diff --git a/dev/_downloads/0130acc9674ca6615e762dac32f6f525/matrices-10.pdf b/dev/_downloads/0130acc9674ca6615e762dac32f6f525/matrices-10.pdf index e4869f27f0a..c691bc55427 100644 Binary files a/dev/_downloads/0130acc9674ca6615e762dac32f6f525/matrices-10.pdf and b/dev/_downloads/0130acc9674ca6615e762dac32f6f525/matrices-10.pdf differ diff --git a/dev/_downloads/0249fb66c2fcb06b78bd6a84135be88a/beam-2.pdf b/dev/_downloads/0249fb66c2fcb06b78bd6a84135be88a/beam-2.pdf index b05dfb1a332..912f7822665 100644 Binary files a/dev/_downloads/0249fb66c2fcb06b78bd6a84135be88a/beam-2.pdf and b/dev/_downloads/0249fb66c2fcb06b78bd6a84135be88a/beam-2.pdf differ diff --git a/dev/_downloads/02f5470280a542a7c80635a082cb7e09/beam-23.pdf b/dev/_downloads/02f5470280a542a7c80635a082cb7e09/beam-23.pdf index 63190d7afb7..6c71acf72b4 100644 Binary files a/dev/_downloads/02f5470280a542a7c80635a082cb7e09/beam-23.pdf and b/dev/_downloads/02f5470280a542a7c80635a082cb7e09/beam-23.pdf differ diff --git a/dev/_downloads/034c3ce6c53eca7932c83f9b35d14c64/plotting-2.pdf b/dev/_downloads/034c3ce6c53eca7932c83f9b35d14c64/plotting-2.pdf index 0d4f8525858..c438f3b19e6 100644 Binary files a/dev/_downloads/034c3ce6c53eca7932c83f9b35d14c64/plotting-2.pdf and b/dev/_downloads/034c3ce6c53eca7932c83f9b35d14c64/plotting-2.pdf differ diff --git a/dev/_downloads/0616d85a2c2e5a070fd791bdcdb1e35e/plotting-32_01.pdf b/dev/_downloads/0616d85a2c2e5a070fd791bdcdb1e35e/plotting-32_01.pdf index 73d5281f2f1..d5853af2da9 100644 Binary files a/dev/_downloads/0616d85a2c2e5a070fd791bdcdb1e35e/plotting-32_01.pdf and b/dev/_downloads/0616d85a2c2e5a070fd791bdcdb1e35e/plotting-32_01.pdf differ diff --git a/dev/_downloads/0680199b4e61bc189fceb4418aa72812/control_plots-4.pdf b/dev/_downloads/0680199b4e61bc189fceb4418aa72812/control_plots-4.pdf index ca453ec7950..a24b2c4f165 100644 Binary files a/dev/_downloads/0680199b4e61bc189fceb4418aa72812/control_plots-4.pdf and b/dev/_downloads/0680199b4e61bc189fceb4418aa72812/control_plots-4.pdf differ diff --git a/dev/_downloads/077b659bec1d5c2fd531dbd0f7e15f0f/beam_problems-13_00.pdf b/dev/_downloads/077b659bec1d5c2fd531dbd0f7e15f0f/beam_problems-13_00.pdf index 634a07d2001..aaec0c43d47 100644 Binary files a/dev/_downloads/077b659bec1d5c2fd531dbd0f7e15f0f/beam_problems-13_00.pdf and b/dev/_downloads/077b659bec1d5c2fd531dbd0f7e15f0f/beam_problems-13_00.pdf differ diff --git a/dev/_downloads/0a5b397c3adc07987864b0441654dc1c/beam-1.pdf b/dev/_downloads/0a5b397c3adc07987864b0441654dc1c/beam-1.pdf index 4de6c8a372c..a7b5df771fa 100644 Binary files a/dev/_downloads/0a5b397c3adc07987864b0441654dc1c/beam-1.pdf and b/dev/_downloads/0a5b397c3adc07987864b0441654dc1c/beam-1.pdf differ diff --git a/dev/_downloads/0c7c1262b6b611b1944eed12f33413fe/beam-5.pdf b/dev/_downloads/0c7c1262b6b611b1944eed12f33413fe/beam-5.pdf index fcbc2280be7..57cde77f28b 100644 Binary files a/dev/_downloads/0c7c1262b6b611b1944eed12f33413fe/beam-5.pdf and b/dev/_downloads/0c7c1262b6b611b1944eed12f33413fe/beam-5.pdf differ diff --git a/dev/_downloads/0eb265c8614c7bd3f16f6034d076f6d3/beam-21.pdf b/dev/_downloads/0eb265c8614c7bd3f16f6034d076f6d3/beam-21.pdf index d889088bae3..9d90ffc12b2 100644 Binary files a/dev/_downloads/0eb265c8614c7bd3f16f6034d076f6d3/beam-21.pdf and b/dev/_downloads/0eb265c8614c7bd3f16f6034d076f6d3/beam-21.pdf differ diff --git a/dev/_downloads/0efc8f797e345bcc903c8f4dab4a5322/plotting-4.pdf b/dev/_downloads/0efc8f797e345bcc903c8f4dab4a5322/plotting-4.pdf index d1acda21251..0458c984e81 100644 Binary files a/dev/_downloads/0efc8f797e345bcc903c8f4dab4a5322/plotting-4.pdf and b/dev/_downloads/0efc8f797e345bcc903c8f4dab4a5322/plotting-4.pdf differ diff --git a/dev/_downloads/0ffd2a0f4570e502b64ad8529258801f/plotting-17.pdf b/dev/_downloads/0ffd2a0f4570e502b64ad8529258801f/plotting-17.pdf index c1ad19bd650..38b361fc332 100644 Binary files a/dev/_downloads/0ffd2a0f4570e502b64ad8529258801f/plotting-17.pdf and b/dev/_downloads/0ffd2a0f4570e502b64ad8529258801f/plotting-17.pdf differ diff --git a/dev/_downloads/1362531cda049d5b7f4db4abe11d4178/plotting-6.pdf b/dev/_downloads/1362531cda049d5b7f4db4abe11d4178/plotting-6.pdf index 996db77286d..4fb8a90ef98 100644 Binary files a/dev/_downloads/1362531cda049d5b7f4db4abe11d4178/plotting-6.pdf and b/dev/_downloads/1362531cda049d5b7f4db4abe11d4178/plotting-6.pdf differ diff --git a/dev/_downloads/14bd882358332276f28c2e3ace8343d5/control_plots-5.pdf b/dev/_downloads/14bd882358332276f28c2e3ace8343d5/control_plots-5.pdf index 185d8038996..5980d62ec35 100644 Binary files a/dev/_downloads/14bd882358332276f28c2e3ace8343d5/control_plots-5.pdf and b/dev/_downloads/14bd882358332276f28c2e3ace8343d5/control_plots-5.pdf differ diff --git a/dev/_downloads/16c046e4f150f3aca5fb6bd438b952ce/matrices-24.pdf b/dev/_downloads/16c046e4f150f3aca5fb6bd438b952ce/matrices-24.pdf index 58f13b21f54..7e82ce52b79 100644 Binary files a/dev/_downloads/16c046e4f150f3aca5fb6bd438b952ce/matrices-24.pdf and b/dev/_downloads/16c046e4f150f3aca5fb6bd438b952ce/matrices-24.pdf differ diff --git a/dev/_downloads/16f8dba9abaa041f16c4636d6e41a0ac/matrices-25.pdf b/dev/_downloads/16f8dba9abaa041f16c4636d6e41a0ac/matrices-25.pdf index da2c874ac49..2cf7341d83d 100644 Binary files a/dev/_downloads/16f8dba9abaa041f16c4636d6e41a0ac/matrices-25.pdf and b/dev/_downloads/16f8dba9abaa041f16c4636d6e41a0ac/matrices-25.pdf differ diff --git a/dev/_downloads/1f24a27fa4a24f0b331e9442f61363d7/plotting-16.pdf b/dev/_downloads/1f24a27fa4a24f0b331e9442f61363d7/plotting-16.pdf index d22ef54d102..0022e397ecc 100644 Binary files a/dev/_downloads/1f24a27fa4a24f0b331e9442f61363d7/plotting-16.pdf and b/dev/_downloads/1f24a27fa4a24f0b331e9442f61363d7/plotting-16.pdf differ diff --git a/dev/_downloads/2019cb6b524d1d6351bac9c894de42dd/plotting-26.hires.png b/dev/_downloads/2019cb6b524d1d6351bac9c894de42dd/plotting-26.hires.png index 609ccbfcaa6..605bff8a79c 100644 Binary files a/dev/_downloads/2019cb6b524d1d6351bac9c894de42dd/plotting-26.hires.png and b/dev/_downloads/2019cb6b524d1d6351bac9c894de42dd/plotting-26.hires.png differ diff --git a/dev/_downloads/2082eb4d6b0c42668444836c10a5a149/beam_problems-14.pdf b/dev/_downloads/2082eb4d6b0c42668444836c10a5a149/beam_problems-14.pdf index 88515153154..2ae0e363408 100644 Binary files a/dev/_downloads/2082eb4d6b0c42668444836c10a5a149/beam_problems-14.pdf and b/dev/_downloads/2082eb4d6b0c42668444836c10a5a149/beam_problems-14.pdf differ diff --git a/dev/_downloads/2454d35ad3fc284cb67b6c619b4246c1/beam-8.pdf b/dev/_downloads/2454d35ad3fc284cb67b6c619b4246c1/beam-8.pdf index 073e62315a2..86851f1d990 100644 Binary files a/dev/_downloads/2454d35ad3fc284cb67b6c619b4246c1/beam-8.pdf and b/dev/_downloads/2454d35ad3fc284cb67b6c619b4246c1/beam-8.pdf differ diff --git a/dev/_downloads/2608cc95ac952e335ca0ce8cea458c1b/matrices-22.pdf b/dev/_downloads/2608cc95ac952e335ca0ce8cea458c1b/matrices-22.pdf index a7e179d9e93..c4a935045c2 100644 Binary files a/dev/_downloads/2608cc95ac952e335ca0ce8cea458c1b/matrices-22.pdf and b/dev/_downloads/2608cc95ac952e335ca0ce8cea458c1b/matrices-22.pdf differ diff --git a/dev/_downloads/2667a5fcc739d282a7512f6b7b39071a/matrices-4.pdf b/dev/_downloads/2667a5fcc739d282a7512f6b7b39071a/matrices-4.pdf index 5cec90ad39f..921e12d76b2 100644 Binary files a/dev/_downloads/2667a5fcc739d282a7512f6b7b39071a/matrices-4.pdf and b/dev/_downloads/2667a5fcc739d282a7512f6b7b39071a/matrices-4.pdf differ diff --git a/dev/_downloads/26aeb23613c82467dc9ad9bdc328ab32/plotting-32_00.pdf b/dev/_downloads/26aeb23613c82467dc9ad9bdc328ab32/plotting-32_00.pdf index 6fd63a9ca97..8aa989b5be6 100644 Binary files a/dev/_downloads/26aeb23613c82467dc9ad9bdc328ab32/plotting-32_00.pdf and b/dev/_downloads/26aeb23613c82467dc9ad9bdc328ab32/plotting-32_00.pdf differ diff --git a/dev/_downloads/295bb235d3caa42841a5fbfa905580df/beam_problems-18.pdf b/dev/_downloads/295bb235d3caa42841a5fbfa905580df/beam_problems-18.pdf index ffc152571be..d2161a3c88a 100644 Binary files a/dev/_downloads/295bb235d3caa42841a5fbfa905580df/beam_problems-18.pdf and b/dev/_downloads/295bb235d3caa42841a5fbfa905580df/beam_problems-18.pdf differ diff --git a/dev/_downloads/2acde0fab574588f4a28670019a75bf9/plotting-26.pdf b/dev/_downloads/2acde0fab574588f4a28670019a75bf9/plotting-26.pdf index da46d3c0916..ab7c51510ce 100644 Binary files a/dev/_downloads/2acde0fab574588f4a28670019a75bf9/plotting-26.pdf and b/dev/_downloads/2acde0fab574588f4a28670019a75bf9/plotting-26.pdf differ diff --git a/dev/_downloads/2f44ee19ebd4c314ad1c408629357c53/plotting-1.pdf b/dev/_downloads/2f44ee19ebd4c314ad1c408629357c53/plotting-1.pdf index 685f5f3fe87..b6ad3682701 100644 Binary files a/dev/_downloads/2f44ee19ebd4c314ad1c408629357c53/plotting-1.pdf and b/dev/_downloads/2f44ee19ebd4c314ad1c408629357c53/plotting-1.pdf differ diff --git a/dev/_downloads/2fe7ddde63c7b986288bcf42780219f7/plotting-29.hires.png b/dev/_downloads/2fe7ddde63c7b986288bcf42780219f7/plotting-29.hires.png index 4d96d0a406d..6f52c7b86ad 100644 Binary files a/dev/_downloads/2fe7ddde63c7b986288bcf42780219f7/plotting-29.hires.png and b/dev/_downloads/2fe7ddde63c7b986288bcf42780219f7/plotting-29.hires.png differ diff --git a/dev/_downloads/3319e145d33fb7c15b85dd93189e26e2/control_plots-2.pdf b/dev/_downloads/3319e145d33fb7c15b85dd93189e26e2/control_plots-2.pdf index 2d3cb16345e..8508d7167d4 100644 Binary files a/dev/_downloads/3319e145d33fb7c15b85dd93189e26e2/control_plots-2.pdf and b/dev/_downloads/3319e145d33fb7c15b85dd93189e26e2/control_plots-2.pdf differ diff --git a/dev/_downloads/3321387ecbfcca786e563449007007d8/generate_plots_q3_3.pdf b/dev/_downloads/3321387ecbfcca786e563449007007d8/generate_plots_q3_3.pdf index 2bef3bd0554..2055fb41746 100644 Binary files a/dev/_downloads/3321387ecbfcca786e563449007007d8/generate_plots_q3_3.pdf and b/dev/_downloads/3321387ecbfcca786e563449007007d8/generate_plots_q3_3.pdf differ diff --git a/dev/_downloads/33391c644ccb248b4c17deb758dc2301/control_plots-1.pdf b/dev/_downloads/33391c644ccb248b4c17deb758dc2301/control_plots-1.pdf index 325e6b0fb7a..3bf9057d1d4 100644 Binary files a/dev/_downloads/33391c644ccb248b4c17deb758dc2301/control_plots-1.pdf and b/dev/_downloads/33391c644ccb248b4c17deb758dc2301/control_plots-1.pdf differ diff --git a/dev/_downloads/39dc203c3bf6e7485368c7a401448a6f/matrices-8.pdf b/dev/_downloads/39dc203c3bf6e7485368c7a401448a6f/matrices-8.pdf index 16323aa8cff..58845500730 100644 Binary files a/dev/_downloads/39dc203c3bf6e7485368c7a401448a6f/matrices-8.pdf and b/dev/_downloads/39dc203c3bf6e7485368c7a401448a6f/matrices-8.pdf differ diff --git a/dev/_downloads/3af3ee18448b7a687ef6594665f932f9/plotting-19.pdf b/dev/_downloads/3af3ee18448b7a687ef6594665f932f9/plotting-19.pdf index 3154c3067d6..dfa17460b50 100644 Binary files a/dev/_downloads/3af3ee18448b7a687ef6594665f932f9/plotting-19.pdf and b/dev/_downloads/3af3ee18448b7a687ef6594665f932f9/plotting-19.pdf differ diff --git a/dev/_downloads/3cd14c510b41514f1496a3155ea8cf2d/matrices-17.pdf b/dev/_downloads/3cd14c510b41514f1496a3155ea8cf2d/matrices-17.pdf index e1b967cdc7a..4afb35f0743 100644 Binary files a/dev/_downloads/3cd14c510b41514f1496a3155ea8cf2d/matrices-17.pdf and b/dev/_downloads/3cd14c510b41514f1496a3155ea8cf2d/matrices-17.pdf differ diff --git a/dev/_downloads/3decd7120d816c8190c63dffb192484f/beam-1.hires.png b/dev/_downloads/3decd7120d816c8190c63dffb192484f/beam-1.hires.png index 74ac9b29fca..f10cd344acb 100644 Binary files a/dev/_downloads/3decd7120d816c8190c63dffb192484f/beam-1.hires.png and b/dev/_downloads/3decd7120d816c8190c63dffb192484f/beam-1.hires.png differ diff --git a/dev/_downloads/464f047ba3ef7f04429a4eb163a6a2de/matrices-18.pdf b/dev/_downloads/464f047ba3ef7f04429a4eb163a6a2de/matrices-18.pdf index 43534b13737..9ed747085db 100644 Binary files a/dev/_downloads/464f047ba3ef7f04429a4eb163a6a2de/matrices-18.pdf and b/dev/_downloads/464f047ba3ef7f04429a4eb163a6a2de/matrices-18.pdf differ diff --git a/dev/_downloads/4c9cbd846f69df68795ea4e2cdf667e9/plotting-33.pdf b/dev/_downloads/4c9cbd846f69df68795ea4e2cdf667e9/plotting-33.pdf index 8b23a3bfd42..7b0f1e32269 100644 Binary files a/dev/_downloads/4c9cbd846f69df68795ea4e2cdf667e9/plotting-33.pdf and b/dev/_downloads/4c9cbd846f69df68795ea4e2cdf667e9/plotting-33.pdf differ diff --git a/dev/_downloads/4d0c9c96647fc2441757598f44d4936b/beam-20.pdf b/dev/_downloads/4d0c9c96647fc2441757598f44d4936b/beam-20.pdf index b7306fe8602..aa5ee27ff2e 100644 Binary files a/dev/_downloads/4d0c9c96647fc2441757598f44d4936b/beam-20.pdf and b/dev/_downloads/4d0c9c96647fc2441757598f44d4936b/beam-20.pdf differ diff --git a/dev/_downloads/4f8a4d280007c46440ecb7e279e1d3cb/plotting-25.hires.png b/dev/_downloads/4f8a4d280007c46440ecb7e279e1d3cb/plotting-25.hires.png index 6131f10bd55..a4e24784a99 100644 Binary files a/dev/_downloads/4f8a4d280007c46440ecb7e279e1d3cb/plotting-25.hires.png and b/dev/_downloads/4f8a4d280007c46440ecb7e279e1d3cb/plotting-25.hires.png differ diff --git a/dev/_downloads/5271bad998891ddd195bf7ea0e44d844/biomechanics-11.pdf b/dev/_downloads/5271bad998891ddd195bf7ea0e44d844/biomechanics-11.pdf index 491fc15eaf2..45d6d0eec3f 100644 Binary files a/dev/_downloads/5271bad998891ddd195bf7ea0e44d844/biomechanics-11.pdf and b/dev/_downloads/5271bad998891ddd195bf7ea0e44d844/biomechanics-11.pdf differ diff --git a/dev/_downloads/53f951a6065782035628167d02f26410/biomechanical-model-example-35.pdf b/dev/_downloads/53f951a6065782035628167d02f26410/biomechanical-model-example-35.pdf index 7900b3ae2b5..c652371a309 100644 Binary files a/dev/_downloads/53f951a6065782035628167d02f26410/biomechanical-model-example-35.pdf and b/dev/_downloads/53f951a6065782035628167d02f26410/biomechanical-model-example-35.pdf differ diff --git a/dev/_downloads/56227f1745cb31fcd75cdc19f5cad645/beam_problems-13_01.pdf b/dev/_downloads/56227f1745cb31fcd75cdc19f5cad645/beam_problems-13_01.pdf index 107cab7293f..a14d58bc390 100644 Binary files a/dev/_downloads/56227f1745cb31fcd75cdc19f5cad645/beam_problems-13_01.pdf and b/dev/_downloads/56227f1745cb31fcd75cdc19f5cad645/beam_problems-13_01.pdf differ diff --git a/dev/_downloads/56447441b8d8108229134a5d3454516c/plotting-7.pdf b/dev/_downloads/56447441b8d8108229134a5d3454516c/plotting-7.pdf index 9faa9a82422..7b444973335 100644 Binary files a/dev/_downloads/56447441b8d8108229134a5d3454516c/plotting-7.pdf and b/dev/_downloads/56447441b8d8108229134a5d3454516c/plotting-7.pdf differ diff --git a/dev/_downloads/569497501b2d3eb864ce466d19b06017/plotting-20.pdf b/dev/_downloads/569497501b2d3eb864ce466d19b06017/plotting-20.pdf index e615fc8e38f..4ac79c732d4 100644 Binary files a/dev/_downloads/569497501b2d3eb864ce466d19b06017/plotting-20.pdf and b/dev/_downloads/569497501b2d3eb864ce466d19b06017/plotting-20.pdf differ diff --git a/dev/_downloads/5815ed289d6d66d90e420fd31330fef7/plotting-28.pdf b/dev/_downloads/5815ed289d6d66d90e420fd31330fef7/plotting-28.pdf index 8358ee3a713..a63df3c514a 100644 Binary files a/dev/_downloads/5815ed289d6d66d90e420fd31330fef7/plotting-28.pdf and b/dev/_downloads/5815ed289d6d66d90e420fd31330fef7/plotting-28.pdf differ diff --git a/dev/_downloads/5860560b08ead850923e530e3240b5c6/plotting-15.pdf b/dev/_downloads/5860560b08ead850923e530e3240b5c6/plotting-15.pdf index b5c59526dd1..b3181217fbe 100644 Binary files a/dev/_downloads/5860560b08ead850923e530e3240b5c6/plotting-15.pdf and b/dev/_downloads/5860560b08ead850923e530e3240b5c6/plotting-15.pdf differ diff --git a/dev/_downloads/5b5c816080a45343f1dad5a63189ba69/generate_plots_q3_5_1.pdf b/dev/_downloads/5b5c816080a45343f1dad5a63189ba69/generate_plots_q3_5_1.pdf index 0d8205e245b..af33b125086 100644 Binary files a/dev/_downloads/5b5c816080a45343f1dad5a63189ba69/generate_plots_q3_5_1.pdf and b/dev/_downloads/5b5c816080a45343f1dad5a63189ba69/generate_plots_q3_5_1.pdf differ diff --git a/dev/_downloads/5b83bd080155a6f59e2eeb633bda5ab4/matrices-13.pdf b/dev/_downloads/5b83bd080155a6f59e2eeb633bda5ab4/matrices-13.pdf index cf95979618b..7313ffdafce 100644 Binary files a/dev/_downloads/5b83bd080155a6f59e2eeb633bda5ab4/matrices-13.pdf and b/dev/_downloads/5b83bd080155a6f59e2eeb633bda5ab4/matrices-13.pdf differ diff --git a/dev/_downloads/5df88650a09035e3e9902fd44e25970e/generate_plots_q5.pdf b/dev/_downloads/5df88650a09035e3e9902fd44e25970e/generate_plots_q5.pdf index e7545f4a431..d5bc1242a8a 100644 Binary files a/dev/_downloads/5df88650a09035e3e9902fd44e25970e/generate_plots_q5.pdf and b/dev/_downloads/5df88650a09035e3e9902fd44e25970e/generate_plots_q5.pdf differ diff --git a/dev/_downloads/6236456dc31640e622c3f943842d9925/plotting-27.pdf b/dev/_downloads/6236456dc31640e622c3f943842d9925/plotting-27.pdf index 3a6e2bfef2a..257db03a475 100644 Binary files a/dev/_downloads/6236456dc31640e622c3f943842d9925/plotting-27.pdf and b/dev/_downloads/6236456dc31640e622c3f943842d9925/plotting-27.pdf differ diff --git a/dev/_downloads/68597f1bcbf2528fdc041a5c14e53f0f/plotting-30.png b/dev/_downloads/68597f1bcbf2528fdc041a5c14e53f0f/plotting-30.png index 036fdfa6b15..312f2797bd4 100644 Binary files a/dev/_downloads/68597f1bcbf2528fdc041a5c14e53f0f/plotting-30.png and b/dev/_downloads/68597f1bcbf2528fdc041a5c14e53f0f/plotting-30.png differ diff --git a/dev/_downloads/68bf3baa5f6498f8399b26d3d85ce17a/biomechanics-12.pdf b/dev/_downloads/68bf3baa5f6498f8399b26d3d85ce17a/biomechanics-12.pdf index 08ad74f0d86..fdefb937f06 100644 Binary files a/dev/_downloads/68bf3baa5f6498f8399b26d3d85ce17a/biomechanics-12.pdf and b/dev/_downloads/68bf3baa5f6498f8399b26d3d85ce17a/biomechanics-12.pdf differ diff --git a/dev/_downloads/704bfe351153d402a4a0a831ece25675/matrices-2.pdf b/dev/_downloads/704bfe351153d402a4a0a831ece25675/matrices-2.pdf index f80565af10e..96fdd92e3e0 100644 Binary files a/dev/_downloads/704bfe351153d402a4a0a831ece25675/matrices-2.pdf and b/dev/_downloads/704bfe351153d402a4a0a831ece25675/matrices-2.pdf differ diff --git a/dev/_downloads/76c597139b65debdf0e125c15cd040ca/plotting-25.png b/dev/_downloads/76c597139b65debdf0e125c15cd040ca/plotting-25.png index 34bcfaf2668..6fd5642ab00 100644 Binary files a/dev/_downloads/76c597139b65debdf0e125c15cd040ca/plotting-25.png and b/dev/_downloads/76c597139b65debdf0e125c15cd040ca/plotting-25.png differ diff --git a/dev/_downloads/7a548803dfc780a3427fff48770818b4/generate_plots_q3_4.pdf b/dev/_downloads/7a548803dfc780a3427fff48770818b4/generate_plots_q3_4.pdf index f3fa3eece55..2d6608de93e 100644 Binary files a/dev/_downloads/7a548803dfc780a3427fff48770818b4/generate_plots_q3_4.pdf and b/dev/_downloads/7a548803dfc780a3427fff48770818b4/generate_plots_q3_4.pdf differ diff --git a/dev/_downloads/7bfa6a992ea402720a120fd5093741a4/plotting-11.pdf b/dev/_downloads/7bfa6a992ea402720a120fd5093741a4/plotting-11.pdf index 60e5fea49ad..159660263c2 100644 Binary files a/dev/_downloads/7bfa6a992ea402720a120fd5093741a4/plotting-11.pdf and b/dev/_downloads/7bfa6a992ea402720a120fd5093741a4/plotting-11.pdf differ diff --git a/dev/_downloads/7d4a2d083d96719b05ab2f759c57874a/matrices-6.pdf b/dev/_downloads/7d4a2d083d96719b05ab2f759c57874a/matrices-6.pdf index b107df8acd1..269c5a1c9ba 100644 Binary files a/dev/_downloads/7d4a2d083d96719b05ab2f759c57874a/matrices-6.pdf and b/dev/_downloads/7d4a2d083d96719b05ab2f759c57874a/matrices-6.pdf differ diff --git a/dev/_downloads/7eed1bf07a4dacbb97d209dac2614e9a/matrices-19.pdf b/dev/_downloads/7eed1bf07a4dacbb97d209dac2614e9a/matrices-19.pdf index c5fc93e379d..896c9f81236 100644 Binary files a/dev/_downloads/7eed1bf07a4dacbb97d209dac2614e9a/matrices-19.pdf and b/dev/_downloads/7eed1bf07a4dacbb97d209dac2614e9a/matrices-19.pdf differ diff --git a/dev/_downloads/81a43cb7598cbbe880e19146241abe5f/plotting-26.png b/dev/_downloads/81a43cb7598cbbe880e19146241abe5f/plotting-26.png index 31ee5901099..c5a9d6a761a 100644 Binary files a/dev/_downloads/81a43cb7598cbbe880e19146241abe5f/plotting-26.png and b/dev/_downloads/81a43cb7598cbbe880e19146241abe5f/plotting-26.png differ diff --git a/dev/_downloads/81a780d815116a5eb737d2d484c44444/matrices-21.pdf b/dev/_downloads/81a780d815116a5eb737d2d484c44444/matrices-21.pdf index f7b92e55644..9460a25aeb3 100644 Binary files a/dev/_downloads/81a780d815116a5eb737d2d484c44444/matrices-21.pdf and b/dev/_downloads/81a780d815116a5eb737d2d484c44444/matrices-21.pdf differ diff --git a/dev/_downloads/81f16477713a2ebedd53f1c8ec85b754/plotting-12.pdf b/dev/_downloads/81f16477713a2ebedd53f1c8ec85b754/plotting-12.pdf index 56c5701a799..cc8b3bf145b 100644 Binary files a/dev/_downloads/81f16477713a2ebedd53f1c8ec85b754/plotting-12.pdf and b/dev/_downloads/81f16477713a2ebedd53f1c8ec85b754/plotting-12.pdf differ diff --git a/dev/_downloads/83ec70596dcaacc88e256e7679fafcee/matrices-12.pdf b/dev/_downloads/83ec70596dcaacc88e256e7679fafcee/matrices-12.pdf index 2be30300f91..b6e7b1cdf93 100644 Binary files a/dev/_downloads/83ec70596dcaacc88e256e7679fafcee/matrices-12.pdf and b/dev/_downloads/83ec70596dcaacc88e256e7679fafcee/matrices-12.pdf differ diff --git a/dev/_downloads/865dedeca3d1430244910d89d552e5ef/beam-19.pdf b/dev/_downloads/865dedeca3d1430244910d89d552e5ef/beam-19.pdf index 5243d1cae6e..461d56e4319 100644 Binary files a/dev/_downloads/865dedeca3d1430244910d89d552e5ef/beam-19.pdf and b/dev/_downloads/865dedeca3d1430244910d89d552e5ef/beam-19.pdf differ diff --git a/dev/_downloads/88f8d6df1485ab9648408b70b7cd4c46/beam_problems-11_00.pdf b/dev/_downloads/88f8d6df1485ab9648408b70b7cd4c46/beam_problems-11_00.pdf index 02655a808b7..1ada524c81d 100644 Binary files a/dev/_downloads/88f8d6df1485ab9648408b70b7cd4c46/beam_problems-11_00.pdf and b/dev/_downloads/88f8d6df1485ab9648408b70b7cd4c46/beam_problems-11_00.pdf differ diff --git a/dev/_downloads/8c3e8789c867600d80b2cce11272d81e/matrices-15.pdf b/dev/_downloads/8c3e8789c867600d80b2cce11272d81e/matrices-15.pdf index 0aae87d07ef..c7d0d58d46b 100644 Binary files a/dev/_downloads/8c3e8789c867600d80b2cce11272d81e/matrices-15.pdf and b/dev/_downloads/8c3e8789c867600d80b2cce11272d81e/matrices-15.pdf differ diff --git a/dev/_downloads/8f6a7c938e347f134c67566d5aef740d/plotting-29.pdf b/dev/_downloads/8f6a7c938e347f134c67566d5aef740d/plotting-29.pdf index 050039be17d..52c08b8754b 100644 Binary files a/dev/_downloads/8f6a7c938e347f134c67566d5aef740d/plotting-29.pdf and b/dev/_downloads/8f6a7c938e347f134c67566d5aef740d/plotting-29.pdf differ diff --git a/dev/_downloads/90b2354acc779cd49f552b57929e55ab/plotting-13.pdf b/dev/_downloads/90b2354acc779cd49f552b57929e55ab/plotting-13.pdf index b13546976a5..951fc477d78 100644 Binary files a/dev/_downloads/90b2354acc779cd49f552b57929e55ab/plotting-13.pdf and b/dev/_downloads/90b2354acc779cd49f552b57929e55ab/plotting-13.pdf differ diff --git a/dev/_downloads/912e64195566ca0058bfdb868fabd27b/beam_problems-16.pdf b/dev/_downloads/912e64195566ca0058bfdb868fabd27b/beam_problems-16.pdf index f0b38435f32..be7909afca3 100644 Binary files a/dev/_downloads/912e64195566ca0058bfdb868fabd27b/beam_problems-16.pdf and b/dev/_downloads/912e64195566ca0058bfdb868fabd27b/beam_problems-16.pdf differ diff --git a/dev/_downloads/945e2a45816629e69cae83f93476425f/biomechanics-14.pdf b/dev/_downloads/945e2a45816629e69cae83f93476425f/biomechanics-14.pdf index b191d2d7fca..ad72fbcc287 100644 Binary files a/dev/_downloads/945e2a45816629e69cae83f93476425f/biomechanics-14.pdf and b/dev/_downloads/945e2a45816629e69cae83f93476425f/biomechanics-14.pdf differ diff --git a/dev/_downloads/950e4c42a3beff8bac74d47e0f8d8516/plotting-24.png b/dev/_downloads/950e4c42a3beff8bac74d47e0f8d8516/plotting-24.png index 55727c79026..bceeb63eb0d 100644 Binary files a/dev/_downloads/950e4c42a3beff8bac74d47e0f8d8516/plotting-24.png and b/dev/_downloads/950e4c42a3beff8bac74d47e0f8d8516/plotting-24.png differ diff --git a/dev/_downloads/95feb1999af91b22f624aa3ce3c6b1c4/solve-ode-1.pdf b/dev/_downloads/95feb1999af91b22f624aa3ce3c6b1c4/solve-ode-1.pdf index 6c3f8cce2bb..0c8529041df 100644 Binary files a/dev/_downloads/95feb1999af91b22f624aa3ce3c6b1c4/solve-ode-1.pdf and b/dev/_downloads/95feb1999af91b22f624aa3ce3c6b1c4/solve-ode-1.pdf differ diff --git a/dev/_downloads/9659cd876877dfc4002fae48de3c98ae/beam-4.pdf b/dev/_downloads/9659cd876877dfc4002fae48de3c98ae/beam-4.pdf index 73c4a27a6c8..6be25d293b8 100644 Binary files a/dev/_downloads/9659cd876877dfc4002fae48de3c98ae/beam-4.pdf and b/dev/_downloads/9659cd876877dfc4002fae48de3c98ae/beam-4.pdf differ diff --git a/dev/_downloads/9728219edea47500a9403b3679a5bc09/plotting-10.pdf b/dev/_downloads/9728219edea47500a9403b3679a5bc09/plotting-10.pdf index de99f467042..205a26d66e9 100644 Binary files a/dev/_downloads/9728219edea47500a9403b3679a5bc09/plotting-10.pdf and b/dev/_downloads/9728219edea47500a9403b3679a5bc09/plotting-10.pdf differ diff --git a/dev/_downloads/9ae786c847d9ecd9aa665dd52ee79f4e/biomechanics-34.pdf b/dev/_downloads/9ae786c847d9ecd9aa665dd52ee79f4e/biomechanics-34.pdf index 116ae1e4b91..86d429a6d61 100644 Binary files a/dev/_downloads/9ae786c847d9ecd9aa665dd52ee79f4e/biomechanics-34.pdf and b/dev/_downloads/9ae786c847d9ecd9aa665dd52ee79f4e/biomechanics-34.pdf differ diff --git a/dev/_downloads/9ba0a373644e3b8e75cb2f2d1a46ac33/plotting-35.pdf b/dev/_downloads/9ba0a373644e3b8e75cb2f2d1a46ac33/plotting-35.pdf index a5b4c5da548..e40d3dd3152 100644 Binary files a/dev/_downloads/9ba0a373644e3b8e75cb2f2d1a46ac33/plotting-35.pdf and b/dev/_downloads/9ba0a373644e3b8e75cb2f2d1a46ac33/plotting-35.pdf differ diff --git a/dev/_downloads/a11367bb58b03bf09a75c9657b4e223a/matrices-16.pdf b/dev/_downloads/a11367bb58b03bf09a75c9657b4e223a/matrices-16.pdf index 64d0240f4f9..84ebdd42f74 100644 Binary files a/dev/_downloads/a11367bb58b03bf09a75c9657b4e223a/matrices-16.pdf and b/dev/_downloads/a11367bb58b03bf09a75c9657b4e223a/matrices-16.pdf differ diff --git a/dev/_downloads/a3a06dbcaf4cb9dbce7fe53c37ec22a8/plotting-30.pdf b/dev/_downloads/a3a06dbcaf4cb9dbce7fe53c37ec22a8/plotting-30.pdf index d4b45c83850..648ded0763a 100644 Binary files a/dev/_downloads/a3a06dbcaf4cb9dbce7fe53c37ec22a8/plotting-30.pdf and b/dev/_downloads/a3a06dbcaf4cb9dbce7fe53c37ec22a8/plotting-30.pdf differ diff --git a/dev/_downloads/a45cb86364a3602f7138b4466beb1097/beam-3.pdf b/dev/_downloads/a45cb86364a3602f7138b4466beb1097/beam-3.pdf index 0f353bfe29e..34a6ba8da53 100644 Binary files a/dev/_downloads/a45cb86364a3602f7138b4466beb1097/beam-3.pdf and b/dev/_downloads/a45cb86364a3602f7138b4466beb1097/beam-3.pdf differ diff --git a/dev/_downloads/a6ba697f4fd41244d4a03ae13c871d77/matrices-20.pdf b/dev/_downloads/a6ba697f4fd41244d4a03ae13c871d77/matrices-20.pdf index f082f51f830..1782aaf637c 100644 Binary files a/dev/_downloads/a6ba697f4fd41244d4a03ae13c871d77/matrices-20.pdf and b/dev/_downloads/a6ba697f4fd41244d4a03ae13c871d77/matrices-20.pdf differ diff --git a/dev/_downloads/a892d8f10080acfce9914123b164dd0e/matrices-11.pdf b/dev/_downloads/a892d8f10080acfce9914123b164dd0e/matrices-11.pdf index 4d2e63c35e5..2db9bc6881d 100644 Binary files a/dev/_downloads/a892d8f10080acfce9914123b164dd0e/matrices-11.pdf and b/dev/_downloads/a892d8f10080acfce9914123b164dd0e/matrices-11.pdf differ diff --git a/dev/_downloads/aa497c934ec12bc50f842dac34beeab7/plotting-32_02.pdf b/dev/_downloads/aa497c934ec12bc50f842dac34beeab7/plotting-32_02.pdf index 6bf7fa8faae..b0da85eeddd 100644 Binary files a/dev/_downloads/aa497c934ec12bc50f842dac34beeab7/plotting-32_02.pdf and b/dev/_downloads/aa497c934ec12bc50f842dac34beeab7/plotting-32_02.pdf differ diff --git a/dev/_downloads/ac472fec5b32a66f329e9328277c64b3/plotting-34.pdf b/dev/_downloads/ac472fec5b32a66f329e9328277c64b3/plotting-34.pdf index f07bfd93900..d450d53ace9 100644 Binary files a/dev/_downloads/ac472fec5b32a66f329e9328277c64b3/plotting-34.pdf and b/dev/_downloads/ac472fec5b32a66f329e9328277c64b3/plotting-34.pdf differ diff --git a/dev/_downloads/b0f2a5ef738f9e96458a670bdb264732/beam-18.pdf b/dev/_downloads/b0f2a5ef738f9e96458a670bdb264732/beam-18.pdf index 28689351262..54578ac8ed7 100644 Binary files a/dev/_downloads/b0f2a5ef738f9e96458a670bdb264732/beam-18.pdf and b/dev/_downloads/b0f2a5ef738f9e96458a670bdb264732/beam-18.pdf differ diff --git a/dev/_downloads/b287a2bfc71470e15bf28009eae144b3/generate_plots_q3_5_2.pdf b/dev/_downloads/b287a2bfc71470e15bf28009eae144b3/generate_plots_q3_5_2.pdf index b883ffb72d6..389d1ce9249 100644 Binary files a/dev/_downloads/b287a2bfc71470e15bf28009eae144b3/generate_plots_q3_5_2.pdf and b/dev/_downloads/b287a2bfc71470e15bf28009eae144b3/generate_plots_q3_5_2.pdf differ diff --git a/dev/_downloads/b78b32e3870f0d0ffa753084ae625ec7/plotting-9.pdf b/dev/_downloads/b78b32e3870f0d0ffa753084ae625ec7/plotting-9.pdf index f83949a4d82..1de3efa2045 100644 Binary files a/dev/_downloads/b78b32e3870f0d0ffa753084ae625ec7/plotting-9.pdf and b/dev/_downloads/b78b32e3870f0d0ffa753084ae625ec7/plotting-9.pdf differ diff --git a/dev/_downloads/ba5808c3dcaa3ca2706d8976a3ba018c/beam_problems-11_01.pdf b/dev/_downloads/ba5808c3dcaa3ca2706d8976a3ba018c/beam_problems-11_01.pdf index 4a8e2d9f82f..391d526b490 100644 Binary files a/dev/_downloads/ba5808c3dcaa3ca2706d8976a3ba018c/beam_problems-11_01.pdf and b/dev/_downloads/ba5808c3dcaa3ca2706d8976a3ba018c/beam_problems-11_01.pdf differ diff --git a/dev/_downloads/bda8f8d60633ec72f3551c29244f94d5/beam-1.png b/dev/_downloads/bda8f8d60633ec72f3551c29244f94d5/beam-1.png index 9ab4f6ccf05..c6513baa83e 100644 Binary files a/dev/_downloads/bda8f8d60633ec72f3551c29244f94d5/beam-1.png and b/dev/_downloads/bda8f8d60633ec72f3551c29244f94d5/beam-1.png differ diff --git a/dev/_downloads/be5321e199329605807b665644b38c93/biomechanical-model-example-38.pdf b/dev/_downloads/be5321e199329605807b665644b38c93/biomechanical-model-example-38.pdf index cc708b7776b..e2aa228252c 100644 Binary files a/dev/_downloads/be5321e199329605807b665644b38c93/biomechanical-model-example-38.pdf and b/dev/_downloads/be5321e199329605807b665644b38c93/biomechanical-model-example-38.pdf differ diff --git a/dev/_downloads/c1423271668bdc35a9c394131066e255/control_plots-3.pdf b/dev/_downloads/c1423271668bdc35a9c394131066e255/control_plots-3.pdf index baf96ed299f..56de0c8c2b8 100644 Binary files a/dev/_downloads/c1423271668bdc35a9c394131066e255/control_plots-3.pdf and b/dev/_downloads/c1423271668bdc35a9c394131066e255/control_plots-3.pdf differ diff --git a/dev/_downloads/c1adee8d5f4e9aedd715240ee2abc6e5/matrices-9.pdf b/dev/_downloads/c1adee8d5f4e9aedd715240ee2abc6e5/matrices-9.pdf index 93de5399fea..fa858fa74c1 100644 Binary files a/dev/_downloads/c1adee8d5f4e9aedd715240ee2abc6e5/matrices-9.pdf and b/dev/_downloads/c1adee8d5f4e9aedd715240ee2abc6e5/matrices-9.pdf differ diff --git a/dev/_downloads/ca52fc8f0db47908fb8d38cc335d5c1a/plotting-22.pdf b/dev/_downloads/ca52fc8f0db47908fb8d38cc335d5c1a/plotting-22.pdf index 173984adea4..7d1bdcc5894 100644 Binary files a/dev/_downloads/ca52fc8f0db47908fb8d38cc335d5c1a/plotting-22.pdf and b/dev/_downloads/ca52fc8f0db47908fb8d38cc335d5c1a/plotting-22.pdf differ diff --git a/dev/_downloads/cb44a32b25833934efb3a9d4adfe400c/plotting-29.png b/dev/_downloads/cb44a32b25833934efb3a9d4adfe400c/plotting-29.png index a637fae2df8..c2ff7e17659 100644 Binary files a/dev/_downloads/cb44a32b25833934efb3a9d4adfe400c/plotting-29.png and b/dev/_downloads/cb44a32b25833934efb3a9d4adfe400c/plotting-29.png differ diff --git a/dev/_downloads/cc4619d4e67ea48ddf5026828b7569eb/beam-22.pdf b/dev/_downloads/cc4619d4e67ea48ddf5026828b7569eb/beam-22.pdf index 8f6db7f2919..21221d759ae 100644 Binary files a/dev/_downloads/cc4619d4e67ea48ddf5026828b7569eb/beam-22.pdf and b/dev/_downloads/cc4619d4e67ea48ddf5026828b7569eb/beam-22.pdf differ diff --git a/dev/_downloads/ce89ed58fdb41bf7840cc83d6e6a1ba6/plotting-30.hires.png b/dev/_downloads/ce89ed58fdb41bf7840cc83d6e6a1ba6/plotting-30.hires.png index 3eb97f92420..92c96d50cbc 100644 Binary files a/dev/_downloads/ce89ed58fdb41bf7840cc83d6e6a1ba6/plotting-30.hires.png and b/dev/_downloads/ce89ed58fdb41bf7840cc83d6e6a1ba6/plotting-30.hires.png differ diff --git a/dev/_downloads/d1eadb36634e8e0276f3d1752e83893e/matrices-14.pdf b/dev/_downloads/d1eadb36634e8e0276f3d1752e83893e/matrices-14.pdf index f4002743d8e..7bf3ae1db53 100644 Binary files a/dev/_downloads/d1eadb36634e8e0276f3d1752e83893e/matrices-14.pdf and b/dev/_downloads/d1eadb36634e8e0276f3d1752e83893e/matrices-14.pdf differ diff --git a/dev/_downloads/d2c03725fdbe7104e13f46e3798a03e1/beam-7.pdf b/dev/_downloads/d2c03725fdbe7104e13f46e3798a03e1/beam-7.pdf index 58992e68eba..3c4f65dd4a8 100644 Binary files a/dev/_downloads/d2c03725fdbe7104e13f46e3798a03e1/beam-7.pdf and b/dev/_downloads/d2c03725fdbe7104e13f46e3798a03e1/beam-7.pdf differ diff --git a/dev/_downloads/d3453595eb36f834c2ad86d18546535c/matrices-7.pdf b/dev/_downloads/d3453595eb36f834c2ad86d18546535c/matrices-7.pdf index 44a3505289e..619345eb200 100644 Binary files a/dev/_downloads/d3453595eb36f834c2ad86d18546535c/matrices-7.pdf and b/dev/_downloads/d3453595eb36f834c2ad86d18546535c/matrices-7.pdf differ diff --git a/dev/_downloads/d4935c2256660a8a33a7af58457af366/beam-6.pdf b/dev/_downloads/d4935c2256660a8a33a7af58457af366/beam-6.pdf index 3c32a7328ea..a62f2c832c0 100644 Binary files a/dev/_downloads/d4935c2256660a8a33a7af58457af366/beam-6.pdf and b/dev/_downloads/d4935c2256660a8a33a7af58457af366/beam-6.pdf differ diff --git a/dev/_downloads/d8f4bbfa41aeb33459953469d86ea8b1/plotting-32_03.pdf b/dev/_downloads/d8f4bbfa41aeb33459953469d86ea8b1/plotting-32_03.pdf index 697e80408a4..e810e531338 100644 Binary files a/dev/_downloads/d8f4bbfa41aeb33459953469d86ea8b1/plotting-32_03.pdf and b/dev/_downloads/d8f4bbfa41aeb33459953469d86ea8b1/plotting-32_03.pdf differ diff --git a/dev/_downloads/dac00acb10450bde21ecfc4fd9c34817/matrices-1.pdf b/dev/_downloads/dac00acb10450bde21ecfc4fd9c34817/matrices-1.pdf index 36cc69e8826..236c4e704d6 100644 Binary files a/dev/_downloads/dac00acb10450bde21ecfc4fd9c34817/matrices-1.pdf and b/dev/_downloads/dac00acb10450bde21ecfc4fd9c34817/matrices-1.pdf differ diff --git a/dev/_downloads/db76a3db1d29ef7f72c47b067c360357/plotting-24.hires.png b/dev/_downloads/db76a3db1d29ef7f72c47b067c360357/plotting-24.hires.png index 3debb1dbda1..b39b0930c5c 100644 Binary files a/dev/_downloads/db76a3db1d29ef7f72c47b067c360357/plotting-24.hires.png and b/dev/_downloads/db76a3db1d29ef7f72c47b067c360357/plotting-24.hires.png differ diff --git a/dev/_downloads/ddddc4679201fda850a702ce6ca7ff1e/plotting-5.pdf b/dev/_downloads/ddddc4679201fda850a702ce6ca7ff1e/plotting-5.pdf index 81e8089b80e..cc69d2642d9 100644 Binary files a/dev/_downloads/ddddc4679201fda850a702ce6ca7ff1e/plotting-5.pdf and b/dev/_downloads/ddddc4679201fda850a702ce6ca7ff1e/plotting-5.pdf differ diff --git a/dev/_downloads/e0563f4c3c89c72192ce76efd2e6fe6b/matrices-3.pdf b/dev/_downloads/e0563f4c3c89c72192ce76efd2e6fe6b/matrices-3.pdf index 8777ac014ce..3b79b957b35 100644 Binary files a/dev/_downloads/e0563f4c3c89c72192ce76efd2e6fe6b/matrices-3.pdf and b/dev/_downloads/e0563f4c3c89c72192ce76efd2e6fe6b/matrices-3.pdf differ diff --git a/dev/_downloads/e07f3720dbc2048eb106de8a904dcfa9/plotting-25.pdf b/dev/_downloads/e07f3720dbc2048eb106de8a904dcfa9/plotting-25.pdf index 142645ac228..b712de6bf9e 100644 Binary files a/dev/_downloads/e07f3720dbc2048eb106de8a904dcfa9/plotting-25.pdf and b/dev/_downloads/e07f3720dbc2048eb106de8a904dcfa9/plotting-25.pdf differ diff --git a/dev/_downloads/e51f495094ca971c2da007d95d7c6aff/matrices-5.pdf b/dev/_downloads/e51f495094ca971c2da007d95d7c6aff/matrices-5.pdf index 8258d82165f..a7e4d74d817 100644 Binary files a/dev/_downloads/e51f495094ca971c2da007d95d7c6aff/matrices-5.pdf and b/dev/_downloads/e51f495094ca971c2da007d95d7c6aff/matrices-5.pdf differ diff --git a/dev/_downloads/e8a5010f49b1076156ddfe2fa5fe6189/beam-9.pdf b/dev/_downloads/e8a5010f49b1076156ddfe2fa5fe6189/beam-9.pdf index 46355e2c1c1..62d24f33aa4 100644 Binary files a/dev/_downloads/e8a5010f49b1076156ddfe2fa5fe6189/beam-9.pdf and b/dev/_downloads/e8a5010f49b1076156ddfe2fa5fe6189/beam-9.pdf differ diff --git a/dev/_downloads/eb990a3106294a2a2f898aea0b429ab7/matrices-23.pdf b/dev/_downloads/eb990a3106294a2a2f898aea0b429ab7/matrices-23.pdf index 54dcbbd9189..baa37a4c9a2 100644 Binary files a/dev/_downloads/eb990a3106294a2a2f898aea0b429ab7/matrices-23.pdf and b/dev/_downloads/eb990a3106294a2a2f898aea0b429ab7/matrices-23.pdf differ diff --git a/dev/_downloads/ebf272f79479d63cc5b71ad0f0e41f7d/fourier-1.pdf b/dev/_downloads/ebf272f79479d63cc5b71ad0f0e41f7d/fourier-1.pdf index 42a1edfd44b..a9e3b0d9036 100644 Binary files a/dev/_downloads/ebf272f79479d63cc5b71ad0f0e41f7d/fourier-1.pdf and b/dev/_downloads/ebf272f79479d63cc5b71ad0f0e41f7d/fourier-1.pdf differ diff --git a/dev/_downloads/ee22a6375b132bbe50ac86a0282c8f8f/fourier-2.pdf b/dev/_downloads/ee22a6375b132bbe50ac86a0282c8f8f/fourier-2.pdf index acfad5c8bb5..b29c32ea503 100644 Binary files a/dev/_downloads/ee22a6375b132bbe50ac86a0282c8f8f/fourier-2.pdf and b/dev/_downloads/ee22a6375b132bbe50ac86a0282c8f8f/fourier-2.pdf differ diff --git a/dev/_downloads/ef1b602db6b31a5b8d8b9d20a2410f41/beam-10.pdf b/dev/_downloads/ef1b602db6b31a5b8d8b9d20a2410f41/beam-10.pdf index ecb4168bc11..71c5d05500f 100644 Binary files a/dev/_downloads/ef1b602db6b31a5b8d8b9d20a2410f41/beam-10.pdf and b/dev/_downloads/ef1b602db6b31a5b8d8b9d20a2410f41/beam-10.pdf differ diff --git a/dev/_downloads/f0b1ed1309beacf065f53d41a069ebe1/plotting-24.pdf b/dev/_downloads/f0b1ed1309beacf065f53d41a069ebe1/plotting-24.pdf index 825055972fd..cecfc7da352 100644 Binary files a/dev/_downloads/f0b1ed1309beacf065f53d41a069ebe1/plotting-24.pdf and b/dev/_downloads/f0b1ed1309beacf065f53d41a069ebe1/plotting-24.pdf differ diff --git a/dev/_downloads/f0f9e180dc0f510887f7768447a685c0/biomechanics-13.pdf b/dev/_downloads/f0f9e180dc0f510887f7768447a685c0/biomechanics-13.pdf index e5ea11c8f0c..cca64a3fe0f 100644 Binary files a/dev/_downloads/f0f9e180dc0f510887f7768447a685c0/biomechanics-13.pdf and b/dev/_downloads/f0f9e180dc0f510887f7768447a685c0/biomechanics-13.pdf differ diff --git a/dev/_downloads/f143e8af7f67232f463360136b513860/truss-1.pdf b/dev/_downloads/f143e8af7f67232f463360136b513860/truss-1.pdf index 5a044272a4c..6f5a6075b3a 100644 Binary files a/dev/_downloads/f143e8af7f67232f463360136b513860/truss-1.pdf and b/dev/_downloads/f143e8af7f67232f463360136b513860/truss-1.pdf differ diff --git a/dev/_downloads/fd7d64e97562f1e8bfd34628ef58f000/plotting-31_01.pdf b/dev/_downloads/fd7d64e97562f1e8bfd34628ef58f000/plotting-31_01.pdf index 5f6690ef2d8..7d5e159af84 100644 Binary files a/dev/_downloads/fd7d64e97562f1e8bfd34628ef58f000/plotting-31_01.pdf and b/dev/_downloads/fd7d64e97562f1e8bfd34628ef58f000/plotting-31_01.pdf differ diff --git a/dev/_downloads/fd8f37f13aecb42027ed8c23548b8132/plotting-31_00.pdf b/dev/_downloads/fd8f37f13aecb42027ed8c23548b8132/plotting-31_00.pdf index 5db48c84785..43337ce8ad5 100644 Binary files a/dev/_downloads/fd8f37f13aecb42027ed8c23548b8132/plotting-31_00.pdf and b/dev/_downloads/fd8f37f13aecb42027ed8c23548b8132/plotting-31_00.pdf differ diff --git a/dev/_images/beam-1.png b/dev/_images/beam-1.png index 9ab4f6ccf05..c6513baa83e 100644 Binary files a/dev/_images/beam-1.png and b/dev/_images/beam-1.png differ diff --git a/dev/_images/plotting-24.png b/dev/_images/plotting-24.png index 55727c79026..bceeb63eb0d 100644 Binary files a/dev/_images/plotting-24.png and b/dev/_images/plotting-24.png differ diff --git a/dev/_images/plotting-25.png b/dev/_images/plotting-25.png index 34bcfaf2668..6fd5642ab00 100644 Binary files a/dev/_images/plotting-25.png and b/dev/_images/plotting-25.png differ diff --git a/dev/_images/plotting-26.png b/dev/_images/plotting-26.png index 31ee5901099..c5a9d6a761a 100644 Binary files a/dev/_images/plotting-26.png and b/dev/_images/plotting-26.png differ diff --git a/dev/_images/plotting-29.png b/dev/_images/plotting-29.png index a637fae2df8..c2ff7e17659 100644 Binary files a/dev/_images/plotting-29.png and b/dev/_images/plotting-29.png differ diff --git a/dev/_images/plotting-30.png b/dev/_images/plotting-30.png index 036fdfa6b15..312f2797bd4 100644 Binary files a/dev/_images/plotting-30.png and b/dev/_images/plotting-30.png differ diff --git a/dev/_sources/explanation/modules/physics/vector/kinematics/kinematics.rst.txt b/dev/_sources/explanation/modules/physics/vector/kinematics/kinematics.rst.txt index b0da207f3cc..307e9e34b9b 100644 --- a/dev/_sources/explanation/modules/physics/vector/kinematics/kinematics.rst.txt +++ b/dev/_sources/explanation/modules/physics/vector/kinematics/kinematics.rst.txt @@ -32,7 +32,7 @@ Angular Velocity The angular velocity of a rigid body refers to the rate of change of its orientation. The angular velocity of a body is written down as: -:math:`^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}`, or the angular velocity of +:math:`^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}`, or the angular velocity of :math:`\mathbf{B}` in :math:`\mathbf{N}`, which is a vector. Note that here, the term rigid body was used, but reference frames can also have angular velocities. Further discussion of the distinction between a rigid body and a @@ -56,16 +56,16 @@ The angular velocity of :math:`\mathbf{B}` in :math:`\mathbf{N}` can also be defined by: .. math:: - ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} = - (\frac{^{\mathbf{N}}d \mathbf{\hat{b}_y}}{dt}\cdot\mathbf{\hat{b}_z} - )\mathbf{\hat{b}_x} + (\frac{^{\mathbf{N}}d \mathbf{\hat{b}_z}}{dt}\cdot - \mathbf{\hat{b}_x})\mathbf{\hat{b}_y} + (\frac{^{\mathbf{N}}d + {}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} = + (\frac{{}^{\mathbf{N}}d \mathbf{\hat{b}_y}}{dt}\cdot\mathbf{\hat{b}_z} + )\mathbf{\hat{b}_x} + (\frac{{}^{\mathbf{N}}d \mathbf{\hat{b}_z}}{dt}\cdot + \mathbf{\hat{b}_x})\mathbf{\hat{b}_y} + (\frac{{}^{\mathbf{N}}d \mathbf{\hat{b}_x}}{dt}\cdot\mathbf{\hat{b}_y})\mathbf{\hat{b}_z} It is also common for a body's angular velocity to be written as: .. math:: - ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} = w_x \mathbf{\hat{b}_x} + + {}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} = w_x \mathbf{\hat{b}_x} + w_y \mathbf{\hat{b}_y} + w_z \mathbf{\hat{b}_z} There are a few additional important points relating to angular velocity. The @@ -73,11 +73,11 @@ first is the addition theorem for angular velocities, a way of relating the angular velocities of multiple bodies and frames. The theorem follows: .. math:: - ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{D}} = - ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{A}} + - ^{\mathbf{A}}\mathbf{\omega}^{\mathbf{B}} + - ^{\mathbf{B}}\mathbf{\omega}^{\mathbf{C}} + - ^{\mathbf{C}}\mathbf{\omega}^{\mathbf{D}} + {}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{D}} = + {}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{A}} + + {}^{\mathbf{A}}\boldsymbol{\omega}^{\mathbf{B}} + + {}^{\mathbf{B}}\boldsymbol{\omega}^{\mathbf{C}} + + {}^{\mathbf{C}}\boldsymbol{\omega}^{\mathbf{D}} This is also shown in the following example: @@ -85,11 +85,11 @@ This is also shown in the following example: :file: kin_angvel2.svg .. math:: - ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{A}} &= 0\\ - ^{\mathbf{A}}\mathbf{\omega}^{\mathbf{B}} &= \dot{q_1} \mathbf{\hat{a}_x}\\ - ^{\mathbf{B}}\mathbf{\omega}^{\mathbf{C}} &= - \dot{q_2} \mathbf{\hat{b}_z}\\ - ^{\mathbf{C}}\mathbf{\omega}^{\mathbf{D}} &= \dot{q_3} \mathbf{\hat{c}_y}\\ - ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{D}} &= \dot{q_1} \mathbf{\hat{a}_x} + {}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{A}} &= 0\\ + {}^{\mathbf{A}}\boldsymbol{\omega}^{\mathbf{B}} &= \dot{q_1} \mathbf{\hat{a}_x}\\ + {}^{\mathbf{B}}\boldsymbol{\omega}^{\mathbf{C}} &= - \dot{q_2} \mathbf{\hat{b}_z}\\ + {}^{\mathbf{C}}\boldsymbol{\omega}^{\mathbf{D}} &= \dot{q_3} \mathbf{\hat{c}_y}\\ + {}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{D}} &= \dot{q_1} \mathbf{\hat{a}_x} - \dot{q_2} \mathbf{\hat{b}_z} + \dot{q_3} \mathbf{\hat{c}_y}\\ Note the signs used in the angular velocity definitions, which are related to @@ -109,7 +109,7 @@ Here we can easily write the angular velocity of the body :math:`\mathbf{D}` in the reference frame of the first body :math:`\mathbf{A}`: .. math:: - ^\mathbf{A}\mathbf{\omega}^\mathbf{D} = w_1 \mathbf{\hat{p_1}} + + {}^\mathbf{A}\boldsymbol{\omega}^\mathbf{D} = w_1 \mathbf{\hat{p_1}} + w_2 \mathbf{\hat{p_2}} + w_3 \mathbf{\hat{p_3}}\\ It is very important to remember to only use this with angular velocities; you @@ -120,8 +120,8 @@ alternative method (which can be easier) to calculate the time derivative of a vector in a reference frame: .. math:: - \frac{^{\mathbf{N}} d \mathbf{v}}{dt} = \frac{^{\mathbf{B}} d \mathbf{v}}{dt} - + ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} \times \mathbf{v} + \frac{{}^{\mathbf{N}} d \mathbf{v}}{dt} = \frac{{}^{\mathbf{B}} d \mathbf{v}}{dt} + +{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} \times \mathbf{v} The vector :math:`\mathbf{v}` can be any vector quantity: a position vector, a velocity vector, angular velocity vector, etc. Instead of taking the time @@ -131,7 +131,7 @@ body, usually one in which it is easy to take the derivative on :math:`\mathbf{v}` in (:math:`\mathbf{v}` is usually composed only of the basis vector set belonging to :math:`\mathbf{B}`). Then we add the cross product of the angular velocity of our newer frame, -:math:`^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}` and our vector quantity +:math:`^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}` and our vector quantity :math:`\mathbf{v}`. Again, you can choose any alternative frame for this. Examples follow: @@ -143,41 +143,41 @@ Angular Acceleration Angular acceleration refers to the time rate of change of the angular velocity vector. Just as the angular velocity vector is for a body and is specified in a frame, the angular acceleration vector is for a body and is specified in a -frame: :math:`^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}}`, or the angular +frame: :math:`^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}}`, or the angular acceleration of :math:`\mathbf{B}` in :math:`\mathbf{N}`, which is a vector. Calculating the angular acceleration is relatively straight forward: .. math:: - ^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}} = - \frac{^{\mathbf{N}} d ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}{dt} + {}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}} = + \frac{{}^{\mathbf{N}} d{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}{dt} Note that this can be calculated with the derivative theorem, and when the angular velocity is defined in a body fixed frame, becomes quite simple: .. math:: - ^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}} &= - \frac{^{\mathbf{N}} d ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}{dt}\\ + {}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}} &= + \frac{{}^{\mathbf{N}} d{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}{dt}\\ - ^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}} &= - \frac{^{\mathbf{B}} d ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}{dt} - + ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} \times - ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}\\ + {}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}} &= + \frac{{}^{\mathbf{B}} d{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}{dt} + +{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} \times + {}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}\\ - \textrm{if } ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} &= + \textrm{if }{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} &= w_x \mathbf{\hat{b}_x} + w_y \mathbf{\hat{b}_y} + w_z \mathbf{\hat{b}_z}\\ - \textrm{then } ^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}} &= - \frac{^{\mathbf{B}} d ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}{dt} - + \underbrace{^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} \times - ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}_{ + \textrm{then }{}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}} &= + \frac{{}^{\mathbf{B}} d{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}{dt} + + \underbrace{{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} \times + {}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}_{ \textrm{this is 0 by definition}}\\ - ^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}}&=\frac{d w_x}{dt}\mathbf{\hat{b}_x} + {}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}}&=\frac{d w_x}{dt}\mathbf{\hat{b}_x} + \frac{d w_y}{dt}\mathbf{\hat{b}_y} + \frac{d w_z}{dt}\mathbf{\hat{b}_z}\\ - ^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}}&= \dot{w_x}\mathbf{\hat{b}_x} + + {}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}}&= \dot{w_x}\mathbf{\hat{b}_x} + \dot{w_y}\mathbf{\hat{b}_y} + \dot{w_z}\mathbf{\hat{b}_z}\\ Again, this is only for the case in which the angular velocity of the body is @@ -199,9 +199,9 @@ These three quantities are read as: .. math:: \mathbf{r}^{OP} \textrm{, the position vector from } O \textrm{ to }P\\ - ^{\mathbf{N}}\mathbf{v}^P \textrm{, the velocity of } P + {}^{\mathbf{N}}\mathbf{v}^P \textrm{, the velocity of } P \textrm{ in the reference frame } \mathbf{N}\\ - ^{\mathbf{N}}\mathbf{a}^P \textrm{, the acceleration of } P + {}^{\mathbf{N}}\mathbf{a}^P \textrm{, the acceleration of } P \textrm{ in the reference frame } \mathbf{N}\\ Note that the position vector does not have a frame associated with it; this is @@ -216,14 +216,14 @@ We can find these quantities for a simple example easily: .. math:: \textrm{Let's define: } \mathbf{r}^{OP} &= q_x \mathbf{\hat{n}_x} + q_y \mathbf{\hat{n}_y}\\ - ^{\mathbf{N}}\mathbf{v}^P &= \frac{^{\mathbf{N}} d \mathbf{r}^{OP}}{dt}\\ + {}^{\mathbf{N}}\mathbf{v}^P &= \frac{{}^{\mathbf{N}} d \mathbf{r}^{OP}}{dt}\\ \textrm{then we can calculate: } - ^{\mathbf{N}}\mathbf{v}^P &= \dot{q}_x\mathbf{\hat{n}_x} + + {}^{\mathbf{N}}\mathbf{v}^P &= \dot{q}_x\mathbf{\hat{n}_x} + \dot{q}_y\mathbf{\hat{n}_y}\\ \textrm{and :} - ^{\mathbf{N}}\mathbf{a}^P &= \frac{^{\mathbf{N}} d - ^{\mathbf{N}}\mathbf{v}^P}{dt}\\ - ^{\mathbf{N}}\mathbf{a}^P &= \ddot{q}_x\mathbf{\hat{n}_x} + + {}^{\mathbf{N}}\mathbf{a}^P &= \frac{{}^{\mathbf{N}} d + {}^{\mathbf{N}}\mathbf{v}^P}{dt}\\ + {}^{\mathbf{N}}\mathbf{a}^P &= \ddot{q}_x\mathbf{\hat{n}_x} + \ddot{q}_y\mathbf{\hat{n}_y}\\ It is critical to understand in the above example that the point :math:`O` is @@ -236,10 +236,10 @@ just defining the velocity vector. For the above example: .. math:: \textrm{Let us instead define the velocity vector as: } - ^{\mathbf{N}}\mathbf{v}^P &= u_x \mathbf{\hat{n}_x} + + {}^{\mathbf{N}}\mathbf{v}^P &= u_x \mathbf{\hat{n}_x} + u_y \mathbf{\hat{n}_y}\\ \textrm{then acceleration can be written as: } - ^{\mathbf{N}}\mathbf{a}^P &= \dot{u}_x \mathbf{\hat{n}_x} + + {}^{\mathbf{N}}\mathbf{a}^P &= \dot{u}_x \mathbf{\hat{n}_x} + \dot{u}_y \mathbf{\hat{n}_y}\\ @@ -256,12 +256,12 @@ velocity of the body :math:`\mathbf{B}`, both defined in the reference frame of the point :math:`P` in :math:`\mathbf{N}` as follows: .. math:: - ^{\mathbf{N}}\mathbf{v}^P &= ^\mathbf{N}\mathbf{v}^S + - ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{SP}\\ - ^{\mathbf{N}}\mathbf{a}^P &= ^\mathbf{N}\mathbf{a}^S + - ^\mathbf{N}\mathbf{\alpha}^\mathbf{B} \times \mathbf{r}^{SP} + - ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times - (^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{SP})\\ + {}^{\mathbf{N}}\mathbf{v}^P &={}^\mathbf{N}\mathbf{v}^S + + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{SP}\\ + {}^{\mathbf{N}}\mathbf{a}^P &={}^\mathbf{N}\mathbf{a}^S + + {}^\mathbf{N}\boldsymbol{\alpha}^\mathbf{B} \times \mathbf{r}^{SP} + + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times + (^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{SP})\\ When only one of the two points is fixed on a body, the 1 point theorem is used instead. @@ -276,15 +276,15 @@ the velocity of the point :math:`P` is known in the frame associated with body :math:`P` in :math:`\mathbf{N}` as: .. math:: - ^{\mathbf{N}}\mathbf{v}^P &= ^\mathbf{B}\mathbf{v}^P + - ^\mathbf{N}\mathbf{v}^S + ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times + {}^{\mathbf{N}}\mathbf{v}^P &={}^\mathbf{B}\mathbf{v}^P + + {}^\mathbf{N}\mathbf{v}^S +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{SP}\\ - ^{\mathbf{N}}\mathbf{a}^P &= ^\mathbf{B}\mathbf{a}^S + - ^\mathbf{N}\mathbf{a}^O + ^\mathbf{N}\mathbf{\alpha}^\mathbf{B} - \times \mathbf{r}^{SP} + ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times - (^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{SP}) + - 2 ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times ^\mathbf{B} \mathbf{v}^P \\ + {}^{\mathbf{N}}\mathbf{a}^P &={}^\mathbf{B}\mathbf{a}^S + + {}^\mathbf{N}\mathbf{a}^O +{}^\mathbf{N}\boldsymbol{\alpha}^\mathbf{B} + \times \mathbf{r}^{SP} +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times + (^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{SP}) + + 2{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times{}^\mathbf{B} \mathbf{v}^P \\ Examples of applications of the 1 point and 2 point theorem follow. @@ -297,16 +297,16 @@ define the angular velocity of the body :math:`\mathbf{B}` and velocity of the point :math:`O`: .. math:: - ^\mathbf{N}\mathbf{\omega}^\mathbf{B} &= u_3 \mathbf{\hat{n}_z} = u_3 + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} &= u_3 \mathbf{\hat{n}_z} = u_3 \mathbf{\hat{b}_z}\\ - ^\mathbf{N}\mathbf{v}^O &= u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y}\\ + {}^\mathbf{N}\mathbf{v}^O &= u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y}\\ and accelerations can be written as: .. math:: - ^\mathbf{N}\mathbf{\alpha}^\mathbf{B} &= \dot{u_3} \mathbf{\hat{n}_z} = + {}^\mathbf{N}\boldsymbol{\alpha}^\mathbf{B} &= \dot{u_3} \mathbf{\hat{n}_z} = \dot{u_3} \mathbf{\hat{b}_z}\\ - ^\mathbf{N}\mathbf{a}^O &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} + {}^\mathbf{N}\mathbf{a}^O &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} \mathbf{\hat{n}_y}\\ We can use the 2 point theorem to calculate the velocity and acceleration of @@ -314,20 +314,20 @@ point :math:`P` now. .. math:: \mathbf{r}^{OP} &= R \mathbf{\hat{b}_x}\\ - ^\mathbf{N}\mathbf{v}^P &= ^\mathbf{N}\mathbf{v}^O + - ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{OP}\\ - ^\mathbf{N}\mathbf{v}^P &= u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y} + {}^\mathbf{N}\mathbf{v}^P &={}^\mathbf{N}\mathbf{v}^O + + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{OP}\\ + {}^\mathbf{N}\mathbf{v}^P &= u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y} + u_3 \mathbf{\hat{b}_z} \times R \mathbf{\hat{b}_x} = u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y} + u_3 R \mathbf{\hat{b}_y}\\ - ^{\mathbf{N}}\mathbf{a}^P &= ^\mathbf{N}\mathbf{a}^O + - ^\mathbf{N}\mathbf{\alpha}^\mathbf{B} \times \mathbf{r}^{OP} + - ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times - (^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{OP})\\ - ^{\mathbf{N}}\mathbf{a}^P &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} + {}^{\mathbf{N}}\mathbf{a}^P &={}^\mathbf{N}\mathbf{a}^O + + {}^\mathbf{N}\boldsymbol{\alpha}^\mathbf{B} \times \mathbf{r}^{OP} + + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times + (^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{OP})\\ + {}^{\mathbf{N}}\mathbf{a}^P &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} \mathbf{\hat{n}_y} + \dot{u_3}\mathbf{\hat{b}_z}\times R \mathbf{\hat{b}_x} +u_3\mathbf{\hat{b}_z}\times(u_3\mathbf{\hat{b}_z}\times R\mathbf{\hat{b}_x})\\ - ^{\mathbf{N}}\mathbf{a}^P &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} + {}^{\mathbf{N}}\mathbf{a}^P &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} \mathbf{\hat{n}_y} + R\dot{u_3}\mathbf{\hat{b}_y} - R u_3^2 \mathbf{\hat{b}_x}\\ @@ -342,16 +342,16 @@ point :math:`O`'s velocity is zero in :math:`\mathbf{N}`. .. math:: \mathbf{r}^{OQ} &= l \mathbf{\hat{b}_x}\\ \mathbf{r}^{QP} &= l \mathbf{\hat{c}_x}\\ - ^\mathbf{N}\mathbf{\omega}^\mathbf{B} &= u_1 \mathbf{\hat{b}_z}\\ - ^\mathbf{N}\mathbf{\omega}^\mathbf{C} &= u_2 \mathbf{\hat{c}_z}\\ - ^\mathbf{N}\mathbf{v}^Q &= ^\mathbf{N}\mathbf{v}^O + - ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{OQ}\\ - ^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{b}_y}\\ - ^\mathbf{N}\mathbf{v}^P &= ^\mathbf{N}\mathbf{v}^Q + - ^\mathbf{N}\mathbf{\omega}^\mathbf{C} \times \mathbf{r}^{QP}\\ - ^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{b}_y} +u_2 \mathbf{\hat{c}_z} + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} &= u_1 \mathbf{\hat{b}_z}\\ + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{C} &= u_2 \mathbf{\hat{c}_z}\\ + {}^\mathbf{N}\mathbf{v}^Q &={}^\mathbf{N}\mathbf{v}^O + + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{OQ}\\ + {}^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{b}_y}\\ + {}^\mathbf{N}\mathbf{v}^P &={}^\mathbf{N}\mathbf{v}^Q + + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{C} \times \mathbf{r}^{QP}\\ + {}^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{b}_y} +u_2 \mathbf{\hat{c}_z} \times l \mathbf{\hat{c}_x}\\ - ^\mathbf{N}\mathbf{v}^Q &= u_1 l\mathbf{\hat{b}_y}+u_2 l\mathbf{\hat{c}_y}\\ + {}^\mathbf{N}\mathbf{v}^Q &= u_1 l\mathbf{\hat{b}_y}+u_2 l\mathbf{\hat{c}_y}\\ .. raw:: html :file: kin_4.svg @@ -363,20 +363,20 @@ the two point theorem to find the velocity of the center point of the ring, the ring. .. math:: - ^\mathbf{N}\mathbf{\omega}^\mathbf{C} &= u_1 \mathbf{\hat{n}_x}\\ + {}^\mathbf{N}\boldsymbol{\omega}^\mathbf{C} &= u_1 \mathbf{\hat{n}_x}\\ \mathbf{r}^{OQ} &= -l \mathbf{\hat{c}_z}\\ - ^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{c}_y}\\ + {}^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{c}_y}\\ \mathbf{r}^{QP} &= R(cos(q_2) \mathbf{\hat{c}_x} + sin(q_2) \mathbf{\hat{c}_y} )\\ - ^\mathbf{C}\mathbf{v}^P &= R u_2 (-sin(q_2) \mathbf{\hat{c}_x} + {}^\mathbf{C}\mathbf{v}^P &= R u_2 (-sin(q_2) \mathbf{\hat{c}_x} + cos(q_2) \mathbf{\hat{c}_y} )\\ - ^\mathbf{N}\mathbf{v}^P &= ^\mathbf{C}\mathbf{v}^P +^\mathbf{N}\mathbf{v}^Q - + ^\mathbf{N}\mathbf{\omega}^\mathbf{C} \times \mathbf{r}^{QP}\\ - ^\mathbf{N}\mathbf{v}^P &= R u_2 (-sin(q_2) \mathbf{\hat{c}_x} + {}^\mathbf{N}\mathbf{v}^P &={}^\mathbf{C}\mathbf{v}^P +^\mathbf{N}\mathbf{v}^Q + +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{C} \times \mathbf{r}^{QP}\\ + {}^\mathbf{N}\mathbf{v}^P &= R u_2 (-sin(q_2) \mathbf{\hat{c}_x} + cos(q_2) \mathbf{\hat{c}_y} ) + u_1 l \mathbf{\hat{c}_y} + u_1 \mathbf{\hat{c}_x} \times R(cos(q_2) \mathbf{\hat{c}_x} + sin(q_2) \mathbf{\hat{c}_y}\\ - ^\mathbf{N}\mathbf{v}^P &= - R u_2 sin(q_2) \mathbf{\hat{c}_x} + {}^\mathbf{N}\mathbf{v}^P &= - R u_2 sin(q_2) \mathbf{\hat{c}_x} + (R u_2 cos(q_2)+u_1 l)\mathbf{\hat{c}_y} + R u_1 sin(q_2) \mathbf{\hat{c}_z}\\ diff --git a/dev/_sources/modules/integrals/g-functions.rst.txt b/dev/_sources/modules/integrals/g-functions.rst.txt index 5185d1566f9..398b4c6fdd4 100644 --- a/dev/_sources/modules/integrals/g-functions.rst.txt +++ b/dev/_sources/modules/integrals/g-functions.rst.txt @@ -287,7 +287,7 @@ We introduce the following notation: .. math:: \lambda_{s0}(c_1, c_2) = c_1 (q - p)|\omega|^{1/(q - p)} \sin{\psi} + c_2 (v - u)|\sigma|^{1/(v - u)} \sin{\theta} .. math:: \lambda_s = - \begin{cases} \operatorname{\lambda_{s0}}\left(-1,-1\right) \operatorname{\lambda_{s0}}\left(1,1\right) & \text{for}\: \arg(\omega) = 0 \wedge \arg(\sigma) = 0 \\\operatorname{\lambda_{s0}}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),-1\right) \operatorname{\lambda_{s0}}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),1\right) & \text{for}\: \arg(\omega) \ne 0 \wedge \arg(\sigma) = 0 \\\operatorname{\lambda_{s0}}\left(-1,\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) \operatorname{\lambda_{s0}}\left(1,\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) & \text{for}\: \arg(\omega) = 0 \wedge \arg(\sigma) \ne 0) \\\operatorname{\lambda_{s0}}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) & \text{otherwise} \end{cases} + \begin{cases} \lambda_{s0}\left(-1,-1\right) \lambda_{s0}\left(1,1\right) & \text{for}\: \arg(\omega) = 0 \wedge \arg(\sigma) = 0 \\\lambda_{s0}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),-1\right) \lambda_{s0}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),1\right) & \text{for}\: \arg(\omega) \ne 0 \wedge \arg(\sigma) = 0 \\\lambda_{s0}\left(-1,\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) \lambda_{s0}\left(1,\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) & \text{for}\: \arg(\omega) = 0 \wedge \arg(\sigma) \ne 0) \\\lambda_{s0}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) & \text{otherwise} \end{cases} .. math:: z_0 = \frac{\omega}{\sigma} e^{-i\pi (b^* + c^*)} .. math:: z_1 = \frac{\sigma}{\omega} e^{-i\pi (b^* + c^*)} diff --git a/dev/_sources/modules/simplify/hyperexpand.rst.txt b/dev/_sources/modules/simplify/hyperexpand.rst.txt index b0f4f1c2a2e..73f0fdbf7c2 100644 --- a/dev/_sources/modules/simplify/hyperexpand.rst.txt +++ b/dev/_sources/modules/simplify/hyperexpand.rst.txt @@ -488,8 +488,8 @@ first basis element `B_0` is set to the expression for `{}_1 F_2` from above: .. math :: - B_0 = \frac{ \sqrt{\pi} \exp\left(-\frac{\mathbf{\imath}\pi}{4}\right) - C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\mathbf{\imath}\pi}{4}\right) z^{\frac{1}{4}}\right)} + B_0 = \frac{ \sqrt{\pi} \exp\left(-\frac{\imath\pi}{4}\right) + C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\imath\pi}{4}\right) z^{\frac{1}{4}}\right)} {2 z^{\frac{1}{4}}} Next we compute `z\frac{\mathrm{d}}{\mathrm{d}z} B_0`. For this we can @@ -510,8 +510,8 @@ Formatting this result nicely we obtain B_1^\prime = - \frac{1}{4} \frac{ \sqrt{\pi} - \exp\left(-\frac{\mathbf{\imath}\pi}{4}\right) - C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\mathbf{\imath}\pi}{4}\right) z^{\frac{1}{4}}\right) + \exp\left(-\frac{\imath\pi}{4}\right) + C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\imath\pi}{4}\right) z^{\frac{1}{4}}\right) } {2 z^{\frac{1}{4}}} + \frac{1}{4} \cosh{\left( 2 \sqrt{z} \right )} @@ -534,8 +534,8 @@ which can be printed as B_2^\prime = \frac{1}{16} \frac{ \sqrt{\pi} - \exp\left(-\frac{\mathbf{\imath}\pi}{4}\right) - C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\mathbf{\imath}\pi}{4}\right) z^{\frac{1}{4}}\right) + \exp\left(-\frac{\imath\pi}{4}\right) + C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\imath\pi}{4}\right) z^{\frac{1}{4}}\right) } {2 z^{\frac{1}{4}}} - \frac{1}{16} \cosh{\left(2\sqrt{z}\right)} @@ -553,8 +553,8 @@ choose `B_1` and `B_2` as follows \left( \begin{matrix} \frac{ \sqrt{\pi} - \exp\left(-\frac{\mathbf{\imath}\pi}{4}\right) - C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\mathbf{\imath}\pi}{4}\right) z^{\frac{1}{4}}\right) + \exp\left(-\frac{\imath\pi}{4}\right) + C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\imath\pi}{4}\right) z^{\frac{1}{4}}\right) }{2 z^{\frac{1}{4}}} \\ \cosh\left(2\sqrt{z}\right) \\ \sinh\left(2\sqrt{z}\right) \sqrt{z} diff --git a/dev/citing.html b/dev/citing.html index 5e064e8fad0..18852019a3d 100644 --- a/dev/citing.html +++ b/dev/citing.html @@ -875,7 +875,7 @@

Citing SymPyFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/contributing/debug.html b/dev/contributing/debug.html index 4572b64afe6..4c154d9af24 100644 --- a/dev/contributing/debug.html +++ b/dev/contributing/debug.html @@ -847,7 +847,7 @@

DebuggingFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/dependencies.html b/dev/contributing/dependencies.html index 7d6ba95af02..25f62d06c95 100644 --- a/dev/contributing/dependencies.html +++ b/dev/contributing/dependencies.html @@ -1225,7 +1225,7 @@

Running the BenchmarksFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/deprecations.html b/dev/contributing/deprecations.html index 92c25b960e1..49ed8bd2cab 100644 --- a/dev/contributing/deprecations.html +++ b/dev/contributing/deprecations.html @@ -1316,7 +1316,7 @@

Release notes entryFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/docstring.html b/dev/contributing/docstring.html index 13ead5be705..2c93b558bb7 100644 --- a/dev/contributing/docstring.html +++ b/dev/contributing/docstring.html @@ -1504,7 +1504,7 @@

Importing Docstrings into the Sphinx DocumentationFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/documentation-style-guide.html b/dev/contributing/documentation-style-guide.html index 2f42894f855..70f5b8803e9 100644 --- a/dev/contributing/documentation-style-guide.html +++ b/dev/contributing/documentation-style-guide.html @@ -1187,7 +1187,7 @@

Tone PreferencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/index.html b/dev/contributing/index.html index e1972443263..bd58129d71b 100644 --- a/dev/contributing/index.html +++ b/dev/contributing/index.html @@ -858,7 +858,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/contributing/introduction-to-contributing.html b/dev/contributing/introduction-to-contributing.html index 51d01a15f08..0be6cdffc93 100644 --- a/dev/contributing/introduction-to-contributing.html +++ b/dev/contributing/introduction-to-contributing.html @@ -931,7 +931,7 @@

Review pull requestsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/new-contributors-guide/build-docs.html b/dev/contributing/new-contributors-guide/build-docs.html index 1b5e97b86e6..9e8df62acb6 100644 --- a/dev/contributing/new-contributors-guide/build-docs.html +++ b/dev/contributing/new-contributors-guide/build-docs.html @@ -1085,7 +1085,7 @@

PDF DocumentationFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/new-contributors-guide/dev-setup.html b/dev/contributing/new-contributors-guide/dev-setup.html index c5d75006f0c..1bd2892a9a8 100644 --- a/dev/contributing/new-contributors-guide/dev-setup.html +++ b/dev/contributing/new-contributors-guide/dev-setup.html @@ -996,7 +996,7 @@

Virtual Environment SetupFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/new-contributors-guide/index.html b/dev/contributing/new-contributors-guide/index.html index e6a3a580194..827c9d726d3 100644 --- a/dev/contributing/new-contributors-guide/index.html +++ b/dev/contributing/new-contributors-guide/index.html @@ -855,7 +855,7 @@

Index Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/new-contributors-guide/workflow-process.html b/dev/contributing/new-contributors-guide/workflow-process.html index 8ef2a0beff6..fc71308c87f 100644 --- a/dev/contributing/new-contributors-guide/workflow-process.html +++ b/dev/contributing/new-contributors-guide/workflow-process.html @@ -1427,7 +1427,7 @@

Writing pull request title and descriptionFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/contributing/new-contributors-guide/writing-tests.html b/dev/contributing/new-contributors-guide/writing-tests.html index 2a351d35158..7beca9da5cf 100644 --- a/dev/contributing/new-contributors-guide/writing-tests.html +++ b/dev/contributing/new-contributors-guide/writing-tests.html @@ -1828,7 +1828,7 @@

Hypothesis TestingFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/active-deprecations.html b/dev/explanation/active-deprecations.html index ec1ffe9fdfe..e2d4c0372fc 100644 --- a/dev/explanation/active-deprecations.html +++ b/dev/explanation/active-deprecations.html @@ -2293,7 +2293,7 @@

Version 1.4Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/best-practices.html b/dev/explanation/best-practices.html index dc1ac9a4e72..6f297d229e4 100644 --- a/dev/explanation/best-practices.html +++ b/dev/explanation/best-practices.html @@ -1992,7 +1992,7 @@

Avoiding Infinite Recursion from Assumptions HandlersFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/glossary.html b/dev/explanation/glossary.html index 1d830c87150..bc98c9fb745 100644 --- a/dev/explanation/glossary.html +++ b/dev/explanation/glossary.html @@ -1433,7 +1433,7 @@

Glossary Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/gotchas.html b/dev/explanation/gotchas.html index 03e9464f6bb..49632fe1f9e 100644 --- a/dev/explanation/gotchas.html +++ b/dev/explanation/gotchas.html @@ -1571,7 +1571,7 @@

help()
measure=<function count_ops>,
-)[source] +)[source]

Reduce expression by combining powers with similar bases and exponents.

