functions
    -homogenize(s)[source]
    +homogenize(s)[source]

    Returns the homogeneous polynomial of f.

    A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you only @@ -3371,7 +3371,7 @@

    Basic polynomial manipulation functions
    -inject(front=False)[source]
    +inject(front=False)[source]

    Inject ground domain generators into f.

    Examples

    >>> from sympy import Poly
    @@ -3391,7 +3391,7 @@ 

    Basic polynomial manipulation functions
    -integrate(*specs, **args)[source]
    +integrate(*specs, **args)[source]

    Computes indefinite integral of f.

    Examples

    >>> from sympy import Poly
    @@ -3421,7 +3421,7 @@ 

    Basic polynomial manipulation functionssqf=False,

    -)[source] +)[source]

    Compute isolating intervals for roots of f.

    For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.

    Examples

    @@ -3453,7 +3453,7 @@

    Basic polynomial manipulation functions
    -invert(g, auto=True)[source]
    +invert(g, auto=True)[source]

    Invert f modulo g when possible.

    Examples

    >>> from sympy import Poly
    @@ -3734,7 +3734,7 @@ 

    Basic polynomial manipulation functions
    -l1_norm()[source]
    +l1_norm()[source]

    Returns l1 norm of f.

    Examples

    >>> from sympy import Poly
    @@ -3749,7 +3749,7 @@ 

    Basic polynomial manipulation functions
    -lcm(g)[source]
    +lcm(g)[source]

    Returns polynomial LCM of f and g.

    Examples

    >>> from sympy import Poly
    @@ -3764,7 +3764,7 @@ 

    Basic polynomial manipulation functions
    -length()[source]
    +length()[source]

    Returns the number of non-zero terms in f.

    Examples

    >>> from sympy import Poly
    @@ -3779,7 +3779,7 @@ 

    Basic polynomial manipulation functions
    -lift()[source]
    +lift()[source]

    Convert algebraic coefficients to rationals.

    Examples

    >>> from sympy import Poly, I
    @@ -3794,7 +3794,7 @@ 

    Basic polynomial manipulation functions
    -ltrim(gen)[source]
    +ltrim(gen)[source]

    Remove dummy generators from f that are to the left of specified gen in the generators as ordered. When gen is an integer, it refers to the generator located at that @@ -3814,7 +3814,7 @@

    Basic polynomial manipulation functions
    -make_monic_over_integers_by_scaling_roots()[source]
    +make_monic_over_integers_by_scaling_roots()[source]

    Turn any univariate polynomial over QQ or ZZ into a monic polynomial over ZZ, by scaling the roots as necessary.

    @@ -3842,13 +3842,13 @@

    Basic polynomial manipulation functions
    -match(*args, **kwargs)[source]
    +match(*args, **kwargs)[source]

    Match expression from Poly. See Basic.match()

    -max_norm()[source]
    +max_norm()[source]

    Returns maximum norm of f.

    Examples

    >>> from sympy import Poly
    @@ -3863,7 +3863,7 @@ 

    Basic polynomial manipulation functions
    -monic(auto=True)[source]
    +monic(auto=True)[source]

    Divides all coefficients by LC(f).

    Examples

    >>> from sympy import Poly, ZZ
    @@ -3882,7 +3882,7 @@ 

    Basic polynomial manipulation functions
    -monoms(order=None)[source]
    +monoms(order=None)[source]

    Returns all non-zero monomials from f in lex order.

    Examples

    >>> from sympy import Poly
    @@ -3901,7 +3901,7 @@ 

    Basic polynomial manipulation functions
    -mul(g)[source]
    +mul(g)[source]

    Multiply two polynomials f and g.

    Examples

    >>> from sympy import Poly
    @@ -3920,7 +3920,7 @@ 

    Basic polynomial manipulation functions
    -mul_ground(coeff)[source]
    +mul_ground(coeff)[source]

    Multiply f by a an element of the ground domain.

    Examples

    >>> from sympy import Poly
    @@ -3935,7 +3935,7 @@ 

    Basic polynomial manipulation functions
    -neg()[source]
    +neg()[source]

    Negate all coefficients in f.

    Examples

    >>> from sympy import Poly
    @@ -3954,13 +3954,13 @@ 

    Basic polynomial manipulation functions
    -classmethod new(rep, *gens)[source]
    +classmethod new(rep, *gens)[source]

    Construct Poly instance from raw representation.

    -norm()[source]
    +norm()[source]

    Computes the product, Norm(f), of the conjugates of a polynomial f defined over a number field K.

    Examples

    @@ -3989,7 +3989,7 @@

    Basic polynomial manipulation functions
    -nroots(n=15, maxsteps=50, cleanup=True)[source]
    +nroots(n=15, maxsteps=50, cleanup=True)[source]

    Compute numerical approximations of roots of f.

    Parameters:
    @@ -4014,7 +4014,7 @@

    Basic polynomial manipulation functions
    -nth(*N)[source]
    +nth(*N)[source]

    Returns the n-th coefficient of f where N are the exponents of the generators in the term of interest.

    Examples

    @@ -4040,7 +4040,7 @@

    Basic polynomial manipulation functions
    -nth_power_roots_poly(n)[source]
    +nth_power_roots_poly(n)[source]

    Construct a polynomial with n-th powers of roots of f.

    Examples

    >>> from sympy import Poly
    @@ -4070,7 +4070,7 @@ 

    Basic polynomial manipulation functions
    -pdiv(g)[source]
    +pdiv(g)[source]

    Polynomial pseudo-division of f by g.

    Examples

    >>> from sympy import Poly
    @@ -4085,7 +4085,7 @@ 

    Basic polynomial manipulation functions
    -per(rep, gens=None, remove=None)[source]
    +per(rep, gens=None, remove=None)[source]

    Create a Poly out of the given representation.

    Examples

    >>> from sympy import Poly, ZZ
    @@ -4106,7 +4106,7 @@ 

    Basic polynomial manipulation functions
    -pexquo(g)[source]
    +pexquo(g)[source]

    Polynomial exact pseudo-quotient of f by g.

    Examples

    >>> from sympy import Poly
    @@ -4127,7 +4127,7 @@ 

    Basic polynomial manipulation functions
    -pow(n)[source]
    +pow(n)[source]

    Raise f to a non-negative power n.

    Examples

    >>> from sympy import Poly
    @@ -4146,7 +4146,7 @@ 

    Basic polynomial manipulation functions
    -pquo(g)[source]
    +pquo(g)[source]

    Polynomial pseudo-quotient of f by g.

    See the Caveat note in the function prem(f, g).

    Examples

    @@ -4166,7 +4166,7 @@

    Basic polynomial manipulation functions
    -prem(g)[source]
    +prem(g)[source]

    Polynomial pseudo-remainder of f by g.

    Caveat: The function prem(f, g, x) can be safely used to compute

    in Z[x] _only_ subresultant polynomial remainder sequences (prs’s).

    @@ -4195,7 +4195,7 @@

    Basic polynomial manipulation functions
    -primitive()[source]
    +primitive()[source]

    Returns the content and a primitive form of f.

    Examples

    >>> from sympy import Poly
    @@ -4210,7 +4210,7 @@ 

    Basic polynomial manipulation functions
    -quo(g, auto=True)[source]
    +quo(g, auto=True)[source]

    Computes polynomial quotient of f by g.

    Examples

    >>> from sympy import Poly
    @@ -4229,7 +4229,7 @@ 

    Basic polynomial manipulation functions
    -quo_ground(coeff)[source]
    +quo_ground(coeff)[source]

    Quotient of f by a an element of the ground domain.

    Examples

    >>> from sympy import Poly
    @@ -4248,7 +4248,7 @@ 

    Basic polynomial manipulation functions
    -rat_clear_denoms(g)[source]
    +rat_clear_denoms(g)[source]

    Clear denominators in a rational function f/g.

    Examples

    >>> from sympy import Poly
    @@ -4272,7 +4272,7 @@ 

    Basic polynomial manipulation functions
    -real_roots(multiple=True, radicals=True)[source]
    +real_roots(multiple=True, radicals=True)[source]

    Return a list of real roots with multiplicities.

    See real_roots() for more explanation.

    Examples

    @@ -4301,7 +4301,7 @@

    Basic polynomial manipulation functionscheck_sqf=False,

    -)[source] +)[source]

    Refine an isolating interval of a root to the given precision.

    Examples

    >>> from sympy import Poly
    @@ -4316,7 +4316,7 @@ 

    Basic polynomial manipulation functions
    -rem(g, auto=True)[source]
    +rem(g, auto=True)[source]

    Computes the polynomial remainder of f by g.

    Examples

    >>> from sympy import Poly
    @@ -4335,7 +4335,7 @@ 

    Basic polynomial manipulation functions
    -reorder(*gens, **args)[source]
    +reorder(*gens, **args)[source]

    Efficiently apply new order of generators.

    Examples

    >>> from sympy import Poly
    @@ -4350,7 +4350,7 @@ 

    Basic polynomial manipulation functions
    -replace(x, y=None, **_ignore)[source]
    +replace(x, y=None, **_ignore)[source]

    Replace x with y in generators list.

    Examples

    >>> from sympy import Poly
    @@ -4365,7 +4365,7 @@ 

    Basic polynomial manipulation functions
    -resultant(g, includePRS=False)[source]
    +resultant(g, includePRS=False)[source]

    Computes the resultant of f and g via PRS.

    If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more @@ -4389,7 +4389,7 @@

    Basic polynomial manipulation functions
    -retract(field=None)[source]
    +retract(field=None)[source]

    Recalculate the ground domain of a polynomial.

    Examples

    >>> from sympy import Poly
    @@ -4411,7 +4411,7 @@ 

    Basic polynomial manipulation functions
    -revert(n)[source]
    +revert(n)[source]

    Compute f**(-1) mod x**n.

    Examples

    >>> from sympy import Poly
    @@ -4442,7 +4442,7 @@ 

    Basic polynomial manipulation functions
    -root(index, radicals=True)[source]
    +root(index, radicals=True)[source]

    Get an indexed root of a polynomial.

    Examples

    >>> from sympy import Poly
    @@ -4472,7 +4472,7 @@ 

    Basic polynomial manipulation functions
    -same_root(a, b)[source]
    +same_root(a, b)[source]

    Decide whether two roots of this polynomial are equal.

    Raises:
    @@ -4504,13 +4504,13 @@

    Basic polynomial manipulation functions
    -set_domain(domain)[source]
    +set_domain(domain)[source]

    Set the ground domain of f.

    -set_modulus(modulus)[source]
    +set_modulus(modulus)[source]

    Set the modulus of f.

    Examples

    >>> from sympy import Poly
    @@ -4525,7 +4525,7 @@ 

    Basic polynomial manipulation functions
    -shift(a)[source]
    +shift(a)[source]

    Efficiently compute Taylor shift f(x + a).

    Examples

    >>> from sympy import Poly
    @@ -4547,7 +4547,7 @@ 

    Basic polynomial manipulation functions
    -shift_list(a)[source]
    +shift_list(a)[source]

    Efficiently compute Taylor shift f(X + A).

    Examples

    >>> from sympy import Poly
    @@ -4569,13 +4569,13 @@ 

    Basic polynomial manipulation functions
    -slice(x, m, n=None)[source]
    +slice(x, m, n=None)[source]

    Take a continuous subsequence of terms of f.

    -sqf_list(all=False)[source]
    +sqf_list(all=False)[source]

    Returns a list of square-free factors of f.

    Examples

    >>> from sympy import Poly
    @@ -4600,7 +4600,7 @@ 

    Basic polynomial manipulation functions
    -sqf_list_include(all=False)[source]
    +sqf_list_include(all=False)[source]

    Returns a list of square-free factors of f.

    Examples

    >>> from sympy import Poly, expand
    @@ -4629,7 +4629,7 @@ 

    Basic polynomial manipulation functions
    -sqf_norm()[source]
    +sqf_norm()[source]

    Computes square-free norm of f.

    Returns s, f, r, such that g(x) = f(x-sa) and r(x) = Norm(g(x)) is a square-free polynomial over K, @@ -4654,7 +4654,7 @@

    Basic polynomial manipulation functions
    -sqf_part()[source]
    +sqf_part()[source]

    Computes square-free part of f.

    Examples

    >>> from sympy import Poly
    @@ -4669,7 +4669,7 @@ 

    Basic polynomial manipulation functions
    -sqr()[source]
    +sqr()[source]

    Square a polynomial f.

    Examples

    >>> from sympy import Poly
    @@ -4688,7 +4688,7 @@ 

    Basic polynomial manipulation functions
    -sturm(auto=True)[source]
    +sturm(auto=True)[source]

    Computes the Sturm sequence of f.

    Examples

    >>> from sympy import Poly
    @@ -4706,7 +4706,7 @@ 

    Basic polynomial manipulation functions
    -sub(g)[source]
    +sub(g)[source]

    Subtract two polynomials f and g.

    Examples

    >>> from sympy import Poly
    @@ -4725,7 +4725,7 @@ 

    Basic polynomial manipulation functions
    -sub_ground(coeff)[source]
    +sub_ground(coeff)[source]

    Subtract an element of the ground domain from f.

    Examples

    >>> from sympy import Poly
    @@ -4740,7 +4740,7 @@ 

    Basic polynomial manipulation functions
    -subresultants(g)[source]
    +subresultants(g)[source]

    Computes the subresultant PRS of f and g.

    Examples

    >>> from sympy import Poly
    @@ -4757,7 +4757,7 @@ 

    Basic polynomial manipulation functions
    -terms(order=None)[source]
    +terms(order=None)[source]

    Returns all non-zero terms from f in lex order.

    Examples

    >>> from sympy import Poly
    @@ -4776,7 +4776,7 @@ 

    Basic polynomial manipulation functions
    -terms_gcd()[source]
    +terms_gcd()[source]

    Remove GCD of terms from the polynomial f.

    Examples

    >>> from sympy import Poly
    @@ -4791,7 +4791,7 @@ 

    Basic polynomial manipulation functions
    -termwise(func, *gens, **args)[source]
    +termwise(func, *gens, **args)[source]

    Apply a function to all terms of f.

    Examples

    >>> from sympy import Poly
    @@ -4811,7 +4811,7 @@ 

    Basic polynomial manipulation functions
    -to_exact()[source]
    +to_exact()[source]

    Make the ground domain exact.

    Examples

    >>> from sympy import Poly, RR
    @@ -4826,7 +4826,7 @@ 

    Basic polynomial manipulation functions
    -to_field()[source]
    +to_field()[source]

    Make the ground domain a field.

    Examples

    >>> from sympy import Poly, ZZ
    @@ -4841,7 +4841,7 @@ 

    Basic polynomial manipulation functions
    -to_ring()[source]
    +to_ring()[source]

    Make the ground domain a ring.

    Examples

    >>> from sympy import Poly, QQ
    @@ -4856,7 +4856,7 @@ 

    Basic polynomial manipulation functions
    -total_degree()[source]
    +total_degree()[source]

    Returns the total degree of f.

    Examples

    >>> from sympy import Poly
    @@ -4873,7 +4873,7 @@ 

    Basic polynomial manipulation functions
    -transform(p, q)[source]
    +transform(p, q)[source]

    Efficiently evaluate the functional transformation q**n * f(p/q).

    Examples

    >>> from sympy import Poly
    @@ -4888,7 +4888,7 @@ 

    Basic polynomial manipulation functions
    -trunc(p)[source]
    +trunc(p)[source]

    Reduce f modulo a constant p.

    Examples

    >>> from sympy import Poly
    @@ -4903,7 +4903,7 @@ 

    Basic polynomial manipulation functions
    -unify(g)[source]
    +unify(g)[source]

    Make f and g belong to the same domain.

    Examples

    >>> from sympy import Poly
    @@ -4946,7 +4946,7 @@ 

    Basic polynomial manipulation functions
    -class sympy.polys.polytools.PurePoly(rep, *gens, **args)[source]
    +class sympy.polys.polytools.PurePoly(rep, *gens, **args)[source]

    Class for representing pure polynomials.

    @@ -4971,11 +4971,11 @@

    Basic polynomial manipulation functions
    -class sympy.polys.polytools.GroebnerBasis(F, *gens, **args)[source]
    +class sympy.polys.polytools.GroebnerBasis(F, *gens, **args)[source]

    Represents a reduced Groebner basis.

    -contains(poly)[source]
    +contains(poly)[source]

    Check if poly belongs the ideal generated by self.

    Examples

    >>> from sympy import groebner
    @@ -4996,7 +4996,7 @@ 

    Basic polynomial manipulation functions
    -fglm(order)[source]
    +fglm(order)[source]

    Convert a Groebner basis from one ordering to another.

    The FGLM algorithm converts reduced Groebner bases of zero-dimensional ideals from one ordering to another. This method is often used when it @@ -5041,7 +5041,7 @@

    Basic polynomial manipulation functions
    -reduce(expr, auto=True)[source]
    +reduce(expr, auto=True)[source]

    Reduces a polynomial modulo a Groebner basis.

    Given a polynomial f and a set of polynomials G = (g_1, ..., g_n), computes a set of quotients q = (q_1, ..., q_n) and the remainder r @@ -5076,7 +5076,7 @@

    Basic polynomial manipulation functions

    -sympy.polys.polyfuncs.symmetrize(F, *gens, **args)[source]
    +sympy.polys.polyfuncs.symmetrize(F, *gens, **args)[source]

    Rewrite a polynomial in terms of elementary symmetric polynomials.

    A symmetric polynomial is a multivariate polynomial that remains invariant under any variable permutation, i.e., if \(f = f(x_1, x_2, \dots, x_n)\), @@ -5110,7 +5110,7 @@

    Extra polynomial manipulation functions
    -sympy.polys.polyfuncs.horner(f, *gens, **args)[source]
    +sympy.polys.polyfuncs.horner(f, *gens, **args)[source]

    Rewrite a polynomial in Horner form.

    Among other applications, evaluation of a polynomial at a point is optimal when it is applied using the Horner scheme ([1]).

    @@ -5144,7 +5144,7 @@

    Extra polynomial manipulation functions
    -sympy.polys.polyfuncs.interpolate(data, x)[source]
    +sympy.polys.polyfuncs.interpolate(data, x)[source]

    Construct an interpolating polynomial for the data points evaluated at point x (which can be symbolic or numeric).

    Examples

    @@ -5186,7 +5186,7 @@

    Extra polynomial manipulation functions
    -sympy.polys.polyfuncs.viete(f, roots=None, *gens, **args)[source]
    +sympy.polys.polyfuncs.viete(f, roots=None, *gens, **args)[source]

    Generate Viete’s formulas for f.

    Examples

    >>> from sympy.polys.polyfuncs import viete
    @@ -5207,7 +5207,7 @@ 

    Extra polynomial manipulation functions

    -sympy.polys.constructor.construct_domain(obj, **args)[source]
    +sympy.polys.constructor.construct_domain(obj, **args)[source]

    Construct a minimal domain for a list of expressions.

    Parameters:
    @@ -5291,23 +5291,23 @@

    Domain constructors

    -class sympy.polys.monomials.Monomial(monom, gens=None)[source]
    +class sympy.polys.monomials.Monomial(monom, gens=None)[source]

    Class representing a monomial, i.e. a product of powers.

    -as_expr(*gens)[source]
    +as_expr(*gens)[source]

    Convert a monomial instance to a SymPy expression.

    -gcd(other)[source]
    +gcd(other)[source]

    Greatest common divisor of monomials.

    -lcm(other)[source]
    +lcm(other)[source]

    Least common multiple of monomials.

    @@ -5323,7 +5323,7 @@

    Monomials encoded as tuplesmin_degrees=None,

    -)[source] +)[source]

    max_degrees and min_degrees are either both integers or both lists. Unless otherwise specified, min_degrees is either 0 or [0, ..., 0].

    @@ -5394,7 +5394,7 @@

    Monomials encoded as tuples
    -sympy.polys.monomials.monomial_count(V, N)[source]
    +sympy.polys.monomials.monomial_count(V, N)[source]

    Computes the number of monomials.

    The number of monomials is given by the following formula:

    @@ -5428,25 +5428,25 @@

    Monomials encoded as tuples

    -class sympy.polys.orderings.MonomialOrder[source]
    +class sympy.polys.orderings.MonomialOrder[source]

    Base class for monomial orderings.

    -class sympy.polys.orderings.LexOrder[source]
    +class sympy.polys.orderings.LexOrder[source]

    Lexicographic order of monomials.

    -class sympy.polys.orderings.GradedLexOrder[source]
    +class sympy.polys.orderings.GradedLexOrder[source]

    Graded lexicographic order of monomials.

    -class sympy.polys.orderings.ReversedGradedLexOrder[source]
    +class sympy.polys.orderings.ReversedGradedLexOrder[source]

    Reversed graded lexicographic order of monomials.

    @@ -5465,7 +5465,7 @@

    Formal manipulation of roots of polynomialsexpand=True,

    -)[source] +)[source]

    An indexed root of a univariate polynomial.

    Returns either a ComplexRootOf object or an explicit expression involving radicals.

    @@ -5504,7 +5504,7 @@

    Formal manipulation of roots of polynomialsexpand=True,

    -)[source] +)[source]

    Represents a root of a univariate polynomial.

    Base class for roots of different kinds of polynomials. Only complex roots are currently supported.

    @@ -5522,7 +5522,7 @@

    Formal manipulation of roots of polynomialsexpand=True,

    -)[source] +)[source]

    Represents an indexed complex root of a polynomial.

    Roots of a univariate polynomial separated into disjoint real or complex intervals and indexed in a fixed order:

    @@ -5645,56 +5645,56 @@

    Formal manipulation of roots of polynomials
    -classmethod _all_roots(poly, use_cache=True)[source]
    +classmethod _all_roots(poly, use_cache=True)[source]

    Get real and complex roots of a composite polynomial.

    -classmethod _complexes_index(complexes, index)[source]
    +classmethod _complexes_index(complexes, index)[source]

    Map initial complex root index to an index in a factor where the root belongs.

    -classmethod _complexes_sorted(complexes)[source]
    +classmethod _complexes_sorted(complexes)[source]

    Make complex isolating intervals disjoint and sort roots.

    -classmethod _count_roots(roots)[source]
    +classmethod _count_roots(roots)[source]

    Count the number of real or complex roots with multiplicities.

    -_ensure_complexes_init()[source]
    +_ensure_complexes_init()[source]

    Ensure that our poly has entries in the complexes cache.

    -_ensure_reals_init()[source]
    +_ensure_reals_init()[source]

    Ensure that our poly has entries in the reals cache.

    -_eval_evalf(prec, **kwargs)[source]
    +_eval_evalf(prec, **kwargs)[source]

    Evaluate this complex root to the given precision.

    -_eval_is_imaginary()[source]
    +_eval_is_imaginary()[source]

    Return True if the root is imaginary.

    -_eval_is_real()[source]
    +_eval_is_real()[source]

    Return True if the root is real.

    @@ -5707,7 +5707,7 @@

    Formal manipulation of roots of polynomialsuse_cache=True,

    -)[source] +)[source]

    Compute complex root isolating intervals for a list of factors.

    @@ -5720,19 +5720,19 @@

    Formal manipulation of roots of polynomialsuse_cache=True,

    -)[source] +)[source]

    Get complex root isolating intervals for a square-free factor.

    -_get_interval()[source]
    +_get_interval()[source]

    Internal function for retrieving isolation interval from cache.

    -classmethod _get_reals(factors, use_cache=True)[source]
    +classmethod _get_reals(factors, use_cache=True)[source]

    Compute real root isolating intervals for a list of factors.

    @@ -5745,13 +5745,13 @@

    Formal manipulation of roots of polynomialsuse_cache=True,

    -)[source] +)[source]

    Get real root isolating intervals for a square-free factor.

    -classmethod _get_roots(method, poly, radicals)[source]
    +classmethod _get_roots(method, poly, radicals)[source]

    Return postprocessed roots of specified kind.

    @@ -5765,50 +5765,50 @@

    Formal manipulation of roots of polynomialslazy=False,

    -)[source] +)[source]

    Get a root of a composite polynomial by index.

    -classmethod _new(poly, index)[source]
    +classmethod _new(poly, index)[source]

    Construct new CRootOf object from raw data.

    -classmethod _postprocess_root(root, radicals)[source]
    +classmethod _postprocess_root(root, radicals)[source]

    Return the root if it is trivial or a CRootOf object.

    -classmethod _preprocess_roots(poly)[source]
    +classmethod _preprocess_roots(poly)[source]

    Take heroic measures to make poly compatible with CRootOf.

    -classmethod _real_roots(poly)[source]
    +classmethod _real_roots(poly)[source]

    Get real roots of a composite polynomial.

    -classmethod _reals_index(reals, index)[source]
    +classmethod _reals_index(reals, index)[source]

    Map initial real root index to an index in a factor where the root belongs.

    -classmethod _reals_sorted(reals)[source]
    +classmethod _reals_sorted(reals)[source]

    Make real isolating intervals disjoint and sort roots.

    -classmethod _refine_complexes(complexes)[source]
    +classmethod _refine_complexes(complexes)[source]

    return complexes such that no bounding rectangles of non-conjugate roots would intersect. In addition, assure that neither ay nor by is 0 to guarantee that non-real roots are distinct from real roots in @@ -5817,31 +5817,31 @@

    Formal manipulation of roots of polynomials
    -_reset()[source]
    +_reset()[source]

    Reset all intervals

    -classmethod _roots_trivial(poly, radicals)[source]
    +classmethod _roots_trivial(poly, radicals)[source]

    Compute roots in linear, quadratic and binomial cases.

    -_set_interval(interval)[source]
    +_set_interval(interval)[source]

    Internal function for updating isolation interval in cache.

    -classmethod all_roots(poly, radicals=True)[source]
    +classmethod all_roots(poly, radicals=True)[source]

    Get real and complex roots of a polynomial.

    -classmethod clear_cache()[source]
    +classmethod clear_cache()[source]

    Reset cache for reals and complexes.

    The intervals used to approximate a root instance are updated as needed. When a request is made to see the intervals, the @@ -5855,7 +5855,7 @@

    Formal manipulation of roots of polynomials
    -eval_approx(n, return_mpmath=False)[source]
    +eval_approx(n, return_mpmath=False)[source]

    Evaluate this complex root to the given precision.

    This uses secant method and root bounds are used to both generate an initial guess and to check that the root @@ -5873,7 +5873,7 @@

    Formal manipulation of roots of polynomialsn=15,

    -)[source] +)[source]

    Return a Rational approximation of self that has real and imaginary component approximations that are within dx and dy of the true values, respectively. Alternatively, @@ -5906,7 +5906,7 @@

    Formal manipulation of roots of polynomials
    -classmethod real_roots(poly, radicals=True)[source]
    +classmethod real_roots(poly, radicals=True)[source]

    Get real roots of a polynomial.

    @@ -5924,11 +5924,11 @@

    Formal manipulation of roots of polynomialsquadratic=False,

    -)[source] +)[source]

    Represents a sum of all roots of a univariate polynomial.

    -classmethod new(poly, func, auto=True)[source]
    +classmethod new(poly, func, auto=True)[source]

    Construct new RootSum instance.

    @@ -5956,7 +5956,7 @@

    Symbolic root-finding algorithms**flags,

    -)[source] +)[source]

    Computes symbolic roots of a univariate polynomial.

    Given a univariate polynomial f with symbolic coefficients (or a list of the polynomial’s coefficients), returns a dictionary @@ -6058,7 +6058,7 @@

    Symbolic root-finding algorithms

    -sympy.polys.specialpolys.swinnerton_dyer_poly(n, x=None, polys=False)[source]
    +sympy.polys.specialpolys.swinnerton_dyer_poly(n, x=None, polys=False)[source]

    Generates n-th Swinnerton-Dyer polynomial in \(x\).

    Parameters:
    @@ -6078,7 +6078,7 @@

    Special polynomials
    -sympy.polys.specialpolys.interpolating_poly(n, x, X='x', Y='y')[source]
    +sympy.polys.specialpolys.interpolating_poly(n, x, X='x', Y='y')[source]

    Construct Lagrange interpolating polynomial for n data points. If a sequence of values are given for X and Y then the first n values will be used.

    @@ -6086,7 +6086,7 @@

    Special polynomials
    -sympy.polys.specialpolys.cyclotomic_poly(n, x=None, polys=False)[source]
    +sympy.polys.specialpolys.cyclotomic_poly(n, x=None, polys=False)[source]

    Generates cyclotomic polynomial of order \(n\) in \(x\).

    Parameters:
    @@ -6106,7 +6106,7 @@

    Special polynomials
    -sympy.polys.specialpolys.symmetric_poly(n, *gens, polys=False)[source]
    +sympy.polys.specialpolys.symmetric_poly(n, *gens, polys=False)[source]

    Generates symmetric polynomial of order \(n\).

    Parameters:
    @@ -6132,7 +6132,7 @@

    Special polynomialspolys=False,

    -)[source] +)[source]

    Generates a polynomial of degree n with coefficients in [inf, sup].

    @@ -6172,7 +6172,7 @@

    Special polynomials

    -sympy.polys.orthopolys.chebyshevt_poly(n, x=None, polys=False)[source]
    +sympy.polys.orthopolys.chebyshevt_poly(n, x=None, polys=False)[source]

    Generates the Chebyshev polynomial of the first kind \(T_n(x)\).

    Parameters:
    @@ -6191,7 +6191,7 @@

    Orthogonal polynomials
    -sympy.polys.orthopolys.chebyshevu_poly(n, x=None, polys=False)[source]
    +sympy.polys.orthopolys.chebyshevu_poly(n, x=None, polys=False)[source]

    Generates the Chebyshev polynomial of the second kind \(U_n(x)\).

    Parameters:
    @@ -6210,7 +6210,7 @@

    Orthogonal polynomials
    -sympy.polys.orthopolys.gegenbauer_poly(n, a, x=None, polys=False)[source]
    +sympy.polys.orthopolys.gegenbauer_poly(n, a, x=None, polys=False)[source]

    Generates the Gegenbauer polynomial \(C_n^{(a)}(x)\).

    Parameters:
    @@ -6233,7 +6233,7 @@

    Orthogonal polynomials
    -sympy.polys.orthopolys.hermite_poly(n, x=None, polys=False)[source]
    +sympy.polys.orthopolys.hermite_poly(n, x=None, polys=False)[source]

    Generates the Hermite polynomial \(H_n(x)\).

    Parameters:
    @@ -6252,7 +6252,7 @@

    Orthogonal polynomials
    -sympy.polys.orthopolys.hermite_prob_poly(n, x=None, polys=False)[source]
    +sympy.polys.orthopolys.hermite_prob_poly(n, x=None, polys=False)[source]

    Generates the probabilist’s Hermite polynomial \(He_n(x)\).

    Parameters:
    @@ -6271,7 +6271,7 @@

    Orthogonal polynomials
    -sympy.polys.orthopolys.jacobi_poly(n, a, b, x=None, polys=False)[source]
    +sympy.polys.orthopolys.jacobi_poly(n, a, b, x=None, polys=False)[source]

    Generates the Jacobi polynomial \(P_n^{(a,b)}(x)\).

    Parameters:
    @@ -6298,7 +6298,7 @@

    Orthogonal polynomials
    -sympy.polys.orthopolys.legendre_poly(n, x=None, polys=False)[source]
    +sympy.polys.orthopolys.legendre_poly(n, x=None, polys=False)[source]

    Generates the Legendre polynomial \(P_n(x)\).

    Parameters:
    @@ -6317,7 +6317,7 @@

    Orthogonal polynomials
    -sympy.polys.orthopolys.laguerre_poly(n, x=None, alpha=0, polys=False)[source]
    +sympy.polys.orthopolys.laguerre_poly(n, x=None, alpha=0, polys=False)[source]

    Generates the Laguerre polynomial \(L_n^{(\alpha)}(x)\).

    Parameters:
    @@ -6340,7 +6340,7 @@

    Orthogonal polynomials
    -sympy.polys.orthopolys.spherical_bessel_fn(n, x=None, polys=False)[source]
    +sympy.polys.orthopolys.spherical_bessel_fn(n, x=None, polys=False)[source]

    Coefficients for the spherical Bessel functions.

    These are only needed in the jn() function.

    The coefficients are calculated from:

    @@ -6381,7 +6381,7 @@

    Orthogonal polynomialsAppell sequences

    -sympy.polys.appellseqs.bernoulli_poly(n, x=None, polys=False)[source]
    +sympy.polys.appellseqs.bernoulli_poly(n, x=None, polys=False)[source]

    Generates the Bernoulli polynomial \(\operatorname{B}_n(x)\).

    \(\operatorname{B}_n(x)\) is the unique polynomial satisfying

    @@ -6449,7 +6449,7 @@

    Appell sequences
    -sympy.polys.appellseqs.bernoulli_c_poly(n, x=None, polys=False)[source]
    +sympy.polys.appellseqs.bernoulli_c_poly(n, x=None, polys=False)[source]

    Generates the central Bernoulli polynomial \(\operatorname{B}_n^c(x)\).

    These are scaled and shifted versions of the plain Bernoulli polynomials, done in such a way that \(\operatorname{B}_n^c(x)\) is an even or odd function @@ -6476,7 +6476,7 @@

    Appell sequences
    -sympy.polys.appellseqs.genocchi_poly(n, x=None, polys=False)[source]
    +sympy.polys.appellseqs.genocchi_poly(n, x=None, polys=False)[source]

    Generates the Genocchi polynomial \(\operatorname{G}_n(x)\).

    \(\operatorname{G}_n(x)\) is twice the difference between the plain and central Bernoulli polynomials, so has degree \(n-1\):

    @@ -6508,7 +6508,7 @@

    Appell sequences
    -sympy.polys.appellseqs.euler_poly(n, x=None, polys=False)[source]
    +sympy.polys.appellseqs.euler_poly(n, x=None, polys=False)[source]

    Generates the Euler polynomial \(\operatorname{E}_n(x)\).

    These are scaled and reindexed versions of the Genocchi polynomials:

    @@ -6536,7 +6536,7 @@

    Appell sequences
    -sympy.polys.appellseqs.andre_poly(n, x=None, polys=False)[source]
    +sympy.polys.appellseqs.andre_poly(n, x=None, polys=False)[source]

    Generates the Andre polynomial \(\mathcal{A}_n(x)\).

    This is the Appell sequence where the constant coefficients form the sequence of Euler numbers euler(n). As such they have integer coefficients @@ -6604,7 +6604,7 @@

    Appell sequences

    -sympy.polys.rationaltools.together(expr, deep=False, fraction=True)[source]
    +sympy.polys.rationaltools.together(expr, deep=False, fraction=True)[source]

    Denest and combine rational expressions using symbolic methods.

    This function takes an expression or a container of expressions and puts it (them) together by denesting and combining rational @@ -6662,7 +6662,7 @@

    Manipulation of rational functions

    -sympy.polys.partfrac.apart(f, x=None, full=False, **options)[source]
    +sympy.polys.partfrac.apart(f, x=None, full=False, **options)[source]

    Compute partial fraction decomposition of a rational function.

    Given a rational function f, computes the partial fraction decomposition of f. Two algorithms are available: One is based on the @@ -6712,7 +6712,7 @@

    Partial fraction decomposition
    -sympy.polys.partfrac.apart_list(f, x=None, dummies=None, **options)[source]
    +sympy.polys.partfrac.apart_list(f, x=None, dummies=None, **options)[source]

    Compute partial fraction decomposition of a rational function and return the result in structured form.

    Given a rational function f compute the partial fraction decomposition @@ -6817,7 +6817,7 @@

    Partial fraction decomposition
    -sympy.polys.partfrac.assemble_partfrac_list(partial_list)[source]
    +sympy.polys.partfrac.assemble_partfrac_list(partial_list)[source]

    Reassemble a full partial fraction decomposition from a structured result obtained by the function apart_list.

    Examples

    @@ -6880,7 +6880,7 @@

    Partial fraction decomposition

    -sympy.polys.dispersion.dispersionset(p, q=None, *gens, **args)[source]
    +sympy.polys.dispersion.dispersionset(p, q=None, *gens, **args)[source]

    Compute the dispersion set of two polynomials.

    For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion set \(\operatorname{J}(f, g)\) is defined as:

    @@ -6963,7 +6963,7 @@

    Dispersion of Polynomials
    -sympy.polys.dispersion.dispersion(p, q=None, *gens, **args)[source]
    +sympy.polys.dispersion.dispersion(p, q=None, *gens, **args)[source]

    Compute the dispersion of polynomials.

    For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\operatorname{dis}(f, g)\) is defined as:

    diff --git a/dev/modules/polys/ringseries.html b/dev/modules/polys/ringseries.html index 5dbbf7b4810..a883cafc5af 100644 --- a/dev/modules/polys/ringseries.html +++ b/dev/modules/polys/ringseries.html @@ -963,7 +963,7 @@

    Reference
    -sympy.polys.ring_series.rs_log(p, x, prec)[source]
    +sympy.polys.ring_series.rs_log(p, x, prec)[source]

    The Logarithm of p modulo O(x**prec).

    Notes

    Truncation of integral dx p**-1*d p/dx is used.

    @@ -982,7 +982,7 @@

    Reference
    -sympy.polys.ring_series.rs_LambertW(p, x, prec)[source]
    +sympy.polys.ring_series.rs_LambertW(p, x, prec)[source]

    Calculate the series expansion of the principal branch of the Lambert W function.

    Examples

    @@ -1002,7 +1002,7 @@

    Reference
    -sympy.polys.ring_series.rs_exp(p, x, prec)[source]
    +sympy.polys.ring_series.rs_exp(p, x, prec)[source]

    Exponentiation of a series modulo O(x**prec)

    Examples

    >>> from sympy.polys.domains import QQ
    @@ -1017,7 +1017,7 @@ 

    Reference
    -sympy.polys.ring_series.rs_atan(p, x, prec)[source]
    +sympy.polys.ring_series.rs_atan(p, x, prec)[source]

    The arctangent of a series

    Return the series expansion of the atan of p, about 0.

    Examples

    @@ -1037,7 +1037,7 @@

    Reference
    -sympy.polys.ring_series.rs_asin(p, x, prec)[source]
    +sympy.polys.ring_series.rs_asin(p, x, prec)[source]

    Arcsine of a series

    Return the series expansion of the asin of p, about 0.

    Examples

    @@ -1057,7 +1057,7 @@

    Reference
    -sympy.polys.ring_series.rs_tan(p, x, prec)[source]
    +sympy.polys.ring_series.rs_tan(p, x, prec)[source]

    Tangent of a series.

    Return the series expansion of the tan of p, about 0.

    @@ -1079,7 +1079,7 @@

    Reference
    -sympy.polys.ring_series._tan1(p, x, prec)[source]
    +sympy.polys.ring_series._tan1(p, x, prec)[source]

    Helper function of rs_tan().

    Return the series expansion of tan of a univariate series using Newton’s method. It takes advantage of the fact that series expansion of atan is @@ -1092,7 +1092,7 @@

    Reference
    -sympy.polys.ring_series.rs_cot(p, x, prec)[source]
    +sympy.polys.ring_series.rs_cot(p, x, prec)[source]

    Cotangent of a series

    Return the series expansion of the cot of p, about 0.

    Examples

    @@ -1112,7 +1112,7 @@

    Reference
    -sympy.polys.ring_series.rs_sin(p, x, prec)[source]
    +sympy.polys.ring_series.rs_sin(p, x, prec)[source]

    Sine of a series

    Return the series expansion of the sin of p, about 0.

    Examples

    @@ -1134,7 +1134,7 @@

    Reference
    -sympy.polys.ring_series.rs_cos(p, x, prec)[source]
    +sympy.polys.ring_series.rs_cos(p, x, prec)[source]

    Cosine of a series

    Return the series expansion of the cos of p, about 0.

    Examples

    @@ -1156,14 +1156,14 @@

    Reference
    -sympy.polys.ring_series.rs_cos_sin(p, x, prec)[source]
    +sympy.polys.ring_series.rs_cos_sin(p, x, prec)[source]

    Return the tuple (rs_cos(p, x, prec)`, `rs_sin(p, x, prec)).

    Is faster than calling rs_cos and rs_sin separately

    -sympy.polys.ring_series.rs_atanh(p, x, prec)[source]
    +sympy.polys.ring_series.rs_atanh(p, x, prec)[source]

    Hyperbolic arctangent of a series

    Return the series expansion of the atanh of p, about 0.

    Examples

    @@ -1183,7 +1183,7 @@

    Reference
    -sympy.polys.ring_series.rs_sinh(p, x, prec)[source]
    +sympy.polys.ring_series.rs_sinh(p, x, prec)[source]

    Hyperbolic sine of a series

    Return the series expansion of the sinh of p, about 0.

    Examples

    @@ -1203,7 +1203,7 @@

    Reference
    -sympy.polys.ring_series.rs_cosh(p, x, prec)[source]
    +sympy.polys.ring_series.rs_cosh(p, x, prec)[source]

    Hyperbolic cosine of a series

    Return the series expansion of the cosh of p, about 0.

    Examples

    @@ -1223,7 +1223,7 @@

    Reference
    -sympy.polys.ring_series.rs_tanh(p, x, prec)[source]
    +sympy.polys.ring_series.rs_tanh(p, x, prec)[source]

    Hyperbolic tangent of a series

    Return the series expansion of the tanh of p, about 0.

    Examples

    @@ -1243,7 +1243,7 @@

    Reference
    -sympy.polys.ring_series.rs_hadamard_exp(p1, inverse=False)[source]
    +sympy.polys.ring_series.rs_hadamard_exp(p1, inverse=False)[source]

    Return sum f_i/i!*x**i from sum f_i*x**i, where x is the first variable.

    If invers=True return sum f_i*i!*x**i

    @@ -1262,7 +1262,7 @@

    Reference
    -sympy.polys.ring_series.rs_mul(p1, p2, x, prec)[source]
    +sympy.polys.ring_series.rs_mul(p1, p2, x, prec)[source]

    Return the product of the given two series, modulo O(x**prec).

    x is the series variable or its position in the generators.

    Examples

    @@ -1280,7 +1280,7 @@

    Reference
    -sympy.polys.ring_series.rs_square(p1, x, prec)[source]
    +sympy.polys.ring_series.rs_square(p1, x, prec)[source]

    Square the series modulo O(x**prec)

    Examples

    >>> from sympy.polys.domains import QQ
    @@ -1296,7 +1296,7 @@ 

    Reference
    -sympy.polys.ring_series.rs_pow(p1, n, x, prec)[source]
    +sympy.polys.ring_series.rs_pow(p1, n, x, prec)[source]

    Return p1**n modulo O(x**prec)

    Examples

    >>> from sympy.polys.domains import QQ
    @@ -1312,7 +1312,7 @@ 

    Reference
    -sympy.polys.ring_series.rs_series_inversion(p, x, prec)[source]
    +sympy.polys.ring_series.rs_series_inversion(p, x, prec)[source]

    Multivariate series inversion 1/p modulo O(x**prec).

    Examples

    >>> from sympy.polys.domains import QQ
    @@ -1331,7 +1331,7 @@ 

    Reference
    -sympy.polys.ring_series.rs_series_reversion(p, x, n, y)[source]
    +sympy.polys.ring_series.rs_series_reversion(p, x, n, y)[source]

    Reversion of a series.

    p is a series with O(x**n) of the form \(p = ax + f(x)\) where \(a\) is a number different from 0.

    @@ -1376,7 +1376,7 @@

    Reference
    -sympy.polys.ring_series.rs_nth_root(p, n, x, prec)[source]
    +sympy.polys.ring_series.rs_nth_root(p, n, x, prec)[source]

    Multivariate series expansion of the nth root of p.

    Parameters:
    @@ -1416,7 +1416,7 @@

    Reference
    -sympy.polys.ring_series.rs_trunc(p1, x, prec)[source]
    +sympy.polys.ring_series.rs_trunc(p1, x, prec)[source]

    Truncate the series in the x variable with precision prec, that is, modulo O(x**prec)

    Examples

    @@ -1435,7 +1435,7 @@

    Reference
    -sympy.polys.ring_series.rs_subs(p, rules, x, prec)[source]
    +sympy.polys.ring_series.rs_subs(p, rules, x, prec)[source]

    Substitution with truncation according to the mapping in rules.

    Return a series with precision prec in the generator x

    Note that substitutions are not done one after the other

    @@ -1476,7 +1476,7 @@

    Reference
    -sympy.polys.ring_series.rs_diff(p, x)[source]
    +sympy.polys.ring_series.rs_diff(p, x)[source]

    Return partial derivative of p with respect to x.

    Parameters:
    @@ -1497,7 +1497,7 @@

    Reference
    -sympy.polys.ring_series.rs_integrate(p, x)[source]
    +sympy.polys.ring_series.rs_integrate(p, x)[source]

    Integrate p with respect to x.

    Parameters:
    @@ -1518,7 +1518,7 @@

    Reference
    -sympy.polys.ring_series.rs_newton(p, x, prec)[source]
    +sympy.polys.ring_series.rs_newton(p, x, prec)[source]

    Compute the truncated Newton sum of the polynomial p

    Examples

    >>> from sympy.polys.domains import QQ
    @@ -1534,7 +1534,7 @@ 

    Reference
    -sympy.polys.ring_series.rs_compose_add(p1, p2)[source]
    +sympy.polys.ring_series.rs_compose_add(p1, p2)[source]

    compute the composed sum prod(p2(x - beta) for beta root of p1)

    Examples

    >>> from sympy.polys.domains import QQ
    @@ -1562,7 +1562,7 @@ 

    Reference
    -sympy.polys.ring_series.rs_is_puiseux(p, x)[source]
    +sympy.polys.ring_series.rs_is_puiseux(p, x)[source]

    Test if p is Puiseux series in x.

    Raise an exception if it has a negative power in x.

    Examples

    @@ -1579,7 +1579,7 @@

    Reference
    -sympy.polys.ring_series.rs_puiseux(f, p, x, prec)[source]
    +sympy.polys.ring_series.rs_puiseux(f, p, x, prec)[source]

    Return the puiseux series for \(f(p, x, prec)\).

    To be used when function f is implemented only for regular series.

    Examples

    @@ -1596,14 +1596,14 @@

    Reference
    -sympy.polys.ring_series.rs_puiseux2(f, p, q, x, prec)[source]
    +sympy.polys.ring_series.rs_puiseux2(f, p, q, x, prec)[source]

    Return the puiseux series for \(f(p, q, x, prec)\).

    To be used when function f is implemented only for regular series.

    -sympy.polys.ring_series.rs_series_from_list(p, c, x, prec, concur=1)[source]
    +sympy.polys.ring_series.rs_series_from_list(p, c, x, prec, concur=1)[source]

    Return a series \(sum c[n]*p**n\) modulo \(O(x**prec)\).

    It reduces the number of multiplications by summing concurrently.

    \(ax = [1, p, p**2, .., p**(J - 1)]\) @@ -1629,7 +1629,7 @@

    Reference
    -sympy.polys.ring_series.rs_fun(p, f, *args)[source]
    +sympy.polys.ring_series.rs_fun(p, f, *args)[source]

    Function of a multivariate series computed by substitution.

    The case with f method name is used to compute \(rs\_tan\) and \(rs\_nth\_root\) of a multivariate series:

    @@ -1661,14 +1661,14 @@

    Reference
    -sympy.polys.ring_series.mul_xin(p, i, n)[source]
    +sympy.polys.ring_series.mul_xin(p, i, n)[source]

    Return \(p*x_i**n\).

    \(x\_i\) is the ith variable in p.

    -sympy.polys.ring_series.pow_xin(p, i, n)[source]
    +sympy.polys.ring_series.pow_xin(p, i, n)[source]
    >>> from sympy.polys.domains import QQ
     >>> from sympy.polys.rings import ring
     >>> from sympy.polys.ring_series import pow_xin
    diff --git a/dev/modules/polys/solvers.html b/dev/modules/polys/solvers.html
    index b4397ac0aef..865dd28d1c0 100644
    --- a/dev/modules/polys/solvers.html
    +++ b/dev/modules/polys/solvers.html
    @@ -805,7 +805,7 @@ 
    Documentation Version

    Low-level linear systems solver.

    -sympy.polys.solvers.solve_lin_sys(eqs, ring, _raw=True)[source]
    +sympy.polys.solvers.solve_lin_sys(eqs, ring, _raw=True)[source]

    Solve a system of linear equations from a PolynomialRing

    Parameters:
    @@ -874,7 +874,7 @@
    Documentation Version
    -sympy.polys.solvers.eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain)[source]
    +sympy.polys.solvers.eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain)[source]

    Get matrix from linear equations in dict format.

    Parameters:
    @@ -927,7 +927,7 @@
    Documentation Version
    -sympy.polys.solvers.sympy_eqs_to_ring(eqs, symbols)[source]
    +sympy.polys.solvers.sympy_eqs_to_ring(eqs, symbols)[source]

    Convert a system of equations from Expr to a PolyRing

    Parameters:
    @@ -975,7 +975,7 @@
    Documentation Version
    -sympy.polys.solvers._solve_lin_sys(eqs_coeffs, eqs_rhs, ring)[source]
    +sympy.polys.solvers._solve_lin_sys(eqs_coeffs, eqs_rhs, ring)[source]

    Solve a linear system from dict of PolynomialRing coefficients

    Explanation

    This is an internal function used by solve_lin_sys() after the @@ -1013,7 +1013,7 @@

    Documentation Version
    ring,
    -)[source] +)[source]

    Solve a linear system from dict of PolynomialRing coefficients

    Explanation

    This is an internal function used by solve_lin_sys() after the diff --git a/dev/modules/printing.html b/dev/modules/printing.html index 08a009f67d0..f6592283064 100644 --- a/dev/modules/printing.html +++ b/dev/modules/printing.html @@ -1012,7 +1012,7 @@

    Common mistakessource code):

    -class sympy.printing.printer.Printer(settings=None)[source]
    +class sympy.printing.printer.Printer(settings=None)[source]

    Generic printer

    Its job is to provide infrastructure for implementing new printers easily.

    If you want to define your custom Printer or your custom printing method @@ -1024,7 +1024,7 @@

    Common mistakes
    -_print(expr, **kwargs) str[source]
    +_print(expr, **kwargs) str[source]

    Internal dispatcher

    Tries the following concepts to print an expression:
      @@ -1038,13 +1038,13 @@

      Common mistakes
      -doprint(expr)[source]
      +doprint(expr)[source]

      Returns printer’s representation for expr (as a string)

    -classmethod set_global_settings(**settings)[source]
    +classmethod set_global_settings(**settings)[source]

    Set system-wide printing settings.

    @@ -1066,7 +1066,7 @@

    PrettyPrinter Class
    -class sympy.printing.pretty.pretty.PrettyPrinter(settings=None)[source]
    +class sympy.printing.pretty.pretty.PrettyPrinter(settings=None)[source]

    Printer, which converts an expression into 2D ASCII-art figure.

    @@ -1101,7 +1101,7 @@

    PrettyPrinter Class
    -sympy.printing.pretty.pretty.pretty_print(expr, **kwargs)[source]
    +sympy.printing.pretty.pretty.pretty_print(expr, **kwargs)[source]

    Prints expr in pretty form.

    pprint is just a shortcut for this function.

    @@ -1186,7 +1186,7 @@

    PrettyPrinter Class
    -class sympy.printing.c.C89CodePrinter(settings=None)[source]
    +class sympy.printing.c.C89CodePrinter(settings=None)[source]

    A printer to convert Python expressions to strings of C code

    @@ -1195,7 +1195,7 @@

    PrettyPrinter Class
    -indent_code(code)[source]
    +indent_code(code)[source]

    Accepts a string of code or a list of code lines

    @@ -1203,7 +1203,7 @@

    PrettyPrinter Class
    -class sympy.printing.c.C99CodePrinter(settings=None)[source]
    +class sympy.printing.c.C99CodePrinter(settings=None)[source]
    printmethod: str = '_ccode'
    @@ -1222,7 +1222,7 @@

    PrettyPrinter Class**settings,

    -)[source] +)[source]

    Converts an expr to a string of c code

    Parameters:
    @@ -1370,7 +1370,7 @@

    PrettyPrinter Class
    -sympy.printing.c.print_ccode(expr, **settings)[source]
    +sympy.printing.c.print_ccode(expr, **settings)[source]

    Prints C representation of the given expression.

    @@ -1389,7 +1389,7 @@

    PrettyPrinter Class
    -class sympy.printing.cxx.CXX98CodePrinter(settings=None)[source]
    +class sympy.printing.cxx.CXX98CodePrinter(settings=None)[source]
    printmethod: str = '_cxxcode'
    @@ -1399,7 +1399,7 @@

    PrettyPrinter Class
    -class sympy.printing.cxx.CXX11CodePrinter(settings=None)[source]
    +class sympy.printing.cxx.CXX11CodePrinter(settings=None)[source]
    printmethod: str = '_cxxcode'
    @@ -1418,7 +1418,7 @@

    PrettyPrinter Class**settings,

    -)[source] +)[source]

    C++ equivalent of ccode().

    @@ -1446,7 +1446,7 @@

    PrettyPrinter Class
    -class sympy.printing.rcode.RCodePrinter(settings={})[source]
    +class sympy.printing.rcode.RCodePrinter(settings={})[source]

    A printer to convert SymPy expressions to strings of R code

    @@ -1455,7 +1455,7 @@

    PrettyPrinter Class
    -indent_code(code)[source]
    +indent_code(code)[source]

    Accepts a string of code or a list of code lines

    @@ -1463,7 +1463,7 @@

    PrettyPrinter Class
    -sympy.printing.rcode.rcode(expr, assign_to=None, **settings)[source]
    +sympy.printing.rcode.rcode(expr, assign_to=None, **settings)[source]

    Converts an expr to a string of r code

    Parameters:
    @@ -1582,7 +1582,7 @@

    PrettyPrinter Class
    -sympy.printing.rcode.print_rcode(expr, **settings)[source]
    +sympy.printing.rcode.print_rcode(expr, **settings)[source]

    Prints R representation of the given expression.

    @@ -1597,7 +1597,7 @@

    Fortran Printing
    -sympy.printing.fortran.fcode(expr, assign_to=None, **settings)[source]
    +sympy.printing.fortran.fcode(expr, assign_to=None, **settings)[source]

    Converts an expr to a string of fortran code

    Parameters:
    @@ -1733,14 +1733,14 @@

    Fortran Printing
    -sympy.printing.fortran.print_fcode(expr, **settings)[source]
    +sympy.printing.fortran.print_fcode(expr, **settings)[source]

    Prints the Fortran representation of the given expression.

    See fcode for the meaning of the optional arguments.

    -class sympy.printing.fortran.FCodePrinter(settings=None)[source]
    +class sympy.printing.fortran.FCodePrinter(settings=None)[source]

    A printer to convert SymPy expressions to strings of Fortran code

    @@ -1749,7 +1749,7 @@

    Fortran Printing
    -indent_code(code)[source]
    +indent_code(code)[source]

    Accepts a string of code or a list of code lines

    @@ -1883,7 +1883,7 @@

    Fortran Printingsymbol_table=None,

    -)[source] +)[source]
    printmethod: str = '_smtlib'
    @@ -1914,7 +1914,7 @@

    Fortran Printinglog_warn=None,

    -)[source] +)[source]

    Converts expr to a string of smtlib code.

    Parameters:
    @@ -2029,7 +2029,7 @@

    Fortran Printing
    -class sympy.printing.mathematica.MCodePrinter(settings={})[source]
    +class sympy.printing.mathematica.MCodePrinter(settings={})[source]

    A printer to convert Python expressions to strings of the Wolfram’s Mathematica code

    @@ -2041,7 +2041,7 @@

    Fortran Printing
    -sympy.printing.mathematica.mathematica_code(expr, **settings)[source]
    +sympy.printing.mathematica.mathematica_code(expr, **settings)[source]

    Converts an expr to a string of the Wolfram Mathematica code

    Examples

    >>> from sympy import mathematica_code as mcode, symbols, sin
    @@ -2057,7 +2057,7 @@ 

    Fortran Printing

    Maple code printing

    -class sympy.printing.maple.MapleCodePrinter(settings=None)[source]
    +class sympy.printing.maple.MapleCodePrinter(settings=None)[source]

    Printer which converts a SymPy expression into a maple code.

    @@ -2068,7 +2068,7 @@

    Fortran Printing
    -sympy.printing.maple.maple_code(expr, assign_to=None, **settings)[source]
    +sympy.printing.maple.maple_code(expr, assign_to=None, **settings)[source]

    Converts expr to a string of Maple code.

    Parameters:
    @@ -2120,7 +2120,7 @@

    Fortran Printing
    -sympy.printing.maple.print_maple_code(expr, **settings)[source]
    +sympy.printing.maple.print_maple_code(expr, **settings)[source]

    Prints the Maple representation of the given expression.

    See maple_code() for the meaning of the optional arguments.

    Examples

    @@ -2142,7 +2142,7 @@

    Fortran Printing
    -class sympy.printing.jscode.JavascriptCodePrinter(settings={})[source]
    +class sympy.printing.jscode.JavascriptCodePrinter(settings={})[source]

    “A Printer to convert Python expressions to strings of JavaScript code

    @@ -2151,7 +2151,7 @@

    Fortran Printing
    -indent_code(code)[source]
    +indent_code(code)[source]

    Accepts a string of code or a list of code lines

    @@ -2159,7 +2159,7 @@

    Fortran Printing
    -sympy.printing.jscode.jscode(expr, assign_to=None, **settings)[source]
    +sympy.printing.jscode.jscode(expr, assign_to=None, **settings)[source]

    Converts an expr to a string of javascript code

    Parameters:
    @@ -2293,7 +2293,7 @@

    Fortran Printing
    -class sympy.printing.julia.JuliaCodePrinter(settings={})[source]
    +class sympy.printing.julia.JuliaCodePrinter(settings={})[source]

    A printer to convert expressions to strings of Julia code.

    @@ -2302,7 +2302,7 @@

    Fortran Printing
    -indent_code(code)[source]
    +indent_code(code)[source]

    Accepts a string of code or a list of code lines

    @@ -2310,7 +2310,7 @@

    Fortran Printing
    -sympy.printing.julia.julia_code(expr, assign_to=None, **settings)[source]
    +sympy.printing.julia.julia_code(expr, assign_to=None, **settings)[source]

    Converts \(expr\) to a string of Julia code.

    Parameters:
    @@ -2477,7 +2477,7 @@

    Fortran Printing
    -class sympy.printing.octave.OctaveCodePrinter(settings={})[source]
    +class sympy.printing.octave.OctaveCodePrinter(settings={})[source]

    A printer to convert expressions to strings of Octave/Matlab code.

    @@ -2486,7 +2486,7 @@

    Fortran Printing
    -indent_code(code)[source]
    +indent_code(code)[source]

    Accepts a string of code or a list of code lines

    @@ -2494,7 +2494,7 @@

    Fortran Printing
    -sympy.printing.octave.octave_code(expr, assign_to=None, **settings)[source]
    +sympy.printing.octave.octave_code(expr, assign_to=None, **settings)[source]

    Converts \(expr\) to a string of Octave (or Matlab) code.

    The string uses a subset of the Octave language for Matlab compatibility.

    @@ -2654,7 +2654,7 @@

    Fortran Printing
    -class sympy.printing.rust.RustCodePrinter(settings={})[source]
    +class sympy.printing.rust.RustCodePrinter(settings={})[source]

    A printer to convert SymPy expressions to strings of Rust code

    @@ -2663,7 +2663,7 @@

    Fortran Printing
    -indent_code(code)[source]
    +indent_code(code)[source]

    Accepts a string of code or a list of code lines

    @@ -2671,7 +2671,7 @@

    Fortran Printing
    -sympy.printing.codeprinter.rust_code(expr, assign_to=None, **settings)[source]
    +sympy.printing.codeprinter.rust_code(expr, assign_to=None, **settings)[source]

    Converts an expr to a string of Rust code

    Parameters:
    @@ -2798,7 +2798,7 @@

    Fortran Printing

    Aesara Code printing

    -class sympy.printing.aesaracode.AesaraPrinter(*args, **kwargs)[source]
    +class sympy.printing.aesaracode.AesaraPrinter(*args, **kwargs)[source]

    Code printer which creates Aesara symbolic expression graphs.

    Parameters:
    @@ -2839,7 +2839,7 @@

    Fortran Printingbroadcastables=None,

    -)[source] +)[source]

    Convert a SymPy expression to a Aesara graph variable.

    The dtypes and broadcastables arguments are used to specify the data type, dimension, and broadcasting behavior of the Aesara variables @@ -2883,7 +2883,7 @@

    Fortran Printing
    -sympy.printing.aesaracode.aesara_code(expr, cache=None, **kwargs)[source]
    +sympy.printing.aesaracode.aesara_code(expr, cache=None, **kwargs)[source]

    Convert a SymPy expression into a Aesara graph variable.

    Parameters:
    @@ -2929,7 +2929,7 @@

    Fortran Printing**kwargs,

    -)[source] +)[source]

    Create a Aesara function from SymPy expressions.

    The inputs and outputs are converted to Aesara variables using aesara_code() and then passed to aesara.function.

    @@ -3033,7 +3033,7 @@

    Fortran Printingbroadcastables=None,

    -)[source] +)[source]

    Get value of broadcastables argument to aesara_code() from keyword arguments to aesara_function().

    Included for backwards compatibility.

    @@ -3084,7 +3084,7 @@

    Fortran Printing
    -sympy.printing.gtk.print_gtk(x, start_viewer=True)[source]
    +sympy.printing.gtk.print_gtk(x, start_viewer=True)[source]

    Print to Gtkmathview, a gtk widget capable of rendering MathML.

    Needs libgtkmathview-bin

    @@ -3096,7 +3096,7 @@

    Fortran Printingsympy.utilities.lambdify.lambdify() function.

    -class sympy.printing.lambdarepr.LambdaPrinter(settings=None)[source]
    +class sympy.printing.lambdarepr.LambdaPrinter(settings=None)[source]

    This printer converts expressions into strings that can be used by lambdify.

    @@ -3108,7 +3108,7 @@

    Fortran Printing
    -sympy.printing.lambdarepr.lambdarepr(expr, **settings)[source]
    +sympy.printing.lambdarepr.lambdarepr(expr, **settings)[source]

    Returns a string usable for lambdifying.

    @@ -3126,7 +3126,7 @@

    Fortran Printing
    -class sympy.printing.latex.LatexPrinter(settings=None)[source]
    +class sympy.printing.latex.LatexPrinter(settings=None)[source]
    printmethod: str = '_latex'
    @@ -3134,7 +3134,7 @@

    Fortran Printing
    -parenthesize_super(s)[source]
    +parenthesize_super(s)[source]

    Protect superscripts in s

    If the parenthesize_super option is set, protect with parentheses, else wrap in braces.

    @@ -3437,7 +3437,7 @@

    Fortran Printing
    -sympy.printing.latex.print_latex(expr, **settings)[source]
    +sympy.printing.latex.print_latex(expr, **settings)[source]

    Prints LaTeX representation of the given expression. Takes the same settings as latex().

    @@ -3449,12 +3449,12 @@

    Fortran Printinghttps://www.w3.org/TR/MathML2

    -class sympy.printing.mathml.MathMLPrinterBase(settings=None)[source]
    +class sympy.printing.mathml.MathMLPrinterBase(settings=None)[source]

    Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter.

    -doprint(expr)[source]
    +doprint(expr)[source]

    Prints the expression as MathML.

    @@ -3462,7 +3462,7 @@

    Fortran Printing
    -class sympy.printing.mathml.MathMLContentPrinter(settings=None)[source]
    +class sympy.printing.mathml.MathMLContentPrinter(settings=None)[source]

    Prints an expression to the Content MathML markup language.

    References: https://www.w3.org/TR/MathML2/chapter4.html

    @@ -3472,7 +3472,7 @@

    Fortran Printing
    -mathml_tag(e)[source]
    +mathml_tag(e)[source]

    Returns the MathML tag for an expression.

    @@ -3480,7 +3480,7 @@

    Fortran Printing
    -class sympy.printing.mathml.MathMLPresentationPrinter(settings=None)[source]
    +class sympy.printing.mathml.MathMLPresentationPrinter(settings=None)[source]

    Prints an expression to the Presentation MathML markup language.

    References: https://www.w3.org/TR/MathML2/chapter3.html

    @@ -3490,7 +3490,7 @@

    Fortran Printing
    -mathml_tag(e)[source]
    +mathml_tag(e)[source]

    Returns the MathML tag for an expression.

    @@ -3527,7 +3527,7 @@

    Fortran Printing
    -sympy.printing.mathml.print_mathml(expr, printer='content', **settings)[source]
    +sympy.printing.mathml.print_mathml(expr, printer='content', **settings)[source]

    Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML.

    Examples

    @@ -3557,13 +3557,13 @@

    Fortran Printing
    -class sympy.printing.pycode.MpmathPrinter(settings=None)[source]
    +class sympy.printing.pycode.MpmathPrinter(settings=None)[source]

    Lambda printer for mpmath which maintains precision for floats

    -sympy.printing.pycode.pycode(expr, **settings)[source]
    +sympy.printing.pycode.pycode(expr, **settings)[source]

    Converts an expr to a string of Python code

    Parameters:
    @@ -3625,7 +3625,7 @@

    Fortran Printingstr() or print().

    -class sympy.printing.repr.ReprPrinter(settings=None)[source]
    +class sympy.printing.repr.ReprPrinter(settings=None)[source]
    printmethod: str = '_sympyrepr'
    @@ -3633,13 +3633,13 @@

    Fortran Printing
    -emptyPrinter(expr)[source]
    +emptyPrinter(expr)[source]

    The fallback printer.

    -reprify(args, sep)[source]
    +reprify(args, sep)[source]

    Prints each item in \(args\) and joins them with \(sep\).

    @@ -3657,7 +3657,7 @@

    Fortran Printing
    -class sympy.printing.str.StrPrinter(settings=None)[source]
    +class sympy.printing.str.StrPrinter(settings=None)[source]
    printmethod: str = '_sympystr'
    @@ -3725,7 +3725,7 @@

    Fortran Printing
    -sympy.printing.tree.pprint_nodes(subtrees)[source]
    +sympy.printing.tree.pprint_nodes(subtrees)[source]

    Prettyprints systems of nodes.

    Examples

    >>> from sympy.printing.tree import pprint_nodes
    @@ -3740,7 +3740,7 @@ 

    Fortran Printing
    -sympy.printing.tree.print_node(node, assumptions=True)[source]
    +sympy.printing.tree.print_node(node, assumptions=True)[source]

    Returns information about the “node”.

    This includes class name, string representation and assumptions.

    @@ -3755,7 +3755,7 @@

    Fortran Printing
    -sympy.printing.tree.tree(node, assumptions=True)[source]
    +sympy.printing.tree.tree(node, assumptions=True)[source]

    Returns a tree representation of “node” as a string.

    It uses print_node() together with pprint_nodes() on node.args recursively.

    @@ -3779,7 +3779,7 @@

    Fortran Printing
    -sympy.printing.tree.print_tree(node, assumptions=True)[source]
    +sympy.printing.tree.print_tree(node, assumptions=True)[source]

    Prints a tree representation of “node”.

    Parameters:
    @@ -3880,7 +3880,7 @@

    Preview
    **latex_settings,

    -)[source] +)[source]

    View expression or LaTeX markup in PNG, DVI, PostScript or PDF form.

    If the expr argument is an expression, it will be exported to LaTeX and then compiled using the available TeX distribution. The first argument, @@ -3979,7 +3979,7 @@

    Preview

    Implementation - Helper Classes/Functions

    -sympy.printing.conventions.split_super_sub(text)[source]
    +sympy.printing.conventions.split_super_sub(text)[source]

    Split a symbol name into a name, superscripts and subscripts

    The first part of the symbol name is considered to be its actual ‘name’, followed by super- and subscripts. Each superscript is @@ -4003,7 +4003,7 @@

    Preview¶ easily translated to C or Fortran.

    -class sympy.printing.codeprinter.CodePrinter(settings=None)[source]
    +class sympy.printing.codeprinter.CodePrinter(settings=None)[source]

    The base class for code-printing subclasses.

    @@ -4012,7 +4012,7 @@

    Preview
    -doprint(expr, assign_to=None)[source]
    +doprint(expr, assign_to=None)[source]

    Print the expression as code.

    Parameters:
    @@ -4033,7 +4033,7 @@

    Preview
    -exception sympy.printing.codeprinter.AssignmentError[source]
    +exception sympy.printing.codeprinter.AssignmentError[source]

    Raised if an assignment variable for a loop is missing.

    @@ -4065,7 +4065,7 @@

    Preview
    -sympy.printing.precedence.precedence(item)[source]
    +sympy.printing.precedence.precedence(item)[source]

    Returns the precedence of a given object.

    This is the precedence for StrPrinter.

    @@ -4076,38 +4076,38 @@

    Preview

    Pretty-Printing Implementation Helpers

    -sympy.printing.pretty.pretty_symbology.U(name)[source]
    +sympy.printing.pretty.pretty_symbology.U(name)[source]

    Get a unicode character by name or, None if not found.

    This exists because older versions of Python use older unicode databases.

    -sympy.printing.pretty.pretty_symbology.pretty_use_unicode(flag=None)[source]
    +sympy.printing.pretty.pretty_symbology.pretty_use_unicode(flag=None)[source]

    Set whether pretty-printer should use unicode by default

    -sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode()[source]
    +sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode()[source]

    See if unicode output is available and leverage it if possible

    -sympy.printing.pretty.pretty_symbology.xstr(*args)[source]
    +sympy.printing.pretty.pretty_symbology.xstr(*args)[source]

    The following two functions return the Unicode version of the inputted Greek letter.

    -sympy.printing.pretty.pretty_symbology.g(l)[source]
    +sympy.printing.pretty.pretty_symbology.g(l)[source]
    -sympy.printing.pretty.pretty_symbology.G(l)[source]
    +sympy.printing.pretty.pretty_symbology.G(l)[source]
    @@ -4143,21 +4143,21 @@

    Preview

    The following functions return Unicode vertical objects.

    -sympy.printing.pretty.pretty_symbology.xobj(symb, length)[source]
    +sympy.printing.pretty.pretty_symbology.xobj(symb, length)[source]

    Construct spatial object of given length.

    return: [] of equal-length strings

    -sympy.printing.pretty.pretty_symbology.vobj(symb, height)[source]
    +sympy.printing.pretty.pretty_symbology.vobj(symb, height)[source]

    Construct vertical object of a given height

    see: xobj

    -sympy.printing.pretty.pretty_symbology.hobj(symb, width)[source]
    +sympy.printing.pretty.pretty_symbology.hobj(symb, width)[source]

    Construct horizontal object of a given width

    see: xobj

    @@ -4170,7 +4170,7 @@

    Preview
    -sympy.printing.pretty.pretty_symbology.VF(txt)[source]
    +sympy.printing.pretty.pretty_symbology.VF(txt)[source]
    @@ -4181,7 +4181,7 @@

    Preview

    The following constants/functions are for rendering atoms and symbols.

    -sympy.printing.pretty.pretty_symbology.xsym(sym)[source]
    +sympy.printing.pretty.pretty_symbology.xsym(sym)[source]

    get symbology for a ‘character’

    @@ -4192,19 +4192,19 @@

    Preview
    -sympy.printing.pretty.pretty_symbology.pretty_atom(atom_name, default=None, printer=None)[source]
    +sympy.printing.pretty.pretty_symbology.pretty_atom(atom_name, default=None, printer=None)[source]

    return pretty representation of an atom

    -sympy.printing.pretty.pretty_symbology.pretty_symbol(symb_name, bold_name=False)[source]
    +sympy.printing.pretty.pretty_symbology.pretty_symbol(symb_name, bold_name=False)[source]

    return pretty representation of a symbol

    -sympy.printing.pretty.pretty_symbology.annotated(letter)[source]
    +sympy.printing.pretty.pretty_symbology.annotated(letter)[source]

    Return a stylised drawing of the letter letter, together with information on how to put annotations (super- and subscripts to the left and to the right) on it.

    @@ -4230,12 +4230,12 @@

    Preview

    -class sympy.printing.pretty.stringpict.stringPict(s, baseline=0)[source]
    +class sympy.printing.pretty.stringpict.stringPict(s, baseline=0)[source]

    An ASCII picture. The pictures are represented as a list of equal length strings.

    -above(*args)[source]
    +above(*args)[source]

    Put pictures above this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of bottom picture.

    @@ -4243,7 +4243,7 @@

    Preview
    -below(*args)[source]
    +below(*args)[source]

    Put pictures under this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of top picture

    @@ -4260,26 +4260,26 @@

    Preview
    -height()[source]
    +height()[source]

    The height of the picture in characters.

    -left(*args)[source]
    +left(*args)[source]

    Put pictures (left to right) at left. Returns string, baseline arguments for stringPict.

    -leftslash()[source]
    +leftslash()[source]

    Precede object by a slash of the proper size.

    -static next(*args)[source]
    +static next(*args)[source]

    Put a string of stringPicts next to each other. Returns string, baseline arguments for stringPict.

    @@ -4294,7 +4294,7 @@

    Preview
    ifascii_nougly=False,

    -)[source] +)[source]

    Put parentheses around self. Returns string, baseline arguments for stringPict.

    left or right can be None or empty string which means ‘no paren from @@ -4303,7 +4303,7 @@

    Preview
    -render(*args, **kwargs)[source]
    +render(*args, **kwargs)[source]

    Return the string form of self.

    Unless the argument line_break is set to False, it will break the expression in a form that can be printed @@ -4312,7 +4312,7 @@

    Preview
    -right(*args)[source]
    +right(*args)[source]

    Put pictures next to this one. Returns string, baseline arguments for stringPict. (Multiline) strings are allowed, and are given a baseline of 0.

    @@ -4328,14 +4328,14 @@

    Preview
    -root(n=None)[source]
    +root(n=None)[source]

    Produce a nice root symbol. Produces ugly results for big n inserts.

    -static stack(*args)[source]
    +static stack(*args)[source]

    Put pictures on top of each other, from top to bottom. Returns string, baseline arguments for stringPict. @@ -4348,13 +4348,13 @@

    Preview
    -terminal_width()[source]
    +terminal_width()[source]

    Return the terminal width if possible, otherwise return 0.

    -width()[source]
    +width()[source]

    The width of the picture in characters.

    @@ -4362,7 +4362,7 @@

    Preview
    -class sympy.printing.pretty.stringpict.prettyForm(s, baseline=0, binding=0, unicode=None)[source]
    +class sympy.printing.pretty.stringpict.prettyForm(s, baseline=0, binding=0, unicode=None)[source]

    Extension of the stringPict class that knows about basic math applications, optimizing double minus signs.

    “Binding” is interpreted as follows:

    @@ -4380,7 +4380,7 @@

    Preview

    -static apply(function, *args)[source]
    +static apply(function, *args)[source]

    Functions of one or more variables.

    @@ -4407,7 +4407,7 @@

    dotprint
    **kwargs,

    -)[source] +)[source]

    DOT description of a SymPy expression tree

    Parameters:
    diff --git a/dev/modules/rewriting.html b/dev/modules/rewriting.html index 92ad652f10e..a5d497d681d 100644 --- a/dev/modules/rewriting.html +++ b/dev/modules/rewriting.html @@ -914,7 +914,7 @@

    Common Subexpression Detection and Collectionlist=True,

    -)[source] +)[source]

    Perform common subexpression elimination on an expression.

    Parameters:
    diff --git a/dev/modules/series/formal.html b/dev/modules/series/formal.html index 58430169089..103592544eb 100644 --- a/dev/modules/series/formal.html +++ b/dev/modules/series/formal.html @@ -803,7 +803,7 @@

    Formal Power Series
    -class sympy.series.formal.FormalPowerSeries(*args)[source]
    +class sympy.series.formal.FormalPowerSeries(*args)[source]

    Represents Formal Power Series of a function.

    Explanation

    No computation is performed. This class should only to be used to represent @@ -815,7 +815,7 @@

    Formal Power Series
    -coeff_bell(n)[source]
    +coeff_bell(n)[source]

    self.coeff_bell(n) returns a sequence of Bell polynomials of the second kind. Note that n should be a integer.

    The second kind of Bell polynomials (are sometimes called “partial” Bell @@ -841,7 +841,7 @@

    Formal Power Series
    -compose(other, x=None, n=6)[source]
    +compose(other, x=None, n=6)[source]

    Returns the truncated terms of the formal power series of the composed function, up to specified n.

    @@ -897,7 +897,7 @@

    Formal Power Series
    -integrate(x=None, **kwargs)[source]
    +integrate(x=None, **kwargs)[source]

    Integrate Formal Power Series.

    Examples

    >>> from sympy import fps, sin, integrate
    @@ -913,7 +913,7 @@ 

    Formal Power Series
    -inverse(x=None, n=6)[source]
    +inverse(x=None, n=6)[source]

    Returns the truncated terms of the inverse of the formal power series, up to specified n.

    @@ -963,7 +963,7 @@

    Formal Power Series
    -polynomial(n=6)[source]
    +polynomial(n=6)[source]

    Truncated series as polynomial.

    Explanation

    Returns series expansion of f upto order O(x**n) @@ -972,7 +972,7 @@

    Formal Power Series
    -product(other, x=None, n=6)[source]
    +product(other, x=None, n=6)[source]

    Multiplies two Formal Power Series, using discrete convolution and return the truncated terms upto specified order.

    @@ -1003,7 +1003,7 @@

    Formal Power Series
    -truncate(n=6)[source]
    +truncate(n=6)[source]

    Truncated series.

    Explanation

    Returns truncated series expansion of f upto @@ -1028,7 +1028,7 @@

    Formal Power Seriesfull=False,

    -)[source] +)[source]

    Generates Formal Power Series of f.

    Parameters:
    @@ -1116,7 +1116,7 @@

    Formal Power Seriesfull=False,

    -)[source] +)[source]

    Computes the formula for Formal Power Series of a function.

    Parameters:
    @@ -1186,7 +1186,7 @@

    Formal Power Series
    -class sympy.series.formal.FormalPowerSeriesCompose(*args)[source]
    +class sympy.series.formal.FormalPowerSeriesCompose(*args)[source]

    Represents the composed formal power series of two functions.

    Explanation

    No computation is performed. Terms are calculated using a term by term logic, @@ -1211,7 +1211,7 @@

    Formal Power Series
    -class sympy.series.formal.FormalPowerSeriesInverse(*args)[source]
    +class sympy.series.formal.FormalPowerSeriesInverse(*args)[source]

    Represents the Inverse of a formal power series.

    Explanation

    No computation is performed. Terms are calculated using a term by term logic, @@ -1234,7 +1234,7 @@

    Formal Power Series
    -class sympy.series.formal.FormalPowerSeriesProduct(*args)[source]
    +class sympy.series.formal.FormalPowerSeriesProduct(*args)[source]

    Represents the product of two formal power series of two functions.

    Explanation

    No computation is performed. Terms are calculated using a term by term logic, @@ -1257,7 +1257,7 @@

    Formal Power Series
    -class sympy.series.formal.FiniteFormalPowerSeries(*args)[source]
    +class sympy.series.formal.FiniteFormalPowerSeries(*args)[source]

    Base Class for Product, Compose and Inverse classes

    @@ -1265,7 +1265,7 @@

    Formal Power Series

    -sympy.series.formal.rational_independent(terms, x)[source]
    +sympy.series.formal.rational_independent(terms, x)[source]

    Returns a list of all the rationally independent terms.

    Examples

    >>> from sympy import sin, cos
    @@ -1283,7 +1283,7 @@ 

    Rational Algorithm
    -sympy.series.formal.rational_algorithm(f, x, k, order=4, full=False)[source]
    +sympy.series.formal.rational_algorithm(f, x, k, order=4, full=False)[source]

    Rational algorithm for computing formula of coefficients of Formal Power Series of a function.

    @@ -1359,7 +1359,7 @@

    Rational Algorithm

    -sympy.series.formal.simpleDE(f, x, g, order=4)[source]
    +sympy.series.formal.simpleDE(f, x, g, order=4)[source]

    Generates simple DE.

    Explanation

    DE is of the form

    @@ -1375,7 +1375,7 @@

    Hypergeometric Algorithm
    -sympy.series.formal.exp_re(DE, r, k)[source]
    +sympy.series.formal.exp_re(DE, r, k)[source]

    Converts a DE with constant coefficients (explike) into a RE.

    Explanation

    Performs the substitution:

    @@ -1405,7 +1405,7 @@

    Hypergeometric Algorithm
    -sympy.series.formal.hyper_re(DE, r, k)[source]
    +sympy.series.formal.hyper_re(DE, r, k)[source]

    Converts a DE into a RE.

    Explanation

    Performs the substitution:

    @@ -1435,7 +1435,7 @@

    Hypergeometric Algorithm
    -sympy.series.formal.rsolve_hypergeometric(f, x, P, Q, k, m)[source]
    +sympy.series.formal.rsolve_hypergeometric(f, x, P, Q, k, m)[source]

    Solves RE of hypergeometric type.

    Returns:
    @@ -1491,7 +1491,7 @@

    Hypergeometric Algorithm
    -sympy.series.formal.solve_de(f, x, DE, order, g, k)[source]
    +sympy.series.formal.solve_de(f, x, DE, order, g, k)[source]

    Solves the DE.

    Returns:
    @@ -1527,7 +1527,7 @@

    Hypergeometric Algorithm
    -sympy.series.formal.hyper_algorithm(f, x, k, order=4)[source]
    +sympy.series.formal.hyper_algorithm(f, x, k, order=4)[source]

    Hypergeometric algorithm for computing Formal Power Series.

    Explanation

    diff --git a/dev/modules/series/fourier.html b/dev/modules/series/fourier.html index 96011817807..91f79763a1e 100644 --- a/dev/modules/series/fourier.html +++ b/dev/modules/series/fourier.html @@ -803,7 +803,7 @@

    Fourier Series
    -class sympy.series.fourier.FourierSeries(*args)[source]
    +class sympy.series.fourier.FourierSeries(*args)[source]

    Represents Fourier sine/cosine series.

    Explanation

    This class only represents a fourier series. @@ -816,7 +816,7 @@

    Fourier Series
    -scale(s)[source]
    +scale(s)[source]

    Scale the function by a term independent of x.

    Explanation

    f(x) -> s * f(x)

    @@ -834,7 +834,7 @@

    Fourier Series
    -scalex(s)[source]
    +scalex(s)[source]

    Scale x by a term independent of x.

    Explanation

    f(x) -> f(s*x)

    @@ -852,7 +852,7 @@

    Fourier Series
    -shift(s)[source]
    +shift(s)[source]

    Shift the function by a term independent of x.

    Explanation

    f(x) -> f(x) + s

    @@ -870,7 +870,7 @@

    Fourier Series
    -shiftx(s)[source]
    +shiftx(s)[source]

    Shift x by a term independent of x.

    Explanation

    f(x) -> f(x + s)

    @@ -888,7 +888,7 @@

    Fourier Series
    -sigma_approximation(n=3)[source]
    +sigma_approximation(n=3)[source]

    Return \(\sigma\)-approximation of Fourier series with respect to order n.

    @@ -955,7 +955,7 @@

    Fourier Series
    -truncate(n=3)[source]
    +truncate(n=3)[source]

    Return the first n nonzero terms of the series.

    If n is None return an iterator.

    @@ -990,7 +990,7 @@

    Fourier Series
    -sympy.series.fourier.fourier_series(f, limits=None, finite=True)[source]
    +sympy.series.fourier.fourier_series(f, limits=None, finite=True)[source]

    Computes the Fourier trigonometric series expansion.

    Parameters:
    diff --git a/dev/modules/series/limitseq.html b/dev/modules/series/limitseq.html index 8909322b422..51aaff960d8 100644 --- a/dev/modules/series/limitseq.html +++ b/dev/modules/series/limitseq.html @@ -803,7 +803,7 @@

    Limits of Sequences
    -sympy.series.limitseq.difference_delta(expr, n=None, step=1)[source]
    +sympy.series.limitseq.difference_delta(expr, n=None, step=1)[source]

    Difference Operator.

    Explanation

    Discrete analog of differential operator. Given a sequence x[n], @@ -828,7 +828,7 @@

    Limits of Sequences
    -sympy.series.limitseq.dominant(expr, n)[source]
    +sympy.series.limitseq.dominant(expr, n)[source]

    Finds the dominant term in a sum, that is a term that dominates every other term.

    Explanation

    @@ -854,7 +854,7 @@

    Limits of Sequences
    -sympy.series.limitseq.limit_seq(expr, n=None, trials=5)[source]
    +sympy.series.limitseq.limit_seq(expr, n=None, trials=5)[source]

    Finds the limit of a sequence as index n tends to infinity.

    Parameters:
    diff --git a/dev/modules/series/sequences.html b/dev/modules/series/sequences.html index b323032b568..4ff6c657d8d 100644 --- a/dev/modules/series/sequences.html +++ b/dev/modules/series/sequences.html @@ -803,7 +803,7 @@

    Sequences
    -sympy.series.sequences.sequence(seq, limits=None)[source]
    +sympy.series.sequences.sequence(seq, limits=None)[source]

    Returns appropriate sequence object.

    Explanation

    If seq is a SymPy sequence, returns SeqPer object @@ -827,17 +827,17 @@

    Sequences

    -class sympy.series.sequences.SeqBase(*args)[source]
    +class sympy.series.sequences.SeqBase(*args)[source]

    Base class for sequences

    -coeff(pt)[source]
    +coeff(pt)[source]

    Returns the coefficient at point pt

    -coeff_mul(other)[source]
    +coeff_mul(other)[source]

    Should be used when other is not a sequence. Should be defined to define custom behaviour.

    Examples

    @@ -861,7 +861,7 @@

    Sequences Basegfvar=None,

    -)[source] +)[source]

    Finds the shortest linear recurrence that satisfies the first n terms of sequence of order \(\leq\) n/2 if possible. If d is specified, find shortest linear recurrence of order @@ -951,7 +951,7 @@

    Sequences Base

    -class sympy.series.sequences.SeqFormula(formula, limits=None)[source]
    +class sympy.series.sequences.SeqFormula(formula, limits=None)[source]

    Represents sequence based on a formula.

    Elements are generated using a formula.

    Examples

    @@ -988,7 +988,7 @@

    Elementary Sequences
    -coeff_mul(coeff)[source]
    +coeff_mul(coeff)[source]

    See docstring of SeqBase.coeff_mul

    @@ -996,7 +996,7 @@

    Elementary Sequences
    -class sympy.series.sequences.SeqPer(periodical, limits=None)[source]
    +class sympy.series.sequences.SeqPer(periodical, limits=None)[source]

    Represents a periodic sequence.

    The elements are repeated after a given period.

    Examples

    @@ -1042,7 +1042,7 @@

    Elementary Sequences
    -coeff_mul(coeff)[source]
    +coeff_mul(coeff)[source]

    See docstring of SeqBase.coeff_mul

    @@ -1053,7 +1053,7 @@

    Elementary SequencesSingleton Sequences

    -class sympy.series.sequences.EmptySequence[source]
    +class sympy.series.sequences.EmptySequence[source]

    Represents an empty sequence.

    The empty sequence is also available as a singleton as S.EmptySequence.

    @@ -1072,7 +1072,7 @@

    Singleton Sequences
    -coeff_mul(coeff)[source]
    +coeff_mul(coeff)[source]

    See docstring of SeqBase.coeff_mul

    @@ -1083,7 +1083,7 @@

    Singleton Sequences

    -class sympy.series.sequences.SeqAdd(*args, **kwargs)[source]
    +class sympy.series.sequences.SeqAdd(*args, **kwargs)[source]

    Represents term-wise addition of sequences.

    Rules:
    -)[source] +)[source]

    A finite degree recursive sequence.

    Parameters:
    diff --git a/dev/modules/series/series.html b/dev/modules/series/series.html index a3e496e9c7f..483e0273e44 100644 --- a/dev/modules/series/series.html +++ b/dev/modules/series/series.html @@ -805,7 +805,7 @@

    LimitsThe main purpose of this module is the computation of limits.

    -sympy.series.limits.limit(e, z, z0, dir='+')[source]
    +sympy.series.limits.limit(e, z, z0, dir='+')[source]

    Computes the limit of e(z) at the point z0.

    Parameters:
    @@ -859,7 +859,7 @@

    Limits
    -class sympy.series.limits.Limit(e, z, z0, dir='+')[source]
    +class sympy.series.limits.Limit(e, z, z0, dir='+')[source]

    Represents an unevaluated limit.

    Examples

    >>> from sympy import Limit, sin
    @@ -872,7 +872,7 @@ 

    Limits
    -doit(**hints)[source]
    +doit(**hints)[source]

    Evaluates the limit.

    Parameters:
    @@ -968,7 +968,7 @@

    Notes

    Reference

    -sympy.series.gruntz.gruntz(e, z, z0, dir='+')[source]
    +sympy.series.gruntz.gruntz(e, z, z0, dir='+')[source]

    Compute the limit of e(z) at the point z0 using the Gruntz algorithm.

    Explanation

    z0 can be any expression, including oo and -oo.

    @@ -982,13 +982,13 @@

    Reference
    -sympy.series.gruntz.compare(a, b, x)[source]
    +sympy.series.gruntz.compare(a, b, x)[source]

    Returns “<” if a<b, “=” for a == b, “>” for a>b

    -sympy.series.gruntz.rewrite(e, Omega, x, wsym)[source]
    +sympy.series.gruntz.rewrite(e, Omega, x, wsym)[source]

    e(x) … the function Omega … the mrv set wsym … the symbol which is going to be used for w

    @@ -998,7 +998,7 @@

    Reference
    -sympy.series.gruntz.build_expression_tree(Omega, rewrites)[source]
    +sympy.series.gruntz.build_expression_tree(Omega, rewrites)[source]

    Helper function for rewrite.

    We need to sort Omega (mrv set) so that we replace an expression before we replace any expression in terms of which it has to be rewritten:

    @@ -1014,26 +1014,26 @@

    Reference
    -sympy.series.gruntz.mrv_leadterm(e, x)[source]
    +sympy.series.gruntz.mrv_leadterm(e, x)[source]

    Returns (c0, e0) for e.

    -sympy.series.gruntz.calculate_series(e, x, logx=None)[source]
    +sympy.series.gruntz.calculate_series(e, x, logx=None)[source]

    Calculates at least one term of the series of e in x.

    This is a place that fails most often, so it is in its own function.

    -sympy.series.gruntz.limitinf(e, x)[source]
    +sympy.series.gruntz.limitinf(e, x)[source]

    Limit e(x) for x-> oo.

    -sympy.series.gruntz.sign(e, x)[source]
    +sympy.series.gruntz.sign(e, x)[source]

    Returns a sign of an expression e(x) for x->oo.

    e >  0 for x sufficiently large ...  1
     e == 0 for x sufficiently large ...  0
    @@ -1049,14 +1049,14 @@ 

    Reference
    -sympy.series.gruntz.mrv(e, x)[source]
    +sympy.series.gruntz.mrv(e, x)[source]

    Returns a SubsSet of most rapidly varying (mrv) subexpressions of ‘e’, and e rewritten in terms of these

    -sympy.series.gruntz.mrv_max1(f, g, exps, x)[source]
    +sympy.series.gruntz.mrv_max1(f, g, exps, x)[source]

    Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. mrv_max1() compares (two elements of) f and g and returns the set, which is in the higher comparability class @@ -1066,7 +1066,7 @@

    Reference
    -sympy.series.gruntz.mrv_max3(f, expsf, g, expsg, union, expsboth, x)[source]
    +sympy.series.gruntz.mrv_max3(f, expsf, g, expsg, union, expsboth, x)[source]

    Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. max() compares (two elements of) f and g and returns either (f, expsf) [if f is larger], (g, expsg) @@ -1075,7 +1075,7 @@

    Reference
    -class sympy.series.gruntz.SubsSet[source]
    +class sympy.series.gruntz.SubsSet[source]

    Stores (expr, dummy) pairs, and how to rewrite expr-s.

    Explanation

    The gruntz algorithm needs to rewrite certain expressions in term of a new @@ -1119,25 +1119,25 @@

    Reference
    -copy()[source]
    +copy()[source]

    Create a shallow copy of SubsSet

    -do_subs(e)[source]
    +do_subs(e)[source]

    Substitute the variables with expressions

    -meets(s2)[source]
    +meets(s2)[source]

    Tell whether or not self and s2 have non-empty intersection

    -union(s2, exps=None)[source]
    +union(s2, exps=None)[source]

    Compute the union of self and s2, adjusting exps

    @@ -1164,7 +1164,7 @@

    Examples

    Reference

    -sympy.series.series.series(expr, x=None, x0=0, n=6, dir='+')[source]
    +sympy.series.series.series(expr, x=None, x0=0, n=6, dir='+')[source]

    Series expansion of expr around point \(x = x0\).

    Parameters:
    @@ -1253,7 +1253,7 @@

    ExamplesReference

    -class sympy.series.order.Order(expr, *args, **kwargs)[source]
    +class sympy.series.order.Order(expr, *args, **kwargs)[source]

    Represents the limiting behavior of some function.

    Explanation

    The order of a function characterizes the function based on the limiting @@ -1361,7 +1361,7 @@

    Reference
    -contains(expr)[source]
    +contains(expr)[source]

    Return True if expr belongs to Order(self.expr, *self.variables). Return False if self belongs to expr. Return None if the inclusion relation cannot be determined @@ -1379,7 +1379,7 @@

    Series Acceleration

    -sympy.series.acceleration.richardson(A, k, n, N)[source]
    +sympy.series.acceleration.richardson(A, k, n, N)[source]

    Calculate an approximation for lim k->oo A(k) using Richardson extrapolation with the terms A(n), A(n+1), …, A(n+N+1). Choosing N ~= 2*n often gives good results.

    @@ -1425,7 +1425,7 @@

    Reference
    -sympy.series.acceleration.shanks(A, k, n, m=1)[source]
    +sympy.series.acceleration.shanks(A, k, n, m=1)[source]

    Calculate an approximation for lim k->oo A(k) using the n-term Shanks transformation S(A)(n). With m > 1, calculate the m-fold recursive Shanks transformation S(S(…S(A)…))(n).

    @@ -1455,7 +1455,7 @@

    Residues

    Reference

    -sympy.series.residues.residue(expr, x, x0)[source]
    +sympy.series.residues.residue(expr, x, x0)[source]

    Finds the residue of expr at the point x=x0.

    The residue is defined as the coefficient of 1/(x-x0) in the power series expansion about x=x0.

    diff --git a/dev/modules/sets.html b/dev/modules/sets.html index 5094d043824..b48203c0cd0 100644 --- a/dev/modules/sets.html +++ b/dev/modules/sets.html @@ -804,7 +804,7 @@
    Documentation Version

    Basic Sets

    -class sympy.sets.sets.Set(*args)[source]
    +class sympy.sets.sets.Set(*args)[source]

    The base class for any kind of set.

    Explanation

    This is not meant to be used directly as a container of items. It does not @@ -857,7 +857,7 @@

    Documentation Version
    -complement(universe)[source]
    +complement(universe)[source]

    The complement of ‘self’ w.r.t the given universe.

    Examples

    >>> from sympy import Interval, S
    @@ -873,7 +873,7 @@ 
    Documentation Version
    -contains(other)[source]
    +contains(other)[source]

    Returns a SymPy value indicating whether other is contained in self: true if it is, false if it is not, else an unevaluated Contains expression (or, as in the case of @@ -940,7 +940,7 @@

    Documentation Version
    -intersect(other)[source]
    +intersect(other)[source]

    Returns the intersection of ‘self’ and ‘other’.

    Examples

    >>> from sympy import Interval
    @@ -961,7 +961,7 @@ 
    Documentation Version
    -intersection(other)[source]
    +intersection(other)[source]

    Alias for intersect()

    @@ -983,7 +983,7 @@
    Documentation Version
    -is_disjoint(other)[source]
    +is_disjoint(other)[source]

    Returns True if self and other are disjoint.

    Examples

    >>> from sympy import Interval
    @@ -1023,7 +1023,7 @@ 
    Documentation Version
    -is_proper_subset(other)[source]
    +is_proper_subset(other)[source]

    Returns True if self is a proper subset of other.

    Examples

    >>> from sympy import Interval
    @@ -1037,7 +1037,7 @@ 
    Documentation Version
    -is_proper_superset(other)[source]
    +is_proper_superset(other)[source]

    Returns True if self is a proper superset of other.

    Examples

    >>> from sympy import Interval
    @@ -1051,7 +1051,7 @@ 
    Documentation Version
    -is_subset(other)[source]
    +is_subset(other)[source]

    Returns True if self is a subset of other.

    Examples

    >>> from sympy import Interval
    @@ -1065,7 +1065,7 @@ 
    Documentation Version
    -is_superset(other)[source]
    +is_superset(other)[source]

    Returns True if self is a superset of other.

    Examples

    >>> from sympy import Interval
    @@ -1079,19 +1079,19 @@ 
    Documentation Version
    -isdisjoint(other)[source]
    +isdisjoint(other)[source]

    Alias for is_disjoint()

    -issubset(other)[source]
    +issubset(other)[source]

    Alias for is_subset()

    -issuperset(other)[source]
    +issuperset(other)[source]

    Alias for is_superset()

    @@ -1171,7 +1171,7 @@
    Documentation Version
    -powerset()[source]
    +powerset()[source]

    Find the Power set of self.

    Examples

    >>> from sympy import EmptySet, FiniteSet, Interval
    @@ -1220,7 +1220,7 @@ 
    Documentation Version
    -symmetric_difference(other)[source]
    +symmetric_difference(other)[source]

    Returns symmetric difference of self and other.

    Examples

    >>> from sympy import Interval, S
    @@ -1246,7 +1246,7 @@ 
    Documentation Version
    -union(other)[source]
    +union(other)[source]

    Returns the union of self and other.

    Examples

    As a shortcut it is possible to use the + operator:

    @@ -1272,7 +1272,7 @@
    Documentation Version
    -sympy.sets.sets.imageset(*args)[source]
    +sympy.sets.sets.imageset(*args)[source]

    Return an image of the set under transformation f.

    Explanation

    If this function cannot compute the image, it returns an @@ -1332,7 +1332,7 @@

    Elementary Setsright_open=False,

    -)[source] +)[source]

    Represents a real interval as a Set.

    Usage:

    Returns an interval with end points start and end.

    @@ -1376,19 +1376,19 @@

    Elementary Sets
    -classmethod Lopen(a, b)[source]
    +classmethod Lopen(a, b)[source]

    Return an interval not including the left boundary.

    -classmethod Ropen(a, b)[source]
    +classmethod Ropen(a, b)[source]

    Return an interval not including the right boundary.

    -as_relational(x)[source]
    +as_relational(x)[source]

    Rewrite an interval in terms of inequalities and logic operators.

    @@ -1433,7 +1433,7 @@

    Elementary Sets
    -classmethod open(a, b)[source]
    +classmethod open(a, b)[source]

    Return an interval including neither boundary.

    @@ -1468,7 +1468,7 @@

    Elementary Sets
    -class sympy.sets.sets.FiniteSet(*args, **kwargs)[source]
    +class sympy.sets.sets.FiniteSet(*args, **kwargs)[source]

    Represents a finite set of Sympy expressions.

    Examples

    >>> from sympy import FiniteSet, Symbol, Interval, Naturals0
    @@ -1499,7 +1499,7 @@ 

    Elementary Sets
    -as_relational(symbol)[source]
    +as_relational(symbol)[source]

    Rewrite a FiniteSet in terms of equalities and logic operators.

    @@ -1510,7 +1510,7 @@

    Elementary Sets

    -class sympy.sets.sets.Union(*args, **kwargs)[source]
    +class sympy.sets.sets.Union(*args, **kwargs)[source]

    Represents a union of sets as a Set.

    Examples

    >>> from sympy import Union, Interval
    @@ -1537,7 +1537,7 @@ 

    Compound Sets
    -as_relational(symbol)[source]
    +as_relational(symbol)[source]

    Rewrite a Union in terms of equalities and logic operators.

    @@ -1545,7 +1545,7 @@

    Compound Sets
    -class sympy.sets.sets.Intersection(*args, evaluate=None)[source]
    +class sympy.sets.sets.Intersection(*args, evaluate=None)[source]

    Represents an intersection of sets as a Set.

    Examples

    >>> from sympy import Intersection, Interval
    @@ -1571,7 +1571,7 @@ 

    Compound Sets
    -as_relational(symbol)[source]
    +as_relational(symbol)[source]

    Rewrite an Intersection in terms of equalities and logic operators

    @@ -1579,7 +1579,7 @@

    Compound Sets
    -class sympy.sets.sets.ProductSet(*sets, **assumptions)[source]
    +class sympy.sets.sets.ProductSet(*sets, **assumptions)[source]

    Represents a Cartesian Product of Sets.

    Explanation

    Returns a Cartesian product given several sets as either an iterable @@ -1644,7 +1644,7 @@

    Compound Sets
    -class sympy.sets.sets.Complement(a, b, evaluate=True)[source]
    +class sympy.sets.sets.Complement(a, b, evaluate=True)[source]

    Represents the set difference or relative complement of a set with another set.

    @@ -1671,14 +1671,14 @@

    Compound Sets
    -as_relational(symbol)[source]
    +as_relational(symbol)[source]

    Rewrite a complement in terms of equalities and logic operators

    -static reduce(A, B)[source]
    +static reduce(A, B)[source]

    Simplify a Complement.

    @@ -1686,7 +1686,7 @@

    Compound Sets
    -class sympy.sets.sets.SymmetricDifference(a, b, evaluate=True)[source]
    +class sympy.sets.sets.SymmetricDifference(a, b, evaluate=True)[source]

    Represents the set of elements which are in either of the sets and not in their intersection.

    Examples

    @@ -1708,7 +1708,7 @@

    Compound Sets
    -as_relational(symbol)[source]
    +as_relational(symbol)[source]

    Rewrite a symmetric_difference in terms of equalities and logic operators

    @@ -1717,7 +1717,7 @@

    Compound Sets
    -class sympy.sets.sets.DisjointUnion(*sets)[source]
    +class sympy.sets.sets.DisjointUnion(*sets)[source]

    Represents the disjoint union (also known as the external disjoint union) of a finite number of sets.

    Examples

    @@ -1744,7 +1744,7 @@

    Compound Sets

    -class sympy.sets.sets.EmptySet[source]
    +class sympy.sets.sets.EmptySet[source]

    Represents the empty set. The empty set is available as a singleton as S.EmptySet.

    Examples

    @@ -1772,7 +1772,7 @@

    Singleton Sets
    -class sympy.sets.sets.UniversalSet[source]
    +class sympy.sets.sets.UniversalSet[source]

    Represents the set of all things. The universal set is available as a singleton as S.UniversalSet.

    Examples

    @@ -1803,7 +1803,7 @@

    Singleton Sets

    Special Sets

    -class sympy.sets.fancysets.Rationals[source]
    +class sympy.sets.fancysets.Rationals[source]

    Represents the rational numbers. This set is also available as the singleton S.Rationals.

    Examples

    @@ -1819,7 +1819,7 @@

    Singleton Sets
    -class sympy.sets.fancysets.Naturals[source]
    +class sympy.sets.fancysets.Naturals[source]

    Represents the natural numbers (or counting numbers) which are all positive integers starting from 1. This set is also available as the singleton S.Naturals.

    @@ -1851,7 +1851,7 @@

    Singleton Sets
    -class sympy.sets.fancysets.Naturals0[source]
    +class sympy.sets.fancysets.Naturals0[source]

    Represents the whole numbers which are all the non-negative integers, inclusive of zero.

    @@ -1867,7 +1867,7 @@

    Singleton Sets
    -class sympy.sets.fancysets.Integers[source]
    +class sympy.sets.fancysets.Integers[source]

    Represents all integers: positive, negative and zero. This set is also available as the singleton S.Integers.

    Examples

    @@ -1902,7 +1902,7 @@

    Singleton Sets
    -class sympy.sets.fancysets.Reals[source]
    +class sympy.sets.fancysets.Reals[source]

    Represents all real numbers from negative infinity to positive infinity, including all integer, rational and irrational numbers. @@ -1929,7 +1929,7 @@

    Singleton Sets
    -class sympy.sets.fancysets.Complexes[source]
    +class sympy.sets.fancysets.Complexes[source]

    The Set of all complex numbers

    Examples

    >>> from sympy import S, I
    @@ -1947,7 +1947,7 @@ 

    Singleton Sets
    -class sympy.sets.fancysets.ImageSet(flambda, *sets)[source]
    +class sympy.sets.fancysets.ImageSet(flambda, *sets)[source]

    Image of a set under a mathematical function. The transformation must be given as a Lambda function which has as many arguments as the elements of the set upon which it operates, e.g. 1 argument @@ -2005,7 +2005,7 @@

    Singleton Sets
    -class sympy.sets.fancysets.Range(*args)[source]
    +class sympy.sets.fancysets.Range(*args)[source]

    Represents a range of integers. Can be called as Range(stop), Range(start, stop), or Range(start, stop, step); when step is not given it defaults to 1.

    @@ -2087,7 +2087,7 @@

    Singleton Sets
    -as_relational(x)[source]
    +as_relational(x)[source]

    Rewrite a Range in terms of equalities and logic operators.

    @@ -2107,7 +2107,7 @@

    Singleton Sets
    -class sympy.sets.fancysets.ComplexRegion(sets, polar=False)[source]
    +class sympy.sets.fancysets.ComplexRegion(sets, polar=False)[source]

    Represents the Set of all Complex Numbers. It can represent a region of Complex Plane in both the standard forms Polar and Rectangular coordinates.

    @@ -2235,7 +2235,7 @@

    Singleton Sets
    -classmethod from_real(sets)[source]
    +classmethod from_real(sets)[source]

    Converts given subset of real numbers to a complex region.

    Examples

    >>> from sympy import Interval, ComplexRegion
    @@ -2288,7 +2288,7 @@ 

    Singleton Sets
    -class sympy.sets.fancysets.CartesianComplexRegion(sets)[source]
    +class sympy.sets.fancysets.CartesianComplexRegion(sets)[source]

    Set representing a square region of the complex plane.

    @@ -2311,7 +2311,7 @@

    Singleton Sets
    -class sympy.sets.fancysets.PolarComplexRegion(sets)[source]
    +class sympy.sets.fancysets.PolarComplexRegion(sets)[source]

    Set representing a polar region of the complex plane.

    @@ -2336,7 +2336,7 @@

    Singleton Sets
    -sympy.sets.fancysets.normalize_theta_set(theta)[source]
    +sympy.sets.fancysets.normalize_theta_set(theta)[source]

    Normalize a Real Set \(theta\) in the interval \([0, 2\pi)\). It returns a normalized value of theta in the Set. For Interval, a maximum of one cycle \([0, 2\pi]\), is returned i.e. for theta equal to \([0, 10\pi]\), @@ -2383,7 +2383,7 @@

    Singleton Sets

    Power sets

    -class sympy.sets.powerset.PowerSet(arg, evaluate=None)[source]
    +class sympy.sets.powerset.PowerSet(arg, evaluate=None)[source]

    A symbolic object representing a power set.

    Parameters:
    @@ -2457,7 +2457,7 @@

    Singleton Setsbase_set=UniversalSet,

    -)[source] +)[source]

    Set of elements which satisfies a given condition.

    @@ -2527,7 +2527,7 @@

    Singleton Sets
    -class sympy.sets.conditionset.Contains(x, s, evaluate=None)[source]
    +class sympy.sets.conditionset.Contains(x, s, evaluate=None)[source]

    Asserts that x is an element of the set S.

    Examples

    >>> from sympy import Symbol, Integer, S, Contains
    @@ -2554,7 +2554,7 @@ 

    Singleton Sets

    -class sympy.sets.conditionset.SetKind(element_kind=None)[source]
    +class sympy.sets.conditionset.SetKind(element_kind=None)[source]

    SetKind is kind for all Sets

    Every instance of Set will have kind SetKind parametrised by the kind of the elements of the Set. The kind of the elements might be diff --git a/dev/modules/simplify/fu.html b/dev/modules/simplify/fu.html index 5d0097cf681..75bb8afce02 100644 --- a/dev/modules/simplify/fu.html +++ b/dev/modules/simplify/fu.html @@ -969,14 +969,14 @@

    Documentation Version

    Rules

    -sympy.simplify.fu.TR0(rv)[source]
    +sympy.simplify.fu.TR0(rv)[source]

    Simplification of rational polynomials, trying to simplify the expression, e.g. combine things like 3*x + 2*x, etc….

    -sympy.simplify.fu.TR1(rv)[source]
    +sympy.simplify.fu.TR1(rv)[source]

    Replace sec, csc with 1/cos, 1/sin

    Examples

    >>> from sympy.simplify.fu import TR1, sec, csc
    @@ -989,7 +989,7 @@ 

    Rules
    -sympy.simplify.fu.TR2(rv)[source]
    +sympy.simplify.fu.TR2(rv)[source]

    Replace tan and cot with sin/cos and cos/sin

    Examples

    >>> from sympy.simplify.fu import TR2
    @@ -1007,7 +1007,7 @@ 

    Rules
    -sympy.simplify.fu.TR2i(rv, half=False)[source]
    +sympy.simplify.fu.TR2i(rv, half=False)[source]
    Converts ratios involving sin and cos as follows::

    sin(x)/cos(x) -> tan(x) sin(x)/(cos(x) + 1) -> tan(x/2) if half=True

    @@ -1037,7 +1037,7 @@

    Rules
    -sympy.simplify.fu.TR3(rv)[source]
    +sympy.simplify.fu.TR3(rv)[source]

    Induced formula: example sin(-a) = -sin(a)

    Examples

    >>> from sympy.simplify.fu import TR3
    @@ -1056,7 +1056,7 @@ 

    Rules
    -sympy.simplify.fu.TR4(rv)[source]
    +sympy.simplify.fu.TR4(rv)[source]

    Identify values of special angles.

    A= 0 Pi/6 Pi/4 Pi/3 Pi/2

    sin(a) 0 1/2 sqrt(2)/2 sqrt(3)/2 1 @@ -1079,7 +1079,7 @@

    Rules
    -sympy.simplify.fu.TR5(rv, max=4, pow=False)[source]
    +sympy.simplify.fu.TR5(rv, max=4, pow=False)[source]

    Replacement of sin**2 with 1 - cos(x)**2.

    See _TR56 docstring for advanced use of max and pow.

    Examples

    @@ -1098,7 +1098,7 @@

    Rules
    -sympy.simplify.fu.TR6(rv, max=4, pow=False)[source]
    +sympy.simplify.fu.TR6(rv, max=4, pow=False)[source]

    Replacement of cos**2 with 1 - sin(x)**2.

    See _TR56 docstring for advanced use of max and pow.

    Examples

    @@ -1117,7 +1117,7 @@

    Rules
    -sympy.simplify.fu.TR7(rv)[source]
    +sympy.simplify.fu.TR7(rv)[source]

    Lowering the degree of cos(x)**2.

    Examples

    >>> from sympy.simplify.fu import TR7
    @@ -1133,7 +1133,7 @@ 

    Rules
    -sympy.simplify.fu.TR8(rv, first=True)[source]
    +sympy.simplify.fu.TR8(rv, first=True)[source]

    Converting products of cos and/or sin to a sum or difference of cos and or sin terms.

    Examples

    @@ -1151,7 +1151,7 @@

    Rules
    -sympy.simplify.fu.TR9(rv)[source]
    +sympy.simplify.fu.TR9(rv)[source]

    Sum of cos or sin terms as a product of cos or sin.

    Examples

    >>> from sympy.simplify.fu import TR9
    @@ -1174,7 +1174,7 @@ 

    Rules
    -sympy.simplify.fu.TR10(rv, first=True)[source]
    +sympy.simplify.fu.TR10(rv, first=True)[source]

    Separate sums in cos and sin.

    Examples

    >>> from sympy.simplify.fu import TR10
    @@ -1192,7 +1192,7 @@ 

    Rules
    -sympy.simplify.fu.TR10i(rv)[source]
    +sympy.simplify.fu.TR10i(rv)[source]

    Sum of products to function of sum.

    Examples

    >>> from sympy.simplify.fu import TR10i
    @@ -1212,7 +1212,7 @@ 

    Rules
    -sympy.simplify.fu.TR11(rv, base=None)[source]
    +sympy.simplify.fu.TR11(rv, base=None)[source]

    Function of double angle to product. The base argument can be used to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base then cosine and sine functions with argument 6*pi/7 will be replaced.

    @@ -1254,7 +1254,7 @@

    Rules
    -sympy.simplify.fu.TR12(rv, first=True)[source]
    +sympy.simplify.fu.TR12(rv, first=True)[source]

    Separate sums in tan.

    Examples

    >>> from sympy.abc import x, y
    @@ -1268,7 +1268,7 @@ 

    Rules
    -sympy.simplify.fu.TR12i(rv)[source]
    +sympy.simplify.fu.TR12i(rv)[source]

    Combine tan arguments as (tan(y) + tan(x))/(tan(x)*tan(y) - 1) -> -tan(x + y).

    Examples

    @@ -1291,7 +1291,7 @@

    Rules
    -sympy.simplify.fu.TR13(rv)[source]
    +sympy.simplify.fu.TR13(rv)[source]

    Change products of tan or cot.

    Examples

    >>> from sympy.simplify.fu import TR13
    @@ -1306,7 +1306,7 @@ 

    Rules
    -sympy.simplify.fu.TRmorrie(rv)[source]
    +sympy.simplify.fu.TRmorrie(rv)[source]

    Returns cos(x)*cos(2*x)*…*cos(2**(k-1)*x) -> sin(2**k*x)/(2**k*sin(x))

    Examples

    >>> from sympy.simplify.fu import TRmorrie, TR8, TR3
    @@ -1367,7 +1367,7 @@ 

    Rules
    -sympy.simplify.fu.TR14(rv, first=True)[source]
    +sympy.simplify.fu.TR14(rv, first=True)[source]

    Convert factored powers of sin and cos identities into simpler expressions.

    Examples

    @@ -1389,7 +1389,7 @@

    Rules
    -sympy.simplify.fu.TR15(rv, max=4, pow=False)[source]
    +sympy.simplify.fu.TR15(rv, max=4, pow=False)[source]

    Convert sin(x)**-2 to 1 + cot(x)**2.

    See _TR56 docstring for advanced use of max and pow.

    Examples

    @@ -1404,7 +1404,7 @@

    Rules
    -sympy.simplify.fu.TR16(rv, max=4, pow=False)[source]
    +sympy.simplify.fu.TR16(rv, max=4, pow=False)[source]

    Convert cos(x)**-2 to 1 + tan(x)**2.

    See _TR56 docstring for advanced use of max and pow.

    Examples

    @@ -1419,7 +1419,7 @@

    Rules
    -sympy.simplify.fu.TR111(rv)[source]
    +sympy.simplify.fu.TR111(rv)[source]

    Convert f(x)**-i to g(x)**i where either i is an integer or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec.

    Examples

    @@ -1434,7 +1434,7 @@

    Rules
    -sympy.simplify.fu.TR22(rv, max=4, pow=False)[source]
    +sympy.simplify.fu.TR22(rv, max=4, pow=False)[source]

    Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1.

    See _TR56 docstring for advanced use of max and pow.

    Examples

    @@ -1451,7 +1451,7 @@

    Rules
    -sympy.simplify.fu.TRpower(rv)[source]
    +sympy.simplify.fu.TRpower(rv)[source]

    Convert sin(x)**n and cos(x)**n with positive n to sums.

    Examples

    >>> from sympy.simplify.fu import TRpower
    @@ -1474,7 +1474,7 @@ 

    Rules
    -sympy.simplify.fu.fu(rv, measure=<function <lambda>>)[source]
    +sympy.simplify.fu.fu(rv, measure=<function <lambda>>)[source]

    Attempt to simplify expression by using transformation rules given in the algorithm by Fu et al.

    fu() will try to minimize the objective function measure. diff --git a/dev/modules/simplify/simplify.html b/dev/modules/simplify/simplify.html index 4ea566046ca..97a6fc166e6 100644 --- a/dev/modules/simplify/simplify.html +++ b/dev/modules/simplify/simplify.html @@ -814,7 +814,7 @@

    Documentation Version
    **kwargs,
    -)[source] +)[source]

    Simplifies the given expression.

    Explanation

    Simplification is not a well defined term and the exact strategies @@ -971,7 +971,7 @@

    Documentation Version
    force=False,

    -)[source] +)[source]

    Separates variables in an expression, if possible. By default, it separates with respect to all symbols in an expression and collects constant coefficients that are @@ -1031,7 +1031,7 @@

    Documentation Version
    -sympy.simplify.simplify.nthroot(expr, n, max_len=4, prec=15)[source]
    +sympy.simplify.simplify.nthroot(expr, n, max_len=4, prec=15)[source]

    Compute a real nth-root of a sum of surds.

    Parameters:
    @@ -1055,7 +1055,7 @@
    Documentation Version
    -sympy.simplify.simplify.kroneckersimp(expr)[source]
    +sympy.simplify.simplify.kroneckersimp(expr)[source]

    Simplify expressions with KroneckerDelta.

    The only simplification currently attempted is to identify multiplicative cancellation:

    Examples

    @@ -1069,7 +1069,7 @@
    Documentation Version
    -sympy.simplify.simplify.besselsimp(expr)[source]
    +sympy.simplify.simplify.besselsimp(expr)[source]

    Simplify bessel-type functions.

    Explanation

    This routine tries to simplify bessel-type functions. Currently it only @@ -1096,7 +1096,7 @@

    Documentation Version
    -sympy.simplify.simplify.hypersimp(f, k)[source]
    +sympy.simplify.simplify.hypersimp(f, k)[source]

    Given combinatorial term f(k) simplify its consecutive term ratio i.e. f(k+1)/f(k). The input term can be composed of functions and integer sequences which have equivalent representation in terms @@ -1124,7 +1124,7 @@

    Documentation Version
    -sympy.simplify.simplify.hypersimilar(f, g, k)[source]
    +sympy.simplify.simplify.hypersimilar(f, g, k)[source]

    Returns True if f and g are hyper-similar.

    Explanation

    Similarity in hypergeometric sense means that a quotient of @@ -1146,7 +1146,7 @@

    Documentation Version
    rational_conversion='base10',
    -)[source] +)[source]

    Find a simple representation for a number or, if there are free symbols or if rational=True, then replace Floats with their Rational equivalents. If no change is made and rational is not False then Floats will at least be @@ -1192,7 +1192,7 @@

    Documentation Version
    -sympy.simplify.simplify.posify(eq)[source]
    +sympy.simplify.simplify.posify(eq)[source]

    Return eq (with generic symbols made positive) and a dictionary containing the mapping between the old and new symbols.

    @@ -1234,7 +1234,7 @@
    Documentation Version
    -sympy.simplify.simplify.logcombine(expr, force=False)[source]
    +sympy.simplify.simplify.logcombine(expr, force=False)[source]

    Takes logarithms and combines them using the following rules:

    • log(x) + log(y) == log(x*y) if both are positive

    • @@ -1281,7 +1281,7 @@
      Documentation Version
      -sympy.simplify.radsimp.radsimp(expr, symbolic=True, max_terms=4)[source]
      +sympy.simplify.radsimp.radsimp(expr, symbolic=True, max_terms=4)[source]

      Rationalize the denominator by removing square roots.

      Explanation

      The expression returned from radsimp must be used with caution @@ -1355,7 +1355,7 @@

      Documentation Version
      -sympy.simplify.radsimp.rad_rationalize(num, den)[source]
      +sympy.simplify.radsimp.rad_rationalize(num, den)[source]

      Rationalize num/den by removing square roots in the denominator; num and den are sum of terms whose squares are positive rationals.

      Examples

      @@ -1380,7 +1380,7 @@
      Documentation Version
      distribute_order_term=True,
      -)[source] +)[source]

      Collect additive terms of an expression.

      Explanation

      This function collects additive terms of an expression with respect @@ -1527,7 +1527,7 @@

      Documentation Version
      -sympy.simplify.radsimp.rcollect(expr, *vars)[source]
      +sympy.simplify.radsimp.rcollect(expr, *vars)[source]

      Recursively collect sums in an expression.

      Examples

      >>> from sympy.simplify import rcollect
      @@ -1549,7 +1549,7 @@ 
      Documentation Version
      -sympy.simplify.radsimp.collect_sqrt(expr, evaluate=None)[source]
      +sympy.simplify.radsimp.collect_sqrt(expr, evaluate=None)[source]

      Return expr with terms having common square roots collected together. If evaluate is False a count indicating the number of sqrt-containing terms will be returned and, if non-zero, the terms of the Add will be @@ -1591,7 +1591,7 @@

      Documentation Version
      -sympy.simplify.radsimp.collect_const(expr, *vars, Numbers=True)[source]
      +sympy.simplify.radsimp.collect_const(expr, *vars, Numbers=True)[source]

      A non-greedy collection of terms with similar number coefficients in an Add expr. If vars is given then only those constants will be targeted. Although any Number can also be targeted, if this is not @@ -1658,7 +1658,7 @@

      Documentation Version
      -sympy.simplify.radsimp.fraction(expr, exact=False)[source]
      +sympy.simplify.radsimp.fraction(expr, exact=False)[source]

      Returns a pair with expression’s numerator and denominator. If the given expression is not a fraction then this function will return the tuple (expr, 1).

      @@ -1721,7 +1721,7 @@
      Documentation Version
      -sympy.simplify.ratsimp.ratsimp(expr)[source]
      +sympy.simplify.ratsimp.ratsimp(expr)[source]

      Put an expression over a common denominator, cancel and reduce.

      Examples

      >>> from sympy import ratsimp
      @@ -1745,7 +1745,7 @@ 
      Documentation Version
      **args,
      -)[source] +)[source]

      Simplifies a rational expression expr modulo the prime ideal generated by G. G should be a Groebner basis of the ideal.

      @@ -1776,7 +1776,7 @@
      Documentation Version
      -sympy.simplify.trigsimp.trigsimp(expr, inverse=False, **opts)[source]
      +sympy.simplify.trigsimp.trigsimp(expr, inverse=False, **opts)[source]

      Returns a reduced expression by using known trig identities.

      Parameters:
      @@ -1854,7 +1854,7 @@
      Documentation Version
      measure=<function count_ops>,
      -)[source] +)[source]

      Reduce expression by combining powers with similar bases and exponents.

      Explanation

      If deep is True then powsimp() will also simplify arguments of @@ -1934,7 +1934,7 @@

      Documentation Version
      -sympy.simplify.powsimp.powdenest(eq, force=False, polar=False)[source]
      +sympy.simplify.powsimp.powdenest(eq, force=False, polar=False)[source]

      Collect exponents on powers as assumptions allow.

      Explanation

      @@ -2028,7 +2028,7 @@
      Documentation Version
      -sympy.simplify.combsimp.combsimp(expr)[source]
      +sympy.simplify.combsimp.combsimp(expr)[source]

      Simplify combinatorial expressions.

      Explanation

      This function takes as input an expression containing factorials, @@ -2060,7 +2060,7 @@

      Documentation Version
      -sympy.simplify.sqrtdenest.sqrtdenest(expr, max_iter=3)[source]
      +sympy.simplify.sqrtdenest.sqrtdenest(expr, max_iter=3)[source]

      Denests sqrts in an expression that contain other square roots if possible, otherwise returns the expr unchanged. This is based on the algorithms of [1].

      @@ -2103,7 +2103,7 @@
      Documentation Version
      list=True,
      -)[source] +)[source]

      Perform common subexpression elimination on an expression.

      Parameters:
      @@ -2199,7 +2199,7 @@
      Documentation Version
      -sympy.simplify.cse_main.opt_cse(exprs, order='canonical')[source]
      +sympy.simplify.cse_main.opt_cse(exprs, order='canonical')[source]

      Find optimization opportunities in Adds, Muls, Pows and negative coefficient Muls.

      @@ -2244,7 +2244,7 @@
      Documentation Version
      ignore=(),
      -)[source] +)[source]

      Perform raw CSE on expression tree, taking opt_subs into account.

      Parameters:
      @@ -2285,7 +2285,7 @@
      Documentation Version
      place=None,
      -)[source] +)[source]

      Expand hypergeometric functions. If allow_hyper is True, allow partial simplification (that is a result different from input, but still containing hypergeometric functions).

      @@ -2310,7 +2310,7 @@
      Documentation Version
      -class sympy.simplify.epathtools.EPath(path)[source]
      +class sympy.simplify.epathtools.EPath(path)[source]

      Manipulate expressions using paths.

      EPath grammar in EBNF notation:

      literal   ::= /[A-Za-z_][A-Za-z_0-9]*/
      @@ -2328,7 +2328,7 @@ 
      Documentation Version

      See the docstring of the epath() function.

      -apply(expr, func, args=None, kwargs=None)[source]
      +apply(expr, func, args=None, kwargs=None)[source]

      Modify parts of an expression selected by a path.

      Examples

      >>> from sympy.simplify.epathtools import EPath
      @@ -2356,7 +2356,7 @@ 
      Documentation Version
      -select(expr)[source]
      +select(expr)[source]

      Retrieve parts of an expression selected by a path.

      Examples

      >>> from sympy.simplify.epathtools import EPath
      @@ -2396,7 +2396,7 @@ 
      Documentation Version
      kwargs=None,
      -)[source] +)[source]

      Manipulate parts of an expression selected by a path.

      Parameters:
      diff --git a/dev/modules/solvers/diophantine.html b/dev/modules/solvers/diophantine.html index b38d26a7d61..a80b364e89e 100644 --- a/dev/modules/solvers/diophantine.html +++ b/dev/modules/solvers/diophantine.html @@ -1132,7 +1132,7 @@

      User Functionsfrom sympy import *:

      -sympy.solvers.diophantine.diophantine.diophantine(eq, param=t, syms=None, permute=False)[source]
      +sympy.solvers.diophantine.diophantine.diophantine(eq, param=t, syms=None, permute=False)[source]

      Simplify the solution procedure of diophantine equation eq by converting it into a product of terms which should equal zero.

      Explanation

      @@ -1190,7 +1190,7 @@

      User Functionsfrom sympy.solvers.diophantine import *:

      -sympy.solvers.diophantine.diophantine.classify_diop(eq, _dict=True)[source]
      +sympy.solvers.diophantine.diophantine.classify_diop(eq, _dict=True)[source]
      @@ -1199,7 +1199,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.diop_solve(eq, param=t)[source]
      +sympy.solvers.diophantine.diophantine.diop_solve(eq, param=t)[source]

      Solves the diophantine equation eq.

      Explanation

      Unlike diophantine(), factoring of eq is not attempted. Uses @@ -1236,7 +1236,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.diop_linear(eq, param=t)[source]
      +sympy.solvers.diophantine.diophantine.diop_linear(eq, param=t)[source]

      Solves linear diophantine equations.

      A linear diophantine equation is an equation of the form \(a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0\) where \(a_{1}, a_{2}, ..a_{n}\) are @@ -1268,7 +1268,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.base_solution_linear(c, a, b, t=None)[source]
      +sympy.solvers.diophantine.diophantine.base_solution_linear(c, a, b, t=None)[source]

      Return the base solution for the linear equation, \(ax + by = c\).

      Explanation

      Used by diop_linear() to find the base solution of a linear @@ -1294,7 +1294,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.diop_quadratic(eq, param=t)[source]
      +sympy.solvers.diophantine.diophantine.diop_quadratic(eq, param=t)[source]

      Solves quadratic diophantine equations.

      i.e. equations of the form \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\). Returns a set containing the tuples \((x, y)\) which contains the solutions. If there @@ -1334,7 +1334,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.diop_DN(D, N, t=t)[source]
      +sympy.solvers.diophantine.diophantine.diop_DN(D, N, t=t)[source]

      Solves the equation \(x^2 - Dy^2 = N\).

      Explanation

      Mainly concerned with the case \(D > 0, D\) is not a perfect square, @@ -1389,7 +1389,7 @@

      Internal Functionsm: int,

      -) set[tuple[int, int]][source] +) set[tuple[int, int]][source]

      Solves \(ax^2 + by^2 = m\) where \(\gcd(a, b) = 1 = gcd(a, m)\) and \(a, b > 0\).

      Explanation

      Uses the algorithm due to Cornacchia. The method only finds primitive @@ -1428,7 +1428,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.diop_bf_DN(D, N, t=t)[source]
      +sympy.solvers.diophantine.diophantine.diop_bf_DN(D, N, t=t)[source]

      Uses brute force to solve the equation, \(x^2 - Dy^2 = N\).

      Explanation

      Mainly concerned with the generalized Pell equation which is the case when @@ -1467,7 +1467,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.transformation_to_DN(eq)[source]
      +sympy.solvers.diophantine.diophantine.transformation_to_DN(eq)[source]

      This function transforms general quadratic, \(ax^2 + bxy + cy^2 + dx + ey + f = 0\) to more easy to deal with \(X^2 - DY^2 = N\) form.

      @@ -1539,7 +1539,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.transformation_to_normal(eq)[source]
      +sympy.solvers.diophantine.diophantine.transformation_to_normal(eq)[source]

      Returns the transformation Matrix that converts a general ternary quadratic equation eq (\(ax^2 + by^2 + cz^2 + dxy + eyz + fxz\)) to a form without cross terms: \(ax^2 + by^2 + cz^2 = 0\). This is @@ -1549,7 +1549,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.find_DN(eq)[source]
      +sympy.solvers.diophantine.diophantine.find_DN(eq)[source]

      This function returns a tuple, \((D, N)\) of the simplified form, \(x^2 - Dy^2 = N\), corresponding to the general quadratic, \(ax^2 + bxy + cy^2 + dx + ey + f = 0\).

      @@ -1585,7 +1585,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.diop_ternary_quadratic(eq, parameterize=False)[source]
      +sympy.solvers.diophantine.diophantine.diop_ternary_quadratic(eq, parameterize=False)[source]

      Solves the general quadratic ternary form, \(ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0\).

      Returns a tuple \((x, y, z)\) which is a base solution for the above @@ -1613,7 +1613,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.square_factor(a)[source]
      +sympy.solvers.diophantine.diophantine.square_factor(a)[source]

      Returns an integer \(c\) s.t. \(a = c^2k, \ c,k \in Z\). Here \(k\) is square free. \(a\) can be given as an integer or a dictionary of factors.

      Examples

      @@ -1636,7 +1636,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.descent(A, B)[source]
      +sympy.solvers.diophantine.diophantine.descent(A, B)[source]

      Returns a non-trivial solution, (x, y, z), to \(x^2 = Ay^2 + Bz^2\) using Lagrange’s descent method with lattice-reduction. \(A\) and \(B\) are assumed to be valid for such a solution to exist.

      @@ -1666,7 +1666,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.diop_general_pythagorean(eq, param=m)[source]
      +sympy.solvers.diophantine.diophantine.diop_general_pythagorean(eq, param=m)[source]

      Solves the general pythagorean equation, \(a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0\).

      Returns a tuple which contains a parametrized solution to the equation, @@ -1688,7 +1688,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.diop_general_sum_of_squares(eq, limit=1)[source]
      +sympy.solvers.diophantine.diophantine.diop_general_sum_of_squares(eq, limit=1)[source]

      Solves the equation \(x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0\).

      Returns at most limit number of solutions.

      Usage

      @@ -1718,7 +1718,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.diop_general_sum_of_even_powers(eq, limit=1)[source]
      +sympy.solvers.diophantine.diophantine.diop_general_sum_of_even_powers(eq, limit=1)[source]

      Solves the equation \(x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0\) where \(e\) is an even, integer power.

      Returns at most limit number of solutions.

      @@ -1741,7 +1741,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.power_representation(n, p, k, zeros=False)[source]
      +sympy.solvers.diophantine.diophantine.power_representation(n, p, k, zeros=False)[source]

      Returns a generator for finding k-tuples of integers, \((n_{1}, n_{2}, . . . n_{k})\), such that \(n = n_{1}^p + n_{2}^p + . . . n_{k}^p\).

      @@ -1785,7 +1785,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.partition(n, k=None, zeros=False)[source]
      +sympy.solvers.diophantine.diophantine.partition(n, k=None, zeros=False)[source]

      Returns a generator that can be used to generate partitions of an integer \(n\).

      Explanation

      @@ -1824,7 +1824,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.sum_of_three_squares(n)[source]
      +sympy.solvers.diophantine.diophantine.sum_of_three_squares(n)[source]

      Returns a 3-tuple \((a, b, c)\) such that \(a^2 + b^2 + c^2 = n\) and \(a, b, c \geq 0\).

      Returns None if \(n = 4^a(8m + 7)\) for some \(a, m \in \mathbb{Z}\). See @@ -1875,7 +1875,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.sum_of_four_squares(n)[source]
      +sympy.solvers.diophantine.diophantine.sum_of_four_squares(n)[source]

      Returns a 4-tuple \((a, b, c, d)\) such that \(a^2 + b^2 + c^2 + d^2 = n\). Here \(a, b, c, d \geq 0\).

      @@ -1925,7 +1925,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.sum_of_powers(n, p, k, zeros=False)[source]
      +sympy.solvers.diophantine.diophantine.sum_of_powers(n, p, k, zeros=False)[source]

      Returns a generator for finding k-tuples of integers, \((n_{1}, n_{2}, . . . n_{k})\), such that \(n = n_{1}^p + n_{2}^p + . . . n_{k}^p\).

      @@ -1969,7 +1969,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.sum_of_squares(n, k, zeros=False)[source]
      +sympy.solvers.diophantine.diophantine.sum_of_squares(n, k, zeros=False)[source]

      Return a generator that yields the k-tuples of nonnegative values, the squares of which sum to n. If zeros is False (default) then the solution will not contain zeros. The nonnegative @@ -2012,7 +2012,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.merge_solution(var, var_t, solution)[source]
      +sympy.solvers.diophantine.diophantine.merge_solution(var, var_t, solution)[source]

      This is used to construct the full solution from the solutions of sub equations.

      Explanation

      @@ -2026,13 +2026,13 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.divisible(a, b)[source]
      +sympy.solvers.diophantine.diophantine.divisible(a, b)[source]

      Returns \(True\) if a is divisible by b and \(False\) otherwise.

      -sympy.solvers.diophantine.diophantine.PQa(P_0, Q_0, D)[source]
      +sympy.solvers.diophantine.diophantine.PQa(P_0, Q_0, D)[source]

      Returns useful information needed to solve the Pell equation.

      Explanation

      There are six sequences of integers defined related to the continued @@ -2067,7 +2067,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.equivalent(u, v, r, s, D, N)[source]
      +sympy.solvers.diophantine.diophantine.equivalent(u, v, r, s, D, N)[source]

      Returns True if two solutions \((u, v)\) and \((r, s)\) of \(x^2 - Dy^2 = N\) belongs to the same equivalence class and False otherwise.

      Explanation

      @@ -2100,7 +2100,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.parametrize_ternary_quadratic(eq)[source]
      +sympy.solvers.diophantine.diophantine.parametrize_ternary_quadratic(eq)[source]

      Returns the parametrized general solution for the ternary quadratic equation eq which has the form \(ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0\).

      @@ -2161,7 +2161,7 @@

      Internal Functionsparameterize=False,

      -)[source] +)[source]

      Solves the quadratic ternary diophantine equation, \(ax^2 + by^2 + cz^2 = 0\).

      Explanation

      @@ -2187,7 +2187,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.ldescent(A, B)[source]
      +sympy.solvers.diophantine.diophantine.ldescent(A, B)[source]

      Return a non-trivial solution to \(w^2 = Ax^2 + By^2\) using Lagrange’s method; return None if there is no such solution.

      @@ -2243,7 +2243,7 @@

      Internal Functionsb: int,

      -) tuple[int, int][source] +) tuple[int, int][source]

      Returns a reduced solution \((x, z)\) to the congruence \(X^2 - aZ^2 \equiv 0 \pmod{b}\) so that \(x^2 + |a|z^2\) is as small as possible. Here w is a solution of the congruence \(x^2 \equiv a \pmod{b}\).

      @@ -2318,7 +2318,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.holzer(x, y, z, a, b, c)[source]
      +sympy.solvers.diophantine.diophantine.holzer(x, y, z, a, b, c)[source]

      Simplify the solution \((x, y, z)\) of the equation \(ax^2 + by^2 = cz^2\) with \(a, b, c > 0\) and \(z^2 \geq \mid ab \mid\) to a new reduced solution \((x', y', z')\) such that \(z'^2 \leq \mid ab \mid\).

      @@ -2344,7 +2344,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.prime_as_sum_of_two_squares(p)[source]
      +sympy.solvers.diophantine.diophantine.prime_as_sum_of_two_squares(p)[source]

      Represent a prime \(p\) as a unique sum of two squares; this can only be done if the prime is congruent to 1 mod 4.

      @@ -2390,7 +2390,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.sqf_normal(a, b, c, steps=False)[source]
      +sympy.solvers.diophantine.diophantine.sqf_normal(a, b, c, steps=False)[source]

      Return \(a', b', c'\), the coefficients of the square-free normal form of \(ax^2 + by^2 + cz^2 = 0\), where \(a', b', c'\) are pairwise prime. If \(steps\) is True then also return three tuples: @@ -2424,7 +2424,7 @@

      Internal Functions
      -sympy.solvers.diophantine.diophantine.reconstruct(A, B, z)[source]
      +sympy.solvers.diophantine.diophantine.reconstruct(A, B, z)[source]

      Reconstruct the \(z\) value of an equivalent solution of \(ax^2 + by^2 + cz^2\) from the \(z\) value of a solution of the square-free normal form of the equation, \(a'*x^2 + b'*y^2 + c'*z^2\), where \(a'\), \(b'\) and \(c'\) are square @@ -2437,7 +2437,7 @@

      Internal Classes
      -class sympy.solvers.diophantine.diophantine.DiophantineSolutionSet(symbols_seq, parameters)[source]
      +class sympy.solvers.diophantine.diophantine.DiophantineSolutionSet(symbols_seq, parameters)[source]

      Container for a set of solutions to a particular diophantine equation.

      The base representation is a set of tuples representing each of the solutions.

      @@ -2508,7 +2508,7 @@

      Internal Classesfree_symbols=None,

      -)[source] +)[source]

      Internal representation of a particular diophantine equation type.

      Parameters:
      @@ -2543,7 +2543,7 @@

      Internal Classes
      -matches()[source]
      +matches()[source]

      Determine whether the given equation can be matched to the particular equation type.

      @@ -2551,7 +2551,7 @@

      Internal Classes
      -class sympy.solvers.diophantine.diophantine.Univariate(equation, free_symbols=None)[source]
      +class sympy.solvers.diophantine.diophantine.Univariate(equation, free_symbols=None)[source]

      Representation of a univariate diophantine equation.

      A univariate diophantine equation is an equation of the form \(a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0\) where \(a_{1}, a_{2}, ..a_{n}\) are @@ -2567,7 +2567,7 @@

      Internal Classes
      -class sympy.solvers.diophantine.diophantine.Linear(equation, free_symbols=None)[source]
      +class sympy.solvers.diophantine.diophantine.Linear(equation, free_symbols=None)[source]

      Representation of a linear diophantine equation.

      A linear diophantine equation is an equation of the form \(a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0\) where \(a_{1}, a_{2}, ..a_{n}\) are @@ -2591,7 +2591,7 @@

      Internal Classes
      -class sympy.solvers.diophantine.diophantine.BinaryQuadratic(equation, free_symbols=None)[source]
      +class sympy.solvers.diophantine.diophantine.BinaryQuadratic(equation, free_symbols=None)[source]

      Representation of a binary quadratic diophantine equation.

      A binary quadratic diophantine equation is an equation of the form \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\), where \(A, B, C, D, E, @@ -2633,7 +2633,7 @@

      Internal Classesfree_symbols=None,

      -)[source] +)[source]

      Representation of an inhomogeneous ternary quadratic.

      No solver is currently implemented for this equation type.

      @@ -2647,7 +2647,7 @@

      Internal Classesfree_symbols=None,

      -)[source] +)[source]

      Representation of a homogeneous ternary quadratic normal diophantine equation.

      Examples

      >>> from sympy.abc import x, y, z
      @@ -2667,7 +2667,7 @@ 

      Internal Classesfree_symbols=None,

      -)[source] +)[source]

      Representation of a homogeneous ternary quadratic diophantine equation.

      Examples

      >>> from sympy.abc import x, y, z
      @@ -2689,7 +2689,7 @@ 

      Internal Classesfree_symbols=None,

      -)[source] +)[source]

      Representation of an inhomogeneous general quadratic.

      No solver is currently implemented for this equation type.

      @@ -2703,14 +2703,14 @@

      Internal Classesfree_symbols=None,

      -)[source] +)[source]

      Representation of a homogeneous general quadratic.

      No solver is currently implemented for this equation type.

      -class sympy.solvers.diophantine.diophantine.GeneralSumOfSquares(equation, free_symbols=None)[source]
      +class sympy.solvers.diophantine.diophantine.GeneralSumOfSquares(equation, free_symbols=None)[source]

      Representation of the diophantine equation

      \(x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0\).

      Details

      @@ -2742,7 +2742,7 @@

      Internal Classes
      -class sympy.solvers.diophantine.diophantine.GeneralPythagorean(equation, free_symbols=None)[source]
      +class sympy.solvers.diophantine.diophantine.GeneralPythagorean(equation, free_symbols=None)[source]

      Representation of the general pythagorean equation, \(a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0\).

      Examples

      @@ -2758,7 +2758,7 @@

      Internal Classes
      -class sympy.solvers.diophantine.diophantine.CubicThue(equation, free_symbols=None)[source]
      +class sympy.solvers.diophantine.diophantine.CubicThue(equation, free_symbols=None)[source]

      Representation of a cubic Thue diophantine equation.

      A cubic Thue diophantine equation is a polynomial of the form \(f(x, y) = r\) of degree 3, where \(x\) and \(y\) are integers @@ -2783,7 +2783,7 @@

      Internal Classesfree_symbols=None,

      -)[source] +)[source]

      Representation of the diophantine equation

      \(x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0\)

      where \(e\) is an even, integer power.

      diff --git a/dev/modules/solvers/inequalities.html b/dev/modules/solvers/inequalities.html index 476f67fc0fa..28f54d38592 100644 --- a/dev/modules/solvers/inequalities.html +++ b/dev/modules/solvers/inequalities.html @@ -816,7 +816,7 @@
      Documentation Version
      -sympy.solvers.inequalities.solve_rational_inequalities(eqs)[source]
      +sympy.solvers.inequalities.solve_rational_inequalities(eqs)[source]

      Solve a system of rational inequalities with rational coefficients.

      Examples

      >>> from sympy.abc import x
      @@ -843,7 +843,7 @@ 
      Documentation Version
      -sympy.solvers.inequalities.solve_poly_inequality(poly, rel)[source]
      +sympy.solvers.inequalities.solve_poly_inequality(poly, rel)[source]

      Solve a polynomial inequality with rational coefficients.

      Examples

      >>> from sympy import solve_poly_inequality, Poly
      @@ -870,7 +870,7 @@ 
      Documentation Version
      -sympy.solvers.inequalities.solve_poly_inequalities(polys)[source]
      +sympy.solvers.inequalities.solve_poly_inequalities(polys)[source]

      Solve polynomial inequalities with rational coefficients.

      Examples

      >>> from sympy import Poly
      @@ -894,7 +894,7 @@ 
      Documentation Version
      relational=True,
      -)[source] +)[source]

      Reduce a system of rational inequalities with rational coefficients.

      Examples

      >>> from sympy import Symbol
      @@ -928,7 +928,7 @@ 
      Documentation Version
      -sympy.solvers.inequalities.reduce_abs_inequality(expr, rel, gen)[source]
      +sympy.solvers.inequalities.reduce_abs_inequality(expr, rel, gen)[source]

      Reduce an inequality with nested absolute values.

      Examples

      >>> from sympy import reduce_abs_inequality, Abs, Symbol
      @@ -951,7 +951,7 @@ 
      Documentation Version
      -sympy.solvers.inequalities.reduce_abs_inequalities(exprs, gen)[source]
      +sympy.solvers.inequalities.reduce_abs_inequalities(exprs, gen)[source]

      Reduce a system of inequalities with nested absolute values.

      Examples

      >>> from sympy import reduce_abs_inequalities, Abs, Symbol
      @@ -975,7 +975,7 @@ 
      Documentation Version
      -sympy.solvers.inequalities.reduce_inequalities(inequalities, symbols=[])[source]
      +sympy.solvers.inequalities.reduce_inequalities(inequalities, symbols=[])[source]

      Reduce a system of inequalities with rational coefficients.

      Examples

      >>> from sympy.abc import x, y
      @@ -1004,7 +1004,7 @@ 
      Documentation Version
      continuous=False,
      -)[source] +)[source]

      Solves a real univariate inequality.

      Parameters:
      diff --git a/dev/modules/solvers/ode.html b/dev/modules/solvers/ode.html index 10064cc5508..152ee65cbeb 100644 --- a/dev/modules/solvers/ode.html +++ b/dev/modules/solvers/ode.html @@ -827,7 +827,7 @@
      Documentation Version
      **kwargs,
      -)[source] +)[source]

      Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations.

      For Single Ordinary Differential Equation

      @@ -1025,7 +1025,7 @@
      Documentation Version
      simplify=True,
      -)[source] +)[source]

      Solves any(supported) system of Ordinary Differential Equations

      Parameters:
      @@ -1139,7 +1139,7 @@
      Documentation Version
      **kwargs,
      -)[source] +)[source]

      Returns a tuple of possible dsolve() classifications for an ODE.

      The tuple is ordered so that first item is the classification that @@ -1267,7 +1267,7 @@

      Documentation Version
      solve_for_func=True,
      -)[source] +)[source]

      Substitutes sol into ode and checks that the result is 0.

      This works when func is one function, like \(f(x)\) or a list of functions like \([f(x), g(x)]\) when \(ode\) is a system of ODEs. sol can @@ -1328,7 +1328,7 @@

      Documentation Version
      -sympy.solvers.ode.homogeneous_order(eq, *symbols)[source]
      +sympy.solvers.ode.homogeneous_order(eq, *symbols)[source]

      Returns the order \(n\) if \(g\) is homogeneous and None if it is not homogeneous.

      Determines if a function is homogeneous and if so of what order. A @@ -1376,7 +1376,7 @@

      Documentation Version
      match=None,
      -)[source] +)[source]

      The infinitesimal functions of an ordinary differential equation, \(\xi(x,y)\) and \(\eta(x,y)\), are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. So, the ODE \(y'=f(x,y)\) @@ -1445,7 +1445,7 @@

      Documentation Version
      order=None,
      -)[source] +)[source]

      This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs.

      @@ -1469,7 +1469,7 @@
      Documentation Version
      -sympy.solvers.ode.constantsimp(expr, constants)[source]
      +sympy.solvers.ode.constantsimp(expr, constants)[source]

      Simplifies an expression with arbitrary constants in it.

      This function is written specifically to work with dsolve(), and is not intended for general use.

      @@ -1543,7 +1543,7 @@
      Documentation Version
      -sympy.solvers.ode.ode.odesimp(ode, eq, func, hint)[source]
      +sympy.solvers.ode.ode.odesimp(ode, eq, func, hint)[source]

      Simplifies solutions of ODEs, including trying to solve for func and running constantsimp().

      It may use knowledge of the type of solution that the hint returns to @@ -1607,7 +1607,7 @@

      Documentation Version
      newconstants=None,
      -)[source] +)[source]

      Renumber arbitrary constants in expr to use the symbol names as given in newconstants. In the process, this reorders expression terms in a standard way.

      @@ -1651,7 +1651,7 @@
      Documentation Version
      -sympy.solvers.ode.ode.ode_sol_simplicity(sol, func, trysolving=True)[source]
      +sympy.solvers.ode.ode.ode_sol_simplicity(sol, func, trysolving=True)[source]

      Returns an extended integer representing how simple a solution to an ODE is.

      The following things are considered, in order from most simple to least:

      @@ -1732,7 +1732,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.Factorable(ode_problem)[source]
      +class sympy.solvers.ode.single.Factorable(ode_problem)[source]

      Solves equations having a solvable factor.

      This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the @@ -1751,7 +1751,7 @@

      Documentation Version
      -class sympy.solvers.ode.single.FirstExact(ode_problem)[source]
      +class sympy.solvers.ode.single.FirstExact(ode_problem)[source]

      Solves 1st order exact ordinary differential equations.

      A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation

      @@ -1804,7 +1804,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.HomogeneousCoeffBest(ode_problem)[source]
      +class sympy.solvers.ode.single.HomogeneousCoeffBest(ode_problem)[source]

      Returns the best solution to an ODE from the two hints 1st_homogeneous_coeff_subs_dep_div_indep and 1st_homogeneous_coeff_subs_indep_div_dep.

      @@ -1841,7 +1841,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep(ode_problem)[source]
      +class sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep(ode_problem)[source]

      Solves a 1st order differential equation with homogeneous coefficients using the substitution \(u_1 = \frac{\text{<dependent variable>}}{\text{<independent variable>}}\).

      @@ -1914,7 +1914,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep(ode_problem)[source]
      +class sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep(ode_problem)[source]

      Solves a 1st order differential equation with homogeneous coefficients using the substitution \(u_2 = \frac{\text{<independent variable>}}{\text{<dependent variable>}}\).

      @@ -1990,7 +1990,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.FirstLinear(ode_problem)[source]
      +class sympy.solvers.ode.single.FirstLinear(ode_problem)[source]

      Solves 1st order linear differential equations.

      These are differential equations of the form

      @@ -2039,7 +2039,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.RationalRiccati(ode_problem)[source]
      +class sympy.solvers.ode.single.RationalRiccati(ode_problem)[source]

      Gives general solutions to the first order Riccati differential equations that have atleast one rational particular solution.

      @@ -2072,7 +2072,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.SecondLinearAiry(ode_problem)[source]
      +class sympy.solvers.ode.single.SecondLinearAiry(ode_problem)[source]

      Gives solution of the Airy differential equation

      @@ -2092,7 +2092,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.SecondLinearBessel(ode_problem)[source]
      +class sympy.solvers.ode.single.SecondLinearBessel(ode_problem)[source]

      Gives solution of the Bessel differential equation

      @@ -2121,7 +2121,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.Bernoulli(ode_problem)[source]
      +class sympy.solvers.ode.single.Bernoulli(ode_problem)[source]

      Solves Bernoulli differential equations.

      These are equations of the form

      @@ -2193,7 +2193,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.Liouville(ode_problem)[source]
      +class sympy.solvers.ode.single.Liouville(ode_problem)[source]

      Solves 2nd order Liouville differential equations.

      The general form of a Liouville ODE is

      @@ -2249,7 +2249,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.RiccatiSpecial(ode_problem)[source]
      +class sympy.solvers.ode.single.RiccatiSpecial(ode_problem)[source]

      The general Riccati equation has the form

      @@ -2291,7 +2291,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.NthLinearConstantCoeffHomogeneous(ode_problem)[source]
      +class sympy.solvers.ode.single.NthLinearConstantCoeffHomogeneous(ode_problem)[source]

      Solves an \(n\)th order linear homogeneous differential equation with constant coefficients.

      This is an equation of the form

      @@ -2358,7 +2358,7 @@
      Documentation Version
      ode_problem,
      -)[source] +)[source]

      Solves an \(n\)th order linear differential equation with constant coefficients using the method of undetermined coefficients.

      This method works on differential equations of the form

      @@ -2417,7 +2417,7 @@
      Documentation Version
      ode_problem,
      -)[source] +)[source]

      Solves an \(n\)th order linear differential equation with constant coefficients using the method of variation of parameters.

      This method works on any differential equations of the form

      @@ -2484,7 +2484,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.NthLinearEulerEqHomogeneous(ode_problem)[source]
      +class sympy.solvers.ode.single.NthLinearEulerEqHomogeneous(ode_problem)[source]

      Solves an \(n\)th order linear homogeneous variable-coefficient Cauchy-Euler equidimensional ordinary differential equation.

      This is an equation with form \(0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) @@ -2553,7 +2553,7 @@

      Documentation Version
      ode_problem,
      -)[source] +)[source]

      Solves an \(n\)th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using variation of parameters.

      This is an equation with form \(g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) @@ -2611,7 +2611,7 @@

      Documentation Version
      ode_problem,
      -)[source] +)[source]

      Solves an \(n\)th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using undetermined coefficients.

      This is an equation with form \(g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) @@ -2653,7 +2653,7 @@

      Documentation Version
      -class sympy.solvers.ode.single.NthAlgebraic(ode_problem)[source]
      +class sympy.solvers.ode.single.NthAlgebraic(ode_problem)[source]

      Solves an \(n\)th order ordinary differential equation using algebra and integrals.

      There is no general form for the kind of equation that this can solve. The @@ -2674,7 +2674,7 @@

      Documentation Version
      -class sympy.solvers.ode.single.NthOrderReducible(ode_problem)[source]
      +class sympy.solvers.ode.single.NthOrderReducible(ode_problem)[source]

      Solves ODEs that only involve derivatives of the dependent variable using a substitution of the form \(f^n(x) = g(x)\).

      For example any second order ODE of the form \(f''(x) = h(f'(x), x)\) can be @@ -2696,7 +2696,7 @@

      Documentation Version
      -class sympy.solvers.ode.single.Separable(ode_problem)[source]
      +class sympy.solvers.ode.single.Separable(ode_problem)[source]

      Solves separable 1st order differential equations.

      This is any differential equation that can be written as \(P(y) \tfrac{dy}{dx} = Q(x)\). The solution can then just be found by @@ -2749,7 +2749,7 @@

      Documentation Version
      -class sympy.solvers.ode.single.AlmostLinear(ode_problem)[source]
      +class sympy.solvers.ode.single.AlmostLinear(ode_problem)[source]

      Solves an almost-linear differential equation.

      The general form of an almost linear differential equation is

      @@ -2795,7 +2795,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.LinearCoefficients(ode_problem)[source]
      +class sympy.solvers.ode.single.LinearCoefficients(ode_problem)[source]

      Solves a differential equation with linear coefficients.

      The general form of a differential equation with linear coefficients is

      @@ -2840,7 +2840,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.SeparableReduced(ode_problem)[source]
      +class sympy.solvers.ode.single.SeparableReduced(ode_problem)[source]

      Solves a differential equation that can be reduced to the separable form.

      The general form of this equation is

      @@ -2901,7 +2901,7 @@
      Documentation Version
      -class sympy.solvers.ode.single.LieGroup(ode_problem)[source]
      +class sympy.solvers.ode.single.LieGroup(ode_problem)[source]

      This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate system into another coordinate system where it becomes @@ -2951,7 +2951,7 @@

      Documentation Version
      -class sympy.solvers.ode.single.SecondHypergeometric(ode_problem)[source]
      +class sympy.solvers.ode.single.SecondHypergeometric(ode_problem)[source]

      Solves 2nd order linear differential equations.

      It computes special function solutions which can be expressed using the 2F1, 1F1 or 0F1 hypergeometric functions.

      @@ -3000,7 +3000,7 @@
      Documentation Version
      -sympy.solvers.ode.ode.ode_1st_power_series(eq, func, order, match)[source]
      +sympy.solvers.ode.ode.ode_1st_power_series(eq, func, order, match)[source]

      The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation.

      For a first order differential equation \(\frac{dy}{dx} = h(x, y)\), a power @@ -3047,7 +3047,7 @@

      Documentation Version
      match,
      -)[source] +)[source]

      Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogeneous differential equation is of the form

      @@ -3091,7 +3091,7 @@
      Documentation Version
      match,
      -)[source] +)[source]

      Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogeneous differential equation is of the form

      @@ -3150,7 +3150,7 @@

      Lie heuristics
      -sympy.solvers.ode.lie_group.lie_heuristic_abaco1_simple(match, comp=False)[source]
      +sympy.solvers.ode.lie_group.lie_heuristic_abaco1_simple(match, comp=False)[source]

      The first heuristic uses the following four sets of assumptions on \(\xi\) and \(\eta\)

      @@ -3190,7 +3190,7 @@

      Lie heuristics
      -sympy.solvers.ode.lie_group.lie_heuristic_abaco1_product(match, comp=False)[source]
      +sympy.solvers.ode.lie_group.lie_heuristic_abaco1_product(match, comp=False)[source]

      The second heuristic uses the following two assumptions on \(\xi\) and \(\eta\)

      @@ -3223,7 +3223,7 @@

      Lie heuristics
      -sympy.solvers.ode.lie_group.lie_heuristic_bivariate(match, comp=False)[source]
      +sympy.solvers.ode.lie_group.lie_heuristic_bivariate(match, comp=False)[source]

      The third heuristic assumes the infinitesimals \(\xi\) and \(\eta\) to be bi-variate polynomials in \(x\) and \(y\). The assumption made here for the logic below is that \(h\) is a rational function in \(x\) and \(y\) @@ -3242,7 +3242,7 @@

      Lie heuristics
      -sympy.solvers.ode.lie_group.lie_heuristic_chi(match, comp=False)[source]
      +sympy.solvers.ode.lie_group.lie_heuristic_chi(match, comp=False)[source]

      The aim of the fourth heuristic is to find the function \(\chi(x, y)\) that satisfies the PDE \(\frac{d\chi}{dx} + h\frac{d\chi}{dx} - \frac{\partial h}{\partial y}\chi = 0\).

      @@ -3263,7 +3263,7 @@

      Lie heuristics
      -sympy.solvers.ode.lie_group.lie_heuristic_abaco2_similar(match, comp=False)[source]
      +sympy.solvers.ode.lie_group.lie_heuristic_abaco2_similar(match, comp=False)[source]

      This heuristic uses the following two assumptions on \(\xi\) and \(\eta\)

      @@ -3301,7 +3301,7 @@

      Lie heuristics
      -sympy.solvers.ode.lie_group.lie_heuristic_function_sum(match, comp=False)[source]
      +sympy.solvers.ode.lie_group.lie_heuristic_function_sum(match, comp=False)[source]

      This heuristic uses the following two assumptions on \(\xi\) and \(\eta\)

      @@ -3348,7 +3348,7 @@

      Lie heuristicscomp=False,

      -)[source] +)[source]

      This heuristic assumes the presence of unknown functions or known functions with non-integer powers.

        @@ -3384,7 +3384,7 @@

        Lie heuristicscomp=False,

      -)[source] +)[source]

      This heuristic finds if infinitesimals of the form \(\eta = f(x)\), \(\xi = g(y)\) without making any assumptions on \(h\).

      The complete sequence of steps is given in the paper mentioned below.

      @@ -3397,7 +3397,7 @@

      Lie heuristics
      -sympy.solvers.ode.lie_group.lie_heuristic_linear(match, comp=False)[source]
      +sympy.solvers.ode.lie_group.lie_heuristic_linear(match, comp=False)[source]

      This heuristic assumes

      1. \(\xi = ax + by + c\) and

      2. @@ -3428,7 +3428,7 @@

        Rational Riccati Solver
        -sympy.solvers.ode.riccati.riccati_normal(w, x, b1, b2)[source]
        +sympy.solvers.ode.riccati.riccati_normal(w, x, b1, b2)[source]

        Given a solution \(w(x)\) to the equation

        @@ -3451,28 +3451,28 @@

        Rational Riccati Solver
        -sympy.solvers.ode.riccati.riccati_inverse_normal(y, x, b1, b2, bp=None)[source]
        +sympy.solvers.ode.riccati.riccati_inverse_normal(y, x, b1, b2, bp=None)[source]

        Inverse transforming the solution to the normal Riccati ODE to get the solution to the Riccati ODE.

        -sympy.solvers.ode.riccati.riccati_reduced(eq, f, x)[source]
        +sympy.solvers.ode.riccati.riccati_reduced(eq, f, x)[source]

        Convert a Riccati ODE into its corresponding normal Riccati ODE.

        -sympy.solvers.ode.riccati.construct_c(num, den, x, poles, muls)[source]
        +sympy.solvers.ode.riccati.construct_c(num, den, x, poles, muls)[source]

        Helper function to calculate the coefficients in the c-vector for each pole.

        -sympy.solvers.ode.riccati.construct_d(num, den, x, val_inf)[source]
        +sympy.solvers.ode.riccati.construct_d(num, den, x, val_inf)[source]

        Helper function to calculate the coefficients in the d-vector based on the valuation of the function at oo.

        @@ -3480,7 +3480,7 @@

        Rational Riccati Solver
        -sympy.solvers.ode.riccati.rational_laurent_series(num, den, x, r, m, n)[source]
        +sympy.solvers.ode.riccati.rational_laurent_series(num, den, x, r, m, n)[source]

        The function computes the Laurent series coefficients of a rational function.

        @@ -3525,7 +3525,7 @@

        Rational Riccati Solver
        -sympy.solvers.ode.riccati.compute_m_ybar(x, poles, choice, N)[source]
        +sympy.solvers.ode.riccati.compute_m_ybar(x, poles, choice, N)[source]

        Helper function to calculate -

        1. m - The degree bound for the polynomial solution that must be found for the auxiliary @@ -3536,7 +3536,7 @@

        Rational Riccati Solver
        -sympy.solvers.ode.riccati.solve_aux_eq(numa, dena, numy, deny, x, m)[source]
        +sympy.solvers.ode.riccati.solve_aux_eq(numa, dena, numy, deny, x, m)[source]

        Helper function to find a polynomial solution of degree m for the auxiliary differential equation.

        @@ -3544,14 +3544,14 @@

        Rational Riccati Solver
        -sympy.solvers.ode.riccati.remove_redundant_sols(sol1, sol2, x)[source]
        +sympy.solvers.ode.riccati.remove_redundant_sols(sol1, sol2, x)[source]

        Helper function to remove redundant solutions to the differential equation.

        -sympy.solvers.ode.riccati.get_gen_sol_from_part_sol(part_sols, a, x)[source]
        +sympy.solvers.ode.riccati.get_gen_sol_from_part_sol(part_sols, a, x)[source]

        ” Helper function which computes the general solution for a Riccati ODE from its particular @@ -3567,7 +3567,7 @@

        Rational Riccati Solver
        -sympy.solvers.ode.riccati.solve_riccati(fx, x, b0, b1, b2, gensol=False)[source]
        +sympy.solvers.ode.riccati.solve_riccati(fx, x, b0, b1, b2, gensol=False)[source]

        The main function that gives particular/general solutions to Riccati ODEs that have atleast 1 rational particular solution.

        @@ -3580,7 +3580,7 @@

        System of ODEsdsolve() for system of differential equations.

        -sympy.solvers.ode.ode._linear_2eq_order1_type6(x, y, t, r, eq)[source]
        +sympy.solvers.ode.ode._linear_2eq_order1_type6(x, y, t, r, eq)[source]

        The equations of this type of ode are .

        @@ -3607,7 +3607,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._linear_2eq_order1_type7(x, y, t, r, eq)[source]
        +sympy.solvers.ode.ode._linear_2eq_order1_type7(x, y, t, r, eq)[source]

        The equations of this type of ode are .

        @@ -3650,7 +3650,7 @@

        System of ODEs
        -sympy.solvers.ode.systems.linear_ode_to_matrix(eqs, funcs, t, order)[source]
        +sympy.solvers.ode.systems.linear_ode_to_matrix(eqs, funcs, t, order)[source]

        Convert a linear system of ODEs to matrix form

        Parameters:
        @@ -3779,7 +3779,7 @@

        System of ODEs
        -sympy.solvers.ode.systems.canonical_odes(eqs, funcs, t)[source]
        +sympy.solvers.ode.systems.canonical_odes(eqs, funcs, t)[source]

        Function that solves for highest order derivatives in a system

        Parameters:
        @@ -3840,7 +3840,7 @@

        System of ODEs
        -sympy.solvers.ode.systems.linodesolve_type(A, t, b=None)[source]
        +sympy.solvers.ode.systems.linodesolve_type(A, t, b=None)[source]

        Helper function that determines the type of the system of ODEs for solving with sympy.solvers.ode.systems.linodesolve()

        Parameters:
        @@ -3929,7 +3929,7 @@

        System of ODEs
        -sympy.solvers.ode.systems.matrix_exp_jordan_form(A, t)[source]
        +sympy.solvers.ode.systems.matrix_exp_jordan_form(A, t)[source]

        Matrix exponential \(\exp(A*t)\) for the matrix A and scalar t.

        Parameters:
        @@ -3990,7 +3990,7 @@

        System of ODEs
        -sympy.solvers.ode.systems.matrix_exp(A, t)[source]
        +sympy.solvers.ode.systems.matrix_exp(A, t)[source]

        Matrix exponential \(\exp(A*t)\) for the matrix A and scalar t.

        Parameters:
        @@ -4086,7 +4086,7 @@

        System of ODEstau=None,

        -)[source] +)[source]

        System of n equations linear first-order differential equations

        Parameters:
        @@ -4305,7 +4305,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_2eq_order1_type1(x, y, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_2eq_order1_type1(x, y, t, eq)[source]

        Equations:

        @@ -4336,7 +4336,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_2eq_order1_type2(x, y, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_2eq_order1_type2(x, y, t, eq)[source]

        Equations:

        @@ -4367,7 +4367,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_2eq_order1_type3(x, y, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_2eq_order1_type3(x, y, t, eq)[source]

        Autonomous system of general form

        @@ -4392,7 +4392,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_2eq_order1_type4(x, y, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_2eq_order1_type4(x, y, t, eq)[source]

        Equation:

        @@ -4415,7 +4415,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_2eq_order1_type5(func, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_2eq_order1_type5(func, t, eq)[source]

        Clairaut system of ODEs

        @@ -4439,7 +4439,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_3eq_order1_type1(x, y, z, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_3eq_order1_type1(x, y, z, t, eq)[source]

        Equations:

        @@ -4464,7 +4464,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_3eq_order1_type2(x, y, z, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_3eq_order1_type2(x, y, z, t, eq)[source]

        Equations:

        @@ -4497,7 +4497,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_3eq_order1_type3(x, y, z, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_3eq_order1_type3(x, y, z, t, eq)[source]

        Equations:

        @@ -4527,7 +4527,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_3eq_order1_type4(x, y, z, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_3eq_order1_type4(x, y, z, t, eq)[source]

        Equations:

        @@ -4557,7 +4557,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._nonlinear_3eq_order1_type5(x, y, z, t, eq)[source]
        +sympy.solvers.ode.ode._nonlinear_3eq_order1_type5(x, y, z, t, eq)[source]
        \[x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2)\]
        @@ -4795,7 +4795,7 @@

        System of ODEs
        -sympy.solvers.ode.ode._handle_Integral(expr, func, hint)[source]
        +sympy.solvers.ode.ode._handle_Integral(expr, func, hint)[source]

        Converts a solution with Integrals in it into an actual solution.

        For most hints, this simply runs expr.doit().

        diff --git a/dev/modules/solvers/pde.html b/dev/modules/solvers/pde.html index a6c817cf025..436a0b3d7ba 100644 --- a/dev/modules/solvers/pde.html +++ b/dev/modules/solvers/pde.html @@ -805,7 +805,7 @@

        User Functionsfrom sympy import *. They are intended for user use.

        -sympy.solvers.pde.pde_separate(eq, fun, sep, strategy='mul')[source]
        +sympy.solvers.pde.pde_separate(eq, fun, sep, strategy='mul')[source]

        Separate variables in partial differential equation either by additive or multiplicative separation approach. It tries to rewrite an equation so that one of the specified variables occurs on a different side of the @@ -846,7 +846,7 @@

        User Functions
        -sympy.solvers.pde.pde_separate_add(eq, fun, sep)[source]
        +sympy.solvers.pde.pde_separate_add(eq, fun, sep)[source]

        Helper function for searching additive separable solutions.

        Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different @@ -867,7 +867,7 @@

        User Functions
        -sympy.solvers.pde.pde_separate_mul(eq, fun, sep)[source]
        +sympy.solvers.pde.pde_separate_mul(eq, fun, sep)[source]

        Helper function for searching multiplicative separable solutions.

        Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different @@ -899,7 +899,7 @@

        User Functions**kwargs,

        -)[source] +)[source]

        Solves any (supported) kind of partial differential equation.

        Usage

        @@ -1012,7 +1012,7 @@

        User Functions**kwargs,

        -)[source] +)[source]

        Returns a tuple of possible pdsolve() classifications for a PDE.

        The tuple is ordered so that first item is the classification that pdsolve() uses to solve the PDE by default. In general, @@ -1055,7 +1055,7 @@

        User Functionssolve_for_func=True,

        -)[source] +)[source]

        Checks if the given solution satisfies the partial differential equation.

        pde is the partial differential equation which can be given in the @@ -1109,7 +1109,7 @@

        Hint Methodssolvefun,

        -)[source] +)[source]

        Solves a first order linear homogeneous partial differential equation with constant coefficients.

        The general form of this partial differential equation is

        @@ -1179,7 +1179,7 @@

        Hint Methodssolvefun,

        -)[source] +)[source]

        Solves a first order linear partial differential equation with constant coefficients.

        The general form of this partial differential equation is

        @@ -1264,7 +1264,7 @@

        Hint Methodssolvefun,

        -)[source] +)[source]

        Solves a first order linear partial differential equation with variable coefficients. The general form of this partial differential equation is

        diff --git a/dev/modules/solvers/solvers.html b/dev/modules/solvers/solvers.html index 4f8bc8cdc85..99b266dbc68 100644 --- a/dev/modules/solvers/solvers.html +++ b/dev/modules/solvers/solvers.html @@ -832,7 +832,7 @@
        Documentation Version
        is the symbol that we want to solve the equation for.

        -sympy.solvers.solvers.solve(f, *symbols, **flags)[source]
        +sympy.solvers.solvers.solve(f, *symbols, **flags)[source]

        Algebraically solves equations and systems of equations.

        Parameters:
        @@ -1322,7 +1322,7 @@
        Documentation Version
        -sympy.solvers.solvers.solve_linear(lhs, rhs=0, symbols=[], exclude=[])[source]
        +sympy.solvers.solvers.solve_linear(lhs, rhs=0, symbols=[], exclude=[])[source]

        Return a tuple derived from f = lhs - rhs that is one of the following: (0, 1), (0, 0), (symbol, solution), (n, d).

        Explanation

        @@ -1422,7 +1422,7 @@
        Documentation Version
        -sympy.solvers.solvers.solve_linear_system(system, *symbols, **flags)[source]
        +sympy.solvers.solvers.solve_linear_system(system, *symbols, **flags)[source]

        Solve system of \(N\) linear equations with \(M\) variables, which means both under- and overdetermined systems are supported.

        Explanation

        @@ -1465,7 +1465,7 @@
        Documentation Version
        -sympy.solvers.solvers.solve_linear_system_LU(matrix, syms)[source]
        +sympy.solvers.solvers.solve_linear_system_LU(matrix, syms)[source]

        Solves the augmented matrix system using LUsolve and returns a dictionary in which solutions are keyed to the symbols of syms as ordered.

        Explanation

        @@ -1499,7 +1499,7 @@
        Documentation Version
        **flags,
        -)[source] +)[source]

        Solve a system of equations in \(k\) parameters that is formed by matching coefficients in variables coeffs that are on factors dependent on the remaining variables (or those given @@ -1562,7 +1562,7 @@

        Documentation Version
        -sympy.solvers.solvers.nsolve(*args, dict=False, **kwargs)[source]
        +sympy.solvers.solvers.nsolve(*args, dict=False, **kwargs)[source]

        Solve a nonlinear equation system numerically: nsolve(f, [args,] x0, modules=['mpmath'], **kwargs).

        Explanation

        @@ -1664,7 +1664,7 @@
        Documentation Version
        -sympy.solvers.solvers.checksol(f, symbol, sol=None, **flags)[source]
        +sympy.solvers.solvers.checksol(f, symbol, sol=None, **flags)[source]

        Checks whether sol is a solution of equation f == 0.

        Explanation

        Input can be either a single symbol and corresponding value @@ -1712,7 +1712,7 @@

        Documentation Version
        -sympy.solvers.solvers.unrad(eq, *syms, **flags)[source]
        +sympy.solvers.solvers.unrad(eq, *syms, **flags)[source]

        Remove radicals with symbolic arguments and return (eq, cov), None, or raise an error.

        Explanation

        @@ -1787,7 +1787,7 @@

        Partial Differential Equations (PDEs)

        -sympy.solvers.deutils.ode_order(expr, func)[source]
        +sympy.solvers.deutils.ode_order(expr, func)[source]

        Returns the order of a given differential equation with respect to func.

        This function is implemented recursively.

        @@ -1812,7 +1812,7 @@

        Deutils (Utilities for solving ODE’s and PDE’s)

        Recurrence Equations

        -sympy.solvers.recurr.rsolve(f, y, init=None)[source]
        +sympy.solvers.recurr.rsolve(f, y, init=None)[source]

        Solve univariate recurrence with rational coefficients.

        Given \(k\)-th order linear recurrence \(\operatorname{L} y = f\), or equivalently:

        @@ -1868,7 +1868,7 @@

        Deutils (Utilities for solving ODE’s and PDE’s)
        -sympy.solvers.recurr.rsolve_poly(coeffs, f, n, shift=0, **hints)[source]
        +sympy.solvers.recurr.rsolve_poly(coeffs, f, n, shift=0, **hints)[source]

        Given linear recurrence operator \(\operatorname{L}\) of order \(k\) with polynomial coefficients and inhomogeneous equation \(\operatorname{L} y = f\), where \(f\) is a polynomial, we seek for @@ -1929,7 +1929,7 @@

        Deutils (Utilities for solving ODE’s and PDE’s)
        -sympy.solvers.recurr.rsolve_ratio(coeffs, f, n, **hints)[source]
        +sympy.solvers.recurr.rsolve_ratio(coeffs, f, n, **hints)[source]

        Given linear recurrence operator \(\operatorname{L}\) of order \(k\) with polynomial coefficients and inhomogeneous equation \(\operatorname{L} y = f\), where \(f\) is a polynomial, we seek @@ -1982,7 +1982,7 @@

        Deutils (Utilities for solving ODE’s and PDE’s)
        -sympy.solvers.recurr.rsolve_hyper(coeffs, f, n, **hints)[source]
        +sympy.solvers.recurr.rsolve_hyper(coeffs, f, n, **hints)[source]

        Given linear recurrence operator \(\operatorname{L}\) of order \(k\) with polynomial coefficients and inhomogeneous equation \(\operatorname{L} y = f\) we seek for all hypergeometric solutions @@ -2054,7 +2054,7 @@

        Systems of Polynomial Equations**args,

        -)[source] +)[source]

        Return a list of solutions for the system of polynomial equations or else None.

        @@ -2110,7 +2110,7 @@

        Systems of Polynomial Equations
        -sympy.solvers.polysys.solve_triangulated(polys, *gens, **args)[source]
        +sympy.solvers.polysys.solve_triangulated(polys, *gens, **args)[source]

        Solve a polynomial system using Gianni-Kalkbrenner algorithm.

        The algorithm proceeds by computing one Groebner basis in the ground domain and then by iteratively computing polynomial factorizations in @@ -2170,7 +2170,7 @@

        Inequalities

        Linear Programming (Optimization)

        -sympy.solvers.simplex.lpmax(f, constr)[source]
        +sympy.solvers.simplex.lpmax(f, constr)[source]

        return maximum of linear equation f under linear constraints expressed using Ge, Le or Eq.

        All variables are unbounded unless constrained.

        @@ -2204,7 +2204,7 @@

        Inequalities
        -sympy.solvers.simplex.lpmin(f, constr)[source]
        +sympy.solvers.simplex.lpmin(f, constr)[source]

        return minimum of linear equation f under linear constraints expressed using Ge, Le or Eq.

        All variables are unbounded unless constrained.

        @@ -2251,7 +2251,7 @@

        Inequalitiesbounds=None,

        -)[source] +)[source]

        Return the minimization of c*x with the given constraints A*x <= b and A_eq*x = b_eq. Unless bounds are given, variables will have nonnegative values in the solution.

        diff --git a/dev/modules/solvers/solveset.html b/dev/modules/solvers/solveset.html index b63bdfb16f6..2a3b25ce441 100644 --- a/dev/modules/solvers/solveset.html +++ b/dev/modules/solvers/solveset.html @@ -1323,7 +1323,7 @@

        Solveset Module Reference
        -sympy.solvers.solveset.solveset(f, symbol=None, domain=Complexes)[source]
        +sympy.solvers.solveset.solveset(f, symbol=None, domain=Complexes)[source]

        Solves a given inequality or equation with set as output

        Parameters:
        @@ -1439,24 +1439,24 @@

        Solveset Module Reference
        -sympy.solvers.solveset.solveset_real(f, symbol)[source]
        +sympy.solvers.solveset.solveset_real(f, symbol)[source]

        -sympy.solvers.solveset.solveset_complex(f, symbol)[source]
        +sympy.solvers.solveset.solveset_complex(f, symbol)[source]
        -sympy.solvers.solveset.invert_real(f_x, y, x)[source]
        +sympy.solvers.solveset.invert_real(f_x, y, x)[source]

        Inverts a real-valued function. Same as invert_complex(), but sets the domain to S.Reals before inverting.

        -sympy.solvers.solveset.invert_complex(f_x, y, x, domain=Complexes)[source]
        +sympy.solvers.solveset.invert_complex(f_x, y, x, domain=Complexes)[source]

        Reduce the complex valued equation \(f(x) = y\) to a set of equations

        @@ -1512,7 +1512,7 @@

        Solveset Module Reference
        -sympy.solvers.solveset.domain_check(f, symbol, p)[source]
        +sympy.solvers.solveset.domain_check(f, symbol, p)[source]

        Returns False if point p is infinite or any subexpression of f is infinite or becomes so after replacing symbol with p. If none of these conditions is met then True will be returned.

        @@ -1548,7 +1548,7 @@

        Solveset Module Reference
        -sympy.solvers.solveset.solvify(f, symbol, domain)[source]
        +sympy.solvers.solveset.solvify(f, symbol, domain)[source]

        Solves an equation using solveset and returns the solution in accordance with the \(solve\) output API.

        @@ -1590,7 +1590,7 @@

        Solveset Module Reference
        -sympy.solvers.solveset.linear_eq_to_matrix(equations, *symbols)[source]
        +sympy.solvers.solveset.linear_eq_to_matrix(equations, *symbols)[source]

        Converts a given System of Equations into Matrix form. Here \(equations\) must be a linear system of equations in \(symbols\). Element M[i, j] corresponds to the coefficient @@ -1680,7 +1680,7 @@

        Solveset Module Reference
        -sympy.solvers.solveset.linsolve(system, *symbols)[source]
        +sympy.solvers.solveset.linsolve(system, *symbols)[source]

        Solve system of \(N\) linear equations with \(M\) variables; both underdetermined and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. @@ -1876,7 +1876,7 @@

        Solveset Module Reference
        -sympy.solvers.solveset.nonlinsolve(system, *symbols)[source]
        +sympy.solvers.solveset.nonlinsolve(system, *symbols)[source]

        Solve system of \(N\) nonlinear equations with \(M\) variables, which means both under and overdetermined systems are supported. Positive dimensional system is also supported (A system with infinitely many solutions is said @@ -2034,7 +2034,7 @@

        Solveset Module Reference

        -sympy.solvers.solveset._transolve(f, symbol, domain)[source]
        +sympy.solvers.solveset._transolve(f, symbol, domain)[source]

        Function to solve transcendental equations. It is a helper to solveset and should be used internally. _transolve currently supports the following class of equations:

        @@ -2207,7 +2207,7 @@

        transolve
        -sympy.solvers.solveset._is_exponential(f, symbol)[source]
        +sympy.solvers.solveset._is_exponential(f, symbol)[source]

        Return True if one or more terms contain symbol only in exponents, else False.

        @@ -2247,7 +2247,7 @@

        transolve
        -sympy.solvers.solveset._solve_exponential(lhs, rhs, symbol, domain)[source]
        +sympy.solvers.solveset._solve_exponential(lhs, rhs, symbol, domain)[source]

        Helper function for solving (supported) exponential equations.

        Exponential equations are the sum of (currently) at most two terms with one or both of them having a power with a @@ -2327,7 +2327,7 @@

        transolve
        -sympy.solvers.solveset._solve_logarithm(lhs, rhs, symbol, domain)[source]
        +sympy.solvers.solveset._solve_logarithm(lhs, rhs, symbol, domain)[source]

        Helper to solve logarithmic equations which are reducible to a single instance of \(\log\).

        Logarithmic equations are (currently) the equations that contains @@ -2418,7 +2418,7 @@

        transolve
        -sympy.solvers.solveset._is_logarithmic(f, symbol)[source]
        +sympy.solvers.solveset._is_logarithmic(f, symbol)[source]

        Return True if the equation is in the form \(a\log(f(x)) + b\log(g(x)) + ... + c\) else False.

        diff --git a/dev/modules/stats.html b/dev/modules/stats.html index b143abf055a..7bab3cd5f42 100644 --- a/dev/modules/stats.html +++ b/dev/modules/stats.html @@ -925,7 +925,7 @@

        Random Variable TypesFinite Types

        -sympy.stats.DiscreteUniform(name, items)[source]
        +sympy.stats.DiscreteUniform(name, items)[source]

        Create a Finite Random Variable representing a uniform distribution over the input set.

        @@ -969,7 +969,7 @@

        Finite Types
        -sympy.stats.Die(name, sides=6)[source]
        +sympy.stats.Die(name, sides=6)[source]

        Create a Finite Random Variable representing a fair die.

        Parameters:
        @@ -1009,7 +1009,7 @@

        Finite Types
        -sympy.stats.Bernoulli(name, p, succ=1, fail=0)[source]
        +sympy.stats.Bernoulli(name, p, succ=1, fail=0)[source]

        Create a Finite Random Variable representing a Bernoulli process.

        Parameters:
        @@ -1060,7 +1060,7 @@

        Finite Types
        -sympy.stats.Coin(name, p=1 / 2)[source]
        +sympy.stats.Coin(name, p=1 / 2)[source]

        Create a Finite Random Variable representing a Coin toss.

        Parameters:
        @@ -1103,7 +1103,7 @@

        Finite Types
        -sympy.stats.Binomial(name, n, p, succ=1, fail=0)[source]
        +sympy.stats.Binomial(name, n, p, succ=1, fail=0)[source]

        Create a Finite Random Variable representing a binomial distribution.

        Parameters:
        @@ -1162,7 +1162,7 @@

        Finite Types
        -sympy.stats.BetaBinomial(name, n, alpha, beta)[source]
        +sympy.stats.BetaBinomial(name, n, alpha, beta)[source]

        Create a Finite Random Variable representing a Beta-binomial distribution.

        Parameters:
        @@ -1201,7 +1201,7 @@

        Finite Types
        -sympy.stats.Hypergeometric(name, N, m, n)[source]
        +sympy.stats.Hypergeometric(name, N, m, n)[source]

        Create a Finite Random Variable representing a hypergeometric distribution.

        Parameters:
        @@ -1246,7 +1246,7 @@

        Finite Types
        -sympy.stats.FiniteRV(name, density, **kwargs)[source]
        +sympy.stats.FiniteRV(name, density, **kwargs)[source]

        Create a Finite Random Variable given a dict representing the density.

        Parameters:
        @@ -1287,7 +1287,7 @@

        Finite Types
        -sympy.stats.Rademacher(name)[source]
        +sympy.stats.Rademacher(name)[source]

        Create a Finite Random Variable representing a Rademacher distribution.

        Returns:
        @@ -1321,7 +1321,7 @@

        Finite Types

        -sympy.stats.Geometric(name, p)[source]
        +sympy.stats.Geometric(name, p)[source]

        Create a discrete random variable with a Geometric distribution.

        Parameters:
        @@ -1376,7 +1376,7 @@

        Discrete Types
        -sympy.stats.Hermite(name, a1, a2)[source]
        +sympy.stats.Hermite(name, a1, a2)[source]

        Create a discrete random variable with a Hermite distribution.

        Parameters:
        @@ -1430,7 +1430,7 @@

        Discrete Types
        -sympy.stats.Poisson(name, lamda)[source]
        +sympy.stats.Poisson(name, lamda)[source]

        Create a discrete random variable with a Poisson distribution.

        Parameters:
        @@ -1485,7 +1485,7 @@

        Discrete Types
        -sympy.stats.Logarithmic(name, p)[source]
        +sympy.stats.Logarithmic(name, p)[source]

        Create a discrete random variable with a Logarithmic distribution.

        Parameters:
        @@ -1540,7 +1540,7 @@

        Discrete Types
        -sympy.stats.NegativeBinomial(name, r, p)[source]
        +sympy.stats.NegativeBinomial(name, r, p)[source]

        Create a discrete random variable with a Negative Binomial distribution.

        Parameters:
        @@ -1597,7 +1597,7 @@

        Discrete Types
        -sympy.stats.Skellam(name, mu1, mu2)[source]
        +sympy.stats.Skellam(name, mu1, mu2)[source]

        Create a discrete random variable with a Skellam distribution.

        Parameters:
        @@ -1652,7 +1652,7 @@

        Discrete Types
        -sympy.stats.YuleSimon(name, rho)[source]
        +sympy.stats.YuleSimon(name, rho)[source]

        Create a discrete random variable with a Yule-Simon distribution.

        Parameters:
        @@ -1703,7 +1703,7 @@

        Discrete Types
        -sympy.stats.Zeta(name, s)[source]
        +sympy.stats.Zeta(name, s)[source]

        Create a discrete random variable with a Zeta distribution.

        Parameters:
        @@ -1757,7 +1757,7 @@

        Discrete Types

        -sympy.stats.Arcsin(name, a=0, b=1)[source]
        +sympy.stats.Arcsin(name, a=0, b=1)[source]

        Create a Continuous Random Variable with an arcsin distribution.

        The density of the arcsin distribution is given by

        @@ -1808,7 +1808,7 @@

        Continuous Types
        -sympy.stats.Benini(name, alpha, beta, sigma)[source]
        +sympy.stats.Benini(name, alpha, beta, sigma)[source]

        Create a Continuous Random Variable with a Benini distribution.

        The density of the Benini distribution is given by

        @@ -1872,7 +1872,7 @@

        Continuous Types
        -sympy.stats.Beta(name, alpha, beta)[source]
        +sympy.stats.Beta(name, alpha, beta)[source]

        Create a Continuous Random Variable with a Beta distribution.

        The density of the Beta distribution is given by

        @@ -1933,7 +1933,7 @@

        Continuous Types
        -sympy.stats.BetaNoncentral(name, alpha, beta, lamda)[source]
        +sympy.stats.BetaNoncentral(name, alpha, beta, lamda)[source]

        Create a Continuous Random Variable with a Type I Noncentral Beta distribution.

        The density of the Noncentral Beta distribution is given by

        @@ -2004,7 +2004,7 @@

        Continuous Types
        -sympy.stats.BetaPrime(name, alpha, beta)[source]
        +sympy.stats.BetaPrime(name, alpha, beta)[source]

        Create a continuous random variable with a Beta prime distribution.

        The density of the Beta prime distribution is given by

        @@ -2057,7 +2057,7 @@

        Continuous Types
        -sympy.stats.BoundedPareto(name, alpha, left, right)[source]
        +sympy.stats.BoundedPareto(name, alpha, left, right)[source]

        Create a continuous random variable with a Bounded Pareto distribution.

        The density of the Bounded Pareto distribution is given by

        @@ -2108,7 +2108,7 @@

        Continuous Types
        -sympy.stats.Cauchy(name, x0, gamma)[source]
        +sympy.stats.Cauchy(name, x0, gamma)[source]

        Create a continuous random variable with a Cauchy distribution.

        The density of the Cauchy distribution is given by

        @@ -2156,7 +2156,7 @@

        Continuous Types
        -sympy.stats.Chi(name, k)[source]
        +sympy.stats.Chi(name, k)[source]

        Create a continuous random variable with a Chi distribution.

        The density of the Chi distribution is given by

        @@ -2207,7 +2207,7 @@

        Continuous Types
        -sympy.stats.ChiNoncentral(name, k, l)[source]
        +sympy.stats.ChiNoncentral(name, k, l)[source]

        Create a continuous random variable with a non-central Chi distribution.

        Parameters:
        @@ -2261,7 +2261,7 @@

        Continuous Types
        -sympy.stats.ChiSquared(name, k)[source]
        +sympy.stats.ChiSquared(name, k)[source]

        Create a continuous random variable with a Chi-squared distribution.

        Parameters:
        @@ -2325,7 +2325,7 @@

        Continuous Types
        -sympy.stats.Dagum(name, p, a, b)[source]
        +sympy.stats.Dagum(name, p, a, b)[source]

        Create a continuous random variable with a Dagum distribution.

        Parameters:
        @@ -2387,7 +2387,7 @@

        Continuous Types
        -sympy.stats.Davis(name, b, n, mu)[source]
        +sympy.stats.Davis(name, b, n, mu)[source]

        Create a continuous random variable with Davis distribution.

        Parameters:
        @@ -2443,7 +2443,7 @@

        Continuous Types
        -sympy.stats.Erlang(name, k, l)[source]
        +sympy.stats.Erlang(name, k, l)[source]

        Create a continuous random variable with an Erlang distribution.

        Parameters:
        @@ -2514,7 +2514,7 @@

        Continuous Types
        -sympy.stats.ExGaussian(name, mean, std, rate)[source]
        +sympy.stats.ExGaussian(name, mean, std, rate)[source]

        Create a continuous random variable with an Exponentially modified Gaussian (EMG) distribution.

        @@ -2601,7 +2601,7 @@

        Continuous Types
        -sympy.stats.Exponential(name, rate)[source]
        +sympy.stats.Exponential(name, rate)[source]

        Create a continuous random variable with an Exponential distribution.

        Parameters:
        @@ -2684,7 +2684,7 @@

        Continuous Types
        -sympy.stats.FDistribution(name, d1, d2)[source]
        +sympy.stats.FDistribution(name, d1, d2)[source]

        Create a continuous random variable with a F distribution.

        Parameters:
        @@ -2744,7 +2744,7 @@

        Continuous Types
        -sympy.stats.FisherZ(name, d1, d2)[source]
        +sympy.stats.FisherZ(name, d1, d2)[source]

        Create a Continuous Random Variable with an Fisher’s Z distribution.

        Parameters:
        @@ -2809,7 +2809,7 @@

        Continuous Types
        -sympy.stats.Frechet(name, a, s=1, m=0)[source]
        +sympy.stats.Frechet(name, a, s=1, m=0)[source]

        Create a continuous random variable with a Frechet distribution.

        Parameters:
        @@ -2862,7 +2862,7 @@

        Continuous Types
        -sympy.stats.Gamma(name, k, theta)[source]
        +sympy.stats.Gamma(name, k, theta)[source]

        Create a continuous random variable with a Gamma distribution.

        Parameters:
        @@ -2939,7 +2939,7 @@

        Continuous Types
        -sympy.stats.GammaInverse(name, a, b)[source]
        +sympy.stats.GammaInverse(name, a, b)[source]

        Create a continuous random variable with an inverse Gamma distribution.

        Parameters:
        @@ -2996,7 +2996,7 @@

        Continuous Types
        -sympy.stats.Gompertz(name, b, eta)[source]
        +sympy.stats.Gompertz(name, b, eta)[source]

        Create a Continuous Random Variable with Gompertz distribution.

        Parameters:
        @@ -3042,7 +3042,7 @@

        Continuous Types
        -sympy.stats.Gumbel(name, beta, mu, minimum=False)[source]
        +sympy.stats.Gumbel(name, beta, mu, minimum=False)[source]

        Create a Continuous Random Variable with Gumbel distribution.

        Parameters:
        @@ -3105,7 +3105,7 @@

        Continuous Types
        -sympy.stats.Kumaraswamy(name, a, b)[source]
        +sympy.stats.Kumaraswamy(name, a, b)[source]

        Create a Continuous Random Variable with a Kumaraswamy distribution.

        Parameters:
        @@ -3158,7 +3158,7 @@

        Continuous Types
        -sympy.stats.Laplace(name, mu, b)[source]
        +sympy.stats.Laplace(name, mu, b)[source]

        Create a continuous random variable with a Laplace distribution.

        Parameters:
        @@ -3225,7 +3225,7 @@

        Continuous Types
        -sympy.stats.Levy(name, mu, c)[source]
        +sympy.stats.Levy(name, mu, c)[source]

        Create a continuous random variable with a Levy distribution.

        The density of the Levy distribution is given by

        @@ -3283,7 +3283,7 @@

        Continuous Types
        -sympy.stats.Logistic(name, mu, s)[source]
        +sympy.stats.Logistic(name, mu, s)[source]

        Create a continuous random variable with a logistic distribution.

        Parameters:
        @@ -3336,7 +3336,7 @@

        Continuous Types
        -sympy.stats.LogLogistic(name, alpha, beta)[source]
        +sympy.stats.LogLogistic(name, alpha, beta)[source]

        Create a continuous random variable with a log-logistic distribution. The distribution is unimodal when beta > 1.

        @@ -3402,7 +3402,7 @@

        Continuous Types
        -sympy.stats.LogNormal(name, mean, std)[source]
        +sympy.stats.LogNormal(name, mean, std)[source]

        Create a continuous random variable with a log-normal distribution.

        Parameters:
        @@ -3475,7 +3475,7 @@

        Continuous Types
        -sympy.stats.Lomax(name, alpha, lamda)[source]
        +sympy.stats.Lomax(name, alpha, lamda)[source]

        Create a continuous random variable with a Lomax distribution.

        Parameters:
        @@ -3525,7 +3525,7 @@

        Continuous Types
        -sympy.stats.Maxwell(name, a)[source]
        +sympy.stats.Maxwell(name, a)[source]

        Create a continuous random variable with a Maxwell distribution.

        Parameters:
        @@ -3581,7 +3581,7 @@

        Continuous Types
        -sympy.stats.Moyal(name, mu, sigma)[source]
        +sympy.stats.Moyal(name, mu, sigma)[source]

        Create a continuous random variable with a Moyal distribution.

        Parameters:
        @@ -3633,7 +3633,7 @@

        Continuous Types
        -sympy.stats.Nakagami(name, mu, omega)[source]
        +sympy.stats.Nakagami(name, mu, omega)[source]

        Create a continuous random variable with a Nakagami distribution.

        Parameters:
        @@ -3704,7 +3704,7 @@

        Continuous Types
        -sympy.stats.Normal(name, mean, std)[source]
        +sympy.stats.Normal(name, mean, std)[source]

        Create a continuous random variable with a Normal distribution.

        Parameters:
        @@ -3802,7 +3802,7 @@

        Continuous Types
        -sympy.stats.Pareto(name, xm, alpha)[source]
        +sympy.stats.Pareto(name, xm, alpha)[source]

        Create a continuous random variable with the Pareto distribution.

        Parameters:
        @@ -3852,7 +3852,7 @@

        Continuous Types
        -sympy.stats.PowerFunction(name, alpha, a, b)[source]
        +sympy.stats.PowerFunction(name, alpha, a, b)[source]

        Creates a continuous random variable with a Power Function Distribution.

        Parameters:
        @@ -3917,7 +3917,7 @@

        Continuous Types
        -sympy.stats.QuadraticU(name, a, b)[source]
        +sympy.stats.QuadraticU(name, a, b)[source]

        Create a Continuous Random Variable with a U-quadratic distribution.

        Parameters:
        @@ -3972,7 +3972,7 @@

        Continuous Types
        -sympy.stats.RaisedCosine(name, mu, s)[source]
        +sympy.stats.RaisedCosine(name, mu, s)[source]

        Create a Continuous Random Variable with a raised cosine distribution.

        Parameters:
        @@ -4025,7 +4025,7 @@

        Continuous Types
        -sympy.stats.Rayleigh(name, sigma)[source]
        +sympy.stats.Rayleigh(name, sigma)[source]

        Create a continuous random variable with a Rayleigh distribution.

        Parameters:
        @@ -4081,7 +4081,7 @@

        Continuous Types
        -sympy.stats.Reciprocal(name, a, b)[source]
        +sympy.stats.Reciprocal(name, a, b)[source]

        Creates a continuous random variable with a reciprocal distribution.

        Parameters:
        @@ -4116,7 +4116,7 @@

        Continuous Types
        -sympy.stats.StudentT(name, nu)[source]
        +sympy.stats.StudentT(name, nu)[source]

        Create a continuous random variable with a student’s t distribution.

        Parameters:
        @@ -4181,7 +4181,7 @@

        Continuous Types
        -sympy.stats.ShiftedGompertz(name, b, eta)[source]
        +sympy.stats.ShiftedGompertz(name, b, eta)[source]

        Create a continuous random variable with a Shifted Gompertz distribution.

        Parameters:
        @@ -4227,7 +4227,7 @@

        Continuous Types
        -sympy.stats.Trapezoidal(name, a, b, c, d)[source]
        +sympy.stats.Trapezoidal(name, a, b, c, d)[source]

        Create a continuous random variable with a trapezoidal distribution.

        Parameters:
        @@ -4294,7 +4294,7 @@

        Continuous Types
        -sympy.stats.Triangular(name, a, b, c)[source]
        +sympy.stats.Triangular(name, a, b, c)[source]

        Create a continuous random variable with a triangular distribution.

        Parameters:
        @@ -4363,7 +4363,7 @@

        Continuous Types
        -sympy.stats.Uniform(name, left, right)[source]
        +sympy.stats.Uniform(name, left, right)[source]

        Create a continuous random variable with a uniform distribution.

        Parameters:
        @@ -4428,7 +4428,7 @@

        Continuous Types
        -sympy.stats.UniformSum(name, n)[source]
        +sympy.stats.UniformSum(name, n)[source]

        Create a continuous random variable with an Irwin-Hall distribution.

        Parameters:
        @@ -4498,7 +4498,7 @@

        Continuous Types
        -sympy.stats.VonMises(name, mu, k)[source]
        +sympy.stats.VonMises(name, mu, k)[source]

        Create a Continuous Random Variable with a von Mises distribution.

        Parameters:
        @@ -4558,7 +4558,7 @@

        Continuous Types
        -sympy.stats.Wald(name, mean, shape)[source]
        +sympy.stats.Wald(name, mean, shape)[source]

        Create a continuous random variable with an Inverse Gaussian distribution. Inverse Gaussian distribution is also known as Wald distribution.

        @@ -4633,7 +4633,7 @@

        Continuous Types
        -sympy.stats.Weibull(name, alpha, beta)[source]
        +sympy.stats.Weibull(name, alpha, beta)[source]

        Create a continuous random variable with a Weibull distribution.

        Parameters:
        @@ -4694,7 +4694,7 @@

        Continuous Types
        -sympy.stats.WignerSemicircle(name, R)[source]
        +sympy.stats.WignerSemicircle(name, R)[source]

        Create a continuous random variable with a Wigner semicircle distribution.

        Parameters:
        @@ -4755,7 +4755,7 @@

        Continuous Types**kwargs,

        -)[source] +)[source]

        Create a Continuous Random Variable given the following:

        Parameters:
        @@ -4809,7 +4809,7 @@

        Continuous Types

        -sympy.stats.JointRV(symbol, pdf, _set=None)[source]
        +sympy.stats.JointRV(symbol, pdf, _set=None)[source]

        Create a Joint Random Variable where each of its component is continuous, given the following:

        @@ -4844,7 +4844,7 @@

        Joint Types
        -sympy.stats.marginal_distribution(rv, *indices)[source]
        +sympy.stats.marginal_distribution(rv, *indices)[source]

        Marginal distribution function of a joint random variable.

        Parameters:
        @@ -4869,7 +4869,7 @@

        Joint Types
        -sympy.stats.MultivariateNormal(name, mu, sigma)[source]
        +sympy.stats.MultivariateNormal(name, mu, sigma)[source]

        Creates a continuous random variable with Multivariate Normal Distribution.

        The density of the multivariate normal distribution can be found at [1].

        @@ -4927,7 +4927,7 @@

        Joint Types
        -sympy.stats.MultivariateLaplace(name, mu, sigma)[source]
        +sympy.stats.MultivariateLaplace(name, mu, sigma)[source]

        Creates a continuous random variable with Multivariate Laplace Distribution.

        The density of the multivariate Laplace distribution can be found at [1].

        @@ -4975,7 +4975,7 @@

        Joint Typesmu,

        -)[source] +)[source]

        Creates a joint random variable with generalized multivariate log gamma distribution.

        The joint pdf can be found at [1].

        @@ -5038,7 +5038,7 @@

        Joint Typesmu,

        -)[source] +)[source]

        Extends GeneralizedMultivariateLogGamma.

        Parameters:
        @@ -5094,7 +5094,7 @@

        Joint Types
        -sympy.stats.Multinomial(syms, n, *p)[source]
        +sympy.stats.Multinomial(syms, n, *p)[source]

        Creates a discrete random variable with Multinomial Distribution.

        The density of the said distribution can be found at [1].

        @@ -5140,7 +5140,7 @@

        Joint Types
        -sympy.stats.MultivariateBeta(syms, *alpha)[source]
        +sympy.stats.MultivariateBeta(syms, *alpha)[source]

        Creates a continuous random variable with Dirichlet/Multivariate Beta Distribution.

        The density of the Dirichlet distribution can be found at [1].

        @@ -5185,7 +5185,7 @@

        Joint Types
        -sympy.stats.MultivariateEwens(syms, n, theta)[source]
        +sympy.stats.MultivariateEwens(syms, n, theta)[source]

        Creates a discrete random variable with Multivariate Ewens Distribution.

        The density of the said distribution can be found at [1].

        @@ -5231,7 +5231,7 @@

        Joint Types
        -sympy.stats.MultivariateT(syms, mu, sigma, v)[source]
        +sympy.stats.MultivariateT(syms, mu, sigma, v)[source]

        Creates a joint random variable with multivariate T-distribution.

        Parameters:
        @@ -5266,7 +5266,7 @@

        Joint Types
        -sympy.stats.NegativeMultinomial(syms, k0, *p)[source]
        +sympy.stats.NegativeMultinomial(syms, k0, *p)[source]

        Creates a discrete random variable with Negative Multinomial Distribution.

        The density of the said distribution can be found at [1].

        @@ -5313,7 +5313,7 @@

        Joint Types
        -sympy.stats.NormalGamma(sym, mu, lamda, alpha, beta)[source]
        +sympy.stats.NormalGamma(sym, mu, lamda, alpha, beta)[source]

        Creates a bivariate joint random variable with multivariate Normal gamma distribution.

        @@ -5378,7 +5378,7 @@

        Joint Typestrans_probs=None,

        -)[source] +)[source]

        Represents a finite discrete time-homogeneous Markov chain.

        This type of Markov Chain can be uniquely characterised by its (ordered) state space and its one-step transition probability @@ -5505,7 +5505,7 @@

        Joint Types
        -absorbing_probabilities()[source]
        +absorbing_probabilities()[source]

        Computes the absorbing probabilities, i.e. the ij-th entry of the matrix denotes the probability of Markov chain being absorbed @@ -5514,7 +5514,7 @@

        Joint Types
        -canonical_form() Tuple[List[Basic], ImmutableDenseMatrix][source]
        +canonical_form() Tuple[List[Basic], ImmutableDenseMatrix][source]

        Reorders the one-step transition matrix so that recurrent states appear first and transient states appear last. Other representations include inserting @@ -5616,7 +5616,7 @@

        Joint Types
        -communication_classes() List[Tuple[List[Basic], Boolean, Integer]][source]
        +communication_classes() List[Tuple[List[Basic], Boolean, Integer]][source]

        Returns the list of communication classes that partition the states of the markov chain.

        A communication class is defined to be a set of states @@ -5688,7 +5688,7 @@

        Joint Types
        -decompose() Tuple[List[Basic], ImmutableDenseMatrix, ImmutableDenseMatrix, ImmutableDenseMatrix][source]
        +decompose() Tuple[List[Basic], ImmutableDenseMatrix, ImmutableDenseMatrix, ImmutableDenseMatrix][source]

        Decomposes the transition matrix into submatrices with special properties.

        The transition matrix can be decomposed into 4 submatrices: @@ -5771,13 +5771,13 @@

        Joint Types
        -fixed_row_vector()[source]
        +fixed_row_vector()[source]

        A wrapper for stationary_distribution().

        -fundamental_matrix()[source]
        +fundamental_matrix()[source]

        Each entry fundamental matrix can be interpreted as the expected number of times the chains is in state j if it started in state i.

        @@ -5799,7 +5799,7 @@

        Joint Types
        -sample()[source]
        +sample()[source]
        Returns:

        sample: iterator object

        @@ -5818,7 +5818,7 @@

        Joint Typescondition_set=False,

        -) ImmutableDenseMatrix | ConditionSet | Lambda[source] +) ImmutableDenseMatrix | ConditionSet | Lambda[source]

        The stationary distribution is any row vector, p, that solves p = pP, is row stochastic and each element in p must be nonnegative. That means in matrix form: \((P-I)^T p^T = 0\) and @@ -5906,7 +5906,7 @@

        Joint Typesgen_mat=None,

        -)[source] +)[source]

        Represents continuous time Markov chain.

        Parameters:
        @@ -5991,7 +5991,7 @@

        Joint Types
        -class sympy.stats.BernoulliProcess(sym, p, success=1, failure=0)[source]
        +class sympy.stats.BernoulliProcess(sym, p, success=1, failure=0)[source]

        The Bernoulli process consists of repeated independent Bernoulli process trials with the same parameter \(p\). It’s assumed that the probability \(p\) applies to every @@ -6070,7 +6070,7 @@

        Joint Types**kwargs,

        -)[source] +)[source]

        Computes expectation.

        Parameters:
        @@ -6101,7 +6101,7 @@

        Joint Types**kwargs,

        -)[source] +)[source]

        Computes probability.

        Parameters:
        @@ -6125,7 +6125,7 @@

        Joint Types
        -class sympy.stats.PoissonProcess(sym, lamda)[source]
        +class sympy.stats.PoissonProcess(sym, lamda)[source]

        The Poisson process is a counting process. It is usually used in scenarios where we are counting the occurrences of certain events that appear to happen at a certain rate, but completely at random.

        @@ -6195,7 +6195,7 @@

        Joint Types
        -class sympy.stats.WienerProcess(sym)[source]
        +class sympy.stats.WienerProcess(sym)[source]

        The Wiener process is a real valued continuous-time stochastic process. In physics it is used to study Brownian motion and it is often also called Brownian motion due to its historical connection with physical process of the @@ -6238,7 +6238,7 @@

        Joint Types
        -class sympy.stats.GammaProcess(sym, lamda, gamma)[source]
        +class sympy.stats.GammaProcess(sym, lamda, gamma)[source]

        A Gamma process is a random process with independent gamma distributed increments. It is a pure-jump increasing Levy process.

        @@ -6287,7 +6287,7 @@

        Joint Types

        -sympy.stats.MatrixGamma(symbol, alpha, beta, scale_matrix)[source]
        +sympy.stats.MatrixGamma(symbol, alpha, beta, scale_matrix)[source]

        Creates a random variable with Matrix Gamma Distribution.

        The density of the said distribution can be found at [1].

        @@ -6334,7 +6334,7 @@

        Matrix Distributions
        -sympy.stats.Wishart(symbol, n, scale_matrix)[source]
        +sympy.stats.Wishart(symbol, n, scale_matrix)[source]

        Creates a random variable with Wishart Distribution.

        The density of the said distribution can be found at [1].

        @@ -6386,7 +6386,7 @@

        Matrix Distributionsscale_matrix_2,

        -)[source] +)[source]

        Creates a random variable with Matrix Normal Distribution.

        The density of the said distribution can be found at [1].

        @@ -6435,7 +6435,7 @@

        Matrix DistributionsCompound Distribution

        -class sympy.stats.compound_rv.CompoundDistribution(dist)[source]
        +class sympy.stats.compound_rv.CompoundDistribution(dist)[source]

        Class for Compound Distributions.

        Parameters:
        @@ -6484,7 +6484,7 @@

        Interface**kwargs,

        -)[source] +)[source]

        Probability that a condition is true, optionally given a second condition.

        Parameters:
        @@ -6523,7 +6523,7 @@

        Interface
        -class sympy.stats.Probability(prob, condition=None, **kwargs)[source]
        +class sympy.stats.Probability(prob, condition=None, **kwargs)[source]

        Symbolic expression for the probability.

        Examples

        >>> from sympy.stats import Probability, Normal
        @@ -6558,7 +6558,7 @@ 

        Interface**kwargs,

        -)[source] +)[source]

        Returns the expected value of a random expression.

        Parameters:
        @@ -6601,7 +6601,7 @@

        Interface
        -class sympy.stats.Expectation(expr, condition=None, **kwargs)[source]
        +class sympy.stats.Expectation(expr, condition=None, **kwargs)[source]

        Symbolic expression for the expectation.

        Examples

        >>> from sympy.stats import Expectation, Normal, Probability, Poisson
        @@ -6680,7 +6680,7 @@ 

        Interface**kwargs,

        -)[source] +)[source]

        Probability density of a random expression, optionally given a second condition.

        @@ -6726,7 +6726,7 @@

        Interface
        -sympy.stats.entropy(expr, condition=None, **kwargs)[source]
        +sympy.stats.entropy(expr, condition=None, **kwargs)[source]

        Calculuates entropy of a probability distribution.

        Parameters:
        @@ -6772,7 +6772,7 @@

        Interface
        -sympy.stats.given(expr, condition=None, **kwargs)[source]
        +sympy.stats.given(expr, condition=None, **kwargs)[source]

        Conditional Random Expression.

        Explanation

        From a random expression and a condition on that expression creates a new @@ -6810,7 +6810,7 @@

        Interface
        -sympy.stats.where(condition, given_condition=None, **kwargs)[source]
        +sympy.stats.where(condition, given_condition=None, **kwargs)[source]

        Returns the domain where a condition is True.

        Examples

        >>> from sympy.stats import where, Die, Normal
        @@ -6838,7 +6838,7 @@ 

        Interface
        -sympy.stats.variance(X, condition=None, **kwargs)[source]
        +sympy.stats.variance(X, condition=None, **kwargs)[source]

        Variance of a random expression.

        @@ -6866,7 +6866,7 @@

        Interface
        -class sympy.stats.Variance(arg, condition=None, **kwargs)[source]
        +class sympy.stats.Variance(arg, condition=None, **kwargs)[source]

        Symbolic expression for the variance.

        Examples

        >>> from sympy import symbols, Integral
        @@ -6915,7 +6915,7 @@ 

        Interface
        -sympy.stats.covariance(X, Y, condition=None, **kwargs)[source]
        +sympy.stats.covariance(X, Y, condition=None, **kwargs)[source]

        Covariance of two random expressions.

        Explanation

        The expectation that the two variables will rise and fall together

        @@ -6945,7 +6945,7 @@

        Interface
        -class sympy.stats.Covariance(arg1, arg2, condition=None, **kwargs)[source]
        +class sympy.stats.Covariance(arg1, arg2, condition=None, **kwargs)[source]

        Symbolic expression for the covariance.

        Examples

        >>> from sympy.stats import Covariance
        @@ -6990,7 +6990,7 @@ 

        Interface
        -sympy.stats.coskewness(X, Y, Z, condition=None, **kwargs)[source]
        +sympy.stats.coskewness(X, Y, Z, condition=None, **kwargs)[source]

        Calculates the co-skewness of three random variables.

        Parameters:
        @@ -7050,7 +7050,7 @@

        Interface
        -sympy.stats.median(X, evaluate=True, **kwargs)[source]
        +sympy.stats.median(X, evaluate=True, **kwargs)[source]

        Calculuates the median of the probability distribution.

        Parameters:
        @@ -7089,7 +7089,7 @@

        Interface
        -sympy.stats.std(X, condition=None, **kwargs)[source]
        +sympy.stats.std(X, condition=None, **kwargs)[source]

        Standard Deviation of a random expression

        @@ -7112,7 +7112,7 @@

        Interface
        -sympy.stats.quantile(expr, evaluate=True, **kwargs)[source]
        +sympy.stats.quantile(expr, evaluate=True, **kwargs)[source]

        Return the \(p^{th}\) order quantile of a probability distribution.

        Explanation

        Quantile is defined as the value at which the probability of the random @@ -7166,7 +7166,7 @@

        Interface**kwargs,

        -)[source] +)[source]

        A realization of the random expression.

        Parameters:
        @@ -7287,7 +7287,7 @@

        Interface**kwargs,

        -)[source] +)[source]

        Returns an iterator of realizations from the expression given a condition.

        Parameters:
        @@ -7346,7 +7346,7 @@

        Interface
        -sympy.stats.factorial_moment(X, n, condition=None, **kwargs)[source]
        +sympy.stats.factorial_moment(X, n, condition=None, **kwargs)[source]

        The factorial moment is a mathematical quantity defined as the expectation or average of the falling factorial of a random variable.

        @@ -7391,7 +7391,7 @@

        Interface
        -sympy.stats.kurtosis(X, condition=None, **kwargs)[source]
        +sympy.stats.kurtosis(X, condition=None, **kwargs)[source]

        Characterizes the tails/outliers of a probability distribution.

        Parameters:
        @@ -7440,7 +7440,7 @@

        Interface
        -sympy.stats.skewness(X, condition=None, **kwargs)[source]
        +sympy.stats.skewness(X, condition=None, **kwargs)[source]

        Measure of the asymmetry of the probability distribution.

        Parameters:
        @@ -7477,7 +7477,7 @@

        Interface
        -sympy.stats.correlation(X, Y, condition=None, **kwargs)[source]
        +sympy.stats.correlation(X, Y, condition=None, **kwargs)[source]

        Correlation of two random expressions, also known as correlation coefficient or Pearson’s correlation.

        Explanation

        @@ -7520,7 +7520,7 @@

        Interface**kwargs,

        -)[source] +)[source]

        Sampling version of density.

        See also

        @@ -7542,7 +7542,7 @@

        Interface**kwargs,

        -)[source] +)[source]

        Sampling version of P.

        See also

        @@ -7564,7 +7564,7 @@

        Interface**kwargs,

        -)[source] +)[source]

        Sampling version of E.

        See also

        @@ -7574,7 +7574,7 @@

        Interface
        -class sympy.stats.Moment(X, n, c=0, condition=None, **kwargs)[source]
        +class sympy.stats.Moment(X, n, c=0, condition=None, **kwargs)[source]

        Symbolic class for Moment

        Examples

        >>> from sympy import Symbol, Integral
        @@ -7621,7 +7621,7 @@ 

        Interface**kwargs,

        -)[source] +)[source]

        Return the nth moment of a random expression about c.

        @@ -7643,7 +7643,7 @@

        Interface
        -class sympy.stats.CentralMoment(X, n, condition=None, **kwargs)[source]
        +class sympy.stats.CentralMoment(X, n, condition=None, **kwargs)[source]

        Symbolic class Central Moment

        Examples

        >>> from sympy import Symbol, Integral
        @@ -7689,7 +7689,7 @@ 

        Interface**kwargs,

        -)[source] +)[source]

        Return the nth central moment of a random expression about its mean.

        @@ -7710,7 +7710,7 @@

        Interface
        -class sympy.stats.ExpectationMatrix(expr, condition=None)[source]
        +class sympy.stats.ExpectationMatrix(expr, condition=None)[source]

        Expectation of a random matrix expression.

        Examples

        >>> from sympy.stats import ExpectationMatrix, Normal
        @@ -7749,7 +7749,7 @@ 

        Interface
        -class sympy.stats.VarianceMatrix(arg, condition=None)[source]
        +class sympy.stats.VarianceMatrix(arg, condition=None)[source]

        Variance of a random matrix probability expression. Also known as Covariance matrix, auto-covariance matrix, dispersion matrix, or variance-covariance matrix.

        @@ -7777,7 +7777,7 @@

        Interface
        -class sympy.stats.CrossCovarianceMatrix(arg1, arg2, condition=None)[source]
        +class sympy.stats.CrossCovarianceMatrix(arg1, arg2, condition=None)[source]

        Covariance of a random matrix probability expression.

        Examples

        >>> from sympy.stats import CrossCovarianceMatrix
        @@ -7816,7 +7816,7 @@ 

        Interface\(\{1,2,3,4,5,6\}\).

        -class sympy.stats.rv.RandomDomain[source]
        +class sympy.stats.rv.RandomDomain[source]

        A PSpace, or Probability Space, combines a RandomDomain @@ -7826,13 +7826,13 @@

        Interfacex.

        -class sympy.stats.rv.PSpace[source]
        +class sympy.stats.rv.PSpace[source]

        A RandomSymbol represents the PSpace’s symbol ‘x’ inside of SymPy expressions.

        -class sympy.stats.rv.RandomSymbol[source]
        +class sympy.stats.rv.RandomSymbol[source]

        The RandomDomain and PSpace classes are almost never directly instantiated. @@ -7844,12 +7844,12 @@

        Interface
        -class sympy.stats.rv.SinglePSpace[source]
        +class sympy.stats.rv.SinglePSpace[source]

        -class sympy.stats.rv.SingleDomain[source]
        +class sympy.stats.rv.SingleDomain[source]

        Another common case is to collect together a set of such univariate random @@ -7858,12 +7858,12 @@

        Interface
        -class sympy.stats.rv.ProductDomain[source]
        +class sympy.stats.rv.ProductDomain[source]

        -class sympy.stats.rv.ProductPSpace[source]
        +class sympy.stats.rv.ProductPSpace[source]

        The Conditional adjective is added whenever we add a global condition to a @@ -7871,7 +7871,7 @@

        Interface
        -class sympy.stats.rv.ConditionalDomain[source]
        +class sympy.stats.rv.ConditionalDomain[source]

        We specialize further into Finite and Continuous versions of these classes to @@ -7879,22 +7879,22 @@

        Interface
        -class sympy.stats.frv.FiniteDomain[source]
        +class sympy.stats.frv.FiniteDomain[source]

        -class sympy.stats.frv.FinitePSpace[source]
        +class sympy.stats.frv.FinitePSpace[source]
        -class sympy.stats.crv.ContinuousDomain[source]
        +class sympy.stats.crv.ContinuousDomain[source]
        -class sympy.stats.crv.ContinuousPSpace[source]
        +class sympy.stats.crv.ContinuousPSpace[source]

        Additionally there are a few specialized classes that implement certain common @@ -7938,13 +7938,13 @@

        Interface
        -sympy.stats.rv.random_symbols(expr)[source]
        +sympy.stats.rv.random_symbols(expr)[source]

        Returns all RandomSymbols within a SymPy Expression.

        -sympy.stats.rv.pspace(expr)[source]
        +sympy.stats.rv.pspace(expr)[source]

        Returns the underlying Probability Space of a random expression.

        For internal use.

        Examples

        @@ -7958,7 +7958,7 @@

        Interface
        -sympy.stats.rv.rs_swap(a, b)[source]
        +sympy.stats.rv.rs_swap(a, b)[source]

        Build a dictionary to swap RandomSymbols based on their underlying symbol.

        i.e. if X = ('x', pspace1) diff --git a/dev/modules/tensor/array.html b/dev/modules/tensor/array.html index c992b1c935d..357de8c7cad 100644 --- a/dev/modules/tensor/array.html +++ b/dev/modules/tensor/array.html @@ -1042,7 +1042,7 @@

        Classes
        **kwargs,

        -)[source] +)[source]
        @@ -1055,7 +1055,7 @@

        Classes
        **kwargs,

        -)[source] +)[source]
        @@ -1068,7 +1068,7 @@

        Classes
        **kwargs,

        -)[source] +)[source]

        @@ -1081,7 +1081,7 @@

        Classes
        **kwargs,

        -)[source] +)[source]

        @@ -1089,7 +1089,7 @@

        Classes

        Functions

        -sympy.tensor.array.derive_by_array(expr, dx)[source]
        +sympy.tensor.array.derive_by_array(expr, dx)[source]

        Derivative by arrays. Supports both arrays and scalars.

        The equivalent operator for array expressions is array_derive.

        Explanation

        @@ -1121,7 +1121,7 @@

        Functionsindex_order_new=None,

        -)[source] +)[source]

        Permutes the indices of an array.

        Parameter specifies the permutation of the indices.

        The equivalent operator for array expressions is PermuteDims, which can @@ -1174,7 +1174,7 @@

        Functions
        -sympy.tensor.array.tensorcontraction(array, *contraction_axes)[source]
        +sympy.tensor.array.tensorcontraction(array, *contraction_axes)[source]

        Contraction of an array-like object on the specified axes.

        The equivalent operator for array expressions is ArrayContraction, which can be used to keep the expression unevaluated.

        @@ -1215,7 +1215,7 @@

        Functions
        -sympy.tensor.array.tensorproduct(*args)[source]
        +sympy.tensor.array.tensorproduct(*args)[source]

        Tensor product among scalars or array-like objects.

        The equivalent operator for array expressions is ArrayTensorProduct, which can be used to keep the expression unevaluated.

        @@ -1248,7 +1248,7 @@

        Functions
        -sympy.tensor.array.tensordiagonal(array, *diagonal_axes)[source]
        +sympy.tensor.array.tensordiagonal(array, *diagonal_axes)[source]

        Diagonalization of an array-like object on the specified axes.

        This is equivalent to multiplying the expression by Kronecker deltas uniting the axes.

        diff --git a/dev/modules/tensor/array_expressions.html b/dev/modules/tensor/array_expressions.html index 5ca08bf3620..b872ec3846a 100644 --- a/dev/modules/tensor/array_expressions.html +++ b/dev/modules/tensor/array_expressions.html @@ -965,7 +965,7 @@

        Compatibility with matrices
        -class sympy.tensor.array.expressions.ArrayTensorProduct(*args, **kwargs)[source]
        +class sympy.tensor.array.expressions.ArrayTensorProduct(*args, **kwargs)[source]

        Class to represent the tensor product of array-like objects.

        @@ -979,14 +979,14 @@

        Compatibility with matrices**kwargs,

        -)[source] +)[source]

        This class is meant to represent contractions of arrays in a form easily processable by the code printers.

        -class sympy.tensor.array.expressions.ArrayDiagonal(expr, *diagonal_indices, **kwargs)[source]
        +class sympy.tensor.array.expressions.ArrayDiagonal(expr, *diagonal_indices, **kwargs)[source]

        Class to represent the diagonal operator.

        Explanation

        In a 2-dimensional array it returns the diagonal, this looks like the @@ -1015,7 +1015,7 @@

        Compatibility with matrices**kwargs,

        -)[source] +)[source]

        Class to represent permutation of axes of arrays.

        Examples

        >>> from sympy.tensor.array import permutedims
        diff --git a/dev/modules/tensor/index_methods.html b/dev/modules/tensor/index_methods.html
        index a55de3c4a6b..2b44943078a 100644
        --- a/dev/modules/tensor/index_methods.html
        +++ b/dev/modules/tensor/index_methods.html
        @@ -811,7 +811,7 @@ 
        Documentation Version
        refactoring.

        -sympy.tensor.index_methods.get_contraction_structure(expr)[source]
        +sympy.tensor.index_methods.get_contraction_structure(expr)[source]

        Determine dummy indices of expr and describe its structure

        By dummy we mean indices that are summation indices.

        The structure of the expression is determined and described as follows:

        @@ -911,7 +911,7 @@
        Documentation Version
        -sympy.tensor.index_methods.get_indices(expr)[source]
        +sympy.tensor.index_methods.get_indices(expr)[source]

        Determine the outer indices of expression expr

        By outer we mean indices that are not summation indices. Returns a set and a dict. The set contains outer indices and the dict contains diff --git a/dev/modules/tensor/indexed.html b/dev/modules/tensor/indexed.html index ecb9f0adb7a..40b0f817282 100644 --- a/dev/modules/tensor/indexed.html +++ b/dev/modules/tensor/indexed.html @@ -885,7 +885,7 @@

        Examples
        -class sympy.tensor.indexed.Idx(label, range=None, **kw_args)[source]
        +class sympy.tensor.indexed.Idx(label, range=None, **kw_args)[source]

        Represents an integer index as an Integer or integer expression.

        There are a number of ways to create an Idx object. The constructor takes two arguments:

        @@ -991,7 +991,7 @@

        Examples
        -class sympy.tensor.indexed.Indexed(base, *args, **kw_args)[source]
        +class sympy.tensor.indexed.Indexed(base, *args, **kw_args)[source]

        Represents a mathematical object with indices.

        >>> from sympy import Indexed, IndexedBase, Idx, symbols
         >>> i, j = symbols('i j', cls=Idx)
        @@ -1110,7 +1110,7 @@ 

        Examples
        **kw_args,

        -)[source] +)[source]

        Represent the base or stem of an indexed object

        The IndexedBase class represent an array that contains elements. The main purpose of this class is to allow the convenient creation of objects of the Indexed diff --git a/dev/modules/tensor/tensor.html b/dev/modules/tensor/tensor.html index f82da9e093d..52b37ceef0a 100644 --- a/dev/modules/tensor/tensor.html +++ b/dev/modules/tensor/tensor.html @@ -814,7 +814,7 @@

        Documentation Version
        **kwargs,

        -)[source] +)[source]

        A TensorIndexType is characterized by its name and its metric.

        Parameters:
        @@ -883,7 +883,7 @@
        Documentation Version
        -class sympy.tensor.tensor.TensorIndex(name, tensor_index_type, is_up=True)[source]
        +class sympy.tensor.tensor.TensorIndex(name, tensor_index_type, is_up=True)[source]

        Represents a tensor index

        Parameters:
        @@ -945,7 +945,7 @@
        Documentation Version
        comm=0,
        -)[source] +)[source]

        Tensor head of the tensor.

        Parameters:
        @@ -1064,7 +1064,7 @@
        Documentation Version

        -commutes_with(other)[source]
        +commutes_with(other)[source]

        Returns 0 if self and other commute, 1 if they anticommute.

        Returns None if self and other neither commute nor anticommute.

        @@ -1082,13 +1082,13 @@
        Documentation Version
        comm=0,

        -)[source] +)[source]

        Returns a sequence of TensorHeads from a string \(s\)

        -class sympy.tensor.tensor.TensExpr(*args)[source]
        +class sympy.tensor.tensor.TensExpr(*args)[source]

        Abstract base class for tensor expressions

        Notes

        A tensor expression is an expression formed by tensors; @@ -1103,7 +1103,7 @@

        Documentation Version

        Contracted indices are therefore nameless in the internal representation.

        -get_matrix()[source]
        +get_matrix()[source]

        DEPRECATED: do not use.

        Returns ndarray components data as a matrix, if components data are available and ndarray dimension does not exceed 2.

        @@ -1118,7 +1118,7 @@
        Documentation Version
        indices=None,
        -)[source] +)[source]

        Replace the tensorial expressions with arrays. The final array will correspond to the N-dimensional array with indices arranged according to indices.

        @@ -1193,7 +1193,7 @@
        Documentation Version
        -class sympy.tensor.tensor.TensAdd(*args, **kw_args)[source]
        +class sympy.tensor.tensor.TensAdd(*args, **kw_args)[source]

        Sum of tensors.

        Parameters:
        @@ -1242,14 +1242,14 @@
        Documentation Version

        -canon_bp()[source]
        +canon_bp()[source]

        Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries.

        -contract_metric(g)[source]
        +contract_metric(g)[source]

        Raise or lower indices with the metric g.

        Parameters:
        @@ -1265,7 +1265,7 @@
        Documentation Version
        -class sympy.tensor.tensor.TensMul(*args, **kw_args)[source]
        +class sympy.tensor.tensor.TensMul(*args, **kw_args)[source]

        Product of tensors.

        Parameters:
        @@ -1319,7 +1319,7 @@
        Documentation Version

        -canon_bp()[source]
        +canon_bp()[source]

        Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries.

        Examples

        @@ -1339,7 +1339,7 @@
        Documentation Version
        -contract_metric(g)[source]
        +contract_metric(g)[source]

        Raise or lower indices with the metric g.

        Parameters:
        @@ -1365,7 +1365,7 @@
        Documentation Version
        -get_free_indices() list[TensorIndex][source]
        +get_free_indices() list[TensorIndex][source]

        Returns the list of free indices of the tensor.

        Explanation

        The indices are listed in the order in which they appear in the @@ -1388,7 +1388,7 @@

        Documentation Version
        -get_indices()[source]
        +get_indices()[source]

        Returns the list of indices of the tensor.

        Explanation

        The indices are listed in the order in which they appear in the @@ -1413,20 +1413,20 @@

        Documentation Version
        -perm2tensor(g, is_canon_bp=False)[source]
        +perm2tensor(g, is_canon_bp=False)[source]

        Returns the tensor corresponding to the permutation g

        For further details, see the method in TIDS with the same name.

        -sorted_components()[source]
        +sorted_components()[source]

        Returns a tensor product with sorted components.

        -split()[source]
        +split()[source]

        Returns a list of tensors, whose product is self.

        Explanation

        Dummy indices contracted among different tensor components @@ -1450,21 +1450,21 @@

        Documentation Version
        -sympy.tensor.tensor.canon_bp(p)[source]
        +sympy.tensor.tensor.canon_bp(p)[source]

        Butler-Portugal canonicalization. See tensor_can.py from the combinatorics module for the details.

        -sympy.tensor.tensor.riemann_cyclic_replace(t_r)[source]
        +sympy.tensor.tensor.riemann_cyclic_replace(t_r)[source]

        replace Riemann tensor with an equivalent expression

        R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)

        -sympy.tensor.tensor.riemann_cyclic(t2)[source]
        +sympy.tensor.tensor.riemann_cyclic(t2)[source]

        Replace each Riemann tensor with an equivalent expression satisfying the cyclic identity.

        This trick is discussed in the reference guide to Cadabra.

        @@ -1482,7 +1482,7 @@
        Documentation Version
        -class sympy.tensor.tensor.TensorSymmetry(*args, **kw_args)[source]
        +class sympy.tensor.tensor.TensorSymmetry(*args, **kw_args)[source]

        Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric index permutation). For the relevant terminology see tensor_can.py section of the combinatorics module.

        @@ -1533,7 +1533,7 @@
        Documentation Version

        -classmethod direct_product(*args)[source]
        +classmethod direct_product(*args)[source]

        Returns a TensorSymmetry object that is being a direct product of fully (anti-)symmetric index permutation groups.

        Notes

        @@ -1547,20 +1547,20 @@
        Documentation Version
        -classmethod fully_symmetric(rank)[source]
        +classmethod fully_symmetric(rank)[source]

        Returns a fully symmetric (antisymmetric if rank``<0) TensorSymmetry object for ``abs(rank) indices.

        -classmethod no_symmetry(rank)[source]
        +classmethod no_symmetry(rank)[source]

        TensorSymmetry object for rank indices with no symmetry

        -classmethod riemann()[source]
        +classmethod riemann()[source]

        Returns a monotorem symmetry of the Riemann tensor

        @@ -1568,7 +1568,7 @@
        Documentation Version
        -sympy.tensor.tensor.tensorsymmetry(*args)[source]
        +sympy.tensor.tensor.tensorsymmetry(*args)[source]

        Returns a TensorSymmetry object. This method is deprecated, use TensorSymmetry.direct_product() or .riemann() instead.

        Explanation

        @@ -1597,7 +1597,7 @@
        Documentation Version
        -class sympy.tensor.tensor.TensorType(*args, **kwargs)[source]
        +class sympy.tensor.tensor.TensorType(*args, **kwargs)[source]

        Class of tensor types. Deprecated, use tensor_heads() instead.

        Parameters:
        @@ -1625,7 +1625,7 @@
        Documentation Version
        -class sympy.tensor.tensor._TensorManager[source]
        +class sympy.tensor.tensor._TensorManager[source]

        Class to manage tensor properties.

        Notes

        Tensors belong to tensor commutation groups; each group has a label @@ -1638,19 +1638,19 @@

        Documentation Version
        do not commute with any other group.

        -clear()[source]
        +clear()[source]

        Clear the TensorManager.

        -comm_i2symbol(i)[source]
        +comm_i2symbol(i)[source]

        Returns the symbol corresponding to the commutation group number.

        -comm_symbols2i(i)[source]
        +comm_symbols2i(i)[source]

        Get the commutation group number corresponding to i.

        i can be a symbol or a number or a string.

        If i is not already defined its commutation group number @@ -1659,14 +1659,14 @@

        Documentation Version
        -get_comm(i, j)[source]
        +get_comm(i, j)[source]

        Return the commutation parameter for commutation group numbers i, j

        see _TensorManager.set_comm

        -set_comm(i, j, c)[source]
        +set_comm(i, j, c)[source]

        Set the commutation parameter c for commutation groups i, j.

        Parameters:
        @@ -1708,7 +1708,7 @@
        Documentation Version
        -set_comms(*args)[source]
        +set_comms(*args)[source]

        Set the commutation group numbers c for symbols i, j.

        Parameters:
        diff --git a/dev/modules/tensor/toperators.html b/dev/modules/tensor/toperators.html index bb4b35ffd67..b00b57f920a 100644 --- a/dev/modules/tensor/toperators.html +++ b/dev/modules/tensor/toperators.html @@ -802,7 +802,7 @@
        Documentation Version

        Tensor Operators

        -class sympy.tensor.toperators.PartialDerivative(expr, *variables)[source]
        +class sympy.tensor.toperators.PartialDerivative(expr, *variables)[source]

        Partial derivative for tensor expressions.

        Examples

        >>> from sympy.tensor.tensor import TensorIndexType, TensorHead
        diff --git a/dev/modules/testing/pytest.html b/dev/modules/testing/pytest.html
        index fc006fadb18..0a999f917af 100644
        --- a/dev/modules/testing/pytest.html
        +++ b/dev/modules/testing/pytest.html
        @@ -803,19 +803,19 @@ 
        Documentation Version

        py.test hacks to support XFAIL/XPASS

        -sympy.testing.pytest.SKIP(reason)[source]
        +sympy.testing.pytest.SKIP(reason)[source]

        Similar to skip(), but this is a decorator.

        -sympy.testing.pytest.nocache_fail(func)[source]
        +sympy.testing.pytest.nocache_fail(func)[source]

        Dummy decorator for marking tests that fail when cache is disabled

        -sympy.testing.pytest.raises(expectedException, code=None)[source]
        +sympy.testing.pytest.raises(expectedException, code=None)[source]

        Tests that code raises the exception expectedException.

        code may be a callable, such as a lambda expression or function name.

        @@ -867,7 +867,7 @@
        Documentation Version
        -sympy.testing.pytest.skip_under_pyodide(message)[source]
        +sympy.testing.pytest.skip_under_pyodide(message)[source]

        Decorator to skip a test if running under pyodide.

        @@ -882,7 +882,7 @@
        Documentation Version
        test_stacklevel=True,
        -)[source] +)[source]

        Like raises but tests that warnings are emitted.

        >>> from sympy.testing.pytest import warns
         >>> import warnings
        @@ -911,7 +911,7 @@ 
        Documentation Version
        -sympy.testing.pytest.warns_deprecated_sympy()[source]
        +sympy.testing.pytest.warns_deprecated_sympy()[source]

        Shorthand for warns(SymPyDeprecationWarning)

        This is the recommended way to test that SymPyDeprecationWarning is emitted for deprecated features in SymPy. To test for other warnings use diff --git a/dev/modules/testing/runtests.html b/dev/modules/testing/runtests.html index fcdcb5397eb..a4e3de1f40f 100644 --- a/dev/modules/testing/runtests.html +++ b/dev/modules/testing/runtests.html @@ -822,7 +822,7 @@

        Documentation Version
        split=None,
        -)[source] +)[source]

        Py.test like reporter. Should produce output identical to py.test.

        @@ -836,7 +836,7 @@
        Documentation Version
        force_colors=False,
        -)[source] +)[source]

        Prints a text on the screen.

        It uses sys.stdout.write(), so no readline library is necessary.

        @@ -856,7 +856,7 @@
        Documentation Version
        -class sympy.testing.runtests.Reporter[source]
        +class sympy.testing.runtests.Reporter[source]

        Parent class for all reporters.

        @@ -871,7 +871,7 @@
        Documentation Version
        exclude_empty=True,
        -)[source] +)[source]

        A class used to extract the DocTests that are relevant to a given object, from its docstring and the docstrings of its contained objects. Doctests can currently be extracted from the following @@ -893,7 +893,7 @@

        Documentation Version
        optionflags=0,
        -)[source] +)[source]

        A class used to run DocTest test cases, and accumulate statistics. The run method is used to process a single DocTest case. It returns a tuple (f, t), where t is the number of test cases @@ -912,7 +912,7 @@

        Documentation Version
        clear_globs=True,
        -)[source] +)[source]

        Run the examples in test, and display the results using the writer function out.

        The examples are run in the namespace test.globs. If @@ -933,7 +933,7 @@

        Documentation Version
        -class sympy.testing.runtests.SymPyOutputChecker[source]
        +class sympy.testing.runtests.SymPyOutputChecker[source]

        Compared to the OutputChecker from the stdlib our OutputChecker class supports numerical comparison of floats occurring in the output of the doctest examples

        @@ -947,7 +947,7 @@
        Documentation Version
        optionflags,
        -)[source] +)[source]

        Return True iff the actual output from an example (\(got\)) matches the expected output (\(want\)). These strings are always considered to match if they are identical; but @@ -961,7 +961,7 @@

        Documentation Version
        -class sympy.testing.runtests.SymPyTestResults(failed, attempted)[source]
        +class sympy.testing.runtests.SymPyTestResults(failed, attempted)[source]
        attempted
        @@ -978,7 +978,7 @@
        Documentation Version
        -sympy.testing.runtests.convert_to_native_paths(lst)[source]
        +sympy.testing.runtests.convert_to_native_paths(lst)[source]

        Converts a list of ‘/’ separated paths into a list of native (os.sep separated) paths and converts to lowercase if the system is case insensitive.

        @@ -995,7 +995,7 @@
        Documentation Version
        **kwargs,
        -)[source] +)[source]

        Runs doctests in all *.py files in the SymPy directory which match any of the given strings in paths or all tests if paths=[].

        Notes:

        @@ -1044,14 +1044,14 @@
        Documentation Version
        -sympy.testing.runtests.get_sympy_dir()[source]
        +sympy.testing.runtests.get_sympy_dir()[source]

        Returns the root SymPy directory and set the global value indicating whether the system is case sensitive or not.

        -sympy.testing.runtests.raise_on_deprecated()[source]
        +sympy.testing.runtests.raise_on_deprecated()[source]

        Context manager to make DeprecationWarning raise an error

        This is to catch SymPyDeprecationWarning from library code while running tests and doctests. It is important to use this context manager around @@ -1072,7 +1072,7 @@

        Documentation Version
        examples_kwargs=None,
        -)[source] +)[source]

        Run all tests.

        Right now, this runs the regular tests (bin/test), the doctests (bin/doctest), and the examples (examples/all.py).

        @@ -1101,7 +1101,7 @@
        Documentation Version
        force=False,
        -)[source] +)[source]

        Run a function in a Python subprocess with hash randomization enabled.

        If hash randomization is not supported by the version of Python given, it returns False. Otherwise, it returns the exit value of the command. The @@ -1144,7 +1144,7 @@

        Documentation Version
        -sympy.testing.runtests.split_list(l, split, density=None)[source]
        +sympy.testing.runtests.split_list(l, split, density=None)[source]

        Splits a list into part a of b

        split should be a string of the form ‘a/b’. For instance, ‘1/3’ would give the split one of three.

        @@ -1184,7 +1184,7 @@
        Documentation Version
        encoding=None,
        -)[source] +)[source]

        Test examples in the given file. Return (#failures, #tests).

        Optional keyword arg module_relative specifies how filenames should be interpreted:

        @@ -1252,7 +1252,7 @@
        Documentation Version
        -sympy.testing.runtests.test(*paths, subprocess=True, rerun=0, **kwargs)[source]
        +sympy.testing.runtests.test(*paths, subprocess=True, rerun=0, **kwargs)[source]

        Run tests in the specified test_*.py files.

        Tests in a particular test_*.py file are run if any of the given strings in paths matches a part of the test file’s path. If paths=[], diff --git a/dev/modules/utilities/autowrap.html b/dev/modules/utilities/autowrap.html index 8daf514512b..f00c8d196b7 100644 --- a/dev/modules/utilities/autowrap.html +++ b/dev/modules/utilities/autowrap.html @@ -937,17 +937,17 @@

        Implementation detailsverbose=False,

        -)[source] +)[source]

        Base Class for code wrappers

        -class sympy.utilities.autowrap.CythonCodeWrapper(*args, **kwargs)[source]
        +class sympy.utilities.autowrap.CythonCodeWrapper(*args, **kwargs)[source]

        Wrapper that uses Cython

        -dump_pyx(routines, f, prefix)[source]
        +dump_pyx(routines, f, prefix)[source]

        Write a Cython file with Python wrappers

        This file contains all the definitions of the routines in c code and refers to the header file.

        @@ -976,19 +976,19 @@

        Implementation detailsverbose=False,

        -)[source] +)[source]

        Class used for testing independent of backends

        -class sympy.utilities.autowrap.F2PyCodeWrapper(*args, **kwargs)[source]
        +class sympy.utilities.autowrap.F2PyCodeWrapper(*args, **kwargs)[source]

        Wrapper that uses f2py

        -class sympy.utilities.autowrap.UfuncifyCodeWrapper(*args, **kwargs)[source]
        +class sympy.utilities.autowrap.UfuncifyCodeWrapper(*args, **kwargs)[source]

        Wrapper for Ufuncify

        @@ -1001,7 +1001,7 @@

        Implementation detailsfuncname=None,

        -)[source] +)[source]

        Write a C file with Python wrappers

        This file contains all the definitions of the routines in c code.

        Arguments

        @@ -1036,7 +1036,7 @@

        Implementation details**kwargs,

        -)[source] +)[source]

        Generates Python callable binaries based on the math expression.

        Parameters:
        @@ -1131,7 +1131,7 @@

        Implementation details
        -sympy.utilities.autowrap.binary_function(symfunc, expr, **kwargs)[source]
        +sympy.utilities.autowrap.binary_function(symfunc, expr, **kwargs)[source]

        Returns a SymPy function with expr as binary implementation

        This is a convenience function that automates the steps needed to autowrap the SymPy expression and attaching it to a Function object @@ -1183,7 +1183,7 @@

        Implementation details**kwargs,

        -)[source] +)[source]

        Generates a binary function that supports broadcasting on numpy arrays.