Explanation

If deep is True then powsimp() will also simplify arguments of @@ -1688,7 +1688,7 @@

help() Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/index.html b/dev/explanation/index.html index 61a952dca3d..d1c310609a6 100644 --- a/dev/explanation/index.html +++ b/dev/explanation/index.html @@ -897,7 +897,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/explanation/modules/physics/biomechanics/biomechanics.html b/dev/explanation/modules/physics/biomechanics/biomechanics.html index 3326b28b16a..12669920f75 100644 --- a/dev/explanation/modules/physics/biomechanics/biomechanics.html +++ b/dev/explanation/modules/physics/biomechanics/biomechanics.html @@ -2175,7 +2175,7 @@

ReferencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/biomechanics/index.html b/dev/explanation/modules/physics/biomechanics/index.html index 56c12b16fc7..eb9538ee9fd 100644 --- a/dev/explanation/modules/physics/biomechanics/index.html +++ b/dev/explanation/modules/physics/biomechanics/index.html @@ -860,7 +860,7 @@

Guide to BiomechanicsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/index.html b/dev/explanation/modules/physics/index.html index 6a6b66ffd99..a10873f8277 100644 --- a/dev/explanation/modules/physics/index.html +++ b/dev/explanation/modules/physics/index.html @@ -859,7 +859,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/explanation/modules/physics/mechanics/advanced.html b/dev/explanation/modules/physics/mechanics/advanced.html index 1bca48f359c..4151e533467 100644 --- a/dev/explanation/modules/physics/mechanics/advanced.html +++ b/dev/explanation/modules/physics/mechanics/advanced.html @@ -968,7 +968,7 @@

Code OutputFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/autolev_parser.html b/dev/explanation/modules/physics/mechanics/autolev_parser.html index 25ec322628b..741e57425fe 100644 --- a/dev/explanation/modules/physics/mechanics/autolev_parser.html +++ b/dev/explanation/modules/physics/mechanics/autolev_parser.html @@ -1382,7 +1382,7 @@

3. Switching to an ASTFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/index.html b/dev/explanation/modules/physics/mechanics/index.html index e7fc9788a7d..9da9b06b6fe 100644 --- a/dev/explanation/modules/physics/mechanics/index.html +++ b/dev/explanation/modules/physics/mechanics/index.html @@ -966,7 +966,7 @@

Guide to Classical MechanicsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/joints.html b/dev/explanation/modules/physics/mechanics/joints.html index 7355624e3f9..202fe8fc6f5 100644 --- a/dev/explanation/modules/physics/mechanics/joints.html +++ b/dev/explanation/modules/physics/mechanics/joints.html @@ -1028,7 +1028,7 @@

System in Physics/MechanicsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/kane.html b/dev/explanation/modules/physics/mechanics/kane.html index 5dfe3adc61b..7ead234aaf4 100644 --- a/dev/explanation/modules/physics/mechanics/kane.html +++ b/dev/explanation/modules/physics/mechanics/kane.html @@ -986,7 +986,7 @@

Kane’s Method in Physics/MechanicsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/lagrange.html b/dev/explanation/modules/physics/mechanics/lagrange.html index 21271ee1a94..b424c19c5fd 100644 --- a/dev/explanation/modules/physics/mechanics/lagrange.html +++ b/dev/explanation/modules/physics/mechanics/lagrange.html @@ -969,7 +969,7 @@

Lagrange’s Method in Physics/MechanicsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/linearize.html b/dev/explanation/modules/physics/mechanics/linearize.html index 1b1b323051b..fa7c39ef934 100644 --- a/dev/explanation/modules/physics/mechanics/linearize.html +++ b/dev/explanation/modules/physics/mechanics/linearize.html @@ -1190,7 +1190,7 @@

Further ExamplesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/masses.html b/dev/explanation/modules/physics/mechanics/masses.html index 8d85d1dd854..950eaabbfbe 100644 --- a/dev/explanation/modules/physics/mechanics/masses.html +++ b/dev/explanation/modules/physics/mechanics/masses.html @@ -1208,7 +1208,7 @@

Using energy functions in MechanicsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/reference.html b/dev/explanation/modules/physics/mechanics/reference.html index d665c85442e..4bec2714d5f 100644 --- a/dev/explanation/modules/physics/mechanics/reference.html +++ b/dev/explanation/modules/physics/mechanics/reference.html @@ -862,7 +862,7 @@

References for Physics/MechanicsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/sympy_mechanics_for_autolev_users.html b/dev/explanation/modules/physics/mechanics/sympy_mechanics_for_autolev_users.html index 18dd482c461..539bbed1814 100644 --- a/dev/explanation/modules/physics/mechanics/sympy_mechanics_for_autolev_users.html +++ b/dev/explanation/modules/physics/mechanics/sympy_mechanics_for_autolev_users.html @@ -1932,7 +1932,7 @@

Links Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/mechanics/symsystem.html b/dev/explanation/modules/physics/mechanics/symsystem.html index d58576133ba..ae9a021ca86 100644 --- a/dev/explanation/modules/physics/mechanics/symsystem.html +++ b/dev/explanation/modules/physics/mechanics/symsystem.html @@ -1031,7 +1031,7 @@

SymbolicSystem Example UsageFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/vector/advanced.html b/dev/explanation/modules/physics/vector/advanced.html index 26d82405928..93b22bd2d5f 100644 --- a/dev/explanation/modules/physics/vector/advanced.html +++ b/dev/explanation/modules/physics/vector/advanced.html @@ -1056,7 +1056,7 @@

Solving Vector EquationsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/vector/fields.html b/dev/explanation/modules/physics/vector/fields.html index b1355c6311c..eb09c075ac5 100644 --- a/dev/explanation/modules/physics/vector/fields.html +++ b/dev/explanation/modules/physics/vector/fields.html @@ -1125,7 +1125,7 @@

Scalar potential functionsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/vector/index.html b/dev/explanation/modules/physics/vector/index.html index 61d4a0f8431..f3a3285a0fc 100644 --- a/dev/explanation/modules/physics/vector/index.html +++ b/dev/explanation/modules/physics/vector/index.html @@ -893,7 +893,7 @@

Guide to VectorFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/modules/physics/vector/kinematics/kinematics.html b/dev/explanation/modules/physics/vector/kinematics/kinematics.html index 349a1a6cd3b..33bdf673235 100644 --- a/dev/explanation/modules/physics/vector/kinematics/kinematics.html +++ b/dev/explanation/modules/physics/vector/kinematics/kinematics.html @@ -823,7 +823,7 @@

Introduction to Kinematics

The angular velocity of a rigid body refers to the rate of change of its orientation. The angular velocity of a body is written down as: -\(^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}\), or the angular velocity of +\(^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}\), or the angular velocity of \(\mathbf{B}\) in \(\mathbf{N}\), which is a vector. Note that here, the term rigid body was used, but reference frames can also have angular velocities. Further discussion of the distinction between a rigid body and a @@ -869,16 +869,16 @@

Angular Velocity
-\[^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} = -(\frac{^{\mathbf{N}}d \mathbf{\hat{b}_y}}{dt}\cdot\mathbf{\hat{b}_z} -)\mathbf{\hat{b}_x} + (\frac{^{\mathbf{N}}d \mathbf{\hat{b}_z}}{dt}\cdot -\mathbf{\hat{b}_x})\mathbf{\hat{b}_y} + (\frac{^{\mathbf{N}}d +\[{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} = +(\frac{{}^{\mathbf{N}}d \mathbf{\hat{b}_y}}{dt}\cdot\mathbf{\hat{b}_z} +)\mathbf{\hat{b}_x} + (\frac{{}^{\mathbf{N}}d \mathbf{\hat{b}_z}}{dt}\cdot +\mathbf{\hat{b}_x})\mathbf{\hat{b}_y} + (\frac{{}^{\mathbf{N}}d \mathbf{\hat{b}_x}}{dt}\cdot\mathbf{\hat{b}_y})\mathbf{\hat{b}_z}\]

It is also common for a body’s angular velocity to be written as:

-\[^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} = w_x \mathbf{\hat{b}_x} + +\[{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} = w_x \mathbf{\hat{b}_x} + w_y \mathbf{\hat{b}_y} + w_z \mathbf{\hat{b}_z}\]

There are a few additional important points relating to angular velocity. The @@ -886,11 +886,11 @@

Angular Velocity
-\[^{\mathbf{N}}\mathbf{\omega}^{\mathbf{D}} = -^{\mathbf{N}}\mathbf{\omega}^{\mathbf{A}} + -^{\mathbf{A}}\mathbf{\omega}^{\mathbf{B}} + -^{\mathbf{B}}\mathbf{\omega}^{\mathbf{C}} + -^{\mathbf{C}}\mathbf{\omega}^{\mathbf{D}}\]
+\[{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{D}} = +{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{A}} + +{}^{\mathbf{A}}\boldsymbol{\omega}^{\mathbf{B}} + +{}^{\mathbf{B}}\boldsymbol{\omega}^{\mathbf{C}} + +{}^{\mathbf{C}}\boldsymbol{\omega}^{\mathbf{D}}\]

This is also shown in the following example:

@@ -964,11 +964,11 @@

Angular Velocity
-\[\begin{split}^{\mathbf{N}}\mathbf{\omega}^{\mathbf{A}} &= 0\\ -^{\mathbf{A}}\mathbf{\omega}^{\mathbf{B}} &= \dot{q_1} \mathbf{\hat{a}_x}\\ -^{\mathbf{B}}\mathbf{\omega}^{\mathbf{C}} &= - \dot{q_2} \mathbf{\hat{b}_z}\\ -^{\mathbf{C}}\mathbf{\omega}^{\mathbf{D}} &= \dot{q_3} \mathbf{\hat{c}_y}\\ -^{\mathbf{N}}\mathbf{\omega}^{\mathbf{D}} &= \dot{q_1} \mathbf{\hat{a}_x} +\[\begin{split}{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{A}} &= 0\\ +{}^{\mathbf{A}}\boldsymbol{\omega}^{\mathbf{B}} &= \dot{q_1} \mathbf{\hat{a}_x}\\ +{}^{\mathbf{B}}\boldsymbol{\omega}^{\mathbf{C}} &= - \dot{q_2} \mathbf{\hat{b}_z}\\ +{}^{\mathbf{C}}\boldsymbol{\omega}^{\mathbf{D}} &= \dot{q_3} \mathbf{\hat{c}_y}\\ +{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{D}} &= \dot{q_1} \mathbf{\hat{a}_x} - \dot{q_2} \mathbf{\hat{b}_z} + \dot{q_3} \mathbf{\hat{c}_y}\\\end{split}\]

Note the signs used in the angular velocity definitions, which are related to @@ -1307,7 +1307,7 @@

Angular Velocity\(\mathbf{D}\) in the reference frame of the first body \(\mathbf{A}\):

-\[\begin{split}^\mathbf{A}\mathbf{\omega}^\mathbf{D} = w_1 \mathbf{\hat{p_1}} + +\[\begin{split}{}^\mathbf{A}\boldsymbol{\omega}^\mathbf{D} = w_1 \mathbf{\hat{p_1}} + w_2 \mathbf{\hat{p_2}} + w_3 \mathbf{\hat{p_3}}\\\end{split}\]

It is very important to remember to only use this with angular velocities; you @@ -1317,8 +1317,8 @@

Angular Velocity
-\[\frac{^{\mathbf{N}} d \mathbf{v}}{dt} = \frac{^{\mathbf{B}} d \mathbf{v}}{dt} -+ ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} \times \mathbf{v}\]
+\[\frac{{}^{\mathbf{N}} d \mathbf{v}}{dt} = \frac{{}^{\mathbf{B}} d \mathbf{v}}{dt} ++{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} \times \mathbf{v}\]

The vector \(\mathbf{v}\) can be any vector quantity: a position vector, a velocity vector, angular velocity vector, etc. Instead of taking the time @@ -1328,7 +1328,7 @@

Angular Velocity\(\mathbf{v}\) in (\(\mathbf{v}\) is usually composed only of the basis vector set belonging to \(\mathbf{B}\)). Then we add the cross product of the angular velocity of our newer frame, -\(^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}\) and our vector quantity +\(^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}\) and our vector quantity \(\mathbf{v}\). Again, you can choose any alternative frame for this. Examples follow:

@@ -1337,29 +1337,29 @@

Angular AccelerationAngular acceleration refers to the time rate of change of the angular velocity vector. Just as the angular velocity vector is for a body and is specified in a frame, the angular acceleration vector is for a body and is specified in a -frame: \(^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}}\), or the angular +frame: \(^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}}\), or the angular acceleration of \(\mathbf{B}\) in \(\mathbf{N}\), which is a vector.

Calculating the angular acceleration is relatively straight forward:

-\[^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}} = -\frac{^{\mathbf{N}} d ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}{dt}\]
+\[{}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}} = +\frac{{}^{\mathbf{N}} d{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}{dt}\]

Note that this can be calculated with the derivative theorem, and when the angular velocity is defined in a body fixed frame, becomes quite simple:

-\[ \begin{align}\begin{aligned}\begin{split}^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}} &= -\frac{^{\mathbf{N}} d ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}{dt}\\\end{split}\\\begin{split}^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}} &= -\frac{^{\mathbf{B}} d ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}{dt} -+ ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} \times -^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}\\\end{split}\\\begin{split}\textrm{if } ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} &= -w_x \mathbf{\hat{b}_x} + w_y \mathbf{\hat{b}_y} + w_z \mathbf{\hat{b}_z}\\\end{split}\\\begin{split}\textrm{then } ^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}} &= -\frac{^{\mathbf{B}} d ^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}{dt} -+ \underbrace{^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}} \times -^{\mathbf{N}}\mathbf{\omega}^{\mathbf{B}}}_{ -\textrm{this is 0 by definition}}\\\end{split}\\\begin{split}^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}}&=\frac{d w_x}{dt}\mathbf{\hat{b}_x} -+ \frac{d w_y}{dt}\mathbf{\hat{b}_y} + \frac{d w_z}{dt}\mathbf{\hat{b}_z}\\\end{split}\\\begin{split}^{\mathbf{N}}\mathbf{\alpha}^{\mathbf{B}}&= \dot{w_x}\mathbf{\hat{b}_x} + +\[ \begin{align}\begin{aligned}\begin{split}{}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}} &= +\frac{{}^{\mathbf{N}} d{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}{dt}\\\end{split}\\\begin{split}{}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}} &= +\frac{{}^{\mathbf{B}} d{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}{dt} ++{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} \times +{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}\\\end{split}\\\begin{split}\textrm{if }{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} &= +w_x \mathbf{\hat{b}_x} + w_y \mathbf{\hat{b}_y} + w_z \mathbf{\hat{b}_z}\\\end{split}\\\begin{split}\textrm{then }{}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}} &= +\frac{{}^{\mathbf{B}} d{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}{dt} ++ \underbrace{{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}} \times +{}^{\mathbf{N}}\boldsymbol{\omega}^{\mathbf{B}}}_{ +\textrm{this is 0 by definition}}\\\end{split}\\\begin{split}{}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}}&=\frac{d w_x}{dt}\mathbf{\hat{b}_x} ++ \frac{d w_y}{dt}\mathbf{\hat{b}_y} + \frac{d w_z}{dt}\mathbf{\hat{b}_z}\\\end{split}\\\begin{split}{}^{\mathbf{N}}\boldsymbol{\alpha}^{\mathbf{B}}&= \dot{w_x}\mathbf{\hat{b}_x} + \dot{w_y}\mathbf{\hat{b}_y} + \dot{w_z}\mathbf{\hat{b}_z}\\\end{split}\end{aligned}\end{align} \]

Again, this is only for the case in which the angular velocity of the body is @@ -1377,9 +1377,9 @@

Point Velocity & Acceleration \[\begin{split}\mathbf{r}^{OP} \textrm{, the position vector from } O \textrm{ to }P\\ -^{\mathbf{N}}\mathbf{v}^P \textrm{, the velocity of } P +{}^{\mathbf{N}}\mathbf{v}^P \textrm{, the velocity of } P \textrm{ in the reference frame } \mathbf{N}\\ -^{\mathbf{N}}\mathbf{a}^P \textrm{, the acceleration of } P +{}^{\mathbf{N}}\mathbf{a}^P \textrm{, the acceleration of } P \textrm{ in the reference frame } \mathbf{N}\\\end{split}\]

Note that the position vector does not have a frame associated with it; this is @@ -1602,14 +1602,14 @@

Point Velocity & Acceleration \[\begin{split}\textrm{Let's define: } \mathbf{r}^{OP} &= q_x \mathbf{\hat{n}_x} + q_y \mathbf{\hat{n}_y}\\ -^{\mathbf{N}}\mathbf{v}^P &= \frac{^{\mathbf{N}} d \mathbf{r}^{OP}}{dt}\\ +{}^{\mathbf{N}}\mathbf{v}^P &= \frac{{}^{\mathbf{N}} d \mathbf{r}^{OP}}{dt}\\ \textrm{then we can calculate: } -^{\mathbf{N}}\mathbf{v}^P &= \dot{q}_x\mathbf{\hat{n}_x} + +{}^{\mathbf{N}}\mathbf{v}^P &= \dot{q}_x\mathbf{\hat{n}_x} + \dot{q}_y\mathbf{\hat{n}_y}\\ \textrm{and :} -^{\mathbf{N}}\mathbf{a}^P &= \frac{^{\mathbf{N}} d -^{\mathbf{N}}\mathbf{v}^P}{dt}\\ -^{\mathbf{N}}\mathbf{a}^P &= \ddot{q}_x\mathbf{\hat{n}_x} + +{}^{\mathbf{N}}\mathbf{a}^P &= \frac{{}^{\mathbf{N}} d +{}^{\mathbf{N}}\mathbf{v}^P}{dt}\\ +{}^{\mathbf{N}}\mathbf{a}^P &= \ddot{q}_x\mathbf{\hat{n}_x} + \ddot{q}_y\mathbf{\hat{n}_y}\\\end{split}\]

It is critical to understand in the above example that the point \(O\) is @@ -1622,10 +1622,10 @@

Point Velocity & Acceleration
\[\begin{split}\textrm{Let us instead define the velocity vector as: } -^{\mathbf{N}}\mathbf{v}^P &= u_x \mathbf{\hat{n}_x} + +{}^{\mathbf{N}}\mathbf{v}^P &= u_x \mathbf{\hat{n}_x} + u_y \mathbf{\hat{n}_y}\\ \textrm{then acceleration can be written as: } -^{\mathbf{N}}\mathbf{a}^P &= \dot{u}_x \mathbf{\hat{n}_x} + +{}^{\mathbf{N}}\mathbf{a}^P &= \dot{u}_x \mathbf{\hat{n}_x} + \dot{u}_y \mathbf{\hat{n}_y}\\\end{split}\]

There will often be cases when the velocity of a point is desired and a related @@ -1836,12 +1836,12 @@

Point Velocity & Acceleration\(P\) in \(\mathbf{N}\) as follows:

-\[\begin{split}^{\mathbf{N}}\mathbf{v}^P &= ^\mathbf{N}\mathbf{v}^S + -^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{SP}\\ -^{\mathbf{N}}\mathbf{a}^P &= ^\mathbf{N}\mathbf{a}^S + -^\mathbf{N}\mathbf{\alpha}^\mathbf{B} \times \mathbf{r}^{SP} + -^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times -(^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{SP})\\\end{split}\]
+\[\begin{split}{}^{\mathbf{N}}\mathbf{v}^P &={}^\mathbf{N}\mathbf{v}^S + +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{SP}\\ +{}^{\mathbf{N}}\mathbf{a}^P &={}^\mathbf{N}\mathbf{a}^S + +{}^\mathbf{N}\boldsymbol{\alpha}^\mathbf{B} \times \mathbf{r}^{SP} + +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times +(^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{SP})\\\end{split}\]

When only one of the two points is fixed on a body, the 1 point theorem is used instead.

@@ -2069,13 +2069,13 @@

Point Velocity & Acceleration\(P\) in \(\mathbf{N}\) as:

-\[ \begin{align}\begin{aligned}\begin{split}^{\mathbf{N}}\mathbf{v}^P &= ^\mathbf{B}\mathbf{v}^P + -^\mathbf{N}\mathbf{v}^S + ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times -\mathbf{r}^{SP}\\\end{split}\\\begin{split}^{\mathbf{N}}\mathbf{a}^P &= ^\mathbf{B}\mathbf{a}^S + -^\mathbf{N}\mathbf{a}^O + ^\mathbf{N}\mathbf{\alpha}^\mathbf{B} -\times \mathbf{r}^{SP} + ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times -(^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{SP}) + -2 ^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times ^\mathbf{B} \mathbf{v}^P \\\end{split}\end{aligned}\end{align} \]
+\[ \begin{align}\begin{aligned}\begin{split}{}^{\mathbf{N}}\mathbf{v}^P &={}^\mathbf{B}\mathbf{v}^P + +{}^\mathbf{N}\mathbf{v}^S +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times +\mathbf{r}^{SP}\\\end{split}\\\begin{split}{}^{\mathbf{N}}\mathbf{a}^P &={}^\mathbf{B}\mathbf{a}^S + +{}^\mathbf{N}\mathbf{a}^O +{}^\mathbf{N}\boldsymbol{\alpha}^\mathbf{B} +\times \mathbf{r}^{SP} +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times +(^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{SP}) + +2{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times{}^\mathbf{B} \mathbf{v}^P \\\end{split}\end{aligned}\end{align} \]

Examples of applications of the 1 point and 2 point theorem follow.

@@ -2401,16 +2401,16 @@

Point Velocity & Acceleration\(O\):

-\[\begin{split}^\mathbf{N}\mathbf{\omega}^\mathbf{B} &= u_3 \mathbf{\hat{n}_z} = u_3 +\[\begin{split}{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} &= u_3 \mathbf{\hat{n}_z} = u_3 \mathbf{\hat{b}_z}\\ -^\mathbf{N}\mathbf{v}^O &= u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y}\\\end{split}\]
+{}^\mathbf{N}\mathbf{v}^O &= u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y}\\\end{split}\]

and accelerations can be written as:

-\[\begin{split}^\mathbf{N}\mathbf{\alpha}^\mathbf{B} &= \dot{u_3} \mathbf{\hat{n}_z} = +\[\begin{split}{}^\mathbf{N}\boldsymbol{\alpha}^\mathbf{B} &= \dot{u_3} \mathbf{\hat{n}_z} = \dot{u_3} \mathbf{\hat{b}_z}\\ -^\mathbf{N}\mathbf{a}^O &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} +{}^\mathbf{N}\mathbf{a}^O &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} \mathbf{\hat{n}_y}\\\end{split}\]

We can use the 2 point theorem to calculate the velocity and acceleration of @@ -2418,20 +2418,20 @@

Point Velocity & Acceleration
\[\begin{split}\mathbf{r}^{OP} &= R \mathbf{\hat{b}_x}\\ -^\mathbf{N}\mathbf{v}^P &= ^\mathbf{N}\mathbf{v}^O + -^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{OP}\\ -^\mathbf{N}\mathbf{v}^P &= u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y} +{}^\mathbf{N}\mathbf{v}^P &={}^\mathbf{N}\mathbf{v}^O + +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{OP}\\ +{}^\mathbf{N}\mathbf{v}^P &= u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y} + u_3 \mathbf{\hat{b}_z} \times R \mathbf{\hat{b}_x} = u_1 \mathbf{\hat{n}_x} + u_2 \mathbf{\hat{n}_y} + u_3 R \mathbf{\hat{b}_y}\\ -^{\mathbf{N}}\mathbf{a}^P &= ^\mathbf{N}\mathbf{a}^O + -^\mathbf{N}\mathbf{\alpha}^\mathbf{B} \times \mathbf{r}^{OP} + -^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times -(^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{OP})\\ -^{\mathbf{N}}\mathbf{a}^P &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} +{}^{\mathbf{N}}\mathbf{a}^P &={}^\mathbf{N}\mathbf{a}^O + +{}^\mathbf{N}\boldsymbol{\alpha}^\mathbf{B} \times \mathbf{r}^{OP} + +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times +(^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{OP})\\ +{}^{\mathbf{N}}\mathbf{a}^P &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} \mathbf{\hat{n}_y} + \dot{u_3}\mathbf{\hat{b}_z}\times R \mathbf{\hat{b}_x} +u_3\mathbf{\hat{b}_z}\times(u_3\mathbf{\hat{b}_z}\times R\mathbf{\hat{b}_x})\\ -^{\mathbf{N}}\mathbf{a}^P &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} +{}^{\mathbf{N}}\mathbf{a}^P &= \dot{u_1} \mathbf{\hat{n}_x} + \dot{u_2} \mathbf{\hat{n}_y} + R\dot{u_3}\mathbf{\hat{b}_y} - R u_3^2 \mathbf{\hat{b}_x}\\\end{split}\]
@@ -2734,16 +2734,16 @@

Point Velocity & Acceleration \[\begin{split}\mathbf{r}^{OQ} &= l \mathbf{\hat{b}_x}\\ \mathbf{r}^{QP} &= l \mathbf{\hat{c}_x}\\ -^\mathbf{N}\mathbf{\omega}^\mathbf{B} &= u_1 \mathbf{\hat{b}_z}\\ -^\mathbf{N}\mathbf{\omega}^\mathbf{C} &= u_2 \mathbf{\hat{c}_z}\\ -^\mathbf{N}\mathbf{v}^Q &= ^\mathbf{N}\mathbf{v}^O + -^\mathbf{N}\mathbf{\omega}^\mathbf{B} \times \mathbf{r}^{OQ}\\ -^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{b}_y}\\ -^\mathbf{N}\mathbf{v}^P &= ^\mathbf{N}\mathbf{v}^Q + -^\mathbf{N}\mathbf{\omega}^\mathbf{C} \times \mathbf{r}^{QP}\\ -^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{b}_y} +u_2 \mathbf{\hat{c}_z} +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} &= u_1 \mathbf{\hat{b}_z}\\ +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{C} &= u_2 \mathbf{\hat{c}_z}\\ +{}^\mathbf{N}\mathbf{v}^Q &={}^\mathbf{N}\mathbf{v}^O + +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{B} \times \mathbf{r}^{OQ}\\ +{}^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{b}_y}\\ +{}^\mathbf{N}\mathbf{v}^P &={}^\mathbf{N}\mathbf{v}^Q + +{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{C} \times \mathbf{r}^{QP}\\ +{}^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{b}_y} +u_2 \mathbf{\hat{c}_z} \times l \mathbf{\hat{c}_x}\\ -^\mathbf{N}\mathbf{v}^Q &= u_1 l\mathbf{\hat{b}_y}+u_2 l\mathbf{\hat{c}_y}\\\end{split}\] +{}^\mathbf{N}\mathbf{v}^Q &= u_1 l\mathbf{\hat{b}_y}+u_2 l\mathbf{\hat{c}_y}\\\end{split}\] @@ -3166,20 +3166,20 @@

Point Velocity & Acceleration
-\[\begin{split}^\mathbf{N}\mathbf{\omega}^\mathbf{C} &= u_1 \mathbf{\hat{n}_x}\\ +\[\begin{split}{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{C} &= u_1 \mathbf{\hat{n}_x}\\ \mathbf{r}^{OQ} &= -l \mathbf{\hat{c}_z}\\ -^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{c}_y}\\ +{}^\mathbf{N}\mathbf{v}^Q &= u_1 l \mathbf{\hat{c}_y}\\ \mathbf{r}^{QP} &= R(cos(q_2) \mathbf{\hat{c}_x} + sin(q_2) \mathbf{\hat{c}_y} )\\ -^\mathbf{C}\mathbf{v}^P &= R u_2 (-sin(q_2) \mathbf{\hat{c}_x} +{}^\mathbf{C}\mathbf{v}^P &= R u_2 (-sin(q_2) \mathbf{\hat{c}_x} + cos(q_2) \mathbf{\hat{c}_y} )\\ -^\mathbf{N}\mathbf{v}^P &= ^\mathbf{C}\mathbf{v}^P +^\mathbf{N}\mathbf{v}^Q -+ ^\mathbf{N}\mathbf{\omega}^\mathbf{C} \times \mathbf{r}^{QP}\\ -^\mathbf{N}\mathbf{v}^P &= R u_2 (-sin(q_2) \mathbf{\hat{c}_x} +{}^\mathbf{N}\mathbf{v}^P &={}^\mathbf{C}\mathbf{v}^P +^\mathbf{N}\mathbf{v}^Q ++{}^\mathbf{N}\boldsymbol{\omega}^\mathbf{C} \times \mathbf{r}^{QP}\\ +{}^\mathbf{N}\mathbf{v}^P &= R u_2 (-sin(q_2) \mathbf{\hat{c}_x} + cos(q_2) \mathbf{\hat{c}_y} ) + u_1 l \mathbf{\hat{c}_y} + u_1 \mathbf{\hat{c}_x} \times R(cos(q_2) \mathbf{\hat{c}_x} + sin(q_2) \mathbf{\hat{c}_y}\\ -^\mathbf{N}\mathbf{v}^P &= - R u_2 sin(q_2) \mathbf{\hat{c}_x} +{}^\mathbf{N}\mathbf{v}^P &= - R u_2 sin(q_2) \mathbf{\hat{c}_x} + (R u_2 cos(q_2)+u_1 l)\mathbf{\hat{c}_y} + R u_1 sin(q_2) \mathbf{\hat{c}_z}\\\end{split}\]
@@ -4424,7 +4424,7 @@

Kinematics in physics.vectorFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/explanation/modules/physics/vector/vectors/vectors.html b/dev/explanation/modules/physics/vector/vectors/vectors.html index 62ab61e3aed..817417c0920 100644 --- a/dev/explanation/modules/physics/vector/vectors/vectors.html +++ b/dev/explanation/modules/physics/vector/vectors/vectors.html @@ -3472,7 +3472,7 @@

How Vectors are CodedFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/solve_output.html b/dev/explanation/solve_output.html index d0085114843..ce070e4c0cd 100644 --- a/dev/explanation/solve_output.html +++ b/dev/explanation/solve_output.html @@ -988,7 +988,7 @@

Boolean or RelationalFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/special_topics/classification.html b/dev/explanation/special_topics/classification.html index 2d6ab0d14d2..2ba7eadf5a7 100644 --- a/dev/explanation/special_topics/classification.html +++ b/dev/explanation/special_topics/classification.html @@ -930,7 +930,7 @@

funcFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/special_topics/finite_diff_derivatives.html b/dev/explanation/special_topics/finite_diff_derivatives.html index 0347fb25a9f..05682d1a836 100644 --- a/dev/explanation/special_topics/finite_diff_derivatives.html +++ b/dev/explanation/special_topics/finite_diff_derivatives.html @@ -1063,7 +1063,7 @@

A Direct Method Using SymPy MatricesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/explanation/special_topics/index.html b/dev/explanation/special_topics/index.html index 4188d42baec..42906454288 100644 --- a/dev/explanation/special_topics/index.html +++ b/dev/explanation/special_topics/index.html @@ -857,7 +857,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/genindex.html b/dev/genindex.html index 5e69a7e8cf4..c01dd82a6aa 100644 --- a/dev/genindex.html +++ b/dev/genindex.html @@ -17003,7 +17003,7 @@

Z

Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/guides/assumptions.html b/dev/guides/assumptions.html index 16e445b014c..8f61baeff90 100644 --- a/dev/guides/assumptions.html +++ b/dev/guides/assumptions.html @@ -2373,7 +2373,7 @@

Relations between different symbolsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/booleans.html b/dev/guides/booleans.html index 7da28cd7767..f945577e723 100644 --- a/dev/guides/booleans.html +++ b/dev/guides/booleans.html @@ -1259,7 +1259,7 @@

Three-valued logic with symbolic BooleansFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/custom-functions.html b/dev/guides/custom-functions.html index a7828593960..8b39c346a72 100644 --- a/dev/guides/custom-functions.html +++ b/dev/guides/custom-functions.html @@ -2456,7 +2456,7 @@

Additional TipsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/index.html b/dev/guides/index.html index 2347cb15622..9a5de7ec3f2 100644 --- a/dev/guides/index.html +++ b/dev/guides/index.html @@ -851,7 +851,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/guides/logo.html b/dev/guides/logo.html index a0d9c975b9c..bc0c0a7716a 100644 --- a/dev/guides/logo.html +++ b/dev/guides/logo.html @@ -861,7 +861,7 @@

SymPy LogoFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/physics/control_problems.html b/dev/guides/physics/control_problems.html index f2c4af5b8de..5e470d6212f 100644 --- a/dev/guides/physics/control_problems.html +++ b/dev/guides/physics/control_problems.html @@ -1207,7 +1207,7 @@

ReferencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/physics/index.html b/dev/guides/physics/index.html index b8199e179a2..5303be3937f 100644 --- a/dev/guides/physics/index.html +++ b/dev/guides/physics/index.html @@ -845,7 +845,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/guides/solving/find-roots-polynomial.html b/dev/guides/solving/find-roots-polynomial.html index 0e6173b0940..57243e82b42 100644 --- a/dev/guides/solving/find-roots-polynomial.html +++ b/dev/guides/solving/find-roots-polynomial.html @@ -1374,7 +1374,7 @@

Report a BugFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/solving/index.html b/dev/guides/solving/index.html index 566007cd8d3..7685a8699d7 100644 --- a/dev/guides/solving/index.html +++ b/dev/guides/solving/index.html @@ -902,7 +902,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/guides/solving/reduce-inequalities-algebraically.html b/dev/guides/solving/reduce-inequalities-algebraically.html index f49fe1a154a..886da1d3718 100644 --- a/dev/guides/solving/reduce-inequalities-algebraically.html +++ b/dev/guides/solving/reduce-inequalities-algebraically.html @@ -1081,7 +1081,7 @@

Report a BugFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/solving/solve-diophantine-equation.html b/dev/guides/solving/solve-diophantine-equation.html index d9e9a403b29..825ed1213d9 100644 --- a/dev/guides/solving/solve-diophantine-equation.html +++ b/dev/guides/solving/solve-diophantine-equation.html @@ -1106,7 +1106,7 @@

Report a BugFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/solving/solve-equation-algebraically.html b/dev/guides/solving/solve-equation-algebraically.html index 31b882fdbcf..245dc681544 100644 --- a/dev/guides/solving/solve-equation-algebraically.html +++ b/dev/guides/solving/solve-equation-algebraically.html @@ -1162,7 +1162,7 @@

Report a BugFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/solving/solve-matrix-equation.html b/dev/guides/solving/solve-matrix-equation.html index 20ab49f6541..bd668307df5 100644 --- a/dev/guides/solving/solve-matrix-equation.html +++ b/dev/guides/solving/solve-matrix-equation.html @@ -1174,7 +1174,7 @@

Report a BugFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/solving/solve-numerically.html b/dev/guides/solving/solve-numerically.html index 6005d258948..bb155292e83 100644 --- a/dev/guides/solving/solve-numerically.html +++ b/dev/guides/solving/solve-numerically.html @@ -1044,7 +1044,7 @@

Report a BugFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/solving/solve-ode.html b/dev/guides/solving/solve-ode.html index 56d97e747da..14a708d4ea7 100644 --- a/dev/guides/solving/solve-ode.html +++ b/dev/guides/solving/solve-ode.html @@ -1304,7 +1304,7 @@

Report a BugFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/solving/solve-system-of-equations-algebraically.html b/dev/guides/solving/solve-system-of-equations-algebraically.html index 50c0e4ad7e2..c0f594766f8 100644 --- a/dev/guides/solving/solve-system-of-equations-algebraically.html +++ b/dev/guides/solving/solve-system-of-equations-algebraically.html @@ -1017,7 +1017,7 @@

Report a BugFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/guides/solving/solving-guidance.html b/dev/guides/solving/solving-guidance.html index 1434c0d2d2a..a23db0f4469 100644 --- a/dev/guides/solving/solving-guidance.html +++ b/dev/guides/solving/solving-guidance.html @@ -1077,7 +1077,7 @@

Report a BugFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/index.html b/dev/index.html index a847cb68edb..37ef612f369 100644 --- a/dev/index.html +++ b/dev/index.html @@ -863,7 +863,7 @@

Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/install.html b/dev/install.html index 46bd505be4e..476cfb238e0 100644 --- a/dev/install.html +++ b/dev/install.html @@ -937,7 +937,7 @@

QuestionsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/abc.html b/dev/modules/abc.html index 4f46d41e684..8453b8e3953 100644 --- a/dev/modules/abc.html +++ b/dev/modules/abc.html @@ -884,7 +884,7 @@

Examples Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/algebras.html b/dev/modules/algebras.html index 1bd1261bcfd..8a12b0f4e0b 100644 --- a/dev/modules/algebras.html +++ b/dev/modules/algebras.html @@ -821,7 +821,7 @@

Introductionnorm=None, -)[source] +)[source]

Provides basic quaternion operations. Quaternion objects can be instantiated as Quaternion(a, b, c, d) as in \(q = a + bi + cj + dk\).

@@ -876,7 +876,7 @@

Introduction
-add(other)[source]
+add(other)[source]

Adds quaternions.

Parameters:
@@ -918,7 +918,7 @@

Introduction
-angle()[source]
+angle()[source]

Returns the angle of the quaternion measured in the real-axis plane.

Explanation

Given a quaternion \(q = a + bi + cj + dk\) where \(a\), \(b\), \(c\) and \(d\) @@ -938,7 +938,7 @@

Introduction
-arc_coplanar(other)[source]
+arc_coplanar(other)[source]

Returns True if the transformation arcs represented by the input quaternions happen in the same plane.

Parameters:
@@ -974,7 +974,7 @@

Introduction
-axis()[source]
+axis()[source]

Returns \(\mathbf{Ax}(q)\), the axis of the quaternion \(q\).

Explanation

Given a quaternion \(q = a + bi + cj + dk\), returns \(\mathbf{Ax}(q)\) i.e., the versor of the vector part of that quaternion @@ -995,7 +995,7 @@

Introduction
-exp()[source]
+exp()[source]

Returns the exponential of \(q\), given by \(e^q\).

Returns:
@@ -1019,7 +1019,7 @@

Introduction
-classmethod from_Matrix(elements)[source]
+classmethod from_Matrix(elements)[source]

Returns quaternion from elements of a column vector`. If vector_only is True, returns only imaginary part as a Matrix of length 3.

@@ -1055,7 +1055,7 @@

Introduction
-classmethod from_axis_angle(vector, angle)[source]
+classmethod from_axis_angle(vector, angle)[source]

Returns a rotation quaternion given the axis and the angle of rotation.

Parameters:
@@ -1087,7 +1087,7 @@

Introduction
-classmethod from_euler(angles, seq)[source]
+classmethod from_euler(angles, seq)[source]

Returns quaternion equivalent to rotation represented by the Euler angles, in the sequence defined by seq.

@@ -1135,7 +1135,7 @@

Introduction
-classmethod from_rotation_matrix(M)[source]
+classmethod from_rotation_matrix(M)[source]

Returns the equivalent quaternion of a matrix. The quaternion will be normalized only if the matrix is special orthogonal (orthogonal and det(M) = 1).

@@ -1167,7 +1167,7 @@

Introduction
-index_vector()[source]
+index_vector()[source]

Returns the index vector of the quaternion.

Returns:
@@ -1192,7 +1192,7 @@

Introduction
-integrate(*args)[source]
+integrate(*args)[source]

Computes integration of quaternion.

Returns:
@@ -1223,13 +1223,13 @@

Introduction
-inverse()[source]
+inverse()[source]

Returns the inverse of the quaternion.

-is_pure()[source]
+is_pure()[source]

Returns true if the quaternion is pure, false if the quaternion is not pure or returns none if it is unknown.

Explanation

@@ -1250,7 +1250,7 @@

Introduction
-is_zero_quaternion()[source]
+is_zero_quaternion()[source]

Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion and None if the value is unknown.

Explanation

@@ -1276,7 +1276,7 @@

Introduction
-log()[source]
+log()[source]

Returns the logarithm of the quaternion, given by \(\log q\).

Examples

>>> from sympy import Quaternion
@@ -1292,7 +1292,7 @@ 

Introduction
-mensor()[source]
+mensor()[source]

Returns the natural logarithm of the norm(magnitude) of the quaternion.

Examples

>>> from sympy.algebras.quaternion import Quaternion
@@ -1311,7 +1311,7 @@ 

Introduction
-mul(other)[source]
+mul(other)[source]

Multiplies quaternions.

Parameters:
@@ -1353,19 +1353,19 @@

Introduction
-norm()[source]
+norm()[source]

Returns the norm of the quaternion.

-normalize()[source]
+normalize()[source]

Returns the normalized form of the quaternion.

-orthogonal(other)[source]
+orthogonal(other)[source]

Returns the orthogonality of two quaternions.

Parameters:
@@ -1397,7 +1397,7 @@

Introduction
-parallel(other)[source]
+parallel(other)[source]

Returns True if the two pure quaternions seen as 3D vectors are parallel.

Parameters:
@@ -1429,7 +1429,7 @@

Introduction
-pow(p)[source]
+pow(p)[source]

Finds the pth power of the quaternion.

Parameters:
@@ -1457,7 +1457,7 @@

Introduction
-pow_cos_sin(p)[source]
+pow_cos_sin(p)[source]

Computes the pth power in the cos-sin form.

Parameters:
@@ -1582,7 +1582,7 @@

Introduction
-static rotate_point(pin, r)[source]
+static rotate_point(pin, r)[source]

Returns the coordinates of the point pin (a 3 tuple) after rotation.

Parameters:
@@ -1621,7 +1621,7 @@

Introduction
-scalar_part()[source]
+scalar_part()[source]

Returns scalar part(\(\mathbf{S}(q)\)) of the quaternion q.

Explanation

Given a quaternion \(q = a + bi + cj + dk\), returns \(\mathbf{S}(q) = a\).

@@ -1636,7 +1636,7 @@

Introduction
-set_norm(norm)[source]
+set_norm(norm)[source]

Sets norm of an already instantiated quaternion.

Parameters:
@@ -1671,7 +1671,7 @@

Introduction
-to_Matrix(vector_only=False)[source]
+to_Matrix(vector_only=False)[source]

Returns elements of quaternion as a column vector. By default, a Matrix of length 4 is returned, with the real part as the first element. @@ -1719,7 +1719,7 @@

Introduction
-to_axis_angle()[source]
+to_axis_angle()[source]

Returns the axis and angle of rotation of a quaternion.

Returns:
@@ -1751,7 +1751,7 @@

Introductionavoid_square_root=False,

-)[source] +)[source]

Returns Euler angles representing same rotation as the quaternion, in the sequence given by seq. This implements the method described in [R3].

@@ -1826,7 +1826,7 @@

Introductionhomogeneous=True,

-)[source] +)[source]

Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if v is not passed.

@@ -1869,7 +1869,7 @@

Introduction
-classmethod vector_coplanar(q1, q2, q3)[source]
+classmethod vector_coplanar(q1, q2, q3)[source]

Returns True if the axis of the pure quaternions seen as 3D vectors q1, q2, and q3 are coplanar.

@@ -1921,7 +1921,7 @@

Introduction
-vector_part()[source]
+vector_part()[source]

Returns \(\mathbf{V}(q)\), the vector part of the quaternion \(q\).

Explanation

Given a quaternion \(q = a + bi + cj + dk\), returns \(\mathbf{V}(q) = bi + cj + dk\).

@@ -1979,7 +1979,7 @@

IntroductionFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/assumptions/ask.html b/dev/modules/assumptions/ask.html index 072e84bf8d3..ad68d33dee3 100644 --- a/dev/modules/assumptions/ask.html +++ b/dev/modules/assumptions/ask.html @@ -803,14 +803,14 @@
Documentation Version

Module for querying SymPy objects about assumptions.

-class sympy.assumptions.ask.AssumptionKeys[source]
+class sympy.assumptions.ask.AssumptionKeys[source]

This class contains all the supported keys by ask. It should be accessed via the instance sympy.Q.

-sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]
+sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]

Function to evaluate the proposition with assumptions.

Parameters:
@@ -900,7 +900,7 @@
Documentation Version
-sympy.assumptions.ask.register_handler(key, handler)[source]
+sympy.assumptions.ask.register_handler(key, handler)[source]

Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler.

@@ -910,7 +910,7 @@
Documentation Version
-sympy.assumptions.ask.remove_handler(key, handler)[source]
+sympy.assumptions.ask.remove_handler(key, handler)[source]

Removes a handler from the ask system.

Deprecated since version 1.8.: Use multipledispatch handler instead. See Predicate.

@@ -954,7 +954,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/assumptions/assume.html b/dev/modules/assumptions/assume.html index c1a4c11d9c3..3e98d505484 100644 --- a/dev/modules/assumptions/assume.html +++ b/dev/modules/assumptions/assume.html @@ -803,7 +803,7 @@
Documentation Version

A module which implements predicates and assumption context.

-class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]
+class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]

The class of expressions resulting from applying Predicate to the arguments. AppliedPredicate merely wraps its argument and remain unevaluated. To evaluate it, use the ask() function.

@@ -858,7 +858,7 @@
Documentation Version
-class sympy.assumptions.assume.AssumptionsContext[source]
+class sympy.assumptions.assume.AssumptionsContext[source]

Set containing default assumptions which are applied to the ask() function.

Explanation

@@ -903,7 +903,7 @@
Documentation Version
-add(*assumptions)[source]
+add(*assumptions)[source]

Add assumptions.

@@ -911,7 +911,7 @@
Documentation Version
-class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]
+class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]

Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects.

Explanation

@@ -983,7 +983,7 @@
Documentation Version
-eval(args, assumptions=True)[source]
+eval(args, assumptions=True)[source]

Evaluate self(*args) under the given assumptions.

This uses only direct resolution methods, not logical inference.

@@ -995,13 +995,13 @@
Documentation Version
-classmethod register(*types, **kwargs)[source]
+classmethod register(*types, **kwargs)[source]

Register the signature to the handler.

-classmethod register_many(*types, **kwargs)[source]
+classmethod register_many(*types, **kwargs)[source]

Register multiple signatures to same handler.

@@ -1009,7 +1009,7 @@
Documentation Version
-class sympy.assumptions.assume.UndefinedPredicate(name, handlers=None)[source]
+class sympy.assumptions.assume.UndefinedPredicate(name, handlers=None)[source]

Predicate without handler.

Explanation

This predicate is generated by using Predicate directly for @@ -1028,7 +1028,7 @@

Documentation Version
-sympy.assumptions.assume.assuming(*assumptions)[source]
+sympy.assumptions.assume.assuming(*assumptions)[source]

Context manager for assumptions.

Examples

>>> from sympy import assuming, Q, ask
@@ -1079,7 +1079,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/assumptions/index.html b/dev/modules/assumptions/index.html index 094b45e3bc4..eb9ed32c006 100644 --- a/dev/modules/assumptions/index.html +++ b/dev/modules/assumptions/index.html @@ -805,7 +805,7 @@
Documentation Version

Predicate

-class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]
+class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]

Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects.

Explanation

@@ -877,7 +877,7 @@

Predicate
-eval(args, assumptions=True)[source]
+eval(args, assumptions=True)[source]

Evaluate self(*args) under the given assumptions.

This uses only direct resolution methods, not logical inference.

@@ -889,13 +889,13 @@

Predicate
-classmethod register(*types, **kwargs)[source]
+classmethod register(*types, **kwargs)[source]

Register the signature to the handler.

-classmethod register_many(*types, **kwargs)[source]
+classmethod register_many(*types, **kwargs)[source]

Register multiple signatures to same handler.

@@ -903,7 +903,7 @@

Predicate
-class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]
+class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]

The class of expressions resulting from applying Predicate to the arguments. AppliedPredicate merely wraps its argument and remain unevaluated. To evaluate it, use the ask() function.

@@ -963,7 +963,7 @@

Querying is ask():

-sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]
+sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]

Function to evaluate the proposition with assumptions.

Parameters:
@@ -1139,7 +1139,7 @@

MiscFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/assumptions/predicates.html b/dev/modules/assumptions/predicates.html index c80cd04afff..8773d19a353 100644 --- a/dev/modules/assumptions/predicates.html +++ b/dev/modules/assumptions/predicates.html @@ -804,7 +804,7 @@
Documentation Version

Common

-class sympy.assumptions.predicates.common.IsTruePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.common.IsTruePredicate(*args, **kwargs)[source]

Generic predicate.

Explanation

ask(Q.is_true(x)) is true iff x is true. This only makes @@ -849,7 +849,7 @@

Common
-class sympy.assumptions.predicates.common.CommutativePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.common.CommutativePredicate(*args, **kwargs)[source]

Commutative predicate.

Explanation

ask(Q.commutative(x)) is true iff x commutes with any other @@ -869,7 +869,7 @@

CommonCalculus

-class sympy.assumptions.predicates.calculus.FinitePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.calculus.FinitePredicate(*args, **kwargs)[source]

Finite number predicate.

Explanation

Q.finite(x) is true if x is a number but neither an infinity @@ -913,7 +913,7 @@

Calculus
-class sympy.assumptions.predicates.calculus.InfinitePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.calculus.InfinitePredicate(*args, **kwargs)[source]

Infinite number predicate.

Q.infinite(x) is true iff the absolute value of x is infinity.

@@ -932,7 +932,7 @@

Calculus

Matrix

-class sympy.assumptions.predicates.matrices.SymmetricPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.SymmetricPredicate(*args, **kwargs)[source]

Symmetric matrix predicate.

Explanation

Q.symmetric(x) is true iff x is a square matrix and is equal to @@ -969,7 +969,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.InvertiblePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.InvertiblePredicate(*args, **kwargs)[source]

Invertible matrix predicate.

Explanation

Q.invertible(x) is true iff x is an invertible matrix. @@ -1006,7 +1006,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.OrthogonalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.OrthogonalPredicate(*args, **kwargs)[source]

Orthogonal matrix predicate.

Explanation

Q.orthogonal(x) is true iff x is an orthogonal matrix. @@ -1048,7 +1048,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.UnitaryPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.UnitaryPredicate(*args, **kwargs)[source]

Unitary matrix predicate.

Explanation

Q.unitary(x) is true iff x is a unitary matrix. @@ -1087,7 +1087,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.PositiveDefinitePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.PositiveDefinitePredicate(*args, **kwargs)[source]

Positive definite matrix predicate.

Explanation

If \(M\) is a \(n \times n\) symmetric real matrix, it is said @@ -1126,7 +1126,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.UpperTriangularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.UpperTriangularPredicate(*args, **kwargs)[source]

Upper triangular matrix predicate.

Explanation

A matrix \(M\) is called upper triangular matrix if \(M_{ij}=0\) @@ -1158,7 +1158,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.LowerTriangularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.LowerTriangularPredicate(*args, **kwargs)[source]

Lower triangular matrix predicate.

Explanation

A matrix \(M\) is called lower triangular matrix if \(M_{ij}=0\) @@ -1190,7 +1190,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.DiagonalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.DiagonalPredicate(*args, **kwargs)[source]

Diagonal matrix predicate.

Explanation

Q.diagonal(x) is true iff x is a diagonal matrix. A diagonal @@ -1225,7 +1225,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.FullRankPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.FullRankPredicate(*args, **kwargs)[source]

Fullrank matrix predicate.

Explanation

Q.fullrank(x) is true iff x is a full rank matrix. @@ -1255,7 +1255,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.SquarePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.SquarePredicate(*args, **kwargs)[source]

Square matrix predicate.

Explanation

Q.square(x) is true iff x is a square matrix. A square matrix @@ -1293,7 +1293,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.IntegerElementsPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.IntegerElementsPredicate(*args, **kwargs)[source]

Integer elements matrix predicate.

Explanation

Q.integer_elements(x) is true iff all the elements of x @@ -1317,7 +1317,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.RealElementsPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.RealElementsPredicate(*args, **kwargs)[source]

Real elements matrix predicate.

Explanation

Q.real_elements(x) is true iff all the elements of x @@ -1341,7 +1341,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.ComplexElementsPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.ComplexElementsPredicate(*args, **kwargs)[source]

Complex elements matrix predicate.

Explanation

Q.complex_elements(x) is true iff all the elements of x @@ -1367,7 +1367,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.SingularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.SingularPredicate(*args, **kwargs)[source]

Singular matrix predicate.

A matrix is singular iff the value of its determinant is 0.

Examples

@@ -1398,7 +1398,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.NormalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.NormalPredicate(*args, **kwargs)[source]

Normal matrix predicate.

A matrix is normal if it commutes with its conjugate transpose.

Examples

@@ -1427,7 +1427,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.TriangularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.TriangularPredicate(*args, **kwargs)[source]

Triangular matrix predicate.

Explanation

Q.triangular(X) is true if X is one that is either lower @@ -1460,7 +1460,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.UnitTriangularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.UnitTriangularPredicate(*args, **kwargs)[source]

Unit triangular matrix predicate.

Explanation

A unit triangular matrix is a triangular matrix with 1s @@ -1487,7 +1487,7 @@

MatrixNumber Theory

-class sympy.assumptions.predicates.ntheory.EvenPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.ntheory.EvenPredicate(*args, **kwargs)[source]

Even number predicate.

Explanation

ask(Q.even(x)) is true iff x belongs to the set of even @@ -1516,7 +1516,7 @@

Number Theory
-class sympy.assumptions.predicates.ntheory.OddPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.ntheory.OddPredicate(*args, **kwargs)[source]

Odd number predicate.

Explanation

ask(Q.odd(x)) is true iff x belongs to the set of odd numbers.

@@ -1544,7 +1544,7 @@

Number Theory
-class sympy.assumptions.predicates.ntheory.PrimePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.ntheory.PrimePredicate(*args, **kwargs)[source]

Prime number predicate.

Explanation

ask(Q.prime(x)) is true iff x is a natural number greater @@ -1576,7 +1576,7 @@

Number Theory
-class sympy.assumptions.predicates.ntheory.CompositePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.ntheory.CompositePredicate(*args, **kwargs)[source]

Composite number predicate.

Explanation

ask(Q.composite(x)) is true iff x is a positive integer and has @@ -1608,7 +1608,7 @@

Number Theory

-class sympy.assumptions.predicates.order.PositivePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.PositivePredicate(*args, **kwargs)[source]

Positive real number predicate.

Explanation

Q.positive(x) is true iff x is real and \(x > 0\), that is if x @@ -1656,7 +1656,7 @@

Order
-class sympy.assumptions.predicates.order.NegativePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.NegativePredicate(*args, **kwargs)[source]

Negative number predicate.

Explanation

Q.negative(x) is true iff x is a real number and \(x < 0\), that is, @@ -1704,7 +1704,7 @@

Order
-class sympy.assumptions.predicates.order.ZeroPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.ZeroPredicate(*args, **kwargs)[source]

Zero number predicate.

Explanation

ask(Q.zero(x)) is true iff the value of x is zero.

@@ -1735,7 +1735,7 @@

Order
-class sympy.assumptions.predicates.order.NonZeroPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.NonZeroPredicate(*args, **kwargs)[source]

Nonzero real number predicate.

Explanation

ask(Q.nonzero(x)) is true iff x is real and x is not zero. Note in @@ -1782,7 +1782,7 @@

Order
-class sympy.assumptions.predicates.order.NonPositivePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.NonPositivePredicate(*args, **kwargs)[source]

Nonpositive real number predicate.

Explanation

ask(Q.nonpositive(x)) is true iff x belongs to the set of @@ -1826,7 +1826,7 @@

Order
-class sympy.assumptions.predicates.order.NonNegativePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.NonNegativePredicate(*args, **kwargs)[source]

Nonnegative real number predicate.

Explanation

ask(Q.nonnegative(x)) is true iff x belongs to the set of @@ -1871,7 +1871,7 @@

Order

Sets

-class sympy.assumptions.predicates.sets.IntegerPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.IntegerPredicate(*args, **kwargs)[source]

Integer predicate.

Explanation

Q.integer(x) is true iff x belongs to the set of integer @@ -1904,7 +1904,7 @@

Sets
-class sympy.assumptions.predicates.sets.RationalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.RationalPredicate(*args, **kwargs)[source]

Rational number predicate.

Explanation

Q.rational(x) is true iff x belongs to the set of @@ -1939,7 +1939,7 @@

Sets
-class sympy.assumptions.predicates.sets.IrrationalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.IrrationalPredicate(*args, **kwargs)[source]

Irrational number predicate.

Explanation

Q.irrational(x) is true iff x is any real number that @@ -1976,7 +1976,7 @@

Sets
-class sympy.assumptions.predicates.sets.RealPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.RealPredicate(*args, **kwargs)[source]

Real number predicate.

Explanation

Q.real(x) is true iff x is a real number, i.e., it is in the @@ -2047,7 +2047,7 @@

Sets
-class sympy.assumptions.predicates.sets.ExtendedRealPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.ExtendedRealPredicate(*args, **kwargs)[source]

Extended real predicate.

Explanation

Q.extended_real(x) is true iff x is a real number or @@ -2078,7 +2078,7 @@

Sets
-class sympy.assumptions.predicates.sets.HermitianPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.HermitianPredicate(*args, **kwargs)[source]

Hermitian predicate.

Explanation

ask(Q.hermitian(x)) is true iff x belongs to the set of @@ -2103,7 +2103,7 @@

Sets
-class sympy.assumptions.predicates.sets.ComplexPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.ComplexPredicate(*args, **kwargs)[source]

Complex number predicate.

Explanation

Q.complex(x) is true iff x belongs to the set of complex @@ -2139,7 +2139,7 @@

Sets
-class sympy.assumptions.predicates.sets.ImaginaryPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.ImaginaryPredicate(*args, **kwargs)[source]

Imaginary number predicate.

Explanation

Q.imaginary(x) is true iff x can be written as a real @@ -2176,7 +2176,7 @@

Sets
-class sympy.assumptions.predicates.sets.AntihermitianPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.AntihermitianPredicate(*args, **kwargs)[source]

Antihermitian predicate.

Explanation

Q.antihermitian(x) is true iff x belongs to the field of @@ -2203,7 +2203,7 @@

Sets
-class sympy.assumptions.predicates.sets.AlgebraicPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.AlgebraicPredicate(*args, **kwargs)[source]

Algebraic number predicate.

Explanation

Q.algebraic(x) is true iff x belongs to the set of @@ -2243,7 +2243,7 @@

Sets
-class sympy.assumptions.predicates.sets.TranscendentalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.TranscendentalPredicate(*args, **kwargs)[source]

Transcedental number predicate.

Explanation

Q.transcendental(x) is true iff x belongs to the set of @@ -2297,7 +2297,7 @@

SetsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/assumptions/refine.html b/dev/modules/assumptions/refine.html index d2d38af7882..01e43ca1ccc 100644 --- a/dev/modules/assumptions/refine.html +++ b/dev/modules/assumptions/refine.html @@ -802,7 +802,7 @@
Documentation Version

Refine

-sympy.assumptions.refine.refine(expr, assumptions=True)[source]
+sympy.assumptions.refine.refine(expr, assumptions=True)[source]

Simplify an expression using assumptions.

Explanation

Unlike simplify() which performs structural simplification @@ -840,7 +840,7 @@

Documentation Version
-sympy.assumptions.refine.refine_Pow(expr, assumptions)[source]
+sympy.assumptions.refine.refine_Pow(expr, assumptions)[source]

Handler for instances of Pow.

Examples

>>> from sympy import Q
@@ -868,7 +868,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_abs(expr, assumptions)[source]
+sympy.assumptions.refine.refine_abs(expr, assumptions)[source]

Handler for the absolute value.

Examples

>>> from sympy import Q, Abs
@@ -885,7 +885,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_arg(expr, assumptions)[source]
+sympy.assumptions.refine.refine_arg(expr, assumptions)[source]

Handler for complex argument

Explanation

>>> from sympy.assumptions.refine import refine_arg
@@ -901,7 +901,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_atan2(expr, assumptions)[source]
+sympy.assumptions.refine.refine_atan2(expr, assumptions)[source]

Handler for the atan2 function.

Examples

>>> from sympy import Q, atan2
@@ -927,7 +927,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_im(expr, assumptions)[source]
+sympy.assumptions.refine.refine_im(expr, assumptions)[source]

Handler for imaginary part.

Explanation

>>> from sympy.assumptions.refine import refine_im
@@ -943,7 +943,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_matrixelement(expr, assumptions)[source]
+sympy.assumptions.refine.refine_matrixelement(expr, assumptions)[source]

Handler for symmetric part.

Examples

>>> from sympy.assumptions.refine import refine_matrixelement
@@ -959,7 +959,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_re(expr, assumptions)[source]
+sympy.assumptions.refine.refine_re(expr, assumptions)[source]

Handler for real part.

Examples

>>> from sympy.assumptions.refine import refine_re
@@ -975,7 +975,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_sign(expr, assumptions)[source]
+sympy.assumptions.refine.refine_sign(expr, assumptions)[source]

Handler for sign.

Examples

>>> from sympy.assumptions.refine import refine_sign
@@ -1035,7 +1035,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/calculus/index.html b/dev/modules/calculus/index.html index 67280ea93f3..4c3154df70d 100644 --- a/dev/modules/calculus/index.html +++ b/dev/modules/calculus/index.html @@ -805,7 +805,7 @@
Documentation Version
Euler-Lagrange Equations for given Lagrangian.

-sympy.calculus.euler.euler_equations(L, funcs=(), vars=())[source]
+sympy.calculus.euler.euler_equations(L, funcs=(), vars=())[source]

Find the Euler-Lagrange equations [R31] for a given Lagrangian.

Parameters:
@@ -891,7 +891,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is decreasing in the given interval.

Parameters:
@@ -949,7 +949,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is increasing in the given interval.

Parameters:
@@ -1003,7 +1003,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is monotonic in the given interval.

Parameters:
@@ -1065,7 +1065,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is strictly decreasing in the given interval.

Parameters:
@@ -1119,7 +1119,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is strictly increasing in the given interval.

Parameters:
@@ -1174,7 +1174,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Helper function for functions checking function monotonicity.

Parameters:
@@ -1213,7 +1213,7 @@
Documentation Version
-sympy.calculus.singularities.singularities(expression, symbol, domain=None)[source]
+sympy.calculus.singularities.singularities(expression, symbol, domain=None)[source]

Find singularities of a given function.

Parameters:
@@ -1300,7 +1300,7 @@
Documentation Version
-sympy.calculus.finite_diff.apply_finite_diff(order, x_list, y_list, x0=0)[source]
+sympy.calculus.finite_diff.apply_finite_diff(order, x_list, y_list, x0=0)[source]

Calculates the finite difference approximation of the derivative of requested order at x0 from points provided in x_list and y_list.

@@ -1380,7 +1380,7 @@
Documentation Version
evaluate=False,
-)[source] +)[source]

Differentiate expr and replace Derivatives with finite differences.

Parameters:
@@ -1432,7 +1432,7 @@
Documentation Version
-sympy.calculus.finite_diff.finite_diff_weights(order, x_list, x0=1)[source]
+sympy.calculus.finite_diff.finite_diff_weights(order, x_list, x0=1)[source]

Calculates the finite difference weights for an arbitrarily spaced one-dimensional grid (x_list) for derivatives at x0 of order 0, 1, …, up to order using a recursive formula. Order of accuracy @@ -1570,7 +1570,7 @@

Documentation Version
-sympy.calculus.util.continuous_domain(f, symbol, domain)[source]
+sympy.calculus.util.continuous_domain(f, symbol, domain)[source]

Returns the domain on which the function expression f is continuous.

This function is limited by the ability to determine the various singularities and discontinuities of the given function. @@ -1623,7 +1623,7 @@

Documentation Version
-sympy.calculus.util.function_range(f, symbol, domain)[source]
+sympy.calculus.util.function_range(f, symbol, domain)[source]

Finds the range of a function in a given domain. This method is limited by the ability to determine the singularities and determine limits.

@@ -1680,7 +1680,7 @@
Documentation Version
-sympy.calculus.util.is_convex(f, *syms, domain=Reals)[source]
+sympy.calculus.util.is_convex(f, *syms, domain=Reals)[source]

Determines the convexity of the function passed in the argument.

Parameters:
@@ -1757,7 +1757,7 @@
Documentation Version
-sympy.calculus.util.lcim(numbers)[source]
+sympy.calculus.util.lcim(numbers)[source]

Returns the least common integral multiple of a list of numbers.

The numbers can be rational or irrational or a mixture of both. \(None\) is returned for incommensurable numbers.

@@ -1789,7 +1789,7 @@
Documentation Version
-sympy.calculus.util.maximum(f, symbol, domain=Reals)[source]
+sympy.calculus.util.maximum(f, symbol, domain=Reals)[source]

Returns the maximum value of a function in the given domain.

Parameters:
@@ -1836,7 +1836,7 @@
Documentation Version
-sympy.calculus.util.minimum(f, symbol, domain=Reals)[source]
+sympy.calculus.util.minimum(f, symbol, domain=Reals)[source]

Returns the minimum value of a function in the given domain.

Parameters:
@@ -1883,7 +1883,7 @@
Documentation Version
-sympy.calculus.util.not_empty_in(finset_intersection, *syms)[source]
+sympy.calculus.util.not_empty_in(finset_intersection, *syms)[source]

Finds the domain of the functions in finset_intersection in which the finite_set is not-empty.

@@ -1930,7 +1930,7 @@
Documentation Version
-sympy.calculus.util.periodicity(f, symbol, check=False)[source]
+sympy.calculus.util.periodicity(f, symbol, check=False)[source]

Tests the given function for periodicity in the given symbol.

Parameters:
@@ -1990,7 +1990,7 @@
Documentation Version
-sympy.calculus.util.stationary_points(f, symbol, domain=Reals)[source]
+sympy.calculus.util.stationary_points(f, symbol, domain=Reals)[source]

Returns the stationary points of a function (where derivative of the function is 0) in the given domain.

@@ -2075,7 +2075,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/categories.html b/dev/modules/categories.html index 05146ce0e99..780502e9b61 100644 --- a/dev/modules/categories.html +++ b/dev/modules/categories.html @@ -826,7 +826,7 @@

Introduction
-class sympy.categories.Object(name, **assumptions)[source]
+class sympy.categories.Object(name, **assumptions)[source]

The base class for any kind of object in an abstract category.

Explanation

While technically any instance of Basic will do, this @@ -836,7 +836,7 @@

Introduction
-class sympy.categories.Morphism(domain, codomain)[source]
+class sympy.categories.Morphism(domain, codomain)[source]

The base class for any morphism in an abstract category.

Explanation

In abstract categories, a morphism is an arrow between two @@ -869,7 +869,7 @@

Introduction
-compose(other)[source]
+compose(other)[source]

Composes self with the supplied morphism.

The order of elements in the composition is the usual order, i.e., to construct \(g\circ f\) use g.compose(f).

@@ -910,7 +910,7 @@

Introduction
-class sympy.categories.NamedMorphism(domain, codomain, name)[source]
+class sympy.categories.NamedMorphism(domain, codomain, name)[source]

Represents a morphism which has a name.

Explanation

Names are used to distinguish between morphisms which have the @@ -950,7 +950,7 @@

Introduction
-class sympy.categories.CompositeMorphism(*components)[source]
+class sympy.categories.CompositeMorphism(*components)[source]

Represents a morphism which is a composition of other morphisms.

Explanation

Two composite morphisms are equal if the morphisms they were @@ -1032,7 +1032,7 @@

Introduction
-flatten(new_name)[source]
+flatten(new_name)[source]

Forgets the composite structure of this morphism.

Explanation

If new_name is not empty, returns a NamedMorphism @@ -1057,7 +1057,7 @@

Introduction
-class sympy.categories.IdentityMorphism(domain)[source]
+class sympy.categories.IdentityMorphism(domain)[source]

Represents an identity morphism.

Explanation

An identity morphism is a morphism with equal domain and codomain, @@ -1091,7 +1091,7 @@

Introductioncommutative_diagrams=EmptySet,

-)[source] +)[source]

An (abstract) category.

Explanation

A category [JoyOfCats] is a quadruple \(\mbox{K} = (O, \hom, id, @@ -1188,7 +1188,7 @@

Introduction
-class sympy.categories.Diagram(*args)[source]
+class sympy.categories.Diagram(*args)[source]

Represents a diagram in a certain category.

Explanation

Informally, a diagram is a collection of objects of a category and @@ -1262,7 +1262,7 @@

Introduction
-hom(A, B)[source]
+hom(A, B)[source]

Returns a 2-tuple of sets of morphisms between objects A and B: one set of morphisms listed as premises, and the other set of morphisms listed as conclusions.

@@ -1287,7 +1287,7 @@

Introduction
-is_subdiagram(diagram)[source]
+is_subdiagram(diagram)[source]

Checks whether diagram is a subdiagram of self. Diagram \(D'\) is a subdiagram of \(D\) if all premises (conclusions) of \(D'\) are contained in the premises @@ -1352,7 +1352,7 @@

Introduction
-subdiagram_from_objects(objects)[source]
+subdiagram_from_objects(objects)[source]

If objects is a subset of the objects of self, returns a diagram which has as premises all those premises of self which have a domains and codomains in objects, likewise @@ -1382,7 +1382,7 @@

Introduction
-class sympy.categories.diagram_drawing.DiagramGrid(diagram, groups=None, **hints)[source]
+class sympy.categories.diagram_drawing.DiagramGrid(diagram, groups=None, **hints)[source]

Constructs and holds the fitting of the diagram into a grid.

Explanation

The mission of this class is to analyse the structure of the @@ -1585,7 +1585,7 @@

Introductionlabel,

-)[source] +)[source]

Stores the information necessary for producing an Xy-pic description of an arrow.

The principal goal of this class is to abstract away the string @@ -1680,7 +1680,7 @@

Introduction
-class sympy.categories.diagram_drawing.XypicDiagramDrawer[source]
+class sympy.categories.diagram_drawing.XypicDiagramDrawer[source]

Given a Diagram and the corresponding DiagramGrid, produces the Xy-pic representation of the diagram.

@@ -1802,7 +1802,7 @@

Introductiondiagram_format='',

-)[source] +)[source]

Returns the Xy-pic representation of diagram laid out in grid.

Consider the following simple triangle diagram.

@@ -1865,7 +1865,7 @@

Introduction**hints,

-)[source] +)[source]

Provides a shortcut combining DiagramGrid and XypicDiagramDrawer. Returns an Xy-pic presentation of diagram. The argument masked is a list of morphisms which @@ -1912,7 +1912,7 @@

Introduction**hints,

-)[source] +)[source]

Combines the functionality of xypic_draw_diagram and sympy.printing.preview. The arguments masked, diagram_format, groups, and hints are passed to @@ -1974,7 +1974,7 @@

IntroductionFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/codegen.html b/dev/modules/codegen.html index 20af840d1f1..e0d2bf07e4f 100644 --- a/dev/modules/codegen.html +++ b/dev/modules/codegen.html @@ -1341,7 +1341,7 @@

Autowrap
opportunistic=True,

-)[source] +)[source]

Specialization of ReplaceOptim for functions evaluating “f(x) - 1”.

Parameters:
@@ -1380,7 +1380,7 @@

Autowrap

-replace_in_Add(e)[source]
+replace_in_Add(e)[source]

passed as second argument to Basic.replace(…)

@@ -1388,7 +1388,7 @@

Autowrap
-class sympy.codegen.rewriting.Optimization(cost_function=None, priority=1)[source]
+class sympy.codegen.rewriting.Optimization(cost_function=None, priority=1)[source]

Abstract base class for rewriting optimization.

Subclasses should implement __call__ taking an expression as argument.

@@ -1402,7 +1402,7 @@

Autowrap
-class sympy.codegen.rewriting.ReplaceOptim(query, value, **kwargs)[source]
+class sympy.codegen.rewriting.ReplaceOptim(query, value, **kwargs)[source]

Rewriting optimization calling replace on expressions.

Parameters:
@@ -1443,7 +1443,7 @@

Autowrap
base_req=<function <lambda>>,

-)[source] +)[source]

Creates an instance of ReplaceOptim for expanding Pow.

Parameters:
@@ -1480,7 +1480,7 @@

Autowrap
-sympy.codegen.rewriting.optimize(expr, optimizations)[source]
+sympy.codegen.rewriting.optimize(expr, optimizations)[source]

Apply optimizations to an expression.

Parameters:
@@ -1521,7 +1521,7 @@

Autowrap

-class sympy.codegen.matrix_nodes.MatrixSolve(*args, **kwargs)[source]
+class sympy.codegen.matrix_nodes.MatrixSolve(*args, **kwargs)[source]

Represents an operation to solve a linear matrix equation.

Parameters:
@@ -1569,7 +1569,7 @@

Autowrap
**kwargs,

-)[source] +)[source]

Approximates functions by expanding them as a series.

Parameters:
@@ -1616,7 +1616,7 @@

Autowrap
-class sympy.codegen.approximations.SumApprox(bounds, reltol, **kwargs)[source]
+class sympy.codegen.approximations.SumApprox(bounds, reltol, **kwargs)[source]

Approximates sum by neglecting small terms.

Parameters:
@@ -1778,7 +1778,7 @@

Using the nodes
-class sympy.codegen.ast.Assignment(lhs, rhs)[source]
+class sympy.codegen.ast.Assignment(lhs, rhs)[source]

Represents variable assignment for code generation.

Parameters:
@@ -1818,7 +1818,7 @@

Using the nodes
-class sympy.codegen.ast.AssignmentBase(lhs, rhs)[source]
+class sympy.codegen.ast.AssignmentBase(lhs, rhs)[source]

Abstract base class for Assignment and AugmentedAssignment.

Attributes:

@@ -1829,7 +1829,7 @@

Using the nodes
-class sympy.codegen.ast.Attribute(possibly parametrized)[source]
+class sympy.codegen.ast.Attribute(possibly parametrized)[source]

For use with sympy.codegen.ast.Node (which takes instances of Attribute as attrs).

@@ -1856,7 +1856,7 @@

Using the nodes
-class sympy.codegen.ast.AugmentedAssignment(lhs, rhs)[source]
+class sympy.codegen.ast.AugmentedAssignment(lhs, rhs)[source]

Base class for augmented assignments.

Attributes:

@@ -1868,7 +1868,7 @@

Using the nodes
-class sympy.codegen.ast.BreakToken(*args, **kwargs)[source]
+class sympy.codegen.ast.BreakToken(*args, **kwargs)[source]

Represents ‘break’ in C/Python (‘exit’ in Fortran).

Use the premade instance break_ or instantiate manually.

Examples

@@ -1884,7 +1884,7 @@

Using the nodes
-class sympy.codegen.ast.CodeBlock(*args)[source]
+class sympy.codegen.ast.CodeBlock(*args)[source]

Represents a block of code.

Explanation

For now only assignments are supported. This restriction will be lifted in @@ -1929,7 +1929,7 @@

Using the nodesorder='canonical',

-)[source] +)[source]

Return a new code block with common subexpressions eliminated.

Explanation

See the docstring of sympy.simplify.cse_main.cse() for more @@ -1959,7 +1959,7 @@

Using the nodes
-classmethod topological_sort(assignments)[source]
+classmethod topological_sort(assignments)[source]

Return a CodeBlock with topologically sorted assignments so that variables are assigned before they are used.

Examples

@@ -1991,19 +1991,19 @@

Using the nodes
-class sympy.codegen.ast.Comment(*args, **kwargs)[source]
+class sympy.codegen.ast.Comment(*args, **kwargs)[source]

Represents a comment.

-class sympy.codegen.ast.ComplexType(*args, **kwargs)[source]
+class sympy.codegen.ast.ComplexType(*args, **kwargs)[source]

Represents a complex floating point number.

-class sympy.codegen.ast.ContinueToken(*args, **kwargs)[source]
+class sympy.codegen.ast.ContinueToken(*args, **kwargs)[source]

Represents ‘continue’ in C/Python (‘cycle’ in Fortran)

Use the premade instance continue_ or instantiate manually.

Examples

@@ -2019,7 +2019,7 @@

Using the nodes
-class sympy.codegen.ast.Declaration(*args, **kwargs)[source]
+class sympy.codegen.ast.Declaration(*args, **kwargs)[source]

Represents a variable declaration

Parameters:
@@ -2044,7 +2044,7 @@

Using the nodes
-class sympy.codegen.ast.Element(*args, **kwargs)[source]
+class sympy.codegen.ast.Element(*args, **kwargs)[source]

Element in (a possibly N-dimensional) array.

Examples

>>> from sympy.codegen.ast import Element
@@ -2064,11 +2064,11 @@ 

Using the nodes
-class sympy.codegen.ast.FloatBaseType(*args, **kwargs)[source]
+class sympy.codegen.ast.FloatBaseType(*args, **kwargs)[source]

Represents a floating point number type.

-cast_nocheck[source]
+cast_nocheck[source]

alias of Float

@@ -2076,7 +2076,7 @@

Using the nodes
-class sympy.codegen.ast.FloatType(*args, **kwargs)[source]
+class sympy.codegen.ast.FloatType(*args, **kwargs)[source]

Represents a floating point type with fixed bit width.

Base 2 & one sign bit is assumed.

@@ -2123,7 +2123,7 @@

Using the nodes
-cast_nocheck(value)[source]
+cast_nocheck(value)[source]

Casts without checking if out of bounds or subnormal.

@@ -2180,7 +2180,7 @@

Using the nodes
-class sympy.codegen.ast.For(*args, **kwargs)[source]
+class sympy.codegen.ast.For(*args, **kwargs)[source]

Represents a ‘for-loop’ in the code.

@@ -2232,7 +2232,7 @@

Using the nodes
-class sympy.codegen.ast.FunctionCall(*args, **kwargs)[source]
+class sympy.codegen.ast.FunctionCall(*args, **kwargs)[source]

Represents a call to a function in the code.

Parameters:
@@ -2252,7 +2252,7 @@

Using the nodes
-class sympy.codegen.ast.FunctionDefinition(*args, **kwargs)[source]
+class sympy.codegen.ast.FunctionDefinition(*args, **kwargs)[source]

Represents a function definition in the code.

Parameters:
@@ -2283,7 +2283,7 @@

Using the nodes
-class sympy.codegen.ast.FunctionPrototype(*args, **kwargs)[source]
+class sympy.codegen.ast.FunctionPrototype(*args, **kwargs)[source]

Represents a function prototype

Allows the user to generate forward declaration in e.g. C/C++.

@@ -2307,13 +2307,13 @@

Using the nodes
-class sympy.codegen.ast.IntBaseType(*args, **kwargs)[source]
+class sympy.codegen.ast.IntBaseType(*args, **kwargs)[source]

Integer base type, contains no size information.

-class sympy.codegen.ast.Node(*args, **kwargs)[source]
+class sympy.codegen.ast.Node(*args, **kwargs)[source]

Subclass of Token, carrying the attribute ‘attrs’ (Tuple)

Examples

>>> from sympy.codegen.ast import Node, value_const, pointer_const
@@ -2332,7 +2332,7 @@ 

Using the nodes
-attr_params(looking_for)[source]
+attr_params(looking_for)[source]

Returns the parameters of the Attribute with name looking_for in self.attrs

@@ -2340,7 +2340,7 @@

Using the nodes
-class sympy.codegen.ast.NoneToken(*args, **kwargs)[source]
+class sympy.codegen.ast.NoneToken(*args, **kwargs)[source]

The AST equivalence of Python’s NoneType

The corresponding instance of Python’s None is none.

Examples

@@ -2354,7 +2354,7 @@

Using the nodes
-class sympy.codegen.ast.Pointer(*args, **kwargs)[source]
+class sympy.codegen.ast.Pointer(*args, **kwargs)[source]

Represents a pointer. See Variable.

Examples

Can create instances of Element:

@@ -2370,7 +2370,7 @@

Using the nodes
-class sympy.codegen.ast.Print(*args, **kwargs)[source]
+class sympy.codegen.ast.Print(*args, **kwargs)[source]

Represents print command in the code.

Parameters:
@@ -2389,19 +2389,19 @@

Using the nodes
-class sympy.codegen.ast.QuotedString(*args, **kwargs)[source]
+class sympy.codegen.ast.QuotedString(*args, **kwargs)[source]

Represents a string which should be printed with quotes.

-class sympy.codegen.ast.Raise(*args, **kwargs)[source]
+class sympy.codegen.ast.Raise(*args, **kwargs)[source]

Prints as ‘raise …’ in Python, ‘throw …’ in C++

-class sympy.codegen.ast.Return(*args, **kwargs)[source]
+class sympy.codegen.ast.Return(*args, **kwargs)[source]

Represents a return command in the code.

Parameters:
@@ -2421,14 +2421,14 @@

Using the nodes
-class sympy.codegen.ast.RuntimeError_(*args, **kwargs)[source]
+class sympy.codegen.ast.RuntimeError_(*args, **kwargs)[source]

Represents ‘std::runtime_error’ in C++ and ‘RuntimeError’ in Python.

Note that the latter is uncommon, and you might want to use e.g. ValueError.

-class sympy.codegen.ast.Scope(*args, **kwargs)[source]
+class sympy.codegen.ast.Scope(*args, **kwargs)[source]

Represents a scope in the code.

Parameters:
@@ -2442,13 +2442,13 @@

Using the nodes
-class sympy.codegen.ast.SignedIntType(*args, **kwargs)[source]
+class sympy.codegen.ast.SignedIntType(*args, **kwargs)[source]

Represents a signed integer type.

-class sympy.codegen.ast.Stream(*args, **kwargs)[source]
+class sympy.codegen.ast.Stream(*args, **kwargs)[source]

Represents a stream.

There are two predefined Stream instances stdout & stderr.

@@ -2470,7 +2470,7 @@

Using the nodes
-class sympy.codegen.ast.String(*args, **kwargs)[source]
+class sympy.codegen.ast.String(*args, **kwargs)[source]

SymPy object representing a string.

Atomic object which is not an expression (as opposed to Symbol).

@@ -2495,7 +2495,7 @@

Using the nodes
-class sympy.codegen.ast.Token(*args, **kwargs)[source]
+class sympy.codegen.ast.Token(*args, **kwargs)[source]

Base class for the AST types.

Explanation

Defining fields are set in _fields. Attributes (defined in _fields) @@ -2509,7 +2509,7 @@

Using the nodesnot_in_args are not passed to Basic.

-kwargs(exclude=(), apply=None)[source]
+kwargs(exclude=(), apply=None)[source]

Get instance’s attributes as dict of keyword arguments.

Parameters:
@@ -2529,7 +2529,7 @@

Using the nodes
-class sympy.codegen.ast.Type(*args, **kwargs)[source]
+class sympy.codegen.ast.Type(*args, **kwargs)[source]

Represents a type.

Parameters:
@@ -2593,7 +2593,7 @@

Using the nodesprecision_targets=None,

-)[source] +)[source]

Casts a value to the data type of the instance.

Parameters:
@@ -2647,7 +2647,7 @@

Using the nodes
-classmethod from_expr(expr)[source]
+classmethod from_expr(expr)[source]

Deduces type from an expression or a Symbol.

Parameters:
@@ -2679,13 +2679,13 @@

Using the nodes
-class sympy.codegen.ast.UnsignedIntType(*args, **kwargs)[source]
+class sympy.codegen.ast.UnsignedIntType(*args, **kwargs)[source]

Represents an unsigned integer type.

-class sympy.codegen.ast.Variable(*args, **kwargs)[source]
+class sympy.codegen.ast.Variable(*args, **kwargs)[source]

Represents a variable.

Parameters:
@@ -2737,7 +2737,7 @@

Using the nodes
-as_Declaration(**kwargs)[source]
+as_Declaration(**kwargs)[source]

Convenience method for creating a Declaration instance.

Explanation

If the variable of the Declaration need to wrap a modified @@ -2772,7 +2772,7 @@

Using the nodescast_check=True,

-)[source] +)[source]

Alt. constructor with type deduction from Type.from_expr.

Deduces type primarily from symbol, secondarily from value.

@@ -2810,7 +2810,7 @@

Using the nodes
-class sympy.codegen.ast.While(*args, **kwargs)[source]
+class sympy.codegen.ast.While(*args, **kwargs)[source]

Represents a ‘for-loop’ in the code.

Expressions are of the form:
@@ -2843,7 +2843,7 @@

Using the nodes
-sympy.codegen.ast.aug_assign(lhs, op, rhs)[source]
+sympy.codegen.ast.aug_assign(lhs, op, rhs)[source]

Create ‘lhs op= rhs’.

Parameters:
@@ -2890,7 +2890,7 @@

Using the nodes
-class sympy.codegen.cfunctions.Cbrt(*args)[source]
+class sympy.codegen.cfunctions.Cbrt(*args)[source]

Represents the cube root function.

Explanation

The reason why one would use Cbrt(x) over cbrt(x) @@ -2911,7 +2911,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -2919,7 +2919,7 @@

Using the nodes
-class sympy.codegen.cfunctions.Sqrt(*args)[source]
+class sympy.codegen.cfunctions.Sqrt(*args)[source]

Represents the square root function.

Explanation

The reason why one would use Sqrt(x) over sqrt(x) @@ -2940,7 +2940,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -2948,7 +2948,7 @@

Using the nodes
-class sympy.codegen.cfunctions.exp2(arg)[source]
+class sympy.codegen.cfunctions.exp2(arg)[source]

Represents the exponential function with base two.

Explanation

The benefit of using exp2(x) over 2**x @@ -2969,7 +2969,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -2977,7 +2977,7 @@

Using the nodes
-class sympy.codegen.cfunctions.expm1(arg)[source]
+class sympy.codegen.cfunctions.expm1(arg)[source]

Represents the exponential function minus one.

Explanation

The benefit of using expm1(x) over exp(x) - 1 @@ -3001,7 +3001,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3009,7 +3009,7 @@

Using the nodes
-class sympy.codegen.cfunctions.fma(*args)[source]
+class sympy.codegen.cfunctions.fma(*args)[source]

Represents “fused multiply add”.

Explanation

The benefit of using fma(x, y, z) over x*y + z @@ -3024,7 +3024,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3032,7 +3032,7 @@

Using the nodes
-class sympy.codegen.cfunctions.hypot(*args)[source]
+class sympy.codegen.cfunctions.hypot(*args)[source]

Represents the hypotenuse function.

Explanation

The hypotenuse function is provided by e.g. the math library @@ -3051,7 +3051,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3059,7 +3059,7 @@

Using the nodes
-class sympy.codegen.cfunctions.log10(arg)[source]
+class sympy.codegen.cfunctions.log10(arg)[source]

Represents the logarithm function with base ten.

Examples

>>> from sympy.abc import x
@@ -3076,7 +3076,7 @@ 

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3084,7 +3084,7 @@

Using the nodes
-class sympy.codegen.cfunctions.log1p(arg)[source]
+class sympy.codegen.cfunctions.log1p(arg)[source]

Represents the natural logarithm of a number plus one.

Explanation

The benefit of using log1p(x) over log(x + 1) @@ -3109,7 +3109,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3117,7 +3117,7 @@

Using the nodes
-class sympy.codegen.cfunctions.log2(arg)[source]
+class sympy.codegen.cfunctions.log2(arg)[source]

Represents the logarithm function with base two.

Explanation

The benefit of using log2(x) over log(x)/log(2) @@ -3138,7 +3138,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3150,13 +3150,13 @@

Using the nodes
-class sympy.codegen.cnodes.CommaOperator(*args)[source]
+class sympy.codegen.cnodes.CommaOperator(*args)[source]

Represents the comma operator in C

-class sympy.codegen.cnodes.Label(*args, **kwargs)[source]
+class sympy.codegen.cnodes.Label(*args, **kwargs)[source]

Label for use with e.g. goto statement.

Examples

>>> from sympy import ccode, Symbol
@@ -3172,7 +3172,7 @@ 

Using the nodes
-class sympy.codegen.cnodes.PostDecrement(*args)[source]
+class sympy.codegen.cnodes.PostDecrement(*args)[source]

Represents the post-decrement operator

Examples

>>> from sympy.abc import x
@@ -3186,7 +3186,7 @@ 

Using the nodes
-class sympy.codegen.cnodes.PostIncrement(*args)[source]
+class sympy.codegen.cnodes.PostIncrement(*args)[source]

Represents the post-increment operator

Examples

>>> from sympy.abc import x
@@ -3200,7 +3200,7 @@ 

Using the nodes
-class sympy.codegen.cnodes.PreDecrement(*args)[source]
+class sympy.codegen.cnodes.PreDecrement(*args)[source]

Represents the pre-decrement operator

Examples

>>> from sympy.abc import x
@@ -3214,7 +3214,7 @@ 

Using the nodes
-class sympy.codegen.cnodes.PreIncrement(*args)[source]
+class sympy.codegen.cnodes.PreIncrement(*args)[source]

Represents the pre-increment operator

Examples

>>> from sympy.abc import x
@@ -3228,19 +3228,19 @@ 

Using the nodes
-sympy.codegen.cnodes.alignof(arg)[source]
+sympy.codegen.cnodes.alignof(arg)[source]

Generate of FunctionCall instance for calling ‘alignof’

-class sympy.codegen.cnodes.goto(*args, **kwargs)[source]
+class sympy.codegen.cnodes.goto(*args, **kwargs)[source]

Represents goto in C

-sympy.codegen.cnodes.sizeof(arg)[source]
+sympy.codegen.cnodes.sizeof(arg)[source]

Generate of FunctionCall instance for calling ‘sizeof’

Examples

>>> from sympy.codegen.ast import real
@@ -3254,13 +3254,13 @@ 

Using the nodes
-class sympy.codegen.cnodes.struct(*args, **kwargs)[source]
+class sympy.codegen.cnodes.struct(*args, **kwargs)[source]

Represents a struct in C

-class sympy.codegen.cnodes.union(*args, **kwargs)[source]
+class sympy.codegen.cnodes.union(*args, **kwargs)[source]

Represents a union in C

@@ -3270,7 +3270,7 @@

Using the nodes
-class sympy.codegen.cxxnodes.using(*args, **kwargs)[source]
+class sympy.codegen.cxxnodes.using(*args, **kwargs)[source]

Represents a ‘using’ statement in C++

@@ -3282,7 +3282,7 @@

Using the nodes
-class sympy.codegen.fnodes.ArrayConstructor(*args, **kwargs)[source]
+class sympy.codegen.fnodes.ArrayConstructor(*args, **kwargs)[source]

Represents an array constructor.

Examples

>>> from sympy import fcode
@@ -3298,7 +3298,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Do(*args, **kwargs)[source]
+class sympy.codegen.fnodes.Do(*args, **kwargs)[source]

Represents a Do loop in in Fortran.

Examples

>>> from sympy import fcode, symbols
@@ -3325,7 +3325,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Extent(*args)[source]
+class sympy.codegen.fnodes.Extent(*args)[source]

Represents a dimension extent.

Examples

>>> from sympy.codegen.fnodes import Extent
@@ -3345,7 +3345,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.FortranReturn(*args, **kwargs)[source]
+class sympy.codegen.fnodes.FortranReturn(*args, **kwargs)[source]

AST node explicitly mapped to a fortran “return”.

Explanation

Because a return statement in fortran is different from C, and @@ -3364,7 +3364,7 @@

Using the nodes
-class sympy.codegen.fnodes.GoTo(*args, **kwargs)[source]
+class sympy.codegen.fnodes.GoTo(*args, **kwargs)[source]

Represents a goto statement in Fortran

Examples

>>> from sympy.codegen.fnodes import GoTo
@@ -3378,7 +3378,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.ImpliedDoLoop(*args, **kwargs)[source]
+class sympy.codegen.fnodes.ImpliedDoLoop(*args, **kwargs)[source]

Represents an implied do loop in Fortran.

Examples

>>> from sympy import Symbol, fcode
@@ -3394,7 +3394,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Module(*args, **kwargs)[source]
+class sympy.codegen.fnodes.Module(*args, **kwargs)[source]

Represents a module in Fortran.

Examples

>>> from sympy.codegen.fnodes import Module
@@ -3413,7 +3413,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Program(*args, **kwargs)[source]
+class sympy.codegen.fnodes.Program(*args, **kwargs)[source]

Represents a ‘program’ block in Fortran.

Examples

>>> from sympy.codegen.ast import Print
@@ -3430,7 +3430,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Subroutine(*args, **kwargs)[source]
+class sympy.codegen.fnodes.Subroutine(*args, **kwargs)[source]

Represents a subroutine in Fortran.

Examples

>>> from sympy import fcode, symbols
@@ -3450,7 +3450,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.SubroutineCall(*args, **kwargs)[source]
+class sympy.codegen.fnodes.SubroutineCall(*args, **kwargs)[source]

Represents a call to a subroutine in Fortran.

Examples

>>> from sympy.codegen.fnodes import SubroutineCall
@@ -3463,7 +3463,7 @@ 

Using the nodes
-sympy.codegen.fnodes.allocated(array)[source]
+sympy.codegen.fnodes.allocated(array)[source]

Creates an AST node for a function call to Fortran’s “allocated(…)”

Examples

>>> from sympy import fcode
@@ -3489,7 +3489,7 @@ 

Using the nodestype=None,

-)[source] +)[source]

Convenience function for creating a Variable instance for a Fortran array.

Parameters:
@@ -3525,7 +3525,7 @@

Using the nodes
-sympy.codegen.fnodes.bind_C(name=None)[source]
+sympy.codegen.fnodes.bind_C(name=None)[source]

Creates an Attribute bind_C with a name.

Parameters:
@@ -3553,13 +3553,13 @@

Using the nodes
-class sympy.codegen.fnodes.cmplx(*args)[source]
+class sympy.codegen.fnodes.cmplx(*args)[source]

Fortran complex conversion function.

-sympy.codegen.fnodes.dimension(*args)[source]
+sympy.codegen.fnodes.dimension(*args)[source]

Creates a ‘dimension’ Attribute with (up to 7) extents.

Examples

>>> from sympy import fcode
@@ -3575,25 +3575,25 @@ 

Using the nodes
-class sympy.codegen.fnodes.dsign(*args)[source]
+class sympy.codegen.fnodes.dsign(*args)[source]

Fortran sign intrinsic for double precision arguments.

-class sympy.codegen.fnodes.isign(*args)[source]
+class sympy.codegen.fnodes.isign(*args)[source]

Fortran sign intrinsic for integer arguments.

-class sympy.codegen.fnodes.kind(*args)[source]
+class sympy.codegen.fnodes.kind(*args)[source]

Fortran kind function.

-sympy.codegen.fnodes.lbound(array, dim=None, kind=None)[source]
+sympy.codegen.fnodes.lbound(array, dim=None, kind=None)[source]

Creates an AST node for a function call to Fortran’s “lbound(…)”

Parameters:
@@ -3614,25 +3614,25 @@

Using the nodes
-class sympy.codegen.fnodes.literal_dp(num, dps=None, precision=None)[source]
+class sympy.codegen.fnodes.literal_dp(num, dps=None, precision=None)[source]

Fortran double precision real literal

-class sympy.codegen.fnodes.literal_sp(num, dps=None, precision=None)[source]
+class sympy.codegen.fnodes.literal_sp(num, dps=None, precision=None)[source]

Fortran single precision real literal

-class sympy.codegen.fnodes.merge(*args)[source]
+class sympy.codegen.fnodes.merge(*args)[source]

Fortran merge function

-sympy.codegen.fnodes.reshape(source, shape, pad=None, order=None)[source]
+sympy.codegen.fnodes.reshape(source, shape, pad=None, order=None)[source]

Creates an AST node for a function call to Fortran’s “reshape(…)”

Parameters:
@@ -3644,7 +3644,7 @@

Using the nodes
-sympy.codegen.fnodes.shape(source, kind=None)[source]
+sympy.codegen.fnodes.shape(source, kind=None)[source]

Creates an AST node for a function call to Fortran’s “shape(…)”

Parameters:
@@ -3664,7 +3664,7 @@

Using the nodes
-sympy.codegen.fnodes.size(array, dim=None, kind=None)[source]
+sympy.codegen.fnodes.size(array, dim=None, kind=None)[source]

Creates an AST node for a function call to Fortran’s “size(…)”

Examples

>>> from sympy import fcode, Symbol
@@ -3685,7 +3685,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.use(*args, **kwargs)[source]
+class sympy.codegen.fnodes.use(*args, **kwargs)[source]

Represents a use statement in Fortran.

Examples

>>> from sympy.codegen.fnodes import use
@@ -3702,7 +3702,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.use_rename(*args, **kwargs)[source]
+class sympy.codegen.fnodes.use_rename(*args, **kwargs)[source]

Represents a renaming in a use statement in Fortran.

Examples

>>> from sympy.codegen.fnodes import use_rename, use
@@ -3740,7 +3740,7 @@ 

Using the nodesbounds=None,

-)[source] +)[source]

Generates an AST for Newton-Raphson method (a root-finding algorithm).

Parameters:
@@ -3830,7 +3830,7 @@

Using the nodes**kwargs,

-)[source] +)[source]

Generates an AST for a function implementing the Newton-Raphson method.

Parameters:
@@ -3884,7 +3884,7 @@

Using the nodes

Python utilities (sympy.codegen.pyutils)

-sympy.codegen.pyutils.render_as_module(content, standard='python3')[source]
+sympy.codegen.pyutils.render_as_module(content, standard='python3')[source]

Renders Python code as a module (with the required imports).

Parameters:
@@ -3910,7 +3910,7 @@

Using the nodessettings=None,

-)[source] +)[source]

Renders a C source file (with required #include statements)

@@ -3928,7 +3928,7 @@

Using the nodesprinter_settings=None,

-)[source] +)[source]

Creates a Module instance and renders it as a string.

This generates Fortran source code for a module with the correct use statements.

@@ -3992,7 +3992,7 @@

Using the nodesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/combinatorics/fp_groups.html b/dev/modules/combinatorics/fp_groups.html index 6efc820a797..3e27134dfdd 100644 --- a/dev/modules/combinatorics/fp_groups.html +++ b/dev/modules/combinatorics/fp_groups.html @@ -1093,7 +1093,7 @@

BibliographyFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/combinatorics/galois.html b/dev/modules/combinatorics/galois.html index 4b856753c4b..5ec2368400b 100644 --- a/dev/modules/combinatorics/galois.html +++ b/dev/modules/combinatorics/galois.html @@ -836,7 +836,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S6.

@@ -855,7 +855,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S5.

@@ -874,7 +874,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S4.

@@ -893,7 +893,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S3.

@@ -912,7 +912,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S2.

@@ -931,20 +931,20 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S1.

-sympy.combinatorics.galois.four_group()[source]
+sympy.combinatorics.galois.four_group()[source]

Return a representation of the Klein four-group as a transitive subgroup of S4.

-sympy.combinatorics.galois.M20()[source]
+sympy.combinatorics.galois.M20()[source]

Return a representation of the metacyclic group M20, a transitive subgroup of S5 that is one of the possible Galois groups for polys of degree 5.

Notes

@@ -953,7 +953,7 @@

References
-sympy.combinatorics.galois.S3_in_S6()[source]
+sympy.combinatorics.galois.S3_in_S6()[source]

Return a representation of S3 as a transitive subgroup of S6.

Notes

The representation is found by viewing the group as the symmetries of a @@ -962,7 +962,7 @@

References
-sympy.combinatorics.galois.A4_in_S6()[source]
+sympy.combinatorics.galois.A4_in_S6()[source]

Return a representation of A4 as a transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -970,7 +970,7 @@

References
-sympy.combinatorics.galois.S4m()[source]
+sympy.combinatorics.galois.S4m()[source]

Return a representation of the S4- transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -978,7 +978,7 @@

References
-sympy.combinatorics.galois.S4p()[source]
+sympy.combinatorics.galois.S4p()[source]

Return a representation of the S4+ transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -986,7 +986,7 @@

References
-sympy.combinatorics.galois.A4xC2()[source]
+sympy.combinatorics.galois.A4xC2()[source]

Return a representation of the (A4 x C2) transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -994,7 +994,7 @@

References
-sympy.combinatorics.galois.S4xC2()[source]
+sympy.combinatorics.galois.S4xC2()[source]

Return a representation of the (S4 x C2) transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -1002,7 +1002,7 @@

References
-sympy.combinatorics.galois.G18()[source]
+sympy.combinatorics.galois.G18()[source]

Return a representation of the group G18, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C2.

Notes

@@ -1011,7 +1011,7 @@

References
-sympy.combinatorics.galois.G36m()[source]
+sympy.combinatorics.galois.G36m()[source]

Return a representation of the group G36-, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C2^2.

Notes

@@ -1020,7 +1020,7 @@

References
-sympy.combinatorics.galois.G36p()[source]
+sympy.combinatorics.galois.G36p()[source]

Return a representation of the group G36+, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C4.

Notes

@@ -1029,7 +1029,7 @@

References
-sympy.combinatorics.galois.G72()[source]
+sympy.combinatorics.galois.G72()[source]

Return a representation of the group G72, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with D4.

Notes

@@ -1038,7 +1038,7 @@

References
-sympy.combinatorics.galois.PSL2F5()[source]
+sympy.combinatorics.galois.PSL2F5()[source]

Return a representation of the group \(PSL_2(\mathbb{F}_5)\), as a transitive subgroup of S6, isomorphic to \(A_5\).

Notes

@@ -1047,7 +1047,7 @@

References
-sympy.combinatorics.galois.PGL2F5()[source]
+sympy.combinatorics.galois.PGL2F5()[source]

Return a representation of the group \(PGL_2(\mathbb{F}_5)\), as a transitive subgroup of S6, isomorphic to \(S_5\).

Notes

@@ -1063,7 +1063,7 @@

Referencesprint_report=False,

-)[source] +)[source]

Search for certain transitive subgroups of \(S_6\).

The symmetric group \(S_6\) has 16 different transitive subgroups, up to conjugacy. Some are more easily constructed than others. For example, the @@ -1169,7 +1169,7 @@

ReferencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/combinatorics/graycode.html b/dev/modules/combinatorics/graycode.html index 95aa99edffc..da6de5ac214 100644 --- a/dev/modules/combinatorics/graycode.html +++ b/dev/modules/combinatorics/graycode.html @@ -802,7 +802,7 @@
Documentation Version

Gray Code

-class sympy.combinatorics.graycode.GrayCode(n, *args, **kw_args)[source]
+class sympy.combinatorics.graycode.GrayCode(n, *args, **kw_args)[source]

A Gray code is essentially a Hamiltonian walk on a n-dimensional cube with edge length of one. The vertices of the cube are represented by vectors @@ -856,7 +856,7 @@

Documentation Version
-generate_gray(**hints)[source]
+generate_gray(**hints)[source]

Generates the sequence of bit vectors of a Gray Code.

Examples

>>> from sympy.combinatorics import GrayCode
@@ -898,7 +898,7 @@ 
Documentation Version
-next(delta=1)[source]
+next(delta=1)[source]

Returns the Gray code a distance delta (default = 1) from the current value in canonical order.

Examples

@@ -961,7 +961,7 @@
Documentation Version
-skip()[source]
+skip()[source]

Skips the bit generation.

Examples

>>> from sympy.combinatorics import GrayCode
@@ -988,7 +988,7 @@ 
Documentation Version
-classmethod unrank(n, rank)[source]
+classmethod unrank(n, rank)[source]

Unranks an n-bit sized Gray code of rank k. This method exists so that a derivative GrayCode class can define its own code of a given rank.

@@ -1012,7 +1012,7 @@
Documentation Version
-graycode.random_bitstring()[source]
+graycode.random_bitstring()[source]

Generates a random bitlist of length n.

Examples

>>> from sympy.combinatorics.graycode import random_bitstring
@@ -1024,7 +1024,7 @@ 
Documentation Version
-graycode.gray_to_bin()[source]
+graycode.gray_to_bin()[source]

Convert from Gray coding to binary coding.

We assume big endian encoding.

Examples

@@ -1041,7 +1041,7 @@
Documentation Version
-graycode.bin_to_gray()[source]
+graycode.bin_to_gray()[source]

Convert from binary coding to gray coding.

We assume big endian encoding.

Examples

@@ -1058,7 +1058,7 @@
Documentation Version
-graycode.get_subset_from_bitstring(bitstring)[source]
+graycode.get_subset_from_bitstring(bitstring)[source]

Gets the subset defined by the bitstring.

Examples

>>> from sympy.combinatorics.graycode import get_subset_from_bitstring
@@ -1076,7 +1076,7 @@ 
Documentation Version
-graycode.graycode_subsets()[source]
+graycode.graycode_subsets()[source]

Generates the subsets as enumerated by a Gray code.

Examples

>>> from sympy.combinatorics.graycode import graycode_subsets
@@ -1129,7 +1129,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/group_constructs.html b/dev/modules/combinatorics/group_constructs.html index 4ccce1f8c90..8248e56a62a 100644 --- a/dev/modules/combinatorics/group_constructs.html +++ b/dev/modules/combinatorics/group_constructs.html @@ -802,7 +802,7 @@
Documentation Version

Group constructors

-sympy.combinatorics.group_constructs.DirectProduct(*groups)[source]
+sympy.combinatorics.group_constructs.DirectProduct(*groups)[source]

Returns the direct product of several groups as a permutation group.

Explanation

This is implemented much like the __mul__ procedure for taking the direct @@ -862,7 +862,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/group_numbers.html b/dev/modules/combinatorics/group_numbers.html index 8aaeefba43f..d2f32b49c9a 100644 --- a/dev/modules/combinatorics/group_numbers.html +++ b/dev/modules/combinatorics/group_numbers.html @@ -802,7 +802,7 @@
Documentation Version

Number of groups

-sympy.combinatorics.group_numbers.is_nilpotent_number(n) bool[source]
+sympy.combinatorics.group_numbers.is_nilpotent_number(n) bool[source]

Check whether \(n\) is a nilpotent number. A number \(n\) is said to be nilpotent if and only if every finite group of order \(n\) is nilpotent. For more information see [R48].

@@ -832,7 +832,7 @@
Documentation Version
-sympy.combinatorics.group_numbers.is_abelian_number(n) bool[source]
+sympy.combinatorics.group_numbers.is_abelian_number(n) bool[source]

Check whether \(n\) is an abelian number. A number \(n\) is said to be abelian if and only if every finite group of order \(n\) is abelian. For more information see [R50].

@@ -864,7 +864,7 @@
Documentation Version
-sympy.combinatorics.group_numbers.is_cyclic_number(n) bool[source]
+sympy.combinatorics.group_numbers.is_cyclic_number(n) bool[source]

Check whether \(n\) is a cyclic number. A number \(n\) is said to be cyclic if and only if every finite group of order \(n\) is cyclic. For more information see [R52].

@@ -896,7 +896,7 @@
Documentation Version
-sympy.combinatorics.group_numbers.groups_count(n)[source]
+sympy.combinatorics.group_numbers.groups_count(n)[source]

Number of groups of order \(n\). In [R54], gnu(n) is given, so we follow this notation here as well.

@@ -989,7 +989,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/index.html b/dev/modules/combinatorics/index.html index 955aa21ddf7..03865007c22 100644 --- a/dev/modules/combinatorics/index.html +++ b/dev/modules/combinatorics/index.html @@ -860,7 +860,7 @@

Contents Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/combinatorics/named_groups.html b/dev/modules/combinatorics/named_groups.html index b8a71aed317..f4ddff33f87 100644 --- a/dev/modules/combinatorics/named_groups.html +++ b/dev/modules/combinatorics/named_groups.html @@ -802,7 +802,7 @@
Documentation Version

Named Groups

-sympy.combinatorics.named_groups.SymmetricGroup(n)[source]
+sympy.combinatorics.named_groups.SymmetricGroup(n)[source]

Generates the symmetric group on n elements as a permutation group.

Explanation

The generators taken are the n-cycle @@ -839,7 +839,7 @@

Documentation Version
-sympy.combinatorics.named_groups.CyclicGroup(n)[source]
+sympy.combinatorics.named_groups.CyclicGroup(n)[source]

Generates the cyclic group of order n as a permutation group.

Explanation

The generator taken is the n-cycle (0 1 2 ... n-1) @@ -865,7 +865,7 @@

Documentation Version
-sympy.combinatorics.named_groups.DihedralGroup(n)[source]
+sympy.combinatorics.named_groups.DihedralGroup(n)[source]

Generates the dihedral group \(D_n\) as a permutation group.

Explanation

The dihedral group \(D_n\) is the group of symmetries of the regular @@ -903,7 +903,7 @@

Documentation Version
-sympy.combinatorics.named_groups.AlternatingGroup(n)[source]
+sympy.combinatorics.named_groups.AlternatingGroup(n)[source]

Generates the alternating group on n elements as a permutation group.

Explanation

For n > 2, the generators taken are (0 1 2), (0 1 2 ... n-1) for @@ -938,7 +938,7 @@

Documentation Version
-sympy.combinatorics.named_groups.AbelianGroup(*cyclic_orders)[source]
+sympy.combinatorics.named_groups.AbelianGroup(*cyclic_orders)[source]

Returns the direct product of cyclic groups with the given orders.

Explanation

According to the structure theorem for finite abelian groups ([1]), @@ -1004,7 +1004,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/partitions.html b/dev/modules/combinatorics/partitions.html index 319a25e4dc3..3f3864968af 100644 --- a/dev/modules/combinatorics/partitions.html +++ b/dev/modules/combinatorics/partitions.html @@ -802,7 +802,7 @@
Documentation Version

Partitions

-class sympy.combinatorics.partitions.Partition(*partition)[source]
+class sympy.combinatorics.partitions.Partition(*partition)[source]

This class represents an abstract partition.

A partition is a set of disjoint sets whose union equals a given set.

@@ -835,7 +835,7 @@
Documentation Version
-classmethod from_rgs(rgs, elements)[source]
+classmethod from_rgs(rgs, elements)[source]

Creates a set partition from a restricted growth string.

Explanation

The indices given in rgs are assumed to be the index @@ -883,7 +883,7 @@

Documentation Version
-sort_key(order=None)[source]
+sort_key(order=None)[source]

Return a canonical key that can be used for sorting.

Ordering is based on the size and sorted elements of the partition and ties are broken with the rank.

@@ -906,7 +906,7 @@
Documentation Version
-class sympy.combinatorics.partitions.IntegerPartition(partition, integer=None)[source]
+class sympy.combinatorics.partitions.IntegerPartition(partition, integer=None)[source]

This class represents an integer partition.

Explanation

In number theory and combinatorics, a partition of a positive integer, @@ -930,7 +930,7 @@

Documentation Version
-as_dict()[source]
+as_dict()[source]

Return the partition as a dictionary whose keys are the partition integers and the values are the multiplicity of that integer.

@@ -944,7 +944,7 @@
Documentation Version
-as_ferrers(char='#')[source]
+as_ferrers(char='#')[source]

Prints the ferrer diagram of a partition.

Examples

>>> from sympy.combinatorics.partitions import IntegerPartition
@@ -971,7 +971,7 @@ 
Documentation Version
-next_lex()[source]
+next_lex()[source]

Return the next partition of the integer, n, in lexical order, wrapping around to [n] if the partition is [1, …, 1].

Examples

@@ -987,7 +987,7 @@
Documentation Version
-prev_lex()[source]
+prev_lex()[source]

Return the previous partition of the integer, n, in lexical order, wrapping around to [1, …, 1] if the partition is [n].

Examples

@@ -1005,7 +1005,7 @@
Documentation Version
-sympy.combinatorics.partitions.random_integer_partition(n, seed=None)[source]
+sympy.combinatorics.partitions.random_integer_partition(n, seed=None)[source]

Generates a random integer partition summing to n as a list of reverse-sorted integers.

Examples

@@ -1026,7 +1026,7 @@
Documentation Version
-sympy.combinatorics.partitions.RGS_generalized(m)[source]
+sympy.combinatorics.partitions.RGS_generalized(m)[source]

Computes the m + 1 generalized unrestricted growth strings and returns them as rows in matrix.

Examples

@@ -1046,7 +1046,7 @@
Documentation Version
-sympy.combinatorics.partitions.RGS_enum(m)[source]
+sympy.combinatorics.partitions.RGS_enum(m)[source]

RGS_enum computes the total number of restricted growth strings possible for a superset of size m.

Examples

@@ -1075,7 +1075,7 @@
Documentation Version
-sympy.combinatorics.partitions.RGS_unrank(rank, m)[source]
+sympy.combinatorics.partitions.RGS_unrank(rank, m)[source]

Gives the unranked restricted growth string for a given superset size.

Examples

@@ -1090,7 +1090,7 @@
Documentation Version
-sympy.combinatorics.partitions.RGS_rank(rgs)[source]
+sympy.combinatorics.partitions.RGS_rank(rgs)[source]

Computes the rank of a restricted growth string.

Examples

>>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank
@@ -1139,7 +1139,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/pc_groups.html b/dev/modules/combinatorics/pc_groups.html index e72fb7834b2..c218dcf5e14 100644 --- a/dev/modules/combinatorics/pc_groups.html +++ b/dev/modules/combinatorics/pc_groups.html @@ -1128,7 +1128,7 @@

BibliographyFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/combinatorics/perm_groups.html b/dev/modules/combinatorics/perm_groups.html index b75c30bed7d..94cf00e9db8 100644 --- a/dev/modules/combinatorics/perm_groups.html +++ b/dev/modules/combinatorics/perm_groups.html @@ -802,7 +802,7 @@
Documentation Version

Permutation Groups

-class sympy.combinatorics.perm_groups.PermutationGroup(*args, dups=True, **kwargs)[source]
+class sympy.combinatorics.perm_groups.PermutationGroup(*args, dups=True, **kwargs)[source]

The class defining a Permutation group.

Explanation

PermutationGroup([p1, p2, ..., pn]) returns the permutation group @@ -922,7 +922,7 @@

Documentation Version
-__contains__(i)[source]
+__contains__(i)[source]

Return True if i is contained in PermutationGroup.

Examples

>>> from sympy.combinatorics import Permutation, PermutationGroup
@@ -935,7 +935,7 @@ 
Documentation Version
-__mul__(other)[source]
+__mul__(other)[source]

Return the direct product of two permutation groups as a permutation group.

Explanation

@@ -968,7 +968,7 @@
Documentation Version
**kwargs,
-)[source] +)[source]

The default constructor. Accepts Cycle and Permutation forms. Removes duplicates unless dups keyword is False.

@@ -981,14 +981,14 @@
Documentation Version
-_coset_representative(g, H)[source]
+_coset_representative(g, H)[source]

Return the representative of Hg from the transversal that would be computed by self.coset_transversal(H).

-classmethod _distinct_primes_lemma(primes)[source]
+classmethod _distinct_primes_lemma(primes)[source]

Subroutine to test if there is only one cyclic group for the order.

@@ -1002,7 +1002,7 @@
Documentation Version
perms=None,
-)[source] +)[source]

A test using monte-carlo algorithm.

Parameters:
@@ -1034,13 +1034,13 @@
Documentation Version
only_alt=False,
-)[source] +)[source]

A naive test using the group order.

-_p_elements_group(p)[source]
+_p_elements_group(p)[source]

For an abelian p-group, return the subgroup consisting of all elements of order p (and the identity)

@@ -1055,7 +1055,7 @@
Documentation Version
_random_prec_n=None,
-)[source] +)[source]

Initialize random generators for the product replacement algorithm.

Explanation

The implementation uses a modification of the original product @@ -1090,7 +1090,7 @@

Documentation Version
-_sylow_alt_sym(p)[source]
+_sylow_alt_sym(p)[source]

Return a p-Sylow subgroup of a symmetric or an alternating group.

Explanation

@@ -1137,7 +1137,7 @@
Documentation Version
not_rep,
-)[source] +)[source]

Merges two classes in a union-find data structure.

Explanation

Used in the implementation of Atkinson’s algorithm as suggested in [1], @@ -1168,7 +1168,7 @@

Documentation Version
-_union_find_rep(num, parents)[source]
+_union_find_rep(num, parents)[source]

Find representative of a class in a union-find data structure.

Explanation

Used in the implementation of Atkinson’s algorithm as suggested in [1], @@ -1198,7 +1198,7 @@

Documentation Version
-_verify(K, phi, z, alpha)[source]
+_verify(K, phi, z, alpha)[source]

Return a list of relators rels in generators gens`_h` that are mapped to ``H.generators by phi so that given a finite presentation <gens_k | rels_k> of K on a subset of gens_h @@ -1239,7 +1239,7 @@

Documentation Version
-abelian_invariants()[source]
+abelian_invariants()[source]

Returns the abelian invariants for the given group. Let G be a nontrivial finite abelian group. Then G is isomorphic to the direct product of finitely many nontrivial cyclic groups of @@ -1312,7 +1312,7 @@

Documentation Version
strong_gens_distr=None,
-)[source] +)[source]

Swap two consecutive base points in base and strong generating set.

Parameters:
@@ -1471,7 +1471,7 @@
Documentation Version
-center()[source]
+center()[source]

Return the center of a permutation group.

Explanation

The center for a group \(G\) is defined as @@ -1498,7 +1498,7 @@

Documentation Version
-centralizer(other)[source]
+centralizer(other)[source]

Return the centralizer of a group/set/element.

Parameters:
@@ -1543,7 +1543,7 @@
Documentation Version
-commutator(G, H)[source]
+commutator(G, H)[source]

Return the commutator of two subgroups.

Explanation

For a permutation group K and subgroups G, H, the @@ -1572,7 +1572,7 @@

Documentation Version
-composition_series()[source]
+composition_series()[source]

Return the composition series for a group as a list of permutation groups.

Explanation

@@ -1619,7 +1619,7 @@
Documentation Version
-conjugacy_class(x)[source]
+conjugacy_class(x)[source]

Return the conjugacy class of an element in the group.

Explanation

The conjugacy class of an element g in a group G is the set of @@ -1656,7 +1656,7 @@

Documentation Version
-conjugacy_classes()[source]
+conjugacy_classes()[source]

Return the conjugacy classes of the group.

Explanation

As described in the documentation for the .conjugacy_class() function, @@ -1673,7 +1673,7 @@

Documentation Version
-contains(g, strict=True)[source]
+contains(g, strict=True)[source]

Test if permutation g belong to self, G.

Explanation

If g is an element of G it can be written as a product @@ -1729,7 +1729,7 @@

Documentation Version
factor_index=False,
-)[source] +)[source]

Return G’s (self’s) coset factorization of g

Explanation

If g is an element of G then it can be written as the product @@ -1784,7 +1784,7 @@

Documentation Version
-coset_rank(g)[source]
+coset_rank(g)[source]

rank using Schreier-Sims representation.

Explanation

The coset rank of g is the ordering number in which @@ -1812,21 +1812,21 @@

Documentation Version
-coset_table(H)[source]
+coset_table(H)[source]

Return the standardised (right) coset table of self in H as a list of lists.

-coset_transversal(H)[source]
+coset_transversal(H)[source]

Return a transversal of the right cosets of self by its subgroup H using the second method described in [1], Subsection 4.6.7

-coset_unrank(rank, af=False)[source]
+coset_unrank(rank, af=False)[source]

unrank using Schreier-Sims representation

coset_unrank is the inverse operation of coset_rank if 0 <= rank < order; otherwise it returns None.

@@ -1862,7 +1862,7 @@
Documentation Version
-derived_series()[source]
+derived_series()[source]

Return the derived series for the group.

Returns:
@@ -1899,7 +1899,7 @@
Documentation Version
-derived_subgroup()[source]
+derived_subgroup()[source]

Compute the derived subgroup.

Explanation

The derived subgroup, or commutator subgroup is the subgroup generated @@ -1937,7 +1937,7 @@

Documentation Version
-equals(other)[source]
+equals(other)[source]

Return True if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup.

Examples

@@ -1962,7 +1962,7 @@
Documentation Version
af=False,
-)[source] +)[source]

Return iterator to generate the elements of the group.

Explanation

Iteration is done with one of these methods:

@@ -2007,7 +2007,7 @@
Documentation Version
-generate_dimino(af=False)[source]
+generate_dimino(af=False)[source]

Yield group elements using Dimino’s algorithm.

If af == True it yields the array form of the permutations.

Examples

@@ -2032,7 +2032,7 @@
Documentation Version
-generate_schreier_sims(af=False)[source]
+generate_schreier_sims(af=False)[source]

Yield group elements using the Schreier-Sims representation in coset_rank order

If af = True it yields the array form of the permutations

@@ -2057,7 +2057,7 @@
Documentation Version
original=False,
-)[source] +)[source]

Return a list of strong generators \([s1, \dots, sn]\) s.t \(g = sn \times \dots \times s1\). If original=True, make the list contain only the original group generators

@@ -2086,7 +2086,7 @@
Documentation Version
-index(H)[source]
+index(H)[source]

Returns the index of a permutation group.

Examples

>>> from sympy.combinatorics import Permutation, PermutationGroup
@@ -2128,7 +2128,7 @@ 
Documentation Version
_random_prec=None,
-)[source] +)[source]

Monte Carlo test for the symmetric/alternating group for degrees >= 8.

Explanation

@@ -2281,7 +2281,7 @@
Documentation Version
-is_elementary(p)[source]
+is_elementary(p)[source]

Return True if the group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order \(p\), where \(p\) is a prime.

@@ -2330,7 +2330,7 @@
Documentation Version
-is_normal(gr, strict=True)[source]
+is_normal(gr, strict=True)[source]

Test if G=self is a normal subgroup of gr.

Explanation

G is normal in gr if @@ -2384,7 +2384,7 @@

Documentation Version
-is_primitive(randomized=True)[source]
+is_primitive(randomized=True)[source]

Test if a group is primitive.

Explanation

A permutation group G acting on a set S is called primitive if @@ -2436,7 +2436,7 @@

Documentation Version
-is_subgroup(G, strict=True)[source]
+is_subgroup(G, strict=True)[source]

Return True if all elements of self belong to G.

If strict is False then if self’s degree is smaller than G’s, the elements will be resized to have the same degree.

@@ -2512,7 +2512,7 @@
Documentation Version
-is_transitive(strict=True)[source]
+is_transitive(strict=True)[source]

Test if the group is transitive.

Explanation

A group is transitive if it has a single orbit.

@@ -2556,7 +2556,7 @@
Documentation Version
-lower_central_series()[source]
+lower_central_series()[source]

Return the lower central series for the group.

The lower central series for a group \(G\) is the series \(G = G_0 > G_1 > G_2 > \ldots\) where @@ -2585,7 +2585,7 @@

Documentation Version
-make_perm(n, seed=None)[source]
+make_perm(n, seed=None)[source]

Multiply n randomly selected permutations from pgroup together, starting with the identity permutation. If n is a list of integers, those @@ -2639,7 +2639,7 @@

Documentation Version
-minimal_block(points)[source]
+minimal_block(points)[source]

For a transitive group, finds the block system generated by points.

Explanation

@@ -2681,7 +2681,7 @@
Documentation Version
-minimal_blocks(randomized=True)[source]
+minimal_blocks(randomized=True)[source]

For a transitive group, return the list of all minimal block systems. If a group is intransitive, return \(False\).

Examples

@@ -2702,7 +2702,7 @@
Documentation Version
-normal_closure(other, k=10)[source]
+normal_closure(other, k=10)[source]

Return the normal closure of a subgroup/set of permutations.

Parameters:
@@ -2749,7 +2749,7 @@
Documentation Version
-orbit(alpha, action='tuples')[source]
+orbit(alpha, action='tuples')[source]

Compute the orbit of alpha \(\{g(\alpha) | g \in G\}\) as a set.

Explanation

The time complexity of the algorithm used here is \(O(|Orb|*r)\) where @@ -2788,7 +2788,7 @@

Documentation Version
schreier_vector=None,
-)[source] +)[source]

Return a group element which sends alpha to beta.

Explanation

If beta is not in the orbit of alpha, the function returns @@ -2816,7 +2816,7 @@

Documentation Version
pairs=False,
-)[source] +)[source]

Computes a transversal for the orbit of alpha as a set.

Explanation

For a permutation group \(G\), a transversal for the orbit @@ -2840,7 +2840,7 @@

Documentation Version
-orbits(rep=False)[source]
+orbits(rep=False)[source]

Return the orbits of self, ordered according to lowest element in each orbit.

Examples

@@ -2856,7 +2856,7 @@
Documentation Version
-order()[source]
+order()[source]

Return the order of the group: the number of permutations that can be generated from elements of the group.

The number of permutations comprising the group is given by @@ -2900,7 +2900,7 @@

Documentation Version
incremental=True,
-)[source] +)[source]

Return the pointwise stabilizer for a set of points.

Explanation

For a permutation group \(G\) and a set of points @@ -2930,7 +2930,7 @@

Documentation Version
-polycyclic_group()[source]
+polycyclic_group()[source]

Return the PolycyclicGroup instance with below parameters:

Explanation

    @@ -2947,14 +2947,14 @@
    Documentation Version
    -presentation(eliminate_gens=True)[source]
    +presentation(eliminate_gens=True)[source]

    Return an \(FpGroup\) presentation of the group.

    The algorithm is described in [1], Chapter 6.1.

    -random(af=False)[source]
    +random(af=False)[source]

    Return a random group element

    @@ -2968,7 +2968,7 @@
    Documentation Version
    _random_prec=None,
-)[source] +)[source]

Return a random group element using product replacement.

Explanation

For the details of the product replacement algorithm, see @@ -2991,7 +2991,7 @@

Documentation Version
_random_prec=None,
-)[source] +)[source]

Random element from the stabilizer of alpha.

The schreier vector for alpha is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p.81

@@ -3003,7 +3003,7 @@
Documentation Version
-schreier_sims()[source]
+schreier_sims()[source]

Schreier-Sims algorithm.

Explanation

It computes the generators of the chain of stabilizers @@ -3036,7 +3036,7 @@

Documentation Version
slp_dict=False,
-)[source] +)[source]

Extend a sequence of points and generating set to a base and strong generating set.

@@ -3107,7 +3107,7 @@
Documentation Version
_random_prec=None,
-)[source] +)[source]

Randomized Schreier-Sims algorithm.

Parameters:
@@ -3177,7 +3177,7 @@
Documentation Version
-schreier_vector(alpha)[source]
+schreier_vector(alpha)[source]

Computes the schreier vector for alpha.

Explanation

The Schreier vector efficiently stores information @@ -3206,7 +3206,7 @@

Documentation Version
-stabilizer(alpha)[source]
+stabilizer(alpha)[source]

Return the stabilizer subgroup of alpha.

Explanation

The stabilizer of \(\alpha\) is the group \(G_\alpha = @@ -3256,7 +3256,7 @@

Documentation Version
-strong_presentation()[source]
+strong_presentation()[source]

Return a strong finite presentation of group. The generators of the returned group are in the same order as the strong generators of group.

@@ -3278,7 +3278,7 @@
Documentation Version
-subgroup(gens)[source]
+subgroup(gens)[source]

Return the subgroup generated by \(gens\) which is a list of elements of the group

@@ -3295,7 +3295,7 @@
Documentation Version
init_subgroup=None,
-)[source] +)[source]

Find the subgroup of all elements satisfying the property prop.

Parameters:
@@ -3374,7 +3374,7 @@
Documentation Version
-sylow_subgroup(p)[source]
+sylow_subgroup(p)[source]

Return a p-Sylow subgroup of the group.

The algorithm is described in [1], Chapter 4, Section 7

Examples

@@ -3482,7 +3482,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/permutations.html b/dev/modules/combinatorics/permutations.html index 4beea3b16b8..a71cbb048f9 100644 --- a/dev/modules/combinatorics/permutations.html +++ b/dev/modules/combinatorics/permutations.html @@ -802,7 +802,7 @@
Documentation Version

Permutations

-class sympy.combinatorics.permutations.Permutation(*args, size=None, **kwargs)[source]
+class sympy.combinatorics.permutations.Permutation(*args, size=None, **kwargs)[source]

A permutation, alternatively known as an ‘arrangement number’ or ‘ordering’ is an arrangement of the elements of an ordered list into a one-to-one mapping with itself. The permutation of a given arrangement is given by @@ -1206,7 +1206,7 @@

Documentation Version
-apply(i)[source]
+apply(i)[source]

Apply the permutation to an expression.

Parameters:
@@ -1260,7 +1260,7 @@
Documentation Version
-ascents()[source]
+ascents()[source]

Returns the positions of ascents in a permutation, ie, the location where p[i] < p[i+1]

Examples

@@ -1278,7 +1278,7 @@
Documentation Version
-atoms()[source]
+atoms()[source]

Returns all the elements of a permutation

Examples

>>> from sympy.combinatorics import Permutation
@@ -1309,7 +1309,7 @@ 
Documentation Version
-commutator(x)[source]
+commutator(x)[source]

Return the commutator of self and x: ~x*~self*x*self

If f and g are part of a group, G, then the commutator of f and g is the group identity iff f and g commute, i.e. fg == gf.

@@ -1348,7 +1348,7 @@
Documentation Version
-commutes_with(other)[source]
+commutes_with(other)[source]

Checks if the elements are commuting.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1421,7 +1421,7 @@ 
Documentation Version
-descents()[source]
+descents()[source]

Returns the positions of descents in a permutation, ie, the location where p[i] > p[i+1]

Examples

@@ -1439,7 +1439,7 @@
Documentation Version
-classmethod from_inversion_vector(inversion)[source]
+classmethod from_inversion_vector(inversion)[source]

Calculates the permutation from the inversion vector.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1453,7 +1453,7 @@ 
Documentation Version
-classmethod from_sequence(i, key=None)[source]
+classmethod from_sequence(i, key=None)[source]

Return the permutation needed to obtain i from the sorted elements of i. If custom sorting is desired, a key can be given.

Examples

@@ -1484,7 +1484,7 @@
Documentation Version
-get_adjacency_distance(other)[source]
+get_adjacency_distance(other)[source]

Computes the adjacency distance between two permutations.

Explanation

This metric counts the number of times a pair i,j of jobs is @@ -1511,7 +1511,7 @@

Documentation Version
-get_adjacency_matrix()[source]
+get_adjacency_matrix()[source]

Computes the adjacency matrix of a permutation.

Explanation

If job i is adjacent to job j in a permutation p @@ -1545,7 +1545,7 @@

Documentation Version
-get_positional_distance(other)[source]
+get_positional_distance(other)[source]

Computes the positional distance between two permutations.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1566,7 +1566,7 @@ 
Documentation Version
-get_precedence_distance(other)[source]
+get_precedence_distance(other)[source]

Computes the precedence distance between two permutations.

Explanation

Suppose p and p’ represent n jobs. The precedence metric @@ -1590,7 +1590,7 @@

Documentation Version
-get_precedence_matrix()[source]
+get_precedence_matrix()[source]

Gets the precedence matrix. This is used for computing the distance between two permutations.

Examples

@@ -1618,7 +1618,7 @@
Documentation Version
-index()[source]
+index()[source]

Returns the index of a permutation.

The index of a permutation is the sum of all subscripts j such that p[j] is greater than p[j+1].

@@ -1633,7 +1633,7 @@
Documentation Version
-inversion_vector()[source]
+inversion_vector()[source]

Return the inversion vector of the permutation.

The inversion vector consists of elements whose value indicates the number of elements in the permutation @@ -1672,7 +1672,7 @@

Documentation Version
-inversions()[source]
+inversions()[source]

Computes the number of inversions of a permutation.

Explanation

An inversion is where i > j but p[i] < p[j].

@@ -1807,7 +1807,7 @@
Documentation Version
-classmethod josephus(m, n, s=1)[source]
+classmethod josephus(m, n, s=1)[source]

Return as a permutation the shuffling of range(n) using the Josephus scheme in which every m-th item is selected until all have been chosen. The returned permutation has elements listed by the order in which they @@ -1852,7 +1852,7 @@

Documentation Version
-length()[source]
+length()[source]

Returns the number of integers moved by a permutation.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1870,7 +1870,7 @@ 
Documentation Version
-list(size=None)[source]
+list(size=None)[source]

Return the permutation as an explicit list, possibly trimming unmoved elements if size is less than the maximum element in the permutation; if this is desired, setting @@ -1896,7 +1896,7 @@

Documentation Version
-max() int[source]
+max() int[source]

The maximum element moved by the permutation.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1913,7 +1913,7 @@ 
Documentation Version
-min() int[source]
+min() int[source]

The minimum element moved by the permutation.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1930,13 +1930,13 @@ 
Documentation Version
-mul_inv(other)[source]
+mul_inv(other)[source]

other*~self, self and other have _array_form

-next_lex()[source]
+next_lex()[source]

Returns the next permutation in lexicographical order. If self is the last permutation in lexicographical order it returns None. @@ -1958,7 +1958,7 @@

Documentation Version
-next_nonlex()[source]
+next_nonlex()[source]

Returns the next permutation in nonlex order [3]. If self is the last permutation in this order it returns None.

Examples

@@ -1981,7 +1981,7 @@
Documentation Version
-next_trotterjohnson()[source]
+next_trotterjohnson()[source]

Returns the next permutation in Trotter-Johnson order. If self is the last permutation it returns None. See [4] section 2.4. If it is desired to generate all such @@ -2008,7 +2008,7 @@

Documentation Version
-order()[source]
+order()[source]

Computes the order of a permutation.

When the permutation is raised to the power of its order it equals the identity permutation.

@@ -2031,7 +2031,7 @@
Documentation Version
-parity()[source]
+parity()[source]

Computes the parity of a permutation.

Explanation

The parity of a permutation reflects the parity of the @@ -2055,7 +2055,7 @@

Documentation Version
-classmethod random(n)[source]
+classmethod random(n)[source]

Generates a random permutation of length n.

Uses the underlying Python pseudo-random number generator.

Examples

@@ -2068,7 +2068,7 @@
Documentation Version
-rank()[source]
+rank()[source]

Returns the lexicographic rank of the permutation.

Examples

>>> from sympy.combinatorics import Permutation
@@ -2088,7 +2088,7 @@ 
Documentation Version
-rank_nonlex(inv_perm=None)[source]
+rank_nonlex(inv_perm=None)[source]

This is a linear time ranking algorithm that does not enforce lexicographic order [3].

Examples

@@ -2106,7 +2106,7 @@
Documentation Version
-rank_trotterjohnson()[source]
+rank_trotterjohnson()[source]

Returns the Trotter Johnson rank, which we get from the minimal change algorithm. See [4] section 2.4.

Examples

@@ -2127,7 +2127,7 @@
Documentation Version
-resize(n)[source]
+resize(n)[source]

Resize the permutation to the new size n.

Parameters:
@@ -2174,7 +2174,7 @@
Documentation Version
-static rmul(*args)[source]
+static rmul(*args)[source]

Return product of Permutations [a, b, c, …] as the Permutation whose ith value is a(b(c(i))).

a, b, c, … can be Permutation objects or tuples.

@@ -2210,14 +2210,14 @@
Documentation Version
-classmethod rmul_with_af(*args)[source]
+classmethod rmul_with_af(*args)[source]

same as rmul, but the elements of args are Permutation objects which have _array_form

-runs()[source]
+runs()[source]

Returns the runs of a permutation.

An ascending sequence in a permutation is called a run [5].

Examples

@@ -2234,7 +2234,7 @@
Documentation Version
-signature()[source]
+signature()[source]

Gives the signature of the permutation needed to place the elements of the permutation in canonical order.

The signature is calculated as (-1)^<number of inversions>

@@ -2276,7 +2276,7 @@
Documentation Version
-support()[source]
+support()[source]

Return the elements in permutation, P, for which P[i] != i.

Examples

>>> from sympy.combinatorics import Permutation
@@ -2291,7 +2291,7 @@ 
Documentation Version
-transpositions()[source]
+transpositions()[source]

Return the permutation decomposed into a list of transpositions.

Explanation

It is always possible to express a permutation as the product of @@ -2319,7 +2319,7 @@

Documentation Version
-classmethod unrank_lex(size, rank)[source]
+classmethod unrank_lex(size, rank)[source]

Lexicographic permutation unranking.

Examples

>>> from sympy.combinatorics import Permutation
@@ -2340,7 +2340,7 @@ 
Documentation Version
-classmethod unrank_nonlex(n, r)[source]
+classmethod unrank_nonlex(n, r)[source]

This is a linear time unranking algorithm that does not respect lexicographic order [3].

Examples

@@ -2361,7 +2361,7 @@
Documentation Version
-classmethod unrank_trotterjohnson(size, rank)[source]
+classmethod unrank_trotterjohnson(size, rank)[source]

Trotter Johnson permutation unranking. See [4] section 2.4.

Examples

>>> from sympy.combinatorics import Permutation
@@ -2381,7 +2381,7 @@ 
Documentation Version
-class sympy.combinatorics.permutations.Cycle(*args)[source]
+class sympy.combinatorics.permutations.Cycle(*args)[source]

Wrapper around dict which provides the functionality of a disjoint cycle.

Explanation

A cycle shows the rule to use to move subsets of elements to obtain @@ -2452,7 +2452,7 @@

Documentation Version
-list(size=None)[source]
+list(size=None)[source]

Return the cycles as an explicit list starting from 0 up to the greater of the largest value in the cycles and size.

Truncation of trailing unmoved items will occur when size @@ -2479,7 +2479,7 @@

Documentation Version
-sympy.combinatorics.permutations._af_parity(pi)[source]
+sympy.combinatorics.permutations._af_parity(pi)[source]

Computes the parity of a permutation in array form.

Explanation

The parity of a permutation reflects the parity of the @@ -2503,7 +2503,7 @@

Documentation Version

Generators

-generators.symmetric()[source]
+generators.symmetric()[source]

Generates the symmetric group of order n, Sn.

Examples

>>> from sympy.combinatorics.generators import symmetric
@@ -2515,7 +2515,7 @@ 
Documentation Version
-generators.cyclic()[source]
+generators.cyclic()[source]

Generates the cyclic group of order n, Cn.

Examples

>>> from sympy.combinatorics.generators import cyclic
@@ -2532,7 +2532,7 @@ 
Documentation Version
-generators.alternating()[source]
+generators.alternating()[source]

Generates the alternating group of order n, An.

Examples

>>> from sympy.combinatorics.generators import alternating
@@ -2544,7 +2544,7 @@ 
Documentation Version
-generators.dihedral()[source]
+generators.dihedral()[source]

Generates the dihedral group of order 2n, Dn.

The result is given as a subgroup of Sn, except for the special cases n=1 (the group S2) and n=2 (the Klein 4-group) where that’s not possible @@ -2599,7 +2599,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/polyhedron.html b/dev/modules/combinatorics/polyhedron.html index 3861883e08e..277c26b909f 100644 --- a/dev/modules/combinatorics/polyhedron.html +++ b/dev/modules/combinatorics/polyhedron.html @@ -802,7 +802,7 @@
Documentation Version

Polyhedron

-class sympy.combinatorics.polyhedron.Polyhedron(corners, faces=(), pgroup=())[source]
+class sympy.combinatorics.polyhedron.Polyhedron(corners, faces=(), pgroup=())[source]

Represents the polyhedral symmetry group (PSG).

Explanation

The PSG is one of the symmetry groups of the Platonic solids. @@ -902,7 +902,7 @@

Documentation Version
-reset()[source]
+reset()[source]

Return corners to their original positions.

Examples

>>> from sympy.combinatorics.polyhedron import tetrahedron as T
@@ -921,7 +921,7 @@ 
Documentation Version
-rotate(perm)[source]
+rotate(perm)[source]

Apply a permutation to the polyhedron in place. The permutation may be given as a Permutation instance or an integer indicating which permutation from pgroup of the Polyhedron should be @@ -1038,7 +1038,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/prufer.html b/dev/modules/combinatorics/prufer.html index 7971c073607..ab02438f6b4 100644 --- a/dev/modules/combinatorics/prufer.html +++ b/dev/modules/combinatorics/prufer.html @@ -802,7 +802,7 @@
Documentation Version

Prufer Sequences

-class sympy.combinatorics.prufer.Prufer(*args, **kw_args)[source]
+class sympy.combinatorics.prufer.Prufer(*args, **kw_args)[source]

The Prufer correspondence is an algorithm that describes the bijection between labeled trees and the Prufer code. A Prufer code of a labeled tree is unique up to isomorphism and has @@ -818,7 +818,7 @@

Documentation Version
-static edges(*runs)[source]
+static edges(*runs)[source]

Return a list of edges and the number of nodes from the given runs that connect nodes in an integer-labelled tree.

All node numbers will be shifted so that the minimum node is 0. It is @@ -841,7 +841,7 @@

Documentation Version
-next(delta=1)[source]
+next(delta=1)[source]

Generates the Prufer sequence that is delta beyond the current one.

Examples

>>> from sympy.combinatorics.prufer import Prufer
@@ -875,7 +875,7 @@ 
Documentation Version
-prev(delta=1)[source]
+prev(delta=1)[source]

Generates the Prufer sequence that is -delta before the current one.

Examples

>>> from sympy.combinatorics.prufer import Prufer
@@ -897,7 +897,7 @@ 
Documentation Version
-prufer_rank()[source]
+prufer_rank()[source]

Computes the rank of a Prufer sequence.

Examples

>>> from sympy.combinatorics.prufer import Prufer
@@ -972,7 +972,7 @@ 
Documentation Version
-static to_prufer(tree, n)[source]
+static to_prufer(tree, n)[source]

Return the Prufer sequence for a tree given as a list of edges where n is the number of nodes in the tree.

Examples

@@ -995,7 +995,7 @@
Documentation Version
-static to_tree(prufer)[source]
+static to_tree(prufer)[source]

Return the tree (as a list of edges) of the given Prufer sequence.

Examples

>>> from sympy.combinatorics.prufer import Prufer
@@ -1042,7 +1042,7 @@ 
Documentation Version
-classmethod unrank(rank, n)[source]
+classmethod unrank(rank, n)[source]

Finds the unranked Prufer sequence.

Examples

>>> from sympy.combinatorics.prufer import Prufer
@@ -1091,7 +1091,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/subsets.html b/dev/modules/combinatorics/subsets.html index 5df3e9b8e9c..5e71dc72d41 100644 --- a/dev/modules/combinatorics/subsets.html +++ b/dev/modules/combinatorics/subsets.html @@ -802,7 +802,7 @@
Documentation Version

Subsets

-class sympy.combinatorics.subsets.Subset(subset, superset)[source]
+class sympy.combinatorics.subsets.Subset(subset, superset)[source]

Represents a basic subset object.

Explanation

We generate subsets using essentially two techniques, @@ -821,7 +821,7 @@

Documentation Version
-classmethod bitlist_from_subset(subset, superset)[source]
+classmethod bitlist_from_subset(subset, superset)[source]

Gets the bitlist corresponding to a subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -854,7 +854,7 @@ 
Documentation Version
-iterate_binary(k)[source]
+iterate_binary(k)[source]

This is a helper function. It iterates over the binary subsets by k steps. This variable can be both positive or negative.

@@ -876,7 +876,7 @@
Documentation Version
-iterate_graycode(k)[source]
+iterate_graycode(k)[source]

Helper function used for prev_gray and next_gray. It performs k step overs to get the respective Gray codes.

Examples

@@ -896,7 +896,7 @@
Documentation Version
-next_binary()[source]
+next_binary()[source]

Generates the next binary ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -916,7 +916,7 @@ 
Documentation Version
-next_gray()[source]
+next_gray()[source]

Generates the next Gray code ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -933,7 +933,7 @@ 
Documentation Version
-next_lexicographic()[source]
+next_lexicographic()[source]

Generates the next lexicographically ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -953,7 +953,7 @@ 
Documentation Version
-prev_binary()[source]
+prev_binary()[source]

Generates the previous binary ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -973,7 +973,7 @@ 
Documentation Version
-prev_gray()[source]
+prev_gray()[source]

Generates the previous Gray code ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -990,7 +990,7 @@ 
Documentation Version
-prev_lexicographic()[source]
+prev_lexicographic()[source]

Generates the previous lexicographically ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -1100,7 +1100,7 @@ 
Documentation Version
-classmethod subset_from_bitlist(super_set, bitlist)[source]
+classmethod subset_from_bitlist(super_set, bitlist)[source]

Gets the subset defined by the bitlist.

Examples

>>> from sympy.combinatorics import Subset
@@ -1116,7 +1116,7 @@ 
Documentation Version
-classmethod subset_indices(subset, superset)[source]
+classmethod subset_indices(subset, superset)[source]

Return indices of subset in superset in a list; the list is empty if all elements of subset are not in superset.

Examples

@@ -1168,7 +1168,7 @@
Documentation Version
-classmethod unrank_binary(rank, superset)[source]
+classmethod unrank_binary(rank, superset)[source]

Gets the binary ordered subset of the specified rank.

Examples

>>> from sympy.combinatorics import Subset
@@ -1184,7 +1184,7 @@ 
Documentation Version
-classmethod unrank_gray(rank, superset)[source]
+classmethod unrank_gray(rank, superset)[source]

Gets the Gray code ordered subset of the specified rank.

Examples

>>> from sympy.combinatorics import Subset
@@ -1204,7 +1204,7 @@ 
Documentation Version
-subsets.ksubsets(k)[source]
+subsets.ksubsets(k)[source]

Finds the subsets of size k in lexicographic order.

This uses the itertools generator.

Examples

@@ -1258,7 +1258,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/tensor_can.html b/dev/modules/combinatorics/tensor_can.html index 2ee4d294d8e..59929d7bd6a 100644 --- a/dev/modules/combinatorics/tensor_can.html +++ b/dev/modules/combinatorics/tensor_can.html @@ -802,7 +802,7 @@
Documentation Version

Tensor Canonicalization

-sympy.combinatorics.tensor_can.canonicalize(g, dummies, msym, *v)[source]
+sympy.combinatorics.tensor_can.canonicalize(g, dummies, msym, *v)[source]

canonicalize tensor formed by tensors

Parameters:
@@ -921,7 +921,7 @@
Documentation Version
g,
-)[source] +)[source]

Butler-Portugal algorithm for tensor canonicalization with dummy indices.

Parameters:
@@ -1113,7 +1113,7 @@
Documentation Version
-sympy.combinatorics.tensor_can.get_symmetric_group_sgs(n, antisym=False)[source]
+sympy.combinatorics.tensor_can.get_symmetric_group_sgs(n, antisym=False)[source]

Return base, gens of the minimal BSGS for (anti)symmetric tensor

Parameters:
@@ -1145,7 +1145,7 @@
Documentation Version
signed=True,
-)[source] +)[source]

Direct product of two BSGS.

Parameters:
@@ -1202,7 +1202,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/testutil.html b/dev/modules/combinatorics/testutil.html index 8dea5bdaba9..ca0dfc45554 100644 --- a/dev/modules/combinatorics/testutil.html +++ b/dev/modules/combinatorics/testutil.html @@ -802,7 +802,7 @@
Documentation Version

Test Utilities

-sympy.combinatorics.testutil._cmp_perm_lists(first, second)[source]
+sympy.combinatorics.testutil._cmp_perm_lists(first, second)[source]

Compare two lists of permutations as sets.

Explanation

This is used for testing purposes. Since the array form of a @@ -824,12 +824,12 @@

Documentation Version
-sympy.combinatorics.testutil._naive_list_centralizer(self, other, af=False)[source]
+sympy.combinatorics.testutil._naive_list_centralizer(self, other, af=False)[source]
-sympy.combinatorics.testutil._verify_bsgs(group, base, gens)[source]
+sympy.combinatorics.testutil._verify_bsgs(group, base, gens)[source]

Verify the correctness of a base and strong generating set.

Explanation

This is a naive implementation using the definition of a base and a strong @@ -853,7 +853,7 @@

Documentation Version
-sympy.combinatorics.testutil._verify_centralizer(group, arg, centr=None)[source]
+sympy.combinatorics.testutil._verify_centralizer(group, arg, centr=None)[source]

Verify the centralizer of a group/set/element inside another group.

This is used for testing .centralizer() from sympy.combinatorics.perm_groups

@@ -878,7 +878,7 @@
Documentation Version
-sympy.combinatorics.testutil._verify_normal_closure(group, arg, closure=None)[source]
+sympy.combinatorics.testutil._verify_normal_closure(group, arg, closure=None)[source]
@@ -918,7 +918,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/combinatorics/util.html b/dev/modules/combinatorics/util.html index 07948aa77e6..7c3305b9dfe 100644 --- a/dev/modules/combinatorics/util.html +++ b/dev/modules/combinatorics/util.html @@ -802,7 +802,7 @@
Documentation Version

Utilities

-sympy.combinatorics.util._base_ordering(base, degree)[source]
+sympy.combinatorics.util._base_ordering(base, degree)[source]

Order \(\{0, 1, \dots, n-1\}\) so that base points come first and in order.

Parameters:
@@ -843,7 +843,7 @@
Documentation Version
-sympy.combinatorics.util._check_cycles_alt_sym(perm)[source]
+sympy.combinatorics.util._check_cycles_alt_sym(perm)[source]

Checks for cycles of prime length p with n/2 < p < n-2.

Explanation

Here \(n\) is the degree of the permutation. This is a helper function for @@ -867,7 +867,7 @@

Documentation Version
-sympy.combinatorics.util._distribute_gens_by_base(base, gens)[source]
+sympy.combinatorics.util._distribute_gens_by_base(base, gens)[source]

Distribute the group elements gens by membership in basic stabilizers.

Parameters:
@@ -921,7 +921,7 @@
Documentation Version
strong_gens_distr=None,
-)[source] +)[source]

Calculate BSGS-related structures from those present.

Parameters:
@@ -971,7 +971,7 @@
Documentation Version
slp=False,
-)[source] +)[source]

Compute basic orbits and transversals from a base and strong generating set.

Parameters:
@@ -1022,7 +1022,7 @@
Documentation Version
strong_gens_distr=None,
-)[source] +)[source]

Remove redundant generators from a strong generating set.

Parameters:
@@ -1063,7 +1063,7 @@
Documentation Version
-sympy.combinatorics.util._strip(g, base, orbits, transversals)[source]
+sympy.combinatorics.util._strip(g, base, orbits, transversals)[source]

Attempt to decompose a permutation using a (possibly partial) BSGS structure.

@@ -1123,7 +1123,7 @@
Documentation Version
-sympy.combinatorics.util._strong_gens_from_distr(strong_gens_distr)[source]
+sympy.combinatorics.util._strong_gens_from_distr(strong_gens_distr)[source]

Retrieve strong generating set from generators of basic stabilizers.

This is just the union of the generators of the first and second basic stabilizers.

@@ -1188,7 +1188,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/concrete.html b/dev/modules/concrete.html index 96da7df1136..0567405d552 100644 --- a/dev/modules/concrete.html +++ b/dev/modules/concrete.html @@ -880,7 +880,7 @@

Hypergeometric termsConcrete Class Reference

-class sympy.concrete.summations.Sum(function, *symbols, **assumptions)[source]
+class sympy.concrete.summations.Sum(function, *symbols, **assumptions)[source]

Represents unevaluated summation.

Explanation

Sum represents a finite or infinite series, with the first argument @@ -1015,7 +1015,7 @@

Concrete Class Referenceeval_integral=True,

-)[source] +)[source]

Return an Euler-Maclaurin approximation of self, where m is the number of leading terms to sum directly and n is the number of terms in the tail.

@@ -1058,7 +1058,7 @@

Concrete Class Reference
-eval_zeta_function(f, limits)[source]
+eval_zeta_function(f, limits)[source]

Check whether the function matches with the zeta function.

If it matches, then return a \(Piecewise\) expression because zeta function does not converge unless \(s > 1\) and \(q > 0\)

@@ -1066,7 +1066,7 @@

Concrete Class Reference
-is_absolutely_convergent()[source]
+is_absolutely_convergent()[source]

Checks for the absolute convergence of an infinite series.

Same as checking convergence of absolute value of sequence_term of an infinite series.

@@ -1094,7 +1094,7 @@

Concrete Class Reference
-is_convergent()[source]
+is_convergent()[source]

Checks for the convergence of a Sum.

Explanation

We divide the study of convergence of infinite sums and products in @@ -1159,7 +1159,7 @@

Concrete Class Reference
-reverse_order(*indices)[source]
+reverse_order(*indices)[source]

Reverse the order of a limit in a Sum.

Explanation

reverse_order(self, *indices) reverses some limits in the expression @@ -1222,7 +1222,7 @@

Concrete Class Reference
-class sympy.concrete.products.Product(function, *symbols, **assumptions)[source]
+class sympy.concrete.products.Product(function, *symbols, **assumptions)[source]

Represents unevaluated products.

Explanation

Product represents a finite or infinite product, with the first @@ -1390,7 +1390,7 @@

Concrete Class Reference
-is_convergent()[source]
+is_convergent()[source]

See docs of Sum.is_convergent() for explanation of convergence in SymPy.

Explanation

@@ -1435,7 +1435,7 @@

Concrete Class Reference
-reverse_order(*indices)[source]
+reverse_order(*indices)[source]

Reverse the order of a limit in a Product.

Explanation

reverse_order(expr, *indices) reverses some limits in the expression @@ -1510,7 +1510,7 @@

Concrete Class Reference**assumptions,

-)[source] +)[source]

Superclass for Product and Sum.

See also

@@ -1526,7 +1526,7 @@

Concrete Class Referencenewvar=None,

-)[source] +)[source]

Change index of a Sum or Product.

Perform a linear transformation \(x \mapsto a x + b\) on the index variable \(x\). For \(a\) the only values allowed are \(\pm 1\). A new variable to be used @@ -1654,7 +1654,7 @@

Concrete Class Reference
-index(x)[source]
+index(x)[source]

Return the index of a dummy variable in the list of limits.

Explanation

index(expr, x) returns the index of the dummy variable x in the @@ -1681,7 +1681,7 @@

Concrete Class Reference
-reorder(*arg)[source]
+reorder(*arg)[source]

Reorder limits in a expression containing a Sum or a Product.

Explanation

expr.reorder(*arg) reorders the limits in the expression expr @@ -1726,7 +1726,7 @@

Concrete Class Reference
-reorder_limit(x, y)[source]
+reorder_limit(x, y)[source]

Interchange two limit tuples of a Sum or Product expression.

Explanation

expr.reorder_limit(x, y) interchanges two limit tuples. The @@ -1761,7 +1761,7 @@

Concrete Class Reference

-sympy.concrete.summations.summation(f, *symbols, **kwargs)[source]
+sympy.concrete.summations.summation(f, *symbols, **kwargs)[source]

Compute the summation of f with respect to symbols.

Explanation

The notation for symbols is similar to the notation used in Integral. @@ -1808,7 +1808,7 @@

Concrete Functions Reference
-sympy.concrete.products.product(*args, **kwargs)[source]
+sympy.concrete.products.product(*args, **kwargs)[source]

Compute the product.

Explanation

The notation for symbols is similar to the notation used in Sum or @@ -1842,7 +1842,7 @@

Concrete Functions Reference
-sympy.concrete.gosper.gosper_normal(f, g, n, polys=True)[source]
+sympy.concrete.gosper.gosper_normal(f, g, n, polys=True)[source]

Compute the Gosper’s normal form of f and g.

Explanation

Given relatively prime univariate polynomials f and g, @@ -1877,7 +1877,7 @@

Concrete Functions Reference
-sympy.concrete.gosper.gosper_term(f, n)[source]
+sympy.concrete.gosper.gosper_term(f, n)[source]

Compute Gosper’s hypergeometric term for f.

Explanation

Suppose f is a hypergeometric term such that:

@@ -1901,7 +1901,7 @@

Concrete Functions Reference
-sympy.concrete.gosper.gosper_sum(f, k)[source]
+sympy.concrete.gosper.gosper_sum(f, k)[source]

Gosper’s hypergeometric summation algorithm.

Explanation

Given a hypergeometric term f such that:

@@ -1977,7 +1977,7 @@

Concrete Functions ReferenceFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/core.html b/dev/modules/core.html index 7dc20ff8b1e..a3002dec7aa 100644 --- a/dev/modules/core.html +++ b/dev/modules/core.html @@ -815,7 +815,7 @@
Documentation Version
evaluate=None,
-)[source] +)[source]

Converts an arbitrary expression to a type that can be used inside SymPy.

Parameters:
@@ -1296,7 +1296,7 @@

References

cache

-sympy.core.cache.__cacheit(maxsize)[source]
+sympy.core.cache.__cacheit(maxsize)[source]

caching decorator.

important: the result of cached function must be immutable

Examples

@@ -1320,7 +1320,7 @@

References

basic

-class sympy.core.basic.Basic(*args)[source]
+class sympy.core.basic.Basic(*args)[source]

Base class for all SymPy objects.

Notes And Conventions

    @@ -1411,7 +1411,7 @@

    Referencesclear=True,

-)[source] +)[source]

A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression.

@@ -1422,7 +1422,7 @@

References
-as_dummy()[source]
+as_dummy()[source]

Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default @@ -1478,7 +1478,7 @@

References
-atoms(*types)[source]
+atoms(*types)[source]

Returns the atoms that form the current object.

By default, only objects that are truly atomic and cannot be divided into smaller pieces are returned: symbols, numbers, @@ -1566,13 +1566,13 @@

References
-classmethod class_key()[source]
+classmethod class_key()[source]

Nice order of classes.

-compare(other)[source]
+compare(other)[source]

Return -1, 0, 1 if the object is less than, equal, or greater than other in a canonical sense. Non-Basic are always greater than Basic. @@ -1600,19 +1600,19 @@

References
-count(query)[source]
+count(query)[source]

Count the number of matching subexpressions.

-count_ops(visual=None)[source]
+count_ops(visual=None)[source]

Wrapper for count_ops that returns the operation count.

-doit(**hints)[source]
+doit(**hints)[source]

Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ @@ -1637,7 +1637,7 @@

References
-dummy_eq(other, symbol=None)[source]
+dummy_eq(other, symbol=None)[source]

Compare two expressions and handle dummy symbols.

Examples

>>> from sympy import Dummy
@@ -1663,7 +1663,7 @@ 

References
-find(query, group=False)[source]
+find(query, group=False)[source]

Find all subexpressions matching a query.

@@ -1684,7 +1684,7 @@

References
-classmethod fromiter(args, **assumptions)[source]
+classmethod fromiter(args, **assumptions)[source]

Create a new object from an iterable.

This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first.

@@ -1721,7 +1721,7 @@

References
-has(*patterns)[source]
+has(*patterns)[source]

Test whether any subexpression matches any of the patterns.

Examples

>>> from sympy import sin
@@ -1766,7 +1766,7 @@ 

References
-has_free(*patterns)[source]
+has_free(*patterns)[source]

Return True if self has object(s) x as a free expression else False.

Examples

@@ -1794,7 +1794,7 @@

References
-has_xfree(s: set[Basic])[source]
+has_xfree(s: set[Basic])[source]

Return True if self has any of the patterns in s as a free argument, else False. This is like \(Basic.has_free\) but this will only report exact argument matches.

@@ -1845,7 +1845,7 @@

References
-is_same(b, approx=None)[source]
+is_same(b, approx=None)[source]

Return True if a and b are structurally the same, else False. If \(approx\) is supplied, it will be used to test whether two numbers are the same or not. By default, only numbers of the @@ -1899,7 +1899,7 @@

References
-match(pattern, old=False)[source]
+match(pattern, old=False)[source]

Pattern matching.

Wild symbols match all.

Return None when expression (self) does not match @@ -1948,7 +1948,7 @@

References
-matches(expr, repl_dict=None, old=False)[source]
+matches(expr, repl_dict=None, old=False)[source]

Helper method for match() that looks for a match between Wild symbols in self and expressions in expr.

Examples

@@ -1965,7 +1965,7 @@

References
-rcall(*args)[source]
+rcall(*args)[source]

Apply on the argument recursively through the expression tree.

This method is used to simulate a common abuse of notation for operators. For instance, in SymPy the following will not work:

@@ -1981,7 +1981,7 @@

References
-refine(assumption=True)[source]
+refine(assumption=True)[source]

See the refine function in sympy.assumptions

@@ -1997,7 +1997,7 @@

Referencesexact=None,

-)[source] +)[source]

Replace matching subexpressions of self with value.

If map = True then also return the mapping {old: new} where old was a sub-expression found with query and new is the replacement @@ -2151,7 +2151,7 @@

References
-rewrite(*args, deep=True, **hints)[source]
+rewrite(*args, deep=True, **hints)[source]

Rewrite self using a defined rule.

Rewriting transforms an expression to another, which is mathematically equivalent but structurally different. For example you can rewrite @@ -2225,13 +2225,13 @@

References
-simplify(**kwargs)[source]
+simplify(**kwargs)[source]

See the simplify function in sympy.simplify

-sort_key(order=None)[source]
+sort_key(order=None)[source]

Return a sort key.

Examples

>>> from sympy import S, I
@@ -2251,7 +2251,7 @@ 

References
-subs(*args, **kwargs)[source]
+subs(*args, **kwargs)[source]

Substitutes old for new in an expression after sympifying args.

\(args\) is either:
@@ -2643,7 +2643,7 @@

References*deps,

-) tuple[Expr, tuple[Expr, ...]][source] +) tuple[Expr, tuple[Expr, ...]][source]

Return the tuple (c, args) where self is written as an Add, a.

c should be a Rational added to any terms of the Add that are independent of deps.

@@ -2681,7 +2681,7 @@

Referencesx,

-) tuple[Expr, Expr][source] +) tuple[Expr, Expr][source]

c*x**e -> c,e where x can be any symbolic expression.

@@ -2694,7 +2694,7 @@

References**kwargs,

-) tuple[Expr, tuple[Expr, ...]][source] +) tuple[Expr, tuple[Expr, ...]][source]

Return the tuple (c, args) where self is written as a Mul, m.

c should be a Rational multiplied by any factors of the Mul that are independent of deps.

@@ -2726,7 +2726,7 @@

References
-as_coefficient(expr)[source]
+as_coefficient(expr)[source]

Extracts symbolic coefficient at the given expression. In other words, this functions separates ‘self’ into the product of ‘expr’ and ‘expr’-free coefficient. If such separation @@ -2798,7 +2798,7 @@

References
-as_coefficients_dict(*syms)[source]
+as_coefficients_dict(*syms)[source]

Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0.

@@ -2831,7 +2831,7 @@

Referencesclear=True,

-)[source] +)[source]

This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and Mul(*foo.as_content_primitive()) == foo. @@ -2889,7 +2889,7 @@

References
-as_expr(*gens)[source]
+as_expr(*gens)[source]

Convert a polynomial to a SymPy expression.

Examples

>>> from sympy import sin
@@ -2916,7 +2916,7 @@ 

References**hint,

-) tuple[Expr, Expr][source] +) tuple[Expr, Expr][source]

A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.:

@@ -3047,7 +3047,7 @@

References
-as_leading_term(*symbols, logx=None, cdir=0)[source]
+as_leading_term(*symbols, logx=None, cdir=0)[source]

Returns the leading (nonzero) term of the series expansion of self.

The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value.

@@ -3063,7 +3063,7 @@

References
-as_numer_denom()[source]
+as_numer_denom()[source]

Return the numerator and the denominator of an expression.

expression -> a/b -> a, b

This is just a stub that should be defined by @@ -3079,13 +3079,13 @@

References
-as_ordered_factors(order=None)[source]
+as_ordered_factors(order=None)[source]

Return list of ordered factors (if Mul) else [self].

-as_ordered_terms(order=None, data=False)[source]
+as_ordered_terms(order=None, data=False)[source]

Transform an expression to an ordered list of terms.

Examples

>>> from sympy import sin, cos
@@ -3100,7 +3100,7 @@ 

References
-as_poly(*gens, **args)[source]
+as_poly(*gens, **args)[source]

Converts self to a polynomial or returns None.

Explanation

>>> from sympy import sin
@@ -3123,7 +3123,7 @@ 

References
-as_powers_dict()[source]
+as_powers_dict()[source]

Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should @@ -3143,7 +3143,7 @@

References
-as_real_imag(deep=True, **hints)[source]
+as_real_imag(deep=True, **hints)[source]

Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method cannot be confused with re() and im() functions, @@ -3172,13 +3172,13 @@

References
-as_terms()[source]
+as_terms()[source]

Transform an expression to a list of terms.

-aseries(x=None, n=6, bound=0, hir=False)[source]
+aseries(x=None, n=6, bound=0, hir=False)[source]

Asymptotic Series expansion of self. This is equivalent to self.series(x, oo, n).

@@ -3284,13 +3284,13 @@

References
-cancel(*gens, **args)[source]
+cancel(*gens, **args)[source]

See the cancel function in sympy.polys

-coeff(x, n=1, right=False, _first=True)[source]
+coeff(x, n=1, right=False, _first=True)[source]

Returns the coefficient from the term(s) containing x**n. If n is zero then all terms independent of x will be returned.

Explanation

@@ -3418,19 +3418,19 @@

Referencesdistribute_order_term=True,

-)[source] +)[source]

See the collect function in sympy.simplify

-combsimp()[source]
+combsimp()[source]

See the combsimp function in sympy.simplify

-compute_leading_term(x, logx=None)[source]
+compute_leading_term(x, logx=None)[source]

Deprecated function to compute the leading term of a series.

as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first.

@@ -3438,13 +3438,13 @@

References
-conjugate()[source]
+conjugate()[source]

Returns the complex conjugate of ‘self’.

-could_extract_minus_sign()[source]
+could_extract_minus_sign()[source]

Return True if self has -1 as a leading factor or has more literal negative signs than positive signs in a sum, otherwise False.

@@ -3474,7 +3474,7 @@

References
-equals(other, failing_expression=False)[source]
+equals(other, failing_expression=False)[source]

Return True if self == other, False if it does not, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None.

@@ -3504,7 +3504,7 @@

References**hints,

-)[source] +)[source]

Expand an expression using hints.

See the docstring of the expand() function in sympy.core.function for more information.

@@ -3535,7 +3535,7 @@

References
-extract_additively(c)[source]
+extract_additively(c)[source]

Return self - c if it’s possible to subtract c from self and make all matching coefficients move towards zero, else return None.

Examples

@@ -3558,7 +3558,7 @@

References
-extract_branch_factor(allow_half=False)[source]
+extract_branch_factor(allow_half=False)[source]

Try to write self as exp_polar(2*pi*I*n)*z in a nice way. Return (z, n).

>>> from sympy import exp_polar, I, pi
@@ -3592,7 +3592,7 @@ 

References
-extract_multiplicatively(c)[source]
+extract_multiplicatively(c)[source]

Return None if it’s not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self.

@@ -3625,13 +3625,13 @@

References
-factor(*gens, **args)[source]
+factor(*gens, **args)[source]

See the factor() function in sympy.polys.polytools

-fourier_series(limits=None)[source]
+fourier_series(limits=None)[source]

Compute fourier sine/cosine series of self.

See the docstring of the fourier_series() in sympy.series.fourier for more information.

@@ -3651,7 +3651,7 @@

Referencesfull=False,

-)[source] +)[source]

Compute formal power power series of self.

See the docstring of the fps() function in sympy.series.formal for more information.

@@ -3659,19 +3659,19 @@

References
-gammasimp()[source]
+gammasimp()[source]

See the gammasimp function in sympy.simplify

-getO()[source]
+getO()[source]

Returns the additive O(..) symbol if there is one, else None.

-getn()[source]
+getn()[source]

Returns the order of the expression.

Explanation

The order is determined either from the O(…) term. If there @@ -3688,13 +3688,13 @@

References
-integrate(*args, **kwargs)[source]
+integrate(*args, **kwargs)[source]

See the integrate function in sympy.integrals

-invert(g, *gens, **args)[source]
+invert(g, *gens, **args)[source]

Return the multiplicative inverse of self mod g where self (and g) may be symbolic expressions).

@@ -3705,7 +3705,7 @@

References
-is_algebraic_expr(*syms)[source]
+is_algebraic_expr(*syms)[source]

This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded @@ -3748,7 +3748,7 @@

References
-is_constant(*wrt, **flags)[source]
+is_constant(*wrt, **flags)[source]

Return True if self is constant, False if not, or None if the constancy could not be determined conclusively.

Explanation

@@ -3817,7 +3817,7 @@

References
-is_meromorphic(x, a)[source]
+is_meromorphic(x, a)[source]

This tests whether an expression is meromorphic as a function of the given symbol x at the point a.

This method is intended as a quick test that will return @@ -3926,7 +3926,7 @@

References
-is_polynomial(*syms)[source]
+is_polynomial(*syms)[source]

Return True if self is a polynomial in syms and False otherwise.

This checks if self is an exact polynomial in syms. This function returns False for expressions that are “polynomials” with symbolic @@ -3990,7 +3990,7 @@

References
-is_rational_function(*syms)[source]
+is_rational_function(*syms)[source]

Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of @@ -4042,7 +4042,7 @@

References
-leadterm(x, logx=None, cdir=0)[source]
+leadterm(x, logx=None, cdir=0)[source]

Returns the leading term a*x**b as a tuple (a, b).

Examples

>>> from sympy.abc import x
@@ -4056,7 +4056,7 @@ 

References
-limit(x, xlim, dir='+')[source]
+limit(x, xlim, dir='+')[source]

Compute limit x->xlim.

@@ -4072,7 +4072,7 @@

Referencescdir=0,

-)[source] +)[source]

Wrapper for series yielding an iterator of the terms of the series.

Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms @@ -4090,7 +4090,7 @@

References
-normal()[source]
+normal()[source]

Return the expression as a fraction.

expression -> a/b

@@ -4115,7 +4115,7 @@

Referencescdir=0,

-)[source] +)[source]

Wrapper to _eval_nseries if assumptions allow, else to series.

If x is given, x0 is 0, dir=’+’, and self has x, then _eval_nseries is called. This calculates “n” terms in the innermost expressions and @@ -4177,19 +4177,19 @@

Referencesfull=False,

-)[source] +)[source]

See the nsimplify function in sympy.simplify

-powsimp(*args, **kwargs)[source]
+powsimp(*args, **kwargs)[source]

See the powsimp function in sympy.simplify

-primitive()[source]
+primitive()[source]

Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive @@ -4210,25 +4210,25 @@

References
-radsimp(**kwargs)[source]
+radsimp(**kwargs)[source]

See the radsimp function in sympy.simplify

-ratsimp()[source]
+ratsimp()[source]

See the ratsimp function in sympy.simplify

-removeO()[source]
+removeO()[source]

Removes the additive O(..) symbol if there is one

-round(n=None)[source]
+round(n=None)[source]

Return x rounded to the given decimal place.

If a complex number would results, apply round to the real and imaginary components of the number.

@@ -4262,7 +4262,7 @@

References
-separate(deep=False, force=False)[source]
+separate(deep=False, force=False)[source]

See the separate function in sympy.simplify

@@ -4279,7 +4279,7 @@

Referencescdir=0,

-)[source] +)[source]

Series expansion of “self” around x = x0 yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None.

@@ -4392,7 +4392,7 @@

References
-taylor_term(n, x, *previous_terms)[source]
+taylor_term(n, x, *previous_terms)[source]

General method for the taylor term.

This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the “previous_terms”.

@@ -4400,13 +4400,13 @@

References
-together(*args, **kwargs)[source]
+together(*args, **kwargs)[source]

See the together function in sympy.polys

-trigsimp(**args)[source]
+trigsimp(**args)[source]

See the trigsimp function in sympy.simplify

@@ -4414,7 +4414,7 @@

References
-class sympy.core.expr.UnevaluatedExpr(arg, **kwargs)[source]
+class sympy.core.expr.UnevaluatedExpr(arg, **kwargs)[source]

Expression that is not evaluated unless released.

Examples

>>> from sympy import UnevaluatedExpr
@@ -4429,7 +4429,7 @@ 

References
-class sympy.core.expr.AtomicExpr(*args)[source]
+class sympy.core.expr.AtomicExpr(*args)[source]

A parent class for object which are both atoms and Exprs.

For example: Symbol, Number, Rational, Integer, … But not: Add, Mul, Pow, …

@@ -4440,7 +4440,7 @@

References

symbol

-class sympy.core.symbol.Symbol(name, **assumptions)[source]
+class sympy.core.symbol.Symbol(name, **assumptions)[source]

Symbol class is used to create symbolic variables.

Parameters:
@@ -4496,7 +4496,7 @@

References**assumptions,

-)[source] +)[source]

A Wild symbol matches anything, or anything without whatever is explicitly excluded.

@@ -4587,7 +4587,7 @@

References
-class sympy.core.symbol.Dummy(name=None, dummy_index=None, **assumptions)[source]
+class sympy.core.symbol.Dummy(name=None, dummy_index=None, **assumptions)[source]

Dummy symbols are each unique, even if they have the same name:

Examples

>>> from sympy import Dummy
@@ -4615,7 +4615,7 @@ 

References**args,

-) Any[source] +) Any[source]

Transform strings into instances of Symbol class.

symbols() function returns a sequence of symbols with names taken from names argument, which can be a comma or whitespace delimited @@ -4732,7 +4732,7 @@

References
-sympy.core.symbol.var(names, **args)[source]
+sympy.core.symbol.var(names, **args)[source]

Create symbols and inject them into the global namespace.

Explanation

This calls symbols() with the same arguments and puts the results @@ -4771,7 +4771,7 @@

References

intfunc

-sympy.core.intfunc.num_digits(n, base=10)[source]
+sympy.core.intfunc.num_digits(n, base=10)[source]

Return the number of digits needed to express n in give base.