        Parameters:
        diff --git a/dev/modules/utilities/codegen.html b/dev/modules/utilities/codegen.html index 3785baeabf2..240cf7b8321 100644 --- a/dev/modules/utilities/codegen.html +++ b/dev/modules/utilities/codegen.html @@ -924,7 +924,7 @@

        Routine
        precision=None,

        -)[source] +)[source]

        An abstract Argument data structure: a name and a data type.

        This structure is refined in the descendants below.

        @@ -940,7 +940,7 @@

        Routine
        cse=False,

        -)[source] +)[source]

        Generator for C code.

        The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.c and <prefix>.h respectively.

        @@ -956,7 +956,7 @@

        Routine
        empty=True,

        -)[source] +)[source]

        Write the code by calling language specific methods.

        The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

        @@ -1001,7 +1001,7 @@

        Routine
        empty=True,

        -)[source] +)[source]

        Writes the C header file.

        This file contains all the function declarations.

        @@ -1035,7 +1035,7 @@

        Routine
        -get_prototype(routine)[source]
        +get_prototype(routine)[source]

        Returns a string for the function prototype of the routine.

        If the routine has multiple result objects, an CodeGenError is raised.

        @@ -1046,7 +1046,7 @@

        Routine
        -class sympy.utilities.codegen.CodeGen(project='project', cse=False)[source]
        +class sympy.utilities.codegen.CodeGen(project='project', cse=False)[source]

        Abstract class for the code generators.

        @@ -1060,7 +1060,7 @@

        Routine
        empty=True,

        -)[source] +)[source]

        Write the code by calling language specific methods.

        The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

        @@ -1104,7 +1104,7 @@

        Routine
        global_vars=None,

        -)[source] +)[source]

        Creates an Routine object that is appropriate for this language.

        This implementation is appropriate for at least C/Fortran. Subclasses can override this if necessary.

        @@ -1128,7 +1128,7 @@

        Routine
        empty=True,

        -)[source] +)[source]

        Writes all the source code files for the given routines.

        The generated source is returned as a list of (filename, contents) tuples, or is written to files (see below). Each filename consists @@ -1177,13 +1177,13 @@

        Routine
        rsname,

        -)[source] +)[source]

        Holds strings for a certain datatype in different languages.

        -class sympy.utilities.codegen.FCodeGen(project='project', printer=None)[source]
        +class sympy.utilities.codegen.FCodeGen(project='project', printer=None)[source]

        Generator for Fortran 95 code

        The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.f90 and <prefix>.h respectively.

        @@ -1199,7 +1199,7 @@

        Routine
        empty=True,

        -)[source] +)[source]

        Write the code by calling language specific methods.

        The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

        @@ -1244,7 +1244,7 @@

        Routine
        empty=True,

        -)[source] +)[source]

        Writes the interface to a header file.

        This file contains all the function declarations.

        @@ -1277,7 +1277,7 @@

        Routine
        -get_interface(routine)[source]
        +get_interface(routine)[source]

        Returns a string for the function interface.

        The routine should have a single result object, which can be None. If the routine has multiple result objects, a CodeGenError is @@ -1289,7 +1289,7 @@

        Routine
        -class sympy.utilities.codegen.JuliaCodeGen(project='project', printer=None)[source]
        +class sympy.utilities.codegen.JuliaCodeGen(project='project', printer=None)[source]

        Generator for Julia code.

        The .write() method inherited from CodeGen will output a code file <prefix>.jl.

        @@ -1305,7 +1305,7 @@

        Routine
        empty=True,

        -)[source] +)[source]

        Write the code by calling language specific methods.

        The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

        @@ -1349,7 +1349,7 @@

        Routine
        global_vars,

        -)[source] +)[source]

        Specialized Routine creation for Julia.

        @@ -1357,7 +1357,7 @@

        Routine
        -class sympy.utilities.codegen.OctaveCodeGen(project='project', printer=None)[source]
        +class sympy.utilities.codegen.OctaveCodeGen(project='project', printer=None)[source]

        Generator for Octave code.

        The .write() method inherited from CodeGen will output a code file <prefix>.m.

        @@ -1380,7 +1380,7 @@

        Routine
        inline=True,

        -)[source] +)[source]

        Write the code by calling language specific methods.

        The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

        @@ -1424,7 +1424,7 @@

        Routine
        global_vars,

        -)[source] +)[source]

        Specialized Routine creation for Octave.

        @@ -1443,7 +1443,7 @@

        Routine
        precision=None,

        -)[source] +)[source]

        OutputArgument are always initialized in the routine.

        @@ -1460,7 +1460,7 @@

        Routine
        precision=None,

        -)[source] +)[source]

        An expression for a return value.

        The name result is used to avoid conflicts with the reserved word “return” in the Python language. It is also shorter than ReturnValue.

        @@ -1480,7 +1480,7 @@

        Routine
        global_vars,

        -)[source] +)[source]

        Generic description of evaluation routine for set of expressions.

        A CodeGen class can translate instances of this class into code in a particular language. The routine specification covers all the features @@ -1508,7 +1508,7 @@

        Routine
        -class sympy.utilities.codegen.RustCodeGen(project='project', printer=None)[source]
        +class sympy.utilities.codegen.RustCodeGen(project='project', printer=None)[source]

        Generator for Rust code.

        The .write() method inherited from CodeGen will output a code file <prefix>.rs

        @@ -1524,7 +1524,7 @@

        Routine
        empty=True,

        -)[source] +)[source]

        Write the code by calling language specific methods.

        The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

        @@ -1559,7 +1559,7 @@

        Routine
        -get_prototype(routine)[source]
        +get_prototype(routine)[source]

        Returns a string for the function prototype of the routine.

        If the routine has multiple result objects, an CodeGenError is raised.

        @@ -1577,7 +1577,7 @@

        Routine
        global_vars,

        -)[source] +)[source]

        Specialized Routine creation for Rust.

        @@ -1602,7 +1602,7 @@

        Routine
        printer=None,

        -)[source] +)[source]

        Generate source code for expressions in a given language.

        Parameters:
        @@ -1740,7 +1740,7 @@

        Routine
        -sympy.utilities.codegen.get_default_datatype(expr, complex_allowed=None)[source]
        +sympy.utilities.codegen.get_default_datatype(expr, complex_allowed=None)[source]

        Derives an appropriate datatype based on the expression.

        @@ -1756,7 +1756,7 @@

        Routine
        language='F95',

        -)[source] +)[source]

        A factory that makes an appropriate Routine from an expression.

        Parameters:
        diff --git a/dev/modules/utilities/decorator.html b/dev/modules/utilities/decorator.html index 6713a145f89..cef97c7da82 100644 --- a/dev/modules/utilities/decorator.html +++ b/dev/modules/utilities/decorator.html @@ -813,7 +813,7 @@
        Documentation Version
        stacklevel=3,
        -)[source] +)[source]

        Mark a function as deprecated.

        This decorator should be used if an entire function or class is deprecated. If only a certain functionality is deprecated, you should use @@ -869,7 +869,7 @@

        Documentation Version
        -sympy.utilities.decorator.conserve_mpmath_dps(func)[source]
        +sympy.utilities.decorator.conserve_mpmath_dps(func)[source]

        After the function finishes, resets the value of mpmath.mp.dps to the value it had before the function was run.

        @@ -886,7 +886,7 @@
        Documentation Version
        ground_types=None,

        -)[source] +)[source]

        Adds metadata about the dependencies which need to be met for doctesting the docstrings of the decorated objects.

        exe should be a list of executables

        @@ -898,7 +898,7 @@
        Documentation Version
        -sympy.utilities.decorator.memoize_property(propfunc)[source]
        +sympy.utilities.decorator.memoize_property(propfunc)[source]

        Property decorator that caches the value of potentially expensive propfunc after the first evaluation. The cached value is stored in the corresponding property name with an attached underscore.

        @@ -906,7 +906,7 @@
        Documentation Version
        -class sympy.utilities.decorator.no_attrs_in_subclass(cls, f)[source]
        +class sympy.utilities.decorator.no_attrs_in_subclass(cls, f)[source]

        Don’t ‘inherit’ certain attributes from a base class

        >>> from sympy.utilities.decorator import no_attrs_in_subclass
         
        @@ -932,7 +932,7 @@
        Documentation Version
        -sympy.utilities.decorator.public(obj)[source]
        +sympy.utilities.decorator.public(obj)[source]

        Append obj’s name to global __all__ variable (call site).

        By using this decorator on functions or classes you achieve the same goal as by filling __all__ variables manually, you just do not have to repeat @@ -965,7 +965,7 @@

        Documentation Version
        -sympy.utilities.decorator.threaded(func)[source]
        +sympy.utilities.decorator.threaded(func)[source]

        Apply func to sub–elements of an object, including Add.

        This decorator is intended to make it uniformly possible to apply a function to all elements of composite objects, e.g. matrices, lists, tuples @@ -982,13 +982,13 @@

        Documentation Version
        -sympy.utilities.decorator.threaded_factory(func, use_add)[source]
        +sympy.utilities.decorator.threaded_factory(func, use_add)[source]

        A factory for threaded decorators.

        -sympy.utilities.decorator.xthreaded(func)[source]
        +sympy.utilities.decorator.xthreaded(func)[source]

        Apply func to sub–elements of an object, excluding Add.

        This decorator is intended to make it uniformly possible to apply a function to all elements of composite objects, e.g. matrices, lists, tuples diff --git a/dev/modules/utilities/enumerative.html b/dev/modules/utilities/enumerative.html index f4508e5d736..6820b2665ac 100644 --- a/dev/modules/utilities/enumerative.html +++ b/dev/modules/utilities/enumerative.html @@ -804,7 +804,7 @@

        Documentation Version
        counting multiset partitions.

        -sympy.utilities.enumerative.multiset_partitions_taocp(multiplicities)[source]
        +sympy.utilities.enumerative.multiset_partitions_taocp(multiplicities)[source]

        Enumerates partitions of a multiset.

        Parameters:
        @@ -867,7 +867,7 @@
        Documentation Version
        -sympy.utilities.enumerative.factoring_visitor(state, primes)[source]
        +sympy.utilities.enumerative.factoring_visitor(state, primes)[source]

        Use with multiset_partitions_taocp to enumerate the ways a number can be expressed as a product of factors. For this usage, the exponents of the prime factors of a number are arguments to @@ -894,7 +894,7 @@

        Documentation Version
        -sympy.utilities.enumerative.list_visitor(state, components)[source]
        +sympy.utilities.enumerative.list_visitor(state, components)[source]

        Return a list of lists to represent the partition.

        Examples

        >>> from sympy.utilities.enumerative import list_visitor
        @@ -914,7 +914,7 @@ 
        Documentation Version
        and generalized by the class MultisetPartitionTraverser.

        -class sympy.utilities.enumerative.MultisetPartitionTraverser[source]
        +class sympy.utilities.enumerative.MultisetPartitionTraverser[source]

        Has methods to enumerate and count the partitions of a multiset.

        This implements a refactored and extended version of Knuth’s algorithm 7.1.2.5M [AOCP].”

        @@ -964,7 +964,7 @@
        Documentation Version
        multiplicities,
        -)[source] +)[source]

        Returns the number of partitions of a multiset whose components have the multiplicities given in multiplicities.

        For larger counts, this method is much faster than calling one @@ -1035,7 +1035,7 @@

        Documentation Version
        multiplicities,
        -)[source] +)[source]

        Enumerate the partitions of a multiset.

        Examples

        >>> from sympy.utilities.enumerative import list_visitor
        @@ -1072,7 +1072,7 @@ 
        Documentation Version
        lb,
        -)[source] +)[source]

        Enumerate the partitions of a multiset with lb < num(parts)

        Equivalent to enum_range(multiplicities, lb, sum(multiplicities))

        @@ -1116,7 +1116,7 @@
        Documentation Version
        ub,
        -)[source] +)[source]

        Enumerate the partitions of a multiset with lb < num(parts) <= ub.

        In particular, if partitions with exactly k parts are @@ -1145,7 +1145,7 @@

        Documentation Version
        ub,
        -)[source] +)[source]

        Enumerate multiset partitions with no more than ub parts.

        Equivalent to enum_range(multiplicities, 0, ub)

        diff --git a/dev/modules/utilities/exceptions.html b/dev/modules/utilities/exceptions.html index b82dd6cad46..bb35fd491ce 100644 --- a/dev/modules/utilities/exceptions.html +++ b/dev/modules/utilities/exceptions.html @@ -812,7 +812,7 @@
        Documentation Version
        active_deprecations_target,
        -)[source] +)[source]

        A warning for deprecated features of SymPy.

        See the Deprecation Policy document for details on when and how things should be deprecated in SymPy.

        @@ -843,7 +843,7 @@
        Documentation Version
        -sympy.utilities.exceptions.ignore_warnings(warningcls)[source]
        +sympy.utilities.exceptions.ignore_warnings(warningcls)[source]

        Context manager to suppress warnings during tests.

        Note

        @@ -898,7 +898,7 @@
        Documentation Version
        stacklevel=3,
        -)[source] +)[source]

        Warn that a feature is deprecated in SymPy.

        See the Deprecation Policy document for details on when and how things should be deprecated in SymPy.

        diff --git a/dev/modules/utilities/iterables.html b/dev/modules/utilities/iterables.html index 239a242074a..505a6a99f53 100644 --- a/dev/modules/utilities/iterables.html +++ b/dev/modules/utilities/iterables.html @@ -802,7 +802,7 @@
        Documentation Version

        Iterables

        -class sympy.utilities.iterables.NotIterable[source]
        +class sympy.utilities.iterables.NotIterable[source]

        Use this as mixin when creating a class which is not supposed to return true when iterable() is called on its instances because calling list() on the instance, for example, would result in @@ -811,7 +811,7 @@

        Documentation Version
        -sympy.utilities.iterables.binary_partitions(n)[source]
        +sympy.utilities.iterables.binary_partitions(n)[source]

        Generates the binary partition of n.

        A binary partition consists only of numbers that are powers of two. Each step reduces a \(2^{k+1}\) to \(2^k\) and @@ -838,13 +838,13 @@

        Documentation Version
        -sympy.utilities.iterables.bracelets(n, k)[source]
        +sympy.utilities.iterables.bracelets(n, k)[source]

        Wrapper to necklaces to return a free (unrestricted) necklace.

        -sympy.utilities.iterables.capture(func)[source]
        +sympy.utilities.iterables.capture(func)[source]

        Return the printed output of func().

        func should be a function without arguments that produces output with print statements.

        @@ -864,7 +864,7 @@
        Documentation Version
        -sympy.utilities.iterables.common_prefix(*seqs)[source]
        +sympy.utilities.iterables.common_prefix(*seqs)[source]

        Return the subsequence that is a common start of sequences in seqs.

        >>> from sympy.utilities.iterables import common_prefix
         >>> common_prefix(list(range(3)))
        @@ -881,7 +881,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.common_suffix(*seqs)[source]
        +sympy.utilities.iterables.common_suffix(*seqs)[source]

        Return the subsequence that is a common ending of sequences in seqs.

        >>> from sympy.utilities.iterables import common_suffix
         >>> common_suffix(list(range(3)))
        @@ -898,7 +898,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.connected_components(G)[source]
        +sympy.utilities.iterables.connected_components(G)[source]

        Connected components of an undirected graph or weakly connected components of a directed graph.

        @@ -959,13 +959,13 @@
        Documentation Version
        -sympy.utilities.iterables.dict_merge(*dicts)[source]
        +sympy.utilities.iterables.dict_merge(*dicts)[source]

        Merge dictionaries into a single dictionary.

        -sympy.utilities.iterables.filter_symbols(iterator, exclude)[source]
        +sympy.utilities.iterables.filter_symbols(iterator, exclude)[source]

        Only yield elements from \(iterator\) that do not occur in \(exclude\).

        Parameters:
        @@ -989,7 +989,7 @@
        Documentation Version
        -sympy.utilities.iterables.flatten(iterable, levels=None, cls=None)[source]
        +sympy.utilities.iterables.flatten(iterable, levels=None, cls=None)[source]

        Recursively denest iterable containers.

        >>> from sympy import flatten
         
        @@ -1029,7 +1029,7 @@
        Documentation Version
        -sympy.utilities.iterables.generate_bell(n)[source]
        +sympy.utilities.iterables.generate_bell(n)[source]

        Return permutations of [0, 1, …, n - 1] such that each permutation differs from the last by the exchange of a single pair of neighbors. The n! permutations are returned as an iterator. In order to obtain @@ -1103,7 +1103,7 @@

        Documentation Version
        -sympy.utilities.iterables.generate_derangements(s)[source]
        +sympy.utilities.iterables.generate_derangements(s)[source]

        Return unique derangements of the elements of iterable s.

        Examples

        >>> from sympy.utilities.iterables import generate_derangements
        @@ -1123,7 +1123,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.generate_involutions(n)[source]
        +sympy.utilities.iterables.generate_involutions(n)[source]

        Generates involutions.

        An involution is a permutation that when multiplied by itself equals the identity permutation. In this @@ -1151,7 +1151,7 @@

        Documentation Version
        -sympy.utilities.iterables.generate_oriented_forest(n)[source]
        +sympy.utilities.iterables.generate_oriented_forest(n)[source]

        This algorithm generates oriented forests.

        An oriented graph is a directed graph having no symmetric pair of directed edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can @@ -1179,7 +1179,7 @@

        Documentation Version
        -sympy.utilities.iterables.group(seq, multiple=True)[source]
        +sympy.utilities.iterables.group(seq, multiple=True)[source]

        Splits a sequence into a list of lists of equal, adjacent elements.

        Examples

        >>> from sympy import group
        @@ -1201,7 +1201,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.has_dups(seq)[source]
        +sympy.utilities.iterables.has_dups(seq)[source]

        Return True if there are any duplicate elements in seq.

        Examples

        >>> from sympy import has_dups, Dict, Set
        @@ -1217,7 +1217,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.has_variety(seq)[source]
        +sympy.utilities.iterables.has_variety(seq)[source]

        Return True if there are any different elements in seq.

        Examples

        >>> from sympy import has_variety
        @@ -1233,7 +1233,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.ibin(n, bits=None, str=False)[source]
        +sympy.utilities.iterables.ibin(n, bits=None, str=False)[source]

        Return a list of length bits corresponding to the binary value of n with small bits to the right (last). If bits is omitted, the length will be the number required to represent n. If the bits are @@ -1276,7 +1276,7 @@

        Documentation Version
        -sympy.utilities.iterables.iproduct(*iterables)[source]
        +sympy.utilities.iterables.iproduct(*iterables)[source]

        Cartesian product of iterables.

        Generator of the Cartesian product of iterables. This is analogous to itertools.product except that it works with infinite iterables and will @@ -1303,7 +1303,7 @@

        Documentation Version
        -sympy.utilities.iterables.is_palindromic(s, i=0, j=None)[source]
        +sympy.utilities.iterables.is_palindromic(s, i=0, j=None)[source]

        Return True if the sequence is the same from left to right as it is from right to left in the whole sequence (default) or in the Python slice s[i: j]; else False.

        @@ -1336,7 +1336,7 @@
        Documentation Version
        -sympy.utilities.iterables.is_sequence(i, include=None)[source]
        +sympy.utilities.iterables.is_sequence(i, include=None)[source]

        Return a boolean indicating whether i is a sequence in the SymPy sense. If anything that fails the test below should be included as being a sequence for your application, set ‘include’ to that object’s @@ -1377,7 +1377,7 @@

        Documentation Version
        <class 'sympy.utilities.iterables.NotIterable'>),
        -)[source] +)[source]

        Return a boolean indicating whether i is SymPy iterable. True also indicates that the iterator is finite, e.g. you can call list(…) on the instance.

        @@ -1421,7 +1421,7 @@
        Documentation Version
        -sympy.utilities.iterables.kbins(l, k, ordered=None)[source]
        +sympy.utilities.iterables.kbins(l, k, ordered=None)[source]

        Return sequence l partitioned into k bins.

        Examples

        The default is to give the items in the same order, but grouped @@ -1501,7 +1501,7 @@

        Documentation Version
        -sympy.utilities.iterables.least_rotation(x, key=None)[source]
        +sympy.utilities.iterables.least_rotation(x, key=None)[source]

        Returns the number of steps of left rotation required to obtain lexicographically minimal string/list/tuple, etc.

        Examples

        @@ -1524,7 +1524,7 @@
        Documentation Version
        -sympy.utilities.iterables.minlex(seq, directed=True, key=None)[source]
        +sympy.utilities.iterables.minlex(seq, directed=True, key=None)[source]

        Return the rotation of the sequence in which the lexically smallest elements appear first, e.g. \(cba \rightarrow acb\).

        The sequence returned is a tuple, unless the input sequence is a string @@ -1558,7 +1558,7 @@

        Documentation Version
        -sympy.utilities.iterables.multiset(seq)[source]
        +sympy.utilities.iterables.multiset(seq)[source]

        Return the hashable sequence in multiset form with values being the multiplicity of the item in the sequence.

        Examples

        @@ -1575,7 +1575,7 @@
        Documentation Version
        -sympy.utilities.iterables.multiset_combinations(m, n, g=None)[source]
        +sympy.utilities.iterables.multiset_combinations(m, n, g=None)[source]

        Return the unique combinations of size n from multiset m.

        Examples

        >>> from sympy.utilities.iterables import multiset_combinations
        @@ -1602,7 +1602,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.multiset_derangements(s)[source]
        +sympy.utilities.iterables.multiset_derangements(s)[source]

        Generate derangements of the elements of s in place.

        Examples

        >>> from sympy.utilities.iterables import multiset_derangements, uniq
        @@ -1623,7 +1623,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.multiset_partitions(multiset, m=None)[source]
        +sympy.utilities.iterables.multiset_partitions(multiset, m=None)[source]

        Return unique partitions of the given multiset (in list form). If m is None, all multisets will be returned, otherwise only partitions with m parts will be returned.

        @@ -1687,7 +1687,7 @@
        Documentation Version
        -sympy.utilities.iterables.multiset_permutations(m, size=None, g=None)[source]
        +sympy.utilities.iterables.multiset_permutations(m, size=None, g=None)[source]

        Return the unique permutations of multiset m.

        Examples

        >>> from sympy.utilities.iterables import multiset_permutations
        @@ -1704,7 +1704,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.necklaces(n, k, free=False)[source]
        +sympy.utilities.iterables.necklaces(n, k, free=False)[source]

        A routine to generate necklaces that may (free=True) or may not (free=False) be turned over to be viewed. The “necklaces” returned are comprised of n integers (beads) with k different @@ -1765,7 +1765,7 @@

        Documentation Version
        **assumptions,
        -)[source] +)[source]

        Generate an infinite stream of Symbols consisting of a prefix and increasing subscripts provided that they do not occur in exclude.

        @@ -1804,7 +1804,7 @@
        Documentation Version
        -sympy.utilities.iterables.ordered_partitions(n, m=None, sort=True)[source]
        +sympy.utilities.iterables.ordered_partitions(n, m=None, sort=True)[source]

        Generates ordered partitions of integer n.

        Parameters:
        @@ -1894,7 +1894,7 @@
        Documentation Version
        -sympy.utilities.iterables.partitions(n, m=None, k=None, size=False)[source]
        +sympy.utilities.iterables.partitions(n, m=None, k=None, size=False)[source]

        Generate all partitions of positive integer, n.

        Each partition is represented as a dictionary, mapping an integer to the number of copies of that integer in the partition. For example, @@ -1960,7 +1960,7 @@

        Documentation Version
        -sympy.utilities.iterables.permute_signs(t)[source]
        +sympy.utilities.iterables.permute_signs(t)[source]

        Return iterator in which the signs of non-zero elements of t are permuted.

        Examples

        @@ -1973,7 +1973,7 @@
        Documentation Version
        -sympy.utilities.iterables.postfixes(seq)[source]
        +sympy.utilities.iterables.postfixes(seq)[source]

        Generate all postfixes of a sequence.

        Examples

        >>> from sympy.utilities.iterables import postfixes
        @@ -1987,7 +1987,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.prefixes(seq)[source]
        +sympy.utilities.iterables.prefixes(seq)[source]

        Generate all prefixes of a sequence.

        Examples

        >>> from sympy.utilities.iterables import prefixes
        @@ -2001,7 +2001,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.random_derangement(t, choice=None, strict=True)[source]
        +sympy.utilities.iterables.random_derangement(t, choice=None, strict=True)[source]

        Return a list of elements in which none are in the same positions as they were originally. If an element fills more than half of the positions then an error will be raised since no derangement is possible. To obtain @@ -2035,7 +2035,7 @@

        Documentation Version
        -sympy.utilities.iterables.reshape(seq, how)[source]
        +sympy.utilities.iterables.reshape(seq, how)[source]

        Reshape the sequence according to the template in how.

        Examples

        >>> from sympy.utilities import reshape
        @@ -2082,7 +2082,7 @@ 
        Documentation Version
        -sympy.utilities.iterables.rotate_left(x, y)[source]
        +sympy.utilities.iterables.rotate_left(x, y)[source]

        Left rotates a list x by the number of steps specified in y.

        Examples

        @@ -2096,7 +2096,7 @@
        Documentation Version
        -sympy.utilities.iterables.rotate_right(x, y)[source]
        +sympy.utilities.iterables.rotate_right(x, y)[source]

        Right rotates a list x by the number of steps specified in y.

        Examples

        @@ -2110,7 +2110,7 @@
        Documentation Version
        -sympy.utilities.iterables.rotations(s, dir=1)[source]
        +sympy.utilities.iterables.rotations(s, dir=1)[source]

        Return a generator giving the items in s as list where each subsequent list has the items rotated to the left (default) or right (dir=-1) relative to the previous list.

        @@ -2126,7 +2126,7 @@
        Documentation Version
        -sympy.utilities.iterables.roundrobin(*iterables)[source]
        +sympy.utilities.iterables.roundrobin(*iterables)[source]

        roundrobin recipe taken from itertools documentation: https://docs.python.org/3/library/itertools.html#itertools-recipes

        roundrobin(‘ABC’, ‘D’, ‘EF’) –> A D E B F C

        @@ -2135,7 +2135,7 @@
        Documentation Version
        -sympy.utilities.iterables.runs(seq, op=<built-in function gt>)[source]
        +sympy.utilities.iterables.runs(seq, op=<built-in function gt>)[source]

        Group the sequence into lists in which successive elements all compare the same with the comparison operator, op: op(seq[i + 1], seq[i]) is True from all elements in a run.

        @@ -2152,7 +2152,7 @@
        Documentation Version
        -sympy.utilities.iterables.sequence_partitions(l, n, /)[source]
        +sympy.utilities.iterables.sequence_partitions(l, n, /)[source]

        Returns the partition of sequence \(l\) into \(n\) bins

        Parameters:
        @@ -2202,7 +2202,7 @@
        Documentation Version
        -sympy.utilities.iterables.sequence_partitions_empty(l, n, /)[source]
        +sympy.utilities.iterables.sequence_partitions_empty(l, n, /)[source]

        Returns the partition of sequence \(l\) into \(n\) bins with empty sequence

        @@ -2255,7 +2255,7 @@
        Documentation Version
        -sympy.utilities.iterables.sift(seq, keyfunc, binary=False)[source]
        +sympy.utilities.iterables.sift(seq, keyfunc, binary=False)[source]

        Sift the sequence, seq according to keyfunc.

        Returns:
        @@ -2327,7 +2327,7 @@
        Documentation Version
        -sympy.utilities.iterables.signed_permutations(t)[source]
        +sympy.utilities.iterables.signed_permutations(t)[source]

        Return iterator in which the signs of non-zero elements of t and the order of the elements are permuted and all returned values are unique.

        @@ -2345,7 +2345,7 @@
        Documentation Version
        -sympy.utilities.iterables.strongly_connected_components(G)[source]
        +sympy.utilities.iterables.strongly_connected_components(G)[source]

        Strongly connected components of a directed graph in reverse topological order.

        @@ -2419,7 +2419,7 @@
        Documentation Version
        -sympy.utilities.iterables.subsets(seq, k=None, repetition=False)[source]
        +sympy.utilities.iterables.subsets(seq, k=None, repetition=False)[source]

        Generates all \(k\)-subsets (combinations) from an \(n\)-element set, seq.

        A \(k\)-subset of an \(n\)-element set is any subset of length exactly \(k\). The number of \(k\)-subsets of an \(n\)-element set is given by binomial(n, k), @@ -2460,13 +2460,13 @@

        Documentation Version
        -sympy.utilities.iterables.take(iter, n)[source]
        +sympy.utilities.iterables.take(iter, n)[source]

        Return n items from iter iterator.

        -sympy.utilities.iterables.topological_sort(graph, key=None)[source]
        +sympy.utilities.iterables.topological_sort(graph, key=None)[source]

        Topological sort of graph’s vertices.

        Parameters:
        @@ -2541,14 +2541,14 @@
        Documentation Version
        -sympy.utilities.iterables.unflatten(iter, n=2)[source]
        +sympy.utilities.iterables.unflatten(iter, n=2)[source]

        Group iter into tuples of length n. Raise an error if the length of iter is not a multiple of n.

        -sympy.utilities.iterables.uniq(seq, result=None)[source]
        +sympy.utilities.iterables.uniq(seq, result=None)[source]

        Yield unique elements from seq as an iterator. The second parameter result is used internally; it is not necessary to pass anything for this.

        @@ -2575,7 +2575,7 @@
        Documentation Version
        -sympy.utilities.iterables.variations(seq, n, repetition=False)[source]
        +sympy.utilities.iterables.variations(seq, n, repetition=False)[source]

        Returns an iterator over the n-sized variations of seq (size N). repetition controls whether items in seq can appear more than once;

        Examples

        diff --git a/dev/modules/utilities/lambdify.html b/dev/modules/utilities/lambdify.html index edae3d8838d..0ce5ccf14ba 100644 --- a/dev/modules/utilities/lambdify.html +++ b/dev/modules/utilities/lambdify.html @@ -804,7 +804,7 @@
        Documentation Version
        lambda functions which can be used to calculate numerical values very fast.

        -sympy.utilities.lambdify.implemented_function(symfunc, implementation)[source]
        +sympy.utilities.lambdify.implemented_function(symfunc, implementation)[source]

        Add numerical implementation to function symfunc.

        symfunc can be an UndefinedFunction instance, or a name string. In the latter case we create an UndefinedFunction instance with that @@ -847,7 +847,7 @@

        Documentation Version
        -sympy.utilities.lambdify.lambdastr(args, expr, printer=None, dummify=None)[source]
        +sympy.utilities.lambdify.lambdastr(args, expr, printer=None, dummify=None)[source]

        Returns a string that can be evaluated to a lambda function.

        Examples

        >>> from sympy.abc import x, y, z
        @@ -882,7 +882,7 @@ 
        Documentation Version
        docstring_limit=1000,
        -)[source] +)[source]

        Convert a SymPy expression into a function that allows for fast numeric evaluation.

        diff --git a/dev/modules/utilities/memoization.html b/dev/modules/utilities/memoization.html index 3e8c819749b..ca9efddd400 100644 --- a/dev/modules/utilities/memoization.html +++ b/dev/modules/utilities/memoization.html @@ -802,7 +802,7 @@
        Documentation Version

        Memoization

        -sympy.utilities.memoization.assoc_recurrence_memo(base_seq)[source]
        +sympy.utilities.memoization.assoc_recurrence_memo(base_seq)[source]

        Memo decorator for associated sequences defined by recurrence starting from base

        base_seq(n) – callable to get base sequence elements

        XXX works only for Pn0 = base_seq(0) cases @@ -811,7 +811,7 @@

        Documentation Version
        -sympy.utilities.memoization.recurrence_memo(initial)[source]
        +sympy.utilities.memoization.recurrence_memo(initial)[source]

        Memo decorator for sequences defined by recurrence

        Examples

        >>> from sympy.utilities.memoization import recurrence_memo
        diff --git a/dev/modules/utilities/misc.html b/dev/modules/utilities/misc.html
        index 2a4452bfe89..5331935034c 100644
        --- a/dev/modules/utilities/misc.html
        +++ b/dev/modules/utilities/misc.html
        @@ -803,7 +803,7 @@ 
        Documentation Version

        Miscellaneous stuff that does not really fit anywhere else.

        -sympy.utilities.misc.as_int(n, strict=True)[source]
        +sympy.utilities.misc.as_int(n, strict=True)[source]

        Convert the argument to a builtin integer.

        The return value is guaranteed to be equal to the input. ValueError is raised if the input has a non-integral value. When strict is True, this @@ -852,27 +852,27 @@

        Documentation Version
        -sympy.utilities.misc.debug(*args)[source]
        +sympy.utilities.misc.debug(*args)[source]

        Print *args if SYMPY_DEBUG is True, else do nothing.

        -sympy.utilities.misc.debug_decorator(func)[source]
        +sympy.utilities.misc.debug_decorator(func)[source]

        If SYMPY_DEBUG is True, it will print a nice execution tree with arguments and results of all decorated functions, else do nothing.

        -sympy.utilities.misc.debugf(string, args)[source]
        +sympy.utilities.misc.debugf(string, args)[source]

        Print string%args if SYMPY_DEBUG is True, else do nothing. This is intended for debug messages using formatted strings.

        -sympy.utilities.misc.filldedent(s, w=70, **kwargs)[source]
        +sympy.utilities.misc.filldedent(s, w=70, **kwargs)[source]

        Strips leading and trailing empty lines from a copy of s, then dedents, fills and returns it.

        Empty line stripping serves to deal with docstrings like this one that @@ -887,7 +887,7 @@

        Documentation Version
        -sympy.utilities.misc.find_executable(executable, path=None)[source]
        +sympy.utilities.misc.find_executable(executable, path=None)[source]

        Try to find ‘executable’ in the directories listed in ‘path’ (a string listing directories separated by ‘os.pathsep’; defaults to os.environ[‘PATH’]). Returns the complete filename or None if not @@ -896,7 +896,7 @@

        Documentation Version
        -sympy.utilities.misc.func_name(x, short=False)[source]
        +sympy.utilities.misc.func_name(x, short=False)[source]

        Return function name of \(x\) (if defined) else the \(type(x)\). If short is True and there is a shorter alias for the result, return the alias.

        @@ -916,13 +916,13 @@
        Documentation Version
        -sympy.utilities.misc.ordinal(num)[source]
        +sympy.utilities.misc.ordinal(num)[source]

        Return ordinal number string of num, e.g. 1 becomes 1st.

        -sympy.utilities.misc.rawlines(s)[source]
        +sympy.utilities.misc.rawlines(s)[source]

        Return a cut-and-pastable string that, when printed, is equivalent to the input. Use this when there is more than one line in the string. The string returned is formatted so it can be indented @@ -986,7 +986,7 @@

        Documentation Version
        -sympy.utilities.misc.replace(string, *reps)[source]
        +sympy.utilities.misc.replace(string, *reps)[source]

        Return string with all keys in reps replaced with their corresponding values, longer strings first, irrespective of the order they are given. reps may be passed as tuples @@ -1021,7 +1021,7 @@

        Documentation Version
        -sympy.utilities.misc.strlines(s, c=64, short=False)[source]
        +sympy.utilities.misc.strlines(s, c=64, short=False)[source]

        Return a cut-and-pastable string that, when printed, is equivalent to the input. The lines will be surrounded by parentheses and no line will be longer than c (default 64) @@ -1052,7 +1052,7 @@

        Documentation Version
        -sympy.utilities.misc.translate(s, a, b=None, c=None)[source]
        +sympy.utilities.misc.translate(s, a, b=None, c=None)[source]

        Return s where characters have been replaced or deleted.

        Syntax

        diff --git a/dev/modules/utilities/source.html b/dev/modules/utilities/source.html index 2f9b4e16498..039fa35f614 100644 --- a/dev/modules/utilities/source.html +++ b/dev/modules/utilities/source.html @@ -803,7 +803,7 @@
        Documentation Version

        This module adds several functions for interactive source code inspection.

        -sympy.utilities.source.get_class(lookup_view)[source]
        +sympy.utilities.source.get_class(lookup_view)[source]

        Convert a string version of a class name to the object.

        For example, get_class(‘sympy.core.Basic’) will return class Basic located in module sympy.core

        @@ -811,7 +811,7 @@
        Documentation Version
        -sympy.utilities.source.get_mod_func(callback)[source]
        +sympy.utilities.source.get_mod_func(callback)[source]

        splits the string path to a class into a string path to the module and the name of the class.

        Examples

        diff --git a/dev/modules/utilities/timeutils.html b/dev/modules/utilities/timeutils.html index 460311bd869..d44b994fcb2 100644 --- a/dev/modules/utilities/timeutils.html +++ b/dev/modules/utilities/timeutils.html @@ -803,7 +803,7 @@
        Documentation Version

        Simple tools for timing functions’ execution, when IPython is not available.

        -sympy.utilities.timeutils.timed(func, setup='pass', limit=None)[source]
        +sympy.utilities.timeutils.timed(func, setup='pass', limit=None)[source]

        Adaptively measure execution time of a function.

        diff --git a/dev/modules/vector/api/classes.html b/dev/modules/vector/api/classes.html index e00e1c0a860..5ea3b5c4bbe 100644 --- a/dev/modules/vector/api/classes.html +++ b/dev/modules/vector/api/classes.html @@ -814,7 +814,7 @@

        Essential Classes in sympy.vector (docstrings)variable_names=None,

        -)[source] +)[source]

        Represents a coordinate system in 3-D space.

        @@ -834,7 +834,7 @@

        Essential Classes in sympy.vector (docstrings)transformation=None,

        -)[source] +)[source]

        The orientation/location parameters are necessary if this system is being defined at a certain orientation or location wrt another.

        @@ -885,7 +885,7 @@

        Essential Classes in sympy.vector (docstrings)vector_names=None,

        -)[source] +)[source]

        Returns a CoordSys3D which is connected to self by transformation.

        Parameters:
        @@ -929,7 +929,7 @@

        Essential Classes in sympy.vector (docstrings)variable_names=None,

        -)[source] +)[source]

        Returns a CoordSys3D with its origin located at the given position wrt this coordinate system’s origin.

        @@ -973,7 +973,7 @@

        Essential Classes in sympy.vector (docstrings)variable_names=None,

        -)[source] +)[source]

        Creates a new CoordSys3D oriented in the user-specified way with respect to this system.

        Please refer to the documentation of the orienter classes @@ -1053,7 +1053,7 @@

        Essential Classes in sympy.vector (docstrings)variable_names=None,

        -)[source] +)[source]

        Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector.

        @@ -1110,7 +1110,7 @@

        Essential Classes in sympy.vector (docstrings)variable_names=None,

        -)[source] +)[source]

        Body orientation takes this coordinate system through three successive simple rotations.

        Body fixed rotations include both Euler Angles and @@ -1190,7 +1190,7 @@

        Essential Classes in sympy.vector (docstrings)variable_names=None,

        -)[source] +)[source]

        Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.

        @@ -1249,7 +1249,7 @@

        Essential Classes in sympy.vector (docstrings)variable_names=None,

        -)[source] +)[source]

        Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

        @@ -1312,7 +1312,7 @@

        Essential Classes in sympy.vector (docstrings)
        -position_wrt(other)[source]
        +position_wrt(other)[source]

        Returns the position vector of the origin of this coordinate system with respect to another Point/CoordSys3D.

        @@ -1337,7 +1337,7 @@

        Essential Classes in sympy.vector (docstrings)
        -rotation_matrix(other)[source]
        +rotation_matrix(other)[source]

        Returns the direction cosine matrix(DCM), also known as the ‘rotation matrix’ of this coordinate system with respect to another system.

        @@ -1370,7 +1370,7 @@

        Essential Classes in sympy.vector (docstrings)
        -scalar_map(other)[source]
        +scalar_map(other)[source]

        Returns a dictionary which expresses the coordinate variables (base scalars) of this frame in terms of the variables of otherframe.

        @@ -1398,7 +1398,7 @@

        Essential Classes in sympy.vector (docstrings)
        -class sympy.vector.vector.Vector(*args)[source]
        +class sympy.vector.vector.Vector(*args)[source]

        Super class for all Vector classes. Ideally, neither this class nor any of its subclasses should be instantiated by the user.

        @@ -1420,7 +1420,7 @@

        Essential Classes in sympy.vector (docstrings)
        -cross(other)[source]
        +cross(other)[source]

        Returns the cross product of this Vector with another Vector or Dyadic instance. The cross product is a Vector, if ‘other’ is a Vector. If ‘other’ @@ -1452,7 +1452,7 @@

        Essential Classes in sympy.vector (docstrings)
        -dot(other)[source]
        +dot(other)[source]

        Returns the dot product of this Vector, either with another Vector, or a Dyadic, or a Del operator. If ‘other’ is a Vector, returns the dot product scalar (SymPy @@ -1492,19 +1492,19 @@

        Essential Classes in sympy.vector (docstrings)
        -magnitude()[source]
        +magnitude()[source]

        Returns the magnitude of this vector.

        -normalize()[source]
        +normalize()[source]

        Returns the normalized version of this vector.

        -outer(other)[source]
        +outer(other)[source]

        Returns the outer product of this vector with another, in the form of a Dyadic instance.

        @@ -1527,7 +1527,7 @@

        Essential Classes in sympy.vector (docstrings)
        -projection(other, scalar=False)[source]
        +projection(other, scalar=False)[source]

        Returns the vector or scalar projection of the ‘other’ on ‘self’.

        Examples

        >>> from sympy.vector.coordsysrect import CoordSys3D
        @@ -1545,7 +1545,7 @@ 

        Essential Classes in sympy.vector (docstrings)
        -separate()[source]
        +separate()[source]

        The constituents of this vector in different coordinate systems, as per its definition.

        Returns a dict mapping each CoordSys3D to the corresponding @@ -1563,7 +1563,7 @@

        Essential Classes in sympy.vector (docstrings)
        -to_matrix(system)[source]
        +to_matrix(system)[source]

        Returns the matrix form of this vector with respect to the specified coordinate system.

        @@ -1592,7 +1592,7 @@

        Essential Classes in sympy.vector (docstrings)
        -class sympy.vector.dyadic.Dyadic(*args)[source]
        +class sympy.vector.dyadic.Dyadic(*args)[source]

        Super class for all Dyadic-classes.

        References

        @@ -1616,7 +1616,7 @@

        Essential Classes in sympy.vector (docstrings)
        -cross(other)[source]
        +cross(other)[source]

        Returns the cross product between this Dyadic, and a Vector, as a Vector instance.

        @@ -1639,7 +1639,7 @@

        Essential Classes in sympy.vector (docstrings)
        -dot(other)[source]
        +dot(other)[source]

        Returns the dot product(also called inner product) of this Dyadic, with another Dyadic or Vector. If ‘other’ is a Dyadic, this returns a Dyadic. Else, it returns @@ -1667,7 +1667,7 @@

        Essential Classes in sympy.vector (docstrings)
        -to_matrix(system, second_system=None)[source]
        +to_matrix(system, second_system=None)[source]

        Returns the matrix form of the dyadic with respect to one or two coordinate systems.

        @@ -1711,12 +1711,12 @@

        Essential Classes in sympy.vector (docstrings)
        -class sympy.vector.deloperator.Del[source]
        +class sympy.vector.deloperator.Del[source]

        Represents the vector differential operator, usually represented in mathematical expressions as the ‘nabla’ symbol.

        -cross(vect, doit=False)[source]
        +cross(vect, doit=False)[source]

        Represents the cross product between this operator and a given vector - equal to the curl of the vector field.

        @@ -1749,7 +1749,7 @@

        Essential Classes in sympy.vector (docstrings)
        -dot(vect, doit=False)[source]
        +dot(vect, doit=False)[source]

        Represents the dot product between this operator and a given vector - equal to the divergence of the vector field.

        @@ -1781,7 +1781,7 @@

        Essential Classes in sympy.vector (docstrings)
        -gradient(scalar_field, doit=False)[source]
        +gradient(scalar_field, doit=False)[source]

        Returns the gradient of the given scalar field, as a Vector instance.

        @@ -1814,7 +1814,7 @@

        Essential Classes in sympy.vector (docstrings)
        -class sympy.vector.parametricregion.ParametricRegion(definition, *bounds)[source]
        +class sympy.vector.parametricregion.ParametricRegion(definition, *bounds)[source]

        Represents a parametric region in space.

        Parameters:
        @@ -1857,7 +1857,7 @@

        Essential Classes in sympy.vector (docstrings)
        -class sympy.vector.implicitregion.ImplicitRegion(variables, equation)[source]
        +class sympy.vector.implicitregion.ImplicitRegion(variables, equation)[source]

        Represents an implicit region in space.

        Parameters:
        @@ -1897,7 +1897,7 @@

        Essential Classes in sympy.vector (docstrings)
        -multiplicity(point)[source]
        +multiplicity(point)[source]

        Returns the multiplicity of a singular point on the region.

        A singular point (x,y) of region is said to be of multiplicity m if all the partial derivatives off to order m - 1 vanish there.

        @@ -1922,7 +1922,7 @@

        Essential Classes in sympy.vector (docstrings)reg_point=None,

        -)[source] +)[source]

        Returns the rational parametrization of implicit region.

        Examples

        >>> from sympy import Eq
        @@ -1973,7 +1973,7 @@ 

        Essential Classes in sympy.vector (docstrings)
        -regular_point()[source]
        +regular_point()[source]

        Returns a point on the implicit region.

        Examples

        >>> from sympy.abc import x, y, z
        @@ -1999,7 +1999,7 @@ 

        Essential Classes in sympy.vector (docstrings)
        -singular_points()[source]
        +singular_points()[source]

        Returns a set of singular points of the region.

        The singular points are those points on the region where all partial derivatives vanish.

        @@ -2017,7 +2017,7 @@

        Essential Classes in sympy.vector (docstrings)
        -class sympy.vector.integrals.ParametricIntegral(field, parametricregion)[source]
        +class sympy.vector.integrals.ParametricIntegral(field, parametricregion)[source]

        Represents integral of a scalar or vector field over a Parametric Region

        Examples

        diff --git a/dev/modules/vector/api/orienterclasses.html b/dev/modules/vector/api/orienterclasses.html index 8376924eff0..4b597fabd67 100644 --- a/dev/modules/vector/api/orienterclasses.html +++ b/dev/modules/vector/api/orienterclasses.html @@ -802,11 +802,11 @@
        Documentation Version

        Orienter classes (docstrings)

        -class sympy.vector.orienters.Orienter(*args)[source]
        +class sympy.vector.orienters.Orienter(*args)[source]

        Super-class for all orienter classes.

        -rotation_matrix()[source]
        +rotation_matrix()[source]

        The rotation matrix corresponding to this orienter instance.

        @@ -815,11 +815,11 @@

        Orienter classes (docstrings)
        -class sympy.vector.orienters.AxisOrienter(angle, axis)[source]
        +class sympy.vector.orienters.AxisOrienter(angle, axis)[source]

        Class to denote an axis orienter.

        -__init__(angle, axis)[source]
        +__init__(angle, axis)[source]

        Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector.

        @@ -849,7 +849,7 @@

        Orienter classes (docstrings)
        -rotation_matrix(system)[source]
        +rotation_matrix(system)[source]

        The rotation matrix corresponding to this orienter instance.

        @@ -867,7 +867,7 @@

        Orienter classes (docstrings)
        -class sympy.vector.orienters.BodyOrienter(angle1, angle2, angle3, rot_order)[source]
        +class sympy.vector.orienters.BodyOrienter(angle1, angle2, angle3, rot_order)[source]

        Class to denote a body-orienter.

        @@ -880,7 +880,7 @@

        Orienter classes (docstrings)rot_order,

        -)[source] +)[source]

        Body orientation takes this coordinate system through three successive simple rotations.

        Body fixed rotations include both Euler Angles and @@ -938,7 +938,7 @@

        Orienter classes (docstrings)
        -class sympy.vector.orienters.SpaceOrienter(angle1, angle2, angle3, rot_order)[source]
        +class sympy.vector.orienters.SpaceOrienter(angle1, angle2, angle3, rot_order)[source]

        Class to denote a space-orienter.

        @@ -951,7 +951,7 @@

        Orienter classes (docstrings)rot_order,

        -)[source] +)[source]

        Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

        @@ -1005,7 +1005,7 @@

        Orienter classes (docstrings)
        -class sympy.vector.orienters.QuaternionOrienter(q0, q1, q2, q3)[source]
        +class sympy.vector.orienters.QuaternionOrienter(q0, q1, q2, q3)[source]

        Class to denote a quaternion-orienter.

        @@ -1018,7 +1018,7 @@

        Orienter classes (docstrings)rot_order,

        -)[source] +)[source]

        Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.

        diff --git a/dev/modules/vector/api/vectorfunctions.html b/dev/modules/vector/api/vectorfunctions.html index 50686fabec0..82f40fcc427 100644 --- a/dev/modules/vector/api/vectorfunctions.html +++ b/dev/modules/vector/api/vectorfunctions.html @@ -802,7 +802,7 @@
        Documentation Version

        Essential Functions in sympy.vector (docstrings)

        -sympy.vector.matrix_to_vector(matrix, system)[source]
        +sympy.vector.matrix_to_vector(matrix, system)[source]

        Converts a vector in matrix form to a Vector instance.

        It is assumed that the elements of the Matrix represent the measure numbers of the components of the vector along basis @@ -844,7 +844,7 @@

        Essential Functions in sympy.vector (docstrings)variables=False,

        -)[source] +)[source]

        Global function for ‘express’ functionality.

        Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given coordinate system.

        @@ -894,7 +894,7 @@

        Essential Functions in sympy.vector (docstrings)
        -sympy.vector.curl(vect, doit=True)[source]
        +sympy.vector.curl(vect, doit=True)[source]

        Returns the curl of a vector field computed wrt the base scalars of the given coordinate system.

        @@ -926,7 +926,7 @@

        Essential Functions in sympy.vector (docstrings)
        -sympy.vector.divergence(vect, doit=True)[source]
        +sympy.vector.divergence(vect, doit=True)[source]

        Returns the divergence of a vector field computed wrt the base scalars of the given coordinate system.

        @@ -960,7 +960,7 @@

        Essential Functions in sympy.vector (docstrings)
        -sympy.vector.gradient(scalar_field, doit=True)[source]
        +sympy.vector.gradient(scalar_field, doit=True)[source]

        Returns the vector gradient of a scalar field computed wrt the base scalars of the given coordinate system.

        @@ -992,7 +992,7 @@

        Essential Functions in sympy.vector (docstrings)
        -sympy.vector.is_conservative(field)[source]
        +sympy.vector.is_conservative(field)[source]

        Checks if a field is conservative.

        Parameters:
        @@ -1016,7 +1016,7 @@

        Essential Functions in sympy.vector (docstrings)
        -sympy.vector.is_solenoidal(field)[source]
        +sympy.vector.is_solenoidal(field)[source]

        Checks if a field is solenoidal.

        Parameters:
        @@ -1040,7 +1040,7 @@

        Essential Functions in sympy.vector (docstrings)
        -sympy.vector.scalar_potential(field, coord_sys)[source]
        +sympy.vector.scalar_potential(field, coord_sys)[source]

        Returns the scalar potential function of a field in a given coordinate system (without the added integration constant).

        @@ -1081,7 +1081,7 @@

        Essential Functions in sympy.vector (docstrings)point2,

        -)[source] +)[source]

        Returns the scalar potential difference between two points in a certain coordinate system, wrt a given field.

        If a scalar field is provided, its values at the two points are @@ -1127,7 +1127,7 @@

        Essential Functions in sympy.vector (docstrings)
        -sympy.vector.integrals.vector_integrate(field, *region)[source]
        +sympy.vector.integrals.vector_integrate(field, *region)[source]

        Compute the integral of a vector/scalar field over a a region or a set of parameters.