Parameters:
@@ -4803,7 +4803,7 @@

References
-sympy.core.intfunc.trailing(n)[source]
+sympy.core.intfunc.trailing(n)[source]

Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n.

@@ -4823,7 +4823,7 @@

References
-sympy.core.intfunc.ilcm(*args)[source]
+sympy.core.intfunc.ilcm(*args)[source]

Computes integer least common multiple.

Examples

>>> from sympy import ilcm
@@ -4865,7 +4865,7 @@ 

References
-sympy.core.intfunc.igcd_lehmer(a, b)[source]
+sympy.core.intfunc.igcd_lehmer(a, b)[source]

Computes greatest common divisor of two integers.

Explanation

Euclid’s algorithm for the computation of the greatest @@ -4908,7 +4908,7 @@

References
-sympy.core.intfunc.igcdex(a, b)[source]
+sympy.core.intfunc.igcdex(a, b)[source]

Returns x, y, g such that g = x*a + y*b = gcd(a, b).

Examples

>>> from sympy.core.intfunc import igcdex
@@ -4929,7 +4929,7 @@ 

References
-sympy.core.intfunc.isqrt(n)[source]
+sympy.core.intfunc.isqrt(n)[source]

Return the largest integer less than or equal to \(\sqrt{n}\).

Parameters:
@@ -4973,7 +4973,7 @@

References
-sympy.core.intfunc.integer_nthroot(y, n)[source]
+sympy.core.intfunc.integer_nthroot(y, n)[source]

Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y).

@@ -5000,7 +5000,7 @@

References
-sympy.core.intfunc.integer_log(n, b)[source]
+sympy.core.intfunc.integer_log(n, b)[source]

Returns (e, bool) where e is the largest nonnegative integer such that \(|n| \geq |b^e|\) and bool is True if \(n = b^e\).

Examples

@@ -5040,7 +5040,7 @@

References
-sympy.core.intfunc.mod_inverse(a, m)[source]
+sympy.core.intfunc.mod_inverse(a, m)[source]

Return the number \(c\) such that, \(a \times c = 1 \pmod{m}\) where \(c\) has the same sign as \(m\). If no such value exists, a ValueError is raised.

@@ -5089,7 +5089,7 @@

References

numbers

-class sympy.core.numbers.Number(*obj)[source]
+class sympy.core.numbers.Number(*obj)[source]

Represents atomic numbers in SymPy.

Explanation

Floating point numbers are represented by the Float class. @@ -5112,31 +5112,31 @@

References
-as_coeff_Add(rational=False)[source]
+as_coeff_Add(rational=False)[source]

Efficiently extract the coefficient of a summation.

-as_coeff_Mul(rational=False)[source]
+as_coeff_Mul(rational=False)[source]

Efficiently extract the coefficient of a product.

-cofactors(other)[source]
+cofactors(other)[source]

Compute GCD and cofactors of \(self\) and \(other\).

-gcd(other)[source]
+gcd(other)[source]

Compute GCD of \(self\) and \(other\).

-lcm(other)[source]
+lcm(other)[source]

Compute LCM of \(self\) and \(other\).

@@ -5144,7 +5144,7 @@

References
-class sympy.core.numbers.Float(num, dps=None, precision=None)[source]
+class sympy.core.numbers.Float(num, dps=None, precision=None)[source]

Represent a floating-point number of arbitrary precision.

Examples

>>> from sympy import Float
@@ -5308,7 +5308,7 @@ 

References
-class sympy.core.numbers.Rational(p, q=None, gcd=None)[source]
+class sympy.core.numbers.Rational(p, q=None, gcd=None)[source]

Represents rational numbers (p/q) of any size.

Examples

>>> from sympy import Rational, nsimplify, S, pi
@@ -5398,13 +5398,13 @@ 

References
-as_coeff_Add(rational=False)[source]
+as_coeff_Add(rational=False)[source]

Efficiently extract the coefficient of a summation.

-as_coeff_Mul(rational=False)[source]
+as_coeff_Mul(rational=False)[source]

Efficiently extract the coefficient of a product.

@@ -5417,7 +5417,7 @@

Referencesclear=True,

-)[source] +)[source]

Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

@@ -5442,7 +5442,7 @@

Referencesvisual=False,

-)[source] +)[source]

A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used.

@@ -5456,7 +5456,7 @@

Referencesmax_denominator=1000000,

-)[source] +)[source]

Closest Rational to self with denominator at most max_denominator.

Examples

>>> from sympy import Rational
@@ -5472,7 +5472,7 @@ 

References
-class sympy.core.numbers.Integer(i)[source]
+class sympy.core.numbers.Integer(i)[source]

Represents integer numbers of any size.

Examples

>>> from sympy import Integer
@@ -5509,7 +5509,7 @@ 

References**args,

-)[source] +)[source]

Class for representing algebraic numbers in SymPy.

Symbolically, an instance of this class represents an element \(\alpha \in \mathbb{Q}(\theta) \hookrightarrow \mathbb{C}\). That is, the @@ -5534,7 +5534,7 @@

References**args,

-)[source] +)[source]

Construct a new algebraic number \(\alpha\) belonging to a number field \(k = \mathbb{Q}(\theta)\).

There are four instance attributes to be determined:

@@ -5711,25 +5711,25 @@

References
-as_expr(x=None)[source]
+as_expr(x=None)[source]

Create a Basic expression from self.

-as_poly(x=None)[source]
+as_poly(x=None)[source]

Create a Poly instance from self.

-coeffs()[source]
+coeffs()[source]

Returns all SymPy coefficients of an algebraic number.

-field_element(coeffs)[source]
+field_element(coeffs)[source]

Form another element of the same number field.

Parameters:
@@ -5780,7 +5780,7 @@

References
-minpoly_of_element()[source]
+minpoly_of_element()[source]

Compute the minimal polynomial for this algebraic number.

Explanation

Recall that we represent an element \(\alpha \in \mathbb{Q}(\theta)\). @@ -5791,13 +5791,13 @@

References
-native_coeffs()[source]
+native_coeffs()[source]

Returns all native coefficients of an algebraic number.

-primitive_element()[source]
+primitive_element()[source]

Get the primitive element \(\theta\) for the number field \(\mathbb{Q}(\theta)\) to which this algebraic number \(\alpha\) belongs.

@@ -5809,7 +5809,7 @@

References
-to_algebraic_integer()[source]
+to_algebraic_integer()[source]

Convert self to an algebraic integer.

@@ -5821,7 +5821,7 @@

Referencesradicals=True,

-)[source] +)[source]

Convert self to an AlgebraicNumber instance that is equal to its own primitive element.

@@ -5886,7 +5886,7 @@

Referencesminpoly=None,

-)[source] +)[source]

Convert to an Expr that is not an AlgebraicNumber, specifically, either a ComplexRootOf, or, optionally and where possible, an @@ -5912,10 +5912,10 @@

References
-class sympy.core.numbers.NumberSymbol[source]
+class sympy.core.numbers.NumberSymbol[source]
-approximation(number_cls)[source]
+approximation(number_cls)[source]

Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None.

@@ -5925,13 +5925,13 @@

References
-sympy.core.numbers.RealNumber[source]
+sympy.core.numbers.RealNumber[source]

alias of Float

-sympy.core.numbers.seterr(divide=False)[source]
+sympy.core.numbers.seterr(divide=False)[source]

Should SymPy raise an exception on 0/0 or return a nan?

divide == True …. raise an exception divide == False … return nan

@@ -5939,7 +5939,7 @@

References
-class sympy.core.numbers.Zero[source]
+class sympy.core.numbers.Zero[source]

The number zero.

Zero is a singleton, and can be accessed by S.Zero

Examples

@@ -5961,7 +5961,7 @@

References
-class sympy.core.numbers.One[source]
+class sympy.core.numbers.One[source]

The number one.

One is a singleton, and can be accessed by S.One.

Examples

@@ -5981,7 +5981,7 @@

References
-class sympy.core.numbers.NegativeOne[source]
+class sympy.core.numbers.NegativeOne[source]

The number negative one.

NegativeOne is a singleton, and can be accessed by S.NegativeOne.

Examples

@@ -6005,7 +6005,7 @@

References
-class sympy.core.numbers.Half[source]
+class sympy.core.numbers.Half[source]

The rational number 1/2.

Half is a singleton, and can be accessed by S.Half.

Examples

@@ -6025,7 +6025,7 @@

References
-class sympy.core.numbers.NaN[source]
+class sympy.core.numbers.NaN[source]

Not a Number.

Explanation

This serves as a place holder for numeric values that are indeterminate. @@ -6068,7 +6068,7 @@

References
-class sympy.core.numbers.Infinity[source]
+class sympy.core.numbers.Infinity[source]

Positive infinite quantity.

Explanation

In real analysis the symbol \(\infty\) denotes an unbounded @@ -6106,7 +6106,7 @@

References
-class sympy.core.numbers.NegativeInfinity[source]
+class sympy.core.numbers.NegativeInfinity[source]

Negative infinite quantity.

NegativeInfinity is a singleton, and can be accessed by S.NegativeInfinity.

@@ -6118,7 +6118,7 @@

References
-class sympy.core.numbers.ComplexInfinity[source]
+class sympy.core.numbers.ComplexInfinity[source]

Complex infinity.

Explanation

In complex analysis the symbol \(\tilde\infty\), called “complex @@ -6146,7 +6146,7 @@

References
-class sympy.core.numbers.Exp1[source]
+class sympy.core.numbers.Exp1[source]

The \(e\) constant.

Explanation

The transcendental number \(e = 2.718281828\ldots\) is the base of the @@ -6173,7 +6173,7 @@

References
-class sympy.core.numbers.ImaginaryUnit[source]
+class sympy.core.numbers.ImaginaryUnit[source]

The imaginary unit, \(i = \sqrt{-1}\).

I is a singleton, and can be accessed by S.I, or can be imported as I.

@@ -6198,7 +6198,7 @@

References
-class sympy.core.numbers.Pi[source]
+class sympy.core.numbers.Pi[source]

The \(\pi\) constant.

Explanation

The transcendental number \(\pi = 3.141592654\ldots\) represents the ratio @@ -6233,7 +6233,7 @@

References
-class sympy.core.numbers.EulerGamma[source]
+class sympy.core.numbers.EulerGamma[source]

The Euler-Mascheroni constant.

Explanation

\(\gamma = 0.5772157\ldots\) (also called Euler’s constant) is a mathematical @@ -6266,7 +6266,7 @@

References
-class sympy.core.numbers.Catalan[source]
+class sympy.core.numbers.Catalan[source]

Catalan’s constant.

Explanation

\(G = 0.91596559\ldots\) is given by the infinite series

@@ -6295,7 +6295,7 @@

References
-class sympy.core.numbers.GoldenRatio[source]
+class sympy.core.numbers.GoldenRatio[source]

The golden ratio, \(\phi\).

Explanation

\(\phi = \frac{1 + \sqrt{5}}{2}\) is an algebraic number. Two quantities @@ -6323,7 +6323,7 @@

References
-class sympy.core.numbers.TribonacciConstant[source]
+class sympy.core.numbers.TribonacciConstant[source]

The tribonacci constant.

Explanation

The tribonacci numbers are like the Fibonacci numbers, but instead @@ -6358,7 +6358,7 @@

References
-sympy.core.numbers.mod_inverse(a, m)[source]
+sympy.core.numbers.mod_inverse(a, m)[source]

Return the number \(c\) such that, \(a \times c = 1 \pmod{m}\) where \(c\) has the same sign as \(m\). If no such value exists, a ValueError is raised.

@@ -6404,7 +6404,7 @@

References
-sympy.core.numbers.equal_valued(x, y)[source]
+sympy.core.numbers.equal_valued(x, y)[source]

Compare expressions treating plain floats as rationals.

Examples

>>> from sympy import S, symbols, Rational, Float
@@ -6461,7 +6461,7 @@ 

References

power

-class sympy.core.power.Pow(b, e, evaluate=None)[source]
+class sympy.core.power.Pow(b, e, evaluate=None)[source]

Defines the expression x**y as “x raised to a power y”

Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr in core @@ -6599,7 +6599,7 @@

References
-as_base_exp()[source]
+as_base_exp()[source]

Return base and exp of self.

Explanation

If base a Rational less than 1, then return 1/Rational, -exp. @@ -6627,7 +6627,7 @@

Referencesclear=True,

-)[source] +)[source]

Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

@@ -6678,7 +6678,7 @@

References

mul

-class sympy.core.mul.Mul(*args, evaluate=None, _sympify=True)[source]
+class sympy.core.mul.Mul(*args, evaluate=None, _sympify=True)[source]

Expression representing multiplication operation for algebraic field.

Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr in core @@ -6750,7 +6750,7 @@

References
-as_coeff_Mul(rational=False)[source]
+as_coeff_Mul(rational=False)[source]

Efficiently extract the coefficient of a product.

@@ -6763,7 +6763,7 @@

Referencesclear=True,

-)[source] +)[source]

Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

@@ -6777,7 +6777,7 @@

References
-as_ordered_factors(order=None)[source]
+as_ordered_factors(order=None)[source]

Transform an expression into an ordered list of factors.

Examples

>>> from sympy import sin, cos
@@ -6792,7 +6792,7 @@ 

References
-as_two_terms()[source]
+as_two_terms()[source]

Return head and tail of self.

This is the most efficient way to get the head and tail of an expression.

@@ -6814,7 +6814,7 @@

References
-classmethod flatten(seq)[source]
+classmethod flatten(seq)[source]

Return commutative, noncommutative and order arguments by combining related terms.

Notes

@@ -6897,7 +6897,7 @@

References
-sympy.core.mul.prod(a, start=1)[source]
+sympy.core.mul.prod(a, start=1)[source]
Return product of elements of a. Start with int 1 so if only

ints are included then an int result is returned.

@@ -6926,7 +6926,7 @@

References

add

-class sympy.core.add.Add(*args, evaluate=None, _sympify=True)[source]
+class sympy.core.add.Add(*args, evaluate=None, _sympify=True)[source]

Expression representing addition operation for algebraic group.

Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr in core @@ -7012,13 +7012,13 @@

References
-as_coeff_Add(rational=False, deps=None)[source]
+as_coeff_Add(rational=False, deps=None)[source]

Efficiently extract the coefficient of a summation.

-as_coeff_add(*deps)[source]
+as_coeff_add(*deps)[source]

Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms.

Examples

@@ -7040,7 +7040,7 @@

Referencesclear=True,

-)[source] +)[source]

Return the tuple (R, self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the @@ -7061,7 +7061,7 @@

References
-as_numer_denom()[source]
+as_numer_denom()[source]

Decomposes an expression to its numerator part and its denominator part.

Examples

@@ -7080,7 +7080,7 @@

References
-as_real_imag(deep=True, **hints)[source]
+as_real_imag(deep=True, **hints)[source]

Return a tuple representing a complex number.

Examples

>>> from sympy import I
@@ -7096,7 +7096,7 @@ 

References
-as_two_terms()[source]
+as_two_terms()[source]

Return head and tail of self.

This is the most efficient way to get the head and tail of an expression.

@@ -7117,7 +7117,7 @@

References
-extract_leading_order(symbols, point=None)[source]
+extract_leading_order(symbols, point=None)[source]

Returns the leading term and its order.

Examples

>>> from sympy.abc import x
@@ -7133,7 +7133,7 @@ 

References
-classmethod flatten(seq)[source]
+classmethod flatten(seq)[source]

Takes the sequence “seq” of nested Adds and returns a flatten list.

Returns: (commutative_part, noncommutative_part, order_symbols)

Applies associativity, all terms are commutable with respect to @@ -7147,7 +7147,7 @@

References
-primitive()[source]
+primitive()[source]

Return (R, self/R) where R` is the Rational GCD of self`.

R is collected only from the leading coefficient of each term.

Examples

@@ -7187,7 +7187,7 @@

References

mod

-class sympy.core.mod.Mod(p, q)[source]
+class sympy.core.mod.Mod(p, q)[source]

Represents a modulo operation on symbolic expressions.

Parameters:
@@ -7231,7 +7231,7 @@

References

relational

-class sympy.core.relational.Relational(lhs, rhs, rop=None, **assumptions)[source]
+class sympy.core.relational.Relational(lhs, rhs, rop=None, **assumptions)[source]

Base class for all relation types.

Parameters:
@@ -7359,7 +7359,7 @@

References
-equals(other, failing_expression=False)[source]
+equals(other, failing_expression=False)[source]

Return True if the sides of the relationship are mathematically identical and the type of relationship is the same. If failing_expression is True, return the expression whose truth value @@ -7472,49 +7472,49 @@

References
-sympy.core.relational.Rel[source]
+sympy.core.relational.Rel[source]

alias of Relational

-sympy.core.relational.Eq[source]
+sympy.core.relational.Eq[source]

alias of Equality

-sympy.core.relational.Ne[source]
+sympy.core.relational.Ne[source]

alias of Unequality

-sympy.core.relational.Lt[source]
+sympy.core.relational.Lt[source]

alias of StrictLessThan

-sympy.core.relational.Le[source]
+sympy.core.relational.Le[source]

alias of LessThan

-sympy.core.relational.Gt[source]
+sympy.core.relational.Gt[source]

alias of StrictGreaterThan

-sympy.core.relational.Ge[source]
+sympy.core.relational.Ge[source]

alias of GreaterThan

-class sympy.core.relational.Equality(lhs, rhs, **options)[source]
+class sympy.core.relational.Equality(lhs, rhs, **options)[source]

An equal relation between two objects.

Explanation

Represents that two objects are equal. If they can be easily shown @@ -7573,7 +7573,7 @@

References
-as_poly(*gens, **kwargs)[source]
+as_poly(*gens, **kwargs)[source]

Returns lhs-rhs as a Poly

Examples

>>> from sympy import Eq
@@ -7586,7 +7586,7 @@ 

References
-integrate(*args, **kwargs)[source]
+integrate(*args, **kwargs)[source]

See the integrate function in sympy.integrals

@@ -7594,7 +7594,7 @@

References
-class sympy.core.relational.GreaterThan(lhs, rhs, **options)[source]
+class sympy.core.relational.GreaterThan(lhs, rhs, **options)[source]

Class representations of inequalities.

Explanation

The *Than classes represent inequal relationships, where the left-hand @@ -7848,7 +7848,7 @@

References
-class sympy.core.relational.LessThan(lhs, rhs, **options)[source]
+class sympy.core.relational.LessThan(lhs, rhs, **options)[source]

Class representations of inequalities.

Explanation

The *Than classes represent inequal relationships, where the left-hand @@ -8102,7 +8102,7 @@

References
-class sympy.core.relational.Unequality(lhs, rhs, **options)[source]
+class sympy.core.relational.Unequality(lhs, rhs, **options)[source]

An unequal relation between two objects.

Explanation

Represents that two objects are not equal. If they can be shown to be @@ -8130,7 +8130,7 @@

References
-class sympy.core.relational.StrictGreaterThan(lhs, rhs, **options)[source]
+class sympy.core.relational.StrictGreaterThan(lhs, rhs, **options)[source]

Class representations of inequalities.

Explanation

The *Than classes represent inequal relationships, where the left-hand @@ -8384,7 +8384,7 @@

References
-class sympy.core.relational.StrictLessThan(lhs, rhs, **options)[source]
+class sympy.core.relational.StrictLessThan(lhs, rhs, **options)[source]

Class representations of inequalities.

Explanation

The *Than classes represent inequal relationships, where the left-hand @@ -8641,7 +8641,7 @@

References

multidimensional

-class sympy.core.multidimensional.vectorize(*mdargs)[source]
+class sympy.core.multidimensional.vectorize(*mdargs)[source]

Generalizes a function taking scalars to accept multidimensional arguments.

Examples

>>> from sympy import vectorize, diff, sin, symbols, Function
@@ -8674,7 +8674,7 @@ 

References

function

-class sympy.core.function.Lambda(signature, expr)[source]
+class sympy.core.function.Lambda(signature, expr)[source]

Lambda(x, expr) represents a lambda function similar to Python’s ‘lambda x: expr’. A function of several variables is written as Lambda((x, y, …), expr).

@@ -8741,7 +8741,7 @@

References
-class sympy.core.function.WildFunction(*args)[source]
+class sympy.core.function.WildFunction(*args)[source]

A WildFunction function matches any function (with its arguments).

Examples

>>> from sympy import WildFunction, Function, cos
@@ -8788,7 +8788,7 @@ 

References
-class sympy.core.function.Derivative(expr, *variables, **kwargs)[source]
+class sympy.core.function.Derivative(expr, *variables, **kwargs)[source]

Carries out differentiation of the given expression with respect to symbols.

Examples

>>> from sympy import Derivative, Function, symbols, Subs
@@ -8992,7 +8992,7 @@ 

References
-classmethod _sort_variable_count(vc)[source]
+classmethod _sort_variable_count(vc)[source]

Sort (variable, count) pairs into canonical order while retaining order of variables that do not commute during differentiation:

@@ -9051,7 +9051,7 @@

Referenceswrt=None,

-)[source] +)[source]

Expresses a Derivative instance as a finite difference.

Parameters:
@@ -9137,7 +9137,7 @@

References
-doit_numerically(z0)[source]
+doit_numerically(z0)[source]

Evaluate the derivative at z numerically.

When we can represent derivatives at a point, this should be folded into the normal evalf. For now, we need a special method.

@@ -9147,7 +9147,7 @@

References
-sympy.core.function.diff(f, *symbols, **kwargs)[source]
+sympy.core.function.diff(f, *symbols, **kwargs)[source]

Differentiate f with respect to symbols.

Explanation

This is just a wrapper to unify .diff() and the Derivative class; its @@ -9213,7 +9213,7 @@

References
-class sympy.core.function.FunctionClass(*args, **kwargs)[source]
+class sympy.core.function.FunctionClass(*args, **kwargs)[source]

Base class for function classes. FunctionClass is a subclass of type.

Use Function(‘<function name>’ [ , signature ]) to create undefined function classes.

@@ -9256,7 +9256,7 @@

References
-class sympy.core.function.Function(*args)[source]
+class sympy.core.function.Function(*args)[source]

Base class for applied mathematical functions.

It also serves as a constructor for undefined function classes.

See the Writing Custom Functions guide for details on how to subclass @@ -9304,19 +9304,19 @@

References
-as_base_exp()[source]
+as_base_exp()[source]

Returns the method as the 2-tuple (base, exponent).

-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of the function.

-classmethod is_singular(a)[source]
+classmethod is_singular(a)[source]

Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic.

@@ -9353,7 +9353,7 @@

References
-class sympy.core.function.Subs(expr, variables, point, **assumptions)[source]
+class sympy.core.function.Subs(expr, variables, point, **assumptions)[source]

Represents unevaluated substitutions of an expression.

Subs(expr, x, x0) represents the expression resulting from substituting x with x0 in expr.

@@ -9475,7 +9475,7 @@

References**hints,

-)[source] +)[source]

Expand an expression using methods given as hints.

Explanation

Hints evaluated unless explicitly set to False are: basic, log, @@ -9758,12 +9758,12 @@

References
-class sympy.core.function.PoleError[source]
+class sympy.core.function.PoleError[source]

-sympy.core.function.count_ops(expr, visual=False)[source]
+sympy.core.function.count_ops(expr, visual=False)[source]

Return a representation (integer or expression) of the operations in expr.

Parameters:
@@ -9838,7 +9838,7 @@

References
-sympy.core.function.expand_mul(expr, deep=True)[source]
+sympy.core.function.expand_mul(expr, deep=True)[source]

Wrapper around expand that only uses the mul hint. See the expand docstring for more information.

Examples

@@ -9861,7 +9861,7 @@

Referencesfactor=False,

-)[source] +)[source]

Wrapper around expand that only uses the log hint. See the expand docstring for more information.

Examples

@@ -9875,7 +9875,7 @@

References
-sympy.core.function.expand_func(expr, deep=True)[source]
+sympy.core.function.expand_func(expr, deep=True)[source]

Wrapper around expand that only uses the func hint. See the expand docstring for more information.

Examples

@@ -9889,7 +9889,7 @@

References
-sympy.core.function.expand_trig(expr, deep=True)[source]
+sympy.core.function.expand_trig(expr, deep=True)[source]

Wrapper around expand that only uses the trig hint. See the expand docstring for more information.

Examples

@@ -9903,7 +9903,7 @@

References
-sympy.core.function.expand_complex(expr, deep=True)[source]
+sympy.core.function.expand_complex(expr, deep=True)[source]

Wrapper around expand that only uses the complex hint. See the expand docstring for more information.

Examples

@@ -9923,7 +9923,7 @@

References
-sympy.core.function.expand_multinomial(expr, deep=True)[source]
+sympy.core.function.expand_multinomial(expr, deep=True)[source]

Wrapper around expand that only uses the multinomial hint. See the expand docstring for more information.

Examples

@@ -9937,7 +9937,7 @@

References
-sympy.core.function.expand_power_exp(expr, deep=True)[source]
+sympy.core.function.expand_power_exp(expr, deep=True)[source]

Wrapper around expand that only uses the power_exp hint.

See the expand docstring for more information.

Examples

@@ -9960,7 +9960,7 @@

References
-sympy.core.function.expand_power_base(expr, deep=True, force=False)[source]
+sympy.core.function.expand_power_base(expr, deep=True, force=False)[source]

Wrapper around expand that only uses the power_base hint.

A wrapper to expand(power_base=True) which separates a power with a base that is a Mul into a product of powers, without performing any other @@ -10045,7 +10045,7 @@

References
-sympy.core.function.nfloat(expr, n=15, exponent=False, dkeys=False)[source]
+sympy.core.function.nfloat(expr, n=15, exponent=False, dkeys=False)[source]

Make all Rationals in expr Floats except those in exponents (unless the exponents flag is set to True) and those in undefined functions. When processing dictionaries, do not modify the keys @@ -10071,7 +10071,7 @@

References

evalf

-class sympy.core.evalf.EvalfMixin[source]
+class sympy.core.evalf.EvalfMixin[source]

Mixin class adding evalf capability.

@@ -10087,7 +10087,7 @@

Referencesverbose=False,

-)[source] +)[source]

Evaluate the given formula to an accuracy of n digits.

Parameters:
@@ -10170,7 +10170,7 @@

Referencesverbose=False,

-)[source] +)[source]

Evaluate the given formula to an accuracy of n digits.

Parameters:
@@ -10243,12 +10243,12 @@

References
-class sympy.core.evalf.PrecisionExhausted[source]
+class sympy.core.evalf.PrecisionExhausted[source]

-sympy.core.evalf.N(x, n=15, **options)[source]
+sympy.core.evalf.N(x, n=15, **options)[source]

Calls x.evalf(n, **options).

Explanations

Both .n() and N() are equivalent to .evalf(); use the one that you like better. @@ -10269,7 +10269,7 @@

References

containers

-class sympy.core.containers.Tuple(*args, **kwargs)[source]
+class sympy.core.containers.Tuple(*args, **kwargs)[source]

Wrapper around the builtin tuple object.

Parameters:
@@ -10296,7 +10296,7 @@

References
-index(value, start=None, stop=None)[source]
+index(value, start=None, stop=None)[source]

Searches and returns the first index of the value.

@@ -10324,7 +10324,7 @@

References
-tuple_count(value) int[source]
+tuple_count(value) int[source]

Return number of occurrences of value.

@@ -10332,7 +10332,7 @@

References
-class sympy.core.containers.TupleKind(*args)[source]
+class sympy.core.containers.TupleKind(*args)[source]

TupleKind is a subclass of Kind, which is used to define Kind of Tuple.

Parameters of TupleKind will be kinds of all the arguments in Tuples, for example

@@ -10361,7 +10361,7 @@

References
-class sympy.core.containers.Dict(*args)[source]
+class sympy.core.containers.Dict(*args)[source]

Wrapper around the builtin dict object.

Explanation

The Dict is a subclass of Basic, so that it works well in the @@ -10394,25 +10394,25 @@

References
-get(key, default=None)[source]
+get(key, default=None)[source]

Returns the value for key if the key is in the dictionary.

-items()[source]
+items()[source]

Returns a set-like object providing a view on dict’s items.

-keys()[source]
+keys()[source]

Returns the list of the dict’s keys.

-values()[source]
+values()[source]

Returns the list of the dict’s values.

@@ -10432,7 +10432,7 @@

Referencesfraction=True,

-)[source] +)[source]

Compute the GCD of terms and put them together.

Parameters:
@@ -10509,7 +10509,7 @@

Referencessign=True,

-)[source] +)[source]

Remove common factors from terms in all arguments without changing the underlying structure of the expr. No expansion or simplification (and no processing of non-commutatives) is performed.

@@ -10578,7 +10578,7 @@

References

kind

-class sympy.core.kind.Kind(*args)[source]
+class sympy.core.kind.Kind(*args)[source]

Base class for kinds.

Kind of the object represents the mathematical classification that the entity falls into. It is expected that functions and classes @@ -10622,7 +10622,7 @@

References

-sympy.core.sorting.default_sort_key(item, order=None)[source]
+sympy.core.sorting.default_sort_key(item, order=None)[source]

Return a key that can be used for sorting.

The key has the structure:

(class_key, (len(args), args), exponent.sort_key(), coefficient)

@@ -10728,7 +10728,7 @@

Sorting
-sympy.core.sorting.ordered(seq, keys=None, default=True, warn=False)[source]
+sympy.core.sorting.ordered(seq, keys=None, default=True, warn=False)[source]

Return an iterator of the seq where keys are used to break ties in a conservative fashion: if, after applying a key, there are no ties then no other keys will be computed.

@@ -10839,7 +10839,7 @@

Examplestolerance=None,

-)[source] +)[source]

Return a random complex number.

To reduce chance of hitting branch cuts or anything, we guarantee b <= Im z <= d, a <= Re z <= c

@@ -10862,7 +10862,7 @@

Examplesd=1,

-)[source] +)[source]

Test numerically that f and g agree when evaluated in the argument z.

If z is None, all symbols will be tested. This routine does not test whether there are Floats present with precision higher than 15 digits @@ -10892,7 +10892,7 @@

Examplesd=1,

-)[source] +)[source]

Test numerically that the symbolically computed derivative of f with respect to z is correct.

This routine does not test whether there are Floats present with @@ -10910,7 +10910,7 @@

Examples
-sympy.core.random._randrange(seed=None)[source]
+sympy.core.random._randrange(seed=None)[source]

Return a randrange generator.

seed can be

    @@ -10936,7 +10936,7 @@

    Examples
    -sympy.core.random._randint(seed=None)[source]
    +sympy.core.random._randint(seed=None)[source]

    Return a randint generator.

    seed can be

      @@ -10965,7 +10965,7 @@

      Examples

      Traversal

      -sympy.core.traversal.bottom_up(rv, F, atoms=False, nonbasic=False)[source]
      +sympy.core.traversal.bottom_up(rv, F, atoms=False, nonbasic=False)[source]

      Apply F to all expressions in an expression tree from the bottom up. If atoms is True, apply F even if there are no args; if nonbasic is True, try to apply F to non-Basic objects.

      @@ -10973,7 +10973,7 @@

      Examples
      -sympy.core.traversal.postorder_traversal(node, keys=None)[source]
      +sympy.core.traversal.postorder_traversal(node, keys=None)[source]

      Do a postorder traversal of a tree.

      This generator recursively yields nodes that it has visited in a postorder fashion. That is, it descends through the tree depth-first to yield all of @@ -11018,7 +11018,7 @@

      Examples
      -sympy.core.traversal.preorder_traversal(node, keys=None)[source]
      +sympy.core.traversal.preorder_traversal(node, keys=None)[source]

      Do a pre-order traversal of a tree.

      This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the @@ -11066,7 +11066,7 @@

      Examples
      -sympy.core.traversal.use(expr, func, level=0, args=(), kwargs={})[source]
      +sympy.core.traversal.use(expr, func, level=0, args=(), kwargs={})[source]

      Use func to transform expr at the given level.

      Examples

      >>> from sympy import use, expand
      @@ -11086,7 +11086,7 @@ 

      Examples
      -sympy.core.traversal.walk(e, *target)[source]
      +sympy.core.traversal.walk(e, *target)[source]

      Iterate through the args that are the given types (target) and return a list of the args that were traversed; arguments that are not of the specified types are not traversed.

      @@ -11144,7 +11144,7 @@

      ExamplesFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/crypto.html b/dev/modules/crypto.html index 25c5ee79b0d..b2b1ea19a5c 100644 --- a/dev/modules/crypto.html +++ b/dev/modules/crypto.html @@ -835,7 +835,7 @@

      Cryptography
      -sympy.crypto.crypto.AZ(s=None)[source]
      +sympy.crypto.crypto.AZ(s=None)[source]

      Return the letters of s in uppercase. In case more than one string is passed, each of them will be processed and a list of upper case strings will be returned.

      @@ -855,7 +855,7 @@

      Cryptography
      -sympy.crypto.crypto.padded_key(key, symbols)[source]
      +sympy.crypto.crypto.padded_key(key, symbols)[source]

      Return a string of the distinct characters of symbols with those of key appearing first. A ValueError is raised if a) there are duplicate characters in symbols or @@ -874,7 +874,7 @@

      Cryptography
      -sympy.crypto.crypto.check_and_join(phrase, symbols=None, filter=None)[source]
      +sympy.crypto.crypto.check_and_join(phrase, symbols=None, filter=None)[source]

      Joins characters of phrase and if symbols is given, raises an error if any character in phrase is not in symbols.

      @@ -908,7 +908,7 @@

      Cryptography
      -sympy.crypto.crypto.cycle_list(k, n)[source]
      +sympy.crypto.crypto.cycle_list(k, n)[source]

      Returns the elements of the list range(n) shifted to the left by k (so the list starts with k (mod n)).

      Examples

      @@ -921,7 +921,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_shift(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.encipher_shift(msg, key, symbols=None)[source]

      Performs shift cipher encryption on plaintext msg, and returns the ciphertext.

      @@ -1000,7 +1000,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_shift(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_shift(msg, key, symbols=None)[source]

      Return the text by shifting the characters of msg to the left by the amount given by key.

      Examples

      @@ -1024,7 +1024,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_rot13(msg, symbols=None)[source]
      +sympy.crypto.crypto.encipher_rot13(msg, symbols=None)[source]

      Performs the ROT13 encryption on a given plaintext msg.

      Explanation

      ROT13 is a substitution cipher which substitutes each letter @@ -1047,7 +1047,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_rot13(msg, symbols=None)[source]
      +sympy.crypto.crypto.decipher_rot13(msg, symbols=None)[source]

      Performs the ROT13 decryption on a given plaintext msg.

      Explanation

      decipher_rot13 is equivalent to encipher_rot13 as both @@ -1081,7 +1081,7 @@

      Cryptography_inverse=False,

      -)[source] +)[source]

      Performs the affine cipher encryption on plaintext msg, and returns the ciphertext.

      @@ -1151,7 +1151,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_affine(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_affine(msg, key, symbols=None)[source]

      Return the deciphered text that was made from the mapping, \(x \rightarrow ax+b\) (mod \(N\)), where N is the number of characters in the alphabet. Deciphering is done by @@ -1175,7 +1175,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_atbash(msg, symbols=None)[source]
      +sympy.crypto.crypto.encipher_atbash(msg, symbols=None)[source]

      Enciphers a given msg into its Atbash ciphertext and returns it.

      Explanation

      Atbash is a substitution cipher originally used to encrypt the Hebrew @@ -1191,7 +1191,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_atbash(msg, symbols=None)[source]
      +sympy.crypto.crypto.decipher_atbash(msg, symbols=None)[source]

      Deciphers a given msg using Atbash cipher and returns it.

      Explanation

      decipher_atbash is functionally equivalent to encipher_atbash. @@ -1225,7 +1225,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_substitution(msg, old, new=None)[source]
      +sympy.crypto.crypto.encipher_substitution(msg, old, new=None)[source]

      Returns the ciphertext obtained by replacing each character that appears in old with the corresponding character in new. If old is a mapping, then new is ignored and the replacements @@ -1280,7 +1280,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_vigenere(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.encipher_vigenere(msg, key, symbols=None)[source]

      Performs the Vigenere cipher encryption on plaintext msg, and returns the ciphertext.

      Examples

      @@ -1437,7 +1437,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_vigenere(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_vigenere(msg, key, symbols=None)[source]

      Decode using the Vigenere cipher.

      Examples

      >>> from sympy.crypto.crypto import decipher_vigenere
      @@ -1451,7 +1451,7 @@ 

      Cryptography
      -sympy.crypto.crypto.encipher_hill(msg, key, symbols=None, pad='Q')[source]
      +sympy.crypto.crypto.encipher_hill(msg, key, symbols=None, pad='Q')[source]

      Return the Hill cipher encryption of msg.

      Parameters:
      @@ -1536,7 +1536,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_hill(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_hill(msg, key, symbols=None)[source]

      Deciphering is the same as enciphering but using the inverse of the key matrix.

      Examples

      @@ -1587,7 +1587,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_bifid(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.encipher_bifid(msg, key, symbols=None)[source]

      Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.

      This is the version of the Bifid cipher that uses an \(n \times n\) @@ -1632,7 +1632,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_bifid(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_bifid(msg, key, symbols=None)[source]

      Performs the Bifid cipher decryption on ciphertext msg, and returns the plaintext.

      This is the version of the Bifid cipher that uses the \(n \times n\) @@ -1711,7 +1711,7 @@

      Cryptography
      -sympy.crypto.crypto.bifid5_square(key=None)[source]
      +sympy.crypto.crypto.bifid5_square(key=None)[source]

      5x5 Polybius square.

      Produce the Polybius square for the \(5 \times 5\) Bifid cipher.

      Examples

      @@ -1729,7 +1729,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_bifid5(msg, key)[source]
      +sympy.crypto.crypto.encipher_bifid5(msg, key)[source]

      Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.

      @@ -1832,7 +1832,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_bifid5(msg, key)[source]
      +sympy.crypto.crypto.decipher_bifid5(msg, key)[source]

      Return the Bifid cipher decryption of msg.

      Parameters:
      @@ -1874,7 +1874,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_bifid6(msg, key)[source]
      +sympy.crypto.crypto.encipher_bifid6(msg, key)[source]

      Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.

      This is the version of the Bifid cipher that uses the \(6 \times 6\) @@ -1907,7 +1907,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_bifid6(msg, key)[source]
      +sympy.crypto.crypto.decipher_bifid6(msg, key)[source]

      Performs the Bifid cipher decryption on ciphertext msg, and returns the plaintext.

      This is the version of the Bifid cipher that uses the \(6 \times 6\) @@ -1946,7 +1946,7 @@

      Cryptography
      -sympy.crypto.crypto.bifid6_square(key=None)[source]
      +sympy.crypto.crypto.bifid6_square(key=None)[source]

      6x6 Polybius square.

      Produces the Polybius square for the \(6 \times 6\) Bifid cipher. Assumes alphabet of symbols is “A”, …, “Z”, “0”, …, “9”.

      @@ -1967,7 +1967,7 @@

      Cryptography
      -sympy.crypto.crypto.rsa_public_key(*args, **kwargs)[source]
      +sympy.crypto.crypto.rsa_public_key(*args, **kwargs)[source]

      Return the RSA public key pair, \((n, e)\)

      Parameters:
      @@ -2133,7 +2133,7 @@

      Cryptography
      -sympy.crypto.crypto.rsa_private_key(*args, **kwargs)[source]
      +sympy.crypto.crypto.rsa_private_key(*args, **kwargs)[source]

      Return the RSA private key pair, \((n, d)\)

      Parameters:
      @@ -2259,7 +2259,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_rsa(i, key, factors=None)[source]
      +sympy.crypto.crypto.encipher_rsa(i, key, factors=None)[source]

      Encrypt the plaintext with RSA.

      Parameters:
      @@ -2324,7 +2324,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_rsa(i, key, factors=None)[source]
      +sympy.crypto.crypto.decipher_rsa(i, key, factors=None)[source]

      Decrypt the ciphertext with RSA.

      Parameters:
      @@ -2419,7 +2419,7 @@

      Cryptography
      -sympy.crypto.crypto.kid_rsa_public_key(a, b, A, B)[source]
      +sympy.crypto.crypto.kid_rsa_public_key(a, b, A, B)[source]

      Kid RSA is a version of RSA useful to teach grade school children since it does not involve exponentiation.

      Explanation

      @@ -2447,7 +2447,7 @@

      Cryptography
      -sympy.crypto.crypto.kid_rsa_private_key(a, b, A, B)[source]
      +sympy.crypto.crypto.kid_rsa_private_key(a, b, A, B)[source]

      Compute \(M = a b - 1\), \(e = A M + a\), \(d = B M + b\), \(n = (e d - 1) / M\). The private key is \(d\), which Bob keeps secret.

      @@ -2462,7 +2462,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_kid_rsa(msg, key)[source]
      +sympy.crypto.crypto.encipher_kid_rsa(msg, key)[source]

      Here msg is the plaintext and key is the public key.

      Examples

      >>> from sympy.crypto.crypto import (
      @@ -2478,7 +2478,7 @@ 

      Cryptography
      -sympy.crypto.crypto.decipher_kid_rsa(msg, key)[source]
      +sympy.crypto.crypto.decipher_kid_rsa(msg, key)[source]

      Here msg is the plaintext and key is the private key.

      Examples

      >>> from sympy.crypto.crypto import (
      @@ -2498,7 +2498,7 @@ 

      Cryptography
      -sympy.crypto.crypto.encode_morse(msg, sep='|', mapping=None)[source]
      +sympy.crypto.crypto.encode_morse(msg, sep='|', mapping=None)[source]

      Encodes a plaintext into popular Morse Code with letters separated by sep and words by a double sep.

      Examples

      @@ -2519,7 +2519,7 @@

      Cryptography
      -sympy.crypto.crypto.decode_morse(msg, sep='|', mapping=None)[source]
      +sympy.crypto.crypto.decode_morse(msg, sep='|', mapping=None)[source]

      Decodes a Morse Code with letters separated by sep (default is ‘|’) and words by \(word_sep\) (default is ‘||) into plaintext.

      @@ -2541,7 +2541,7 @@

      Cryptography
      -sympy.crypto.crypto.lfsr_sequence(key, fill, n)[source]
      +sympy.crypto.crypto.lfsr_sequence(key, fill, n)[source]

      This function creates an LFSR sequence.

      Parameters:
      @@ -2630,7 +2630,7 @@

      Cryptography
      -sympy.crypto.crypto.lfsr_autocorrelation(L, P, k)[source]
      +sympy.crypto.crypto.lfsr_autocorrelation(L, P, k)[source]

      This function computes the LFSR autocorrelation function.

      Parameters:
      @@ -2673,7 +2673,7 @@

      Cryptography
      -sympy.crypto.crypto.lfsr_connection_polynomial(s)[source]
      +sympy.crypto.crypto.lfsr_connection_polynomial(s)[source]

      This function computes the LFSR connection polynomial.

      Parameters:
      @@ -2733,7 +2733,7 @@

      Cryptography
      -sympy.crypto.crypto.elgamal_public_key(key)[source]
      +sympy.crypto.crypto.elgamal_public_key(key)[source]

      Return three number tuple as public key.

      Parameters:
      @@ -2760,7 +2760,7 @@

      Cryptography
      -sympy.crypto.crypto.elgamal_private_key(digit=10, seed=None)[source]
      +sympy.crypto.crypto.elgamal_private_key(digit=10, seed=None)[source]

      Return three number tuple as private key.

      Parameters:
      @@ -2802,7 +2802,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_elgamal(i, key, seed=None)[source]
      +sympy.crypto.crypto.encipher_elgamal(i, key, seed=None)[source]

      Encrypt message with public key.

      Parameters:
      @@ -2848,7 +2848,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_elgamal(msg, key)[source]
      +sympy.crypto.crypto.decipher_elgamal(msg, key)[source]

      Decrypt message with private key.

      \(msg = (c_{1}, c_{2})\)

      \(key = (p, r, d)\)

      @@ -2876,7 +2876,7 @@

      Cryptography
      -sympy.crypto.crypto.dh_public_key(key)[source]
      +sympy.crypto.crypto.dh_public_key(key)[source]

      Return three number tuple as public key.

      This is the tuple that Alice sends to Bob.

      @@ -2908,7 +2908,7 @@

      Cryptography
      -sympy.crypto.crypto.dh_private_key(digit=10, seed=None)[source]
      +sympy.crypto.crypto.dh_private_key(digit=10, seed=None)[source]

      Return three integer tuple as private key.

      Parameters:
      @@ -2964,7 +2964,7 @@

      Cryptography
      -sympy.crypto.crypto.dh_shared_key(key, b)[source]
      +sympy.crypto.crypto.dh_shared_key(key, b)[source]

      Return an integer that is the shared key.

      This is what Bob and Alice can both calculate using the public keys they received from each other and their private keys.

      @@ -3001,7 +3001,7 @@

      Cryptography
      -sympy.crypto.crypto.gm_public_key(p, q, a=None, seed=None)[source]
      +sympy.crypto.crypto.gm_public_key(p, q, a=None, seed=None)[source]

      Compute public keys for p and q. Note that in Goldwasser-Micali Encryption, public keys are randomly selected.

      @@ -3025,7 +3025,7 @@

      Cryptography
      -sympy.crypto.crypto.gm_private_key(p, q, a=None)[source]
      +sympy.crypto.crypto.gm_private_key(p, q, a=None)[source]

      Check if p and q can be used as private keys for the Goldwasser-Micali encryption. The method works roughly as follows.

      @@ -3085,7 +3085,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_gm(i, key, seed=None)[source]
      +sympy.crypto.crypto.encipher_gm(i, key, seed=None)[source]

      Encrypt integer ‘i’ using public_key ‘key’ Note that gm uses random encryption.

      @@ -3110,7 +3110,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_gm(message, key)[source]
      +sympy.crypto.crypto.decipher_gm(message, key)[source]

      Decrypt message ‘message’ using public_key ‘key’.

      Parameters:
      @@ -3134,7 +3134,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_railfence(message, rails)[source]
      +sympy.crypto.crypto.encipher_railfence(message, rails)[source]

      Performs Railfence Encryption on plaintext and returns ciphertext

      Parameters:
      @@ -3163,7 +3163,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_railfence(ciphertext, rails)[source]
      +sympy.crypto.crypto.decipher_railfence(ciphertext, rails)[source]

      Decrypt the message using the given rails

      Parameters:
      @@ -3219,7 +3219,7 @@

      CryptographyFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/diffgeom.html b/dev/modules/diffgeom.html index 1c4093a50d1..7ffedead765 100644 --- a/dev/modules/diffgeom.html +++ b/dev/modules/diffgeom.html @@ -807,7 +807,7 @@

      Introduction

      -class sympy.diffgeom.Manifold(name, dim, **kwargs)[source]
      +class sympy.diffgeom.Manifold(name, dim, **kwargs)[source]

      A mathematical manifold.

      Parameters:
      @@ -846,7 +846,7 @@

      Base Class Reference
      -class sympy.diffgeom.Patch(name, manifold, **kwargs)[source]
      +class sympy.diffgeom.Patch(name, manifold, **kwargs)[source]

      A patch on a manifold.

      Parameters:
      @@ -900,7 +900,7 @@

      Base Class Reference**kwargs,

      -)[source] +)[source]

      A coordinate system defined on the patch.

      Parameters:
      @@ -1009,7 +1009,7 @@

      Base Class Reference
      -base_oneform(coord_index)[source]
      +base_oneform(coord_index)[source]

      Return a basis 1-form field. The basis one-form field for this coordinate system. It is also an operator on vector fields.

      @@ -1017,27 +1017,27 @@

      Base Class Reference
      -base_oneforms()[source]
      +base_oneforms()[source]

      Returns a list of all base oneforms. For more details see the base_oneform method of this class.

      -base_scalar(coord_index)[source]
      +base_scalar(coord_index)[source]

      Return BaseScalarField that takes a point and returns one of the coordinates.

      -base_scalars()[source]
      +base_scalars()[source]

      Returns a list of all coordinate functions. For more details see the base_scalar method of this class.

      -base_vector(coord_index)[source]
      +base_vector(coord_index)[source]

      Return a basis vector field. The basis vector field for this coordinate system. It is also an operator on scalar fields.

      @@ -1045,20 +1045,20 @@

      Base Class Reference
      -base_vectors()[source]
      +base_vectors()[source]

      Returns a list of all base vectors. For more details see the base_vector method of this class.

      -coord_function(coord_index)[source]
      +coord_function(coord_index)[source]

      Return BaseScalarField that takes a point and returns one of the coordinates.

      -coord_functions()[source]
      +coord_functions()[source]

      Returns a list of all coordinate functions. For more details see the base_scalar method of this class.

      @@ -1072,13 +1072,13 @@

      Base Class Referencecoords,

      -)[source] +)[source]

      Transform coords to coord system to_sys.

      -jacobian(sys, coordinates=None)[source]
      +jacobian(sys, coordinates=None)[source]

      Return the jacobian matrix of a transformation on given coordinates. If coordinates are not given, coordinate symbols of self are used.

      @@ -1113,7 +1113,7 @@

      Base Class Referencecoordinates=None,

      -)[source] +)[source]

      Return the jacobian determinant of a transformation on given coordinates. If coordinates are not given, coordinate symbols of self are used.

      @@ -1138,7 +1138,7 @@

      Base Class Reference
      -jacobian_matrix(sys, coordinates=None)[source]
      +jacobian_matrix(sys, coordinates=None)[source]

      Return the jacobian matrix of a transformation on given coordinates. If coordinates are not given, coordinate symbols of self are used.

      @@ -1166,19 +1166,19 @@

      Base Class Reference
      -point(coords)[source]
      +point(coords)[source]

      Create a Point with coordinates given in this coord system.

      -point_to_coords(point)[source]
      +point_to_coords(point)[source]

      Calculate the coordinates of a point in this coord system.

      -transform(sys, coordinates=None)[source]
      +transform(sys, coordinates=None)[source]

      Return the result of coordinate transformation from self to sys. If coordinates are not given, coordinate symbols of self are used.

      @@ -1206,7 +1206,7 @@

      Base Class Reference
      -transformation(sys)[source]
      +transformation(sys)[source]

      Return coordinate transformation function from self to sys.

      Parameters:
      @@ -1230,7 +1230,7 @@

      Base Class Reference
      -class sympy.diffgeom.CoordinateSymbol(coord_sys, index, **assumptions)[source]
      +class sympy.diffgeom.CoordinateSymbol(coord_sys, index, **assumptions)[source]

      A symbol which denotes an abstract value of i-th coordinate of the coordinate system with given context.

      @@ -1283,7 +1283,7 @@

      Base Class Reference
      -class sympy.diffgeom.Point(coord_sys, coords, **kwargs)[source]
      +class sympy.diffgeom.Point(coord_sys, coords, **kwargs)[source]

      Point defined in a coordinate system.

      Parameters:
      @@ -1329,7 +1329,7 @@

      Base Class Reference
      -coords(sys=None)[source]
      +coords(sys=None)[source]

      Coordinates of the point in given coordinate system. If coordinate system is not passed, it returns the coordinates in the coordinate system in which the poin was defined.

      @@ -1339,7 +1339,7 @@

      Base Class Reference
      -class sympy.diffgeom.BaseScalarField(coord_sys, index, **kwargs)[source]
      +class sympy.diffgeom.BaseScalarField(coord_sys, index, **kwargs)[source]

      Base scalar field over a manifold for a given coordinate system.

      Parameters:
      @@ -1389,7 +1389,7 @@

      Base Class Reference
      -class sympy.diffgeom.BaseVectorField(coord_sys, index, **kwargs)[source]
      +class sympy.diffgeom.BaseVectorField(coord_sys, index, **kwargs)[source]

      Base vector field over a manifold for a given coordinate system.

      Parameters:
      @@ -1445,7 +1445,7 @@

      Base Class Reference
      -class sympy.diffgeom.Commutator(v1, v2)[source]
      +class sympy.diffgeom.Commutator(v1, v2)[source]

      Commutator of two vector fields.

      Explanation

      The commutator of two vector fields \(v_1\) and \(v_2\) is defined as the @@ -1479,7 +1479,7 @@

      Base Class Reference
      -class sympy.diffgeom.Differential(form_field)[source]
      +class sympy.diffgeom.Differential(form_field)[source]

      Return the differential (exterior derivative) of a form field.

      Explanation

      The differential of a form (i.e. the exterior derivative) has a complicated @@ -1521,7 +1521,7 @@

      Base Class Reference
      -class sympy.diffgeom.TensorProduct(*args)[source]
      +class sympy.diffgeom.TensorProduct(*args)[source]

      Tensor product of forms.

      Explanation

      The tensor product permits the creation of multilinear functionals (i.e. @@ -1575,7 +1575,7 @@

      Base Class Reference
      -class sympy.diffgeom.WedgeProduct(*args)[source]
      +class sympy.diffgeom.WedgeProduct(*args)[source]

      Wedge product of forms.

      Explanation

      In the context of integration only completely antisymmetric forms make @@ -1610,7 +1610,7 @@

      Base Class Reference
      -class sympy.diffgeom.LieDerivative(v_field, expr)[source]
      +class sympy.diffgeom.LieDerivative(v_field, expr)[source]

      Lie derivative with respect to a vector field.

      Explanation

      The transport operator that defines the Lie derivative is the pushforward of @@ -1662,7 +1662,7 @@

      Base Class Referencechristoffel,

      -)[source] +)[source]

      Covariant derivative operator with respect to a base vector.

      Examples

      >>> from sympy.diffgeom.rn import R2_r
      @@ -1690,7 +1690,7 @@ 

      Base Class Reference
      -class sympy.diffgeom.CovarDerivativeOp(wrt, christoffel)[source]
      +class sympy.diffgeom.CovarDerivativeOp(wrt, christoffel)[source]

      Covariant derivative operator.

      Examples

      >>> from sympy.diffgeom.rn import R2_r
      @@ -1727,7 +1727,7 @@ 

      Base Class Referencecoeffs=False,

      -)[source] +)[source]

      Return the series expansion for an integral curve of the field.

      Parameters:
      @@ -1836,7 +1836,7 @@

      Base Class Referencecoord_sys=None,

      -)[source] +)[source]

      Return the differential equation for an integral curve of the field.

      Parameters:
      @@ -1908,7 +1908,7 @@

      Base Class Reference
      -sympy.diffgeom.vectors_in_basis(expr, to_sys)[source]
      +sympy.diffgeom.vectors_in_basis(expr, to_sys)[source]

      Transform all base vectors in base vectors of a specified coord basis. While the new base vectors are in the new coordinate system basis, any coefficients are kept in the old system.

      @@ -1927,7 +1927,7 @@

      Base Class Reference
      -sympy.diffgeom.twoform_to_matrix(expr)[source]
      +sympy.diffgeom.twoform_to_matrix(expr)[source]

      Return the matrix representing the twoform.

      For the twoform \(w\) return the matrix \(M\) such that \(M[i,j]=w(e_i, e_j)\), where \(e_i\) is the i-th base vector field for the coordinate system in @@ -1956,7 +1956,7 @@

      Base Class Reference
      -sympy.diffgeom.metric_to_Christoffel_1st(expr)[source]
      +sympy.diffgeom.metric_to_Christoffel_1st(expr)[source]

      Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of first kind that represents the Levi-Civita connection for the given metric.

      @@ -1976,7 +1976,7 @@

      Base Class Reference
      -sympy.diffgeom.metric_to_Christoffel_2nd(expr)[source]
      +sympy.diffgeom.metric_to_Christoffel_2nd(expr)[source]

      Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of second kind that represents the Levi-Civita connection for the given metric.

      @@ -1996,7 +1996,7 @@

      Base Class Reference
      -sympy.diffgeom.metric_to_Riemann_components(expr)[source]
      +sympy.diffgeom.metric_to_Riemann_components(expr)[source]

      Return the components of the Riemann tensor expressed in a given basis.

      Given a metric it calculates the components of the Riemann tensor in the canonical basis of the coordinate system in which the metric expression is @@ -2024,7 +2024,7 @@

      Base Class Reference
      -sympy.diffgeom.metric_to_Ricci_components(expr)[source]
      +sympy.diffgeom.metric_to_Ricci_components(expr)[source]

      Return the components of the Ricci tensor expressed in a given basis.

      Given a metric it calculates the components of the Ricci tensor in the canonical basis of the coordinate system in which the metric expression is @@ -2085,7 +2085,7 @@

      Base Class ReferenceFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/discrete.html b/dev/modules/discrete.html index 756a9151bb5..8a8963ad1d5 100644 --- a/dev/modules/discrete.html +++ b/dev/modules/discrete.html @@ -821,7 +821,7 @@

      Discrete

      Fast Fourier Transform

      -sympy.discrete.transforms.fft(seq, dps=None)[source]
      +sympy.discrete.transforms.fft(seq, dps=None)[source]

      Performs the Discrete Fourier Transform (DFT) in the complex domain.

      The sequence is automatically padded to the right with zeros, as the radix-2 FFT requires the number of sample points to be a power of 2.

      @@ -876,7 +876,7 @@

      Fast Fourier Transform
      -sympy.discrete.transforms.ifft(seq, dps=None)[source]
      +sympy.discrete.transforms.ifft(seq, dps=None)[source]

      Performs the Discrete Fourier Transform (DFT) in the complex domain.

      The sequence is automatically padded to the right with zeros, as the radix-2 FFT requires the number of sample points to be a power of 2.

      @@ -934,7 +934,7 @@

      Fast Fourier TransformNumber Theoretic Transform

      -sympy.discrete.transforms.ntt(seq, prime)[source]
      +sympy.discrete.transforms.ntt(seq, prime)[source]

      Performs the Number Theoretic Transform (NTT), which specializes the Discrete Fourier Transform (DFT) over quotient ring \(Z/pZ\) for prime \(p\) instead of complex numbers \(C\).

      @@ -984,7 +984,7 @@

      Number Theoretic Transform
      -sympy.discrete.transforms.intt(seq, prime)[source]
      +sympy.discrete.transforms.intt(seq, prime)[source]

      Performs the Number Theoretic Transform (NTT), which specializes the Discrete Fourier Transform (DFT) over quotient ring \(Z/pZ\) for prime \(p\) instead of complex numbers \(C\).

      @@ -1037,7 +1037,7 @@

      Number Theoretic Transform

      -sympy.discrete.transforms.fwht(seq)[source]
      +sympy.discrete.transforms.fwht(seq)[source]

      Performs the Walsh Hadamard Transform (WHT), and uses Hadamard ordering for the sequence.

      The sequence is automatically padded to the right with zeros, as the @@ -1079,7 +1079,7 @@

      Fast Walsh Hadamard Transform
      -sympy.discrete.transforms.ifwht(seq)[source]
      +sympy.discrete.transforms.ifwht(seq)[source]

      Performs the Walsh Hadamard Transform (WHT), and uses Hadamard ordering for the sequence.

      The sequence is automatically padded to the right with zeros, as the @@ -1124,7 +1124,7 @@

      Fast Walsh Hadamard Transform

      -sympy.discrete.transforms.mobius_transform(seq, subset=True)[source]
      +sympy.discrete.transforms.mobius_transform(seq, subset=True)[source]

      Performs the Mobius Transform for subset lattice with indices of sequence as bitmasks.

      The indices of each argument, considered as bit strings, correspond @@ -1192,7 +1192,7 @@

      Möbius Transform
      -sympy.discrete.transforms.inverse_mobius_transform(seq, subset=True)[source]
      +sympy.discrete.transforms.inverse_mobius_transform(seq, subset=True)[source]

      Performs the Mobius Transform for subset lattice with indices of sequence as bitmasks.

      The indices of each argument, considered as bit strings, correspond @@ -1283,7 +1283,7 @@

      Convolutionsubset=None,

      -)[source] +)[source]

      Performs convolution by determining the type of desired convolution using hints.

      Exactly one of dps, prime, dyadic, subset arguments @@ -1357,7 +1357,7 @@

      Convolution

      -sympy.discrete.convolutions.convolution_fft(a, b, dps=None)[source]
      +sympy.discrete.convolutions.convolution_fft(a, b, dps=None)[source]

      Performs linear convolution using Fast Fourier Transform.

      Parameters:
      @@ -1402,7 +1402,7 @@

      Convolution using Fast Fourier Transform

      -sympy.discrete.convolutions.convolution_ntt(a, b, prime)[source]
      +sympy.discrete.convolutions.convolution_ntt(a, b, prime)[source]

      Performs linear convolution using Number Theoretic Transform.

      Parameters:
      @@ -1445,7 +1445,7 @@

      Convolution using Number Theoretic Transform

      -sympy.discrete.convolutions.convolution_fwht(a, b)[source]
      +sympy.discrete.convolutions.convolution_fwht(a, b)[source]

      Performs dyadic (bitwise-XOR) convolution using Fast Walsh Hadamard Transform.

      The convolution is automatically padded to the right with zeros, as the @@ -1496,7 +1496,7 @@

      Convolution using Fast Walsh Hadamard Transform

      -sympy.discrete.convolutions.convolution_subset(a, b)[source]
      +sympy.discrete.convolutions.convolution_subset(a, b)[source]

      Performs Subset Convolution of given sequences.

      The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

      @@ -1543,7 +1543,7 @@

      Subset Convolution

      -sympy.discrete.convolutions.covering_product(a, b)[source]
      +sympy.discrete.convolutions.covering_product(a, b)[source]

      Returns the covering product of given sequences.

      The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

      @@ -1592,7 +1592,7 @@

      Covering Product

      -sympy.discrete.convolutions.intersecting_product(a, b)[source]
      +sympy.discrete.convolutions.intersecting_product(a, b)[source]

      Returns the intersecting product of given sequences.

      The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

      @@ -1675,7 +1675,7 @@

      Intersecting ProductFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/evalf.html b/dev/modules/evalf.html index 2abd22dcea5..5b2ba6fdeb5 100644 --- a/dev/modules/evalf.html +++ b/dev/modules/evalf.html @@ -1226,7 +1226,7 @@

      Numerical simplificationFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/functions/combinatorial.html b/dev/modules/functions/combinatorial.html index a45c9a5c922..1fd4d1a10ba 100644 --- a/dev/modules/functions/combinatorial.html +++ b/dev/modules/functions/combinatorial.html @@ -803,7 +803,7 @@
      Documentation Version

      This module implements various combinatorial functions.

      -class sympy.functions.combinatorial.numbers.bell(n, k_sym=None, symbols=None)[source]
      +class sympy.functions.combinatorial.numbers.bell(n, k_sym=None, symbols=None)[source]

      Bell numbers / Bell polynomials

      The Bell numbers satisfy \(B_0 = 1\) and

      @@ -877,7 +877,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.bernoulli(n, x=None)[source]
      +class sympy.functions.combinatorial.numbers.bernoulli(n, x=None)[source]

      Bernoulli numbers / Bernoulli polynomials / Bernoulli function

      The Bernoulli numbers are a sequence of rational numbers defined by \(B_0 = 1\) and the recursive relation (\(n > 0\)):

      @@ -995,7 +995,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.binomial(n, k)[source]
      +class sympy.functions.combinatorial.factorials.binomial(n, k)[source]

      Implementation of the binomial coefficient. It can be defined in two ways depending on its desired interpretation:

      @@ -1104,7 +1104,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.catalan(n)[source]
      +class sympy.functions.combinatorial.numbers.catalan(n)[source]

      Catalan numbers

      The \(n^{th}\) catalan number is given by:

      @@ -1199,7 +1199,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.euler(n, x=None)[source]
      +class sympy.functions.combinatorial.numbers.euler(n, x=None)[source]

      Euler numbers / Euler polynomials / Euler function

      The Euler numbers are given by:

      @@ -1296,7 +1296,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.factorial(n)[source]
      +class sympy.functions.combinatorial.factorials.factorial(n)[source]

      Implementation of factorial function over nonnegative integers. By convention (consistent with the gamma function and the binomial coefficients), factorial of a negative integer is complex infinity.

      @@ -1348,7 +1348,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.subfactorial(arg)[source]
      +class sympy.functions.combinatorial.factorials.subfactorial(arg)[source]

      The subfactorial counts the derangements of \(n\) items and is defined for non-negative integers as:

      @@ -1396,7 +1396,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.factorial2(arg)[source]
      +class sympy.functions.combinatorial.factorials.factorial2(arg)[source]

      The double factorial \(n!!\), not to be confused with \((n!)!\)

      The double factorial is defined for nonnegative integers and for odd negative integers as:

      @@ -1437,7 +1437,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.FallingFactorial(x, k)[source]
      +class sympy.functions.combinatorial.factorials.FallingFactorial(x, k)[source]

      Falling factorial (related to rising factorial) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by

      @@ -1507,7 +1507,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.fibonacci(n, sym=None)[source]
      +class sympy.functions.combinatorial.numbers.fibonacci(n, sym=None)[source]

      Fibonacci numbers / Fibonacci polynomials

      The Fibonacci numbers are the integer sequence defined by the initial terms \(F_0 = 0\), \(F_1 = 1\) and the two-term recurrence @@ -1554,7 +1554,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.tribonacci(n, sym=None)[source]
      +class sympy.functions.combinatorial.numbers.tribonacci(n, sym=None)[source]

      Tribonacci numbers / Tribonacci polynomials

      The Tribonacci numbers are the integer sequence defined by the initial terms \(T_0 = 0\), \(T_1 = 1\), \(T_2 = 1\) and the three-term @@ -1599,7 +1599,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.harmonic(n, m=None)[source]
      +class sympy.functions.combinatorial.numbers.harmonic(n, m=None)[source]

      Harmonic numbers

      The nth harmonic number is given by \(\operatorname{H}_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}\).

      @@ -1750,7 +1750,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.lucas(n)[source]
      +class sympy.functions.combinatorial.numbers.lucas(n)[source]

      Lucas numbers

      Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the @@ -1786,7 +1786,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.genocchi(n, x=None)[source]
      +class sympy.functions.combinatorial.numbers.genocchi(n, x=None)[source]

      Genocchi numbers / Genocchi polynomials / Genocchi function

      The Genocchi numbers are a sequence of integers \(G_n\) that satisfy the relation:

      @@ -1845,7 +1845,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.andre(n)[source]
      +class sympy.functions.combinatorial.numbers.andre(n)[source]

      Andre numbers / Andre function

      The Andre number \(\mathcal{A}_n\) is Luschny’s name for half the number of alternating permutations on \(n\) elements, where a permutation is alternating @@ -1914,7 +1914,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.partition(n)[source]
      +class sympy.functions.combinatorial.numbers.partition(n)[source]

      Partition numbers

      The Partition numbers are a sequence of integers \(p_n\) that represent the number of distinct ways of representing \(n\) as a sum of natural numbers @@ -1951,7 +1951,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.divisor_sigma(n, k=1)[source]
      +class sympy.functions.combinatorial.numbers.divisor_sigma(n, k=1)[source]

      Calculate the divisor function \(\sigma_k(n)\) for positive integer n

      divisor_sigma(n, k) is equal to sum([x**k for x in divisors(n)])

      If n’s prime factorization is:

      @@ -1992,7 +1992,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.udivisor_sigma(n, k=1)[source]
      +class sympy.functions.combinatorial.numbers.udivisor_sigma(n, k=1)[source]

      Calculate the unitary divisor function \(\sigma_k^*(n)\) for positive integer n

      udivisor_sigma(n, k) is equal to sum([x**k for x in udivisors(n)])

      If n’s prime factorization is:

      @@ -2043,7 +2043,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.legendre_symbol(a, p)[source]
      +class sympy.functions.combinatorial.numbers.legendre_symbol(a, p)[source]

      Returns the Legendre symbol \((a / p)\).

      For an integer a and an odd prime p, the Legendre symbol is defined as

      @@ -2071,7 +2071,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.jacobi_symbol(m, n)[source]
      +class sympy.functions.combinatorial.numbers.jacobi_symbol(m, n)[source]

      Returns the Jacobi symbol \((m / n)\).

      For any integer m and any positive odd integer n the Jacobi symbol is defined as the product of the Legendre symbols corresponding to the @@ -2120,7 +2120,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.kronecker_symbol(a, n)[source]
      +class sympy.functions.combinatorial.numbers.kronecker_symbol(a, n)[source]

      Returns the Kronecker symbol \((a / n)\).

      Examples

      >>> from sympy.functions.combinatorial.numbers import kronecker_symbol
      @@ -2145,7 +2145,7 @@ 
      Documentation Version
      -class sympy.functions.combinatorial.numbers.mobius(n)[source]
      +class sympy.functions.combinatorial.numbers.mobius(n)[source]

      Mobius function maps natural number to {-1, 0, 1}

      It is defined as follows:
        @@ -2200,7 +2200,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.primenu(n)[source]
        +class sympy.functions.combinatorial.numbers.primenu(n)[source]

        Calculate the number of distinct prime factors for a positive integer n.

        If n’s prime factorization is:

        @@ -2239,7 +2239,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.primeomega(n)[source]
        +class sympy.functions.combinatorial.numbers.primeomega(n)[source]

        Calculate the number of prime factors counting multiplicities for a positive integer n.

        If n’s prime factorization is:

        @@ -2279,7 +2279,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.totient(n)[source]
        +class sympy.functions.combinatorial.numbers.totient(n)[source]

        Calculate the Euler totient function phi(n)

        totient(n) or \(\phi(n)\) is the number of positive integers \(\leq\) n that are relatively prime to n.

        @@ -2316,7 +2316,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.reduced_totient(n)[source]
        +class sympy.functions.combinatorial.numbers.reduced_totient(n)[source]

        Calculate the Carmichael reduced totient function lambda(n)

        reduced_totient(n) or \(\lambda(n)\) is the smallest m > 0 such that \(k^m \equiv 1 \mod n\) for all k relatively prime to n.

        @@ -2353,7 +2353,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.primepi(n)[source]
        +class sympy.functions.combinatorial.numbers.primepi(n)[source]

        Represents the prime counting function pi(n) = the number of prime numbers less than or equal to n.

        Examples

        @@ -2396,12 +2396,12 @@
        Documentation Version
        -class sympy.functions.combinatorial.factorials.MultiFactorial(*args)[source]
        +class sympy.functions.combinatorial.factorials.MultiFactorial(*args)[source]
        -class sympy.functions.combinatorial.factorials.RisingFactorial(x, k)[source]
        +class sympy.functions.combinatorial.factorials.RisingFactorial(x, k)[source]

        Rising factorial (also called Pochhammer symbol [R268]) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by:

        @@ -2468,7 +2468,7 @@
        Documentation Version
        -sympy.functions.combinatorial.numbers.stirling(n, k, d=None, kind=2, signed=False)[source]
        +sympy.functions.combinatorial.numbers.stirling(n, k, d=None, kind=2, signed=False)[source]

        Return Stirling number \(S(n, k)\) of the first or second (default) kind.

        The sum of all Stirling numbers of the second kind for \(k = 1\) through \(n\) is bell(n). The recurrence relationship for these numbers @@ -2576,7 +2576,7 @@

        Enumeration
        -sympy.functions.combinatorial.numbers.nC(n, k=None, replacement=False)[source]
        +sympy.functions.combinatorial.numbers.nC(n, k=None, replacement=False)[source]

        Return the number of combinations of n items taken k at a time.

        Possible values for n:

        @@ -2642,7 +2642,7 @@

        Enumeration
        -sympy.functions.combinatorial.numbers.nP(n, k=None, replacement=False)[source]
        +sympy.functions.combinatorial.numbers.nP(n, k=None, replacement=False)[source]

        Return the number of permutations of n items taken k at a time.

        Possible values for n:

        @@ -2700,7 +2700,7 @@

        Enumeration
        -sympy.functions.combinatorial.numbers.nT(n, k=None)[source]
        +sympy.functions.combinatorial.numbers.nT(n, k=None)[source]

        Return the number of k-sized partitions of n items.

        Possible values for n:

        @@ -2805,7 +2805,7 @@

        EnumerationFuro
        - Last updated on Aug 03, 2024
        + Last updated on Aug 04, 2024

      diff --git a/dev/modules/functions/elementary.html b/dev/modules/functions/elementary.html index 9de5ddad770..d659ce04dc4 100644 --- a/dev/modules/functions/elementary.html +++ b/dev/modules/functions/elementary.html @@ -806,7 +806,7 @@
      Documentation Version

      Complex Functions

      -class sympy.functions.elementary.complexes.re(arg)[source]
      +class sympy.functions.elementary.complexes.re(arg)[source]

      Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result @@ -847,7 +847,7 @@

      Complex Functions
      -as_real_imag(deep=True, **hints)[source]
      +as_real_imag(deep=True, **hints)[source]

      Returns the real number with a zero imaginary part.

      @@ -855,7 +855,7 @@

      Complex Functions
      -class sympy.functions.elementary.complexes.im(arg)[source]
      +class sympy.functions.elementary.complexes.im(arg)[source]

      Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then @@ -896,7 +896,7 @@

      Complex Functions
      -as_real_imag(deep=True, **hints)[source]
      +as_real_imag(deep=True, **hints)[source]

      Return the imaginary part with a zero real part.

      @@ -904,7 +904,7 @@

      Complex Functions
      -class sympy.functions.elementary.complexes.sign(arg)[source]
      +class sympy.functions.elementary.complexes.sign(arg)[source]

      Returns the complex sign of an expression:

      Parameters:
      @@ -962,7 +962,7 @@

      Complex Functions
      -class sympy.functions.elementary.complexes.Abs(arg)[source]
      +class sympy.functions.elementary.complexes.Abs(arg)[source]

      Return the absolute value of the argument.

      Parameters:
      @@ -1015,7 +1015,7 @@

      Complex Functions
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Get the first derivative of the argument to Abs().

      @@ -1023,7 +1023,7 @@

      Complex Functions
      -class sympy.functions.elementary.complexes.arg(arg)[source]
      +class sympy.functions.elementary.complexes.arg(arg)[source]

      Returns the argument (in radians) of a complex number. The argument is evaluated in consistent convention with atan2 where the branch-cut is taken along the negative real axis and arg(z) is in the interval @@ -1072,7 +1072,7 @@

      Complex Functions
      -class sympy.functions.elementary.complexes.conjugate(arg)[source]
      +class sympy.functions.elementary.complexes.conjugate(arg)[source]

      Returns the complex conjugate [R276] of an argument. In mathematics, the complex conjugate of a complex number is given by changing the sign of the imaginary part.

      @@ -1120,7 +1120,7 @@

      Complex Functions
      -class sympy.functions.elementary.complexes.polar_lift(arg)[source]
      +class sympy.functions.elementary.complexes.polar_lift(arg)[source]

      Lift argument to the Riemann surface of the logarithm, using the standard branch.

      @@ -1159,7 +1159,7 @@

      Complex Functions
      -class sympy.functions.elementary.complexes.periodic_argument(ar, period)[source]
      +class sympy.functions.elementary.complexes.periodic_argument(ar, period)[source]

      Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period \(P\), always return a value in \((-P/2, P/2]\), by using \(\exp(PI) = 1\).

      @@ -1205,7 +1205,7 @@

      Complex Functions
      -class sympy.functions.elementary.complexes.principal_branch(x, period)[source]
      +class sympy.functions.elementary.complexes.principal_branch(x, period)[source]

      Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm.

      @@ -1253,7 +1253,7 @@

      Trigonometric

      Trigonometric Functions

      -class sympy.functions.elementary.trigonometric.sin(arg)[source]
      +class sympy.functions.elementary.trigonometric.sin(arg)[source]

      The sine function.

      Returns the sine of x (measured in radians).

      Explanation

      @@ -1305,7 +1305,7 @@

      Trigonometric
      -class sympy.functions.elementary.trigonometric.cos(arg)[source]
      +class sympy.functions.elementary.trigonometric.cos(arg)[source]

      The cosine function.

      Returns the cosine of x (measured in radians).

      Explanation

      @@ -1350,7 +1350,7 @@

      Trigonometric
      -class sympy.functions.elementary.trigonometric.tan(arg)[source]
      +class sympy.functions.elementary.trigonometric.tan(arg)[source]

      The tangent function.

      Returns the tangent of x (measured in radians).

      Explanation

      @@ -1387,7 +1387,7 @@

      Trigonometric
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -1395,7 +1395,7 @@

      Trigonometric
      -class sympy.functions.elementary.trigonometric.cot(arg)[source]
      +class sympy.functions.elementary.trigonometric.cot(arg)[source]

      The cotangent function.

      Returns the cotangent of x (measured in radians).

      Explanation

      @@ -1432,7 +1432,7 @@

      Trigonometric
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -1440,7 +1440,7 @@

      Trigonometric
      -class sympy.functions.elementary.trigonometric.sec(arg)[source]
      +class sympy.functions.elementary.trigonometric.sec(arg)[source]

      The secant function.

      Returns the secant of x (measured in radians).

      Explanation

      @@ -1477,7 +1477,7 @@

      Trigonometric
      -class sympy.functions.elementary.trigonometric.csc(arg)[source]
      +class sympy.functions.elementary.trigonometric.csc(arg)[source]

      The cosecant function.

      Returns the cosecant of x (measured in radians).

      Explanation

      @@ -1514,7 +1514,7 @@

      Trigonometric
      -class sympy.functions.elementary.trigonometric.sinc(arg)[source]
      +class sympy.functions.elementary.trigonometric.sinc(arg)[source]

      Represents an unnormalized sinc function:

      @@ -1579,7 +1579,7 @@

      Trigonometric

      -class sympy.functions.elementary.trigonometric.asin(arg)[source]
      +class sympy.functions.elementary.trigonometric.asin(arg)[source]

      The inverse sine function.

      Returns the arcsine of x in radians.

      Explanation

      @@ -1620,7 +1620,7 @@

      Trigonometric Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -1628,7 +1628,7 @@

      Trigonometric Inverses
      -class sympy.functions.elementary.trigonometric.acos(arg)[source]
      +class sympy.functions.elementary.trigonometric.acos(arg)[source]

      The inverse cosine function.

      Explanation

      Returns the arc cosine of x (measured in radians).

      @@ -1669,7 +1669,7 @@

      Trigonometric Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -1677,7 +1677,7 @@

      Trigonometric Inverses
      -class sympy.functions.elementary.trigonometric.atan(arg)[source]
      +class sympy.functions.elementary.trigonometric.atan(arg)[source]

      The inverse tangent function.

      Returns the arc tangent of x (measured in radians).

      Explanation

      @@ -1715,7 +1715,7 @@

      Trigonometric Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -1723,7 +1723,7 @@

      Trigonometric Inverses
      -class sympy.functions.elementary.trigonometric.acot(arg)[source]
      +class sympy.functions.elementary.trigonometric.acot(arg)[source]

      The inverse cotangent function.

      Returns the arc cotangent of x (measured in radians).

      Explanation

      @@ -1761,7 +1761,7 @@

      Trigonometric Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -1769,7 +1769,7 @@

      Trigonometric Inverses
      -class sympy.functions.elementary.trigonometric.asec(arg)[source]
      +class sympy.functions.elementary.trigonometric.asec(arg)[source]

      The inverse secant function.

      Returns the arc secant of x (measured in radians).

      Explanation

      @@ -1830,7 +1830,7 @@

      Trigonometric Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -1838,7 +1838,7 @@

      Trigonometric Inverses
      -class sympy.functions.elementary.trigonometric.acsc(arg)[source]
      +class sympy.functions.elementary.trigonometric.acsc(arg)[source]

      The inverse cosecant function.

      Returns the arc cosecant of x (measured in radians).

      Explanation

      @@ -1880,7 +1880,7 @@

      Trigonometric Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -1888,7 +1888,7 @@

      Trigonometric Inverses
      -class sympy.functions.elementary.trigonometric.atan2(y, x)[source]
      +class sympy.functions.elementary.trigonometric.atan2(y, x)[source]

      The function atan2(y, x) computes \(\operatorname{atan}(y/x)\) taking two arguments \(y\) and \(x\). Signs of both \(y\) and \(x\) are considered to determine the appropriate quadrant of \(\operatorname{atan}(y/x)\). @@ -1999,7 +1999,7 @@

      Hyperbolic

      -class sympy.functions.elementary.hyperbolic.HyperbolicFunction(*args)[source]
      +class sympy.functions.elementary.hyperbolic.HyperbolicFunction(*args)[source]

      Base class for hyperbolic functions.

      See also

      @@ -2009,7 +2009,7 @@

      Hyperbolic Functions
      -class sympy.functions.elementary.hyperbolic.sinh(arg)[source]
      +class sympy.functions.elementary.hyperbolic.sinh(arg)[source]

      sinh(x) is the hyperbolic sine of x.

      The hyperbolic sine function is \(\frac{e^x - e^{-x}}{2}\).

      Examples

      @@ -2025,25 +2025,25 @@

      Hyperbolic Functions
      -as_real_imag(deep=True, **hints)[source]
      +as_real_imag(deep=True, **hints)[source]

      Returns this function as a complex coordinate.

      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Returns the first derivative of this function.

      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      -static taylor_term(n, x, *previous_terms)[source]
      +static taylor_term(n, x, *previous_terms)[source]

      Returns the next term in the Taylor series expansion.

      @@ -2051,7 +2051,7 @@

      Hyperbolic Functions
      -class sympy.functions.elementary.hyperbolic.cosh(arg)[source]
      +class sympy.functions.elementary.hyperbolic.cosh(arg)[source]

      cosh(x) is the hyperbolic cosine of x.

      The hyperbolic cosine function is \(\frac{e^x + e^{-x}}{2}\).

      Examples

      @@ -2069,7 +2069,7 @@

      Hyperbolic Functions
      -class sympy.functions.elementary.hyperbolic.tanh(arg)[source]
      +class sympy.functions.elementary.hyperbolic.tanh(arg)[source]

      tanh(x) is the hyperbolic tangent of x.

      The hyperbolic tangent function is \(\frac{\sinh(x)}{\cosh(x)}\).

      Examples

      @@ -2085,7 +2085,7 @@

      Hyperbolic Functions
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2093,7 +2093,7 @@

      Hyperbolic Functions
      -class sympy.functions.elementary.hyperbolic.coth(arg)[source]
      +class sympy.functions.elementary.hyperbolic.coth(arg)[source]

      coth(x) is the hyperbolic cotangent of x.

      The hyperbolic cotangent function is \(\frac{\cosh(x)}{\sinh(x)}\).

      Examples

      @@ -2109,7 +2109,7 @@

      Hyperbolic Functions
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2117,7 +2117,7 @@

      Hyperbolic Functions
      -class sympy.functions.elementary.hyperbolic.sech(arg)[source]
      +class sympy.functions.elementary.hyperbolic.sech(arg)[source]

      sech(x) is the hyperbolic secant of x.

      The hyperbolic secant function is \(\frac{2}{e^x + e^{-x}}\)

      Examples

      @@ -2135,7 +2135,7 @@

      Hyperbolic Functions
      -class sympy.functions.elementary.hyperbolic.csch(arg)[source]
      +class sympy.functions.elementary.hyperbolic.csch(arg)[source]

      csch(x) is the hyperbolic cosecant of x.

      The hyperbolic cosecant function is \(\frac{2}{e^x - e^{-x}}\)

      Examples

      @@ -2151,13 +2151,13 @@

      Hyperbolic Functions
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Returns the first derivative of this function

      -static taylor_term(n, x, *previous_terms)[source]
      +static taylor_term(n, x, *previous_terms)[source]

      Returns the next term in the Taylor series expansion

      @@ -2168,7 +2168,7 @@

      Hyperbolic FunctionsHyperbolic Inverses

      -class sympy.functions.elementary.hyperbolic.asinh(arg)[source]
      +class sympy.functions.elementary.hyperbolic.asinh(arg)[source]

      asinh(x) is the inverse hyperbolic sine of x.

      The inverse hyperbolic sine function.

      Examples

      @@ -2186,7 +2186,7 @@

      Hyperbolic Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2194,7 +2194,7 @@

      Hyperbolic Inverses
      -class sympy.functions.elementary.hyperbolic.acosh(arg)[source]
      +class sympy.functions.elementary.hyperbolic.acosh(arg)[source]

      acosh(x) is the inverse hyperbolic cosine of x.

      The inverse hyperbolic cosine function.

      Examples

      @@ -2212,7 +2212,7 @@

      Hyperbolic Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2220,7 +2220,7 @@

      Hyperbolic Inverses
      -class sympy.functions.elementary.hyperbolic.atanh(arg)[source]
      +class sympy.functions.elementary.hyperbolic.atanh(arg)[source]

      atanh(x) is the inverse hyperbolic tangent of x.

      The inverse hyperbolic tangent function.

      Examples

      @@ -2236,7 +2236,7 @@

      Hyperbolic Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2244,7 +2244,7 @@

      Hyperbolic Inverses
      -class sympy.functions.elementary.hyperbolic.acoth(arg)[source]
      +class sympy.functions.elementary.hyperbolic.acoth(arg)[source]

      acoth(x) is the inverse hyperbolic cotangent of x.

      The inverse hyperbolic cotangent function.

      Examples

      @@ -2260,7 +2260,7 @@

      Hyperbolic Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2268,7 +2268,7 @@

      Hyperbolic Inverses
      -class sympy.functions.elementary.hyperbolic.asech(arg)[source]
      +class sympy.functions.elementary.hyperbolic.asech(arg)[source]

      asech(x) is the inverse hyperbolic secant of x.

      The inverse hyperbolic secant function.

      Examples

      @@ -2309,7 +2309,7 @@

      Hyperbolic Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2317,7 +2317,7 @@

      Hyperbolic Inverses
      -class sympy.functions.elementary.hyperbolic.acsch(arg)[source]
      +class sympy.functions.elementary.hyperbolic.acsch(arg)[source]

      acsch(x) is the inverse hyperbolic cosecant of x.

      The inverse hyperbolic cosecant function.

      Examples

      @@ -2358,7 +2358,7 @@

      Hyperbolic Inverses
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2370,7 +2370,7 @@

      Hyperbolic Inverses

      -class sympy.functions.elementary.integers.ceiling(arg)[source]
      +class sympy.functions.elementary.integers.ceiling(arg)[source]

      Ceiling is a univariate function which returns the smallest integer value not less than its argument. This implementation generalizes ceiling to complex numbers by taking the ceiling of the @@ -2410,7 +2410,7 @@

      Integer Functions
      -class sympy.functions.elementary.integers.floor(arg)[source]
      +class sympy.functions.elementary.integers.floor(arg)[source]

      Floor is a univariate function which returns the largest integer value not greater than its argument. This implementation generalizes floor to complex numbers by taking the floor of the @@ -2450,13 +2450,13 @@

      Integer Functions
      -class sympy.functions.elementary.integers.RoundFunction(arg)[source]
      +class sympy.functions.elementary.integers.RoundFunction(arg)[source]

      Abstract base class for rounding functions.

      -class sympy.functions.elementary.integers.frac(arg)[source]
      +class sympy.functions.elementary.integers.frac(arg)[source]

      Represents the fractional part of x

      For real numbers it is defined [R328] as

      @@ -2513,7 +2513,7 @@

      Integer Functions

      -class sympy.functions.elementary.exponential.exp(arg)[source]
      +class sympy.functions.elementary.exponential.exp(arg)[source]

      The exponential function, \(e^x\).

      Parameters:
      @@ -2537,7 +2537,7 @@

      Exponential
      -as_real_imag(deep=True, **hints)[source]
      +as_real_imag(deep=True, **hints)[source]

      Returns this function as a 2-tuple representing a complex number.

      Examples

      >>> from sympy import exp, I
      @@ -2566,13 +2566,13 @@ 

      Exponential
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Returns the first derivative of this function.

      -static taylor_term(n, x, *previous_terms)[source]
      +static taylor_term(n, x, *previous_terms)[source]

      Calculates the next term in the Taylor series expansion.

      @@ -2580,7 +2580,7 @@

      Exponential
      -class sympy.functions.elementary.exponential.LambertW(x, k=None)[source]
      +class sympy.functions.elementary.exponential.LambertW(x, k=None)[source]

      The Lambert W function \(W(z)\) is defined as the inverse function of \(w \exp(w)\) [R330].

      Explanation

      @@ -2613,7 +2613,7 @@

      Exponential
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Return the first derivative of this function.

      @@ -2621,7 +2621,7 @@

      Exponential
      -class sympy.functions.elementary.exponential.log(arg, base=None)[source]
      +class sympy.functions.elementary.exponential.log(arg, base=None)[source]

      The natural logarithm function \(\ln(x)\) or \(\log(x)\).

      Explanation

      Logarithms are taken with the natural base, \(e\). To get @@ -2647,13 +2647,13 @@

      Exponential
      -as_base_exp()[source]
      +as_base_exp()[source]

      Returns this function in the form (base, exponent).

      -as_real_imag(deep=True, **hints)[source]
      +as_real_imag(deep=True, **hints)[source]

      Returns this function as a complex coordinate.

      Examples

      >>> from sympy import I, log
      @@ -2672,19 +2672,19 @@ 

      Exponential
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Returns the first derivative of the function.

      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns \(e^x\), the inverse function of \(\log(x)\).

      -static taylor_term(n, x, *previous_terms)[source]
      +static taylor_term(n, x, *previous_terms)[source]

      Returns the next term in the Taylor series expansion of \(\log(1+x)\).

      @@ -2692,7 +2692,7 @@

      Exponential
      -class sympy.functions.elementary.exponential.exp_polar(*args)[source]
      +class sympy.functions.elementary.exponential.exp_polar(*args)[source]

      Represent a polar number (see g-function Sphinx documentation).

      Explanation

      exp_polar represents the function @@ -2726,7 +2726,7 @@

      Exponential

      -class sympy.functions.elementary.piecewise.ExprCondPair(expr, cond)[source]
      +class sympy.functions.elementary.piecewise.ExprCondPair(expr, cond)[source]

      Represents an expression, condition pair.

      @@ -2744,7 +2744,7 @@

      Piecewise
      -class sympy.functions.elementary.piecewise.Piecewise(*_args)[source]
      +class sympy.functions.elementary.piecewise.Piecewise(*_args)[source]

      Represents a piecewise function.

      Usage:

      @@ -2806,7 +2806,7 @@

      Piecewise
      -_eval_integral(x, _first=True, **kwargs)[source]
      +_eval_integral(x, _first=True, **kwargs)[source]

      Return the indefinite integral of the Piecewise such that subsequent substitution of x with a value will give the value of the integral (not including @@ -2831,7 +2831,7 @@

      Piecewise
      -as_expr_set_pairs(domain=None)[source]
      +as_expr_set_pairs(domain=None)[source]

      Return tuples for each argument of self that give the expression and the interval in which it is valid which is contained within the given domain. @@ -2858,13 +2858,13 @@

      Piecewise
      -doit(**hints)[source]
      +doit(**hints)[source]

      Evaluate this piecewise function.

      -classmethod eval(*_args)[source]
      +classmethod eval(*_args)[source]

      Either return a modified version of the args or, if no modifications were made, return None.

      Modifications that are made here:

      @@ -2892,7 +2892,7 @@

      Piecewise
      -piecewise_integrate(x, **kwargs)[source]
      +piecewise_integrate(x, **kwargs)[source]

      Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the integrate() function or method.

      @@ -2939,7 +2939,7 @@

      Piecewisedeep=True,

      -)[source] +)[source]

      Rewrite Piecewise with mutually exclusive conditions.

      Parameters:
      @@ -3000,7 +3000,7 @@

      Piecewise
      -sympy.functions.elementary.piecewise.piecewise_fold(expr, evaluate=True)[source]
      +sympy.functions.elementary.piecewise.piecewise_fold(expr, evaluate=True)[source]

      Takes an expression containing a piecewise function and returns the expression in piecewise form. In addition, any ITE conditions are rewritten in negation normal form and simplified.

      @@ -3027,7 +3027,7 @@

      Piecewise

      -class sympy.functions.elementary.miscellaneous.IdentityFunction[source]
      +class sympy.functions.elementary.miscellaneous.IdentityFunction[source]

      The identity function

      Examples

      >>> from sympy import Id, Symbol
      @@ -3040,7 +3040,7 @@ 

      Miscellaneous
      -class sympy.functions.elementary.miscellaneous.Min(*args)[source]
      +class sympy.functions.elementary.miscellaneous.Min(*args)[source]

      Return, if possible, the minimum value of the list. It is named Min and not min to avoid conflicts with the built-in function min.

      @@ -3074,7 +3074,7 @@

      Miscellaneous
      -class sympy.functions.elementary.miscellaneous.Max(*args)[source]
      +class sympy.functions.elementary.miscellaneous.Max(*args)[source]

      Return, if possible, the maximum value of the list.

      When number of arguments is equal one, then return this argument.

      @@ -3160,7 +3160,7 @@

      Miscellaneous
      -sympy.functions.elementary.miscellaneous.root(arg, n, k=0, evaluate=None)[source]
      +sympy.functions.elementary.miscellaneous.root(arg, n, k=0, evaluate=None)[source]

      Returns the k-th n-th root of arg.

      Parameters:
      @@ -3276,7 +3276,7 @@

      Miscellaneous
      -sympy.functions.elementary.miscellaneous.sqrt(arg, evaluate=None)[source]
      +sympy.functions.elementary.miscellaneous.sqrt(arg, evaluate=None)[source]

      Returns the principal square root.

      Parameters:
      @@ -3371,7 +3371,7 @@

      Miscellaneous
      -sympy.functions.elementary.miscellaneous.cbrt(arg, evaluate=None)[source]
      +sympy.functions.elementary.miscellaneous.cbrt(arg, evaluate=None)[source]

      Returns the principal cube root.

      Parameters:
      @@ -3434,7 +3434,7 @@

      Miscellaneous
      -sympy.functions.elementary.miscellaneous.real_root(arg, n=None, evaluate=None)[source]
      +sympy.functions.elementary.miscellaneous.real_root(arg, n=None, evaluate=None)[source]

      Return the real n’th-root of arg if possible.

      Parameters:
      @@ -3518,7 +3518,7 @@

      MiscellaneousFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/functions/index.html b/dev/modules/functions/index.html index 811ed4ff3c0..2c618c1d729 100644 --- a/dev/modules/functions/index.html +++ b/dev/modules/functions/index.html @@ -804,7 +804,7 @@
      Documentation Version
      sympy.core.function.Function.

      -class sympy.core.function.Function(*args)[source]
      +class sympy.core.function.Function(*args)[source]

      Base class for applied mathematical functions.

      It also serves as a constructor for undefined function classes.

      See the Writing Custom Functions guide for details on how to subclass @@ -852,19 +852,19 @@

      Documentation Version
      to create a custom function.

      -as_base_exp()[source]
      +as_base_exp()[source]

      Returns the method as the 2-tuple (base, exponent).

      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Returns the first derivative of the function.

      -classmethod is_singular(a)[source]
      +classmethod is_singular(a)[source]

      Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic.

      @@ -919,7 +919,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/functions/special.html b/dev/modules/functions/special.html index b70ae7411f6..dc35d3dec3a 100644 --- a/dev/modules/functions/special.html +++ b/dev/modules/functions/special.html @@ -804,7 +804,7 @@
      Documentation Version

      Dirac Delta and Related Discontinuous Functions

      -class sympy.functions.special.delta_functions.DiracDelta(arg, k=0)[source]
      +class sympy.functions.special.delta_functions.DiracDelta(arg, k=0)[source]

      The DiracDelta function and its derivatives.

      Explanation

      DiracDelta is not an ordinary function. It can be rigorously defined either @@ -881,7 +881,7 @@

      Dirac Delta and Related Discontinuous Functions
      -classmethod eval(arg, k=0)[source]
      +classmethod eval(arg, k=0)[source]

      Returns a simplified form or a value of DiracDelta depending on the argument passed by the DiracDelta object.

      @@ -944,7 +944,7 @@

      Dirac Delta and Related Discontinuous Functions
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Returns the first derivative of a DiracDelta Function.

      Parameters:
      @@ -986,7 +986,7 @@

      Dirac Delta and Related Discontinuous Functions
      -is_simple(x)[source]
      +is_simple(x)[source]

      Tells whether the argument(args[0]) of DiracDelta is a linear expression in x.

      @@ -1023,7 +1023,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.delta_functions.Heaviside(arg, H0=1 / 2)[source]
      +class sympy.functions.special.delta_functions.Heaviside(arg, H0=1 / 2)[source]

      Heaviside step function.

      Explanation

      The Heaviside step function has the following properties:

      @@ -1076,7 +1076,7 @@

      Dirac Delta and Related Discontinuous Functions
      -classmethod eval(arg, H0=1 / 2)[source]
      +classmethod eval(arg, H0=1 / 2)[source]

      Returns a simplified form or a value of Heaviside depending on the argument passed by the Heaviside object.

      @@ -1132,7 +1132,7 @@

      Dirac Delta and Related Discontinuous Functions
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Returns the first derivative of a Heaviside Function.

      Parameters:
      @@ -1171,7 +1171,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.singularity_functions.SingularityFunction(variable, offset, exponent)[source]
      +class sympy.functions.special.singularity_functions.SingularityFunction(variable, offset, exponent)[source]

      Singularity functions are a class of discontinuous functions.

      Explanation

      Singularity functions take a variable, an offset, and an exponent as @@ -1244,7 +1244,7 @@

      Dirac Delta and Related Discontinuous Functionsexponent,

      -)[source] +)[source]

      Returns a simplified form or a value of Singularity Function depending on the argument passed by the object.

      Explanation

      @@ -1282,7 +1282,7 @@

      Dirac Delta and Related Discontinuous Functions
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Returns the first derivative of a DiracDelta Function.

      Explanation

      The difference between diff() and fdiff() is: diff() is the @@ -1300,7 +1300,7 @@

      Dirac Delta and Related Discontinuous Functions

      Gamma, Beta and Related Functions

      -class sympy.functions.special.gamma_functions.gamma(arg)[source]
      +class sympy.functions.special.gamma_functions.gamma(arg)[source]

      The gamma function

      @@ -1393,7 +1393,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.gamma_functions.loggamma(z)[source]
      +class sympy.functions.special.gamma_functions.loggamma(z)[source]

      The loggamma function implements the logarithm of the gamma function (i.e., \(\log\Gamma(x)\)).

      Examples

      @@ -1521,7 +1521,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.gamma_functions.polygamma(n, z)[source]
      +class sympy.functions.special.gamma_functions.polygamma(n, z)[source]

      The function polygamma(n, z) returns log(gamma(z)).diff(n + 1).

      Explanation

      It is a meromorphic function on \(\mathbb{C}\) and defined as the \((n+1)\)-th @@ -1650,7 +1650,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.gamma_functions.digamma(z)[source]
      +class sympy.functions.special.gamma_functions.digamma(z)[source]

      The digamma function is the first derivative of the loggamma function

      @@ -1714,7 +1714,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.gamma_functions.trigamma(z)[source]
      +class sympy.functions.special.gamma_functions.trigamma(z)[source]

      The trigamma function is the second derivative of the loggamma function

      @@ -1777,7 +1777,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.gamma_functions.uppergamma(a, z)[source]
      +class sympy.functions.special.gamma_functions.uppergamma(a, z)[source]

      The upper incomplete gamma function.

      Explanation

      It can be defined as the meromorphic continuation of

      @@ -1863,7 +1863,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.gamma_functions.lowergamma(a, x)[source]
      +class sympy.functions.special.gamma_functions.lowergamma(a, x)[source]

      The lower incomplete gamma function.

      Explanation

      It can be defined as the meromorphic continuation of

      @@ -1936,7 +1936,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.gamma_functions.multigamma(x, p)[source]
      +class sympy.functions.special.gamma_functions.multigamma(x, p)[source]

      The multivariate gamma function is a generalization of the gamma function

      @@ -1996,7 +1996,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.beta_functions.beta(x, y=None)[source]
      +class sympy.functions.special.beta_functions.beta(x, y=None)[source]

      The beta integral is called the Eulerian integral of the first kind by Legendre:

      @@ -2104,7 +2104,7 @@

      Dirac Delta and Related Discontinuous Functions

      Error Functions and Fresnel Integrals

      -class sympy.functions.special.error_functions.erf(arg)[source]
      +class sympy.functions.special.error_functions.erf(arg)[source]

      The Gauss error function.

      Explanation

      This function is defined as:

      @@ -2195,7 +2195,7 @@

      Dirac Delta and Related Discontinuous Functions
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2203,7 +2203,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.error_functions.erfc(arg)[source]
      +class sympy.functions.special.error_functions.erfc(arg)[source]

      Complementary Error Function.

      Explanation

      The function is defined as:

      @@ -2294,7 +2294,7 @@

      Dirac Delta and Related Discontinuous Functions
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2302,7 +2302,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.error_functions.erfi(z)[source]
      +class sympy.functions.special.error_functions.erfi(z)[source]

      Imaginary error function.

      Explanation

      The function erfi is defined as:

      @@ -2390,7 +2390,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.error_functions.erf2(x, y)[source]
      +class sympy.functions.special.error_functions.erf2(x, y)[source]

      Two-argument error function.

      Explanation

      This function is defined as:

      @@ -2465,7 +2465,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.error_functions.erfinv(z)[source]
      +class sympy.functions.special.error_functions.erfinv(z)[source]

      Inverse Error Function. The erfinv function is defined as:

      @@ -2525,7 +2525,7 @@

      Dirac Delta and Related Discontinuous Functions
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2533,7 +2533,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.error_functions.erfcinv(z)[source]
      +class sympy.functions.special.error_functions.erfcinv(z)[source]

      Inverse Complementary Error Function. The erfcinv function is defined as:

      @@ -2587,7 +2587,7 @@

      Dirac Delta and Related Discontinuous Functions
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Returns the inverse of this function.

      @@ -2595,7 +2595,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.error_functions.erf2inv(x, y)[source]
      +class sympy.functions.special.error_functions.erf2inv(x, y)[source]

      Two-argument Inverse error function. The erf2inv function is defined as:

      @@ -2655,13 +2655,13 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.error_functions.FresnelIntegral(z)[source]
      +class sympy.functions.special.error_functions.FresnelIntegral(z)[source]

      Base class for the Fresnel integrals.

      -class sympy.functions.special.error_functions.fresnels(z)[source]
      +class sympy.functions.special.error_functions.fresnels(z)[source]

      Fresnel integral S.

      Explanation

      This function is defined by

      @@ -2761,7 +2761,7 @@

      Dirac Delta and Related Discontinuous Functions
      -class sympy.functions.special.error_functions.fresnelc(z)[source]
      +class sympy.functions.special.error_functions.fresnelc(z)[source]

      Fresnel integral C.

      Explanation

      This function is defined by

      @@ -2864,7 +2864,7 @@

      Dirac Delta and Related Discontinuous Functions

      -class sympy.functions.special.error_functions.Ei(z)[source]
      +class sympy.functions.special.error_functions.Ei(z)[source]

      The classical exponential integral.

      Explanation

      For use in SymPy, this function is defined as

      @@ -2965,7 +2965,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.error_functions.expint(nu, z)[source]
      +class sympy.functions.special.error_functions.expint(nu, z)[source]

      Generalized exponential integral.

      Explanation

      This function is defined as

      @@ -3081,7 +3081,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -sympy.functions.special.error_functions.E1(z)[source]
      +sympy.functions.special.error_functions.E1(z)[source]

      Classical case of the generalized exponential integral.

      Explanation

      This is equivalent to expint(1, z).

      @@ -3120,7 +3120,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.error_functions.li(z)[source]
      +class sympy.functions.special.error_functions.li(z)[source]

      The classical logarithmic integral.

      Explanation

      For use in SymPy, this function is defined as

      @@ -3237,7 +3237,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.error_functions.Li(z)[source]
      +class sympy.functions.special.error_functions.Li(z)[source]

      The offset logarithmic integral.

      Explanation

      For use in SymPy, this function is defined as

      @@ -3317,7 +3317,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.error_functions.Si(z)[source]
      +class sympy.functions.special.error_functions.Si(z)[source]

      Sine integral.

      Explanation

      This function is defined by

      @@ -3397,7 +3397,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.error_functions.Ci(z)[source]
      +class sympy.functions.special.error_functions.Ci(z)[source]

      Cosine integral.

      Explanation

      This function is defined for positive \(x\) by

      @@ -3484,7 +3484,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.error_functions.Shi(z)[source]
      +class sympy.functions.special.error_functions.Shi(z)[source]

      Sinh integral.

      Explanation

      This function is defined by

      @@ -3556,7 +3556,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.error_functions.Chi(z)[source]
      +class sympy.functions.special.error_functions.Chi(z)[source]

      Cosh integral.

      Explanation

      This function is defined for positive \(x\) by

      @@ -3642,7 +3642,7 @@

      Exponential, Logarithmic and Trigonometric Integrals

      Bessel Type Functions

      -class sympy.functions.special.bessel.BesselBase(nu, z)[source]
      +class sympy.functions.special.bessel.BesselBase(nu, z)[source]

      Abstract base class for Bessel-type functions.

      This class is meant to reduce code duplication. All Bessel-type functions can 1) be differentiated, with the derivatives @@ -3667,7 +3667,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.bessel.besselj(nu, z)[source]
      +class sympy.functions.special.bessel.besselj(nu, z)[source]

      Bessel function of the first kind.

      Explanation

      The Bessel \(J\) function of order \(\nu\) is defined to be the function @@ -3742,7 +3742,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.bessel.bessely(nu, z)[source]
      +class sympy.functions.special.bessel.bessely(nu, z)[source]

      Bessel function of the second kind.

      Explanation

      The Bessel \(Y\) function of order \(\nu\) is defined as

      @@ -3779,7 +3779,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.bessel.besseli(nu, z)[source]
      +class sympy.functions.special.bessel.besseli(nu, z)[source]

      Modified Bessel function of the first kind.

      Explanation

      The Bessel \(I\) function is a solution to the modified Bessel equation

      @@ -3816,7 +3816,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.bessel.besselk(nu, z)[source]
      +class sympy.functions.special.bessel.besselk(nu, z)[source]

      Modified Bessel function of the second kind.

      Explanation

      The Bessel \(K\) function of order \(\nu\) is defined as

      @@ -3850,7 +3850,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.bessel.hankel1(nu, z)[source]
      +class sympy.functions.special.bessel.hankel1(nu, z)[source]

      Hankel function of the first kind.

      Explanation

      This function is defined as

      @@ -3883,7 +3883,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.bessel.hankel2(nu, z)[source]
      +class sympy.functions.special.bessel.hankel2(nu, z)[source]

      Hankel function of the second kind.

      Explanation

      This function is defined as

      @@ -3917,7 +3917,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.bessel.jn(nu, z)[source]
      +class sympy.functions.special.bessel.jn(nu, z)[source]

      Spherical Bessel function of the first kind.

      Explanation

      This function is a solution to the spherical Bessel equation

      @@ -3973,7 +3973,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.bessel.yn(nu, z)[source]
      +class sympy.functions.special.bessel.yn(nu, z)[source]

      Spherical Bessel function of the second kind.

      Explanation

      This function is another solution to the spherical Bessel equation, and @@ -4019,7 +4019,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -sympy.functions.special.bessel.jn_zeros(n, k, method='sympy', dps=15)[source]
      +sympy.functions.special.bessel.jn_zeros(n, k, method='sympy', dps=15)[source]

      Zeros of the spherical Bessel function of the first kind.

      Parameters:
      @@ -4062,7 +4062,7 @@

      Exponential, Logarithmic and Trigonometric Integrals
      -class sympy.functions.special.bessel.marcumq(m, a, b)[source]
      +class sympy.functions.special.bessel.marcumq(m, a, b)[source]

      The Marcum Q-function.

      Explanation

      The Marcum Q-function is defined by the meromorphic continuation of

      @@ -4116,14 +4116,14 @@

      Exponential, Logarithmic and Trigonometric IntegralsAiry Functions

      -class sympy.functions.special.bessel.AiryBase(*args)[source]
      +class sympy.functions.special.bessel.AiryBase(*args)[source]

      Abstract base class for Airy functions.

      This class is meant to reduce code duplication.

      -class sympy.functions.special.bessel.airyai(arg)[source]
      +class sympy.functions.special.bessel.airyai(arg)[source]

      The Airy function \(\operatorname{Ai}\) of the first kind.

      Explanation

      The Airy function \(\operatorname{Ai}(z)\) is defined to be the function @@ -4224,7 +4224,7 @@

      Airy Functions
      -class sympy.functions.special.bessel.airybi(arg)[source]
      +class sympy.functions.special.bessel.airybi(arg)[source]

      The Airy function \(\operatorname{Bi}\) of the second kind.

      Explanation

      The Airy function \(\operatorname{Bi}(z)\) is defined to be the function @@ -4327,7 +4327,7 @@

      Airy Functions
      -class sympy.functions.special.bessel.airyaiprime(arg)[source]
      +class sympy.functions.special.bessel.airyaiprime(arg)[source]

      The derivative \(\operatorname{Ai}^\prime\) of the Airy function of the first kind.

      Explanation

      @@ -4421,7 +4421,7 @@

      Airy Functions
      -class sympy.functions.special.bessel.airybiprime(arg)[source]
      +class sympy.functions.special.bessel.airybiprime(arg)[source]

      The derivative \(\operatorname{Bi}^\prime\) of the Airy function of the first kind.

      Explanation

      @@ -4600,7 +4600,7 @@

      B-Splines
      -sympy.functions.special.bsplines.bspline_basis_set(d, knots, x)[source]
      +sympy.functions.special.bsplines.bspline_basis_set(d, knots, x)[source]

      Return the len(knots)-d-1 B-splines at x of degree d with knots.

      @@ -4646,7 +4646,7 @@

      B-Splines
      -sympy.functions.special.bsplines.interpolating_spline(d, x, X, Y)[source]
      +sympy.functions.special.bsplines.interpolating_spline(d, x, X, Y)[source]

      Return spline of degree d, passing through the given X and Y values.

      @@ -4694,7 +4694,7 @@

      B-Splines

      Riemann Zeta and Related Functions

      -class sympy.functions.special.zeta_functions.zeta(s, a=None)[source]
      +class sympy.functions.special.zeta_functions.zeta(s, a=None)[source]

      Hurwitz zeta function (or Riemann zeta function).

      Explanation

      For \(\operatorname{Re}(a) > 0\) and \(\operatorname{Re}(s) > 1\), this @@ -4806,7 +4806,7 @@

      B-Splines
      -class sympy.functions.special.zeta_functions.dirichlet_eta(s, a=None)[source]
      +class sympy.functions.special.zeta_functions.dirichlet_eta(s, a=None)[source]

      Dirichlet eta function.

      Explanation

      For \(\operatorname{Re}(s) > 0\) and \(0 < x \le 1\), this function is defined as

      @@ -4855,7 +4855,7 @@

      B-Splines
      -class sympy.functions.special.zeta_functions.polylog(s, z)[source]
      +class sympy.functions.special.zeta_functions.polylog(s, z)[source]

      Polylogarithm function.

      Explanation

      For \(|z| < 1\) and \(s \in \mathbb{C}\), the polylogarithm is @@ -4922,7 +4922,7 @@

      B-Splines
      -class sympy.functions.special.zeta_functions.lerchphi(*args)[source]
      +class sympy.functions.special.zeta_functions.lerchphi(*args)[source]

      Lerch transcendent (Lerch phi function).

      Explanation

      For \(\operatorname{Re}(a) > 0\), \(|z| < 1\) and \(s \in \mathbb{C}\), the @@ -5031,7 +5031,7 @@

      B-Splines
      -class sympy.functions.special.zeta_functions.stieltjes(n, a=None)[source]
      +class sympy.functions.special.zeta_functions.stieltjes(n, a=None)[source]

      Represents Stieltjes constants, \(\gamma_{k}\) that occur in Laurent Series expansion of the Riemann zeta function.

      Examples

      @@ -5072,7 +5072,7 @@

      B-Splines

      -class sympy.functions.special.hyper.hyper(ap, bq, z)[source]
      +class sympy.functions.special.hyper.hyper(ap, bq, z)[source]

      The generalized hypergeometric function is defined by a series where the ratios of successive terms are a rational function of the summation index. When convergent, it is continued analytically to the largest @@ -5236,7 +5236,7 @@

      Hypergeometric Functions
      -class sympy.functions.special.hyper.meijerg(*args)[source]
      +class sympy.functions.special.hyper.meijerg(*args)[source]

      The Meijer G-function is defined by a Mellin-Barnes type integral that resembles an inverse Mellin transform. It generalizes the hypergeometric functions.

      @@ -5407,7 +5407,7 @@

      Hypergeometric Functions
      -get_period()[source]
      +get_period()[source]

      Return a number \(P\) such that \(G(x*exp(I*P)) == G(x)\).

      Examples

      >>> from sympy import meijerg, pi, S
      @@ -5428,7 +5428,7 @@ 

      Hypergeometric Functions
      -integrand(s)[source]
      +integrand(s)[source]

      Get the defining integrand D(s).

      @@ -5449,7 +5449,7 @@

      Hypergeometric Functions
      -class sympy.functions.special.hyper.appellf1(a, b1, b2, c, x, y)[source]
      +class sympy.functions.special.hyper.appellf1(a, b1, b2, c, x, y)[source]

      This is the Appell hypergeometric function of two variables as:

      @@ -5492,7 +5492,7 @@

      Hypergeometric Functions

      Elliptic integrals

      -class sympy.functions.special.elliptic_integrals.elliptic_k(m)[source]
      +class sympy.functions.special.elliptic_integrals.elliptic_k(m)[source]

      The complete elliptic integral of the first kind, defined by

      @@ -5537,7 +5537,7 @@

      Hypergeometric Functions
      -class sympy.functions.special.elliptic_integrals.elliptic_f(z, m)[source]
      +class sympy.functions.special.elliptic_integrals.elliptic_f(z, m)[source]

      The Legendre incomplete elliptic integral of the first kind, defined by

      @@ -5580,7 +5580,7 @@

      Hypergeometric Functions
      -class sympy.functions.special.elliptic_integrals.elliptic_e(m, z=None)[source]
      +class sympy.functions.special.elliptic_integrals.elliptic_e(m, z=None)[source]

      Called with two arguments \(z\) and \(m\), evaluates the incomplete elliptic integral of the second kind, defined by

      @@ -5634,7 +5634,7 @@

      Hypergeometric Functions
      -class sympy.functions.special.elliptic_integrals.elliptic_pi(n, m, z=None)[source]
      +class sympy.functions.special.elliptic_integrals.elliptic_pi(n, m, z=None)[source]

      Called with three arguments \(n\), \(z\) and \(m\), evaluates the Legendre incomplete elliptic integral of the third kind, defined by

      @@ -5689,14 +5689,14 @@

      Hypergeometric Functions

      Mathieu Functions

      -class sympy.functions.special.mathieu_functions.MathieuBase(*args)[source]
      +class sympy.functions.special.mathieu_functions.MathieuBase(*args)[source]

      Abstract base class for Mathieu functions.

      This class is meant to reduce code duplication.

      -class sympy.functions.special.mathieu_functions.mathieus(a, q, z)[source]
      +class sympy.functions.special.mathieu_functions.mathieus(a, q, z)[source]

      The Mathieu Sine function \(S(a,q,z)\).

      Explanation

      This function is one solution of the Mathieu differential equation:

      @@ -5756,7 +5756,7 @@

      Hypergeometric Functions
      -class sympy.functions.special.mathieu_functions.mathieuc(a, q, z)[source]
      +class sympy.functions.special.mathieu_functions.mathieuc(a, q, z)[source]

      The Mathieu Cosine function \(C(a,q,z)\).

      Explanation

      This function is one solution of the Mathieu differential equation:

      @@ -5816,7 +5816,7 @@

      Hypergeometric Functions
      -class sympy.functions.special.mathieu_functions.mathieusprime(a, q, z)[source]
      +class sympy.functions.special.mathieu_functions.mathieusprime(a, q, z)[source]

      The derivative \(S^{\prime}(a,q,z)\) of the Mathieu Sine function.

      Explanation

      This function is one solution of the Mathieu differential equation:

      @@ -5876,7 +5876,7 @@

      Hypergeometric Functions
      -class sympy.functions.special.mathieu_functions.mathieucprime(a, q, z)[source]
      +class sympy.functions.special.mathieu_functions.mathieucprime(a, q, z)[source]

      The derivative \(C^{\prime}(a,q,z)\) of the Mathieu Cosine function.

      Explanation

      This function is one solution of the Mathieu differential equation:

      @@ -5944,7 +5944,7 @@

      Hypergeometric Functions

      -class sympy.functions.special.polynomials.jacobi(n, a, b, x)[source]
      +class sympy.functions.special.polynomials.jacobi(n, a, b, x)[source]

      Jacobi polynomial \(P_n^{\left(\alpha, \beta\right)}(x)\).

      Explanation

      jacobi(n, alpha, beta, x) gives the \(n\)th Jacobi polynomial @@ -6026,7 +6026,7 @@

      Jacobi Polynomials
      -sympy.functions.special.polynomials.jacobi_normalized(n, a, b, x)[source]
      +sympy.functions.special.polynomials.jacobi_normalized(n, a, b, x)[source]

      Jacobi polynomial \(P_n^{\left(\alpha, \beta\right)}(x)\).

      Parameters:
      @@ -6085,7 +6085,7 @@

      Jacobi Polynomials

      -class sympy.functions.special.polynomials.gegenbauer(n, a, x)[source]
      +class sympy.functions.special.polynomials.gegenbauer(n, a, x)[source]

      Gegenbauer polynomial \(C_n^{\left(\alpha\right)}(x)\).

      Explanation

      gegenbauer(n, alpha, x) gives the \(n\)th Gegenbauer polynomial @@ -6151,7 +6151,7 @@

      Gegenbauer PolynomialsChebyshev Polynomials

      -class sympy.functions.special.polynomials.chebyshevt(n, x)[source]
      +class sympy.functions.special.polynomials.chebyshevt(n, x)[source]

      Chebyshev polynomial of the first kind, \(T_n(x)\).

      Explanation

      chebyshevt(n, x) gives the \(n\)th Chebyshev polynomial (of the first @@ -6218,7 +6218,7 @@

      Chebyshev Polynomials
      -class sympy.functions.special.polynomials.chebyshevu(n, x)[source]
      +class sympy.functions.special.polynomials.chebyshevu(n, x)[source]

      Chebyshev polynomial of the second kind, \(U_n(x)\).

      Explanation

      chebyshevu(n, x) gives the \(n\)th Chebyshev polynomial of the second @@ -6285,7 +6285,7 @@

      Chebyshev Polynomials
      -class sympy.functions.special.polynomials.chebyshevt_root(n, k)[source]
      +class sympy.functions.special.polynomials.chebyshevt_root(n, k)[source]

      chebyshev_root(n, k) returns the \(k\)th root (indexed from zero) of the \(n\)th Chebyshev polynomial of the first kind; that is, if \(0 \le k < n\), chebyshevt(n, chebyshevt_root(n, k)) == 0.

      @@ -6305,7 +6305,7 @@

      Chebyshev Polynomials
      -class sympy.functions.special.polynomials.chebyshevu_root(n, k)[source]
      +class sympy.functions.special.polynomials.chebyshevu_root(n, k)[source]

      chebyshevu_root(n, k) returns the \(k\)th root (indexed from zero) of the \(n\)th Chebyshev polynomial of the second kind; that is, if \(0 \le k < n\), chebyshevu(n, chebyshevu_root(n, k)) == 0.

      @@ -6328,7 +6328,7 @@

      Chebyshev PolynomialsLegendre Polynomials

      -class sympy.functions.special.polynomials.legendre(n, x)[source]
      +class sympy.functions.special.polynomials.legendre(n, x)[source]

      legendre(n, x) gives the \(n\)th Legendre polynomial of \(x\), \(P_n(x)\)

      Explanation

      The Legendre polynomials are orthogonal on \([-1, 1]\) with respect to @@ -6376,7 +6376,7 @@

      Legendre Polynomials
      -class sympy.functions.special.polynomials.assoc_legendre(n, m, x)[source]
      +class sympy.functions.special.polynomials.assoc_legendre(n, m, x)[source]

      assoc_legendre(n, m, x) gives \(P_n^m(x)\), where \(n\) and \(m\) are the degree and order or an expression which is related to the nth order Legendre polynomial, \(P_n(x)\) in the following manner:

      @@ -6434,7 +6434,7 @@

      Legendre PolynomialsHermite Polynomials

      -class sympy.functions.special.polynomials.hermite(n, x)[source]
      +class sympy.functions.special.polynomials.hermite(n, x)[source]

      hermite(n, x) gives the \(n\)th Hermite polynomial in \(x\), \(H_n(x)\).

      Explanation

      The Hermite polynomials are orthogonal on \((-\infty, \infty)\) @@ -6479,7 +6479,7 @@

      Hermite Polynomials
      -class sympy.functions.special.polynomials.hermite_prob(n, x)[source]
      +class sympy.functions.special.polynomials.hermite_prob(n, x)[source]

      hermite_prob(n, x) gives the \(n\)th probabilist’s Hermite polynomial in \(x\), \(He_n(x)\).

      Explanation

      @@ -6531,7 +6531,7 @@

      Hermite Polynomials

      -class sympy.functions.special.polynomials.laguerre(n, x)[source]
      +class sympy.functions.special.polynomials.laguerre(n, x)[source]

      Returns the \(n\)th Laguerre polynomial in \(x\), \(L_n(x)\).

      Parameters:
      @@ -6589,7 +6589,7 @@

      Laguerre Polynomials
      -class sympy.functions.special.polynomials.assoc_laguerre(n, alpha, x)[source]
      +class sympy.functions.special.polynomials.assoc_laguerre(n, alpha, x)[source]

      Returns the \(n\)th generalized Laguerre polynomial in \(x\), \(L_n(x)\).

      Parameters:
      @@ -6669,7 +6669,7 @@

      Laguerre PolynomialsSpherical Harmonics

      -class sympy.functions.special.spherical_harmonics.Ynm(n, m, theta, phi)[source]
      +class sympy.functions.special.spherical_harmonics.Ynm(n, m, theta, phi)[source]

      Spherical harmonics defined as

      @@ -6812,7 +6812,7 @@

      Spherical Harmonics
      -sympy.functions.special.spherical_harmonics.Ynm_c(n, m, theta, phi)[source]
      +sympy.functions.special.spherical_harmonics.Ynm_c(n, m, theta, phi)[source]

      Conjugate spherical harmonics defined as

      @@ -6860,7 +6860,7 @@

      Spherical Harmonics
      -class sympy.functions.special.spherical_harmonics.Znm(n, m, theta, phi)[source]
      +class sympy.functions.special.spherical_harmonics.Znm(n, m, theta, phi)[source]

      Real spherical harmonics defined as

      @@ -6926,7 +6926,7 @@

      Spherical Harmonics

      -sympy.functions.special.tensor_functions.Eijk(*args, **kwargs)[source]
      +sympy.functions.special.tensor_functions.Eijk(*args, **kwargs)[source]

      Represent the Levi-Civita symbol.

      This is a compatibility wrapper to LeviCivita().

      @@ -6937,13 +6937,13 @@

      Tensor Functions
      -sympy.functions.special.tensor_functions.eval_levicivita(*args)[source]
      +sympy.functions.special.tensor_functions.eval_levicivita(*args)[source]

      Evaluate Levi-Civita symbol.

      -class sympy.functions.special.tensor_functions.LeviCivita(*args)[source]
      +class sympy.functions.special.tensor_functions.LeviCivita(*args)[source]

      Represent the Levi-Civita symbol.

      Explanation

      For even permutations of indices it returns 1, for odd permutations -1, and @@ -6972,7 +6972,7 @@

      Tensor Functions
      -class sympy.functions.special.tensor_functions.KroneckerDelta(i, j, delta_range=None)[source]
      +class sympy.functions.special.tensor_functions.KroneckerDelta(i, j, delta_range=None)[source]

      The discrete, or Kronecker, delta function.

      Parameters:
      @@ -7023,7 +7023,7 @@

      Tensor Functions
      -classmethod eval(i, j, delta_range=None)[source]
      +classmethod eval(i, j, delta_range=None)[source]

      Evaluates the discrete delta function.

      Examples

      >>> from sympy import KroneckerDelta
      @@ -7256,7 +7256,7 @@ 

      Tensor FunctionsFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/geometry/curves.html b/dev/modules/geometry/curves.html index 68a0db26fda..723f2c5e068 100644 --- a/dev/modules/geometry/curves.html +++ b/dev/modules/geometry/curves.html @@ -802,7 +802,7 @@
      Documentation Version

      Curves

      -class sympy.geometry.curve.Curve(function, limits)[source]
      +class sympy.geometry.curve.Curve(function, limits)[source]

      A curve in space.

      A curve is defined by parametric functions for the coordinates, a parameter and the lower and upper bounds for the parameter value.

      @@ -884,7 +884,7 @@
      Documentation Version
      -arbitrary_point(parameter='t')[source]
      +arbitrary_point(parameter='t')[source]

      A parameterized point on the curve.

      Parameters:
      @@ -1045,7 +1045,7 @@
      Documentation Version
      -plot_interval(parameter='t')[source]
      +plot_interval(parameter='t')[source]

      The plot interval for the default geometric plot of the curve.

      Parameters:
      @@ -1085,7 +1085,7 @@
      Documentation Version
      -rotate(angle=0, pt=None)[source]
      +rotate(angle=0, pt=None)[source]

      This function is used to rotate a curve along given point pt at given angle(in radian).

      Parameters:
      @@ -1118,7 +1118,7 @@
      Documentation Version
      -scale(x=1, y=1, pt=None)[source]
      +scale(x=1, y=1, pt=None)[source]

      Override GeometryEntity.scale since Curve is not made up of Points.

      Returns:
      @@ -1139,7 +1139,7 @@
      Documentation Version
      -translate(x=0, y=0)[source]
      +translate(x=0, y=0)[source]

      Translate the Curve by (x, y).

      Returns:
      @@ -1197,7 +1197,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/geometry/ellipses.html b/dev/modules/geometry/ellipses.html index 89c67c94c5b..ffc86023392 100644 --- a/dev/modules/geometry/ellipses.html +++ b/dev/modules/geometry/ellipses.html @@ -812,7 +812,7 @@
      Documentation Version
      **kwargs,

      -)[source] +)[source]

      An elliptical GeometryEntity.

      Parameters:
      @@ -928,7 +928,7 @@
      Documentation Version
      -arbitrary_point(parameter='t')[source]
      +arbitrary_point(parameter='t')[source]

      A parameterized point on the ellipse.

      Parameters:
      @@ -981,7 +981,7 @@
      Documentation Version
      -auxiliary_circle()[source]
      +auxiliary_circle()[source]

      Returns a Circle whose diameter is the major axis of the ellipse.

      Examples

      >>> from sympy import Ellipse, Point, symbols
      @@ -1041,7 +1041,7 @@ 
      Documentation Version
      -director_circle()[source]
      +director_circle()[source]

      Returns a Circle consisting of all points where two perpendicular tangent lines to the ellipse cross each other.

      @@ -1092,7 +1092,7 @@
      Documentation Version
      -encloses_point(p)[source]
      +encloses_point(p)[source]

      Return True if p is enclosed by (is inside of) self.

      Parameters:
      @@ -1124,7 +1124,7 @@
      Documentation Version
      -equation(x='x', y='y', _slope=None)[source]
      +equation(x='x', y='y', _slope=None)[source]

      Returns the equation of an ellipse aligned with the x and y axes; when slope is given, the equation returned corresponds to an ellipse with a major axis having that slope.

      @@ -1191,7 +1191,7 @@
      Documentation Version
      -evolute(x='x', y='y')[source]
      +evolute(x='x', y='y')[source]

      The equation of evolute of the ellipse.

      Parameters:
      @@ -1298,7 +1298,7 @@
      Documentation Version
      -intersection(o)[source]
      +intersection(o)[source]

      The intersection of this ellipse and another geometrical entity \(o\).

      @@ -1346,7 +1346,7 @@
      Documentation Version
      -is_tangent(o)[source]
      +is_tangent(o)[source]

      Is \(o\) tangent to the ellipse?

      Parameters:
      @@ -1459,7 +1459,7 @@
      Documentation Version
      -normal_lines(p, prec=None)[source]
      +normal_lines(p, prec=None)[source]

      Normal lines between \(p\) and the ellipse.

      Parameters:
      @@ -1521,7 +1521,7 @@
      Documentation Version
      -plot_interval(parameter='t')[source]
      +plot_interval(parameter='t')[source]

      The plot interval for the default geometric plot of the Ellipse.

      Parameters:
      @@ -1548,7 +1548,7 @@
      Documentation Version
      -polar_second_moment_of_area()[source]
      +polar_second_moment_of_area()[source]

      Returns the polar second moment of area of an Ellipse

      It is a constituent of the second moment of area, linked through the perpendicular axis theorem. While the planar second moment of @@ -1580,7 +1580,7 @@

      Documentation Version
      -random_point(seed=None)[source]
      +random_point(seed=None)[source]

      A random point on the ellipse.

      Returns:
      @@ -1625,7 +1625,7 @@
      Documentation Version
      -reflect(line)[source]
      +reflect(line)[source]

      Override GeometryEntity.reflect since the radius is not a GeometryEntity.

      Examples

      @@ -1650,7 +1650,7 @@
      Documentation Version
      -rotate(angle=0, pt=None)[source]
      +rotate(angle=0, pt=None)[source]

      Rotate angle radians counterclockwise about Point pt.

      Note: since the general ellipse is not supported, only rotations that are integer multiples of pi/2 are allowed.

      @@ -1666,7 +1666,7 @@
      Documentation Version
      -scale(x=1, y=1, pt=None)[source]
      +scale(x=1, y=1, pt=None)[source]

      Override GeometryEntity.scale since it is the major and minor axes which must be scaled and they are not GeometryEntities.

      Examples

      @@ -1681,7 +1681,7 @@
      Documentation Version
      -second_moment_of_area(point=None)[source]
      +second_moment_of_area(point=None)[source]

      Returns the second moment and product moment area of an ellipse.

      Parameters:
      @@ -1719,7 +1719,7 @@
      Documentation Version
      -section_modulus(point=None)[source]
      +section_modulus(point=None)[source]

      Returns a tuple with the section modulus of an ellipse

      Section modulus is a geometric property of an ellipse defined as the ratio of second moment of area to the distance of the extreme end of @@ -1808,7 +1808,7 @@

      Documentation Version
      -tangent_lines(p)[source]
      +tangent_lines(p)[source]

      Tangent lines between \(p\) and the ellipse.

      If \(p\) is on the ellipse, returns the tangent line through point \(p\). Otherwise, returns the tangent line(s) from \(p\) to the ellipse, or @@ -1867,7 +1867,7 @@

      Documentation Version
      -class sympy.geometry.ellipse.Circle(*args, **kwargs)[source]
      +class sympy.geometry.ellipse.Circle(*args, **kwargs)[source]

      A circle in space.

      Constructed simply from a center and a radius, from three non-collinear points, or the equation of a circle.

      @@ -1955,7 +1955,7 @@
      Documentation Version
      -equation(x='x', y='y')[source]
      +equation(x='x', y='y')[source]

      The equation of the circle.

      Parameters:
      @@ -1983,7 +1983,7 @@
      Documentation Version
      -intersection(o)[source]
      +intersection(o)[source]

      The intersection of this circle with another geometrical entity.

      Parameters:
      @@ -2034,7 +2034,7 @@
      Documentation Version
      -reflect(line)[source]
      +reflect(line)[source]

      Override GeometryEntity.reflect since the radius is not a GeometryEntity.

      Examples

      @@ -2047,7 +2047,7 @@
      Documentation Version
      -scale(x=1, y=1, pt=None)[source]
      +scale(x=1, y=1, pt=None)[source]

      Override GeometryEntity.scale since the radius is not a GeometryEntity.

      Examples

      @@ -2117,7 +2117,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/geometry/entities.html b/dev/modules/geometry/entities.html index 00aef8ca450..c68ebb8074a 100644 --- a/dev/modules/geometry/entities.html +++ b/dev/modules/geometry/entities.html @@ -802,7 +802,7 @@
      Documentation Version

      Entities

      -class sympy.geometry.entity.GeometryEntity(*args, **kwargs)[source]
      +class sympy.geometry.entity.GeometryEntity(*args, **kwargs)[source]

      The base class for all geometrical entities.

      This class does not represent any particular geometric entity, it only provides the implementation of some methods common to all subclasses.

      @@ -821,7 +821,7 @@
      Documentation Version
      -encloses(o)[source]
      +encloses(o)[source]

      Return True if o is inside (not on or outside) the boundaries of self.

      The object will be decomposed into Points and individual Entities need only define an encloses_point method for their class.

      @@ -843,7 +843,7 @@
      Documentation Version
      -intersection(o)[source]
      +intersection(o)[source]

      Returns a list of all of the intersections of self with o.

      Notes

      An entity is not required to implement this method.

      @@ -858,7 +858,7 @@
      Documentation Version
      -is_similar(other)[source]
      +is_similar(other)[source]

      Is this geometrical entity similar to another geometrical entity?

      Two entities are similar if a uniform scaling (enlarging or shrinking) of one of the entities will allow one to obtain the other.

      @@ -876,7 +876,7 @@
      Documentation Version
      -parameter_value(other, t)[source]
      +parameter_value(other, t)[source]

      Return the parameter corresponding to the given point. Evaluating an arbitrary point of the entity at this parameter value will return the given point.

      @@ -895,7 +895,7 @@
      Documentation Version
      -reflect(line)[source]
      +reflect(line)[source]

      Reflects an object across a line.

      Parameters:
      @@ -923,7 +923,7 @@
      Documentation Version
      -rotate(angle, pt=None)[source]
      +rotate(angle, pt=None)[source]

      Rotate angle radians counterclockwise about Point pt.

      The default pt is the origin, Point(0, 0)

      Examples

      @@ -943,7 +943,7 @@
      Documentation Version
      -scale(x=1, y=1, pt=None)[source]
      +scale(x=1, y=1, pt=None)[source]

      Scale the object by multiplying the x,y-coordinates by x and y.

      If pt is given, the scaling is done relative to that point; the object is shifted by -pt, scaled, and shifted by pt.

      @@ -966,7 +966,7 @@
      Documentation Version
      -translate(x=0, y=0)[source]
      +translate(x=0, y=0)[source]

      Shift the object by adding to the x,y-coordinates the values x and y.

      Examples

      >>> from sympy import RegularPolygon, Point, Polygon
      @@ -1024,7 +1024,7 @@ 
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/geometry/index.html b/dev/modules/geometry/index.html index c158be894f8..cfe8375f1c8 100644 --- a/dev/modules/geometry/index.html +++ b/dev/modules/geometry/index.html @@ -1045,7 +1045,7 @@

      SubmodulesFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/geometry/lines.html b/dev/modules/geometry/lines.html index b291c424af4..33c19051601 100644 --- a/dev/modules/geometry/lines.html +++ b/dev/modules/geometry/lines.html @@ -802,7 +802,7 @@
      Documentation Version

      Lines

      -class sympy.geometry.line.LinearEntity(p1, p2=None, **kwargs)[source]
      +class sympy.geometry.line.LinearEntity(p1, p2=None, **kwargs)[source]

      A base class for all linear entities (Line, Ray and Segment) in n-dimensional Euclidean space.

      Notes

      @@ -868,7 +868,7 @@
      Documentation Version
      -angle_between(l2)[source]
      +angle_between(l2)[source]

      Return the non-reflex angle formed by rays emanating from the origin with directions the same as the direction vectors of the linear entities.

      @@ -923,7 +923,7 @@
      Documentation Version
      -arbitrary_point(parameter='t')[source]
      +arbitrary_point(parameter='t')[source]

      A parameterized point on the Line.

      Parameters:
      @@ -966,7 +966,7 @@
      Documentation Version
      -static are_concurrent(*lines)[source]
      +static are_concurrent(*lines)[source]

      Is a sequence of linear entities concurrent?

      Two or more linear entities are concurrent if they all intersect at a single point.

      @@ -1011,7 +1011,7 @@
      Documentation Version
      -bisectors(other)[source]
      +bisectors(other)[source]

      Returns the perpendicular lines which pass through the intersections of self and other that are in the same plane.

      @@ -1034,7 +1034,7 @@
      Documentation Version
      -contains(other)[source]
      +contains(other)[source]

      Subclasses should implement this method and should return True if other is on the boundaries of self; False if not on the boundaries of self; @@ -1075,7 +1075,7 @@

      Documentation Version
      -intersection(other)[source]
      +intersection(other)[source]

      The intersection with another geometrical entity.

      Parameters:
      @@ -1122,7 +1122,7 @@
      Documentation Version
      -is_parallel(l2)[source]
      +is_parallel(l2)[source]

      Are two linear entities parallel?

      Parameters:
      @@ -1165,7 +1165,7 @@
      Documentation Version
      -is_perpendicular(l2)[source]
      +is_perpendicular(l2)[source]

      Are two linear entities perpendicular?

      Parameters:
      @@ -1206,7 +1206,7 @@
      Documentation Version
      -is_similar(other)[source]
      +is_similar(other)[source]

      Return True if self and other are contained in the same line.

      Examples

      >>> from sympy import Point, Line
      @@ -1271,7 +1271,7 @@ 
      Documentation Version
      -parallel_line(p)[source]
      +parallel_line(p)[source]

      Create a new Line parallel to this linear entity which passes through the point \(p\).

      @@ -1309,7 +1309,7 @@
      Documentation Version
      -perpendicular_line(p)[source]
      +perpendicular_line(p)[source]

      Create a new Line perpendicular to this linear entity which passes through the point \(p\).

      @@ -1345,7 +1345,7 @@
      Documentation Version
      -perpendicular_segment(p)[source]
      +perpendicular_segment(p)[source]

      Create a perpendicular line segment from \(p\) to this line.

      The endpoints of the segment are p and the closest point in the line containing self. (If self is not a line, the point might @@ -1414,7 +1414,7 @@

      Documentation Version
      -projection(other)[source]
      +projection(other)[source]

      Project a point, line, ray, or segment onto this linear entity.

      Parameters:
      @@ -1469,7 +1469,7 @@
      Documentation Version
      -random_point(seed=None)[source]
      +random_point(seed=None)[source]

      A random point on a LinearEntity.

      Returns:
      @@ -1499,7 +1499,7 @@
      Documentation Version
      -smallest_angle_between(l2)[source]
      +smallest_angle_between(l2)[source]

      Return the smallest angle formed at the intersection of the lines containing the linear entities.

      @@ -1529,7 +1529,7 @@
      Documentation Version
      -class sympy.geometry.line.Line(*args, **kwargs)[source]
      +class sympy.geometry.line.Line(*args, **kwargs)[source]

      An infinite line in space.

      A 2D line is declared with two distinct points, point and slope, or an equation. A 3D line may be defined with a point and a direction ratio.

      @@ -1594,7 +1594,7 @@
      Documentation Version
      -contains(other)[source]
      +contains(other)[source]

      Return True if \(other\) is on this Line, or False otherwise.

      Examples

      >>> from sympy import Line,Point
      @@ -1621,7 +1621,7 @@ 
      Documentation Version
      -distance(other)[source]
      +distance(other)[source]

      Finds the shortest distance between a line and a point.

      Raises:
      @@ -1648,13 +1648,13 @@
      Documentation Version
      -equals(other)[source]
      +equals(other)[source]

      Returns True if self and other are the same mathematical entities

      -plot_interval(parameter='t')[source]
      +plot_interval(parameter='t')[source]

      The plot interval for the default geometric plot of line. Gives values that will produce a line that is +/- 5 units long (where a unit is the distance between the two points that define the line).

      @@ -1686,7 +1686,7 @@
      Documentation Version
      -class sympy.geometry.line.Ray(p1, p2=None, **kwargs)[source]
      +class sympy.geometry.line.Ray(p1, p2=None, **kwargs)[source]

      A Ray is a semi-line in the space with a source point and a direction.

      Parameters:
      @@ -1740,7 +1740,7 @@
      Documentation Version
      -contains(other)[source]
      +contains(other)[source]

      Is other GeometryEntity contained in this Ray?

      Examples

      >>> from sympy import Ray,Point,Segment
      @@ -1770,7 +1770,7 @@ 
      Documentation Version
      -distance(other)[source]
      +distance(other)[source]

      Finds the shortest distance between the ray and a point.

      Raises:
      @@ -1799,13 +1799,13 @@
      Documentation Version
      -equals(other)[source]
      +equals(other)[source]

      Returns True if self and other are the same mathematical entities

      -plot_interval(parameter='t')[source]
      +plot_interval(parameter='t')[source]

      The plot interval for the default geometric plot of the Ray. Gives values that will produce a ray that is 10 units long (where a unit is the distance between the two points that define the ray).

      @@ -1858,7 +1858,7 @@
      Documentation Version
      -class sympy.geometry.line.Segment(p1, p2, **kwargs)[source]
      +class sympy.geometry.line.Segment(p1, p2, **kwargs)[source]

      A line segment in space.

      Parameters:
      @@ -1913,7 +1913,7 @@
      Documentation Version
      -contains(other)[source]
      +contains(other)[source]

      Is the other GeometryEntity contained within this Segment?

      Examples

      >>> from sympy import Point, Segment
      @@ -1936,7 +1936,7 @@ 
      Documentation Version
      -distance(other)[source]
      +distance(other)[source]

      Finds the shortest distance between a line segment and a point.

      Raises:
      @@ -1964,7 +1964,7 @@
      Documentation Version
      -equals(other)[source]
      +equals(other)[source]

      Returns True if self and other are the same mathematical entities

      @@ -2016,7 +2016,7 @@
      Documentation Version
      -perpendicular_bisector(p=None)[source]
      +perpendicular_bisector(p=None)[source]

      The perpendicular bisector of this segment.

      If no point is specified or the point specified is not on the bisector then the bisector is returned as a Line. Otherwise a @@ -2050,7 +2050,7 @@

      Documentation Version
      -plot_interval(parameter='t')[source]
      +plot_interval(parameter='t')[source]

      The plot interval for the default geometric plot of the Segment gives values that will produce the full segment in a plot.

      @@ -2081,7 +2081,7 @@
      Documentation Version
      -class sympy.geometry.line.LinearEntity2D(p1, p2=None, **kwargs)[source]
      +class sympy.geometry.line.LinearEntity2D(p1, p2=None, **kwargs)[source]

      A base class for all linear entities (line, ray and segment) in a 2-dimensional Euclidean space.

      Notes

      @@ -2121,7 +2121,7 @@
      Documentation Version
      -perpendicular_line(p)[source]
      +perpendicular_line(p)[source]

      Create a new Line perpendicular to this linear entity which passes through the point \(p\).

      @@ -2190,7 +2190,7 @@
      Documentation Version
      -class sympy.geometry.line.Line2D(p1, pt=None, slope=None, **kwargs)[source]
      +class sympy.geometry.line.Line2D(p1, pt=None, slope=None, **kwargs)[source]

      An infinite line in space 2D.

      A line is declared with two distinct points or a point and slope as defined using keyword \(slope\).

      @@ -2256,7 +2256,7 @@
      Documentation Version
      -equation(x='x', y='y')[source]
      +equation(x='x', y='y')[source]

      The equation of the line: ax + by + c.

      Parameters:
      @@ -2291,7 +2291,7 @@
      Documentation Version
      -class sympy.geometry.line.Ray2D(p1, pt=None, angle=None, **kwargs)[source]
      +class sympy.geometry.line.Ray2D(p1, pt=None, angle=None, **kwargs)[source]

      A Ray is a semi-line in the space with a source point and a direction.

      Parameters:
      @@ -2348,7 +2348,7 @@
      Documentation Version
      -closing_angle(r2)[source]
      +closing_angle(r2)[source]

      Return the angle by which r2 must be rotated so it faces the same direction as r1.

      @@ -2428,7 +2428,7 @@
      Documentation Version
      -class sympy.geometry.line.Segment2D(p1, p2, **kwargs)[source]
      +class sympy.geometry.line.Segment2D(p1, p2, **kwargs)[source]

      A line segment in 2D space.

      Parameters:
      @@ -2473,7 +2473,7 @@
      Documentation Version
      -class sympy.geometry.line.LinearEntity3D(p1, p2, **kwargs)[source]
      +class sympy.geometry.line.LinearEntity3D(p1, p2, **kwargs)[source]

      An base class for all linear entities (line, ray and segment) in a 3-dimensional Euclidean space.

      Notes

      @@ -2542,7 +2542,7 @@
      Documentation Version
      -class sympy.geometry.line.Line3D(p1, pt=None, direction_ratio=(), **kwargs)[source]
      +class sympy.geometry.line.Line3D(p1, pt=None, direction_ratio=(), **kwargs)[source]

      An infinite 3D line in space.

      A line is declared with two distinct points or a point and direction_ratio as defined using keyword \(direction_ratio\).

      @@ -2568,7 +2568,7 @@
      Documentation Version
      -distance(other)[source]
      +distance(other)[source]

      Finds the shortest distance between a line and another object.

      Parameters:
      @@ -2604,7 +2604,7 @@
      Documentation Version
      -equation(x='x', y='y', z='z')[source]
      +equation(x='x', y='y', z='z')[source]

      Return the equations that define the line in 3D.

      Parameters:
      @@ -2642,7 +2642,7 @@
      Documentation Version
      -class sympy.geometry.line.Ray3D(p1, pt=None, direction_ratio=(), **kwargs)[source]
      +class sympy.geometry.line.Ray3D(p1, pt=None, direction_ratio=(), **kwargs)[source]

      A Ray is a semi-line in the space with a source point and a direction.

      Parameters:
      @@ -2769,7 +2769,7 @@
      Documentation Version
      -class sympy.geometry.line.Segment3D(p1, p2, **kwargs)[source]
      +class sympy.geometry.line.Segment3D(p1, p2, **kwargs)[source]

      A line segment in a 3D space.

      Parameters:
      @@ -2847,7 +2847,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/geometry/plane.html b/dev/modules/geometry/plane.html index b38fe4e3088..e6d68956a34 100644 --- a/dev/modules/geometry/plane.html +++ b/dev/modules/geometry/plane.html @@ -802,7 +802,7 @@
      Documentation Version

      Plane

      -class sympy.geometry.plane.Plane(p1, a=None, b=None, **kwargs)[source]
      +class sympy.geometry.plane.Plane(p1, a=None, b=None, **kwargs)[source]

      A plane is a flat, two-dimensional surface. A plane is the two-dimensional analogue of a point (zero-dimensions), a line (one-dimension) and a solid (three-dimensions). A plane can generally be constructed by two types of @@ -834,7 +834,7 @@

      Documentation Version
      -angle_between(o)[source]
      +angle_between(o)[source]

      Angle between the plane and other geometric entity.

      Parameters:
      @@ -861,7 +861,7 @@
      Documentation Version
      -arbitrary_point(u=None, v=None)[source]
      +arbitrary_point(u=None, v=None)[source]

      Returns an arbitrary point on the Plane. If given two parameters, the point ranges over the entire plane. If given 1 or no parameters, returns a point with one parameter which, @@ -894,7 +894,7 @@

      Documentation Version
      -static are_concurrent(*planes)[source]
      +static are_concurrent(*planes)[source]

      Is a sequence of Planes concurrent?

      Two or more Planes are concurrent if their intersections are a common line.

      @@ -921,7 +921,7 @@
      Documentation Version
      -distance(o)[source]
      +distance(o)[source]

      Distance between the plane and another geometric entity.

      Parameters:
      @@ -951,7 +951,7 @@
      Documentation Version
      -equals(o)[source]
      +equals(o)[source]

      Returns True if self and o are the same mathematical entities.

      Examples

      >>> from sympy import Plane, Point3D
      @@ -970,7 +970,7 @@ 
      Documentation Version
      -equation(x=None, y=None, z=None)[source]
      +equation(x=None, y=None, z=None)[source]

      The equation of the Plane.

      Examples

      >>> from sympy import Point3D, Plane
      @@ -986,7 +986,7 @@ 
      Documentation Version
      -intersection(o)[source]
      +intersection(o)[source]

      The intersection with other geometrical entity.

      Parameters:
      @@ -1015,7 +1015,7 @@
      Documentation Version
      -is_coplanar(o)[source]
      +is_coplanar(o)[source]

      Returns True if \(o\) is coplanar with self, else False.

      Examples

      >>> from sympy import Plane
      @@ -1032,7 +1032,7 @@ 
      Documentation Version
      -is_parallel(l)[source]
      +is_parallel(l)[source]

      Is the given geometric entity parallel to the plane?

      Parameters:
      @@ -1054,7 +1054,7 @@
      Documentation Version
      -is_perpendicular(l)[source]
      +is_perpendicular(l)[source]

      Is the given geometric entity perpendicualar to the given plane?

      Parameters:
      @@ -1110,7 +1110,7 @@
      Documentation Version
      -parallel_plane(pt)[source]
      +parallel_plane(pt)[source]

      Plane parallel to the given plane and passing through the point pt.

      Parameters:
      @@ -1131,7 +1131,7 @@
      Documentation Version
      -parameter_value(other, u, v=None)[source]
      +parameter_value(other, u, v=None)[source]

      Return the parameter(s) corresponding to the given point.

      Examples

      >>> from sympy import pi, Plane
      @@ -1171,7 +1171,7 @@ 
      Documentation Version
      -perpendicular_line(pt)[source]
      +perpendicular_line(pt)[source]

      A line perpendicular to the given plane.

      Parameters:
      @@ -1192,7 +1192,7 @@
      Documentation Version
      -perpendicular_plane(*pts)[source]
      +perpendicular_plane(*pts)[source]

      Return a perpendicular passing through the given points. If the direction ratio between the points is the same as the Plane’s normal vector then, to select from the infinite number of possible planes, @@ -1224,7 +1224,7 @@

      Documentation Version
      -projection(pt)[source]
      +projection(pt)[source]

      Project the given point onto the plane along the plane normal.

      Parameters:
      @@ -1258,7 +1258,7 @@
      Documentation Version
      -projection_line(line)[source]
      +projection_line(line)[source]

      Project the given line onto the plane through the normal plane containing the line.

      @@ -1290,7 +1290,7 @@
      Documentation Version
      -random_point(seed=None)[source]
      +random_point(seed=None)[source]

      Returns a random point on the Plane.

      Returns:
      @@ -1353,7 +1353,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/geometry/points.html b/dev/modules/geometry/points.html index d23b4d663df..fe7ff2c5742 100644 --- a/dev/modules/geometry/points.html +++ b/dev/modules/geometry/points.html @@ -802,7 +802,7 @@
      Documentation Version

      Points

      -class sympy.geometry.point.Point(*args, **kwargs)[source]
      +class sympy.geometry.point.Point(*args, **kwargs)[source]

      A point in a n-dimensional Euclidean space.

      Parameters:
      @@ -880,7 +880,7 @@
      Documentation Version
      -static affine_rank(*args)[source]
      +static affine_rank(*args)[source]

      The affine rank of a set of points is the dimension of the smallest affine space containing all the points. For example, if the points lie on a line (and are not all @@ -897,7 +897,7 @@

      Documentation Version
      -classmethod are_coplanar(*points)[source]
      +classmethod are_coplanar(*points)[source]

      Return True if there exists a plane in which all the points lie. A trivial True value is returned if \(len(points) < 3\) or all Points are 2-dimensional.

      @@ -929,7 +929,7 @@
      Documentation Version
      -canberra_distance(p)[source]
      +canberra_distance(p)[source]

      The Canberra Distance from self to point p.

      Returns the weighted sum of horizontal and vertical distances to point p.

      @@ -964,7 +964,7 @@
      Documentation Version
      -distance(other)[source]
      +distance(other)[source]

      The Euclidean distance between self and another GeometricEntity.

      Returns:
      @@ -1002,19 +1002,19 @@
      Documentation Version
      -dot(p)[source]
      +dot(p)[source]

      Return dot product of self with another Point.

      -equals(other)[source]
      +equals(other)[source]

      Returns whether the coordinates of self and other agree.

      -intersection(other)[source]
      +intersection(other)[source]

      The intersection between this point and another GeometryEntity.

      Parameters:
      @@ -1040,7 +1040,7 @@
      Documentation Version
      -is_collinear(*args)[source]
      +is_collinear(*args)[source]

      Returns \(True\) if there exists a line that contains \(self\) and \(points\). Returns \(False\) otherwise. A trivially True value is returned if no points are given.

      @@ -1071,7 +1071,7 @@
      Documentation Version
      -is_concyclic(*args)[source]
      +is_concyclic(*args)[source]

      Do \(self\) and the given sequence of points lie in a circle?

      Returns True if the set of points are concyclic and False otherwise. A trivial value of True is returned @@ -1115,7 +1115,7 @@

      Documentation Version
      -is_scalar_multiple(p)[source]
      +is_scalar_multiple(p)[source]

      Returns whether each coordinate of \(self\) is a scalar multiple of the corresponding coordinate in point p.

      @@ -1142,7 +1142,7 @@
      Documentation Version
      -midpoint(p)[source]
      +midpoint(p)[source]

      The midpoint between self and point p.

      Parameters:
      @@ -1191,7 +1191,7 @@
      Documentation Version
      -static project(a, b)[source]
      +static project(a, b)[source]

      Project the point \(a\) onto the line between the origin and point \(b\) along the normal direction.

      @@ -1223,7 +1223,7 @@
      Documentation Version
      -taxicab_distance(p)[source]
      +taxicab_distance(p)[source]

      The Taxicab Distance from self to point p.

      Returns the sum of the horizontal and vertical distances to point p.

      @@ -1259,7 +1259,7 @@
      Documentation Version
      -class sympy.geometry.point.Point2D(*args, _nocheck=False, **kwargs)[source]
      +class sympy.geometry.point.Point2D(*args, _nocheck=False, **kwargs)[source]

      A point in a 2-dimensional Euclidean space.

      Parameters:
      @@ -1341,7 +1341,7 @@
      Documentation Version
      -rotate(angle, pt=None)[source]
      +rotate(angle, pt=None)[source]

      Rotate angle radians counterclockwise about Point pt.

      Examples

      >>> from sympy import Point2D, pi
      @@ -1360,7 +1360,7 @@ 
      Documentation Version
      -scale(x=1, y=1, pt=None)[source]
      +scale(x=1, y=1, pt=None)[source]

      Scale the coordinates of the Point by multiplying by x and y after subtracting pt – default is (0, 0) – and then adding pt back again (i.e. pt is the point of @@ -1382,7 +1382,7 @@

      Documentation Version
      -transform(matrix)[source]
      +transform(matrix)[source]

      Return the point after applying the transformation described by the 3x3 Matrix, matrix.

      @@ -1393,7 +1393,7 @@
      Documentation Version
      -translate(x=0, y=0)[source]
      +translate(x=0, y=0)[source]

      Shift the Point by adding x and y to the coordinates of the Point.

      Examples

      >>> from sympy import Point2D
      @@ -1442,7 +1442,7 @@ 
      Documentation Version
      -class sympy.geometry.point.Point3D(*args, _nocheck=False, **kwargs)[source]
      +class sympy.geometry.point.Point3D(*args, _nocheck=False, **kwargs)[source]

      A point in a 3-dimensional Euclidean space.

      Parameters:
      @@ -1499,7 +1499,7 @@
      Documentation Version
      -static are_collinear(*points)[source]
      +static are_collinear(*points)[source]

      Is a sequence of points collinear?

      Test whether or not a set of points are collinear. Returns True if the set of points are collinear, or False otherwise.

      @@ -1543,7 +1543,7 @@
      Documentation Version
      -direction_cosine(point)[source]
      +direction_cosine(point)[source]

      Gives the direction cosine between 2 points

      Parameters:
      @@ -1564,7 +1564,7 @@
      Documentation Version
      -direction_ratio(point)[source]
      +direction_ratio(point)[source]

      Gives the direction ratio between 2 points

      Parameters:
      @@ -1585,7 +1585,7 @@
      Documentation Version
      -intersection(other)[source]
      +intersection(other)[source]

      The intersection between this point and another GeometryEntity.

      Parameters:
      @@ -1611,7 +1611,7 @@
      Documentation Version
      -scale(x=1, y=1, z=1, pt=None)[source]
      +scale(x=1, y=1, z=1, pt=None)[source]

      Scale the coordinates of the Point by multiplying by x and y after subtracting pt – default is (0, 0) – and then adding pt back again (i.e. pt is the point of @@ -1633,7 +1633,7 @@

      Documentation Version
      -transform(matrix)[source]
      +transform(matrix)[source]

      Return the point after applying the transformation described by the 4x4 Matrix, matrix.

      @@ -1644,7 +1644,7 @@
      Documentation Version
      -translate(x=0, y=0, z=0)[source]
      +translate(x=0, y=0, z=0)[source]

      Shift the Point by adding x and y to the coordinates of the Point.

      Examples

      >>> from sympy import Point3D
      @@ -1741,7 +1741,7 @@ 
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/geometry/polygons.html b/dev/modules/geometry/polygons.html index 9ef5f62ea71..df3d8923ab6 100644 --- a/dev/modules/geometry/polygons.html +++ b/dev/modules/geometry/polygons.html @@ -802,7 +802,7 @@
      Documentation Version

      Polygons

      -class sympy.geometry.polygon.Polygon(*args, n=0, **kwargs)[source]
      +class sympy.geometry.polygon.Polygon(*args, n=0, **kwargs)[source]

      A two-dimensional polygon.

      A simple polygon in space. Can be constructed from a sequence of points or from a center, radius, number of sides and rotation angle.

      @@ -933,7 +933,7 @@
      Documentation Version
      -arbitrary_point(parameter='t')[source]
      +arbitrary_point(parameter='t')[source]

      A parameterized point on the polygon.

      The parameter, varying from 0 to 1, assigns points to the position on the perimeter that is that fraction of the total perimeter. So the @@ -1011,7 +1011,7 @@

      Documentation Version
      -bisectors(prec=None)[source]
      +bisectors(prec=None)[source]

      Returns angle bisectors of a polygon. If prec is given then approximate the point defining the ray to that precision.

      The distance between the points defining the bisector ray is 1.

      @@ -1059,7 +1059,7 @@
      Documentation Version
      -cut_section(line)[source]
      +cut_section(line)[source]

      Returns a tuple of two polygon segments that lie above and below the intersecting line respectively.

      @@ -1112,7 +1112,7 @@
      Documentation Version
      -distance(o)[source]
      +distance(o)[source]

      Returns the shortest distance between self and o.

      If o is a point, then self does not need to be convex. If o is another polygon self and o must be convex.

      @@ -1128,7 +1128,7 @@
      Documentation Version
      -encloses_point(p)[source]
      +encloses_point(p)[source]

      Return True if p is enclosed by (is inside of) self.

      Parameters:
      @@ -1166,7 +1166,7 @@
      Documentation Version
      -first_moment_of_area(point=None)[source]
      +first_moment_of_area(point=None)[source]

      Returns the first moment of area of a two-dimensional polygon with respect to a certain point of interest.

      First moment of area is a measure of the distribution of the area @@ -1221,7 +1221,7 @@

      Documentation Version
      -intersection(o)[source]
      +intersection(o)[source]

      The intersection of polygon and geometry entity.

      The intersection may be empty and can contain individual Points and complete Line Segments.

      @@ -1258,7 +1258,7 @@
      Documentation Version
      -is_convex()[source]
      +is_convex()[source]

      Is the polygon convex?

      A polygon is convex if all its interior angles are less than 180 degrees and there are no intersections between sides.

      @@ -1309,7 +1309,7 @@
      Documentation Version
      -plot_interval(parameter='t')[source]
      +plot_interval(parameter='t')[source]

      The plot interval for the default geometric plot of the polygon.

      Parameters:
      @@ -1336,7 +1336,7 @@
      Documentation Version
      -polar_second_moment_of_area()[source]
      +polar_second_moment_of_area()[source]

      Returns the polar modulus of a two-dimensional polygon

      It is a constituent of the second moment of area, linked through the perpendicular axis theorem. While the planar second moment of @@ -1365,7 +1365,7 @@

      Documentation Version
      -second_moment_of_area(point=None)[source]
      +second_moment_of_area(point=None)[source]

      Returns the second moment and product moment of area of a two dimensional polygon.

      Parameters:
      @@ -1406,7 +1406,7 @@
      Documentation Version
      -section_modulus(point=None)[source]
      +section_modulus(point=None)[source]

      Returns a tuple with the section modulus of a two-dimensional polygon.

      Section modulus is a geometric property of a polygon defined as the @@ -1512,7 +1512,7 @@

      Documentation Version
      -class sympy.geometry.polygon.RegularPolygon(c, r, n, rot=0, **kwargs)[source]
      +class sympy.geometry.polygon.RegularPolygon(c, r, n, rot=0, **kwargs)[source]

      A regular polygon.

      Such a polygon has all internal angles equal and all sides the same length.

      @@ -1758,7 +1758,7 @@
      Documentation Version
      -encloses_point(p)[source]
      +encloses_point(p)[source]

      Return True if p is enclosed by (is inside of) self.

      Parameters:
      @@ -1923,7 +1923,7 @@
      Documentation Version
      -reflect(line)[source]
      +reflect(line)[source]

      Override GeometryEntity.reflect since this is not made of only points.

      Examples

      @@ -1938,7 +1938,7 @@
      Documentation Version
      -rotate(angle, pt=None)[source]
      +rotate(angle, pt=None)[source]

      Override GeometryEntity.rotate to first rotate the RegularPolygon about its center.

      >>> from sympy import Point, RegularPolygon, pi
      @@ -1987,7 +1987,7 @@ 
      Documentation Version
      -scale(x=1, y=1, pt=None)[source]
      +scale(x=1, y=1, pt=None)[source]

      Override GeometryEntity.scale since it is the radius that must be scaled (if x == y) or else a new Polygon must be returned.

      >>> from sympy import RegularPolygon
      @@ -2007,7 +2007,7 @@ 
      Documentation Version
      -spin(angle)[source]
      +spin(angle)[source]

      Increment in place the virtual Polygon’s rotation by ccw angle.

      See also: rotate method which moves the center.

      >>> from sympy import Polygon, Point, pi
      @@ -2058,7 +2058,7 @@ 
      Documentation Version
      -class sympy.geometry.polygon.Triangle(*args, **kwargs)[source]
      +class sympy.geometry.polygon.Triangle(*args, **kwargs)[source]

      A polygon with three vertices and three sides.

      Parameters:
      @@ -2169,7 +2169,7 @@
      Documentation Version
      -bisectors()[source]
      +bisectors()[source]

      The angle bisectors of the triangle.

      An angle bisector of a triangle is a straight line through a vertex which cuts the corresponding angle in half.

      @@ -2441,7 +2441,7 @@
      Documentation Version
      -is_equilateral()[source]
      +is_equilateral()[source]

      Are all the sides the same length?

      Returns:
      @@ -2469,7 +2469,7 @@
      Documentation Version
      -is_isosceles()[source]
      +is_isosceles()[source]

      Are two or more of the sides the same length?

      Returns:
      @@ -2491,7 +2491,7 @@
      Documentation Version
      -is_right()[source]
      +is_right()[source]

      Is the triangle right-angled.

      Returns:
      @@ -2513,7 +2513,7 @@
      Documentation Version
      -is_scalene()[source]
      +is_scalene()[source]

      Are all the sides of the triangle of different lengths?

      Returns:
      @@ -2535,7 +2535,7 @@
      Documentation Version
      -is_similar(t2)[source]
      +is_similar(t2)[source]

      Is another triangle similar to this one.

      Two triangles are similar if one can be uniformly scaled to the other.

      @@ -2734,7 +2734,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/geometry/utils.html b/dev/modules/geometry/utils.html index 35806f128bb..e08f5fd1cd5 100644 --- a/dev/modules/geometry/utils.html +++ b/dev/modules/geometry/utils.html @@ -802,7 +802,7 @@
      Documentation Version

      Utils

      -sympy.geometry.util.intersection(*entities, pairwise=False, **kwargs)[source]
      +sympy.geometry.util.intersection(*entities, pairwise=False, **kwargs)[source]

      The intersection of a collection of GeometryEntity instances.

      Parameters:
      @@ -859,7 +859,7 @@
      Documentation Version
      -sympy.geometry.util.convex_hull(*args, polygon=True)[source]
      +sympy.geometry.util.convex_hull(*args, polygon=True)[source]

      The convex hull surrounding the Points contained in the list of entities.

      Parameters:
      @@ -912,7 +912,7 @@
      Documentation Version
      -sympy.geometry.util.are_similar(e1, e2)[source]
      +sympy.geometry.util.are_similar(e1, e2)[source]

      Are two geometrical entities similar.

      Can one geometrical entity be uniformly scaled to the other?

      @@ -952,7 +952,7 @@
      Documentation Version
      -sympy.geometry.util.centroid(*args)[source]
      +sympy.geometry.util.centroid(*args)[source]

      Find the centroid (center of mass) of the collection containing only Points, Segments or Polygons. The centroid is the weighted average of the individual centroid where the weights are the lengths (of segments) or areas (of polygons). @@ -998,7 +998,7 @@

      Documentation Version
      -sympy.geometry.util.idiff(eq, y, x, n=1)[source]
      +sympy.geometry.util.idiff(eq, y, x, n=1)[source]

      Return dy/dx assuming that eq == 0.

      Parameters:
      @@ -1078,7 +1078,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/holonomic/about.html b/dev/modules/holonomic/about.html index c42150ee29f..44d67fcf4d3 100644 --- a/dev/modules/holonomic/about.html +++ b/dev/modules/holonomic/about.html @@ -880,7 +880,7 @@

      ReferencesFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/holonomic/convert.html b/dev/modules/holonomic/convert.html index 0df6431ea96..66458b6e78a 100644 --- a/dev/modules/holonomic/convert.html +++ b/dev/modules/holonomic/convert.html @@ -804,7 +804,7 @@

      Converting other representations to holonomic

      -sympy.holonomic.holonomic.from_hyper(func, x0=0, evalf=False)[source]
      +sympy.holonomic.holonomic.from_hyper(func, x0=0, evalf=False)[source]

      Converts a hypergeometric function to holonomic. func is the Hypergeometric Function and x0 is the point at which initial conditions are required.

      @@ -833,7 +833,7 @@

      Converting Meijer G-functionsdomain=QQ,

      -)[source] +)[source]

      Converts a Meijer G-function to Holonomic. func is the G-Function and x0 is the point at which initial conditions are required.

      @@ -864,7 +864,7 @@

      Converting symbolic expressionsinitcond=True,

      -)[source] +)[source]

      Converts a function or an expression to a holonomic function.

      Parameters:
      @@ -955,7 +955,7 @@

      Converting symbolic expressionsFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/holonomic/index.html b/dev/modules/holonomic/index.html index f22e4ff4624..4f66ee758c5 100644 --- a/dev/modules/holonomic/index.html +++ b/dev/modules/holonomic/index.html @@ -855,7 +855,7 @@

      Contents Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/holonomic/internal.html b/dev/modules/holonomic/internal.html index 0df7da4e49e..dca58abcfbd 100644 --- a/dev/modules/holonomic/internal.html +++ b/dev/modules/holonomic/internal.html @@ -802,7 +802,7 @@
      Documentation Version

      Internal API

      -sympy.holonomic.holonomic._create_table(table, domain=QQ)[source]
      +sympy.holonomic.holonomic._create_table(table, domain=QQ)[source]

      Creates the look-up table. For a similar implementation see meijerint._create_lookup_table.

      @@ -821,7 +821,7 @@

      Internal APIinitcond=True,

      -)[source] +)[source]

      Converts polynomials, rationals and algebraic functions to holonomic.

      @@ -862,7 +862,7 @@

      Internal APIFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/holonomic/operations.html b/dev/modules/holonomic/operations.html index e2c1d1a54c0..164a54eccb0 100644 --- a/dev/modules/holonomic/operations.html +++ b/dev/modules/holonomic/operations.html @@ -841,7 +841,7 @@

      Integration and Differentiationinitcond=False,

      -)[source] +)[source]

      Integrates the given holonomic function.

      Examples

      >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
      @@ -859,7 +859,7 @@ 

      Integration and Differentiation
      -HolonomicFunction.diff(*args, **kwargs)[source]
      +HolonomicFunction.diff(*args, **kwargs)[source]

      Differentiation of the given Holonomic function.

      Examples

      >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
      @@ -892,7 +892,7 @@ 

      Composition with polynomials**kwargs,

      -)[source] +)[source]

      Returns function after composition of a holonomic function with an algebraic function. The method cannot compute initial conditions for the result by itself, so they can be also be @@ -920,7 +920,7 @@

      Composition with polynomials

      -HolonomicFunction.to_sequence(lb=True)[source]
      +HolonomicFunction.to_sequence(lb=True)[source]

      Finds recurrence relation for the coefficients in the series expansion of the function about \(x_0\), where \(x_0\) is the point at which the initial condition is stored.

      @@ -982,7 +982,7 @@

      Series expansion_recur=None,

      -)[source] +)[source]

      Finds the power series expansion of given holonomic function about \(x_0\).

      Explanation

      A list of series might be returned if \(x_0\) is a regular point with @@ -1019,7 +1019,7 @@

      Numerical evaluationderivatives=False,

      -)[source] +)[source]

      Finds numerical value of a holonomic function using numerical methods. (RK4 by default). A set of points (real or complex) must be provided which will be the path for the numerical integration.

      @@ -1070,7 +1070,7 @@

      Convert to a linear combination of hypergeometric functions_recur=None,

      -)[source] +)[source]

      Returns a hypergeometric function (or linear combination of them) representing the given holonomic function.

      Explanation

      @@ -1103,7 +1103,7 @@

      Convert to a linear combination of hypergeometric functions

      -HolonomicFunction.to_meijerg()[source]
      +HolonomicFunction.to_meijerg()[source]

      Returns a linear combination of Meijer G-functions.

      Examples

      >>> from sympy.holonomic import expr_to_holonomic
      @@ -1126,7 +1126,7 @@ 

      Convert to a linear combination of Meijer G-functionsConvert to expressions

      -HolonomicFunction.to_expr()[source]
      +HolonomicFunction.to_expr()[source]

      Converts a Holonomic Function back to elementary functions.

      Examples

      >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
      @@ -1180,7 +1180,7 @@ 

      Convert to expressionsFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/holonomic/represent.html b/dev/modules/holonomic/represent.html index 24957886b1f..b9a38bfb29c 100644 --- a/dev/modules/holonomic/represent.html +++ b/dev/modules/holonomic/represent.html @@ -833,7 +833,7 @@

      Representation of holonomic functions in SymPy
      -class sympy.holonomic.holonomic.HolonomicFunction(annihilator, x, x0=0, y0=None)[source]
      +class sympy.holonomic.holonomic.HolonomicFunction(annihilator, x, x0=0, y0=None)[source]

      A Holonomic Function is a solution to a linear homogeneous ordinary differential equation with polynomial coefficients. This differential equation can also be represented by an annihilator i.e. a Differential @@ -898,7 +898,7 @@

      Representation of holonomic functions in SymPy
      -class sympy.holonomic.holonomic.DifferentialOperator(list_of_poly, parent)[source]
      +class sympy.holonomic.holonomic.DifferentialOperator(list_of_poly, parent)[source]

      Differential Operators are elements of Weyl Algebra. The Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator i.e. the algebra it belongs to.

      @@ -929,7 +929,7 @@

      Representation of holonomic functions in SymPy
      -is_singular(x0)[source]
      +is_singular(x0)[source]

      Checks if the differential equation is singular at x0.

      @@ -937,7 +937,7 @@

      Representation of holonomic functions in SymPy
      -sympy.holonomic.holonomic.DifferentialOperators(base, generator)[source]
      +sympy.holonomic.holonomic.DifferentialOperators(base, generator)[source]

      This function is used to create annihilators using Dx.

      Parameters:
      @@ -972,7 +972,7 @@

      Representation of holonomic functions in SymPy
      -class sympy.holonomic.holonomic.DifferentialOperatorAlgebra(base, generator)[source]
      +class sympy.holonomic.holonomic.DifferentialOperatorAlgebra(base, generator)[source]

      An Ore Algebra is a set of noncommutative polynomials in the intermediate Dx and coefficients in a base polynomial ring \(A\). It follows the commutation rule:

      @@ -1042,7 +1042,7 @@

      Representation of holonomic functions in SymPyFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/holonomic/uses.html b/dev/modules/holonomic/uses.html index af507ab0759..92b71182463 100644 --- a/dev/modules/holonomic/uses.html +++ b/dev/modules/holonomic/uses.html @@ -883,7 +883,7 @@

      LimitationsFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/integrals/g-functions.html b/dev/modules/integrals/g-functions.html index 90e284d8a18..8a836e87b84 100644 --- a/dev/modules/integrals/g-functions.html +++ b/dev/modules/integrals/g-functions.html @@ -1152,7 +1152,7 @@

      Conditions of Convergence for Integral (2)
      \[\begin{split}\lambda_s = -\begin{cases} \operatorname{\lambda_{s0}}\left(-1,-1\right) \operatorname{\lambda_{s0}}\left(1,1\right) & \text{for}\: \arg(\omega) = 0 \wedge \arg(\sigma) = 0 \\\operatorname{\lambda_{s0}}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),-1\right) \operatorname{\lambda_{s0}}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),1\right) & \text{for}\: \arg(\omega) \ne 0 \wedge \arg(\sigma) = 0 \\\operatorname{\lambda_{s0}}\left(-1,\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) \operatorname{\lambda_{s0}}\left(1,\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) & \text{for}\: \arg(\omega) = 0 \wedge \arg(\sigma) \ne 0) \\\operatorname{\lambda_{s0}}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) & \text{otherwise} \end{cases}\end{split}\]
      +\begin{cases} \lambda_{s0}\left(-1,-1\right) \lambda_{s0}\left(1,1\right) & \text{for}\: \arg(\omega) = 0 \wedge \arg(\sigma) = 0 \\\lambda_{s0}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),-1\right) \lambda_{s0}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),1\right) & \text{for}\: \arg(\omega) \ne 0 \wedge \arg(\sigma) = 0 \\\lambda_{s0}\left(-1,\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) \lambda_{s0}\left(1,\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) & \text{for}\: \arg(\omega) = 0 \wedge \arg(\sigma) \ne 0) \\\lambda_{s0}\left(\operatorname{sign}\left(\operatorname{\arg}\left(\omega\right)\right),\operatorname{sign}\left(\operatorname{\arg}\left(\sigma\right)\right)\right) & \text{otherwise} \end{cases}\end{split}\]

      @@ -1811,19 +1811,19 @@

      Implemented G-Function Formulae
      -exception sympy.integrals.meijerint._CoeffExpValueError[source]
      +exception sympy.integrals.meijerint._CoeffExpValueError[source]

      Exception raised by _get_coeff_exp, for internal use only.