        Examples

  • >aIlrXPa7S-O_^f)VAn;6YJdVG=@eXb3rWM31t=8w|eBE^-@ch>2kXdp}e2Nol6>Y6?VP&jc%Ra+?Sz5I67S)tRNG1&-WFND6Yj!O0KnwyNrDw2qd(q|p6 ztdI1#RDjxvDC1Ykosa6(cJsi;l9vhu(f*!)M99`z!M!`Vgs34Kwei!nt4ytxR!aLA z_wcd0`=DsVr0@FhQb}m1)MUQ*DlUO?;2Uwe7=dtpZ4r20PmaLl=5ws4q^5uE#UQ0i zX03#aI@D<)2=lVt2{i2K3bgYoe&0*BI9&JJ=^3CC zbAp0KdZgqZJvfdmievJ#xAEn45t|~lR~nL}8-PKt=kx#9px=d zQ+)2Rq!Rwvl(yvED)Td;JsRnMdwLvr=$WMzDPe?|*CIur!y9q9)V~MA68e2ydv%MLC=9VN6i zBTMUrTTI?|-SC@KMe*sKHcjY%)1o5C8TiV3-FCI_71s z@WNh_K331FtLQdZ8>-3Dd>g5{@ZzZbNLhK0^v*lOtpr*6x!A{ct2bWSC9Qzdm*q^( z<$xpX#BNS!9>OZ23S*8aHeXfk<4H$An2@vU6tOZWT-WKC(`tp_5@*ZPI}Vbd<9*Yp zqpzS$$XNX!^!o?ibMzkT#j-{Ov2Ur}&A3Sd#)dkb9)d69{Oq8iyE}NYEjJaZe||jC z%xHMAA<%?Y=zE==Gu`^JY+!L`bb0E?USKO1JN;*bGh04(T_hn)lDk~oS(H1OhkmxZ zmIe&HR&xj(HC^D>y}LY6tVGk<7+WQi{2+Vmo~)@Wf3{S9ACtPe`&~h5a!ZqRY55Pv zr4=HBD;bjz3Hy9%X-O`x3jXb0Qr6?%u-EeH>cYW)@~1Cf{&sQ?qL*~%gbwb#uh;hD zi{c7DGYvzIX=)jF4cNUcM`S+rc5^f&r6y_DLMIkA*=$Kf(H(?2WX_L?p3TN}gqsa9bWO%ZVoARURN8=LvH|D1X^Ya`6PZHsf#v4ia4j$Gi^L8&C zg_WOkkkjvLs(k5_ALIH5oQu}8@2+^;E;g;SGt+vaeOj1`9qMFEE{cc|QISJ{iays=2fx7c#zH-IIg?N?1d8Drn(OTC-cJ-6rUaYagXG3xaOFt8(PX?Qi zks+8fYy;we;5#}77sbanZ4fcnuFjaF=q;>$^d>{b)gjB&V3ZtfcDCsRNNcxwvV)HO zoWin;B5~iBqGbII(ys`jBC-f!86K=i=Fi;zhoiLHz_|?>nkhcVn~A~|EN-{28vUVA z-t%gu+6cW$7Idz7k$xAgR~CUZCE=w&Qm@LV81uait8hM2}IjeVpa zKYZvR$jliJdxHM?SaHbQo6)UninvKM7&~_KKQv=Elz!J!1oDeJ@==hiFgUxNSq3OG zq>>fvUP7uq|1>3Uuy?LQb#=ae6W^-(jiXv+%jsRNt3A`QwDbpn50401k3#ZOQ)PLN zaeol3`P?t@GHAStlXIj&Tb2_1H2~~zbKH1i-B|}s?yz<_g%>@Essv?sv}4bn zMgguFSZUJ=r91tCN)1zw+Qf}t zmPL1~_P6|f9ojXCxNg6z#I?VOr8$ztIjK6Fkx1MXQ}5gs*{FlcojFc%s|xJe9s}Vi zyPP_+_nD)~>I@AyQlswRJC5!Ptz}Neb7b~celpXbSvUu~Fi7DRcHW5~bnDUNwJC!sy}Yl$AI8s%MCPJIMKCOGRfplQ{MaAI~HcoW1b z+`>S%Jygp6O&=`15WBScr}bYUp$5*v)Xa`?D0I#_AOXa4{JHd#J3$nl%282*2)j06!hpPTzV=s%xl~wC%9k5~Ql^-SwX|ve3Wr50N@4 zQ3_po%aoT6i>%E3<@Rh^PB(QES!b?#q}j)Wwr=PI;ac$5PWz0kZ&7h3mG4m7VtPN! z`c-Oa-_EjSKkK*ty|`p!+ipw1CJ%ofudTc!|5v@7ZjzGIt4V_;jm%!+Q3;SrMAQ%J z*KCB-8E#+2Vvx=VPf}O6;J50?bP{#A%zt0&g$C(Yz@fF}=s~d=jxmb;yEKbgE_m0J zhSJ4xHI7vQ+9Fe`u$<(d_U(#A=sm=@Dg!{U#C?7&2GrC-Pf~#+`;-By(Hf+`0lV^N z_}Pzu*GW1Y=HtJ7ZV@N4@Bg@qU244FB{J}~kmc*)BJ8>{ZvA!Ug=xDAR*+jqvYcAP)MS^< ztG&N|db{zWIE(8{4c)9)H>#B8b`u?Mg~upgx1#VE&Ir+P`>0bhG*+V$L}d) zr3(d=1Z3=7sC>l(b&q|F!$AThl+LxqF>Jrs#a6pZWxZG)ki#&(38-;&p!A#UGsnGd z$jRH!HXXOuDOyU+zCBj4S)C0%=+cT?1;f}MQWcQkyofj|xT-e@M~C}y^<7PRR_EW{ zn~z`nh6mLeV_1TvZqjd5lB74YFD2~Mg;?c}+x9cfY2Xzk>)*VgM? zqCed>=KC=;y0`KoyPBe=(SIUKq~b^FZ7dH5T0tCc7Vjk~^hcbA@-~rR5`lkxa%eY} z?PsvBG1Ig!oNcLuVmI4MGx3TQ_l6%(gUv6ew9=A(gd}evAA*Q&jZ;8<6Hg zLKM6ybQQocKFdHRuC}76;u$eA>8lHr6U_##=9VSYd2D}Ekiy!Hkf-mE(GEcjJvr~T zg;egKa>?zCl8)tp$qC!{_n#nER>YrvxpVD|Q*RV8GWr;8wfy+m=;X)ga5zZ)!n0pJ z1!qHxsDt=pw?H98m@!2Yc^r9320%@6t@Vkek=~bm206j;D>GY2@A2L3vw_VOy+R)F zf!*h}n}q6%V(p`RnX6@d&?bLL6IY15FLVwc$rpQ%rUOz-N5nZ7d5q53y@%)%NJjDA zUos}|+Igqn9hqHLUq>}^{jnont4Onx*Pp#9{LJCU82*)2goDoy0!XBO3JlCdK0k{$ zFyHqE9Gb@)|K0`|8I;#Mn4DC-@6Z)<8@PUeNn<&)+qMV(g`4qr3+!(yEbaZN&Z~$T zDN#wuaT%xmG*M=XOE9~gU#A&|5H7p>HP~nE2WeME!MmzPMXw-n()ZC?=Ae|&`YGD%Tpw+&;{o#AC>Pi#wmZIe&eI$r8Kl%r3k?6Z%4&bm6b+zY!%}f&N$apA)GS?%8Nl zk&ji|Miu?Ic}U1ojO=elhz`H~Z6{D_T*(-~&s__BU3K_hn&X^HN*lNH=cT|MJRyBR z49~vIVyov5@m}kKDiz5rBc7RKEj046m{u%O2xRHx)#ef#ZKn#4y4ELYNTB*QEwMi@ z;z!EvAI|Lf)0@F@?{@^~_dWROr!DrvYfs9F|e#d~*2^2xf6Gbd2qkUWy>XxD+@6UW9>IHnrP25C}GkQkE zZ*l)zl}rOALz9Ndxu5%+()9u^!@6VyP$PgWdq${B((ft8>A{q7J9H|z;4g2opF*Eg}xnXP(57Vcbzn{6j;T8^1-t-ju*tgT_@Bz#x^1F zD*zpYFc2hoHp7KN2^Sz*oGSClZ((%q(ne);4Sxcf;k~^_Ht)Fmh*{u9#R4AZ=;lQz z+3-}v&2P|}+)^O*6bQ`Z&E$p_mM!NI+fw++ue=N4T)fR0?Lj7%wpJ2G4!6;+BD*wt zt#`BuONgNI>|euMu;i9`JrTicuZUsbr3qEt;jri$&L0R)>D?tds`>Wx?mZ$0?$wY4 z9taa93}H>f1~KQAwVe@Mtryc_7Xp!XQbF{$@lj$)-*2&SZEiEZ@TR1<^$S05#PcdD zn;>?Vz%@_wE(i0&}||& zy8ix)4P~o~mF#8&_gg%<@#hhuu|q{UC>ZTUVijuHzJ_KSb^MAvGGepX@SC!Q1GZUC~V zlsV*D0})zCpHn)%^?_)c=kSQpkA#LwvwjwIY!ud$=cYCI$iZTC@LdBCpMHoch7~Ukpo1LuiPlsB&!! z@$>fjt!@YGNT^a&^jZ(hwcUi-g1fKxo{(h@wm{3fk*xkqle8W7Gusr^#=*lifsPX2 z9F&lMZFkV$xps?gEK+y>>W;>B0o(M?dQ{Kh=>wdW&YQwsl+Wdyz>T6@6=9qmB3={X z=k)x->5xsy75_Z$kV81>TnCqd3c6xM*uq$ho-5#r?G&(OgX%);OAZcu8zr*TXR2o; z0DqAMH3P5P!Hl>pP$9ByQ$WT`Vc@PN4aX4w>=Wj;_e&m5n=*g^0ad2cj!^yI=!kOO zU+VJ`MsO^f4#arx$%D=DZ*Xtq<+HFzM0MKw>q<=~jL{V-o(RIpbE4Er=T>9nc~K3X zB=4ZDDN5IeW|vws#2f@Sfd6?)_!Z24X34w8$TUJI9PCEz*#gQ@(fc*_&81I^mble_ z&i2M9cd6SiB)sm`1|N`h1G)!b-Dc>flaYr-Z^)ydpMHTW$X#W!@;emIh(gVYv@xs1 zeqp_BY$$lO@6IMzQ3$QP7A1XK3WkFc@3NXO0u83Mofa~J_DJDds15acP5os5e`TQz zQMpuke(AMiaJ{tWfadFg)1_S|YoM&*b6Fs?E+G|CrdiP)(Exd2$M@;*6aPsC6ZZUY z--9eTIQQsvvpUXh2&t$QbrXIf#VI8whndPEGGz@_jfShB`r6G|J#3~4x-y;ox-Vae#tUEWH z)d@lNXvG{_nw?D#n<|3|OjUr2%yKxC2BD`FRT22_n z@J0ElWT5BV+(#Kvf^;J*DZu{$T+Kqzh=Q3ok+BlLDUtGEj7M}eXB_rCV+#XmAm>5n zOeqY{)7DG52lS7K;yR02!udP$u<$gdM(gTI7op>sX{XsFP<4G!(%Qi}EqYriQZ0*F zVLx{28HG4fGar&GguvV(nL7Ry-hCLtLn*{Z%FT(ntIGx?03uGf7nEjMe%ua;E}(?> z(PFX_(On zfa+M$C;Rb|i%?P@+tisp+{f#whd-fuw!X|pslgTkh3=AyjQh|b1MCp!ynG*0DP=&S z(=t%dikPI?7VChuSvDbhN(Vwi>o3&Mpe~v&@7>{pxb31a%gXQY3?+*_*wXDieJ8ZF zkf_?FuWIDzU@ZzyEAxLuo`!etP^WtZR{Mzv!5!RZLXBiZU|Vf_J>z7*s8wzZ;Z}jM zl@d{cWCB65GSzn(sk&`f9KF?ccJjfd+x`iRtX4^c{O~NVj3DRerYEOU9g@Eljrq3_ zGM<9W*jlG@jKm`GlD?PY!!9lnBfIS+H_KB?Eb%=4HE_@#eyl~*I@OuuJ)*!BP0T+v zWiN`q2BB3>vErCt^q%Ga6>LCeBZD?Y4huQy1#OJgWQir~%95aPxbFjTu?%Cd=DM&4 z38a%hpX1UnRX5dnaK87;+F7i-j^e&@v5^Z-eMEkgn6`j&z8P{!?_g;8Y}?D4&KD); zQJg{E$e;)`nAUDWrU0KTs!O&`r}a)ND@Xjvv$Lic9hB6GTY?? zG}2BwE$%eGr~klSloxYJ{s^ORQE@Du@1Xf|RYkGaE;oA$haYwOSyX}8)$2?VBi|G3ZG+&fJk=!nXh8Z|k2cM_&NpMwYT zKpTt@PIRe6j)oWa2NUQTa9_ul5cZk^QC7C~*65WXS78uTVHvn29S}t^0x{~(qZ&)R z1(WR_% zqEm^rU6PpPbum;<&s>^=0aL}(fLtedfVXF|alsS*x|!|{9Kf!!CKJ7V>Si6{JH+wb zVkh^@Y9B~h0x7X1-S7elNNymgv!6I{_pAgxO~T{hw1(%P8txzpo(i#8Y=>ghB?~%DeRAE{aP@89(H#y)c z9Y!vR`nf*ZuBJsiB#TnCitzF#!Xzy*ZY1cRp9{$pS{@7MeB_7x=4<<~>g6lu3b?SZ~>4z>_TQL|!4b$Uc%$Wl}Wo1O|Z0e4iW`?dBfvg4uE zM>yc9?Ak@G>K5Dh&Pb}F|x07()-AdZ7>RQcTzO>85=oHk_Q_Ip)0HN;mA zjyME|+p}TK*kslr=)!AJ4zn9wQg?ori0LF+2alV;RHt_1sKh4mnQ#dU32PAsJ6Vl? z%c)$2)nbPJ)(vUyNYse2R7Rw-afRJ3yD0VhPYAvFfnnk+cgONB09oOt4(aj0gZI7 zN|NCYtrn9Fr~FxmXX394h*G2H?iGFdB5G%3aL95|Jn79VK2ZXixdR35hzUkcKIP3P z(8$~9j#TXnKC=Rbe1$HZHTSLIn!?fw-hnMAMUliwHHg?Kjy@IGFlE+1$g#{XAd)zS zAhMo33_jNlT41w^_=zTyGf!9klA~XVz1``hY%aiG{P+ptBtUGDVG;iXv~Q!C{4EZNR6l(@VY)LGq)nI;hA{;?p^JkMVhJJ&1r%$j@R zCB*%LC7!E?2uoyg2HvJ0FN{Z$1X8Ed8@n$f?Tr!IKgqWqWbE)8M`f8}atN5N;3iL}? zu}?i>83c(+1}ZG3bA$NZRdbw2EbULF{ove2&ER4#yns5*z7cD?9*!n%+FT9^NjJ%3 z9JyE5V67UESGx+dJye5*5uqj~!sQ%%WQVMm&=#JA+V}n%9BbTBx>QE|MtjgQ2*z3_ zmU0=(<^s3A0XZIg=#`T-kx-54EjI7d{e`}t_-|6f5}i={!3~ODg3E&mc&wuO5pt^p zC_};gW{0EUagkR9m4>n|ioF75x?KOH$SHU|52KKOHU_8#{{4bs5;;8MLpq~gxqEE7 zpy)vy;vF}{xq+r&{5WK2HfXek3`@B;N^I<|i8l`Yx6$NdQHeztiIfle+Ka{8GTFBL z$f{cp3mwPunA3T4oYjP23Z0`YL70hSpJ-oGJ4?*)anel4xbq2`*&a0mn0Cd)rXWNrv+sPV0{o|K1|xdkFa_Tq~Nj^G6 z4tUuti!dU7JJ?FAshqxH_1%AqTe}jwFxbIY@&Qg@!eX&Q&#%aHa4lkK#f)|#YEZ&~ z79eP8Ej2Xdg={c~!f(!jrU>;%C&RJpjh9gpi^qAli`P*HKa8zjS|dO8v*~y4^owFf zNii9pKgxf(zRN_)xpCNo$k|{?;4eBaY6>99Iqnd1jyb&E)djKYttSbTV8q9BrxRNg zHSZ)iT^4VjZ|G&5=naQD@f@f_<9#E8IW<7d=;MZzLD@XE36tQUW+bl9A+^h4!5x&0 zhzz>Zc`+)tT%3ejq5Tk;5~Hxq*xz}1P_^d8+}XFuqNsc$_LTHAsBJqRsD!FSgE{N97BtE3yLOHznO2Nv~boLGoNW90%|fbSShuT#x?6CF362e z*E{9=0HYQf#&JH7#ITKmfp#9hhR%$=Aq*ZMRI&=D_K1G=K%^)#i>Tk3#neF=9Yoc; zuwNm{Qi;0;TD<=ZhyENTVtZSU)M7U_9+C123!Nw}uouzg<7%KAMzm>|_uAC6kTY4$ z{#q$uwk#Tg@#8+%Cb-)YB!8wy*NjrgjeiziJVXZ0nWSSUm+uP$fiRG#G zi>i9s4uCuvBdB%3n6@VgxwTBETjL{ZVe_-p`LNKNWrZR_7jQiP_J1dL2Cca^0XmUZ zVG}x!$>NPNuxAlPH4`v#^F9cPUPyiE7udkqp1+Mhi;>OYnYt>} z$RP|#Rgt4OAwD=)xfxX1H;503M%-ov5i~8Wpm-}tgLeyodyLEBS~Mg=-{S8O7NC#) z$lSjSxL#1~ZTk4soRcgQ0#m?zN|Bm{A*Q-uUyCKn<1}>EBrgAwjNNi^lF+vH)y4qO zuexn9B1DOn19D$zXAX6COkPJn+BNo;%%HRkNUNnHF%F)_OhjN|AvCTLT}pr$;|bl&Vo0!QyFQvy6HeMq@N-_b>E zEGFSSN!;=Rq>eAZ*DU%#a@v&GGt5u81Btp(t?B;xe#PJsfTpYBnL$30Bb+vq@Yr$XQV7u{J?xvaT=3Q3d z6k=XYM-De_H{1Bb1I~N*LGE|OcDN0xTH|r>_YT}sICUTKsos_u5~~& zw_)X7@F&X-eY(TGyRreQ-N)~@>yhk8=$U06;kw{;Ma%uYn03?mf3ZC=z0=vF`x+zI ztcbsPmg&)WbDH zXzYW}lqhcz(Qgz53=095X%cRk;cyWT_E|^4lbs9If|h7P-!4&>=VUe*(p(A2V^K4d zvi-da)dCZSqZom@I=D(uy%VOzP38XA>Ht4|JgbnL+qfV%FzghPc8DWhcAUFkqnM5$ zHCq%!hiyfzn2kvW_;z!KRfffmLd?(LN>o63(3j9=#IU%&g6iuLEYxr*r=fbTD0Jg} zNk~Z2&6&d`Oo&$EkrjMliCFlNU0kI6;UGt@ zJCxh~!OCP)h0n$vUhLrDVdp0Zxv@;B+k#rISy>C9WpEIvl4+ilgJQ9jG8q%J&|lHf z2fVOeAx_yg{ooNtoDD~K+9*jTgwJpr>3FS^&L+k}TSy~Q?l<@)^E0HgDKmH}BO+d+ zDUT6iIvA7k+}aDuR>KG42yN+@4DatILO;W_mJ#)q{1(<)aG%o_UK7nR5EgNT$uOyc zRk!QC_vy?(7T3yr#50IauOfEvQ#_R7uk5b2ofu(Zy<7=DokJ+dYc-0E^+w#v&Sv}- z{m|^P@`RaBucv?b9M}Dk5R#$_Tzm`?GD2dQ{)LIaRP9%0uL;tLkHMOt!mt2OZZ`vJ zlIW~lE8xRtMHzoxO!^OXh72woG;5oC3siHSe<)fwgOxL5VJs{|3;TsA>x!ord=67& zL&p-}1M4?8j!O{h!ESB~6+MSSYFL$4!NTEcH@tcQI$S_u{e}mPjUW^N!N)%_iLh{} zO^8hYnX^#v`c3S|&{3g4NP;@0JUSgUOQ^bW-^G&CJTEtn+nfb*1h(xg({s=~2Jj>B z*+96i;amTApm9Z5hR7|*RSShcrxU`>g9k^(g&PKKq|Ds3PiMKci1kbriM*}GDG)P% zULVk0Sj4NMUoU>{F6k20YGU9SgBig=yIQb_I9MS!{tnCxS27Zd$%;1>3vqRc35>)f zD)!vO-E-`WKI>A?){a0|r^24(RS@cht>y_7njjXS&bOk@Lqr;?c-ys?duJjjPqG|^ z#R<@zV4n)?04o7m-d-ajD@tNbAj?5kyk8>AfSTHbIUd0&iut$;Qp(ha;%X-kh>qAI zGp8;6|5;`|y&*NLCNrm^1zUGsK~}swwV~s&FEU zTeIME=#56RtPD30GGHiGHufWos44<)6IJrElVGrxjeiLxC70`JjTCSkW2i*cMW zpX~Q1fz%7aOi|dhNjaCQ~44wT|k?{ac1eAC{X>w3(18X1Lb$oHLU9DG|0 zDADs#Qlh0i)Q|N2(MAkawha|7FD<=Hvdg@(KJYZ45UlBfN!l~V&WwTCRiGhRZ7843 zVec6RNpRX{;-{{D23<;!XWQi*4y2y%TiOE)g;c|`V=xT47{7g?`u~N=yXv$t;7mK) z)>hU?nWAw0HdcC7N{bSOXF#5^l&W~3q^^4&)94?*O`=k@fE1JTkpelPRbpHHg2PtcKHO982$tOp-%w5~Lsuwiw%I^M` z&+~(N3aw5K>c@|7zR;iB(^g;7{}Hs=`Ov@6cj#r}M^+j%74+DRLmMKzPyoNzV_zdV z9h$raBc25t5~_kOx=*rxDqEP2Skw{xr=?Tv_2>$3ddN!|_bGlS%Zrhm$*G$`V1yZN zl}8LD3TH?ToT{n@&Ff6urGv{HJ&`CM7^s>`f$(_B!1tIIXxm9$Cu<}_HA|vi4$fvQ z^6;;%O7-6V)gVPsVO+=keEm5o4^*{@#t17i%%XDY){iJ#s0{$V z1))9QVoZ1YD6`>(B^v4b#K(>Baq_{<8jC!GyfV;RXpm4vYd;BQ{hLD^j%x>abPGry z!E}a?qkW~%Q=&me^EXizzHb(kHH0(Q|M%ViEh+|d*ae39(kRG3C@ciQj5CzQP&O|! zQYGw^#oA5D$34n%#3+TyN>a-#%Dj8|%-Ppwn=Ix+boTc(h4ym2*aJ9UcMp`)$oDqI zNDl4ufA~w|&4YhfmKhw6ZzYJW_;vy)xW#Bn~Q+jOuq*CdPl9w$vi&q?o3>J8Rw(4y5R99 zJKUQ5umfN4*=$YjkF!uk{mizh6}?LsuFahCWqm}y+&Pxi3X3^c%(#gF@4ei}o*gOa zp&@MN4<@uTqxTjgVCeK4mVkJV@G6yig*`q3dSUp~GuHMqw)LhupuA^VTc?FYOhjS6 zgzGzywR7!)H8_)@D`;Hcl60Bpe98WvGl63YmQZiO|DMTh(h;X)!5Gg-)Vtv%`!gM+ zPxe?gF{^@nqK+j0+++7X+v#An`FIO{f;m6}tW9&W)M(A+9hekIw@HLOHA^41)8?@usASoBiB zJ($q#Z(s#Hrl6fa#w~1Ba}36_3N+ZDVflse&s?Iz`MsC3T$Kx87Wnm^1$Ji}Hgv+gup`t24M4wC`1b3R;@8AompP} zS^IH-U*ee0x@C_}d8c>Rop|(nb<%ism%8{c2tZ@|i2i5tUmKrW-|KnRJ#6tlRfp#8 zW_D{B4LhaI-Wt#VJEZ=yr&HZjcO#+FF7Ek;%ohFP>9PW>qqYnqDSf%uRUXG^Xr+TO zd9wy7@#K0a)UDb#ySS|9Rdz-e_vz1P{!81K32gvpTFuJ>a_h?17@4VMS5oizLl+LP za8rcjbD5%3(8YAgg&G4h5eOG(>K6ruy;9usYp+ix@_an{d+a<-?rrQMeAi#*7<_&L z776Zld;sc=6WMU}#sX;gC))h$qTKK^86Wpqv*hNi?Ltph$>f;nm$1;>VFwMR z3{@kUb}9ZlXzthx`3t@-f}B2j3h1%_Gf_jH$4xzdl&7By#(iCOz$UT6^zVvI9e%@` zb#C1{J>xsY>rSo?23#vQ;vi@U*xk>wKwB^@$7feQ={f6^8pUtlhyvfzf8}WD$SZit zFEtg6KP3lEU*83W)V%yny~pmQey*$)8|8M|AHKL@buRGxdoc2e(pyacqd4>XU6UZ9S7@K5 z`0dWFO3gdRe%*UAUVR*l;T2>EDwphLVij5q(!m`$=0TMu0d5ARI=YD7%3JupJ&wWS zrIlgxeOGJ#XN+8p)HgvfRA+ZafVX(3{NYZyY2M);vcNGGk2?8s_4c|@f6cRI_<9{A znIymz#uh)S0#Opx-G~1i2z5(Y`5mqTB`;{;FxlIpO$y900aC85{8a$m47HRa_zB%{ z5SN?Mvx8$NLniD$fC3v7@kTx|{`N-PA&rXRx>ufq= zyJBQiJ_QNrgmw74&YvBQ{ljun5Et>9ZF01z8b2QfwK!m##Md`)S5qM zCgFV=ZVpc$7baocZsWmy8)RJPm%DQzm3m0l;rG}_UzJBFllDV2UM=b3>yZ#C6LzG_ zzLPA!D~j_^h@9{DEcjiA?}0vJKxpQzr%VE$S3%qpx>N{|1M=S1eV*hIF!e)g8NMoj z+byaY*41D8@Af#F4G_^&QCwb+N7xF}5vs`$3Lpw#DOHI2LicOMBw69$EBO?391IB-zm!IPe61WkyPpv^74j!ezmv25AU8DbZZBNv*{TO!`vT@P zcTwpfm4$V@f^Yt#;57EP8PM%GtYCkI^o$roKLJCvq={$=COF7{7%vrSVjhT|>f5qZzNok%UHWcjq_O zcLnqJI3mgCQ`J3C6^`FRFAZT4N|OKGr2r4h#@Vc8=E^Sf9P^m@~C`Vv`Q_z z=hY>84_z6_DV-r9_dmt)wY|7UPc^7k$zKQKprvKsk6}lnRr=dQQ+|1v8E>6jVg2q~fmq&TZVP|zX#*-${ zV}KhTf-a7BH-ba(b6VMBp1XN@c+Bn8falC@V|OLD^5z2VyNY@@14!=Ry_e{`Cl{0V z{gqQk$tIW_>TKI;b>0s(cQAj9y(vz2sDGbQ3EX?rbgHL~s29|D&?o(SSp${t>||Eq zDGf%cwTryyi}a}@%!XnK-PDveeqb{v9+gw(`9up0^_JV~avG0b@eL8RNE%EYfM!j! zqzPa~7!xPDY^*g_=m6r&uoUAkbj@d-C|W@gTy5Sz>(sD|%r5N%qkgLRzH z3wY=IWx#X*xb4Ba-_<|tDJQfWUuob~dAdDdS^%}83(g?)Vi))#pk&aLYd}9m*;e=g zFN{Xwy0Gm^JBE34&&Q~I-cmw-dE4H`k@Bk1&e+} z*>gFe+@&#O>uX_)joYCW(D+fB6etL^FO_$V8lFp%C>%<(`S)U&+J(f9ly?+G+se2PWD zhk_9i3%(uI$Ra=>QqB@Be_l<6Xz9`hmedc34Vkj>2b6Q_ZptZ$$zm|o^j6ikM z3@sE|L_`o=Ggr^1z;`5-DyzjJ(6QfnpOxrMY)Pt7R5~SNJ$?8`aJdo~k{LB8T=R#p z4pavU(q^w#omN8ebQ({wJm2GmCVEKrGKB}U$2K`cn1n**8kv~F&AQO6XZr-#PP&4n z-RXw_pM}o9<-&LlKX)j4R4;i)lp?jXG&t-IvkeOJ+&?{6+hLILNOf=up{YYcvhZ#P z=eC>hYI01^3BF-TywSr48^ARh=<8c<5@im0EinhT zo!nNnfAT~k%jS8{?Ylh#-57l~;Z`|4Fn(Iv$nr^M*jr{>}!5H6g5>P-c7~K zu_r_Sx~*U0Il@1pF1T;)Ght`89(G7{e!=)l5htEJGTev7JO0njf%E^5tv8Q{y8GXN z+a*aWEh3eqtjWI2osvqZlzmN6_A%L)sU*r)k=;xx`(9ZlYu02L`zXU;Fl8{dF~<6w z&n$l5=k+}Q-S^06&gY!>dR^E1SSh0K^(`+SOzUI{<*=_+JRrla^@PG&9Q z5Ch_2m`bvu1&IAG6CpLsTd3;F* z&j#{#DTD2krIORG6CDt1#;Krr*@Putb9dGov)6sCR?Fn9nfT63BC?GKN$jaVvN(6( zBWUFN>&R(_HY;FkYq|V6)E79xB$CM4%!@{`E9D^|U6=rK1DF1}Bp%`;uE+6w6O8lv zSj5-NI<0#!D6Gel&^66M3X}*^gWeetrYc>)jUSpOptf-ifQvi`0Yz0`ian$5mfz77 zOuq^z{!<*K#e{Uka;NlbULV7+`T8tUMIGfI{dSqhlZGMpPb%%FyKT?ZWZWdyt-c+? z|Dl^>TUCLBk!PIS>E3=Y6y46J4o6R)Sq|L7R3tMFMJZ39Nx$%Tcl_RZaACyI*FV4n zX^Z;z6}Z6tNjII{+gqd&U%5P~qf3|GVZ2fnn`P>4Oa;)6K^edR8BV4d) zP_6MUa~y_;xVT)_Si&Ot)=6W7%vv+T+Tc5ho6P{Exg=q;*~IcXC3hSW?__3TN%p8y z?6GlN!G3NqMbG4T*YJ)khBrdkWqd=eW6#fpd1XAqz$wF45Z3;XX!~Aa@mvhod$x+W zPr>c|I=VncJN|A%@?U+s?G~N_yeX^e;#*s9a?*cIg?pO08B_k=zxMK`R7gc|pW?p~ z)G~>u_e`UdovCuKx7qKWOlGM$$P76Xd7Yisgq3acm zFmlq}e9%98D9{LtY$*G)#Ubr8(K{6lt2XNW_BWM0kvzXrMl$-duUIxSt4&HkkCUR@ zCRXw4dK$GFhAjEESpRA1E!doV#>;QV)Fj4KM{*(M3Q>A*2}i`4IhgbFKtEV1@Zc5 zIm3occ;fu)R~LPDewQ3hNPJ=}xiZ%%9OA5!DQTM9b9n~ZID!5cpTmNDq#Tb)P2b2! z9daO2ZRR1gBN}w;U5auWpAOt&eHuwwQ*C$#LRzv zP2^L4NzQGvp$lPVDOn*!tW{EocZ3eH*Rvj{P*Zg*Wc<4hOk$o`lGr4vT4ll&=U!ia zjH5mM`xXb=&tL6^PzS;c@jYb;AGh0CS5I4r z_IM^y$s?3l)meB9eo8Q@d)Hi|O7n242K5Ri5}Tp#$U3z-ffXM+g-DjQ&0k=>tX7ud zW5&y#R|$=QpX>Ovz&_Ws(E`@FZsRKlpU$LLRM&Vpr${jEY$SHr{l%T^?;1pv+YXec3J^QcJN{>WO8x1%Bm9U|QhePh(~5MR=B>tj0G?C$aDkbXXy? zY2@D-sjI=jMDnIx{8gLo@%im5Ms&bcY1m@HSjJ=4snJo1g@QBMI!ZZwYxL{{$Q1ZS zE1fhZuP^T-c;2-bvMMvjj&Ell6;kcgBk05fo7~C+Yb1eZFpRhCo`osSzgAxH-#7C` zlFTPw=vSjE(|GT6{@k-$&*MzD1aia(xDvyRd8 zRUz#&*echK$K}&lgC=9hvv04B=lO_%-GL&HKx-+Ftk^~*$QzNxOt$-7TGLmP|Hi3W zl@RsB7)zZiZ`e^Jo+6M;PxRMku^yh*71TDP zwI4o?$6|AI87cosxx+|V_`ml(R#uSp; z`3w%v$agwqjDKQgn$3L>bUtd>5$*1GAB5|DDs|;1D&iDr#a*YE!A`IqGrd~KKgKYV zm{>K0;!YSlsHD^}4{!Z@eJI-ohRV8E5@pLa-d@s2j`{ZR>vDTifaNhvmFQ<`tSYjn zgB`tI|m?M!WgoeV>+Hd59I? z$&I$7?BG)IYk+CU;F=85JGLJZekmL)p05A+{o}m!ZvH5N!7vTCLr3c)OV2#L?frBz z^ohPWzTC8OfNBC=<#2!xbtn%$CKcB%>?l#5TI{idgK z`vjku)H+5?HK~R!-!T(qyEAgi`jqw=hC9JN8q7TiwmHQ`A>349iZB)@v=6 z6={s`Bh-HG^d4JponSb+20bf;uFCVZj^*3UQ4I4aF`ZlzxZln`IPr*(43?b&|Dh+c ztT#gXVcv#U(bE~9l2>qd}creY-~?slg^k{(XyYA|32FBQN{?{Ld+^ z&=fn>;e=Qy&mnd=F!J0l!FLD=dvVn&XZS@(GE#atJ`b$;&KmBoF85wLSZ z=mR4r%^}Z zVzQ`MiqRLz;UZ1is6f5m5zVeZ_AhtT3+qVJ8Rd>*;6n4=lk8K%P5BftKYw_b)bgU5 z<=P~_&_xiW-F2WC+S71WKYz`Z6oeE+Tps-0#;!<5(e0DjPJv!2i7sRY2O{!vCp#V} zekN-x9foqoHw8yiw=@0wE%iPcyEgKq?Vl|Zi7aJ=ghH2?HVTb&7^*Rzk0>q-^19Z_ z3qc9ZK6G_$cE=o}j>^+}ZmV`1yfUNon=8mfY0jFn53jg)DyG+vnV`jSTT|KgiPV)I zuo$pphIB1VG?bOWajDLcU@?DIo%jM6v4+q9!!tMhLc~aUDSg|^31%^dA&_oONjmQa znS$_eZKfeUq+@HDHZUS^@5*B@?VHblCu#nsz*?PoG<2V8zp`r--W}97maTCoyyVE+ zJz0S&(Jqx{b%P)sY5dNM`Q5tg7bq~JeG|(0cW+=SWq&|#Gvr!0gS}@_JDK>z6uXKU zknv#F2*_VKRLHlX04RmBZiR!omr-0+b`4KC>qs$-5Sg8g)iwvKXOyo<$6P$$xmf6} zKyj*;M~mLrp=e5sKYNGhbMc6cB0Bnc0%3`ZorZ}2O-)g5GoM|#tdEX4e1rKT?8>Nj z>%2c_5SSb7=94hM7UVKgC;=Tblbk&yQ@3S~9qwCo-4)PxwENIQ?2L>L zhMjMb{bNXE+%u+Q)fGyqQ|!pRsyvAgb+GgOF3%tgSW=e?E!==%s`pT91}z~*mJC~|uV-haiAr8*`sUF834 z)A)JjHo+E`yv8?@09FEz7&yjsE9yM>!2&ylWUDn36hV8*EV(b_x=c~zn05|J`QInx z4G>sQxV^^TLCQEVq`5-64nH_*-c&iWZcckTN;)0*H7u1SJ2g7$<|dce%|a)y zSm!DY8*V<3$JY|o=43uBE8l>3ev~_&B^ZE8C8P*^msgzIi3$n9e%94;@>!8Bbh^Os zoy7Z?SV6e7lf$}EDHnEPua*;qWHM3yAd-uRq^q+9zc5V=hwS{4PJwB21W=B2DRA*9 zwSG|vu2Jz#Y+uZtYntSS=a;AOl1bK|^H(!=V!)NOt+M0z_woFSXH?pK=%PB_~AN5VJp@)ms|ZQr)p$#1PT@B~yZpI0L^h28nPdEj$tG{Tbn%mc~@6qtyJG1R0>IW`+;5<&`S`?cEwb>f9-1C#1 zD}1{(?J$|zy`{c-_WGQ7nygxrlUQVqkY2>gcZC}G@K0A`)2>8gZ=IC5xRytSpHY;% zfm@5`!IH5Ch6WMqD$ZstLs)Q6F~)i}@9H2t+zchy5QFbpBnL%0S%LoKdFcJOo_e*v zgE7Now>|PNRm1#7Wg3=&?M*!QaaX5%i~omtEheE7+R&9NtNXMMb*sFzbq6;iI;R;* zjA3i|-)JpV|HJ}Pd zG&QNvd&y?B116@PhA1Q5r-CGA9_I)X0a>H*Q@zp16#+R^Fc%N(f~q2?%ks7QVtHm! zK3Mf@ev@-Yy6)R+uT*?Qam>+|p$n!)8 z4CLklZWs6an2ZehIM!lBWaV`%Bqvr$KN=6|cjLB|q4nOwFZi}>vvbY0@-_Y5+;AlZ zzYx`k5tzzHeUyOLa^iT1nu(e8wGb^ zpb3@MvlhGfcm7q%CH~rdmv`6icwu|&=rEZ($Bc3>5&K>ev-&I@S3J@`D9J;dJD9Mk zSarf~JJjBqk$lB*xQIn}{7-(}Z(A+B_G)_7DtwwTBJsuC2wqpoSm}mKh2UuILz481 zlqM5bGeWt~z_5a6>AUo&5(R(-4k0NJfFWW`TI z*CxGnQ!QMd8nZhPF_8etU&hHUv92VUS~quMZSGq^ntO)1?*yfZI{T-T@;YnDQ?)4a zjIL-zWt^$!;YzhB>E?>~K2+k8o5g!3RB^DWZY7vYw^8){(#Xu3*H6npH(6Z^L}g`8 zP3-mgy>ApRa=yablaU6ql?3~YsC!EyvmY7oE5s*6%M z2?EC%AZwjZ}Ds@ipN(6=Av$(SEYU;UC=&Qg7S34h{J_qz!#_ zmn~LJZivqOe|<;6vDrD1)K!1*?~(AoYJ{*B>084q zloi`p+3ZuH7U+ztl(*p*77KzEW1%c{Tc^VCCXdujVnWkH_int7;Qb1TOzl?HQ0$xu zh^zVJ?NArPHwv~JME{5c0o$od*A8W*g*wy$^wE2}=N18~fJ}qv3h?Z_IY4Ux?{#sa*EK&a_{dYfg!g$%#*nTZD z0*MRD#C{VF2)Y{}xdZ9t54TawnKANg20dCv{?lh8+WU%Y-W=KQ)w}als|wxO;UOk9 zAq{>y+}}wzp1fo)@dImir;fHap#_unvbTTEMe}fVmyHF8X#D7u1&o$mqSDB_n-VHw z*ldxi2;lS(iWg8H2|B#i|8ajGPusE6Rrkt0(_cF}GfUqOL1j?yC9tYEtoSx4$D=kd zC~O^%-8;BIdVXAFFEcmxaWdja1X6|cr^cgiQ%Jdcb49nmAbOlCc2+zi(@{2Xo^Gr% z`c6+u@vG^aM=7c4-@A^I-dI%-pm5GU*sMSfN#WuSutJpq?GY|Z0i@oL*=HQp1=o~V-x;m_A-Ep)siyraA!DMT1 zRGG3X$KvgHk1P0_>Ne^htjI?#3o?Jd!J2V_#CWiFW-}ARn{OWhrR!We5%u$xii1H| z$@E=Pp3j1WfSx<{iK15ScwTA63h7jbX>MJDspoeOTv-hbano9o0Bg#^Wb#-?zCxQ! z^e<{={r?n2paY*xhx01N2q-cV2+_-R|KQk>{RI3bIq~nJUq5`6wb8`y`J|?P@^ss@ z?4D`d?4K$$$7W6!;#MKS(QUm&e{)R()KDOfyT{UMGESa)Gc9s%-@08#ueK6tO3<22 zpx(sFyd8T-UNXnyWZY}0Yj1l7nazEJtouLEJ2lJfsU)tKIjds)*Qfqr;2w?l$|dU> zcxc4u%WI;$5ko`xplDl@Ku4{e(gU#cBlxbrxhFmwo=pYGw01D)pxvs&-T1y^*F97R zXosvo?!_i`Q+B z^hI68&Hjl3t_%?H@Xb`v6I=}|0D0CSbn{qr{EZ})?)_RxW{``V3YhwuYrIf!7nFQN z=_~S-8zyiwf)BT#ZsnNV1?l1ymutc)x_W`!*B23W@0}1Pb56TXe%byGgpCHR2uVSy zZzzBGrUApd2Hy?^=ZvLs7#jK~EM%w3%6Z5+)LexcgI!H)ok5FdLYKb1e)F@Y{y2Py zjvDoKfB3CF^Lqm}=hpD8ZTX_N#WC9wSN-}oIloK4e4c0L=?TkC)2^bUiqeMsPo|pq z4$MTHS*YCGxvFJ!>^w}R^UwM8b3O?aDj6xg@Pwf9Vn+9Ey#{X8$8uRKrId~eJ7hqm zFNICjAihtbg_MW&na18#rr@r7!ZcQ zpz|t;w7q129-WAgw9@g+2Ze#YdO4+_3Zzi9pgfda`uP|@FEi816I1JrJlmG;d+p^D zaCeCB+q&5aeJX#Fo9V+(TB{*f`-|O&1qQORk58by{9la(VNXooD-{)?R+Y&-4q7%< z;7{T&_e&a%g38q^Uht_!t)CfJ0=Pm3aiMy18o$mv`S|jS{OSIm_Gku|E^Fa?kh-lT z*ZD`6EIWkG4$e5-790mR4RCyR*nP?&UiUPJHBn zcg{L-&b~^qa;lXNNZDcF*(O2Z;}}E>n^nFjjYl0AO!N*#lW&0Zg)z^cAHtAE#KpuW zF8W0u7_6se+zenw{_lx{jIef_SMe=LK5Y5Vr%-oyN*L^4{{VG4?Sq9k0JT@!T&~Ef-H@;QS{v1s^bO#9~S&4cv z?l_QLGF)UkF-!D2aEbwUGVH8G)yX>%!;vEy%`xMK^6kHOtiv`@wzxsOcx38;STm>@ z?N9d5bwUmmt3Ko(%##0~_AknIim=lqi9j{yT{dB2t8FDS0Fw9Wf?onzt!Q17UqX_Q z+vW3VmzJMV7G9Q2*H%hN-2Nl8M@V_yt2?PWQ|aX$QlHasN%eVQ zlUOah!pu4B8)3dq-&&hGP^(Dzso*+$g?_J)_GS5kHn=Av;3s3-U+YCuQ$-o32p=Q9 zRB=$*r%8kr@7RJjwzzN2O1GmV#=&6UfP7P_%T-nV?s)`F^#_j2{f3Xt19R7V6#JVY z9xGeK#44q9WyLe7|7;aE74ZW)t3dEC3+tTBxb z9qYuODPo#xY>!jLb-DjV;j2AcL{o}=Ia{7QxwG8qUwK?EfAm8@nYcIZ8?U9zF$hav zvFWZ#y;8UhQ<_Cxb8V*G ztKKuO5jVm??Haur)G+nob9%zb3Qi_X?(&sMkl-kH#R28Y;$P73SpjIXc<;CyV$;Khq%Q}BTkp*DkxUTV!YyjIU zEu6`U@OF>r)rMFc&0Ss$}6K0Zx|51}ELL94Q>Vt=DY3t5qolfIs(=*Wh}hnqO|m z0;`Y%C+Ggr<$mF26h+!dm#_&0I)|cHg3J{`=yH!nP(%2&&eC$>|CQEi}lK4+3M0`-Tkb~rti-v{wmB>ue&_R9D(FX=Kz9-BNu|GNT6g(tdiRCxKG7j1>W zK=m5W@8)Pg5;B-$85%8oYY2nx^A&@y4Q%>366~zbV0`<88C&IoSyJ#a-7q_6Ulz@I z=f>(le&dEk94ls7gtm0x#v6NCXEQre=N}ka*fcN8NaYt8T=I}B6~0sK|I{tqIF`D_ zKJ+mQ0w*;!NXSqJ##!2y%9XjRZVYV;%snnSihlBLJ0A-)^uiS~zlulVM0#n`VjQa84I&dHfcct_y4ydm6~Nzt2)F{~g8R`-{W%?qMUDy0jLX9{0KnK`$g zSFF-kQ_4Iv?3IS8({3siHjdT5V@AD#Z@mVXMVRwNd8S9+`G_Q-o!JY^Dq}7zuK>r- zCeG^<1naZeeuIns#KpiiN=#M1_wurV;c>UtR|>_ zUzzK^)kG5DU^5x8a5r2T7?TDKZiJ%mSlL1LKIvr;PuVaaOFH=5*Hg3&+}89moKZZ4 z%-YKLeA`&BR{5D&c_We_gL}6O#hNzod~1UD1y( zUD2zB)+j#G7{=X_z!WCc??U+~|K^1&pE-_0AO+S-P~F80V0F#q_+$bb<+t$VDPZjL z?KRKxBRv}_h8kbim%t3o7bSGY#FaPVv4YtzVb*UZPyTv-IX;X2hj@E~gwV+t&E*zpf3 zp;qDm{d+T#Ao#N#XD?dZtzm~OiyKb3fU!5us!yU}7Ls8Sg=98$f*YTue!wvKDV##q z(iF{;ZGesrnW}wESST?#c))#gOlA8gExNsdTM#%2Y}84hDE?FSfIDO` zy#l_aX!=#(wB)Z7#FIXWpO7@yY;gwRk6oF>2ELop%#(&Nl@e2&*}5YT8ZZv3GJ;sE z+{+|b&nmW(wrzx87uD!EZDzW=S%EE2Vl%>mky?c;iyJYC^HJGw`IHGthA)G7DKTB0 zyTSRJ*HT&dI8FxKB>01d=sldk+y5j<6$k&t|Lr&&(i3obHH!A@Ua@YK-PH+XT{t{N znJ5GmKR47C-YD8UYSbU$&iE$ z5^^*X)=iIVerB2Fy*|>sIpB&I`VESGjyUUOvA?mlrW-HYrhel$vvsjp&*f^Rj~oVe z#84F=9l8nF9j6%jq9u7>_|*Ir3)Xq-3EH1vV10n-ofz}iWq%900b|rG$Dq~)UrQqP zh_JV)Qif$a~4 zkkFwEZWa|j$^*;@f?WN*ikXR6ZnO+wP=(ls6Un9QAOh3bY*)mj?1fW$$~(3))qZ=3 zk37*8EHga1lIU^w7b`|aB$qB9F=K@a=e6J1a&{4;E8PQr!u$?rSyf4`D0XT?I5ckO z0$PNF4=BIWY+)jk!3jtH?degnEect4xKf3^(!lLObN#m|XinK>M4OCcVrMdJyipT?Q zMrekOjE$M=vlSw=l-gxZBc>@-j{S=FF=lT$ER>6|@gv;}toNSaN_T>ps(2 zsD*wscL)=NWT(hU(J_`Gx|JW2mSAtJb9pH{$AFHdof$z;^cpk*7h27vDk{^+jqdE^ zv%WMd=LY35iqbmO9dF-?Du(DsgKNT6{90J&Uvix~Ix7-j9zROG$hbjV+WFIwGFSz- zJkf7zpkljA#r!dwG4NYM;N+zbSO~s_yK)xf2LqTWXU59C*)eSV+)Gc@DD{Yv<3ZVP zukgxM1F}xH{^+y#w)>m{#F)T2az)|AQadM~`}S78nK!`^5FYAa3@ucv6tqiGi0Q9c zWA5Oup=I#{oHZ0Tq1Lbj`b^yJXBEsy!C(&+e(Bk*BsS%gBvpo=(hC8IUkemZ^Y}KU zI?ZbP7nT9oIBfKisptGcMv-knMH}gPo(E{a{QKLKCB}9{;1ZhiN}D-d%n0?e6u$`x zC)1fAfsmF;lyDjlw9ry``5XYeUi^19EvLFjxXYzw%nA++@#CBO$(|;)mlER}c=c>8 zT3QwhqV3{uYuol z+2+~^rw|`STSDcrDf%<%@7@*audv?+2s4;FIY$>|U5R>mQIRI4mhWM;&<%*HD0P-J zjZIX|2!5gr+j_|s;|xM2LN8}S9~^OQkM&I6lJ7g>22wKf7Xn_m()`;q6`vo*%S}UYpdoHI6 zj@tTxEZdIzPleP`lXrVBU)tmv*5a$InutfT2(7Hs22j}9xhfQm!z!i-URj7+Cf=R% zBJ~1F-Bb1KJ7%2#-gpi$5L4c-uAIfXo8S?GgU`o}{o%KB`OFg*N$IK`abmeVmo2+E(i9hrbOQ+@BhZfEHNdQ%BRMKqbL$xnJLP458zHfLoBI|`@rfn}f9 z0g8JHf|KSZF_y4m=T+xz6p_#zpg{XO8QEI2jw1yEekD$1C2;sV)&tdH>fqAWzf)U|_pT3y7=Prh(emGbKLXN9cWu&pq{e`+cC;viiCEl?oKru{MosvpL55xYb{XlDjw_(f$BxuM8`w=-R04< zZ#nqBH_5F(u5GXb@KpWnz%(PhzGUOst-MQv>m!>Iu6Om${xDYV-Mgji2>e3NwuLM5 zI`_+3FhMi6_Gz+3;tuk!Abmc>U6zRt+wd38kwo7HPA2VJf81dqDvs|95==1vg>60x z=n=&HP@LlZX=C)Vp%8DhV0hsI>EFyDIpLfhUu4QthNfy?-4-*1jGHJnq@X(GuW9qLOPLn+f^ zOuHi{F;NjP4BR{(iqWOx#JQ1b;D8gZI{i@P6T$=?Ar1}@c{!7F@ka=x<>k##QUxfg zdo|P`K_&}uW59}u;9SKp%HzTZvz^YU>$9qZ~<~-WI4$W~aONFbbC_hm0$r(UYQZ z8)b{0usY8VPkyBsI6dK(djyOwWsQADIme0;oKHw8(*ANMHggO5-7*xY4b()Gmwf=M zauo`%w?YN(8(b(E-H&!QW7NGvm*`%gYfyPGc16H_A-rVzQEu*@TObbTq;9t1oiS-# zX-(K8O^_L$F-`K-bF5$A3!bR4Zy~B z2GXw#Q)dU^j}rhd6W{q*6-Qh1)ebz12u<>lTpcjMRUW*YH1{Q^Bomw4a94z zKy#dCt=F%|VY)S!o$T)Fsg-5H4+22ucGu$T8Fc}*ieLm*At8*`{&_7Bes10O_Scb2 zwXtE;r{=-OiQ4m)u0xH)03`C`IGSe^6KETF&&?&dm2|VA;zG&cca4~rL0-Q&r-{>V zKz$hF(`I=A;DIW3Q5rfULp7m501@U0=-3>d%HCck(Wjcnis9iY;P8eu@z$FRS zF_kXg&4YMzamo7z^Olr!dX}lX5`rQ$LVp}v8MP`i!!@JfJ@{GEyju>d6+&B}mdK36 zkPlSOzUcaxCogGjyXHFy6af{fZ6xbbuk5lm%CYNGti-REJF3=LZR)wWxQrrg{qMX} zPM(UyOud(0K9ms=`v;4H!Wi0Q$TWumu+g9$Aw&Bx89921e{|pfB)M?DIfUlZgrFIv z+{4Dj`Hr`>G24%K#vX?&?~W6C_HwddGcPYFHBjW={s$~=ju_k^EKWmeAH-RiZbl|zywGk_mbHmko!>WPnbqy$`7SaL8pvo~mDCHw%_51at0CS}R zn5$ygGcg{fQF0J>V3IV$zCwg6gpjXKTzecgSy;Ew5e#&a_a5EyOw|NpqHt9e;V=0C zyNCbA9#r?Ps4;gXALd=h%f5eD4B<6&Y1bnbkfcfIl<-2R-euAk5WwIuu0H0;n2{op z5%Wwyn)%XIKlM}9+yJ9g`)+u3n>3qlAcrudV4tWbdrn~k7BA=?j}Z|fU0k+viZD5c zI}iqHyH>v`?A%EpHk<7YdT)n-pjD>WEGn&D07c@B!M9r2h0G;50os3tbl%0-y06+_ z<`RUKoMjNGzA}&O-UM>wh@m*(Q|*Ggs6zXXasJ`-m6xlv5RhFNkCCjrY_OpI<}tbtaGt|2Gw#;fYhk zp=RaJ-Pm=;R-n=B`oG_ob4w;?`sAVDJiyah@R`mKDMIthyZ8}f8Aypxo~vbEQ_@S=EA{bN zOLx4HsBOpb4ecKi64}f=gY~ad$ZODpS{fh)tmpRX^*kvN9pgxnh{$>bi!nef&mH!W zEC4imh3~``GWDKvPJv@1@f_}90GN2-oh`ft+WoUSr0C}7y z=3r|O@=N?tZH3X^n4{(QGII>G&wlf;1+jH#C}7(67pIF)+v31c=HQ57&`qA{Ghs?Q zUPb+^p~V5g60z!*`aJf}FC1=UF6xGrS-*Fqpn1K2UR><;UP|fLcqnwzEO~b@tIYZ3 ziwyljLoDeEituR5?s|WeN#{`$``2dan;dQo9LH?^Ja&Aad}R80$+vqS^={u))qH0? z*F*~484#7|gW7F2h)!OeTR=zW>nYgIZLGZ1r;f2?+oWg)0~iCBMh|@EYI;q_hN- zf7!VXwI_nfzV&#WO3g^;*{sn+0`t#+U@ORLW!3xG7JMs~aO(vG#b8*fw#zmkiso^t zuaJz&IbUx=c2^FZm8IONS{ZFmge1VEqRqj@yh>VxhUY$%FXOxNlis#w2Ko%7TfzZ* z{+c(vCw?4E+qqwZwEtekPnpz7P~v?YySpZd?_!RVsD(R8T-})bqv$dw|86gg*m)7I zTCoJ@Ue+%d7_o$b){LLzheoE{e6DpT6Q-`5+LmCk${I()t`K}KFp&AP$XCQGr~Z#7 z64)NX6*0z`f;8t~k`Weuy9k;+8;Bwu@rCt09yyX5qo9?6Cd^S#;)BIGH6ttblp;lk zwN})-JR>r524)B?Z@^%fV(5{_L@ILW8v{)1WyiP9mIsB;T9o1D`}-jOVh*iNo@T=O z6tcps$VNBpb^13LSd>b-2N;NF510&u$^)7gU-+9-EH+G#pEWcp-G!CEuz{EQT6Qz} z7m*k>=ZXDn=#I3tm__2W_zgTg!vurDd@7GWYdTP%L7lKMjYNNgW}@!=|640NO?OJ=XyZumv`C*)2}p_cE!SjD2FdK8HkKVzDCn z_wCI#$T;jR*3b*eH2l*4ed^8l6h~i0&$%TEmjfDrIqZnO*T7Jn2he(b&DirwFiN2` z6F$L1|H%OA{Vn=w#GgQVc?Zl(;9xYorJeF!tv4#43(~@F?8$#05pEagIWTC=VAAhc z$hY|kH-{~rImH;FRc&PMo(1jLH`dGr7*A?YWSEo-#%>jFDYSv4FM9?wB2kB+?i?L) zou$KXE$I5cxxi!54AckMqQp`ro6*1?%VmA)HoAO~qjPK7b%5%b!knMWL%F^EWTBy{ z;YAJnuWM=DrfSXvc}xbRUYC3H%NU?84Cb$Fasc#sii{=Cux8$9hJQRHA%2WWLUM30 z)=XZpN_^a~(%U zwT@SHgl6Y7{#|}8>hXVc<8l$iOl)tob{W_%4(4*eP+=f)Alng&lmIqw5H&L2I4@^8 z77KKjNIH6%4R4|4(}2JhYI=YNrLoL{+>?_|Wt}2cnamB13co4ews3gYSLRss8E0f} zYTNflfbP8h5<%|9eo|0pZBS)i4xw_t6_ft}mxAdZWdrxf!y;=x`VxIELZ>E(4r_bO zkWN|) zo@?#%nhDpUZ{#6PT5n*75$DBltk={LZsq*4@ty_aY@DX@#b1=cdDbY6BqXfAZ*@Bs zg!|G_!zsbrQpK{A)JM;}CB51YSSp_cX!vT$*q-hLX2>jzZYyWbu#cn5N?`J9`~W_J zPODfY^b$K}(ngo2evUA$8JR8=#bVF$vXV&&p6t1CSWk!bMJ73w1`mhjPR(tQp8w)u zCC8Ws9g($cy1@{V^wpups|C6nK+D5VdiQQdx)cma^1jC&^C~3yu0MIs9PPO*wif4d ziH#Xo3YeB7I$FgS@N#%%CSyQDq1xI(I- znN-DZZ@#k7Sl!uU=wuU&kwdNnJMITVOH znwzKco{b8lZqOJe95P!Bzj%%vj>mYA63h6HOh%I;gyqs?&)E!+_TMSa&xay_so-m} znhAvCH%)jY4uq=ed-m-kJox-+JVqtjS1@4n!1cdk^ufXizi_8r`Oq90M)@A!l;HK< zpaJZ3bA_!fM5)I-PHLB_|1O zaP@h4DOz7yX$fg&UHgd99jp|7BTMgL&nmBb%NkQyKzNF&DGMPtUu>{C8RNjL*y3QT zn33m4cZADBlp95;`5!EhHPK$In?b$r$}F~u>81l&>}m_%sGREq$?L(`--TRh*KlXm zs=lZv`jS-XG?#UU&C^XE6_dKP{C*KtCa}V4eE3+# zL>fJ9tvEh?FvAEDhyNwB=VWr9;TLkHiE~+Z{U?UJ3%f_A@(r02G+oD-_5RJ zE(_XDY@D`hZs7wa%^t!t<+VqhZ7o;{QWv9m21aoHVLQ0pF=dTDre1Dd`!5&FEKCkT zg2OvV^8h8!M?^_EK7snxlKUu&n>i(uuZRvEpg>juL)@a#A@qHGsHP49H61T}*}7xh zz4D)EAM)?9>Q4>Nnr9S$MnL#VG#`NTOe8>mgmG6rGO%27b4GUlx4zZAeiL7Tk>e%H zE@qgcv0DC~raM}36?yqWk8u~ngpHv&^XE?;;8(PsVjk>S%!}{o9pKLj5w@(ry~)rt z*$&P41Z7A4yihDrOE?zuP2sdRJx4{<~Z>XZWTfK2)~!=69a3{~lWk(T6Yv?MD;d5d=7)*=f!#uj}Yw zem*k&xEPSURwkXOy6IYeB{Mv7o=cf8HwM;mG;93NFPVR}RsCVe_*kujsWm`S{hiz% zM*e+iD^hrOF?k@3J~a;@!vP<@W3|ehN!xtI_t8zD&KoMe61qGBrB$_Z=%4k6pioxuAhwq0Ofj5nCNZgwCIMGt!n- zJgs{{4UfYTa!s>@!jr5+5C$LeGo9#5qr*Rv>&ddoJJznxUq5^#&1SInBgyCnEy{)tP9hmoFUn*C&2; zpsRPh9v}jZ)v3h(TMGX@>e**`e&>;yrzgz_C5Exe{_{)27-Ua!b@ZuX_;Wq!L$3u< zns%cQfY}7qu!{bR!^rsxpThE+Ic#$I$Km` zy2kaNVjUI}RlRt^JTJyRg{Z-p}`1X<*;DXDLIt`va&L7-a0sznBx!a{>5#fv}X+C-_w_1 z{Ia8r9J{L~W(mK9kpJ=A_~oCgyPPdMFNyrFbzQ05lyK^b$SKL54#~QB*UMyyI^`Gk zLMjn2a;8g-cej_ESZJ+QXZBvy?@!IM0^_b&#*or<_4M|c-e|0izAS5+cA#liZ>w1S zb;t4tj$M|0%Q+TL1FsCxineA3E*JZ6Uc3Iwjp7nt8C5i*w}dzOG+p|Ad12y$79D|e z^xk`6^Cu#r2W5oi>$34R(*|cJe0twQ*zKC+fGua5|MX6m(z4Sl$v`0MJnAmhz>p-78<3eZCng z0$Fy@w1@3stpIijZ({tk{RBQiNjyW*vV~@P(?Rj><*7}{FuSMnmwpCw9CYB@DTOHe z=R?|MhrC~5V60bU@JsQ&}k}7r2zdrId%=4_~;vg`3c^X^gj}`{izO z94gNlOi8}KAmM;kzSgI3-44*LndT1B<=^d(YJ;|YpsW!;(QeZSX>;SVMm4C_*k~@e z!X9kW_iZJzPSo!SQ}I^aBhX|6`C*a;RK*LO5?Pp5F5d?V!0x1xeAF`iI4&5eO7-53 zb-T2ZhpRN6L*Pc9SJ<2EDe#pTv`a5EiB%qm0=;2L-J5y~sj+Z@hPZldt)2hkwmk&k zGiA!F6yW~FdWRw`!Yd9$4{@oTT8l~`S=puy80%W<3Ktkb1O|LN~hbGJXYW69gH zEse|Kt9uHG^m@C$0qLSd#%gUwNtYP#fd2jFqf*7X4-6+o(I-9_CZdm73T4QKeZnO@;P3xsYj!R>(`!oZ&%pzTSH_-S>K`N=6WkED?!SB!cY1ZjiwJ%u}hqi*Kk!wNlXagAl9_XRn=wvBDAB4{eUcQcgcCR<; zu7zurr$}<-)4Vz>@y&8UH@GLfWrN=@Xl;>-oK~&H_dW`1DYtPhsB>UmykWWCV!XxS zjL`YPJJqy+O(79k)f7Lmblxd~|6WU>$3K?+oqt+uE7N}a9`rW|Y4Hyoql#UuXF9LP z8lrvFkh}Rbf5iFv#j-Y^K#?%7fa!(C6~h}!?MqeFhrZZ0#OpgSJSDNwxjJL14& zX7(~_SWCw}i3!N|{BL&oDzBx`?ZwrHlF**SeAy&(eeFEPEYdGb_htpbf%~Yn=$b9=t_}%9uOZ0o~VTPT0S8UG$16d46?xmd_aD#3z%V zd~32~ODG<@JO6!vi^7TEehW&3)U@tQfKXsG*&!`I`I@RnMDpIVH*LF{Rdjk>Yi{lI z?~U2-8$WqaPPn^8>xFFLA-B;@A8=dX6lIO#g(So?6~kQhnqMt>aAJ!3>jWW-Jet7)lOB`+zPDTAHDVr zoNQ9+=H}Ctfr6U<46EmsXouupX0Fv8zFe~?d^=Vr(_-qNJ@#ynIG6K-tyW+Q9yjv3wH9dTNA^oShk^TN_J7$TAv}qFuaYYz)+}tt zch%lO;6kqs=OFrph$yb}GuD8>Gag9chyze*4~?%pekNf zxngG}aXS|Dqdsb|hprI!|IUKPXAv6|55#saA@vqgtuT-dp*Lje2|IUfng;tiJV_hC z21EEcQq9YTp_!oP!9H)u`mrM2%$&F08;A>JE8ggyiO&E<28rM3Z{nXhhSDs_*?*Ds5V|+A37CMMY$(l(JWr>_bShg@&wCDcVqk zWUEi1vL=ju6pv}Ka6|p9l{{ZY*~-U^c!tLN0BS`^4Z}VkVkSD zR#qrUO{g`lM@h)Ar%?!X&Zd$t;!*J`vuDc=gn^+iSA$hmJVq#ggMAnvd<7?E5NfwC zWadY={vmR{wFU$VW0Limv(lI&M)eWx`E|ebcK=xFEsF%LwJ+$MW1B3gMmKBBSS?CG zKqi5f?}Y4n$eyh>JBp&j%)-DTBqh?Nl_Mt-nol)*VqCZPD&)K?y?|hh^T*wC@+*Mm z(T%WLn>P^GeeC-kqb%WkznMs2o%Ek&yW=0{3J38*(m?E^TJPBy=cH(~RdI z9`~B~9a!&3&poGr=vUj+N#Hm|Ku?BFl-_vEy6JlsI*^EfTj1h1Wa9@hkaX`oi=hpG z>X2rXNogZ;uXZzE@Mr3F3lM9<=4nka2RYVh=f&H}Fi z>Ru8585ZmkShVB?Hq-8)%^(D6oQZ{xV02_|@+d@Qo^%E64fHKHAjKy=Ph$f({!{)# zZ)0Y_S5zfUPt!)$MAf6vf5-4$Ka4&3tDfM3a(l%a5C5H`DAx`4$O|aCwp-m0;ZC#U z{cf~;;yJ!_U>lA8>}kj_-*jZ_`+hYA2kj3ITdfF$^|G5dnCM@)>IqK7fDHMwE}o{YK$`R2>8fRGk}6&KPLAtyt| zC7h@JhY4_V9wVm;QWp}pA(07G-ew9F5v7){`xn6#ZwE*A>#Vwm>1{I$#et*+lDl^6 z(hed^v)|>XJx21-yXPadT%?6Iuk-NR}CbHo>x~X`+hmJ?Kswjr&<>G}VyJhH1l9y;+V})Y2eT zU>ER-NYt!yd{FxfJ4aP~2p$$Gqr5ir5R@9`r_Jv{<89iq9=J{w$Dqz=Uqz^Cd)=KK zYN#7_j;KM^q{CBTCP#l^)w;Cg9<*AwSFh@-_pOno$sB5%xpAS~)ZyhFxtedD7owgf*bZ?&=J+@bSwl(TnEPowe6D6yw!iiTPN0yNu;AR) zy*yj{^KdyQKo}|KY&g607*^%mn}OAP+B1*~#_V^QU>Cf;k6plgB)H(GKiGhgGmO2= z!hT_+_3RfsT7>d3FGAb9m6K|+>E8mlLH?dMZ@9f1&T|~0%Y0uwu5jsr_T4)_{5Jiq zlNESv zEa$Kt-8nSCVEkZ&5$4rpN17Jj8g$~$Q**hOxbno=36})bqI+{iQtou7(bYu&Hi}o+ z`@V=olD*oMIy##K^w*vpXBQF-<}EfT&^TM~F1KDSAo*e8@hKH3h8|gn>j%7!7Nm@;J>m9dHdfd7C>$%sx?;Cc^*p<$^Gsqh{Kd3Q!YQ><$ zo(Gq;WEzS|u_kYRuyOKBlnRmFK zMj)Q$^Fm4@DEs#>xVOer?tQ6ayPouWez<;3s`3{bXYwiAT}omPo5trxm zVZE+a<93Rf9>Ay!s>2KTjjo>u)+Ztk&`W zT~h($0Ny7-7hOn^FVbgg?m8Xqn4T1$R~Y$hsGF(ue$l%pT-;wJ;(0(KMFneL(p9Mo zTv7aGzQG@jXJ?&ud_JgH8f`bW@_Po8xX$)1jikK2{NW$>Nl~>0IMV$oPRrCL#HF&& z7`19b0nMwLUeW(R$#wjef)w@&nBIGJAWydL97ysP7~GkxJig3j+bOZ@one=KCRC;& zCg5395;=U&lJ7J0pYI`Vw)zHg8$C=Nd_7-tt>-$FmlG``EHk*eUeq z(zvA$rY-Dp7jKA{n%X}!?E%2YQjLMTFY+&|FPv<68}`j}x9DVr@+Bv#5hF7Sh#QZM zScK)i16-oOA4;-KK2F=550u{{dx4+IeG}dYzse82IsgF4k<*?&Zh3vvRP(fTN(DuE z5raN0gP*oW7<`5BaB4T&Yrq4l!7Ooa<9xliW?=xDv`nKyxFr@H_Zk@Kz0{WX&|!;Y zH~7AVGEdl^5tUaNEY5pw6$3QOX6&-W!Gfhs6(nPL?fKnOX!)%zzHf8quS^^t4mlzP zyano#Z#w5g_^r?gh`C9Vi#Np(f_u6A(0$RIk)mBy}0)pL^bGm2gQY*cG(Ucx{JgG4>&kdt5F{br?q{BE7N(TrcB zE~m@A^(11FZ#R8frg`(|7tNO51#`Q8uYWEPc=uJgqeI+jMwl5f=2g;Pqc5cwFAtWC z&0`p@-nhvS{P*hO<;H8H?;9m>DwZsID6^8iv3#q^7=62_Q+#>QimzgFm%9?5wvxB) zF%Z{RG8qdgaDTBNVc-q9Hi=vHto}$b--J#YzOF)vk7#~;=(Pl6Wl_OGzpGCMLdd;@ zlnpNNTGN%GL|)&Tr1-2fx((vC8p>dX;})o+;Z@&`TN{>zw6`w!5d;2ytdEb{yEb+JRMf?WeIyYB znxB8}xR^ozzY$ zosQ%?4gcCGb9~}-%6g%^Wmk9kK0mkXAO1dPY#)Pa#?1zq-^#x>w+fM zD6WMZF-8tL9L?EhKygdgQJR7NSH>(C%9Fpkd(S;_h9BWZ&|QPRJ^mj4nO)qS!wV7`et6iGjmNJvGWZ^gPg!3E zrlqkR8_&vhGqZB8^rlPCweg4hUXSbpJOY zD0P}7b=Q<^OC4`B4e4|ncHicfk@IqoM)xXU zuQ@RimYyD6Co|JWGh48y@rZvnA+fk+e}nH@*JaN}J7htd58FHKn&H_i)TKB4mO- zlU#DC!jG5JHgejC?lF6Ek{L@fnk=@|`lM4w_cq9E?zVjFqgHQc&P|rZ6ocWEtL)L|$-CROxb z2|hLY@w_;xYg3#qEwDDlbydG{Jb&j92y>gxDh?;h7)(q|p;N{_^E|_T;SK`_Mo&56 z=P2*L_8P_Ei+!+zc+Ev{ z%&z&(P}(IYsp)GsQ$RI$vt}3P<-Yy!xllbXW@_@LP#*cpOQm~WO{Yhm6eVh1cHoD% zi#A#t7SxP}u16w@pAxxv2@*9!xQ5>s?P!inc5%$kR~#;S@IZCkZq5J1mf7pS%rbwt zJ~eNzZkR85=7_M`fgOi?O2x@qaNreVbH5FnYp7q1Y3SqJc^TIhFQgzF&@-MCwFzER zjyWDnpA=NkoG)tq`lW3N-Y|EEHf)!4KR+2L*+nmTW^jGJq(S$grsTtSdww)#I!_6xxuCp^tWkbUKlzrf|xCbds@{B}L_H z2=i`|zTWc6nDZXU=o^?6|E@LDHKFqkr{&Z0oEKn64gL`~ZIu3gsF`+7eYdG(+x-?@ zp8NHueaezV9}7Z?XOH?gashwym0f#m1n(F%{ZoGV!y9AN{%*c8v@xb!Y3*<|i>Pro z-Y$-Qf}T%`aeZJPI#+p^%c^Crnp;D7u?~9d$9?ab`!zsciA%k1lP-5x_RmsD9=U^; zKocpq>}#1sjr%I&ppVJpbKdr@A9336zma$jt3GkGtkwIJ@!O%k_dh=ntaV(?caC)H zp5P{@xa3O?{a80M{o)rSyn|Mo4^w76^-;v<^Lp;uc8smcTl^ekz63LT`{&CNK|fpV z2x9woRZLCeBWJ1H4$4(svzV{ zA(v$zhFvDc_mz1DyNs{%EkJS_8C2rrz1s;*0pLeCUW@YD>34lrB0-k1c&WTCPBzl< z9tOSL1C3NL z_xp1>78>ER+32vv4T@uJ_?`l{p^-19_yU+mci!Scv_UTO&<3S0 z+J!dA;xODGQd*PNzbWS4Nx=`})11COjDMQ*-nF@_(RR0z;`^`F ziuin?fCk)df$vPv4tdvRq2tH(ya&xluxNUx3HAHI|0-H@9P;z_Q>dRi{u5kVURW$n zKi_kcp(&V5<(Tunn!s%(IFwVa>eMM)Zcio7s+AsbDhA`!JEB`Jf7Wm%Sn788REKRv z5B|!>=IT&uS~_+FTyYBq@wdvPU^R%p`l{S=LW2Clq_srXlR+uTH6cM)+^$03i;&^( zy?ea-qUuifCEYDEA1Pj$w4!MD>hC3f#FX-7Vj%m?j;RuPZrO1{Twl$*+xt-dTf@F& zajHXHP3gUagLTD+WZEe``i;xHWLHY3l#R9h`2NuFhTTPL7E82TvFBOW&5^!)?~92h zF(N7l#r1c$jH!Vg5Xx(xjnroBqigzpE8Og7vpwEJnlF-PIrn+Ro_LRV;)~MTb}`@` zV$iEk-CeNX=i5aymSmW!wOU`LF%+e;zhhB~Y6V9rWqPsVzbR&O2KDlad?a4!?)6?2 z@v7YN=?FF7G@2@GO}z;cNbeN|ea}EVtDfX%|J=>%^JD0T!9-dkS{Q2I5X<-!cX zX6KwdvSPz^lm6Yx3l1M3LOCZObCO=!?V!_&PRhNbr=5xgNw9Z!mY@$%a5O?`?Zs?W~Da6&EijIYNXuO z&DaLb>9#uKt2hOpZ+@&MT1ju=r5tn_r?&rF#`wl+=H*x@Jip3RA+WZd;roRz>mm04 zW#}WV>_39G@?4Z)B%(Mk$yza#nDT;k(2HUC3HD-Go!A|sbzGA_O$azDOO+(~oaD1g z{C)n7e}e@w{$$ede`qA{KPHIekN@DisH*os96kZX;RHGCvG&LW@FlDM&s?&#MCVe+ z3-sMLeM;bG5Oc(vu(g{SzFQDyc$56bNJHLbeQ~JSho8oK#^KbT6Zmt%*O^H4=c_mG z&u)B0t3OQ%ZJg%rvmffGDUTiR$YNM!D?3txAFaBP-{1^ZR!srNk3ckzc2mC;DDgKXngzk+tRgQ+AKb34agFFd1(se!YZ7R^hL~ zj?NqdGfv+A2Q{X4w_fc3yZ?~I2Csg(?REV<-&wuIG7)NPok~4#x~QmqbIsd=nSI!!3 z0oo`qVXS{>Xq^89LR3NWIaj7=x)Zb2cAj>*IY)}9Gu=JIuFv-$xa->aJTAmO({EAf zG5`U@Soq1zm!T;lrMHF67*_1@YXBjnPcbK&_-{ZCyIJ&nkc*YLxu4|UoR7bL7t?<- zi(`k&7igxvxxa}L%5yl_JG-&#WATJ}&}ghtZqAZrpfUa~e!Vh}`e zxcVC4*e^Aq4rSisX1}B&^2Khse35#S6F)EEnHL>TBgxCPNAO2w8#}TJ`JA~vaI)Iw z-9?F@wX=T7B!+0<4eQxmS_1Ty@VO^gsYvmAP31}Dkc+py*w(SU8cu!9z?=L-cV9jD z&Df%+_$yg#J=J$GGk6K^!Xf*PiA*U5zIQgaA=2O{42d*-dAlc(+`BDwFQ5oIYQ~#9 z{B_4$<_V7{1yp2slE(F---YJdv){U8szDGdUgk|zx58#88<3h`b=9WN{N0!%oZxzp zUCce$+Z3TKk>+gxVYaEzdDg}TKS!?YR_^#{e*8+L_LulV4}X5(-fVyR>LwSj13J=; zXN{q^NCJl!T2r6twhAFUM#>6##|Qx6RcBJ$$q-5Lj8bXLYltWUc;s4*rA&orBXVc;%1lBw(2t3 zCVQAObg|s5J@i~pY$r~6h3t*crmYduH+-vnCFYL-QY2J7`(RL4%fs5=;(eFzigf9W zuZ2NZEkAy4f?6+}@GPyJ{`yCSy;NFK*;%tHuaqIy^p_CF%#9nbHamZqex}k`{Hy=r z2tE4S8t}$_mbfr_+)vp0%mPcNtr~IMhjXD+Cwae3&3`AnmOQuoEBYdj^=R+TxOYyxevRpjy_0kiX-&JO3YN=i#;IawncX z>$qT}tDDx-HY0ichRRsGj7E0WhVh6!2D3-Deh~8=l#{M|v%%vHbzenh%|h#O@sTSF z;{z&{^#Le{l3gVx%cCLFeHFktT{H{e@Mn%vSA??p!6fUGTfCp$I&Lg_rDzx5mrWWD zIibTL#=iS2yh}j7FpnF}2Qz1E)qjm(>Jmysoupq7$QDy=W*G%UYG6b}nMz%F=iHTN zynH5U-1U|UOfz}c9{jjaE&k1_z&(xNYvXKQPvo(MS(+iYjgzX|o~+!XAwGs{govt> z!q!q38VV0hhm4YorFi$W5RAr6oEM?4Yj``l_w~BiGDow-pZ0W3j(Yr?|Bv+SuhvY@ zt|*JIY$4Nw9x_-SMG?uD%FXyPf&gl$VTZ?a`Hk{JswDJ@8N3%SgZZA%1@RO_-vLGB>5Oa^8qkm^sM1+shR>u7VQi!?zw83yM_*lA_960@o%Ro_&@aTkuYyU z^{2G^@&vyu@oOWP*YH(MoTRsD(S$nriW+sNRcSOe1&GmX8vJ|?V>I*H@p|_=G(iIB z-P3hR{5TQOchUh*YWi{W)8t4vi602jg2ZD8eiuxy`3?JlV$m42?v3wYFru6#$L6Rvu^ZF zdV{m;m;U4(A#YB6Hm`O+IL>A*+oLfTxjf23TT6S@_W5eDZ@yojmH~&mkMdlM2wF&M zLrMHEA2MB$$Q9n5`IT!hP_q%be8oo@D`HzqToUj*vSF=6hKMp=L#k;-_AR)v_XPa{j&=&m2F1%N`wgR-7A z`*cpbRJ@ezF|+&4@j?02vRU)4v;KnojdLl8zQj0Qn0RKMi-K%ZNqVH-A1An&30Rc`Q*1n@!AO3;9OB+8b^hoqv=hqZ3E#51el8Pl-gP;*&De+FRPvQX2;HpW1ldp z&B^C{?|=9*T~9pj)e}knc9k8`fJTqu@OVugfr-{gcw@4ZdN><<5blg@!_FdnRs^x9 zFs^oRP6==<_L(@&#-CShKPhh%J#IJiDEj2LE9FH$bx8{bEgp&r0*@m#oS8#K7K&7< z!fV|c$+?8PJ7k;Nb!1tdQ>U^72>2TzC`AcNIw{sq(K|VymRV|y;7;Ya zsyM0*>B1Ga7zlac*(ZGV3s@Eke>;Lr?bh8L=h5suXNjDV3|vNX?D#y|KEzw*jiQ-Cv-Xft*=(~k!My)bx?;Msa>CRey( zc6_N3(`GT6Zu3hUX(Cdj(<8!_15{< zwbb7zT59|1cC}f+5EI{!Z+n`M&YzqKBs>|$SgRIiE0ncrLVu)|Yy(5AGc{s3&@FrF zEkHTwwm(^41_&@?-7(tNbInpMHw9c4$p%J=G(A;L#pl}ymvyZK&F2+75C(vdy>K~7 zpov+*1X^6aLKD`Mm{PPUV*B$^w71w6VR-DzG(}*hs(O+@Ke^mXLGT{;KKdF(XhrS_ zLStCg5|>>Nl7D@4Firwe)_ml(W@0u%1M0n<#s}&U`f2rS`Q6O6Dv8i z2DPQ;f8^iB*$MbJ|^Jy*H!96 z{8)X#dcm@2rtNT)7f^qIWqOP{DK+gGOcpUJmA#(gr6C~9pC&y`6^#I{aqX<^`n{t$ zzcE07>JJ$dXh-xs<_$iis!pIhnNTh|jk2xe;QRCUni`_mH{(H{ZM*Uoi->Tohe=np z`jn4B1fQ6E7CJU|h64D;qpJ&LBh!$`i1klk@VB(jMIV_ z`&e!(V;{CA8XXM~p0w@!k{kK&AgtE2*!YCfexJ{NgB(AK_f|l7-iOwKzAw^jQVR{f zDIl$k72d_TH-I(A-z#qPW8)pW{V#bPW&eWBIe$51O^OU*EwRTsC1iw7xFNUAC`U(F z9JmyjyD@F2)AqqMuLs(ENA``+m20T@?dgO$(pB4dT@WcCQsQM2LQ3%OQcri-3i1W- z-o$~^{Tn3CIJSE8)j!lEU}(7v9gRkBv|A!?kQVYux2#pd{mS=0?PTEPJJZ6A-NGT# zO#dS0)_0f(Tu~2@T3()pI7taAj-Nd^yK4ZfiTrgHVRZfq@-jbnL2<*Uz4&aehZYps zy5?SDle1y>P@&|&2#KKL-}Z454Q;;bN{~kKH)qMB@p+U}Kx7h>mTPw*fr1E9aeQa;`bqh$;{<}f!fF}Nl@jaH-b$ghlR>x7ZAC*_67oCs1P5AR`@ zg0#&gHHond-(O)*>@0g$ujDODFH5Yi5-CH#M26u4@zF0zGoW<&I(;6aMNcB((CMwHJ9Mqnktnoo#lfk=x-$ScCRO&8X6&o z7G3(geDSx>jvsH&x4LoY!Ny&bP>Vd}@i!Ex+$q!B8h{Jiys9h~RDoqD$8(muTo92s zy4~Ol-F^A|2+>HoVMAQ%=hws4G@*`#fNRNQMEKAafiig2XL{}2br`pd`h2|YvYP>j zgL`>R)jiaz)rbdT`zs|uulqwj7Vszh9JXbHLN3UW(}IM<(Xtuq#UEO7!}W(UKFpI% zG6$}4G!oxQjUz6Mhz+_DNd@T2B!Q#RJD<`dHsZF#vBY-7s+uD}IDh*ya!4g!Xx5(D^_Q`4^1p@Q7bqfDR$?(E3eY z^cOO9pOr=-xi zDvjl407nIB2d8HWKLLh{PTZC<}4 zKilmfryV8d=vh9Q(ZfhJ+mSNLRM5_THvPFuZf;sosHOU6)Rqauyi0ExCv@wP-FNhd zoIYI*y}hI;Z^3_MlR5=C)iccZl1?yyYN}1k(UnAdJ4P>?HAJ9cl{i}}e5vu;$mGFk zcA~$Yf-LJmYyHOa|4)OmQkG4<+S1jz@x=6fr~<*rXmgp>8agH@pLq8erL?xWI9^9M z*raf~Fxka+x1bt#Xl}bjIQY;UIWA{AC;*$`N)^4Y5I#lcLXVCVX#otXtBkw;21l$! zqK9T;06S63nxx6~++6+VQpUr62?3o~Kl+={9@bOFX#s#!kUTQ&v-{+Ok)OHQw6-w= zt{D7z*Mx5_U`#oDah9`Do(+zW>{DN=x+t(K7?f`c7QU=IRGd$~G`oOQo*=;3;|$X9 z{562$l1>=wZYpIppZW7nfVa~*-Lb>WD_RZkr>fuW!|dMkIltt3U#AntIBGN7Ys&+) z%D)aW-5m53WY}y)6SkDG{#QVO?l9_|>1h47ani}bpY-M@qL-nK9I|&TPZ@mP#TAu6 zpdBN)?Z`TWun9~GU?rmLjUy%Wqzj@Bk;>}!u24Y$u4Br(Gk+iqFO@ldR{X4-9IKiX zVDdi-DF_vd8y2wnCB~tICs?>__fx7}i$vC%k4)QtBUPhXRoEcl-b(PkRP#@ubuRMX zlev=H!+$awro+TWA*?UXxI|#1Ey`pBwt|-i!i{-4{9AC;P>Y@&f+6wlX46KKn9PpN zPSTs5Kti0s4*d%>CIX>Xa*c5=w%VvJ6{MSLjqo?betV8l;uA3KLz8+)g<4xqxplO; z&1x|hS!>>V@jn6uar)0(&XKj3R*xI_XR!0Ok$4Dmoa}GRE&X)z^k0bY_Dqi*xpP^- z9eH=Nd|y(VST>+N-O5jVp1v`mb}I{M)oyH$ANOFWvB_YcTK%mJOUlVzZ#LyK&7Hjc z?&#Ma_zNRj210`*Gg4sJz6BBtdxgV zU}R-nKK}N-5M!ub8B7#4UY+G#;wm>18b9VVRP#$=}GzI-2;%kMM1|7n_URRjCp+$7Bb+d!yR`Jm^mixF z_iPmE5v>&{aDTE%KrsER9n&q4z)Gs?G*I?LjJyr04-)7ByXLF~2_A92M7&)Lq<7)( zeSgH+6VwJu@I=2&@kTLrm+WUEj5!);sgl29Z1qD0i1i9e?S66qz#&LbP>Z!GDjIE* zg$UZF&sz}Et0_c@iF6L=ObVj=8utoVny66BP1Bg0nAmiXf~NzJg?zb=l)N=?sZuE9 zBzj1rgCu<%^ZXU~mf$&SfhG)oPUBVdIU>K%=cImlf=ZC=w1qJwc5^j~#D=b)z|=@b zQL5wCHiYWn@6|ktI_&cn*o#v9Aj9aloqcCSUMe@a{h6J|*aC^6V%DBQ@$gP;G%b#z zqgi|t_1xt(sOL6gJu}xud!|ni@MHQcs<(C*-Y{X18Wi7pHtswr}HX_>GFL_^Gt*&+&q4RM}6( zc)L6Be0+Bdb+3vN>R#WicL(C!_Z(Ub;jd*ast#=lT=A`UkUX?K@M}cUgLg8)6OOUL z9Eig8GIxl382=w6o~dfU>Mbq7)aU^fR1!=M6vuBsa*fKi zr!BerP<83tSgHzbtK*(P=9$l ze0WtRAj-cN9yA&*+`IwKCUmkHM@Rs;5`&++tQCKgRq!;q14&L&0WzKRG=NC-F7fes zO$pC4P4MC-iPx@;Y?NP=_ry!1vwOS*$~LD1btQ;8=RdBH0Cb%eSYdPR77KH zN@S6`tYIh=YEyX7hTv9$y2m84hQCWrP;Bce1J~Ij*KvGkQomt1wyz@2O#ake2zCp-|SAVTGJ5gMNrDr zn_l!fO*6rDYO$lfj|x*ik#gVrQ)Mz3AB zn~b?1oKHzT9%g)`nZ-8?;J>v)rebgBkB4ZcS_b`ER1r>3YYN>;W{|wFcIS^Io{tMM zE&)~i*+WQw+(`f1A3XS^A}IfC8Rw}>yrvP~HLBEs*&807kv{bA4uffnL;0uRw2lh? zZSfU_#(|51T?76-RF{jCzs)^Kjb#0i)~-?#Yt>KfN`^Nf)P- zBj3RJm{O^Dj&2R0Cj=aMzwaXoo}qmEx)gwzAcG68gqj?MWO2#C8m+t!Cy=GV2#Zzo zMZO`rrOfq8A*+Goe|O5e2oLEwD&ts{39KNoxA4Pss4kCY$)e~A^44tSCFvoz!&mvZ zb6GbL-h)O{QJHC37Xcs-xC@wkF^u=~@hPCD?5YA)RlU0heJh)`{Y{obr()%YLQlR=F|r&& z*ex?4T&zqy_~dcx>mPaDZ7iOu`c$SaHD5<`#|YkP;u+$E$`q(VY8&d=N$LDH!^4Z`T0i)_3--L5mZCa zV3@VQldI8zpItir4+(N#f8Z56BR?DDow`ArLm2?-&c(R*aY&%;q0aC^;7*&2aU*i4 zh+as9mSXdV3y-5gs4W8B-Y_v`gtaTyK5+n-eLf?AuUO0X4&TKuk5F3SK|?|?SQvuqz!@qJc)MK@moYmzPH1}_Vi~btaJ|Tic8JrwOymh- zA?0#1i6f?ef#62$IItL6d30uF$}~zTgv#-jokxPEr-tXK^05sFRWYL4$&Qq2F8aJF zWw9%@sCza771J?dV8I&5iq-6Hl)fw6VxgPKI8~#A)KF^b(29)68#JGCz^r`C;v!ZY z-(#)S+~f*@4BFHgO<4jlYq2BxHzh};-sF}!CbeDz72#5jpmj9Lam+GCEweMP>Rbf~ z*3Rw~N>+#5K}D>TkX$4qrVudeI%c)zBGpmabu>xZNnmK9B_U5;)M6Y)EzhH{rOxv` zUR>9x3dO}9+jz9HGz%<&R+{f|as!eAGfr9|DV?V|b{lak7!=UPd|ygnNooOBTccnW z53&0B`&Hx-5WA{t?KPRhF!QByD${J zkpI^}-b+!Cj*#>{(5fdz5xr8^yB!5+EE6NN^sI$`ZFlfB`b6y(M6F0u9>%Z`*o}gq zF1#gdiSY|dZTYJUldS%QI}x?A zPurlCVpwp%0NyGQ;g7Qq z?k26g^e*NcR2U_dKEb|@gTFQzqueV%a4)5^0Q_f8d9AlAXUa1p3h9;8w-%!euqoIa zETwuD3HltNw__N8s@cXs$yD!d25sMX>EC~H6jg~TjIB#{!_gxguOrzOb+B^uZ@ZlW zlK$m)y_&(^2RKIOD&kJ$W!FLJY+H_g=)Ns>$_05EBxhdD)MCu9!c!!0E|AX5&FJHe!a`Cpa zjPdlS3&%)KB`Gv^&L^<_?zSG-Y00>x#8oG&lmV$M*sG}4R?06{YJ`*AUb@RTsV?dj z5VJuEu$!Y5?iP}*>Lk~gVsx|v#X}dPqpJ!y#Rba*#HduzOe)3p0>5_~T2|^Rlfr&g zME4}kh`|>q-00P#3?($}qsm^F`L(q-VIYtC?&kzUS0Lny=H!$)k%&93pgUt29u3|#OnKj6by8>GUbplvNrvr4u=p&mV ze!s>V)8>)^)yLqeSxEGlnJd_iq`Kq7Bd-ZnI)bWaB{B5NgCId~I?KU!=WaUi)>(ws zZ?jdyR+6$?*G}vME|WC$ud8+rWI9zE<|&$MsGzahYf&$hwEnBTkuN2E!x~GaU(ZKt zR$}Zw>MiuS8PyKXn;-C zS3wd|lOGDE4Vs$!wp(Ez!o4_j>IN5hO^jE3+b+OHCS#1vOs1LHZCP5U<~l$*jb zuzNVhx!8eGLS7!}R8}uG@|=pyOj_$gB%JzbdlaaAyB+c7@kl^^S1}tLPVjD9g6z1> z*z&SEcr6%tv|I#>Bubwxn(U-V|A7j92#zm0m)tJPX6yEnyn#_Ab_~b z*lCrfAP^&Y?nWENP(UqDWz=G*pqA%8)MBW?mO2kdeuZ{mHWqEzBamvtn`1VDNB%RDr+>nSe>bvsfI_vg$^D87lbVo7*fQf_MTi5*IRV% zn?=T4Tk7sQW%{OuijA4M`NJqU$!B5~7qf(6k{Q%E!2dx&>Pd_!)U}?sP>XQ~wLD`{ zi*XONJQGlhk%(HJ4^fNp2)4igF-ouj%0XSL`3P8pB;PVg|4|Qb1Y9Icxk0)|;o{c! z?IGZQ1j74hJ@b+facO>)EkgG5Jxe!y1-k)&yvQ!Ibb!*Q@nt5HPraBw(Wd%Vprp0O z;7lL}XU4&m@HRV<4irG)oiPA)8@o`q482g|3%Kwn1DpsjcIAqv8QN#itHP2#WmXke zzbQI4Cx2&OrQ}V`{_s+LZxmqrU{(@l)ne8VX07x=f1!q1j)(<7=p_t<=Gvi&dmC0H z_ztX1wZGfB_`D_MQzfyUFsL`}Or8YFJjwT((q^7)WJvfq<94W0c+w8pv6#8?B09e| zT!iOWKY!{PDp1YeY>!-+FO8yrd_`cDEM}zQRvA)t&oe^C{tS3Hw4fJ0>Drz zVU>jG2?uJxsE0`}T+&J}QSJvCOYM7j{S1mTKm&q$808#hdBPSbr$z;!$OVsL4#G@H z1_nejQENZI92t~P+&JZSH3F5@P0y#dzsN5toxZR&_imuu%UhSr?W%mXoAKQ3=2L{{ zk8~`Ir#w`u_$JuytgAh?%+83mCT`nk@mF&kL+$(w|CB1I&*x1_QZsbSg`+>s0exMD z3|-YBbM;w6a7+h??V5>g$y0abHp47@cWv5b(MxzDW^`?i|{Urj zgkA-&6f#c{TnwWGzpY5iTzU}s;A>N8Hl!j86nD+>#DdX-l}!&;0Pftgnoh$nnp=@2 zY3?G}8b?((scJ~26fn(-89rMh_2MYxxJDx^Y%yt!Q+42eH^iHcJE_NMJ#8-?Z z`;@9!CT>eC?d6`=GZaD&A8GnryFmFdI9z^12G{4mZ~=o@LAy2Z*auF~gtj>Hkm^&ly-AanpYS)4Q8Y)81dP8`U|TVmv`E8SIY5 zo{is}CK$BGW22gNSqISkHnB7V@n)})hT07nXyT--sWwPU-L*YW!D&@cdXmc-feDqO z9<}06!P!3BL-`KcKBgA+CGv1Lomf5O9@JJU+Kw((x4Im{ZsT(LEs%`u)ffXE4}LbG z2#ETit@WJlg8CX{KjK)i178sVhm1fo6?4IWaLb7#4_fxIzT>Ju+mavJOFktF_6rV_ zkM+;))3&6qEK*txa>`^EhgC@53Xi8)A*L@?xW@o#A}84FHd^jvIi{nY$Q(T2egoPh z_?%^L<^ug_}5@X#A~%W^G&M+ki5i?mN1(Wa0*FdlRa>`2vn!$KG1W9HX@DG z5{{dr>2dGSsQr2*mu(Xw71hM~6fw-zFkNPzGEwp>rJLjthOFs66!m8$y zQ`A!9W2X>d@0^2rQoxzNry$+k)7sv>UH?6|gpl;}jyQfF6VPas)*g)hnO@zw^RVSr3cBc4gOm_FSqVmz^~LM6(&&@4Jn2?cT~h^ZF&X)@Dkn zG;Kd(`m|R{Z2PuYW<-&|v>&5=WPy#>-=Zv%8aNh1md*@F1HD#?d3wi<{HI_Kv_V)a zJ#e>|gy8t6Vg+V4B;eJzd%@wlOZdE-N1nZBY!~DZt7;@rl16m1)wh4NyN@Dqs!K1r zwpnu73h*M%5AB)CH&l@IY4+~`f&;k(Glm!r_Kw4=VVn~f9)_Nd^@Uvk5K(1Ft(}AAIfpWtA!SL&qdAv)D9pJ&v-&&)aO*m}ULe-&RJ0gu zupYe>+g7w3-s&D#Wm2>HFDP1rTo2M7AykX|)D48z;N5+8vcs@;Iw-^WZq~rwX*D|E_c= zD1)=T=v-s+5tLeOUN|f8mq6c%SOV*g@|Ju0X!_$_zuP(dE(8*5IA0MxN zC@!d0xv#!~-lKgNa)ugrvjKW2Tbundgasi)nFA5F+Tc&AOlom*SvFmVe>vi*7*HCW zS!t2@Cc{`|%_?=zGbRHunQH4NlOyN(T|8?hW(Dhyz`-mH%TS3;qZKBxsXBs6Z02u3 z)8?25_qsz?=u!ewNQ{sIZSMj^1+;UNTmVj5S>>93KS!h#6Z9aP>A>+2lN-SC5boFC zwy^tW+uEeo$CZ;4a$1goD{Dcz`ZT=s`xZ2l6jDR^b@n-X;OwYEMrq1; zWrnAj*d zkM0QG1m6PMYU0zBSJ5l2+Hrdzg+g zTN+3%C;Uy_#4;!5kJg=PR0;_p@TM%)2iD&9KQIwRBUzT%gq2*W7ha^Id); z*jpsy+ukoq+;WGnJ?R3@GHAJHE>JBm@X*zl^s`xRaqH?clR|UB$wu4&zJ7)7Dc_ZQHk}zjF|ZE^c^M zs}fN{aMEID_8yjp4&mGUwZ@FhHK;;UPPdE?j);!JfgVoM$!QS0Ng}%W5#k3OsKV&> zmufG5t%X(tOkO8vjTs3}oqIZ(Mz!>187;Qna1)dr#-*-N9S~mA*HfdrVn<7Qu}bve9EHj(5{qL4%*q!3Y`H{^pMl>%x~hy5a!$NI~%_d zPBIGl2k0#oNRCnC7`HSRdE>=ZChkSp=Zw;^+_x~@$tY25-vI+2IVwZLT2*l1R9xsx zYBnKLbs?%3nyGX@gPxf4(Jf^qYAaErhb^61| zAYdc%La%7y48^e{K@#n69mGwgFzVm*RtU{mZ3X#-Lm7c)ualkrU(V&Wz}`xnZ^hn* z^m+gj2f$tzZb)^<5di`WabQg`YWhHeBFN3?{j+mr$bo{uSJCN~h<_NT*rRA3!3`w_ zuZMi~boA>?hSD(jvBGMg38pdce#k>cHO}8b3$6ClF0&azM?SgoL0=pZX0&U>snPNE zsHbh)dN%%n4-Dw<;SG7%44FH@1;^S9mf?5wyw+B>S>+6)?>oK-MVTkzYBh2RX1{kVD@GOlEmjQ z;lM7A;Mu2iBTLd>w}Ri+Q6WpdEz}&S-}FgHd+~ZEU;Av%`@35&CeJ?VDX^6&eJgun zZQ!*7OTm^7x5CbHb0zN0g<`kri_ds>_g@$ZP~w`#^clG2P%amaziQZnf3NDN+qm)p zXJ)lfwee1|Z)QPq{VTRf&pkMx0DVyG581UH{gB%){zSU^!F&C&|0C<%>i^Ol?vtGtCUmBZw;5X*5fww#-p znbUsPYX|So@Am!Ajd{JU!}EGx&*%O5xUStfChft~l443huL!Q6Qy0A=r*njEGvlz~ zi^cd|=r6}=X%-_}(BJZQDOe$OXJW=;tDe<+ro}Lp_FTK~8CL$mA?HU{2Fl@B=6Src1AqLo;t!&00AeYVx|ldZxvttolm?zh!%tC%Qk&aa6M!DCvH2=e@sa){PbgRD*e4 z^u>`t+qO6Qy?U&n49lo2M%%hIX)OPeTT2s}pi?8-jHM~Z!}BXHwY_Z}4PySjH=B7L z`e#pX6DQfYOU%H@;M3UF$9eKg>YBf~psQKux`*PS4f~8VCn8gO#8uyo%M2(-hLD>Q?Kilg_ zW~rQaksXgzrRiB3)peGdG*Ss9M`OMcJhD!0Jo;k#!J)mpETCdVp zDmO~{(B?|Yz;)PYE)h*dG)J(*DBR;l+;_1mzm6-UXgu-I&ZsD42Wl5{tKhV=mpcPZ z6S}681qJWcGvHLsgsvb)vZb=Fm+7Mix)1tChm3f2+?Xu}DpdD^?kUzQ^C+G1V)iS( zE+=bz8@XET;2s4U0`(BZU?cp8q6K*y*MF&c^@sacMc0o@dy|mcZLIWj2ZI07+qTOb zD|h1B$-boQ{WiHUVy%DaBsDEjodzCU>@vgZJsFF{_nN=W?+Sr=5XV;i9i>TC6gH-I zCuj`RIW{%_=|V#Wk4Gs|6ADo06poT-f*N4xm1=bfDs8p=EeV5>Q##wst zY{cZC>OA$R#X9)DwY6YkVF~(QJFj)Gl^T6~XRYqw<16r{h@sQD7su<_`Whf(~E=H$EY4(m zLK`o7W?H2Q#VK07xF3$M-*7C77YOs@o;^Y_lCn*l zXZPi^ib<^8?m*_#)1ZA+XetwG?inhO28wOGXFU-SI?N-#XSY!i8Q@=p(~HwSUnw!2 z1U%I7WLM|KhP*oc*Z-&2W|0@Ivev|j7 zdT&@(J8YS(+myaw3(u_~ThPcy?ph*62xfk@j?yvB)v38&l{T}Zfg@f2&=lRGu`rGk z8%2|)C_tNFKMzG}0{yWX^|fgx?Rl5$W! z;&SJ;jj}fh2fCbLEMk$xMurT2DAM;iN(0^-DH^U<3w_VE1AVXClsrGx_!R|?lGBh> zMAbuZ8w}#(P(CiV|F5FSKv3gvhuhn~0{5oO%5-U8GkL=|SMqZ03P|mqYME8bHRYu` z;l_p(Gd$S`sThsfw<-;(oq=Z2m4%I>1*!UNVL|d9Zv+eS-h(q8*OS4$7{SbEwy|jZ zn9Tn+4|^(7(f~8V<3*F|p|AD&z^r!aB@;yt0;?H+MweVYRu##l)MYf>GZaoV4Vwr$ z#vk|1S*d5XXwpHevdF{CCXC;t7Hp)-uniHLt{MK;k=b{K`%GG@=0ZNNLZ|9t2}coS zAu_+f8$SH^2FHaZ`XCuB(R%!l+?tsialPPEw_g#0v96Cr>tT40S6L8UR&{11pjgdn z{5R$V=iWG#LSC5qdl#Uo*Z(-wfmp;M@(*s7%q@0jB>Q-%fy+VoRdA7H1&%nTc38e_ zG?XyIQ4HYruZGdFX0&pNajK4968bf$_Z|CzFJqyi9p8jJH%E;oQ9JjO{}htdGqxs- zs|h{WcwI*L7JFg=HDOT$JcENeRuyf|Hi9oUfS7zPHXK2oihgt|$>?nnnOO=v9&l)<4?jW5hWoOT=U{}uXz6Jk_NIk$@su(E@N71_Is^}__`~7ans7l3L8{o+N(gbV2 z&#=FfF>{x26;Xp1ZXaXBu~)2EfvLA}d264v0;`MYn@It#Wi(0VnPe)d%WAf|_60DG zbKIDAtRn;#@c7Y4ZTp5owz}CELGE*rN3KJ|)K|vztN)%|ttWrVLu{aeu3yXFy*HdK z!K^*2Sn#Q64a%>%rFQz-cuaE3)hGGw(;a(#;NobifJiZv76xf1Y3<_!or^fPp&+TW zfVe{x&S(Zq%g5ZBJn`;n$wer53;egpSnV^2pH}*^9-}#um~LaQ$4zR0=SJ(jCizt+ zW-}f-OTlqv=usXeG>c`4mPD;apCD;=+OE$B|G9A<8L-v7nR>KX8VRC$hnz0`usjcO zh!yY1idJl2vtL#n3h-}^6Ocm?9;-A@R;|0566~czow!{o~iF;ZUg|4#@hm#@kt!_KSP1VYo zj$hP#8){ryI?Al!T|5-sw>u+eg8NrgIrhGTI)P-5akaMCJw)<}#Vv$a3-RZ9>UmLE z>{vv_(dO75yD$9hB8=aDGfbuIasv-7&6>eX^!^x&4S)91k#X95DmZLIg($}389u6P z-ouCDU~IiI$*;GjQN`=Fy_9>#bdOni8nRZz!|RmYRJGIaAqyXbLxa z&dPpO+uzEhO&dw@H!uaVor0CWXLLa&%F|K$&{|*or=13hasdOp# zylIv;E%>#d+x{Wj8e}~n0zT%68_TW`2b3{JbEN?r-S(oi=xDrMv7SF`dE$y#;A*Te z!}f8K@EwmUaoHyGUKE*!#Ndj$1v0wA*qqirT3IYkv@9R$CjXbqp%C*M>UL3~@76On zDUpPxEq{3J-Vx%7LtQmCdoM}NxO6Vwe2-{~a+j%wPy#F%->&A{J~(7%9Cjwh2gK`f z#*>UsT}$lJedb*Bl6T?Oz}Y75jaRbI2is9;r6!NXc^0#q`dqgqd{11Ck-YJSyxhRO@#vSmRl!XB{WWMHhl@@djs5{)k=~^M?Wk5DRDk(0b^pL zQb|zD@enQB`JxWCH-So6CR#F-t)VCRS)myR3Bx}Wyrugc9hbNBIBWAS1ndIL71~B~leuJF zp=T_99Yn}Li*w5YWES5_l75o(zla^o`O!aPh4D*dmqMVR8fNCfINMbuHhIbya=ygH zD3iGF#OY@5orB~Biv50d^=t*aS-DIl7 ziSzYc;ld>IZYL~by=3JCukH<6CM)^K5a$n11WL|hNCy9?=x)55b*%Lvr;PEba!_M= zV4M}?MSKtmjqBhbw+4xfG9H<>F#@s&n2!!^u}iMRTd(2=akqRCd%d+d?>IG)&8DOe z`Bf~W>06sIU2{t%R@1O17oL7mw7O04XC!%Zae83sten^cf)PIm{GHHxJ~Fz|Ql?%q zWHW_ZR^1UfmN=6+6W=12Q;{NH!avDhSS3F5rLCJKPf~(28W(_(k)xJyCKMXDufh@} z=2{dLnNlrw ziPy?d`}injGXz-n-ZUHZBZq6~n!YGayXl5D9MHUy1$@?Z>N>`gZ9fEa5F2WWv810j zzTa1d`xsQ;Za3EEK-aL^WfJG;NNI61);)K3MeIupt(z!9^U_lff3*#14e`gM`-A!@ zK~l`dE2)#)M+dIa>d!B7qCBfPkt3H(dvT{>$V&6J{Mxo}SQz(3E`1Ba{PuM-2>v{# z*ktLw-LsSA2&@#*(Z+|o+R@TSMmQvlIIi_ zB1uVBne4t}<)O`B<5d{h5uq5(@=7?$ts?m=SI8GX|L(jF!*qNEqS@XQice<>k^Mpp{snIiHI#)(vnA-V{J^``XWn>7TO?m}Vkef?Jg+6xn|Xugw!}7AvN4JTMbkyYq`5CDB}+wp{X7z#}>wAcpKvcL{~t<9{d)KLgn$oHRR90&!Y9?_BZUHh7U8~y5v3l7~4f9@0cTGYDzVi?tu zw7C}$lmnNsq$rFb+&Z`9l6}`#zpD8!XgO)gK3BA3$rs00K3nDY@oJRUZuk~(eED5K z2bW6W%5}YNUtj-4D&ZWEBY27eb#`B`xOTJX~f(9bz5b<{|61&!Hs*56; zZ(8;%xv%(WpI@v6ZRl@R8H>H6gQW6u^vKBt6fvpBsM1S_o|{>#pgMzv7=eJCM@D`D zmN{Q+T^+Dve(gDo5Pt+70XYh4J2`Ph3g@0FS_-j{qwUn{Z%>`-lwIaCnl#k(KQAk9HSLkiIs_R~)s;QUT7h96&0AnrTQ7io znDhNu=)MElhCJ-%F!w|!to`GrsKJaCi4WxBbZyFGll~OxTUe;3y_d?jqT)FhqL9_o{qL z$5zzKtGTn&0c&P?2CFfYTt_MmQ5$zr3)4{aSc^?=A?q#zRh+JMuGu*=CYx`|tH~eQ ze)s?_X4eJFgYz?P;U#W>JW>wS?IiaHABHLQFHhVpw|U)3rf>dgO_0Gj<#bM42QLCY zj#9%j9gDchlZ(#dCZ1<+cL~H&(nAGvm1ujMO8?aSrK{Sg>O%Gue8tLNxh?|O@4S<{ z)2mYc?0E&fBJzr@2yVhu`j-dF9l!QhUt@;?YJ}Z6V)@QxhD*M0NT=K%4X)Npcy|S` zGHce<*H1G+R;Kj)eJfoqAnaqu4fdu&LzpOM$z1A3MX)TZ%6(=>F3b}bnSbABj7sFp zp>q>!Bz%On-yQpe9u3GK>umoKrT(Oj1WnK?DO?||h4HCfXw;diB4*o! zey`hMSEF9pdPE0Dr|#!f?&x3Hs|`ebY%h=T zctqgeXzSf21SvcCzyd!5e6&W7Dznswh||`pfzo;f+2_{%=GZ5Y2ee@YK!{_0Ru140 zdZfRpYThreqtjo z;ZbRrj&EV3v%kv^(AK6Qf;Y;(C-gu&33jvGuE0wuXB!K>y)BzA-b_N?cA2d%Z2`MM zZujeCnPA|4yw=~ZuQxXB1@2vOAE0CU>J{?Ow%zjWhSB|wZ?#vcEK@avi0=5SL><_N z1dgsYxbqLfT2EMJp;7=e&YB(~pNDtS-M01Cx}`sM)0nK|9sxT^{jo8Y5WGZ&**3t) zI@N#$&jQwknC0~PVNZvnC%K(1FJ{p;*1#820a$9QmIXL=v`S_u-xV*<2GM|Te!b3V*V{$FL*({#!3nbQ4E3qyn0<{LV~nFa99rb8LH%gzyd z2wu(Ko4SnK@Im!56%iPVVl|iY+0rzN74rBVbSLH}4E&u6iX;9hh#sE^1tI z+7S?4z-5klc&Nd^1?@$OT5oBg`i{2;c1pic+?G`P^nlmFN7QB7kmpA}Tk!l6NSV3p z7&L|M1up#huc;AbT4z0JE?pNsx9t0%;CS6*yEqDtff2rt7SEImQ_y6ZZR$d-Y^M{Y zQ2DIJDu+#^H2UsLG`_M2^{_PjwpWG1$gGqLxajIkVW*bY=;u4px#D(NVk**mgYP(%x0<(Q~ z6~?eF`#clX6nE_2cWEd&bvFw(+vX>kHEui zZ+^7;zsBwifA}>&nEC?wHpfu!vndfu!Qt(w(mI*TLU0gQ?CNTue_lA|eP-z7wK<^~ z(5H}o()#%^8s|)BN|D7FAr>qwxxTofVZvPn&=RCQviFV0s zI_c0dh)QXz@ zafR_?Md*R;1`_n9a<4F^eT!HW!TPOPhlvSZahiW=?SZ|{k!t3>KHd*g=%7=T;2K2SN zT}d<|&be%$1%;}Z7<32J}C;z zQg4-^C!8Qy{7xP+y$y*Eu8cDN8saSWNnM`EdIp$FLmFX|1o!5JCocZ-WBX9WO+tgS z_tFpD0iSAio3xyF9>i#6E&qLVyJAv@AI)?48*fSC{b!|)TDc>I@#nW+Fe09v^vo}e zp4)ylJgHnCOI6BE*_+eGvsv0*5B-vY@nJWVFj%EkUq z#r`Qx%|IvtseXC1*e932EG5YJ=*`e!xW%U2 zp5Q?wKRgxQBBs7My2S14#VK#Wg>t{YSBMY?EB~n7EeQ!UJ2blRhh0%iX2gg-r;|^A zVlf(hQEWcjAN;z9)vz~JeD!5QFM|ot?`A8AH8PQFY{K))g@TS-Dn;%h$nK0Zb@Y+E z0ZZJTEW%b@zKXOb622HhELE1U-Qrk+rI5NF8C9X4eJ-&tT2nd8S5{&@Eob5OSZIOv zBS+10X}xk^%h&wb`wt{`DE)|a=1P@3t+pDyGh~=nO%`z_K_{y)$g=0t_ll`KU=;w= z&iKcflx-$*qaj+CIrlpR;x~B zebvWWza*g>Gx(dDu6?k}&WEWO{dFq(3&_9cvuexKi01W)wv~DGU?$qo%#xrWaf@3h z__NZjF%bMzi_ysFmQIiHIQF;*A(OLUdsbPh9%6JIR7kwwCqnOz#b_)2njAr`qol(=TQW$GCJR2m_=dsL7 z6G%gBp(a)7&LsJYqz3THA(O;$NV>we+(IcHoQu%$tpOSkJawEaZz&9KW3uz9Xfpoe zB2FyG114C8Fje^m5dTA2!Njfy2ehwjP2WtPfCXz6DSzvb%h>9k*Itd(W++Dc=7KnO zGX7XY%aELFMJ$lKc(eRWRQs!hSON#9`kt*3a)_~%`WL7uAe^yi%MlFBl%*=YzZG6o zsek;~U{R>c(ur%23~SYkTO3s^Mm2nL53a5C%8#cE{gE@uP@r@5g9~#r?X;|6y|sxS z>;-=^o->kGx&~d*!A;3m?b&~e4q{&`NS%Oik_{VArsUeg)?zT^VrDcboszkT+9VKL z&Z^%ee;bYl!R7a){|zq9H1%8!qclHLQvp5NP=K#Iy2nFV<ml+oF< zIbA`S5y*PPNkd|fD+ye7snA4(4>HOaw<4Dun|(L+Q2x`AGt))ngHR5#C%weYE6MVd zUW0zF=Bn$<(}gR!~6ia{BEh+e_8Y*nVhpEglsRNRNG>_E^yhO{zyOH%puz&%$nguU7B zp}Rj6v`?UQuR%fk-S2Jxf6$IH6OjntA5dh@(c5zy48pVLA~{oiVXUesb1+vfhlom- z?)nyxb8X&{Yf4XBuMvvMv(zXozianPwEuMav7i2vC1@mKZMd8euL{N%f4VY-&}I~?)PsF56s<~ zt}FQ;3n3ly(%)GTeKofY%RXy6XL^3R#yO`um9(kQ^j?qOBzp(-}I`;uewyAcgIsrFmh;7bI7TmxxCRtOD_ zPzPl>tN&W$!I^Z97d}B>CDxU9Tv)Eg{7Bjf70ylUjsx7;uv1Qe3DsOt*(u1sHNkoR z{c&$DS=EoM$1hM?CsAW~yi~ax-T#23GseHxE|dPW$bT&Z!MU+&$8#wSqh9q>S^1qZ zw~gvjsqVpBXbM23*Iv!CFplC3du5)uclA^y5KT1FE>g<6V~TeF)bya;pzr#n>l$=_ zx>5i2f_y9C9%Z(tarWdKn))4-=&7InfW<8=K%?XQYcRLqKWJH)Q~k;-F5cv8VM5tK zD!b^}Q$eGHP92bdVa@8MzKi%K)YV#BxFXg4`|j zh2vX@7Nx2~7zTg^K363$6eNCi9SDSgG#_-~eH~`9vjsmzvDuTX$pnglvefE*2?0@f zqeH8E!Ekx*8+!nU&{1VQ>0yMarwV`}#otHnm~xb*fXy?L=d2+S%&SE;MHJpLqyMpa zRRcL1uzA$hR%Dr(*N(L@YV2u~YBw&nlF#nm|46m}8ojbfsFX7OzvR0u z5D?z6U0$T4!6|J>?s;=W@KwT)tb-QiR>Q}&&;HPN^=&UusDZ$EHuClJA=0l4yTZaYa(6*WcWgnZOv8e2Vd zvf`h4#+=J6#@#g~bS15M?9U}$9jM2HxnH~HcCSh0*#iuC8oo)!g8+k%r z)SwSR+r!uas}Hm6F3i?3H|%9}87;I@=hdaoKAOQ@?BFsVSCW@f63O~_y}nh}dy)L^zC_nYJ_>$JBJ~vps=N?{ zwndfaPDhOd-R>=CMIHjab<@>&nO_|}aw1jKvn;5VRp@ZY=!yC1J-yiJu$!B%B#mvk zgg|bz(x>q+XBt@Pb8=Ldq9c*34m{tkVbZ(p)UcMR>y=lAvI5M2G$?#P$`>A1P8up+ ztuBgdYXMS9^1Az?-~%cq0M-e~*+?r=5O~_y4zGj*9Wuj7WjXU!ag34I=YD_NXUu;& zHk1msJ8zAIA{CY*aAHknl6|!)M2<$}x0goJ@+O1I-Zi7`y~nBY9l+>ARqi)XPlQ$g zg{*k67K&i}cl;)}mD$p!o|`?@+yh0fDwxglKPy|qH6C-(0( zP~m0E$+x_0M^n(^bOlLWhd;VSC<1PrP2~T;tfQ&;tzGZy#pzn=O?a7ybzNHpX}x&I zAhN0W^?!x1buV6cFpjXIjAeVb;gdWL!qv-+LwAU4WZ8@@pnMhbqA@=?A$|tS9{@T= zKWuIK%*`#FWkB65QVet4k3c?+QOw1bM4bfghBT7$pP~EknY<)}KARcE-fQ#Jjh=;c2Zj;d+KhB{heUZuGQW(K>sr$i_}%l__P&OEG#VA>>V_V&~_~#{Y;Ppc>QU_Kz6K<9o)IT^Ch4;4$UND@s)) zZ?{ut?-RYIklvA_0y`f8JpoqwqU|Frm&9;D1qxK)vd z5*BsFQSHj}Ua-JwIoJD8f_!WLm&ClrBT z>KVd5o2Cw*)8rY-H{?((jA*7WUP*C%CT5#}s?ru{hT(+kh}|f$gQg(;UQ|OnB8kr^ zOZ_oj@F$zCMy}HUTu2?wrl$ggLl=W2_8o_F#*3aVB zxE>wKLJM2tN)4*&m1KUj#2OoQ$j!x;r72nPBopg&YT&S|zwf-6d?g>h7afI;+ zC3P_`Z!S}7@jWPdZFUQmxR9_?D8{W{MWf!#HEn9_XvR++$QW*c&*~;1QHz8p3UG4_ z8}uJY5e?aawTJrlGvYq7@+#UzErPp{lDmY9UrJgZQO$kGff5th*nCtm$JTQBh`PbJX4=J z(XUwE!2?7I$o+(w^FgbBgC#D3YQ)PEe#QqeSLo6@2zEkr4LD_zT$E6zcvu=ZeEB|W z+C8Pl8Szx=cmO$|*imt&$_NYd$Nltuy=YzqQRb`aC7<`+6<0QNqfUH&!^Lq}Xy0Ls z!L)=wVmrpokB?<8+0y{U>wL@8{f4EImYzZWeMht$h6-)JEj$yiRn;xB((Wlc#b+19 z242||^haXgXxUx6#0Kt)^r%^AC1$LD>{gEttS7Nu&eIP@*Qnj&l;7@zcT*}c^oaMM zB-Am+`}T1j`0rXCm}EUUm_v@n{k^A37Vr^!Z*Blw5!BOOE49M&=H84)-=7?9P3(vv4TYN z7w|*%{lbG6<2=WP-`qtywtz#mW(36}wjA0l^t@=3+~Pyh!0}G#2XEcO*QhJg0D)Cx z)Q59(kCU}{o26Z^U(uPNAH6wplC0GmnF#F_Y22qK&;}SePH|Jx|M1@?X_ayYGISpV zWBAR>1xMAv_0Oz;9Mv|QG3DG*uE;oC_%mfFV?@K@BJnvFA1&(+u}8vd5}Fp)NnnVD zaJ!8hPwwGZeS07xTD0knx$;g2AQ!LDWEe>BJ}u|5)xE&67Ok|$;tu)^+xf_(tp&ky za0^V_YL9)T`XXB-F?!MSYdWDw19FS1toQw<8e+sUG!oysTdlJ% zS5xVn4yv2uF4=T>*m%jN%Rb%I!0eCEIa=d2M^%kM?ZCbc6#Bg}{!p13Zf45O{n zqnDyZOj~v2#W%rL6=+;3fF(&(EY5sx{GqSg*Rf{$P zIBqInqA8dqd>sx;Gz*Zw0Q(#n`@xCCWfz84xg|Ow>>ihXg@Iu%ywAhXa)1CG9va7&1|d!^L@c{hG&Vu= z$%Ek(_mr`?4Wkbvz8GnWFVjz4C*+lid%oz>m@_*>%No~pZ@ysp2Bt84YYCQ~OVjB! z&47e$Q%6r{i2@ohdjjPwRr4OvD7NNpCan<94uX1Tr)cYF-pXMa=_AbvS3%uM4bOKh zdMN6Y(hM7OpmR{nX01JpV@`<7iRH%|8;}G9toH++DWY9ASMhv}rDVnCA;!WP!uOUT z;CW~NiwG=K?}#?XA?}{Lqu@A?(EsFz+bZ@$@aky+dzXKZ!RN>bXzUq#;d5Hr%h*)k z&H^gMbh6%jUJWX8WtvXgK3GoUP1CsswVW_FuXi#)oYijR2&U9gaS_rA{Q zo1iHwlExsP`-yfXHRDEqT)p5lt0evMMf8NvSy2C1)yf24`Sfnlp?HiFukx4%@974h zO~9k*mV2?@2|_G6E$8{Mz)iCO#__){$)6;W4kD%)fLl(-upS_{(@)MQDx-2ShxFsQ z#Fa*}jL9n-0B+c94pLhK)k>x1q)Xj5rmCFh{9d5QxJAT*N$6D6gP^{d0M7?S?%h|) z4Qb$*)9bCVO=>Z{O0aw%`a`BsG~E0B_MaCHg73NeP6oM0z|S+nxGd{I8W=qzwB1{+ zYnEC2A_NENlqK4oHFBH~%?ws9Iirb5>)?G1h7>jJwnn3hp8+(&Fkq788yv5z((}$C zPhrw+$DHm12(n9AqqCr|!3jWY(64#AsZ#$;?4xqBBelImj_8}lex`FP^`F1(P(tvZ<8kv6n9Jau5F2@1#^n#DUiJSV zf|=HIT`o?)&(M2k5Q9us9hvXa3V6QgivV7%&2PmDu8kPA)O9R_cG`_s4j!}hui!@& ztvsag@5{4F6*dH)C{i;;OZ5@w?-vFdX8_7n)n)n8E&70VX>{v0Vdx>$F8wOlf0GdX zWAm`{x>e1;IcCf1R24+$?E*|Mk{{{ZID4_`?3Rk?shP=G>rtufvK=zN$S#8U zY~Fzi(Sg5E7&iim?`||xJtRdKPQ>5a*$bkyL1lqoumc3wMt^#*HLgy@QzMX6?DNT9 z#(M0!yChDc#9qU#EcNpFZXM~1#q35#_sb&yd zro#P&r%I3f4@$@CdV3M0S12z#t5RX3qDQ?J+Rb^9{Cb@M+%a$zH@+B@D?;~y1!Pop z&g~k^8JwjIW??I6(bkm@**iWx zmbz19dt@CgK7P6luKGTn6o$BJO?3{zqvrp)g#h1?wK*IVRfgzux_MdUe;rs`Tf{AU zrdS7LkQ@IxyX1gxh5V)a_bZ4#>3PYqFTM=IhM(C1()_x+I|6L&*|1+r##_ou{hm~f zRPNq2o*BLN&&{nKhXoDs4e^4b%)FMebJE>K*{V)jEgg1_k+_0&m&CC-O(pmmKpVYT z(Mx8Gpu_Yzv^-&0Am1-k5JvBzwcg8;|Lh#HlCksMjEFQT;F&pb30-S05vxY(q4$-p zK^>eKFyzn+x=kp--?-bAJtEkr2y|iqbSfHxH@^rh9-}2#(9zAW7V0RAmiiC`sMe_e zk3l=HNhDOKHnhsw6aVNW1Wi&6rjn+gl+RZ2fN<|m2+L_IpmmEN_qi?*n4=#K7?|U#||9GM`1FgTwm2RoAZ*Cd2=u4xK|T?uA=V8}w49`8Kbj2KlBlfJM)hsJxl} zgWB~S-8;*AD5z??RyG=@T++(+Yheb0O?$8)eqyZ9%g`GbkD&g{ELyx%PGS7qGl8-e-g|d=ocnC8;mS2!ysG)b9?p{x200YFjOaf8gM?!UAx6*$9RHIF z!uL#!v`5)_uZ^GiC1I_fI@A>uYh|gA$78boIt_#Bd#iT5np?uI#1`@ORo)fPHN*Fv43Z6Hx?Bd{ zvc@oUlIo9VWM9@^%d2t@`E>q;#WNc6{m9`W_HWbVAStW~yzhUCkCghnZx2m_h@hnD zcQDBaRIVl4FC z2C}`D_%rZNu|j!vr|AnqHRq*u1$&nI%vy@zP1nMYP4ap^?DFz8j%tpbWzHcUSTK^p%n^jU?ryuk4^6&_rcPr<+K`?ZX zhwv=@ycw0JHveY|?UceQ`K{!@IwH0+8soT9U3uqTPyjK=uNT*N_+_CL37Agu4c{Hq z08&WCMOnD*s_Xt(+sW&hZa30U4g07u?QEh$lAP;Kx##OJ?Wp)$z91UHqiby$(2W5T zKCc<>!Rlbo#kpYB#u6PSH198BuBUA{e)d?C|84mV%-vgVuFI41Q>dUbW|{J(=#{5Z zgFNIw%rfMZved_(cL#CUjq z8IWRbg>H*-y2h(e6QL(eh1v-nu@0$>a*JvL*`EyMoRh|YIK36j^67FzusM)w0BGy# z>W+SBkt2~bF^mt`*NCqcKyi&5lEsiI{X5IoKmwU?HJ7a5pJgJ49yJx9j?&&VFR9am zZa`uoMjx6((6{k+`&KvHbx=73#gKL!vBzW#+S+BtdF#mvY2pMrbT}n#8I(YW)Q0Am zB(`t;S{^gCHx(%N`tzfZ_rv+NYEEq={SD1HM(EdBC6w<`ZY$T|@b%6t@RHa$;ia0>B zmWl+q_Ui~vBnHnzi;2#g?VM7fibn0C9Fj)6`9Yd`q< zePmr)#!b5lhZAi%t>dvVw`||;wB8$>??`AaypT!Iiv+g|7{?=!<6af=fTeX$QGbjX z2~F5$KDK-cCxKxCzkuOye?ST9)r1kk;IOz@q!>^?M+~fhBEB`5t_412U|l_k9SIuo zW)+^S77?6eeT291Ey<|NtdO;QPx=>5qqQxWcgUFxct1N~tE`e$@@D>#2yP+^-DD!fi+Q+=O zKwu7O%UX#RwScQlUS}40{~D;L5+Jo(at@ZM%1$$%9H-!VGPMpZsNI^%VFE}Rp`&D9 z%g?K(ri$qiZiE#uFDHBr-hEi>iv+um0b#{MF{ZEb;73WU6gLx~#LC|%ylN$K9M2h@ zaJXGBA#$>`m%Ke95a!p_6+)f>QYUB}@u|OwxC$Yjr;dj>Z~QhR`5P`t{x6H zqTzmP#yi3>qYzhdSv5G<{0bB$^klX-#taqb&;c|vyiDOnN$trbjHA*6gJ!-(T8R+KE1XPt>HDar+N~b$KB+E!57g`eC>~EN%5~N zfBvO-Qk-B7?F-(fyIE{0HSh+5%M)VT&c@RepHsqWzU?n4OeeLG9{giFvu|D6NQBOT zn)BRaD)?J4gK)luT5uc3Pzu&S-Mi$Y1iBAo{%7Ig1lQ>uAgCctssoiYyv+E5q>O7+ z5nL?tK!U=mhW9~|-+N^8fOCMZ4#JrY+B{!C_PvEC28H&iWN)co^6#?53}9(#Bot!D zrbk(o1|ihYc*gWMYMWSr>a>dYFW7W)HEUdK2Vg-GzZdd435|ymp;xms4o4$c^j6X= zEw}Bl71lKtn+EPJ9MMvnci0MDfWWKJh&Lt?qPC(SjdpZN zD{5=321|jq$z9ca9$WHTBDKwL$XX#bWK`d8ks;^%^EQ`lz#Fy{rjLE2=GEEvI~w&y zJ_aCmmQ8OQgpCP3MvbfObJFUM65m%oMI4nB)f$5_lCl#{OBQ!XSfv0p=4Hy>K%J~Y zw+CXBU6uR-Wl6mVr?hrdl*zuDg>hS5B%_y1!BFAQRyjiyj5&PgaQ=BWDJjGkjVjy_ zmK<<@h|Ky8cu7r4KWd2d3@r>t*hjp~*^&l2ZArNFL{u5xTEWj~cI!8R!jN1Nd zI--xe@JTO7(+j?F%x_++eNybUWHmx0@eX24el4Ik!Z`GiD{^`0<}L3e?{ibIzb-CN z)Ecg+7C#tN7FB51#l`p`HqUFLWb1_Eb7&jH<$}w2XrP2LZmM3WyP_ZXY_{>w z&YyKm{q2aaVd!Po<b>Y`xd7-V_@+9V9w@U1= zd=Rko>4hbYnBRQNNAej;+u^-p6QyEH{aPfuE}T<%a9FIP>78w%|D+G>NCh_{25;Sk zX3{nM3S%xFEDh-%{&P)wztx@>`4$K&!=z==h6mnL#G+P|Jlv859JpvzP;N1&dd1Npy!DoMfN;<0x85Gp2;6E7r}W{D zbe|CK0$=*X@1kt@G2=3W7xgbTY_TVf)sO2|BHgPIV>8zP;7EJ@r?el_9VIO6D1dwE zxWs8vm%-|qchTb7>OK|<$MtnYxF**q7wAcDQLVs-m%S@ho`AVH)c)!c~ zq2Z}})EDI%G=<7z`*w9ZL$_j{ZWl?OgonGWGU`u%AnLzM6SC@%^_?rs$5ejXktTI3 zaL>m^$TWjSZfMa|A?yOmp5BX!rQG}%D9N7l)p+w552mI^a5c{#+?>X$rTAxRgm@z- zfPC#{&wmGVQL!Fg@>1aJxoufN%HT+hA*epL-(#MJuC)Z>GAL!ooluIR4clKsTni52 zY@7d6*HI*B*gqpTKDQ+d6c7F%U2h%_<@&~tf6hszRZ>EhB$WzDc4j*2Bosx9T_wp{ z!?BEQPD)xZN7=H>93fP;M0Qys>l8AwYmAAp55_h#zx#QfnK|Fz>-+ltS1&WqbKm!M zUGHmqU-v|VZ?=+p(*S!`O$cJeHv9&zv4go~A1Yw}z6R+a$f1|dNVaikoAv)k>ovAd z*#|r2f7cN5+1v?0Wwgi2f*TZ8KL^RYq$p~?xYXbdsD72t4!ow=Z#BU7*{0^b1wTct zL15m#n4|VI>|{C1lyW<_QHL;54D=&|xaaJaMoMx@Vylzy;kcSAS(>dg||v}gAfW@;DB-c6jG zu)Gm_Md|O=6}r^dS^4cyY2Aes$HX}t!PkN_8pRZV3>{CnU03MDPFeby-qka0U#{!B zu+Xy1))`#WIb7Xzb4i@BjCGzr$|T4=1XBuV1LzJ1noTe5dmpHQjS|(kgUIk@q6nL? z*BIO~2X0i%L;vbG0G!v=*F6nr>Rja5eS^uN|AE`hvgG&5=+`-mGNZl=+sof>`i*T^ zsUd3{RzMg1vRLeFh`DC(vV9igB?PV?t#GFN%$Ly{Z~&7S8D=Ex_t^^Z5NM)#WZ7rp z8fZJd7Wj{Q4(<&F&k1y!*W@J3fL5Y7KK2+}}dfB*g+LV!mi)z!Mg1ag|(-sn-_MHC?UjGSb zCR7Jjm;USLzl?p`=i=d8D&NvwA%5wd$-=#{{v!;#pc=1h_Fj4`t+WSk0Vh20>dH^W z*9p@2t4G1LAlLM|#u@uObWxzv)`-`I?o#F6U9}Z3$tF&K&#(j=*`(e< zatLmSU--TF?KR(|m%1?PyhL@1#T11?9Z+0@XrPQInn}1q^ZOOQP3rn@G+1*Nk}-%Q zZTYnR9$PEPH5g*YvbEl98tO}}l836pd~PgOM4R~Q3xk-idLi~ojm z-Jg1K^=e@ujR2pH2^_ND;|w@MI-Z%zj@x=Cmsyi9uHU%SZ$sTUoLlD9H+w2aVuW>P z+@^jq_s_x78$DCpMZZy};>FB{2!GVI;uf`Z@u@XWlM z9!^@*;8Y4;JbmooHR7~X?E~BN zthX;7Sm0vGr??*7#qOfVYHh{Y_b+#)SsfN{F4nuF`NcELLFeJGFiaO-^41A$ zx8t85)fabm{y-PATCFIBc{=ROX`F0s$5O>bdg<{v=b12rnQsQp)TTc@0?t~*Wwee& zZuDdZpPTy1@)x(`$!EKpiF# z!+q0nTP$e%m0v`ER;v@aph~5` z{X|)FFwbcmZI|==q8fO+qQ|rM1*Iy>_}G-+zPN>~SmV(XN_q=x0CfmSI3j^8;%Xha zkP2EzlB7m;PxjI_CA|=)ciam0e~!)WrX<$@*Mq*g|1_^$ZkG2Fk0VSk5y_twaKYpO z&j1|-1>9OVS~tW#Ncv%~bpC)i_+;5MBOg%4DO1H#qkivM`t!A#bb|=hy)s=@-2)(g zuhNp`<>#52c}T=ig(+1^ zg6)OtCW|X#-n~t56***K8NB2&*X>}w|EdhhKYBjGxf^^~`|Zn&kw)5qy& zw;kUr(N)piB(_J|Tf(C-GCGH{-*eUT#ybj2ZFBfh{1EX$bACe+)i?fNckHQyu9p`?N;M+&i7TyDYKERh{3#ezQlXr`M>uQkS>YUJ0Ja*ShmcyxzT4^|Ixc&AUA7lW$*tc;!Wl+}Y{RfB}H%wwIm<*(v96bkPmcK&8SYzKM07L zc!8~(swtkU>q2j=DAWtzb-Kzk>NHE+Vnc=GZ z9;5$OQPLeh|JQe!hkN(@{YEOpeapk9x6P~{W??5h)YqMU_bB{M-MO7D8`vwxlI->7 zU~Z@CRj2)m7%-o=y6&{&Nz}BfofN zq;O_9DS3J%yKa7&JsEpC2+s-*R^_ByRt4?M(S1)eW&N>4XDfWvi$AL8ru&~TzF=sR<~qfUiksLnSY#dBu8RvPGrUEq~FDQd&?pL(O}$KD-# zpJ=)ao;byQ;z{I*j*xgS9kj5jEAsIM;3u=LuBaZeTPil+^!U{Ly48Qifqbn1l%AE; zz{`zJtE|)N%+Ri(Nj>^ZUY@k01Cts_nV;5_`>0D*P78KNZS563FK_!a{keb0ZOQ54EG=Ss`M~(T z?xItN$1W*8&r?-WyZQCB)iuKfqdz@z)2OUpTGt55oFcH&fT`Ukd9GRm-iGRiPm@(1 zs9cpOdho?VY;aoB<#A*8KciK>;uIq}QV97sYPSQU>5OEe_(wI;MMv2~F0xL2&KpcL z-x!Vxhuy9ZJ(S(=8xa_@rvs=F+E|9{nU%P|UP@@>2q}(KNPX8Tug3~6V|{8RjC)OA z(l`{p1&=bx@T>4Hqb_19zWY}to`HNv#k?;B{l?LdeK-cap*}AO@1;DV9Mc;)f3Qb3 z-aGZ|%ZTlCyYkY;;+d8zR1;0%mG>zzRUB%voO%)6J3bsN=(0PA;7+l@9>8be2Gj>U zdsS)Le%lj!rCa2|19t}3;|ROhb6U;aVR7EBUO^H*4Jnn6L~|{5YqWQ#*}QFxITR{s z_IzREum!rkxYF$P>J1n{1P8{C5uM};AsB%z8Ys~k{Tsc4CW>Zk_bAB^QsOL&CpVLp zNU6(esExx#2H|K5@UfN%7CZG_Px{VoTQv9~L`joTYjX?i_Io-RfuUyQ4-&jr{Yg!E zl#4`Hi9xE1v#p8gi=(EdlZ@{bfhOhJ)&L9~SV@y*HnfLL*U-_%_+PX)XhB>*+E%G| zT}e}Iz4?;3?@Bc$Hs}Oi%(OnnNvXMt-NAal^2btYu&#j8KOs84YD zovXDtxgz>n8Px*q^@Vw@!|Wy5_p4Z}=(pA@!8_Qc0i~CVHhRW{MU0Y3#l1q2?*Tpq z*Ba*KWx7v}&+Y3&ZFuY+0eR;p%9O~4kE>cOD5i8_7r43!v&~b=VSCM_>uF5RbtpKS z%X7Ul?9?~5vF-jF(^26DH!wE9sx&!F-YDxU_U60wpY+>ouiG>mm&&C82h0u+mrACy zKtL?z3LgLG&Xn+8xee>yot$7P{Mb(E^^rc^vLWmPr$X(3g;nPtj1`;N{D#pd=L5IC zL}E8jvl#G|R>|AI3!rwk6wgdl<^}E8zA$dwUxM#@(+KpjUHKvYTdh(Yri?`Ku9%O@ zzv@y{GFffYj&ojE6BbfRvC$-bw2Q#|yzyNN$0P@m@5=gxJvQ zPra*}Oq?u&487E*;5D6KNju@e#Fpp8u~Dnodnb{nPGcTL0F@z8+$-jY%1)uT;qZxb z>8zp@3wc*)6({tor!o>@pa&UJ-~~W!LTL@aDYiYq*VmGY2Whi!*kgE=oGnM%f=IJ( zI4_7IhLfJ+A6Iql$i}#*g$;MSdLNXeas1eYF0Xj+%MHls%YZihp55VlQ+^VTmgfWs zwO<@4KqL%5P&SqSp0|CoDA=8GoNHglINc&-QVCC9(6{fH$WQ40aQ#;$)6+!ik!MKj zc6{9T_I}UCREzHDQwPS%Mxz|gXi;uIYiM?nxA*l)IrySi;+$i}M~mD2zmVg4PO?Df zQgwODk%y{v&^Tj)vh_C5Ki5qR|A=KQRc*C=bh zpULcpf>cY6SMtKmv&g9!Ftl#=Q+WsNT{E541I%-(h~sA>+@Fgt5=2uxhz(^cVd!MW zd&dW51d1&O!%~ecZ*=7DxFmaT>K#N1(Px*+9p3>tK;F8VQJVLJFI;=hM50e{cmAm( zwr_+P3$j~djPia^X5U+ty57ZZPfU~$?Dw^EA$oDwo4e*-_cZ}IYgZ-3yFicNXIh7k zt&Bv?0WXg&&%VY+xsbj?TN?9>KvDQgh-d6A{sD(=oQfE$jVr*GbqBz&iX^Gca~FE) zW)h+mF$Oc=*S?7GR0qcn)go_u1}io-A${IfiQ+?Sp!<)RrbHii^9VTZ+lvFp?-~|3 zzG?ATnEW2iST+``@3hm+$FKZd?3Co~U#&H-1@;>bD#V10>#6nX*j?S?{iG!B=0)S* zu&V^G$0=tnt9pF!Eq{AuRD!HTJnvz(?}ZXcA}in65rIWJmy&~DzXsPQqwpUWnyNeu zY91r1Z13Ai)|u-e6?f2Pi@*p%sir~)B2LAm+|4OGCB-KhO+a4&`WJoK2f)2_ON?}N zoMSlOY)E~znaCq$O30VLA`fKKNW*ufehW}U{zA;JE1FdW;XRXvoe{66DbfshM}bd| ziRK;!dy9MW%TEB(XtO!&VN(u!^Z9(p{SnD%vbW8H%OR7}cwcZ8z3ZfRd|#LDX+xSq zC_&v5i7^H2KK@Qb??CB`e@uj}&N(H`1F<^q3wvtnc^h?od*dpC9B~p>KX}MN{>x-v zIPa7OdnObU;rs|^E7SS`EF4h}@02T^Cre;Jp?@71Js5`pMh%jfT)j~KX%Nu|Bswvt z4$^~0bjQsrLvQ;wBwA%9Q`RKHLKPckUk#Q_H6L=>q#gi7$?2QDYdaa+cg)Rb-*d&b zUn&h34pLrkFvm$$H*3lHO#kcD=g#m0ZJmafq$gpTzIqL1?B>$#R&n)-Havm0ky(R- zyS0FXnpaHo!$@V#K%`J`6BRhB?hE7L8FvTu@y8tDW zO60AwQ#_EvDN+0GoClT{H&3*7^#(W#IYB`?BNHz^=BBq4;*okmRlOGDKgDScItVFF zdb64}@b%oi(hvXhlm8KGDUK5Eu+Oo7no6e~BT44PMy7fFl-V4sl7MEFZ7+HgoDPo# zrd=I93yKBUM@Jx@nZv*rao+?OPwrHZJRsovt0XpWnzvxi1P7Jm<_Q$7m)&chnSBPN zB>vkwl$W%^EmxfAhNqav9?r(d=Lw=e#MXTXSH4OcB4#wU9N`cMA{5kZpzAyBIhX(9Q zPtcb%%D{(&MxV2-6V)JKg&j1mKR*svka!PX(4g_NAl^x%%p@@Ulh#YRdmTP$+Z-)p z$Zfz&vkyx?uEDcKbd976^pUAbPNmY7wyb4BaD6`t?+flr4(Hef5BDudPOnVkR9gEq zO1PkIen-}WyN=MRwa{X=axDVt*#U1$n;rY67=E_OEEOu_-|Nu1rg6$mjziK%G@*+l z``<340-CGD?KENQ%B2Ut=Q)nXhVz)X=HhL9t48a9y+OeogGy137C*u_f{Oat zyB>S%VKd0z{=KmEKRYmM<1fPA;MEDP2O4)+UNm#DFY@YthuKQHRU!#xZ2d%g|D?=A zAZmEiE=X`q5?>JL)svon6B96bWnu87eiCe;W~p@a1`<##w(`TgHOAJj| z4|DODBro4fQ~r^@tPJm%9k&NZPJkstzOv%;f9CAf-^q3G8CT6FfAMk&V=>;*gOFYM zQT+J{i+wTPxVB@2OQw)zr+f>{;WQtNxn9sfaV-2RH^?Q)Jk+wU^VF|OMo;bIy;>BL z7f>>VcEac$vOW&02<~V_C(jQ2Oyyg^zmWtg&Z0xhG`m%!xPk@zazN7ncGg z9dy?lPj+Gfnk7Cx=E3%D>HXc0srZWjIj*u{5@nrXyOwB?_D#N zr~iXvQ?>7+kcj}zUf$yD45D2+Y{w&_d^<*y3GLi4Q!Wj1Sg;*evQavXbMzwG??k}%;M|6J$a|X9wZq4xU;5jNqi4s z`oKS9Yf}L$QwBQQ7xYF}8}p_|o{C;0xT2>23eNW4-HD~{4_k?yTj-x(OFq>5vxbpO zWRFyQoJ%sWzn3XPGk?JJRm{N-Dk8!l(mfVelSPM}k`_8fCCP&xK7Hf%5ok(Hfwg^J z@b{IQ(j~#-un0l%9zY^x1La*&7;D9hbv$RKWb`EpYq5H}v_Txyp1r!7190WH?-do# z*)Sdxb+akw{aSRCG&^bCJz#jGRHi;=<7yc73QHAlp#%Zgd(?N&O=!>`eYv`<8yM*= z?kT0NzGSKAh58sLRC)Vy5fX$&kVSW%jyKh)E{{QVd7mmd5!IXhi~)Yu@c~U$las{| zXMADEK!?Yz+C!D1n6PZ+Z=m%mhnM51hdJOUQzN@O1=Z!_6%^gboFBk7YK3oqqCce_ zzNL9#(-zD*Ey0GBmmTL4PoLz9;eA`O0;mK~g)@fUviJ3s?z+r64j);!{8OmvypHm2 z<(9MxA-rQYu6K8@boa{h41G`=n{M`|b5?bn0;*67MU;z!q`21h&$)38$8vPZ&94s0 z=oPsR_G2=Mj%g>9f-4?6^CO32+C3d4&FKuHa`vAr&#WOI&doJY5wiJzib2;c2()v6 zMmSh0bXDzi3PjZ()a)Yp<91H29)8}4g!fa{+)IMjtCnO{Uv39&wiKs6@snb=s5g!p z&(}hxP^6L>VXy?YlpjIP+n#F4nbp7d4xMq#usF(GNw3)alS$f&leEhA|EqS%&JVlZ z`+G`zP2_``wk1;rt8D3sQ}b}CU;nH@(DD{+5k~08g0FpBjKM4h)x%mUdp~4>w%Wv0 zk~I;DHWngW9XgiwC<0pt#K!MmdEoa(7R=`@$gkXhg4f^xKQ}b!IN>MFZ364M=e$LV zDHfdMeRl4nTaC9&?cO*XYY_1}1WlI2s?Y8D0*MZfP9Ljx!)ayu-{|WC@k-uX^Au2_ z&e<4aiaI+!JbS%h=wj8elD=#Gob~mk*UV^5jhh|%QZC4!VSpu|l3%J;e zp8>xYcvHt-o{G}{y}n}qhp!tvsNu%jrgr6tWQ{&K8~$5$(RzJDyi3%>WK2Na^}l0A zKV!lmaBr^#XGsFrVhx08O%+*Gotmj6wc zu>tYQLz~)SHkux}x6|xFz3yPO6CBwG9*g_p*e9+b=0v?gH(snQ2DQNVdYO|z(0im8 z%=@q4K>e^JEn%bEsDO^>x!n?rr(bu9xM?u@Fy9{wKN0h*|MBY0px=+X1rs05^D_mE zo7HSDJe|xf@*Y=)`gC{GN3ope0T&u>VuqJZ4E~z)?vR;dZ9#dy12@|FUY@OOfT-ZnssX7i;e+8V z8>^g6;%$?q89meIK3&w)Z<-un=8SDP=Ha^Uit~YK)rXZ&9FsnHvBatSB*(2^-WYhG zz&;NvGgY?sAlw|1AzqGak=q^}UXUJ>xXbczQ4Z+e8MpebvOP9KwS2ONnS_T6lKB+T za8MP0Na?^TfR45B={P3l@~vj7w67)raEa^}IAzf&{YfmuL82uPnts;oZ`(|lD4Gv= z2nyJx=wOro-S!--p1NUqh1nt(`xMdxsFe&FyzM0KdTqgvU0qDKVuw+Vbo;~m5#Pz> z8E1t^s-+Wd%&I-BB*Kw(9uJCJo4nswm0qUD!pKvb!vKv=@7;kH-UOhgg-Oo#)3nro z99WN2`$@GnFX|JxL26f({uuz(UKhHKjSJPJpolU;@!dk)wBFO?CmO0N356Fxof<#z z>k8zNqN=^24)_#*_e8BeWBI8Pv5#v1yg3;{TF7m`1Zm#JVQZip4@A2*t!V%GELhA} zFKo<7ClzSZ*v5Lxg+|>$(DK7q^<{qP%Col~?~27_RsZqekE;*rBXvFh5s#Ce6}Ya2 zcEuR*Xosh&%TepDW2jMUUJtbdKkCg1)+Z6NZ;T ziwt{jZTNgz*Ot8+*n>C0gn00x=I4@?t*W?K--i6)$qYT)wUu|dTqvbKb+&y4>Tc8$ zlrhmvvkLXYx&m|=gO1Smc`|W9Q~f`YB1e*_$uIEe8ttbsvUG4(l@Gt3t>eD-Ig>!? z8v*54zWX>zTCiO43P_X>rwbQLkr$f1DofR-ShFjAI#g5quR|?6J6N0SM-~?qR=@>% zd7N4srO~M7=Kr=9*h`v*I{vxJ7)b{>OU%QRvBFnbpJt&`{HfVeJU6tsskgw&exmqL zmktnOP|wPQ(>7CQ<}C2r84?alecuM{Bh~Zr0@0TPDoGs<&dZF%xkv|A_?Y(FAatFJ z=U53!5Egu}ZHT?;vrHesBE=m?6n`g~jTcf6>ri}DHS69Rz7m!*%zJNRUnF`#`XPFp zR!XzF=EKqw3@;YnD63I8 zw@Yru*ImcUf>hZvHiOUfuoHB%G1M8^FhC*@WJ+U#guZi++xxNd`UQcb%?pLp7r6yj zelZWrHLT>DI5Y1Aqi(z1a27U*>bc1d?hw`L{8%_}yV^tSn)HNp+|?oy_zkT6P=%Uq zruf~|^tkhAfs~}ROU}XkCn_FRgeW8Z4aT=mcr5-N5aAYOSvOU!`6Drh{9LF8LlmNW zPOxYHEMIJa9NX}X28m=)Y#`m3Z`Awg?NL8A*W{q0^Joh1`34Gl@EZ35&C2$bP3#Id z0b5L%ZA7CDh!y5Onk35wwM99;Q}Y_^17Vxhs-B3iR)&E>K|J7%kg}MbgMY~ym>yp4 zdK@4U60`oU<4~7@jkpTF{1dYBxsMmyD>D}Ts%M&JZ@L=#)D#2n`(8LR;_NS|n-mrV z`p2h(n&n%c?$tnE&C)*x!Z_9^lebX#!VWK>Ua9)GfO@m)d^6Q?jn;_M>$I4wvOnSf zO95Ap1y(SE(YvuYo!l&(+L}%a^w$gwR!J^t&=H+U)n z`GpI|C~3*A_qNxh1b4(_*_^`&9(Y3u^k3n;S7WXyh@`wexx17CIw)cjG z)xXQMS8oQMoH@3WPs2DZ9+&VnpvAHa?3uN^jry?GB+vc+MQ7pSu7AeQ=uprR3GC@3 zXu&Xll?%Bpuorca7-G#oZi2Dvy@dLxaBZXJ-rz#R{D}K*I#t^OO@E9ACBFs@x!MTL zZAe1RDnyt(B~3@C4@N7*P^@?*ej-u~rhJPaK#%OrB~15_HC?*0HCTI>?hh zdTydhK(Hql=W4`Uu-Ct{JcxPXHGHW&!XgJVfaw)+(3P=8vJ@C3ZLnS2ma6POn>t!^ zp7}s&M4?j~N#>)8GXZp`kcJFd>vehraW)9;`r@VQi>zx(o@JbTlhO^r76OrKA9Qx* zDZF%)5({g+u6{peTy(#ORww!7&j`}q zWZa>>Ph-;4B-pmrO2d+4s&DIKPqTV_or?9;S{bi@{A`k2DFI%`o{8k>vb74Z>plEd z3BbicD9Z0l3A{bob7Qqwspw===mz!k-I3IPKzQLBa$(b%=NrDyeK}v>I$ZNDM#5)h z=Oo~oc*d2; zHK*2W|F5e1T1A~FzQ`WxzISS%NTYCHO-r%f`QvYlYJDo~H3T|t*L`|^NjAH=HFhX> zB=F0wHUs-n`Y05quU)$m_`DnxstjBd>moz^16o0i|z|4dDrSvI`WoWdSF zFV4&lY?JVZGg{D<=%TwW;%({;(G}n4uqp1%+3fF2fRk6Y5K6z6qdY21kK%;2c4FUYh}rjVI;((x(9&BdNp+%wz{U;A`uYK z_VeR~wtCLWlN~s#7_`*;1^M8RTZkWnNJqoM*Y*xldjBX6+P0(@d;+SilX9M(QKFcj z{p|h;IzeLk)hyMDxS-IM>}jjuwSbGmAXW=_7StEmZ?<^(0$|Y`dJi%<$#F8;=m-+B zgod$#Ghq~jY!OM~IDK!W9$M3l2e%+qZVL|BUWZU0dY~` zqP}#=maTt|l^}#p^7}{GwH3Gz3Vb8vtLbWCzU0 z;^mlL?6+$3?nM^Ug-^jo26}U~94Pi;sUvVZye4(&FvDNy%-E*a{dJbPhf;m}#_cA} zK6*e#^FyxiWSfuicUSL~`8NctP7Cbitmj_nRYzx=Eg(+L2tY=wD%84zk_e z< zYQYNvW&NK3gn(cBKCG&w_tUc2qJ!zH@#$hVppIldqfq9+mb- zp{{;gv7XKGQlnbw=v|Y?*$g*dN6n9KJND=tcwDd#yd$z*A;YIa>OIBJedlcn4K!^k z@%u=V+>*D5A4JOm%|keWgt>)CmBMyiQ!oNQ6Ymt)!jB3?qSq|`g#uEHD&U9Kd3SL% zGJawkgHfygL8op(?)aa(0}e;if7tl94MuZpGe^9p#uk^4wgC24lVZbDP?pi{Ml0n` z5V3WhD!hCbWZi_FW(t=O&nW-h3bV$g7~rv0f+>KMDLrdm1LtbvWD`(0fg;&3R_A`$ z(`hyX69_*n^kSuEQiep^ z^J_Kc8PKmWGJ6jD_hC)|_JtQ!Shv-4(!kmypvfuSis$BLRNGccx|;vcT$EWYB#t9l zGW7=KAoSw~(yL=InKyHhYxVykJadc7ozvId+;;8IF{DT;7z?Xgulm zNsx{;`J1X`knr2V<|7H3Lr3SMqU}&$kb#D~gp)2Yv9l(E4gJyjSAf6^Uw^mNWHsikNQ? zT)uy%^%*&ue&%3XqgT#epE0N;@!EdwM~*m7n%A+ZYCv^e0@)}i4|4J|zHI@Ef!-LB zal*9)RN;~K4ehAbLAWby@B1zP;8zh)gumh}U~jNUPd&(Q5!06I(p#Z!tKvnX{M{3q ziVpm9SQ2gJx@GV|=|xo!b-)M_om<-DDOp=nByhr#rkKHAPAYv5KkUw~XNb4K}uTrZK!sfw)UcIzWn_>(SsUlJ4&a^ z=W)4e50YS_Sged)Y2TJ6ULWx-?VZ*-2jR z)=+=?$L|r0u$wIhx}TqVb#Lugro&VxXwEpLJztw?p=f;FO#_Tc&oF|xS zHf)N!(SP>VF9SGo;dpm^Lwk8T!2d!| zkA9DL^4kfnDq3qF@;|LdF-e5Z(lixcG-iObFoN0TecUBPt*zy!c<^}wrBb=hyhl^Y z|EI`n0ij3^r+5pcDi<`AAdgyQ)9eK)E7xP@5kA3kjT--1xGk8@3+U$%C6m=4S`{Xf zatP2>Gd~C>wQWjN_o;W^mUbj!XgNtaGnIhJXoZfG`PHRoUJg2%QX9r#?VEVGf-ojr zp7dhs8h8alpb>VEJ?c>JHJY)Ijr8Ehu$Z*U%LhBoF27O%a@xMzw$Zf3Vy5Vvk zfQStSwI%GkRzA%N%?aJ*0<)BwSBTDaDCB^KmuDHWRTt}N52iq2NtFMnK znY+SaUUWD{PS4{ZW93<0o46Vf8o}}nw8bydpI=_)b#GU6AGsjnm2{|73XS1`tC(y( zXuBhwy^;iTJe09##PTf607}Ru+&{^f< zrt21v+Fc_}dtx3u32D*{IBed==iU&AK0lDN?c(&jHpt>j*1V)rC5`tnPT)DT+lnyo zVSp-8+%~B4dY&s<>~zIv{*x_?|5znx>j8TYtsqP4{Ix%G?C-juL4}5y3ei0t^%u6> zI`V8tYkslf_uW4A$x0Au4DBL=MPL>1;+|Jss|58xsKzVj=REAc$DWI^A>=;#F+SoI zq)WU<=yuk}$bEPDoTNwJIzTTEB6qS#_H2E6{x(FqxfQSM$d$<94_^w5o_jfWioOXH zfmR9*>ze-}U&(yWJHT$rm&Drwz`Yp7IWN-XrtlVUXiJJCg1m%mKusrNK9VT5tXiV~ zQLheC9LzCvPOhk3ST6v|D2Vl@6LRSrsJt#I`NwMM?^k$~6QV)5JAc1l&3b?vf_W** zg&CsXxav_ps{5@n1ID@=_Ip0a{c$KHVf(p0X8+AhEWntK-(NQEU;dTPyl{l#69+N= za%m^)6N3-Ht*&Wz#lX|tM&!(;nuTl~uGR`hpeA+si(?w1VL0i}0b6Dnm-c}jA-+!~r(hY*{kk|`vNb?$-g@68OO^Nna8>Bw{T3T>7= z$NQXg72VOK2VfCOxEz;LKF^^rpneZe8wT_v3;7&fa+1*? z57&Ygf2i|l4*~Affb!kE@5|BhzKKly1&%3hC3aO`6zHvyKk>$5^jCN)47j}{)nD#6 z#Xt7K%tU3(Lj+#?7Xh!Wr!@VoDVhSswjm9=)?)xVVI5ry{1tGXuM3y1w!W4@y15C? zqs4&vg|It%-|2yH4#q@31;x)HJS9fcwGzv?gjb_fb?_XRGeBgld2Qo~+uql^Z1_O; z7$Ed=IzCoiqzjU6?}FDpt+qfv^t&U-old>^dKlGyjO?mn1gkzU&PSp-4Ix1ENYlST zl&xoYAs=uFN-tA%dXtRg0g3ocXW;TO>1D2c1kOLiw)sZSdOUV=hp^eEq5$0i@M8*9 z))6kAV4hDtIV0Z6s}redy~c(ESTc8r>ZXx?7Itj(`@!3i$;kFYYNy+Q?5Z+ft?(uFfZX2cP>^n${bm}Q0cXhDh zOXp5_SZ%LmrB}4XA4w3`Pz)Ppw@10$m1+&wk%CF(i{b?c4bJJD{CRGa2D&ttxAvQN z+>g?q`^?hyE}AaFHE$|f)v@bD)wz$LG=c(49JB`h>L-^dQ*DmF;07=zH(CZRB4O6E zPxPWgkrxhAd|p66FwHqAU6AJvnwUWz3g0*Rhk%F+cvE@&>Ta(rE;q@}AzS_d;d;aG zSw?cp=P{Sh%XdT3wPL@+DC3TYr}?@Ra2@(yIqzsyD8_4=tF7p4-_V52ek>11nT7v4 z*zG(EXxa;2i#Rk+)kO#JOTS8zGj@9)sD3S=n*Qg^4_Cta38-auB|%w+{#T5?hmc;i z9ljyag=*)N<1K5Jvb$QZb@nx5c27q!XKOB?)q=^A8&R5}{@q+(%$*&Hp$H+d- zqug$04IUds2oNOi5C8DNawH*VV|6r7O(QVjk9f}Bq0`mpe^7B74z|3)SxHyE{Dgz) z?C;%xq5{`fm)00x)x-(F13-N<0U1nm0%-Acj6wu0W4Ck<*y{l-vz*@K@)ysA{%{~c z6n;SSCMXkeDM{C;z{n8pc~#EawBj*ZGt8XBwoygQ>THnUV@RQ{YbQ4%@r%;4A%18S<-!faj8+#|9-|Gh(Z(&g3RXxPW&K1%4eYi5I^S z{ELYpytOwG$rTM+%Lxb>i5yi*<;9mnu9Wi?0N)YF)Ekua;0G<~RNk_cu1zylvB>^F zoby&bCCK!`#sizf{-rB9PV|K*ihj8)T5a$P+)fppjLB$*LSS+i$)Fh?VO1g@W)^ty zzP;o&9PDob0!b(@v?s9jr^BOfro`3L&_MfoKPw;2I4MyF>W_>{LlT4&mG&G!Sc-5gUkJJ-8NL79>3l zF7(&x(UMo9A=Ism5BJdj%K+65Bnb~jugd@>6!;k#vC}_jyeQgFN%rnl0tmoX7MD^N>WJpD5e#1vQ{VfmAQGUA^dDdC9{=VK(Qom#00cE)2|DcN;t$vd)b){k$D!>xpnf52N>^9!U0hc!aF>4Yq&s+25bT>CG5U8SOf6<{ zj?NJtMv=Ukef*%rfRxXpl~y~wWCb)r^)(m(b8)iSZ<}VpqZhH|;3rzFkI8$iEPF!4 z*{U3d)piIPpr9kFoFx6qBK5_&7i4*ABny^tHf9M)YkT+yyTG7 zeiJa$5bGJ}QjlNh0Tgg3@RcXh7*TwTtm?9T!V9qR6`|!kI-sdqKRW#g526FxWVCrJ z3ADY?2615Fz(^*`-Hh2eHS1@K`$0OyCP%o*h!#r57f+UTy+na*UW4*_{Ry0CD|!77 zvAsG_kqjr@8er3VOCNqTj<8XNv4)a_Ln|izTVQ{FWFD72c#Rz&pv=pAiSjX|=-;^c z(DEF6Puq*@L13$Zoe&q;Mc_}^IGC2G@if8I@exVn8^3JUVTHZHi+r*DWwCt5qGjAU zq6VgrmzrwtNaM5qtVoU1ywXKEHF`gwa+iWKmvNAi-d}EKp&CRQQ@Wn{Np3_Sap&Xc zolguDy$Vi6Ber2+ta7N6>#>N~c^=cUGVq<3k)jG3a8BU3TM;Qr+t>gPE=@})+$Uo^>6xPMMT*l$$gG=C)SuHvI2=d<^$*JZ5^ z(6rO*?ApzdBxA&3B%jB*l(yccz>ltvXAV&DAMI9poRwvPU%t0U#^w z;h zh1eWO9$pWi89{eon+Y|TN#81O3ervg?X|hfnu9MP>PoQ_nL5#c0MK|PFHCTEy>a*4gP z<__)jhlCZt#fP%fkqX*$<5^yAg?A0x$|nFvlP#V3A;)$-cTlH=3PVo}2-p{fdGgig zWQB`ATnykVr~Pg{UX7?i=|&%SUNhulyuk&&j-OtROl;w1fdkffEPsTK!+gPh^$dqxt*)XQQ~CNjNngK=F6GE9{bJxvpfMoP${_i0Ivdzy;-N1zFv zfF%uV$$fY56US3tRT&DGc$-QejXnW*BgY`(82O~ZX}#*m^=2_=XGE>GamPf?p*)Wz zUIw=#yf%s$svzKA|IYhNl(pd|KobB76bK$#Qc`&7n#IR$+%L4ok*mITDXf63jy~&W z&bo(>?~15GvZ@td)c;h$rjV`Qds+~bTk?>%^gZrnyev4kd0Lz|;TT*TZOJ>7W+C!? z*~VQSAr~4|FKGvV2>sA|YEzLUNjGc92h#N5;ak$xkJimS{Am!-?;aE2B1X8OKl4B? zV;XO-Z=Cn-$865kr%n^quVR1ud9FdV#r3H{I&@XY>-XnSR*w@e!uxHF`{@0*Nj3^J zGGWbNoEI_Yo>hj0(^>90%wdB!h?;|l9tz@V>gH#7=VLaW$s4t?Ge07-fE-mLt<-NK zo~JnrJvty6fJy>ed{?$8EZ*^gYXU^mdvy`;VeA%t(omY01;!A-T_{J6?NsjO&dzOq zRwGBHI~z(h6=wmEpoXp5XHtT{UHKx;Jh}0sv7}eUp!yZ$c=OIB-8Ax+gKG?-e-5j_ z(`zpK=AEK6KU(F+y^i6%$=I@n|5jH?Igb%oI(di7rvk>6qA?)rMn9{|&bU|ccP{r& z=lYs|VZoE3k?7ntl|tQP@OTBfE%z=Mql44;rL78QI+2FYf$7xm7mfhRtaa3^ekh|cpazd^hZy5x-a+Hr?vY4Uo2m+;4R1mwRvQUn^hEIpg)=? zki&m-OoKqbC~YmEMInslO`s(^&h1v+q%Kc7Gq&_?SJOgI;Rz8pEdtg|_E%|qYocz* zwv8j3KI2EVE73}VD%G)+mxp$vtvtmOBOYCEo^5&YR3=*`_PwP!(wq_0J=^Ur1;Pzr z;xZoDeWqPUVUfQ%hVC8IXT5FfjUPD8*NnzXTOIqL0Y+*V+5OsPQfd-3+IZPgU@9ou_AnT`)la8} zc_}*bp1*dlQROwF4_9Jka)t-5wf(`H3iCqQSF1qdGo_bPqrV=Hx!xO+WhS?z%J7=eOcb+r@iw5-9BOf1arf5gU(I0%!HwE{7oG%-q|LbpRdyH#t z&q-cqO@MMhWi>&<3RBUYS0^I4iv7lYa&`00-CX$#Koe&@p- z(?_?okMiNpUxE*J1=N>-KLmD}zC8CK@?A>NJkTSkALwVp5eAz^%2O?=ZlJ6O zn}3FM6aSeuUGB0xuMqb^>C=8b&gK>E;3?{~>sR$G;0vJy%(~V6U#`vgkz^@X3o?q< z?N2{5B-|5d=d9{-WZy;Y1Jc+RA44DguOoQFA5L5Dg?`F({97|?>F3&>t|Q_?41)I4 z+7nwONeXI*4(xO@-e+!kfGFE_;V^7*XJ)-px%Gwe3z3J=wB?fdMErFFmLLqXWJ*xR*D zf0Zv5*xy|!`Pz0yZ1nG5)u(XPZzOg1(%54M_Pa*x94AxuWfFyg%W!xgLqk z87^Uq6-w<;kl)GlelV{)j&UV$Yly1x@>)$L+84$iZM@yIqvbxX_Z-&wVElQhT^%8WYk@uRCDhlrc>xnVS!JTyBIahz(=ma*_22pxJ zf{{2Cd!6?m^JA2fmt37E%GDfw%C#9|<$K4jclw-4ixw=OGQM89ITF!$#fX_Cqc8^; z2K|Jn%wJSf9?PLF2{WnUW_|pMi-3LH`vOY!Kip_Q7rlDlKo73@x3(HsZ2aDlwIJZy z?5mw?zmVT>v100DE#t5QH`d6Hu_E+7g58wG0TcQ9S=}Zv=%hpc{OKK|L2%k0X?gT! z%-m#Xwr;+ZaJhXtQJUDiOt<-Fx%vF&TbSnGqtH+4(i;RjV#K*$D{YfF9+Adq9 zTwlPJyqFV!p6zkXufJ`NW~R7}%hYll4qVW5QKnZfH+%>u!z@ zbiyR`Lw=aqZL7KYrhYw%eq>RLgKj`zRJ`8nwcR=duZ-zbEt)FwhZ!p)Ka&O$7wyu& zHZwjU&=(cBxOLAuuCxM_tMH##yvW>OTlVm6pe;6o|FiUaO{k?%j-ubaC9`FwG8ktL z3Fthpy||@xO8wBp^oEbe0FIy~T}{OoeYmioN!8V!nBZw@WXjoYvKD;7mayNvAn~_+ z5PM#9ULJlwWjfSsya578bfkLM2kXeexx}N1^&f*w$4vaUwRrh`_ha2tOxdNG zhT*nt+!brPB_qVHC9J02bz&`-^aUgXR`dYrnrn&_pyMatl-`UdpBs5~0v@k_WwlQh zOqwW**;9oBqbq-?FCt2*YwocdKP1q*^ULK}WsMZS7F3AS^Pojq**UFE!0N!R)uvy#YeKUS9%vh{78n1@S$ zJzRtuH~VkRaM=9^ahdO4CbQzA5hAm%Pow+r6z4V)mOJ5 zf0&7~KAboi2I#3l1d(cD;G_+cspca|Z)m})dPGB|T!J#Xs?o|R4C8>bEiCHdUjC^> zc}H}u__T6`{wyNV0*|yr)I9*5Vhn5dxaP{+;_a+&16KG%owM~9npMpVgZ&im{eSI! zcUV(Px3{2(g2GWLDwxCq($f=y0Yt16X(C7!5s(@np-B_5(xRXsf?x+kh>A#&rU;R) z9*QCe5{e2)@9oY`z{64RdEf7T@ArKF-1v-pGJE#ST5Hy~}&!C9tHG9hhE<8%*?P@AQ?=;d5mxqu1uG4U!f0kl5lKf^FXD7PO1~ zTi#{w`U&$b8vts9QU`vkY4WZarO;#5U@0E@Q=FDZxqV(4*o{Hs*msNK>n;;yL!sYl zz)i>`qFj@@ZVzqgorinD0+%m#-T^vv&NqTt=jor2e*5GY^ zf<6J`;v)g;U77F^|K_Z_QwMf{dr#+oX#ak`_t1~`#yIjnDuCYd0d5tnxsqN1-6z7% z=TFC5`|KUY7W8#J-}G`+?wL*r)5MfYb!ERht^Z3ewz38Lgrhv4t)|X$eu`@98=X4a z4<0NU9tzzA*OAWb^qm7YZ{zR17jvP2dvIM6A1SByf(O|Yp(lRXFFXbL?b6kyM|`#= zTEBYy_5A$pHQi&~2ylDglXy6nBV0wjs)b)1Jffn%Kh8xe2KEIea@Z5;%8*{J7~{_Q zVboF-J>zRAH9W6aCpd&X)34RI0)Ai+Tj_G>9rO;7+P9M#n@%fNSe5ZaB^YNRBY)LO`Wu~GlHt{&65cp;7PP2#IG$GvEcd8ju*3TJ~ngU z8A0~i%)f3Hx>>(`t9SUF07k(c)v&pik2%BdBTS9FEeda+D=Vt=Q$2@{U-r84z}6^4 zaFN^T^@;+kwlV_Y4ul=X?>Q<$G~K<|o%gfm&F!TZu!52Kk_YB)W3 zch+$Fa%oZ@GwW`(j&n6CQ$=NF((D8;qX16%Y&wv6?)JvjgBCSOQZ81)mcEJ#Cr_Q< z2);eEbYqpdIGs%J3oDtZExBSaB~+b+c2?pRgW}dxej$vIHf(8eB^C`N=te@?xdIMb@z z{nqNQoalGW-KB*!u{)@0pZl=uEZwH?3h!j5pj8)8#t4BLt9|A_H?Dm}F^aYv&_sgQSXZLGo6_fq)w9rp9g zIfgd)Zx2fyZ!C6uOC3;Ah|hTb&2vJy+5oM}CdsehPnE^1jMU#{kl&k^G{7Qc2XQmpg>7-UdN%-VA@XO+ zw(0q?Ze^D)B~R7Lbn_6RFYR*gjf;6V?NM=ol*y2;>yBP={0_t;=+8ep;-kSbGV2(U z6BOQ%dM{M1Ppw9O)tbD=kKPS#5D$CpOKtGqL-w9msIlwcJObBFa|W=;d;XZxKX5$} zS=i=VWBrx)yE^rI!K_^Nz__s^rWbzNV5(LBz}SFEKO|_u!Oo>sHNuu%>K+6i8Npfu zw+}6L2~C!jaPP`YW*K>b^^z+<-N%KA32vk>-=ggLiZe~^s(VfIJvA;xywv39<>7DD z*DrW>=ctii+O6chOYdSKByHi)+R_cZ6*&;1eK zIQEUPbb;m-F)`!+vZ$zk-B z+XXA00=cj6U0yvdo`gl}I_7+L#wLxTlU$pN&uunp^7alP57$0!Ixj@+l)eW|-;!WD zTRn1+Y5*x&f${^Ftn3hmvba%Lg|B#;)*BsQ`CmX&3!}F~vJM#7u{=CP! zhwi9ZIMSk$xoe_G{M5w#_bn*#2Fi)$nR~#p=J4W0^pKZi3+kJKH-<`yz82=yp8dvp zd9<243VVFpt$bC)1qQ@8#~NnRbv_)XElWpWF8;Thtx<+Q&YkaI{@v0$3kz`rha*+w&n#Ft%u;>({or{jv4)4*`E9zIf9j> zy0kPqsyaWpEUp}{JW_X@L4G3(S)Ej19bRUK+(`=C_U_N9Ki|Kv!zxf6EK6(s3SQUM zTe8in;Gjiy)}H1z8HGVockvKk_j2;pZ|)tFvTS|Q^H^HgCMH;dhZz$4WnIX5k^S~C zqiY{zjvnl!I*7aS!KP9Nrw{!J7ABhc9XnuV02J9}(5y5kg{_>O}V5ff0|7p`=WT zi<5y&*PZME*V$UjsKUXWg+h=&DF1VqADEMGdp!uScIV3aGV*1=-p|=zxITqa{o6Pe zi8?UcaV!PhG7~~krr(2StE&8QT`|3_)!s7y>f;vXsNjnnf3Irh0TpP6jrF3*S1_ z3PxSchL_af&t0@=)h6I_B`b265$SEWvubcD8P}9sBP}Snr$C+Rfev$7s2^~?4K}7j zT6!FyBgLOOFb&J9+Bd&Cjom{x1UWljRJmwsU_Hf(vmyzhU47@p)=mf)`e>}S?sy4Z zJEN$iQ4vq)tXO+mSk=_F^tNt4SOxhi@3)89J$+c6@5oL;@|8CgcP%;F_!Lu-pm}*F zL`+9vE5uVPD@TPVkEEhWb!6u)B3dyfMpI`@-`WW=z!4u=la z9UTR}DdiPQTe}Yjr)s4+uE_LC4{CE%k4C04dLUakr#2;%fz+E?{$5pDAYro3S{1f^Fh62w--RxN_1NlO z$L+!-Ds0kLF4hgmsSIfC~;@Ne<7nI(L zWK()fS7W&huwl^wt)DtR*{3o%A&n1z$0T^2gCS?rz}y8Jn%$tiuHw;GPJ~Z+2F?th zB4yS{WR16NX7n?A^VxVaXUW9tCD`>&ygWm^8A3U zbzZ7(`JLn%c;21(M9mM-Esk%@+SulChwF)6led)bH#u8|-1{RXz+}io;%;!~x5eGo zy9}Zlon~_{y9GPrn%T2U;jF;Q67UG&JJrG|>oysVVe`6!N^kRyahR6alsMMy|5P=> zRV9lC)@;ALS;D|}_;e&YYCOdpfTuqZ?zW%yu z=lCb3u0sq{^GjiEj#bK1#(&WNJevEx=#<%jHpa~A;kCh?62R)UYnFEk6sfzqwD=7n zRX}hze%P%T*-(>C_Pp=W}tU_%Hbul|&q1v6}uGi!sk~E8vnxxqB=9`7h|fZY#g)lg^p5_`eN4fY?KT|J^x}m2=N$r6 z6G(77f-AiZFMQEm;FpqC5Rh|&lqqN*HXKS<+awkZqRx7jn+W+yN_tK=(KePkwK*>U zKk7egtV|{Ls`?yztX={C=vn=w5xhXQE z#{I5cSCHy=RO$CDCiT0a}Xf<1@r78ZQ z1vg@uNYRMr1WicW``3S>i?XyKljzamU8$5k+7ZGS5so2cjy;x`YjZZ6diJE9?d4lv z*u`uQDCwFo8}R{Z^>Iw>cJ?gf6GcJ%8Dlx%tb$``B~a-%j6!s#eB+EBSUTk0EDQyCe#T3DHqucO@II#}z@?_3t%)n=3c`NA<}=7CLYFF$~Q7vtl$M*^!ofCs^U*qyc~ zg*D`y!fS;a8M1I_f9u2vW=$-00~_qJTBuHfyIWUWmR)>f*ZT4f!I5!~`gtRaOfL-J zX#(&7X7m7QHx=#cS7LLpw|gKX1-O4P!7d%J-(&?jA#Vs-yAZ&i^6h7~-hpB#xOs96 zZ#{4r=Nn8-606*9kzM_yA+D|_eH8`9w>JEn6Zy3x-6NXb2F2ZU6W$_@z2BF%wADzQ zZ2eYTGoLaetVmFo^PN?$@Wh8jmb; z6ydSZklLoPq^rHDUHK9>QbK60#HmoE%^>DL&>qPySxNY5WawGS10nDz(aoc4>bP@? zq=GJv$W>TJ`i!8Gmuw2}9?x*?Wjwh&)fWZBCD6>^>O+ur*G z8Lbr{X}lRVTETGzoK2 z=}QswPE|ga48_o`w=o?S>7j=^YgL$!UE4F$xG_k&D7d890_v>vxSF6Z;G- z5nVK#QD)hU3kIPUgnIOdRlt~2Y82^kdBX0 z833-0R1%$#(B_^qSrPv+>kkE;4MvXX>7N1AwxOYAtyaOg!P93aG#0fT;f1^cg?c1QVf6m|&(-Sxp++J!9bX{kMRzO}Ys zsx^1_IVL5Hn}Zrj$!4u!KZhVwLx125TEy%nM3~geFWBpDCT+aLP?9 z0!m&`$(Mbm+l=~|4GjjbYb=jkJL=GE-i;)89!&MAirL5)5=~UNS5Q!E)gBTo>6fGT z-J4wSzR*u=#4jumSkiu#dQte)o|XzuIB+Sea~ksa^to?LyB&$-=tI>=-%1cN-)ZxY zq_?%kcGS$2Okd^Ycxot(1XjUYU)6#>=tEu}tN*RRI=T{s=>ioaiXF!1OcdDmnWgs0 z^mPUs-GdlkQ#%d30}F^+sp182?gx7vM@a`uH92^oUnIhaH^Xv3`-jpPjR-c!$U?TM zB0D;PtdI_pHLQ+d#ay2}GoOAp+RtesV2C)Hi-%VW=YI&Z{AkuP`|OY>okS$M=Y_HAOgn1} z?z1!^hyFW*kx2E`iP`h0*NA1K0B3K=Sizy(57{B1J|6YwJFlk1nQ+~l|aoZ7*sdCeqC2_>H1hrT;r4g2#&4{}17 z2gfP-Mcv0?sp4ms9pni~O~0OVH}~#xzFZlUN$YGKX*Jk@Q#en-1iM%$yMW*5;nV2bfCL2xSTY1IYt7@-;AON4zwa%}>Tzr9vjT+nFbpP%pGag;PB%kRkLX=IXZvqg$XN0FF;MQet>s!gT z_;{qR8#8_Y}aTSEYNRINgz79L0q}WI{jAR$%^M>jFU_dd^Px~F@ekP-+a^nRc-J@Q58cq|!S4o+0 zN9}J>IcY%m9~UtN?lZ``Jd4~1J3qRwcX9z0IEaS02^W$d!;w!`er~m@bQdk4gjAw3 ztJCwEn4g{}@#G6Fol0;Ikny|FA%g;2D?ZeSYggaqyAs5NP`H<;S*|38I+%T^8LyUJ z!3``?L0D^rfVfmg5Enb&Fhr)z8l>M~+x@lnB z#+sNTHK`BpFVD$&mb5HL&s{a>&4*4ysax4~Caq_K zmsV#ypFCE_jqKiSSfX_CR*=>*5LVn>?-{?XRb;&clTK@s{#rxy(2~mRy;u8+YJAl7 z&6%X)rBMkx9Gw|>5TOaIQ0of{Zp7EX*;z*T4aee$0BPm7Mt7E@q}ti-uC zqr#bH)tQ;VY4HCnz0iC5W8WN$o>(|JR%01BJ;~b9O;<`6-xVUfcJDT-!q@DRqfF%j zRq3vAY&)56L^!`}!{zi0)q)ID_Xz|3O#u;iy9W^ELuu1S^{;7-);rxRm1k2jM^)7u zH^bjigP-eeOD<8mMwI&#e~WW$riE#x?HDftjpMw;paQ6aqat9 z3-N>JoMDqr)o7P7r6ptYea5jtMqK{kLpghUGgs+?~QM=z8^O6)WT}6EC1!Wn!*jI8xD`1 zx11SOo$DnQ&U`GK?dYP+DjxBoA@^ z*%V>^qm4Mn$2z-YszsOgo+B^{5;>) zZ*CG1&&)Ss9@4iIPkep2^$%y$+UM}$+=FeGHA^BNDA!KjztHjhjqKhmdoFqc>BI9~ zalsY%4Lq@m(mF@ZAAC3b;W$h;bX$y@V~zUIjNQAKYSr~z3fjNn3crY}Lq4uHfFFtr z4T0QcMYZA7_Nf~g?>;QM+s47_u!n(_3sqj{n3KJm2h`Qxok~+bVdaiM@gcRW=Ia1NCS^!H1;geTv$HjK`Uo4&Oc27#@V%t;*Bsx$fHqc z0zw{(M=q`+6gccmOT>C z$pxi{n1q!6uOWXD1Dn==&9jr09Th<$a9I0C?h!~eswX)1yAw2Mb&MCP2;>2pm6N@-nv0#24WJikK(lc^3{|wPyxE)q#_%X;t1Ykv@d>eI ziXfm+|B1r)KOF~)Rz%>y`r^RyD`FK91T2A%1c)Unq7WD&9)TsH*aZ*hgw8|#u>>^d zh$TY(|EcgToX3K`P=Ur+D0nQ;I}{`UMI0z#Ad(`2NCe-p7z7?nPJ{{`gTRpRe4ro* zcme{C2ZIo>2qF&jRRjc}Kpi?l=dqxm(Fh{A9vYLRNCHPr8+2qdgC+7oM~DcBDX0*D z;z8Hq0ppx8KwmH~yN<;HK`62do=9RJNkl*|XeXdCfI-f@I500B0|Y~YuEQbl;HU_M z1s&N11N9@Yg#aC)`PqvG2@uc#1j`4_i3iuPg|a{#bY$xfG!qW`f`UW@kqxm19YJBQ z3p5?4@ZkZA>?KDU}3oyj$q0776@Teg(ITD1)Oz+^x$u# zLOijR2`ChF)sImiqEIM4_PO~1NCXntkemW30!IfRJ@|WJ%Npnfq!Wt@TOS~uSSV~= znb!$O9~KvgF7|gY2BaGc1>&55QUq%VXoYm(H-!Y|VCw}MlGI;iK_?cDKo#5_wZF^=X2Fas_Vc)Z?LYT~ zzgPqL`ME=CEBW{ubtI$CkIsevf$=-qCGhOnZk`}_oyc*U`y7Zm-pWWrl zns@|Vw+A-9IRqYf_Oicxz)-sB?pmKY0XxY{$v$tbZ;bIJTx%+Hhl?V-7af zz$gB2UVAC-&cH?fa7#c><#Aw_qlqLO@D^Asa1;xn43-4U_`e8cSQs4207bwXzV5&f z3EUa(MRHrITM_)*LXWB)$7a7LS#N-M;saE(?$x zRnfch@>AjJKO|hTw>K-BZCV*C?Sd^&~P-0-)x_5#EqUiR&@p6mW7Yp z*B|N=ypquKuw!a~5v0BWNhQ$FV^RGmK*C)9wL$B(d;qynFa{1Wz0kQw` zbm8ih4?;`bX!=)nm>lw~IDhs~W)E%R>D9)y#C9*6v#(Z`rLOJOKesYI4N- zor+lRl~Os(*OSJ>w4r)tFh8#E_HsxkAduaAbVx6c~oz+%50o7QH!c(d;5zz(y zCcV`qm%|&eYa?)H_isM?AntDUGPSi~>3hQo?m|=dkaXHP!|-Hu4^`gTvPN6c@lB8M z!@>3|FmpGB?V`ws;=?0^rJ{QF4+nSdFPd=?9HBmmYVp?WsuuZ^bqfdd#|aQ~$Y@p>eIrJGmvj0w-~+!luP*10WJ zHCtE}_VzIBh1t2MS2o8E>PIDS?l4d}8LJSV+tg6$fa{8WDo;I?{VWfe7Fl%B_CoLr z`)k=;*U4P!4R4e6)J0)$YVR3HJ!)E}5|ZU2*le8{6!UCz*G0rJsSR>!RVjPci8$A6 zzl$%l2o?Jj)7$*o;9hC;`k>`phZV&ezBKe-Ro0PwOB2S_rs6BsuUxlh3wa{qe%-om z6Wlw@+S<}J4;_}~?U+FwT(V>xxTF7gqQ;es_E(h0!x_tsCTF=4_Z^Dyg-e1!rcbcZ7Ck^Y-Y=f)@XOVFmu5VTB@qdJx=P1Sz2U0-RVl{>NYi+qf>c54LS&!v~N-f-EOk zFShaL*iH;Pqr)+$n0frcwz2><{vCoWMj(4J2*3b)n7wEO@CSeIx)=tip%*8KylMLk zXdopC5-e)qBBZqy0u7lpq#EYG?FM42`EH90;G*dLFO;+>ZvLxralEz{Ex#xg=WOrd zK}E1Z%ipjTAZ$T;9OtWRWe0LuNKO0W?2HzNT_`a|@c;=UHUsnN9*{`->tc0~)P?eQ zQot{|I#Fm&_Qw#OSOt;-TEUe~zCulTRsuB|E{G)>c#obPt4++w3$33h;26yqb zuE%W=$E>U!!CZeE2lQu8WlwS04art&w-N>gP>~`UjmBY7Xq1WcBFTBX+t~7fECPxT z&;3vU{{GwsDEYMw!1G`F;enb# zpM`m$Isq&;^jXw~1>;bq)dsq)LA3M^prG^`|x*k?;%6IMT0j z#-mZcj0X()FZAIF#9#QplSseJp@<PK_8vUjp^XJ>K^>`&SNT|*%CDHLd{ux-Wx h7h4L*=CHqjjY_3ixzpHc3A7A{!ShK-?9tiF_g}6v;kp0- literal 128983 zcmZU*3p~^NA3xqrDxI7zE}_wJ6bT8rG@PhbgpicW7LJHqX35->q!g=;B59IxjinOH zWm2r%mRwdW=R|n0w~CIX#|4k`K|U%v$31+!aVmSk2OLz)%+`4a z{tJE3=>PbG!$E-;RP=-&&^cx2>F4crLB$aM@euw3%JG871#cC7`2RTWap8h@NT7-V z^y4}mM_-SB&jtFZ>=XSqB*@Fr`+|xqc8!c<{tM;D7r2_GlZa=;<41 z?*m`2V+mdi{54L+7#`k%z`!8zlP>hp|8p{+UyEn&n0KJh1z#0i(Gw4!I}hGhMd$E& zFbM~}y@LMrhK7y15aR6-unwPjv-(@f`#1LLmoIV67yFj@<^t-{40~zHe5q+^krc~c z=!ut}t#7gHVwYI4(M$eTj`x@pic8S?U* z;#qXT+@sfW%^~&4i5omhh{!Uk#S)a^Q7p#%!$-3;wk9tD>cOU|Okz3{VtXkUKzpJF7uUXSTxnt(?(Gny4XBx69HxnCW`?erj!(iKeDu$Ds81mK&Z-X65 z0IT97vCvgcgsN1!4XEx`>qEXhY#o@8_hy7_m=wDDeB|at?nKK?K7DJ zk8jfT2Y)8D+Xcv_+rp3WtEeRz;ZG)Nn0@R2X}N8@|H7jR&cvJB+9u5r4#l(mkN?3= zJjo*OD|xyY$UBZo5g4>K7eqI6^B?k5>yvjEA}en( zWB#t>{L|S6OLC!YyH2x{lIfI*PQr8(?twFgbgHi7O)7cUTI76E&W?thk%=4rnW*~{ zR^GN_J@yT(z~>q$?BMswg7Vy`;kZDJ8qV>O!uDyYg`}bg^nY<-e`WsdiF@m|`Ahk6 zb(fCxICpHvmE(uEQ7UM+x3Y&daDL_vKQ%Zf9EE3u9G=B&OLvW#moX&H>ZQ1N%>^j? zog*odHEqYdQl^gaCY86pZ*v3B(8jN~^H3^yfx$Y_{J~;@-MD?IepYil(n!vfh1G+$ zVrJmO#`q~KY#S!s`3=S|@_=cQqO|hB&(t#;!aqc2qOR3vJ7W9Zk$>1zmrrOy1Lx!q zZkm;mv|A|1sYk?8DMMyfkzy(gCQO1(X$Q9a&v`f2Z>iI>vtZSH2fod^MzRK8E&Yp@|J;k25yxi|?(r z7rn=i->5Aax?e$DX@sfWy~kw4Ab6`Yol5%^c7uIzq{A%X&S)gn+O*!qT{t!sWscEF za#GIDS6_E~@EwEwviwOTzDX{k-Vo7ffaq6C`yvOu_Jonw!^V|h4=OAT{t$#Jht-p# zb&M%<(fJpQB7S_blJsO~qz+g6tgZSlv+wTgk4;zB{gRfK-s5*EQGsB~{HsOyb)n0a zQG~~dV6yBI*!OX`cm8Uz>srT91!FB7s{_J`TTXO6mR*YB*qC0B_;=JT@|Vo5fyWe* zNdYA{rfgHZ=)`p>NGt$c3uQiJcMNXx3*E_yeh|6VaJ7~GrcfQW7RF-F75{T)DKnLJ z$>D_&Tx@*+KdRZweJ!U2)#6=p>+iluTRNdC@g)B*XZWcID;lZtUIVFu)0{JfM7!ft zVw5>D*0W#Vl!dQ4rh`n|?5s#ow9!J{N6~KN?J?wQrtT>p7u=(14&hC|jh(TpyREW3 z(;q?Vxq7&yB7e9{7o2v%LLUlIRVpJyyZ7mF=zbdm{REr4jVm3Uu$``%Hjf=W9X&7- ztJfa;MMoL|m{m(uSV7Z+XP>d$lHgssau)#7i^>qL^lO&P^9%o*_a9vvxTH#Ee|MYC zU#T(+HnwU*k^P6MaP)Q5MPqzQ)4@(I(*)*4+>pWm9DC-Nw6@#$Gx_dml3h9G2W&Wu`B1K(z>GstvBNOEU9j< zug;)9?#Y``ZC$d=eVSR@U?D|e?rl@*y|OChP7*)ECttno!kVF^poSX_bbO$h;TK&V zm-)}SslM?O4z4yPyO$#fb!hJv{)|Iur#nN?$H)#-JLeq9+L;qasQTnoH?S2)#mAP>;&`+ z0UlA6*DKp&9Wp(=k6yY_7==y}Hf^HkKrq{|vMP@}-Tccr%2Ar2*F~QG!a2dfyA+cp zo=t&SBZSu=?o$syfhSpV&SSFWeD4cMuj0V!Q6oP+0PBy_{fIPof6$pJiZh1 zEI~|*(C>6p5+DfCZ_TwGj^mt&GF{|-`{Ecp*=$W#>SHzV14-bue$K}wZYrU#J6N_T#MJv!{%Q#JgP$O>AdPr#WJLX2aKiaFxSG<_*3hy$JzzJ?E)J@b z{An`GnVhSf5rfnm$t;-Xbq`cM^MV0gdLsN&Q^0qK%Gta4eOUwp<(;xT)gjuMQA(x7 zuhYOJ`)1m}afI{4OZ!n1=3&5-NVIP3s~~gKeg8EIlJ(`pcJ4}Pjg!6T3?X}~9n{?v z6xKrLGN$52?%v<&#|TEl^X|t8qzp*g$*5d8%WFEX-{ zf=08$y}`-PbWXalSTp(rkdip2zr^!=6nqS3xzw7@#itb5lL^p5K$j3 z&3r70FIIgv@?fCM4`kGo=mubTS&r#X+=D?%VGIkFQ>NTY=Sp9E; z8S7oyxXWCO*+{lt73%(6j$rrqh*f;!g%v?sdH#}!kxuo13)c_nlCr~X)#Y{LNvL_} zm86QI>`#P4H`8uwj{6g{&-(99lp0DhPx?M6xlOJGduUtYL`D8ARgaf*FNI|=FlVAh zlPV7jx{u@c@~fYAFVMIVSOUB%F4lok;zhaVwFdlm!+-v7(1v?C73lMGDQf3k30bV8 zS6m%Ne;v6nYq@g4X$UY+c6Rv-`BiY-8KSfPa|VZ%`>DYobeHt`gZ19AOQS=Jo&q7? z0qasplqSsK_%eMqwDt#O%1R|^Z+9ozGw4Xm1?*9G+H*C&P@8+|yW2F73*(U(; zaHqT&2wAmHcGu!pC&$WLXPjli47R+{79zjmAHVE5^S8V9-!(4J(oBd9sZ~IQOiyH7 z>pFhc{s}VcC8btT>S^IF8ChP5YI|yJja@w(xlS!)=M3^G?DwMQPdB!f2Fp zPd&Y8mg*Qg@8)i6V_cG!H!{O}#aLnPO8@vykr4HS7230bXFxmdHP?S{lI87xvZR6( zepR7K(ypG>5+wRbs=t@;YMqmk!PNWx5mcbCIu_^uuJzPgTUC0zu#JIib__l8>fx$h z8OxP74c4t)|73tw(rZ8rOuIyj#(w&B3-6VEBIkfvNcQPmU6+uGUX7V1lHt##>UUTW zEzDh{g3z87y*r1og9UV!gUx;L{bsNKbnX%Er)0@l28Zt#0S@Dy4aOrOG>wst8l@@q z@_dLL&qIW0I4P_a zW;ZB2_d6=?Nqhq5zK8IsPJDu9)16zqze52DXc))v;7l30!KF76|CAqVE?(Y0$1X3A zUBD$C=ub{?NIpE4tXvH(vqEyW+;*okuawAcY<5-GD^#mjRrzkf=}C&3V;eUJsnjh3 z;v8Y30wO@m2wKwJFO_PZF<(;Ki2gGN4FcJw)|_hQ1%V$!#Th%1?*CNZ=X-UXhwT{d zmxqDf7D<|4WZR5Ek9GJNB}l$Gcb=P<03>(t@Zfqxr1Z##=rRlh``Y-9YUKw-&{L|) zU)2b_0O8DAxJlN-^p)yxd{W6>eAlBTvpLc8_a$ylqIIvTqNO{01Cd26pEtexG#!TM zm%Yngh~gC?;$|rn_B7n=R?+N@9EyHEoPR=iO}G1FE+u}Xq3*7uoy~9~j(3Dp%v>mG zMNz=e2d|@wunUu^xC(w#W;YXm0U=`KwYE8_^4`<~tuwD>(`EXaB{KFm#7Dhqc10cUdwbt^Iof4IRdiQ}QNOPnsp)pu z4xC?~r*#p>fq}2MI9gPI4j)Gs|7M|9JWDsb6@^&*2ei^aQjaV0#-gT^LWhvwcLc# zc)4df_P8kcjhFj>aTCHdDp_$B;@Qptaxb^NCC#2CeyZAw=*N+KN##fHix}Z0Uif_% zS+LfSxEU%=DQy%l59_5Cgp`hvDWPZhjuR;U0xp_TV-K{rX&y@wkz#_6JO_Aq17v9M zfWGI$JRBAC?Ufr>EFoAM@ipf*5V3-_m4d~;%$HuVO5gKbN$HM!VhJUdg4fnf8<-Rl zu-P>zAu?~qt=kTs2N(tODNA&0m?Oi?^q06>7)}7pU*2L*E)4!OS55Ki=rd_T`c%JW zCpq%F{m88QHwIbpx(G?y?AiiM`OO_0!V%?t-_#b)Z?h~$9@Q73+j6ACz}A6aXUlBg zxqf}xuA+0f6}v_Z1h!#s3OB}|dj^BR>OU3$i$3;}KAQ=+RHpw{B#2kLQ~mTS^xkig zn{qfqNoQW!3n5(9Kw%L{p`a*tMi4`K9`yZ0M}E#Hl+N?g+R_)z|M9Au04)sFKET$E zH?-Roh+N2RbPVoW8RU5aS~91+pK@TCZYn0fqAxPYX$CI4~t#1^jyK#LQ=SEA^s=$HphTO?grM;R#a*lY6Sa z$@E3o(n$?}gvb~o@R34Gpdh-?;5D!WgsgB`);8s$xq{hT1kw2vkY}^M<(YF3>#|s= z_Pp8S%pv%obvwM=%1<_O$G)yDSzBC;<3Nt3d|`z-8d>vWIl?6wl^wFG_mq04?(@MP{m zZI%osP0#S?lHeX>eX&EePpuAuY`wfSHX7-FHG1Wx4%8n6#&Gw2+p7pUKQmT`%o z#3}_kPI!LPcT)N8b@_65A7fMF0eh3sqh62*-x#^QLgJ#@mg}3!Brm&Rv5)X$z|-2Z z-)ti4{Q_?|$TbCa^d|S|+y*Qs#|QoME~~ipzqD|f)ZUzCz_7PCy54*+(D06ni!J@X zB5Y7Ya>G~PTY4#xe4ZZ@Z#z<21t~FOuuT2USl0(Dd_6_oF5Ba`suxh z>81WL(h<|>6+NXCiG0%py$bOGAsjD_i#G)`4B!UU8~G7?TNrqzmr2vJwgJRS&TB4f z;J#ik-axGy4P^Uof}B42QCy8NtcMcGyET6Y=qYRZd2@kw8mJ1f5N3xs;7 zv%;ffz>{Co0Fdma;)Fi;oGwvhH==@ybwXrN(n@w{p^^?%OKcU%pJh5~2=C{Ro)}Vk`>|=d|`d z0#su-?-kZ`ai!g3B7mAyKT6j5#GUT2M{pw?mXx#oqwtwn#wF@r9X+|h0+Bd=%G*y# zMxXJDGvB*p09eTmyHeE<@*c=& z7%TT%R4W&W{5$E%u67VRfu~FHI4E3<$d9TzqvE7Q$Y;2ULg9XONukjri~$!MljrR;0yd*fGM5bZy8 zLH69A5b(+9U*)khKf}QHN#4vea_MhnA@r?N==V^-Y1mcQzDTEhMd`_p3?+_q6Y6g} zoS|`=E$b8SA?0?)wE#}#^W=8z!JFIfCb(iTQ|k@x4gV_7PO4N`cj(5K%?Czs2cIKkWw zS9MJIb5{t33k$EHv(f!6>22~4bS-;(_=A^UD~P0M$(&&00RV%-qz^g--xpvg#u$TF zJh{$f;HKX9um8A%Fm>=k>U?iaGg-jxd~c{T_(Nk(h!BCqm=xAKN$yW)QD&%mCj54h zXltVTf=-K0-K9L1S~U#y{>Tp`Ij0gavdu*-cLhifr$a&n#{PiW!{Z^D53Yw!6utgK zl~o)NNsPsLk6xhuVTK-L&{-Q1XW02k{lTuglBmmF1N?b)M19i7})B5@bd{ zJJ{kO11p)8QSX)7&wyA&q!(T}X?V8ma?}v7FKTS`Fw8LqSBvJ%AQ1Q<0e$p~*?>~g zTL#^hl-U#mh(!p|*X8<+Q*rK6iI*jU)2+|A9I^gorM^k+l9$Q+##2Be3IkZmy(tU$ zD8@%2zVQL;n6B*>bV9}lGvZanms2pR)>`|q&8-xnqlV8c609cti#uoq;3A~C%SEe0wKKM5gi$)b)E-hAAhAX{!~u=){-&QF zmnVkL;Xf(0F?6mb%HP?DFNDcP2=#uW;p1r#^fJ~O(FBFvV?WnnXs?L)L3)b~)?3EYkJK-QW zn2X#)Oezu@UlxL^gq*6Zjr)WVT^qlftxJ6^^is#EE34c|0<&E$ILLhCC?Y;{pGh!x z2?g+a!uDLHufpZ*FRh|UA-ge3!1Uw|>LNQGR<^i8X&ni|cVpU0ZSX^KURq2vHgLd% zH!*`aTSx2C;_>z`9n(!x{6o&}VZy*4Ivy$Ao;!sRYT}fc)zKRd4?%OM3@l+7+sfR} z>{p-+Eb52b?$Wb1tDxSQ^1LeMz=PLNnC3t0VWwQ(JKz~{WZX}Ei&hYW8CU(p3TMfA zI5Pc9S;--aV$gSG7v!S>=8Svpmz#5Iq-JER-|kD1*OSi{yn{T};rMoBs$|B~3@HCl z8Wn6Si1ufEkP-Pod*x!ibR*%PmLo0fZk*mlE&^LWD!ABGXWv68!*(r2I)Hq|OV?5+ zOpA6zb*|rxCRa4B9;hEc9JGRrB1Q~@vfglb%`aCY8G~AsCTb{r`*Tb)?vhQi#pRVC z;*J&_9xW^ojCdhxne|OLGdSUa$H$ti(o6ef0BFIb235jzX8Wef4Ir&GWSTm|Xjb6M z+8+92;>1W5-uBRSI3Hm=j3)9E-b3EW9}}A_5J;SaknG>$A@KLsjhYy3`uh^e{KiRQ z?h5{y1p`d5gKooDdR@IitgvU-5Tf zQ`26t_>KOI)|RAuiiu=4^OSGnuA27D5(GZoc_ym4O?a{on8~$Y&wVC3Tbaz3!;a$f z^rj|t>lYC!A??~cjU>>{xGa+&>;JXY_|VfF`|Pw5yiATChsl3-;vv({-sc4Y4O>&0 zAI)YA+_U`q{=1aBsr8TA;SVT`(j!1bfIj}f=a5Tpl!|zji%a1R_k$wFWX+TIy(y+o zS=I?vMt=&;I*tlE+1XE_Qg(xcRKI=u8mY>GnyU`UBO_Sieu4w^YFxmS@aZoOh+kmt zh-q7DsL1aMKp$yK?G%C8xZIho)ldemZG{m{&nH)-2v%6=k(xd^$J6jg=Bl1Qa(#|~ zA*Aeyi=5+0@eolavj2(PaJ>1hzB{2pMi5_>_gS|6q!8Gan~ic7&!=)=&C5UvlnN%3 zPk)4s`t8F9#Go~2Wbrth6%1kFas-L(^{Glc#!0swZNGmQ#QvL64tx6_s9au`IOr|R z|L}2Zb`>cJ1A@KWlz5PpW|^hw<)VPfXIlO(3NY~t^LwbCy;g7!-BXx~nWpRrAZx1s~;Db-R525l1gaE(l^h%DC|{k4s2AY{F_`Y`8Sl&*kR zI2@nsQAz-K1nF-=$kN28A8_;ujEUavKXjlnUzCc3qRe#DhbWev zC^A@a1>2m(M389dc5@`-%?7JglAp~sWqksEpwVWn+9qzearb_BB$wz)ntds-$FaP( z?%D!%Eu4!V8l2zOB~E_#y6%oj6GhlrZVtQV%YM-i(Mdq zOzvBeMcW3?yq88YyGj)6DC1HS%3k`yS-8aXQo4T8Ui7@`6K2`_VX>N~usQ3Kczmz$ z#KWGDW?as&C|Gb_A^QG}Ug%$sMW-JfiP?sL2Xu+xX65$lF}xWJgQkusT0Z@lGuwrG z6El<(7BT&05F(9$LbdPB>J&YK8e$sNAg0S2GYzp@+M*npa{-ZqvF3;W=75T(!uhDw z=>?~f1|fz{BBUdXj(PRf7342RTajqWiM~~k+rNxda4=%geE_nnSL3BTK6x=W2|cn8 zkxL74vJMh6TA4`-{kZo7Q=t+H!r#=A_OGZCbajLs|Jy2%5u5U-RNRK*oMnsptznYl{%j4)ji~sj}Mz16|}F(>>A2aQsl^{)N2=t5-{bebpDm~A)-)E+jge(=a!kjQ`e+OSC>dPcsie8lp$4L-?` z5*+F41nHjAGa}FKVtMhiXP~=>uPTp=8wCFcO7BOUj1%7{&#xsF%cS0ULVm!at zwMG0b^z?Q?v4)T&f+C_Is_u`cpP)>I9P(cI$$3xnyP~hqG5*|ib{kBslz;x1eu0G| zpA@41JJZO;*w@?%XtQmUVbiJa7%xiW6l>;DEXDZi+mZxJdRbz`tBqep@*_sDM$5Es z(-<5n@o&(bQ&CbCa7Y~*^eswOhx0wOvZs*;mW#K(THb-6v@lrmRW;=FW}O9Is*o{H zau(fRB+Gm$3syh1jP|tgk&dj9P>3yK537fk-hkL3AhOD(^&9-Sv&Vm?5i7f2F?n5Hf z!33=&)B3=>il8QT^y_yp*@g4|M}962NdA^Zx>jzWMg=M{t930NUR;E?CMb^NWqP`Z zpGnwbmL;)Lyju26(eW#ALc@{x0Mi#|mkp8y#USHVYl#?JwAeTVN`|HuURQI{ux_N` zNod6j7v=qJ#j?JZRKBB3Z0v+9YE6rSFfuJ;oQAwC<}76C6)G4D+CSI?LMVMFn=1Gi z`KQz`b@dH0*CLa7e{I2M&n%RaKt-XdP)bw{@y#rU8S}z#SNc$cB?Z zwFAFouvx5XP``K>JzY3+LJprZ9{unT{7RT?35hmGdWDGao@ylb3sm@sq!2##pSlsz zY&jO8&|rQ#!ee@RXZcmZK`q0=`Ndr?3!4#bI34U0{^sxE4Hr|b`52gD@OMQ%^Vq2Q z-2eOW=gR`U-@kYcWCj$Vc_-#iiQ@AmLU{kt+u~>EJ$(wMDdr)QKGtTQ5?;YJ1AMCT z8Ku?H`sa3Y*twNNgfx5qc2%xoZ;GAZp}~mo`QO{b&@pT2t$={1p>yMNaupfOOyzeKDSm@t! zJA<*fe?~W|1Rd#J3FT8SH%y{?%{>eXz&W!O_+BaxKTcq0J&&1Q!S+K^&Iy8POIN=G zh+oK^oZ0LU6unW5!qnrFtOQq3%m!t}rTRA#=smB`=MR)zwP>4sTQI{jti1_rUC0WP zZk?N7sn#S`Pb^6;$-HYTdEmic&{2$Ck7Lucp|d#S?-n*G3zq>&Pjr`Po)E87(6Gx4 zaI9gckx;#*OG>C4E>Z349$Uly&;TN0-Hl`Q)thKRt~tp16AoN*(f1DTF#%KEw0yQh z6DG|^)ULcIi>RX4n&RERSKCe%xZ5xTF1V*EBYrT=xZ^cIC-}H9zYMks>mmy&Zk30; z#mDV-U(kQAe~;Q?>u;a^9-ptbPV9D6Q5ikJd=fbjRpzO_AZQmNDFKA}km@hz@t{~W zf7F4+d;k8Ju=04Q!Hakz#JtY21Y~U9MD%Y@$ULVc!VcP!U=bfLqTDJJ+i&N@=>R)} zD)Zhm;H^f%HwP^klsR06QV335W(UDbys6L@C1haN!!l}3DP4TLtGf1i{@!dCtFN4a za`QqW6lC0x4wb-`6jG=x#U7C*a=@%4%u`D|ZC)22>4>H?$Sfs1X3lM(3V5hmc{?SQ zN(fG?HaNi{gFtn|>r5vFH3~;aF+ZXKFMd(tAbKZAKL`mL^6p8Lr+Bt9C;4*!{+>rS z_BpW`d5d?_@-$Sz7asEsA;`JHs$fBykvU9^oqk4FZc?mdJqRA zR(skv2%;NfxZRHK;-H7JAsdKJBLms;vT@^zIbq^e8tF#UztHL=#K{9@4hml23}BdZ zp^?+{m~E@0LCAFOQ10QgeGbFER@hm&udsu%2~ zk$Q4sOV*(_K*+5*suO@dtR}_*l3G3AL`Jl|Yh9J9oyEUlqqIt)a^#21^08zJh7@BB zZ)aA-=kvS8XM>)ibP65?!)U2F!B?Ae&N(X2*xhvE&(FG>s4#z0Vdp%B3K&UK3vW#4 zsTIVT8HlFY$3Eif>1_ zi(kkbLDviuo_w%7C^h4xucBq0RX3<29sm^?kWWK=kQTnOm8 znvSbt_&N$LT76Vg-F_yIo}-rJ<|wQ)F$;_5Ny^pMNprMjxPK{j1XcQaKsr*bm7#9nSoU3r~~8bZjy`?cO#JK>9jkA5yLTl{7_0w{Bv^8WAU@ z?oGLKN^Bvu;Hc{2Ks^{Vl|%_k15i>lniYS~;dj{RrJCA-!hC>NKbE6M-408G9REikAgE>!WVg=|8&3$Z^gk^OEZM*2S_7k4!!e?m`NrgOJX_D>3@N# zuEI2(f!QabpMH+Tby+RmyJ$xplFz2!o|n`x7onRYhj$zXtJFbzhi+_n2dpZmw8KA4 zwJk*Cv3h3HW`H-s-A-_`(E2^Ec2jkKt%v5dvV=lw_xXW}o)-cGA!<6aN6e)VF2?h} zqwc9*w(dRvwob&p*C+v-D!*-Xzq-Q-qNkmfXkJ$!m50|bR7H3kJ-#-GJB!L0{To#ce%E1WUHQCP#B-K2`jnBc?yumh5i#YG(bX~T z_uPNE7+r9WB$4R}?!tuk%BZ2^DeoghX9(0?uFN1K0aaunDgH|n<#Sm%CL+mn+m-Y? z)$O~T`rEG1rOA8*?)dC_ybrDTasjJ!-+Lk|H3Zf>TrLrCx_tN z*~+TaaP9NM}j#W01cYv*E2A!=52CdJwh%-KXvCfc_% zmdh;Ffl`zu9p&!=n|*L09jIq0tEPNBD+XGxR(4Phs3jD=AJ=BW1*Re9^}$1LMZ$F` zr_)IswaPOc#4n21p!#0tih0JIdH}jG0tyyRvB|v37r!^*{_!wxakb)P%rspt5u}e` z8jl&-5V9UBW|radK3ge>;9BZRcj1Rsk=p&@A_26|wFhT(SAb#1@Ae;{Ei2dK(>Nqg$|| z(twD0eK@RH<4QjcRG+aLaSs#eZ$)rrRxxx!suI-c&<m|^wB?3fyYBs{@BH=tZ?vTYt&=^h!FrV8jRImQNUKQ|` zT1Uky`+>4TnE%imPou^B1@~~I^k9hP3TLxZX1NYM~H)3V z?vGr=KOyTrcx?xYWC)7sSmP(T2Pg0l3)Jg$Qiad*Ek)KP=*AB3)hXrEsTD9MJucWM6B zh5yw_apphrRYCh{D~RtuD1oH1Q5^WP$BP|S0{+izt_U({YBh`N0>wwDsp_Eh|3>U) ze3t<$-`EnXran8DVv&3dC+I!{n+yc3K*D0CMP1V2 zT2yYAUrSiVRAo0Q?B9A-9Z%8Tr+)Ish|a++Lili(9GLD<5N=VinrgWNqL-}8|1HQf zBTb>|UI^n17g>kGQNpDzT--#GyZusZFPK`eAtMal4>=<&+H&E6ohjndo%<2u1vMVZ z7F$KNkr5OX8dwo{s1 zC8os&g@AjZyv0eRy9qd^(pT8F@=~WlS_$$=Rg@`x?)_qYl_6&j0SPSBv%KW}L!pFI z;bP|0wcjtk*YFE#tt6mf@TX|i$sHoe_k(i^fQ`^z^lvg13;0^swIsRm{~i3TrK_cd zB}iHPgW$B&eu(rdLAAUwB2JVV;Fdl`xI<=pp{41NmkcNX0V(k+&aAPOIhr;e=f(-R z%?uk;UW~b7|KeRaajJ5jr2KWb8!Q?Ke*VZ>uQeoEmFw?QV&s=x5AXjLLAkc41Yo4= zWNQmX5+ZF(C5Gcx{0QB-_vPs`c@($w#Ly9HDogd84RAcCvm|K0XXj$I)hn?4u!J)Q{l@*Uq@`PHe->%ll~GFHeZe1y zPFj*$!VnCEF8&^%3mfV*s0ue4A)DmUEw3n31|o&cV;8DwV*GJp4-&T^z!IrKHwL3@ zVJm+8BoSD_F~405Z|z%FTv+!NQrCz-G?D3|@%!;h+!eGhqT`6pyGnm|L!9x9QZj{* z5I&CgUapK@xihKJ{~_~pUKHH?+TSi`5%VGKQ_&csT)&kV8PGON9AY^4FyB7i{VFN) zj^l$MBNv4tqk6$)DdVrD2k)e+S}pSmVAMZiS@f4Z&% z{1j#nv5VEzO-ZorL>&}3{KFDL?Zl~G;AtS*fIkcSHQ5c_58&9wG||ibjjpx@5Ymbk zqqV?<?X6^@e9Dk1nCCTZ`YY=JEb%M0eop4&(v zYwES+^Iyc>l@gY1T|@bKY}9z}41}V8a2jGH;mQrr_g}(7j78ApASw@-l_9|#Rg&`` zniFtexPiM_3t=!*ppqSq7-;|Yq6g>KY65xzTh2X3CHv2bprex$@mKqAWBRBXbk1Oa ziFU&{1;eB}vqW<5QSl85+LMvzpU8b7aTZDpDw=4zOO82E5%`JF{5&^jVZuys>Q8#a zx3j?G5g9o~A=Vxo3iBnGxA8$A)KJ zwRMck?7q+c%eqk>Je}&cfw<54Khv9wO+8gBqJ}|nBb!X^iJdm$ZIlFnvQFV0s#(Ae zx(qxT_1qNXV$9g9I@_Ouozo{hFOb_*qydpCXpXj1(w+V#gmZ9Lz=YW4uaS+?o< z$N9clb+O)FPYq>5F{1h3r4+TOfmZI^%(@#))&raR;f9sSloN}@a&(AaR`*y`PB*N!Vc+UY`XAZ895Oxtbw@B*6)`D8tTK(8Ea|z}{?6_8} z&XX5YZbFY2wQUvf87PSESYdM|sp6Lo;x8x4Ormn!+mJB_>iH@DFZ=V7VO@Wnv|29N3MIbBWz*o_T(^ik3iEB_FBqp1uY*slD+1ZCFjbPv{$cPP>z&C@oyn@+C#Zs-q!kmI^ z?UX#1_nME&ABfS_ugg6$9C!PK67p<(Ik}r6Z3h}T?6hhwE==MCt4R83@ze>ZafMH$ zO-Kpl$>-@&;5+D@)o*xod;j(=s*s<9JpN32&At;@^{WjJXSOkvJO|%0PAch7{jE&p zX1`?}3GbMhSMRyw$iLMddDoQwCvGj)eawV`pXg8|@Cu{q1&#(Cs>Tuj&lan5t54%H za1+oL<9$3XOvFL0XJCs(rBF@oGJEr6V)6Kx$*6|0r?PR+zk$mj=6~ko&Xn)X*jB)E z0zFvfbsI6xL32KcjlI?v>p`cB=2!(&57)Ojg;gtzLvZgdOOKko(HKzyjUxKJ~-1OD&S!gfqnaF>mGr z$cM+8J!45y1_%*ni1e5zeB=k!(iZ<}lq|0$V0 zTjd*-jM^qSIRE_hvyd{m&uIS{i%|9^o(niR^Lk9DbIztzx6s!d-kN?emqgrLWID1e z>uW*!o2KNvt0zk)-_hF8c`Gi{?qy$@c%yne*5zjD!L<0HTq<&|e37TuqsH59+O_e; z6GiHrO*EnRpT`4_?-(rwv5$?!3_riEhLW~hmvL~9Mk@7~EM%-Wg<4R6qF=1w7!6hw zmv_0hWGJBSGcW1#uJm=``j*_@>*dY-*FZs)3TrFxbP-tFmJm=Kq5b2Ze|`YHPIAd4PX5@m2I`F0Pg8W}f65&jVMj#StcuxC)y(2Ua}1eYvN)1;h4ZRf1C z*CQsjzmkHD^MyIY8|n8|oR##)c8*Mz&l`<+>Q|xN%Z55?7OH*D*Rf>l*)R95P*^$9 zfvZ%$;4>Z>@=?G$pbk|JIfcfUNKC5fUp={VQL$(cKUQ>%9Kd29ZHw7aWtQ?|lJK;3 zbM%@o^HBHU9rKqf3Pp_w2*(el5brZZHb8AFzMvh=h?)|^FyH7gPW$L^c&>W+kKpNL zvB@-z3U(ZPQ32GU1_C)jk)RjRL0rRC2i^LE&l*sj(o;6r!L@UJ0UwNta*F&M^39q~3n2Bj6`!o(xo@-L9YSS}lK|zVljI$K0!Vf6mRl{i;zBHW0Ct5nvOR(ym)%X|!Y4xRV8?RZpg5H_xu} z-Y11-$Dml=GMYhd*NDc!inm}wp%O*uLzmH5ic(F$I;UMyj4;QAocpL`g_zjwTbQlE zsq~$P(lUE^r_gpu%I5T-)3I3|*jXx0@UZ{G;4Vt*IR^s8?%&;@K^?j2-fV>0?9kK- zmDKSGVIcwO#t233A?U4q>(%fbl(jE3VcQ`+{W6-~BV>5sPK^ee@H0qoEdu%SM+!~8 zi`Dbz7}VbBzm1JCYSvsbt7F?1lQ}BVbn^GRO$=VM_Ds&aki-c?oTA+}Q#z-Kd3%3N z%<>n|Y4~@(av|o)90hrPcdca-d#BUMOjGJ?b2lsOvMQN@zoh)MCad{0mbN)ICAioK z7Q&n7y#dvNy0UIQ=tiF+K&Vz9Rr_-#xSdL3WEL}pOD+ht&0+Y+rhkVc7r2C`dLYL5 zRiEeG#ucFP{>L+8lS12QY{zXS)6!)6+v?#6Mtl0i%TPk;xAv8`8$tE*Zqs@BpWmG8 z7A=MyZ`P`3H)aX+6G+>>*nmW?ns$?3^zt%*QFM(Y+p&?3r>~_mSHSwU<60aBYd~n; zbh<^pY)cHGrnVvEThh^3xd1xXH7ekXM9eEK7qgW>Ph6Avw?GZ)3&I8@Q7pixuzcFL3Q;5cRW)f-@b9}1QYU#C;VkEc z!Rv!QS6Jr^g$+8mBo6z*uGa|YxC-#Qbx`aZEou|F3JTtOevK=03M!PMGoAeQ<$sNT z>Bi~NLj`Cf8#sndsIf7G_XuIeYdrbo<%t1$nr|$7g{VOF8Ygtib8x#@9wuw<`Y<6a zTs@WxT?`~GC}IBaxH5p7o-Wu*nT_!HdK*)EC9BwV7wKs_i0?Vy2gon82JTYD*Cs$6 zer}z54=5XMTicFJF|x)jX}_%IqSvO30Os_1vO7GD!F#{aQvvqAg<$PuN_sdBwVR{a zW7qbV3A4&M4WNq^G=Rn51>NQoXP#F4Al-K^6yMUsmV2dqKm3K+kNb1ELLV<@LtQ$! z0%dd|Z8mIgz|@5pf*xpxw*1J$zxJB$bq_?=GCiI#rjm@yNCq(}iKYwR;_iGowQNcI zTB};9OhuOi8tAM)&-u)Z})CMJx&6$2JkMzT1JV1)n6KEmr)|}sc;bb^5zWD&^ zNdK3oP)tnvKS-5NbgizaUBC}B`$J-%WWDUpj3O?}BmP$3&N*=ZifWY|5tqEBsRBXg zh>F3>D0VxbORL-nc2rCzN>QWQbFH~6?XDow(Y@)@o`?`2vIyI2Xv?oeTmQk0aQv^y z{g1q)zijgUAyw>RmK_3@R7Gbv&YNNDWMRK_4Qy4ktjDF|zI-L@bg z;h~d~{?BXN2&JD9$RKpmH%TdQ8%2GW-2Uv^hD~R^>9`>Z?XQs#XtVXB7(TMddDi%U0U)^A;{`ENdt$>C+`nXU^D*&VaNjQ07hkpg zLTj%yPPo2uL*`nzC}|_#^n;9H2LF99W+U-(`}LtCf{Ggyk`dhEEqm!!5!f$pZtV*# zF%4duTQN>Ltx^hs8J&}4%@b*}oeMofM%>4ewZwqc-e$j&F zsZfTVs;HjROjCzfAUB<)NMrYSZGH{$c&%17=3|i;(vQP_V{e0M82{JY>bHP(xc>Fg z>n@)dshfA)Vzd6dlx++y_bR>{Dfb@iPvH%Uggfu5l`n(dz@yxJFZf;qeVPU;$73^G z&`ln1;>lh)UN7+Uy=HUU0!MgKD{Z}-9$8lU0o+Mo?(?Hsr(Z=Kb`QNwT~4j98EDvS zb)*=&vcNCP!P+3iROIb3yXG_Z3s0T+3Pf$HG84LJDDu1Q6QhXPWrvw6xHFED2&AM& z3Q?8bSDqjHx=F*RT$$>VeYwY7lqVmtI;U$YvD%tklOA%0g*%!R!1UzdV&W~fKy5a+ zR05}z$B(WItQWZWp2t2kQ2rg?RWWWL;& zQzP~GN+NbaADY=5rKu&X0X%L)nmOwH_g-mml~7NFZz|BwQ(JB0I{OE&Y|`@}7yPQp zG4k{KHFYV@5(het-y#1$zTP|@%J+*OrcIHQ3PpS*RJJ5rwo+0_D%l62C_7`{rjjTz zMcJdWg$$BqEHhzwyF*ZY0WW$W+V zujsc9?xlzghV$$OF@ev9AtPF#yT?)pX`L?_6CP{^q+`N-weKJlx(A_<3UqyxK@i?R zDMU*+AR}G!K3a!jFVl<+K{}zCIHYpmX)>+gAI9INDjCfoE7it=|yxqLo z%0ZW}RstaKM7!19(&vX26ULw$2y3o?>ks8gdAw~$v*VE~cv1V{oUU}gBOid}ak{I7 zEL@slhyE>+!y!6CD%;>G(qLwE{vWnXb!pJryD9_~02Uayb0%a5fkd=s3gp#@ROis! zkA5$Pbj`OzcdsGMH4)n%IzktA;Qcxj3f!>6v;e=?V6u_AJNv8cd<(GKdFPYM-X+7A zYA^UyT*wig3llY79YMQ>WuarLl!nM>zpsRR3I^l3t)!|ORzaz3i*vu6K&~BGrQq#m zq<~rcG~S3H%+~|ITix;sa=%Po6MF{4Ck^Bh?W9l3{{pJNX!!m1$UoX?x3(>bzs^y@ zCd!Ib0xWV!>lG=GIYQxsZj%(M4E#EddX3Ohe}`URlS{`~Pkb51IF#jl7Fc;p5%~K+KT>|KTjVIsUPeIEAK5^2=RU?!?>-&47+6?2u9-j zo6w~Bp5kHKW$V~SK1UU<)QvwzOVFD~KK}WJQgOT!g54vR{kKZw>F<@{48|mQ`Vs>4 zloy0wpM~xwOD`GzjP(n;y>_ed2z0N{p?j`m>>RCCFEfAwZq%HcBv}rnzZfK1BGU<) z`vyUpo2=7#6ACC-aKS6qJpCMWcNv&1Z7tyd_g!eL2hYwF%xx(sFRN}d_&7<~6UOLM zHqshDiAga*9?S#B#Pd7pH>#YN0XxbOq;?9_s~dirltlZe;wAyAht_VDGHi(SYB_d- zF##lOQK9+i91Dz2;OZ%?PP>iVFnjXl%5m+O=4fHpS$1H@w4tj{tTucZHyH{X2`~ zUi1lG@Z0R-!p?rJpw~dyxTFyl4PTXc2KjHZ1q9JwxdfGJx$7Y>eE!$VsqYV6j7o0> z+gQuQgPsyY9dddDUgHoTeW2MbwEwzl+bUL_%;<4->7!UTC=NbobvucJx7@I^d_wPw zxg+ma=kZDVASIHnZsA3;VT`6SBJ9nk_R~&Q8`-3*H^{mg3?&~Yzf{grYto3b6`NGG zHP3nGs=geK-c;X9>Xw39|BNv8LE_L&##7u#E1x$d8N%~fNYF_>yMbtEJ=W_XfPZY! zbg-%xV|HLkOaI3QnR9=)n;~KjhKZDC+*8Ey>SU8^wA@f7%MIx(H6BrJI%Z^@zNHCF zU#%ZbqasXXLI3*MeExNR!_Oe*JAL13SsP4|DTYP~ZW?!24pBz_rOT`w#WY=k9wRbT z#CS}Ja80hTv0J|7}x&S^sqjlH>F8BQeoLk&U@^>DXT3e*RG${z531*03OQ zs#*PUJaI?W<~O3BJcPcHf2;uCQp5NsQtB_tJfyFJ-z2Aanai!hC$~qssprZGnYdKv zuN-v^^s=6{sUi>?`Db*4Vq>op!#1pr*L)R>oT|94g(BPS9LwkMa}sTDE%(h=>pyr$ zP3)}^7X@Zo3w`4O?vGzh=qlsvQY>};JZ#wPqD*8(jUq~HT zkBOgv2|%kkPoyct-yC1mhX; z{@dnyC|@=|1m8~Ia1;p%U;6dAZEKbO6$kPyt@!XTKZp0}(<7gHEV;V!QrVJuJ7e@z zTrr(GdJpp-dYQNMQLa|(C^=9ubk_U3Okk#!q2c?(o*cFE_Gxbd^z+@lZZ}uM57}?E zi1x*L509?7nYl>p==Q9ld2CO|+ZjfNuvtt_d`UtRZmsc^9;+BTOCcXc=JvBCvriT# zRT5&Yb|{JGihs96W!HQWykq#m+;dlLXIVmt;2nkkju^u!LC0FZW?d|~SbHcu4Re22 zq4;l^#3w_>!OyIk_bH3D*_6B-G|)NR9rrQyxW9qSZ5NL2=*teBH5wv>FXj3E%9au$ zl9r<01)~vjXYTfhOuxnX|30vwfB9^_!}=ick_=|yBgP#@_LQZ&#$cnE-}jvQP5+`M z8PlEThsa3Dwogl9(7&#!^*g+=wCP_Y?{D;dS3$)&T7f`nz0yeT)3Ww;X71^W=4|k| zC|&YF;RZctS=rSHH_x^Q)$_QrRP&&bo545Nr`pM}9~YU=_NV+V0G~q07zvn7bBk0& z&-@NPzpm5@U)=PDAgKa|)6bn4!+`yTzKJw4vUgvDi5Yd@;CM#yO8iDh)0sL8uD6*Y zRd{25OZHNk3Mu@lS*IUXMD|jJHnS3U9A3equd6Eg@u+BE8b8B}*B2TGD>LafIgZ#} zvc&lCVD%Wu_|*8>)2xshQP*s=T?9)C8*v=yG_tO9LC!X7ydZd-o=gWeq9cPy!yykh z33@kg3q_wi{cX2cGVSs!2PpC^vmT=bl%5@XTEw?1x$G-b5H8aV!FMti_enw&`) z6h^Y7@FL=(BB4xVA^7^)Tm+5KJR~|8IB|TVK5#L(livdbl_$>#rh<3^xd2 zIfP?>_TBmX@YY410n4S$Z=+8u~_@g@r=k`XjA4(tk)7dQ@2W0`Jv1 zW_aLMvEn>Ti+dNDw}=eAAS%ExD~aATik8vZ ztJd7GK-3)<4-1kjXG}aX`+JxW9a{L;(W|A*1tJZLHzNdZ?#VL#_=ZfQD`SNg(W1tz zT!fI7bYrf2A|JvE$Wd08m$Ri*tH^9_hHYlm9pRn@*eCO?+PXa)t|O5NeER#!PPaW! zj7J`ytq|)R&bs8gy(f6K#VDV(AA8e$l}~AWO@8fVjw9z-Aw$8EK4$$F`0qD4Vy+<+byyjAP+ix!Q*>$ixVsIGcB=Ai42EH`M`CB#&o2D zeuS~75+l#ugNeuIuCY8^?_bDoeh)RtBX~GMaAT}Ou>-0Rwo@DVr)bTYtk_9wcr_DH zU)V%XzCRMS`2mi}DCLVf)^mRU5TPb$i>0MD(c9%q@j1B!v~)_O?H=4v&dwND}JA`3Aj}%F4NpokxH*BG@f{3S9MqDCBgWsDvG<@NeZj57$gvzU|hX?{oaWo ztHtA8wR$}BvSM#ZZh4gqt>$pBjs5 z*ZPh;W4z|KCE{!w3q%XFwg=DNs)O8MsN6hZ4j#b5inKgILYxwPC0a{`B&4V|Poc|A zeRS9mQR0zM$q^4|OSq`yWW<+3nVT9n7d>Up8ooYqN9`z7V|mY+@ko>@&Sl*{mtXm1 zVprjjSJA{oj3vVLhlG+$#pGF<%8xic@Dz*m3Qq13nW(KdIs@vIF{^0}^AHio{@Yo&M$UA&sxHrMecw>>aZvxJL zbl8ID?U=|9uY#Ylm8eMxvA10cfnFZ4qk!$hJpCQ<}#qdfy_};L7VmyueIo%VRU5Q;4vr>Bk{=k9%fqk zOHdolVAeUUfz2czlO9&w|Huh;{i*=L$@z8D;yE)GYT(d>4t+*&{0N!0+6<>#Z7TYw z8Gfhw#Ytx87&9ke3Kew9K6)IKi~EhHDg_H)J-b=q`r5UiJv_qgZ-a4%%Thj8FNM zrw-365mNp7>x?ynV3mW2aZ4K`%NVYl>!~noTw9q6zVK9W3Y*p*=FukU+5p&iWYWD? z`~ADUj<%{#%EjGqqB=Xv{|g!9Djm($MBkcy>ryd0iNgO-A z?L=~4*GJUx41ojfVzLrZGpbINA|EVn1kMc%C#=|e+7ERgMB1%An`^YD6-$IFMoy;* zaKpu1Ti+y^*__wC9k;_H;VDiwDbXkZ?VW$3yYyD%5T@3xsiolD_m;p=PL5g%=1Eug z>v;_YfFFvMx}zgDt`BF>w+x$Q?q`!OvJ2=8!6WUr>kt~*>(JR9w}{mzD)tiep2xvD z0|_vyYgS1VcV!~X?+;npY(MxlIq^xuD$%i)h@X%WCe6? z*kK@V)r>Mtak7ugPU>1dj+Q@aaUm{PV3hE?>g0 zk{xjdCi;UV`Tco&$L9&K7kF~zBa!gGisN1zE+I`WI5xcA6Gpu#DZ=N*bt+BXBt@;S#`V~%CQpO6*udk2i6)N)Gw&+-~27}E_kHB zy#{+o3KPoCr2Pa$1~SP3^5&qUvg)hvya>m>wuA}{_OXGabfWm()|16zuHiSWMfdUE zUzXf+s%(Ng7X;ep7k@CiHVW(5*`BR#3-oK^c!Lv~PCHI3KMsDN!EyeTi_DjZbc)ZsA zsgNY{I?cr`qM)qIr&>{d0GBL_UaS7NMq1bYX)W9^M{+W^>s_q8VP*#| zO0DCXWoCC|)n7E45=5%`Of6Q+UlzntpXDx?gd_-x|u_U`=#x72VYm;L$4NlA9cGXhof-9B=qnT#)1bI%w^$m%{={PC@EZp8sN! z#abV~t$UU~PuhzsJq=H5hxl5^D(9=`i`hk6)xA^V!;@xL^SgouC#ptsF@yuNI;m}B zfpcrCnmdaMPfhp1>RiI~uaJiV6yG=LM>$qRAKy_o8j*fVF~d*mS<$G^vJ&dI3B0y^ z{*+Z4IiY?!4?Qz!GkrIYk(m#S*n%uT${IKG`$ecH{nx57eSD%<<-a#QCUByurS5O< zbEnbs?wUJ>F&4$+rIP=Oc%m8kjJ})c>aMVeKHpe5^jj?}xrPY|{#22T;K5z)y`)~Z zqZslpvsQe$srCQ;hLyng7+qU6_UsyG_*PTXf75yCY0I~NeG2B`W5Y^2i^S#m_TW%S z7PLQ01XR(sSOw(Y9K?XO&cj||5zDo{8xQH(CdC%^6RGlZ#3_FeezIj|RWu|n=M?Zz zO#^rE`dZn8d+Esv#2-bcFI8Cs*B7cO2b^x)ELg6CaycdW6Yfae($n(pfq$!cdYTL9 zcm8(qx&Y?aiSivZE5AA0x0Hjjg}JV>VRM6)eI*us^SW@Eq=PUl#YF>&JBA}Vwpf!r zeuC6S^L_O4YD?!|Ii6+(;;#AH)db-01@rHyqoDR8y-WnbsxH>5PL;EkdfZ2ml|ZcJ zxVjo85m$^?)VnOXV5R0CTF}`~6SOzxUlPeb89kwmux2F)knum{n?!@ZX3Fu=W&o%8}<=c zdov{Z=xJ~l8y8pd68eJZ*BQBQa2Oj@U4+?Jd#Eppe+m7VE`%$49Z`LH*tS5Z(c!>s z^Rqw1Aj9^UycLg%!P(4&wvtO$9{C_!>_Aa5?~YFf@cJ)x!aDJP!OVz^UQ?5AEEf+B zj^F>ckt#|*I=`dd1wQ59p&ps?y_RqYV1t9Qf+V|Z8h6nQH-mff@>v3zp(P!odsK3< z5O>65$cChaC;=Zhx1IK8ALAc=d3y?!lIl}EDRi7z%N^nXM{yv_AW5|zJ%BF#Nea+R6j^W)*1!b~ybN!V9JZ~RR>md9LYvfhrxeZHB&}X0S+?BjKVQYwJ4pHKJVa6Pc|#U&%icn`PLyo z&&9g`Ph?m3vT>C#?qXlZ1PT_4$+(6rKccJQ^~3NeSD+Q|--2UN?ac%21pMd%juK=liNQm*absfUf$=B>hX^(AG{7G_}D`F!m(@u(-`yL%K@TsWR5GzptM?4R$U&36W(LB?#MMb^6PotN?hf} z49BhABW>Wlu_G#>1|n7{ZyoFiaCnpWUN@MXy;j-pbJEi4Etc0Gie!h=R}*T_ux7Ee z=TV;Idk@i>S;JbsT(3QLHwCZX`8=GfNg!J0#g;03j%ZgoJv$SIu0K8bLv`6!pa^O^eeeqESfh@?8!@-RDUDzGYbrjtX0 z!RP?Q(u~b5Bcai)2KWFJi<~tK<$TP11^Z>$Oj# zFRI0|firJvDA`(?LdeC&QRS%ywf@zvG7DI#z!n!|LA`?;#4&ne8tQ3B_bmS82?Mb; zay&l7#D4k$gJ|Mt5d;v^l&)-_3ee+Hq{`ufZq%>xUj%YB!4p+N&Mm-BUqk zi(um?;3;l4lL$pTaRyCi-hiY*)3kne6ng$LZ=WyjQ{mh7fU!Qpk_c2VP&3880-xft zFzkJA{`iUQIi%2?z|xLUPOg;~rUG?g;YSk2mCilv&E|3zyZ{wSVH|HUbUa(Btc3$N zLDYrmx;&VA*sT1uUg;=Ok4@nUjrh&d>6Ud6j3a9>FzyVZlTt*hoIR3k1G_9^D=jTl zHr?wsm{E9Q0dHXnXvLPw$O(tma96^#;)OQ{SjnjVXUMnj8L2!Ycz78&cKr3aL_)w}(T))8Jt=}` z^~E@_`{L1tZ3WrnBu(EwfOgXcRLs9Qxkm6)s(R+m+8l^_a9;u(?)n9OtQN05?@hfC zaI%Tc6?i`Pkk=YMg_Ijq6E*H@6>(a8-CrCf0quJQ-DxSB(qq)6yseSMt=EgZ?oalU#l4PHD& z@6$CKzaGVg@99^m%n8VT#$aa>6zIWm_CUnz@3lVEh}z$u^LOp$3^tbL9)_i3Ii>=| zl=l6r-f(@u#-+C^*ogf{)iV+foLdjHiLc2$`*d*)trjg+H5?j-u0!LJx5}o#mIt^B zhbz_tjE8AYHRrCb_2oLwH;QS_m>E2@kmNkdL&uTp7rQLzTxU8V5hu7V zr#q3vD=5f-n&Vn?Ko8Un4!?MP)E^@QK7bQd8d&x>;2D+H0hfY37q zu$%cBY|UE=Px$+eMz1-Gx=P-RmEzsPoqXZp(CfiDeu=L$$OtS}fT4l>z=6{=Zi@4& zrN=WVPWR9wm8aO3i=+pi>p#p3Sn!#la$KhKi~)fZ0pBTeo_PuJw_WhH)x7LSE|HGU zpWaSJdi*}%VVGX&$vvW&jlTb;Lk#l_2*5u#)(ndn@~+#$S|x9mkM`NT@hPgV@z&%R z-$w7L**~xoI=TClw?aZ44$BQBr;jN2Yxq3wsSh&4KGz_|o+{}F>Ab#)ScFx73}C~2 z`96>CrkMsBRGb*LzjXE!-=aTPO1(?e)br0AX;(j)gA^e~ z+a#X+X|I^1J)RmLVPai3lL8TL6mE4sNI$!bs8*{|&SYpaNE({@oh}I zq6^|~LUft+!>Y_}Z?U3!rtB0|z|e-Vm1pK2z5=xxr17e_g$%qRvDjL~KC=`)Q!@4NV`Loj{r8&tL0OvF+}-If(+io&fuEU)>JZoGM}fg;r3t~{f_}r z^^F3EDuzkm4>%aoyj*7q?_OM+--kUUEnn4#+=;Ui#Rjc~P5>b6oOAsN> z5JM%i>8E~oSV@*CAB#W5)oWe@mC@k6^&+mO$$-YTW{^T9A;yiOy=$+Vj91(MVnAa5 zhbc~`79-nohoQxAm=sVZPO1(kzofSSSngu3L9dnkzct+3&sYPp{*BNkS320Tg<)2$ z`ojUg={p6Kbe!f=29RHFfd&RVE>L|ZTFjO*l#!9{p4_gjRabzYz_jKv6d`K-{1P8*>1OXfWxz24C0m(Y5K^+; zFIKO>ybT|=M0lCD^poP8VCAT{*L`VajJWPVnV85V9d*5z(e5alrW}$C zRha(;{_LdYk|W$~=`uB~g{j{?AK6l~sZCI1{_Yqsy>0SZGmzi%7K^|pq2Q5_mT=~s zQft>Az_t5ah63Eb9nFyB;(6he|9R?z0mxH9Q^TnCHSnkO#)y%YcqN48USM~+lRF6! z^1m^3*G{{odn|uO2=eFT^w1eEgh*u%Y%_w1ioKdiQ0~W58y{)C`P19W@ED-*Y-D!g z3cg3UX?VpUgq9o2j{5ZTGdf*D((G1NpTA%*s^8FaBG^rx^5vY!D^X~jD!Jz4z4tG+ zD=O{>WUyf)?-ZfT?uE>=sq$+_;H#KVrXQIYmrdN!pd-*g2dnG}jBnjejp5`3$P3Xs zHmGBK43(%@O8kF(?h7315|a#$92EDu%L=lRD6xyh3@JQ@R%LC?Py#n zkXk1t%a79ysVq`J**L)x1F9>{WvYq*+TNZCu)5~Ey&J+oBrQPwY<7Z+tK;oYM<{KJj{Or^^By&Yb)=!;O+N(tJX2Gs2yE?=+&OQu&QNa zy)%%=cylQsAdwQii)9<{m$-sb=nM~(WbJ1Z!?iXho*}qgoLv~ao>t{Af*UtW3PvE` z^Kn5my^zt&JXVgwLTCSr8y=$J*<0U8s5mp6pZ4ffg8M^l~__Ou1vXbM$ z`kPM@;IB%vHexXC2jd`d?s%3L;006}<>j3HA%%sRqfq;PSOulGI7aFF<+>Ou^Yg(j{He4zAQ>PiFL0DIzGU zn`W4h4-V0(r!$P}F&A99SbkKbY*NXft_t3VQ)AdSC3=`)=WB*&ihy5e-^>CY6|bto zppLKT+%WaDo_#C<#YChb@l6Xvm|Y)$Q_L#a2QC5=quel`YEA(>ZNIlf{15<(rIj67 z(7$vxH>4?Wev+hca#)S~?L86x4$X}6`+yDyi62Nda2scP7A{mI`^tT1Ev}$ZMGI?x zm;nvP{V~%wSz9U6>$I|(%G5LE!{$6&H&=dbHlXDZBXb$p4F_z-mf=-JduCwb?rHYO z(wKcYxE#sIKYRN3-^D4y5I;kD@Et#OB}-~78g?vEHTJ`8ey4zF!j2o;onl~$c!_2j zdK1$uo)s~rO6v=)@Ol}RJ+bk)m}X{~fc`tjFLsr&1Gv>SH=%aN`}8PKLH!w@x%*k> ztIyT5D2D)RrxdmQPxK>QD_TQjRDM;Jin)R)a1`a4sTgVcT6&QTlPnndL@}3Gy2s(i z|LS_K^=$W#Zgp-<`>!jDD+J3tc&8+@9g2UwBY1VSlrAjQc$9buJ>L`t;c~O2-VfjC zT@~THu&XQxM|j(b@G?C>D2=>Ub8nI*)uDy7urf^Ldr`Hu^Y~_j%=Rx^)BleLQrm+wGcO5+0=?R?qh8bmZDMW4D}o7Q1vRTgfm!GL-@-S@RJNcYhl5+ zvaUD6j8;A0-T5oFo}eS+`Hqg>>hGQ41m<%Q*lOiKqwx3S?k^Kr#OZu{L_w+ytM#D~ z)t2e#2}I=&(;74%?3BsWzQH;u`sGgC7SV?UO5!SB#J6|(bQO3r9S;%t8)nJh%7o80 z4>qXY_tBWbFbkQoRn?pHhQAsQMe8{S+NKsvf#oX8mmR+bAh;J{#Yd*HxBi8cBuO50 zeV`2c2_^;)#t*k0x_29!e*(=jIqP{C90zBP-_;j;S=a-3Xzv=49i>nB+V6**28X4xP7Bn?v9@H`nn*3Vq;zt~;TU-n=4R5O-{O7LxHt@) z**H%>7X^g$(uK5}ATMk_Ft zUV|x`ei-4s(Mkm2hF~F+jzPPJro&~KXjX^PwZjoQWk zWYv@M7CriLwnl{9do zbez0!!C(N<>H-Aa#;K`l_1}NLNv4H1g@wbd+t)76#q_35SQHnz{I)!QRX$gj=Tvby z(UM2AA8wo?MaloChaysSE=|r>7}SmSDeRHR37#isbW~rZabok}mt})%eF>{ixwyF? zF{6DRYCp*P^)BZwNS(D+lBRdJ@hZKF;EKX*6DPGDfT@3u+I`37H_WZ}T`IAsYOAz# zfS4G3!~&PN0eAhWEw4)2sfqo&t$fBNP!BQ`{}@Aa^6$8LZuFvXDfS}R!w7s5nxBF{ zDmREp$_ps6#=WP)uF0xT&7bSKxmC!{PoNHc39e{ridzdRj0nBrE=~J?{1R${OmQxCvPiPb+=>$c_r@*?N38kN1hEbJ;6daiT^9 zy<+q|e_vSE$W|NMhsvtoe}=33!L;hMBzsI|0lS<^v|nAgsRv+|2_I}*;xU| zYiCR>|aa16ROlL^0Rhi1U1jy#s?ce`~+9qHyd1?Vw4aOlnVn8b1! zaMza+6+}2rrFs4=26_jEhE8>-u4?;h9J}W^OC6(j?*AK3jRJbd>9zZsW`G9p|EEq$ z`A!1#p|vnRxxjZFs2I3}U`0H+x@(mjjx)TVgis%*DH3Nm$O|ul$a}E5H(38NZ41kW`4qUW4Y@wvQT}4YS zo8Qz#tA~{4lxehI;aMu%Y02^b&I<8T?xPwxrxMeUoOk3o-p4z!zm24Itgam;0i%g# z1YjFJ!3w-R^CckAK&^ObB@~U8I;0#V9ALbK-uNJ^j{Ar6G`Fj|XXW&ZCX^he-&85) z`!GM$_hR2QZF}u^HoXF0Yd)a=Jh`cXFE%)Q#~y9LN&}>>t2%c-8k0U6?5f?mfAR zibj`HJJ!2pczBbV!X%LX#InZlVZzD{Db!Rg`RePrETz^q%O(&LssG1AXU~(GAdva! z&!_q-9H#)1h*Bw#^~!wMgWy~J=&I_*8@BE}r1dS&UYx7Zbgv7`3JcND9_lAwD*iS8 zSW0R=7gWGi*=V*~hvRol28^+f%khlNR9spDK^8{{SQ}C~LvK2oJ4^SW^&k6h!P7)8 z6e!EZQQh0Onj>@uy2ob7<8$%e%eB?yN#Nf-hx%ty~P_?ADcuKpkO z(4W5`f?iw!y15eN{|q2pa;n4Zc?$_3g!~X2Khy%SQ%SilQCH~bxNFj`*z33*INZ|{t}`;KeE$A*Q2pVSQUHTne&Z^tg1EDDJ!nq0FK`?rxcB3?FsZ4Y zpXz~lrtO|4>Gy}gGetpyxFlNaT(5k1V^3yC>a@HH<%zsh8sRgltm=!BL5?vHlfe&{ z4){>8Kcz+RQz6(MMLn31pd z*mHX_JHt{Zw+UQZ@5^jEoGfy%*G3HLc?{cr%mK_H*mT^y{N$pr&zJK;!f&-BD0wI1 z`_3lSYsJ6SYl507$8?*$>3!niFH*V{T94=QKxIdN`9rj|X!&TV#k-*RU)O zR4C}oIUy(4z(p0f8~ugbRqM+^`^oF<2I28MZ6H}#JHk~H06btfwq18}wn$C8&ITe> z^7-+n|GL=+t|cVhd4FEyfB_J_Cgh&1Y(m1ZV89f72h?qY{)!WZ35=x{b;ar zBnH>d^OR@W&b>M@<-x@SAaJBTrT4?vA1KI<0aGPVrSenYW#O}nu-$K5`ek(ySj)hs z88@40jqRXSi@H!Wl6Mc2=L^~oeVR&KS!&|S(dfl51A)u4M-k+~j)TfY1cm zlpSaNX!5FKRZZylOgzUzyslfCV<2A||DVcYsDojM9yrVpI#z_}-sydS z7r@2b*?kE0k%=1(O*6p07(4CkS}_3hgKH#c=d_UAAg zqmcu9Qvqt^(5P2G_Ny>)n}Ggmu#dizGveB`Hd8#~#PuF^ZMYe4tuFq#ka(a@M1L)E zaz&9wdUJK~O{k(#Nl$!$)}pH4)%waip7u6gqnF2MXSrKs^jaz7+uuF7vDP(NXDY1t z_2+w>MUzTeJpn5kXZ{?Nk|ecbpc-B#yrB2W()ISBSY4ND(6KR(6IvjL3!6U}qS^C> zwM2OeT{m==;6F?+AR1l2R@!>1tp^s?d|uToJnqC9x=ehd_@%+edHu6!oqp8p55@a@ ziNYRgd(42|hox~Wq}h|TCAX{^Z3M`7RPnHr;(^8U5LCh%8<_I*io+t`(+IO#i8#HD2 zyiL+1(CI2`d}3gW4Mf?4!}=}%!8Hd@wPRpZV54f|8$+*vqnCbdY7ui7E`~&5Z5uo| zYx7tC>e+n4ioe3+M`1d^VF)X<)E(Dc!X0+&vvv| zV?~xi$QS!sFGDk0h$+^fQN!eo4i=$GklD%9RZj{PL>{Y~q6FcftC7p+KoK01JkQTEb8bwbtgY?BLRhI|yE!m4>@u${>pTVec;%uy`VZMiU>T zzW=cL(5!f$MO~BP9GRapV;lTGFUkk^lz=f!6%?Pv^-Us;kiQ~9pN<%Ot~aNQ+?7O!HdcmkhB;!&u~hqe)_PO$yNRr&_D+^2b0YI5hJTwn3}oXAb#Qj^@pB7A69c z9UVAu%*B&2@N&!2l{MnBQFY|rA|L`&f%^;HIb!}4w z4t7(@D!ov0aqCp3a=(Xul$V!ra~0{SCzs%!PPfG63UzL)Fq;Y0}Y%4_#OmNWWgk7yI z@>@n3gSTiZD&B-O1o6JU$huUOa{oFAWD$!>*X^enLP?xnvZNSmqY+c@OYbmv!@w60 z2H1`<-d88{&D6!GY0TV`{9A{P1WwNsQ8(<9b?6#ilgesiIfv$o0%$!`Kd?A@ux zl(zSJ{^%ctrJn+WG5#-F!|6n1jXYVv-13V~Uo;T3`?O?pop6j6(6k0ckMEn#tzuS@ zD$W!aRo~1Ba%_^UF)>I6eX|(vzGifeHE~gp(>b8ejO;QY!yG21JYcc7>7s$Ic#&Ft zIt7dEa-h_LSqOj$YX;VRX;Sae_icdG^LX0s7rf`z1E#V*tEbdI6nKdp~p`CfkP`AeU?sj8>?PHxKX z=z|E2WhW1&y}j@#4i6dncOjVNt;%@q*0x z$%)!ECydwDs%HQTkpsvXcu>ysu*7?SZ%8Fp6LZ9&Mz90iIZ<}O)@OA3eq7G(gb4>N zs&+F3(UanRWxZEf5&yf)emF|UTW1o!Qq{h~n$>)(eGPO3-anHKh+{gL!pMOO8iTm= zms!{){**6+ARGahldMO;&Xte0@&P1P%s z!aDCBz5RkX?Vs}Ni9do9FNTStPmqEi6=~PyMSNF09f}vW1Bc^|AG*3FeaX3`%$~l_ zRcf*dv=rK!=j{hf9#;$Bp~>^!mg!0H9%CbXq^}Iz5`F49_)w0OxA1YR1e+TSJ{gG$ z7upnwl-5c9I}gH#7*Yu(L5nApt`@k%Tws`GrbfT9Jd#Fi!8?9d zOp2u0Q79KuHswMuMcRE&##6PZf0G&f<7z#@M=tgx>!S!aV=9=N5Kb+mZEgZ@&{8LB z6OPaZ;#?R}V1>}R&I&n1Bx;O)Ow*w@uBQ*oB|yC#bfvm+=qLxMa-sDkYOSG1gNO{u z7#qGfa`Ur;ugWl_A0ZR$fYp}?<_!Q^8L1aaA^eJ`HkZ$SC)J0~TrtLT0a1$F(t57bj2}_p0zV7GR_RL!#&xYz_D5 z7mNuD3tJ#^dah@b50?@u^4|B-^~&p-(pem)rYP(5tE=-w9{FNIa<2I+btLKQeYpMa z5lOh!o){oCB;^%Bv~RjL%rA-diDQsfF1s*eRTL6t?;lnZ72%eJxixL?$Jh`xJ$*$|utTwZk65AW?i@qKT4{v*YUeVp3Hm=ZhJ zn@%gn$3H1`>5%m_wE7f-5v3>MJa~hKPPeYl>25VPHS!&trHJ#Sv^!+FZiPRqfx0`y z$B5q89pf=cmI8Q*t=YuXM0E>5mk3Mh`mdMvt(#x3HZ{GRdaM{s*ql=SS~}W)>+;v# zpX1n)uMF&$+OnldA(V~l8IN7rMvq`;o9A-r?PbdrpLiD`)vLG!&agityaW4c`Y%%=aPnQOv#k(P;EvkU zKRJtD=N6}z+3aJ8^#+;9;xCWha=B`16n)LDD5b5{h58Wmp6wXp44W)m$wSSO{=4*L z!r+^`U@!bS6}|#E-#VIy>F&LA$GmuNL_hV0wR=a$nUjhKlamrd!3b-D+Q4g2o-Y^g zh*K_1q-vZSVvGI9z2(&ITTTL!+QpeQ#?uED$xH5+_3JA|Odd7`{$xv*|9-X1XLMe* zZOih`24(;0&;S|yv@ZU~nnc4v<4$~gkj?N7yDJhQ$08M^KVPr<`k=P^L7XYK^f8`P z_6JeiP2K8x&s%GN5qY=WtsMdrT*sbl)ovo~+bVsGGq1(LQl<~*v*lEGE=sqkmU20> zu!uW)38q6FSzb(dsd|G_;AKQ0C#eEcb(+YF?NAtL&X)T`(Cc7rf&l_xcxRy)+uaR z_5HSG)!xPQ46CvT3hs}?+IsVEAP%%Ae4@#JeRKhBoUB;*^7u9AQh)-=CyRtD-3tM* z)TrhOf8qJ8`EDyMx2ETZ3~l@-$~mcT$E$MgeJmQ341Q?-)VJ*3Y5C`AzWQPBqx3!# zpHEl(;T*zb+Jp^u9`!VkvFGAy3hcgntwHuoP2cY{7G zg?h)=H#((b6{*c%*KuPL+6t#)-PN(5zBFWw_E6ZI^#)|lpOa5%u{n2Po zKl=+GU(Jh@BbhY~tqTG1P0Q~h!}OmyHi_R+UMpuWjeU7=@8t%sMn_v&fAp6#< z!V@Q2D(^CED#>TB2Z$RN^osKxi$&L6Tb>W8gU!kbFpyprs0(k1Vf!hbU)imB1;$mh z)N^adwBlZ3`P&ZH5w7N=dMMU|9TPXxKmj!KaAQ@_dG9P zpJvvt2KGKscuPL|*`)d%3F>@QL*!IgS`?SZI9m9X$2Z)JXNu0sT)tTncB*mGl$;Z! zJhw1M?BF8BI}CiTpW5Yar1c_1_OK{jxPs1P#S2IG5QYW-Pain&hfJv9X3T)Bf-%ls z^}FLh;pyF$U~wR1F6JhAgfH;aL+T!9n35Gg8$V9I#kWZgohvuM&o3c|_A&v*;EU|O z4|0GDEzOSeh_a)%Co%Z0p&_;D%2c*8-}w`rFeT`m-xs<^1=0?95&^s7<`w}*jyncE zCHLXLtO7dw4R6D}Z-mnJajesHet9l`uR{SUFqw$6qA#9SLiQ+O?wU4|kQqH3nH;I~`GR%e~-ut@>cnUc{Xi&(1-$2HB{ z)nH%Z2qy4fho{IDzL&$aZJ^FmzFP9*|1O7pXq@_^qn8i~yT6Q@wv(!GIKFP_Hrc%6 z-ebvcpE4CSo4GF8oE+c|v(s?VBJn1P4#1nz^LIP{>AHPwq5NFM0Gpb7MMz*Jf@b>H z*IU?nfo6jV$akH)Rap44O4CSNMDe-$b@$jgKKtk4t@pn)#EIQSRKMlFWwFE6Q53zu48a{TTW#KJQW3=(nQqpaR?Cnyif1 zR*_*YO_kz18O|9~gg02YJ`Bg2#97-IwZO~%6qJdA%+&F>DJj;)^^B10P17h(2(8=! zI6K{(_K_jW7s|cwLo}EIN;9Hij{M zD#GU7aa9(NAKI!Q1@EZQF%7xDVlRNo-IX3sa1f^5g<(5gZDpy$9zG(qL07stlVhgz zDrQ|d{3PGUJ}ek21WCv+Q^IFWK7wcF%9c~H^BQ%1-S?wfs_os?mG#qd=j)40)N!?Oq5O_nWXlxXtFEoP>d4`dZP zj<+IYD~My#0t&ktOO}Y8nE-F<8mB=S@jpWuX8K&cJCpZyeU!Fu>uSvL)q$Y6PB{ui zY{#FeBhr()xG@r^&OwH z#@{t1JTDQ=oHZ;v<*V)|q)2m26TSrr%g8dRele=IoZ$%QYqTIZ|n%_B_GP zI1=&*XY&+Z<3LlRQ>5;)_)TToUx)J?L&SFIZ8;SWHGA~6T-r4sFi#OlxqqeQ*$<4k zgAK?E$A$j;XTm)%vGdTv!(pnP)Yra+tU2ru3giLm1*xw{v5hxD{Sg7d_dKVllr>W)+FGx@lh|eVLL@xP>$X%KhN^@K5=c%Q+xVdPvK{9sf8?P%3OmduyP~_-2yTRzp7o&@I7dEe2%dDl+92sG;}TWGNJy4_ zcglgx5VlFR)#1)&lm6| zkI`iAgGz?TcD#@@6T^{uN`t{=g>PvZS6>MR-8JBSc#~IaA~>e_>!sNh!UboFBDmfE zV#z4)snAUiej?uwa{tQn$heNG`+=?VY~#_&!D(ucT~)trUG`9~6%JoE9j?y!$tf6n zd&Bm{H~$E0-muAxm9gtZrOy}i7XQXI=KS=vFzS9idH`j;b8pGPxu?y31>dfblU!|I z?sIiHKC(?$mj=~LD`pNMK7oeKHyVeWU|e?6LLl{&xR=2^KNlWKzMggATL1p7cMjCP z@xo3zhqe4#Gym9L$N1o2<_E{eED;)_=l;yu{1kUg({XYZKGJQq^RI4A?CW2|>Mk0m zAi6hAB-^it6~`a(R|j|S#c&|E4wCJ!o7)-kI=S^T%9#V;C)Ts|Uir?s^Voxw-SM`d z+!L$|B<(|gD|-}N#|CeTJ=PgBR~DFGn5b4J{2?stBEU<&*)}`hp07T$l;dIBg6;zw zpO5LLRn@e0T+>j>fyp?Z1sJ*Y+F<&Q?%mp#)Zb0WK7GA=6)ug>l=$kcVLkZ&koDei zO(pN!@a|f$ptx8-q}ULU-lPUrT}6tZqV#G61O%i@%`RA0QKCqfq9P#DrAap+L}~WmF=^-fPTCFTQs0-K?5A;XvSB!mWtA15BoE6qu+v8_PYqWpk;Ar}61B0>%tStLMvQp+0o`H`B;GU4xTdg|G6t1EZ-K0!Xqd~$tGx!>SE z_{x#sm#yH42Sl>01fOghVKWr@FFHcd3q(Lfari^rt>@C{)o?g1O()uO2!;CKHx8rA`jGQZ8TH%K_sei9to?9` z?>Wj3@lP;G&+J7o;n{@*%hUkjjz(u?%e5OjW@clM>xtxyy-a?{g=5Capf%%2}3 znSZ=(%xVlau=U|sh6h4wKiAh;y#}2JZex4?fPLm!FLa&v%b6V>Y9swm*<3E)Gdt+; z@y1esm`|76??Z1OZ)d8kzCu9(Bw$);569iGW0OZmmS-vv{Ff^0#y*wtBR-H`F5P$3 zoyfWO%mbV&hPXXEi?IVfX@FPm9;V{r5wdb+V;lOuPj++OSK9$6{ZB4J@{!28W^8o0 zA()tb8KJ;ZJ**25vUPaaj&s*i%i=btF9?#Sw47k;7q_iu0|z`2%Q-9f+r1_>5(WoW z`nWj+d;Us=_jyjqt3+1SyS5R$Qxn^Ff2a-CKq9j4qAWhi|Ghbyo=Bl zO~WzfQbJlhfI7h$)YDR}(tyTM_8+DlEG&??ENxn@E%sh5J?_wV>%Y{qLd$8UEq_%# z|DrqRxtdtzak^x4?{4-rc(zVh&sUrPu5p5I5#+M9{0YxRMHcOe;sK|W{Sa-Hnx72c z=C~ev>8acArN*6}m@ZP;1k8pP29jT(BS-sIs7i*mxHDSA#aQTA+3OjJZh`C`($kotZ#ve970|`U}#3y0{r( z%w%+Kc;;P>hsd)$mmAPa)yZ3zQOV~lKh4HNXMwy2{hx!hmwhaV_a}5Lh)Kd1z3JXrj?R_aTmD4!8!agpO<;Lc(1x@qm=~wd+Yc)kClBeOxI@*`yQc6r&V4j+LGl?PFuOOWip`4hS)Y- zZ9Z*OtRZh>i#5P4J*{U29}U2>%9`QRF1A#iA(~Gtx~}Y)LRMOe`V?oyVpZ5(v_TgF z>McuP0%FfZS3g)NnbA-6IP)i3#=BXxjLunh8LD~05gsUgPx*s#f&%D5aHAmQ$`nUz zvTZCoitK0!tg=rP4Y1LUqE3Z3ij2@5(&@qqmgjG3-*r<2l+h%WR z6_G|(2+vM%W_tJ!#yY9IuUcg?&CE_c$I*p$Hm~ia)%^FTdUN)tuJ%UX^_+P6{$Dm~ z`K(i~o|lyno^$6fUgE?1JWw*n^pfVsSc0Vbig-594+0F?B14tMcuKu%b+%9Z-TM9c zX1k}K7Wpa0;^1#H$jIkw-RFW*{Ug6CE+cG;i`PnM?!J#_>I!5Xw9c1&%(x-gZYr{= zp0jcL8-*x~aeFuMWzNe|fccn@UqA6sW~^@8_Ii!&$(zUOpGp6I>iHh-|3pJ?rDy%M zCXn8D`0GT`Q17RV6+nta5VUnI9u|_-^zM1i{d@M|^m9HANc$0)o(namd^l|%@6T5u z&wt~7{?%lu)b9yC)bcq%uOT+2tXv^TzDVHU#8 z4YQ#o-Q7uYt)e`_#!)r&)r^eSzO{+ZxL!p1pM7fh_@3|P-W}{bG&OGPndV*E@!kp9 zp0eWmmTNmsw_!3{3qC^Vh~S{SH_77Jl-<$Zr1@>X(0+n z{fBB+KOUR_SOHvG+oJlgL!|C(`G^iyd_7dHC(Po$z^aS7@GbSp<1hHRs9XgH!*hK8 z>TE1kXx}P-fVbqx+qV0Zt;1oIv@K>A0&kVC?0hg&w|=5*f2e8EzzQ23!nl0H%eSb*fw*e)n(Uzn|hV>Ph-d*CRk# z%yunG^G?$Cau1@4^1k`Ni{%>wYNvz%Wb(N#g%|j4`t%FahdkF=?KKA)mD)S6?)R2( z8!#e(q%(C=iFEwk_|+XFWdhG{hEX)<#NPp2OHZ@-`Rcb;A&=FK-^e9r)>;)l+9ihE zVkGuR-U=0Oz&{Unw}&nXZVIH{`ReLIIV>ss^s24t3#EFih3~w?+OAuGNpwDvqji@H zUVt!PyOT6~+t-Cf`&>!l&u*ARo<@9(zV&S!hd|LzSOR{(Lm1{5mUbKPj(N}3CT3? zCijho!vUVu0Fr~0vs_GcgluF}MEMPyPKiCG^a`O?$v;hA9?M#(qN&obPsOXsDz91g z#Oqn8nec?ySzIsJ+|?JtvU2n^*q7n^!a5JXU64@5%O$B>X_Gt`+kPl6vCBIs4KzjB z!^v$^riqT|ZWG?>m1nWa84uo(iv!1OTSe(nhdqUrO5TJ!i`MM`C!&T2126FsZddJ! zH4_-1ot?3J%CDKKWe7e8jM#;mJjA^(k77RmIuZ|tShn3sl2qMe60eu%M4gscye^Xv z=dUj2mZ)`xY>C8ZOx;@66YOm+UYACJ%a^xh&E zS6{9wxT7esZ7W%4Q{`jPW`a5ubrWL^ylq-UY~hYK0g!u{qFCCz}=1x z|Jf!}dKvYaBZ*;0t@&t19c0Sns*gzi&!nwQgWZMVw1&g-(4bSk1};d5hx%wUW>p&l z6&>y~A31ue+87A&X6;&Np$?S*PU?-g~D-^F)ds0GX z^S@wjNzxbpEzcaQGrhf3d$k4QOQ|DAtZlT4+S(grQa_iNG=J2YB}FhFg`KI5dt8ts zA3&MHSxQW}UA>$a&v%zmJg)K5=JrMNgChqh2bU_oskl8M*cW{2{2nS|4rVD7-s>8! zJ<%!pBPsSNKLYjgcN1}Uy!fS_{Th=Y$1IH8UV9+c6hVsh)*wc0HP*%8Q~bg};Cq>W zFHU9+?B00yx7ojuZ;~l@p83jMuo(!{NVR;JBNvmjZie9oVFaxXm5fplQWL(UN}oth z*Sp|5?hrr4ut-?rtL!-gclLyNUYGKr(yK2k- z**0tzjs9xlTR8gNRGzSM)Fm1GBWv_~cY|Tp?1q>*men~~H`{AsdPjC5DnR$Clx&9$ zop<5n-Tjmc?P)nOCvCZ-LVsQMo(odP7rr5QTj(y;&RR^)fDyiWH0LiT4G+=Xetz5a zLo;G5J&1&0`iRJ0)Atm2{KH00gbr&bnQ4B4rUqkBfNs`lcT%mnT>Zoj&6)`xFV zd^O@tK|wlER8OAIqGtLw!Ge_17*N$!g{2AXQ+}yJr4Kai_cCDRIDH)&0{7h9Q>^Px zt5mz!-}*w!N)lzUCtwdW*A4$ING8wPg`R26#CyLdWMv6o=gOD-cN0}`Z{}QRPxmqK zJ5XS;*D%9#c((p!Vbsm4)PPodEBlk*f(nU$!`0zko#;m{N1I}39co8!uMMdSuIU}v zyQ?AD`>nHk$qZ|kN1)R_^*cZ0yoEQ>k9KPkQt7| z`2jJ9+Kt29om$aQUd3!&&itGHT_kPuK`#6_Z(BHyTlB_SJ+{Y};ky+2rlCTZ;;W~c zzmAPRGTw(Rzf14aJ|S?W9ph)6xnbeDa&g!=6p#BV(V@9a)YNPwV9TMxo-gvVe#ZM& zuUgg^&UK-6bnWNVQM=*)>FB74a8aHq%lCJGlWhN=Ix)O$uIurqFUXlm#oe@_5~a?D zl{ZLDyJeBz3q_p6w7W##v}hszI@=u6X!kIqB)C=kO_IyZJHuIqbc}aNARZUZZo^9j zqz%VN>^6`WMR1mLvol4*qp7}nQras-rSqvqpfh4q*RbMgBy9|DHfy=xxQ*yeUR>5m z20g$^NCM5^jy1C=$IAS+K)Kd;Wg4WoiJ@F$7}wk zxnRh{xVf z%)7IzZ&goRUleAE8@~?tiBE`l98UBC!)ea{7UuYVniwCSsx^R!6Y+;v!_NbDe4 zAY3$l>q@*T6G_(I-}a6nyB3z4f+7fD?0kU(CT%-IO~Zk96Q}z=BwAO@pN_3 zB=Uy5OqADbp;cYLtO)j)1Q~Qb^yNQMUUP+1^+iTsOQ~foQG1$QmKR*sPyFw(?3bag z(tR(QGLoFYBh+ZK&;@*Xlvb){tUffBclA^_QCri|+TXUCf-TGm4~XGymt5z6M=U6XdZZIy9?0z)F%EqhPa?{d^qwP^WSW%4 z<_wM&pNG2t{6kLn?^CSzHP%K23s_j5IK?lINd5pDh~Rx*Q~jmm`DAJ zW4%sSqB1zs3TNQ$APB}yiDyHeFBYoI-$+;5_G!UR1Z#~^SCfh}6Q055 zW$S1Q@@6qBe5zUR?)2`*7*0PoGfBXO-#ExJmx?hv(29+e8f{iEe&|5ZZ2YWXDD8OB zU%R@vNXleUHUA0}Yoj;NSTm00#M-d!aQkzQgYet`TMEw{?Ti|9ffQ+h7s#=il0kIo zDstj1U6L%1KcwNMYw#h1r(+M7to5YLDJQ2Dx?AfiuV@ z^uT#DscBD}H|!PmcW^)>Rv#?8q$;cXB@JL9CqQEGKF|Vo#X% zW60$5_`D@7rP0L0_b-V`Q!L6Afs$1Vt`>4ZyRX12b#`k%R%_G|?bw*Mw0eSN}TVdIB9 zwSrl}iY}Dx0Yh&L4ZWf!I`p5Pv)7&#GV8^Jt{S7)H+j_#&|=On+6*t| zQwQgo;E&ikF?f`p=?jOid_*3O=Ru$7M5eo;bN2rNWs@P&YmWudaNiuwo?C;a+Wjd9 zsDVjj_Eg^fhBK9GH-`T+Y_=smf(9JhD>goWCHqdx<_e~pABNI!02_k6CrOdVjIvjbchURhu+T1r2>~6;^+`UGb z88`i$n5VLh8ghfcoclxw9Sl0tlICy&KpQi& zy{^aN)hD(jPut1n_YsQs92r-8^tCUbm2~V$2{wbbIc!8;O~IwxkYBhM3iXrRw<1r>`yMM`p!GRa_+v zL>W9eOL}r~t@`R)rU&2dCr2l5o5(Rwxqe%#h9@_i?C??EcQ^6<UO7 z_Y>i;nzt)vI3~$bH!D(f*QqJ*TCK5N1GFDq$@bFnW?@t0kPWx-)!)43Kz3#p<~%z@ z4P}(=&7q#+DJ;+#QZw?JW_D<5>f31Uh*r*s@)|yI>`y33%>IKi%Uu?(%?6+4GGgAj zAeV(Q`oV?5ey$Cj)AGiky-Y1*A@1GbZP_2ycg-;prtK)sU7hABS^FdnQf`2R(~QQW zt;NomRgL^%eCcyshv{EwAQFDOjM;vGkuTRgL{~FOnu^|XR;?^a5kM&b+uOgjFn`b5Cfuj#tQseih4MB*%5~kp7dKm%W#L^VXUvVgMXHzpgyq1Hp-= z!9NOSH+wf#y)kAd&}O=ww*9QO&(*A30W)eWhEOTNdo}Pv8C|={w~a-cyDS6q4Jqn9 zI|u-Dd620g!l?yPqK`&b<3`_oY7p7|@G4hOhopM^fursLc_S68QGl#m7&ZF&xq-J1cC(s zZm&nvODwD9RL!