      -sympy.integrals.meijerint._check_antecedents(g1, g2, x)[source]
      +sympy.integrals.meijerint._check_antecedents(g1, g2, x)[source]

      Return a condition under which the integral theorem applies.

      -sympy.integrals.meijerint._check_antecedents_1(g, x, helper=False)[source]
      +sympy.integrals.meijerint._check_antecedents_1(g, x, helper=False)[source]

      Return a condition under which the mellin transform of g exists. Any power of x has already been absorbed into the G function, so this is just \(\int_0^\infty g\, dx\).

      @@ -1834,13 +1834,13 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._check_antecedents_inversion(g, x)[source]
      +sympy.integrals.meijerint._check_antecedents_inversion(g, x)[source]

      Check antecedents for the laplace inversion integral.

      -sympy.integrals.meijerint._condsimp(cond, first=True)[source]
      +sympy.integrals.meijerint._condsimp(cond, first=True)[source]

      Do naive simplifications on cond.

      Explanation

      Note that this routine is completely ad-hoc, simplification rules being @@ -1857,13 +1857,13 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._create_lookup_table(table)[source]
      +sympy.integrals.meijerint._create_lookup_table(table)[source]

      Add formulae for the function -> meijerg lookup table.

      -sympy.integrals.meijerint._dummy(name, token, expr, **kwargs)[source]
      +sympy.integrals.meijerint._dummy(name, token, expr, **kwargs)[source]

      Return a dummy. This will return the same dummy if the same token+name is requested more than once, and it is not already in expr. This is for being cache-friendly.

      @@ -1871,20 +1871,20 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._dummy_(name, token, **kwargs)[source]
      +sympy.integrals.meijerint._dummy_(name, token, **kwargs)[source]

      Return a dummy associated to name and token. Same effect as declaring it globally.

      -sympy.integrals.meijerint._eval_cond(cond)[source]
      +sympy.integrals.meijerint._eval_cond(cond)[source]

      Re-evaluate the conditions.

      -sympy.integrals.meijerint._exponents(expr, x)[source]
      +sympy.integrals.meijerint._exponents(expr, x)[source]

      Find the exponents of x (not including zero) in expr.

      Examples

      >>> from sympy.integrals.meijerint import _exponents
      @@ -1904,7 +1904,7 @@ 

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._find_splitting_points(expr, x)[source]
      +sympy.integrals.meijerint._find_splitting_points(expr, x)[source]

      Find numbers a such that a linear substitution x -> x + a would (hopefully) simplify expr.

      Examples

      @@ -1923,20 +1923,20 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._flip_g(g)[source]
      +sympy.integrals.meijerint._flip_g(g)[source]

      Turn the G function into one of inverse argument (i.e. G(1/x) -> G’(x))

      -sympy.integrals.meijerint._functions(expr, x)[source]
      +sympy.integrals.meijerint._functions(expr, x)[source]

      Find the types of functions in expr, to estimate the complexity.

      -sympy.integrals.meijerint._get_coeff_exp(expr, x)[source]
      +sympy.integrals.meijerint._get_coeff_exp(expr, x)[source]

      When expr is known to be of the form c*x**b, with c and/or b possibly 1, return c, b.

      Examples

      @@ -1956,13 +1956,13 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._guess_expansion(f, x)[source]
      +sympy.integrals.meijerint._guess_expansion(f, x)[source]

      Try to guess sensible rewritings for integrand f(x).

      -sympy.integrals.meijerint._inflate_fox_h(g, a)[source]
      +sympy.integrals.meijerint._inflate_fox_h(g, a)[source]

      Let d denote the integrand in the definition of the G function g. Consider the function H which is defined in the same way, but with integrand d/Gamma(a*s) (contour conventions as usual).

      @@ -1973,14 +1973,14 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._inflate_g(g, n)[source]
      +sympy.integrals.meijerint._inflate_g(g, n)[source]

      Return C, h such that h is a G function of argument z**n and g = C*h.

      -sympy.integrals.meijerint._int0oo(g1, g2, x)[source]
      +sympy.integrals.meijerint._int0oo(g1, g2, x)[source]

      Express integral from zero to infinity g1*g2 using a G function, assuming the necessary conditions are fulfilled.

      Examples

      @@ -1997,7 +1997,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._int0oo_1(g, x)[source]
      +sympy.integrals.meijerint._int0oo_1(g, x)[source]

      Evaluate \(\int_0^\infty g\, dx\) using G functions, assuming the necessary conditions are fulfilled.

      Examples

      @@ -2012,20 +2012,20 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._int_inversion(g, x, t)[source]
      +sympy.integrals.meijerint._int_inversion(g, x, t)[source]

      Compute the laplace inversion integral, assuming the formula applies.

      -sympy.integrals.meijerint._is_analytic(f, x)[source]
      +sympy.integrals.meijerint._is_analytic(f, x)[source]

      Check if f(x), when expressed using G functions on the positive reals, will in fact agree with the G functions almost everywhere

      -sympy.integrals.meijerint._meijerint_definite_2(f, x)[source]
      +sympy.integrals.meijerint._meijerint_definite_2(f, x)[source]

      Try to integrate f dx from zero to infinity.

      The body of this function computes various ‘simplifications’ f1, f2, … of f (e.g. by calling expand_mul(), trigexpand() @@ -2037,7 +2037,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._meijerint_definite_3(f, x)[source]
      +sympy.integrals.meijerint._meijerint_definite_3(f, x)[source]

      Try to integrate f dx from zero to infinity.

      This function calls _meijerint_definite_4 to try to compute the integral. If this fails, it tries using linearity.

      @@ -2045,7 +2045,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._meijerint_definite_4(f, x, only_double=False)[source]
      +sympy.integrals.meijerint._meijerint_definite_4(f, x, only_double=False)[source]

      Try to integrate f dx from zero to infinity.

      Explanation

      This function tries to apply the integration theorems found in literature, @@ -2056,13 +2056,13 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._meijerint_indefinite_1(f, x)[source]
      +sympy.integrals.meijerint._meijerint_indefinite_1(f, x)[source]

      Helper that does not attempt any substitution.

      -sympy.integrals.meijerint._mul_args(f)[source]
      +sympy.integrals.meijerint._mul_args(f)[source]

      Return a list L such that Mul(*L) == f.

      If f is not a Mul or Pow, L=[f]. If f=g**n for an integer n, L=[g]*n. @@ -2071,7 +2071,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._mul_as_two_parts(f)[source]
      +sympy.integrals.meijerint._mul_as_two_parts(f)[source]

      Find all the ways to split f into a product of two terms. Return None on failure.

      Explanation

      @@ -2091,7 +2091,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._my_principal_branch(expr, period, full_pb=False)[source]
      +sympy.integrals.meijerint._my_principal_branch(expr, period, full_pb=False)[source]

      Bring expr nearer to its principal branch by removing superfluous factors. This function does not guarantee to yield the principal branch, @@ -2108,13 +2108,13 @@

      Implemented G-Function Formulaex: Symbol,

      -) tuple[type[Basic], ...][source] +) tuple[type[Basic], ...][source]

      Create a hashable entity describing the type of f.

      -sympy.integrals.meijerint._rewrite1(f, x, recursive=True)[source]
      +sympy.integrals.meijerint._rewrite1(f, x, recursive=True)[source]

      Try to rewrite f using a (sum of) single G functions with argument a*x**b. Return fac, po, g such that f = fac*po*g, fac is independent of x. and po = x**s. @@ -2124,7 +2124,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._rewrite2(f, x)[source]
      +sympy.integrals.meijerint._rewrite2(f, x)[source]

      Try to rewrite f as a product of two G functions of arguments a*x**b. Return fac, po, g1, g2 such that f = fac*po*g1*g2, where fac is independent of x and po is x**s. @@ -2134,13 +2134,13 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._rewrite_inversion(fac, po, g, x)[source]
      +sympy.integrals.meijerint._rewrite_inversion(fac, po, g, x)[source]

      Absorb po == x**s into g.

      -sympy.integrals.meijerint._rewrite_saxena(fac, po, g1, g2, x, full_pb=False)[source]
      +sympy.integrals.meijerint._rewrite_saxena(fac, po, g1, g2, x, full_pb=False)[source]

      Rewrite the integral fac*po*g1*g2 from 0 to oo in terms of G functions with argument c*x.

      Explanation

      @@ -2165,7 +2165,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._rewrite_saxena_1(fac, po, g, x)[source]
      +sympy.integrals.meijerint._rewrite_saxena_1(fac, po, g, x)[source]

      Rewrite the integral fac*po*g dx, from zero to infinity, as integral fac*G, where G has argument a*x. Note po=x**s. Return fac, G.

      @@ -2173,7 +2173,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._rewrite_single(f, x, recursive=True)[source]
      +sympy.integrals.meijerint._rewrite_single(f, x, recursive=True)[source]

      Try to rewrite f as a sum of single G functions of the form C*x**s*G(a*x**b), where b is a rational number and C is independent of x. We guarantee that result.argument.as_coeff_mul(x) returns (a, (x**b,)) @@ -2184,7 +2184,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint._split_mul(f, x)[source]
      +sympy.integrals.meijerint._split_mul(f, x)[source]

      Split expression f into fac, po, g, where fac is a constant factor, po = x**s for some s independent of s, and g is “the rest”.

      Examples

      @@ -2199,7 +2199,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint.meijerint_definite(f, x, a, b)[source]
      +sympy.integrals.meijerint.meijerint_definite(f, x, a, b)[source]

      Integrate f over the interval [a, b], by rewriting it as a product of two G functions, or as a single G function.

      Return res, cond, where cond are convergence conditions.

      @@ -2220,7 +2220,7 @@

      Implemented G-Function Formulae
      -sympy.integrals.meijerint.meijerint_indefinite(f, x)[source]
      +sympy.integrals.meijerint.meijerint_indefinite(f, x)[source]

      Compute an indefinite integral of f by rewriting it as a G function.

      Examples

      >>> from sympy.integrals.meijerint import meijerint_indefinite
      @@ -2234,7 +2234,7 @@ 

      Implemented G-Function Formulae
      -sympy.integrals.meijerint.meijerint_inversion(f, x, t)[source]
      +sympy.integrals.meijerint.meijerint_inversion(f, x, t)[source]

      Compute the inverse laplace transform \(\int_{c+i\infty}^{c-i\infty} f(x) e^{tx}\, dx\), for real c larger than the real part of all singularities of f.

      @@ -2288,7 +2288,7 @@

      Implemented G-Function FormulaeFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/integrals/index.html b/dev/modules/integrals/index.html index 41e36863c2e..cf7220c7181 100644 --- a/dev/modules/integrals/index.html +++ b/dev/modules/integrals/index.html @@ -848,7 +848,7 @@

      Contents Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/integrals/integrals.html b/dev/modules/integrals/integrals.html index 5b8265172dd..dc751d18786 100644 --- a/dev/modules/integrals/integrals.html +++ b/dev/modules/integrals/integrals.html @@ -850,7 +850,7 @@

      Examples

      SymPy has special support for definite integrals, and integral transforms.

      -sympy.integrals.transforms.mellin_transform(f, x, s, **hints)[source]
      +sympy.integrals.transforms.mellin_transform(f, x, s, **hints)[source]

      Compute the Mellin transform \(F(s)\) of \(f(x)\),

      @@ -887,7 +887,7 @@

      Examples
      -class sympy.integrals.transforms.MellinTransform(*args)[source]
      +class sympy.integrals.transforms.MellinTransform(*args)[source]

      Class representing unevaluated Mellin transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute Mellin transforms, see the mellin_transform() @@ -896,7 +896,7 @@

      Examples
      -sympy.integrals.transforms.inverse_mellin_transform(F, s, x, strip, **hints)[source]
      +sympy.integrals.transforms.inverse_mellin_transform(F, s, x, strip, **hints)[source]

      Compute the inverse Mellin transform of \(F(s)\) over the fundamental strip given by strip=(a, b).

      Explanation

      @@ -942,7 +942,7 @@

      Examples
      -class sympy.integrals.transforms.InverseMellinTransform(*args)[source]
      +class sympy.integrals.transforms.InverseMellinTransform(*args)[source]

      Class representing unevaluated inverse Mellin transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute inverse Mellin transforms, see the @@ -961,7 +961,7 @@

      Examples
      **hints,

      -)[source] +)[source]

      Compute the Laplace Transform \(F(s)\) of \(f(t)\),

      @@ -1060,7 +1060,7 @@

      Examples
      -sympy.integrals.transforms.laplace_correspondence(f, fdict, /)[source]
      +sympy.integrals.transforms.laplace_correspondence(f, fdict, /)[source]

      This helper function takes a function \(f\) that is the result of a laplace_transform or an inverse_laplace_transform. It replaces all unevaluated LaplaceTransform(y(t), t, s) by \(Y(s)\) for any \(s\) and @@ -1101,7 +1101,7 @@

      Examples
      -sympy.integrals.transforms.laplace_initial_conds(f, t, fdict, /)[source]
      +sympy.integrals.transforms.laplace_initial_conds(f, t, fdict, /)[source]

      This helper function takes a function \(f\) that is the result of a laplace_transform. It takes an fdict of the form {y: [1, 4, 2]}, where the values in the list are the initial value, the initial slope, the @@ -1142,7 +1142,7 @@

      Examples
      -class sympy.integrals.transforms.LaplaceTransform(*args)[source]
      +class sympy.integrals.transforms.LaplaceTransform(*args)[source]

      Class representing unevaluated Laplace transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute Laplace transforms, see the laplace_transform() @@ -1152,7 +1152,7 @@

      Examples tuple containing the same expression, a convergence plane, and conditions.

      -doit(**hints)[source]
      +doit(**hints)[source]

      Try to evaluate the transform in closed form.

      Explanation

      Standard hints are the following: @@ -1176,7 +1176,7 @@

      Examples
      **hints,

      -)[source] +)[source]

      Compute the inverse Laplace transform of \(F(s)\), defined as

      @@ -1213,14 +1213,14 @@

      Examples
      -class sympy.integrals.transforms.InverseLaplaceTransform(*args)[source]
      +class sympy.integrals.transforms.InverseLaplaceTransform(*args)[source]

      Class representing unevaluated inverse Laplace transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute inverse Laplace transforms, see the inverse_laplace_transform() docstring.

      -doit(**hints)[source]
      +doit(**hints)[source]

      Try to evaluate the transform in closed form.

      Explanation

      Standard hints are the following: @@ -1234,7 +1234,7 @@

      Examples
      -sympy.integrals.transforms.fourier_transform(f, x, k, **hints)[source]
      +sympy.integrals.transforms.fourier_transform(f, x, k, **hints)[source]

      Compute the unitary, ordinary-frequency Fourier transform of f, defined as

      @@ -1278,7 +1278,7 @@

      Examples
      simplify=True,

      -)[source] +)[source]

      Compute a general Fourier-type transform

      @@ -1290,7 +1290,7 @@

      Examples
      -class sympy.integrals.transforms.FourierTransform(*args)[source]
      +class sympy.integrals.transforms.FourierTransform(*args)[source]

      Class representing unevaluated Fourier transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute Fourier transforms, see the fourier_transform() @@ -1299,7 +1299,7 @@

      Examples
      -sympy.integrals.transforms.inverse_fourier_transform(F, k, x, **hints)[source]
      +sympy.integrals.transforms.inverse_fourier_transform(F, k, x, **hints)[source]

      Compute the unitary, ordinary-frequency inverse Fourier transform of \(F\), defined as

      @@ -1331,7 +1331,7 @@

      Examples
      -class sympy.integrals.transforms.InverseFourierTransform(*args)[source]
      +class sympy.integrals.transforms.InverseFourierTransform(*args)[source]

      Class representing unevaluated inverse Fourier transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute inverse Fourier transforms, see the @@ -1340,7 +1340,7 @@

      Examples
      -sympy.integrals.transforms.sine_transform(f, x, k, **hints)[source]
      +sympy.integrals.transforms.sine_transform(f, x, k, **hints)[source]

      Compute the unitary, ordinary-frequency sine transform of \(f\), defined as

      @@ -1370,7 +1370,7 @@

      Examples
      -class sympy.integrals.transforms.SineTransform(*args)[source]
      +class sympy.integrals.transforms.SineTransform(*args)[source]

      Class representing unevaluated sine transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute sine transforms, see the sine_transform() @@ -1379,7 +1379,7 @@

      Examples
      -sympy.integrals.transforms.inverse_sine_transform(F, k, x, **hints)[source]
      +sympy.integrals.transforms.inverse_sine_transform(F, k, x, **hints)[source]

      Compute the unitary, ordinary-frequency inverse sine transform of \(F\), defined as

      @@ -1410,7 +1410,7 @@

      Examples
      -class sympy.integrals.transforms.InverseSineTransform(*args)[source]
      +class sympy.integrals.transforms.InverseSineTransform(*args)[source]

      Class representing unevaluated inverse sine transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute inverse sine transforms, see the @@ -1419,7 +1419,7 @@

      Examples
      -sympy.integrals.transforms.cosine_transform(f, x, k, **hints)[source]
      +sympy.integrals.transforms.cosine_transform(f, x, k, **hints)[source]

      Compute the unitary, ordinary-frequency cosine transform of \(f\), defined as

      @@ -1449,7 +1449,7 @@

      Examples
      -class sympy.integrals.transforms.CosineTransform(*args)[source]
      +class sympy.integrals.transforms.CosineTransform(*args)[source]

      Class representing unevaluated cosine transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute cosine transforms, see the cosine_transform() @@ -1458,7 +1458,7 @@

      Examples
      -sympy.integrals.transforms.inverse_cosine_transform(F, k, x, **hints)[source]
      +sympy.integrals.transforms.inverse_cosine_transform(F, k, x, **hints)[source]

      Compute the unitary, ordinary-frequency inverse cosine transform of \(F\), defined as

      @@ -1488,7 +1488,7 @@

      Examples
      -class sympy.integrals.transforms.InverseCosineTransform(*args)[source]
      +class sympy.integrals.transforms.InverseCosineTransform(*args)[source]

      Class representing unevaluated inverse cosine transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute inverse cosine transforms, see the @@ -1497,7 +1497,7 @@

      Examples
      -sympy.integrals.transforms.hankel_transform(f, r, k, nu, **hints)[source]
      +sympy.integrals.transforms.hankel_transform(f, r, k, nu, **hints)[source]

      Compute the Hankel transform of \(f\), defined as

      @@ -1541,7 +1541,7 @@

      Examples
      -class sympy.integrals.transforms.HankelTransform(*args)[source]
      +class sympy.integrals.transforms.HankelTransform(*args)[source]

      Class representing unevaluated Hankel transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute Hankel transforms, see the hankel_transform() @@ -1550,7 +1550,7 @@

      Examples
      -sympy.integrals.transforms.inverse_hankel_transform(F, k, r, nu, **hints)[source]
      +sympy.integrals.transforms.inverse_hankel_transform(F, k, r, nu, **hints)[source]

      Compute the inverse Hankel transform of \(F\) defined as

      @@ -1594,7 +1594,7 @@

      Examples
      -class sympy.integrals.transforms.InverseHankelTransform(*args)[source]
      +class sympy.integrals.transforms.InverseHankelTransform(*args)[source]

      Class representing unevaluated inverse Hankel transforms.

      For usage of this class, see the IntegralTransform docstring.

      For how to compute inverse Hankel transforms, see the @@ -1603,7 +1603,7 @@

      Examples
      -class sympy.integrals.transforms.IntegralTransform(*args)[source]
      +class sympy.integrals.transforms.IntegralTransform(*args)[source]

      Base class for integral transforms.

      Explanation

      This class represents unevaluated transforms.

      @@ -1620,7 +1620,7 @@

      Examples number and possibly a convergence condition.

      -doit(**hints)[source]
      +doit(**hints)[source]

      Try to evaluate the transform in closed form.

      Explanation

      This general function handles linearity, but apart from that leaves @@ -1662,7 +1662,7 @@

      Examples
      -exception sympy.integrals.transforms.IntegralTransformError(transform, function, msg)[source]
      +exception sympy.integrals.transforms.IntegralTransformError(transform, function, msg)[source]

      Exception raised in relation to problems computing transforms.

      Explanation

      This class is mostly used internally; if integrals cannot be computed @@ -1685,7 +1685,7 @@

      Internalsratint().

      -sympy.integrals.rationaltools.ratint(f, x, **flags)[source]
      +sympy.integrals.rationaltools.ratint(f, x, **flags)[source]

      Performs indefinite integration of rational functions.

      Explanation

      Given a field \(K\) and a rational function \(f = p/q\), @@ -1716,7 +1716,7 @@

      Internals
      -sympy.integrals.rationaltools.ratint_ratpart(f, g, x)[source]
      +sympy.integrals.rationaltools.ratint_ratpart(f, g, x)[source]

      Horowitz-Ostrogradsky algorithm.

      Explanation

      Given a field K and polynomials f and g in K[x], such that f and g @@ -1745,7 +1745,7 @@

      Internals
      -sympy.integrals.rationaltools.ratint_logpart(f, g, x, t=None)[source]
      +sympy.integrals.rationaltools.ratint_logpart(f, g, x, t=None)[source]

      Lazard-Rioboo-Trager algorithm.

      Explanation

      Given a field K and polynomials f and g in K[x], such that f and g @@ -1784,7 +1784,7 @@

      Internals
      -sympy.integrals.trigonometry.trigintegrate(f, x, conds='piecewise')[source]
      +sympy.integrals.trigonometry.trigintegrate(f, x, conds='piecewise')[source]

      Integrate f = Mul(trig) over x.

      Examples

      >>> from sympy import sin, cos, tan, sec
      @@ -1825,7 +1825,7 @@ 

      Internalsdeltaintegrate() solves integrals with DiracDelta objects.

      -sympy.integrals.deltafunctions.deltaintegrate(f, x)[source]
      +sympy.integrals.deltafunctions.deltaintegrate(f, x)[source]

      Explanation

      The idea for integration is the following:

        @@ -1875,7 +1875,7 @@

        Internalssingularityintegrate() is applied if the function contains a SingularityFunction

        -sympy.integrals.singularityfunctions.singularityintegrate(f, x)[source]
        +sympy.integrals.singularityfunctions.singularityintegrate(f, x)[source]

        This function handles the indefinite integrations of Singularity functions. The integrate function calls this function internally whenever an instance of SingularityFunction is passed as argument.

        @@ -1940,7 +1940,7 @@

        Internalsconds='piecewise',

        -)[source] +)[source]

        The Risch Integration Algorithm.

        Explanation

        Only transcendental functions are supported. Currently, only exponentials @@ -2048,7 +2048,7 @@

        Internals**assumptions,

      -)[source] +)[source]

      Represents a nonelementary Integral.

      Explanation

      If the result of integrate() is an instance of this class, it is @@ -2100,7 +2100,7 @@

      Internalsintegral_steps() function.

      -sympy.integrals.manualintegrate.manualintegrate(f, var)[source]
      +sympy.integrals.manualintegrate.manualintegrate(f, var)[source]

      Explanation

      Compute indefinite integral of a single variable using an algorithm that resembles what a student would do by hand.

      @@ -2143,7 +2143,7 @@

      Internals
      -sympy.integrals.manualintegrate.integral_steps(integrand, symbol, **options)[source]
      +sympy.integrals.manualintegrate.integral_steps(integrand, symbol, **options)[source]

      Returns the steps needed to compute an integral.

      Returns:
      @@ -2203,7 +2203,7 @@

      Internals_try_heurisch=None,

      -)[source] +)[source]

      Compute indefinite integral using heuristic Risch algorithm.

      Explanation

      This is a heuristic approach to indefinite integration in finite @@ -2289,7 +2289,7 @@

      Internals
      -sympy.integrals.heurisch.components(f, x)[source]
      +sympy.integrals.heurisch.components(f, x)[source]

      Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with @@ -2317,7 +2317,7 @@

      Internals

      -sympy.integrals.integrals.integrate(f, var, ...)[source]
      +sympy.integrals.integrals.integrate(f, var, ...)[source]

      Deprecated since version 1.6: Using integrate() with Poly is deprecated. Use Poly.integrate() instead. See Using integrate with Poly.

      @@ -2466,7 +2466,7 @@

      API reference
      -sympy.integrals.integrals.line_integrate(field, Curve, variables)[source]
      +sympy.integrals.integrals.line_integrate(field, Curve, variables)[source]

      Compute the line integral.

      Examples

      >>> from sympy import Curve, line_integrate, E, ln
      @@ -2485,7 +2485,7 @@ 

      API referenceIntegral represents an unevaluated integral and has some methods that help in the integration of an expression.

      -class sympy.integrals.integrals.Integral(function, *symbols, **assumptions)[source]
      +class sympy.integrals.integrals.Integral(function, *symbols, **assumptions)[source]

      Represents unevaluated integral.

      @@ -2503,7 +2503,7 @@

      API referenceevaluate=True,

      -)[source] +)[source]

      Approximates a definite integral by a sum.

      Parameters:
      @@ -2614,7 +2614,7 @@

      API reference
      -doit(**hints)[source]
      +doit(**hints)[source]

      Perform the integration using any hints given.

      Examples

      >>> from sympy import Piecewise, S
      @@ -2656,7 +2656,7 @@ 

      API reference
      -principal_value(**kwargs)[source]
      +principal_value(**kwargs)[source]

      Compute the Cauchy Principal Value of the definite integral of a real function in the given interval on the real axis.

      Explanation

      @@ -2691,7 +2691,7 @@

      API reference
      -transform(x, u)[source]
      +transform(x, u)[source]

      Performs a change of variables from \(x\) to \(u\) using the relationship given by \(x\) and \(u\) which will define the transformations \(f\) and \(F\) (which are inverses of each other) as follows:

      @@ -2798,7 +2798,7 @@

      API referenceIntegral and Sum.

      -class sympy.concrete.expr_with_limits.ExprWithLimits(function, *symbols, **assumptions)[source]
      +class sympy.concrete.expr_with_limits.ExprWithLimits(function, *symbols, **assumptions)[source]
      property bound_symbols
      @@ -2984,7 +2984,7 @@

      Numeric Integrals
      -sympy.integrals.quadrature.gauss_legendre(n, n_digits)[source]
      +sympy.integrals.quadrature.gauss_legendre(n, n_digits)[source]

      Computes the Gauss-Legendre quadrature [R578] points and weights.

      Parameters:
      @@ -3051,7 +3051,7 @@

      Numeric Integrals
      -sympy.integrals.quadrature.gauss_laguerre(n, n_digits)[source]
      +sympy.integrals.quadrature.gauss_laguerre(n, n_digits)[source]

      Computes the Gauss-Laguerre quadrature [R580] points and weights.

      Parameters:
      @@ -3118,7 +3118,7 @@

      Numeric Integrals
      -sympy.integrals.quadrature.gauss_hermite(n, n_digits)[source]
      +sympy.integrals.quadrature.gauss_hermite(n, n_digits)[source]

      Computes the Gauss-Hermite quadrature [R582] points and weights.

      Parameters:
      @@ -3192,7 +3192,7 @@

      Numeric Integrals
      -sympy.integrals.quadrature.gauss_gen_laguerre(n, alpha, n_digits)[source]
      +sympy.integrals.quadrature.gauss_gen_laguerre(n, alpha, n_digits)[source]

      Computes the generalized Gauss-Laguerre quadrature [R585] points and weights.

      Parameters:
      @@ -3268,7 +3268,7 @@

      Numeric Integrals
      -sympy.integrals.quadrature.gauss_chebyshev_t(n, n_digits)[source]
      +sympy.integrals.quadrature.gauss_chebyshev_t(n, n_digits)[source]

      Computes the Gauss-Chebyshev quadrature [R587] points and weights of the first kind.

      @@ -3339,7 +3339,7 @@

      Numeric Integrals
      -sympy.integrals.quadrature.gauss_chebyshev_u(n, n_digits)[source]
      +sympy.integrals.quadrature.gauss_chebyshev_u(n, n_digits)[source]

      Computes the Gauss-Chebyshev quadrature [R589] points and weights of the second kind.

      @@ -3404,7 +3404,7 @@

      Numeric Integrals
      -sympy.integrals.quadrature.gauss_jacobi(n, alpha, beta, n_digits)[source]
      +sympy.integrals.quadrature.gauss_jacobi(n, alpha, beta, n_digits)[source]

      Computes the Gauss-Jacobi quadrature [R591] points and weights.

      Parameters:
      @@ -3479,7 +3479,7 @@

      Numeric Integrals
      -sympy.integrals.quadrature.gauss_lobatto(n, n_digits)[source]
      +sympy.integrals.quadrature.gauss_lobatto(n, n_digits)[source]

      Computes the Gauss-Lobatto quadrature [R594] points and weights.

      Parameters:
      @@ -3645,7 +3645,7 @@

      API referencemax_degree=None,

      -)[source] +)[source]

      Integrates polynomials over 2/3-Polytopes.

      Parameters:
      @@ -3712,7 +3712,7 @@

      API referenceFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/interactive.html b/dev/modules/interactive.html index fcb2ab71d90..b9c394a0151 100644 --- a/dev/modules/interactive.html +++ b/dev/modules/interactive.html @@ -806,13 +806,13 @@
      Documentation Version

      Tools for setting up interactive sessions.

      -sympy.interactive.session.enable_automatic_int_sympification(shell)[source]
      +sympy.interactive.session.enable_automatic_int_sympification(shell)[source]

      Allow IPython to automatically convert integer literals to Integer.

      -sympy.interactive.session.enable_automatic_symbols(shell)[source]
      +sympy.interactive.session.enable_automatic_symbols(shell)[source]

      Allow IPython to automatically create symbols (isympy -a).

      @@ -827,13 +827,13 @@
      Documentation Version
      auto_int_to_Integer=False,

      -)[source] +)[source]

      Construct new IPython session.

      -sympy.interactive.session.init_python_session()[source]
      +sympy.interactive.session.init_python_session()[source]

      Construct new Python session.

      @@ -856,7 +856,7 @@
      Documentation Version
      argv=[],

      -)[source] +)[source]

      Initialize an embedded IPython or Python session. The IPython session is initiated with the –pylab option, without the numpy imports, so that matplotlib plotting can be interactive.

      @@ -974,7 +974,7 @@
      Documentation Version
      -sympy.interactive.session.int_to_Integer(s)[source]
      +sympy.interactive.session.int_to_Integer(s)[source]

      Wrap integer literals with Integer.

      This is based on the decistmt example from https://docs.python.org/3/library/tokenize.html.

      @@ -1026,7 +1026,7 @@
      Documentation Version
      **settings,
      -)[source] +)[source]

      Initializes pretty-printer depending on the environment.

      Parameters:
      @@ -1247,7 +1247,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/liealgebras/index.html b/dev/modules/liealgebras/index.html index 72935807bad..0b48bc6b10e 100644 --- a/dev/modules/liealgebras/index.html +++ b/dev/modules/liealgebras/index.html @@ -802,7 +802,7 @@
      Documentation Version

      Lie Algebra

      -class sympy.liealgebras.root_system.RootSystem(cartantype)[source]
      +class sympy.liealgebras.root_system.RootSystem(cartantype)[source]

      Represent the root system of a simple Lie algebra

      Every simple Lie algebra has a unique root system. To find the root system, we first consider the Cartan subalgebra of g, which is the maximal @@ -837,7 +837,7 @@

      Documentation Version
      -add_as_roots(root1, root2)[source]
      +add_as_roots(root1, root2)[source]

      Add two roots together if and only if their sum is also a root

      It takes as input two vectors which should be roots. It then computes their sum and checks if it is in the list of all possible roots. If it @@ -856,7 +856,7 @@

      Documentation Version
      -add_simple_roots(root1, root2)[source]
      +add_simple_roots(root1, root2)[source]

      Add two simple roots together

      The function takes as input two integers, root1 and root2. It then uses these integers as keys in the dictionary of simple roots, and gets @@ -873,7 +873,7 @@

      Documentation Version
      -all_roots()[source]
      +all_roots()[source]

      Generate all the roots of a given root system

      The result is a dictionary where the keys are integer numbers. It generates the roots by getting the dictionary of all positive roots @@ -884,7 +884,7 @@

      Documentation Version
      -cartan_matrix()[source]
      +cartan_matrix()[source]

      Cartan matrix of Lie algebra associated with this root system

      Examples

      >>> from sympy.liealgebras.root_system import RootSystem
      @@ -900,7 +900,7 @@ 
      Documentation Version
      -dynkin_diagram()[source]
      +dynkin_diagram()[source]

      Dynkin diagram of the Lie algebra associated with this root system

      Examples

      >>> from sympy.liealgebras.root_system import RootSystem
      @@ -914,7 +914,7 @@ 
      Documentation Version
      -root_space()[source]
      +root_space()[source]

      Return the span of the simple roots

      The root space is the vector space spanned by the simple roots, i.e. it is a vector space with a distinguished basis, the simple roots. This @@ -931,7 +931,7 @@

      Documentation Version
      -simple_roots()[source]
      +simple_roots()[source]

      Generate the simple roots of the Lie algebra

      The rank of the Lie algebra determines the number of simple roots that it has. This method obtains the rank of the Lie algebra, and then uses @@ -951,13 +951,13 @@

      Documentation Version
      -class sympy.liealgebras.type_a.TypeA(n)[source]
      +class sympy.liealgebras.type_a.TypeA(n)[source]

      This class contains the information about the A series of simple Lie algebras. ====

      -basic_root(i, j)[source]
      +basic_root(i, j)[source]

      This is a method just to generate roots with a 1 iin the ith position and a -1 in the jth position.

      @@ -965,13 +965,13 @@
      Documentation Version
      -basis()[source]
      +basis()[source]

      Returns the number of independent generators of A_n

      -cartan_matrix()[source]
      +cartan_matrix()[source]

      Returns the Cartan matrix for A_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -992,7 +992,7 @@

      Documentation Version
      -dimension()[source]
      +dimension()[source]

      Dimension of the vector space V underlying the Lie algebra

      Examples

      >>> from sympy.liealgebras.cartan_type import CartanType
      @@ -1005,19 +1005,19 @@ 
      Documentation Version
      -highest_root()[source]
      +highest_root()[source]

      Returns the highest weight root for A_n

      -lie_algebra()[source]
      +lie_algebra()[source]

      Returns the Lie algebra associated with A_n

      -positive_roots()[source]
      +positive_roots()[source]

      This method generates all the positive roots of A_n. This is half of all of the roots of A_n; by multiplying all the positive roots by -1 we @@ -1034,13 +1034,13 @@

      Documentation Version
      -roots()[source]
      +roots()[source]

      Returns the total number of roots for A_n

      -simple_root(i)[source]
      +simple_root(i)[source]

      Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1066,10 +1066,10 @@

      Documentation Version
      -class sympy.liealgebras.type_b.TypeB(n)[source]
      +class sympy.liealgebras.type_b.TypeB(n)[source]
      -basic_root(i, j)[source]
      +basic_root(i, j)[source]

      This is a method just to generate roots with a 1 iin the ith position and a -1 in the jth position.

      @@ -1077,13 +1077,13 @@
      Documentation Version
      -basis()[source]
      +basis()[source]

      Returns the number of independent generators of B_n

      -cartan_matrix()[source]
      +cartan_matrix()[source]

      Returns the Cartan matrix for B_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1104,7 +1104,7 @@

      Documentation Version
      -dimension()[source]
      +dimension()[source]

      Dimension of the vector space V underlying the Lie algebra

      Examples

      >>> from sympy.liealgebras.cartan_type import CartanType
      @@ -1117,13 +1117,13 @@ 
      Documentation Version
      -lie_algebra()[source]
      +lie_algebra()[source]

      Returns the Lie algebra associated with B_n

      -positive_roots()[source]
      +positive_roots()[source]

      This method generates all the positive roots of A_n. This is half of all of the roots of B_n; by multiplying all the positive roots by -1 we @@ -1140,13 +1140,13 @@

      Documentation Version
      -roots()[source]
      +roots()[source]

      Returns the total number of roots for B_n”

      -simple_root(i)[source]
      +simple_root(i)[source]

      Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1174,22 +1174,22 @@

      Documentation Version
      -class sympy.liealgebras.type_c.TypeC(n)[source]
      +class sympy.liealgebras.type_c.TypeC(n)[source]
      -basic_root(i, j)[source]
      +basic_root(i, j)[source]

      Generate roots with 1 in ith position and a -1 in jth position

      -basis()[source]
      +basis()[source]

      Returns the number of independent generators of C_n

      -cartan_matrix()[source]
      +cartan_matrix()[source]

      The Cartan matrix for C_n

      The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1210,7 +1210,7 @@

      Documentation Version
      -dimension()[source]
      +dimension()[source]

      Dimension of the vector space V underlying the Lie algebra

      Examples

      >>> from sympy.liealgebras.cartan_type import CartanType
      @@ -1223,13 +1223,13 @@ 
      Documentation Version
      -lie_algebra()[source]
      +lie_algebra()[source]

      Returns the Lie algebra associated with C_n”

      -positive_roots()[source]
      +positive_roots()[source]

      Generates all the positive roots of A_n

      This is half of all of the roots of C_n; by multiplying all the positive roots by -1 we get the negative roots.

      @@ -1245,13 +1245,13 @@
      Documentation Version
      -roots()[source]
      +roots()[source]

      Returns the total number of roots for C_n”

      -simple_root(i)[source]
      +simple_root(i)[source]

      The ith simple root for the C series

      Every lie algebra has a unique root system. Given a root system Q, there is a subset of the @@ -1279,10 +1279,10 @@

      Documentation Version
      -class sympy.liealgebras.type_d.TypeD(n)[source]
      +class sympy.liealgebras.type_d.TypeD(n)[source]
      -basic_root(i, j)[source]
      +basic_root(i, j)[source]

      This is a method just to generate roots with a 1 iin the ith position and a -1 in the jth position.

      @@ -1290,13 +1290,13 @@
      Documentation Version
      -basis()[source]
      +basis()[source]

      Returns the number of independent generators of D_n

      -cartan_matrix()[source]
      +cartan_matrix()[source]

      Returns the Cartan matrix for D_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1317,7 +1317,7 @@

      Documentation Version
      -dimension()[source]
      +dimension()[source]

      Dmension of the vector space V underlying the Lie algebra

      Examples

      >>> from sympy.liealgebras.cartan_type import CartanType
      @@ -1330,13 +1330,13 @@ 
      Documentation Version
      -lie_algebra()[source]
      +lie_algebra()[source]

      Returns the Lie algebra associated with D_n”

      -positive_roots()[source]
      +positive_roots()[source]

      This method generates all the positive roots of A_n. This is half of all of the roots of D_n by multiplying all the positive roots by -1 we @@ -1353,13 +1353,13 @@

      Documentation Version
      -roots()[source]
      +roots()[source]

      Returns the total number of roots for D_n”

      -simple_root(i)[source]
      +simple_root(i)[source]

      Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1387,10 +1387,10 @@

      Documentation Version
      -class sympy.liealgebras.type_e.TypeE(n)[source]
      +class sympy.liealgebras.type_e.TypeE(n)[source]
      -basic_root(i, j)[source]
      +basic_root(i, j)[source]

      This is a method just to generate roots with a -1 in the ith position and a 1 in the jth position.

      @@ -1398,13 +1398,13 @@
      Documentation Version
      -basis()[source]
      +basis()[source]

      Returns the number of independent generators of E_n

      -cartan_matrix()[source]
      +cartan_matrix()[source]

      Returns the Cartan matrix for G_2 The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1425,7 +1425,7 @@

      Documentation Version
      -dimension()[source]
      +dimension()[source]

      Dimension of the vector space V underlying the Lie algebra

      Examples

      >>> from sympy.liealgebras.cartan_type import CartanType
      @@ -1438,7 +1438,7 @@ 
      Documentation Version
      -positive_roots()[source]
      +positive_roots()[source]

      This method generates all the positive roots of A_n. This is half of all of the roots of E_n; by multiplying all the positive roots by -1 we @@ -1455,13 +1455,13 @@

      Documentation Version
      -roots()[source]
      +roots()[source]

      Returns the total number of roots of E_n

      -simple_root(i)[source]
      +simple_root(i)[source]

      Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1484,22 +1484,22 @@

      Documentation Version
      -class sympy.liealgebras.type_f.TypeF(n)[source]
      +class sympy.liealgebras.type_f.TypeF(n)[source]
      -basic_root(i, j)[source]
      +basic_root(i, j)[source]

      Generate roots with 1 in ith position and -1 in jth position

      -basis()[source]
      +basis()[source]

      Returns the number of independent generators of F_4

      -cartan_matrix()[source]
      +cartan_matrix()[source]

      The Cartan matrix for F_4

      The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1520,7 +1520,7 @@

      Documentation Version
      -dimension()[source]
      +dimension()[source]

      Dimension of the vector space V underlying the Lie algebra

      Examples

      >>> from sympy.liealgebras.cartan_type import CartanType
      @@ -1533,7 +1533,7 @@ 
      Documentation Version
      -positive_roots()[source]
      +positive_roots()[source]

      Generate all the positive roots of A_n

      This is half of all of the roots of F_4; by multiplying all the positive roots by -1 we get the negative roots.

      @@ -1549,13 +1549,13 @@
      Documentation Version
      -roots()[source]
      +roots()[source]

      Returns the total number of roots for F_4

      -simple_root(i)[source]
      +simple_root(i)[source]

      The ith simple root of F_4

      Every lie algebra has a unique root system. Given a root system Q, there is a subset of the @@ -1578,16 +1578,16 @@

      Documentation Version
      -class sympy.liealgebras.type_g.TypeG(n)[source]
      +class sympy.liealgebras.type_g.TypeG(n)[source]
      -basis()[source]
      +basis()[source]

      Returns the number of independent generators of G_2

      -cartan_matrix()[source]
      +cartan_matrix()[source]

      The Cartan matrix for G_2

      The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1606,7 +1606,7 @@

      Documentation Version
      -dimension()[source]
      +dimension()[source]

      Dimension of the vector space V underlying the Lie algebra

      Examples

      >>> from sympy.liealgebras.cartan_type import CartanType
      @@ -1619,7 +1619,7 @@ 
      Documentation Version
      -positive_roots()[source]
      +positive_roots()[source]

      Generate all the positive roots of A_n

      This is half of all of the roots of A_n; by multiplying all the positive roots by -1 we get the negative roots.

      @@ -1635,13 +1635,13 @@
      Documentation Version
      -roots()[source]
      +roots()[source]

      Returns the total number of roots of G_2”

      -simple_root(i)[source]
      +simple_root(i)[source]

      The ith simple root of G_2

      Every lie algebra has a unique root system. Given a root system Q, there is a subset of the @@ -1664,7 +1664,7 @@

      Documentation Version
      -class sympy.liealgebras.weyl_group.WeylGroup(cartantype)[source]
      +class sympy.liealgebras.weyl_group.WeylGroup(cartantype)[source]

      For each semisimple Lie group, we have a Weyl group. It is a subgroup of the isometry group of the root system. Specifically, it’s the subgroup that is generated by reflections through the hyperplanes orthogonal to @@ -1672,7 +1672,7 @@

      Documentation Version
      group is a finite Coxeter group.

      -coxeter_diagram()[source]
      +coxeter_diagram()[source]

      This method returns the Coxeter diagram corresponding to a Weyl group. The Coxeter diagram can be obtained from a Lie algebra’s Dynkin diagram by deleting all arrows; the Coxeter diagram is the undirected graph. @@ -1693,7 +1693,7 @@

      Documentation Version
      -delete_doubles(reflections)[source]
      +delete_doubles(reflections)[source]

      This is a helper method for determining the order of an element in the Weyl group of G2. It takes a Weyl element and if repeated simple reflections in it, it deletes them.

      @@ -1701,7 +1701,7 @@
      Documentation Version
      -element_order(weylelt)[source]
      +element_order(weylelt)[source]

      This method returns the order of a given Weyl group element, which should be specified by the user in the form of products of the generating reflections, i.e. of the form r1*r2 etc.

      @@ -1719,7 +1719,7 @@
      Documentation Version
      -generators()[source]
      +generators()[source]

      This method creates the generating reflections of the Weyl group for a given Lie algebra. For a Lie algebra of rank n, there are n different generating reflections. This function returns them as @@ -1735,7 +1735,7 @@

      Documentation Version
      -group_name()[source]
      +group_name()[source]

      This method returns some general information about the Weyl group for a given Lie algebra. It returns the name of the group and the elements it acts on, if relevant.

      @@ -1743,7 +1743,7 @@
      Documentation Version
      -group_order()[source]
      +group_order()[source]

      This method returns the order of the Weyl group. For types A, B, C, D, and E the order depends on the rank of the Lie algebra. For types F and G, @@ -1759,7 +1759,7 @@

      Documentation Version
      -matrix_form(weylelt)[source]
      +matrix_form(weylelt)[source]

      This method takes input from the user in the form of products of the generating reflections, and returns the matrix corresponding to the element of the Weyl group. Since each element of the Weyl group is @@ -1783,23 +1783,23 @@

      Documentation Version
      -class sympy.liealgebras.cartan_type.CartanType_generator[source]
      +class sympy.liealgebras.cartan_type.CartanType_generator[source]

      Constructor for actually creating things

      -class sympy.liealgebras.cartan_type.Standard_Cartan(series, n)[source]
      +class sympy.liealgebras.cartan_type.Standard_Cartan(series, n)[source]

      Concrete base class for Cartan types such as A4, etc

      -rank()[source]
      +rank()[source]

      Returns the rank of the Lie algebra

      -series()[source]
      +series()[source]

      Returns the type of the Lie algebra

      @@ -1807,7 +1807,7 @@
      Documentation Version
      -sympy.liealgebras.dynkin_diagram.DynkinDiagram(t)[source]
      +sympy.liealgebras.dynkin_diagram.DynkinDiagram(t)[source]

      Display the Dynkin diagram of a given Lie algebra

      Works by generating the CartanType for the input, t, and then returning the Dynkin diagram method from the individual classes.

      @@ -1827,7 +1827,7 @@
      Documentation Version
      -sympy.liealgebras.cartan_matrix.CartanMatrix(ct)[source]
      +sympy.liealgebras.cartan_matrix.CartanMatrix(ct)[source]

      Access the Cartan matrix of a specific Lie algebra

      Examples

      >>> from sympy.liealgebras.cartan_matrix import CartanMatrix
      @@ -1885,7 +1885,7 @@ 
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/logic.html b/dev/modules/logic.html index 6b720d2bab3..c5d7d21d973 100644 --- a/dev/modules/logic.html +++ b/dev/modules/logic.html @@ -837,7 +837,7 @@

      Forming logical expressions
      -sympy.logic.boolalg.SOPform(variables, minterms, dontcares=None)[source]
      +sympy.logic.boolalg.SOPform(variables, minterms, dontcares=None)[source]

      The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate ‘1’ (the minterms) into the smallest sum-of-products form.

      @@ -898,7 +898,7 @@

      Forming logical expressions
      -sympy.logic.boolalg.POSform(variables, minterms, dontcares=None)[source]
      +sympy.logic.boolalg.POSform(variables, minterms, dontcares=None)[source]

      The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate ‘1’ (the minterms) into the smallest product-of-sums form.

      @@ -959,7 +959,7 @@

      Forming logical expressions
      -sympy.logic.boolalg.ANFform(variables, truthvalues)[source]
      +sympy.logic.boolalg.ANFform(variables, truthvalues)[source]

      The ANFform function converts the list of truth values to Algebraic Normal Form (ANF).

      The variables must be given as the first argument.

      @@ -1003,11 +1003,11 @@

      Forming logical expressions

      -class sympy.logic.boolalg.Boolean(*args)[source]
      +class sympy.logic.boolalg.Boolean(*args)[source]

      A Boolean object is an object for which logic operations make sense.

      -as_set()[source]
      +as_set()[source]

      Rewrites Boolean expression in terms of real sets.

      Examples

      >>> from sympy import Symbol, Eq, Or, And
      @@ -1026,7 +1026,7 @@ 

      Boolean functions
      -equals(other)[source]
      +equals(other)[source]

      Returns True if the given formulas have the same truth table. For two formulas to be equal they must have the same literals.

      Examples

      @@ -1046,7 +1046,7 @@

      Boolean functions
      -class sympy.logic.boolalg.BooleanTrue[source]
      +class sympy.logic.boolalg.BooleanTrue[source]

      SymPy version of True, a singleton that can be accessed via S.true.

      This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand Boolean @@ -1119,7 +1119,7 @@

      Boolean functions
      -as_set()[source]
      +as_set()[source]

      Rewrite logic operators and relationals in terms of real sets.

      Examples

      >>> from sympy import true
      @@ -1133,7 +1133,7 @@ 

      Boolean functions
      -class sympy.logic.boolalg.BooleanFalse[source]
      +class sympy.logic.boolalg.BooleanFalse[source]

      SymPy version of False, a singleton that can be accessed via S.false.

      This is the SymPy version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand @@ -1170,7 +1170,7 @@

      Boolean functions
      -as_set()[source]
      +as_set()[source]

      Rewrite logic operators and relationals in terms of real sets.

      Examples

      >>> from sympy import false
      @@ -1184,7 +1184,7 @@ 

      Boolean functions
      -class sympy.logic.boolalg.And(*args)[source]
      +class sympy.logic.boolalg.And(*args)[source]

      Logical AND function.

      It evaluates its arguments in order, returning false immediately when an argument is false and true if they are all true.

      @@ -1208,7 +1208,7 @@

      Boolean functions
      -class sympy.logic.boolalg.Or(*args)[source]
      +class sympy.logic.boolalg.Or(*args)[source]

      Logical OR function

      It evaluates its arguments in order, returning true immediately when an argument is true, and false if they are all false.

      @@ -1232,7 +1232,7 @@

      Boolean functions
      -class sympy.logic.boolalg.Not(arg)[source]
      +class sympy.logic.boolalg.Not(arg)[source]

      Logical Not function (negation)

      Returns true if the statement is false or False. Returns false if the statement is true or True.

      @@ -1278,7 +1278,7 @@

      Boolean functions
      -class sympy.logic.boolalg.Xor(*args)[source]
      +class sympy.logic.boolalg.Xor(*args)[source]

      Logical XOR (exclusive OR) function.

      Returns True if an odd number of the arguments are True and the rest are False.

      @@ -1313,7 +1313,7 @@

      Boolean functions
      -class sympy.logic.boolalg.Nand(*args)[source]
      +class sympy.logic.boolalg.Nand(*args)[source]

      Logical NAND function.

      It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True.

      @@ -1335,7 +1335,7 @@

      Boolean functions
      -class sympy.logic.boolalg.Nor(*args)[source]
      +class sympy.logic.boolalg.Nor(*args)[source]

      Logical NOR function.

      It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False.

      @@ -1363,7 +1363,7 @@

      Boolean functions
      -class sympy.logic.boolalg.Xnor(*args)[source]
      +class sympy.logic.boolalg.Xnor(*args)[source]

      Logical XNOR function.

      Returns False if an odd number of the arguments are True and the rest are False.

      @@ -1387,7 +1387,7 @@

      Boolean functions
      -class sympy.logic.boolalg.Implies(*args)[source]
      +class sympy.logic.boolalg.Implies(*args)[source]

      Logical implication.

      A implies B is equivalent to if A then B. Mathematically, it is written as \(A \Rightarrow B\) and is equivalent to \(\neg A \vee B\) or ~A | B.

      @@ -1433,7 +1433,7 @@

      Boolean functions
      -class sympy.logic.boolalg.Equivalent(*args)[source]
      +class sympy.logic.boolalg.Equivalent(*args)[source]

      Equivalence relation.

      Equivalent(A, B) is True iff A and B are both True or both False.

      Returns True if all of the arguments are logically equivalent. @@ -1454,7 +1454,7 @@

      Boolean functions
      -class sympy.logic.boolalg.ITE(*args)[source]
      +class sympy.logic.boolalg.ITE(*args)[source]

      If-then-else clause.

      ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans.

      @@ -1488,7 +1488,7 @@

      Boolean functions
      -class sympy.logic.boolalg.Exclusive(*args)[source]
      +class sympy.logic.boolalg.Exclusive(*args)[source]

      True if only one or no argument is true.

      Exclusive(A, B, C) is equivalent to ~(A & B) & ~(A & C) & ~(B & C).

      For two arguments, this is equivalent to Xor.

      @@ -1508,7 +1508,7 @@

      Boolean functions
      -sympy.logic.boolalg.to_anf(expr, deep=True)[source]
      +sympy.logic.boolalg.to_anf(expr, deep=True)[source]

      Converts expr to Algebraic Normal Form (ANF).

      ANF is a canonical normal form, which means that two equivalent formulas will convert to the same ANF.

      @@ -1547,7 +1547,7 @@

      Boolean functions
      -sympy.logic.boolalg.to_cnf(expr, simplify=False, force=False)[source]
      +sympy.logic.boolalg.to_cnf(expr, simplify=False, force=False)[source]

      Convert a propositional logical sentence expr to conjunctive normal form: ((A | ~B | ...) & (B | C | ...) & ...). If simplify is True, expr is evaluated to its simplest CNF @@ -1567,7 +1567,7 @@

      Boolean functions
      -sympy.logic.boolalg.to_dnf(expr, simplify=False, force=False)[source]
      +sympy.logic.boolalg.to_dnf(expr, simplify=False, force=False)[source]

      Convert a propositional logical sentence expr to disjunctive normal form: ((A & ~B & ...) | (B & C & ...) | ...). If simplify is True, expr is evaluated to its simplest DNF form using @@ -1587,7 +1587,7 @@

      Boolean functions
      -sympy.logic.boolalg.to_nnf(expr, simplify=True)[source]
      +sympy.logic.boolalg.to_nnf(expr, simplify=True)[source]

      Converts expr to Negation Normal Form (NNF).

      A logical expression is in NNF if it contains only And, Or and Not, @@ -1606,7 +1606,7 @@

      Boolean functions
      -sympy.logic.boolalg.is_anf(expr)[source]
      +sympy.logic.boolalg.is_anf(expr)[source]

      Checks if expr is in Algebraic Normal Form (ANF).

      A logical expression is in ANF if it has the form

      @@ -1634,7 +1634,7 @@

      Boolean functions
      -sympy.logic.boolalg.is_cnf(expr)[source]
      +sympy.logic.boolalg.is_cnf(expr)[source]

      Test whether or not an expression is in conjunctive normal form.

      Examples

      >>> from sympy.logic.boolalg import is_cnf
      @@ -1651,7 +1651,7 @@ 

      Boolean functions
      -sympy.logic.boolalg.is_dnf(expr)[source]
      +sympy.logic.boolalg.is_dnf(expr)[source]

      Test whether or not an expression is in disjunctive normal form.

      Examples

      >>> from sympy.logic.boolalg import is_dnf
      @@ -1670,7 +1670,7 @@ 

      Boolean functions
      -sympy.logic.boolalg.is_nnf(expr, simplified=True)[source]
      +sympy.logic.boolalg.is_nnf(expr, simplified=True)[source]

      Checks if expr is in Negation Normal Form (NNF).

      A logical expression is in NNF if it contains only And, Or and Not, @@ -1695,7 +1695,7 @@

      Boolean functions
      -sympy.logic.boolalg.gateinputcount(expr)[source]
      +sympy.logic.boolalg.gateinputcount(expr)[source]

      Return the total number of inputs for the logic gates realizing the Boolean expression.

      @@ -1759,7 +1759,7 @@

      Simplification and equivalence-testingdontcare=None,

      -)[source] +)[source]

      This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy.

      @@ -1820,7 +1820,7 @@

      Simplification and equivalence-testing
      -sympy.logic.boolalg.bool_map(bool1, bool2)[source]
      +sympy.logic.boolalg.bool_map(bool1, bool2)[source]

      Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables @@ -1858,7 +1858,7 @@

      Manipulating expressions
      -sympy.logic.boolalg.distribute_and_over_or(expr)[source]
      +sympy.logic.boolalg.distribute_and_over_or(expr)[source]

      Given a sentence expr consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF.

      Examples

      @@ -1872,7 +1872,7 @@

      Manipulating expressions
      -sympy.logic.boolalg.distribute_or_over_and(expr)[source]
      +sympy.logic.boolalg.distribute_or_over_and(expr)[source]

      Given a sentence expr consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF.

      Note that the output is NOT simplified.

      @@ -1887,7 +1887,7 @@

      Manipulating expressions
      -sympy.logic.boolalg.distribute_xor_over_and(expr)[source]
      +sympy.logic.boolalg.distribute_xor_over_and(expr)[source]

      Given a sentence expr consisting of conjunction and exclusive disjunctions of literals, return an equivalent exclusive disjunction.

      @@ -1903,7 +1903,7 @@

      Manipulating expressions
      -sympy.logic.boolalg.eliminate_implications(expr)[source]
      +sympy.logic.boolalg.eliminate_implications(expr)[source]

      Change Implies and Equivalent into And, Or, and Not. That is, return an expression that is equivalent to expr, but has only @@ -1928,7 +1928,7 @@

      Truth tables and related functions
      -sympy.logic.boolalg.truth_table(expr, variables, input=True)[source]
      +sympy.logic.boolalg.truth_table(expr, variables, input=True)[source]

      Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values.

      @@ -1984,7 +1984,7 @@

      Truth tables and related functions
      -sympy.logic.boolalg.integer_to_term(n, bits=None, str=False)[source]
      +sympy.logic.boolalg.integer_to_term(n, bits=None, str=False)[source]

      Return a list of length bits corresponding to the binary value of n with small bits to the right (last). If bits is omitted, the length will be the number required to represent n. If the bits are @@ -2027,7 +2027,7 @@

      Truth tables and related functions
      -sympy.logic.boolalg.term_to_integer(term)[source]
      +sympy.logic.boolalg.term_to_integer(term)[source]

      Return an integer corresponding to the base-2 digits given by term.

      Parameters:
      @@ -2046,7 +2046,7 @@

      Truth tables and related functions
      -sympy.logic.boolalg.bool_maxterm(k, variables)[source]
      +sympy.logic.boolalg.bool_maxterm(k, variables)[source]

      Return the k-th maxterm.

      Each maxterm is assigned an index based on the opposite conventional binary encoding used for minterms. The maxterm @@ -2078,7 +2078,7 @@

      Truth tables and related functions
      -sympy.logic.boolalg.bool_minterm(k, variables)[source]
      +sympy.logic.boolalg.bool_minterm(k, variables)[source]

      Return the k-th minterm.

      Minterms are numbered by a binary encoding of the complementation pattern of the variables. This convention assigns the value 1 to @@ -2109,7 +2109,7 @@

      Truth tables and related functions
      -sympy.logic.boolalg.bool_monomial(k, variables)[source]
      +sympy.logic.boolalg.bool_monomial(k, variables)[source]

      Return the k-th monomial.

      Monomials are numbered by a binary encoding of the presence and absences of the variables. This convention assigns the value @@ -2142,7 +2142,7 @@

      Truth tables and related functions
      -sympy.logic.boolalg.anf_coeffs(truthvalues)[source]
      +sympy.logic.boolalg.anf_coeffs(truthvalues)[source]

      Convert a list of truth values of some boolean expression to the list of coefficients of the polynomial mod 2 (exclusive disjunction) representing the boolean expression in ANF @@ -2175,7 +2175,7 @@

      Truth tables and related functions
      -sympy.logic.boolalg.to_int_repr(clauses, symbols)[source]
      +sympy.logic.boolalg.to_int_repr(clauses, symbols)[source]

      Takes clauses in CNF format and puts them into an integer representation.

      Examples

      >>> from sympy.logic.boolalg import to_int_repr
      @@ -2220,7 +2220,7 @@ 

      Truth tables and related functionsuse_lra_theory=False,

      -)[source] +)[source]

      Check satisfiability of a propositional sentence. Returns a model when it succeeds. Returns {true: true} for trivially true expressions.

      @@ -2297,7 +2297,7 @@

      Truth tables and related functionsFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/matrices/dense.html b/dev/modules/matrices/dense.html index 45552c221da..ee41d71f3fc 100644 --- a/dev/modules/matrices/dense.html +++ b/dev/modules/matrices/dense.html @@ -802,17 +802,17 @@
      Documentation Version

      Dense Matrices

      -sympy.matrices.dense.Matrix[source]
      +sympy.matrices.dense.Matrix[source]

      alias of MutableDenseMatrix

      -class sympy.matrices.dense.DenseMatrix[source]
      +class sympy.matrices.dense.DenseMatrix[source]

      Matrix implementation based on DomainMatrix as the internal representation

      -LDLdecomposition(hermitian=True)[source]
      +LDLdecomposition(hermitian=True)[source]

      Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. @@ -862,13 +862,13 @@

      Dense Matrices
      -as_immutable()[source]
      +as_immutable()[source]

      Returns an Immutable version of this Matrix

      -as_mutable()[source]
      +as_mutable()[source]

      Returns a mutable version of this matrix

      Examples

      >>> from sympy import ImmutableMatrix
      @@ -885,7 +885,7 @@ 

      Dense Matrices
      -cholesky(hermitian=True)[source]
      +cholesky(hermitian=True)[source]

      Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False.

      @@ -939,7 +939,7 @@

      Dense Matrices
      -lower_triangular_solve(rhs)[source]
      +lower_triangular_solve(rhs)[source]

      Solves Ax = B, where A is a lower triangular matrix.

      See also

      @@ -949,7 +949,7 @@

      Dense Matrices
      -upper_triangular_solve(rhs)[source]
      +upper_triangular_solve(rhs)[source]

      Solves Ax = B, where A is an upper triangular matrix.

      See also

      @@ -961,10 +961,10 @@

      Dense Matrices
      -class sympy.matrices.dense.MutableDenseMatrix(*args, **kwargs)[source]
      +class sympy.matrices.dense.MutableDenseMatrix(*args, **kwargs)[source]
      -simplify(**kwargs)[source]
      +simplify(**kwargs)[source]

      Applies simplify to the elements of a matrix in place.

      This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))

      @@ -977,7 +977,7 @@

      Dense Matrices
      -class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]
      +class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]

      Create an immutable version of a matrix.

      Examples

      >>> from sympy import eye, ImmutableMatrix
      @@ -1031,7 +1031,7 @@ 

      Dense MatricesFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/matrices/expressions.html b/dev/modules/matrices/expressions.html index 695da6b05ac..a241756fca7 100644 --- a/dev/modules/matrices/expressions.html +++ b/dev/modules/matrices/expressions.html @@ -839,7 +839,7 @@
      Documentation Version

      Matrix Expressions Core Reference

      -class sympy.matrices.expressions.MatrixExpr(*args, **kwargs)[source]
      +class sympy.matrices.expressions.MatrixExpr(*args, **kwargs)[source]

      Superclass for Matrix Expressions

      MatrixExprs represent abstract matrices, linear transformations represented within a particular basis.

      @@ -862,13 +862,13 @@

      Matrix Expressions Core Reference
      -as_coeff_Mul(rational=False)[source]
      +as_coeff_Mul(rational=False)[source]

      Efficiently extract the coefficient of a product.

      -as_explicit()[source]
      +as_explicit()[source]

      Returns a dense Matrix with elements represented explicitly

      Returns an object of type ImmutableDenseMatrix.

      Examples

      @@ -894,7 +894,7 @@

      Matrix Expressions Core Reference
      -as_mutable()[source]
      +as_mutable()[source]

      Returns a dense, mutable matrix with elements represented explicitly

      Examples

      >>> from sympy import Identity
      @@ -921,7 +921,7 @@ 

      Matrix Expressions Core Reference
      -equals(other)[source]
      +equals(other)[source]

      Test elementwise equality between matrices, potentially of different types

      >>> from sympy import Identity, eye
      @@ -942,7 +942,7 @@ 

      Matrix Expressions Core Referencedimensions=None,

      -)[source] +)[source]

      Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible.

      This transformation expressed in mathematical notation:

      @@ -983,7 +983,7 @@

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.MatrixSymbol(name, n, m)[source]
      +class sympy.matrices.expressions.MatrixSymbol(name, n, m)[source]

      Symbolic representation of a Matrix object

      Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions

      @@ -1010,7 +1010,7 @@

      Matrix Expressions Core Reference_sympify=True,

      -)[source] +)[source]

      A Sum of Matrix Expressions

      MatAdd inherits from and operates like SymPy Add

      Examples

      @@ -1035,7 +1035,7 @@

      Matrix Expressions Core Reference_sympify=True,

      -)[source] +)[source]

      A product of matrix expressions

      Examples

      >>> from sympy import MatMul, MatrixSymbol
      @@ -1050,12 +1050,12 @@ 

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.MatPow(base, exp, evaluate=False, **options)[source]
      +class sympy.matrices.expressions.MatPow(base, exp, evaluate=False, **options)[source]

      -sympy.matrices.expressions.hadamard_product(*matrices)[source]
      +sympy.matrices.expressions.hadamard_product(*matrices)[source]

      Return the elementwise (aka Hadamard) product of matrices.

      Examples

      >>> from sympy import hadamard_product, MatrixSymbol
      @@ -1073,7 +1073,7 @@ 

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.HadamardProduct(*args, evaluate=False, check=None)[source]
      +class sympy.matrices.expressions.HadamardProduct(*args, evaluate=False, check=None)[source]

      Elementwise product of matrix expressions

      Examples

      Hadamard product for matrix symbols:

      @@ -1092,7 +1092,7 @@

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.HadamardPower(base, exp)[source]
      +class sympy.matrices.expressions.HadamardPower(base, exp)[source]

      Elementwise power of matrix expressions

      Parameters:
      @@ -1146,7 +1146,7 @@

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.Inverse(mat, exp=-1)[source]
      +class sympy.matrices.expressions.Inverse(mat, exp=-1)[source]

      The multiplicative inverse of a matrix expression

      This is a symbolic object that simply stores its argument without evaluating it. To actually compute the inverse, use the .inverse() @@ -1169,7 +1169,7 @@

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.Transpose(*args, **kwargs)[source]
      +class sympy.matrices.expressions.Transpose(*args, **kwargs)[source]

      The transpose of a matrix expression.

      This is a symbolic object that simply stores its argument without evaluating it. To actually compute the transpose, use the transpose() @@ -1192,7 +1192,7 @@

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.Trace(mat)[source]
      +class sympy.matrices.expressions.Trace(mat)[source]

      Matrix Trace

      Represents the trace of a matrix expression.

      Examples

      @@ -1213,7 +1213,7 @@

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.FunctionMatrix(rows, cols, lamda)[source]
      +class sympy.matrices.expressions.FunctionMatrix(rows, cols, lamda)[source]

      Represents a matrix using a function (Lambda) which gives outputs according to the coordinates of each matrix entries.

      @@ -1281,7 +1281,7 @@

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.PermutationMatrix(perm)[source]
      +class sympy.matrices.expressions.PermutationMatrix(perm)[source]

      A Permutation Matrix

      Parameters:
      @@ -1332,7 +1332,7 @@

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.MatrixPermute(mat, perm, axis=0)[source]
      +class sympy.matrices.expressions.MatrixPermute(mat, perm, axis=0)[source]

      Symbolic representation for permuting matrix rows or columns.

      Parameters:
      @@ -1385,7 +1385,7 @@

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.Identity(n)[source]
      +class sympy.matrices.expressions.Identity(n)[source]

      The Matrix Identity I - multiplicative identity

      Examples

      >>> from sympy import Identity, MatrixSymbol
      @@ -1399,7 +1399,7 @@ 

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.ZeroMatrix(m, n)[source]
      +class sympy.matrices.expressions.ZeroMatrix(m, n)[source]

      The Matrix Zero 0 - additive identity

      Examples

      >>> from sympy import MatrixSymbol, ZeroMatrix
      @@ -1415,7 +1415,7 @@ 

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.CompanionMatrix(poly)[source]
      +class sympy.matrices.expressions.CompanionMatrix(poly)[source]

      A symbolic companion matrix of a polynomial.

      Examples

      >>> from sympy import Poly, Symbol, symbols
      @@ -1432,7 +1432,7 @@ 

      Matrix Expressions Core Reference
      -class sympy.matrices.expressions.MatrixSet(n, m, set)[source]
      +class sympy.matrices.expressions.MatrixSet(n, m, set)[source]

      MatrixSet represents the set of matrices with shape = (n, m) over the given set.

      Examples

      @@ -1457,7 +1457,7 @@

      Block MatricesImmutableMatrix objects.

      -class sympy.matrices.expressions.blockmatrix.BlockMatrix(*args, **kwargs)[source]
      +class sympy.matrices.expressions.blockmatrix.BlockMatrix(*args, **kwargs)[source]

      A BlockMatrix is a Matrix comprised of other matrices.

      The submatrices are stored in a SymPy Matrix object but accessed as part of a Matrix Expression

      @@ -1516,7 +1516,7 @@

      Block Matrices
      -LDUdecomposition()[source]
      +LDUdecomposition()[source]

      Returns the Block LDU decomposition of a 2x2 Block Matrix

      @@ -1562,7 +1562,7 @@

      Block Matrices
      -LUdecomposition()[source]
      +LUdecomposition()[source]

      Returns the Block LU decomposition of a 2x2 Block Matrix

      @@ -1607,7 +1607,7 @@

      Block Matrices
      -UDLdecomposition()[source]
      +UDLdecomposition()[source]

      Returns the Block UDL decomposition of a 2x2 Block Matrix

      @@ -1653,7 +1653,7 @@

      Block Matrices
      -schur(mat='A', generalized=False)[source]
      +schur(mat='A', generalized=False)[source]

      Return the Schur Complement of the 2x2 BlockMatrix

      Parameters:
      @@ -1728,7 +1728,7 @@

      Block Matrices
      -transpose()[source]
      +transpose()[source]

      Return transpose of matrix.

      Examples

      >>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix
      @@ -1753,7 +1753,7 @@ 

      Block Matrices
      -class sympy.matrices.expressions.blockmatrix.BlockDiagMatrix(*mats)[source]
      +class sympy.matrices.expressions.blockmatrix.BlockDiagMatrix(*mats)[source]

      A sparse matrix with block matrices along its diagonals

      Examples

      >>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols
      @@ -1775,7 +1775,7 @@ 

      Block Matrices
      -get_diag_blocks()[source]
      +get_diag_blocks()[source]

      Return the list of diagonal blocks of the matrix.

      Examples

      >>> from sympy import BlockDiagMatrix, Matrix
      @@ -1804,7 +1804,7 @@ 

      Block Matrices
      -sympy.matrices.expressions.blockmatrix.block_collapse(expr)[source]
      +sympy.matrices.expressions.blockmatrix.block_collapse(expr)[source]

      Evaluates a block matrix expression

      >>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity, ZeroMatrix, block_collapse
       >>> n,m,l = symbols('n m l')
      @@ -1867,7 +1867,7 @@ 

      Block MatricesFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/matrices/immutablematrices.html b/dev/modules/matrices/immutablematrices.html index 5d78d1b4dd8..50b8e46dd2d 100644 --- a/dev/modules/matrices/immutablematrices.html +++ b/dev/modules/matrices/immutablematrices.html @@ -832,13 +832,13 @@

      Immutable Matrices

      ImmutableMatrix Class Reference

      -sympy.matrices.immutable.ImmutableMatrix[source]
      +sympy.matrices.immutable.ImmutableMatrix[source]

      alias of ImmutableDenseMatrix

      -class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]
      +class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]

      Create an immutable version of a matrix.

      Examples

      >>> from sympy import eye, ImmutableMatrix
      @@ -893,7 +893,7 @@ 

      Immutable MatricesFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/matrices/index.html b/dev/modules/matrices/index.html index 8e5a54906e5..5c8131c00a4 100644 --- a/dev/modules/matrices/index.html +++ b/dev/modules/matrices/index.html @@ -853,7 +853,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/matrices/kind.html b/dev/modules/matrices/kind.html index 7d76765a1c9..30b5279b0e4 100644 --- a/dev/modules/matrices/kind.html +++ b/dev/modules/matrices/kind.html @@ -802,7 +802,7 @@
      Documentation Version

      Matrix Kind

      -class sympy.matrices.kind.MatrixKind(element_kind=NumberKind)[source]
      +class sympy.matrices.kind.MatrixKind(element_kind=NumberKind)[source]

      Kind for all matrices in SymPy.

      Basic class for this kind is MatrixBase and MatrixExpr, but any expression representing the matrix can have this.

      @@ -896,7 +896,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/matrices/matrices.html b/dev/modules/matrices/matrices.html index 6ac703fddd4..3731f57e594 100644 --- a/dev/modules/matrices/matrices.html +++ b/dev/modules/matrices/matrices.html @@ -1324,7 +1324,7 @@

      Matrix Base ClassesSparse Matrices.

      -class sympy.matrices.matrixbase.MatrixBase[source]
      +class sympy.matrices.matrixbase.MatrixBase[source]

      All common matrix operations including basic arithmetic, shaping, and special matrices like \(zeros\), and \(eye\).

      @@ -1401,7 +1401,7 @@

      Matrix Base Classes
      -LDLdecomposition(hermitian=True)[source]
      +LDLdecomposition(hermitian=True)[source]

      Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. @@ -1451,7 +1451,7 @@

      Matrix Base Classes
      -LDLsolve(rhs)[source]
      +LDLsolve(rhs)[source]

      Solves Ax = B using LDL decomposition, for a general square and non-singular matrix.

      For a non-square matrix with rows > cols, @@ -1480,7 +1480,7 @@

      Matrix Base Classesrankcheck=False,

      -)[source] +)[source]

      Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then @@ -1543,7 +1543,7 @@

      Matrix Base Classes
      -LUdecompositionFF()[source]
      +LUdecompositionFF()[source]

      Compute a fraction-free LU decomposition.

      Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all @@ -1573,7 +1573,7 @@

      Matrix Base Classesrankcheck=False,

      -)[source] +)[source]

      Compute the PLU decomposition of the matrix.

      Parameters:
      @@ -1843,7 +1843,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Solve the linear system Ax = rhs for x where A = M.

      This is for symbolic matrices, for real or complex ones use mpmath.lu_solve or mpmath.qr_solve.

      @@ -1855,7 +1855,7 @@

      Matrix Base Classes
      -QRdecomposition()[source]
      +QRdecomposition()[source]

      Returns a QR decomposition.

      Explanation

      A QR decomposition is a decomposition in the form \(A = Q R\) @@ -2027,7 +2027,7 @@

      Matrix Base Classes
      -QRsolve(b)[source]
      +QRsolve(b)[source]

      Solve the linear system Ax = b.

      M is the matrix A, the method argument is the vector b. The method returns the solution vector x. If b is a @@ -2053,19 +2053,19 @@

      Matrix Base Classes
      -__abs__()[source]
      +__abs__()[source]

      Returns a new matrix with entry-wise absolute values.

      -__add__(other)[source]
      +__add__(other)[source]

      Return self + other, raising ShapeError if shapes do not match.

      -__getitem__(key)[source]
      +__getitem__(key)[source]

      Implementations of __getitem__ should accept ints, in which case the matrix is indexed as a flat list, tuples (i,j) in which case the (i,j) entry is returned, slices, or mixed tuples (a,b) @@ -2074,14 +2074,14 @@

      Matrix Base Classes
      -__len__()[source]
      +__len__()[source]

      Return the number of elements of self.

      Implemented mainly so bool(Matrix()) == False.

      -__mul__(other)[source]
      +__mul__(other)[source]

      Return self*other where other is either a scalar or a matrix of compatible dimensions.

      Examples

      @@ -2109,7 +2109,7 @@

      Matrix Base Classes
      -__pow__(exp)[source]
      +__pow__(exp)[source]

      Return self**exp a scalar or symbol.

      @@ -2121,19 +2121,19 @@

      Matrix Base Classes
      -add(b)[source]
      +add(b)[source]

      Return self + b.

      -adjoint()[source]
      +adjoint()[source]

      Conjugate transpose or Hermitian conjugation.

      -adjugate(method='berkowitz')[source]
      +adjugate(method='berkowitz')[source]

      Returns the adjugate, or classical adjoint, of a matrix. That is, the transpose of the matrix of cofactors.

      https://en.wikipedia.org/wiki/Adjugate

      @@ -2163,7 +2163,7 @@

      Matrix Base Classes
      -analytic_func(f, x)[source]
      +analytic_func(f, x)[source]

      Computes f(A) where A is a Square Matrix and f is an analytic function.

      @@ -2195,7 +2195,7 @@

      Matrix Base Classes
      -applyfunc(f)[source]
      +applyfunc(f)[source]

      Apply a function to each element of the matrix.

      Examples

      >>> from sympy import Matrix
      @@ -2214,13 +2214,13 @@ 

      Matrix Base Classes
      -as_real_imag(deep=True, **hints)[source]
      +as_real_imag(deep=True, **hints)[source]

      Returns a tuple containing the (real, imaginary) part of matrix.

      -atoms(*types)[source]
      +atoms(*types)[source]

      Returns the atoms that form the current object.

      Examples

      >>> from sympy.abc import x, y
      @@ -2241,7 +2241,7 @@ 

      Matrix Base Classes
      -berkowitz_det()[source]
      +berkowitz_det()[source]

      Computes determinant using Berkowitz method.

      See also

      @@ -2251,19 +2251,19 @@

      Matrix Base Classes
      -berkowitz_eigenvals(**flags)[source]
      +berkowitz_eigenvals(**flags)[source]

      Computes eigenvalues of a Matrix using Berkowitz method.

      -berkowitz_minors()[source]
      +berkowitz_minors()[source]

      Computes principal minors using Berkowitz method.

      -bidiagonal_decomposition(upper=True)[source]
      +bidiagonal_decomposition(upper=True)[source]

      Returns \((U,B,V.H)\) for

      @@ -2295,7 +2295,7 @@

      Matrix Base Classes
      -bidiagonalize(upper=True)[source]
      +bidiagonalize(upper=True)[source]

      Returns \(B\), the Bidiagonalized form of the input matrix.

      Note: Bidiagonal Computation can hang for symbolic matrices.

      @@ -2328,7 +2328,7 @@

      Matrix Base Classessimplify=<function _simplify>,

      -)[source] +)[source]

      Computes characteristic polynomial det(x*I - M) where I is the identity matrix.

      A PurePoly is returned, so using different variables for x does @@ -2397,7 +2397,7 @@

      Matrix Base Classes
      -cholesky(hermitian=True)[source]
      +cholesky(hermitian=True)[source]

      Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False.

      @@ -2451,7 +2451,7 @@

      Matrix Base Classes
      -cholesky_solve(rhs)[source]
      +cholesky_solve(rhs)[source]

      Solves Ax = B using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows > cols, @@ -2464,7 +2464,7 @@

      Matrix Base Classes
      -cofactor(i, j, method='berkowitz')[source]
      +cofactor(i, j, method='berkowitz')[source]

      Calculate the cofactor of an element.

      Parameters:
      @@ -2490,7 +2490,7 @@

      Matrix Base Classes
      -cofactor_matrix(method='berkowitz')[source]
      +cofactor_matrix(method='berkowitz')[source]

      Return a matrix containing the cofactor of each element.

      Parameters:
      @@ -2518,7 +2518,7 @@

      Matrix Base Classes
      -col(j)[source]
      +col(j)[source]

      Elementary column selector.

      Examples

      >>> from sympy import eye
      @@ -2536,13 +2536,13 @@ 

      Matrix Base Classes
      -col_del(col)[source]
      +col_del(col)[source]

      Delete the specified column.

      -col_insert(pos, other)[source]
      +col_insert(pos, other)[source]

      Insert one or more columns at the given column position.

      Examples

      >>> from sympy import zeros, ones
      @@ -2563,7 +2563,7 @@ 

      Matrix Base Classes
      -col_join(other)[source]
      +col_join(other)[source]

      Concatenates two matrices along self’s last and other’s first row.

      Examples

      >>> from sympy import zeros, ones
      @@ -2585,7 +2585,7 @@ 

      Matrix Base Classes
      -columnspace(simplify=False)[source]
      +columnspace(simplify=False)[source]

      Returns a list of vectors (Matrix objects) that span columnspace of M

      Examples

      >>> from sympy import Matrix
      @@ -2613,7 +2613,7 @@ 

      Matrix Base Classes
      -classmethod companion(poly)[source]
      +classmethod companion(poly)[source]

      Returns a companion matrix of a polynomial.

      Examples

      >>> from sympy import Matrix, Poly, Symbol, symbols
      @@ -2633,7 +2633,7 @@ 

      Matrix Base Classes
      -condition_number()[source]
      +condition_number()[source]

      Returns the condition number of a matrix.

      This is the maximum singular value divided by the minimum singular value

      Examples

      @@ -2651,7 +2651,7 @@

      Matrix Base Classes
      -conjugate()[source]
      +conjugate()[source]

      Return the by-element conjugation.

      Examples

      >>> from sympy import SparseMatrix, I
      @@ -2683,7 +2683,7 @@ 

      Matrix Base Classes
      -connected_components()[source]
      +connected_components()[source]

      Returns the list of connected vertices of the graph when a square matrix is viewed as a weighted graph.

      Examples

      @@ -2711,7 +2711,7 @@

      Matrix Base Classes
      -connected_components_decomposition()[source]
      +connected_components_decomposition()[source]

      Decomposes a square matrix into block diagonal form only using the permutations.

      @@ -2780,7 +2780,7 @@

      Matrix Base Classes
      -copy()[source]
      +copy()[source]

      Returns the copy of a matrix.

      Examples

      >>> from sympy import Matrix
      @@ -2795,7 +2795,7 @@ 

      Matrix Base Classes
      -cramer_solve(rhs, det_method='laplace')[source]
      +cramer_solve(rhs, det_method='laplace')[source]

      Solves system of linear equations using Cramer’s rule.

      This method is relatively inefficient compared to other methods. However it only uses a single division, assuming a division-free determinant @@ -2849,7 +2849,7 @@

      Matrix Base Classes
      -cross(b)[source]
      +cross(b)[source]

      Return the cross product of self and b relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as self will be returned. If b has the same @@ -2868,7 +2868,7 @@

      Matrix Base Classes
      -det(method='bareiss', iszerofunc=None)[source]
      +det(method='bareiss', iszerofunc=None)[source]

      Computes the determinant of a matrix if M is a concrete matrix object otherwise return an expressions Determinant(M) if M is a MatrixSymbol or other expression.

      @@ -2956,7 +2956,7 @@

      Matrix Base Classes
      -det_LU_decomposition()[source]
      +det_LU_decomposition()[source]

      Compute matrix determinant using LU decomposition.

      Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method @@ -2982,7 +2982,7 @@

      Matrix Base Classes**kwargs,

      -)[source] +)[source]

      Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created (i.e. the “direct sum” of the matrices).

      @@ -3066,7 +3066,7 @@

      Matrix Base Classes
      -diagonal(k=0)[source]
      +diagonal(k=0)[source]

      Returns the kth diagonal of self. The main diagonal corresponds to \(k=0\); diagonals above and below correspond to \(k > 0\) and \(k < 0\), respectively. The values of \(self[i, j]\) @@ -3101,7 +3101,7 @@

      Matrix Base Classes
      -diagonal_solve(rhs)[source]
      +diagonal_solve(rhs)[source]

      Solves Ax = B efficiently, where A is a diagonal Matrix, with non-zero diagonal entries.

      Examples

      @@ -3128,7 +3128,7 @@

      Matrix Base Classesnormalize=False,

      -)[source] +)[source]

      Return (P, D), where D is diagonal and

      D = P^-1 * M * P

      @@ -3178,7 +3178,7 @@

      Matrix Base Classes
      -diff(*args, evaluate=True, **kwargs)[source]
      +diff(*args, evaluate=True, **kwargs)[source]

      Calculate the derivative of each element in the matrix.

      Examples

      >>> from sympy import Matrix
      @@ -3206,7 +3206,7 @@ 

      Matrix Base Classesconjugate_convention=None,

      -)[source] +)[source]

      Return the dot or inner product of two vectors of equal length. Here self must be a Matrix of size 1 x n or n x 1, and b must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. @@ -3256,7 +3256,7 @@

      Matrix Base Classes
      -dual()[source]
      +dual()[source]

      Returns the dual of a matrix.

      A dual of a matrix is:

      (1/2)*levicivita(i, j, k, l)*M(k, l) summed over indices \(k\) and \(l\)

      @@ -3277,7 +3277,7 @@

      Matrix Base Classeswith_pivots=False,

      -)[source] +)[source]

      Returns a matrix row-equivalent to M that is in echelon form. Note that echelon form of a matrix is not unique, however, properties like the row space and the null space are preserved.

      @@ -3301,7 +3301,7 @@

      Matrix Base Classes**flags,

      -)[source] +)[source]

      Compute eigenvalues of the matrix.

      Parameters:
      @@ -3385,7 +3385,7 @@

      Matrix Base Classes**flags,

      -)[source] +)[source]

      Compute eigenvectors of the matrix.

      Parameters:
      @@ -3471,7 +3471,7 @@

      Matrix Base Classescol2=None,

      -)[source] +)[source]

      Performs the elementary column operation \(op\).

      \(op\) may be one of

      @@ -3507,7 +3507,7 @@

      Matrix Base Classesrow2=None,

      -)[source] +)[source]

      Performs the elementary row operation \(op\).

      \(op\) may be one of

      @@ -3545,13 +3545,13 @@

      Matrix Base Classesverbose=False,

      -)[source] +)[source]

      Apply evalf() to each element of self.

      -exp()[source]
      +exp()[source]

      Return the exponential of a square matrix.