(quNbCpFq3dLsp|bW5>Gg#IJ8fYte^w%>x9#j4Lx%1C-RFr0 zl=a;A&zEbHRhO~-b&-vIo~)8|)6}p!Fi0g8(SgHJz3DGi`%O}6-wztUN_|)hco~wL zEJ?aTX27zX<~4?W`c^NcI7dFWvImo1Cl?bhT5==gH`~R;1@*fzlnZkQ#)}l$&8*fE z(gYt!V)(coci#oo_!Q$h!;`-NX-RkU3W0DSm^%+ON4cI2rSh_ zK0M}ZsgYV6t`1WuLBe(Rq!PaHv4&9w|NF+PoiuyC7`y*J^Y9@$x)%H$7SVm7B(N)k zSlu|#41%k7t=%PgD}!k%4mc8)et$w&EzKrB(=tTM#$4U0Tjj($tv4UnzS)%s@j;$L zmXczGeC)h5K4(73#P-WCs&T8Q_0v7v_t= z;(z7{DaKqn@JYF3HV2}VrUH$6iD6q6bu^Zif-Py6GUTYz5#h;Ij$B<}O)K+D(rF7i za#b>LC_kHYNMyzR5dTgA%}iWWu^Y}(Mp}f^Js%g{uO4x&7&<1koGd);9O0^`A~Q69 zII8;A$_o9Ta1Qu0Out1+OqOeop?!K~9g8iXJnn%qv zxMKl2p_||-vJ~MSFp=YX=HAo55mfzuz$W1zu~6IZFC!mgCGs-QXcAd}^7v?_dt0d~ z{!@Z`Rm0x#a`uc{l+_QlLQB6wr83%tw32=XhR&`RbpZME_mA1C2Nul&#=6;V{fhNhug6;PZR-z!IM8j9 zU!Eno<4P_|BKe#4I1D5mf$W@+~!){C}9k8}DIDeaY_21t}COmLAm=;=*V;DhR=;nN6jj6|U z|GZU#s+pwY$yZYU;ZtbkPqca>6ZFJ)j_m9S+>;|DEA+soCthtjq&~p=r>)+8dLVVg zPAvZ$p_tpgJ6CA7rtmgcnjmnRO=8YHn;4%=e<=qzx7-bkY}}sBiZK_Kx~IXlste@b z=4}P6no=x6hJ=MUk?F7AS=+uFX52!oOmp3|(gEpPXQ@6dAFC9v=QTvTx9$H~KgR+! zY0r>ou_$%tY0@uwZB6{K?B6+DUt%l_O`6kQJ+pz+d$^;@!5*Jm_PY7@&%lU+@BS8* z-3NpW{AFhTQH=_%R{HukAeJFq-7;(to|1cx8%NW`bVI7Ahwpu zre_7oIvdq{{|}F1^RVC#Azdw!PkX+A0B4U38TODN8A&|h%$AxV^Jy*Zbfpd5*tEDC zPbf;Q9s=tC=rlqgSv&DC%uUdSGk!TDIXQkeH$oh^@gvElfI32BsJoU1a^bE@bX4`= zP2|D|*8$Cuzd`0XFIN_SF1e2u+Cwk!!*>ZlAbGOb-pUn3k-%8m;C;_rkP|pR#YY}$ zEN{%2o|{S;HREduOp0S?fT1D?cvAXw3C{S_WbeaRh0Z(ejJ7XB5NThs8q&T#Z$V|=5{lhj3HxmfuspDEt~^D{2Snk3J|c{NLE?!$7|(ZXq(ngLU-Wapo)uF-&P zP78S8`Nd2I@HaYKJP2AmB@BaRN&@lR!91#`O(q0O0{;_-!FxydS%gyP5$0gM)V%Du zG#JO*tgxukN6pOH3IKlMC;}_vnEQF7r7uZ8ygoqM?t0M?AWD*qCLR+FD_v*4*#-Q07@$Y#}t$hC@D_% zoaaKBv>XSt8}KNc_{$Nd<*ZrjCnBjR0$+20gNSwTQ)@vfn=r@gwt|C%Y?>f`%7BA< zf|@W6Fct?W_NeA)bI}OI_qD!sL}2-Ui7+e=;5j2z8z7^NaxPh45zZxb{;N!i)K>lD zm~vvUODfL!_?49a(${_e8SI-zzsPid>ZQtmkR@V@b@SW{mYBj4KE_i`xB_wyvu zL1%OLVcxPe_B!$&_K(B489p%gzGxo8+w4M%|LCZKL5J=s&q>)nJG=I7L%RpJd zKeR>`vPM7TZQ@-xZv&_}tpi9z{jIL|9(@^cS>$ClmBKH>8lIF)4OMMToJ$F$VqPed zqr1gk%~03d`d+V<l6Lyz5>~GOH^;#!NkevO1bdtdc(n<1% z&{zCNioK%bZ`dpif09T?<{f|AIb_~dNg>Osib8~)14LYxY$Q008_&t<%Sh62mM$Sy zjz{3J_Fi zjLBRdwBAFRuPw4BwR$a4iY@F6QgN1s*gL_@Y$uG~(&QUCv!l*e%W6Eb?)Y2*qLI?O zeD4asIKv&`qES85)YP)snzZV(rwc#w>ZSz_H~W3?xl*;P86;qvDkB&3h8nU_v+E(G zqk5Sio|^y~b!hjI98DdsnU!H74=XqW8Db7P03^g-xAoQgFg%^GWJvZAz8f}@9`ueW z-}6F3v3PX&rFEQ3J-`IrL-d=oy$2ollPWERx2w9;p6rR{JCbwCNeq)&b(xKr)+?Bc zcRg6{!jq$>uO9?t_^J3lVO$RfJ3kMmEINgu2diU)`Pl?YBu&d9-=I0^_Ek7B#Iv8M&;=jdbc-4zR#f9lwxtY#C9B)jAjF z%Xr~;(<&V;-*KB=yuiS?ddd^~r(Z|sSQ`%*HDs+=rQSCsZ^naX_PIXH0=Tr@Z%9vY zX7-BgO2Sq~r4SdrZKuYG$gx%@ZH;z9(3*G+XJGt<~n|&<3u4AJm7cM`EnG|$7@NDjBoC#EtG=}U;U0Vsf2gP=q`5Id zXKVIyNAblecHHx~{s~OBmxE(F|VuE$aONlAZ-+ z`qg7j0BiaQwyMa^#7l`XG0Cd~iuL(7{)NyJ#$)9Tj2Vn&m~{79HVNcBtL0U@5o0eM z;Ax1VQ6PD-X*{sn;r}7t^rjfcFN%b}vGph-z4&sub3IDhRWmc@__`ZqUH4KGog;y}GDW=W!FGWaV*6^m1lm(DhiiTH1f#;aQpgBpC#5m1;=^rEtU`>-B8^ zVxqpBFX-TIf{jf{xbu-S&EEScHl6JSeyvx}nD1dwjlY<0V}qFNPsCwA>&R%mpVR{A zzi3&RpWvr5M^%H4nQ7QmFhVg+jR2Jsx6m}`ANK8It6*v(Q-`B_G(B#ID1HA@eN8n! z_DD{}qKTe+2vuv#J)noU`buXhojDDu-4=s-`VIFE$Ahl12(q>u^uO*U!N1RND#uyM zNiODBV2FBpyk2V*^^Zk&8xFZr7CoS{r{DM@cP*Ie001-ma1&1OsC5NcYjPHm+(B}- zo=XBefbCASgzM4)^Rcdh>P^6Gp-1wSg(KcNsCENEdAV}49KLe&aF&khM!&#$s_Cg$vO$^ z3mAy%xDY2sWgq^%BdL@wGi3)Oo~4FO+LLeMvx1$(XzSt0?<-+xzlQZVC72DD1HHl``P;&1G@^xV+iXsir}FwG`@I(Ujw|TD1051%UQ0%=OE=^~Y|9m%pI4 z5_t&ZmusH5y?IzqaP8W|5lamgwAcSIUt1+ z%MX8Cq@GS0-lPPXPii-AnPX3?(f)j!Y=2T-KW``MR{0QZCHtFY-|k1Y00;v1nz=+1 zOOWY)1ORb%wev9k`Sn>jh(y&|s@VUi2gdC0H{N7$bQmZ9B)7GI+ZN=}Dnm$PE?&FB&eK?{xRBcD+LZl} z2&ZEyg`{kOSP4#klC@HUc{-11djj4Fw(y}Kiq&KsB3g7PwZK|Pnm1dmBWKr6P`y1% zk)%?mUj`AA)+;xMH-ONNVb-3oK{|Evor9nfTkh+yf;F|_B|jq`1+)NfSp;yNutgG_ zwi+Zs>$}fJfP*26ngX=j=3MlXqDiK!@`g|B-5@PFT|}{)zX#y6B-RuzyqiB%T9Pg3 zUUotSUH?XopquJOT}R+EK33+a7l}dc zi(&!YyC)WP!RX2RKY;-=@uxDHx4$O9dAo?WG?Jllm)SuXnstwDS>^sCCEg1`Yn6uE z$DLU5IX@P@0WZZu5sn+&(m7LTb!O$8c81Z1U?9`KTAL9$CT^t#q|{5HOL+SOGOVQw zZ#N=n{XJc%MFH13XoqBZ!Qt$TagB--yDhg77z^ph_$-9PU_B-tUar4x;_KgSk@YQa z+78n6`_>I6?BE5Ecyl-6RcNKWL=@al+z2!A7`TyPS$BpThWdJjmL;4~1bOOKe>o&i z{k0nz#$%djFLa|VH4jH%ncST++95>T!U}Ij;^5UDWb{v*MTKV`0wT(thaVhgfxkDz z(K^?C2cHEgAW|p)p?U;c`*9varRlG=GaZA5K zVrUF}$?*$3mPNnx;o*E~%knVX#^GnQT{RZ|$9_FKfehh9A~J;h?sZ69)NMz`T3!r! z&@mZ#FkTCNaPxM!Q%O2F_pcFX3{RvYF`Rl@oU@h@FehHg?G|9WruZKqC8Tw{fX7d# zOa-a5#uEa!gTCv`Vc#p{V)j|8M&ci9DN1pq$-Fs(e3LkJY26+g#-#KrPZeM};N zaB4BykU!E$c@AtmfV1P@J4$cDmP4|5>m!7|)6OVcMr840R>5ppoR215Qfh|m0{S9t^oRdWGx?ehN~TQ(VCXD7+CU)OIr2#X+v zj5hWQZvh71s4cXFJjSC_IPUxry z?|2k2d?xa~_v97rNNnh?-*N=mb$8qQ{apC-D>cNi#7xM6tEgUTW-?#oUFq<}=WtTH zSWaGjyv4@&63Fd~O&G<)MHH(Y0B*;Ic2BKdHQ5-v*_fsW@V36|;dZ;ef1K1B>3YDQlLrVz(YU`zt=wYlkD?M7BlVzBI#X~?3P?)n^d zQ)U8?aSnzhM05S*RDGD3PiCfcuEiozkse1+Ne_95*O0ik_2;ViN|rnrCa3QPtt za#P#1tZj3SuXyx(2WYLO_mC*eDd4F-T%I?(q?LLL2nVkrD{g5TfM`YfB{vT5n)BD# zJ@JB%75^cM`dgAiXj~VZhaF3HNKI`(Y87cer5yn~-75uWlWd>v=LD)pTh=Z5UNbBQ zXIZ)jl^8J)sRUE%^d3Mh2#^X4tgps(X}Q_JiR40AcL<5zbsov>$xNPA1R3|mQrS5p z`)4|m%r%P~adF3!&!p~nQ)31N}4bXN0ZS@MNhDI;i4hh8ME&nIA zoK0~(rTy>kuE2&1CiXW{kdGkHvLS;_<%U~-;o{16?&TOM@bA8A5AqO2OwJDSBRJ0* z1~of}#%+QXaHz<3()Eup#}L!8uonFX{C}d|Rc&Gl@XzvyHQg)Ly91R7l8g?0%m+~d;BmE8{y+4tt#Bckon_ci zkKf_ibTIE$q_)9Xh&Q-O-+WI&Y_TH7ftEFN_TmlQOey~MBDWVI+%~}R0J3y{T2L;% zmO&!+u;!FxKl$m`I9C7wXrtjr$E& zJo_x%==w77Ylfz(yH*72)dkv`&t5Y+#MPx^y2dq#IkymMZQG9j2M+K!3`1S}4>*Rb z8PqKG+6HGBF;vRjtPJ_WiHEI>gm!nWe_Y`I(vA%Jbq~*GL7E3yc`bQgC*mZYz@Q^k z$er$d2}a$+ks+Tn$~K1;~x&0lh+?$eVl`$w)*#XnG3*+MQV^Fy+IS!sDtz#hh5L$Z8}LC zY`jLQ+M6S|lTF@WW$EeK@H1V$-O9M9TRDwqJfrD$BGbmZiO%Kx5#Daz&(g)@;D3;_ zpSp!wcEIzR+Ua%qGoD>f7^BMR;P&N|z> zA*CmJAed0;2Z9N2QXDu;bM4UGE)!I?>j-Q`0OFn~d`XCn&sDS?T>m(xS-84s(sE+e!*)QUevi0R*ZDV~?my?|&Dm|>X!mVd1odSv- zSSw8CY@HNG^+09?$}d(y%AfQ^%b!Hc??>C-qKLE|oOOqt>}@2ZXZoITdPb6!FP4B9 z>jj>}7&W=y+qBym0jV9lZHT`(?hwN(N||!~ZKY11+-=2!b4+v!NsG(Tpw? zK^07$P0C0*Fa7ngE09hMBvPZh|rC?jfvQv*Fgi;VkfAvz-*&_HTM11Y7AJqc`9aG1WwlEA|W1nrKuoG(EwmIz!(Ep-EU z3_2+y9MX?Sc!_05**>?CvTu%}Ww)Tkyy6rC)``jrWSvM|az{#BA4E&6LQ4!pOJtxW z($Ny<(T455%_*jN-Su}TD`&P39j|p8>4~=QNKdHOA!QfeL&~1qGNna$uCH zO0Z*t1-ywTB6qEiaEbxzj#4|a?j(;QW%m)0vVT2A%RUdv&Iqy|$ndM(Qu7PPkYm6p z*lggq#jnX)c%}BvW@_&H6JFBSH?W05p+DghH6plvoA(FFuK>RWb^TCRDUJShKfHY! zN~kDKolw1`=guKya=z=@%EYcj&hA#0 zG-~4My5l~`{&x=bsnGLYi}SP7NK2B_`*T(BmR-cSmG=v&bfv$vio7BKoMCLrImFsK zc|y+!e%G$hXt$cJo$%XYwf()*0kg@@Qq|HGNoX1p_w`Z09Gsy0V>(0I`HsWw9*hi3 z{Jj9lsVA!AB{6WP&Xv!FAZ6zcEP6=xJA+msB(nr-kjDqn;TAu18zCjJeRu8Nx0{9=7Q|m&#(HX;`%#Uf+K7`A$k$zssgO< zB`emZ&Uxg*4tkOo658 zD;XL8Wqpz=&tq0Il|Bfy?u7h74lUJkaDq9ws`?7{IQm!OF15omjuN`mhcNH9B9C`- zCQH7C2ac@fYhAr}P0s{E{xqFwpewOOtbF~N#GP>7D555$0c#-?D_YY_pcArlRx6Q5 zJK*ohS7_zg@b}CL?&)N>7+Rr64E!;uKayjkHXLMp%)lH3bo{^IxFs-1mMF|=Q-Mj4 zExeRb8$yA}lAVS53~8SSMl<&3(V0W9UP6M>_qO#rH5=x}a;;a7n*WStexkw3VMuay zKl;Kw)6OcKGkd^}nG%U8%3Z^yWzzC+oH2^Yh>oC<9(WaAL25PvAa5w=kZfA<6MM)) zJ1xT~TRvZ%QKbnviN|JdHe|x=f{bICfw(vn#@YRtaZx4=^qrcBy71TeJRSYswe!ks z)L%P2>QSjREqW&AI>6{X)72?N@4XDp|GE0QkahH71udkwXE*#YnM6J5$ABG$E#FGd zi(hM{s%fZEF(u786uT=);Ha<_b4UTER(@58lS==IJ4x6q8uhi4I&#M~**+aQPn@sH zaxE!Uj8;GIj1dy+7Sz?!Au0(&@GLy~3 zY;e(uD(&(;E=0f7FWP&qZ0s||3OnTZW*cxD+XF7lk@Zx~i;C9GGpE>9E z%i@KnMm!&MHm2Xaakd4vQZfRTys;2Ec-Zjc1kc5$v@$g14@Xme8C2ECg;fo(`_WpE z-S1*8viqsyklnACg=F26zoWbMHZ)m1^uJ^n&FyPYkkCdz_t+z7Ztqry)Dn0PsYQt! z*<-uZ5ZqwIl!LoS8}kWYnMFLIWolx+xbfYnbLQV*z4=0~9 z>3u^`NW6%gVZ5p0fY>vCL?iahSmQ?9w&}tHUb~kmtzAKeFqSgfqz?B9ezy-NlWFE5 ziQ>IjE=s zPpxy6#9nJDcPbV~BO_H|RAlkRdLU6p#Lzl2JV5!(yI=mw7H`lX(naE>OAeS0*?El- zSqT}*QfDM5t?oi1P~a`{W1q`tJpkyy7Rg`6NQpP!fe3t*`95aVHudfJfMQ<~2aT)S z+cpC%9(cEBD&TyaG8*l!NVH?fNL?2BXkB(_v7b1BoxfHadaE(UsR25ecC!VI_GC0~ z*9Cd|;|$6R+U#VI2-U)U;rqe1{|EnWWpsTvkh?JRFW>4vcX(c^{}g5jo0+LR<*EfA zDGyHfc6dgP-<)=2>$9NF33s&41+>l?w9Y96E9lTs%_9~-rL^Tmma!|=8Vt`b2Sw-{ zUZ8JXO*C*gE^f>1qCd_+K}7No1y2ZY7>jG`@t#ggeSd(Ds}Lh$$^K;!u{ZW z3g{=!zC;cfd~^9WI}eV8uwUDEnBml!1oxnOkedEcc=uLx+U z`V;=15!V;Ou_*x;9FDAWS3$)6qV2tO$Y`7r8Etq!0c+!7?&;!7YOKttIt7wP^>n|b z30O@M(K*>Y!-Nlqv@?vji;Ot-DeHxyvU)hf%v-5g{uaWPoO-5BmTr`;hhLS;FU?yP z&nnT1AV=>z@$c~qq${g_ygB>XXRE5+)0M;6Ho}vhtNkvz49t70HFfqb6Equ=%2U+H zF%~9S$WTth)-RFS4c>q3rsMg1T-vjSwKpXpR*JQOqb+Hiyt_Itf|yz1D%m+>GvSh_>o7t${ z8C&$g^qQT-h#{lYTCQa~b_a%pL33HYod2)|SiiZ0-t<$_oPA!sH z1NV*k$;n;kT(WNe&VRj>nqJfxU-J6-KL`0w)nV z-wp*0&Czf@J{&i+G4Ld4s!M=lX#(8=8j;M(ROR(c7hX=#J%*V!mF6Tujw-O!T9x9Y zp9y#0->!FfduL$vVzFU?3EL-GRxMPH98q-AV@UrBHV~qR4VeV0m38G!+F7K6o*L|0 ztT5)R)S-inmIHYKc6sI01nM4{iX-2UjFL+9VZE3)t>qqQe9{(FzWYHaz%L{BM|?hW@wDmF?;i8 z(%i}<=^my3EUJAxiv`<%+x(sf{Z%Pk3XLutyAANL6)B73Fp!yR3I99ltcibr8rjdw z`J!D(cvkyaPgTa_AADM@Ul(%PooxfbbtCNjD`n~sdO~G+SE>>4a6p&6Y<&Pu)Q+>g z7XQ_AycPu3i^d=HDbaq8@1p4k>bn^Ki5#06)_5N-7D1p_u7eYZI9j7HD_G^gg3N4f zHvZrNB&*qKj+#vzQDf1YEu1tExRrV~6PjOpQY~LJI*J>JVtY4_S}Dp-M{hfH#S4$y zcdYmVNwLuiEy5Qq;yYXfFm&-Db)C0G9#q^EZddTwo|mL;jGg>TYe=RUp{!}=Er3eQ(sHJwn-)HNn zcALiQAC2kmvj-nmjh)C>#?Jf!$l-=<*&Y3z{ND&LP)a2TZFX&f4geRbe;4)_HmV-; z7Z{uNq^siM?`f??I&ya&=9dCyLg0If-HQ00MwL+C)7#T*-_u4nOJ%Yyv-y>$7F{c} ztLEcXh4a>+we;794+FKEXTRgG+>Mw1E^6g09fiCn;&2;_sr46 z8-AS1$B>eC05oHAtXR*(^ql~{va*}Hb>Ta%Y}_t%&t0KIItnMeFXbt-uk65{;X>_V zS>cFXEWQ_wUo`=cx{eUnAAE5(crY@cc;8tL$(?_J>z3HL^O&d3IX>U$6TA^Xw9M8?MO94@&NS)tQcnnw+ z`b!i0avK7_vW{{l4Y=OM;;!fT%C4yoIPPKZY&!p+4f5JSjbppwNZ>Z2=+t%W+Wi(M zusSr8Hsr(W$BT%|@Q;Rw!WSzoT_UE*TfBPu#%XHKPv@uWR<(mwQ(L_ev+2Y`A596krX&lf8L@NC@Rax9nj`z*)f4#e|xpDdNm!s7epUAi) zGb48ZS#c7xL1`1rP>e=nMXWbzvLJ(fr4{J(amI&*HH-gfxT>LgZ`=?Mc(H5iwG-C? zob(mED=b30qm?_(@uE@Bo(gP{AV2sB#L(mi&CnDHxH(w0M19aRn(ySREID?PTzPV% ztpf{-#d!O`$Kg(o)0zGfU+K%2-hVu?D^}h)(lfWPVViVkfAmS>=#ZoR;9tUPE|wfn zJ1>PT6-Ee`u0_P&7@to>mYFR7&8`n$leo5-V<-5rG=4|kqLKHSy%AS}l1z^lpV3jw zn3ZRXv_Nn@KPR7~y=u<6B`OFeE2=l9KM?>Ivf|j-CRx2P@`;e|AWt~gbH}irKRzvU zHldyZLkI6#8+k({sq7CO@SnO3V+C@=NUT3}?_OtC<*g}x>m7Zwb~Z18Jf+2OYZXM2 znh;r{Vpb%0HO^%Ke17dLKG02V&EMCCqmpdfU>V+@QrmJe9?(bR;JOM#n{xQVdYc2^Eb;kbgI1<5m z95U)q3|*qrcb-Jmcyv*4Xu^-io}SunCdB=v`4JRy8v(lYfE@j~FPJ48Amp_p{Slf% zM#6+Q*&p)n>#ZWO%n^qYo%rxT`KeI(myJ%;p)%(VJ-8_(J+g6z8MUIRsR~6o3WL5b z{{16iM@dVYvds{YB!elw{kEd66YW9*L>0e_U;2TV(S+=AuV&Nn+B9GP)eiAT_Yzsk zZzh9$tb86`a4uj)xlMnI1NU|Up8_*vLa7RL!H{Iug)pudRJeNVas8``S5+=J#q)+& z)|HOz2KR}SkQ2!^LLi#4Fi=Wt5&+aFQuBa_6&>iqn*>Cp$&HU;?)mg`^t{hLA*c21 z0X{tv*u{?P`Sips&fyFFSW)Ch>DD^>}$lkz%lH*lwQd>_iJ|7WK{daXB=sP_DjxWSfq zPh4N6bpdKxAwJU@t4#?)QwQQ(m|KjfYr}V(HYm)Qawe6=#r}2}d42s1e6Scx{#$W4 zzwu)4%b53(CbnA-)?44bK57;yPJY64v5rOl-CJZZ)j=#>eKL9EglE1Zl7r7(GCdgk zCaC5D^uN9^LiFUCU1qP}P5;UMhhCq1*mop(Q@_%{+hmk5A*|RoeUYJt^vsik(%b zR9w)wGOBj%YsZ@f)ZWdPZH!$EiKg9RjHtIx#RFum9OBlS$6r4X3~V#b z$zk*L-IA?tWr2hnU0Fah^0H1fiH{j9=iXS=wyFjE_ndW4IfU_Sxu%CLHpMe;)B6;X zFHi%{&J`wCk1}=-sj?kBLPnpqR)qrL$P`_wM)R=Y z2iSk$msmzbl#O6i#RJ2Xz&6HQSfLCSnuR;5xb=IsJH-FmJw;RVm#90VwdaOcRpBeyL=59Y*I`oPo!d zByh=9shTsfO15eIyl}u4#o zb!muD?eUw)7c89)yx+95g_GOFI2aM|d?S@Ju&x)aWn#=CyWI}Lnu_4#EAR&-y z2TSj<&WtvtVU0@?W^NOh$Bf(Grzy`IQ+jHA--~EeQu0 z8glIIdH==W6lrQRAnPwNb4hjBV3NX>#>$!S{ngB7xVoHf-KXiE#By{mcCXY(BFsGa zSx9@JRgyfK2K^}uqk1#>*sy8_GOR=5#RKCX2|>??=0oRL$ z@9$^!!D;)zg#p;s(AqiDX9NUt5Z6^>Uc@4aFv^PK0IkUEK`o~ zeCfSW*~8Qra7}pdW$AI3UG%GH&zE-+7(44{Ra!A=aaG+$`_6Yuu@y3wf5cpftLmv) zdR6VQ>Tvo?5A;&+F&EUpUK{@^B3uU_xP@l|yL-W7#wC=FT9{tkeG?g4aVA?aI+n68 z0aq`+em(gR%|QD4K5VOBZ4b%VYPEdg2>8~=X^9#qqG@pY7ODiAo)|RYscHHl@sPO# zcwg%B?0FgM`oW+-oFTET!25;mtfy#&nsWzI7Mi1%#Es2fD4gapzQJ@|q`D=(@8fxW z*xJy?4`>$V_tB~z!K@Krf>~Q4@f2&08uMN*B8nKfu5%Ua6_(e$&2&CbS8Gv>ta;h& z#`${cf}B)e)_a{182St5lioTTFoNJ4Uz@BaX&o2lm;>GNBn$xzaGt-C1+au%W>%d% zvl-WOd;XG%_@LRRV5w)jzMbXgbL_*H+YRLeA$MJ)ITnsX!M%RyM%8xiF8Y}^X3Kz4XOCEnX%seWvL~T@IW90a}1`u6>drQb% z<1cpsW`pG^+2`;hxcjasf^WDtBKZ-VlC~Vd!Fi(KnEuyxwS21-L2g!~w4mYWEO`CO z&YD2}rdYTesKl!}`}$hfokJHlyT?gy*`ni3{1-e$M#_|hEaWyphFc(a8Z9xHAu6;8Sp{{=6V5Kc5@<=SivPMqFgpY_kuA2G&(`hzP!N7dg8 zDxPsErX^RGV7%GiEi23wW_NG18^BY*l~y!q&4lD* zRK~B116v!04m@h}dcGVCx9mj;fYG4_;)0Re$VI*&22VYk?OD;Z8 zepk(ra?~Z3R_8s__9%aza%-N%h)$qQpJLLkp)}_nD>u0=>A$}LQ<}ag%x!q(4i!<@ zO0^yEJ9Ll6(39veL+2W?+VZb#cMo@QPy71Hnl0@Kv#{seS!hob=RB-f zZ;-CzPxff@sFUC(2a_;$$%0vjF9xqR9B*BGTM_+h{7j&j+jHrxEydm`Bh8D$b~P1B zG-X=~cpc&{AdP}{qWfC6`av(GTuwO8VIh(3elH)r};=JPziC?>hfcccHr0mB~)%wF~KLf!OwkVw`EDF zTqE0T&kf3|EaOm&XyzrA)kQPE>f?HYZSAB%z4YF05Uds-!NF&W>}Xf3eMGG6wYV2i ztSH)j2QCAo5hydMV4%!27J&6@50PuUrf^a7W7c?A zKy$L?402VH7$^-lj0B}2D?}5{FPytbnDe3s;HK;?z=Vc{eS8{0bqXs`De?O+;<5Xl z>G^ZMcm69g8-HyYn+!T)(0x5jnOfJdbRYwE{^kHp?Ni99rRCOCbjGREidij5AR9rMb280QNQ z-9g=3msV`$>s#!8%UYbPsdT!0Z&?`&|1W&?*4sc&s;I!654#eJgz-^DzrLD;2fud% z{xB0um_4{a(~aN5R_@V32xd@8E$+1FT}@mW>8k{DE+1BBsqNA77wHbJfU2KY+xH`QrzQSc|wn?K@e8XFZr2w)|X7H_fmB6#1h00Ug(5g-ePFs3EE8^bV{;6bq z*?FY^2(U8GYY5t5-vQN>Edha`D&t7wVupf)Cx9(CM8hn(FKz{Lrs^Z-mXe_4PMfg?J>Rv-2vyQT>!{Z^K}#ObYw> z5@yzdg>W?nOR9%9d<4L1eGn~RfJByOnvBg{2F-M&1l!CZJl}E{%#;uFD)Z`khg=A= zpeE*~e;`_=9SXzeR%!h#{xi&3akBoiTk$q`Tk4$;uY+I(zq-8x6$l+`8`_5D>b&;r z6Cy{7?N+rhK0{c@Jz6_V6rC_j$z)MiU1Mn!p(cP35xrTWV9v=;?6%Tsc@SPs0DtuLGq-prKzl|z-&Jb3GG#ig`C+?v zo{i}keL5`F`!=+ByQ)|LOD8tj7YBg4@aTOKgC}eLxSko=u3#J#29-mS*AQ>({?X@v=xY&da?s)g^>G)R#-*A~4CKQrP+re1e|HzR&-NtubL5QejS*gZ8v{Jb&*gx_JX3rj|szUvQc(s^(7HKEaAUW4ZBwEkKFQir&ALH-)>@SF|Pc&}U;w zsuUfma_to_RzNV#A@QjrP@(xDG2m@`TNo0DDRCZM(`kfbp(CmyfJt_&jVEHt9aj~mD3dx1&H1n4Ru>Y=~+53}uuv7Kjkpm8&4*P;{zEB;M zLhsf2P!s^Aj(93;>yOQFKq1&L8x+xYCGf5lH4i@7Ol?Jnp4uO@JiJfC3;jEr1z?!9 zp2LhkoK(X#a8LaKtCbPl0JfrRTuuwRKZ{P zIsOJoJ=}D7oz^v`N#5|~{GM<`%EgU0`Q(7()Su~3WQRS%OoBe+9VB|v>5~3uqLBBf zn#vJkU4skTyO1vSH5Otrs?r~9Z4l!5YXs(~w6N0Tx#i<*MWg}Jt~XLt zv;2GqDBncfh5eK*L+g3R<$On#LC4~qkSgb&A@TIls4zGD23bo_8}+2-Y73M z+B){y-_XEP(cyz)x8DdxrpRFSUAx0y?r83Xl*qOhqLJmptN=!Wcpu+^s?qQz(=C?( znY6l!iqt>wOq4}4Itfhm(+R?!z}aC(W>8b9%JFO>u0&>eJD2yVHZ?=pUOvn}uo2vA z!`~wG$@3*tlf0SBrOpKiAI~%9W%Xc(a0}^pDhye2`}B)|B{w}j?R-zeLE78|ngg!V)y(Z8pr$ndR0QuOT z8Fjn)zXxrXR$$a~9Cqx05CHYad3)9|42_Qfjvp7WD2PaL=p*`bPuI?%La|PtLiIj! zhUh3Wb&Z35yYIy_p3}H%MzjFCVtHSLP5+Nw3AijoAUO_y?J!how=hOEd%2Sy(@dQ2 z&*spQ`E&>SUK(RDruG8o<>a;5opqm7cdNURG4GB;81DIybv7UQ1}#4wAm1_?Hg|g~ z@}RTF#%tvv-yGrfq!o8F;fJuTZc7btFSSeD-{JcsnNmE=r37|E?tF;X$tS*wFsl9EJzL&&1L^&6Sn*ZT}b*c$;#~li;+t~nbwch@5N5_Mc z+ZsFU@u$KHlU=me2iC2LyT0S)eERBuaW-++ zWdQ;&+fPMAy~(Lu+AtY^1^-Wu$w&($)JFY}i+{-ewQt_=iN|8%tIbYX)35}_FUG)X z&jG^+_#h{W#lA^h&6~>~<#quee0{;rx)#6~`>`w4_4)Z2x z^XcYMZxrMFlt&-y1ua9dF7O2@h?y$o4c`a!5afe(zborB^3P>VB^r@b52??-q^^fz z)5HzJ352bUvV^Tq2|I4MWU0DCb4ilgPrCNNAA_vRb>|0onnQ8xytE;5T#TF;A2@Xv zy`uD9b;Ki{$)iVLmimu;n(J*rgYi%GBu*r|7fZ}Eg>HTyo$8hH%u^J`4Huy>ZV+eG zOhMRmGdRLLU$+yCX;u{kE*MkWxi@@=Le!3FiLn&ped&RoNc-L*{c&S0;gA1}Pmek_ z$m)wh0oEsHDBZFgDbwUB0PBeY1#W_b#CPDBw-X z#I0vCkJmZyw$rk_95&BXDD`i>pl!!-s)>0c<7G=?bBzdvAUXx?;ges<+>jc=)nPiM}Lf)ktL7{UX(EBk=aH)&K1K zxp+@bAGJpcIYp05UedF>PJFaX;gn)Ec*we~W;$jQ8U(MxTpBte7~Bdu*|<17gE*;z zu#X!32f0~Dt93_63ps%C@2A_8K>)YDb2H1`4pG4KMf2mpNS3!mUs_9wk(BD8-Cte?o5UtJ z1*0a!C(7Kidsigc{0g!nC^)j3d+&bt@>c&Skx2JG^yA%`kTsciq|>F3kB{0wB!SQ7 z5wFUkhPGM7A@JoljGLaNeV=IaHq8+G{LZs0{ZQa$!@%*(Pl*Io#YsJtu3&eHrG)RS zF$dJWz$Zt3_k5Js8~SPiIFQ?3$5&vy$HnZxt;zapcC)b5{RRMKuN-}jC zR5I4z3G=fbG)H6anFb%%0QCg9eW}zXzRHuh9(=V?l+)(UeO5oE4Y83!wA<%xbfYY5 z4llmy>7}i<1)#up#YOomiV7Fike#$$M~b)6kL}`?MG@@XD*xzqdR@hWE#Bi?*KmOL z>I69Zq-M>-+AJ(pDNVq7doA?8|+fru6-ooQmcfMD#dBU;E{l1BQG~ zu~C+jl^VS{a{Q*Pq7&-ZQM|Hb@ta5(fsw>&rK#wjpyt5giGR%Y#UxUmE{k(g-cL{+^)TwD?;l z?&2EU>q>HTwe`~1J7a+hezs2}RtCmJUYat=yW?e&TA3y@h1gie&hEVa*1@OdTG!bv zABD}Eaf-AM(36e&mNE-Pog$eEd-PM(Dr#fAbOlY|U`p0>es$SGb|*k1J~gJJfx88L zzrmEWWtG$sF}~7eV@rrS_T-uX$HBumVSc~Dl@m5|0g(b}a|yLl<^}coQMQAvS6R1G zotJE`89{AuCQ;(?(bs_jS=XB!%|?*1CBvr)#yQ=>#} zvzx_T@GU$7VzeuwmbS^hFklnKA)aA1Ep96SH;}mOlXT(4YAu2UUmq<_I}QB#K(^&9 zw#YF`Y(+dt%91$iUvVM6H(}CkLXU%yZGLV;`$?=Za1i0(akG}_?JI>qc)w~q=fG+~ z^Nf)_`#DS`R4dj}5GsH3yJyFV7#CZuBcE26^!toNVNDLH$K>zMynaURr%^;D+EmO3 z2*r-YThNRm^*PRmRR=;~@;BSm&YyF&26jN zzCvUUD=3cha+Q!tGA%*anFyF9v`qivs?1P6cw&-FQ&5O1o2H#hnr<&4+4-gM0AXir zfkn^Vemr&iPi|@PmQ^)Y>L%S%EM{mXedp@m7C>S?10N{J^Z6oI&tK#{>wBnm(;v!L zXRb|ylwsSIDMvK^sk}2?(7<#q_Qbj;I$q+rz;Sjo|8P^9Yucj2(L7T{V(7~TI^CKJZ4$5agZ-2Un zB6VSl&75~x_-NXcs&st|P_>;nTL~z{6d`)Md8V;T1FNn0QOueAwV5=)U{EF1dN>-w z!PGW#j2&`g@?luO@P+Kt9z@iJ3Dxs_IW$M?k4?cy@3bky$hOonNMxUI@u@|Ji3#bW zjBTCKiz^^h?XJgST%Q`KWIkOR{>T<0LHi~G75|92ow%$XhMzil%6ECvXpgSfN=9uL zdK+ppWK0CwxS8#1^fKQZ>4Gy@FGyC!13xLcLE3i(nFHsP*)<}{92b*h_KJww!=05< zR)QUoZGI9VTuOr}df7(Sk@e6YA8q{^o%UTM*Jq@5Mk^c@l2Ij3lR5vz9pJkQa344R zU#uj)86q4J(ez5^YeXO68kAIEA|fm*{UlEa*b!F?{1rHCke}F!2iTNAH`E~b`$wZ| zAb&`_!btS#mBKJGCf!-a`izrN1B4@SLh|WGvX(9IrTMV2)vkI6o`^s^t#s5(a%Gzu zDSc-c39rp`5N`SfSV94uF0b-UhexpX1xV5l_b4ZJfelabgaAQ{d({G0wgWn7&r&1#!WwMZ4|oK8z754N7GL>&!$`zRkP_Z7wW9IHni zPF4-9QxixMbxN77A4OXf$I7FC_2cudUM?Pa%PWR)z@u-83u9P~6{MWDS-=|=)izFv z!jlOr2g@pW>{M0Uw&hpM_L^h`ZWb1nYVz4BFcLlmkKVqpRA(jf+bEUY<`{_!GDOQD zF?i<7^sOz>FWybpi>Pz2^cKZ(ydwj|a;B9_YsSDZ@Z4bV|MChcKM!Jo_p0knJpJFg zu!S>5`{cW&n8>zC8b}}|GH;1d9RX93EQ!kN7L6x>QldW&OQBygYc6PF9<3s^*4{wh zeizy(s|mSLS~XPGwFvDf5mTCoXM9l4z0vlu&{695uDoA8KGE=?l1CT)0#9{3Ai5US z>L0^+rVV;)D-*;SmEu*MM*FI};Yj?Qkax)IaZsn1YMOzaLcoiaW{#bN1pUns*m$c( zStYXU7=GyQ2)t^`0+4ajfTabkdmH)bs1Ul^z9|F$5PW)E5}*drY8D(UPQwJEM^xU zo%4_{UvpOwsqC~!94Y1+Z^cFjDXQp2w zumoHFTa@^Wnknm*MN89+AwAYYn*fV37g}Qohx@=kKtnn0!wqnCq_MjS0Pt?p1Y8fw z+nA>amv)c1tb>}DwP`o~-8*+o_<|LIi;8ev9`e_R2}YsXU>LP7$jN`L3+X8lg0KkR z8Qo{jprOw<(QDJL(>i|5k@F9?tu7p0Fo4DbBFMj!q}c&p zv>)`;?T2Bb&eW>&`(BY_YR@*ZAt(X}j)E(I8_IzPtTbW`FbdbZopo_a>wGnlzb-Q# z!ew3eB>*HJP~2fxJ5!{(6EIMZG2z3x7#fikHY5?_7@y{hYO}aJa8=->a@YWFimJe^ zQ*oD{_qk$2gdVP=+WmWbTQPXP>bw7W{@HVNTVL}!;}|Pv&C0?dfu3v9lLe?jPgU`L z1N!d(yTeJem^c3ch5XrOL#%N%dxU&;iQUWqOMZVs7g3k9Wg~m{lrrX0d-O#9q0Qb zB)n3icxFInTbCC8oXp5o)iwv|6&T-l(+PgfU`LX}Psa?(24W%q3_IIy<@J4%aFXMZ zvcRI!6OE`W%Jrw21Uxpz;<`d;H#I^nEGNol-a z-3*l*lnIoxy!y#7nf-xM(ECdg&Qd#F+&z)I_S^CC1bQNk?mWzRv4Z3pUB!)H&XB6Q z1>PClBIQIUK*z%c<)qa^>VQZiKMwQ`G_^A?-Q|fGxcm-@I1tW|XY}Lmy{J zY5>PpRG8S<0F`s|e;ix6Qja0_YASUjz06(tp!B+R4@zHk6K+H{^$z>l{72|Af+F2B zhw)uEuWE4bqg9F%|423-dEhfg_5$oQjICg93o(Ozj5@_fOWFJ1inoI>lQA9Z%MCw1 zxsY7};n`iL%j+gXs+`e?naW*?ndyPJbY1NKpG!vrm&szx$eh+Y<*X$~h+ZS9lbH0v z7;b9Rkk5DHR$lgQsVe5#7+%&%i1Ry*g*ZP-kQtddqgprQXU>XeEfGeKD2#XX@9q? z$6S26Yz$i01k^bcqU8lk{Kw+iVuH?WW$m}oqe^A@Dt<7=kxIG+p8Ka;S&FC$^2BuI zJo3M*X5X4CX9XTOcI*zY;ln3u$F3+}Z~*MfEjP$Cq|?H8W;MWuYqp_aM)^i0xblHq zksV8_(2mI9FukSv{DADz;vt27N?zC@Hf#+4MqGy$k*Ty*ANXoU-zrH4#Yl{LD0o`- z12Q5+#sVt6$?JSiK?#ANn0<;EhBl7aRRW_Jj=N;+qjhs=*`J|kR#gc8-NVv1TK0VE zytp_pO0I|qgSelTJ3^(`R`LiOa<$vf_IDTnBnw-Olx=m`ref>HUPDPKD zn9+LdpG4JV!~;@~)Bj5LLoXN7S^%Nmd@II{|CEaCQ#PY^{aa_6=42PDc9No0A?Itj z0+RdU*P7tgC{1aq3-$f8)GKyYfFy6L*s#>JzL-FWM9Z+4d%01*QVo62!au3}A)WsM z1D3l9B`5>Rj&-$m`mPuk_=ntw8$fBJ^lo7wC8g_`27j#>AiL{mYCI%4y#a^Y_LA&^ zKj&2Rh7%bi*1BbTsNuo^$Y<*V`w+~e&N17QypSFeWrWkeBtG@0u`h{+t2JR=x3kg8w347{t{(DWrRmx8;mb0MLsql6o zny_9(oklUhW%YWL;lLRebDJC|iSVfj>t6^?jq&BW%v)gMkXLHO>avvuVfW571hQcM z|7J~XJv3|HRmlWvN632kV6$Kz4$-RZ;3O^);>>_Z&p&8g94~YZO?E>!lAm0(|eg%99qQ=nIDpFT3 z8Mw{---*16In$XJqwZ6RWqp-PO+%C#%MjV|aTpHu_EmTr(YX${*#j~onmiS=(PwC1 z5}Fa!G)+dL600^{KlCHYj&MYwQTNGqUxm%?iUunTwgHc>8@>CZ1R#0qe*WmI@X;Zd zew}?(z2ImuiI&~I9A~l;;KwXwQ}~ecA7Hn1XIL0_&zJ0celD$3wFEXEYfN7g5E`qm ze0T)dntdd{Pp^vt(%gN*WZRW$6?9+kW<)=4VFRA#To?5INn3`|vN768Q@RbfHN7Pk zj&z*cjFQruuHN3NnA*1o)PjSW@tK4MEDUL85Nz8;A^kM%>^)Vo+ z0jDf#BRTC<3x5m4(Y2_pTa|zf5MUZNy2DHI2LnE#-b?SWJT;VJ)DAoTHgB&5if>Yxfp%K-GxFRNgi#`?4{DNKs1T_e~ zMB-?9`)JT+UMv{$4gB#mA=vT5_f3RN3DaQ5Xs&EwA}WB#l!Z7*A%bsZYkbeph> z;V#C#|IQyy@j&qF8Yx$r*JC49r_s+|sa%^>IuvdYY33cSY|WM4K;9H(|is zi$C3DxRU8M3NTj#1Zc=TQy)U#Bu`e)0}AOd5fb~{3tuZ zrC0JCiL#JTcJr61qW*4w1m+6hWmWxE(p#XF)8GKW`7MvgqC8Yom>(S3A&7OM|Q4jr8pP9uuDFkMM}FN=wca!ZbDJgM`9>o{5|A|m>v-7lvVPsGgtw15>pGcATp7BLpg^S@JwWmQVuaeZE z0RcGe0OxWHpr9EboFiJAB~6fg z7L6zM=fd89(x_&(xY^@w+f4*0g5zwb`)e+CR!XY_cCaUtzC$g@M!Q7ag>?KHHtAbQ z0wWFD8sr-vkLXr_au)4NkiPkKRhu4kz>bAKkswmGa^Kw6$zpNXCJ4d#O1I zDzdQtf7?u7d~0o3+;Hx|IVU-REdx1pKufmSL` z?_8z~%MRNT#6+w<+}lfF@FX*$79->v8aDmj`yZrQtVrJTC zma-{mv({&UfQ9gn6BxQkT8Z34cyqZ^q2A!V7&6JHA^At`xd%7h#%INq&zFJb-N#QlJmjn%@1^e_F&%pl2t66$Zl!{xIuxYv25B;K zC>JV?r)IK#f;07yZ_aY41n(0JTn1V#L!^g^S+$~FkF}T(@J?huSd%0Z&QJ%dW1WRhg_d3C8(@L$u}q(^FKu7 zptD)uO_1RwX7laQ+iL|(o*}m{qE)c_avWZHhKqJzalV3J_u&;(Qzk^ak2QoI(uC4) zWl7A^6i<|6ct*CpErLhqcs1l91sjO>H6BGkW-DnrrW=Cecg`p!UP;FJErO~Qqti%j z67?Y|eS2vTQu#%W)aMQ*FMJW!tsIL_cZKysm-T=3BQBzSMJ_+ppt_{Zms1U?HM<8I zGljLd1Y5Vicr;%$q38D*>+vTv2D^%I=;k!g>p>SHkFq6{ZRh8v5}zd1x#d!*I@Tl0 zufAZRxF(&SJU>EK88!*G6oHO=x18CCDnWt*wO3cMW4XbQ`qx)be0azby{Y*9#iDsW zV_zbeXZIBQsT1tw<*F*ZjfYb&K#vM=HErfR{RNgAX#*YEu*b2if&p;U`Q&arja*)v zvho4p+T=ZmWQxXfK2b%`gQ28!8%LK{jInoD0GFXa;gCJd!n)JF7YDZfs4CJKtHeI3 zVb>U9AahT)dR9*4Dqy!mdKvw{Afx4Z%#$O87bH9JQ7$FRE=Cx0a7Eg z-F!#Ak0toD*EB5DKP}IVdLJ=0;b9XJg}sx>+7D>Hd&<;L!-0r$z|m3gCq?ug-1Gws zqW3y!)jw4XwlJ@e;#L|h8K2HE_y7v6cWVUtXr^T#2X|Ne(8R5^XU~mqI-wiyv&FM; zd`Rt>a+&5hb$ezSuvozvj%6&Aqia-ojiWv%R z0M05UXDm7&A2{_mZ0Iz9PWjYSQ zJe{`<6;mEO_e~e6@z^T~*k5hl|WKU*^Y27up-B3_QYABNYT3X0a(YjMMdJ7M4noYSo z8Y~laTkGFnaeCHvlWr=5NBwS1oLWtELurb|e7WQ9__#r7paD*4H$l9OoWF^&#mw^V-in?*X z*_=FD9XCS%pT|){Qs6qEHoPI>5VtI#HgS*}?HuS1H?MTx#O9dn2MB)JqcR*vGyF+2 zlOwqmyZ5Zp*q4^T(AN30bww6Zel=hy!>6jurr(|huEa1^K}$;WKW8a*;AHT- z4rNxT2C)-0eGGhUpp5O$nh5_nw{=ZbUPD_y@cRkCP=YgPJ4x(@juaAQpDB$^GX+E@ zdgN)g6C)?`9K^d+ApeJNknL~x^`aih$!NJ{)Uq`t)uWtsSc6#6U!xuic=E*r+KS;o z+%0gq5YIr+u?Ri^hg?9~bXssY0w{%PSzh#Wbj6RzQ;HSRPT1+-yX30qQ?&8*bH<=8jWz))1{HZsbUK?|qYSa` ztds+`RUT%+1f#M_tj5!G_um2@auK^7KhIQuLuHJX($EV8%GCJ7Z<%lyT8eT*C8xx;lJWs4B4nn{(K{h?|w(x;bmqc;3r zaXIPXBDQ)VYE(waHWl~>?-8c0DelIsHg#ixzm$K3(ol&ReV?P-LR}x+)LYRPB`NPf z{jx{|Of#C>Ce81i&lK6ug;`Z(^uKTUm$>^3V2-!chIBX{0jIt07=3FXuDTLoMt^0* zJCR9R4P`wN<(34nz~*eY!tVnGHqJMLAaIrbJjBiJOqtD`Oe!Zu#xPiW8`~**FcwN` z72tHZDL3ay!5DJtMHhFpuKRR0hjZ|+56a9jN?;@D6oytdhSYzu9ThG!jT|-VKisBm zIu{fG`Vo5MC&IJ32yl9GpuxPdJiLtw+nVrZu;L6bkSlvAGurKFN>P3bpQ;2W;d4BU zq>|G>7$UTCo<{j&BCTLj^MdNc&x&}OCT-?>mbVEfg2*7>i0M8c^k<{2X)38Ro-t49 z=KZI}jtqoHyq9!EAtUzt64hd;B{7Ye-kFOF5?6!g-Z32BfV7g$*=ik_mLkR|;XWa1(OBN8nNYddiUhblf;oEQJ9l=1D`X5%oyF z17yk%B#VRLzYGpZ_LZsbr>u0iE!3F=gr+8B$} zzvXFIJ)7hIvk*G7;_Y`~#qlu!THMQbTZlFx1GQnu#}5POM?$6BX>A~f7};tw_}y2K z;B@BXc)8w!OB?Ma;b3>x?6oEKw>$z8g{GHhgq{?4iXvb16nK6X;i2w1qMDal~Wxx6p2 z{NDY49Na(f`a8Ld=cr-W6DhK)JKH`TDM6HHF>{GeByE*~C89r~u=CSN+xnIaQ+h7Z zbMOOzCq|*}o#3S~`gI+y@0*f3Je%TL#*R#Bxd|HmUyd6J9}VnVANYFBI87zCRQrmV zKO}UM!~c%T1LRKgbkkwA*_X9{%`^>ZU&axzXUuf~X>~6{A+op>M;mx(T|2dZ`8YmM z4^q|1aDKb>RyYxvuO^Sfma9Y@*648wxs%A9If`MH>w;T>}n~6csmR18B zJroKb{E9}zHnOhNKI-T>^0RyBPUUQ-2XoO*_5=HktD?Rz+9~?{TN8K(zZl;~C>{o7 zg#ODQ34dZ2&A#~uyVMCeHF2I(b7Zlm82@vo4{gOBCjAj+}_BY+ZPn7uA=az`1t%3o;-*4PMmXeVWFtI0X{ zihrMfGjdXDZ3s+?Gyy%{`r>5#$FevG>RPdZ4)2kkPp~U5<1(hg6 zy^+3L$vt}cVniu3Z!e)#q`2`BbWI7%;xdTog#l?prHUsK{hW^c5G(_uym!nw_cyFw z{QH?)$!}tUGx-n=4ol)}IjG{UKYn)8>$jsQ=GADf%-ncxiw7H0kk7%jwr1Z*u5t?PF?yzey}(0 zxY;GDYF-q)@=uF06Rr0Jurx_<826;(j~)9DtM(u_3kg$Zg!H=pi!uA5HfH3k!;0(<+9fjth=x>zuh-(U-S14htM6>) zA>G`6?2fIDU|f3HVKH@g7NQZ`l?94K}1Uzn}OGKA!XL~~g0 z&$aQ1Y#+?JSIbN`UV$uTOymPc4+&~rBw6I~!O`wgtue}OkYmGa%q=1SoaM2EjIP^) zK0OL5K^m<29K28Wh7KZ18ps35`1qI@{AmHuG&a|15&=!+nJk*MfXXhz(i*+`1q?ch zyEtux6AvC2P;u#7ro22}i6CfdiS>n>$xZx&_?gar!cRNDVX|)3#};Y#ILLxzYkWt6 z5AoCR%BB=l>>Clj3@)MJ9Rw&fdg%K6Rfz+(z;a}TiV3Lt>mGkLW8B7iB1aO+gxoec z$Zg+hh>ebJk7?IBX?pt)!1XDb=b5&sA_7J0wX}QWWi6h*ziu1rO>eo7gJC(BWL(`0 zaRknt;&~MrFA_?V-kvWW%T-j_L@a0yThr??se1(nCI=Xy9`PcK)LFU0*=ebwl)5j! z>laJEf1v<4#>V+S<*@gNyiag9y<75QAk#^Z^%tVF26II`>H9q@dj#v%s$XIjAtFMM z&*{uyfjH+*()rG=*MlS^$c2R;NW3Uu`L=QHCoVIn#KgC%f)Vjf_@G66Cl9$Rp!Rtj zB+}icA9hk|wibbW=@EU|+x){mT)RGvZsGcl;dm+EziPY>sKie9HXseMT95Z|ZDiS( zT{*w8DznI+_t^Ej=xxKWHA{=^mP4z<@7n?`$;_=`<*o(*p`WQSdwe3V-7{*{sP1;g zb~3lA31_c8hwhOpm_Fbm3p#aBB;)C@YwRzCLnfMq8?}cH8Ucu&3!RW`uS&Ku2B%GK zjvBw~$;wcz6NjjM%Iqh7dqFg)(o)?Qb`gVHz)eW3S=NI+{F6m&YYD{q<+s;Z%6iDZ z&*#~qe#K$;D_%lT3?g4maZ)Rx1xcK($o#q#aFZ!i4^Y^ExNjQ#jgMC*WU@@5#*yz) zd(&jFMX-e3&Q)IWaM7pd_Yg}D3Dywtc?P@cvWNwtDdCVof?Gzo^raX?jt70mK6el3tZ3X%d^(E`89J)M# zUu*7V^mUr54Tw?(-Yv7=L@-5UI`AWia)2#a`}Si&ke`Q5*e#0!bkpGb!?&A4ZWqZ- zGOSF#{&gYC4&1O%-AKvB?0ytSf=jJZ-vSYl8S#a#hUS<5S#(hQ-DOUR zltpKshR`X?6txi6xXmgGO6zI03-Nf`w}?IbjQEqn^!^Z8e}7WQs_{P2^tUtsx7-G& zZnQ$t^o9eF*a!!g!=`OFAH#UNd}WQkd6x_BqYxxGIEM1vlpjhOC@aRAjAjt#JAi80 z>#@l=%)Fo>B#M+xGFAO&+7dJRu-4hbrtD6tX8tzv){=a3N2j$@BP0QkxdTL>ryux2 zC8~h2=IXLn^O_p18S*ymjBH1=wf9Ts?|=>``M~Qb%Ha5n9QiL#|KSLHI$20LqGBe? z4ERA;S#qD)FtfZ(hY(mwEYt}|%(6n`I+y8F-5_ycol%sxg-4bCOZmP$j}rq*%X5SiA8jV52bZxOkyGNDl$ zQ-_kcIGFGdTrcR;_C{g&Q<_5}{caE%lagMmC=|NrWgW>-@J8FZa}_VXQ3K>ecy)90+P#EvU<6 z_m7zxn^8e|O_RgNABOJRf{GE~iou<~c7jrU>J2G38@RamI;gTGtoc8|T7@RT(BY6r zgik;#ly#d6<>-ep?tLpyYS$IK)fn)>7_M^`Hm zL?l^4e_Kc6MQ-_%Nl*mich#6k{2pcuP20h#Ic*>+`iQpTwL(h)uk4CY*+wnU_Y^VIOLYZhdV7xEg?^d9 z!WmbTTmyq55m6&jMN(&(-eLlBOGhon<|t4&1lnPS_LMetQIU%>@GPj*bDzeBew4IWqV!F6YvxQiQMKVPjhPlMdV%XU4 z{rT*2zQ5n^zvHxhKA-pVexBF!dY(q`nhfwm)rH@J6iJ?*l5$Z#{ukE08T+Zo z1I6nIOg!JtV!g-Dvr z2|Nt+071X^V`KdgLvIlsz~v3rRap*SLd)U~RybXR3zTc%{L$I2bo_PF&{W9rfD&2+r~EUiGwu{WKQO%EreHcV(4tNN)~W7JFXxC;uPMJ z)YUjgw#Nn)B|LpokkvtZZ+r*QlPq-dQyMhqyMLA}mJ;i5oBI`8n;KTueMhzdo{PDm z-KP~U>b(UX(ELMU&wl4O+oAos97>2=W&P$#!W$!TPYKGeH=yuCK z&c(a_Aauddwi^F%=}f(j9BBQV9!C)1au|sYscm0 zS9(uw{6}bI!M`NSrhJDJ-#Go7W5tv`>Ivr34oKtLFhm#D`6co1J_jvhdj|=76PkYu zDB*31=k@;if(%&{P9>q|rqsJNawH1DUg{t1}qRmKdGD+g_VF%r{ zEg+lmSP_$wE3GbC4-C=Z*Bk&CK0bfX`;L(cHmRk8H>1tOP2faxxYfc=zs#I#okE8@ z;GMlf-MJrGh;Ox%80a{%>pRMj7phNajf0HJkG%L3zw)dZ-TqqZ8A2BG+cP?+0GL$7 zZ#z>+y=eD?{3=QB{IZ;NEL#V&V2Q~<*kFF(9BN!wQU2{)s1P9}NK|{TM&^y#O#K2c z-7Fqtoi3J&El*Y_Ge%Zm>CQ_>Ys+}3>+4r?=>8v?jUtSA!i-%HIG44KYYK}~;;{8^ zcHVl%$^wUluJ-K9EBe>!=;2vu7GYK+f{Y(M?(!y+eYa)A?=wU~<5bV`tUAFXq ze%h@ll#qAwHy$Z=2bG^p|S;PXq^B`@esHAYTN zpet!s=8$)rfTFw2qRNiWf3;FAc=hSnG8Q@U(0+T#C*DZ=S4LL$)PnJI;r7Nx)0=XqhH#}Qvb z+(zbhM4CjF@?Y)ChB0ofEv#u3i{o7NE-w zM5ehL_ zI!Nibp0v7*y``H}yMTReNP6 z&l|gIw*(K+Qnl46L;YXtwHMv@LEWnhdET=kqB@!v92si$RmyW2-aywA=@`cmUL|w* z$Kn}T#eeu*J&})!6jOee%*0c=i?$cFVE&k_ojsNA0ELRde-ylFYnNUJIv<&?_$l# zzJ}!BDaz%9jP*xJ;WJXL>ld#qmv|Yg6r)@plKZP?J$T7|b5!4dK|Q4+cQv*u@K|G% zz-{%OS6;kxR;1RqYwcEQGbg;A-rvL;C$!nA$A;AgctNxicPydewvV*=RsYG zsgDt}sWSibU&!k7NCT!<#5ug5^#x4ucams$LUmKa{US7{@9rwbIM;L5c2b7dG@fvE zgt7Tq?6m0WyVXS+jiO&t-MG`1vv7m{9;YvD^BW#zPOW?$98seRHv?!9IRQjUnQro9S2o8ccOIk2sCXb~q>ww|&*!J1?<9N|r94 z@<&a)G-_#0y0yBYBo7y(t3A*|`7xK@>v7Jegsn>4Y4XTWFpYyztF8{?<2LMGT&`!)}Ft00aEep#M8YpY~(h z&d?seso1^0xo@-^x_i8O58u(+W1AhKoS7cw+qUJbA$PrM_iLgDCz^Yl&0s7eF^Gq1CVXMA=g_0<6_&)k%O#+B3ud($pvyQm#} zyoCECKHXK{ux@nV=lhb+NpxH>mtc~uUrhIV54!tda^gR|H0SzsE_5mF?Il_uxmH1d$;sUjiqR(-F7;2H zc2gzYdb^7R+w=*f1ZoLByBn&y-@ z9k+H+M#IMvngfy$_Z;}^7cdn{>iI?MjE@6Tz z1ouB(lW6@>gv(C)KFRvDI!2H;B?vg@f^Wt4}P)>XEh3Cx$xvN4HruwLU8S{4{c19Z0aMfwi+s}g! z?r2o=5~uhzg!}HP-=(S#jqQkCQ@OYIm^e3_d(UsILGoXr{7fU7?2qUF@%odGWTV6r zck}9^rxr^xYR#<*9D7a6pKnR{xZpCzLI^1je7Ydu;K>Wq4z`VSKZHuBj z$vLOn13bumttpVc?375w>ljTdY(}JbeQRm_{4)|FzW}(2J12rX@eq~WgaOx4G4nYy zT3GPURm%opg=R*3%Kkw z&Ix&~a~~V}oqhl1u1k6eZfm!{Bcxy2XZ%u9mc1t*HINhx1^>9g9iwx5X@Ud!qXjm_ zBYSE6bGC1S;;ua1uX6#Oft3&#eJH!HQNC+AgfCYW3-?3krR6|)}3{d`~_G+KfW;Ap0MO9V$pX&dz;Yn_(zv8J$^S1kVcL+P> z=rbmLQEP-prIUnvfo)x9Ai9z|W?QETFsOG)@A)CV7d|O`?e_3y)SF2c;m#sM@IzNb zW9z9gG@Ej5!@l1t`_e9=obPqdSg5ei+_yZjB)jDoQj9BC6GPrQpO>FgUm{ht*!Sx7 zM}2x{)CjppeV@)+tzBN5qaXUcTYS7g>)0Qz5iHyNQ(iq0dNn2y_z0TI-&M|B-q*ji z3Z3<8ur*)TEzU>HFmp0p#mo%7p|Gv>ceoRXH*}}H>b+NQS?)_kH1agiD$;h6ZtBo= zOpl8YCsyZ-m*Y}QADDmI&aK#DSp25<+(j%$ZT)&~QSXN5yWW{b3Qs(6Nx_6RuXD%X zJ{T}?zUnvHSdm>n-^*<9e01XPQLl@>|w3)%MV-vwyqGYbFPlQJhtxVpGI+Z_x2X*q2!+Os^XE*&G%CP!8E4D+s*igEz(MdJhl{LIwqv_?@#r6$D2SoO?i@8 zzgBuV>`s0QmW)UGA^?;!1Xths2dVW|J*xpsHR%r@M$p5Rwd$NC4QIw8{4_QnBW!?) z5MDL+VX-anIe?uN!VxZ3Cx~Xz^@`k2<4*kH)HW@(`}<{Q!)~*;W`CE>L_8I$JpECf zlhCv-jFR)f@6hb)gVhmEe@sWPvcAUoXvLGc$#}Ne2C~T;*~N|6uUkID*9QC+HB->r z2%MWYvEOOZ<|EHzd+^2Uwxzbh%RDpoZQIEDcrN$v{sv*SBt5wL#F88N89CfD+gJC* z`B*>~rhm9rZvs<`8RLCPdYw-@C-%=Iu!1Fx(TD1O^Q&v9%JD~Dyz#)#a`tVD&65H) z@wJLuyDn_|l%~QvJE72=VsWRhZJ3Vp34t$}6IhRyT~bJzlx(>(3IGQfTWw~X=TGe= z!TeYnf%4g%1^;)nxsYob7m!d_@&g-&(3>_Z_AIjj`7r1k2WjQg;3H1=27Ag)HccAI zm^AodRGrF>nEB$Y7Os`xm&KXbclH4xDF5M``jRWxkGGg;@Hg)I+a21`p5@?21g`z; z17M5|+d!7&-sIMQTmuERE=v$!S)lYGOr5DTt_|@?bNY)g-y8yO`15Y;l7~Xr%rB*= z{nea9Nrmw9CYz6RO;cB!0~$c&4hHv-8ClaX@64_XpxSEc_^TI(#xuFu(%^qTqbAbZ z$1mviI}=!xRlj6*u$y5E4Ww~UEizTyJryol9wAS_VuAnDf50E643?mRBb5lU?_M4S ztfb$61NpDoSWNX0kt+=DSJnL?WR?t-x4TJqlT$Dz1n>sYiI%;`=^c!qekS*yS~vL$ z8ppWjWh)+2WyIRAoKolf00;7X_PljHI?-U^c9xFp$q4 zjLeSLDDgopQ-^iAMf0(Mx7%YVB0R*l;P0EZc$PsqN_UXcg_%%169HX{POVTpZ4eSq zKhY8b;{66YMQvD@b!G?mEJG0RHc9-4&yCpn6HA`zzGI;6JSM{3PYtMZS~NJ-bjc<$ zr+qJNEY4?|D{=RtT-23s9DyQ#u9tX~Vae&&&$>oQj}`fu_v*v^Z!Vcq8Y)#&YzN1K-Xf1pooZpvkMD{w z7gN`IuK`7Hav`7nP;ZG{NaPU6d4G3~DJgPtfE@>@Qc+*_3Yf2(>GYr|29Ka z!}F%2Y;J(@Q|kr$OyUVy*`d1CsI%YOn-BDr;$Ak8Ldy~rc#0ywY{0?c*8+Y3wm{ss z9b{0{y%(rR9@qUHLWvO*zWITXhHH+x4b=%m59Z2O&_lGl#QLz;+mrps>$*oS-Mx~2 zP~FgAnU;=fK11(b$3>2*|Wd&veM*PeR|}qw0LQ2hY{7(r<#X{s0B zb$lC)QFeO$W-T8vauSn$B#1u-!d!;)mfoxonUU#Fo%lbTC**;R*Ab-SAuw^9b}(|@ z{A6ry+ZvVRHP^)`(GSLNF7E9=jm+ZDjs~JWe1}=4u#){d-Fh^3&cec9-u`4(Mg)d@B;2?I) zKbv2t|F90g6sCVUDn;noZf`a6vjkAGR%Bl zy@9$NuZO=O=|2veLP| zLlL(bq#$v5chNj+){jA|#eyET6cC!WbZ*;3Djsnp0)%c0z!Ngw?3XWJx>@NW{)Aa_ z|Bgma8*|8GFd4W;u`kK5y$0G|pm?SJ65ku1bcb^Sl6SiYHM#>%m0E-jhL8QCfd%Zh z0H7_yRfK_bht{G4JNk*d6WzGErvj^iU9|3Y=Q*n#-Jjz3t{37cyoP{0Ul}%KcMr}! zHmPufJ3|UL@Lbq$_8UNA*peOfL84F%GQc?~AKT4jRur;fFVtmGE$OPWLB~o)e(F%@ zNmsaVV71`}Moyz1uD-LlLY;G^x_J01;xQJ0`SLoL zHEs#^-PA6oLxl!>pOm`72KjwZ-+zedpA_sZg4&VSDl-PQ0RW@|E0|GUBTJOFlv1qo zWwv~Y4;-SRY~Tc7w&tz_EkEI!G6M|cuRcl1Ew^ndOY(I@?lk3Qq(kXh)j*E5FY$MW zN_A}%$u@(@8cUE<6T2DQgC2Xh$9IhqQj$*q+a=3UPWEL4b7kDwSjytAJwR$kwi}&X zx1rxXtPKkRDl_9H2e>|zWyDmc1;b`bZ((FJ8E`YZf#Vb8fC4WC{2EK;Al2l2(5lP|PI=2~wFenyk9 zz4Ly}ZQH;oZmfNnMF(vzn6xvRE6TWwjJX+!&=%^wDoHsGtfV_g0zdFTQ@RO{oBUo~ zky50=k6eo&yuX&~u?T#~dI8)7iA>ETdcFl!{|~>g^?B_&J)Qw@etCksJ40Ew!e7>N zMudeKirKTGGX*DVpyZA;r()gYK$ha+tYAWBX4SMHv>Zp*jB;O`%DwF456IBq@C>sm z&~fns1x|2yGZ~@P#Y90Kousy{zf{ATBFlq`L3qby{YomQ={We%A8H%mcMO$kSu33L zq6O=B1#h;S38v0`%Ycy$9W6Y=wzq=7^GZSq3&Gu-}`eyX%?lt z^iiN`SNK0ERhtFq4`e;(*Q);$WUNzd;A0Asrl*6Ex2~nV)-;%xK^!`Pio+vkT~eSI zl79}(GLfM#(R1k8c7RdO-nLH!FFb4^q6N39bFOKSj?lXq&PN>ffu)2zKGkvJ z6>N(XMr$#al`V`QTtk^NKvO7zY$Y3T%(sBHuBQIjYzA?v#2^voIiLu#vVi|e=}Wp} zG^gb-N?OFe7v2$5&MlYo_f2S8+I~IyJDE8QN(K)e?uXYI{0D!m^i-oF%kpjBDYER@ zizXsG01UXKqPiPOk%~G3|FP4a4?W7eVbTod8LJA~va!Wq^h$zW1;%Lxe*q|=H@1hx zvB-gPnZuLbrtkxa5G6gHyso^G8chxQOIbhU-oVjaplav5)QG%xc#aYniM>;$L4PUJ zJS9n9Cjg4^BmB2};E55Rk`d+D+nNT-3QJ#Ag{NRhTh;atEO0s>NnkwCp{1VnUCR&W z@ARZsMe`yqTrzT6jI`jhqVS-(x8E=^SRni}ZjBvL=)&m?cJWNF^EW-U(l}0U(-FKt zxaa#CHKO>@*nDzf_e@A8y<<16XKmM*RwQR{=Mn(b&zn@(hkRC#&AqRW?Fyx>SzU12 z5p*FAzOg@D;QIBBD}v&x{$D3+=t`*7>+j1_JS~!4Fv-S9^Y9Ve%d4V8;7Nj=T}wsJ zg?pILllX!0Z_Q+A4``@kPkg2Jfidp|{5hwuB-{u8J#bj(rdUpZR-v%*GvoA|o~G#l z+apW4yoa6*YG~v;FS&bSO#}^`Hr|kXrYN^QI;3ZFu{ie4N^WhG`(7h)?i+RC$2UkQ z=N$u+E0FIlvo8=qGh7c0u6hy}_c`OcRf-8{|ImvdTJwJuz-g<0?%~(yG9#GP&;|--WwjiJ*zpo5i^>fx+<{vg%M$4*8ayj$F7tCpQ!Gu z1#h?iSy(cfiL^(cp0aC`V>POCPK}BW8OLf9I)nq8i&-%dk(CptcuQYTq}}oBDJK+m zT--hOYK`zCp?vLsK4K`GCwz(W3cqazMOj_Z{K9F#8r~?Nk56|aoV)V9Q1gwc)yk3JV z!P8?I*q+l=iqnrl@~=ql#6F*{H9WQ2?DBo9}_$4ZTJti|oPw_IZIovGlX2+VX(K^i>y#L_ZpQE`ooV zYqjZZXy}o6F0ZGv?BOl33V2|?Nr&0tJiXrke+-)qJ2Mmv-^TwfLPB@^5NHEQ|d z1}EQkJ&d2rtA}8~TH*{wPE&gcY4hPa3XBpLfE0;~!ks0mGLR72woo-eECjoNooODJ zXs;|rR1ESifM>(CHF`5Av74bi*6oe(vHRG_Jw#)%!f72C+=yg0ZwnZDW0`2K1E?Q_ zg&0sc$Od^1ATL9qS0jJ0;AUPhZvr$v3But9ogyssAgdAM#yJpMog*fv8}=?2GL0OZ z#*BB1B`M)Ft<+S%eq&_f%CO109_hP;d7ZmyPc+)9m@)6qVSMHLxlrRt7PYVqs|L+8bcs32JY+icwqqoMMvTDzcq$ z$qHKWLE*Y z{Cb25DM0TcLyI-gG- z3&@qFxEH9OQy_lqSWMnZJb`~dIQ0-pk2H(h*V{H0*TRXqy2NAW?o&o{iH5JfMTMNm z?h5n%wKw?Xp1Alu;y6>4eVWU5YR=xyA9Sr>=C$womE_-VcRzS|NJ9*JS{( zmv1huTB0tm)J(;+Qolklz7=l3r^T8sWLu!$Ri7wArCK)PQTZd=ayqH>EZyGgM zxWI1xiniZcw2%Ji*Uv}s)kB&2nFV7BhZ}UuD>l(|(&B?IXI}ru<(e*wVa9ql&nS7} zpHd{cI?;X}?$YK~-vjK|8JMM;wzXz%PCK=8lk;TwotL?}{~YMw=zJ`^*;8xv?nYlk zg3#*eF`~H&O;c2t5XFB(8k`O(-wo!h9=FMA^D^M1pu(<|hyYZMX6ogW1_y%8-D1gV zKNc^7s|mK|@E4Pebj?Jqj_fMV%7 z?yPKXQH!OO%(SvY{C_wPs!e_D-F7JkPpPFr;x+3UZD zfN_GFCW*3Hxf_XR1ZFy{RHJw(TY?D~?wur#FMcn8CcJ(cm!Yk`F?2ppFR*>(;6uM2 zW9P{5UjhR+eA%)M#&N3O#9?LNL|OS;h%Y=E5@-_#Y;sv`yMTikXB6|oTwc^<^TPZJ z)}mFw$g`QK2BRYAJMee*&>#jICEOLN4^2#yd11?o`ixcZclpB0wK1aDN5)WdC6&t5 zetJfi+XPS@8b!19lp}HyfSC+4Bj#%mF_V|VOr>OaV{sUC2&IIL5t6X}S2fw@8pr$v zujo$8b&cZmuz7h?0Qp*xsdnS;h*uaHSi>@z^CTHyi~+ znpau78vJ!McbKOA|~{0ZPd?aSs+u07iVo3q3DC#(sc7so8MgQpYqN5 z4s=ezt=B7)zAyO}{jBw&jAge*KltP(5j>%%R|b^dOAi_={qw+5E;fIRCb&YusQm`~ zrDIR?cYry4e*Gb0VyTM@0M&W(y>ET^eTDGZA{`l8SNZRhqqVTQCG}?|)P8zx`fSJ? zL@vT_PDDHsV9W{|D*C`OU_+=WqALFFJQVuZr|qDLzclVm&lzOFn;usrrmhD((Fgj# z=-8hOYR@g+{72gHT!){NUDynY*{R2v5Nkd9_MH?u!t<7$?kFo*$_w)v>#Cv*9y{v^ z(_mcCH?qGv0Gmm5aNDz(;n+zTjdl@k0~CI$BTy5#Mr*`c_qrEF+C>(>K9n-=XUjw{a&?%B)`lsWm(&xG$tMf_B)djZnbIbB7% zf|M_euOX)W!(bQ~Bgm~DP?L4v!LX=7H@|3Qb+ozZrV;obyNqeiRUtDx=glRP{(S~L z)O*wm+(nu6!LDs}8=`f53rIoV0waiYFi94eXCmc0CTmv6AhRp1ykzv2uvswjQ5<#y zK!0CtIQzjD--qS8#B^}N5=Z@OCQ$_iGHVOG6XuA=uae+7wntYNE{rO<~jFL;f{a z2_j+1)lM*jJa1WOOCVlwGbT1?G~tIWw984kA6=+c#u9{m;8EUiXBpJ-KZ7XeP4-9{ z380fUyw@;wIP|K!uKzo{W&ih<7D-P+J8!~d`z|0l%bo5m?*N%S)zrBz0Q6ED+II8q z%QD^q8U|I*Jw;7XGmc|E$_^Y-6IS!=ovM?!M~4kNJu1#5KU4!@{qmd0^O65GJN4@1 zBT2>#)e3sbc9`+H*Z}!kQ5|*rIS`0@5+IUo%N+dX8$ElU>QC2|Sr`xB`!`OUJF!-H zOWu!%Q+#{ozO+kMHu3hHzUc@0{>^;q9+l#tKXFd3GGeb|0|$dJ4@}BO!|EouR~UMW z$ihSEYAkwaA~2!xJpNz}m)dH~gd-g^_L&*%snFE7;{ZaiTi%tt5Z)QD1>&Iasp+kL zP2X$z@z+oHd@RKLkP;A<3oqtu%DG{>)==kO?yg94wFb_dE1>0GSjE)bWH%+o%Fd3^h@RqV4nN`lqW-Y;5%;#neO}0FX`=x>Uh*N(=kj>_w9BU(UE_^RcYQtv|bh+RWIODVyYn{Iku0mZ|x1Kk(x^gCY%?rd%yX0Sf5 zc@#&kYfiL`b=UHLK?OawX!lo-ear5wuG;1LyS}&Q#^hw%MVerQvu(+?^H&$t1!NB_ zd-?qXm$!}1jI}nSql$pii-8e#*%(7gu5#nBW!^)P&zH(j=G(zbpiQwp?c&!&+=om0 z4cnxWTg%Y)$;b_f$(m-@x59mtg5ipWiLB+U^&)}SGH>VU9}G*-LUNg6u?}wzIAQ2G zvTCD=J~Lc$LDJ)A%(mm}Y!7lg18R}NPp18)u>y)CDFsr2*}MXIM5DU6)j}jos?jmw z9{+c2f0>m2c(|k@Z!DWX1JxVarZ3@k?VO-OK+itDv#&-nJxs0-S%eQzXKc^;*u`;( zebO)jJxEeb$Gwdo64mzuiH~vp;85Ml5V4eIcqh7Q`s;qHM?GjhcHS4g03coXLc%_J zs5j+{&l`7MU+qk^=8c_91^M1+W+L3t;g^eyH4O90i*$Rh3r>(+#xEg^nQ@j@KK+=X z?9@K;*F_Vir7gbGr@u=nE%|q^`#A`gu3mH7VSr+owD)A)M1<+%(5k#q4?4hNU-XUX zvqQH&34i`O7jznH?Vo3_$er7Uy@}mr;N^IGU)+l&78-{euDUGqMg|a1+=cs`my1=K z9KYxa**IH9_Fte@w^)g#EX4}#KfLpO3JUIiBfe8z(l#?y2ata(J4cgdq@9L9CF5*K zpphgK#~S)U8L?GVRpp6GXd~X6<~x0c!d+HF8x3OfQvr)-zG4)$o|M;MRH<D=>Wl zD(51H>TjdZhwkX8IXL^{fGR~udv`NXzz#jiVrAc>SMzY{2@Z6W&dtGX0rk#A#Gt2% z2FN2R{(7<8-ypX#0}U|hs2S(o6A5^}%oxtZpA$S>mMoITf+6(>#G+D(EYx0I(=Jbc zvltDCwL67BwDRHszBH^>+3uWX{z*2j|6g&TczXN+O3u8YE+GE6)plBuhZJQKA~1Z1Sf+1l#bKa4oQa<} z_h+6Os4|O4ew_jaa$Q3mo>x10(d)_XqQlPlq4@)K0w=xui!6yN1KE-ZoU|i=7j0>8_bo+pU%;nlIhSNWLL025K1rn%Z z>(sQ<{rhodu0{}#CY(h^-qDY1OAmVX`X18>4E|22XS$pRF?n3S;j)wW$x9{|2K&Fg zUf|^Y&Bcj1c9wkjus7n8{fJ$vCj0zNO?MOOVz>5Pdp{-qwUAAgMT7*;OyH7rrGN9lm`j(@HW~w|9az`*tbEXT)d_W4G!QbAV(ynPra6@Y5cP#w52cQw@oZw%avcuY3dM~IN}3O z!KBo6e0r$ckh}>R=47(!zv)(YuO{m;p##L@>zS{N5%EVy5O{Fs*r#j^5PR9&&z6sR?VsJvYYF7)N3$=}O?S`^n0{IG*4@V)AYj)Vj$a-po%tz4^4H?zNz@I{N`ehYv>C*K*1D{>|LIHJWXvq(Z19mm>Kd72 zjFEM3l*rxZsFQ<<^pAf*bqA}Q&<&p3i~F{~0Y~o{e0{hd%-w)sW435**q_Gbmn*?! z|5^@r(Rk}$7i?xH)Ul_7>6cBU`Ww6B_|u1R0w7z%1T!#PkxF89UF$ z^0o_sjuK2Yo3@lNbE}n-DHbKSSLXX}(}#Y&QrZ>ai2YB-p(B;5%2j&Q`j3z-P$nT+ zjSM-Y@CV}-gi`$zyl&@;by77y(2P+*GcQ5u^O|rjEkF zPS$+L$22RvonW}^hH@*1J@=#6D+9zi1pK1m1!$N1{l~h0fD{Pr9#&|?%#kARje;e> zV?9#P0B~LT{;xljAvJjNs%6s?@z(DuucXDxG=HDX;C4FI#@;AY?_Jy9ubYhfwQskW zqx$Cj%ds%zC+!=4m)9PjI<%8PR5Polxb7ZQ?dkJZ-Ek?*#tTdeC6i1_gycgS7b?WX z{*s3IV-S_s`Xjx#wZSUkj8=Kk?>5N0U4CBj2ob1R4#z3cdL#`Nh5xz1wo zo|}hPm%~B})$%Ig77tC?r4M&Fg*Zp+dwT#$3_`&ole_v;TRG|G%qqmS=&0KG%)nr9mbf7;)WUlc$qKJPAV9MWI)ODgZ<_!q^PW#q?X~v= z-rGz2vbb*M0x2^#_LN-gpb@q+V3R_`F+>&q3q3QC3~z2%swNn?kcMZnPQ!9kcA|;m zp+ngL<~~?ZhiTResXcdrL<1I*&la%kg<*KVL9q4 z)8!Ftjh@3h#87lv;az}Zqre!WeRynVzE<~+>y5g@6v2m!Vr?jh%PRmDApXA(|QQhSTOyZ%M{X{>jHKJO9e#trj^9j zf$&Iy5PI2S#gbK=2+ms|kuppS*awe72q&YZLaisM3bgtv9-Hs15cW}-Z%QEbAw+k* z*}XWO4~qeRGi4MDYSC8yx*9&y-OwqOsbVzRXJksYDA0H7h*vuak_~_xNc^3>LTPE$ z{F^j613>o%((c$PNTbyr<<_VW37l9R#kz`HpiP#^*0M-JLWNN*YjPE9k7TW)DjssK z5A7?oV3{zjyG{_b3YuM6roP~{+9{+2p-XfX-!>kYvj?KPm&f4oprYfQoWR;dc|LGMG5YZpS4~1s|Zv9MvXsexwqNf7*{LH+dyb zSu?QuY6TY}V&P3Dh|=$(Z~(04DZ;dDL#fiM~P}1~W5ymB#nSgl?!G zA$59sP0pVv!GS_*N(depHWX5JI^9ey`KS<#n~oFZj8E6j=TW|*6o^SLRoagrEJ#)O zbGgmmuow%fsiNr{)}Ih4N(7YNajxu{Dzb3GT-lYt59;U%=_6pJveJ(r^f>Ckj>&5o;icyLo)ioD|50^ln#8}W2tnsyG|~Hk8n!q1uAox zvv-^J&=kBJ@m%#kpWaj4rC_(DnCoZ%Thq~R%4l*oR4rCMu9fD^QW+t;M)AlC2Sgnv zCe-evF2$1v-vxT?&;LmbUwr)!5>lni;J45&0Tn!92^giyWGkV5O29Hy#p||kwO8xO z>Ve2m(m}^=eYvYzAM%r}7P#uWVWq29QtfLMuG6tclk?v)e03lnhRa<%LU`!BqAn|Y z3Y7(ribI9yISTPE8Tr>hViisw$-;FEDA(;%FU3#A$-FkhQW+VEhIRuAHxFhC7rH7O z4427EZQc7{<(|x~qsc0FBc`XWNVze2H%k-`g0S!kP&^1~Tk5o8lPAO+YLW`W47VlD4F^uBq3Po9n^?Aw5 z>H@Hs=y5PkFlU53Q$F*`cFSREtj9o)!XTW zcehnkG9*X7i-G}$P}h_KjTpR^QKx+Vw*f_<G_JR9?ScvB_7r@u82mwYR)Up*g;84d_w8N%MuCAk6PR zpqDa$T+=1!-XO#+4xBOg$Pj>1mS#brHW7RVeu|tt_oO+LK{dEsiT2P-{lf?V< zTA3jc_TGwQ5Ux}1rbujNym#43AYB{cq40o?n$^gKawf3Vhtc*$!KjO+6PgF&HkFB~ zP{22#c|;88UIB0cO(ouGw)|p9LT^BWy(j3HaId#Bgk6j%Jz0#GnWiI=gQ-fLA)c!B zL2pV0c4&^x4sT`HOk){41$oYtn%yNh%sm z0`cCYz20X5+tbD!-NZVqUJfhf_h`^_4=DN+HPJ~5{rgt(52y(xtBNzRcNGn`$kes2 zj=+ktro{1p89Vsc!5BIJ9f#DRIO#N+V(A3BFwo)Txjt^}%Zh4Qh0R5UD`Uh*n5l1= zGz$76P?dmFEm!6sv>S)OsRbn*RSTNe;SbJV!2sW(`L;=kdN1nsJd!)6pNVtxSnXEOBztmC1;yWQ zIRe!NkVwzWYUiU}inBQMRd|#m1EOmAViE4_gV?1CUz#sk1-Sq$E}Rz7(v(iKn_#?2 z#$G_l-shmD@Stwf&{T!fG&x(E?OS&rPTe+R1`4_o$!m74gM9=XPov)WS)q)n09rfA zMR}#d!^H}0G$WXqLSL61U#Q<3B1iHTI?|`*x%^s`U_X4r2CL8E05w2bPo-v`{k~aI zg6o;RQ$G8$3@hlM9z+Qv%}E{(N)I3#e^4^K@H@(b5xH;0%&>ze3wB;Vx^uZv4(^~( zX+^!Vi%xwq>bI3&C{j9E2-Rh~Lb^I4M%#rBDp)~E_%qoGLF3T0S?InPoM-}wQn6*i zw)EOe+@HW7LT+}lsFOnXAu^0*W{9frd>(VbTRB-2Ec-GUY#{5bb)H6r;Ab)q{8t@+ zsdbZKW50i4h*^t7k)lz_*UVZl3M$F0A)&W_R?zlXGS9P2cKKxUQDOsWB~?LtSOX1) zcAg41yE?o&9K@=O5I-7QrXUaeP0_7#Y{Ck6Gxdfg#@7MXK#?$sT72X1uJWh9ABsMF z0UcBw=^uGw!Cw})-)|}njJWjzlz8i)qA=^lP95NmFikJM7QvJ%pL?}krRzHv`8@>_ zVu>P=8Mg>SXJpm`h$yI`+>)=SMoLG9D|#kWgiq%QrMGSHfyOVg(tyusqw34UZ!4O; z=8Y0Ho7)68bs)cW9483d^$Bx(fVBtJpE~>EQ9nXK@h?jOMnuFrc}`J55OP+YmBZ`N z2vmTl^7%Jd1zb_wABD8iKBu_99)s*_qP%}ZaFO!yJCO z%OJ2l{7U$%19CNW=qJC`G9pI7rJDx@g-an&gU&3q=QOQ(B|raEDfrXjkcqrE7Tiu* z)4Z3K3-_M~;zb8xX?-b%k^HwZ;aD*eOqC%Xw(B1y*iIu~t4_56`MpgPbdsUI zOkA~1VVu~WFae|ukQGwlD5O!gJmwOM** zgfY>KV(zv0mH+3~@}jx=;H54dp=CZD2$S;li=YEQWfyZG;1)N4y}!3hM4?}PcHrz}J3z#*WU zZukO%DJ2rf+@awb%4nj?`k>-VqEqX*^hj@>ng3CQ`>3vuC&g>4FN0EKYH0T`dw!ppe#Z$L8-M`catxIBP)a>0vy3v5_%Dy(mgtj%3e15-yc>kjH~cT_UI!*BAGMt z+!i{RZnmzfPGVPeHyN5ZM;{TSe;@m8UGDbQVI$hzv))LHld)Qnz+^kFun(Th%>qYj zg-g$*%nwq-ypZ>@4tIR_*a3Ps-~f(AU344j9`9U}LjyQmu}d5kzL=MFBw&ZE38PB9 ze`bYOb|$<5D((Ky3X<1>PSCTrD5Hi$B{6wPP~QezJEt|DP>`&+6A$-*rRJa~@8bk< zx?HuhW#1}EN?G$F{({Zu$)xz0mZUNVFCg7d33`%K1`DPy5q7%fzI{gZp*3L@ZkZczstLDJ~YaWww>}IGEJ^Zh;fmfK_UzF*A&~p z{kim5I}y*ij6Z4x&YW+kv|jY{P^p<&O2XW>6(4Qalt&3Soh^_>+fgT;&bexMe=Y8I z_|0&`M>-*Y%wCQ<%*Xx)yCay#ef#>ooc1)Z61+FSmVxVi-g*eK=GM9<>xEYnK9;zF zq>A(1$xgllxH0tVD+K0Zp03gd4AJB{n`>ob-{mFm*cA}kz#TRxkMku9_G$9}>Mwal zG9O;0@AYq-&#uZubnARk*xx$(^6vz*=N@i7uteUf?5#Q(y+q*yjGshRuV{r2^Q|#RsnP&a7+7Msj?cNHB@b{_ zZ=r3%n)Px&oLzip``__83$`v~916YtL$6upH5j8$Tb|Xa?>ki;lV2HWaa$o|F`YNevUMz@h;Sl%8MEH1Et$*hP&lP8;U)BT7sa~U7#cBKhi>-$sfE2N%;nQ$a8C%Tt zb>05~+D@ZX#UF<|A|yYs%Vofc8xdT7T+nJE+b5jwv9i>vvx=u36u6H3_gCBWSzjGR z=b4+_5u2CfFLQzj>T(UU5Uvb6EBb?9J!B9(*2<7LD115PX-e0I?Tcq4^!jc(R&?B) zJ3E_O-WhCc7}i}4TfHudE4b-p#P*e2`Wh9nKK`W~J;JE#*N-2J0*A+wQ|9xyRjmbT ziXHK%t`2==vs?bH5Ni6mr91`ZggSlNT$wU=MKt%3@Uyza)%jBUTk4kN?s8KOonj;R za@|ZRrZ2ZL|Dz1U%Cr&awLEwkhdb7IMCVm?$c~R}65SwC{p9yqTQ`Q-EpNg1l-I;m zZOzZk4rVNf`X|pEWwO5g-hqFwp@N;h{hAlLNuFGEcdnA0yCnxbJI0x+3HTbB+V#^z5B5(Aa{5HYSG|{VFaEvS%IX@J8>5Psvvu|d?0>p^@# zVfp)To^k7H`O;8&=oL;OvK=^h(pH|C7a3bEFy{XB3L&oRSe$iIJu-EY5OezC8HX}H}PZLtwrE{PAX>ZyMi&DG71uj6pfV3v@{2Tg0{T`oRoeYinLn5K6Z0w zD%D+;6Wt^G%J86s&L7mfBb%HY@>sBxE4ywaVb#S$-zGB1jG65r&a$mEHU)F$^-}rR0A*d|~ejH#am07VX`>q65uu;7&s_8JG6M z9d&ORYfG8(!tncrcT57V)YvGHz+%dGXmdoU$TV9(jtt86ROgK&uU&SvO~K&_!Fy>8j3 zi;xyKlId`K`zdNWKg~8bWrvmC!Lzk~S4T-tgBgmA!4Crtrg~LAp$r#jCo?rDxY)r^ znIxvhGiVl+dJ_*3yuCs;Mp1bi0w|w9KJ4x!a*RH>PlUwy``w*)oYs?B8Ni$ub@R`j zU9{YD3DV6lZtOa8(MKw0S$h4xo77L6SeOkz;df__mo}}>>%E3LERTD3`^%@D{nxvH z5K}gF)udll!-;Sw2Pa3+8Nk-ymzkO6Ah{S_9g5jD=J+R*G4yX%Ql4vvw&5~lx#de@ zC@n6Gg~3a)P^)ZO!7^2w93f@P6g}-vYX~{h=*J4piAuXh(^#hi8!Agdt|rw{Ywb~& z8+09~D$yq=`9n(P=ULrmO zZ?vt%bkA@RjK_s>PLX9)tgrl%COyu$z+*wl+`F|qz8uP8_o^rN`5#JYB@Bon6XLlTmGHEu-lA^q&|IPf4H{79Pl_9&kdpn_B zI1nrWSJf6=d|$P9LMO1m8J&(g)AFCzu%G>O=nW8V%-GGQop`K*0ah!0FI%^~Ym@@q zH4I-!D9_+xpcE7p*2mIAj2K-!hn=_zV!GhHBWL>A1lC8_m2 zTEoG8;j=&8kFFdlGOB0;0yh}YRJv)@toV3*Ij6P#2uy!K_f5aIoGT{jR?;_cT%(%i zs1}GIepls|7~8u=ta7X&a5?D&5`*{3X= zJIl_|Q?G%%U%N;`aUz8h<=Q5`hxg1V7xfoWnyeV$72Xs4Yqw&0(O3Q9PZzZI)HPG3 z>U&yd#DZ-BMe-gXy;thokF9@v2qpEFEKv%ds!g=ll+#mR_{+tCJtMRmqOMwerX6mO zwGzDZorVls@#NnqoErT6u>(2~3l8M?z77*|?Z7jpyUvFP_8zsb-G=80#k`wme@@z; zxb*9knD^Zin}E&%Ok3|nd8SKb2n#HFW06A5V5e;^L-)Lgv0gbCPj`=98zwK_}$Z0)>sKUFKOcPX5Vfv7hG--?cAgWL;9t z`}C8J*isv2k4rGO=57?SomCY$+|P8NlJA`!E!PXIXbyN>%Y*H+`({X~mFfN?RU2qv zfHzK744jf-95v(MZj)xDpy<`f@012n;c*YBrsmTVcRd#lkG}(_>&c?&`By<2x9X7X zQqJ!jX&`ik8DvS1+hGKbMo!aidV&aE`biw0^h&LYuYkahjEODzoNcwR+xHsxqSn-l z?6O;6n=ChHW;LhzgopZ7&T{5@=9Giy9RrNw!V%5{lo;fFkvO@-ak%PeMQ!-He982J z*|8V%v3rCE1sM*PI*rHV_!S?>_oBWPr{g$w)Tse@BL@=lUl%O-$hMX{X@Cf2gYkQ3 zK!gs6W;Qc#{Uw^Y>)rNu&&I({Z^vy*X2Q@azZWU(StM{wI(>Od>bNrZTwtNqo{wFk z#vl{ue0TjQIW|g^8(muh9Z3RbVqPsR?OMDl+49`-;gb!*jteSh3~Jb8BZub35}JZ( zImxqV5ZJAoHrZwD=>?)I*s4o!SC7Bjx%DbNxz*iMyVLCa(GG|zK;ezil=!2J9gC_& zrPNR3)gV+dvZm75h1=XlSv24&2!!-KTU38+nz71m6vk|=0Ryh@PZCYC!@Hf2Gou3B zgAgu=MKFSYAa9>@=Y>>|V^;heZf0!omSAb_G8EY}O>{~9P%vxJ0uHq+l?)$ol{!Do zXK-5BnZX`iMaa|0bKHRy7GTPkC>y}H=HGhwlXK1vX%tLaE?db9fS^tS)YC^s#7Bx^ zk{w9FW7yC4QH*gmSJ*)Mnly~=O>;i0L50qaZc^Iw)}+F%t}ymk<))?4Q+XE~2faeW zL1d-Vl7GkktJ?N-Lbz6z`$)b`2!v8gODK*^7~wJfT|`I=8eBj9;Q`CU+u7ny>OH&I zHeBiasPVgcbNjM+f`fX_n$gXow*0nMZ=YJNd9;s5SZZ0dXOfUH*Q+hEMyho~zh9Ye zhDq(2XMX2i2#8z;zG)=`s-g;r<*IJD-@A0E*LXfK__OjIEw15!r~Q6$hET9yANS&k zSu}YFP9t$wNcv_3f)nT0UZ^Jnr+jw}vT48{e1Qc9C021c1l;u=y$+ErTrY{g1Z+q93x_+2;9D(gDKUe zgCJ^4hTD9$MCRalHMv{5&4kVP0<)JC4SbhK`U0c9mNDR1r}uu{hVq_2OO~SerZaO& zv&tz*dC+o{;6GAAsTcQgDb3r+d_%|ln5jx3ye9SB`M6k@T>>prXA@6utfn-Yq_!=H zCAwYE@Uz?hWNQQX$`*h`+&8Ch+f$T0ZNmRn^&Su$+iRONb+(RwUS>j|y)tRg@)^45 z`#vZG-i*8IR`prHKO1zy-%xFWzIGS9R*x9g*1=kS{ zuAI)rF!)5t-kKLk@7pX*TkipY%NQ>``EzOPr%fIM4BE##mZ^fO8&X?-X4op zY5fH8p7))VmPw_G!EL%bOkzKJsIf&_> ztDbf&=H(iGR!2Sf^S$!9NRTJTq6d(GFNzL-u~y1^i$zuhq zxA$zyjDOD{2djf12K%Cvs?+n%krcjp@)dIrE#XhbL7kkB^6({ZP=aEJl%7At`1ICR z^xyP59(jB4`gL^CLxDzPAC}QN`P!+J`S{1e+l`&f{E=K5e6kWHy{9amzcBoQzxv0w zkBgtLF8SD*m43+A+a~3Iul0;~@HPC%Ts@LKv%eNukag%uQfmTMk&Bfwvz_veZQt#2NP)yoo51^}dMVd8bCsyQNQ_?;D?foY8*efaetmJ<)d`?v)5Z z$z!VQM$K`osnm$hfmbe$%jsO&)R{&ice=#dX2V5GljAx>eD(R#L$TW5ug_(kxittr z%ENQQ;ZS+!6f#)}b~pOTxmUd`+Uz=lKHp>ct9&ftLLJV>92B-9O(9cN4ss38UyGC* zS;Hd38Kx!piiqR8@^CMWRI9T4u%6eUw?Y<;oP&V)%O`X~yDzQ>vtl}#bnbi%!82%Y zXPx{gZi{kX^y6!(U#KS-%jA4MNnC(6{|AWsyniarJLR-oZ{g)o;ZJdSJBdOQAovv# z^fkLW)%QR##DL^$41RzlAQp|A2D6kSr$xJ()KwwkfwpZczA5p8ywa}0x9W+XzdMJ% zrAgAaCp1f%fmI5+-(s=Go*aJoAjdMPE=jEyR$`uWi-!T zl4V)G#`~7O7l;;7!PGNrO-~STPrthCy?-}O>(YDOn1XKUMibToCbKF`evsVtmd^Cy z5_tx^9|FaNKjoj8nypQ&W-jfXf|Rbp0Sa?y*~nIepcI4U%8Rt|mJ{Cd`#-z83;A>w zTk-zW&25FHW`e0sfVd8sM^+&er2KDEu{Dt=4_p+oOYVp&qgMBL+4c|*pwh+r*{K6D7^2N>qMt6wZi>2mkDvA?Dz&M3+d0+Q z)~?Y&v-dkZoKv+`8<1iW-yZllmfVUvXeDqbn`=0%4#RW8e)Dvv(5N1W%ik<|T5nkK zOC}=Z2a3jj zb#gq0rzGU%O>iag-_u#|0O!67f8vIILXr&G<-sT4=?nUUO{P8XRqqFGRG~O=)^|Su ziAdDO+c$(x6(!3xU-n|o??gUz{sQQH_VpArzbz4A&z3}d_XnL=a`vlQLa9z$nxRA* zXF%%L7`6v|xMCxNjfpIeC+sWSMB3q&YWlOBDd$NcPkEK|_Z@fO#kJ{&gZ)c=QnF}n zAEv^ci_r7FsK=WpJRZ%!umA?3zWz2XAkq8iUKQ%3o6Z9U z$@(lOJUOURLgHir86`E8Dz7mK%t4~Az({RF%}iT^rdQBt8eOiojimaQF*LC6yHg6i z@Ib>jsA^(&667xV0rFa$KUU=xczR>YhRUh(`#y8M<*ZEET4`biZCT&oHanmP5LbBl z4Q^ochSa2SFWhH5Z7ysU!PIO_w@-9m6#z!FOL5boye`ntuumWB0FQF6<#8)s%H8Aj zuc?$qvzJB=mDby9@prG6KDKwx5$kNQTIeg8Ov~RB(8t>WzDylVp((p9zE}vG@Nc|s z9TMy;kB?-J-P(St%~R%xxrV&M@%2nmPWWzzBXHuOKXsO8w_U_c#MxFWWuRNtXF6Wu1^^*$p@=IC^IuxkEOp!gKJ? z%WuT&6PvUJDMF%lMA;Baykx9a)+xt=Qb>Dg`Y338v=SH_5qi5ap7C}vIwP1h9uWNJa}>YX z(BILj)c%Y*Of-gj<~8>}i{r~>M`Kj*}=Pw;rHAq!|$;(F8Pp!peO^)eEvY7>gnWhfIMXP7TY zZb_F7^gDqRti#PETHaFD9lm;Bt>!SqC@f+`(@D+)|XcgC$g=l*FkCj!%#>nr@|Z`=X{x?h+;V@bQ9Dr&Wj-fbQ5l zuUx{(dEmr0?7CM!SU9y!3vSYcEhM=r4~n;*!P)uksG>*pi=f47;^n%*QJD;r=@m(hvXnuts1G9?Wa!sWR%k zJ3&D2QKp&YAio7)RSbEGkX`?!3{`fM`h(rlen-Ig9`--RLx4JE8@v#Y> zbdKiu$k&c6Ph4>FFN955WNKc0eRA=@m!TKNR`zozFW+SuI%S;pb#cJk%w9Aip!en} zw`8@VvF#qtT@kyddWL1GEeic~yS5}CVt~SS3K)keg6BP6K1k*+r*Vz(R!+HO4imJ&C$L#L5**Y9rheBpFP3Xf%jXwGJCz( zq4RbL`y2@859~a0=t*>AkA5rMGJ0t$-M#Dp*KlTduTSxX7vHNO?g(NB2KNh>(@i@! za(BA)x7nk|KiehslgxN7a#juQAE3Ano|j=rxx5`0Q$2D6$`t|{?SNX@#`A32B#5CL zI43}ieZ2KPSlW(eNa|c>tVfoGv#-QFU{^D-$Gohq+bU*0?#&;vK_DtoMfJ`Gue!0g z5Cf(DYFZ)Eb$P1D;>&J3v!0eBxq7nQQo29L%fehgAK)u!iu3?Z*|uGepZode{qT`| z3vkL~uGSn1rQZ26683eDJVK@bv5U%!214$!a=aRld3DOSS1&8TVaNWQzacE;?003X zf^Of2HUX8(SR}r}on88jB6i;Fn{q`iE1T5DGr2hub-n&p!JS_j>T*T?4A8CVYOZ%p z+IO_P@}lbDHf&32>r%v|CHOv(mT;S~!9rDA3o_>&Q^k!Yz6C*;Z)hpI;+*|<3^wFp zD^Gj?++=v@!^^0)F9B2ox-`B~*mINBiapSD=vklTeqWE&2(X>8zl~>T%uqFELrI*? zb&R*Zt%~>MqOgIZYsM<7s!}$fOWyE02F3lj({)8~|HDesE?|mk+12$Azrgn6XcG*E zERkKFpvTna&gZ|%p>y%ECc+)MYTn+LfclHFw)puc+=C`EcyFe1f>vXchf$ER3rD|? zCh!_LswfpuY!X4LJ*C3W5$;~0iW6^@-ax!vzG{`};pNVn9HX|LyxWEVr3rY(EzvfP$7jULg^V~irXAh_0niVScJCac}wA3Q1Z3GA=Cm^VPq^f);NOHhCdw1z*BwC(m zpE|FR!a57Uk5`*A?)#01rVgqmvA=3wa&}5bZ>Z?sb~%H!lw!YEmS%f=M|rUNy{i?w z*68^&7Y82?&{3rhM0KdLTCxLNZBrb55P$9XNr?@QBRYX6%>|vYQo-YSY9$ zABD4INeM(rF^G-sKf6(ftpy*PQ4jX`Xn}cbQrt2Xxd`-{vfNA?WoKX=b(6wERw(*( z8*ozq%{lNc5OF}OIT_THtNRh|9d0lcHT>FWJziwKY!Pz8Wu>#Y26Oq_<2SFskV?82yU5U1;G`JY zLJ_DMO3*S4hLp3X%7pw2Kor*ADy!eW_0rBQVEb`{w508oJsN!eNBoDmZ?WgWgHCU6 zUDOE|A%SL;Zf!oh%O(R^pflUnKzWq*=zw|q-qeV=J>j_LXYViDFLXct82GFvOs1}U z{>LqEm?~{28<{;lHp=3`rm!w$_nW~|lGZlJYb`yHk?NJy^T;4BWsLA4&jHz5!AD<% z?PHddO(OI}jj*%$Cfe3lfbpo#39>4!2S$(5`k@1Rg8FU%g9|uQB~}@P{uMoRsT?xr(I=l+m#e#}DPI_hAyTbV+Z8@XI`^tBLJF#5%J!`L9aa?86T z&NYYox&pjH4cDD52B(7$cHE+7xB{+ASD)p#b2~0Ti8!N(#X9-<*#Z0UkpB*I@44E@ zeliKPGR@gSHe7lq{_XXzHdz71t zK8l{?BuK|CwGg+@tK3Lm{5C&KOVky$ST0%~t$a`%82zB`(a2&@Zt?Q?*eJQ{LYL|i zZES!nx;#EW>(>h6^P5-eTO^O>Yt7FXcP)LVr7jPP2F*?A7W?NeEAb~z7R7t)me&(qFP=M>NsPVR+&X1Ea6dlKC9Naw z(BA1bg9RsXi<8h{&traXMR^`S%=g9+*+hgp3? zbikjd(4DXK$<=61t?bj(27*k#*BzXyL42X)3S6+gtg(&&U}(sZ~YyQ#jsbbL; zWj;G%dBe@Qf71YIVv(<5B*rbg4%QH``08!mCp%PX;&5ENTi2bEP&@ru5nH^-&E5X4 z)yrC>;h1rq3hC+jjoBfWrAwpxNy9=jxf}FfQq{KxTNGyrjw(0!PVJb%+&s~poVB*N zQ@3z~ay+3cc>cAahlS;qydFCt?*4&=a~FSPmq^k?Yc%6^WlPMZ}+FaTk zQPQD#WV`N!&{R+-I?Hb%hn;$Fq!~=5MbPq6XwYJ*B6&1O=-tbF^E}nX0ou2&)_~fD zQ_>b%u{80@)KTt*Ne}s_b>$e@tRE$gn|o%;P7J9>kE$*SsMEGS<{-G*l01n7D;Ma_ z&DxOziGm?uj2jdZtN8OVg8A4KcKYWtMdmYQWf=S@!PU;w9)`!j;F=E3o&+MeI$L=X z4iIeIYzZ(`RSsr9K1nKJ>Rhj38(2mQt<~PM@NQXdP*7=Ews@)8#(C7+>WJcQE}5hg zTgtanB}7#tUzMJ!ynZ`DOCzbHeJhuC_~uNLty@#9c<(;PyqhW9?PPgGdeFh{NAb(v zb8D7Ug=PO?M7ZCKuAVUXek&4zai^tWY;wRz<^aLb%E-&W%9SLiYwhgd;RRK7 zAd);a?5&6}1PA=674sg2fo2c1a)3axAv(Bwx)EVW1<;Q^3~u0M?Md$i>I=;Q*RgT| z?fk1QKs)>QyZOLOVRA?W5(|?r*>T%BY? z0278s;bCwH;m{8`6dDW0Y~_B4;9zI(3C)hl$}J3j*wf0{!A9NH&Y1w5YSRv85T57XjrB&ECTW0Q8@mq?Vyo3m;#tz1u*?MG!BMEV>$2uSVbHH zhEl}9(0ByBU;v!Z|3mfBSR~_$R)p&RtHQDJ|7cJbDo`6M1%n23hky`(Qvd}tgvY@Y z6~S*b3WfolD?$Z>f}!vj4p3lN3>JpLfJU%rn4$uxivs{4z&&(@{vQnr5(!fT??Y|k zad>cLJcF+E!Jrj6peqCfG$^QG0pUUKV!*%|ZGgIy-=?Cgb0s4V}Py~Su4Gp@2LZ26?J4WHafFaV~gz)><4FHhQ1d7o+27(GezCs2o z)3tI1Q^v6Z2puW~MI?BEF^>=({0&rSOmt!b1O>hIvlR#^1cHP9f6NB(SUgyei~qK%aTjU0=>fjI=QLNxFX z1rPe5(*+X3)L&(VCRVP1765z-9P}%6zpBvZn(_Zoou37w3usoM>tE6vVy7!S&j$u@ zP3QBzFn~np?k_fiT45ur<-Eebm!Aj2OL!qUzig<^&cX3XcUM&C)N(iv%HOh|YvjUu z&OBdD(e*LA%(s}Z9kFRYPTu$GGf}RpeLc6kRM4mQhDosvXB}=FJ|W$Hm(O>Z%Wl{8 zhrSG+D&iG@v_PYQ zpjc65(0IVc|BWg`Ln$B(5LnEKx4kGu?Am9<*RtXyaTuq>HA{6{G^PHJEfXC6{{ZW1 z;my>XaOnR4qhT*My+&*};CJ7WC2-f2s$TS)&f-lxlCBh~4i&Q<>Vl#Q~N zPJ0AT#v(Y)w2nt458bh9DjH-7|8ZY`Vw5{NWhm>*rEhE2?%#IiA3$487EI943P8yG zJ5*rw@vbb$jo%hI0$_i-wvD#J4&7KN-jv?Dd7X!+ezejlL+_fZDD*>h|I23R%>^Ig?4xiI0^boC>427y6qv@+lC) zBP-Y*eZpV5ouFsrldloAsTNr&Ho=urD#U(dPI+@NS(1N8^xH13O=&?EB6q@)u$^oB zZmYR$VdMJptkk?9c*_w1r^x9w=|{f?4=iVo<$_NOi0&Bvv*I5n=N~j~6ws>v?c~Vm z9VV_*-|(_dX7a+B2VFLCGNC=o%^RxOST|kU=XvVOt*}&>tZ`xQjZFK}E;RCd*ZR;v znPwN0o_&U}!#2k;Y2IV!CPi92;@RIteSEU>M7p8SDbC!pt$HNNlA>qS@Y zAEc*IT|V0V)U6FPzuKztH-?twiOsJ2uuWgO3NO>d2?(N;ROU1QeAB;pw%q~5T7E2h{k9sK9YoK~AK|bk4 zd-FR-h5p#*a-=^gd4=#tk*}|uxg1jB5KmciQ+bU>^M{9e8UiBk8}AwHe$vjOdNtpb zyTc|oI4)1D{|d}{w~(xQZTdm}tuA#^cQM80*S2@Y4R^dXxK|M?7|goH2q)b9wfTFD ziterto?B3jnV1?ucK(Aqm1iUFH}QWvrBILJYpmeSa$Hxaw2098;}3q1nzgp6N1~tg zl)2?hK4UeWTUwK;Kx2;8kKy-t_-CTj$<9Qa`dD;^R z;Qox87m;pWaQrkc@V^Ss7329oF)x0@06;F?tU#mwBV7DHF)I{MtMmaRG`{~aEB?o< zSW&$hcEP_gD**lc_nH+ziG~c0|C(6=EGD3-|6iCDsGlYUWLo_HH7hXx+N{6a@R1JseLokTvKS_YoLB?%lX>fj}~jTHVI1e z=vK^Xs~F%a?fow+X_emm*TdENnkG_il`GE0!PScdqZ=)Mv$X(VE7)TQ-{V$xz?TKr zcCe*;v>3yM9Aj=?z+prm0Mp$A97%t@tO1<5kpFHskc;llZl2B#)-Z3hJYF6t@9swO zM9RYKJw4q?d*N`GpB3cYh<4H(aNusU^|ApT+|}>8+n#}0TiG~)zW&w@s88?8!Oism zgxlQ*_M#BLD#9Uw{{VwQB2G!K!kiD0aE1eT5fB`}U%>nW?iLI%PS3!8K7%}c&>zf| z@eGN=A%IKdmuHGNh2QEa;(#mW*LrvyASdW=b$f{4>fsQ;JpWrg=m!=|HuSghF1SSl z)B11EkSG)e|4VzI0t)e4zbK62Z!n`VK)d**Jv8|H?HQ=^>oed^0|Wv6t-uFh!9oK1 zmuHH=?e)tutRe!C=ilpLA$Q8J&yc|X^2;+tMc~K#<(UFj;WwBSaKGbO0gwBwJq!}K zr+#S0B8*c*LQP+mI|F`9Ckh92D~}+ bA7G)9JgtbHbg~3ghDM+`Bqa~(YI6K9kA96K diff --git a/dev/_downloads/2f44ee19ebd4c314ad1c408629357c53/plotting-1.pdf b/dev/_downloads/2f44ee19ebd4c314ad1c408629357c53/plotting-1.pdf index 7d6afdf471b440c4aecdf2f03b459b096a13beb9..29195d2e6a94bfa0644e521bee7286e402e3cb55 100644 GIT binary patch delta 19 acmZ1wxFB#to+_K6iIJtT<>nGq9cBPTQw8Gy delta 19 acmZ1wxFB#to+_Jxxv7b<$>tJO9cBPTI|beV diff --git a/dev/_downloads/2fe7ddde63c7b986288bcf42780219f7/plotting-29.hires.png b/dev/_downloads/2fe7ddde63c7b986288bcf42780219f7/plotting-29.hires.png index 02f1c75665932f7362c0ca4e0d45b912845f9aad..f0347cc3e661de0478f14ee2cc7dd278f568e223 100644 GIT binary patch literal 19500 zcmeHv2UL{jw)O`oSWpsUL6l+`z=AS@fOMh}9J)aTlrlu5NR!@~Q6k2pfXqmfs)&#v zpj44Iih?5@6r`hc>7Aj>{QE_{@z05;+`HCY|G(CmwG8OYd~e(P+0TCVesfJvM}5OO zzI7OeZ6F-~@h1#h4Zm{G)^Ng)3vI8x;D?IqF+*2D>UF0Ps?EmXy2OOQPByiWiQGrLTy?ETn1;YfM zp+9U6wQkB7rb#9I_`^xhn2~my$e2@?WV(_mfxn1*wW(V8qG>vH(^^(CpO#3XkNvL?@XMIP3Go>>9BEc zP$HNrGt4|F)t8OPcixw<6q;?4(bG4FV;uj=F3W3hVZ=IDH<9w44SZ%7f0&$ZI6sA9 zM?2>y=;l{*%1lgLRJM|zX4KiqL?<1^YE@u%UR{^!_mH2aiqR`d=pJH&;*qO)D^DAV z_IP{;+e`S*wYPJ>MRGc$*ri;+$iVfs9VEEU=S-P2X9rVb9NmQ&h9=^4O z(OP0}(&==S{Ts~i;!t|@aDn6CW^7s(b`aK_@bfxV_<^NF!u#;rdmmc`KgfUE11E*v zc4y;EsTJ_SrKaCr>Xo3^sYmE=VBGFj@v-7rTA9oR7zh6iUzKH+k^Cx*BQaTQ@WWm> zLPc*%;nMxu*n3&Ttwj9bsE&M*2zIh!6A>Qz^}#;P#ZY|^!?NoE--WaI6`#Bz^4s3~unY(x^_o5q`a1 zOKWG`(o#SCbM3}|aih^0CnzyT$0#Mstv&anDc29|jpf94_a+2Tf@F10o92UgwIqE$ zV&!dSF~cRK!Og1Ml?YEPLkg&_TPxXbO^!HE*~yY+Hwc!MyJOj{^2n`Sq4;EjHIgDE)E!V%f<*iL)V0{o`c6e(-^h;+MtqCtq3AC~1npwm*yW$yFXA z&1TgTu-(5Q|9;i%P|!Fd5^<}F4dcEMc3Q*z?H$*3n1&R`Ut7_i#%e?eSicL~J;Xyg z&YVu}87-iO_-DKF5xb`UI6nN%Y9(2tb3qopVN|!qJ+YkR`jyiubZfLR@n39(*^rqJ z-<+na?Ev?t5zW`)(N6y}?5sRM!={b=W_lJo9fLxY<-rs0I$`A14?p})Z??)SOU*Dn zvxq*ZpN2X{L{tg%y=RSx5F4Mst+3A8_KSCS`XfE6F$(pz=zck|){PFiD zey@~?V(@GD(@G`&jjb)y-*)PsY|3*$?S_=MShz8 z$@1~@N>f^r{=S2o^{DOCB^-T`>bsx*8Yfm$JoXBwz)f?R{dAIYSPfftMT4$bcNsb+ zJt7>FYO9}Y+N5I?E`EQ^YK+{1(5B_XHJo~t07;ad*?Skm@ZyKLgfP{!{1H9xaA%WQ zvdn>~^5up_1_Q%**KHc+EoVcDB_)yi z;H=C>3@Z)XPR1%DP9#z!{C<;WPDW5WnYnfXyxvS{IzQpGj&nVxq&}xO8Xsqo#pdmh zz%SFXTW-3x(ergmrV+*~55rYPyx6K4eE6<(@%weFg~THjD8Ama^KH0uTmxS6Tmw#* zp1!Yg^zWVG#rh%uONq4D*v3s=Z>Wk9J@4gqy0oU28QjY`ahx(7cWECt8^*g4ErDb7 zN^{ekXfsJUnAL9(GvFvfmf(MtKm0+FduHElgwLDd!-m9yk;W&?<{B8bcB9Wo zSYbCm;3EE{5j!^;Y=voXuhXA;RVJvgS(_bGH9-^n3*gFHkH^;APxkaQ#5)A(DoK0w zMP+(n38LL)BCKiMw22-%024m@Gd2enZ!yriuM2TKvfvA3>N|gB3+1W+#0oN>;TKc* z2V`dj66JTgXhGbiZ!y3%8S6vL<2Gq^h#tkIc* z5&h(F9X3_%e-QwiSM!qnb4GIM6XjyMilH$ifACSf>rQ`9N%JE^S(~v1{ZG)4pgh+R zUC5|{eav`6y=Oc7Sb<>mRGem3&>v?p^F}inOHljLU;kn=Kl8g4VAIh&5Vh0oq^&Om z^Z=glDh@25PGg^l&saO3M7~9{IQBaAllST6@w*>SfAYKQI-x;Ay|ho;N}v@Y3dUe>9Er-CIB*E)>#cYnj7U)0MG*00|ar5#*S&- z*CH_I)fM=Gg=R;ye?w-Qn+VBEmw0j<@zYud88*Zc{ywI-VC=OrU=XQkjeMORW-xWV zXBF`QfB;o&wDI~+@XzZnFHeau1se#A{=+mby|e0hc`q*y&Eww!R>ic3M{KusiNzg9 zfshm9tlp%F`%W|)Fpj*b5?ht<>*#3DovRcM9`V>!7-!=pu3Y7*Cj}7Vh>w5z6TgJ@ z!|U%t$qEDX+#w}u`rb35DU~6sK;Awv0_sgyCJgt(c*qruf9G{_Pm|)<5&*udHX7otu_0737GMvcz>V z-6vm2ppm9#JxCG5B_*-LY`ifrL2mgSj%`nvGZ__q7@3jNa)B<>iq_y_`IU$p!|@II z2iuDM)bDid?AJ^-*Py3ncnm*E3sT8#%Y-23dF~T&!TS0nNCZ(G@mTf?wSV}K-qmse z&2XdpU<8p0|3-AB72XhtT`E<{E{iY;Z*$RYR>Zg+9sOM<(>-#^64fKB*s-aj0GSE0 zmRimWgJ~179(ysi-L~y+W(;F?@*Ub&7^)n^qNA@aq>2n>#49o^oLS3B4H!P=!IKM_ zuYXFb`5xod_)LPuQv{cHH=hfs-$P9K!Z~@p{pU-2V#i>i*w&bTjTAl#u4luD<~Mdk zJjgk1>)T{Pe_#X|hhFlx!W8KyyP)!*ebKA`NOs7_9t~&G&xJskJ^F(#CB3-+M z6GY7)rpQ}4T0H5YoOi+WLPR385G!7X4G4b4>MG?hwv@6CA2F(!SVOW{{K82qmivY4UN~!ZP}YY`UHl4IPk^L zin(o)jCj@_I62PXubf=g+BMjzR?BFM=JQn8JBOkiS3XEsW*Rji*+cW*gz*{zToMf* zk3Z|FJ*t^ZuD4@n&zS9%5WBkbC;8PFx8hgq+!E+O;FVBeD$o~8sVKQDc(TSB--&y5 z)_yV=?IIDqA7+%b^sM|MeD*j%s)m~3`qec2`*S@1?6A#~>QEqYYj$e_Sh0>U@$lL35D_NYB`1^V!I{62P*@vNvACpC!LK!nPduf^7XI45XZbk)q?3s#1Iy!%rk{fC47Uq|wpCh^+EdEIyO>It=2 zo&gTdtf%($j-2?IPA>O*l-Q0i6&#F**s;RX$OZAd43SO5fyhI9;5&XgCe;oO0jBRW0QgZ4&q zV1eI9lQG)&hR*b!!DP*3qP3wgU5Rj7D^r(ZPkj*6lZ0y$k&~haWQDY=(DOKj0<=|m zZk8TvFMVLr-U4z_30HPzd_32=;n3R=hgz0T#Kexd{+aXlWS1pX~wf_}gzj3i7oj=3Vi+H^$#!(4veM#RY93ut6c4G*bNGDMpbt-r^x z53sG6b%8pyP>EiYRiZ3Q|DpFi@M&qV$^=1aKKjqsbIK%&4Q18`yrB}@wI{DOo5hFs zl=i--2~AEeS|y&4;lf^*0muxfJNns5x>ycnPL#m{=M^I?@^B@w%QGq>a>d3wd4H7Y zm=Bw)$ty+xo`Mpxg#DJH&HLyXmL$KE6w;n;5LC=dfhUl2->T4StU^3AChy?#s(R;N zP_+aG^gz1e0B0xXJ{~^Ry^r!hHl*8t;LIW?K`5Vp_{mExIfXFpn^QHqasKj*r#uvw z>OHZ6led#NXbG;bPtfChM7zt8=ga^xrD0xP+qzVi?$~W4Kee0evAD{wk&Ka_e3`j@ znKl7FlG$?W)aYW$q0_UXRxu~!H_*Dqd001rq;?2{RQd)8c*aIukRzZNe(6T!gf9gbSw-jvSe15xs@`GFySrtcx*$05{k$_sj#|g3AmdeW_Dr`5 z^Wfmf{%Ed*5?5E8ZQ2{Y5dO0W`8*Ip20VYYPplo{fu3wXcF*t06N<|6Z{YPppZL=6 zf7V66fOF1kI~9uGKCFIEism2mPcNEF01q3%xewqEUaBu35hnj|q35MV zQrMYp)?$f8UnOMl%$E1p#So$@I-^{Zwgc@R=WihHd3&FUu+Q5c%h@%P+ddmM_ge(( zDLcmNi)Q#mPK#(Ban0cmDHdZz)S(RB``Y_rIeABw$1hoARf#XICf|YN96L%IEyzoc zF#d^c&8@ttYPwJ7S=bAF$=9-TNF{0C)Hg>B=NQ;71qkA*Eb9)_@b%U>pV4MM5BIG> z?3j3hTGpTeh@*c~3(+z41SK*s{FCiuAFeC`+SDHp`U8{^{(?AipJ+0PXmiyE*&KMN zbgR!;qfeDvQy4g(xHt+J-{iatOdFCd`ps@*f&=VNW}O<)2JHGX026rqopO#+1#Tyw z;m`+#&h-t{rPh)#9gf%UO9gf070l#1cY~JjIp`DX+C9%@4&DdseEfxO9nii(78h-Y zNMWtu=Y2soy=A*xrrUD8Ch+c~O%-Fpn5q((4q3x4lThE<`UFBcWF<%I&UP-mTKu)Q z1Yj0S244S_$GU7(#ZqcR)kT5KOb(feu^932jez#_0@1T}q2hVQKv`(2dKkOvm0(2} zD!*nAcFD`9T!B);T7+0bzV!2-Qa;;H+?hs;lumW?`tX~@`{(sGyEDWHO~Xzrr50Xp z0UvQAXS&7nUmI6rDO5O6)fcABq~cOBWjq%@e}^DOJUl+;izcdfkk!G3mD0cx%LP06 zNUTMAtOp1ox1_wBGn-7)Cf;91DO@(HW&~aWRkA_HHfXH)EZdsW=9N{mVR*&AA`|G* z2p7#QbKX!ObjJBg=FfH1+mPKs3AXqx>C6}#_J=S*o?Q%K9d~a{b6wYx`o~JF^C~2C znVl?=Vv|Nof;YDsSb*g!Cek!ZnH)-ZXk92EDRm!(KVT{tHz| z#4j;w;LOKkI4(Xma>(y_cNM@E(?D??UVBkmeUnb5o)0Goc;UQ;AHh72Njv>4Y4cO& za3)wO7H|plOx5&ac}A%qrF0`GvjaR=`5V2p&45h65fWDvoiBtLgmKf&9-S8LZf6Su z1zfZS5792mPgORicMLty2fV>YekRPsi}{PA7FE)k$qB44jFRJBdI3ec5ph9YyDyEh zP)A)ov*kkC#8Dm*i9$UYp7AoZAdS<;kEBP(8?Fw;M42rl6uo~8$@D9g=v^|aVhZ5klRn9g3}!L`~^KUpX-8342ILSFlsCSkSR zm^mI2l+$uN7+wOwGVhVmC#h~qHa|7*#Avm5&_^pk3EKCdmQOd{RAxQ5L6BNz86R@u zquQTX3>Fyvt?(w5AGnYGA@M(ZW_^falm)RC3*-a7LSCKQ>7T|vzA!{x90h3mkOxYL zWpoY-_N$S&zV&ThN&6G!o|`@U%=SdD4h)EO*Emr45W)yCBun#?V|&E%HdWAn`Edb-9wzz&T26gocf?6A`pOb{8}l+qC083XDN+CV+4 zPaatbcti}{4^_ExfwTz;|4_w6yJkiFtswqrh>Ny`m6D*#Vs00~1QX1(qbN%gAz*`6 z)oh11gSy~cj^toW`Y-eWvcDS$k^o79jN^kie70|oa9UF}6n_9BUzdTNs9JKyqrGwF zje(e^c<7;M`czFs)vAEzfjZy;4|30B(nSGeFzHO72KWR4ze8RP(HhAKFGPg`>R8KW z$fVK8pRNCMq(wN2Pk^$Pj#7?v@xa}l5E4|tI0JGTH9)157Ld9Rl2?L1+M4Vth0ds@ z`SK)vZnPf5;bNc3L_v^2Fz#(%K)!10A-=Tr+*YPsm}&uN;^bV$J07Z07G;bCMdRJw zP!KBO1eFFAmfk%_3v1n9V3)Z(n>LZtBq~vKQig~79^~QnxuCe2u z5EWDT7Z=UHySXXcRGv{`wqiC?e@>bJ{IFvt?nd>k(I6~C|xwN5xo%r!oWz^&NA?jh^qHL(v0c-bRxRXxw@hSHjR9+$`<1k#;GQ(MQi9nLuQs z#YDl*bDxP{wu5R`8vkY1NT){frKZL4t5lCd;g7W}vMf4H&NSFD6P0Pb=AGkejb|mG zB)uPCggA;81g|ZKY4A>q>S#5Zso2O+&pHCvI3va4+pxnQd=&C9jJzu`Pu9o|@|{4* zX!3N#HZv{xC4G4e|Kt3l)flfNUra zNwr`tWfr4xJ|SQ;IlIX+x@dBa2P5u20qZa&t&&Y3(j+U1O-bg{@ zYZdenKps!tWs_BPCgOa={@7ny>`VMIOE)6R6<0)2b}1~(K*!_tkfTYNHTdt98zI%SDpPCe*^RYRC%xwB3z(Z*lKzm=>N%kkesvLn>LQV9D7`2AENriX%v&KNmnw^#Hz25c; z`TFna+sQS`(Koj1BRB4ny$dQI`3`Y<0IJ-!ChqMyuD9RWHkp_)Sa@$&ki5VHk?1*P z{`^;qqM0+@P|piL^C4$Wg<-KMwSkMY-0AgV3w#>PWC?|j1VLAKQ66PO`4@%UX(F_J zX}6}QQMmv=jS!=jr-M1$^QfGnFnS!~wCn9V_Eplu&O}ObN0)+V@+t20x*7tfF56+Z3zM>>sg_m%tnJdjAK!_Qe@6rz zPir(SaPymM2R))aW}8`?1pNlCyWZOO`>MWRP>BxHBdBdrAUMd1Za2fZkoXRM51`i6 zk=u70m_!&I+5_6&u0l#jR*kYkQBhISx$JhI&S<+wFHR6F?&9+xPBnXW2Td{ON>q~Lyf1{Cf#^BGS((#h8jaho;BF_=;n^*# zINBAES2LJpz&`e{Gy|HxihjcUht8&HAJaJFGa_sHZ1KKqj_i7vHd0^oDnm$1-8+4T zAA#Q$)LS2tbRT}Zle9D;*B5zC(tCQKeqy0Lx?}pj;=({8NDnhE75noF-#LY-Fg?SK zETeFA<;7v@nEzaX-(1m<34N}lhW8!y$Ujzq{JXxP{S# z8e3bVZ5r;wZdcQ(y2??oWm`@g?qbb{up*0QTT)#M{il|uYOJcHo3tpy*$q03g{Bha zrfxCaxR~uymKLQOWGh4brxS}?S@Y#R6XpF&N+C)ze(52M`EF9RnDQeZN>AZbdd>4| z`^0JSU0XCIVjtu*9`V};jS+cElNHH{iAC3)TTQXq>FIl^skR+lC;+RTe^OA;(A>=G z|2Z!DTYD%fz$+n5oXt{ID_&VC+CJBa(t}K9-9GWQO~MI^8CDwk@Bg;X`PH7}o;aUT zLSo&^loN@QPkH?Dg3ANyQVwm8>nFB?tto|X04yV9E{+!TUpHHNZyeG|4A=nTMF_;_ z##iWY8Q#Hz4gJNd=I2USexMcb;A~<^6TOPG+U}|CAKuLO=cm z2kH`~oZdgjrMY}xQ`H@!5(oYuLx@q>4wRsA7Gak}0T`TfcaUsf;0}kE8)VyVf>Vgp zD9ssnE@vp~qup$=&4?vXMSFiwO@Eb^*Kr&9mHJMnAFJhu9^BxQ{{6Y2`K1S0)$;j$ zw{4+};gOt|H@6|ezs;$f->)0IqQGPV(CikVnRP*|M~7U=@`&S94^?-zeYPoC#MCnC zJP^5PtLyu7Uv7oOze=`KQS(5)1*Heg2p$rVn*L;Of2@b8LouUosfn~~P!`PJ+Ne@~ zxy3Tt9;D%>o@T4~Ds9>JTku`q;BpgiQNM1O>XVNnBT~?6;`CyR*ZXT?^>#81b}~}V zJumID>(m$pC5r{du64)qr>YgE1`-1}BYin*%Pu2Jcb=q+ z^)na8#`4N{9`BEF(aG)b9;%EyC|od{si|}L-7mwByMv<+o>MzeJpbPK;?vax3Y{v} zA9*f#Ps~H_Dk~<1j;thur5*aO^eJ>QbT%rE(-dc3>&w0SU4|Yuhx-qa1k@$5pH4`eTg!8NGvp zgY@^%J}3=bV-Xrfl_x_(EMSJq%orslCFsW0ptyQ?Bxhx1b;fgG&t3a^= zAV&Zc|Ls0x$&{t(WEF6mfdZ{qP7cM!};htUB!ba+Vstw0F5rXkD_^i{%T)F+kFdK>hgTKN;S+X5`7?e zPB%_bE&?ikjfUrfWW+f7%H3P-BW%<2E#u1hU2A_}Oh%N%yx3+|xZyW4(;ec7MT54i zUzJLnnOAREv-ws2S6A-xSz?mbF`n1ox0}#M9nUVa`3r3&BxHTFX z*(8NgaNA5=Pi$14@48I5bOrG9!A|$L<^X~-3I{oku)R#U2(##&if8$%1@VRH>ni2A z?j$N}#~eNwJLgcbO9@92E_luIxM@Bvy$3Z0Na8$&M)2vUAj9Q$P<%Okwm3RQ`UFZQKLH*>6b(X!`d zs7oQK`Fw<*_NB3@t%2bx%Y(Xd6VJb+;^1uJ&M$GVSuOM;)^D~sA0S%FYqAHClB8~I z+3x-GYetSmGZfq$Fy42E@P$iVTq*-QNL?I)k=+M{)o#2*@eqd~*SR;$AXk{Lw#FS| zLh+-Tv%F`Nm)`O8!|u@+J6TM-lI7W?ZoNILg^sn8Sj%#Q_ox({8MJyzUU;4I>>Byf z__OsAIQouiV~n$`qTq5czk+*k7Rz+@gPDx~Osd%i&jSgpq9vo~`NAuAdI~z19Uw5q zTST1?r(3BkHp8AqvfsQLtT_1+G8GrOE;2`EgN{O2Fb6kT9W>3nPJbWD^nR&TE#19M z9elPALW6^YWfdJ>-P)6}C_uE%|L}Y2LYcCoxivV1nDgrs>LNC=XRKh?_Q(8sdk?m! z4;hF5Y*zgFXTPkK;Uxbp)~Ree3e1$^4L^`C%>jw(uTvM)rntJhSI@jniZGQwR~`(1 z_3+^Flt~~}-Im^$42`&*O=ytAqmR2M$4hyvhSKtKC%8Ct*p7b-7-8l-U8gQaP=*6) z?c2F`Cc1M;6fq4-_PSpo>}T2u@v6mvSr$(`cIxi)TB=yxB~_y+MT{a}aso){2g;;N zDI78xyFEl95idSQ!TQ~mZTBIhq1eh7q&9f`BpRz+z{gGiYX5c+ZRLg^mTHu=J>=FE-lQukfOd1Zj*Gm0mchDGNmy*#Y|!eL0J$D30Iy@IR>K`M?a zs{JaWcsdCV(kn{N#d4#<@I!!+oqp4GM&NCl>Ob@9VUvM;L1o{Y70>2m6pcEe>x(sNF5(NN|sF(C62*&iJrXc)6E5y7}8-8~1Pb6?E5!1#&o^0}aXE2A+; zkD@J@;p;hi+W|wsE=(rpyF;LHFf@Pu{q?MN_tvoB)s?0E9&Mo?^ADFArM$7tJMpz0 zo(hKpi|qvWj(co_MjXWYmW_epO{U$Pt!Zd`_m* zcj`fI%Z2MPYXcK6c`DTq9335JVPIo`Zvq8z3J6DK->b+z>{1I6h`simSl^>^fuZQ2 zMKu9%-eUHLsi~>_6Xav#wMTi*!`W8@7~cZ&p8>uEtzt?Vz^G!Qq^vAKNUeeC z%9eLtTN!_1i-B<{x-+xFqxW$eS+7&=sJ*pEe_{EcnW^bCKujMzH@1Hw!qnU5K+$wP zj-GAPu$lbuCg=N^r6!b{&A~A+CPGLtI8a}fotcb&p7|+uN4r?JMv&!=sRd)j1&*?# za{1lC3JYZrW88sCtsevzs%q_I&bIlC6%o!z{klWX8s#AII5F5)011 zhP71V*9|0Jm+j>d&~eHB&@^^+Zh3v*Xu(*VBj_R36Kk*7XI04%&Q$oAnTD%~8JM`8 z>huJE6Bsw9J@W$clm)DKHZ4+aB)ehq9S`a8#l2V{dr4H?X)ZzEi?^%#j3p!