      Examples

      >>> from sympy import Symbol, Matrix
      @@ -3583,7 +3583,7 @@ 

      Matrix Base Classes**hints,

      -)[source] +)[source]

      Apply core.function.expand to each entry of the matrix.

      Examples

      >>> from sympy.abc import x
      @@ -3598,7 +3598,7 @@ 

      Matrix Base Classes
      -extract(rowsList, colsList)[source]
      +extract(rowsList, colsList)[source]

      Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range \(-n \le i < n\) where \(n\) is the number of rows or columns.

      @@ -3647,7 +3647,7 @@

      Matrix Base Classes
      -classmethod eye(rows, cols=None, **kwargs)[source]
      +classmethod eye(rows, cols=None, **kwargs)[source]

      Returns an identity matrix.

      Parameters:
      @@ -3661,7 +3661,7 @@

      Matrix Base Classes
      -flat()[source]
      +flat()[source]

      Returns a flat list of all elements in the matrix.

      Examples

      >>> from sympy import Matrix
      @@ -3691,7 +3691,7 @@ 

      Matrix Base Classes
      -classmethod from_dok(rows, cols, dok)[source]
      +classmethod from_dok(rows, cols, dok)[source]

      Create a matrix from a dictionary of keys.

      Examples

      >>> from sympy import Matrix
      @@ -3707,7 +3707,7 @@ 

      Matrix Base Classes
      -gauss_jordan_solve(B, freevar=False)[source]
      +gauss_jordan_solve(B, freevar=False)[source]

      Solves Ax = B using Gauss Jordan elimination.

      There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, it will @@ -3833,7 +3833,7 @@

      Matrix Base Classes
      -get_diag_blocks()[source]
      +get_diag_blocks()[source]

      Obtains the square sub-matrices on the main diagonal of a square matrix.

      Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal @@ -3857,7 +3857,7 @@

      Matrix Base Classes
      -has(*patterns)[source]
      +has(*patterns)[source]

      Test whether any subexpression matches any of the patterns.

      Examples

      >>> from sympy import Matrix, SparseMatrix, Float
      @@ -3882,7 +3882,7 @@ 

      Matrix Base Classes
      -hat()[source]
      +hat()[source]

      Return the skew-symmetric matrix representing the cross product, so that self.hat() * b is equivalent to self.cross(b).

      Examples

      @@ -3921,7 +3921,7 @@

      Matrix Base Classes
      -classmethod hstack(*args)[source]
      +classmethod hstack(*args)[source]

      Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join).

      Examples

      @@ -3936,7 +3936,7 @@

      Matrix Base Classes
      -integrate(*args, **kwargs)[source]
      +integrate(*args, **kwargs)[source]

      Integrate each element of the matrix. args will be passed to the integrate function.

      Examples

      @@ -3969,7 +3969,7 @@

      Matrix Base Classestry_block_diag=False,

      -)[source] +)[source]

      Return the inverse of a matrix using the method indicated. The default is DM if a suitable domain is found or otherwise GE for dense matrices LDL for sparse matrices.

      @@ -4058,7 +4058,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Calculates the inverse using the adjugate matrix and a determinant.

      See also

      @@ -4074,7 +4074,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Calculates the inverse using BLOCKWISE inversion.

      See also

      @@ -4090,7 +4090,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Calculates the inverse using cholesky decomposition.

      See also

      @@ -4106,7 +4106,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Calculates the inverse using Gaussian elimination.

      See also

      @@ -4122,7 +4122,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Calculates the inverse using LDL decomposition.

      See also

      @@ -4138,7 +4138,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Calculates the inverse using LU decomposition.

      See also

      @@ -4154,7 +4154,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Calculates the inverse using QR decomposition.

      See also

      @@ -4164,7 +4164,7 @@

      Matrix Base Classes
      -classmethod irregular(ntop, *matrices, **kwargs)[source]
      +classmethod irregular(ntop, *matrices, **kwargs)[source]

      Return a matrix filled by the given matrices which are listed in order of appearance from left to right, top to bottom as they first appear in the matrix. They must fill the @@ -4184,7 +4184,7 @@

      Matrix Base Classes
      -is_anti_symmetric(simplify=True)[source]
      +is_anti_symmetric(simplify=True)[source]

      Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i].

      When simplify=True (default), the sum M[i, j] + M[j, i] is @@ -4248,7 +4248,7 @@

      Matrix Base Classes
      -is_diagonal()[source]
      +is_diagonal()[source]

      Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero.

      Examples

      @@ -4296,7 +4296,7 @@

      Matrix Base Classes**kwargs,

      -)[source] +)[source]

      Returns True if a matrix is diagonalizable.

      Parameters:
      @@ -4957,7 +4957,7 @@

      Matrix Base Classes
      -is_nilpotent()[source]
      +is_nilpotent()[source]

      Checks if a matrix is nilpotent.

      A matrix B is nilpotent if for some integer k, B**k is a zero matrix.

      @@ -5375,7 +5375,7 @@

      Matrix Base Classes
      -is_symbolic()[source]
      +is_symbolic()[source]

      Checks if any elements contain Symbols.

      Examples

      >>> from sympy import Matrix
      @@ -5389,7 +5389,7 @@ 

      Matrix Base Classes
      -is_symmetric(simplify=True)[source]
      +is_symmetric(simplify=True)[source]

      Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose.

      By default, simplifications occur before testing symmetry. @@ -5578,7 +5578,7 @@

      Matrix Base Classes
      -iter_items()[source]
      +iter_items()[source]

      Iterate over indices and values of nonzero items.

      Examples

      >>> from sympy import Matrix
      @@ -5595,7 +5595,7 @@ 

      Matrix Base Classes
      -iter_values()[source]
      +iter_values()[source]

      Iterate over non-zero values of self.

      Examples

      >>> from sympy import Matrix
      @@ -5612,7 +5612,7 @@ 

      Matrix Base Classes
      -jacobian(X)[source]
      +jacobian(X)[source]

      Calculates the Jacobian matrix (derivative of a vector-valued function).

      Parameters:
      @@ -5657,7 +5657,7 @@

      Matrix Base Classes**kwargs,

      -)[source] +)[source]

      Returns a Jordan block

      Parameters:
      @@ -5749,7 +5749,7 @@

      Matrix Base Classes**kwargs,

      -)[source] +)[source]

      Return \((P, J)\) where \(J\) is a Jordan block matrix and \(P\) is a matrix such that \(M = P J P^{-1}\)

      @@ -5787,7 +5787,7 @@

      Matrix Base Classes
      -key2bounds(keys)[source]
      +key2bounds(keys)[source]

      Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of self’s range.

      @@ -5799,7 +5799,7 @@

      Matrix Base Classes
      -key2ij(key)[source]
      +key2ij(key)[source]

      Converts key into canonical form, converting integers or indexable items into valid integers for self’s range or returning slices unchanged.

      @@ -5811,7 +5811,7 @@

      Matrix Base Classes
      -left_eigenvects(**flags)[source]
      +left_eigenvects(**flags)[source]

      Returns left eigenvectors and eigenvalues.

      This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for @@ -5840,7 +5840,7 @@

      Matrix Base Classes
      -limit(*args)[source]
      +limit(*args)[source]

      Calculate the limit of each element in the matrix. args will be passed to the limit function.

      Examples

      @@ -5861,7 +5861,7 @@

      Matrix Base Classes
      -log(simplify=<function cancel>)[source]
      +log(simplify=<function cancel>)[source]

      Return the logarithm of a square matrix.

      Parameters:
      @@ -5918,7 +5918,7 @@

      Matrix Base Classes
      -lower_triangular(k=0)[source]
      +lower_triangular(k=0)[source]

      Return the elements on and below the kth diagonal of a matrix. If k is not specified then simply returns lower-triangular portion of a matrix

      @@ -5953,7 +5953,7 @@

      Matrix Base Classes
      -lower_triangular_solve(rhs)[source]
      +lower_triangular_solve(rhs)[source]

      Solves Ax = B, where A is a lower triangular matrix.

      See also

      @@ -5963,7 +5963,7 @@

      Matrix Base Classes
      -minor(i, j, method='berkowitz')[source]
      +minor(i, j, method='berkowitz')[source]

      Return the (i,j) minor of M. That is, return the determinant of the matrix obtained by deleting the \(i`th row and `j`th column from ``M`\).

      @@ -5995,7 +5995,7 @@

      Matrix Base Classes
      -minor_submatrix(i, j)[source]
      +minor_submatrix(i, j)[source]

      Return the submatrix obtained by removing the \(i`th row and `j`th column from ``M`\) (works with Pythonic negative indices).

      @@ -6023,7 +6023,7 @@

      Matrix Base Classes
      -multiply(other, dotprodsimp=None)[source]
      +multiply(other, dotprodsimp=None)[source]

      Same as __mul__() but with optional simplification.

      Parameters:
      @@ -6039,7 +6039,7 @@

      Matrix Base Classes
      -multiply_elementwise(other)[source]
      +multiply_elementwise(other)[source]

      Return the Hadamard product (elementwise product) of A and B

      Examples

      >>> from sympy import Matrix
      @@ -6059,13 +6059,13 @@ 

      Matrix Base Classes
      -n(*args, **kwargs)[source]
      +n(*args, **kwargs)[source]

      Apply evalf() to each element of self.

      -norm(ord=None)[source]
      +norm(ord=None)[source]

      Return the Norm of a Matrix or Vector.

      In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter

      @@ -6162,7 +6162,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Return the normalized version of self.

      Parameters:
      @@ -6203,7 +6203,7 @@

      Matrix Base Classesiszerofunc=<function _iszero>,

      -)[source] +)[source]

      Returns list of vectors (Matrix objects) that span nullspace of M

      Examples

      >>> from sympy import Matrix
      @@ -6228,7 +6228,7 @@ 

      Matrix Base Classes
      -classmethod ones(rows, cols=None, **kwargs)[source]
      +classmethod ones(rows, cols=None, **kwargs)[source]

      Returns a matrix of ones.

      Parameters:
      @@ -6242,7 +6242,7 @@

      Matrix Base Classes
      -classmethod orthogonalize(*vecs, **kwargs)[source]
      +classmethod orthogonalize(*vecs, **kwargs)[source]

      Apply the Gram-Schmidt orthogonalization procedure to vectors supplied in vecs.

      @@ -6296,7 +6296,7 @@

      Matrix Base Classes
      -per()[source]
      +per()[source]

      Returns the permanent of a matrix. Unlike determinant, permanent is defined for both square and non-square matrices.

      For an m x n matrix, with m less than or equal to n, @@ -6349,7 +6349,7 @@

      Matrix Base Classesdirection='forward',

      -)[source] +)[source]

      Permute the rows or columns of a matrix by the given list of swaps.

      @@ -6443,13 +6443,13 @@

      Matrix Base Classes
      -permuteBkwd(perm)[source]
      +permuteBkwd(perm)[source]

      Permute the rows of the matrix with the given permutation in reverse.

      -permuteFwd(perm)[source]
      +permuteFwd(perm)[source]

      Permute the rows of the matrix with the given permutation.

      @@ -6462,7 +6462,7 @@

      Matrix Base Classesdirection='forward',

      -)[source] +)[source]

      Alias for self.permute(swaps, orientation='cols', direction=direction)

      @@ -6480,7 +6480,7 @@

      Matrix Base Classesdirection='forward',

      -)[source] +)[source]

      Alias for self.permute(swaps, orientation='rows', direction=direction)

      @@ -6491,7 +6491,7 @@

      Matrix Base Classes
      -pinv(method='RD')[source]
      +pinv(method='RD')[source]

      Calculate the Moore-Penrose pseudoinverse of the matrix.

      The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the @@ -6542,7 +6542,7 @@

      Matrix Base Classes
      -pinv_solve(B, arbitrary_matrix=None)[source]
      +pinv_solve(B, arbitrary_matrix=None)[source]

      Solve Ax = B using the Moore-Penrose pseudoinverse.

      There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, one will @@ -6613,7 +6613,7 @@

      Matrix Base Classes
      -pow(exp, method=None)[source]
      +pow(exp, method=None)[source]

      Return self**exp a scalar or symbol.

      Parameters:
      @@ -6635,7 +6635,7 @@

      Matrix Base Classes
      -print_nonzero(symb='X')[source]
      +print_nonzero(symb='X')[source]

      Shows location of non-zero entries for fast shape lookup.

      Examples

      >>> from sympy import Matrix, eye
      @@ -6659,7 +6659,7 @@ 

      Matrix Base Classes
      -project(v)[source]
      +project(v)[source]

      Return the projection of self onto the line containing v.

      Examples

      >>> from sympy import Matrix, S, sqrt
      @@ -6682,7 +6682,7 @@ 

      Matrix Base Classessimplify=False,

      -)[source] +)[source]

      Returns the rank of a matrix.

      Examples

      >>> from sympy import Matrix
      @@ -6706,7 +6706,7 @@ 

      Matrix Base Classessimplify=False,

      -)[source] +)[source]

      Returns a pair of matrices (\(C\), \(F\)) with matching rank such that \(A = C F\).

      @@ -6794,7 +6794,7 @@

      Matrix Base Classes
      -refine(assumptions=True)[source]
      +refine(assumptions=True)[source]

      Apply refine to each element of the matrix.

      Examples

      >>> from sympy import Symbol, Matrix, Abs, sqrt, Q
      @@ -6823,7 +6823,7 @@ 

      Matrix Base Classesexact=None,

      -)[source] +)[source]

      Replaces Function F in Matrix entries with Function G.

      Examples

      >>> from sympy import symbols, Function, Matrix
      @@ -6843,7 +6843,7 @@ 

      Matrix Base Classes
      -reshape(rows, cols)[source]
      +reshape(rows, cols)[source]

      Reshape the matrix. Total number of elements must remain the same.

      Examples

      >>> from sympy import Matrix
      @@ -6865,7 +6865,7 @@ 

      Matrix Base Classes
      -rmultiply(other, dotprodsimp=None)[source]
      +rmultiply(other, dotprodsimp=None)[source]

      Same as __rmul__() but with optional simplification.

      Parameters:
      @@ -6881,7 +6881,7 @@

      Matrix Base Classes
      -rot90(k=1)[source]
      +rot90(k=1)[source]

      Rotates Matrix by 90 degrees

      Parameters:
      @@ -6919,7 +6919,7 @@

      Matrix Base Classes
      -row(i)[source]
      +row(i)[source]

      Elementary row selector.

      Examples

      >>> from sympy import eye
      @@ -6935,13 +6935,13 @@ 

      Matrix Base Classes
      -row_del(row)[source]
      +row_del(row)[source]

      Delete the specified row.

      -row_insert(pos, other)[source]
      +row_insert(pos, other)[source]

      Insert one or more rows at the given row position.

      Examples

      >>> from sympy import zeros, ones
      @@ -6963,7 +6963,7 @@ 

      Matrix Base Classes
      -row_join(other)[source]
      +row_join(other)[source]

      Concatenates two matrices along self’s last and rhs’s first column

      Examples

      >>> from sympy import zeros, ones
      @@ -6984,7 +6984,7 @@ 

      Matrix Base Classes
      -rowspace(simplify=False)[source]
      +rowspace(simplify=False)[source]

      Returns a list of vectors that span the row space of M.

      Examples

      >>> from sympy import Matrix
      @@ -7011,7 +7011,7 @@ 

      Matrix Base Classesnormalize_last=True,

      -)[source] +)[source]

      Return reduced row-echelon form of matrix and indices of pivot vars.

      @@ -7087,7 +7087,7 @@

      Matrix Base Classes
      -rref_rhs(rhs)[source]
      +rref_rhs(rhs)[source]

      Return reduced row-echelon form of matrix, matrix showing rhs after reduction steps. rhs must have the same number of rows as self.

      @@ -7123,7 +7123,7 @@

      Matrix Base Classes
      -simplify(**kwargs)[source]
      +simplify(**kwargs)[source]

      Apply simplify to each element of the matrix.

      Examples

      >>> from sympy.abc import x, y
      @@ -7138,7 +7138,7 @@ 

      Matrix Base Classes
      -singular_value_decomposition()[source]
      +singular_value_decomposition()[source]

      Returns a Condensed Singular Value decomposition.

      Explanation

      A Singular Value decomposition is a decomposition in the form \(A = U \Sigma V^H\) @@ -7309,7 +7309,7 @@

      Matrix Base Classes
      -singular_values()[source]
      +singular_values()[source]

      Compute the singular values of a Matrix

      Examples

      >>> from sympy import Matrix, Symbol
      @@ -7327,7 +7327,7 @@ 

      Matrix Base Classes
      -solve(rhs, method='GJ')[source]
      +solve(rhs, method='GJ')[source]

      Solves linear equation where the unique solution exists.

      Parameters:
      @@ -7371,7 +7371,7 @@

      Matrix Base Classes
      -solve_least_squares(rhs, method='CH')[source]
      +solve_least_squares(rhs, method='CH')[source]

      Return the least-square fit to the data.

      Parameters:
      @@ -7446,7 +7446,7 @@

      Matrix Base Classes
      -strongly_connected_components()[source]
      +strongly_connected_components()[source]

      Returns the list of strongly connected vertices of the graph when a square matrix is viewed as a weighted graph.

      Examples

      @@ -7475,7 +7475,7 @@

      Matrix Base Classeslower=True,

      -)[source] +)[source]

      Decomposes a square matrix into block triangular form only using the permutations.

      @@ -7576,7 +7576,7 @@

      Matrix Base Classes
      -subs(*args, **kwargs)[source]
      +subs(*args, **kwargs)[source]

      Return a new matrix with subs applied to each entry.

      Examples

      >>> from sympy.abc import x, y
      @@ -7604,7 +7604,7 @@ 

      Matrix Base Classesalign='right',

      -)[source] +)[source]

      String form of Matrix as a table.

      printer is the printer to use for on the elements (generally something like StrPrinter())

      @@ -7646,7 +7646,7 @@

      Matrix Base Classes
      -todod()[source]
      +todod()[source]

      Returns matrix as dict of dicts containing non-zero elements of the Matrix

      Examples

      >>> from sympy import Matrix
      @@ -7663,7 +7663,7 @@ 

      Matrix Base Classes
      -todok()[source]
      +todok()[source]

      Return the matrix as dictionary of keys.

      Examples

      >>> from sympy import Matrix
      @@ -7676,7 +7676,7 @@ 

      Matrix Base Classes
      -tolist()[source]
      +tolist()[source]

      Return the Matrix as a nested Python list.

      Examples

      >>> from sympy import Matrix, ones
      @@ -7702,7 +7702,7 @@ 

      Matrix Base Classes
      -trace()[source]
      +trace()[source]

      Returns the trace of a square matrix i.e. the sum of the diagonal elements.

      Examples

      @@ -7716,7 +7716,7 @@

      Matrix Base Classes
      -transpose()[source]
      +transpose()[source]

      Returns the transpose of the matrix.

      Examples

      >>> from sympy import Matrix
      @@ -7752,7 +7752,7 @@ 

      Matrix Base Classes
      -upper_hessenberg_decomposition()[source]
      +upper_hessenberg_decomposition()[source]

      Converts a matrix into Hessenberg matrix H.

      Returns 2 matrices H, P s.t. \(P H P^{T} = A\), where H is an upper hessenberg matrix @@ -7790,7 +7790,7 @@

      Matrix Base Classes
      -upper_triangular(k=0)[source]
      +upper_triangular(k=0)[source]

      Return the elements on and above the kth diagonal of a matrix. If k is not specified then simply returns upper-triangular portion of a matrix

      @@ -7825,7 +7825,7 @@

      Matrix Base Classes
      -upper_triangular_solve(rhs)[source]
      +upper_triangular_solve(rhs)[source]

      Solves Ax = B, where A is an upper triangular matrix.

      See also

      @@ -7835,7 +7835,7 @@

      Matrix Base Classes
      -values()[source]
      +values()[source]

      Return non-zero values of self.

      Examples

      >>> from sympy import Matrix
      @@ -7852,7 +7852,7 @@ 

      Matrix Base Classes
      -vec()[source]
      +vec()[source]

      Return the Matrix converted into a one column matrix by stacking columns

      Examples

      >>> from sympy import Matrix
      @@ -7884,7 +7884,7 @@ 

      Matrix Base Classescheck_symmetry=True,

      -)[source] +)[source]

      Reshapes the matrix into a column vector by stacking the elements in the lower triangle.

      @@ -7927,7 +7927,7 @@

      Matrix Base Classes
      -vee()[source]
      +vee()[source]

      Return a 3x1 vector from a skew-symmetric matrix representing the cross product, so that self * b is equivalent to self.vee().cross(b).

      Examples

      @@ -7990,7 +7990,7 @@

      Matrix Base Classes
      -classmethod vstack(*args)[source]
      +classmethod vstack(*args)[source]

      Return a matrix formed by joining args vertically (i.e. by repeated application of col_join).

      Examples

      @@ -8007,7 +8007,7 @@

      Matrix Base Classes
      -classmethod wilkinson(n, **kwargs)[source]
      +classmethod wilkinson(n, **kwargs)[source]

      Returns two square Wilkinson Matrix of size 2*n + 1 \(W_{2n + 1}^-, W_{2n + 1}^+ =\) Wilkinson(n)

      Examples

      @@ -8053,7 +8053,7 @@

      Matrix Base Classes
      -xreplace(rule)[source]
      +xreplace(rule)[source]

      Return a new matrix with xreplace applied to each entry.

      Examples

      >>> from sympy.abc import x, y
      @@ -8070,7 +8070,7 @@ 

      Matrix Base Classes
      -classmethod zeros(rows, cols=None, **kwargs)[source]
      +classmethod zeros(rows, cols=None, **kwargs)[source]

      Returns a matrix of zeros.

      Parameters:
      @@ -8089,18 +8089,18 @@

      Matrix Base Classes

      -class sympy.matrices.matrixbase.MatrixError[source]
      +class sympy.matrices.matrixbase.MatrixError[source]
      -class sympy.matrices.matrixbase.ShapeError[source]
      +class sympy.matrices.matrixbase.ShapeError[source]

      Wrong matrix shape

      -class sympy.matrices.matrixbase.NonSquareMatrixError[source]
      +class sympy.matrices.matrixbase.NonSquareMatrixError[source]
      @@ -8108,7 +8108,7 @@

      Matrix Exceptions

      -sympy.matrices.dense.matrix_multiply_elementwise(A, B)[source]
      +sympy.matrices.dense.matrix_multiply_elementwise(A, B)[source]

      Return the Hadamard product (elementwise product) of A and B

      >>> from sympy import Matrix, matrix_multiply_elementwise
       >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
      @@ -8127,7 +8127,7 @@ 

      Matrix Functions
      -sympy.matrices.dense.zeros(*args, **kwargs)[source]
      +sympy.matrices.dense.zeros(*args, **kwargs)[source]

      Returns a matrix of zeros with rows rows and cols columns; if cols is omitted a square matrix will be returned.

      @@ -8138,7 +8138,7 @@

      Matrix Functions
      -sympy.matrices.dense.ones(*args, **kwargs)[source]
      +sympy.matrices.dense.ones(*args, **kwargs)[source]

      Returns a matrix of ones with rows rows and cols columns; if cols is omitted a square matrix will be returned.

      @@ -8149,7 +8149,7 @@

      Matrix Functions
      -sympy.matrices.dense.eye(*args, **kwargs)[source]
      +sympy.matrices.dense.eye(*args, **kwargs)[source]

      Create square identity matrix n x n

      See also

      @@ -8159,7 +8159,7 @@

      Matrix Functions
      -sympy.matrices.dense.diag(*values, strict=True, unpack=False, **kwargs)[source]
      +sympy.matrices.dense.diag(*values, strict=True, unpack=False, **kwargs)[source]

      Returns a matrix with the provided values placed on the diagonal. If non-square matrices are included, they will produce a block-diagonal matrix.

      @@ -8193,7 +8193,7 @@

      Matrix Functions
      -sympy.matrices.dense.jordan_cell(eigenval, n)[source]
      +sympy.matrices.dense.jordan_cell(eigenval, n)[source]

      Create a Jordan block:

      Examples

      >>> from sympy import jordan_cell
      @@ -8210,7 +8210,7 @@ 

      Matrix Functions
      -sympy.matrices.dense.hessian(f, varlist, constraints=())[source]
      +sympy.matrices.dense.hessian(f, varlist, constraints=())[source]

      Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given.

      @@ -8255,7 +8255,7 @@

      Matrix Functions
      -sympy.matrices.dense.GramSchmidt(vlist, orthonormal=False)[source]
      +sympy.matrices.dense.GramSchmidt(vlist, orthonormal=False)[source]

      Apply the Gram-Schmidt process to a set of vectors.

      Parameters:
      @@ -8295,7 +8295,7 @@

      Matrix Functions
      -sympy.matrices.dense.wronskian(functions, var, method='bareiss')[source]
      +sympy.matrices.dense.wronskian(functions, var, method='bareiss')[source]

      Compute Wronskian for [] of functions

                       | f1       f2        ...   fn      |
                        | f1'      f2'       ...   fn'     |
      @@ -8315,7 +8315,7 @@ 

      Matrix Functions
      -sympy.matrices.dense.casoratian(seqs, n, zero=True)[source]
      +sympy.matrices.dense.casoratian(seqs, n, zero=True)[source]

      Given linear difference operator L of order ‘k’ and homogeneous equation Ly = 0 we want to compute kernel of L, which is a set of ‘k’ sequences: a(n), b(n), … z(n).

      @@ -8359,7 +8359,7 @@

      Matrix Functionsprng=None,

      -)[source] +)[source]

      Create random matrix with dimensions r x c. If c is omitted the matrix will be square. If symmetric is True the matrix must be square. If percent is less than 100 then only approximately the given @@ -8411,7 +8411,7 @@

      Matrix Functions

      -sympy.matrices.dense.rot_givens(i, j, theta, dim=3)[source]
      +sympy.matrices.dense.rot_givens(i, j, theta, dim=3)[source]

      Returns a a Givens rotation matrix, a a rotation in the plane spanned by two coordinates axes.

      @@ -8514,7 +8514,7 @@

      Rotation matrices
      -sympy.matrices.dense.rot_axis1(theta)[source]
      +sympy.matrices.dense.rot_axis1(theta)[source]

      Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis.

      Explanation

      @@ -8566,7 +8566,7 @@

      Rotation matrices
      -sympy.matrices.dense.rot_axis2(theta)[source]
      +sympy.matrices.dense.rot_axis2(theta)[source]

      Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis.

      Explanation

      @@ -8618,7 +8618,7 @@

      Rotation matrices
      -sympy.matrices.dense.rot_axis3(theta)[source]
      +sympy.matrices.dense.rot_axis3(theta)[source]

      Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis.

      Explanation

      @@ -8670,7 +8670,7 @@

      Rotation matrices
      -sympy.matrices.dense.rot_ccw_axis1(theta)[source]
      +sympy.matrices.dense.rot_ccw_axis1(theta)[source]

      Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis.

      Explanation

      @@ -8722,7 +8722,7 @@

      Rotation matrices
      -sympy.matrices.dense.rot_ccw_axis2(theta)[source]
      +sympy.matrices.dense.rot_ccw_axis2(theta)[source]

      Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis.

      Explanation

      @@ -8774,7 +8774,7 @@

      Rotation matrices
      -sympy.matrices.dense.rot_ccw_axis3(theta)[source]
      +sympy.matrices.dense.rot_ccw_axis3(theta)[source]

      Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis.

      Explanation

      @@ -8829,7 +8829,7 @@

      Rotation matrices

      -sympy.matrices.dense.list2numpy(l, dtype=<class 'object'>)[source]
      +sympy.matrices.dense.list2numpy(l, dtype=<class 'object'>)[source]

      Converts Python list of SymPy expressions to a NumPy array.

      See also

      @@ -8839,7 +8839,7 @@

      Numpy Utility Functions
      -sympy.matrices.dense.matrix2numpy(m, dtype=<class 'object'>)[source]
      +sympy.matrices.dense.matrix2numpy(m, dtype=<class 'object'>)[source]

      Converts SymPy’s matrix to a NumPy array.

      See also

      @@ -8849,7 +8849,7 @@

      Numpy Utility Functions
      -sympy.matrices.dense.symarray(prefix, shape, **kwargs)[source]
      +sympy.matrices.dense.symarray(prefix, shape, **kwargs)[source]

      Create a numpy ndarray of symbols (as an object array).

      The created symbols are named prefix_i1_i2_… You should thus provide a non-empty prefix if you want your symbols to be unique for different output @@ -8918,7 +8918,7 @@

      Numpy Utility Functions
      -sympy.matrices.matrixbase.a2idx(j, n=None)[source]
      +sympy.matrices.matrixbase.a2idx(j, n=None)[source]

      Return integer after making positive and validating against n.

      @@ -8961,7 +8961,7 @@

      Numpy Utility FunctionsFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/matrices/normalforms.html b/dev/modules/matrices/normalforms.html index d0fba4fd962..c14ccade706 100644 --- a/dev/modules/matrices/normalforms.html +++ b/dev/modules/matrices/normalforms.html @@ -802,7 +802,7 @@
      Documentation Version

      Matrix Normal Forms

      -sympy.matrices.normalforms.smith_normal_form(m, domain=None)[source]
      +sympy.matrices.normalforms.smith_normal_form(m, domain=None)[source]

      Return the Smith Normal Form of a matrix \(m\) over the ring \(domain\). This will only work if the ring is a principal ideal domain.

      Examples

      @@ -826,7 +826,7 @@
      Documentation Version
      check_rank=False,
      -)[source] +)[source]

      Compute the Hermite Normal Form of a Matrix A of integers.

      Parameters:
      @@ -920,7 +920,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/matrices/sparse.html b/dev/modules/matrices/sparse.html index 63b3b5e380c..ffad84a0822 100644 --- a/dev/modules/matrices/sparse.html +++ b/dev/modules/matrices/sparse.html @@ -804,13 +804,13 @@
      Documentation Version

      SparseMatrix Class Reference

      -sympy.matrices.sparse.SparseMatrix[source]
      +sympy.matrices.sparse.SparseMatrix[source]

      alias of MutableSparseMatrix

      -class sympy.matrices.sparse.MutableSparseMatrix(*args, **kwargs)[source]
      +class sympy.matrices.sparse.MutableSparseMatrix(*args, **kwargs)[source]
      @@ -818,7 +818,7 @@

      SparseMatrix Class Reference

      -class sympy.matrices.immutable.ImmutableSparseMatrix(*args, **kwargs)[source]
      +class sympy.matrices.immutable.ImmutableSparseMatrix(*args, **kwargs)[source]

      Create an immutable version of a sparse matrix.

      Examples

      >>> from sympy import eye, ImmutableSparseMatrix
      @@ -877,7 +877,7 @@ 

      ImmutableSparseMatrix Class ReferenceFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/matrices/sparsetools.html b/dev/modules/matrices/sparsetools.html index 7e889cbfb15..4d14233102a 100644 --- a/dev/modules/matrices/sparsetools.html +++ b/dev/modules/matrices/sparsetools.html @@ -802,7 +802,7 @@
      Documentation Version

      Sparse Tools

      -sympy.matrices.sparsetools._doktocsr()[source]
      +sympy.matrices.sparsetools._doktocsr()[source]

      Converts a sparse matrix to Compressed Sparse Row (CSR) format.

      Parameters:
      @@ -829,7 +829,7 @@
      Documentation Version
      -sympy.matrices.sparsetools._csrtodok()[source]
      +sympy.matrices.sparsetools._csrtodok()[source]

      Converts a CSR representation to DOK representation.

      Examples

      >>> from sympy.matrices.sparsetools import _csrtodok
      @@ -845,7 +845,7 @@ 
      Documentation Version
      -sympy.matrices.sparsetools.banded(**kwargs)[source]
      +sympy.matrices.sparsetools.banded(**kwargs)[source]

      Returns a SparseMatrix from the given dictionary describing the diagonals of the matrix. The keys are positive for upper diagonals and negative for those below the main diagonal. The @@ -1011,7 +1011,7 @@

      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/ntheory.html b/dev/modules/ntheory.html index aaa3fc28c7a..688f6815fcd 100644 --- a/dev/modules/ntheory.html +++ b/dev/modules/ntheory.html @@ -804,7 +804,7 @@
      Documentation Version

      Ntheory Class Reference

      -class sympy.ntheory.generate.Sieve(sieve_interval=1000000)[source]
      +class sympy.ntheory.generate.Sieve(sieve_interval=1000000)[source]

      A list of prime numbers, implemented as a dynamically growing sieve of Eratosthenes. When a lookup is requested involving an odd number that has not been sieved, the sieve is automatically @@ -821,7 +821,7 @@

      Ntheory Class Reference
      -extend(n)[source]
      +extend(n)[source]

      Grow the sieve to cover all primes <= n.

      Examples

      >>> from sympy import sieve
      @@ -835,7 +835,7 @@ 

      Ntheory Class Reference
      -extend_to_no(i)[source]
      +extend_to_no(i)[source]

      Extend to include the ith prime number.

      Parameters:
      @@ -857,7 +857,7 @@

      Ntheory Class Reference
      -mobiusrange(a, b)[source]
      +mobiusrange(a, b)[source]

      Generate all mobius numbers for the range [a, b).

      Parameters:
      @@ -881,7 +881,7 @@

      Ntheory Class Reference
      -primerange(a, b=None)[source]
      +primerange(a, b=None)[source]

      Generate all prime numbers in the range [2, a) or [a, b).

      Examples

      >>> from sympy import sieve, prime
      @@ -906,7 +906,7 @@ 

      Ntheory Class Reference
      -search(n)[source]
      +search(n)[source]

      Return the indices i, j of the primes that bound n.

      If n is prime then i == j.

      Although n can be an expression, if ceiling cannot convert @@ -923,7 +923,7 @@

      Ntheory Class Reference
      -totientrange(a, b)[source]
      +totientrange(a, b)[source]

      Generate all totient numbers for the range [a, b).

      Examples

      >>> from sympy import sieve
      @@ -940,7 +940,7 @@ 

      Ntheory Class ReferenceNtheory Functions Reference

      -sympy.ntheory.generate.prime(nth)[source]
      +sympy.ntheory.generate.prime(nth)[source]

      Return the nth prime, with the primes indexed as prime(1) = 2, prime(2) = 3, etc…. The nth prime is approximately \(n\log(n)\).

      Logarithmic integral of \(x\) is a pretty nice approximation for number of @@ -997,7 +997,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.generate.primepi(n)[source]
      +sympy.ntheory.generate.primepi(n)[source]

      Represents the prime counting function pi(n) = the number of prime numbers less than or equal to n.

      @@ -1073,7 +1073,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.generate.nextprime(n, ith=1)[source]
      +sympy.ntheory.generate.nextprime(n, ith=1)[source]

      Return the ith prime greater than n.

      Parameters:
      @@ -1114,7 +1114,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.generate.prevprime(n)[source]
      +sympy.ntheory.generate.prevprime(n)[source]

      Return the largest prime smaller than n.

      Notes

      Potential primes are located at 6*j +/- 1. This @@ -1137,7 +1137,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.generate.primerange(a, b=None)[source]
      +sympy.ntheory.generate.primerange(a, b=None)[source]

      Generate a list of all prime numbers in the range [2, a), or [a, b).

      If the range exists in the default sieve, the values will @@ -1234,7 +1234,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.generate.randprime(a, b)[source]
      +sympy.ntheory.generate.randprime(a, b)[source]

      Return a random prime number in the range [a, b).

      Bertrand’s postulate assures that randprime(a, 2*a) will always succeed for a > 1.

      @@ -1269,7 +1269,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.generate.primorial(n, nth=True)[source]
      +sympy.ntheory.generate.primorial(n, nth=True)[source]

      Returns the product of the first n primes (default) or the primes less than or equal to n (when nth=False).

      Examples

      @@ -1320,7 +1320,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.generate.cycle_length(f, x0, nmax=None, values=False)[source]
      +sympy.ntheory.generate.cycle_length(f, x0, nmax=None, values=False)[source]

      For a given iterated sequence, return a generator that gives the length of the iterated cycle (lambda) and the length of terms before the cycle begins (mu); if values is True then the @@ -1373,7 +1373,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.generate.composite(nth)[source]
      +sympy.ntheory.generate.composite(nth)[source]

      Return the nth composite number, with the composite numbers indexed as composite(1) = 4, composite(2) = 6, etc….

      Examples

      @@ -1405,7 +1405,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.generate.compositepi(n)[source]
      +sympy.ntheory.generate.compositepi(n)[source]

      Return the number of positive composite numbers less than or equal to n. The first positive composite is 4, i.e. compositepi(4) = 1.

      Examples

      @@ -1435,7 +1435,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.smoothness(n)[source]
      +sympy.ntheory.factor_.smoothness(n)[source]

      Return the B-smooth and B-power smooth values of n.

      The smoothness of n is the largest prime factor of n; the power- smoothness is the largest divisor raised to its multiplicity.

      @@ -1457,7 +1457,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.smoothness_p(n, m=-1, power=0, visual=None)[source]
      +sympy.ntheory.factor_.smoothness_p(n, m=-1, power=0, visual=None)[source]

      Return a list of [m, (p, (M, sm(p + m), psm(p + m)))…] where:

        @@ -1550,7 +1550,7 @@

        Ntheory Functions Reference
        -sympy.ntheory.factor_.multiplicity(p, n)[source]
        +sympy.ntheory.factor_.multiplicity(p, n)[source]

        Find the greatest integer m such that p**m divides n.

        Examples

        >>> from sympy import multiplicity, Rational
        @@ -1591,7 +1591,7 @@ 

        Ntheory Functions Referencefactor=True,

      -)[source] +)[source]

      Return (b, e) such that n == b**e if n is a unique perfect power with e > 1, else False (e.g. 1 is not a perfect power). A ValueError is raised if n is not Rational.

      @@ -1667,7 +1667,7 @@

      Ntheory Functions ReferenceF=None,

      -)[source] +)[source]

      Use Pollard’s rho method to try to extract a nontrivial factor of n. The returned factor may be a composite number. If no factor is found, None is returned.

      @@ -1753,7 +1753,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.pollard_pm1(n, B=10, a=2, retries=0, seed=1234)[source]
      +sympy.ntheory.factor_.pollard_pm1(n, B=10, a=2, retries=0, seed=1234)[source]

      Use Pollard’s p-1 method to try to extract a nontrivial factor of n. Either a divisor (perhaps composite) or None is returned.

      The value of a is the base that is used in the test gcd(a**M - 1, n). @@ -1898,7 +1898,7 @@

      Ntheory Functions Referencemultiple=False,

      -)[source] +)[source]

      Given a positive integer n, factorint(n) returns a dict containing the prime factors of n as keys and their respective multiplicities as values. For example:

      @@ -2075,7 +2075,7 @@

      Ntheory Functions Referencemultiple=False,

      -)[source] +)[source]

      Given a Rational r, factorrat(r) returns a dict containing the prime factors of r as keys and their respective multiplicities as values. For example:

      @@ -2112,7 +2112,7 @@

      Ntheory Functions Reference**kwargs,

      -)[source] +)[source]

      Return a sorted list of n’s prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does @@ -2161,7 +2161,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.divisors(n, generator=False, proper=False)[source]
      +sympy.ntheory.factor_.divisors(n, generator=False, proper=False)[source]

      Return all divisors of n sorted from 1..n by default. If generator is True an unordered generator is returned.

      The number of divisors of n can be quite large if there are many @@ -2190,7 +2190,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.proper_divisors(n, generator=False)[source]
      +sympy.ntheory.factor_.proper_divisors(n, generator=False)[source]

      Return all divisors of n except n, sorted by default. If generator is True an unordered generator is returned.

      Examples

      @@ -2211,7 +2211,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.divisor_count(n, modulus=1, proper=False)[source]
      +sympy.ntheory.factor_.divisor_count(n, modulus=1, proper=False)[source]

      Return the number of divisors of n. If modulus is not 1 then only those that are divisible by modulus are counted. If proper is True then the divisor of n will not be counted.

      @@ -2233,7 +2233,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.proper_divisor_count(n, modulus=1)[source]
      +sympy.ntheory.factor_.proper_divisor_count(n, modulus=1)[source]

      Return the number of proper divisors of n.

      Examples

      >>> from sympy import proper_divisor_count
      @@ -2251,7 +2251,7 @@ 

      Ntheory Functions Reference
      -sympy.ntheory.factor_.udivisors(n, generator=False)[source]
      +sympy.ntheory.factor_.udivisors(n, generator=False)[source]

      Return all unitary divisors of n sorted from 1..n by default. If generator is True an unordered generator is returned.

      The number of unitary divisors of n can be quite large if there are many @@ -2288,7 +2288,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.udivisor_count(n)[source]
      +sympy.ntheory.factor_.udivisor_count(n)[source]

      Return the number of unitary divisors of n.

      Parameters:
      @@ -2316,7 +2316,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.antidivisors(n, generator=False)[source]
      +sympy.ntheory.factor_.antidivisors(n, generator=False)[source]

      Return all antidivisors of n sorted from 1..n by default.

      Antidivisors [R661] of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned.

      @@ -2346,7 +2346,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.antidivisor_count(n)[source]
      +sympy.ntheory.factor_.antidivisor_count(n)[source]

      Return the number of antidivisors [R662] of n.

      Parameters:
      @@ -2377,7 +2377,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.totient(n)[source]
      +sympy.ntheory.factor_.totient(n)[source]

      Calculate the Euler totient function phi(n)

      Deprecated since version 1.13: The totient function is deprecated. Use sympy.functions.combinatorial.numbers.totient @@ -2420,7 +2420,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.reduced_totient(n)[source]
      +sympy.ntheory.factor_.reduced_totient(n)[source]

      Calculate the Carmichael reduced totient function lambda(n)

      Deprecated since version 1.13: The reduced_totient function is deprecated. Use sympy.functions.combinatorial.numbers.reduced_totient @@ -2458,7 +2458,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.divisor_sigma(n, k=1)[source]
      +sympy.ntheory.factor_.divisor_sigma(n, k=1)[source]

      Calculate the divisor function \(\sigma_k(n)\) for positive integer n

      Deprecated since version 1.13: The divisor_sigma function is deprecated. Use sympy.functions.combinatorial.numbers.divisor_sigma @@ -2517,7 +2517,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.udivisor_sigma(n, k=1)[source]
      +sympy.ntheory.factor_.udivisor_sigma(n, k=1)[source]

      Calculate the unitary divisor function \(\sigma_k^*(n)\) for positive integer n

      Deprecated since version 1.13: The udivisor_sigma function is deprecated. Use sympy.functions.combinatorial.numbers.udivisor_sigma @@ -2573,7 +2573,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.core(n, t=2)[source]
      +sympy.ntheory.factor_.core(n, t=2)[source]

      Calculate core(n, t) = \(core_t(n)\) of a positive integer n

      core_2(n) is equal to the squarefree part of n

      If n’s prime factorization is:

      @@ -2625,7 +2625,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.digits(n, b=10, digits=None)[source]
      +sympy.ntheory.factor_.digits(n, b=10, digits=None)[source]

      Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative).

      @@ -2675,7 +2675,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.primenu(n)[source]
      +sympy.ntheory.factor_.primenu(n)[source]

      Calculate the number of distinct prime factors for a positive integer n.

      Deprecated since version 1.13: The primenu function is deprecated. Use sympy.functions.combinatorial.numbers.primenu @@ -2715,7 +2715,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.primeomega(n)[source]
      +sympy.ntheory.factor_.primeomega(n)[source]

      Calculate the number of prime factors counting multiplicities for a positive integer n.

      @@ -2756,7 +2756,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.mersenne_prime_exponent(nth)[source]
      +sympy.ntheory.factor_.mersenne_prime_exponent(nth)[source]

      Returns the exponent i for the nth Mersenne prime (which has the form \(2^i - 1\)).

      Examples

      @@ -2771,7 +2771,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.is_perfect(n)[source]
      +sympy.ntheory.factor_.is_perfect(n)[source]

      Returns True if n is a perfect number, else False.

      A perfect number is equal to the sum of its positive, proper divisors.

      Examples

      @@ -2800,7 +2800,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.abundance(n)[source]
      +sympy.ntheory.factor_.abundance(n)[source]

      Returns the difference between the sum of the positive proper divisors of a number and the number.

      Examples

      @@ -2819,7 +2819,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.is_abundant(n)[source]
      +sympy.ntheory.factor_.is_abundant(n)[source]

      Returns True if n is an abundant number, else False.

      A abundant number is smaller than the sum of its positive proper divisors.

      Examples

      @@ -2841,7 +2841,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.is_deficient(n)[source]
      +sympy.ntheory.factor_.is_deficient(n)[source]

      Returns True if n is a deficient number, else False.

      A deficient number is greater than the sum of its positive proper divisors.

      Examples

      @@ -2863,7 +2863,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.is_amicable(m, n)[source]
      +sympy.ntheory.factor_.is_amicable(m, n)[source]

      Returns True if the numbers \(m\) and \(n\) are “amicable”, else False.

      Amicable numbers are two different numbers so related that the sum of the proper divisors of each is equal to that of the other.

      @@ -2887,7 +2887,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.is_carmichael(n)[source]
      +sympy.ntheory.factor_.is_carmichael(n)[source]

      Returns True if the numbers \(n\) is Carmichael number, else False.

      Parameters:
      @@ -2909,7 +2909,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.find_carmichael_numbers_in_range(x, y)[source]
      +sympy.ntheory.factor_.find_carmichael_numbers_in_range(x, y)[source]

      Returns a list of the number of Carmichael in the range

      See also

      @@ -2919,7 +2919,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.factor_.find_first_n_carmichaels(n)[source]
      +sympy.ntheory.factor_.find_first_n_carmichaels(n)[source]

      Returns the first n Carmichael numbers.

      Parameters:
      @@ -2934,7 +2934,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.modular.symmetric_residue(a, m)[source]
      +sympy.ntheory.modular.symmetric_residue(a, m)[source]

      Return the residual mod m such that it is within half of the modulus.

      >>> from sympy.ntheory.modular import symmetric_residue
       >>> symmetric_residue(1, 6)
      @@ -2947,7 +2947,7 @@ 

      Ntheory Functions Reference
      -sympy.ntheory.modular.crt(m, v, symmetric=False, check=True)[source]
      +sympy.ntheory.modular.crt(m, v, symmetric=False, check=True)[source]

      Chinese Remainder Theorem.

      The moduli in m are assumed to be pairwise coprime. The output is then an integer f, such that f = v_i mod m_i for each pair out @@ -3003,7 +3003,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.modular.crt1(m)[source]
      +sympy.ntheory.modular.crt1(m)[source]

      First part of Chinese Remainder Theorem, for multiple application.

      Examples

      >>> from sympy.ntheory.modular import crt, crt1, crt2
      @@ -3043,7 +3043,7 @@ 

      Ntheory Functions Reference
      -sympy.ntheory.modular.crt2(m, v, mm, e, s, symmetric=False)[source]
      +sympy.ntheory.modular.crt2(m, v, mm, e, s, symmetric=False)[source]

      Second part of Chinese Remainder Theorem, for multiple application.

      See crt1 for usage.

      Examples

      @@ -3065,7 +3065,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.modular.solve_congruence(*remainder_modulus_pairs, **hint)[source]
      +sympy.ntheory.modular.solve_congruence(*remainder_modulus_pairs, **hint)[source]

      Compute the integer n that has the residual ai when it is divided by mi where the ai and mi are given as pairs to this function: ((a1, m1), (a2, m2), …). If there is no solution, @@ -3119,7 +3119,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.multinomial.binomial_coefficients(n)[source]
      +sympy.ntheory.multinomial.binomial_coefficients(n)[source]

      Return a dictionary containing pairs \({(k1,k2) : C_kn}\) where \(C_kn\) are binomial coefficients and \(n=k1+k2\).

      Examples

      @@ -3137,7 +3137,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.multinomial.binomial_coefficients_list(n)[source]
      +sympy.ntheory.multinomial.binomial_coefficients_list(n)[source]

      Return a list of binomial coefficients as rows of the Pascal’s triangle.

      Examples

      @@ -3154,7 +3154,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.multinomial.multinomial_coefficients(m, n)[source]
      +sympy.ntheory.multinomial.multinomial_coefficients(m, n)[source]

      Return a dictionary containing pairs {(k1,k2,..,km) : C_kn} where C_kn are multinomial coefficients such that n=k1+k2+..+km.

      @@ -3189,7 +3189,7 @@

      Ntheory Functions Reference_tuple=<class 'tuple'>,

      -)[source] +)[source]

      multinomial coefficient iterator

      This routine has been optimized for \(m\) large with respect to \(n\) by taking advantage of the fact that when the monomial tuples \(t\) are stripped of @@ -3213,7 +3213,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.partitions_.npartitions(n, verbose=False)[source]
      +sympy.ntheory.partitions_.npartitions(n, verbose=False)[source]

      Calculate the partition function P(n), i.e. the number of ways that n can be written as a sum of positive integers.

      @@ -3241,7 +3241,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.is_fermat_pseudoprime(n, a)[source]
      +sympy.ntheory.primetest.is_fermat_pseudoprime(n, a)[source]

      Returns True if n is prime or is an odd composite integer that is coprime to a and satisfy the modular arithmetic congruence relation:

      @@ -3290,7 +3290,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.is_euler_pseudoprime(n, a)[source]
      +sympy.ntheory.primetest.is_euler_pseudoprime(n, a)[source]

      Returns True if n is prime or is an odd composite integer that is coprime to a and satisfy the modular arithmetic congruence relation:

      @@ -3338,7 +3338,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.is_euler_jacobi_pseudoprime(n, a)[source]
      +sympy.ntheory.primetest.is_euler_jacobi_pseudoprime(n, a)[source]

      Returns True if n is prime or is an odd composite integer that is coprime to a and satisfy the modular arithmetic congruence relation:

      @@ -3385,7 +3385,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.is_square(n, prep=True)[source]
      +sympy.ntheory.primetest.is_square(n, prep=True)[source]

      Return True if n == a * a for some integer a, else False. If n is suspected of not being a square then this is a quick method of confirming that it is not.

      @@ -3412,7 +3412,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.mr(n, bases)[source]
      +sympy.ntheory.primetest.mr(n, bases)[source]

      Perform a Miller-Rabin strong pseudoprime test on n using a given list of bases/witnesses.

      Examples

      @@ -3437,7 +3437,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.is_lucas_prp(n)[source]
      +sympy.ntheory.primetest.is_lucas_prp(n)[source]

      Standard Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a Lucas probable prime.

      @@ -3481,7 +3481,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.is_strong_lucas_prp(n)[source]
      +sympy.ntheory.primetest.is_strong_lucas_prp(n)[source]

      Strong Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a strong Lucas probable prime.

      @@ -3526,7 +3526,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.is_extra_strong_lucas_prp(n)[source]
      +sympy.ntheory.primetest.is_extra_strong_lucas_prp(n)[source]

      Extra Strong Lucas compositeness test. Returns False if n is definitely composite, and True if n is an “extra strong” Lucas probable prime.

      @@ -3573,7 +3573,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.proth_test(n)[source]
      +sympy.ntheory.primetest.proth_test(n)[source]

      Test if the Proth number \(n = k2^m + 1\) is prime. where k is a positive odd number and \(2^m > k\).

      Parameters:
      @@ -3611,7 +3611,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.is_mersenne_prime(n)[source]
      +sympy.ntheory.primetest.is_mersenne_prime(n)[source]

      Returns True if n is a Mersenne prime, else False.

      A Mersenne prime is a prime number having the form \(2^i - 1\).

      Examples

      @@ -3633,7 +3633,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.isprime(n)[source]
      +sympy.ntheory.primetest.isprime(n)[source]

      Test if n is a prime number (True) or not (False). For n < 2^64 the answer is definitive; larger n values have a small probability of actually being pseudoprimes.

      @@ -3713,7 +3713,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.primetest.is_gaussian_prime(num)[source]
      +sympy.ntheory.primetest.is_gaussian_prime(num)[source]

      Test if num is a Gaussian prime number.

      References

      @@ -3726,7 +3726,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.n_order(a, n)[source]
      +sympy.ntheory.residue_ntheory.n_order(a, n)[source]

      Returns the order of a modulo n.

      Parameters:
      @@ -3766,7 +3766,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.is_primitive_root(a, p)[source]
      +sympy.ntheory.residue_ntheory.is_primitive_root(a, p)[source]

      Returns True if a is a primitive root of p.

      Parameters:
      @@ -3818,7 +3818,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.primitive_root(p, smallest=True)[source]
      +sympy.ntheory.residue_ntheory.primitive_root(p, smallest=True)[source]

      Returns a primitive root of p or None.

      Parameters:
      @@ -3885,7 +3885,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.sqrt_mod(a, p, all_roots=False)[source]
      +sympy.ntheory.residue_ntheory.sqrt_mod(a, p, all_roots=False)[source]

      Find a root of x**2 = a mod p.

      Parameters:
      @@ -3912,7 +3912,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.sqrt_mod_iter(a, p, domain=<class 'int'>)[source]
      +sympy.ntheory.residue_ntheory.sqrt_mod_iter(a, p, domain=<class 'int'>)[source]

      Iterate over solutions to x**2 = a mod p.

      Parameters:
      @@ -3938,7 +3938,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.quadratic_residues(p) list[int][source]
      +sympy.ntheory.residue_ntheory.quadratic_residues(p) list[int][source]

      Returns the list of quadratic residues.

      Examples

      >>> from sympy.ntheory.residue_ntheory import quadratic_residues
      @@ -3950,7 +3950,7 @@ 

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.nthroot_mod(a, n, p, all_roots=False)[source]
      +sympy.ntheory.residue_ntheory.nthroot_mod(a, n, p, all_roots=False)[source]

      Find the solutions to x**n = a mod p.

      Parameters:
      @@ -4025,7 +4025,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.is_nthpow_residue(a, n, m)[source]
      +sympy.ntheory.residue_ntheory.is_nthpow_residue(a, n, m)[source]

      Returns True if x**n == a (mod m) has solutions.

      References

      @@ -4040,7 +4040,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.is_quad_residue(a, p)[source]
      +sympy.ntheory.residue_ntheory.is_quad_residue(a, p)[source]

      Returns True if a (mod p) is in the set of squares mod p, i.e a % p in set([i**2 % p for i in range(p)]).

      @@ -4088,7 +4088,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.legendre_symbol(a, p)[source]
      +sympy.ntheory.residue_ntheory.legendre_symbol(a, p)[source]

      Returns the Legendre symbol \((a / p)\).

      Deprecated since version 1.13: The legendre_symbol function is deprecated. Use sympy.functions.combinatorial.numbers.legendre_symbol @@ -4127,7 +4127,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.jacobi_symbol(m, n)[source]
      +sympy.ntheory.residue_ntheory.jacobi_symbol(m, n)[source]

      Returns the Jacobi symbol \((m / n)\).

      Deprecated since version 1.13: The jacobi_symbol function is deprecated. Use sympy.functions.combinatorial.numbers.jacobi_symbol @@ -4187,7 +4187,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.mobius(n)[source]
      +sympy.ntheory.residue_ntheory.mobius(n)[source]

      Mobius function maps natural number to {-1, 0, 1}

      Deprecated since version 1.13: The mobius function is deprecated. Use sympy.functions.combinatorial.numbers.mobius @@ -4249,7 +4249,7 @@

      Ntheory Functions Referenceprime_order=None,

      -)[source] +)[source]

      Compute the discrete logarithm of a to the base b modulo n.

      This is a recursive function to reduce the discrete logarithm problem in cyclic groups of composite order to the problem in cyclic groups of prime @@ -4287,7 +4287,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.quadratic_congruence(a, b, c, n)[source]
      +sympy.ntheory.residue_ntheory.quadratic_congruence(a, b, c, n)[source]

      Find the solutions to \(a x^2 + b x + c \equiv 0 \pmod{n}\).

      Parameters:
      @@ -4325,7 +4325,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.polynomial_congruence(expr, m)[source]
      +sympy.ntheory.residue_ntheory.polynomial_congruence(expr, m)[source]

      Find the solutions to a polynomial congruence equation modulo m.

      Parameters:
      @@ -4352,7 +4352,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.residue_ntheory.binomial_mod(n, m, k)[source]
      +sympy.ntheory.residue_ntheory.binomial_mod(n, m, k)[source]

      Compute binomial(n, m) % k.

      Parameters:
      @@ -4387,7 +4387,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.continued_fraction.continued_fraction(a) list[source]
      +sympy.ntheory.continued_fraction.continued_fraction(a) list[source]

      Return the continued fraction representation of a Rational or quadratic irrational.

      Examples

      @@ -4405,7 +4405,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.continued_fraction.continued_fraction_convergents(cf)[source]
      +sympy.ntheory.continued_fraction.continued_fraction_convergents(cf)[source]

      Return an iterator over the convergents of a continued fraction (cf).

      The parameter should be in either of the following to forms: - A list of partial quotients, possibly with the last element being a list @@ -4462,7 +4462,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.continued_fraction.continued_fraction_iterator(x)[source]
      +sympy.ntheory.continued_fraction.continued_fraction_iterator(x)[source]

      Return continued fraction expansion of x as iterator.

      Examples

      >>> from sympy import Rational, pi
      @@ -4509,7 +4509,7 @@ 

      Ntheory Functions References=1,

      -) list[source] +) list[source]

      Find the periodic continued fraction expansion of a quadratic irrational.

      Compute the continued fraction expansion of a rational or a quadratic irrational number, i.e. \(\frac{p + s\sqrt{d}}{q}\), where @@ -4576,7 +4576,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.continued_fraction.continued_fraction_reduce(cf)[source]
      +sympy.ntheory.continued_fraction.continued_fraction_reduce(cf)[source]

      Reduce a continued fraction to a rational or quadratic irrational.

      Compute the rational or quadratic irrational number from its terminating or periodic continued fraction expansion. The @@ -4616,7 +4616,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.digits.count_digits(n, b=10)[source]
      +sympy.ntheory.digits.count_digits(n, b=10)[source]

      Return a dictionary whose keys are the digits of n in the given base, b, with keys indicating the digits appearing in the number and values indicating how many times that digit appeared.

      @@ -4657,7 +4657,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.digits.digits(n, b=10, digits=None)[source]
      +sympy.ntheory.digits.digits(n, b=10, digits=None)[source]

      Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative).

      @@ -4707,7 +4707,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.digits.is_palindromic(n, b=10)[source]
      +sympy.ntheory.digits.is_palindromic(n, b=10)[source]

      return True if n is the same when read from left to right or right to left in the given base, b.

      Examples

      @@ -4740,7 +4740,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.egyptian_fraction.egyptian_fraction(r, algorithm='Greedy')[source]
      +sympy.ntheory.egyptian_fraction.egyptian_fraction(r, algorithm='Greedy')[source]

      Return the list of denominators of an Egyptian fraction expansion [R713] of the said rational \(r\).

      @@ -4847,7 +4847,7 @@

      Ntheory Functions Reference
      -sympy.ntheory.bbp_pi.pi_hex_digits(n, prec=14)[source]
      +sympy.ntheory.bbp_pi.pi_hex_digits(n, prec=14)[source]

      Returns a string containing prec (default 14) digits starting at the nth digit of pi in hex. Counting of digits starts at 0 and the decimal is not counted, so for n = 0 the @@ -4921,7 +4921,7 @@

      Ntheory Functions Referenceseed=1234,

      -)[source] +)[source]

      Performs factorization using Lenstra’s Elliptic curve method.

      This function repeatedly calls _ecm_one_factor to compute the factors of n. First all the small factors are taken out using trial division. @@ -4972,7 +4972,7 @@

      Examples with two 25 digit factors. \(qs\) is able to factorize this in around 248s.

      -sympy.ntheory.qs.qs(N, prime_bound, M, ERROR_TERM=25, seed=1234)[source]
      +sympy.ntheory.qs.qs(N, prime_bound, M, ERROR_TERM=25, seed=1234)[source]

      Performs factorization using Self-Initializing Quadratic Sieve. In SIQS, let N be a number to be factored, and this N should not be a perfect power. If we find two integers such that X**2 = Y**2 modN and @@ -5061,7 +5061,7 @@

      ExamplesFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/numeric-computation.html b/dev/modules/numeric-computation.html index 668f572cea7..b9be52d16c2 100644 --- a/dev/modules/numeric-computation.html +++ b/dev/modules/numeric-computation.html @@ -1021,7 +1021,7 @@

      So Which Should I Use?Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/parsing.html b/dev/modules/parsing.html index 6c74e8cabdf..0f95727a767 100644 --- a/dev/modules/parsing.html +++ b/dev/modules/parsing.html @@ -804,7 +804,7 @@
      Documentation Version

      Parsing Functions Reference

      -sympy.parsing.sympy_parser.parse_expr(s: str, local_dict: ~typing.Dict[str, ~typing.Any] | None = None, transformations: ~typing.Tuple[~typing.Callable[[~typing.List[~typing.Tuple[int, str]], ~typing.Dict[str, ~typing.Any], ~typing.Dict[str, ~typing.Any]], ~typing.List[~typing.Tuple[int, str]]], ...] | str = (<function lambda_notation>, <function auto_symbol>, <function repeated_decimals>, <function auto_number>, <function factorial_notation>), global_dict: ~typing.Dict[str, ~typing.Any] | None = None, evaluate=True)[source]
      +sympy.parsing.sympy_parser.parse_expr(s: str, local_dict: ~typing.Dict[str, ~typing.Any] | None = None, transformations: ~typing.Tuple[~typing.Callable[[~typing.List[~typing.Tuple[int, str]], ~typing.Dict[str, ~typing.Any], ~typing.Dict[str, ~typing.Any]], ~typing.List[~typing.Tuple[int, str]]], ...] | str = (<function lambda_notation>, <function auto_symbol>, <function repeated_decimals>, <function auto_number>, <function factorial_notation>), global_dict: ~typing.Dict[str, ~typing.Any] | None = None, evaluate=True)[source]

      Converts the string s to a SymPy expression, in local_dict.

      Parameters:
      @@ -944,7 +944,7 @@

      Parsing Functions Referencetransformations: Tuple[Callable[[List[Tuple[int, str]], Dict[str, Any], Dict[str, Any]], List[Tuple[int, str]]], ...],

      -) str[source] +) str[source]

      Converts the string s to Python code, in local_dict

      Generally, parse_expr should be used.

      @@ -959,19 +959,19 @@

      Parsing Functions Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Evaluate Python code generated by stringify_expr.

      Generally, parse_expr should be used.

      -sympy.parsing.maxima.parse_maxima(str, globals=None, name_dict={})[source]
      +sympy.parsing.maxima.parse_maxima(str, globals=None, name_dict={})[source]
      -sympy.parsing.mathematica.parse_mathematica(s)[source]
      +sympy.parsing.mathematica.parse_mathematica(s)[source]

      Translate a string containing a Wolfram Mathematica expression to a SymPy expression.

      If the translator is unable to find a suitable SymPy expression, the @@ -1044,7 +1044,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Splits symbol names for implicit multiplication.

      Intended to let expressions like xyz be parsed as x*y*z. Does not split Greek character names, so theta will not become @@ -1060,7 +1060,7 @@

      Parsing Transformations Referencepredicate: Callable[[str], bool],

      -)[source] +)[source]

      Creates a transformation that splits symbol names.

      predicate should return True if the symbol name is to be split.

      For instance, to retain the default behavior but avoid splitting certain @@ -1091,7 +1091,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -) List[Tuple[int, str]][source] +) List[Tuple[int, str]][source]

      Makes the multiplication operator optional in most cases.

      Use this before implicit_application(), otherwise expressions like sin 2x will be parsed as x * sin(2) rather than sin(2*x).

      @@ -1115,7 +1115,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -) List[Tuple[int, str]][source] +) List[Tuple[int, str]][source]

      Makes parentheses optional in some cases for function calls.

      Use this after implicit_multiplication(), otherwise expressions like sin 2x will be parsed as x * sin(2) rather than @@ -1140,7 +1140,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Allows functions to be exponentiated, e.g. cos**2(x).

      Examples

      >>> from sympy.parsing.sympy_parser import (parse_expr,
      @@ -1162,7 +1162,7 @@ 

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -) List[Tuple[int, str]][source] +) List[Tuple[int, str]][source]

      Allows a slightly relaxed syntax.

      • Parentheses for single-argument method calls are optional.

      • @@ -1192,7 +1192,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Converts floats into Rational. Run AFTER auto_number.

      @@ -1206,7 +1206,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Treats XOR, ^, as exponentiation, **.

      @@ -1223,7 +1223,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Substitutes “lambda” with its SymPy equivalent Lambda(). However, the conversion does not take place if only “lambda” is passed because that is a syntax error.

      @@ -1239,7 +1239,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Inserts calls to Symbol/Function for undefined variables.

      @@ -1253,7 +1253,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Allows 0.2[1] notation to represent the repeated decimal 0.2111… (19/90)

      Run this before auto_number.

      @@ -1268,7 +1268,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Converts numeric literals to use SymPy equivalents.

      Complex numbers use I, integer literals use Integer, and float literals use Float.

      @@ -1284,7 +1284,7 @@

      Parsing Transformations Referenceglobal_dict: Dict[str, Any],

      -)[source] +)[source]

      Allows standard notation for factorial.

      @@ -1300,7 +1300,7 @@

      Experimental \(\mathrm{\LaTeX}\)<

      \(\mathrm{\LaTeX}\) Parsing Functions Reference

      -sympy.parsing.latex.parse_latex(s, strict=False, backend='antlr')[source]
      +sympy.parsing.latex.parse_latex(s, strict=False, backend='antlr')[source]

      Converts the input LaTeX string s to a SymPy Expr.

      Parameters:
      @@ -1474,7 +1474,7 @@

      Lark \(\mathrm{\LaTeX}\) P

      Lark \(\mathrm{\LaTeX}\) Parser Functions

      -sympy.parsing.latex.parse_latex_lark(s: str)[source]
      +sympy.parsing.latex.parse_latex_lark(s: str)[source]

      Experimental LaTeX parser using Lark.

      This function is still under development and its API may change with the next releases of SymPy.

      @@ -1494,7 +1494,7 @@

      Lark \(\mathrm{\LaTeX}\) P
      transformer=None,

      -)[source] +)[source]

      Class for converting input \(\mathrm{\LaTeX}\) strings into SymPy Expressions. It holds all the necessary internal data for doing so, and exposes hooks for customizing its behavior.

      @@ -1527,7 +1527,7 @@

      Lark \(\mathrm{\LaTeX}\) P
      -class sympy.parsing.latex.lark.TransformToSymPyExpr[source]
      +class sympy.parsing.latex.lark.TransformToSymPyExpr[source]

      Returns a SymPy expression that is generated by traversing the lark.Tree passed to the .transform() function.

      @@ -1554,7 +1554,7 @@

      Lark \(\mathrm{\LaTeX}\) P

      \(\mathrm{\LaTeX}\) Parsing Exceptions Reference

      -class sympy.parsing.latex.LaTeXParsingError[source]
      +class sympy.parsing.latex.LaTeXParsingError[source]
      @@ -1562,7 +1562,7 @@

      \(\mathrm{\LaTeX}\) Parsin

      SymPy Expression Reference

      -class sympy.parsing.sym_expr.SymPyExpression(source_code=None, mode=None)[source]
      +class sympy.parsing.sym_expr.SymPyExpression(source_code=None, mode=None)[source]

      Class to store and handle SymPy expressions

      This class will hold SymPy Expressions and handle the API for the conversion to and from different languages.

      @@ -1633,7 +1633,7 @@

      \(\mathrm{\LaTeX}\) Parsin

      -convert_to_c()[source]
      +convert_to_c()[source]

      Returns a list with the c source code for the SymPy expressions

      Examples

      >>> from sympy.parsing.sym_expr import SymPyExpression
      @@ -1655,7 +1655,7 @@ 

      \(\mathrm{\LaTeX}\) Parsin
      -convert_to_expr(src_code, mode)[source]
      +convert_to_expr(src_code, mode)[source]

      Converts the given source code to SymPy Expressions

      Examples

      >>> from sympy.parsing.sym_expr import SymPyExpression
      @@ -1694,7 +1694,7 @@ 

      \(\mathrm{\LaTeX}\) Parsin
      -convert_to_fortran()[source]
      +convert_to_fortran()[source]

      Returns a list with the fortran source code for the SymPy expressions

      Examples

      >>> from sympy.parsing.sym_expr import SymPyExpression
      @@ -1715,7 +1715,7 @@ 

      \(\mathrm{\LaTeX}\) Parsin
      -convert_to_python()[source]
      +convert_to_python()[source]

      Returns a list with Python code for the SymPy expressions

      Examples

      >>> from sympy.parsing.sym_expr import SymPyExpression
      @@ -1736,7 +1736,7 @@ 

      \(\mathrm{\LaTeX}\) Parsin
      -return_expr()[source]
      +return_expr()[source]

      Returns the expression list

      Examples

      >>> from sympy.parsing.sym_expr import SymPyExpression
      @@ -1821,7 +1821,7 @@ 

      Runtime InstallationFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/biomechanics/api/activation.html b/dev/modules/physics/biomechanics/api/activation.html index a74b2d2e729..d5dbe7b217c 100644 --- a/dev/modules/physics/biomechanics/api/activation.html +++ b/dev/modules/physics/biomechanics/api/activation.html @@ -811,7 +811,7 @@
      Documentation Version
      module.

      -class sympy.physics.biomechanics.activation.ActivationBase(name)[source]
      +class sympy.physics.biomechanics.activation.ActivationBase(name)[source]

      Abstract base class for all activation dynamics classes to inherit from.

      Notes

      Instances of this class cannot be directly instantiated by users. However, @@ -925,7 +925,7 @@

      Documentation Version
      -abstract rhs()[source]
      +abstract rhs()[source]

      Explanation

      The solution to the linear system of ordinary differential equations governing the activation dynamics:

      @@ -943,7 +943,7 @@
      Documentation Version
      -abstract classmethod with_defaults(name)[source]
      +abstract classmethod with_defaults(name)[source]

      Alternate constructor that provides recommended defaults for constants.

      @@ -970,7 +970,7 @@
      Documentation Version
      smoothing_rate=None,
      -)[source] +)[source]

      First-order activation dynamics based on De Groote et al., 2016 [R720].

      Explanation

      Gives the first-order activation dynamics equation for the rate of change @@ -1103,7 +1103,7 @@

      Documentation Version
      -rhs()[source]
      +rhs()[source]

      Ordered column matrix of equations for the solution of M x' = F.

      Explanation

      The solution to the linear system of ordinary differential equations @@ -1154,7 +1154,7 @@

      Documentation Version
      name,
      -)[source] +)[source]

      Alternate constructor that will use the published constants.

      Explanation

      Returns an instance of FirstOrderActivationDeGroote2016 using the @@ -1178,7 +1178,7 @@

      Documentation Version
      -class sympy.physics.biomechanics.activation.ZerothOrderActivation(name)[source]
      +class sympy.physics.biomechanics.activation.ZerothOrderActivation(name)[source]

      Simple zeroth-order activation dynamics mapping excitation to activation.

      Explanation

      @@ -1282,7 +1282,7 @@
      Documentation Version
      -rhs()[source]
      +rhs()[source]

      Ordered column matrix of equations for the solution of M x' = F.

      Explanation

      The solution to the linear system of ordinary differential equations @@ -1307,7 +1307,7 @@

      Documentation Version
      -classmethod with_defaults(name)[source]
      +classmethod with_defaults(name)[source]

      Alternate constructor that provides recommended defaults for constants.

      Explanation

      @@ -1368,7 +1368,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/biomechanics/api/curve.html b/dev/modules/physics/biomechanics/api/curve.html index b5b62fad0c4..73cd17efbf7 100644 --- a/dev/modules/physics/biomechanics/api/curve.html +++ b/dev/modules/physics/biomechanics/api/curve.html @@ -815,13 +815,13 @@
      Documentation Version
      fiber_force_velocity_inverse: CharacteristicCurveFunction,
      -)[source] +)[source]

      Simple data container to group together related characteristic curves.

      -class sympy.physics.biomechanics.curve.CharacteristicCurveFunction[source]
      +class sympy.physics.biomechanics.curve.CharacteristicCurveFunction[source]

      Base class for all musculotendon characteristic curve functions.

      @@ -845,7 +845,7 @@

      Documentation Version
      c11,
      -)[source] +)[source]

      Active muscle fiber force-length curve based on De Groote et al., 2016 [R721].

      Explanation

      @@ -948,7 +948,7 @@
      Documentation Version
      **hints,

      -)[source] +)[source]

      Evaluate the expression defining the function.

      Parameters:
      @@ -993,7 +993,7 @@
      Documentation Version
      c11,
      -)[source] +)[source]

      Evaluation of basic inputs.

      Parameters:
      @@ -1073,7 +1073,7 @@
      Documentation Version
      argindex=1,
      -)[source] +)[source]

      Derivative of the function with respect to a single argument.

      Parameters:
      @@ -1095,7 +1095,7 @@
      Documentation Version
      l_M_tilde,
      -)[source] +)[source]

      Recommended constructor that will use the published constants.

      Parameters:
      @@ -1137,7 +1137,7 @@
      Documentation Version
      c1,
      -)[source] +)[source]

      Passive muscle fiber force-length curve based on De Groote et al., 2016 [R722].

      Explanation

      @@ -1220,7 +1220,7 @@
      Documentation Version
      **hints,

      -)[source] +)[source]

      Evaluate the expression defining the function.

      Parameters:
      @@ -1255,7 +1255,7 @@
      Documentation Version
      c1,
      -)[source] +)[source]

      Evaluation of basic inputs.

      Parameters:
      @@ -1285,7 +1285,7 @@
      Documentation Version
      argindex=1,
      -)[source] +)[source]

      Derivative of the function with respect to a single argument.

      Parameters:
      @@ -1307,7 +1307,7 @@
      Documentation Version
      argindex=1,
      -)[source] +)[source]

      Inverse function.

      Parameters:
      @@ -1327,7 +1327,7 @@
      Documentation Version
      l_M_tilde,
      -)[source] +)[source]

      Recommended constructor that will use the published constants.

      Parameters:
      @@ -1358,7 +1358,7 @@
      Documentation Version
      c1,
      -)[source] +)[source]

      Inverse passive muscle fiber force-length curve based on De Groote et al., 2016 [R723].

      Explanation

      @@ -1435,7 +1435,7 @@
      Documentation Version
      **hints,
      -)[source] +)[source]

      Evaluate the expression defining the function.

      Parameters:
      @@ -1470,7 +1470,7 @@
      Documentation Version
      c1,
      -)[source] +)[source]

      Evaluation of basic inputs.

      Parameters:
      @@ -1500,7 +1500,7 @@
      Documentation Version
      argindex=1,
      -)[source] +)[source]

      Derivative of the function with respect to a single argument.

      Parameters:
      @@ -1522,7 +1522,7 @@
      Documentation Version
      argindex=1,
      -)[source] +)[source]

      Inverse function.

      Parameters:
      @@ -1542,7 +1542,7 @@
      Documentation Version
      fl_M_pas,
      -)[source] +)[source]

      Recommended constructor that will use the published constants.

      Parameters:
      @@ -1576,7 +1576,7 @@
      Documentation Version
      c3,
      -)[source] +)[source]

      Muscle fiber force-velocity curve based on De Groote et al., 2016 [R724].

      Explanation

      Gives the normalized muscle fiber force produced as a function of @@ -1662,7 +1662,7 @@

      Documentation Version
      **hints,
      -)[source] +)[source]

      Evaluate the expression defining the function.

      Parameters:
      @@ -1699,7 +1699,7 @@
      Documentation Version
      c3,
      -)[source] +)[source]

      Evaluation of basic inputs.

      Parameters:
      @@ -1733,7 +1733,7 @@
      Documentation Version
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Derivative of the function with respect to a single argument.

      Parameters:
      @@ -1749,7 +1749,7 @@
      Documentation Version
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Inverse function.

      Parameters:
      @@ -1769,7 +1769,7 @@
      Documentation Version
      v_M_tilde,
      -)[source] +)[source]

      Recommended constructor that will use the published constants.

      Parameters:
      @@ -1803,7 +1803,7 @@
      Documentation Version
      c3,
      -)[source] +)[source]

      Inverse muscle fiber force-velocity curve based on De Groote et al., 2016 [R725].

      Explanation

      @@ -1879,7 +1879,7 @@
      Documentation Version
      **hints,
      -)[source] +)[source]

      Evaluate the expression defining the function.

      Parameters:
      @@ -1916,7 +1916,7 @@
      Documentation Version
      c3,
      -)[source] +)[source]

      Evaluation of basic inputs.

      Parameters:
      @@ -1957,7 +1957,7 @@
      Documentation Version
      argindex=1,
      -)[source] +)[source]

      Derivative of the function with respect to a single argument.

      Parameters:
      @@ -1979,7 +1979,7 @@
      Documentation Version
      argindex=1,
      -)[source] +)[source]

      Inverse function.

      Parameters:
      @@ -1999,7 +1999,7 @@
      Documentation Version
      fv_M,
      -)[source] +)[source]

      Recommended constructor that will use the published constants.

      Parameters:
      @@ -2034,7 +2034,7 @@
      Documentation Version
      c3,
      -)[source] +)[source]

      Tendon force-length curve based on De Groote et al., 2016 [R726].

      Explanation

      Gives the normalized tendon force produced as a function of normalized @@ -2121,7 +2121,7 @@

      Documentation Version
      **hints,
      -)[source] +)[source]

      Evaluate the expression defining the function.

      Parameters:
      @@ -2158,7 +2158,7 @@
      Documentation Version
      c3,
      -)[source] +)[source]

      Evaluation of basic inputs.

      Parameters:
      @@ -2192,7 +2192,7 @@
      Documentation Version
      -fdiff(argindex=1)[source]
      +fdiff(argindex=1)[source]

      Derivative of the function with respect to a single argument.

      Parameters:
      @@ -2208,7 +2208,7 @@
      Documentation Version
      -inverse(argindex=1)[source]
      +inverse(argindex=1)[source]

      Inverse function.

      Parameters:
      @@ -2228,7 +2228,7 @@
      Documentation Version
      l_T_tilde,
      -)[source] +)[source]

      Recommended constructor that will use the published constants.

      Parameters:
      @@ -2262,7 +2262,7 @@
      Documentation Version
      c3,
      -)[source] +)[source]

      Inverse tendon force-length curve based on De Groote et al., 2016 [R727].

      Explanation

      Gives the normalized tendon length that produces a specific normalized @@ -2338,7 +2338,7 @@

      Documentation Version
      **hints,
      -)[source] +)[source]

      Evaluate the expression defining the function.

      Parameters:
      @@ -2375,7 +2375,7 @@
      Documentation Version
      c3,
      -)[source] +)[source]

      Evaluation of basic inputs.

      Parameters:
      @@ -2415,7 +2415,7 @@
      Documentation Version
      argindex=1,
      -)[source] +)[source]

      Derivative of the function with respect to a single argument.

      Parameters:
      @@ -2437,7 +2437,7 @@
      Documentation Version
      argindex=1,
      -)[source] +)[source]

      Inverse function.

      Parameters:
      @@ -2457,7 +2457,7 @@
      Documentation Version
      fl_T,
      -)[source] +)[source]

      Recommended constructor that will use the published constants.

      Parameters:
      @@ -2516,7 +2516,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/biomechanics/api/index.html b/dev/modules/physics/biomechanics/api/index.html index 80e84a966de..ec22713c160 100644 --- a/dev/modules/physics/biomechanics/api/index.html +++ b/dev/modules/physics/biomechanics/api/index.html @@ -875,7 +875,7 @@

      Guide to BiomechanicsFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/biomechanics/api/musculotendon.html b/dev/modules/physics/biomechanics/api/musculotendon.html index 0979cd10b5d..fe68b8355a7 100644 --- a/dev/modules/physics/biomechanics/api/musculotendon.html +++ b/dev/modules/physics/biomechanics/api/musculotendon.html @@ -827,7 +827,7 @@
      Documentation Version
      with_defaults=False,
      -)[source] +)[source]

      Abstract base class for all musculotendon classes to inherit from.

      Parameters:
      @@ -1032,7 +1032,7 @@
      Documentation Version
      -abstract curves()[source]
      +abstract curves()[source]

      Return a CharacteristicCurveCollection of the curves related to the specific model.

      @@ -1201,7 +1201,7 @@
      Documentation Version
      -rhs()[source]
      +rhs()[source]

      Ordered column matrix of equations for the solution of M x' = F.

      Explanation

      The solution to the linear system of ordinary differential equations @@ -1265,7 +1265,7 @@

      Documentation Version
      fiber_damping_coefficient=0.100000000000000,
      -)[source] +)[source]

      Recommended constructor that will use the published constants.

      Parameters:
      @@ -1396,7 +1396,7 @@
      Documentation Version
      with_defaults=False,
      -)[source] +)[source]

      Musculotendon model using the curves of De Groote et al., 2016 [R728].

      Parameters:
      @@ -1784,7 +1784,7 @@
      Documentation Version
      boundary=None,
      -)[source] +)[source]

      Enumeration of types of musculotendon dynamics formulations.

      Explanation

      An (integer) enumeration is used as it allows for clearer selection of the @@ -1847,7 +1847,7 @@

      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/continuum_mechanics/arches.html b/dev/modules/physics/continuum_mechanics/arches.html index 972236d0259..249313f7715 100644 --- a/dev/modules/physics/continuum_mechanics/arches.html +++ b/dev/modules/physics/continuum_mechanics/arches.html @@ -859,7 +859,7 @@

      ExampleFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/continuum_mechanics/beam.html b/dev/modules/physics/continuum_mechanics/beam.html index 3556c9a3ceb..6257cacabcd 100644 --- a/dev/modules/physics/continuum_mechanics/beam.html +++ b/dev/modules/physics/continuum_mechanics/beam.html @@ -816,7 +816,7 @@
      Documentation Version
      ild_variable=a,
      -)[source] +)[source]

      A Beam is a structural element that is capable of withstanding load primarily by resisting against bending. Beams are characterized by their cross sectional profile(Second moment of area), their length @@ -933,7 +933,7 @@

      Documentation Version
      -apply_load(value, start, order, end=None)[source]
      +apply_load(value, start, order, end=None)[source]

      This method adds up the loads given to a particular beam object.

      Parameters:
      @@ -1001,7 +1001,7 @@
      Documentation Version
      -apply_rotation_hinge(loc)[source]
      +apply_rotation_hinge(loc)[source]

      This method applies a rotation hinge at a single location on the beam.

      Parameters:
      @@ -1055,7 +1055,7 @@
      Documentation Version
      -apply_sliding_hinge(loc)[source]
      +apply_sliding_hinge(loc)[source]

      This method applies a sliding hinge at a single location on the beam.

      Parameters:
      @@ -1102,7 +1102,7 @@
      Documentation Version
      -apply_support(loc, type='fixed')[source]
      +apply_support(loc, type='fixed')[source]

      This method applies support to a particular beam object and returns the symbol of the unknown reaction load(s).

      @@ -1165,7 +1165,7 @@
      Documentation Version
      -bending_moment()[source]
      +bending_moment()[source]

      Returns a Singularity Function expression which represents the bending moment curve of the Beam object.

      Examples

      @@ -1228,7 +1228,7 @@
      Documentation Version
      -deflection()[source]
      +deflection()[source]

      Returns a Singularity Function expression which represents the elastic curve or deflection of the Beam object.

      Examples

      @@ -1268,7 +1268,7 @@
      Documentation Version
      -draw(pictorial=True)[source]
      +draw(pictorial=True)[source]

      Returns a plot object representing the beam diagram of the beam. In particular, the diagram might include:

        @@ -1383,7 +1383,7 @@
        Documentation Version
        -join(beam, via='fixed')[source]
        +join(beam, via='fixed')[source]

        This method joins two beams to make a new composite beam system. Passed Beam class instance is attached to the right end of calling object. This method can be used to form beams having Discontinuous @@ -1463,28 +1463,28 @@

        Documentation Version
        -max_bmoment()[source]
        +max_bmoment()[source]

        Returns maximum Shear force and its coordinate in the Beam object.

        -max_deflection()[source]
        +max_deflection()[source]

        Returns point of max deflection and its corresponding deflection value in a Beam object.

        -max_shear_force()[source]
        +max_shear_force()[source]

        Returns maximum Shear force and its coordinate in the Beam object.

        -plot_bending_moment(subs=None)[source]
        +plot_bending_moment(subs=None)[source]

        Returns a plot for Bending moment present in the Beam object.

        Parameters:
        @@ -1528,7 +1528,7 @@
        Documentation Version
        -plot_deflection(subs=None)[source]
        +plot_deflection(subs=None)[source]

        Returns a plot for deflection curve of the Beam object.

        Parameters:
        @@ -1573,7 +1573,7 @@
        Documentation Version
        -plot_ild_moment(subs=None)[source]
        +plot_ild_moment(subs=None)[source]

        Plots the Influence Line Diagram for Moment under the effect of a moving load. This function should be called after calling solve_for_ild_moment().

        @@ -1623,7 +1623,7 @@
        Documentation Version
        -plot_ild_reactions(subs=None)[source]
        +plot_ild_reactions(subs=None)[source]

        Plots the Influence Line Diagram of Reaction Forces under the effect of a moving load. This function should be called after calling solve_for_ild_reactions().

        @@ -1679,7 +1679,7 @@
        Documentation Version
        -plot_ild_shear(subs=None)[source]
        +plot_ild_shear(subs=None)[source]

        Plots the Influence Line Diagram for Shear under the effect of a moving load. This function should be called after calling solve_for_ild_shear().

        @@ -1729,7 +1729,7 @@
        Documentation Version
        -plot_loading_results(subs=None)[source]
        +plot_loading_results(subs=None)[source]

        Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object.

        @@ -1770,7 +1770,7 @@
        Documentation Version
        -plot_shear_force(subs=None)[source]
        +plot_shear_force(subs=None)[source]

        Returns a plot for Shear force present in the Beam object.

        Parameters:
        @@ -1814,7 +1814,7 @@
        Documentation Version
        -plot_shear_stress(subs=None)[source]
        +plot_shear_stress(subs=None)[source]

        Returns a plot of shear stress present in the beam object.

        Parameters:
        @@ -1859,7 +1859,7 @@
        Documentation Version
        -plot_slope(subs=None)[source]
        +plot_slope(subs=None)[source]

        Returns a plot for slope of deflection curve of the Beam object.

        Parameters:
        @@ -1903,7 +1903,7 @@
        Documentation Version
        -point_cflexure()[source]
        +point_cflexure()[source]

        Returns a Set of point(s) with zero bending moment and where bending moment curve of the beam object changes its sign from negative to positive or vice versa.

        @@ -1941,7 +1941,7 @@
        Documentation Version
        -remove_load(value, start, order, end=None)[source]
        +remove_load(value, start, order, end=None)[source]

        This method removes a particular load present on the beam object. Returns a ValueError if the load passed as an argument is not present on the beam.