___Zih z9r@qJW&?PX9~)mJrYkciLiz!!v?zrm_Kp>E#dAfju8|fSlScjtOKYFh3q z9@2a%qU0C%3K3*l?Xv8^WC)ZD-`;&LF{?d+I?l$5O{XLVzxw(5{>H`|w8E+wIVqo! z90LTSA~r>*S-ob=B(&H~4N{n)b$^_X17fE*5dYI|L6}woe&1Zzwub~UmR(YjZ^e;K2WkWc|%a8_{SfK0zkYni&yM)rtz#}dU*!){=mJ8MXtkJ zu%p+IdKA_Qs)!4mci+vU8wU&Q=^_!8qS1Dg8s9!C6zHNf^v?S1#4rhf<|Wz{Q?bVYxsb9fiQxzlg1cL+3;q2MTK z+tV8lcaaf)+J5loAK`|aqb1m!t;b0a6wx)Vgr88Vh+q~+|1CLg;fWEM#F`_;BV;B} zAZy$Q-t5sT#g5^}Q3*ecPx``1<(c1fMF@zK`vM;yDHsC?t^pT`#>s(b&S@^ zObwVLfai>srsDfc99T*W%8A2lWulv{6N8+A98b5)oPTv|36ziOpP)PK02D>-&CxS@ zA!4G0zNyWY zL*I#N4HPV|H=93_4^2ARVJllzqr7MbWIYcd+;&+9<6_8^!TRC(MGpGkd}=&O(L;a_ z_}m66)ZoCtOOXg;id&OO-WU_*YK|U6_#o2zQ)<6e-x(SYSDFZLcTGhFX!OufFyn(k z$!*A0lH2P*6p}(yK7U^)_BH|u0s^!>g23eZJ&j=$bPhREd~gpIC0=_W6ZI7li}!V= z^aKbl5#d|%<=tq$I6C6=;PWhd14Rs52Q_=_zhx%(%kU*+6n9~y#B8D;XiNx zXIuVZb2-|cf6#mW-+Y@agMy9AXnucR`s9Ndq3b`1&} zR}jwGUtF3fw}M1Y4vcP;vLD_9 zpRD-XzVt{Sh<$0$!RSyl)9CN#3s^!Mw}1`+n$ST|9UtU%coQfHYAynVTtK}Kyg!zYG;#59O1DtskEksxCkWRWS|+t@b(VlhGUKb|O~mT(;c`Zr{ifP_}wtd~R-f zx^jj&*pMu7@&Ev?3~F28W=E1-W|d4U`ebZuETdbH6?yPnnRx9vP+J+wjiN%(QF;{x z{wvFj8d7zK&sc0nM+dy=yF6rO)-?%@=^ekK_cJnuvIaU{qD_SOQPcEDS7q51AzX29 z0m{%2Z@J>#F*-V$-=P9xf?aO2<@%YoFbNa1k|QV=8iw7;2Z@G)Lzz@CD1le}6*axt zKK9JfQVR>$kKHvizp|yzOY3XY9V)oeXg5=}q9o7L;?DtEdUY;#LN3lD~h9sWE-R(SpY#;3mMJN)ytk3Y2~{^#xgC5ro>Bl(XL0Sm?c z2W5i)>9;q}HpDXz1*s*DNxFS_T^|Y*^;bmm6HpNjghz`(NG4WJNv{@FoIq3;0XmGW&(qgDX)*^;_WuR;PJEK|%k@*jW%`W)`O)hkT4y!TA>A+|5!R z6-C12qYyvw9d-|&k`;BWtoq4{KpT$2-C?Zjlmn>F$NXhs5XboYW~e1%=+@ltR$@;F|u? zey=4^cyFVkFTqys5sdYxOY~%Z-|?q5GSMzYNV4-QkB4N@FOM~23AxV0gntq+&^1C# z2$gA|kf~V?rST)58~6XoH~;hYf2hS@Twnw{hSxs}77sq%^#_#(%Aiv~HpK|2@dZj_ zn{`%UstQOT0Au|5iw;-#`@j1?n)!cFKO1IoeCV*sEfX%@gf@zBOy|e+BgD)92aN(C AFaQ7m literal 19482 zcmeIacUV+c*EW6t#i%GI77ztY96+QhN^fcuhi)_?(ne__Wt84$3=yM%=paqXU{EpA zK|nfc1V=h3IMP&xUWN`cl=;>sn&g)!KIQkvcfHSdy>l6dIB?G1Yp->$d);dtt{NNa ztXm_r2E(v*_@m!`hhZz>OP-1^c;W4Q`zs%K({ew2%KbRe&fV*bt1V`5#{Gg5(cQ`6 z><&*`S2qWui-N3*>>k+*L^t<6(mT$%yI*iqm6LP+{o7=TuJ&@ckPTXJsnr*bnz~__ z$W!zmmrH|(CWh%pkrBH%@l-}?~j^`@lFG5}zzA^bS{s6D> zmM_0GZn=171FxOn&59R4?bz{Q*AAfrM}oLBLIbb!ZThkbFicCZ|bynCILF!}=PS6icv-XFwp zZ$R(6?_(?AjeJcKX$E^j`0)GSVPB^MUVtpM8z z{z*qPV4twC@IZfmza%#o_JB&7St)pTz48uLIA>P^w_uv8s;&ga8@D)XBwKjbeGRrH zcqLW8cDe3f zU|TxBHxXk7dJSxdMm!Rz;pW@IS?r=+SBo;_s`xo;g&?}>zcTvr&O+`d z?^NlHX_@@c&9w0ZleNfPUqiNbi`&f3p6ktAIG@iP5b#< z-Bs{TAiQyJwrRR+6Kkt0!Ih-6>>NiaCCmVty_T8kO02XN>~hV&M~ZeYTHKFmp}HD= zisv#IZ?jL={OMM&t^|M1ylpQ0tGs;7U+(dlCFHJ^*S_r8rD5vvnjuHRU)L;h7s3ch zYV*Ue49aw?T*3-+S;INSxZ0+#vHooq7I+;Uuy#cwSUc{ZJ!R$xQ}U&|xe5-mQJAre z9{Jz$XXkr7Sc6w(m|mS$`TnJ*XiD+u?pR(-@Mw#r8tV$_Tv%0@R4m-L<?ZW(fElm3%aUhHOaG{IyPGZ(yU*<;vo(k&i- zeZ@}YSou5dUtw&$WV(~0-W4o~qn~hlxWH;)llE2%ysBNe+Om7yn&@DPi!KlbHepi| z|K^_m65`9=w&<9WK-uPUF07zUHdZCqNd!w`%9MG#*6vRqA54v|<<{mnA~YG;fZf`2 z{={DEBd`$8fNs+szxHKkOVX0b{&wQ&+Iz<_<7;9SaPXgZvOgT4V#CZNRl>w7VK`f7 z0EcN?y|E5&v0tnwS%OE2|1az~138EHcuKw|v0tv0T1CIVv zjkHG&hr2P1_~c=#xIMK)sC;qca55%evF{^>@FuQPJQ~QEZ;~W;{@J;RW~4<%ew%Iz zM%a<_A3z9CvqOrQkw)agus!X$K(rwbRuT)&wbV?$y% z{0--lixW@y5m;&4t(HfdT(+oj`#4@GvvA?zIUx)i{26k_uEBhqedKzskC5`bM%VQe zWfWJvxsDstPDh9G++T%efN#;A$bM=Hwu%H}#H1v6>fYDKTl()&nRwCUkR(phb^S0r z?t{;ejaexeS~ins!*~I}(}c$a`#&8WPnTQ0m~|B_YCm0uW)$I%qZLr}4P7UO=Q9j* z0z}pAO(@st-F3K;fU)h`B%c|&O-&4do*#vQ~Ci0xve`_2vxi zt)qlv+A)aPpqtzq$OTTV7G|wloI>Cj>}QF7;^1KbP<$uCuGD?cZt7Z;EY#9rD zOt*iH-eGROii2^=dsqv7X5Gh)3=;h^0Gb}qV)oF=7xWy}FP^1KV|*^365$i#y-3PH zvtA0;oBpThW|>}m&bX-q@sq^+=Oz3Th(dWVX?@l92=#d<*Vo_EJX#|me1cjP+i+^5 zF`>d{u-7~=YlGBvmHQqY9qHH#^5N`}d>Vs>5OCwa3B{gVyh$d`xdyHa^+gjPuE6JU&J|>uXLmpxSF&d-#O_uU&$680rwS4B=V9QBI z{*%2K>dD4#_c-C`Pq(E#9N=f*QycUuxv;nKWN^NvfjJtOTGcFh@Fv=*r z@4jZopYVPMKEF+t^*R$7)${W=)}|s3GLjdu*+e=4m?okB7#OWjwrE%3WF6yCGoTQ} znD1}2L-2flm!_#(t<8sD5df?~k%uh~zYB`s;g<&7z4JNTRavzITePc*vB`UVx_gzV zblgfzH)c{r*-oFn9pjVvkg06>}uSw;5 zas>|lVpAE~w6K5gt;|FFJ@4^HJB8FrII6uzK6q>!1L3t2sQ z_hO( zUHK~G564dmRBFHBROSP*NB9Wl2A}6*JWq>;#FaW;6{QuOAJ~UwT{vkm{klHaqZQrr zG&&(NZmWVg-6o>N`>NPWJ1+9&ykEb{3`~SvafWvX9MwN&-@ojqMz#XuQ|?;w1pa`C zi`62!lRSyUnWY8J(`h2)OL(p?D#*FxmFYuW3-_JY1Hz@IM>&;xz#iniKI3OKDj1hw zR{ooBRK|a83Ep9~a2BpQcBD$A?d_a(hz$4`S*i7791$#+CZcT?=9(mvc>lzsJiI?# zMQk?(Bm3n32Pw9u{>4q2){?cO|MShX#aW1>iiVl%UN|O+6|4tt=UMT`98o;g>eq>{O|PgG(#|g z{Bm&zbZqS8;#?JNv=~THkin-!xH7lm-DI+;7-`lE;HbjP{!h6a&gpl$|CjSw_P0}l z)|EKN47yO4A91haNxC}r%Hd6xP1yd^-FvK;kNx#0TON}xcAEHgA+}lL|&_G0ypo^893qGss#MowRV>-4M2v=YXQ24`9}YHd^S732?$1k zOu4`7Xkq$zti5>i{mo%K6<7fr+n%aNmDO@q`_^DnS3li4z!oUwHW#Qwd9VHX*5I=g z4vPvDCW(29n-4|SKb%+`88gmHFEEUBxBzM8D zWJ}~#rW(NC_r;Mb90L}IXkTA}It2@;{|t+zuUJ9;`pn#z&96V*rR&?(Nhk1 z|3fV<#bP5PPy~xbn|}v66w~gK2QT<~h)49O=4>IO;Sf~oNd8zZ8(yn+huV}*QzB39 zhNScoQWA!}zP(S9?%9TnF8!J8-Mbwk*#~Ze4pYD~Mt#v8qC@)jy(r!FDtGt05al58 z@c!`WczK>fMKRlDrMhw|^5gOD+xcohn0a)xI1|JMLFLZ{2b|lx{VnDSTleqw8O~d8@lA4|V5I0t0X*K}${05fT zSA?-sE`=btpfJ2t{TV+(2UGLxJ3TQ0i&sLV@emqki3s+3R5D~i%dX0=)RXxh4w%m! zNDz7DQ~@at>J)&IpR?A=PtV1bnhGzQ&XFNJX7lm=}Pe^NKci{ebt zKRTgH*+z+vWxS_XjYc!n0&YAJ-@#{ST_s+xejLOWK1-nLr&g@d-qJqbbh~5r67E@_ zE2kTuuj^VroSBJtY#|W8!}cnJN<(N=2BT}2&pA*6_Rdbo;iC*3x4hdPJ?--i5DDHs z3|Q&~_5iIWmevz3(Q0X?x-O_|edg9KE9sSdo7!CB{NM4=J{VqIjfH#*Od;gmPdiVy z@~bCdca=(}ZjZ;+Zu;?#^|N&mMgb3z^%juz1m!b)YQ0C!N6VT%ij7J#;XRLr-FRJld{b|yo+knec3zoI!lxrtGJO2%d*U>Q>A4T!&`J$VQIJ~Fa?JqF0DiXig9o_iO2*xG46*Z1g;d&9adK;2L zLx@nAP4@HC-O*OEahER*4&aJ$g>EygDPk<|LS=b!jSt6Z-^*T%{1$0orTrF6UAsCb z3&lM_)F7-CzS)oaU17VH(}TzGUU}HEA#Q&CnzqDufIj&sq8RC-6a+^Vsw-ds-T;~B`CNwE*g=a-{ObE z8VaDMZ;o=u8u&p1Fg<$}j_z#{#l1$vOWZ*&=JFkv%1{sh0D}qV{zgShqJ|3IROk2) z<;-?Ms85xb&IV2gT=?}TVBduPEQrmih$B0A$Qi8=Hft$AKgGH z(vTagX++eiA!lJCeJI5?40j29dN!*>l9!K&}DSJ-zD>9lX2?^M*_cd?GB^ek_1mU)bV7MM1;8M%vvny zGW-DVr4CO=3%SC(+#7ZgLD=LEcmSbKIAHo2GKFyQz}->}x?6qA+!ZbT+qFMmB!7Lk z@#xH(WR%v0RzeODs=aR|48&VVWv|b`Jp?)*y`=F&);o}UEd8_5P0sucW0ODHap90_ zwG7SD502)QQ)cOD=6DsPd6Ctk5j-87H||-;;*0TZ?a&oqFR-7}&k9;WL`CstmllV?9+v9k0Xre}eHaC8++1T=rYDa#9`uMjw z3<@plO!`{PSOOjBwOZD_vRVmEc>!nVPEjcC$C&&bw7K zjoDkZJhv1sp3Uh?OdtOc0(v(##Si(4k87uncuGQxP?r~#dqZ%JSLx8}S)RW~C%AOd z**ZYiLpA49#kRR1dN@(R1Ma!lGeR_qI{k231p7mc!1_tR@ge0!86Mya{vo8Z+agWG zN%IBB5@LV#C8SdZKLCW4Eic)>)URXKw_?R$&a3ZeO67DR;-h1LD%vV&4ZzJPAi%k= zVJEs_>-Sg7QPtV!5UMzQs-e-DLxGf2vzKNaE@q^DOm$t>1BmP>Gg(tlIy$3E6#!y8 zS}o(+ee7M|oPnfJ`abK~>C6GgOc|iff?xcldPHS7S!8}VBCXiPv9-bax?}>ccWRw_ zZeHrF>d-B~7CziZDFzcfHCilZY8}=j*&pyn8Gg{}@ocBf^lPAf7_ZPL7LHa-YyjlU zKkc~iVkb>cF0z)Vr0~m~z~9e@wJo^wV>Oo{8&{}17dyLlc-%YQpeD_g(Fj@{VmK>7 z*8XeY$BV7NVp6)pjn=E~DqLdQyu1ZYt+HNIneIDe!|Fk`0&#W^ z4&LNHYP>UN_6gC_Owkz!g#jU{Fw19_rE`x}Zi@i)I8!GWZ8!FMZjPECe`NIgt3^^?U0Bk<_dPkw9gi2^yotY*{=DX63Ga zL2w&?P7B^9t|ym}R^kd8Nd=(?fTZG}8DMlzti7(pCDqbyVOr4;Xzdu^@3J0XG`5Al zw;ET>>=fcmMAIhgLFfpg_cziE)$%HKEEmBu+G_ z6X?#hf4wsbkf~olRXc9v941$$%<2}c?!9!0P`e*&TvJRB3@&fC=vY(`Ctl&F3D;%HQ%42Eh_(Y*TTfi@Rd?OR=8tgH`ti zjs>+izSGe{<))zS@^Xu9qYd)gGWM4(v7vx|*?XyMpTBp`bW8epPIVOE51)Y|7Z-Nz zv|TKNCZU%ixZ8>QyQfWh5+s%$Y^uWe&+QpF{mn?7PkJDgaTIjI$$BH%;xu=meht5o zNYGQ7dL>-2Bzdjt7LE^llOhk+W1>CH?TZ!0fCb1T)$ZT7&}Nlb|u6 z2yi~LZX!v|XQ~l;9|zL14oo)wIRHAqZpNc7bZ$gD-UdP5-;e23q7)1+ApNI01&eZ$}%kIh?iH+ zo3r;IgA_2dI3OOk%X9)Yjs}bvn$cH2Q`BENz=^Dumq(v5LMun#6&g7 ziS8g#eG!s6tAhzGXUT-%C+E7upsnfZ0ur?>Y$ZvEGeb-tst+*adhwKQ9nMgoN`kj1 zc|q8c2Zzi2kOmoHBu-_YfFh08YRNTcs%cp{;Kmx}Keg<%t-KjGZF(ZXZ;$@LrELj5 zbMI~LMS^Mo4SeL@5A)hxLA1$}ZF7NAl&3bot&BbU?0WgfpndqdB}zZ0K`686d}_bX z5(}DId=}NRaiJm|Y_&ao%vB%1FZdQSK#uO!)g-B#y+Ro;Te^>KkK{9q9ge{DM$XIK zv@2TeLZm)5npEbk+Cv<4UJX}HcYl9U5@J26992bprq-2@qE_$=AM)aT2iWFTk2shy z8VRYmF&&wS>*%0)mB*QTd_S;n>M{WEOk1Xh=247%=Vkao_!f_b1L;F;L=&uKFoCHL ziV&bPIR~Lca7mSjUZU^r!l4YCa1Gs*0lh=^tH=0BF=?fq&@sqqcLkP!-Lgf_%8)5A zAKL3?hlqQd2&tX->!8}P_q3eq{7Pv5K*k0M<+o7_%q_d|2ra!J%CNC*Fp=x=`(PR~ zaM}GUtl>%(<|Ta^sHr{M8Q1PWes*jLuhZE*QG^n7m-<_Sl7`*>n*4ZW$`LkK|ORazu|@ha86yE}$BZ zz{R&MDy_iMv7|{C#O>0hr4;HYNB__hD~^|?!#xuY3{+(ikQMt^g7gNxD#JZmL5{1( zpj%~OvAohiw2-MEW=kY|K3rvhoa@JwNwB+MW*ugeo<|w)M(O-P5Q6imA0&@cL^;Z= zcdPUywk~MSJ!v6TOCCpEs0TsF9Hr-?EkJ1SUv%zEh;Ap5V%2#%)H-i&zxeAAvF&Wg zUg%_>M>!JrU&IP6ws86qMJG~M0n1KN)eg1W`g;oN#dFE6hF!Nt)-qPmJ*3lDG#O)V`^Kt-(>S&TcXT*G*B6vdJz~ zfBUq5UaTTnN5ag7#cuQL*sn79z>>5ZVDARNUcZ;Kvvcfz$CE-~NAlZTisJ)j=pgn? z>s1Z9NyJ|`sL5f~OW+}6bWPp5L~>^J7*$(`FHR0;E?H3${3H)_36Poo_O4aJrAt}R zLf}U1gx%p>&=F-sVmGsT#qsuM4unpwF3xuc^4lB>@A zq$C%aD-DL=j^Ed(sr1E1z=5cS9oZ?B@%Zf00Ch>yZ?w>Uz`L~fxqwxT5QIODez8i} zt?{rx?d06mjS_a1pp3N66h_IU zOU>N4RM};%C#g}Es?evs%svVJNnD=0Gvmm<9GT_LN==o5iMvUy->UXzIz4t~rc+B` zvV?D_)gE;RFm|L^#njb-<`jF#d3XvOz#drZ1-(%6L`kA#&%@M=my#**lzC>k7HnhZ zkk6J9)}!?R7sYH`q{&u4*mo6`-6MDK6lQ0)R) z)mE|%Zu(SBrdS1O?wKga8>=K75=a*fMF?Z#EWYV6UlCtjX|B;(3v%1rx9ou1J8jb+ zf4H_pJtS6=IAF9&#G5eFMdJ7m=vlp7EfIes+R|6DFTu-FwtQhC-u0yTo~qQZ#TMxt7oS%L2Zmq>)%% zxOR)B--vWUyK7Z0E zTBR=aIOlxRD05dD4(Lk9t?uh;vaRNB26bx8l6K#rbXF#ZoeAMlWX0J|eBA=V{ZK}+ zY`qr8-=(l8$|;|2=cX}w+c9HcD>3i&$;Hk57+Dupa#O{r8AZE|G^S60t>8~Ezi48Z z;@e%&MkY~1fY8sjyBUd)7RJq?+YdeAjgyJ9B`GNjdK6g2J`<||5821>et49Z*Hciw z=v+4UTyD$4Mwu85PwoPc+Ibxg-L`}r2BFE>N`3`T&+flB2D@}1W@yt*_b zsQ#|^4dPlH!|Bm=5aCW>jMzQaM?5=y`r1uWvG6F>V5(93kN7LKXDbn z#(GT(P#a#vPmQ;!c{))T;F!DPZJsy*RVbWl(sQfeTE&1h(7?mTg0003<71>UOLF?^ z0b@dbZd@2raN)uDzEQBNc>!%TiW#wVKMFRzDpLZ##*{Hy3$pOQ;NZ&-A##bYO{_Hh zn5ABt<5!JrUOhNgx)g6=VFAOpM=9=}p7%>jOIxWtAS>t~U;P#~i3N)nLqK4k?@=vl zj{ofAy-CnC($Y(A>@U<$R4;VL5j4S6QEv4bN}_WWt8yxZ9MMwXjBMVvwdDdV+YG+? zWngqvR(NA@$rTabT`BRdy7jH#crJ<^?#=NRE4QMEStHJ~dZb77b;@F)t#7DqEV)v>$&iz`Sxon+TEI1~Ok<*{EoJ zW*K|XseEy!=isq*3fNY8L-p}r)d8_gA+B_FxVAJ*4Kz19DJu9*^>4pW!4e?bwRf(F z+{P95CHm!n4SRui%WU2lb43RRU+_6ix>7w4lCQtCjkbtFIIq-x;ZU9GP+D5a#7jH{ zMd~VHcjG5_E1uqlM895bILqD3Yd#@H^A2XC{kSK}Yy#4>3Q7ULq$HkJU7tm+3>T%! z`M+Nqs~O;1wm3rUOA1>5@}!w_Bv23KRogFUyMS*4$@((2K(Vt=POc8T8x zOi_z4Eje6MwV=b(4224gH44>$V`gdog|qL{*%Q&_@o_Fil8)(lCpBlX!y~UBy1a?J zX%@~8y3hQz5LuLshRRPSb_#x5Hg;K#@woeX^_y(#K3~q*`)8A{GXwMNC7ZxfE!1(s zi{kOhZGKVf0*9?ds}Ttawnp?Jt#sxsp5j)gA|Y44;973CqL-PXwdgPdR_7Dd^v{@; zD<00tlo|`@eEJTCT^A)GA)ZB}7orC_kmT9_Apvdv#Ms zBv!!E`)i;GB+vGXRZSPknqx3I+>=o}s!K_<4c6wwOujV>n10>d(lT?uDjg1$I4455 zfYP3Cr6%#r1@FOMQV{5hIV7C6hX|C3|LHa?x>v1>Wf-_LNwsf(d{L2?d@TX+0MNpa zlDO^wxoj3-u6G=CCd#9Ng8IoffTyZJ6Acl*&G;xLdDY(DF9jiUy1o_NM0xaa_e6hk zxLs;`e$MzRD5;NrNdju(3cO7Mj|gmA@Alo(ZCy)>R&1C(f3)VOo#E;^PCEn-CIZ_{ z90$JB>$eckJqGbLl&i1Zr93~J>((8nB#!UoEX~%t(X`~{ms9oF)3vbIsL47txv(S2 z?zr74*xjG3!!;DcHD*pJwmIc)_XGvE8w+?>Pg-)DflLmOmeP2R@pFjm%Lh=hRsHaF zH!#HEt#U71esHUMrUnT`vwFo;86wG?DI?A;972zYyv%^~3*Qg|?dsxV!3U&k?G)fC z3-=Zaua2ghg4~Y#adbgu|f#3zDXtcOz!7Rrw0@5=r>xl>}YT?9g zXJlmHXbvd}z3SA4dZ0OUg+vv%UjJ}v?xl*a^rRc@W67PLio3Rb(eD9O%vn^b zv_mTfe_A0hTy6C6(_aYvTOm2tdmo6J)6}T{7+}x@a=#PkRBKzttkPptY0fvBH!9|l?l+3IR3qfMI?Ga2A>1fl_a0(xi#9IuTDFr zza9!#vG-}L1|jSazlM8Rl~o|C2NBr_9F!Qxu%`zHLs}=T;sCKV7vA&tNocX~6dN#W zEvt{()mOi^q|l?qRHD_w%VHE(k=XILuNS@;-I@vLwfN<_Q%6zd(+Ql6acPyv(Wcu6 z+}~YVwZ(9y^aGXhjap+BJal6DBKUpz(op$KsHp$gft5SfqMozw^Y>RoJ16C00A=xJ_lY&5}5JD;f#{_~qxyU4G zIXjET9&!L)u2b**@|L8Vh8-~eLZJH*xbDiZYRFv;fQtqFmjx_eAgAtH9QDFeNUUfQ z4FJPRdGpvwh={J+Oy;kd9fIhLM+*a9e{Uiq5P!f3W*)zZRrhhN)0`j1(W1;;VnrAG zb++y~`|bM^+7x}5Oo9kDpnS7~m~mFUwOtI@YwWAH&T2$vz#jz}Lt+ZD=z z6GS|+Or_4Z_pM3cCdlv6;2~f394+kYWki7HfKso@;#BkGyCD9$Nxv4L<12Zll2J}E zgFZG4(ca__=s%=Uz^Ugf7%k10bJYGnoKpAsirzCoEvn@L$3t-NVAE(!c)+lAW*hEZ zrcBw~hgju{XGza_2peEHI;)}AsVQQa71y&WdwYO1J@V&bHwHs>KXMi_bTkOoe6^4L(eRlr^ay82SB4c!Z*vt-Kivx(W>+ zED|EJ1JyBoHx8{ID0HTYMc0VOIZ+TpD4cFF%ViIy3g~|U&y{?dlf|Y=0dCx(%Z^u7 zQ)}+*v{e2QbP+VJ3$K5eX!ujF;(y}DyQdZ=>+M-R(MHLQFCdM~lt7reX}}c4R+!P3 zfdX|eV5Pa=NZw-nCTO~%hy5Nj^fxBEJzXtI$ z3`v7`N0=3#SqPrBp9Ok5$)F%WEi5M>cHLB4n-g@2OU7OCPFPmz6N!owGVKUI8b%eA^3+1 z7p1INx`oEDE~(|cCz6&}!@$#h0ND0INclsRJW|L6_7M2&{ti$BVagdZzB4*HIt(Ry zA*(kIC2tTCq){DGzbIEa^K%Ki-ci?{d>>9dH@pcUT|n=jcM%l7<>gZI{G?{hT8t#`Wivi zcD(Q4FR@+WmQWEo$U;%3A0vOKRl(iE<6d&|PJGj{EIMOJf({9<2!b;9lm8zjIW)B3a&St zUF8ZeB8Epg<5NJ)2ZzzfF!l(^D$8XQD$R+k`QoCYULOu@SzxySbYSD4{fzOFA%PXZ z07iOqM@PcU%*+B*mNihDbT(OojJ{H{MSKT<^A(i%FE6s{Np*0ONWf6|a5;+=E`YkE zWDVVk3dfR2Q+J{r5H*$lq@XSRZ|tc7ilDSP)=zXa8>-0w@$WvULA1B;Q)f~^N)R`= z{m3|c9aiz~9zfJC2GYubvnHCk6pGUN>pI6&g;@jBW!{ z>2IbkxyzP}J;l+Afn%aN$jB`2Fnq(5Fv>kzpW~5`OzO0hc(AD;B#t3Xk+Pg%LA*^| zCF*}6u`3s=Kbhr+!-PLnk7BfUFu9FlN+I&iSEE<_vcfVPf217g6p^3yO80`~q@ zGI11p19*!_>n5@^LBEilb9?@Ecx?TOhZZxU^)#Mgv*BS0GkiYx4d;%psExLT6 zCsc6HHz|p}=LeMGBD&}z6-XC`pV*gKGNEgz{Qk!@(C+W;1gb8H;G7E*m#0hVbc=qx z@*dPhUj9k+m~=xuYIHzT0jeJmU%h~u4&8uuOVPT<9 ztN!uDZdAKX4_bS9c+^fVL05KmaFPp?S4LT$O|ycBCASAmHR35C8%`nt(06(qWGDC= zE*FGS@gf71*IHmhQK<6|Mc65{M7}T4OhyS9?G&Rb1_Z$Ms{Ki=9W$v`i@Q;y8YFKw zXkXdB$?D{Iy{W6K^Xb$IU{8V6@k=Wea_ptw<|Qma$=e<{_a09%3K%?2Cj_lyGkl;G zGtaolg$cHAB4b$QMPM8<6V_>AtAqj3NzyQ7BlIgv|Pjch6(IoCd{;{`Bi$g zU(~7JgL;zCF~~byw*s;*Iv?*as0~wFMJGYe)uo^s8nt)({1$qmtr9^8Q^z~1WCOz? zA4X3T!E0G3ND7C!fCCPSag!zHAT?`LQK9An-DKJhp0yb}`7cr)`u!4^cFy8VTM9gf zcpZL^!sY+1j{bJm{eKD!{69ewPW>*mFg?7y`Wkga4Jc_@PuDm&I!Yn*Sc18HaB%Xq zzfMe}P(!ox07~%seb)G2HfYgY=)e4}L;p7}p3UKxEHFtuWBauQ+5!Hs;kOwF2|xTF D#!shC diff --git a/dev/_downloads/3319e145d33fb7c15b85dd93189e26e2/control_plots-2.pdf b/dev/_downloads/3319e145d33fb7c15b85dd93189e26e2/control_plots-2.pdf index 0e650f562240b0ee030f0c34dbe92b28371f9adc..94f275c9454824de5939975a0e67f1cf43eba904 100644 GIT binary patch delta 21 dcmX>ygYn1=#tjeM*bGgKER8HSKX;2|1pr}(2owMS delta 21 dcmX>ygYn1=#tjeM*bK}~O^l2;KX;2|1pr}h2oC@N diff --git a/dev/_downloads/3321387ecbfcca786e563449007007d8/generate_plots_q3_3.pdf b/dev/_downloads/3321387ecbfcca786e563449007007d8/generate_plots_q3_3.pdf index 73efdb7b9ceafe8430feea3e17654f83b01dc272..9f9683e3ae49dd43c7e2588d364ad65638604cc0 100644 GIT binary patch delta 19 acmexS{iAw=q9vQ5iIKUXFEi7k~*bGgKEDVjeUru6?Vg>-jYYNf; delta 30 mcmaERTJY^@!G;#b7N!>FEi7k~*bK}~jf_pVUru6?Vg>-jh6>dH diff --git a/dev/_downloads/3af3ee18448b7a687ef6594665f932f9/plotting-19.pdf b/dev/_downloads/3af3ee18448b7a687ef6594665f932f9/plotting-19.pdf index fb80b11e308305d743b8da19b71485b595f8f0d6..e36b1895d4dd90f8958c99434084236ed1fd18d2 100644 GIT binary patch delta 19 acmdn)wcTsOQYAJ+6JrAdqs^<8dYAx8kOsH_ delta 19 acmdn)wcTsOQYAJ6b5m0T!_BLedYAx8*9O1< diff --git a/dev/_downloads/3cd14c510b41514f1496a3155ea8cf2d/matrices-17.pdf b/dev/_downloads/3cd14c510b41514f1496a3155ea8cf2d/matrices-17.pdf index c25c0c1fce05c8761ac6ecb7986c9fa9f2bab64e..da9507d60c7abd594eb831e5a16a235c438f28d3 100644 GIT binary patch delta 28 icmZqp&({D%EsQNpTbM2Ouo;>dSs0sbx7)+)#0&tQcL|69 delta 28 icmZqp&({D%EsQNpTbM2Ouo;+}8kt&bx7)+)#0&tQk_n3d diff --git a/dev/_downloads/3decd7120d816c8190c63dffb192484f/beam-1.hires.png b/dev/_downloads/3decd7120d816c8190c63dffb192484f/beam-1.hires.png index a1f050388f8315557f4c6bd815cf6645d11fdf86..faba724021e0914173798834afba94a249073c98 100644 GIT binary patch delta 17371 zcmcJ%c|4ST-#&g0p|nW0$~Fj>>Lylr?*@ zFC$~$rm@Xn%=|v5uKRxO`}sbv=l=ck%s-fO`z-I}IF9%G^rIHlUyF)*g2KFbs&2ou zT2Q$8IcYfJcADCBx!()TMwODF9!-Ay)rT?zvZ#r}r)v+OAJ=kg=bmMFd+4M5o6PU} z-PJIb^W$x!KL)>UX|8QhpMDnX2`rY$8{G~_nGV<+b1Cf*1U_0XP2x3B$Zu}~3sH>k znF~KL4xr#71wRHY&uAMP88wZOg}cxvzNcqBvdwv)o_#wYhk~%~yR@1_Y-F`cX)r_3(F`O^<#u}rXMF@Tp zmf1SMpzh_l2f8Io7DBV4A!tAdI%_zsWj4 zGqfAh(%y}Y;#iVqi@Lp+Kb1)fO!+KWyLkG+gG>j}h1|mo!%uu5sD=TVXqhP%)s)L* z1gST6p`n30|2i%> z$}yJ!K~Y@b7BOH~%dUU==i*K|qk8F(?EPBF8pLh}&|qR4@CQIK8exu}bur&)HzKJ4qU}VQY+0qMK!#RHgk~5itc^t%(_1l}(zcgRty9ng*00#|BA-(O94#-?~OBY)Z`{0@NPX z{ir)%n11fS9&D6>dkM4`3&jNLXE%R!i|qy_>yKs;HWgmdD%IYTgReDx zPufLpFFwb8%a(XqsSCExZN(ew@6N{pwHu|~2>IH95&SyoR=N4>tBm`ceh*0!&KgSf zFtz-PdGlRPi9`e~Xxe)DwIr@p9ISQQ#`sKzE_9@~pi=|l#q5XBDeaYOh6@2>j}8m) zg%Q4f?P1{&e%_ZInfr(~Q|f$<)5LUiWzbJq@Fzb5dg3XKB}&>5Vt@?v?d%C{=_wIE z-Bi|z!$%5l-ZW?|$({}Vu4Q@5V`P*kXI_;@K;G+T@Cy4VFnw)>PF_JHV~4)lid(2ABw%Iw=%I?it``F90_#$vW@m3VJ{GOl@N3M9&wC;NV{5BE zKfe4eXWFCc<0HkQCVr}~=-P%*!ERvs_eQ_5Z?mB-6CW_vJok!r$zejhIQ z#-oF!B1Y)l*g9d0-0iSbEMe@Xp5(?zu9LgbU&U)Wv#%t(3Np9fjr!3Tw5CONRyyA6 zO?6Zj29mG)Q}3SFm;I2$xBlt?88fNIQ5L~45W)5NO^+9!pWdJF?sE=i5RWhXRaVCo zX9_v4!ZytsNbuWvGQ&a0@cnFex(z)wa%VoiQ*ok=B~FVGxlRFHKHXCev)Sif<~u*R z0Q~j3dkVwC5j3PC0x@V6j1CrxKl?V>zg3i1|D)fyC;w@C@9~jJ(Mya0UDZVu)f_7a z4{{^1rA_S`aLTx%8iS(}5DJZwjAlD2eE6pj`qU-F<-HPt-xWB%wL#)SnNjqX$gv~- zVhiGXC zNxSs)tOyr#ypMB{<$QbubK5e5_mSPZLqX6_opM51%(RGti!wlR*bO;+jFuKe-+86( zFYeBv#SOx!VVlaec^Eok6il|b<5j&MiaV{Q!7rkx&VFvvjgPusk}6An6zcwY{o#c^ zElZEla#53t(Eagu!dpjPEcie1LUu%efgwun=@&og(bDk)kgh^L4DZ{2Ai7JG=S1PJ zMUCaAjorkZ6l4)|X@V$-jd>?K|AZGh>SX68YeAn0){pb|8&F!SNJ+bZD%9nSx zkX*vpS9*qn}TdGjFCYeqZu1+^T0N ziEvZ>f@J8EY$#My>=!>524%Y80Z2`)hP!8mxrWrT;Nf{cE7gI#bwsSOU6*B$dyd0jU!hY?wQ6IR)3L zoDypyBU>F32m}RkHA@d(ue1yB*uSdN=*j!8bMX7?KkQ;w*by&amh`4$m=6AdHaf{g zc4NX$X12CBB;UY3degz&k?rhB_KevTe@nvWdk za?Dw;xOP>?I|v3a$rcQWrhJvLMqMsC+I1|y(HbNa;3P#8&p#KpnO`656-+ZNKHrkL z&fF#|bXCWAXBo#>wOHJ+_Y+D84fmWO!`%FUE#$f?U}EW!d>LTx?}xPWDqgs23V+7o z#95^>&6UZ=?2yFz!pR0IyLr5|Y%zt&Mg@{+jSf5^aOfL{!drU&Zu-+R%(qaxA!wpL z`shIc2PKDR5{;ET(X4314a849b^-A7ko5LUTmRNv7nw?%Bw7mg1wJT*F*TKvN*OLF zfg?vkf&>GV?MBxo8rJ6f8k4+6kMQ#+ckcdi6_^TcBLNp8NF8G#Zfwuz;WU|;sXFVNdHioeacnrvwxabQ=#GqJMv_gZHDY zQFw6Vu|M;+yLezJ=d#)F%pJR%5`DynX9Ze15>+^qMm%ovsd_k!I^syYICe|ga%{qB z3A6#8I;BLghu7_S{1>})1j84HN|d~{B|yT3Lqw#j5AS5$&T}#W%eFnFr@8A$Mgord z&S@o+xy|jV>6vMfL_yRq;VM!Cuj^RNBRjpvb^6@pE`RM!&|O z)!DbmM9b5(3+L4f!~8T+iIMjjW9*ZCw4wXhW<&xy`rmIKQl8^CVBC48*!}mu}s3R*ch{0zXY%VjDA3zU{8kr zNttp-qkS1FGBM)U0n{h$=k?ZnDsION z^DL@nUWbH)l&-X^+1T116Bh2xHRo0HS_(6DE=!y1sNPztAh@S&4VPKsJ^Rc_108|I zb14Hwjz;(K)!Sy&3POaMbz=m-!L(PiXl!BvZ`-60NQx6o$!gHCvFJ(xAsF`|q2xi` zo;@xckfSZ3A-v@|tfx*oe_mdURt3z0J-?EoBqPHf#3q=#>3%oyhYKHD)O(-3P);Tb zTJU6Hq3f@VbZhSirw>qjEbA9mJ$gtv^J*PA>yGAxTD@D==NLlSA;lr?X%8P4alc#H48MMKCUV?h{$1zz z)*oU%JE>~^lr)LBKy3s(&dyJ>8zhuj~x48H`7sRGY z&&!`5^6<)EmU_MSB?vp&sg?D(vu~~D?`prNPF%#=0xF@e^-OmGFL>_p<9sr0i|}K{ zVXf9lvdib3iw6iG>n(lyBP8vH(w&Grf6RsCvN%|D{S-H$^X<8o4R86!I1iL;JC_$! zaOdCC6c4O0ErvxN`dGaIm!#&^AdcB+p7d8gS_9Cpo5ScvF^4l0PoQ*O16i=48bBdA zqQ8;ZmA9!1sxE_^<{-;Iyj#)}=wrY0Y{yf1B$tehE~~vxsC6<3t!)}tJ5&kGZ(Kj< zB|Yz>ElVT$5#U(d1ZADPcK)uoDaga6Crnh|KhiHlH{YU3R-pIe^~{`9*ef z#SWt!u+h>S{K6D3on^;S)~o3vmFJ-B7njn6Y1h??A;t;4mPE^n@dH{((Ff&);k!qt zMUW}I_!`94*wl3Kd@%eY1lk>ScjZ8LdkN~}TM)28n27ywg-}?;pz6*N%5Jg)pwk9{&FUU<_>MW^E9^yV-ahsV0i=3wHVZU z@$I#P^p8jM?lD}%o>PIQXMrtLy3w~~)Rhl&Y>|xwhv6H+5%Y@Y`?O%ryjy}#xi8~_ zH`K66kvlHy>*wb#NN;Ft%&NXhICU7BwrED7O+f}9V`yz}t*aGJ2?H?yfI7`v-_8!? z&yj1-0nGo)dFW7%2LJweQ6Cxli5gZk;)d@*q?wz)6$yLc1H8h*!wvY)F(Nz`rnL?+ z4F7ctisBI0*0!dM`VnHbmO`UlDz67Ta1>I-4D+TrZC|gn&gls})xLp%J6<#!i8!(% z!f2L;Y7!(vyR7#7_uPl)axyinsv0EjVE4^;9KpN6E?X}=A!-kfO8B~c8G9Z97A@!hL>f#MbvRn#legTb&P;&^iP5feAbuVRB!)jeMpw(Ac|Psl0g%RE z0!8BuB#<*@5#V%QUS2(Yg#z@4i-TOLsi_8y zo$3$4y|6Y4TFzm(b(4K~KbM6nI!(Fg2lLtAz8jlJJXOf_8Z6lU zs31y7z}CZ|tA%wM5Ng@JJ%13N1r5kXcgqUFXC;jpkcgw&a+#{8hAF5mmci~)e#L0} zSzq z#^Up5uS=X-V|1_!g-nOv%toJ- zUIUV@UBB$_^w#krM#P2l@&xApclyxZd`7OHp%w9+xcGPwk&{#`kFH^`d_XaHBh~J8 z!LwyB;yBPW%mLV$FK<_EW0n2J^atP@y-f&o!o9A;NWF4`ZJ-UKIL}iorH9kCbwGF{ zMhb4n(hF9{UY+$YD-lBCzjqrTzoma3UV5${B0(PE5yyMm48XbbgxH3;6d#!1o>@iCYb|T!&Q7wl&VRi{u^+no zu+@+CG&G>31c3~uuOO##ghjyb6o?nflpi;FI8RP#VE1@OKJP}PoZhB}a9($Qx|o>Q z_^+Q|4PdGL2st^>c4>rRU(MNu^~F#`6Ve1?nx@-(z+&@72TO7zls!J4DSYgoAXuOD z;+G=8iJ9g;-_B7h5OnC~RxsD`A!HSUU0C6?!d}pg_T%C^HO+{Rq>M`Je=T}Ui*Cct zV3jl}N=r%-92gS-N~j$D&k8wbtc^5|59kEZ`CLcQyF*+xkqD^z&6Fy^$-2b&nrmf= zHw{1rJdigEX@!|04JZ`3&{dQfg|d(K786G8FH8`-#mJkMxJD^)?8`mO&!40EjCmOh zVmJ=Rr3dX2j=pzVSme?BQ>$on`mrZa|3RN%c&NmMZ2M+k+!paHjj>4x&inG*01;I9 zcfI_4jb6wQ1?*qyH{1h~`>rNIQ|#^f1R$yi!{1A4Vs)m$jf{ zhpUM|wgl!sD~{v~EJG;~VKgsm0 zN0>UuCI+x#xEx(zr$8`$hW_|Ubb`Dn40-Awue84&G7<3&TUW{WnPGR7 z5}1HZlIFuxh|<1~?LY(R=TF2O>m7SR+5+ZSBE*^_86I~GX!#Y#Pe8&@ufgcJ<=bly z?x01o5kJz~^|T@DZ$$^Fca_!d_N`ZS4fyc|#Ucn3?UP>&=qk@GJX5&K;S(Z`&AdAX z0>=nQUODC!iU>6YTwg^n(l>zv3P|78gfbd>dmBj6XxP=7=~%ndAI8|S4f2en9 zX0VqhNy#bV)m2M-Xe!Q2_q)m-U^!Q=Ue$g=(Q#^3(*n}|fD+Mo(Uvz;qI?IEFV5_BYp;Ceni1~ z+mBf4F{`B$&BOe5*%ukC!Z}%)NRjdR=XudViTA($869>|R2-T;&N*ckw7QKf>W7jN zB>)5c{VM?s>`Y|*%!Gwh#*Ft9Wui5Bgy7v#A5|>TlBb10Sd3d=U(d|5*Px9AkVj;S z>#B?#5;w@uYR)0_*02l9Nuaj)t`8s;lx+Y{|$7qfuI2?M4484@}hi{?{1?-dDZ z=>qb}0MZ)=z4YM9fevm^K8$pCI%M<@xg0nIEyv};9pCafO7B|IwBc4!?yN)SDOB+D z(3ij)WBy5J`avBMvl7w6ioUD*ZwkhX7dsjx613sJqqc+VRmN*x?%al^&_$58lt9|@ z8u2t5cJI(&urh4j`x{Q)9+iZWoT4KJW@iukjE5lMWUK^NHNj2p9nIabijw;wy-U`> zF|^K~zrA$f4+&@w>XX#+VY=qlKu3cHdARV0PU@LqB~~=bxm1^-0k-s$d`7HNS|5es z#H0KvPJTZ(W{s5f&gHTmqx~LRL+c=T`DXgndZX&) z8080JT6`M59$l`$he;b9u%@uE=6Zf){rch%ufl~_|3A<;Zc=@p)R*Bkkz|G|AfbSK zD*-A4CQv^o{Hq=prh%~-4+&x?QORs|D|pO7c6K~XasDR-Pv1_T(@;Q%PK~;V=PxSK zX?Xh9og|&gjj03@3;c_PowR-~dwpSmLy%I#GN+-zeLb3q_ZWOzbNcp!pHri;JvXr- zh?o8=S&QPr#&x=)$cl3dzgEwU@rUq#Gs-dX9ECqzJAU3MHu%TB^ho|tq=W*t-PPZ_ zbaU+Nc~bmZmqMo?f1gwES;xyZVtWkCnp9#|PJ1_ktR0f{*MlFw|IBXK!&PLV-g$&L-V+qO& zwH9-x8TEZr@mmL@;LieA8lL7ee7d^KOslivkWJc zrlU$0ltatP0om1i@rBN~DX0mMYVg|?q{nmu{o_&kU~%^ICA~njVgOAfe?2xYG=eRg zgWi-jnakiIz)V!2$J@qFA4?RJ_&5Fw0|FeO{o3nk!^V}Hl0~eY2KH!S!#eJ<;1VMg ztq@-C7$*l3$=v=UbGX4HLnYFHc=d0MJ$CgC3CiPq4isI&6e2-xZTZz5eEAc2V@)EC z@kZ70<_$2ZhUKI5%(h6ePfW@;Uzsq?WXc_6U(qY(7-sPA#cYVvkM+WNmbfuTL%Mk) zQi3M-RdcJsYes~5fa9dMr|D)2v?5T6PNp~ZbZu=!*2P;=tT?4j3B+SB$B}0Z+hdRU zUVph_!(_F8Qi10A`EwlrZZl4ILk6s6eDNC!ZE`9yq-0AYF?;KWU$&1V+#M^YQEDc6 ztsRJdxF_bG@J7So(p)@F5N)TYha>mh?EZruu&GB&r=OsWMbar6xW4b-58<{Ya4%P< zb7MJJ*cuR$pQk~6aHT_q?R9#p!X?2apl&GX_|es-yrlny{Wk0BBXe7W1D^Kd- zhqGy}?p|KecDp*&)9viWy`DX@wziuZCI)!4#Zz)FOWhsM#_FrEJ>KiJh@qtrKG6Fx zj_dLcvJ#-$;Nh`4T)nAYkFnZtwy08-nqLSDNY~RjUw0=d$u*iDAv=GuZ}ae6)#f{; z+inV-HhEX>h9jRaU^Nx40@jnkP@#5XaYh25=Gt7&RkWA3CT*a%4QE`IE zP=xm7@TK1Eud(HXEsXKa1VLt9WZ%td34*&(pFY%KF5-iX@*?Qu$yhMI$+R2M_FvE5 zy&GSH{echkeaf8&Dg4^>dh%C?-QIlQm+Ic)Y?Z++dMEtvtd zH1uA~H*R&JR%~{sMC4$$yGbNHf8hiCs+^7{rUW=(TH4S`Q#^6N^FxuyHznFxU4r1X zk@EF*{`CNmO1O-;*}}}-Lq+nF;etn zwGEyRRk*Q8G<_xU!8bNYBB}6^Dxl@26%U;_L+h12W;)$81+;YAI8Da0N~ms?l^cV> z!ITD1ddX|&yPjN+V|)Up02IZu+hoOB2;Y2EDX zt}Ee@3fpVAEnJXg5P_wBl^1fQTV1GWOdv5v%ZZ_IDEN{ z?Tv-D?x7N}Sr1b#3zAxJxKK7H+U*W9C3q>uJk`P0Y#N;F?xTiyJbF4VxODbwV`{(V z&}$_|$nC=KDo`j4P2Vmk(nzjcju34efk_0H`ZSkCmzpqPu_4uQwOIJQ5RqxZ)N%g4 zncrI7OF|$ebxGMRyB~Yx!simB@wu#5$sEw9W#E{yDjVy)2S{vIK7pO&pUPd=x10Ym zil8aemLh2dABd(O^)2~Vl!)}^*Wt{PeJHp208_mS_V#OpW?q+vb!5xz#dBKl$;-o2 z#7qhCcViZy{fUpkYJUg}wUDX337OTSGM=h|v@MujQh_Qwq(-yzzfU1$+K8!E*mx6I z?yVkM*cdc|X1a@dYc&s>P4jffhq6|s8d&iD8FTX@j#92Hl2+HFr7(wKmFFl3 zz6`48pls{a!S-fUyVvZ-+8T|(GPg-HZ8%^UaJVTXqDQ9p)(|h5an=}@>kFx`8wR9o zZuOcj8VE9fA5h^<6BW3|0A-&7vLo1r6x{@U_txUtnX8{_(U?seMK?rgK9 zBsl|1%(~%Pk`Rxh?*~yaSS%B7`5;4u0g?!XjCBBC($FxhfWl=43-u)`_P{)+x#Z+}+)w7zGNYAOEaA zZ8WuN1his~x%AMwY|o#kjpNO|M!3ks?vYy%!~W|Zi@hX;Pr~^Wp0RtEy3+|tv`sit z(5YPU9ET-4&S4Z^(;9y?Op$jKv&hufZs^xX(G<);%s=sYmI~f~o zPwOQ*gg2i^-+*fHZg$s1KqthwV2!LK7o=06)W|zxI=4>4%xqoj>5GjQ{8YfNW*88< z6rVh6+m7_B5!c*&tD*ypl|6PlmmJ zzU0k{V22*v6TAAkVZwIJZ^7KJ&D(sm;)e=HY*pSSX{A4ZPJ$DKjnRR!WkA@t`!tv` z_BJ*%Vq-L|q(Oo=_v7rAq44-4w(Urn5tHo}QjyC-?(7yr#)-N|kJBK#VMIJ(G_FptppU+^VRoVFCpyo69PkTtnU^G`N@A{i zw!R{WMc z*wreMold1^l%iBs<6#?W>?2D{w|U~Tkgu*^ zA5BZclmKkZ`-9T7Pxj5%0}?vwI%q!}JYqgbQ<6sE*=9;z;{oZiH81~4$@Qw@)okMsgp62f+Ar4shibIQYIGT_<;?S{0$*t&5bWr`7U24 zT?ZK;j4ougC_<16XngezO$ zE!#zeHJ87Y5DHSaq{ePS5=KJF14UB4O4Ub__Pjn0sz#R0>cz#SI9BLANT5hN%0FouRMf4Z!k*&) zbCfcdlcI2|m!jmmIgZ0GUuI{|r`7%JSEp%vTuq9IdsXb6^;z-2`f8)TDXDU*6C^U~ zLZpBuv5Yag@%(9cD8|)4ThfA3`xGyRf-a^&#^Q+FH0-LgZ~y-KrluxYO@1w>fSIvS z(o{=igQfXO;q=;cMDE~W9V4g8k7SDgU-iJrSvuchAx|JIWpxK^gai;v^!;bbNh_P~ zBU$$E{MK48RFN~fB}tTMUK_jKUQ5WzbqTdoV~5oqE(D*g4H4;7#}rO?QJNmuq|{UZ zU`8FpQ(>F0&67F9DC5@93csVYU8CLUrsJl1_rpRsa%UN#9u?D%`IQa0dn=3%PtKmF zejTxl?1|cDZtl8W@mSQ3T5RQbE*C+rrovon#j$YH^(iL z_!HuvPd7H&d~gd?YG7WTUQXQ_hkalwonvU7=BW!W4Myt_U|M@hL&x?Qip2IYq3bI@ zDO^XfG5PJBo)X5AL)?Ur5a|+TpJFObLtX3fNIQhv%)-r`Nl64eF+40HLVGglv?#4- zG$SsKLLIHz;U2z#hpbgs+v)B3SUBFQPaS3x2p+QVQ?2&w(Q9Pef;ByAhyL`tTE*qH zPlLOpYW;IifP7PPT-@Q5xRBXPqJykYXYM+M1Nu~$&a_`nuKQ4jW{K1@i(6cM=4t}5 z&Kg{jJf*t{6V1K-+iqU_a0TDKYC^`Zwsdp|)p`D+QaI`|WgF;Hc6vekj_aR%b<;fT zZ_e1ht=d5%!VC6g6E821uk~5xZMyR==2k2{$8S~PLxY1~y?W(6n-&W|U!L=FHdb3z z{-LS>m3Gme9Ft1=`hwv4i!ytmvABqHe6DT8bz4+}M9#w>@-pk;b;>bp`O)3qZ|uL8 zWf|TG>Z(Y;0ER}2oDMIW%gh>oW$GNF=ReLt3Waf$(5~+8?k90)qr-6Qq{p?v0eaee z)WEv_NA-=xpD)}mSA0i&7VHR1jekoCaqt`wz)t#r29xpiA(zP6*;xli$I$eYKvn1R z*$;Mlp<*16^!Exzt7HPc0&}^SVT?lYHhVa5$8~iEubH+Ym$Gq%+DG5COi-41GjKpJ z5e^v<>^Xfu4#9wVs zgGN7o9JK|+;)!*Ft2Dk{b51gY0-E$y;r+$m>FO#VP9*Pj)B%wqzkl zMP5baNXf`U)5>38_D%;9zY5YGsIS1Sa-csgL0K+d7plBypL#3bI7~z*VnPw{Ni(-* zQ5jj;mt_!TsRy>d#k9NA3@jB%2L{E(EgXG|$I~SaL?lbf7oKr1nCz9B)5ajfq00LkDoU+1K zZf$$LLY^d}sK{-(@y#fHc@+5p=2CfrxF3qTGhMOfC1v`^2myjfea(n*y5jeu%@MLJ zx9=q?yS_U?)Bvrgpn(|f{fo>DH5Kd~*i?(nsX;h_2|Z4)v8Qxdi+`2k^SsI?#b_;dyn<4OILn?OxUHOLJd= z&Nki$Z};)=`Ax1|9Xg}R7~VU3dn;@Hdc-F0cT`4QozKY3 z^+I7f3hLDF&>)))2W~AYm~NAuot&IVtKE8yx=Qef{z{6jBJvVg#?0bkn^Bv79%qPWp$_dTeGE(jt+Pc42)>4AM6gCQ*)Q& zAAN_6SRl`q*q}wXZEMK8AqD3_{G)QqB{vS>dx51BwISHp}6ekm8 z>=U@61j_}krV7@l&}LH_^5~m+jjtq4;}v5c1N|7@)T5vHeF`|Q@b1bRMON_A?)Qa1 zCI)(QObIoQ7};OYDPHS^NM0dr&gU6z4}`Ag@-A!FT`( z&Y*SF&s^9FhT(|}%3{SoAwyg2&ldrjECBt8eCq@HK|se5eq*!}`5WuM(goc44RkFauV+W`8$!Lo6!4-fq{R)g!?EArDj-@|X#H>_t}yE`I1h#{ z27&0ztK{73NlkeDIvDhd8*P^%H=T$C2cDk2-PN~zkiJy8(hlaCy;+Fdyh#xCseSnn zy}g|c{DuAeyK&gaiAw~zaN}=3A1rcAEh+I*5d<${Ls&kLagh#5pwo7Zj#ei|?hFl% z0PglXb0L>DiSOtf$gc(3f48>p%tpnjEm`a2e>GeFhoA~~lVh6s{qJigv7zzLPAPJ6vp066_rgKz3G8MTTSs;55I>4t5%uUZsG&;`lw3L;pTM5=?R>?W|!d z2x7MP?=K8v02Kls+ozDR&F`n)0#*?9dnbF5QFnJoZ&8#K6b#lpku#TpqVhi|2;j&+ zCNc#47-YOVfxH?H}2HwB$bx`Hug|ofFPO*+?t5+ES^AqVsTRm>zfo9nwk$ zyNuuzo5qOaoUAPr59Hj55HL)jp7%`cY-ixVTiO*}U7#d_kL^{{Lh-2Q|F4C@|Jg+U zPc0Pw&nEhRYN7CdHqrl63x)r)iT>YO=-25u!d+?&-(} zx=1u|M&SKb@RF4QF~cZBA8GvsMb;zi?4XPfzj_DH9cs>e(v-VwOB#+e5yQnrC@Zh%=ge9%qcrsAXZjU-USLadS2 b9?o--Jk@9YnRfou#vd21p3gmN_2>Tw5~an6 delta 17510 zcma*Pc|26@|37|)q^OWWwo#JGmSkVX-KJ8hWXm!_i0p(0XR2F~wcL@i6iN2%`%+<) zE!ho5#=bVT8H}0Vb-3^E=lyr|@KK+dM7^u9ENRA_Zbw~_%kt~08FBWp&^~#bx^0OtUxY5Cf*LL0% zyk>AW{VoZk?eOuo(Z#;6>srgJ^g9LU&VVAP!3R{Te*#tJ=JA)8Amrzw!`+o_$RGGM zp8P*d@a!*G>2O!q%ucBDN_be^%#vq*DyqhPA4gm6eW!gKfwrw+bPEr3F!?H4b#DZ- z9TwE7Vs6;#vEdhgbawNj*MG)XeO>NW#vO+sZk{6OjBOsGfH$^ zIR!yO!YJ;O4t`9AtsV-`>A6sIA?}q=es4RN2^_=?9V|co(zX@CbKXol+td{2jNBr2 zsGpTP&+#fWvqnqFT}vf(zyAhZYmU_<4AbC&jckk?4?BdP0XHWf_h7Mnm#lcpkpImo zAt?Rsv1ZkjpG*j9;5Nk{%&@g1Ek*<$xx$LS^9mQq2cf|C$ZQ6^34A-b#o&AnkMOoR zG6$snWCuRdph|-UERdoYbo#u(*gaGcyMWl&d#LS@*w<~^4e6y)(73Z4tC;%#`|4w< z9%{STSF>c)-$Q(*pf?J;p%(0&`;+nz^y4Utn9X1N@zAO~Q+9XwF9@=E3hgjal!W+z zfMVtF*Z}J%Rb(Xsk=GYNtpB{enaCmyvDkF?TNe;jASm)6cu;2r^bvd)EmH%Y^9tH= zVDz9Eq&h6P8-flTfleDXw^UIRv!HDaT>Ngx0suk3YeJ|6>$#}DWef!6orShRCB}=Q zEI~(2FxXv&!=&g6AuLX6WXEri?IM5DEc9P3rti@9IW}rRW8(Z2zAo&vrNsESL_fZ ztquK|`MR7<06%lfmF+DVtW7VnUCmfjPn<90dOH)jRSMjC+!PN)e`j65vIEjS50>}( zq9Mc*Y5uSCf}zqewLK7Iau6(EFUzh-AvSOq)NlgPkvTrg4KA^-eErByK#{u^*=y z-*?9j?Q9d&4(QaErV*P8Mzc#je63X2C4gE!&Y%l+gyVpuW01w&ec#Xi=#%a2)}+T=^|8f+uQ8S%_U34=xSIJcw$`P0nhI)R^1xjc zu65hR$~D*oAbb3ze(G>x^;(9&@fh;&#a218TvL5hQ*2pl$P6z8A50!20S#P)hQ3U| zkam{vK&ASV#?hW)Yn{tiE}z1wjYJ~)>dpBHY^e#S?9c3ym#mQMuOkEkxzoi@{K@xG zl_DJV1v$hhJ8UvJ)oP^&#!`%8z0SQT26}VdS(Gc%C7cY^tft>Q?nYZ3w=OXYH$n%f z*j|lKSF4KZmDvr~wZTlY%cA+CF{_A`sbYmS3wMfry~S6?Zb?o>K_l%z)Mu4k8r)wW zKX&u;DOnpjeU|cixlQp0TBO@4=(J-a&H~3ZE?#j4i2j2KE!1&nLvNpbpSf4Dy3{Uj zCQD$%t6Sf9NS~rbD~enfoCwJ#t|xh!kAHbQCMyiPX?;;gRPB2|SmQ`@POWV{JC&gm zq_nm+pHarTwU6rwu&+5#`p*j#}hvad6J6`6x?4CO~gZ6z7lCL<5WHI!&-g zaYH_YnWoFaehc3OM1@0HBQ*J5#>S?TO_l#jI`xA;g;;dfQID`dYT(f319}0UZ#Gp; zVxmSuc%30*%GJ=&+TWGbdMWAvza+^gd2Oicv}Ztx@+IP0vQJ%KiqX1E?beNktHXbr z+5D^6xXt%`9d#G>n@W?YCKfu)J^NY2I69Cgam%m}+ktDvLKA*}Zf?rro(_KZWp?}% z^5qb+|Gw-FY}~*tlw7iA6NBF0nW_!; zS$_A_3Mh`aTvf>kZKbjMY_~SnbMVtKj=HYxO(!(A{do>iw#D%FHMI798P8DQ=*6f} zX(uG~=M(Vz@zR$Or;*QQ418m(iDW+%X%t0>APnZfnm}kD$JPW10)Nge{uHN;Hs6i< zqXmVhET4q@U>bwHJ)j6rzhXg@-w9PTz8!K;iF$Te9KPeVc=h5w?Low_n>DW~Qx5Hg zbd6m(UBB9)ATxZsPI#@ZDxbak7NeGJjt=Y!^}qh6n5{&$T?~h~ zDkBHTJ^9m*lAQ$R3 z4{%5w6*4uP{-xW%O)q;>*iq1KuP8aR82sYtyp1zU!u#TuI`WF&MI{Pzj z1k)KP<73D3ua=$;ua&0iKNE6vuY;`qXnNKFQx)D9m^_C50~*QI6r>nO_JkVOrPxRRl7p0 zwCnWIRCv=DWG--XGr|2r|z8KV7HYW7}B& zK*Ux56^d+BQsADSAh6oJ!OcN6zUoohN5x?8_r7$aO`A?)V?{i9jqj(??NIcc`?g2+ zXsy~H6MIMy4f)=58K}3=CB!lRbTUmUOilhHzbUQsdI#G@#J;wheApcca}KtkAj40* z;^Ojt^OcnE{?xi}%7Y)ZN(#B-(Q{#lud~SQa;WAU_59Nttj0MQ%x5Hmd4~+eK*&W@2Ob3@A(!9f-e{QW|HsmSB-caPL?wmQc-Evg$ ze|L;YLrHys9(q=YBj@W?+8(JM_$7|WP>p8&#Pa2G)KPI^LETi1>%42|kl!u>Hjw}d zLfRG;g?4&C1*2TW1#L^*n@ly+pao!O?q5#Q#z35;{EQe3t;`YiZ%xE97|U+6?8@sT z_E*KDN0w!3#KpxazrS)3n#vRUO9D35N)}txlas&l3O?*h1Gg5#>&2AEX!?*Q9I&z6 zO{l5CFMc`_8&xK95H@=^#+Z&=ncOk{2UKyPc<_N^MQ%rXh`ViLv(y8VyWtOSoS&U}x~Ca8s~kX9 z9&W@k+<9%;-cP+D(QWB7t&EvRIhtz|$+`aPE8AP`M}b(d+ejV%R{Vc(^n+ePrdrjH zPEjNr0&ia6WYPK7B->RA1gS-F$l|^7ppW<-VU-^P~n2Zh1`s$z{yJ)voN&MpV*^-4Oh1MPT-6wqMJ~JC@-N@^TS7uDy{V3^C zJLLDk4XTSpkg}biO$20orp`)U$+_RyYv+TM8^K?nauG&GY|d6xX5|+bEB6sIFoS-6 zej4?IUUGp62?-N(*#Xsmrlq9`h=^zwv)xTw6#-d}EiWVQg%sx?>owH2hEvpjl-R+S zmn6=6&pvzSuDXI*xX=`*s_*5et0#Y{n0jt93eB?vHhIy`0~EXKLauSBI0zI|of-Th z3i9$i-h;k&p`oE?&(`)8I$Dpn#Je@h6yMzF^(Ogy`^|YIs#9CN2fU2@R`L_G*1Ye} z_U$JYyI}a4b0y^Po?L64&Q){wZxZ8U=RFXtxuH6 z1_w=)+&}Zz_O)bk-|}_)!oHlzF&SaE(_e_&Y6N>r+{k&uBwjrY9-gpZ*rjsW@T{~P z=j9%6?=@g&_*ON zrEw8DtUeqkwD&ZtlkR`nt?lt|F)e=nS;(<}i)lrDa`Tyx4G)WD*r*~yMiC=;@10Cd z02iwbv7fw@so)F=+O2h@`OM}pjw5IsgbUqp7Z|Jemt@iMx$&?!NhxOpFTCV@5jRR& z5ZufB_%e{|Cx@7JQ6*Ky-0hnPetVQGuZV33?0vX;ENjS94S->=TQ`pnqYJG$PiQj= znpW*V)c+XujY9ER79s@!#SWhxtQ?^YzjRD4$ik>$3gkIvvv$8ac!lhTcu_@n+V5Wi z2Mz@9phT$gfb7j_@OIy-5~O%DD(=)__^uWRm9HRU@u;XMo`a0*LN5d7P)K4+jFVA* z`TaD(9a6#kU(w4W=J9h4tPnuo#%G4niupAsXCILUpkAfuKQ;vkFHcrlvT>z>h@BykGA<)frHf0znsAG?&DyiM7*ZFKZ4(;@)xUX zLR9r0G;E){6!NN?wP$t5JU8U{9ykUn#l_FBVru$S%OjNQ+)H6756S&xYyN@!vN7Zu za)izu+YeK;uH7k{(56VHtq%ciFZdS|Su&voCDf<$eMDkLRl+jOn>yf4=;<-;ls^@T zq|vPa(p`yVgH+wDY!1Uu<|~ygO6RLoR_ld2*^Bv-7Qa?r@9RR>Np;Y zwZP3B)Wn>uF%ZPl-MF-&=o9}D@)+6n#Js85&Vb^3!O;et{PEgnRnWJuvslIl!)8Hj zi7fZPR@XQ8vQ!N54xo&K>sMw&egOvtYtby@wA|lM^_F$@^qlg*6oJfm@yIuJ%JxZMiYn@LvG+ ztrzChb?hbOaKvX_FZ0y}-XY1~(fhIOg`ZC3){Gim6b{-J0yNoT!=-!j_RoDB_+AAP2|Fns>7KTH%@RsJj zc1b-$5$uFR1OiKdJLyx(arhx^a(7G)^4xqKVo$N9>~}MmP+sd!<(g+FqLxn_JkaoL z?4X$RX(;nKh2lnu=%b|Yh&_#SWqltNd|2XkEerqQHzzqyUI5pINtSF?h_}H4!JxF6Qy?dBVyI!W@z$AUg=OsB6yZvF*;rRA#OK zQ0B7o@=awfcI?gu@i9y7$yhF{fEc@Q2Fl%v`;572=~_Gu2V`Te`aodF{e%tipO zKZP&wF`w00UA}r%mK=568_+>Yc7jkGJHY|p6g43&<{0%&UKwS>6MoO@MKR5rAmUy7 zE!|`L94+cc_UF&UMoQ8AJofm-oVLIrou(!73Hsc-Fw%;mjV(e1d^}wF%!0z z4vXTE{eP@cUoE13zm^?C`+Ubw4YK@W@oGuD8|$erQ6iFuV8I3!gaSYm5nH(0=Ce45 zvIlA~XN=l$4bIVAxX`bxBCrYiyZ;09tJ_!jQnP>(BF-A@@Bu(uxf6COYm-F)gJY}Y zY(}g550XUJT9UollJf+Jf{r#04wvZ3@cl8ryB$o(y#@$Xrb61^DdVV~~0e;Dzx;>pR$;{o!(SxAFrU&uK*ZM?@-{%Tk_;3-IG%vvkcck;7L;6#b@ z8PDBII)I(IZtun>a_9?(HlUCl&(f1W0M%?r1bpfJ`rWRBwsy9|LvWN{J;k}n-4RZE0+TRqCSsl(M^yG>%=TF)LM4A+s;iHl{fl41(OFjk4kARYM*&U-De5q zxi~|f((E4{U|aW-do)&zcf~X!`L^uQn@u=~_qXW&R3v@Od>$sGJf`-q(5C^clkg__ z7#KQBj4YblNa4{Ego4EGamVH$T^GscQGpgJyU-;`O&3ioFyB?s+ z&crLclQ7gfeyj!xfnWb`F0zHa3Qegr5H*kcR&#t&((b0YV>?fqgK$-}^YL)6X zQ@q_qe!6%)3bmf^Cb1oba*XmhatOtm|K^AZtI&;>2XtbgqfuyhxS_}yR$l;G=9);) zBq0`_s2kjeY_xCiJ>ZVi-wW(EXv=PKC$Bwe+8~_=SE&w5Im(KHQ*k4EPGAN-7A z#s*%^#F7$3^ydNgc}|o}3KvlyM)InYS|VXXVE0z-I8VG!J*h6lp7`K6!Xj;$lAgie z|C6d=k?KADhA`$|ZF6ofrr)Xfq2HVMgz)E*2?#3N6Cl4%)Xjc-cXsw!wv&IGZ)3Fm ztSmq|kcV^$TMvi!wwl+muU{kX0xO7GAh2j(_!{+HLJa0|W_|7S?rS9R1viUjGuZEh z5T#)>zf;S8+wm8W>WOjV*#PxOv_e!=E-MSLN?!cX+y*QD;CG6- zZ#v69@}e|7XJHX^x(Dy$p?;TT%ktq%Y0qfo7WR zZwU7#)|=hl-XH=hK&IhygCb`}-7CsA8SR@Qrbi3UO?Js3WW$OUf9pf~(S0%;E;=>d z{*_d2ZeV7wK?-D@O(xaWo)y;eE17Cdc{t{Ta&9>Vsc?ZJ*I3kN!9y@gu;z?52r0Jd z1FVO)(wfk3-@c_|-qgp!Ts31&toX&Z%s-C&{~>U6@oLBS4d#EWb;f|#m;ICA45DrU zD-|-uzstRfR_9w6^*aG9olN`fy8Iaq3>sFPP6n)(S~ih8uq(R$^4_;RW9EPDgLt6n z<1Q4C;*^|>1hf(`B*{mo$p*G|Yr}WpgMlX{&9P2+8xK zpXDfYS|$#O2cJI+Q~|WSJoe_lp=I{W%O1s%rAIGrD%f@97IPE`1jP`0a|P-KQbA&4QQSI5lKn$ z)AVGeF_E`y+W46_-kJCFc6SQnR!0%*ti-P0x*Qf}AYwXkFYITtDN=TrH7yr9bp{`o zC-smGECAw37Fpf`V%ux62(8xr#5aoTIMD08C#Zkf%h?HniY_fGIfTlZs}W;0fE1)FWHkAjZnu$%^8BHbn%}1I6Sh?tOX#;+)gCE zS*Iy$X<00L3EH=y`dGB_!mgQ5sIN2vG*$vOrjacNwE$_riGn=eDT>6+32(d55hoYP z_lg^M-pe=~uCqH|lsQ+mJ||#0JScUlg^q*P40lHQ&lR(R8ST+rzlWq43?0#6z)JzO zo;-Gba;54hz%Wiimv+CF&>kKO@L#e#`FEW1ZjIRW$!QmYm2KJ7{~J3JbnHLa5w5o% zK>m&TJ5}<1YR3t}FQHT^I3tQCDh5Mm>&{&SX8YZgK0P^^yIVzS6X^I79M~dH#ru)N z5PkF+9mJ7q8!jw={&xpoppuIESgy*MAp;!-(d`Y0Zsl`jQgfx_q9_ok*=oiv14nXV zo)6zrbP=foglbUEBEIl9k!0Z>f^&3%jW$)p6x5Uu)_$AVp`;Vkr1$&r0JQP@hQf&( zGj`+z+?>f&a+}zk5L+aq+@SjeU928CIGWs>#W$1Z@CDN zC4iNN8r!ysp;`*R#gfmQkw2v(fVi%f3J>S9SEqFxJqHU^fs;s@{prjvh03dS+A=FL znfwpo&@_tP6`TL?9hkabz+{zP(=%}dn>(WJadj9nE3F6Q88WWb- zmp$+39iW!*GRIG1kFcl;w@!qpxo3Yv!v#OaVq!#4P=x=CH9~!!zw%sSGhqCx_7L69 ze|v6?M-O!b1Q`&7UxH=<8R*_K41E||mw=X|)P4=}VXU(cug;@`f`VL_&93x$=A8a= zf?(u1kNM)Lp8IcL>O5m0uSI;&Z?T#76+;JitRFPQt;_^-`3 zSL+|$mz1G<*5OGzA-t}N9St`9vx=668IqC$PY*0VB79ou?7PAg`KUjS%Z|i-_Z6tH z9^|O0y?Uuc4Dc$R-rh$3n$r~6r90bPUaf3tzmlL0fCjqIn_v1ESigeyxUM)(dIY^e z4_l7i73mx3OLe?5ZL@9!FB_3Lv9!~|s_r(u@OXP7!*hvB?RGP)FuikMY0z(N5~2K- zk>YM}Ncq1fFG8nujT7LdMdf-XAj(!%cdd};69W` zt9dD8ZBP51SC3tOI7s{UuyIQLn3(d7^~%110TJd*;zm9-&hBRW&!2ml!&rKVTI;i* zpr~8>MBojUUxInRB-v#{GPHgOVMK2Y9%386{ae<9Kl1SXt6u_htEyWT_A*;qBJRCf zPiaf@^#GkUv`%c5e=ivxZ7*&vCvE@qsA;1c^Lc%iPKN0b)?c6OZWLUf)PvQstJbE} z0C)a6J~o&&0wbzN2R%4cW>ae|wR$Nfos#1PpE+j8{3?}1g*Uz#QytOIK#?&Bwz>80 zS`c=1$*ECvUSrqb9p_0NXs6T`E-;n`X~@V)tpi?moUXRg-uvHXwA9e8y&gys8_n75 zm$4iFdl=;i7-?}gLaA{*E*;a_1|QC1k8%S&7nxDOb*aylhyy;oBvkMGnI4w71K@!Z z=?W)|98B@8w_1*CXD}TcLCR%;8+lIaa-pBs`0dSfrVlY`nDqMUBAJY&^(b`El|<%+ z%#G3MBr@xCEyn$BX$BPk^fRux`bg}U>dtWj$0o-^1Z=n8@5eCOtUfgv0H1emTJ1M= zvsgSk4+I762m3laYk;p_FRvD=X0BIP4^0~~J6n3H{E>Jw2z0nzSHmym+Pz><_tQbL zb`nYaN#w5a+pefF`ko8RNr#aa2{t;?Gn6o|LF>w869;6aw9htSdat^2{x)HbB+{dd z;p%{mM>!@N-fkcC62p#UZl7F$oXj?~uT7^NpwdGmSa zT6-?Db}tjyWl7v;aHMsKnRK{OxxU70gF!`Ett>6!n7$5blcZGU2)vd!%*7nh8(g%L zk&&Sgs~4m$!gCK)-F{nEtTc#k`qiblMZ7OS;7h*-Cn|hB3aHf{396dY-aOyjMYoUJ z&4r(&LWd6}UCZTLO1d{trU;5L+;5beo&lKKUsv6kVMO3!!mUh&DrSnD%*O58fkZ_u zQ6@1?QkpTB5>wwiFmUBHkM?5R>)2q@0l{a%v9TWTN}HnNaItLZ``~<*8>1S#Wcv%5 zG&uYX16xg;x%>OHW2H8DIWs8LOwe1s`_r)$cf zJ@?MyWC%kQPHioyZ@6IBWOz^Rk+)P~Q9Y*r(?Q1Yk9R>nxZ*bE0BfDY*oE#jfvL*1 zB;^-5S_(X9zr_^$j3#MKfs;*O4^$efKo6SZdHUm}{lGEM9SXSJeuNtL z?W3-o>H&1`{ZqFbJX4A2styqn^YiOI`iTn-B=cfew#s+OUN|-(Jn>es?3$X|Yt59y z^tbbCH0A((@|DxwtZ%LBv^JokqBUO*^G#=Y=Hj9isTiYN=%)9s)`0^8a zv$GkmHQ7!Akp0{$_Z5-my_|{>F@@Js$>c=ZSz$HLqg@3>^~|*vIYUb=$++ImE+rwN zv$|nBjs0eEcBN)lVX-n!@S;k4AJ3=|{4VOZnkt-Sp(rvt>+H@l(%xn;ZJpPw$v_TlP(W+v>{^aD>zXqC;{oBf2<4jpo?qWBaP z7+O&y9tbWlQuT^!A3lx`spt}v&m-h*`Y{t7E6&4dB$vise;z(H$B;LGODBB3oQ)F zZ!Kk%GuAvjyMysESucGkPc_{Z{=$aTtm0-^G5)fQ_~nK|CctF}d0fj<6a&Uab*yJ6 z$zHG=B$n9!{(b#|AT#?Vs#YGIgWAjA!BU-L?!DZE4k>QikU9`qG0S9eOZ}E#PB6Hl6S^9ns_Bb$Asg@AH zECQpTNIek2Zyw(do~dE((dmxUihvaE$mH*sNNq_RagzKzq&UaG;hXu{-lB*ij)KMxqP*%Qu7L( z)i{Cbq`5ynzSD?UNwL-OW7hR)ZF`?rdnGTs%>59@+94`=`r5N0pWhBksvn_KQgB6?W1qvHb(Qsd`4tHZyfsKyLPzqGP4ro{-0h%oXOd286Ubot!$ zFjsSE@1@!wQW;YVg9-{V@)gBvtrjGF>K@irua7v7rUKc3he_9B!-&{*XY;{w6@~r9 zRV$vI^6cG9-J_K#JROiz?<*@Sr>0HzM8HVBITXnsS+7Y&UBL*zrCeg4K0QyEdN}){ z*dk(1!f?_&l&fm>MrXH9m)S7TyNah!59AvJd;(D9EUb|xB#O(Z(%bN#&RR+5Vx63c z3;Vg3>nO@F`?+GwP5(+J?O|CJGdlON0eZW8lC@W;SJw*a5~N+V6Yq6|fokgRRn=c! zwstYV8u;gafbDKsStYG)u*JL<|Kxtf)6>Y`zp>|YSrtrZvdP4_6->QK8QTG6N&_1m zm0>I|mE72M>b$Axa`RogBXTp{?ZHt_@|u-2{l^gz8`MuF9k_yGQ`8RWdwE%F$43pK zBxNVYvo(FC`|S9t*(X0xlv_8(v(u*L-9BWIAB{l}{61|Z!szg!1yE`)o6as7Pr&uF zbK8eXIA1OF`I6!6kS-y*Vd!G^(_4)rkXrR^f=pWPd@D_j?TG*+&nKi zHJ-ivphs|_H#0>seV$G?Ip#MGq@?M)eSJ6{y&>9Jw1X9r0(}YW|DLy@I^f!yFAW~> z@TB|Hz`7Jc-AJ)ZTRdLn`o>!Onnc20zg#sn+oX()2R3F7;Wgh2=WLeO=S9qhkA3EM zOe#5Ef5|Z;+{7Uqs`-8hg1aJV?4LArVtg71Ys;NR-Da7)r_-7AVBRcw)ls9vpFX7| zEUd5fWqJ8CySpuJEiZdXMx5{NNGk(9I}Q9KX9pWUKQmyjAFK)KE^X%R3L=gVriwX! z|IF&F7C@U@1=M^mx(Nx-4hp+?x}*`;nQ!OM7+|pu0pRuGP#4@#j!rnpK;2Y!OHw={ znL)Ci?{lo5UKmVii7lD&m&^!Py`Q;^jL}j@P7okx(`i z5r$ zbn7bb$t=ou_=yy78ZU!8f8wj3XsedCv>7q>O^_f>X9MM|w4nONSU8hrX zr81SgVj3=^I;Vry5T|~XfS5x>4p`ZrDKms)9V|`^{^;yS)!QX{7OYwS=fj1 zh{O(Eh}m)!pm8PQQc7Nv-nMH(>s)_XF(0-_5VEk!`(b$fUCD4B@AaTjbcWh91H+Erl}lZ(!bZ{7 zN1kO2x4Nu)(u++4?tY^geQc_4g_&|mg*VEHM<8hOV-@vTNc3jG0SYq+vb&!ZG8pD^ z-cDy(E-OAhKNswzTeAUg?z+x^Jna5S;lqbTP_nudB;YsJy@_3OtvsA}s^g4<|? z)f*AHzeb*yRRN5%o%F!r0-d$QIIw5KT`yF0GRUb|q;g`mGNf0b;CKS=_LZh4;~iWb zSAkp5S~9MfhbO88Dk%E=m6hJ|#1+OB`bJC@PhD(U8Ql;1c`fbc%o16cT8uYL6V=JwZ?kC8iniQo5qN_5auX_ zsdtaKuB^CG>Zm6g##~j0`7qSS?6nvu{dM+Dco^YEG$*1wKOOTv z1>QtbxpMerJ%V12DS!1~clXROl$Vl1``%WqV%aAaCi}b1)kR~RHTTQ#`=Ay_zI6eS zy?0gTegCQ@I5N_7IkdH@)-z?VQ{d^Pf}-8SgN4BmA&-BRcBgdf1^xcjknBKlNo!?Pv^E6#mT)|CpJKLgy)5r6VtVK$BtyqyK#QbaweL6=qV!4<)6fNLW0WOetBL%6Ow8 z_4ZvoDTwyjvbIW6d`|$zYNlq`8aC}aq+~AC=6$BN5X0{_+IqI2Y|KE<+S;1ZnG>KW zikr#p0hLQSjeto|9!t;2erD=iDxpOQ)~l6c49lI@)6?U%>YB|ba%f=UF@?Qzfmc-;o9Ik z%t|EVmSZl+5$5SF@O-Uex0ycSz-c9s1Qp(Lo%-RPZ{Ji@Re7^O5&n2l{d$*oouX-3 za&q%C6R3p*D$o7*iB6O+oN{sN`CKsVD+TmPp3ODBH{4{eg!+9bKFk&rdcuWOUl3{h zJZ|44Vrl`IImR+nZp4hgvtLZx`jg#4R_^X6^--?x zI$=8#wjDo&an!jmJ^v|vq!+bo26TW;XHocJ3cuUxXiWEv9Sf9scz$qAJtnILE{VMm zb`w`{Uv!uh?>!j%EtPe^qg8XW7nHe%WjfCE=BIvEU@`7R6p1#WgSpiX_Vcyf%7M( z^Fdcx4xkVJtPS&gkA)ODga+R&BbRWPUT zuR#9c2*yN&;3@IE^IQE=4jBS(-t|pY=V!8Pvk#q|oTPQ6Y8imOlP-itp3+aewKSy& zLG#O?lc|osnpSrwY-5i2gEsOt|<+HQ$gPp+)=S4HO> zWGv}1PXRT^%gi-Iv2=7d%2f+vXqp*sr7)Rh~jm0K~(s0-g(&c zv92>OjVulTb_a$Z%q1$j3<@jvyPg4z@{^|hVqRarex*F*@_XCc9`x(iuaeLV&OH!tvSM5rv@UYmKQ4**g7)?La?cY3$k-%S%hO21e$c9ja#j%bjfl1MonH zDwu$7C78fyTFvC%&BorG)Kt5)h;20-?K6@D<#n)CuhV!;;qkovDpx@H?(a53Lu2Sf zt0ag8AF7xH3}Z_N@=v*MDoiTSOQdNlWsJS%`%*|XEhN{WGaaZG=+P#}1Wd-fUKj*3 zggYj-BmfY)9>nAuKik`R6IYw;z-8oD=2dpc@V)Jpt`}^UTTzioq}6y*uvKo)52`d@ z2q0xQh`asuAiT8w*rxtnMOu|M>tN8uva#2W!;6VbzcZvoqyl2*(X6;R*w%3c42JKq zZH@*3Z=8`2mdJszieZksO=lG=jZ`{UE_cx?fm=oh6YXff)kduI8o0~C=T{(YA*Q;2 z=C14WzSo)$JAz>7{l}~<84wd0hqTt(BI<$f85m5huEsDH`r?uxNUGI^G3HVq z5wMg@%g3ze)0SbNjy-vIblb<=e-C{I1SbVkzc~i^N6AUF`Jn|gvn3!}SGM%9 z1-!AGjw!$X}k7nzi8UT)>-Spf7iD5!+K(1;k^RX<7ywqhcc zl|Q78hWJ}xgWkh=jj|cd+fWdm$_)vLalsUq^_AJ%$|_J}XIB?r;(Gu1a3H@$5NR!o zl)k3!bTGpxCmi|kjNiiNpcb{XwR9W}4j?_xpZ&Xw3sOOMn|WNJufxoF@?80RIO57E zG;#z1nN(|n=3>1C&~@YhKrN!Bv=r=GiiA-sI3Qej5G3T+2ZyoX_yCArcl=I5J~`lk z0#)OnGdQnsUPp)A6srJ0ArByQ9)Z`M3Wkg&eL;tJznjjk-Mc$S)54)lje&sym%I&HilUPZN;HgA)%;{&e;7XFT8wyeBY>JU4Q^ z8KF8jI9SDx=GvLa2`*?ez=az}_wo75{A+8C5ONQFlWB&L4p8tBx)1^x>j2R@4ds!O z+X!2U*m;(DxzYn1E@rU}8Pvdo`m|?3fO&te{{Zk!jjKM$w-w*%(^;Q1l$$un-H$?=Er04$xx&>xjv}NPq&qzhEa!4!r z*6M)f$A4`a2LqrHK=J%fJ`!A7(AnyN^={p~8!QmQhJgz|F8@PqElDpwhmf^xIDq~$#y|@fk>=pdhe?B}{EL7G&}e=pGNeHm&;a%I^(`BA zTLUveJ>>G%O6Y=>*t<1K5R7{8;DI}u3F11OUIk7~Z*A1ifdTX7G@0=Tae1C2W30dWWk|7&%Jpo+*r}efzOelu(4SWkV@czAj zGd($tM*hP;}ZAm|o31e`Va$@>bbdpui$ z9s2kCKpABnbRq5+N5)NprLZB_hk@|S%ggHqjy0rX_`&xuqKA&}fw`>R+Jc}50M0Rh zm5`fOfufsO43m0SH#dZDtMNEJ%L@757sL|(>ktVba%IQCe;ojnM*P333*cNp%pwJO z5Tdt#R|k-fs{m;M9uEAa4R;|Hl6G@TnvIv1*xJ>5|Gxdl z_Hk?(Yb;`xApXyhNi>>IXE!pP1~l00|9(CJnZ(wH#I#{71$3TpX1kCwwv+w*!d)rfh21^kEmue7O2t5NHMlUE`Z#NwP%AUl)Wy%l76+ zEQ{stU_>J!n=oM6pq2jbmDLBm7%y%04z&V&C=yXkFEi7k~*bGgKEQ~F;Uru6?Vg>-jr3%^r delta 30 mcmaERTJY^@!G;#b7N!>FEi7k~*bK}~jSUR8Uru6?Vg>-jR0_@j diff --git a/dev/_downloads/4c9cbd846f69df68795ea4e2cdf667e9/plotting-33.pdf b/dev/_downloads/4c9cbd846f69df68795ea4e2cdf667e9/plotting-33.pdf index 1e9865f89d21d7ebff9a9bf5805dc8fd60e11848..7e89eb10191e2e61e816643ff39baa570bd1a7dc 100644 GIT binary patch delta 17 YcmdlQwl!>nmIjNViLt?EJq>nd05~fI_y7O^ delta 17 YcmdlQwl!>nmIjM~xvA-9Jq>nd061m^0RR91 diff --git a/dev/_downloads/4d0c9c96647fc2441757598f44d4936b/beam-20.pdf b/dev/_downloads/4d0c9c96647fc2441757598f44d4936b/beam-20.pdf index 655522c46dce109a3c3ea04690372666b529b2a0..df407c6e8b754a4cc3a7c8018ddb79f4e3897935 100644 GIT binary patch delta 19 acmaD*|Db+Dq&1tNiIJtD$>wp-`|feZKKGt+{yAgcaTy~6HEaFK`_A&rIiKgfp{;p@W9_!J z6h(2+j{bInqS*0Aw&L$s;g@xDjXQp+I3GIetYdHP>~`MKjM6yoe96Y%*~ZFbm#dkh zla;-lq?nx8ez8mTPR{%H?y_`tzT_k?E^hlD9}}~8v=Ha>|3L+pT65{Bt`kM=d`13a zv8!@XrYK)i+Hb#{yc{*q;udtOdse#LbI(ou95{DqfPbw?NrOgJL*C2Q0}+;+J!hr% zPth$0j@C4oNZm{oxyflVeE+`RUw^P4*SmB}31Bs%!+LW{=yF9boay@$##3-sl+t3?7jXzP8-jlqcT#^1~*{z#n z>r*e38aR}2HlDk}5wVMtqE4A$g;bgHZbMO-b$TKq$uCUEpWS<-Wf%e)Wg}l+J1tJu z_g>p>_wMV*2jl(5%kqIrQ)ff;?Q+s~vr$#I&SFKi?~51C{QOKmd+B9w^X1NfMw|2s zI$xx1mag54FV__`QV7SW&!S;)J~GK$u&bclLlRMM>>Wpx7uWHpxmw zC%WmYKiBXJvQTk3$FZ|DFG7txgtU}rP3b25yC_P19eG-gxh{s*SeZyl*Dc8p?;3JX;=5XQQm(%wBcH5h5=+Su*MJ6xTpmDT1mZ?%;B`ufJ@m!*Q5 zQRMbA;~y04d%`VZGORlJf2LG}FT1R!v^ztLeP#_Vf4SP%S}-3tHy*9v7W1ul!*=Pt z(ef^H$9*?aR3>xtIm&O_=*!i->PF9Gd=_T%=e{N7OntsMp5nVG;=ecT=m+`!r#2ZM z4_7a^^nd%7FqZ?1^!xVrOBF3I4mVmQMxQuyCR9xv<5UT((8u=5Fm7VpR?^_1C{6YR4R_EC+ClqDbBQCq0##i zBE=Txrz>&0rZ{eOmQ~avX|lIBwisM``FPv6kB@Z{4LtfD>e?4fZd1Gh_l^7fIfw@? z&Y!n9)l^;NyG$;`En#}}aKN_U{TJSvUgI`@XW+#PDHyxlhAcvh=N|9jcaTV|!~ zR2+92xy04#d1AO62-%KAUBas1mAFJID>{qpD2qNTaMn#Vc` zu|9Jd_HD|Bd9D>=c?0y{*;a?}{D|20G`SEz13&_zrz&HV#*5iDs*k!Ccus#f#AO(S zh?M+Nay_rIA_Bf9ef{6@-g=~njq)4I5K^EhRkf))eS3ZyVsN2NX6wEOU_qeVW8W3#=ny-$*oh2{1m)CO=O;PQXAd=T&{&u!QywPcG` zOYUU$PF^Js=hOPOnfVK2`dQ&@QJt#HL`fu1$A|pH_OC z$7!xFQLE4!Nm=HU6cEj?BtUo8>0NxrEKMn#vt9}Cw@H9MFofrc_FC{3VP~P*=Sc## zZuVng6W|q3ee*AV0VG*D3HGg2+%=5|DIvjFud%Ksz>G;L-+(W#uP?WE?mlumswZU) zr8<5OS>(}qix_wFot^`!d`zrB4CfgGhlrxLp__bID9i9~-}?Le%Qvu4#n~KN_wDLW z&a)FhlFjLf5FvrT2U*%`N#4c9MQ5@3{OfBEbrLnJ7u5`rAO~-cB<4EZY@yLWJmH$B#*|z>oap+y5ZavMQk;V&d^epn;*|4(6I(U79ZPj|<8m-_W6Q_9OooJqHc+V4_nd?CQ}clLzEVK|Nud9v#E zfpo_H3x&(0Ny*2y7|H5-PYU@y<2FCKG;;k~`P792r&(q$6f8J8PS)y76AP^~kkoZ# z4*Pz{?H5q;lvbApQag%m9pU+)tl&QL#lEer$TzKYC-azy_j0VEU5@Du{%zv=2a_^c zFX=UVTy%IcIxRO@W776!Sor(-39AO3#|RF=07sUox8qvF@?X$hB1&?pUta( z`Ahu4>xTpC;v<|`Wcd+gDt;0)hQWtBydCD%c3hgJ1?~)pQ^F281 zJzl6LM*AS2)SxijFQ9(ZwMkTNrhRxxuUe!265IYgr9b<7O)nn2#@9Bzf96|~V3TcV z#_VU2Zt-PfrLm(D^8>~$DvJ|sOTO%s_C*pTA~FSIW_s49xV33ywaV+-X4-F&6-kMT z@^Y;1y}02?KI`*)UL(Jx^(D0B+s}-cuz%@G^c`O+*`n4Ho&A{3LaB$7_mhtCRpyo* ziJXr1u$Gu^Zforve42h!M=@N2y*(1_)r9tn_`5YSVt^q zHb0=VelW~?%7nFlqFPW(WwEx?#ifM($?Zsm93w7 z?1SusC>wPi_H*O=FJE#j;WTb3ocMHK+t~VX$CTnYUz44_rZg4jN}^ksd8m=z<{xQe zOY_XyGlIUeY7TQlMxOjFd0bp^=Uw_w8x;D?m){_1y4lCmae2{Lsc?CTNmrA$Jxs+- zkup~OBeHver?1O=xCPy%UIVpb(tMq6>5_LvFsEPbNS!`&ywcajv&q)KfVC*aR=-l-n@aFG4v`-I?jHSo&OMW=pY~)m7 zzhOt5$5YBiPI+cmU*mXE)9%B3{VB0Kd@g@V2&lfw688k5r0UlePkRY-b%%v6M#-@v zqk@}FzH>ThU++IW^x%dNrJw9CCOpOA)f?T_m&ouJU;38Hc}9JU-lKdQO7%60Q`L16 zb_R|gr{% z;QjSpN$c;nOoJU zU$Tf0h=Mt%(Xw^3pH%#IyQ7Fz00LdfdGvy5v7zNbdqz%=u*`Pkf86?!!|EM(Zfy%z zoIEK}smS!1=k&C(Ep%^WK3dDZE8u*?^R6$~8FO={O|}dU={;F{8q6b2Ty{}a&ae~h zD@GoVFEgSxi&$wYWy+SgO*JxRd&On8*FK=)_t(~Q@t)&jzFaL>sdUCGEVaP|Q85Ss zUT>{rE)};5zAoWl;@A@o8z;;C$zv#|W3(?pQg@SO%(rj!?ojdD_63 zyry*1zFaFA)zRYA-)@s_C^7z?Ha*mB&gLgf_H5I3#TPGb?Ff&$^lMtZQOTm`Q25j5 zzhd>mH~ZE6QM7cxy(ipc-JkWwT5}UZLv81;-~Zt|%105tDs{J7Q?1n_sbTYSXQ2Nn zU)tDwTj;iR_*zhJj7UO^@0^w6n;)5Wd7L8gGL7*K>o}<}SF+i^?LO?4`O3c7&otJX z9;4*XF_PyZBD39##&T3NLUupeE*$_F{=Z)Oa+Sd!s;(*bu-S&HYHrZnL2Y9iy7A`? z$Dju@Hjs{_aA?%xil?8@#cF{@%Lg5oXS;zcg%Vc9I-hVHE?~y}^6)L2pZP=5@Qf2S za_4uS?KZ8}@E0naAJSKU@iav%L{GTy^Qqa@BNv>%om^P2H22lCy}0Z3M*pT~`huax zMhgQx2c8TB0bxg>9j5Y8FqUt+nPHQ9Xn$tf!Rw~wqD7xOH(E#Q_*o^pHt(NpzhZLv z-6u7!O*Ln99}b+Pv^`h8_No0Pb8%X5xZq3_Jqz*j-gSZH`Uh0iyW|)5Uo7>i_zS%% zn$<|1lNXvYh(3R9ER97~6q{2lCEp#?m03?uj5+r9w#Ek8U2@9{CMV3Avdj|MEZwsj ze%7@~P0`#qR4wQ}*B5V?M?CjH-5!OXsGxE{;(Z*_tuMlQ@=ABoQjC}b>0FW32c3F0 zpL^0(t;JZ)yZ5&5d{ftWrGNk8l!y!$6-0wSskGxCUfK6XGq^3(QH3py2AW2@(8JAz z6?ml9v+p`J`9YziZhdxZ#Ct`j{c(NpYMm?n-^w&sQyQhX=LpZW^|ZGEB4vfJ9bNZs zxLuhhdvQkC#pHPVwvL&5*Xb>8;>!8lvd>=-Q|6bUPDZ1!8&R>#6_Q&RF&Ta&W_XiH zFWsTzDr~8En)-C&*3QM+J9qMij%Bq-H(pEuo-C_irvfTqOGnYlqZRp-jK(en*%Z3( zugyLZ=;*{!bxGb;J-HxDR(W}$V{D?Dd2PD@kNjqpX_mN~06}pjdBC5QzGBh=D#Q65 zg_HGKJ>iMX2304YQt=NxMqYN+o?!^a92LubG&9mmS5tRhO_Bz_C*SU8S`}wn^T;$r zmp(tFmg^#-z)5MCW!By-f4iNlUf(u2f5zm~lT(fhqs&#?gQ9<+wq0ZW!Ea0FcqL<_ z%HG@cXCH)ZaIZPe)KuWN{k)lf7bRM0lg=M$8*+DsG6m&9)CbD7gOtrQJ9@f@t1L2p4A$CYd6&x>`RFn_ScmRUum?^+IczdEWgii zK}lJ0cZf*B_f3jx{CdiE`cWra<9;bQJS@`|1=AhNE((tR-r8S@`ZCY4Gb#$c(is5k zBoJw5eP9<=5r{VAqo+Dr8m+!6IrBrN9dA0OJ}87nul4JR*UvUlJvu$aOwQXP!qOWh zsq5BaI+$6G-Pb9_ehBxbSJDTwwd@KG$c+@6mT)rIxun|J3IjR)_PHb%6~0hjoG{U9 zRGQk8MW_7qP#VTb*yZrcb^K-eDZVSGmyYySdnUVxSN#U-4+$09?fHBcE&#AIS=Viz zU#&d)TjOIC;oPjOs_D~1dC1K?u19+!QyNmN7G_Leb6_!~^4Yf>T^b8DDLz@`!~FV@ zmgh=bFV^dXt2{MBx}z1J4{qe#p4R55_9;;dsIesSx$7YPv`;xp)zQycqCWL|i@YS9 zEmJ$Zu5jF3G&lAw7;vUWG_C;`4BX;o7&vJ-cr`mP*NX5R;Wd0Z!{(Pzm+RtKZ^%q7 z6$mv9QCzxweANdzi?rI)@KVZ?Vy$|wIQm=a>|F2}0gD*j=IoD$X`y1>J%9AP-|1I% zX=!noxcDzufKb(4KR-Up`8{QZKC7R3XPF3tgjmm%ts|pJ#@I8eu&=&IEcwW-JqfFp zhulieJy|h{JjBNg1J@(0aS0j`Ck+rMW(V#4f8yP!7`MO{m$f)x!32iWQaUxDmG|iw zQ)$|3(vyRVpyMVH6MczHe{liZ&wT5|4WbUaER2?v6(NZ!@KEZySUZXG%~y>>#h8Wj z0#5Ib53G}QwruR9EJgvp@IMisTFz-e2GByPU>gDJCUA$#5DT{@Qw> zYk#6v!oICkX*EGdcGBi1Xtxz5P{(v7MAF&0_QHjvZne0oiRJIpbto|%uR!c?evzib zqV0lJ*Oo+cf3~TOUa2CUoZXl(@EcV%;xVyDpfM%m#D2c68-nx)w}np^vZ-DGjM2`8 zH=|SF{^hD^iwooRMy(K|Ttwok%RMo94WCVrAw;u|#&}DI+h&>E92xdChFv^CgI-lg zKvNwlLf0bNbfBTjc=;G|gH@YyxLHVAHH&H|Qp{|LI31~N)zyWfJf*&?Wy&}b0y+8fB7lYC?bDcldRzo@`)-V zr;FYt?klvm2u|wSoQf6E_6#vdlVzW&^wr#;xX-=ou4$V$!>*-FbCs%-8H`@TWV(g% zdV@%7{=#HRnF=-YlVn8@a{i|j@Ph>NqDqcjx}5;vG$`|VL4;yI8ya>NRL`HBETBgqFiKhOB za^ujN%agSw!*y=0LISJVifgb*RqaR;8&nh<%|cB!jpKhLaA&0s?Vx;ukaT>IlvI{! z=FtbjJ%_q(E6`Ifl#|zJf3}t4=z&jYsb~N@yHB@tJ$gVtxIqZ!bMnaa(4kSck(bQ3 z+Xb)hi~s<1h!{C05*)q3Pwyf1UAy3R88NxhH(h8Ev=%Uom(sRQr4Hqq39|WpgCTT% zQe&8f2q|C23@QFp5^%}Q+G%Q}2u8lZ2lQrhY$TLy zcV_YLSYE^?JVD%P)ceI!p7VpI^@hX*G$+012Tg{5>gJ__9$Y9j9WG#S8Sl;N2{Q}n z3emrLfx-&z(}4L&H}7-*davuxP4xa`H8fuFV5&){OH}XNJIH_+WHpJ+`YwyRcL&2K zwMpo!CfS93%bqE&xk3AKjJCW&_3dc4<%MVKi*71;uvj+Yjn#tzq1F~5TP6FB`loGT zp;Wq_zorMDJ~s4Xch1-QY1Ndr04}C8u`o`SyEi7%;PUyjg)uWhRx05w?~?XFwP)8| z0KeeqReos=$vl3;lO849os-M<<81{n~@Y*`@ z&GXZBwPe>4$Vj!VFF@vIFzfsP1N8u@NnfoKS;kZoTV|S4aC6Pe!Oxtbk#@palT@4; zR%JvqyDi2hOIHGQZpRJgsWT*I&OF{?@Vue!0;Z|01^#PZiWi=Re?|O(=*LuER+Q@w zGL5voS?kjq9Xe3t3or1y=KPw2=}^ka_+z7N+*ywARWmUdKT2QE6ETo_WdHt=k=Oo< ze|SuhxK*{)XL-IW#aF{T>?gUeaa~~-$~3=Iy^zM(L;=U%pYU9oH3iUp7<_Z_cT6tz zETZGpLc7w+Z%R@_MJkAyh;mh1;dPcTm1p_nrW#C3dHgvk`~2fi=X91>RLh?ivzB~Y zZn9I`>8pqtYZp_{-}V>k(FXQis_U{^T$v?Yg7ZU>iWAzS_jxHxUGuPeGt|i9G($6* zzEkPuA`8pkA9X*@IRxhX9Vio6Y8gEdRd)BJ@ZRznB zzsdAf7!2B*Yne9pjclnkx)Fka8)HpvTQ*%`v0Q?Uh`x)o7f=|uv%}X5r3TX~k^kb; z<5<w0KOZ zqf>{5a#t6_zpr?s(n(yzXD`OFdVVPE0r1?*kJt+d7ZaSejUlI4*@iKj41Oc?EGuGhKvR}n%GGIOwH5!&xliU4rHEj zY&4@?-#`jEURhS{c?@eGg*kN6BkhhM8R?q-_*xl;msuvvWar|;Af?$+tU0_PMrs0@#AMq5)cn?7{`R=!%B& zu$+sq{X5XJtln(FGtnQ4t7B$@NY(C(zDm{m#ZF$}KLPRlJ5kPbJW3v>G%93_(72yU zDEpV%=0q0WOR8y=%FO+xd|Jx7*wUp?K>Uhkp+vrNG5!3nM(*8+A}Vk9m+oK;wd5sw zP7fj0=SVt#t=gMW^{ZJaYnbrhXa3$O9h-w=y((OZtHg`E;F&Y>*bvFOq%#;;k6l;U zvm7U_+)^-<-M*e8*dgY6Z{~h>Lg{;@SNAntLxoeG^K(g z_Hb1F3&W(e*BeT%M_gIOnR1b`l*jvQn*?6e(c*t_n18zEjLm%xQaIN#+d$r-uT5pPlb4}u zp>bPIAlzq;d{Qb3iOOSI6SYgDYZE%9_{Wp6tUttEi@I!*)*FNV6sL|a*dC8OrwRPL zm`pounAtGBb%hP}=*I^~1Yy`VxmJ#qN&vq>NFZ?z?RYBL(A{mQY}v~VovKe97?AWNTosRW3ZpIcI3cG%bdC9l6&M24NA>(7|+qIh!rY=zddpkVY# z*KK~*=xxV+=eu|@wNwLTM29~TI7K%x?kd?La$7%Bf_rP+JwT?22B%7X^x`MJ-c_8l z#2qN>@`#H9$WAr&f=C^hNgzi>s9@VSkv8d`x%Dh!?^uiDeu6Y2kQmv~_qT5NdY2thpD z?zx#xbdW%!xv8VO#pp#t^(xBmG4MahA7>2iKFx*=v+lEnp$B|r3NkY5#a8(sd+(p+ zqWr9!KGB%7y@Ij6F*f-QJel&dJZChe~(x4cuJEK3BY+r+ZrT&h2#^-OEz`U&XK~7LoT@<^ zyI9I&agu-|SWLM%*-FY7NCBROsYt&0c1coGcY_k3{s04;w*hKfbmIs3D0s|)dUZ|t z$6*`RSAD{IC4AyC-aNnPJ@N}0?MQwh2#$Wk z<=8K)`OEj}kVi`(Y3=kgx=1o!NHqt0sdN6_9n-~0|4uZF0MTo}VpP8h{C3)4KWRG! zDwS!nX~z)y<|7wS6Nd}+qm(6V&Z13EVCgw)9>=2+^#-U>`O)23znaC;3f>&{$Hf$l zIwJ*?;i$9Y0|GTEDk4DFLiAd;_ng(Idk3+0Wnf~=uv98C6vvLHp)KG35|2%_m(J9t zARh=#ITucS24n=1ugbu4s;e6(3X=pTS9A=Du!ynORYBV!T1a07+ZI0PkF&qB8l1+z4P}8JW3IK1T zgu;_imfr(hUUl2ngYrdazYaBo78n5ecLO_VV&j+m93J0X%7Jp(ek8y)t%S}&~1nP^Itwa*2w`W+ENjlzPIo) zvC1ZUV>rs&+JphHIy*2FWfpao3RY{JAsfG~>4u$xIuX8rN+~KT^f)R#-L9S|CiRZ*ez#V$g;xn>`LH91! zcVTvzUa6@(_Xz9Bf$)@J$q?WSb??#*~dnC z+DWu|t*oLt2E9IhhPj*d-++d~`h(@@RFk+|Z&aENSUCyd=Esb@KCXVPdO(Q!eM|pX zxjz?HZo~z}$NHTHu510Sfq|{}RPw{oTsJMB#eNbqv_+OC63NhM^-kg_WS%JcS-zjI zB{w*l6+P3`*BfZPABY8=#fu$^@LlSftY=8umT9t5s?V(ISK1tR4&tv>`|>B*_2TdD z_V+dn(N88XUK2rP^3!>kaFmk|z+v=)0+o*?7s`iAJzn`l?ipi^q1>c_&6EmE!}55m zk3yqeUc6Q;@&#!bs6Ny4T{L~m&A1RKs<5V53kg6kzVo&kI_UTgRrADnNutq|fdwGr zf+~|{U*EKnEi2Y9=l<<6nsPA6k!tijGPd%1-MO_rG=I5}M0$1I;a0pEbE*mPxjhlM z!SYAYa4@~IYLV}&`ss0!2*NX!X*bu$2)EEg>CP>?Z+0LZh-*QXEX9klGF0L&YxjW* zVxF8s2g@3>{;q;)#F3HCJ=lTHUKK4(zIW3b!cJWFedv)$YaVA^@8Ct}T=wuLTC49m5}wUYmi0u^~ynBS6-72gAS-~j`;L#t$O~Rz{#Gj_xie4Z+IXY2P)dC8b z)S`)^WkYz075QR{+psA^15W`G)pVi?zrW~dn2Z(SQ&E5OZi6#xPGFiY=;E?sjKX@E z#{ipA5WQWU~#ifagu7e9p0fAYh1UV+3Y zI)O4Yu%w=p@@ir9gIxr1V3)QWc4~*~S;snEbmEchK;dchnFo8BzD|5ExfHB4ICK01 zGs-E1Sm_g8ms-=zTC#$ZSiy(tQDI&a$FbIw<(mAd?;=oGYYVxxl2IcPJxxUA3;qwE z(}!?OVhI%f7e;#EB>7#FhHsPbjM!P0)tbA9CA%dHW~yWEy`DTekt962g`t7U^2)Ae zAaI^lXWuD9ti26Reex}u+p*pu&0bFAy)4&|Y z^KgD$pIP$Sgy-__#d*cHkuOm31leG{Cq>Ij?(>8Ah?fk$y#_+knh3vx@uBdoM(kS91M!jE3=%9k-mJGMbdiqr`V$_r?g+~Pm$Dx^FE6~UUsM&nlU zDQdry?qx(l+p==F?0(b>D|b0Dm}B8M*T?i-(!omE!vuq$qZMQxxe_5lzM+$RXp4{n zd$Aj#`4Q$C!jJhNMl&=9F(>NkjZOaRRz{2!pADS&hw~ZlrS(_Vr;h-Wv3H2O2p}UG zwq+Zr5gkK^LuuchtZc%=`S~{g^Sh|bx0v?e=fBd1NU1Rd_+cAbgGYd=`9XfI2 z5l#ezy#d=!sV^Ct-i`O3C-_J8JgRf-plBAtUGW+8MItgihiLN7dx*zuzAgJR2vTSW z6N^2Ac!it(uW-&WtJ!+@ABXlEma#eO*d2^F*n==&-dn=OSe{;{qkH~26D2i}PW85n ze8^`LePl(^8ng`goUOG%?l(+CRR_sXqFj`OExZ7E>;JrC{B*_#Amix^leA_>reG`_?(Yw!52T^t z2Vj9!Z5t~WWWBq2keg54m8+{ zKlz|?IuV%$qT`)rukngThf*F%*MSD+wD%ZOkQ?OSRU3Ck;k&ZX8)$`!86Hzdec@z^ z^-yKTT<*95v5GV|n14j5z|fQz+6a2!5XS5SshB>~Lydjp3Opvuj_`V)bkswb+>S45 zZ~CA({vKS_)Pb!JWk-tHBq0IGu&NetYj!wtTejn`r)g!vy3lMmeYwij6QrX_I}zlU z80+J~v;zJn@(WcBS;!aCYfh+jC!h_iaE#%B`vG8WUIxvLtyMpP~roZ(XD=!h_HO71jsP#A{r4qzo#4{1|>=xJZCi@~o*Nnpl zF0~i)G1W0{0oQlbGZxggi<-(lBQIBPSK^|mTEYspe)UOBJX!($b(t1tom}TWII6%y zXiEA%XI|8l?~7Lt+jno^uYiuLTt-Lf&V8RSJI1dmiq^Nxd3YSlrOYV2* zcvF_Lo+>20@;}$0Z@vF`gf|+>9dYlu2}BOt)2?q; zNuGc8=dGPe@-&Ik9Zse*n|)qX?0dbQD5S2f=awkx^=Sc#*mq>~_=Ce5lTIvQ9>z;Y zdG`MdNZPztwK@#UW}lIREon8i_4W0kJRON!mAx)Q2W8;8607xI{6kqbE1d~3_g(v3 z3v@|D5cbT^I<>74Z>*$xqnxlZ*g+t=@sO}p)}{ZDmiZsoO~1u}n&3SrjYgW~?I&~I zAL$@*D#?BMbJN(jq?Cl@WHB(cyUUf!X0d8pU-@jCq`5lLA@N~OVIPIJ9bO$< z1eUnP`>_3>PLyD3>!vZ;Ci#%-KB&{pU2ERRzzVw5tLU@QzZ|^W|1ADUAjqyyoYp=c z=9tM!@iq1;NPNOyQAjP!xz`filZIIOpJ}K1JTGK5(lJH8x!|yc|ZfHZaro%thX9dB;nE^1J*p@9@VkY1@gJ6q`+vqI;0f0B8zUd-wJ{v&jChexIJ z!$q-RU(3=4eAj~$_P9dtUtqGLR~x*3r=l#;&Bgt4WelpZ9*}Ip7iQ{vLu+em&2I3A ztSE*+yayjH_5+cU!9^4-q8ttr6@kRknrc%ff9QL*jf!`EI(Q9yf*Wn~k4H%`nZ1l} zTRyprkm`ph_Gk^Eyzlf~81Lo@(pK+B22puH>zt7W1t}KW^Bob%nm4lJ(hI zgL5O22^y4$MMF8g=rX-r4L8=pYUyR$MRT4$`x7LB_H&c{p(KLg+nUQui%t_Ck61uV z5NQB0!Sqmz({RCb&#QIf>XFj6V_zQx_JFr3GHNX4BHiL#%`6Rte9leT;!`}WuRg_? z4j$tM-HXpMBYsA0#Cd)tgb*zRQ)K=$*4nwhP88Jr$exsR+}h&JUq8yB!|haYpuVf& zLZI!R85|Z5gHIF9*xl7TFYgL9aHP3@wn|)ybeBJ1{bRU{F8@TsjB#~>Er>$DLAC`B z9V>O<{IP@k5=sOjZRnkWD$0cL{ye2I>;uxkQ!EAX@;YPR#T^cBek6}4fmm$dJz1MG z@@gG}kElQpMGgM%*e$mrGz5`IMO2Pivtm;h(O^dmyFiqdF!>JsN)o>2riWE#+aRXZ zNowTsBjUfhRbTwzPGWGA+p|59;#>xoejzC&?SXn`fK00_2(-@Ru_lJwRM07}bgo9{ z&@k6D=~-6U()@5Nw?$Oy@ueY{^Rz1Ss z0}QO)|35ZMyMCi;_o0!nyufToy}{nB8cw8h|23{qO&>?19?JVC=`yqgJO_d0{C-W3 zWnG`Km+-AGhVF1uC+Mkt9wNF06bopO2S~l)IroI%u7?=mez{62a!LmlfxbK-axqaX zpxCqe2Sz{y;*r8CR>;|NFR+kkRxeN5?2&%H!` zx{7045H2A=+j92Y@61wdej;ro*@l@7!D!#!+^_c=(YH^B=F{x(_A?)U#aKz9ZDv*l zes>GKUm6G=3M5N)ulkctLIjaCuG+98tT)zIdAM-i?sJxHB-vnWoZd=0F2qE!^iKf- zEShm;ZYfJ`0xN#peYmT|t*v5aw6huyv={V-+1eDJ;1;mmNpxy-5KQ{JG5*_ya9IZv zTvwr_H`BIBS`ZY5xrx5&?;gh)09!b(V%Gb6E~W1OgSp#=VUyUp`o zHpNGzm5C3ByVU89`x`I(tmHBA4iRHTAuRbp_5wtf&ziB{L|QZcA{rQoyQ9heSb?2u1d%P2sd5aJNh7xwm+_g-z(nu)DYMdR z0;7{AUVuDW*>){sRR=ekHNSA+Px#~Q=$lPin0aS0vEY)OwuBNaGj0mOvKMVzh*-lEhqzT=@t*!fiUYwgOhe5<7CFefrdQ&C!zbBGD%G?uEM($=9?p_BO?$ zg!9aMlC#imk%Y=>;breZC%1<4*NJ@l9pcA$w0#c%lD|#S;uKL8Gx$n*eZ9!MG~xE_ z6;S`Jz z(rznFHS7RX?Y??d;1aTV0*sCT>Yfe_PBxwl|)h)sLA}66ftDNFoTm0CeTr}IXGeAa@ zPB0Y~+6ni|JWs4ZO}rrJHjhFN99LA~wooyxFmwL?f7#%Vb!XD--(|Q?bhiJ+bVymB=N}3pIQJ{?>yL7dB4%^eOg48}rIW0l`=USNhxO?)hu+ z(rpT=+=zV-6`@9>-3<22j61Z&FBbBWRuo0VL(tebH4fE03XB$)GusUg(#arRJb&a@ zI^;nid*mvz3E$4%M+Zrwr@uUQ)G*hX7Af7PvT3Ma{A|&JB&8k=i5ZXU9)&}l+xML- z?&{R@8m2S|bD0TzLq|N=jZ|t*lz)8Slw2v}nDP}?VV_YmZhPICXY>5!D$MDsBlrDS zldPkq6+2hiHWt|JculU|eyk;lgY+2)ke^q;>LH{USp7PNm0ogWW=-6XhaFW475XAw<;gIb7gogk|61 zGxLQ%@lVHqZ3l#LYJwSA9DJWlMA07LF2BvL$~HH5xCT+Z$=_R@>rhB+QZK$WPWyaZUDFtZ>o;}(1V8uvEQO;klW zN}JFM>88D#1U1$3Tn8Od)|e$jx1g{^DrWk8ZF&S1%XKv(Z!>eZ$8z11%N6>_OLWRTBd0VRtm78~F$vX7F9#;dpd|(nJ-V zu#gIsM{KM$`xjv>4E2`2SJcTiusUKU>y1^0i)FV?C(*~Wzzdk-OS zG~jW={c zdmvbOeZ0WhVjQQDUsL4!0pZPS0fi#YY$*J+xs8h)-C^%D9!dHkG`ek8qX0pw50(o! z&SP{s-KGWIXsWn(`H89F^^g7_2Z(G`98o2uvirArH+KX{L0<9WC2na{z`3tg@n=%v zxxEvVPyNrNvYAPBxd~f**IuF{ZJLawR_j}W8gMa%L>(HP0Apx{59wuE?^M}>Mz6f{ zQEStTHN8v}dnRN#a1iH-y3=nnizt5|P_%Q6dJa2$xOQXZv1%YS`KW99?ap)x_l?L~6 z9vg*0O+{CROIe*Dh8N$^?(r?i_^V-Vq{MzJs)g`q0VntP5@ju$c?|3WbgqnSlc1>s>7T46ItUP zlOsKdTAa>@s)y;8%&JJ-d^iVlqLo@lBjQKDF>mBRa&ih-ts4b|e0aU&e%qw?`{{40py+29C3qDBOi{Wyi$AI8!ZH3-N zqYXFj)S zmjv@N9UBCI&{EzBj!Cx9YC`wY2wGp34!qnAD0`Gn`dAo2w?HFP=`%c@7-^U53>U(^ zgz*1gkjpii_=^(DvABC^3vGUCa2)+05`vke%+8UD#ma-n$CcpHU&o)Q`HwLD=`9|GDFxo)zw5?WRDDto5|$o1^Q~Xh zIDNL4XpKa+@ntvD2QqXpi!e)^?faJC@Otpy3htJhsxTv0!NB|^>NKJE1l~?|fha;FAF`gml?(Ri5#uG(w>}p=GeFv|t$I$qJ zg!%ih_h_w!BhQ04TW$e(ScYI|sFU(QxB%T}?$d?`8eQs5r(4LFPLbn(I8Q-X?nl+} zjJa>L;Z}^1rcQc%|2?TDGo10ae_?C`_WH`aN%T~#GBYU!^=5k>DMg2GNzyT&TIO!W zctHa_3&xd=nvm#{VMHWuJ9XMfZno%I5~eLuMxm^kU`mqf{^#~~@MyyYrc3?blZGy2 z3bbY428yFOKfN-CfMgY#Qm9Bt8(WVKhU4oEYMRP&eV-owdm!>^+r`b1VwfayBe-_3 zS^4RaBYOTRzk|oXng)C&Q>2h{AmTFxQ9AE4!<$KLF;)z>%LN|AqCihhU?RF1(6o)p zZ;m^iiPI%i4?>9ml18KF@ZXb?_wpAVYfqu^KXV?$J=|nv7E;D7C(&0Y%B@mJMxG~Y zK~4UnS^zIw-SCOVi}-v^f#A(GNwp7GDbUAj6ufvoW4x zc(uo1k*y&EN2?Q#1F2x}Via@k85 z(_-Hdk2d*cOu5__=lEq>P6E(axW;PqXZF zuKHyKi1EpxE=}tW(U*2V?5F44XodqH1d5hi&}K;pz|1cr_>3lmKbYiZn&B*uO2Q=N zpuubaisW!1Z&L`Aim}K_3Uwt;8cjd!mfg6P2MRL-kx}| zKA9$wGonT(L5-G1f+=PWLj2oRpJDb!6r`S68tjkUVTogyB0^))<;R98nYIE!Mw>Kc zf1*j?P%(SOEEFxIEke4xySJ%Ua4SfoDnl#T^n)BG==%o$eauHy0~~`e_}iAnFzO$C zgbBi0k*9Z{R&pHkCWD%txXXK-fz{2<_GtfbK`5Fb5{{;X0h7oQ<_e1zeY;5u0)!xN zO3$vl9pfL!(!@yr{dfsYV=Iq5-(VA=uBkh+Sw2=qKa(8vL5>O` ztu5aLa5#DU>r>jYul)g0E=*0|j!cH}pky>(Wim0)2c{*CCo?B4KpftN!aUNzcX5&w zuYxK|$kLiI8`i6mX_=uLLQ{JpdH7EbrTkzGMKjz zG@!xF5!ZvE6-H$%#2?TX;P|3t?>@M9syAAmC*R$%>^p3N9!)*z8??>lqcY&9 zC8H~b7Kr~7@8$oqM5d@{v?W;wnZ{L=Xeb}Ka>X^)<`>|s19Djjgz8{(Lo$FeWbboA{M{D931hB% za>@ZAJZE`{Opvv&ZB#yLS5zQtS1SyX$bk*2SIFucq2mFOagKp;9`0yC^{$@SA#k7A$#eXkdanaeqYkm+DyuU96b{(Nqr}#!2xSS&E z0Fqt1FODr3TV688&|&4FQb7QgaJ7MU3xBor0{1NCagrKggyED3k}@weU3!f+I%09v z4EiH&oqz477kZP{wCceo>m=Y*Y?u@e7=vz?zuq(bc!+^EAjG_6M9y)qP#Gm2%z^OP z!6pAU<&4KX@>$sTUbEdRfCto&Ya_G0%pFdANNM1eO5p4`u&}m~?4+H9fCsQo=HN(R zRd(Lt2Zu^Aknh!iLb3BQP4l~BS}&PCdy6ag8ZP`|*y1N$6Mj-nHx4&f6U`Pm<{O4ypyP;Yg1ci&I@i%c9^Ct|+F0VEOxk^|CcJRg~oV zpRTZr@G(OBldw9G)(LsVKg7vQyXb|bX=1r+1o=o83{O{B+3G2{QTeP*=NQp}u8K3j zYFRng8v?nPn12H6DuIQKzB`bd=YSRZo6320%duQn4JqE`J;{}hXWKCqhBtS&Rci@eC?%xSxbCg;QqcP2Ag~Upb5tQ{I8_w( zGV8N2>K>5m2$8MI5$+>#P8D8@#eZaoC0$jOZ0I4&&PWj3lhfpB06HX(oiQwGtyVQ%&03z+C2!+^G7)!nkU_~iKRO>uV@7J5-%5YYqD zasILoIOcFn9L!0$G+ zDO@ToHy6hmU>k{?l~9+#&mK<&F+)w9v!uN)q9FPe|f2c6*@7TJ<^4` z4V4EW?MhJhw!Y+lv-REkb4X6-?8wY!Eh5uuVPm>6tzu(P#hrbg&Gf z`wa30yT94f9(GK}X>N&5y&wK#5Wp|Us+TL%dKAp%t?^k?pW(42&b1Onfr*-EFk<}v zA72~^B->RJ!oqg5fYJYr&LOS6#3J<_IIwF#6or5VM6t7L(6z>QsXc9;!<=j?blALU zLU>sPn>Hu5ln&4bQpt*dz&IMm1P}qhnBuG{&UaxVdGsgiBb`}exq{F$^Y^yhpe&2x zAFD~im3B0ZpQ z%SmhQD#&1HYmzn^P}5mgMLz)t03xt!Fye>G2+Q&$Q3Gdd9EFIT9Olsi7VCV|3J>}_ zsbEqrPq(-kLl$-{{o~=1>v1Tu3@FRXz^yfYwP&=33S=-ak>$L+FhgWB47gt%qI2-S1GjRBr%t}{e@giy<3{Tnm}s&_Ex1>YOJ6mpI8I90Cl z6fndY(4{ZDy~P{^X9N?U2LorR0Be+!9~ArtwR>V!bT9p~$(Lmt17{srzr!l3EW4-j zwgVUu^4-sIse|b2njN7m9idhvMP|B&<7ml^tCdthIrd~*bXESHCJNCsO` zK3Nvd;)ohe=nQgZdraSlk&w6Gj0eD^5KUf`Ln|L0fMDlALaZ``T13ME2m{72bfeJ% zZ0dRcap<7UeLhvS$)P;v1_d;G?TPe>2(rG9GlQknyug7jQw_VZGB|wTCd*G$^?evO zURdwN!w_NRn*6W#p~EL$JBF8t_}yRZ7znpGWdsYjqC@);$x9>b4$z2%k5_7Mo4C($ z;QbKhPU!sJoYv=eabYUYpJo4E;~7S%g2p&TSYK}mGqlC_Zs2DT(e2uXBu9Wp-(&|+ zw#9RqMSBBupAk2V3P_|%=;iVCLi-SB=J44zg+#A^5VZ0Pib(5GOQ-@5_HRNQe5c=UZbxO!yD!IAjPeWW*l?WkR;zmCk zq<%0!;N!=bk=_#KT@`LDJjarjY~nb(<_vT+x_W+b(qfeY{(oJ(H-(fQZlX^xjPCO$ zc2I7{KS0k}PYhED-r`kV;5Yzvaqr;7UKWE4kz)%HOKg81;!_zQ2*GcX*Iz>JRDVZR zO6L;4NHnHRN}pT!9)5W`5Z)q+S)alF8%X^cU;eO$7WWCYTX+l{+aqNW!dLGy2;Ku0y`L!3R z+f5_H#f5G4*gM!Ksy5GXqk62~kdEUU2%wm|db#$2y?2 z4w?5rQy6SCl*soF;;Tlmg%Q@8#ys(MEwo~It;~=t8M^7p#(ECL5#az_NAGh;gpZ40 zs_&SbJ!ut6j5=a!a5dN6zye&dXRPMT1gm63=(64$CCMA`W@F-6|x8}#H zus@c|EO?`#sn=Yd^K2>bicl5b@*GKoEpqg^7}XW>0ZMyTFaf!s)dWu&0?pKRlHt+F z>>iC>$q2bbxF89-A%a6VLF-Z0)vKvY4_HP`_v&Kqh)ErS&Q~Mi^L?K0a%ZEDxjPbj zj5~pUMPhY-E0AzwuPue5g27s8O2%Gy7luwC8hvks)G8o6QLiSegmsXSHQd!cR4-s>e$tfkGphk2%;ygQbhFL-ISA40v4pHh36*U3VRc= zmshQ=ir|7-&`HItT0zOYAWWEf540daU=b8wDq9hVjI@D1`jKYqZqig`moL%f`LU8ELU8t944!{54Kw~UVP_N zG(t0amc;mrx;jkkFeDJLgTo*MOa|hXT&bbc97f!z5Q&96&1wmd2M(c2uu<#OYiO*O zPmWnJ)#k|f*JYTmskAECz@hjJe4=vtfLp808pI-9T-dIF0+&-OmKKlKpV`&*V}xKj z-!ASwG~3o!N*#or#mq%Ax?os$=k7e#@qv2%cZSF4r@TDk-17ypY zwN_BQ;L{0V$C`SBaUGz)Ha)jM_Rs-m%XbkkrFe%suR^#pQy-%~c<)fZiJl*B$U8c* zN+kQ8Jon&Jn`1=KrO8$)@IQ&Y0UblH78$^BjWBz}50z%~zd@#q%QSI_bF0EDU?bT3t-9W*p&55~frk|T|Q&!?9nx{*t$TMG7uxg+IOVx?$fDcp37HYJZrCgB_N zXMrhU5OP?yWG9FcDE5)8@_)}m6Ca2&pnKHopu&I2Ly?08l9G$0AGPm)jY>}fH_RZZTD z_D;i}@RB2970>kFTa0-YN-+p6OnjTHnIttB4Zhcy@6sdFy@ z&db<@Fo0QxO+zxaExNIK7H{$aq=&GMe!3(A|AI_#pXn%{rZt{ELn91tOszuCoTx#c zSFY@s-ZG2x&j^jlz=yGwaB9{_3NAs0dmO>fj2E9t$*$8cqKW31eah+g`P$u8H@oK8 zaj9n!ig_s#if2Gu80pN#=djTt5jhNeZd z?eX$=r&eWvo>O!EQ|UNe!5Uc*y3h+2%6Iw3nc=UC`-IZNa}y92_a@Neo=vfjcGCuhUpqgJrhbFWjX8bt#b?Q~cHbDs0YctcD2Kj_Yf^%vK@ zCD1NQi$^ojI20hAZ{DJGNgnvC@H;dvQd(RX7g}ncD&oCF3Lb?k=oLg zdT3To86E~1DigVQ!(iQBJIL~}K?`XecXPA3S6OZ!LX~b1wix^~=Ijlig+c0GUQW9INRsRCPT`^i?_U;og z#chz&bWd)%CV?PaTuj-kFBQ;-Tll@}BydU)*q|?n;JV;-KV|`D-0Zj%NW%~gL7!GN z2VFc^84uo2_kTrc)Zu3b;3`T9g};1m9j8MXgoT^$0cEz#%f2Mx0OhR=ICNlC+URu* zvQr4E7(igg3%u$Uv^oTlUj}P6s0U)HOl%bs$E5~C7Wcb zKEDBkO{m)E!!4&0XF{ZLe|;-{Ikf?UTdMrU_05bYZdGE2=tL>}G_?R-jMU;er2Dl& z3+iRzfJ*3cYZZ+YHV03(0;feqGEu306-70jb=yoD2ZX>i90dx=>Mh|%&)@M1SGh*L z%kt?2HA1m?q8Zt0#Az|{kc3)!Eu6OkWE$}=Q&T)}D`R=A5Vz=nst+|NS!Vtd(#BUo z9(b^tXDSZ*@Jj&_q>$132En9F#Ta;m zz0AX|$0shq+;61k#6_#&xG{kRy%WQhoE!>&&{0dvN4y*5Hvvcl?l@q5J5|@u%I}~Y z^s(#=0zu@D+{BN|-++bQmo1z>hzKTi$?O35wgV`SCD0=v{gFAh4*Ga;3r%h<-I z=Kn#}HG<4^ZUD~nLh}>0u?Y4HyDG5;DBfGW1*%Qyt9&cAP5#;6nzxPjZ&oT}ndZ4S zcyOJI)>Z>UsK-9#`xlbfh|_v#P-A=4TtiBo%p%yV^)YbEP~(NB=csik@AbH`4i9ui zgfFsIYYVPvwu{{gRn$U#$w$?Zc1ZGNh{D{|e9w~+3+y!j2Sjk#KrEcTI5x&}^GkM! z%q73lZ%4;w2FSeuuL2;b+Wj765A`FK(!*oe;!~~(RU@Q4IuDHlnzd0t^eJtSxw4ja zvj;vzewCe9ll-MoZh%M@{yaN??ViV@c?)qjnQ(D)SWU>bf;f_Br38*1bdxrx>#3Y- zeEBqJ15m#9g*y<>S@#s!7)jjy5EF$P z{qEDA`OaR^2tWH=wnUJ_Aq8HCdzEwrh&QAnv7ykspyF~MR!Fl?^fD&Mn&-=f)88ZE zXl2;zgBN`Q-d{9X+-5(gfRoC&7a=5mc$O8i9sJ=KDbSPOqljv`ZGKd*W#j%mt*664 zhDPJ*%)PIe)B!hon^isS6*IA3#=&WJbY>8TtB32!s7BM?FXM&Baclzh>9i@Z=WEq zyT5fwtk+P7NE=-92$ioHkLb87#nao8c&~GtDnbAqAuIhwSo6t|jOwdu%BJ>r0m-G_ z!jTUa*%LRUH-go|=GS)?+bH}jv0ZsUWAO1vW2VF`~}zShc)F%S#Mm`_7}&1yppL#L{SR}_6h*B z9ktR60l7;)c#jTmDB3SJc)qX0$R2%al3V1%%`tBA+E{IQTf9?~U(&Rbc6cWAciT)u zyA#sK9BaR%{Zzc`ZjE?Bv)+*+&;I=4b@S_#S_Dp~7Q`Rx{!ZI5+C$c{LC)r|l4c3p zebLbaZet&x4_(_`+9@b&K3v8MP-l<6k713g^#w9H%#!q^5w?+PXJO{RtU&Pfo#rvK z{U$mA0lD7Ju#6S3JEvYE9`lH=-Se}vGo!Pt;A3y^r^0r+N=0#@_0$@JcitmMP+>SP zTTG>r=l%1Wv?K6$d6or_F>HEkZH7CtJa*ek@bfRy5Yet*R=LZm?IudmmH~s1eX)CT zc6_@7PEpILTUVA+$MkRkSGIRoG5VVdK00Ft8BsodCyUzSY&Il5@e}pP66+V*>Y=I2 zQs!LlcirgF zla_m|;0R$Uk6sC*^k$2s^A|(|cxWv@P&_pC3Cwx9^FBkqA78dD`_mvecVLbgQZBS} z-TuXu&z$FH+s0?M3dO0)(C^?nt!ORS;o$JaKd5Rg!*ZUE_0rfH ztEepL*z8%xYUtW~;rJ>lqsY~=WfWa1OOBcI1X2@@(@<-WIOoKWm$mg!YcNHHy^^iO z?{aX`>zv5SY5@ScWwfoJ!0y&ih`On+?pTkU)OfE~#YOy&CSbtJmw~ z&WFZ5+Rtmnnr0Z#CnvL7piM?wYpf~T+mf-*>)bA%;YubSwc-fwiJ=PE{3r~E`-FBL z>Ku#CI(eC0GLQvTI*&+Z*7vlsarAVV!Oe3Wxn~QGxXy>%>M!+Ud?&!-p`^Q+I9<%8 zlwFq1AM`eDYkQGTS?5!wShW(N<(8u6IL4sxhvohsQPrUs7{c+VO$`nwJzcv7>44+mc-zhuN7<#ORB}9 zy{IT_xbs6Cz$!wNfm*>FCrAR;>zmd0nT_ZwiOj5-)0)bo6~Tx|(!ZkRZ*U437O?1CE`BHASmE-w1o+S*Ol7&KRJ*r%$h znjr@K(YB{hVWE*$l$x$l4LwvejKzI^?d_e-avu4Gg|=|n>d>R3qltCgGMEn?&4oiI zZ%j^3dU|{J!lznqr@?96X__lRj$AU%wzvZkz8s`gy7Wh81=73i>TBWekxpEPl|%L_ z&4cBmk*>tvQ4EVaRE5>$y>l>5^>#8}*PAO%M*a8XFp}i_d-5E(;H#s4heUn%KtrWltBG=Gy4U;s_J1nL)^? zVodXF%iITs$oP4ea*zb`O|zCuU}_z+LdkD>vn0+?D|8O zkD-DVu{TN|8kbY@`Q)Rjy{}k4a>M@Ix&G1J_*k)O0p6(KSzC3=VFa~(c43M3Y&(9R zGr5ui#Q7M^jfC;9$0Lbj9xZ2?C=t8cPQRR8HZs8(!P-%e$M0Ohi%E`YTzq_#1cZDR z!;men5a~5gqNuA071D^o-c83%dcrhjPt$E)URiJY)YIXYE9X<-jtwGP#Qg>s0B&Ly zvs(uTSJ?GJseahn+Pcb!hcf(u>$sju{xL#G<`t34BcTfpET0>4wS(xLZ?66mBWgF! zmw!vuOWa@F|0@r5--!PXUdIJ+6~=v}(aF z_!sk>lf(!&@p>a-J8^>3|4dEYiZK59HuA@00!yZj*#qu@26-MisIK>N`$pd-Mac}9ejKi6E)aH)}zxyN$2~FbmI8RS=xwe#}ftd*)G03 zU=%h2N#Wq?s`0rm0J>O;mfMQWB>8|^RVfjR=h-p!>EvUfy(IES4pNOj7Pc=@9P^mH zaipU-?>SUf_q7)S|K!+fxjqs%7Y@f9@nZ%^Cw_-5b_?G7id_MdgBV~=WGkwu^b!9g zG|Nm0MycQU)6AudDVo-4VJnLEQx`GnfOg?q$<`RXY=9*AV%bw~N5_GmSgx+FBTZho ziUNQCwKSEo?MNzo2t#MmpUs+6o#mzE6&JSBO8CFW!Sj&RAv;`ibM&npCcQA>l53JU zG0@Tnzh1WQVQk00YT4n{q=gN{mY<(rJ1}yqZZx`Ga%zJknWlM?gxrGDT&8R9sH#K= z%c&1Ke)C*@9$8DF%ZIqMw6uit&%a-<@SMA4DYfk~u1&*l(u=GX_$??hc0@^#k32ql zEoAnOJ|4>I^D5j4|Hm#Lo^C1s#mLAA8`0a05tp|7?H{YJ8PIE!G&IPzea%;lqAsmu z`%u)ku0NynAAVyalbJHPngnmpvW1L+Kf@o7?8>an%%NK!t*`D)`)@a*2pk=gs|Mh| z|NXt>lB_i?bTVygZx@(}C6olh*QP^zxO%$QPJQ>P6zp=Vm=w0bn%uLmciGh^)W#|8 z*lk-|gChzF)L;<#3Q`#6SkG&6E~*WzUOIH*=8lpw$nrgh3mJ(IZ+I8bfIgUzYe5t8 ztz;4#5y@2O z5G$7+lovokxDa)@qLR{aHJn=Rbr^4v!X85wDPI2{v8ZkDxs?0plOI~Alg!8^(K)F9 KbJhW?3;zYJsY2iY literal 32772 zcmeFZXH=Ehwk`T0ilw5Kr9vqfN(qVr5)_eGWf_pDC|OV>OOOl_Ew{Rj=vw4#0+b|K zGHM|%5J7SViIQ_(!0QwDKIgo9-)Zgrd+przXnPkbi!aPMLLYtfG4HCWoLawj`&x>k z)+?O;^BhI3!XH@+eqzHni>4}9e3NrHq2-`%W8&a^+0K|!zU*+#(#FBk+;F#(v7NoS zjkTDNq>zZvH5+>ek%PO<92~CM9}^a~`j3wZ+1Qy1^W6Vg4wqVU?Xfx?}e_}BW-T`?&0h3r4s|2whmkx__*C|eR|#1XGzl$A6uS@ zI6e9G%KfjuJ~+(wZtYZp7R#oU>z>8z9$!e3J9~x2!DK2(rZ%lcJEbSI^jZpsnEe-z zmIYbINqn*3{*=J03-!x?@c#ImT8V$~UaL;6z<2pu`zi8+$oE^k@r_cuyjGrkk2$nz zH~D@(aK+E$yMPkQPvra7sQ(GS{^p4BYKk&re0;Pcq|qi{<|fCYlX+{Q(#sK{-vV-ph-g{4+f@`{dSGSf!Qj<=@hLXkCJ750`KN*V=n0(+>xG*=O?D-M_3q=P zbe<5KJXi92QU7G4?_Y)Q)yqSfndTZUB)m5P=tn9N>#Nb>_xiHm8=UFG1s&;*9pnl6&xY8%!&OBUc1qs<3P6bb-6Jh79TP*%Qo7ce#w1t97oGCi8CI>K zD=3`Lw4=T7T3YO_j@7(r@@6?m4Ipx>J@Z=VH$WV-%1dD?(jM)Q>PGMnXU-~1G*_Kp z4!q>j4|S2c`FG{d^~Lh?u~3nc=a3Yt-j>PETaJxR$8T9lc@O`{JPY&F5$-vE|Dxy{ zh=1(eo z@Xm%E!HDk4k5Nw)fkw;~sYk$qrupZRu2 z8@C&0j+gN(s7MW_4&bu9(JQFPwInU^&UeyPlfRzi>KZNDrAp%lI+A3Ld{9(bMaf?v ziT2FIY)^#gc&S7g>qhCvJd)odZ`uLT1ca`oyahy7{R;R5aOW|EOvl5}xf<^WU?PLP z8<-B4Yj&u7d9^k{dFw_%-I)JGbQd%=C6s%F-xREH?RY4$UHpHy+l4ub@-5*lK%xU0 z7Ghze_C2{Tf;?|Y5Cipp3Sw^X-GNO0O5*Y#W1~gu=MT# zFwZ%odSfoW)xgi1|F&-L*E3~aw2ap9F<0Tdz))9{IJ9i&I6z zz@ymU>g{c`)}_2}$qQN!FHnnG!ug>v@~SYmcdHoNukt7g%`Wu7vMXXWKNzu6W{-#| zwti!d)9>t@n_5_y<8>Q&68E-!dI{K4*?)v9g0x%FKkn zM*g{X`_wrL%3J3pu&GYml}G#6z8D^BxXMUx$W1LAD=w+z0>ESv!`bckI&;SF<&NhKRjSgP zomDqTc4p_-I8+{Pl4mbY`n0FjW9jj4jOpCc8UNg5u$~WyRB|x2GqZ=5Zk2z`=G9BuMQ5w5 zI0Q=*Y`WTJ6=@OIfuuy)h(o_+c0B4VK9HYT)WB`;?&i2v?%`JNhdmuW_x=7daPD}> zXm<8;qfHEZMNACTJJeI&{>Nd@zU}p<^!W6-zVWBW=?hZ_g#4IUCpc!ii}!C2U-8EL z;m(UqdDe90d&$@QweOX2UKGz9OphvKqt4S6y;;0Zj@O%>NSc1>F}44;(`Q*XksFS4 zz4Yja#lF$3tai2wHAz=&=d%Lz=lW&<_HS-f$#N2u^%^fVR4s9=6_iDa?Od8pqbT)4 z6xxx$%PhK#eUU00?N8*NA2wh=F;nqHioelXSLH}v$X4$(D<2u!w-5I_zI~wEb|A>k z^oBfD;{ z=C9QoukO***WS{nD0snLwoIDg)aXZFPsLm$@hz(Uf+p`xwyj0O`4M`~7wx{?D(uR3 z8}ys_ezwW`c6F|s?fhJifeN?h_otm-r0Da*OMRmY)2jY@$>w4!sI(%y$fbKNo>INd z^RZS?oRt+&Y!lU`zKM%ZLrOww!%P)`le&#F^|Rk_B& zdGfwhs^%Zd8%XXPNV#ul^Y=fW&7fXxPtrC~IOedAchAU2nt~ zsC4dK?rQF;Ugk3+M!A!;y*^3}skWJisPld>Z=IO=A;pgm_CJbnPuA+q_Enc!gL3nvFd zm_2fZqwtXR5>*8`9bP$p zH-40(knCATtqLbbaDYubjbIYRm(>f;^WfYj8FG#nsyO_5TQS zIy2Rrk!ptEsfL@ca%b9#)Q=|>(RMhUHVKKZYfV&*F!VFXb}C%wG$XWDKC0&X*TSL? z8xBluuxv~Zn%2uG&D($Dte*y+YNVHp8U?i9D=~`>Eb2eC}B-2?aSezN(P)>@Lm6*HBSZzLE(GJa~ z{DmpTp8LKb54)9FP9M*j?e3iIp_@i14`uS#yA8K5vTjuB4vuZIq{`2sV2=E_ncqeizR5wam7%WirPZL8cr5GhdGACKs&eGI@R-zaKR>*S`J%k7Va##Ibu4VjQ{$ zGZ*LVQdr~_FQ4S3s=S?B6!=sQ-gebM6-jk@rRTItPq#O0bTm&hK; z-WNuRx%cL$o5Zv|XYEqHiteXgt@4^vANwp;$njHRemJ-7pSDYnq&RNvrbar*(%lVp z)EJv;ER34j<)s%lr$}pENT||^q+UcxPwRTE&mWy}YR%R9Ew|pJP(Ow$NF}De zce^YzcB|*YJipuU#T@T2)9@E=({?HE0=9TpJ-fS^E;Y38k&jIJzLlK%N3{*_8Xo$E zIy7m?zkzz#+2VHJ?|@BSko3G|MY`2lW_{bvOT`VT3P)Pr9v!L?ob99=T8!+E=2=>> z5j9f_>ZKxG%`Z5CV7aHMub}TKIa{50Z-3tWfV$G#xI|Td9f9743$v?7t~m6aXR^yo z)pg!jP1`7UP}ZjTSms<`yXo+!C&tk$y&JlIxkSy}m7V381%46CI2fhj^!>4ATD7Jd z^Y?iBHHS*8Ritjbu9 zS>dZ2u}nQHIzLd@Jy9N-xiU~-mO1|HCnXx(flq0l>`;b5W+oM>gqzN=Z06e% zFguj2h``Ah`Nn8n^pDGR0)1v2ee?EH>c#7m56^6nItUues5|IBi}G}bF@B!)KGtJc4w0y$us6TRx(ax<64LRz=jw6Jq)xrf4< zc_n^??GZWa+{2P%pA3g%gf7xv2BLV8T zhpeNvBRx`&JL5Bu{O)(Ct1740Jqzs1t~k@xy(03P!$4ruwd1z#qlJtUoLfKqainfH zpx8|2M(TnQ0*_#e*CIXC^ZHl;YvKKOJlZz7M&Yi-rK^;YlyzQ%X4CgL?Am^}6G30X zE8*??Kb@)9B+co>Vbykeh;Ne=1<_}iWivfw9K9m)Rb0A`ZKDyry`x5#ANV%a!Y|at zFnMv#n17`=7H(x^Vc?zcnp0Jk}{v#3MBvnrg1@>rJIfrjV zgzz@nL=2>;jy1OO#p`nRpa!mf4f3vh%gKiVe7}E@aZbjruFGt+5!SCOmCYX882R#Q zbJmQ1NG1b`<7@_uiD!DYFEW!}4A0x1YD1^6ZaiXy|S&D$vBgwc3od zb^5B)0N4_8MByHBY%3#YZPy&4{2aT381uvY(=EDsi*7aA454h;w0Adr)lmMl&rXJQ z_SOR|J)vSKR*mA*id9xq>SS>QddAD>NF$32!-nNWYY*_OJE)f9!kSmQRzC2UMDuxf z>G=Ue)q0t!ed#oy=4dR7=-i~@BWckf@%^qtneF4%ni=`KluqkVqOB8FI{8Rx zZc6#2k4i(D;!wUELPK&TOF;$#ms!nD_cwKq7t$MPA2zBEy?ySosV3oKMX`+}wOyex zy>K|#x|t@?vQHy4G2b(3X`nwbAZ!Db$M_j(E==SKtv^xtk?PUk5GFeVuh0w@ldH6- zR5d&vjFa2T-LCoqqr->OxGmJ4PuJ!myyDI3-Bju4&8k~M5|<_u8JRsC(^fgQ6)zPt zGb1HaR__*v4~V%ArWut-b`E9J!<>aQR;`c^0w#*ApXoQCr+hin;+FX9NYc04#{4V1 zZ5kXZ+dJM|X52f#q5fBdTY}cMqti`YCajTN$x^>ihpj4Jv^%xkD74C(rLnO3dQnyB zDq*zTsWai%U)M!AfgPV8n(v$5PKoov2@dySzc>wmf)r4xWcDX?{=NCWpVxSq0iHZC z*=djlE_-c0{Ly1dp*!$-9p^}?M2X63c}1j;$nFQfJ^=%t{P!=6lU%$AyJy*k^1bRA zR9jKzbW6K)y|yXu@!MOD|6!epMGP+XYj2P(!#!) z{hB=-u6Nx$xyg>fp}XZ)+gn@WR(+tGBTaAk~hZ2pqs+_Y*!?vWt#sN~Hn)V5AxIT#PQgY+EECJ!VRuKnlN=l3sokC#R> zu`xlW;qA_Cg`Ax8tg=h)6|dCCW;zPFOsElcVvy&2q|fO!IP|?@=(}wdwr)r}AhngM zx*eY(#C9n@>16WzwG2N^zUL?Xhy#8BDIp$oAmOx7&YOMAFGu&zP9~P9tfbOR8NBqX z3Hv=YcRHwzjeKC_&GR*92ZXVEcNb&Tga6*?#&c(vevV7#$RF?%=Hscs`!X!^Q_4GC zBKJ{CV*$zPEaiadKgmDeepsO1rK2;c=$^;JBhBJL_FwQb`SCZCHHDAkp8Ke5kV&mO z)A4>?iOQ-U?A*h4x+=|!xwp6BFo0%z`uLY(IVw;?@!(m#U)-zCG8}8S=Ifq9>{`uQ zP=y^TZ@bN|0GF?KtnK8?->3h=VJI{;X^5Nh^xbB9aEg^Voln;`RqhU#fYmA{n&_%3U*zO^o2BY6-88H#I@a$S#!kI9O|PdNNL2FIj&kW3e0HCv5f3xpuhGg{ zumlotgbpN=G}nd_E;d1c&C_9k*lA2&>tg!M+o3GRt|cwY{LxQ)8HJnyA?v&wKoYi{ z%3hr7{O4ZUM%mNhu6)|=w)0FDd3DqYq^eQ$-Y9!?+tEYYq>q}{CIACetv!x3Z!(-i zA4u0lS}S~+xAzo>+s6G%R3!HfDUJXtf5tHBaM8gOo~1cWTXuqZqZF1F8Nyyc(leLr zDijzGCHN|pHSt`L7h(-}f8w&?>5mVv%=Z}cS_;S+I|EL`qXu7#Xg;ieLvUWqk^j!P> z&f8qH;~NDvsJuA~+u6j+yHK_s%(k=}%47({@~qzB+vIF8_I_RAVy>ejpiSf}Eta1O zoUfx^epvuWbT#ft&XQ;H$a`3onYBrXU_D5KKdzxX8LZL0ZzV&Skq(!8NtiQVh)p>A z&d^YIJG;TO<)?qWit}LlWS#r?3+G|OKSu5g`@@N%BB_;^lGkjeiG4Yp-kh#A==}8r zV{twJpv~;GL~Cg1wLe7m&v>)mtM;bOlhxy4U|rn?&ML7>1D@nZ>gN`NpcKE|x*#-L z89^%U4YEfihu&ft$^!>FSIQ%;>{|d=(%UMBhNPj_ZYnaXMqjG8f;Y48b^BWH#fAG^ zR5h4w`E^qae#U4KztrIQILZaDTpcmCkbWGj-BdLohuKr>Y{6|u;(i^o ztx&+`QN=Z{FNnHa6A_$QoJUziBI)`QEI*aMM~NjeYts`(Kf$T2VURoUCnYaf54hU8 zq_RQ!(CmCG+0f(g-PGMSxqd*IcI|f=fH0zGQqBdH+7kCwgt?E`&BhA+*&v59!4gA?1Vb5zxcYu>!ejKPwe%-a= z{U9cI?Y{(J(<^d;Zm5~dVaIsUgl=-P8S9H>z#9_t^>I&6cKkx2%#!=qSP5gUpMPPV zQ?-SKiaObtP7Di`g8RhTF*sPDr9@luqyCUQ4Y&p^_t zq=1o1)qt>{yv?z8F)<%DC{8sTKn>FQ*SdRGDDPd*tr|PWO7625IyYZX`YG?*ZN$Yx zX|TPmVh(0wu?D=R;Xwof%=I!XViB#Wn7?wT1lVpuWx##iY;3-jT>I7KwTI*jA8-XU zUB5aukb-da>l6zm9(O@QK`4_a6Z}VdW3dVXB^nu#ds@8YGH2S2GP`KEIL`R%ots@< zS{QToIh=Rl0NT`g;MokKt`t2&b3pOp#fzjDp4`FWUeaXGe_zm_oy-68v8#lR{QE9e zplu$GrN*Kv;}`1TWY-f`Sng9IbU{lu}B3hKj#7A9lX|_02pFy1}Ao zZ(R~16;l`_VsK{uf?&N>M&~U~n!3u_#oz5EmYCzFxyZLtYz61F-A6kOmdwD>5p}S z=ba9Ezp6;MI94Rb(fAnf+}8YBhBbNkek^op9dHH^#pW4buX6V=m-f5Hr>Gf*Q*+u| z(QgRgb90?-H<1nt0`yj}m$T>2nk2XV1qP76)*!+%%e?+BMcwnD+@_RNjy|p1`?Gh$ zC0LM{n3LrgbNs}bncir|L?t$fiaZ2*tSf+D<~mP+-noIZX!_t03doCeb_LKYRTR@3 z1kiGM;TO@4=8n#_cP~8VpZ%0G+ug3LNEH*u7W zy6NNdtH`svG)k}#CVMfPuO}?PGSk>@;wvNEjgJ5?QEz_*_@q*k%ax?3Q-z%T{Rz5G z+ao1=n=IvO4Y}q*DaDORj?7k&z~N@v)I=0uRc-TpXT2F-$A?X za6Z^l#VsD=qR%Q{d6rsH6;mdw7=B#1E)Qd z_wAJSdkVuXq-bfh3V6V!>9ohY4}?S2W90s+Cb8v;7y6NBJ7s9PHp&V4vf7T-hOJkq z?LKg{lMi-=<&6A+!is^a@L-A(F_rBk@%AT#kSJ24OL73H4krQcKG9XbMzXPU2ck$5 znVl|RrEfFYC$*{Emu&-g;BUuoD=oTDeE&-Kxx>DVChIZh-ob=pzPw9g5f2B#m>Q&4 zYpQxK^b^KKH$cdkpEV{tYYtz@$Ej3@lrnwkS(%CQ7n+I5m6Wnoz(pqpQG-fzTB@{*qH0)Xw)_?unBui9hY9%c;;S8DzP^#dU&J*V0%*5AICwixmT`u1Np78eX z1uO}dp)W4biPNu_pTtt08JnnN`0MhSMuh#q@kpA*6_EZ^)z+#`u8+Jog#_kQ-}(JH zIuOG6rL;QMpCfs$eB|+w(O_THa`^hfv7aP=-)P;8&bSnspQeh60 z+R!Hi)k7ht<{}HlQ<(SZzMuwohJ~@{A^GDlEAgbBaK&)Y#pW+NpPa%DQ);^4|1y^r zU*ySVj(_RAxv^MfWjPa}JGfj~f)|Xm^oV@Y(k}FCj*Ne1{JxsE(UKnOa1IWPXE$p> zRa^cKp{#vDHhG;Jy$+3XQf>2K=DOqmD;Y zs)zT1p+Lm3o9%*QnB^hfJdDeeot>yO6b`vBbjGPA6G@FKMG3O?=I{FMA}}eewzw)h z@Z`j3QK6?7*c-iKAeF*!bX%3eT)P$gwf1Co2SY!0e-BU?AfnlysM9W z7bZ*NzWmv?cZ}R=J`i^GP$Rv5ip>Dg^howtkoYTXM(G`x_$DyZb`9nXqz0)0HK*;A zw?!b>m#cm}z4cCBVslx86*o5GTe$C~NX}f&uY<9jMD|qt3Y1#QW zJPBzemlt6DKm!@-T)eY^fQuOant1x79rwRka9KV^0RbOawZ z`oYeN>kYA8eCy(o%!7K;`7lfqoG!x17Wzn*u+B*Yqa^dNeF2hJ;4G|BOX{R z^i>Rx9gBXuI6&07Jx~_ofQ^MWtJlwW=Cgzkx3> z@{xh@tA!KYW{l%ze!k&6T|HS*2Q$$!X#(aiS?suOMz+p4fH%VZ9Q$e(Gjp&cfq!vX zpRUn4fH?I+J^IDN3>EZJA8MNl-p=rt(yn-V9OX_i7G#D62}YWE4Lub`+dE>gZAEq0 zK6K9Y-A zL#`WtfW8h{rR{$Jtpl_hnk4gMld!iq~_ zXdT*CX-1=kbnsR6m+z3!m$1B7TO&L)loof$$wCH%f2GRnRAePdtuv4eqY@Va?w~#3 z4w9Zwvuz?&o9ZdbyZCBjx=Y9OhmD}4h-r6>{=&JNu$NEo@PVNx4;)-!cpvpb80vaF zBuUd|qeD4jsGy8mTE>F8k80py_{#_pDowj@5hIQ+tD$wsW=8W^@UiTyZAqt=#m+xsSZGP^Yfq@0L zH{0@uV5}%~kx+<-s6}OE8Ojw1UA!k~NWF$YG}Q%>iaF|o9R`CgR_dEG^GxFQ4GRPi z!J2AKPSr7rYU{Vo+P_Wu?Z6gl{VDv476hde-=7dfiq((ViY_A-NA!|BdCy09&#$Cd zY{|vvsj7QWR2*{_l3FGIfn2kKInEEy260T@%R)KZiNWCKzq3=v=@;+Y-(Cur?|Jy^ z*@1qLP$U>d)->5E5+Zq*rxy9ZbAQvT$fc6FC8~ z2pMPi4pQ=tWdYw=|@OzKalP7l73$7?}5qJxr2|Co7WI${O6Z%pc)UC>Nr zlLa_mh{UXG;}^E#Qo}y##u;>g+B?u53SotQ%%=9@{e_oHvt_U=C9YMw)m#x3mKPGX zpN+)Dp&N&bEbDKmAF6wSt58DpM5y-l6|1a(Lh478!LG>`8xwfls(1rcuGQkQ44>Sl zm(6wSbd&mkn2d=MOe-oJ?Gk(ueSf5#Ec1|L$AixCGNdV7iii+0^2w9-;Yo{U+is$9 zO&|ZF$e|U9_omL5Zjgd(*%zsYT#CGC+(jpa?$DIw7cG4q%NH9@jNlcVM!>lJ@6P8w z#R!h_ifx(v<$C1pGv|klX1nNHHBRfyu7NaYFQ`SM&QC8C1IP+!6PciRs%wuj+eTPB zMO{cQJ#u2r+h!;7a-#iL$fJ`H1$pC%{s7>#<>gn9WxfeqYbh)r>AxS3?J`=3H=;LM zACOuDrQ$nuATnBlnS(Zk<7&$y9RcGSZInnkTz+a3DT<3B##tSETciqOz(s0Lwz<^`iG{+kwp=*@`DQ_>fy$Y4M`b6RZ}=4)T}Z zt)hD_&;-->Nv$c+RAONZPFrH~qcunNMD1u_jM2w!bTqffPl+<*|GsAb-JnYO0Q;_R zW|uG)0_>)Qr4}RsBq4+A3l2k3x;VT<6Dw09>^jnhyLwqTNE)z8XR$SZA)fd*WTLH3`!Xkpr*|%KewH$kH!mUg3J4u4EV6<{kU}_3RYz=e7U+R{Y1q#cZ<4 zn>B%E?D4_8nRaw3g3$g=iH2xaa{RN{_}xu30Grb!Vo>sSjaC`P(P2)-bxBwFTTwDb z7>%^O+XiK@P(E{PqQ6%7VwS^x5nj|jPe=seb!)%N4>Z(hGEkRfju8kIKt}1AwwnNP zZYf3RG@#o)+hv*h^&~)*&lwenTAp|&5lDct*I1e#qTNkQD3%(TR;xx;OD+F!@wRnztUc;i#% z=P(^%#s*Cc4>TjqDa8V@?){<1H%Rg*9!&a^)(P2Z*+1574i?{w3xLYS1>$wmFdC5q z`>WeS?iGH$?^W{N!*_|Ycx)6;G8fj9YEdl!C94X}9b++>!+G<;djQq80!88-=qTVE z0h=*b)!UlyrJ;5C)~3Fm6*4cPyx95JI$ zkN1bqJAxLPc~^Am5w~P@&x%8ndCVur++8a2JTkStqeL*2!fXr4GJf?#TKl)Eh-KXy zhoPp-fnSLord~UKXM=Jyz~iG)!P3QFE)Ab!#Xqa9vq+16oqPChrP&wo74A%!h)IiU zkD$oVY5>IOL{w+4tea+YZ>-H1&TCPxrkNN}o(oxh*x?Mm z0PR2OUr*$UG+HWTJ1Lx4l=O``)5<9b>M1t`oMtzMqDqJ7j%{4 zols$9Wo0E_QAvXoT}3ur+`MATlB%cVPsU`}CTc0a(r&29zHHEqb@5K?Hl~(=_1npm z2wt%=J!}7uZEmc2@f_1jiUQYwc+{+5e6CaVruNkrG>sv8DiMf{LlabzZ!^D&5{Tfw z{(dowsu=i=thRM#m*};&g5BFE z_&uh{zJNVdHTWoZIrv~^CvDrIOY*nDfWh58hqFJza@#vQcp;{J)ebjcS$2cClrP6z znWIJH-+-C&hWm{TXwa?>fDQ6X9xFaz+U2JSm1?}Nwn-4Lf~Z+}Bsb>Jh|>w-YSN>B zZw92u7Q<-Q;okf!I`L4#lDo<-&U8q_+{tC~#&Z@I=2d0&tPt3fJF8|p4MxrOGrJ}7L6dy2M{w<)>rX7h-n9N?&h-WI{XjA;QQ*yz z*?#W;nSC=wq@4XINoFSWUB2Do0S~srH{Ghyf74csYMfcV$^P~40y#pg(zR8vP&pW; zTR(M}s}gGZ2r@O%QRGvG2paJG(J=w+rU{9}h(|&J`q#~AU_ug*IgbBl?2@{wVqG*W~qDaXEv`1S8u zTDe9px*Mc&L&t9*1lu56XM8HiA_TQvxaV9iBoMP?pbZ4Me{U2B!z>2|84_8TZj}@J za`eh`W;5P;*m>u1#cpRdcL`k2s`T6ZvxK~w%`4nXS8?)WG||u=LMnZI1*3h0DyJEJ zFMmo#S{Qe!*O$MS8!gV#ldf!D_x6Tp&RKapH-xfmsM0jdE2GBb_Ox+*e8?40w98AH zWJof0%D!EEpH0r_Nt)4(RUCot>=(vhh9uhrF=sKb8Fm6P=SIsEcj-ap?^f z%h?zsH32&|2Y&{xu%92ySdJ+`738@wzbXM6RK+|?awkpE?|8ay|`zMfzW@M?SQjv%MX(!0LQ%DsC)uR zC2tzDEpi_(I`iUj*mvkS(RL+jCh8-w6l^K$hrbG8e3wjMDnDLZ{ND}-D{FTJOn*jX zSl&iI4W0e#gmbQSWBQUzRk~s|#>qBf4%b)~125dJoli)lm}+qwPTqU``F0V*KS>Nn zXfr0mFAb2Tko_5KNGrjG9+N>?dh4VB4?dC?4 zrnk1dQGb1ex2YNd!VzWonu&XP;;LAxaD_;`&;p#$?BI03) z6>>lvE@ZeS`MLZnG6=-Oz@Sk825FDUxJ`Wqyox|z-?LF>LhTCzH~TJGX*^0PAQw9D zwf>>M2A}Nt5=OSbbZ4P!({Fs&m!_x(9&JmZo_ zdV^cN6~-{|jQ&CmW{~?qd29tuIGn%a*^Nx|;8&6M)n#|Ohu|<}-1eWJcudvzNEv+g z7%k)kH?_kK_Qaz=A|JPNldbZO@zvTar>{V)peP3TOJFcvQ(EwC+h49&-FWJSU7lX` z*C^$XCWlI8=-@p4c(xsLFgxbh=ZnE=u{%4Qv}m1J=dv~Yp=$bCW-H)V?nn<$cFJ5g z0;u?ck=ZA=ICS>i-RjLedO?fjEqpcFdAOw>P%MAkaqRoo=P3;qv1FN5FpSVDmwSEE zqA#%gMO2j-FGCQ~t5l*@S|J&kp$9Hxea}oTW^7ekRh`>#u04Y{fJY%5Z+I}R>Krfs zUv>`xXGkc;{LT2ml+U8BbG^|ek0#cyl@F$^cr0)ot)G+%Om`??EGrSKBeEP16W10X zS{V1f4ERD!Xv2g>g6X2&o}l z@rxBnSBi+I8yAVJI?9mH_}v3{=H83zke zv%An@+BFO-YIRkK)rhaa)F97t^2MbR_djDf|Ne>(uSAQM)4ix9n2L&QLUrv1wcEnk zQ98XrI_@k-J()8E?UA^yvB6QrCiWgN# z`sEEr>ZcXgFo5U^WDb_B)))w@lz<{0biSJ{udP=&`Ea`*r@qT?3edeN`i6EldQPQu z*5(t2ZhW$uMn#G2_z{y2lhZB&#>v(aGUfuQ6M}JSXocfU1a2 zKmf4)q4dMx-3fG~aiiksVw+zQkXtpQXwdqhBRdXxRuZ*a$e~SD31rNFY-6lddVN%< zI3@l9X+Zq>DIXOYnXX@57KR@zPr7&b$bBh)ZDY8qKs*Gch01(`=&8gVX6C3d#&a8A z@i6{1)c4ne4*cWC?8QoD=uH=Dp~CAnyt*jK04X0cDiL&(!)p zjHm~@Hz7&w50^uD;#EMNsWl6t%)-AQTM-vlAhlKd>I^?HBmm>CFh~2oSJ6=k2?+y7 z6?Dqi7DOxzn3B;(8V_FjGXXsiGjsyzd_w#S(=_lnd}^nw5o7;Ty}hR%eb&&m@&k&* z?+f8ajwYxKldrIpd*|hCnuNbf6poYedNdaq)W}Pqy&jY}r)gw-a&{cuaJxNb*MZCu zD^St#6xzQemzRJt7$MZl2!Xf^xIO^#gSVZ&w}Q1;v@|uR={6YJpM94P#YejK_1>2$ z2ps5eTGyLBe`xn^6=x^GtAN=A_Y5HKDvxix{i=LRE2qKq*HgQUpFccOj9E4s4~lA? z8cZdgoU483Q(M)_rFIw*Jj9)e(5gDh6qay~xO{utcEQb5X^DNAOaKW2#0-E4(ZrGf zt=TOg#UY*vUsW0kCIJWeUr3_W-F^<(vR2nKgP(CI9R!xX3@$_s=`Ci93@_M*=%4 zIwk$d1&FnI0$HDt3PT^Vp4&)KZ*%_?)L6J4?FZbsO^C<`W8Z6D#5|l;b z0i3cTVD;pZ8`pbuO)(h-($~;n&i~~=>o&Djib9!2gn1wx|M0oRi~2-qUPO2Y^*>q7 zroh9(TwZL;jh4M|60^$K4vECvDIFT*L_()gE@H?vEw&~rioxqi74;$q^ql$>=iSUwDNHUl~?$)#uh_OnmIegehbME25M=qOC_ngn7C75Oo z{xa-2oeecnmjW%VR$mGe#8(e(_rch-gjW@-+DLvwWzTGroNo2!*%wIwwx$kvsH*BVq6q0rVRB-XXiXT3OgtzVYhV@pt5O~vKKOT8= z!x_NM5D+_E^MD~KBy*C(G0rh%XYBsTmwNucId-GGv*)7m>j}FE@IAa_i;pyzJ&((s zYS6ZL^%C8}I|M+vPF8E$12A=wLrGpJ&}lqGY{j8#nM6}R-jRiqIv`Ww=TkuBkLY?J z_T>{I=i*H-lcYk9@%KI)XmkDsVB97#G;epN@2zbIkyO}7r@v$4!i+(;`D>T*NW#ky zpp0{9m=Z@`dV*-e0OfQyIXZ>rFxYUI5MA0LPZ{joM-Lsp%?^+b5W&A|<2KPw-F#M} z^x`|i)`f~>(7qO6Re{8rWgZI8pFho9E~B!YtX{jQ-P^2k^fz+3bet~}hawr>-V-2k z=G_sQNf-uIy69+UE(-{@d~{2HO}wH?Sk=EV_&{=r5C&pmqg`6q#Xdt%BP*Fd-#i?= zd#i6hXZ}o~#FRtub}Ybk4!vvdKCYSA?D+jLG#5#XF@IhEu-n}Usu8kiQC^ImVs z4e8|=@WEK8$7NH@e30EiTyvai^;#lmo;P}>nXJB-3|LUKyg|~7`xEw!WKuG;j`)Bs z$CGVhCQ2rOmv582)LRp;OHMREa5{2$Qu=kp0qTZ7Y56ugDSD2FpdBKv`r-C^MMOI~ z&%ao-Gb$^~rQ`FiS7c|P_afuBa|KFFaP%0okNF3Ld9y`wKl&|>=sw3Lg8N=>NSF+V z+Jil$Ep2PTNmt6<$tASo8_0YvZsHC`)ND#aUvhRyR}&2jb7|pK7Gx3f|9` zDu-a?=|`{T-#xA3zRGA9Qx0_3D=-(oQCjWa4Y26rcRD93$?R{7d&-agSz0Y0supEm;Dy-w7x78TbrB(Grl#p=&ntx%apd z7U(sUKH&Ap!4V`nZ|2AOS5HX`u)k3vbFv2HN7d~hli>ZQb~v7=b>ir&G9dhgczcp8 zkx)fQ?S~BI2Nns>iK-@sI^6SVFFinC;NLA(CrlF;-PtK1u^OskfCe$tEjSGV{$dlq zf;0}sQE2Q{umc}#ggj<3_JB(Jj!|aB_#@4!SpUkC*rEn>Wyec3vBC|6`0aVy@ko)j zOp4%qCq6kRlu65}mBxMj`%`jI#2Lm4{}q-osZA%TjIywf9S@_129 zDAO3X3}~U?I2CAv8LhIWp|&UY*HadyoCZ8)vLWte>9456P|BQdK`#-r^^iGZA1qEG zM%q^>@bfBw%~*U`L@2%qU>HY8*#BgWk-SpGS8|XJI$5+Q6h08>?cTy51sSE;HSp^z~ey_iqok;ghF;=l+_DC+DHd%hvWJ2J81Wz&j|V#A|H`8f z!AnFdhaAa7T1y5PSM|hzsceY!j$gfT&;;FW82!ouRrHv2UTju5-QpUJ_gA(-KK(+N zA0C*79u20uq}!thsT)b}A;-4ME2F1M*R{d#%71{CMz9!4d#`z2qLTZU(1#zoE`mIG zpwZtI(d^VXC{-2$9Q#OW=xx*kHZ^+)Ux9uwHAQ-}m1q%j7-Pg11H(GAy{l6Xkps$9 zm`jO<&Oj5P*WRybb!{Ou3r{9U6%5ywiC>WR4o>~Fhe1YCR!E6YzPTW+C+$$|vmf2Q$*l z70sE{NP3!LULddd22Mf_)=_sHGK4f7tj)70n^~&TRppe?Hkci>!3&fhLa@+DbsPS7 z3qGwq(M$REhUEoX7PJg|2C#4UWsXNIM_LVTSEJ-&fkGz{>H>OWI&opnDn$GX?zAd6 zKK)Dbn8tuFmC5QZi*?Q$ zMC44I8=LEAtXPM}dgNuyC8e6h>uk-~w3jwNysU>ZM%chf1ou0jFw4q1*FlLNMYFjb zN@IYyf2RU=9Q=WaQM>ZrF_!=hT;w;hLpG2!U33=IU>VA`A+g@<4E!2`0z?&tYY#6b z!=N1|0-@8GrM1KGBZ|mnEeNpL*7@ICopi~ALyxqZh$&;^&T)IqnImsx;>1WZ_sx7f z5nkcY-6wYk6S0^yWM4}*P_ba5)gsHe13cu+7!px3xHLSy?Xq<1$tk|2X)nfJpXH4BkytBI=0`3x-MvmbWRNbR_Wq8?h^Tu;L=8Fr!r^s~DU#IyR78;8Po66EsAU#RfKX5Nw#?th1_~b%bWwP(hc`qgHSu%4NnH0+o8*U zh!$}(;!>btCn`gzKZ8#aNk`Rd$mJW-mGwQ+2s{vf5n_D??PPLK9DjIeE#?y6{s}cj z_tn4u362f*)9Z8enIXcUpz z5;E+D=h)Q&3A|N?vQCCjOB)2Z|CaP^0kJ(6v9u*%#YQfFrBE#*WQ?l0vx~#+n5vw| z*t^x(s(p~jURsM$$ZpKFTBYGA$4)ZrxRNTU0+HLGN^B+=1sbQs^ZgF*$v&khy$+#1*ao(c&7}y&C*JX_n8YAjtO6G+ELq&>c?et(B zud1>f$DsMxaf}E2HuS7Sd_E%!CWL66AC}zaBAZV>Y3@)aqcA^JXi@8tj2oX-BgZ_Trdl43L%_@z5$R6Vlb9|Avz4p( z$OSp^!eyH=K7;` zW;dLRKoTQ^SBtm=QJ^K|_ zO{1?DM&2Ln&?Vx3e~=|KP^;G`1%z1H+8Xg>>mvcz`s3+>8A=%VB?wHg=*cM#x|gQ* zORQI#A{56Irh~2D{?=P3g5$;vm$m`M)xHeiLt?Q^y8tmO-sgv?*a4$zn^m<|;Y7(T z(6k#(R@0Z|EAm!YcJWBugK&V@V>#wia;xgJ1`7<6ZgE?3guH0GcLVUF*(HgVK+Ct6 z(O(AliLgdR>VP`mCX-cX*Y!v$Zjm)`JJx}X$lBZQa|W>3KpKMR^tubDdSJu?Kn8gs z$a4-RT_p>3{obSBBgw4clfCz!?uMGf0h3wGh2g?cs3@P^_YYYenTez(PQzg_X|*a- zjfuqlsz*BMIIDs$I+T_=X2Egk_3V>1<)@*P!)zpU!1WffKSY#Nx%)!LE{1tDFOE#Z ztZqe?Bk|~s5NLnvW$ho;uC|t@a(->6%d6$g;7`osolhO3`63)|N|A}Q^T$%U^8aX zF{jLaP8Wx$9KS=NiVYk@Jn5zX8Grq(z@Ks|&JgR55yTLh8-HyzZ+~JUlhy1e?C388 z83q-J2BJo%lYYSjA}|u134(4mPaYBnl*Ih7RXA{j;svNTy0w+Y>wg-Z*ll7_&^l6G zIKZ{D{5bu}BZV66XuL}`Ca?D~%DnUkuG&LyJ(SHaoTEloYfR7OGC3;(CtzsmorTp| zU>AJN07o!FZW1a&)P9Teh-czywjCe47Uze{z?%7iGUg-4k)ri=PE#{r6{p^t0T)WS z9YZB7thB>5r>E+kliOC3(806BG{sIcY&_}6=E+No5M~D#lNuQ(S>ziRQTs|ia&g-H zHI$}l%NqF&d0UND!$1b+^5T>aIg4c!0e+>pAG+?0B2s=6f)IEx@9#e;Y_rY{E1w>+g%RWjJhLIgoBD-vTMX9X-HF06I<5pKJn;ixreC zezdAQ=Hnyfp}g$64QL6{S89=T58abmalr zhA7 z*P9zh-*I31{q7y()gOlgiaK@9-fOSD)|}r~RjmJ2GMq_$IFClR`sCz|6$i(FdHxAQ@_(Nsxq9ePBnfEme4hge2YI6#RlC;@L^QvOg**`Hhr9xC;%lRES zL~pNOA=eY`-yQ<3_pNxoO^Sndrti=M)IDKg0tqR#rh3cORnQi0kH6wq$f34gN57`> z75sca0zvr%SO&4JkJm~<#t_4w;EY<%c4hAB7oXj&(B%bGLDHAwnf~P(q6EBn3yW~& zPqiuNWQeJH3hUjM)ZMPUB9otNP4wnP(6+GW5#zGnh%)S2rId*2d}86_(m>R&fYKd3 zXXKV*@>O@BkAD9+yr-l(LRcx~2eYJt(ZitUFm;uLJcV~~sB>4ycf1QbZu2Qq*CupP zA%D*x6O)+D5NVf4ijmHh2vtOaQz;5qNNy(TiGUOfuoS^+5yx!4J#ZDcfNwU&&rpS8 zl_8ed1+x)l6oou|xyn;F>GV%VK-9sMLg$SX3mo2af#`&OgxB>P_&<)tZ`~ag=9y zp<*OK+}GR>@Ba_gy8jW8sG->8W-(k~@i~VO7^b@P8cv#X>xaO3slNg|lfFXN;qPY0 zYeTx?WTcr$46L_kN}$mOi?Y|`FAH{Vx)IjJga|m|P||^j8vR+?p`GJv)CVc6zP zln@(SCq#-k?=T?I>VKsh(H1Y36_4|Yf~%6~H{lHgy^#EQVJrrQpM$j}VCaP3IXUe| zITu^}fZl2T;x|kfUg4iCWA~o=RlGw~!-)(Ou0XZClXL8Wd`2dqZn0h$m$DK7OPk z6yH;!?n{_h{xY#}!;f^|V}#7aqBOY(egbqKNDhMl0&z{}Yb7G25A01}8@Hs5XhhzLCrvTi-xR1Am`nM@x5*_fd-q4+e z7xA^Nw~}A%v-c&{OxPs=B_n%s+;D?+>P2;s$p&_mpW0fw(iMkz@NZ1u>J`WGL$8l>hrfyHcJOO z5bllx*WvJ|taaGUWOk*=48cz_2W$UgdZ{@$*;>K8t97LFcb;-&!XEh3B7vVV>FRhE z!@P!@Azi2d%M~bQw2VqD(;61wtJ0a+yAa?Jzz#^nyxCIMenT3CN0wLlKJhs)&gUL zb5z{Mx(N}@pbc<5IMg8Zq?K*(R~p5_L2MLjDP0(fOIAtc(jfI^+%HjO>k!}FL2PXH zj8?P*g=lbi+wlpWYGA*(BDTxFjewzr(Xk&KI(sZ!@utm_Q$5N+*<~HF0(NNyT8U)iI@l6_VQ5ZI@HYps_ zJMCbn0MKV*Z37(ZcdrwZJ<@EFXI-T9jiC_rnm7evk=Enm%*00xgM#$I6!;Fu?z<#<(*C>pj4nDdKf~}VE}j+N+xHZ$7s9qWeumiUKW>LN%34-= z;G|by&5qob%Xs=Fm!Jo^EwYT-Zc!aiV|n|lx)rZ~qgcKZe?I_MYRvK9oD|b z%0ftIFvL~g#h5G!8i&~zQvkDd*+?1C99Rr3yIN}-oy^lj& zSyC7o3Nny_^ko{1pr6`kcVhN@j7^F;3-}fhpR-hTLTA(twC^#45ncoLB}E)x45uuZ zBgNClP^BQXk*lkb9?&~c&DRLY0li@CgTJaj3XpX<>)}X1E1+ycIFcdIu^d6!NcAN! zo~Rw*o>a4LT9k!>=@j)zd2m%R54%~p-l>Yl6!%x_5IK@5f9sHGL)Qm zZdd&U5Ewu}iuKOM$f%x#8)<%qMZ@R;A;BGD7ElJcOP@HAHZ1M&44+-Dq(U&KzJYI)k2IH(g@<6m$GDlp5 zC?Nu{Kvjw}sp;4m$rvn{=qKQvP|VbXZJ?{63$|+~h6$;+OYq9%m|;4!JR65LDMLpQFWB#LjOlVIqD=r|SaN^rTQ$#w=Ez9Wik*8wNNq_-cidZ@bf^CGUTb|)qK?L#J{lQvQnit(HJS( zqxR)D;xa<-08Or=7JtuB{H99Zs|9}_IfWvz{b04q25>sYYrqdfN{w<)y~kIC1v;Lb z<-l{k5Ee%bn+fv^ua9T~+z=(oyJ=PdPS{mGsK|kY2muqkycnAF)H-i&x}_aL8!{2d zruNQ_na4fAJvkpD5gN0co)jf}chYzidv0`bc=(VToGRG%08FS)a5Y;`;FGc1V43jW zyctUq9`Sn4(#`lo&)Atre%SL*48~f0VW>+IdpqK2dU7}sV*iwS)6%S z$CgXX1=iXhU?I84CFn|XT}yQOpv%A(>o9y?^&mq$E0$7PN$CjiZu(Dfwc90Kr}^TAkSdD8AY>+R9nchF3o$V8<29~q zo>3VLh`>bsqq??KXPd|Klyx&qMez)4uu4BddP)i|fyxrdborO`)Mw;WETe~Y&9Ot! zav~eH&IV-ea{Nq5b8@Q_(H53&zMGB3gS%Zk=z49TyVV{SRP-+K@l@jprRls z6T{-AGJFtNBt$iWPZ++o0+SzCz6q8;aqk)7GWa@e(+**mJhAxxS?Knq-hlyTKaKrI zS}#(d)-E;55FHn4z6=;NFwp>Tgw+En6mj%Dx{PCb2>Eay}wp+u4Y;+l=T#|bU)IC>^p%H7;;NR|*n0IG$neCOn^)Dr)n4B7eDdANnms zzl)gJLp%-HQcFvIdFfZB)TDp_M|PM2ySE8w8~$|M++m9agc?C2<4~G zXDEFMOz{#03#>0=FNY44JD$U$}JduQQ=Fo-$VsiJ&FOX3$P`rEJIjA#Zb=23YDOW+)RT9 zrG@)NMRga7d^xnYdqa@Lqo~kFBYoxjdjX(^e9XTMMrpLZx6WC{C}Oe_zUvdh6BYWKFGX5Rla}v3*+2Z>2E!z!|pQM6)vV3x6)|YcBk3J0!k?N<0K}Ae2n&MLlg%j)2-+QhVnu>~nJK zsrX!M;5Al4c}ePDpx2`B`&gA5>&#J$OWc1%jeK@u#<&V!WgXEJ+L34#DPC`z(JHVC zB|NN`RMcy5W<~h~rO$(WfKoKF1qTi&3*|DVCTeuKxgI^He3cmXaHQM|l|dZm4x+W( zXaxyMox~wXV6>9p*{vT;*G_wJ7Pj21Pd^9lefZHjQ}#G@Gz`$K@miU{IFIf1=Kkg- zWfk(+(AW1n@o})J zguV6W-0d|1*A!fE_`S*4H8kcX4ljBgq-drwGQ(P31|267RixL$4_|S6!qK*-876Js70XyKnp$Qrxo4b7%n1|KnKb&==z4^w%XO%cBIGC z$`hyUzS4+?N$7Ybr?#Q$5pjP zkKL}^MN=3P4!bBR5lU77kwo7Ckusc5lKB_dW9);{*Z5Fl5r&(x>=WX!%u63#u0s*xuIUf)Wec z2%qt(Z`kc*VfbZe`Td01J$uomo1zQT9!7#xygd+ofjUW9Em%I#y})E_9W~IC+C9RT z)DHq|;ViJX->~1U^VoJBKl%J;bt+*g(sw$+15JNr3@^wNh*5sn9aU`P#o+;^R=j5A z!_WB`?6GiUSD#MHa8e6rg0k{b+V;%n%?>Tnl4Xu8GJG$1aQ4WKi}E{HCMkA0euzI4 zsox%CWD_QFI`2aL&TBmhxjwIr&-P0wUf|cX33HORu~xsat%mAvE*JQTpTP`T_Ducl zkc&aigsp4L~2ZrrER7CV0upMc#%jYqFk6@(F$lJZ%)*cwXCto!1cf z1u0u&p_0~*ftlOBr*6N+D2zYRm@R(7q<+q$t&}#=M|*yGz$wE@Qb6E}`Z~$COH1Tz z8^f?xvcCp-?~Igtpgb1id>jC>(3>FY>p-6pc-qN{J<1*Dot>T6t<36KPM5d(G=D_& zyOL>VoGRc{RTC)cojIXWTrM-{!x@cpJuO3RqPQtZ>)Mp|GW7wUrq6e7t~KxsGYbZi z6giY)hJ!8MJX~jy)$Lm6C&ZkcV%}VvRr@H$vdn~P>G%%UY&tg_#4MgarreyDmCfDr zQgpzFV-T0byX@L>t_#+uGZXN6_a|7Yp1~dE`7DG`o2m&OYR?Z`-&1R3XC}m-JZVZz zE!<5AfB^X9sEfcPygpr z*h4oIbDWvt=$?FZsXZLr^C3jhW|8l1a3`=@Q3qZGi=#~HTC8?q)2U}E6E`zn=EK(4 z#xAfL>e>-0MCa)OxQ$P=&;5MI8zX-8!GhQ>a8GiFUOYztUZaM4V)l~xfsEN3^d4-==V#|d2=e?+s zAu(KtGtsALZtQVC-}AnGJaw=rbn+=$qmcP!zUz&m>XZc4BEa5Jt$Jc&+&I?BIgu!R zCgSGE5Tsmxo9E}EdP^g%id4ob??m=BH_dr;y`?o5810;8wP2Prm5TT7aXK0c$2h8m zv0V)f$Q?t@mgiL&I~soUwLXSIJtE7sD5LA^6~2&(iP)}z+(+4eyHJx9 z+r=KxRh#Q+*EaR&u!*~Pv|qHt{ma#c!yi*=pOS%U_gK`9xAZq+7f_V#KmJQVfNI>4 zC6w%{T=KNCi(vA*#Ah;9h}$zY8iEr&raTQENvxFM@3y{@)P9<-WIvF*f9z?llg+am zL86>Dto)gQhNL4D{fEVLib`!s$q$A`c4{iiCghO6Nzs+BoP9`%r^hZuKPj$pqP$uz zHJmHlaw;z~``#FbwJ#PzYTD=;%FOM1ii-+-Y3y3#;-VTHHmk7pG3KL2r9b#Ue^S2+x@AGlqg^WA^xbu5R?X z#~;+D-?ec9eqU*`IlY+Qkn#fZdL65~TqSF;*`X}Wd;Z0;5T(MNNnbw7EQegd_90Y7 zL-aOs*pLjjm#&*(f2x_AX+-Yyk-H_gE4%Z4$h0J-#y*p7p_zWZY1sE!TAIraMT(L< zjG3OWg>U&sm#6)D{rz^xQjDn2IcbU^65}kX5&;3tW@~^kp6^QPh0A}B%RNmtXZb77 ziHo8^qNbmgm!bW%B?%Tzyw>dD-bDUgMWP2q(JwEdlmF_=VshfOR06}0qBNf4`{K1V z0;2&h-j%q1ii$V;mwK}h4Cs&2y{1OUNm}lWjm=?j*>oOD^*AP>7kdZZ6a^_Msh+;R zWDgyR>OFbj1YR`-cDa+1c4Tk#gc%?;9GT zm?4sauLp5=1Q7bE?eE{cy9Fyo0W1-3CDn$1S5Q*wx}~`hog>w-xY>5e$h}UM&>BsT zN6K3r#u^z=*s}26k3}+!a2-PU75v{XSgmR60!ye&aBo zxR+QK=;`FK9H@h9B}A#uIu~{ADLGOSa(t~|+vbAY zR&>1+H1Ui|zK1@nNDMjImL0K>hIC z4!ob6yB9wDnqA%#Fm+VHcxsyG%!U&Ilq}QFU99tVcB;KI8#ZhpXIf5sc~jK2-58{1 zi|g}U?bSwZ1+_z2rWfo5kmp;NP~7&{UeuOBASEMstaV7bK=RMT#KhVvd@al70(S_t ze51vtDy-B(9%zTh4%zcivIXQW7ea_Ezi3toR*~C!J|iKgGAwn2Y4fvFQ_bumrIuna z7^ZBYQoEQM*&3{v`!Gv>|Pr?MPgHA3^bbjc%R&afWl~u=^ z(6x$h0)Rgl6U24L?>C)ks2#yoC~GY^VbDg_v#_vWprEV&1IK19Vt9GDOjWSBcCc88 zgzlSXMdMFwoASmJSdqK!j9`RNUDJkNT}=Mg---e3Fx_|F-o7gNREEdgTgakEVS{$3 z9^rs6h4bG`vzO6Dru4}naS6REF!dK9=fuPQx1RI=rlIQpFB=2z-(ywzmv~gW7gq9X z8E{!!VnI1o?BktnTOS;w>}m;%@?I!s<(+#!p1Jt$&{Ut5dNiEt$5gjdlylPE$9VN_ zMzFkxFpa~L^J=RCaD*~WEwmx7VXnw~Po78_Jk-$&&dkoX9BF6rjNq(E!-Z96X@ID@ z8sHyCh{r}JW}l+2t}dYz5I_PsYI4W%&>fu5=&qPXUqmnnfb=4 zF8Bd>S752V2J260;l%T2>89K@lM-x76xE)t=M<4sJ< z%F3#tu`vUuH-kZ<3TCNIy8CG7PLqP1)@{%=X$rvZXnahNi;}&qsGx9XNHHopn$Sl! zu-Ut9>;7OvXI-CVb3%CM$v=d49AD2?^vLJU$;gmbb{)_$FfbrTKi(AS;H==GZXd*L z?miUCC95?6Zq7Ha8!?$pweYFCy%?n^Sub+wg>@ioEHS;8n79o-g~1Q5&+zqu49LG8G&eg`(2V8`z4zc?pt`y6>!kqfjUW1OAdA+FZ8KIZ@xn=dBX}T zvmtG~wT)? z3@+7-b2UlHMp?Z#;)pY-2#w1w`1M3zG4UCP{wc{L*-k^2%_yAiR&AvL^+n#E$X0H_ zPlp2NVeD$QdmwhhO)WM<6C-m&)6Ms_9x?*}Q*{T( delta 19 bcmX>QdmwhhO)WM9b5lcOv(5Ll9x?*}Q-=r2 diff --git a/dev/_downloads/53f951a6065782035628167d02f26410/biomechanical-model-example-35.pdf b/dev/_downloads/53f951a6065782035628167d02f26410/biomechanical-model-example-35.pdf index ff09f9959b682bf10591e406ac62d5d77c44cba5..4e708c6a693ee5c7d882b40f36934f980efa0a12 100644 GIT binary patch delta 21 bcmdn6l5qnNF$S<1niv}z7;R<`SjhqaQT_&= delta 21 bcmdn6l5qnNF$S<1n46jzm~3VbSjhqaQdb74 diff --git a/dev/_downloads/56227f1745cb31fcd75cdc19f5cad645/beam_problems-13_01.pdf b/dev/_downloads/56227f1745cb31fcd75cdc19f5cad645/beam_problems-13_01.pdf index 852b6fb1601a5d0e0854833664224700bebdcd77..03767b774fdf24a00188f0415c780f322d62d94c 100644 GIT binary patch delta 19 bcmbOeJ12I-M=dr(6C+C_!_D8dmNEkXPn-vH delta 19 bcmbOeJ12I-M=dr3b5j#T^UdG2mNEkXPrnCv diff --git a/dev/_downloads/56447441b8d8108229134a5d3454516c/plotting-7.pdf b/dev/_downloads/56447441b8d8108229134a5d3454516c/plotting-7.pdf index df0e69c489eef951a3cbf9c9a88f14f13c33618c..7a6a51328bab3acdd2369405700baf254bdba3c0 100644 GIT binary patch delta 19 acmcZ=a4TSghANw(iIJs=!Dc;G9cBPWJ_W%5 delta 19 acmcZ=a4TSghANwZxv7b<*=9Xe9cBPWVFktj diff --git a/dev/_downloads/569497501b2d3eb864ce466d19b06017/plotting-20.pdf b/dev/_downloads/569497501b2d3eb864ce466d19b06017/plotting-20.pdf index dc61c55a8725a73889ba5783ec8689fb7d65eee0..a9f78284e44a1fd4249f82cff0a6193497b937d3 100644 GIT binary patch delta 17 YcmZ4Dv&3gZoidA|iLt@vCgnv;06Pu^`Tzg` delta 17 YcmZ4Dv&3gZoidAoxvA;qCgnv;06R$r0{{R3 diff --git a/dev/_downloads/5815ed289d6d66d90e420fd31330fef7/plotting-28.pdf b/dev/_downloads/5815ed289d6d66d90e420fd31330fef7/plotting-28.pdf index baeb619d4d3723f0bc40e61baa2d9736ac9a8603..7d7645721b242dbfac2aad688c35ca4f3f1ff50e 100644 GIT binary patch delta 17 ZcmaEq@+f7)WPKJx6JvwT)Adg?0RTtn2N3`O delta 17 ZcmaEq@+f7)WPKI`b5qmJ)Adg?0RTuN2O0nX diff --git a/dev/_downloads/5860560b08ead850923e530e3240b5c6/plotting-15.pdf b/dev/_downloads/5860560b08ead850923e530e3240b5c6/plotting-15.pdf index 5e747d2fc294569d82545bfb35588c927c8028a5..7326d360635ced37c2d77589ad3ea691adcdecde 100644 GIT binary patch delta 30 mcmbQcM_}$Afrb{w7N!>FEi9_iY=$OAmL?|KwWV1;F#!Oc<_Qo0 delta 30 mcmbQcM_}$Afrb{w7N!>FEi9_iYzF40CME{kwWV1;F#!Oc& delta 21 dcmey`$oRF9alFEi7k~*bGgKER4*yUru6?Vg>-jhziyK delta 30 mcmaERTJY^@!G;#b7N!>FEi7k~*bK}~jZDn9Uru6?Vg>-joC??g diff --git a/dev/_downloads/5df88650a09035e3e9902fd44e25970e/generate_plots_q5.pdf b/dev/_downloads/5df88650a09035e3e9902fd44e25970e/generate_plots_q5.pdf index c3b5cc28142a2e09488d40c339a353494a8ada69..9e7bd1e04df56aadc658b5df6f042333329015b9 100644 GIT binary patch delta 21 ccmaFZ!1%C%aYLCko1ux3xslQ48tbPl09zjiu>b%7 delta 21 ccmaFZ!1%C%aYLCkn}NBhp^5S48tbPl09!E!vj6}9 diff --git a/dev/_downloads/6236456dc31640e622c3f943842d9925/plotting-27.pdf b/dev/_downloads/6236456dc31640e622c3f943842d9925/plotting-27.pdf index 49490dfcb0ecbb11694bb4b6830edb78c82ef742..f239b1f1300b7d0cc9fedf7e3044bdc7f0d88844 100644 GIT binary patch delta 17 YcmeAu?kL`{(~QN?#Mof-UbE9o06{DU)c^nh delta 17 YcmeAu?kL`{(~QNy+|+dQUbE9o06}L4-T(jq diff --git a/dev/_downloads/68597f1bcbf2528fdc041a5c14e53f0f/plotting-30.png b/dev/_downloads/68597f1bcbf2528fdc041a5c14e53f0f/plotting-30.png index c7dac685e14588866844db1ed2bb70cef718a8f4..eeb830c6e26a76d458f780d06d06340555570d0a 100644 GIT binary patch literal 8722 zcmeHtc{G&o-~TmZDI|(0B~w|;l2T%_RFoNvove{kW6!?COsGV*v6H9>31u0SWg?VJ z7$QpyF-W%T`*Zm`-|zSHoZmUm`Td^fkKcLzc${;exzBxH_xrxC_xtsJyz1AkOJ)USFNxY&7k+qm5X+BP1pjxHXK`0FUI zn{MuS7w6N`3evLDt}gB#vXZFV9v-gliZU`z{~9Lk;&w|$IGkGrnqqU+Fm(rD7jFAN z5WF8B1K@}+M(u*3&y&d?0j@^hsT-G?k^Ws8l z1qG#1$V5JedffU&N4=ip|I84@{hU8~hnU=@$xtM6Ux}{N(f!ZbVh}H_%~WrzIWVnk zybU|b8U4`xYma~7l0!rC@y`nBc-+_38Oycb`-}_>4B#B-aiU}<0EnMnz)8|k+wR!? z{J(G-RxmApcO`2+HeI8aeE-;P;-_EYpCSw9(m3A-hlPQ^_COq9n$7 zXn#*5=XfJnTa52~9dkKq_s9z*puemkRftG-%1X34WgAvfqN}0^z=uTA zQ7H@Yd~-3+-}|4A?i}Z%#CuJ}*)>Nm{$}es4Q?MI15h~Lb}2>Wnt+^mWeZOy5`~G6 zr&YK!su5XPjLR26We^hhs5`#)Xi;K3UmYHvQMvY=gEEpJ8MC=oqb&jGEWCiiK_WG; zp7V7ZetP;jiz=z#Uq|5dWyQPaNGYZ*WNGYAaQNg0sn;$ zU(4M77^or5fvT{unC1!Nq?SebMecOnx5|ieVbRM1%6*4q&tDIjlmj57A#{(O(?R7v zba>71Go&l#@&iK)NoumKGzms6>iP3#Gh++K&a;KH&3vj(UcaMX;^LK;DPDU~Ip2|> z_L;f7yUf;a$6idqS9c!bmz%dzgSr3AIf)@ahV!2}YR||>{k1>K%yg1Wb##K%>Cq$Z z2W?PsNdP<}#ogFVNtMHdMU|y7R`2QoY2Tlm_)bZ8v<-NsiU1dnoHj_2*AY1X-HY^Y zZXO1dmFuh+J0Gvl1QrX3sn@SJrx=?3Dunh;5z(1votpcbf>`viVcW|x$;wPBz5PS6 z`0PqVAsG~u_?O8!KQYv^L9@|K91(!Ctsu=%|LDTFEgDm|;*4~yP!7oa<2L^6VWu6` zF&hDxEsO2!s1h)I#FXYW(qlmP%={pyAEWeTS$k|?A%>l)Z z*GDQUK3J@05&4Lk`UY8N95TC$q4}e^YWi`Rr@klvLW)xFYr))Ha%_l61_x0%U~7#g z6L`d_SJd;@4KydW^A%yKM309fhlpDqzixDfU0bhxEqH-{8778yDt2Q{^Ps$25i02S z^Gr5UpvXAu7gIp^+#>IwwzX+Tb-l;KLMKHEW{rHwx|JTkm&Yj^aWP+4UkH;-4hGdR zNw+&gM!rx52KQ#O6NO71@sSP|WnZ84Gc(s+z+{o0mVfQq*JQCm7#C6&W%9mhmr`oo zu&elNxoETy)9bu2_VL-qtfEunL+ZVFV#C#=<6GmsZCe0+_@kwh4b7z#7^z<=;Wgn-CK z%a#Tk8@b(Q2SmBBu*L}!EC>G|2?W>~^igf@X|kETRMAH_@i(MHt-SRAu5(HS&h%*CD6U_3Cgz{w^Env`L^CY108zTpI6wlzBb(^f&w{* z1m7qIa_XHeN5<3YO|zbA%arq`tMdli4!q6*HWOlwNSPj8m=LS~_#O9CMhpCsfK+fw zt*6qo=}U1ME9i?)ywxB6aF@-j%T7@c;rc5M{}lQ&O~nPx*~+a2=qh*aFubZ`#WdxA z+(1VV^uR^y31jz^j`YnNXg1wzykJ?g0+9NB>Cxsj3N zB{ROQ)(jA$(HP0tb?-h$Rvd3H9-yvnPSiB}J2pm=W0`lbphBvbl-!qc6Rk*o^Kam^ zf(93Rskhc@mXvxiLH8X%?eH*Wd~+>J5bY?2D1aB}mUr&Z#@cA@I+_>^xt*DdhjjpdYQ zR}EQTAEjN}JQ|;X{q_w)AW;|41*s{?EsOkoa8ayqME*6G0#5ptrwN#6-5CWD&_mY=mH9lKG3Si49*`@7tP4cPy8)S@o3JV za5hkTOahZ4dnx7L>6*3l8Sv>l=%P_-h0g)0i0{GPpZ6rswWJ-B@!HyQlJ&g}6G=Z`o6V!RnNy zF-Lr0ri{|ssaKe@aWHa3j+eMI(+ZNCn~lsU)T_KKlWXyZ@9MsKRg}iM`GFaDwpUh^ z*vH4k)_qbD7Y7LUvFMK6*h$_QE_P7hGN$Vus$>6ZQh28b86ZW^82SB@=#_x9|GOI| zgXHFgkIX2dv_J?8fZGu|Q5i>E7Tftmb|A6;~29J*;<0wD)k zD0|S}*eDh0jX^GQEX75+>TK0yPd6@D!)fZ~gGr9Bt8L zV*QRoW;`n@&T7v#UB3e-)N%Z*F$6#gx(gEP!WoAI1rA}^Hm|)t2h2hF%U|~6lVw@6 zKeKd{-=?uXYvfanhJMjZNQzq8CQznATO`pTEHYv0on{YNTi{F+%uJKmL@}p+NzMbc zLs5{RGjI^-gkqmfUkT-Ycsuc9eR8{U__hRg%D$KWhK1dwpw4$7Pu`*RR8Y1y{=*%e%jBMGQ zWf|_*_ckwqWw?ObC28oa1E({U{2j$EY`{o~Dfwy4jcNw7cH@Fj)=1*zFHNVGb|szs zU=huXD!Fb;H5DwZY8Z-YeFjj%BvK|U-YY|pxu3Z`Hw6`wI5tk5b`rb5tp~V`RW@>ycNv=W;(~hgK&7~%ncvuv@%#L6 zD$($^*T3uDS?t_Vc4C*BI>w<3%fdpAMU9oS0vi)uRN8rogTRM`Rr54^xXRIcNMfi4mPB?*d(ABQ4(L18AB5N9ue%9to&m=Qdp!L zhctms4qg3A70<cu;1M5 zB#fuO+R3OD(bHp;UbAov?O)7xOLAxtVIe+8e$0(tDBsWo~sors)fH z{5CbE8^_d9V0wB^KuYG;>_Zh;Q8}QV)r%?d$mQj~h31@r1)Nc8YIwsck0|tp1q>+o zb@W~I+zNyRpD0Ca`1LnY=LkVRr2R`w-Qdra=iwU{LU4iAzS;}ZEkjY(Hb|oC>iV3E4&QnA1}^~_TcqomM~?=c(z}YXCgoJe zU{2hABI%>VOYCtC60)H10i@H6HGa}eLPp2FHczmtE%T9Y{%gq3QS_fud+v1=q$!X* z2QL=%H+;)_nbM_!&-JB(3ypl>Nm0Oixtn1gGZ~Y@Rv-9?!k&}IrObpECSZ}~R)88V zE^s5$@_qAc?c2BHb_)6X)j6~8kf4R8o&kyi8yl@D-mWh-={B0v5u+tncrX40)dA_s zX%1Y?{uZ{^!&A+{e<0`YP_p7C`noN+PTmZg6b_Bk>>|EduJhCaM1t?gzSEqp;pRL< z&V!l$)1_(18CG`SnhbkesQx65evUv!r#U%~emNsVDT5uQbo=xBa^3}#ygReDwU z5$ITG=Y*k&rb~@fgpf?YpGT8&gM58#s+S*>+<3I&b4}|pg!kUWyQGT0L9K3QO!Fg6JL`(=rF_#F>8gNl=rHOm@SL({{z1BjXAe ze)BHA71fIYgzHEkr)r!4TShsXpo*DYF+2xPD9sS(dmJP;Rc& zK7hf{f>^e3?N$U=UIR;K2<2~0tAA~?8#&hc!D1{i84shr3%ZYctgSANn7*N9-`VVy zV*MyGK~yJUx8U{J9Ty+50q*Mu`-3^J>0$x_jVrf z=%*`_W0%bftr#Ac`3R`<;y`sjY=j`c>72JgKT^?7mv$O(mR@DzJ`6ix8$(N{sRJ|g zV7udVrT!kI1}?$)^+}=WpWH&IO6W-&UO_3&{iv$70=V4*+p6BsJ&gT~ZI->KkpaM- z=oI@+yS3)ijM}qzPaMaloW24@?x|C-HShbt2e@tg7d2p!na@_~#vSeMM~-z;`@X24 zd(D_Brf|JG-*0%~H~gT$>BanRYLS1q4CCYlAtI?ju=1N#AJ5Hpv_kD)VN=y7DQMtn z!V=2L&viKIr{E4w5!B2OdfxqSXMe{?fq(Ml9)Bz_fv>hU^&)rg-H$eYH^|zHuRSK( z(ASz>5?3!Y!_E%qh-$J4}0!2)WIt`Kc1^5*KF2 zZndHA+V?E21!)pz`}hvb92Nz{#=gM!B`)bOfoo();ZcbXIBjQlREDtux{XYYB3 z7+U2|kDTWrepD+?llAlXBqX33stZ6AI?&?XbhT>$7B$b3;q8L2W0jDS%H-leeS|r6 zURsLUcZ|T$g1a;>46WFBI9X-*I-QOVjlvpf*xg!|ql}F159wVxjVPbJJXf}PhK>s4MxHbyXid(RzrV*GO6itXR1S$UJ)Zue>k2{2!Ykp{_BsD_O3!!@(LYMMS zk$Yz9#s^qW_UDR=)*i?l1n;-4cK%c2 z>d!H{wpJNbYFG7&Xt)Zu2QNUOjvqfh|5Iq|>SS+Oms8n~ms~3Ax}=Wh_vdRl7#`Ke z`30LB`DV$5zJn}tN+2i#2}0VM;!hk~w1^eerhRI=CLAg=V`=-b9-!bIzl*Lx5?yI8=^7o`qe_KfD_CMxwCkIwmL zg!P|7Hoi}78zUt|MAX~b+DMr>IpSH_*%M=JFG>S9)>mjQ1PAA-(}cjQM-emSegyUm zIQSJiRUxy}(8ws)*Rmk=;`j2!(>b}hZ58gL^WRLa<=*^~@NV$I!HcWQTkE4Lo~!ft z(sz!rHAO}GY;0@;z6Gyd9pBiPCTuYVWUMN4QeCPQGEH>}1slpfdfb7m)KvMxu9CLT zQHYmWS>wyI4e9qHAGnX)a-AJgpB$*U_TGECbLz+Yh1H3|yq7O8AG`dxwUDqe5nVNC zXl(q-sh6x6uv+r`#S6IK{vs}pce1Bc6JD(PwRFa*$B6``Y%09{AD#5pV5su3%Ed*zD(457}0Sl+u#LS3;@(<=K6g|c=y!(B# ztp?nGM#w*qV-jeHAJ`$|K6{Hk%nXQwLj!(bzs2@fgkW*FAAj!C3R2h9G}k!aOhR71 z%ZqnZ5^jN5zW4eDU;4`V$GZS`7If`2tpbrAu-NVWl~Z;2?!q?{2m+(E#mR3~{@$Dd za$^HieW9NuBqa0<4da@cnjEh@+CR!c$;8CQ#m3sAAH=@%7=Qlbz4rv=9@FZN>A>tO zLIH;9cVU6PiYxbUR?Rccw^xz}F|v1t)C869UR_(7?)nsS?2Jtyq^?z4 zc=z3TI4Qno!~-ENEp2@H@`I_$Ib5&a6FF-N5P=1TWLD;!KRkRx5bf3M_KKc2QGwW5 zXh%)Ke}7{Ww%YYsYuiBNA%*Mmalz6MJZwCoVAV2iIYUkKDkmwSnHq>+04Vlv3wVx5eM40W%+V92XalzOnn>Il^Wo z>#qG28S9eQKf|9B+SOG# z?Xg&_{pH9*c=QAJrY~O{dP?vH#lCZP(B-l5@kR#v`ugs3RQayTKTRjjBqt}6k160k z1hJe^@?U(d0P|>4JV&;Mzh;H%;@B9v|5hP_7+~;HtF62E)*0J|T?=Dvmz4bGTPF%@ zoY4t92~y@SVeXF?wL6 z3bC$y-$}Z(=r)W);RnHgAo@Q&J$Jh{gw1b#wowFgCF-zIHZE}(24azuG}oZwRK=~ zQQise4rr&y4f3i|^q?@1g&F_tjZK}LJ3|Ws^EPxG`55925ed!>udmE)M-1|}k*;n= zdHK0Cv^VbN&70&Gh|rVLNajNgcp`DTdVv4N_r3qhx4{38W9jbUd{X*d1(u!@`DL%n z%bd6Aa8d)@MfG?A5Ye8c$v@d&Wey2m(d&0o;QR}rT<_`rcOwbrj#rrIHd+9rA3SMI zgj_3(f%r9cb1RAzMB6Fs1BLKID5A)7!Z=OA{c_n4uhdC#a6VEBP=5L?P36Ntnr%4_ zR0r7qcvmVs4#`JA-uX#q;kCl$Njt6@87>auEB_&0m_Xv=~ z`TAB&Rj)bcUwwNqn3eO@+)~zG_2j3G7AqwWDy6$qFQSxbFvf=PudrT-*b76ZEPuNd z3e~Ci_U$jJ@>`P?qfgtTk6bEPtAb1L)&t-nJiMU_|Gy&je+T?Oru6^mC{@+%LT;32 z3=34LAPbQTwnW4vIXubD&CRh9(0QQp0%76d@i8&a(9@Oe@Jp=n1*k5kAnAXjWoa(V zx9jvqA}Lp%JM93jPX7t9|MnEh`;XxHtchtgnU3ROb{Gor;f-@8)2k@WU-G0CqsM zoO=ubZ3!U+wiyRrgDCnRe(HL4jzM+00<1BH+S=L?@IMRys_4H-YO7l{JCr`^Hc9Zp PWdn>lPOadgb7Gb%g! literal 8719 zcmeHtXH-*Nx9&>l@FJ)b1tC!a2vS5qO28n}La!nn3t;HdL4k;3qp0*QY5-A+^e!j@ zN|n$FNb#je5fG5j&*J^gx#Rx1WMbm(^#nE6-v%b3K72#)(120B*6VOTbvx&so1nawu+U!RRO}<2(W|Zen16e<4 z#rfFj(~8X4DStC({nqy(BE9bYWgc<*^yP-`FrxkaFd7=&?o#4SHJ#@pxCHb%{g*Zc zr^UK~4e1{!W_*T}f|K%Qe%;2C+=7AvE&x2W1taE+<8Snx`?57jgH0t=`iWB4lgkScsP9JN=c z@xj~Lw{ETPE3JQ^N1wl3y{b>xaQ|60K>GA)>ml6zz~w79`$rHoJmpj!)+Dg=?Q3lI z^Y%26bY^LgSx}s*~N@LcN!1} zeCLHaQUuqRP~W?F|4_j8M&ji>dmR9X4@AXeT%0SpLq$}(5H|<(Ez7i1l&!S&qCT4g zfUYz)>ENk$j<+xoIJsa2aBI!HWD(J6MEDjkDJ;Oau@x1LRm=Nv8MU2h~77n63kJL)2fd@nqPJGXxn zCF?S=x7%&EBgk@;*p_cAu1w9mA&D4Q6aqw6DJgPmJo($pKj*F}9}1W?{MloW^=s5E z8+sK~?Jwu@qNB;K*cxEGCmO9hlC9_vfUy`K+nzEL&N7+rju5Y$>mw)#8uV`6a?}%*+!&aY+;l~HR#kcHQ50`|@;lPd1wqCt74W{)J$;d5 z{l`0|hAI9)HOmqW=bmQ2BY+s8=o^!*Ta^B4?~WC~U7&)N{ON zB4W(Ub$I2p*_6=1n^}u8!~rP;D45=w@9@~Ap{HHClcJ&rFsrOQ@`j3DYOP)W?9hC3 z(^34m{Mi6#q5&RTl$`dN%UTA?4p=63H;0&OnEaA7n&rZrjB_quqU474k0{&~2Qj^+ zxogxPj$_%^H7Nw*P5D!V=cJ4TZ?M-}^x8t2KXfGTc#>~JStfK^w9 zqh8Y4lT?9y6!VB1vCNnHUM9G@)GNzpB5YAc9~rX7b~IYsOVgVVIk7aTM{uX2h_5x>gb|-aG|8`Hmod!U{e>!q)@H+Xe z8F|2t0v)6|3TW+A!(?2O*2eb5!&S?B0v?)hBW!g}W5jKo^#ir_%OQlm8GijbtsMN* zm}?((4e3e8$vLfb_vwY=blOK4A;4I0h_Bsy$D^*#?}*32?TYWt1q`Pp%F}6qp?Oo& zv~pV0erpow{gfi>$OCBE;F?`JlK71=4{Z2`6yiqiF`I<6G* zF{_9R3a2`$8KgU7nZWqNY<=0KZtDh{+pdV-?kaDxl?VPuOKJ`ia<7>S?1)SEC^go5 z*ojDV`tgKbMH*_}xe<8|Y*b){mj==BFtU|OhegwI^Z!sY!>v#LPT!BFJ}BIk{$6M{5{Pf3RFfReQ$hY<-M{a5RPO& z*^#Q#mVg%&G}eByDDw|_PuF=5om;hi^2MG7&FuFpP9yT!p%d@ZX{jg6!ML~^C52_T zxY$*g>4Fe2dKNFZIOg%oA}Xp3hO}1re1EOxud%L4l(;T<<+|<+aVNM}*vOj%8a^Z) zBTQ)%W(_I$kx#Vf)(3~;FYKDmeIJEn^S@ zT*P?7n(!#veUvowA~9$Udd)3`SWZei;XU5;>?EXgm4L`&SKaSAu554#0si$qb8;Bn z^vHaxHif`$tqa%{;I2vu<`CJM+tB!$hBFvfKYpA%Qe|wB z9GBsaWi1F72QP-o^>~ym6$8Hc9ifH0W_+rjPEwDk{MKcV1gN@&w#Mq=GLDfPC=V7b|aaHT@E*rtZ0RG;pq@rBrfFoZ2NJA)?Y`mv(I$t z6xNe{a z1qa7_DgzT8+TODC+2y=v*#;Hqv?}bnFWkSI$k#~*3?dodc+|5vgR`|!^nPu+6v z`WMj=Q_4I%_~&|Z*vzR6oJWa7=aDPb^AdzbOMNa{L%B;2k~X4ieqCE(JIAcjQ0C&4 z(Yf9(J)L0#DpOM3V}8|-)%v3cPlH316ZC}NH@q`cE+@bYsD0~X;7uK*VH?yByO{~( zF_H$BRmP%XaXc&O49n>nQKZ8HB-~#2!e%3@7)>;xr&(rasHEyGH!(12FpQ4;d&<}` zdr{_*&@ZItAXFfiln#iK_Kznwu?;GnnT*(=4M<|=&mugpjC~;Y=T8Sr+^2$z zM5eBgQ$32QHIc~iN<%Hn>RwkS&qTm}rz0hKd;3MGt@CiNAJ5=tE+CQn=B)XC$lCKo z%p?ACV14-Lb&b8YL>)KEus)5XJ(8&7Ue{;MW@zn-Wg>dQliBJkB-QVPH=)L^BZ)lu z7L9cc?)J#>Fx)P_dfS~MGA^qN3}63mq-kikyM=e^DyF`6MGKaD!lur;vaDXBogCp*ru*dCl81k@{Z6E6)DwbDe^`^ z`@t0aH_s8easSa89YH~*ZZ_W*THxDXQ&D;?T;@*YB8EtLz$RCy&K26rKnK>z)n#jw z5#&$d#+E5iD_D`q?Ji4A+#N25->@-*Iq~zCd8C__EK4=n;Hk^4&0e+jzTWKl629|v=Vsc5h$BbZ!$V+!iA8^bzkS8bl66#=WLpP0 zx7q{4sa36R%#E*#IW+Xw{h+zNwpzz4JBJC7TC7iF+#r*sI%4tPqT+p2$o%+wf}BH9 z_Y{+5@F@yCwU<>-QV8S7a=XAQp+}Bi7WTXHCc3m8LgwqK24)=I6R(nv{d_D;64W8J>%vWlmIM2~+e`R*YWUhm zhVoe2rX@^%OevnsT1MS=MW|WLbdnc_jP;`-CG*jNem=z;5_g6xjkaFw7o|6MX$$5* zv)GAs*_7fS-sCx_wzXcE^=A>PnbTnTS>cBmF0p5h9WkO%N3W#*h#?E^s*%^nb}QyF zb^cLLUjwyE+D~Kxi)Gx?;^J;#S?vwMxI$sQgkHMn;s^oznB_Eho)9nCk#uru3YMWA ztOWA@%->V^sVUfaSRZHIe-a^$Yn+-A+glc521>aOI)pyaT#}l$9;||IQhQBTOKP0s zH!bLEABls2@8xdf*>3X3d(g|nR$!t(JIeHO^N+%bU|ldCSQmunXTbgq$qQSij-t4J{R^~>1`M*SpvER(g|)v!&A8!Hb{QV60)x`IGfj*eXj^z#MO zNl%6JNDghJojV$P%aTH1Ip0uA(d%<96HWIy&rF|jqN!oSBwOff&@kX$Yh+oZ8Z;+D z!HjASWmuSsP=C&C&4(Y}afsh42;nX!f=VooA@nA^N@`Lq(3Z{P~2GvYl#rK#e5mhGR5c<|} z@q)@5X}vX2MydFmMG#H4{=}EN%X0e)Vg@0n-XyE>;B13d^|(SS!;xU-zABlV<*0*J z7=n!4o0nWwzrQ(C)r$Icl?CX(d-IGxKxJ!IfP#0u<;{W?YL47VluR5hhX8pG%VL_} zeExJ0aq=1k&n_Ott5d%fzm{14p4#Z93y4d37T2>8?zcRU%Q-l_|Ck$=&K`9XjAJ*( zB-0fIr(i1?rZqcYpm;l>303(B39N+_EG#QJm6X{(uKXQK-dZ2oL|8|QgG~CF&SWS0 zNR%Ys1y`&dhVC{?rr89c^n2ZHn}#?xGmwp0&H;&b^c>8VUNYj)48x@-uBNW z-51_MlzoKuv-WngIL{0oS$;dw*s<}j3H64L85lAw4&&clPHth$$%YjR_JGn98OaZ) z%iP_ttm7zG1X%yqP=fqxv^-YketiW9T06+;tu@H8%P1kBqC7RN&3j%;K+`KUuvAb; zTU~wndk9x(X2@xvLUYj7TRBQ7>EIzq1$(w~EWU-r_2p z%M$8_@cDVFZaJ*C>>Vs7`>?tEggK)FY2~2V#RN?L$ZFx29E3@vWgxtOR@X#|Lj^4=QN8@2?>c?!Oui9(lYF8Q<1Jj)PvRA{JUz$r9G zOu6gxY`v27&-K}Q()(-{J9odpPC@P4<|>)up~I$(NteHh)zhn$Mcn*uZCN`AI}jV} zp%uib$8aEUv8c$nJ_HI|a`48G{tvf%^ms}|YJO}qAGD+O8UUkjufjJw{HAq9gqr<$ zJRU!WlL}QRe*XczCj*>##MNzNtVP%bOqpJ+u>x>9;mzsgm8TBUnrOkJVt!>(-@B~C z0soOP+$sb+y-un-+!l4!6Y+NWw=Cm`r+2lznVI~B>y5%dFGUMBQ=6NSI|v-) zV5*jD-Vn3ArwWh!H$R@(i3UXM<0jNHH!~Q&ByOn%#}Pd_l(w_M)n8%I>iz;Gl zwW81l$bV#G6ecogkCK;L3|O>gkt1}QzjL+VJ+OY#V)F~=T&$h z$F0DsO=}SL5T;T?xqCc+@R~CPu^-Bkd0msxc_PwJFKW z;`S~*dAzw-?>}oFGLMoLayCK)fB^swuZ`bhoAU_WPURB2lIgcNtiCXBdinBO-}!z; z-?_MJ*RPw|*yQ*2n!1fvo8?#O_ocKhU9 zlbqg#V!gfAR_$=rm!aF1W@ctvzuP1wcele?xP9O+9?G)Jb(Rg>a4Vf`&b`F5!r<-8lET#r}I-4w1$&&or>?M$#;z1^5Q z&()wF#VgleF&4s`@Yfrhxhb~XM>{Xcthd?{`f z1g&ERO9wX0 zTlo_(GhS;%k-x?Y_mvV%;^X6?qx$B%$ArN5@z(i|ZPq*dpN9|GH%f+X>QD}+%|J8S z5%rjSo0{`^cJH7IK^vp~^J`KAcA>#nq%%XT1C;}kBgSZih2iT9?$CLJy(cT2wjY8l z0LIZXEGiBTSt+tE*)VJrqcmx!&J(^1gGT9!zQ!}1>5?`dqrcPyxHmYx2>#XkCR|Q`q z9y<4}+>KJ|zhqmtHTN!Pty^>btMH4#=&Ab=GxRbp{dvvaH0*rWTcZ2!(lC@db@8+E zD_v1nS1%V(`1$3zfMw~;=RtoK2v}`X1sjkcX7Q@MU3c_W3t#zb`CPmD5awY2HS3_D z>J&MT0%*iSpYskpxZ$Gf4>h7sh~TT2K5Y9e3`&J;M;2450i)hs%1<_b-N=SvpM%!@ zE-B1@3TF`&6(z%fY`@37?3qs!2M^g${X3hh>uWs*lxQSA^}Jj48u5hMWt%Qm6`%GD zWvhD(Y~_573RziMbA9g;i{bo7^Ko^<1qL)0YsJ9EpSRKlvnlH#D&&gyOsAQus%l(p z)ep?tZNq|NQw?h2+$bjhZn6%(>xGLhO;FN8MU(wPKfQ zUkhkPzk#_MLo&eanjS>s@lj!!kez_GpRY1``Wze_`u^Q#PEO7~ajWvYkj1hASIt}c zFD?YXZEJ0P>jB|0C+pI0>g3=s6#X|TCMIUi9rDHtMc-CG4%5_urZ&lXSFA>_{B2gS za7IF+A37uhsmgb8*vzKJudg|Z*R93tQy3jfsr^S}@Sh>4py^~M$VZOY81HBlt^n?6 zZnX<%KK3EFugt}KeHM<|#pLg6B4`f%Flr#y!14rPeei1V-x29yw5x53+gf@aeF#d47BdPrLEt|H>f5qjM5S+7rzL;(x)X|Etsg z6CN1%_MUDxYKi9S%QX@9{WW6ImMB@l$3$d+IW_ znQ`tlz(zB>y1IH8z7AzQ$f}y94^|P}l9%1x-Scr0;^KNOPf<_p&jDMg^vAtXp*uyt zs%H4btt;Q_N8msOgvcEUIXQEz--2OVg1F>vg++-Yp@E1P*tr6ASq+qSjqp4R+VwzI*r1?IAG4Id!IW8-)BmY7@G<9@8Ec z0y7?>(PeeIV_=8+j|>S>B1<6x*bf9O6chRxN`XJe>;fj}pw!Zz@6RvcW+qDht72bc z0iMSop8xY4_dg=t-wWxb3`WCdDQRwQ&Y5x&{?CFBOpyN$+Sfw&5U8^tv0xRZ48W`F Ks}-o)hy5Ff%o|+* diff --git a/dev/_downloads/68bf3baa5f6498f8399b26d3d85ce17a/biomechanics-12.pdf b/dev/_downloads/68bf3baa5f6498f8399b26d3d85ce17a/biomechanics-12.pdf index 65e85dc2c611001a340429567c21878687606d9e..06099a2ec5db6db3575d464b9773242a67b1daa3 100644 GIT binary patch delta 18 ZcmZooZ%yCer_X9=Vq|W(IauF_1pqu!1$6)b delta 18 ZcmZooZ%yCer_X9&Zfa<}IauF_1pqu<1$F=c diff --git a/dev/_downloads/704bfe351153d402a4a0a831ece25675/matrices-2.pdf b/dev/_downloads/704bfe351153d402a4a0a831ece25675/matrices-2.pdf index ae0dadebdbf3b0ec651512a72bad958404a7eec9..1d9dd64bbf76b88003511cd03c50f05e62eaa34b 100644 GIT binary patch delta 28 icmZqp&({D%EsQNpTbM2Ouo;>dnVXt#x7)+)#0&tQg$arP delta 28 icmZqp&({D%EsQNpTbM2Ouo;+}8W~z{x7)+)#0&tQc?pOB diff --git a/dev/_downloads/76c597139b65debdf0e125c15cd040ca/plotting-25.png b/dev/_downloads/76c597139b65debdf0e125c15cd040ca/plotting-25.png index f90855e06b776d05330644a96199e175ef317024..ce7eab591763995a3075e06b42b907e5470bd867 100644 GIT binary patch literal 10122 zcmeHtS6oxi_U}$0peR)kMXG`nsnS6N0VxRt>4MT!dX?UZq97o>hTcL`iiBPSMMbF+ zI-#n7bd=uj@H^++&wV}j|8gJhLz11nXV0uzvu3UD`mPDPhgPMeV4{E^h*DimSqFmP z;1Y&8Lk50`>|-t9N8bJJeRo}FD|asoS4&9K!rjHe+1Iy7C=8 z@AQ=kKX1LkoG&v%G<2j&a9RX5rsyG69BGVB7-HZH=BmJbZN9A`)~Fo2*j$6+;h~OV z)-GClhBsB-Bqea2oZM`lqL){*)#^wc)UKM>k&&F`>`s>-;wT!YyD4hlYud8o^Y?{< z)!gGV_!c9-mFh>&KbYTxpjO^U2XY`;tSSurxkC>wnU(*GOL}`*2=je$s->mIkyxM- z$;8XSapwXzS}&Sa&Y>MXEh6GTM!MUXDd(4vkie;)DsG>|>c4&`V1J>|Qwg@tjD|tC z-F{CCsaslFhKGf{V2jlMm%Lkfo_CL|~eGeE=?5@`1; zkfX}7Gij{cx;L}**RLnlc7q*{_#o3y%uuUpM@NVIpuS;oZmwb^leo^(Q0dlOn)6Ls znpRpV1ccFrFu~v#eDeS;NxcG=^8YXY(ZjBqr6n%p{N-G9hD`B;TBnY0-}=5pUU3BL z4=k$H+NojTdZ}59X;$EVF&Q=MTiR1I5^^d%4UN~F#a?TZeEj@X zS12&t+7QH+CT#H>w0DptgQ&x+Ss(@P*H7!K`fn3`r5Xr>v= z2g^f}BH)Iax_X$7j*k2GsPzqC!Ey9#Y~?sqGV6}#YY1AkAcfXr71-HjeE;np z`Gmw^di4!a;^N%L?}N#sPv$jK)kH*czLB=xrhsVfzOV0C8!9D`voYW1G1OBd)~H)& zY^@L-M%ZzMY$t&?`10%BqL1dy0(n2TqXdlo4|ayj5*ys54?W_q6BrEr5Bzv2F_P~t z(@bl3CaH&R&+i?&73*@_PRJ~byHN*eogC}%NF1IUv{J|lu)2vX$o}+MUEl%oiX>}K zMj}_WBXK$u{#^kqR3#3DBk0&}*)62IQMJ55tHrpwcI|xnr1s8&x%}LY6GmTuZey~U zKy*e$GO--{IZZm;-ucaefLlaB)3Q8}!V8Bf!P5H{A;03|aa&8&Y`=xx-?tkdIgclr zyU9);9dx%pa8_^h#OCU1b9gNCh&u~fT0aOw?6M-DGw~l4Hw3*VWQyNvEPlVU*x!DB zl>55x(s*4r+(nF>Dur%+)LQ4xvnsz@UNS6}fM8V9OdCU=QI-cPyt*``ZaDd0HvMCG1@gD_W#p^#{JT)KlS3rzqI)T%!A-eiBc zCI4#l?Uq!7QE)-RFglPiA@%S3xlD~zBO~U zDqEX$oV1+#rN+x!qx&+6jiOajUtj%(Vd{+=;oeR)~pd9KFR zHNt4d4`GJ9y!TCw=HfGWWuVk|GE(c?-jOSV<85qfyaBf<-+@|789 zq@?K~<>tSxwgk?NJ;Rop_J2f`AIQ^V_TQ8xB?*XHvdft?%rOzeF#9L=#+~ox-zANIQ!@qt+;35P;pI{&;m(VGM+S{`-2r@`o5$lVFe|G^} zimrce14ne0M5&ROs=yTVjOy+gH;tUHKmNt-aKOYzkNG~@V&?ms10UEbK3p+G+7toD z6jk`(H-}qN2lrjwaCK6|u)~*d8eiZ#sO25XE`9B>+Tie}MnIX89wnpQj=$7S9NU%{ z=rQY3Rr|lpj;~JmkCn`U9)<%;~zh; z9lMU%65_Q|vo=E6BrF*#UeZF|io!hInF0bvS10_+2P$zZ%1#!f?0=Jlk~4!QAKo0v z30@I%0RenSz=W@PuVCO^p8L^OO@Cb&+`K(g&MFQ>V}f(wwQ4&{S=xudD#Ql|t)!}Q zKQ`@(J2}Y40+a9r*5f`EK+u#_Z}uaiNeqR_Ap>B(j7_X^`R^V}@3uLvjH&Aus6|}F z4w61o%ZAv0badnsokUT)rrtR#Vi>RSz(#4V?Lv91kBEYlHbiskPxDk!UQ+@`yX`go z&?F&0tX?MDL>7;qU7e`8@S(TvD+R4+VAH7Z?B2Xl8=F+-GZLKBMAvxA73YM&brNFO zv})7&YgbhwZ^oy6iJG0J9=O}+N$A%?u?288@0YBItzR<@r!|oEO5HdLCQ}dCA3>8S zCy(4;=#j+@zQI{%RcDX|D!~*+93~yC_MV(ObU{=$C^fc}rBZy0Vq6Hh(v=EJlNdz@ z+W zZ>Zi2lJu>r3TjyqdnG{+iG8)s!j}5Czm83n0F(7d1UOKE{oaALsi~7J9a`sL+lqb~ zD365vw8I=|I-h|t?QGEFcI4T!HT~JQzr4Pj7Z(>d7Okr#H|WVJrZ8Lv_HC+%WXT&x zAZs>wAt5=9G3{VAJ}w?8DkhQ3(mHKR($4O*zicRb^7zQv_LthiGxB`V-l`0;sl>Fj zHwx_8adC8%mxL8qWZWxQ&eGmA#|#w5Z+^Pq!2S9{#96XEkvm7PFL5004_l4U9=j9? zx3XQ=O8W7$8~wcXoiH5ZTfbv!yX!)Aj7grIL!y$@_V#MxTRVB6B7E2d+@|}&j|fL@ zn9J38?lctXxpR)(&kVJpd)#YH*H*^3OgtFQ9YKBBPagw^g^!;eDy`{njo^W#a)74; zzQu10<9V|s2AJ?S8B`&}2?K|Z`Uqstit)V?{JOnBgoWu%7sZU~|qW-l(hYrijeDO4MB z(Evub`8%&h7drE@N(>*l-h~C@-2mg2SZBrt?&}uo-yo_(FFMv|2&!!AckhCy=fKmC zW7QzK545zba6*bJ#|PcNSruTdwailNa$EGthp@oGhH9g$yI5-n?q`nlkbh^q7Bbni zZXgfdpH|fy^`X7arG81}^dv)y*#;pt!E%8BuGbQpgAz z&Q6Dx)9>g?m<*coq#FU=gmWQ6sB7M>w>phP;n#UKr*QeSkBwn)h~<{e&^ZuyfW*p# z;zHznhP5Zv3qKy{dx^fz)O#IvbJ?>PwZ>y#+cvV|w_Toe%1j6-RZN{p^cXCpIm#fZ$~L~r9&F)PoD`U!1zM7*W4H^k^%%R!yW~MqHVZn%C`KYLK%`HqHY@jn-+) z%+m96d;p3z9R!yCjr-qEj2iS7Cx~G7rb#J0)ixXq45vNiLQh4Ty} zXzRHgv%iJUfGbq}CJr|_wPpcXMrxza%0Y{Tk5z4Zn8CaS>7h`U6?x3QO}`4r?>s49 zoI|wIf}JyS3o43Uv;%7eT2TS*I85?;ELq7SFgEeA91M&^^fQ-iNGjJzlz0|W&Rcd^ z$cuI;RFJv{F~=r6k%eJw2Ab;W8Bb+=2A{?-n#TBUSDnhjCy?m53a)ZgU@oma85$6& z%io(fyPhcQo&yOZM6L}nS6D?3yb7{~xEJJ)l~Tn!fmBSP2y%CTg2DC!5)3xh>KOo8 z6eIu7#B$m#;-b2By2WXWS_=|G_%0=)bzZ_bNw9eU=(w-U-jMgw>B#>{+FPwDC@9=N zAQ+2u3(<>%Z<2@J8aqKH$|pD(X&31WUL z!l0|aGQ1}HUNV{%c`OaRToD05pxS@W)dVmGarrmOn{+;Z{ybLq^zjJm1qJtix^x^9 zi)4{CPzpKU*Ss_N2IO)t4n@KvA_i+5AAJ7u1sV6~(W8O)0e%b&3@;DgLCUo$=E7AQ zGFtLS?w{Xz{ZhXnBs5%Hn8{RmKx{Fy8ykqkVU&)>U!sIB4NNxs=^Ggp=jU^NZf_4= ze*dPVq{@C+Fyl|8y*vtqN=!-FEp6uo?+=>=nH+d%YDSJ#+cQ=&mxU!|HHYvBC4c;5 z=sr__t}vLKx}>UVGvDdTl^^^-HeGdf^`f<*%g+?p^LwWTiU}B)PMQQqBdV8T%Z<@a zTwHvAvtMg#CX{Wljaq)-aBoB3#H92Y3Ar61U!B8;mR~?XKa`3^@BaOwk&*j|;5#6R zGC(EqYlE9nK8+yv_1mxCkSRY|eyM1hx%tNIWuVbh#>_?+3Q{*b>zQud|jFhw+uX}3Om;3Vga9$p04z{cM z^;~O;$YaHTWc19QtdD8XYLw@?{FAvZEQeouPloK$&uICwVMjVTI>qf>!N2>xnaO{~ z#Wj>NTVk}}FKRV1__mg~Gdz+&bhz2m_CuL9@cw?c^N8`dRtm|qo3u0`LTC&PV;@UQ zP>Z|*HqyOZXm=cIjpS(RIFHFA5XS4$N4PBZ=F`P&<8I!(IneCqg)1zy|M4ko#`}_4 zs?^h5LVtf^Y-~mr9MRJ3P~ibby_3D24oE^h2d-uCA{4ODi+?ch<_gx->l2CQSkkwg)>BZ!86I ze-IwQTWhV9cXo6<=jG-7z;MIh#m^jn>krQn)xBog+S($aNLe|{mGm}fh=6#k^o z0sxi|V0{p4_4Aq2j2PxAy|uKqyZ6b_PB7Re z9|i^nrooVo?PnYBy^qq<(<7bl$++^ixcKbpD;KnG(KfArJg2k+QH=m?tdv{#q+bTJ zf4dX#!jhC-MC9G}@WJ+quD-s$6ziAdN<7{^t0f_UzS_251$0l@(5so2FZ@Qe|B}B1+Mzd7ZmiN0wK9yi z?lo|Atu(H-(=R_b+lj=~*Vh|2dB6Md;|KkDvQreA=KNlIfchs2*st+>|9Tx=UHhQ5 zSXI_O42*=yy+v}8=V(@lvhyM(&|c9Mr@A|SJFEJ_m-HSz%FXm$VYEPMP{H2@rXw8K~tpV+u5|xg{llrP`ZK1qA2*_KLmiMSfy~{usU;2zLea4cNI- zWA)Qa3oc|stSMEAVlE~SbdFZNT69m2j~rE>lQ(TdxqsvO7v`c`Bqo2u2zxG%NK9)ZMENlCVKc@?0= zw^;f!Y6wJ4JhUFpot5C!JP1amK(tz1Q&H=c<3Ze#XwAz99 z^Cz`NFCrS=S_5KY2z4^kQ#}{5lYywlpH#Mo-oREy^t3I|f03=qzd_( z*sDkLLBL3^@IWz~luVr6*vCmQ#B@mR)rF;UTu%l_!zk$?wYVOswzpKflYT(zS1-)( z`EDDP9e7Z*`VB{(7muE@oE%DhY~DeZH$4g=hwXNfv#FUhR{o|2 zc~f|u)PiA4-0J(&G%cqppmFnX2y1=n zv22rcHgH88s5AX_37_ppQql54TV0~-z$-W zr{du0z5W718#U?zcdAJnq#OzuSEnFQ2LKihvVJrjUA}f+{?v)-SZ%K-6U1HViUahP ztF%y5Bpf4y(n>C?SMgny#wYMV&N42ouSYafpU9qVdJQt?Zyh%aNk@dB^@2q^eAn9V zzBwf8^nIY_+VO|BM2Uq+NeAu^lHD1yhH`$}dj9@RD$%TtvQ+#<#Ujb8rUBIhrD=eM z0m&n}gT+g&GYR{KWSWvi)^i|%SJ!<$!)q)Gjym2|U3h*jKk&$b`;-Kj&j0iUxifyP zJC*B{9iikbJ_XwVcRYIh*irQvLhCj!E?-T4KNe(n7s1@Cth)0L){>7mxo!Ke6Kx@{ z=Jn@$UC5v!Y6^%c-x7rnSkH?_p6rIMh#e;-CIV+CyHdmkg8WuPIVf@<;LpaQ|Ni|e zj8m!8OkoEQt9H^(_H3@EhVWN}iA`NFIS#N`ospS-Wh-J%e(N8|tF3!k<&JlMdc4d4@BjV%8wndPhU{vmMpwg?ju26f|o3 z*^NQ%j>FK%_TtsOZ(8}w4n*5~jOp-KROD1@TDLg3t|L#j%s{g-5jZBseoSwF>Lk(N zZOrkuBv49FQCSkJckA0P-#)PAD8Ll%gEB?!_|;NV0nJQ@ZBB9*SI?E3r~^RNZ3eRe znyh7-9{RXiTALqq+|SQE@Ty}$JsrMYR^B3Ex!e3rHD`nsZVQ>WO?8t*Th zoJQhN`{*TB%kAWd`HRAe1%-4(%%aVEZNdpJ24Bk4^R+jQGD%teD2;hWp5z;O7&RKwL3;@wnD9Cnl%WYkiv%;C@ZT-I8 z!r?}@%v{S}WC94fwC3&oT4|I4rv9CnRDMdjy;AHT<9;+Kzu@#(XV#D>lE^E7M6o^(E4g`+3CgwDs4Y zl<~3OK_v(Hl!F~2n)HR~ooCX+@(wAR5oRvyp>m+7LNO-sGMmbwUSwb#_6A%9TS?o;eB==;BHYTxe@vD$FafkP0ysE z^(KPOLab_j6bo*q4R=w%f%`Ap9Q2}nJ`3gC#KFadWjXxu!+{%4l?S-=U-Kxid5$&< zb=D@EQbOnu>{Un_0VT7g2Uz!OfUnf==)`fM@}=FnlBI7>;P@Vn`# zM$E4U+eWCzuZXq21C0^^T~MGIA0E*?rwA%87w$?@D6|1e3DB01pAjK$GzL^4w=1P=Z*-J97V(plJOwIH0!HBGjE~S*CFL zR!UCbX|2oO5g68@u_Z1c{+fvkY;7be1n%N~a$GAG&`?iW?Pk5OzvRdbR}6(i)*6}o zj+6Xb%e*E&I8Y5ygzeS{Jm^Y~16yPXoe$(DeE}+OJ$t_{*v@Gbd)SLwtiKj@;I52@ zoBRI_+uUhE4Gt2@gB&G_;D?}Y1j4dab&YL**NYEsz2bRr&D0UJRcI$7yW+dXA`wLD zwOb37o#RK+mXI-l~v?r2B}&4VlB3f8Mc@2b{1}=cu#6s4JC&3qD89B%PAzdo<8vji4D($W6lJmFwi`%!5M9Mz6K3sRE!SJaqJ)bSS8YVZ}!9g$c1UStMau z6ySf=)4a>yY=<=Lrc4`tUp=KFzd_D95VTe0@kZ~S`J{e9LF&w}I~PZDr* z(wb-qr2{P1N#i@|M^Jrxq3uzd!&~X(smx8-`8Q!7{zjPcLWzk4Lo;1KXw?Uq}% z2Ab;VacCaIe9K1Saa`BmhNn;Gz%h-avFdowWnn{|{DM?!C>AVJZmTLA)-@)}c{?Y$ zi^iwFAk?tpO|eMZFY64CUn>u)q>hiWiXc6GZ2L(W7mAAQ7niOvRYvkueg6~3Q5_^I zzDIg~_cEk>5uE1;>p(6v??fFQDV@8_(%UUbzB!=VE(nDRmLIInNtGI7UwS~wY~TP- zuLhiyM*4qnnx&QdIy${*bJN}O$rBz?QC*?t&A1gc=obHwCj{m6Rofc|?9PM&xUBc| z={w)e-#KsJ@@KS3_(M_8X`xnbke?^+o)EWi`T0efX%c*bf;H(B7{Jm)Y{nJl&pg*A zOHG@7N2B1adEgX@au|4F>0B-00;?PkWpqhGoB&U)6t>(@&sxM0Vh?o z-kLNT04{C--+TK(`F~D1D5KF)NkV32fSDMZ^7|F5DrVk_xiFao+`21(!#>RDO2^2Rs8#`$#)lUatRnk0_Vy^qakSE z3)r`TJk{t6lM*y%iU4;xP7Cusa}6vBv&=4v@IK%`Pha0sgc2&xgP_}g$L!0C?T5<% z&)U!8HLhLgbpnll;)U3ePb@8qv$Lm*f@)l6k-(@10!;wjc%!UNvAi@W|(^H?6yuAK^OT;YLky*jmsU-R?B$G(73^4*#6O2lGq zMQ9t3?4pAfBqpG;N#Ntbb#(4Z~8(&U%Sx!>-*nS_UVoP$>kB7 Yu>6MvP2t3Mpl?Y1E?T)v(fs-U0(d(m^#A|> literal 10128 zcmeHtc{r5c-~XAhCZs5BqU?J@k+LLv_MK3Xee7$tiA02uovf3TEo*iXCHs(V$VkXO zwyeW*=JWmje%EikuIKsx`D5<6ult)<@P6p_7^pw=aB+0@aI|~G=JnXk-OkxbR7g@tM99V2 z-9tox&DO)i#r>wRFzSDH6LNO55$1?wkb$C(xhNaE13;@m`XPe6U$O(hwXJejPR}QO zdBWHK^^ffKHExDeq(caU2WXo>{ntPrK4zem!JSU zT~i@V90^HD{9Ih^=4Zj1HeS#iR@}H}Pn>2wdd1PO)_x&z01&QdAb|9B%XZrCRPjYq zPBvj-Oys9?Fj&KaP#2YQ91P@b26h9&xH_Y696nK$Qp; zAjCHKZQCyn6?snfW=I)!badDc7iYBTf%*Z<_kNMpanvWt5y8R24q57ab5Y@(p4{SIL&;>C+t4!VmHS_%pZ zUh)V62NY`=&#gHG`=h=ByxhksGC&b{&PyQHX5Z@`eiVy|eSfeq&C~mAHQ3 zBYW@aS=upr1X~4{dTL&h`4g4n%tCrPI@n`D(hSt^Dk{VdT7VBFJ3#mTo|&J*2{+S;1Q$470h&R?kk{*od9tWcS92FTu>D2865 zS&pO$7wzl2h;8SC7&&_4}16PQH4+l;-u7>@U z*bukJn2LZpkG*+|rtbDAohN&1tJP&XsWL|+K}WlDI{x*8Z@Y(&{3mV}*z~ebR@+`S z^IsbddX5D?jA;nOrAjx9hfmNOP3hQL@1&uUq@J6L-+F0T_(C7GHffh#faJ*2&jU599&r@LL2-Ki=Wvk6+)wi1yxEFTQzM?t6!b3?n0Z+jG}? zq47F|fni$j{$Ca622ODYuis7Xoo6;`oGo}6s7=Yiq$~nlvHD6s-+H3^mA_kA#lzNE zGUD!>T6bF7L$3>tPE`JQ^sdi_y4|*ut_L4K#%UsNs0g#<$o~;c!ew}aL1nhQ9^(_ zR>UWE%O>une1Zu&x|rj_Vygtrn;l-Y(;FrTiPYPEdEIH<)Zg2q-rn6>byn1li$~>? z<(!}Zws|a4dA-u{i2@=?eV)sFbe9Awot?Rw6yj}pz@(nJ5Ng7HR?GiyN{UQhUG?U~ zYN{k9h>k%5F{nMCY`z=a3Em80_20)T z07?oV@s#dDSJ&2UzplEj^ozWlZC>yD*5wg9?-%Utw(Q*>E4Y3f%njouW04xup!A`F z10sq{yQPS5-do$Fqu7G{F^$vGf&5^y!Zmkyd%Q~hyhLC6dllu<44TqNBsgel@WWu# zFejw1w(gCNTJwxj1PX(&AA`xd&7g*?R-u;4o?f(SFG9)9+K|xmVmN z@Z3yb$3P);^H=2T7~w;4T;uj_+>821q>JOxVfE&EC-!qF_D}!pCZISKD2qS~6A!m% z?;lkTtD4o0XiNt%q4!cml}swX-#bHWIpLU(NPUh3lOv60Pv$u{e7nw;yV5R%A+>^9 zvc!TKcg-%`HrZQ?L2)C`hau7L47D$-XV^j%xlc}?uraN6VNh>|SOT>di5YoS^+O1oOTBW9Su78M?MTEc1kiz(_iick3{_1u9 zQ#7w0;dOT!#?)CnNq549j4EiSlQ&;EMn>rLnbciGLP8Z|%j1`znK4+d{Pt?uW9)>t z8VWb2@%xM-xZ?bSZ+_IKn={0$ZcKxWSsOf39ci&KTg6xtiF_~&)n|L0-OM{f%q44C%!R@oJWxOt zrO^JUF7cSlxOgyC)sumlAHZ;`b=e2Ya%cet*O?h?_l-2~n{#g*r0DQ0)#HyeUJ%z} ztj%c|G~jLweow$YJBDTPR+ia)u`GtJuCRSrO#f%xxOSe)uJ;n|1>WYqRcLsMSchZs z`ciq})QO9|gejfXpVm%YPzxuI8kg@9*v+4xJURU}?edY->TmpsL8ZAKY`muGY6Ew} zLD{kxY>zl;Q0JAhL1b4{4xt>?AiJA1Vl-cc%RBI&pU+3-Kb?eAy>42Std_>5@%lM^ zWd>!qc@wdSiCVdO(n;#r!80Vf^jmMz;eJ!MRnwpz&JO+O45Q^NMY?=$56xrs9z-TL$C2_rLH%<Zo0*XTM0Nc12nd_#z z8tFWhj&@RX3;YleK9$W{$<4|6?8PCblO$x#goo=FLPZjo4YK-GRlA-wNv*ybc zPX1oHgf<3)@nq%B^eggpjr}?eKlA;CTRRZT@ zo3yPP_6{U@Ss<(BkmzhTE-`W{ZkY7JjgY&;v>M$af z5<6t(iD~?Trd+3)Ml_JZxghK3+k3Il>1^~?XOK6)xR+)vbW(t?EQ8!!0U_H^Ppqo& ztM-`32yBww4Vmr66zFzq1mmipA_?aJ{Ie?Oq%#7qR%$!z-+^#?6&35UmE4#yC>S<= zqGyQI*4&8a<&P!28ZbYAvWxKM&P;y%x zx|Ih=yzP}q`suG*`-=vr0>l*Vr+c*0VcBC!?_Z710{G-Wq62g!sC>Xc14Uk#8ZAe0 zKQ+_>E_#}`If+X)BukD5)CnS%dD}nZBO+ldvlbu-E)J=LhGP4&NsX1z%jEh23Si+* z$lCnEcz>O0M}PmX^$UFd8~F8A+JGPq{S5Js5-pJ|Ffl{0$gESRr5G+)&vQC!a{TAx zC~gFUhKPtY4$u9jG=u!QHel;mVwLu*5_8L2<^Wfwe#c|F?#*X-J90l2WCF@@(!@c3 z>m-?G7R&bJU%hV$PB}m}j6P-Sb4l%YuTvn_W4!}AYLk{hHg$;xR9Hue`IItI!(C#- z7B`xVebVNGae+Km5rKZIk=bip=;uR|GgYM>UYm{E9J&*4-3;8HFdQl&T>26PXWdOwf1Cxk{xCPadaGFtJIli7sp5`1WcWY7rn}QZi2EpR zxlh{QV#TA-!SZ~P1U_!1CtLdPl}=3HtK%34%(-5_dLVTSlq~!-+ryLnyQR?RGTlX6 zDGDI0cJK9AMJ#ED?6CNjDqRqMU0fX79#y5wc991}kCZ7a zOyIm|KtC6|JRk2zI2^9S-46y;j38VQ0x-YTQH`fASwP|nZ-*BW^uP0T;1%kD(0f_`Zcz5!|CW#YJ9V5Ye{%zfwY5jxKZd`-1Tt}D z3VZ!Aq%q4+w&H^2;Iga!kG#bHZE3029Q6LR-mArj#C?b5vC1lT1Oeu243`J;HDkU_ z|DK&)s9h``Xpg$!xxZY!IOb3i^=%p%F2n@b?)(hgM`ie})R;5{28>+FEiAnE!Jr76 zU}(;(Qu{kj4Q5q2>S@I*=_Nre|O<^bXhlTq5$q(7qn=+-Gkrb1ypa(jiV!)^g+Z0hL_yNS7~i_t?lix>nvI(!M=POs%-?tn zsApRkjEBw%r6Zrp<~lDn@84;@aEg)9v+cAYkBp23yW&e|cn%ddy_dFDCoOUnqi8xT zJ^u8`*<=P(nftFPs9-;oG`^Q*a~Thj0XIVZ$w6~}z}|em{bVDt`tYFrg7aX!ru4b8 zuPN72sl^R{O>XbtL+l6MM!kU>`D)?@IHLANBultHdbf(@y%iKSw>7t7OLf$0-TQ{6 z?CX4gZrIPDBO>Jl*X7HXtzuTMz=`{w>opq?o7p|S%OUI2`SKk0)n)8_J`P5X>01IC zzn@a&Sr8+N+KA62fpik|O@v_RA9Bp>3I^+ImYJwIY0$kHUa3rK zzq8|`o_w{%EB&38k3JE&LvaM>KczTo@6d5A)TQCaygdVOo_ zw|krOxh)}74qFR9=$hgmoL!ozt6o`LUtfQqs;Ww8Jt0H;RerbUbLjEKH%(AC9=N%= zxeUBjSFi1rIk?Q!k<ZY^ zR}dFVZF=9-mcR>3S67!KA>i3#ayAi>k1LDB{p}C6wKp%Gm{uDd9rf(BP*sh%>9zDO zE-sF1Vs5ru=d3}-R$l8W54~_`&}V|ZyszwbthcDqL z7y5IREHCvKE^Lge=mZ8f1|Du?!ZkOxpQ!cZV1Hr~kSPQDr&_332j8lvRoM1l!D;98 zY(W33k}6{P+^LD^MIsF8Y6EgwA2gGgr zvbbbsedkm(rFnNBYTTD+{?xKYnibqmlF@LKYiql@eysJFeD z-*Lb3xg)dNq3Ni!Q3&}u9#K(UsJ)(kR9042BhfRyH8nM<&>*XvCyRgow&LXA*l}C8 zl6$&Y-K0`Id8u|^Ku}O0s%DSG^vl}E@201xD<8E*^xY1RL5-FvKsv5~kDvcXp|L1* z=;m-4buy&`&U?rRP%MRqU7}e&Y9=rzBHKT9rEz;Mwp%@td1S_|v^mdCoDu#fT&pFi z=BGcBqWJt2#(KGsyoovzvP5Y}D%|W*ObmYn(a)E5Rn{O!QXDR`j$&el5&3f{?7ZVs zo}#3m0Ks04f^o`b!#|;%gd)B%*!^|<2Sv0+w$>rpmLS;5v(dEs!AE)+B52x0kV*Qp z&kT`CM~6;lBGzyy2B33IYIM$DZT=Tz5y@2&J;$K*l10kEd)zgQqu|pgquYLe2eBA6 z!Texm|Gff_sZaSyiS&5Z7;(cs`gV>4GsgG@*xQ#iQ1oY8-!otJQ z9eB=Vc=L&fXjhNBMJ_87&@h#M%>>cJF(yD&Y5TB>+Pntqb!x;7-;9VlD{^NT=GTfb zmx`c%*+I{cD&<|gY+LI1oyqRNhcpUuwaw9L!U+)ni=Jobbbjh?Qfa?cGx>)4I%X3Uy;~k5gpNJnjU=Sm}~V9h&t2w_`BzuU((`K z7*rrm^<1(&oa-f}PiVoI+t!K1C`g--$KFMt12-;+G6S?<X%^B0gn*GTK{LD^NOtQ+Yr}0pjv>HN`)W z37I=e9YZTqQ)2QnXKRC!w1L)K@bSF4HW;!#tNuw+2;#&&l{zmKwM0^Cao?$48&X7Ph^{P02Rn&%tBHr}%%Zobn=O6@ z7%u#XR0xtqG;4opQ@Jt0G2t2ph261(TQMoE=`A38ZUvCeDgAzvi_bz6$yuLR^cR9Qjxk-y8`SBQkAFOY<{AynPr6Vovy`+ymrTv=HcFXHcUP+#!2 zU0_4%VQ@_xl?3E4&kNiz9D|hKvN%qKpuaKKYuFS>WMXA4ImXB}5>0m8-k}>)mt@AZ zwStnOtB*#a6>GK(AkF9Q3F@;=tDRD%18SY>mapTqA9S!DvSqkOi&=#)bA(ee0Wnp_ zLXTlHY`P>iRlI6IHjae1e>V8>U%x)&#biX-nbuK_*qmmC#`h1YP-)LO;a9TxRYsL$ z)?}X+cjvlo4EE&ZwLl*S3YWSZ!Ww9_Hz$M2U#l)G6v%M<&Z|U(Fxsv!U}k0pQtg8Q zdU|@#c*Q@X)~yOE^lH}>p?;$t1b&^dA?P#gAC(Jj&V3Jc7JU4hwvJO`;&?h-d*%4lqqb zNToEh+S}(%9<&#>ceJo(%OYfrNQynqHZ!L-@HXXk2STi8Wy0ES(!DpKku)bfb2?IX zq+$2%W=T*=Xh^EI)=Ff7rz}XS>UjiRB^{CBpcWf03i>glHcSLJhl7o}+ ziCnk0UZt9=8)(T^t{+-(QY!Z7Dizx;_!Yhzd3hY=Ar|-3m+v;8gsf{+FmitFD+ZDS=Otb-4`}6pX9mV8 zkfPrlwV6FN9IsiGLA`SwQtzq?p%soPzJ{LL69UPn_?XarkTbAbxi1=qfj-#|ZJ7($ z_?E|cyVLE4=swMJk&a$+{wN}BQ$wgorzPkAZwcc_Bnk*Svh8?2$he7X9mE+sJcfWcPu+3g=Zu?WchA?D6-E5 zq7>&wUe8q_GoQ;djQyl;qm5>J8=07ix^C$O6_qMR1u7a@qMo7J;;17RglcDr5J7Xj$}%gNqYQN2rM3W0ls5M?Va48syLDDL@b87snvGF|1kp`xMTuJ`_pt zG_6jRW0hf27VT(oaI6VIKt?f>j`P3pc7P*A{j3X>wVO{Sok%hS3hDi_Fi^n54~ zne(yfy`EMIj`sB7$!MJ6g{waQRA zD;;d4&fy{Lm-Vy?B}$bXbRe&)F5cQ9AEvmiQ`&D1XpUprBD=rz{9W#DQriEkb0>J& z3hk{8&|G`J8SQr6+?RbI)!dRS+7n(pK+$gihDvV8@6XK4nh>K|Fsui%3xgeA*VvwD z0W`z=cdw-PyJ%&can{!(R5Y%ee({=rBsKBTw+84Lrm1Zi6khGMb1OSH*4yP_8O+5% zB4S=bR~RFcD1FdZuZ#MjYCqIfZyFVIBmQ_pGe1SvdsWD-&ktyJw**cr&TkHM2j6OV zl486M?t~!0-I2e`vnhi$f_VgAIzhet&-U>|16Xq)oqnzb6OLXt_*lG|Mcu zb3j9Mb$x%!QtlE7s-l$+7As)MaOId9?&{-Ha9;+F+uM(STFAeUVp#b4X(iy0n+|$AAklk_=E-z6qrtpEGsl)RQ zO&KDt+Ie7hXFDhdsbz+`bd;7TDCPDl>7JdWzj@%WP<$oIlvhyw=0?}F4PY>40?pj; zq!9CB(!=L+?sU!J9{P>XuMrA7Va9WE{9?YDRCy^q`j0#U;8Rr4;7Wc9EJ^`v>pbu( z0qYL{I^;inyYuBWukPzNZ;D^OqY%O4BI+OSzQs(63 zT)|f}$25e0;M@w3mmQJO5|(@qema=q#@R^Hx|y!#z}F znh(jU#d+xQ`&wAhX=mX?u5fcJL3TjL-rjy9^Y&(+{Q2vSBgdRONmUN8qy?5;u)#`~ z|E_QOUy6J1jJo+6`ihFrNet5FrUxu=YV+a%m(DOk(x*xu*w(JEyFn6CH4fGc<--mQ zf5#l4cB~$AzCcY*;uu%L!L4T};g-;|9&p+n9TMLc7gr@yqK6^F%ldzCEk(n1LBQ$% zsUHiC!hC#KsFQ`H+Lqf-Hg|@4=O8E)7A{%Yhb$K)mjpJm5kAoV2nDXw?FA6J*3KlF zIw~RXa_LCmpOcl9wXz85GuyRaZIENDNTx<7{Y$sGG~X0r)ROpwgfvqb5lbTgUws5rm_G4R;dS^ diff --git a/dev/_downloads/7bfa6a992ea402720a120fd5093741a4/plotting-11.pdf b/dev/_downloads/7bfa6a992ea402720a120fd5093741a4/plotting-11.pdf index e590bc7fc66da9ff1f63ab1c2fe853a8b802c27c..7ffe81dbe19c535b9e85205afcae5b73603dbef0 100644 GIT binary patch delta 19 acmaFo{LXnpi#(g5iIJs=;pQ&+6ea*p;Rdq+ delta 19 acmaFo{LXnpi#(fwxv7b<`Q|S96ea*q1O~VO diff --git a/dev/_downloads/7d4a2d083d96719b05ab2f759c57874a/matrices-6.pdf b/dev/_downloads/7d4a2d083d96719b05ab2f759c57874a/matrices-6.pdf index 39cc2aa2976017f62d18b921e5263834d1c8fe6e..417d1017b5d93778d6c575ebe73de37b2514a5c8 100644 GIT binary patch delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$Y=$OA76umEl@nQ{m;tL_2@U`N delta 30 lcmdmcLU8X1!G;#b7N!>FEiAH$YzF40Mn;y~l@nQ{m;tME2@n7P diff --git a/dev/_downloads/7eed1bf07a4dacbb97d209dac2614e9a/matrices-19.pdf b/dev/_downloads/7eed1bf07a4dacbb97d209dac2614e9a/matrices-19.pdf index 75452fce248cac69dd14a13981a2ef2799e4d88f..4ab79381bbfaa17af43103aac94d940f71f5dc8c 100644 GIT binary patch delta 30 lcmex(M&RQafrb{w7N!>FEi9VKY=$OA7AA(<^_5wim;tnH2|WM+ delta 30 lcmex(M&RQafrb{w7N!>FEi9VKYzF40#s77U~(nA+G!}Gr9J=gVJ=g&F6zV8RgX7*&y+OuY@x$k>T$j$5OM~`qG0RSA;)VQVx z01{pz@U+zMYY;t91HTmARPVaocE-4Q-g{&Xbnm&jI6AvI+TBNcSU+;Lb9Ryxxhx_s z;^OS;CVl~J>*nU-dPP(e`=4$i&W~(F`Cc+B!bj1$Xc)Nyz;ONW4}tRxIT0&kzY`QnH^hh)0zTquI)%n8X*ZKBu9W4f&BT|sf! zM$@#A5Lu3FMbU&SGAGvMTUg3PqG zYg4U6ZAAD}T7YNj?(Uvt!fic?5izr`Itesi0I;Pa#o6t@IsD!x*;~!X$cWgC2+x3h z+n-)NW9B*RZv62<$buf=`@jG#dY&{~gZlJm@9~#+Uw^x#HBp9B z!m(caAMB3yR=UrZ_^i*JaaIRlsE!@JF4r}B0E_{k`2}YH|AZDcU3v~b{^wmvII;mW zF-Fv)@cVbQ%*@R5qM|oW$vAb5eS3+Gr9w9{1CX*kZ*h?O_3Ks5j;f{4dGOD~!fz#L zI1TV|SHjz~id))xe8+F0nTrh>@ENM~fTZF%;{ASqyB(($p|C}wXzm6YYKZnVxj|L% z{B^InudZ|TdXMTE^vNUVPaZjH>g?cfTU%TEaUO-`2?SWKNKE7ks=LR+!eX{@@r&in z-!7K|4G_hz#GykmoMWt>Oy)6#f!<0QV_HvkdGtN=iTT;r+S+ZgQb@6RbI zkwF&?+djq7qt%+6*(_o48(7n-Aj#%VhDclG`}^6ygsLT`JPxsBD6YCkn+@uHjf(a0(Rr!mvGJ{jMobC`#HfXZF#~2&_B#tUZCniCqPx5Mth(aPn~lZc zJhu*$IQCa+wqa$lA zMgbCxdh>I09qK6m3=^jc)j%bsc7@&ii`an-+}^x}%7`dCgCG~9K-P~-YoF*%XtcCj zr8EH>OqnW|T)&g2X^@zx{R~Z_5NA@m;(@6{PyQ`4v*GZvwcB7TD^eh{P(<>b82bbC znV+vk0O`~f*;Zv<&gd+iH<)&!*{?oqU$Ju8h)>>vM84p8af@9O>dLBC$I#W)i5Vio z5jseTdv1`7)uq(&gcPmhM_bQcjjD6(UA?xfzilbq!vJv}i$I`U~Lsco#t zWDR%sDI0I^I?)G|TgS|R%RoON%UMylRf=iXn$*{ML$N?+)bF-QnUle98G(L_$0=3d zS!V}Nk^**wf`ExD!qeL#@R4CC8Qr~#ijJWQVqQqW&2t$tBVJbZG`QY%(Q7AP#m7;~ z%VS9B<`Z>Gu(zaKyVR~)I_6kh$O)|BN#EZtcPA$&<0WmvR`)$Ao127g74T=4lSs}4!y+qYOc}dTmPSvPrYwDxOfUoLj{PLqZ3@AZ{Tzg~~m$=2{W!_^S37Ok# ztry#A7~dLEe)~quL#hP>d=x8V0@Lryu74$iQ8`u}d^x#V_D&atk(rs8DG+{y7HDX; zwqo2iLOC!9RBcvcWb0%-ooi1110r1n%K27C)Mtgx31j^S@s@!P^zLAc5sarFyhBHz z5a9fHpLpjG?i&kvjn|tBiFs#fl2GEDVwZZ~K$(yCPPJNxgR=}O!`nNnCi;n@p0ZP+ z+hjDRC~&}7QiDZ8s5aOBX)*J=q#ZIjd)hTm$aX>b7?+!R3}9wNmgKC1e;a3^H4=FgV7j-OYQ8m z(2UoIA;&w%D31pL zAXHhIVOG^*ACRBK_*NvaMThVngws+2K2ui$$6tN3R-f70?H4a}9QtA{w0>p7=Xt`L zT_3D4wW#?mirAPWY$c_~(#6hufnH|-`X2NrecI1aCI(^o;gWD}`6iN5Jre@ZJzRbl zH)3e&SalrjZu&6DZKuR-Ds(}Mq)rLyhexXQH0d1PQCNxFgt=|xclFs;9p5^N01r!T zUQ792985)yi#x=`T|C7&SV$Rg6)2f{C37^I8l9h<=qsew@VBYD4wQ5j`mN&kF0avy zy)WtVv!1mKr9l930k~sYc*_nT*k}hc_7_s-JO+62 z{<8MOhd|@Bw>L(vtuc})q%4RAmR->MaucBpgV7|t(>^n24D|KSL4Y{jmPBk;ejFX6 zB`mC`9t_R=1I>&k*kq2F+clkpy&v`D8>Qb+*uF-8JIF6051_&qiI&_pU> zP@cczLl{1X?~0AI>RFzd{czZf0I?@uX<@M#yIWvi4ELF%lR|?Mn0^nWn5skKYbK_( z3kryNN)l*5;;F9IGmei+cB(oKKHM>H8vtUopj-o6V5D{uuc({cQli8RmX8h(W11|` zmax+b%sm*&S}c4X>F1dcyK(%1ZroP|L?JJ*RI*5!-JJe|TCVBPo1M@cG^piA0%|U~ zAN`7?h>#PR8y>KU6*f^KF=Ry`(~@|eTNYDwr0;8kJYSsq*Y`Kd%&73!UaFmCed-CZ zUqs85-+yT7%i;E%Q`qLga+n(+Ac~74<^f9;OqSbX;)0+h1p?UHh6@Th8X{_AhD@m` zDi6VT7(F!y!we4+KW=QC@%8GU0RYEe0aAJA`^>TX@V{bV8N<1mVl%4aA+Ytc!XOLK zptiRDb9{yqiLYx*iu_2x8Y0jf#msMgw_IiOQ@{K<$_OIp5G6+{p8!&^68;qqFdU)o z=kJ4yAK>}U3u(_S65;cL04cle`pyBO)|wKiCtbRywub~m*MLjZwD=fX?Kds0j7R~j zVc<0qGwB@TJ`f3_3LN@!ul5#9Nk;&mP!_T>5Rl%Dm=h1ET)byzi9$*|%z*18qa