        @@ -2012,7 +2012,7 @@
        Documentation Version
        -shear_force()[source]
        +shear_force()[source]

        Returns a Singularity Function expression which represents the shear force curve of the Beam object.

        Examples

        @@ -2043,14 +2043,14 @@
        Documentation Version
        -shear_stress()[source]
        +shear_stress()[source]

        Returns an expression representing the Shear Stress curve of the Beam object.

        -slope()[source]
        +slope()[source]

        Returns a Singularity Function expression which represents the slope the elastic curve of the Beam object.

        Examples

        @@ -2090,7 +2090,7 @@
        Documentation Version
        *reactions,
        -)[source] +)[source]

        Determines the Influence Line Diagram equations for moment at a specified point under the effect of a moving load.

        @@ -2138,7 +2138,7 @@
        Documentation Version
        -solve_for_ild_reactions(value, *reactions)[source]
        +solve_for_ild_reactions(value, *reactions)[source]

        Determines the Influence Line Diagram equations for reaction forces under the effect of a moving load.

        @@ -2187,7 +2187,7 @@
        Documentation Version
        *reactions,
        -)[source] +)[source]

        Determines the Influence Line Diagram equations for shear at a specified point under the effect of a moving load.

        @@ -2235,7 +2235,7 @@
        Documentation Version
        -solve_for_reaction_loads(*reactions)[source]
        +solve_for_reaction_loads(*reactions)[source]

        Solves for the reaction forces.

        Examples

        There is a beam of length 30 meters. A moment of magnitude 120 Nm is @@ -2309,7 +2309,7 @@

        Documentation Version
        variable=x,
        -)[source] +)[source]

        This class handles loads applied in any direction of a 3D space along with unequal values of Second moment along different axes.

        @@ -2363,14 +2363,14 @@
        Documentation Version
        -angular_deflection()[source]
        +angular_deflection()[source]

        Returns a function in x depicting how the angular deflection, due to moments in the x-axis on the beam, varies with x.

        -apply_load(value, start, order, dir='y')[source]
        +apply_load(value, start, order, dir='y')[source]

        This method adds up the force load to a particular beam object.

        Parameters:
        @@ -2406,7 +2406,7 @@
        Documentation Version
        dir='y',
        -)[source] +)[source]

        This method adds up the moment loads to a particular beam object.

        Parameters:
        @@ -2439,19 +2439,19 @@
        Documentation Version
        -axial_force()[source]
        +axial_force()[source]

        Returns expression of Axial shear force present inside the Beam object.

        -axial_stress()[source]
        +axial_stress()[source]

        Returns expression of Axial stress present inside the Beam object.

        -bending_moment()[source]
        +bending_moment()[source]

        Returns a list of three expressions which represents the bending moment curve of the Beam object along all three axes.

        @@ -2486,7 +2486,7 @@
        Documentation Version
        -deflection()[source]
        +deflection()[source]

        Returns a three element list representing deflection curve along all the three axes.

        @@ -2499,7 +2499,7 @@
        Documentation Version
        -max_bending_moment()[source]
        +max_bending_moment()[source]

        Returns point of max bending moment and its corresponding bending moment value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

        @@ -2529,7 +2529,7 @@
        Documentation Version
        -max_bmoment()[source]
        +max_bmoment()[source]

        Returns point of max bending moment and its corresponding bending moment value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

        @@ -2559,7 +2559,7 @@
        Documentation Version
        -max_deflection()[source]
        +max_deflection()[source]

        Returns point of max deflection and its corresponding deflection value along all directions in a Beam object as a list. solve_for_reaction_loads() and solve_slope_deflection() must be called @@ -2591,7 +2591,7 @@

        Documentation Version
        -max_shear_force()[source]
        +max_shear_force()[source]

        Returns point of max shear force and its corresponding shear value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

        @@ -2627,7 +2627,7 @@
        Documentation Version
        -plot_bending_moment(dir='all', subs=None)[source]
        +plot_bending_moment(dir='all', subs=None)[source]

        Returns a plot for bending moment along all three directions present in the Beam object.

        @@ -2680,7 +2680,7 @@
        Documentation Version
        -plot_deflection(dir='all', subs=None)[source]
        +plot_deflection(dir='all', subs=None)[source]

        Returns a plot for Deflection along all three directions present in the Beam object.

        @@ -2734,7 +2734,7 @@
        Documentation Version
        -plot_loading_results(dir='x', subs=None)[source]
        +plot_loading_results(dir='x', subs=None)[source]

        Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object along the direction specified.

        @@ -2791,7 +2791,7 @@
        Documentation Version
        -plot_shear_force(dir='all', subs=None)[source]
        +plot_shear_force(dir='all', subs=None)[source]

        Returns a plot for Shear force along all three directions present in the Beam object.

        @@ -2844,7 +2844,7 @@
        Documentation Version
        -plot_shear_stress(dir='all', subs=None)[source]
        +plot_shear_stress(dir='all', subs=None)[source]

        Returns a plot for Shear Stress along all three directions present in the Beam object.

        @@ -2897,7 +2897,7 @@
        Documentation Version
        -plot_slope(dir='all', subs=None)[source]
        +plot_slope(dir='all', subs=None)[source]

        Returns a plot for Slope along all three directions present in the Beam object.

        @@ -2951,7 +2951,7 @@
        Documentation Version
        -polar_moment()[source]
        +polar_moment()[source]

        Returns the polar moment of area of the beam about the X axis with respect to the centroid.

        Examples

        @@ -2977,7 +2977,7 @@
        Documentation Version
        -shear_force()[source]
        +shear_force()[source]

        Returns a list of three expressions which represents the shear force curve of the Beam object along all three axes.

        @@ -2990,21 +2990,21 @@
        Documentation Version
        -shear_stress()[source]
        +shear_stress()[source]

        Returns a list of three expressions which represents the shear stress curve of the Beam object along all three axes.

        -slope()[source]
        +slope()[source]

        Returns a three element list representing slope of deflection curve along all the three axes.

        -solve_for_reaction_loads(*reaction)[source]
        +solve_for_reaction_loads(*reaction)[source]

        Solves for the reaction forces.

        Examples

        There is a beam of length 30 meters. It it supported by rollers at @@ -3032,7 +3032,7 @@

        Documentation Version
        -solve_for_torsion()[source]
        +solve_for_torsion()[source]

        Solves for the angular deflection due to the torsional effects of moments being applied in the x-direction i.e. out of or into the beam.

        Here, a positive torque means the direction of the torque is positive @@ -3055,7 +3055,7 @@

        Documentation Version
        -torsional_moment()[source]
        +torsional_moment()[source]

        Returns expression of Torsional moment present inside the Beam object.

        @@ -3098,7 +3098,7 @@
        Documentation Version
        Furo
        - Last updated on Aug 03, 2024
        + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/continuum_mechanics/beam_problems.html b/dev/modules/physics/continuum_mechanics/beam_problems.html index b017c254e80..28d627d8f45 100644 --- a/dev/modules/physics/continuum_mechanics/beam_problems.html +++ b/dev/modules/physics/continuum_mechanics/beam_problems.html @@ -1674,7 +1674,7 @@

      Example 11Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/continuum_mechanics/cable.html b/dev/modules/physics/continuum_mechanics/cable.html index c9d4f085d87..b9d92210b96 100644 --- a/dev/modules/physics/continuum_mechanics/cable.html +++ b/dev/modules/physics/continuum_mechanics/cable.html @@ -806,7 +806,7 @@

      Cable (Docstrings)
      -class sympy.physics.continuum_mechanics.cable.Cable(support_1, support_2)[source]
      +class sympy.physics.continuum_mechanics.cable.Cable(support_1, support_2)[source]

      Cables are structures in engineering that support the applied transverse loads through the tensile resistance developed in its members.

      @@ -831,7 +831,7 @@

      Cable (Docstrings)
      -apply_length(length)[source]
      +apply_length(length)[source]

      This method specifies the length of the cable

      Parameters:
      @@ -853,7 +853,7 @@

      Cable (Docstrings)
      -apply_load(order, load)[source]
      +apply_load(order, load)[source]

      This method adds load to the cable.

      Parameters:
      @@ -921,7 +921,7 @@

      Cable (Docstrings)
      -change_support(label, new_support)[source]
      +change_support(label, new_support)[source]

      This method changes the mentioned support with a new support.

      Parameters:
      @@ -956,7 +956,7 @@

      Cable (Docstrings)
      -draw()[source]
      +draw()[source]

      This method is used to obtain a plot for the specified cable with its supports, shape and loads.

      Examples

      @@ -1018,7 +1018,7 @@

      Cable (Docstrings)
      -plot_tension()[source]
      +plot_tension()[source]

      Returns the diagram/plot of the tension generated in the cable at various points.

      Examples

      For point loads,

      @@ -1057,7 +1057,7 @@

      Cable (Docstrings)
      -remove_loads(*args)[source]
      +remove_loads(*args)[source]

      This methods removes the specified loads.

      Parameters:
      @@ -1089,7 +1089,7 @@

      Cable (Docstrings)
      -solve(*args)[source]
      +solve(*args)[source]

      This method solves for the reaction forces at the supports, the tension developed in the cable, and updates the length of the cable.

      @@ -1153,7 +1153,7 @@

      Cable (Docstrings)
      -tension_at(x)[source]
      +tension_at(x)[source]

      Returns the tension at a given value of x developed due to distributed load.

      @@ -1198,7 +1198,7 @@

      Cable (Docstrings)Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/continuum_mechanics/index.html b/dev/modules/physics/continuum_mechanics/index.html index 8660aaa1955..efe0d51b14a 100644 --- a/dev/modules/physics/continuum_mechanics/index.html +++ b/dev/modules/physics/continuum_mechanics/index.html @@ -874,7 +874,7 @@

      ArchFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/continuum_mechanics/truss.html b/dev/modules/physics/continuum_mechanics/truss.html index bde807668b3..af913c54687 100644 --- a/dev/modules/physics/continuum_mechanics/truss.html +++ b/dev/modules/physics/continuum_mechanics/truss.html @@ -804,7 +804,7 @@
      Documentation Version
      to 2D Trusses.

      -class sympy.physics.continuum_mechanics.truss.Truss[source]
      +class sympy.physics.continuum_mechanics.truss.Truss[source]

      A Truss is an assembly of members such as beams, connected by nodes, that create a rigid structure. In engineering, a truss is a structure that @@ -828,7 +828,7 @@

      Documentation Version
      -add_member(*args)[source]
      +add_member(*args)[source]

      This method adds a member between any two nodes in the given truss.

      Parameters:
      @@ -860,7 +860,7 @@
      Documentation Version
      -add_node(*args)[source]
      +add_node(*args)[source]

      This method adds a node to the truss along with its name/label and its location. Multiple nodes can be added at the same time.

      @@ -895,7 +895,7 @@
      Documentation Version
      -apply_load(*args)[source]
      +apply_load(*args)[source]

      This method applies external load(s) at the specified node(s).

      Parameters:
      @@ -932,7 +932,7 @@
      Documentation Version
      -apply_support(*args)[source]
      +apply_support(*args)[source]

      This method adds a pinned or roller support at specified node(s).

      Parameters:
      @@ -960,7 +960,7 @@
      Documentation Version
      -change_member_label(*args)[source]
      +change_member_label(*args)[source]

      This method changes the label(s) of the specified member(s).

      Parameters:
      @@ -997,7 +997,7 @@
      Documentation Version
      -change_node_label(*args)[source]
      +change_node_label(*args)[source]

      This method changes the label(s) of the specified node(s).

      Parameters:
      @@ -1028,7 +1028,7 @@
      Documentation Version
      -draw(subs_dict=None)[source]
      +draw(subs_dict=None)[source]

      Returns a plot object of the Truss with all its nodes, members, supports and loads.

      @@ -1124,7 +1124,7 @@
      Documentation Version
      -remove_load(*args)[source]
      +remove_load(*args)[source]

      This method removes already present external load(s) at specified node(s).

      @@ -1164,7 +1164,7 @@
      Documentation Version
      -remove_member(*args)[source]
      +remove_member(*args)[source]

      This method removes members from the given truss.

      Parameters:
      @@ -1190,7 +1190,7 @@
      Documentation Version
      -remove_node(*args)[source]
      +remove_node(*args)[source]

      This method removes a node from the truss. Multiple nodes can be removed at the same time.

      @@ -1217,7 +1217,7 @@
      Documentation Version
      -remove_support(*args)[source]
      +remove_support(*args)[source]

      This method removes support from specified node(s.)

      Parameters:
      @@ -1243,7 +1243,7 @@
      Documentation Version
      -solve()[source]
      +solve()[source]

      This method solves for all reaction forces of all supports and all internal forces of all the members in the truss, provided the Truss is solvable.

      A Truss is solvable if the following condition is met,

      @@ -1327,7 +1327,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/control/control.html b/dev/modules/physics/control/control.html index 55a9735b657..d75f7227962 100644 --- a/dev/modules/physics/control/control.html +++ b/dev/modules/physics/control/control.html @@ -852,7 +852,7 @@

      ControlFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/control/control_plots.html b/dev/modules/physics/control/control_plots.html index 9a320cc95c1..6ba1a914e37 100644 --- a/dev/modules/physics/control/control_plots.html +++ b/dev/modules/physics/control/control_plots.html @@ -821,7 +821,7 @@

      Pole-Zero Plot**kwargs,

      -)[source] +)[source]

      Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.

      A Pole-Zero plot is a graphical representation of a system’s poles and zeros. It is plotted on a complex plane, with circular markers representing @@ -897,7 +897,7 @@

      Pole-Zero Plot
      -control_plots.pole_zero_numerical_data()[source]
      +control_plots.pole_zero_numerical_data()[source]

      Returns the numerical data of poles and zeros of the system. It is internally used by pole_zero_plot to get the data for plotting poles and zeros. Users can use this data to further @@ -965,7 +965,7 @@

      Bode Plot**kwargs,

      -)[source] +)[source]

      Returns the Bode phase and magnitude plots of a continuous-time system.

      Parameters:
      @@ -1043,7 +1043,7 @@

      Bode Plot**kwargs,

      -)[source] +)[source]

      Returns the Bode magnitude plot of a continuous-time system.

      See bode_plot for all the parameters.

      @@ -1065,7 +1065,7 @@

      Bode Plot**kwargs,

      -)[source] +)[source]

      Returns the Bode phase plot of a continuous-time system.

      See bode_plot for all the parameters.

      @@ -1081,7 +1081,7 @@

      Bode Plot**kwargs,

      -)[source] +)[source]

      Returns the numerical data of the Bode magnitude plot of the system. It is internally used by bode_magnitude_plot to get the data for plotting Bode magnitude plot. Users can use this data to further @@ -1157,7 +1157,7 @@

      Bode Plot**kwargs,

      -)[source] +)[source]

      Returns the numerical data of the Bode phase plot of the system. It is internally used by bode_phase_plot to get the data for plotting Bode phase plot. Users can use this data to further @@ -1246,7 +1246,7 @@

      Impulse-Response Plot**kwargs,

      -)[source] +)[source]

      Returns the unit impulse response (Input is the Dirac-Delta Function) of a continuous-time system.

      @@ -1324,7 +1324,7 @@

      Impulse-Response Plot**kwargs,

      -)[source] +)[source]

      Returns the numerical values of the points in the impulse response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly @@ -1413,7 +1413,7 @@

      Step-Response Plot**kwargs,

      -)[source] +)[source]

      Returns the unit step response of a continuous-time system. It is the response of the system when the input signal is a step function.

      @@ -1491,7 +1491,7 @@

      Step-Response Plot**kwargs,

      -)[source] +)[source]

      Returns the numerical values of the points in the step response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly @@ -1581,7 +1581,7 @@

      Ramp-Response Plot**kwargs,

      -)[source] +)[source]

      Returns the ramp response of a continuous-time system.

      Ramp function is defined as the straight line passing through origin (\(f(x) = mx\)). The slope of @@ -1667,7 +1667,7 @@

      Ramp-Response Plot**kwargs,

      -)[source] +)[source]

      Returns the numerical values of the points in the ramp response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly @@ -1781,7 +1781,7 @@

      Ramp-Response PlotFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/control/index.html b/dev/modules/physics/control/index.html index 1533f7f648c..a9fbb4aa7cc 100644 --- a/dev/modules/physics/control/index.html +++ b/dev/modules/physics/control/index.html @@ -848,7 +848,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/control/lti.html b/dev/modules/physics/control/lti.html index 902d3d45cfb..8a951fdacb9 100644 --- a/dev/modules/physics/control/lti.html +++ b/dev/modules/physics/control/lti.html @@ -804,7 +804,7 @@

      Control API

      lti

      -class sympy.physics.control.lti.TransferFunction(num, den, var)[source]
      +class sympy.physics.control.lti.TransferFunction(num, den, var)[source]

      A class for representing LTI (Linear, time-invariant) systems that can be strictly described by ratio of polynomials in the Laplace transform complex variable. The arguments are num, den, and var, where num and den are numerator and @@ -995,7 +995,7 @@

      Control API
      -dc_gain()[source]
      +dc_gain()[source]

      Computes the gain of the response as the frequency approaches zero.

      The DC gain is infinite for systems with pure integrators.

      Examples

      @@ -1036,7 +1036,7 @@

      Control API
      -eval_frequency(other)[source]
      +eval_frequency(other)[source]

      Returns the system response at any point in the real or complex plane.

      Examples

      >>> from sympy.abc import s, p, a
      @@ -1057,7 +1057,7 @@ 

      Control API
      -expand()[source]
      +expand()[source]

      Returns the transfer function with numerator and denominator in expanded form.

      Examples

      @@ -1083,7 +1083,7 @@

      Control APIvar,

      -)[source] +)[source]

      Creates a new TransferFunction efficiently from a list of coefficients.

      Parameters:
      @@ -1133,7 +1133,7 @@

      Control APIvar=None,

      -)[source] +)[source]

      Creates a new TransferFunction efficiently from a rational expression.

      Parameters:
      @@ -1199,7 +1199,7 @@

      Control API
      -classmethod from_zpk(zeros, poles, gain, var)[source]
      +classmethod from_zpk(zeros, poles, gain, var)[source]

      Creates a new TransferFunction from given zeros, poles and gain.

      Parameters:
      @@ -1281,7 +1281,7 @@

      Control API
      -is_stable()[source]
      +is_stable()[source]

      Returns True if the transfer function is asymptotically stable; else False.

      This would not check the marginal or conditional stability of the system.

      Examples

      @@ -1342,7 +1342,7 @@

      Control API
      -poles()[source]
      +poles()[source]

      Returns the poles of a transfer function.

      Examples

      >>> from sympy.abc import s, p, a
      @@ -1362,7 +1362,7 @@ 

      Control API
      -to_expr()[source]
      +to_expr()[source]

      Converts a TransferFunction object to SymPy Expr.

      Examples

      >>> from sympy.abc import s, p, a, b
      @@ -1403,7 +1403,7 @@ 

      Control API
      -zeros()[source]
      +zeros()[source]

      Returns the zeros of a transfer function.

      Examples

      >>> from sympy.abc import s, p, a
      @@ -1425,7 +1425,7 @@ 

      Control API
      -class sympy.physics.control.lti.Series(*args, evaluate=False)[source]
      +class sympy.physics.control.lti.Series(*args, evaluate=False)[source]

      A class for representing a series configuration of SISO systems.

      Parameters:
      @@ -1518,7 +1518,7 @@

      Control API
      -doit(**hints)[source]
      +doit(**hints)[source]

      Returns the resultant transfer function or StateSpace obtained after evaluating the series interconnection.

      Examples

      @@ -1606,7 +1606,7 @@

      Control API
      -to_expr()[source]
      +to_expr()[source]

      Returns the equivalent Expr object.

      @@ -1632,7 +1632,7 @@

      Control API
      -class sympy.physics.control.lti.Parallel(*args, evaluate=False)[source]
      +class sympy.physics.control.lti.Parallel(*args, evaluate=False)[source]

      A class for representing a parallel configuration of SISO systems.

      Parameters:
      @@ -1728,7 +1728,7 @@

      Control API
      -doit(**hints)[source]
      +doit(**hints)[source]

      Returns the resultant transfer function or state space obtained by parallel connection of transfer functions or state space objects.

      Examples

      @@ -1812,7 +1812,7 @@

      Control API
      -to_expr()[source]
      +to_expr()[source]

      Returns the equivalent Expr object.

      @@ -1838,7 +1838,7 @@

      Control API
      -class sympy.physics.control.lti.Feedback(sys1, sys2=None, sign=-1)[source]
      +class sympy.physics.control.lti.Feedback(sys1, sys2=None, sign=-1)[source]

      A class for representing closed-loop feedback interconnection between two SISO input/output systems.

      The first argument, sys1, is the feedforward part of the closed-loop @@ -1932,7 +1932,7 @@

      Control API
      -doit(cancel=False, expand=False, **hints)[source]
      +doit(cancel=False, expand=False, **hints)[source]

      Returns the resultant transfer function obtained by the feedback interconnection.

      Examples

      @@ -2043,7 +2043,7 @@

      Control API
      -to_expr()[source]
      +to_expr()[source]

      Converts a Feedback object to SymPy Expr.

      Examples

      >>> from sympy.abc import s, a, b
      @@ -2087,7 +2087,7 @@ 

      Control API
      -class sympy.physics.control.lti.TransferFunctionMatrix(arg)[source]
      +class sympy.physics.control.lti.TransferFunctionMatrix(arg)[source]

      A class for representing the MIMO (multiple-input and multiple-output) generalization of the SISO (single-input and single-output) transfer function.

      It is a matrix of transfer functions (TransferFunction, SISO-Series or SISO-Parallel). @@ -2441,7 +2441,7 @@

      Control API
      -elem_poles()[source]
      +elem_poles()[source]

      Returns the poles of each element of the TransferFunctionMatrix.

      Note

      @@ -2469,7 +2469,7 @@

      Control API
      -elem_zeros()[source]
      +elem_zeros()[source]

      Returns the zeros of each element of the TransferFunctionMatrix.

      Note

      @@ -2497,7 +2497,7 @@

      Control API
      -eval_frequency(other)[source]
      +eval_frequency(other)[source]

      Evaluates system response of each transfer function in the TransferFunctionMatrix at any point in the real or complex plane.

      Examples

      >>> from sympy.abc import s
      @@ -2524,13 +2524,13 @@ 

      Control API
      -expand(**hints)[source]
      +expand(**hints)[source]

      Expands the transfer function matrix

      -classmethod from_Matrix(matrix, var)[source]
      +classmethod from_Matrix(matrix, var)[source]

      Creates a new TransferFunctionMatrix efficiently from a SymPy Matrix of Expr objects.

      Parameters:
      @@ -2629,7 +2629,7 @@

      Control API
      -transpose()[source]
      +transpose()[source]

      Returns the transpose of the TransferFunctionMatrix (switched input and output layers).

      @@ -2664,7 +2664,7 @@

      Control API
      -class sympy.physics.control.lti.MIMOSeries(*args, evaluate=False)[source]
      +class sympy.physics.control.lti.MIMOSeries(*args, evaluate=False)[source]

      A class for representing a series configuration of MIMO systems.

      Parameters:
      @@ -2788,7 +2788,7 @@

      Control API
      -doit(cancel=False, **kwargs)[source]
      +doit(cancel=False, **kwargs)[source]

      Returns the resultant obtained after evaluating the MIMO systems arranged in a series configuration. For TransferFunction systems it returns a TransferFunctionMatrix and for StateSpace systems it returns the resultant StateSpace system.

      @@ -2845,7 +2845,7 @@

      Control API
      -class sympy.physics.control.lti.MIMOParallel(*args, evaluate=False)[source]
      +class sympy.physics.control.lti.MIMOParallel(*args, evaluate=False)[source]

      A class for representing a parallel configuration of MIMO systems.

      Parameters:
      @@ -2976,7 +2976,7 @@

      Control API
      -doit(**hints)[source]
      +doit(**hints)[source]

      Returns the resultant transfer function matrix or StateSpace obtained after evaluating the MIMO systems arranged in a parallel configuration.

      Examples

      @@ -3033,7 +3033,7 @@

      Control API
      -class sympy.physics.control.lti.MIMOFeedback(sys1, sys2, sign=-1)[source]
      +class sympy.physics.control.lti.MIMOFeedback(sys1, sys2, sign=-1)[source]

      A class for representing closed-loop feedback interconnection between two MIMO input/output systems.

      @@ -3127,7 +3127,7 @@

      Control API**hints,

      -)[source] +)[source]

      Returns the resultant transfer function matrix obtained by the feedback interconnection.

      Examples

      @@ -3333,7 +3333,7 @@

      Control API
      -sympy.physics.control.lti.gbt(tf, sample_per, alpha)[source]
      +sympy.physics.control.lti.gbt(tf, sample_per, alpha)[source]

      Returns falling coefficients of H(z) from numerator and denominator.

      Explanation

      Where H(z) is the corresponding discretized transfer function, @@ -3388,7 +3388,7 @@

      Control API
      -sympy.physics.control.lti.bilinear(tf, sample_per)[source]
      +sympy.physics.control.lti.bilinear(tf, sample_per)[source]

      Returns falling coefficients of H(z) from numerator and denominator.

      Explanation

      Where H(z) is the corresponding discretized transfer function, @@ -3415,7 +3415,7 @@

      Control API
      -sympy.physics.control.lti.forward_diff(tf, sample_per)[source]
      +sympy.physics.control.lti.forward_diff(tf, sample_per)[source]

      Returns falling coefficients of H(z) from numerator and denominator.

      Explanation

      Where H(z) is the corresponding discretized transfer function, @@ -3442,7 +3442,7 @@

      Control API
      -sympy.physics.control.lti.backward_diff(tf, sample_per)[source]
      +sympy.physics.control.lti.backward_diff(tf, sample_per)[source]

      Returns falling coefficients of H(z) from numerator and denominator.

      Explanation

      Where H(z) is the corresponding discretized transfer function, @@ -3505,7 +3505,7 @@

      Control APIFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/hep/index.html b/dev/modules/physics/hep/index.html index a1e0e95a69f..82dce63954f 100644 --- a/dev/modules/physics/hep/index.html +++ b/dev/modules/physics/hep/index.html @@ -833,7 +833,7 @@

      Examples
      -sympy.physics.hep.gamma_matrices.extract_type_tens(expression, component)[source]
      +sympy.physics.hep.gamma_matrices.extract_type_tens(expression, component)[source]

      Extract from a TensExpr all tensors with \(component\).

      Returns two tensor expressions:

        @@ -844,7 +844,7 @@

        Examples
        -sympy.physics.hep.gamma_matrices.gamma_trace(t)[source]
        +sympy.physics.hep.gamma_matrices.gamma_trace(t)[source]

        trace of a single line of gamma matrices

        Examples

        >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G,         gamma_trace, LorentzIndex
        @@ -865,7 +865,7 @@ 

        Examples
        -sympy.physics.hep.gamma_matrices.kahane_simplify(expression)[source]
        +sympy.physics.hep.gamma_matrices.kahane_simplify(expression)[source]

        This function cancels contracted elements in a product of four dimensional gamma matrices, resulting in an expression equal to the given one, without the contracted gamma matrices.

        @@ -932,7 +932,7 @@

        Examples
        -sympy.physics.hep.gamma_matrices.simplify_gpgp(ex, sort=True)[source]
        +sympy.physics.hep.gamma_matrices.simplify_gpgp(ex, sort=True)[source]

        simplify products G(i)*p(-i)*G(j)*p(-j) -> p(i)*p(-i)

        Examples

        >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G,         LorentzIndex, simplify_gpgp
        @@ -985,7 +985,7 @@ 

        Examples Furo
        - Last updated on Aug 03, 2024
        + Last updated on Aug 04, 2024

        diff --git a/dev/modules/physics/hydrogen.html b/dev/modules/physics/hydrogen.html index 899db637e51..fa0c5fee3b4 100644 --- a/dev/modules/physics/hydrogen.html +++ b/dev/modules/physics/hydrogen.html @@ -802,7 +802,7 @@
        Documentation Version

        Hydrogen Wavefunctions

        -sympy.physics.hydrogen.E_nl(n, Z=1)[source]
        +sympy.physics.hydrogen.E_nl(n, Z=1)[source]

        Returns the energy of the state (n, l) in Hartree atomic units.

        The energy does not depend on “l”.

        @@ -847,7 +847,7 @@
        Documentation Version
        c=137.035999037000,
        -)[source] +)[source]

        Returns the relativistic energy of the state (n, l, spin) in Hartree atomic units.

        The energy is calculated from the Dirac equation. The rest mass energy is @@ -909,7 +909,7 @@

        Documentation Version
        -sympy.physics.hydrogen.Psi_nlm(n, l, m, r, phi, theta, Z=1)[source]
        +sympy.physics.hydrogen.Psi_nlm(n, l, m, r, phi, theta, Z=1)[source]

        Returns the Hydrogen wave function psi_{nlm}. It’s the product of the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}.

        @@ -976,7 +976,7 @@
        Documentation Version
        -sympy.physics.hydrogen.R_nl(n, l, r, Z=1)[source]
        +sympy.physics.hydrogen.R_nl(n, l, r, Z=1)[source]

        Returns the Hydrogen radial wavefunction R_{nl}.

        Parameters:
        @@ -1088,7 +1088,7 @@
        Documentation Version
        Furo
        - Last updated on Aug 03, 2024
        + Last updated on Aug 04, 2024
        diff --git a/dev/modules/physics/matrices.html b/dev/modules/physics/matrices.html index 2967d115013..582578892b1 100644 --- a/dev/modules/physics/matrices.html +++ b/dev/modules/physics/matrices.html @@ -803,7 +803,7 @@
        Documentation Version

        Known matrices related to physics

        -sympy.physics.matrices.mdft(n)[source]
        +sympy.physics.matrices.mdft(n)[source]

        Deprecated since version 1.9: Use DFT from sympy.matrices.expressions.fourier instead.

        To get identical behavior to mdft(n), use DFT(n).as_explicit().

        @@ -812,7 +812,7 @@
        Documentation Version
        -sympy.physics.matrices.mgamma(mu, lower=False)[source]
        +sympy.physics.matrices.mgamma(mu, lower=False)[source]

        Returns a Dirac gamma matrix \(\gamma^\mu\) in the standard (Dirac) representation.

        Explanation

        @@ -841,7 +841,7 @@
        Documentation Version
        -sympy.physics.matrices.msigma(i)[source]
        +sympy.physics.matrices.msigma(i)[source]

        Returns a Pauli matrix \(\sigma_i\) with \(i=1,2,3\).

        Examples

        >>> from sympy.physics.matrices import msigma
        @@ -862,7 +862,7 @@ 
        Documentation Version
        -sympy.physics.matrices.pat_matrix(m, dx, dy, dz)[source]
        +sympy.physics.matrices.pat_matrix(m, dx, dy, dz)[source]

        Returns the Parallel Axis Theorem matrix to translate the inertia matrix a distance of \((dx, dy, dz)\) for a body of mass m.

        Examples

        @@ -915,7 +915,7 @@
        Documentation Version
        Furo
        - Last updated on Aug 03, 2024
        + Last updated on Aug 04, 2024
        diff --git a/dev/modules/physics/mechanics/api/actuator.html b/dev/modules/physics/mechanics/api/actuator.html index 202b0404a60..d41ab40ffa4 100644 --- a/dev/modules/physics/mechanics/api/actuator.html +++ b/dev/modules/physics/mechanics/api/actuator.html @@ -803,14 +803,14 @@
        Documentation Version

        Implementations of actuators for linked force and torque application.

        -class sympy.physics.mechanics.actuator.ActuatorBase[source]
        +class sympy.physics.mechanics.actuator.ActuatorBase[source]

        Abstract base class for all actuator classes to inherit from.

        Notes

        Instances of this class cannot be directly instantiated by users. However, it can be used to created custom actuator types through subclassing.

        -abstract to_loads()[source]
        +abstract to_loads()[source]

        Loads required by the equations of motion method classes.

        Explanation

        KanesMethod requires a list of Point-Vector tuples to be @@ -836,7 +836,7 @@

        Documentation Version
        equilibrium_length=0,
        -)[source] +)[source]

        A nonlinear spring based on the Duffing equation.

        Parameters:
        @@ -872,7 +872,7 @@
        Documentation Version
        -class sympy.physics.mechanics.actuator.ForceActuator(force, pathway)[source]
        +class sympy.physics.mechanics.actuator.ForceActuator(force, pathway)[source]

        Force-producing actuator.

        Parameters:
        @@ -950,7 +950,7 @@
        Documentation Version
        -to_loads()[source]
        +to_loads()[source]

        Loads required by the equations of motion method classes.

        Explanation

        KanesMethod requires a list of Point-Vector tuples to be @@ -1021,7 +1021,7 @@

        Documentation Version
        -class sympy.physics.mechanics.actuator.LinearDamper(damping, pathway)[source]
        +class sympy.physics.mechanics.actuator.LinearDamper(damping, pathway)[source]

        A damper whose force is a linear function of its extension velocity.

        Parameters:
        @@ -1139,7 +1139,7 @@
        Documentation Version
        equilibrium_length=0,
        -)[source] +)[source]

        A spring with its spring force as a linear function of its length.

        Parameters:
        @@ -1276,7 +1276,7 @@
        Documentation Version
        reaction_frame=None,
        -)[source] +)[source]

        Torque-producing actuator.

        Parameters:
        @@ -1327,7 +1327,7 @@
        Documentation Version
        when one is passed instead of a ReferenceFrame.

        -classmethod at_pin_joint(torque, pin_joint)[source]
        +classmethod at_pin_joint(torque, pin_joint)[source]

        Alternate construtor to instantiate from a PinJoint instance.

        Parameters:
        @@ -1406,7 +1406,7 @@
        Documentation Version
        -to_loads()[source]
        +to_loads()[source]

        Loads required by the equations of motion method classes.

        Explanation

        KanesMethod requires a list of Point-Vector tuples to be @@ -1498,7 +1498,7 @@

        Documentation Version
        Furo
        - Last updated on Aug 03, 2024
        + Last updated on Aug 04, 2024
        diff --git a/dev/modules/physics/mechanics/api/deprecated_classes.html b/dev/modules/physics/mechanics/api/deprecated_classes.html index b581137e2be..d950cb20d52 100644 --- a/dev/modules/physics/mechanics/api/deprecated_classes.html +++ b/dev/modules/physics/mechanics/api/deprecated_classes.html @@ -818,7 +818,7 @@

        Deprecated Classes (Docstrings)central_inertia=None,

        -)[source] +)[source]

        Body is a common representation of either a RigidBody or a Particle SymPy object depending on what is passed in during initialization. If a mass is passed in and central_inertia is left as None, the Particle object is @@ -929,7 +929,7 @@

        Deprecated Classes (Docstrings)
        -ang_vel_in(body)[source]
        +ang_vel_in(body)[source]

        Returns this body’s angular velocity with respect to the provided rigid body or reference frame.

        @@ -963,7 +963,7 @@

        Deprecated Classes (Docstrings)
        -angular_momentum(point, frame)[source]
        +angular_momentum(point, frame)[source]

        Returns the angular momentum of the rigid body about a point in the given frame.

        @@ -1016,7 +1016,7 @@

        Deprecated Classes (Docstrings)reaction_point=None,

        -)[source] +)[source]

        Add force to the body(s).

        Parameters:
        @@ -1110,7 +1110,7 @@

        Deprecated Classes (Docstrings)
        -apply_torque(torque, reaction_body=None)[source]
        +apply_torque(torque, reaction_body=None)[source]

        Add torque to the body(s).

        Parameters:
        @@ -1196,7 +1196,7 @@

        Deprecated Classes (Docstrings)
        -clear_loads()[source]
        +clear_loads()[source]

        Clears the Body’s loads list.

        Example

        As Body has been deprecated, the following examples are for illustrative @@ -1220,7 +1220,7 @@

        Deprecated Classes (Docstrings)
        -dcm(body)[source]
        +dcm(body)[source]

        Returns the direction cosine matrix of this body relative to the provided rigid body or reference frame.

        @@ -1270,7 +1270,7 @@

        Deprecated Classes (Docstrings)
        -kinetic_energy(frame)[source]
        +kinetic_energy(frame)[source]

        Kinetic energy of the body.

        Parameters:
        @@ -1322,7 +1322,7 @@

        Deprecated Classes (Docstrings)
        -linear_momentum(frame)[source]
        +linear_momentum(frame)[source]

        Linear momentum of the rigid body.

        Parameters:
        @@ -1370,7 +1370,7 @@

        Deprecated Classes (Docstrings)
        -masscenter_vel(body)[source]
        +masscenter_vel(body)[source]

        Returns the velocity of the mass center with respect to the provided rigid body or reference frame.

        @@ -1408,7 +1408,7 @@

        Deprecated Classes (Docstrings)
        -parallel_axis(point, frame=None)[source]
        +parallel_axis(point, frame=None)[source]

        Returns the inertia dyadic of the body with respect to another point.

        @@ -1474,7 +1474,7 @@

        Deprecated Classes (Docstrings)
        -remove_load(about=None)[source]
        +remove_load(about=None)[source]

        Remove load about a point or frame.

        Parameters:
        @@ -1534,7 +1534,7 @@

        Deprecated Classes (Docstrings)
        -class sympy.physics.mechanics.jointsmethod.JointsMethod(newtonion, *joints)[source]
        +class sympy.physics.mechanics.jointsmethod.JointsMethod(newtonion, *joints)[source]

        Method for formulating the equations of motion using a set of interconnected bodies with joints.

        Deprecated since version 1.13: The JointsMethod class is deprecated. Its functionality has been @@ -1650,7 +1650,7 @@

        Deprecated Classes (Docstrings)method=<class 'sympy.physics.mechanics.kane.KanesMethod'>,

        -)[source] +)[source]

        Method to form system’s equation of motions.

        Parameters:
        @@ -1743,7 +1743,7 @@

        Deprecated Classes (Docstrings)
        -rhs(inv_method=None)[source]
        +rhs(inv_method=None)[source]

        Returns equations that can be solved numerically.

        Parameters:
        @@ -1817,7 +1817,7 @@

        Deprecated Classes (Docstrings)Furo
        - Last updated on Aug 03, 2024
        + Last updated on Aug 04, 2024

        diff --git a/dev/modules/physics/mechanics/api/expr_manip.html b/dev/modules/physics/mechanics/api/expr_manip.html index 8497f980bea..d39f4624a41 100644 --- a/dev/modules/physics/mechanics/api/expr_manip.html +++ b/dev/modules/physics/mechanics/api/expr_manip.html @@ -802,7 +802,7 @@
        Documentation Version

        Expression Manipulation (Docstrings)

        -sympy.physics.mechanics.msubs(expr, *sub_dicts, smart=False, **kwargs)[source]
        +sympy.physics.mechanics.msubs(expr, *sub_dicts, smart=False, **kwargs)[source]

        A custom subs for use on expressions derived in physics.mechanics.

        Traverses the expression tree once, performing the subs found in sub_dicts. Terms inside Derivative expressions are ignored:

        @@ -848,7 +848,7 @@

        Expression Manipulation (Docstrings)reference_frame=None,

        -)[source] +)[source]

        Find all dynamicsymbols in expression.

        Parameters:
        @@ -923,7 +923,7 @@

        Expression Manipulation (Docstrings)Furo
        - Last updated on Aug 03, 2024
        + Last updated on Aug 04, 2024

        diff --git a/dev/modules/physics/mechanics/api/index.html b/dev/modules/physics/mechanics/api/index.html index c483731b0f6..dd47fbb68ae 100644 --- a/dev/modules/physics/mechanics/api/index.html +++ b/dev/modules/physics/mechanics/api/index.html @@ -914,7 +914,7 @@

        Guide to MechanicsFuro
        - Last updated on Aug 03, 2024
        + Last updated on Aug 04, 2024

        diff --git a/dev/modules/physics/mechanics/api/joint.html b/dev/modules/physics/mechanics/api/joint.html index 185d2a3adea..8c9382bbc40 100644 --- a/dev/modules/physics/mechanics/api/joint.html +++ b/dev/modules/physics/mechanics/api/joint.html @@ -822,7 +822,7 @@

        Joints Framework (Docstrings)child_joint_pos=None,

        -)[source] +)[source]

        Abstract base class for all specific joints.

        Parameters:
        @@ -1056,7 +1056,7 @@

        Joints Framework (Docstrings)child_joint_pos=None,

      -)[source] +)[source]

      Pin (Revolute) Joint.

      @@ -1387,7 +1387,7 @@

      Joints Framework (Docstrings)child_joint_pos=None,

      -)[source] +)[source]

      Prismatic (Sliding) Joint.

      ../../../../_images/PrismaticJoint.svg
      @@ -1674,7 +1674,7 @@

      Joints Framework (Docstrings)joint_axis=None,

      -)[source] +)[source]

      Cylindrical Joint.

      ../../../../_images/CylindricalJoint.svg @@ -1980,7 +1980,7 @@

      Joints Framework (Docstrings)child_interframe=None,

      -)[source] +)[source]

      Planar Joint.

      Joints Framework (Docstrings)rot_order=123,
      -)[source] +)[source]

      Spherical (Ball-and-Socket) Joint.

      ../../../../_images/SphericalJoint.svg @@ -2747,7 +2747,7 @@

      Joints Framework (Docstrings)child_interframe=None,

      -)[source] +)[source]

      Weld Joint.

      @@ -3008,7 +3008,7 @@

      Joints Framework (Docstrings)Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/mechanics/api/kane_lagrange.html b/dev/modules/physics/mechanics/api/kane_lagrange.html index 2a5dbb12b1d..4a9dc0cdef4 100644 --- a/dev/modules/physics/mechanics/api/kane_lagrange.html +++ b/dev/modules/physics/mechanics/api/kane_lagrange.html @@ -822,7 +822,7 @@
      Documentation Version
      constraint_solver='LU',
      -)[source] +)[source]

      Kane’s method object.

      Parameters:
      @@ -1067,7 +1067,7 @@
      Documentation Version
      loads=None,
      -)[source] +)[source]

      Method to form Kane’s equations, Fr + Fr* = 0.

      Parameters:
      @@ -1096,7 +1096,7 @@
      Documentation Version
      -kindiffdict()[source]
      +kindiffdict()[source]

      Returns a dictionary mapping q’ to u.

      @@ -1111,7 +1111,7 @@
      Documentation Version
      **kwargs,
      -)[source] +)[source]

      Linearize the equations of motion about a symbolic operating point.

      Parameters:
      @@ -1179,7 +1179,7 @@
      Documentation Version
      -rhs(inv_method=None)[source]
      +rhs(inv_method=None)[source]

      Returns the system’s equations of motion in first order form. The output is the right hand side of:

      x' = |q'| =: f(q, u, r, p, t)
      @@ -1202,7 +1202,7 @@ 
      Documentation Version
      -to_linearizer(linear_solver='LU')[source]
      +to_linearizer(linear_solver='LU')[source]

      Returns an instance of the Linearizer class, initiated from the data in the KanesMethod class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more @@ -1248,7 +1248,7 @@

      Documentation Version
      nonhol_coneqs=None,
      -)[source] +)[source]

      Lagrange’s method object.

      Explanation

      This object generates the equations of motion in a two step procedure. The @@ -1352,7 +1352,7 @@

      Documentation Version
      -form_lagranges_equations()[source]
      +form_lagranges_equations()[source]

      Method to form Lagrange’s equations of motion.

      Returns a vector of equations of motion using Lagrange’s equations of the second kind.

      @@ -1371,7 +1371,7 @@
      Documentation Version
      **kwargs,
      -)[source] +)[source]

      Linearize the equations of motion about a symbolic operating point.

      Parameters:
      @@ -1436,7 +1436,7 @@
      Documentation Version
      -rhs(inv_method=None, **kwargs)[source]
      +rhs(inv_method=None, **kwargs)[source]

      Returns equations that can be solved numerically.

      Parameters:
      @@ -1459,7 +1459,7 @@
      Documentation Version
      sol_type='dict',
      -)[source] +)[source]

      Solves for the values of the lagrange multipliers symbolically at the specified operating point.

      @@ -1492,7 +1492,7 @@
      Documentation Version
      linear_solver='LU',
      -)[source] +)[source]

      Returns an instance of the Linearizer class, initiated from the data in the LagrangesMethod class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more @@ -1569,7 +1569,7 @@

      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/mechanics/api/linearize.html b/dev/modules/physics/mechanics/api/linearize.html index 259294cbbd8..27b6ad2343b 100644 --- a/dev/modules/physics/mechanics/api/linearize.html +++ b/dev/modules/physics/mechanics/api/linearize.html @@ -824,7 +824,7 @@
      Documentation Version
      linear_solver='LU',
      -)[source] +)[source]

      This object holds the general model form for a dynamic system. This model is used for computing the linearized form of the system, while properly dealing with constraints leading to dependent coordinates and @@ -886,7 +886,7 @@

      Documentation Version
      linear_solver='LU',
      -)[source] +)[source]
      Parameters:

      f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a : array_like

      @@ -945,7 +945,7 @@
      Documentation Version
      simplify=False,
      -)[source] +)[source]

      Linearize the system about the operating point. Note that q_op, u_op, qd_op, ud_op must satisfy the equations of motion. These may be either symbolic or numeric.

      @@ -1039,7 +1039,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/mechanics/api/part_bod.html b/dev/modules/physics/mechanics/api/part_bod.html index a72ee2314d4..ff27df0d1bd 100644 --- a/dev/modules/physics/mechanics/api/part_bod.html +++ b/dev/modules/physics/mechanics/api/part_bod.html @@ -804,7 +804,7 @@
      Documentation Version

      Bodies

      -class sympy.physics.mechanics.particle.Particle(name, point=None, mass=None)[source]
      +class sympy.physics.mechanics.particle.Particle(name, point=None, mass=None)[source]

      A particle.

      Parameters:
      @@ -844,7 +844,7 @@

      Bodies
      -angular_momentum(point, frame)[source]
      +angular_momentum(point, frame)[source]

      Angular momentum of the particle about the point.

      Parameters:
      @@ -884,7 +884,7 @@

      Bodies
      -kinetic_energy(frame)[source]
      +kinetic_energy(frame)[source]

      Kinetic energy of the particle.

      Parameters:
      @@ -917,7 +917,7 @@

      Bodies
      -linear_momentum(frame)[source]
      +linear_momentum(frame)[source]

      Linear momentum of the particle.

      Parameters:
      @@ -969,7 +969,7 @@

      Bodies
      -parallel_axis(point, frame)[source]
      +parallel_axis(point, frame)[source]

      Returns an inertia dyadic of the particle with respect to another point and frame.

      @@ -1030,7 +1030,7 @@

      Bodiesinertia=None,

      -)[source] +)[source]

      An idealized rigid body.

      Explanation

      This is essentially a container which holds the various components which @@ -1080,7 +1080,7 @@

      Bodies
      -angular_momentum(point, frame)[source]
      +angular_momentum(point, frame)[source]

      Returns the angular momentum of the rigid body about a point in the given frame.

      @@ -1142,7 +1142,7 @@

      Bodies
      -kinetic_energy(frame)[source]
      +kinetic_energy(frame)[source]

      Kinetic energy of the rigid body.

      Parameters:
      @@ -1182,7 +1182,7 @@

      Bodies
      -linear_momentum(frame)[source]
      +linear_momentum(frame)[source]

      Linear momentum of the rigid body.

      Parameters:
      @@ -1236,7 +1236,7 @@

      Bodies
      -parallel_axis(point, frame=None)[source]
      +parallel_axis(point, frame=None)[source]

      Returns the inertia dyadic of the body with respect to another point.

      Parameters:
      @@ -1301,7 +1301,7 @@

      BodiesInertias

      -class sympy.physics.mechanics.inertia.Inertia(dyadic, point)[source]
      +class sympy.physics.mechanics.inertia.Inertia(dyadic, point)[source]

      Inertia object consisting of a Dyadic and a Point of reference.

      Explanation

      This is a simple class to store the Point and Dyadic, belonging to an @@ -1349,7 +1349,7 @@

      Inertias
      izx=0,

      -)[source] +)[source]

      Simple way to create an Inertia object based on the tensor values.

      Parameters:
      @@ -1414,7 +1414,7 @@

      Inertias
      -sympy.physics.mechanics.inertia.inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0)[source]
      +sympy.physics.mechanics.inertia.inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0)[source]

      Simple way to create inertia Dyadic object.

      Parameters:
      @@ -1462,7 +1462,7 @@

      Inertias
      -sympy.physics.mechanics.inertia.inertia_of_point_mass(mass, pos_vec, frame)[source]
      +sympy.physics.mechanics.inertia.inertia_of_point_mass(mass, pos_vec, frame)[source]

      Inertia dyadic of a point mass relative to point O.

      Parameters:
      @@ -1497,7 +1497,7 @@

      Inertias

      Loads

      -class sympy.physics.mechanics.loads.Force(point, force)[source]
      +class sympy.physics.mechanics.loads.Force(point, force)[source]

      Force acting upon a point.

      Explanation

      A force is a vector that is bound to a line of action. This class stores @@ -1525,7 +1525,7 @@

      Loads
      -class sympy.physics.mechanics.loads.Torque(frame, torque)[source]
      +class sympy.physics.mechanics.loads.Torque(frame, torque)[source]

      Torque acting upon a frame.

      Explanation

      A torque is a free vector that is acting on a reference frame, which is @@ -1555,7 +1555,7 @@

      Loads

      Other Functions

      -sympy.physics.mechanics.functions.center_of_mass(point, *bodies)[source]
      +sympy.physics.mechanics.functions.center_of_mass(point, *bodies)[source]

      Returns the position vector from the given point to the center of mass of the given bodies(particles or rigidbodies).

      Example

      @@ -1588,7 +1588,7 @@

      Other Functions
      -sympy.physics.mechanics.functions.linear_momentum(frame, *body)[source]
      +sympy.physics.mechanics.functions.linear_momentum(frame, *body)[source]

      Linear momentum of the system.

      Parameters:
      @@ -1629,7 +1629,7 @@

      Other Functions
      -sympy.physics.mechanics.functions.angular_momentum(point, frame, *body)[source]
      +sympy.physics.mechanics.functions.angular_momentum(point, frame, *body)[source]

      Angular momentum of a system.

      Parameters:
      @@ -1678,7 +1678,7 @@

      Other Functions
      -sympy.physics.mechanics.functions.kinetic_energy(frame, *body)[source]
      +sympy.physics.mechanics.functions.kinetic_energy(frame, *body)[source]

      Kinetic energy of a multibody system.

      Parameters:
      @@ -1725,7 +1725,7 @@

      Other Functions
      -sympy.physics.mechanics.functions.potential_energy(*body)[source]
      +sympy.physics.mechanics.functions.potential_energy(*body)[source]

      Potential energy of a multibody system.

      Parameters:
      @@ -1768,7 +1768,7 @@

      Other Functions
      -sympy.physics.mechanics.functions.Lagrangian(frame, *body)[source]
      +sympy.physics.mechanics.functions.Lagrangian(frame, *body)[source]

      Lagrangian of a multibody system.

      Parameters:
      @@ -1826,7 +1826,7 @@

      Other Functionsreference_frame=None,

      -)[source] +)[source]

      Find all dynamicsymbols in expression.

      Parameters:
      @@ -1902,7 +1902,7 @@

      Other FunctionsFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/mechanics/api/pathway.html b/dev/modules/physics/mechanics/api/pathway.html index b1d126d3d6f..67d3c8b864e 100644 --- a/dev/modules/physics/mechanics/api/pathway.html +++ b/dev/modules/physics/mechanics/api/pathway.html @@ -803,7 +803,7 @@
      Documentation Version

      Implementations of pathways for use by actuators.

      -class sympy.physics.mechanics.pathway.LinearPathway(*attachments)[source]
      +class sympy.physics.mechanics.pathway.LinearPathway(*attachments)[source]

      Linear pathway between a pair of attachment points.

      Parameters:
      @@ -893,7 +893,7 @@
      Documentation Version
      -to_loads(force)[source]
      +to_loads(force)[source]

      Loads required by the equations of motion method classes.

      Parameters:
      @@ -947,7 +947,7 @@
      Documentation Version
      -class sympy.physics.mechanics.pathway.ObstacleSetPathway(*attachments)[source]
      +class sympy.physics.mechanics.pathway.ObstacleSetPathway(*attachments)[source]

      Obstacle-set pathway between a set of attachment points.

      Parameters:
      @@ -1028,7 +1028,7 @@
      Documentation Version
      -to_loads(force)[source]
      +to_loads(force)[source]

      Loads required by the equations of motion method classes.

      Parameters:
      @@ -1095,7 +1095,7 @@
      Documentation Version
      -class sympy.physics.mechanics.pathway.PathwayBase(*attachments)[source]
      +class sympy.physics.mechanics.pathway.PathwayBase(*attachments)[source]

      Abstract base class for all pathway classes to inherit from.

      Notes

      Instances of this class cannot be directly instantiated by users. However, @@ -1120,7 +1120,7 @@

      Documentation Version
      -abstract to_loads(force)[source]
      +abstract to_loads(force)[source]

      Loads required by the equations of motion method classes.

      Explanation

      KanesMethod requires a list of Point-Vector tuples to be @@ -1145,7 +1145,7 @@

      Documentation Version
      geometry,
      -)[source] +)[source]

      Pathway that wraps a geometry object.

      Parameters:
      @@ -1232,7 +1232,7 @@
      Documentation Version
      -to_loads(force)[source]
      +to_loads(force)[source]

      Loads required by the equations of motion method classes.

      Parameters:
      @@ -1335,7 +1335,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/mechanics/api/printing.html b/dev/modules/physics/mechanics/api/printing.html index a3a1873c208..1e4249fa7fe 100644 --- a/dev/modules/physics/mechanics/api/printing.html +++ b/dev/modules/physics/mechanics/api/printing.html @@ -853,7 +853,7 @@

      mlatexFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/mechanics/api/system.html b/dev/modules/physics/mechanics/api/system.html index 62409115397..30bfddab003 100644 --- a/dev/modules/physics/mechanics/api/system.html +++ b/dev/modules/physics/mechanics/api/system.html @@ -818,7 +818,7 @@

      System (Docstrings)loads=None,

      -)[source] +)[source]

      SymbolicSystem is a class that contains all the information about a system in a symbolic format such as the equations of motions and the bodies and loads in the system.

      @@ -1020,7 +1020,7 @@

      System (Docstrings)
      -compute_explicit_form()[source]
      +compute_explicit_form()[source]

      If the explicit right hand side of the combined equations of motion is to provided upon initialization, this method will calculate it. This calculation can potentially take awhile to compute.

      @@ -1028,7 +1028,7 @@

      System (Docstrings)
      -constant_symbols()[source]
      +constant_symbols()[source]

      Returns a column matrix containing all of the symbols in the system that do not depend on time

      @@ -1057,7 +1057,7 @@

      System (Docstrings)
      -dynamic_symbols()[source]
      +dynamic_symbols()[source]

      Returns a column matrix containing all of the symbols in the system that depend on time

      @@ -1091,7 +1091,7 @@

      System (Docstrings)
      -class sympy.physics.mechanics.system.System(frame=None, fixed_point=None)[source]
      +class sympy.physics.mechanics.system.System(frame=None, fixed_point=None)[source]

      Class to define a multibody system and form its equations of motion.

      Explanation

      A System instance stores the different objects associated with a model, @@ -1306,7 +1306,7 @@

      System (Docstrings)
      -add_actuators(*actuators)[source]
      +add_actuators(*actuators)[source]

      Add actuator(s) to the system.

      Parameters:
      @@ -1320,7 +1320,7 @@

      System (Docstrings)
      -add_auxiliary_speeds(*speeds)[source]
      +add_auxiliary_speeds(*speeds)[source]

      Add auxiliary speed(s) to the system.

      Parameters:
      @@ -1334,7 +1334,7 @@

      System (Docstrings)
      -add_bodies(*bodies)[source]
      +add_bodies(*bodies)[source]

      Add body(ies) to the system.

      Parameters:
      @@ -1355,7 +1355,7 @@

      System (Docstrings)independent=True,

      -)[source] +)[source]

      Add generalized coordinate(s) to the system.

      Parameters:
      @@ -1375,7 +1375,7 @@

      System (Docstrings)
      -add_holonomic_constraints(*constraints)[source]
      +add_holonomic_constraints(*constraints)[source]

      Add holonomic constraint(s) to the system.

      Parameters:
      @@ -1390,7 +1390,7 @@

      System (Docstrings)
      -add_joints(*joints)[source]
      +add_joints(*joints)[source]

      Add joint(s) to the system.

      Parameters:
      @@ -1414,7 +1414,7 @@

      System (Docstrings)
      -add_kdes(*kdes)[source]
      +add_kdes(*kdes)[source]

      Add kinematic differential equation(s) to the system.

      Parameters:
      @@ -1428,7 +1428,7 @@

      System (Docstrings)
      -add_loads(*loads)[source]
      +add_loads(*loads)[source]

      Add load(s) to the system.

      Parameters:
      @@ -1442,7 +1442,7 @@

      System (Docstrings)
      -add_nonholonomic_constraints(*constraints)[source]
      +add_nonholonomic_constraints(*constraints)[source]

      Add nonholonomic constraint(s) to the system.

      Parameters:
      @@ -1457,7 +1457,7 @@

      System (Docstrings)
      -add_speeds(*speeds, independent=True)[source]
      +add_speeds(*speeds, independent=True)[source]

      Add generalized speed(s) to the system.

      Parameters:
      @@ -1476,7 +1476,7 @@

      System (Docstrings)
      -apply_uniform_gravity(acceleration)[source]
      +apply_uniform_gravity(acceleration)[source]

      Apply uniform gravity to all bodies in the system by adding loads.

      Parameters:
      @@ -1528,7 +1528,7 @@

      System (Docstrings)**kwargs,

      -)[source] +)[source]

      Form the equations of motion of the system.

      Parameters:
      @@ -1582,13 +1582,13 @@

      System (Docstrings)
      -classmethod from_newtonian(newtonian)[source]
      +classmethod from_newtonian(newtonian)[source]

      Constructs the system with respect to a Newtonian body.

      -get_body(name)[source]
      +get_body(name)[source]

      Retrieve a body from the system by name.

      Parameters:
      @@ -1608,7 +1608,7 @@

      System (Docstrings)
      -get_joint(name)[source]
      +get_joint(name)[source]

      Retrieve a joint from the system by name.

      Parameters:
      @@ -1711,7 +1711,7 @@

      System (Docstrings)
      -rhs(inv_method=None)[source]
      +rhs(inv_method=None)[source]

      Compute the equations of motion in the explicit form.

      Parameters:
      @@ -1774,7 +1774,7 @@

      System (Docstrings)check_duplicates=False,

      -)[source] +)[source]

      Validates the system using some basic checks.

      Parameters:
      @@ -1895,7 +1895,7 @@

      System (Docstrings)Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/mechanics/api/wrapping_geometry.html b/dev/modules/physics/mechanics/api/wrapping_geometry.html index 965f5528dea..0ecc354de65 100644 --- a/dev/modules/physics/mechanics/api/wrapping_geometry.html +++ b/dev/modules/physics/mechanics/api/wrapping_geometry.html @@ -803,7 +803,7 @@
      Documentation Version

      Geometry objects for use by wrapping pathways.

      -class sympy.physics.mechanics.wrapping_geometry.WrappingCylinder(radius, point, axis)[source]
      +class sympy.physics.mechanics.wrapping_geometry.WrappingCylinder(radius, point, axis)[source]

      A solid (infinite) cylindrical object.

      Parameters:
      @@ -870,7 +870,7 @@
      Documentation Version
      point_2,
      -)[source] +)[source]

      The vectors parallel to the geodesic at the two end points.

      Parameters:
      @@ -888,7 +888,7 @@
      Documentation Version
      -geodesic_length(point_1, point_2)[source]
      +geodesic_length(point_1, point_2)[source]

      The shortest distance between two points on a geometry’s surface.

      Parameters:
      @@ -961,7 +961,7 @@
      Documentation Version
      -point_on_surface(point)[source]
      +point_on_surface(point)[source]

      Returns True if a point is on the cylinder’s surface.

      Parameters:
      @@ -986,7 +986,7 @@
      Documentation Version
      -class sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase[source]
      +class sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase[source]

      Abstract base class for all geometry classes to inherit from.

      Notes

      Instances of this class cannot be directly instantiated by users. However, @@ -1000,7 +1000,7 @@

      Documentation Version
      point_2,
      -)[source] +)[source]

      The vectors parallel to the geodesic at the two end points.

      Parameters:
      @@ -1025,7 +1025,7 @@
      Documentation Version
      point_2,
      -)[source] +)[source]

      Returns the shortest distance between two points on a geometry’s surface.

      @@ -1050,7 +1050,7 @@
      Documentation Version
      -abstract point_on_surface(point)[source]
      +abstract point_on_surface(point)[source]

      Returns True if a point is on the geometry’s surface.

      Parameters:
      @@ -1067,7 +1067,7 @@
      Documentation Version
      -class sympy.physics.mechanics.wrapping_geometry.WrappingSphere(radius, point)[source]
      +class sympy.physics.mechanics.wrapping_geometry.WrappingSphere(radius, point)[source]

      A solid spherical object.

      Parameters:
      @@ -1116,7 +1116,7 @@
      Documentation Version
      point_2,
      -)[source] +)[source]

      The vectors parallel to the geodesic at the two end points.

      Parameters:
      @@ -1134,7 +1134,7 @@
      Documentation Version
      -geodesic_length(point_1, point_2)[source]
      +geodesic_length(point_1, point_2)[source]

      Returns the shortest distance between two points on the sphere’s surface.

      @@ -1207,7 +1207,7 @@
      Documentation Version
      -point_on_surface(point)[source]
      +point_on_surface(point)[source]

      Returns True if a point is on the sphere’s surface.

      Parameters:
      @@ -1267,7 +1267,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/optics/gaussopt.html b/dev/modules/physics/optics/gaussopt.html index 0141f2d8542..67b2cd9b274 100644 --- a/dev/modules/physics/optics/gaussopt.html +++ b/dev/modules/physics/optics/gaussopt.html @@ -821,7 +821,7 @@
      Documentation Version
      -class sympy.physics.optics.gaussopt.BeamParameter(wavelen, z, z_r=None, w=None, n=1)[source]
      +class sympy.physics.optics.gaussopt.BeamParameter(wavelen, z, z_r=None, w=None, n=1)[source]

      Representation for a gaussian ray in the Ray Transfer Matrix formalism.

      Parameters:
      @@ -986,7 +986,7 @@
      Documentation Version
      -class sympy.physics.optics.gaussopt.CurvedMirror(R)[source]
      +class sympy.physics.optics.gaussopt.CurvedMirror(R)[source]

      Ray Transfer Matrix for reflection from curved surface.

      Parameters:
      @@ -1011,7 +1011,7 @@
      Documentation Version
      -class sympy.physics.optics.gaussopt.CurvedRefraction(R, n1, n2)[source]
      +class sympy.physics.optics.gaussopt.CurvedRefraction(R, n1, n2)[source]

      Ray Transfer Matrix for refraction on curved interface.

      Parameters:
      @@ -1047,7 +1047,7 @@
      Documentation Version
      -class sympy.physics.optics.gaussopt.FlatMirror[source]
      +class sympy.physics.optics.gaussopt.FlatMirror[source]

      Ray Transfer Matrix for reflection.

      Examples

      >>> from sympy.physics.optics import FlatMirror
      @@ -1065,7 +1065,7 @@ 
      Documentation Version
      -class sympy.physics.optics.gaussopt.FlatRefraction(n1, n2)[source]
      +class sympy.physics.optics.gaussopt.FlatRefraction(n1, n2)[source]

      Ray Transfer Matrix for refraction.

      Parameters:
      @@ -1097,7 +1097,7 @@
      Documentation Version
      -class sympy.physics.optics.gaussopt.FreeSpace(d)[source]
      +class sympy.physics.optics.gaussopt.FreeSpace(d)[source]

      Ray Transfer Matrix for free space.

      Parameters:
      @@ -1122,7 +1122,7 @@
      Documentation Version
      -class sympy.physics.optics.gaussopt.GeometricRay(*args)[source]
      +class sympy.physics.optics.gaussopt.GeometricRay(*args)[source]

      Representation for a geometric ray in the Ray Transfer Matrix formalism.

      Parameters:
      @@ -1193,7 +1193,7 @@
      Documentation Version
      -class sympy.physics.optics.gaussopt.RayTransferMatrix(*args)[source]
      +class sympy.physics.optics.gaussopt.RayTransferMatrix(*args)[source]

      Base class for a Ray Transfer Matrix.

      It should be used if there is not already a more specific subclass mentioned in See Also.

      @@ -1306,7 +1306,7 @@
      Documentation Version
      -class sympy.physics.optics.gaussopt.ThinLens(f)[source]
      +class sympy.physics.optics.gaussopt.ThinLens(f)[source]

      Ray Transfer Matrix for a thin lens.

      Parameters:
      @@ -1343,7 +1343,7 @@
      Documentation Version
      **kwargs,
      -)[source] +)[source]

      Find the optical setup conjugating the object/image waists.

      Parameters:
      @@ -1399,7 +1399,7 @@
      Documentation Version
      -sympy.physics.optics.gaussopt.gaussian_conj(s_in, z_r_in, f)[source]
      +sympy.physics.optics.gaussopt.gaussian_conj(s_in, z_r_in, f)[source]

      Conjugation relation for gaussian beams.

      Parameters:
      @@ -1454,7 +1454,7 @@
      Documentation Version
      -sympy.physics.optics.gaussopt.geometric_conj_ab(a, b)[source]
      +sympy.physics.optics.gaussopt.geometric_conj_ab(a, b)[source]

      Conjugation relation for geometrical beams under paraxial conditions.

      Explanation

      Takes the distances to the optical element and returns the needed @@ -1475,7 +1475,7 @@

      Documentation Version
      -sympy.physics.optics.gaussopt.geometric_conj_af(a, f)[source]
      +sympy.physics.optics.gaussopt.geometric_conj_af(a, f)[source]

      Conjugation relation for geometrical beams under paraxial conditions.

      Explanation

      Takes the object distance (for geometric_conj_af) or the image distance @@ -1499,7 +1499,7 @@

      Documentation Version
      -sympy.physics.optics.gaussopt.geometric_conj_bf(a, f)[source]
      +sympy.physics.optics.gaussopt.geometric_conj_bf(a, f)[source]

      Conjugation relation for geometrical beams under paraxial conditions.

      Explanation

      Takes the object distance (for geometric_conj_af) or the image distance @@ -1523,7 +1523,7 @@

      Documentation Version
      -sympy.physics.optics.gaussopt.rayleigh2waist(z_r, wavelen)[source]
      +sympy.physics.optics.gaussopt.rayleigh2waist(z_r, wavelen)[source]

      Calculate the waist from the rayleigh range of a gaussian beam.

      Examples

      >>> from sympy.physics.optics import rayleigh2waist
      @@ -1541,7 +1541,7 @@ 
      Documentation Version
      -sympy.physics.optics.gaussopt.waist2rayleigh(w, wavelen, n=1)[source]
      +sympy.physics.optics.gaussopt.waist2rayleigh(w, wavelen, n=1)[source]

      Calculate the rayleigh range from the waist of a gaussian beam.

      Examples

      >>> from sympy.physics.optics import waist2rayleigh
      @@ -1594,7 +1594,7 @@ 
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/optics/index.html b/dev/modules/physics/optics/index.html index ac9c0134960..88d20524278 100644 --- a/dev/modules/physics/optics/index.html +++ b/dev/modules/physics/optics/index.html @@ -850,7 +850,7 @@

      OpticsFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/optics/medium.html b/dev/modules/physics/optics/medium.html index 47fe794c983..db818d61c3f 100644 --- a/dev/modules/physics/optics/medium.html +++ b/dev/modules/physics/optics/medium.html @@ -815,7 +815,7 @@
      Documentation Version
      n=None,
      -)[source] +)[source]

      This class represents an optical medium. The prime reason to implement this is to facilitate refraction, Fermat’s principle, etc.

      @@ -928,7 +928,7 @@
      Documentation Version
      Furo
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024
      diff --git a/dev/modules/physics/optics/polarization.html b/dev/modules/physics/optics/polarization.html index 334fe45c6ad..6763c0bd240 100644 --- a/dev/modules/physics/optics/polarization.html +++ b/dev/modules/physics/optics/polarization.html @@ -890,7 +890,7 @@

      References
      -sympy.physics.optics.polarization.half_wave_retarder(theta)[source]
      +sympy.physics.optics.polarization.half_wave_retarder(theta)[source]

      A half-wave retarder Jones matrix at angle theta.

      Parameters:
      @@ -924,7 +924,7 @@

      References
      -sympy.physics.optics.polarization.jones_2_stokes(e)[source]
      +sympy.physics.optics.polarization.jones_2_stokes(e)[source]

      Return the Stokes vector for a Jones vector e.

      Parameters:
      @@ -966,7 +966,7 @@

      References
      -sympy.physics.optics.polarization.jones_vector(psi, chi)[source]
      +sympy.physics.optics.polarization.jones_vector(psi, chi)[source]

      A Jones vector corresponding to a polarization ellipse with \(psi\) tilt, and \(chi\) circularity.

      @@ -1063,7 +1063,7 @@

      References
      -sympy.physics.optics.polarization.linear_polarizer(theta=0)[source]
      +sympy.physics.optics.polarization.linear_polarizer(theta=0)[source]

      A linear polarizer Jones matrix with transmission axis at an angle theta.

      @@ -1098,7 +1098,7 @@

      References
      -sympy.physics.optics.polarization.mueller_matrix(J)[source]
      +sympy.physics.optics.polarization.mueller_matrix(J)[source]

      The Mueller matrix corresponding to Jones matrix \(J\).

      Parameters:
      @@ -1171,7 +1171,7 @@

      References
      -sympy.physics.optics.polarization.phase_retarder(theta=0, delta=0)[source]
      +sympy.physics.optics.polarization.phase_retarder(theta=0, delta=0)[source]

      A phase retarder Jones matrix with retardance delta at angle theta.

      Parameters:
      @@ -1225,7 +1225,7 @@

      Referencesphib=0,

      -)[source] +)[source]

      A polarizing beam splitter Jones matrix at angle \(theta\).

      Parameters:
      @@ -1294,7 +1294,7 @@

      References
      -sympy.physics.optics.polarization.quarter_wave_retarder(theta)[source]
      +sympy.physics.optics.polarization.quarter_wave_retarder(theta)[source]

      A quarter-wave retarder Jones matrix at angle theta.

      Parameters:
      @@ -1332,7 +1332,7 @@

      References
      -sympy.physics.optics.polarization.reflective_filter(R)[source]
      +sympy.physics.optics.polarization.reflective_filter(R)[source]

      A reflective filter Jones matrix with reflectance R.

      Parameters:
      @@ -1363,7 +1363,7 @@

      References
      -sympy.physics.optics.polarization.stokes_vector(psi, chi, p=1, I=1)[source]
      +sympy.physics.optics.polarization.stokes_vector(psi, chi, p=1, I=1)[source]

      A Stokes vector corresponding to a polarization ellipse with psi tilt, and chi circularity.

      @@ -1488,7 +1488,7 @@

      References
      -sympy.physics.optics.polarization.transmissive_filter(T)[source]
      +sympy.physics.optics.polarization.transmissive_filter(T)[source]

      An attenuator Jones matrix with transmittance T.

      Parameters:
      @@ -1555,7 +1555,7 @@

      ReferencesFuro
      - Last updated on Aug 03, 2024
      + Last updated on Aug 04, 2024

      diff --git a/dev/modules/physics/optics/utils.html b/dev/modules/physics/optics/utils.html index ff365638dfb..c23f6ddc184 100644 --- a/dev/modules/physics/optics/utils.html +++ b/dev/modules/physics/optics/utils.html @@ -815,7 +815,7 @@
      Documentation Version

    -sympy.physics.optics.utils.brewster_angle(medium1, medium2)[source]
    +sympy.physics.optics.utils.brewster_angle(medium1, medium2)[source]

    This function calculates the Brewster’s angle of incidence to Medium 2 from Medium 1 in radians.

    @@ -840,7 +840,7 @@
    Documentation Version
    -sympy.physics.optics.utils.critical_angle(medium1, medium2)[source]
    +sympy.physics.optics.utils.critical_angle(medium1, medium2)[source]

    This function calculates the critical angle of incidence (marking the onset of total internal) to Medium 2 from Medium 1 in radians.

    @@ -875,7 +875,7 @@
    Documentation Version
    plane=None,
    -)[source] +)[source]

    This function calculates the angle of deviation of a ray due to refraction at planar surface.

    @@ -932,7 +932,7 @@
    Documentation Version
    medium2,
    -)[source] +)[source]

    This function uses Fresnel equations to calculate reflection and transmission coefficients. Those are obtained for both polarisations when the electric field vector is in the plane of incidence (labelled ‘p’) @@ -984,7 +984,7 @@

    Documentation Version
    -sympy.physics.optics.utils.hyperfocal_distance(f, N, c)[source]
    +sympy.physics.optics.utils.hyperfocal_distance(f, N, c)[source]
    Parameters:

    f: sympifiable

    @@ -1011,7 +1011,7 @@
    Documentation Version
    -sympy.physics.optics.utils.lens_formula(focal_length=None, u=None, v=None)[source]
    +sympy.physics.optics.utils.lens_formula(focal_length=None, u=None, v=None)[source]

    This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays.

    @@ -1048,7 +1048,7 @@
    Documentation Version
    -sympy.physics.optics.utils.lens_makers_formula(n_lens, n_surr, r1, r2, d=0)[source]
    +sympy.physics.optics.utils.lens_makers_formula(n_lens, n_surr, r1, r2, d=0)[source]

    This function calculates focal length of a lens. It follows cartesian sign convention.

    @@ -1090,7 +1090,7 @@
    Documentation Version
    -sympy.physics.optics.utils.mirror_formula(focal_length=None, u=None, v=None)[source]
    +sympy.physics.optics.utils.mirror_formula(focal_length=None, u=None, v=None)[source]

    This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays.

    @@ -1137,7 +1137,7 @@
    Documentation Version
    plane=None,
    -)[source] +)[source]

    This function calculates transmitted vector after refraction at planar surface. medium1 and medium2 can be Medium or any sympifiable object. If incident is a number then treated as angle of incidence (in radians) @@ -1211,7 +1211,7 @@

    Documentation Version
    -sympy.physics.optics.utils.transverse_magnification(si, so)[source]
    +sympy.physics.optics.utils.transverse_magnification(si, so)[source]

    Calculates the transverse magnification upon reflection in a mirror, which is the ratio of the image size to the object size.

    @@ -1271,7 +1271,7 @@
    Documentation Version
    Furo
    - Last updated on Aug 03, 2024
    + Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/optics/waves.html b/dev/modules/physics/optics/waves.html index f0134d85060..8c79f23aee6 100644 --- a/dev/modules/physics/optics/waves.html +++ b/dev/modules/physics/optics/waves.html @@ -817,7 +817,7 @@
Documentation Version
n=n,

-)[source] +)[source]

This is a simple transverse sine wave travelling in a one-dimensional space. Basic properties are required at the time of creation of the object, but they can be changed later with respective methods provided.

@@ -1043,7 +1043,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/paulialgebra.html b/dev/modules/physics/paulialgebra.html index 4815b97017b..b69bbf00d75 100644 --- a/dev/modules/physics/paulialgebra.html +++ b/dev/modules/physics/paulialgebra.html @@ -814,7 +814,7 @@

References
-sympy.physics.paulialgebra.evaluate_pauli_product(arg)[source]
+sympy.physics.paulialgebra.evaluate_pauli_product(arg)[source]

Help function to evaluate Pauli matrices product with symbolic objects.

@@ -873,7 +873,7 @@

ReferencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/qho_1d.html b/dev/modules/physics/qho_1d.html index 3be3a340225..5d120d05ea6 100644 --- a/dev/modules/physics/qho_1d.html +++ b/dev/modules/physics/qho_1d.html @@ -802,7 +802,7 @@
Documentation Version

Quantum Harmonic Oscillator in 1-D

-sympy.physics.qho_1d.E_n(n, omega)[source]
+sympy.physics.qho_1d.E_n(n, omega)[source]

Returns the Energy of the One-dimensional harmonic oscillator.

Parameters:
@@ -833,7 +833,7 @@
Documentation Version
-sympy.physics.qho_1d.coherent_state(n, alpha)[source]
+sympy.physics.qho_1d.coherent_state(n, alpha)[source]

Returns <n|alpha> for the coherent states of 1D harmonic oscillator. See https://en.wikipedia.org/wiki/Coherent_states

@@ -852,7 +852,7 @@
Documentation Version
-sympy.physics.qho_1d.psi_n(n, x, m, omega)[source]
+sympy.physics.qho_1d.psi_n(n, x, m, omega)[source]

Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator.

Parameters:
@@ -921,7 +921,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/anticommutator.html b/dev/modules/physics/quantum/anticommutator.html index c3a726a0a99..0b38622af51 100644 --- a/dev/modules/physics/quantum/anticommutator.html +++ b/dev/modules/physics/quantum/anticommutator.html @@ -803,7 +803,7 @@
Documentation Version

The anti-commutator: {A,B} = A*B + B*A.

-class sympy.physics.quantum.anticommutator.AntiCommutator(A, B)[source]
+class sympy.physics.quantum.anticommutator.AntiCommutator(A, B)[source]

The standard anticommutator, in an unevaluated state.

Parameters:
@@ -866,7 +866,7 @@
Documentation Version
-doit(**hints)[source]
+doit(**hints)[source]

Evaluate anticommutator

@@ -909,7 +909,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/quantum/cartesian.html b/dev/modules/physics/quantum/cartesian.html index aec3cb56019..a1c1ae49d59 100644 --- a/dev/modules/physics/quantum/cartesian.html +++ b/dev/modules/physics/quantum/cartesian.html @@ -807,19 +807,19 @@
Documentation Version
-class sympy.physics.quantum.cartesian.PositionBra3D(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.PositionBra3D(*args, **kwargs)[source]

3D cartesian position eigenbra

-class sympy.physics.quantum.cartesian.PositionKet3D(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.PositionKet3D(*args, **kwargs)[source]

3D cartesian position eigenket

-class sympy.physics.quantum.cartesian.PositionState3D(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.PositionState3D(*args, **kwargs)[source]

Base class for 3D cartesian position eigenstates

@@ -843,7 +843,7 @@
Documentation Version
-class sympy.physics.quantum.cartesian.PxBra(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.PxBra(*args, **kwargs)[source]

1D cartesian momentum eigenbra.

@@ -855,7 +855,7 @@
Documentation Version
-class sympy.physics.quantum.cartesian.PxKet(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.PxKet(*args, **kwargs)[source]

1D cartesian momentum eigenket.

@@ -867,13 +867,13 @@
Documentation Version
-class sympy.physics.quantum.cartesian.PxOp(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.PxOp(*args, **kwargs)[source]

1D cartesian momentum operator.

-class sympy.physics.quantum.cartesian.XBra(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.XBra(*args, **kwargs)[source]

1D cartesian position eigenbra.

@@ -885,7 +885,7 @@
Documentation Version
-class sympy.physics.quantum.cartesian.XKet(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.XKet(*args, **kwargs)[source]

1D cartesian position eigenket.

@@ -897,19 +897,19 @@
Documentation Version
-class sympy.physics.quantum.cartesian.XOp(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.XOp(*args, **kwargs)[source]

1D cartesian position operator.

-class sympy.physics.quantum.cartesian.YOp(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.YOp(*args, **kwargs)[source]

Y cartesian coordinate operator (for 2D or 3D systems)

-class sympy.physics.quantum.cartesian.ZOp(*args, **kwargs)[source]
+class sympy.physics.quantum.cartesian.ZOp(*args, **kwargs)[source]

Z cartesian coordinate operator (for 3D systems)

@@ -950,7 +950,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/cg.html b/dev/modules/physics/quantum/cg.html index b381ffc6516..30b194da6e0 100644 --- a/dev/modules/physics/quantum/cg.html +++ b/dev/modules/physics/quantum/cg.html @@ -803,7 +803,7 @@
Documentation Version

Clebsch-Gordon Coefficients.

-class sympy.physics.quantum.cg.CG(j1, m1, j2, m2, j3, m3)[source]
+class sympy.physics.quantum.cg.CG(j1, m1, j2, m2, j3, m3)[source]

Class for Clebsch-Gordan coefficient.

Parameters:
@@ -866,7 +866,7 @@
Documentation Version
-class sympy.physics.quantum.cg.Wigner3j(j1, m1, j2, m2, j3, m3)[source]
+class sympy.physics.quantum.cg.Wigner3j(j1, m1, j2, m2, j3, m3)[source]

Class for the Wigner-3j symbols.

Parameters:
@@ -911,7 +911,7 @@
Documentation Version
-class sympy.physics.quantum.cg.Wigner6j(j1, j2, j12, j3, j, j23)[source]
+class sympy.physics.quantum.cg.Wigner6j(j1, j2, j12, j3, j, j23)[source]

Class for the Wigner-6j symbols

See also

@@ -924,7 +924,7 @@
Documentation Version
-class sympy.physics.quantum.cg.Wigner9j(j1, j2, j12, j3, j4, j34, j13, j24, j)[source]
+class sympy.physics.quantum.cg.Wigner9j(j1, j2, j12, j3, j4, j34, j13, j24, j)[source]

Class for the Wigner-9j symbols

See also

@@ -937,7 +937,7 @@
Documentation Version
-sympy.physics.quantum.cg.cg_simp(e)[source]
+sympy.physics.quantum.cg.cg_simp(e)[source]

Simplify and combine CG coefficients.

Explanation

This function uses various symmetry and properties of sums and @@ -1008,7 +1008,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/circuitplot.html b/dev/modules/physics/quantum/circuitplot.html index 417f475cfdc..8fdc934f33b 100644 --- a/dev/modules/physics/quantum/circuitplot.html +++ b/dev/modules/physics/quantum/circuitplot.html @@ -816,7 +816,7 @@
Documentation Version
-class sympy.physics.quantum.circuitplot.CircuitPlot(c, nqubits, **kwargs)[source]
+class sympy.physics.quantum.circuitplot.CircuitPlot(c, nqubits, **kwargs)[source]

A class for managing a circuit plot.

@@ -828,43 +828,43 @@
Documentation Version
max_wire,
-)[source] +)[source]

Draw a vertical control line.

-control_point(gate_idx, wire_idx)[source]
+control_point(gate_idx, wire_idx)[source]

Draw a control point.

-not_point(gate_idx, wire_idx)[source]
+not_point(gate_idx, wire_idx)[source]

Draw a NOT gates as the circle with plus in the middle.

-one_qubit_box(t, gate_idx, wire_idx)[source]
+one_qubit_box(t, gate_idx, wire_idx)[source]

Draw a box for a single qubit gate.

-swap_point(gate_idx, wire_idx)[source]
+swap_point(gate_idx, wire_idx)[source]

Draw a swap point as a cross.

-two_qubit_box(t, gate_idx, wire_idx)[source]
+two_qubit_box(t, gate_idx, wire_idx)[source]

Draw a box for a two qubit gate. Does not work yet.

-update(kwargs)[source]
+update(kwargs)[source]

Load the kwargs into the instance dict.

@@ -872,13 +872,13 @@
Documentation Version
-sympy.physics.quantum.circuitplot.CreateCGate(name, latexname=None)[source]
+sympy.physics.quantum.circuitplot.CreateCGate(name, latexname=None)[source]

Use a lexical closure to make a controlled gate.

-class sympy.physics.quantum.circuitplot.Mx(*args, **kwargs)[source]
+class sympy.physics.quantum.circuitplot.Mx(*args, **kwargs)[source]

Mock-up of an x measurement gate.

This is in circuitplot rather than gate.py because it’s not a real gate, it just draws one.

@@ -886,7 +886,7 @@
Documentation Version
-class sympy.physics.quantum.circuitplot.Mz(*args, **kwargs)[source]
+class sympy.physics.quantum.circuitplot.Mz(*args, **kwargs)[source]

Mock-up of a z measurement gate.

This is in circuitplot rather than gate.py because it’s not a real gate, it just draws one.

@@ -894,7 +894,7 @@
Documentation Version
-sympy.physics.quantum.circuitplot.circuit_plot(c, nqubits, **kwargs)[source]
+sympy.physics.quantum.circuitplot.circuit_plot(c, nqubits, **kwargs)[source]

Draw the circuit diagram for the circuit with nqubits.

Parameters:
@@ -913,7 +913,7 @@
Documentation Version
-sympy.physics.quantum.circuitplot.labeller(n, symbol='q')[source]
+sympy.physics.quantum.circuitplot.labeller(n, symbol='q')[source]

Autogenerate labels for wires of quantum circuits.

Parameters:
@@ -971,7 +971,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/commutator.html b/dev/modules/physics/quantum/commutator.html index b5ae6a4839b..b05137ca2f5 100644 --- a/dev/modules/physics/quantum/commutator.html +++ b/dev/modules/physics/quantum/commutator.html @@ -803,7 +803,7 @@
Documentation Version

The commutator: [A,B] = A*B - B*A.

-class sympy.physics.quantum.commutator.Commutator(A, B)[source]
+class sympy.physics.quantum.commutator.Commutator(A, B)[source]

The standard commutator, in an unevaluated state.

Parameters:
@@ -878,7 +878,7 @@
Documentation Version
-doit(**hints)[source]
+doit(**hints)[source]

Evaluate commutator

@@ -921,7 +921,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/constants.html b/dev/modules/physics/quantum/constants.html index 93399aad41c..f4bb0aa4f66 100644 --- a/dev/modules/physics/quantum/constants.html +++ b/dev/modules/physics/quantum/constants.html @@ -803,7 +803,7 @@
Documentation Version

Constants (like hbar) related to quantum mechanics.

-class sympy.physics.quantum.constants.HBar[source]
+class sympy.physics.quantum.constants.HBar[source]

Reduced Plank’s constant in numerical and symbolic form [R755].

Examples

>>> from sympy.physics.quantum.constants import hbar
@@ -858,7 +858,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/dagger.html b/dev/modules/physics/quantum/dagger.html index 555fb0eb060..8d1fac23295 100644 --- a/dev/modules/physics/quantum/dagger.html +++ b/dev/modules/physics/quantum/dagger.html @@ -803,7 +803,7 @@
Documentation Version

Hermitian conjugation.

-class sympy.physics.quantum.dagger.Dagger(arg)[source]
+class sympy.physics.quantum.dagger.Dagger(arg)[source]

General Hermitian conjugate operation.

Parameters:
@@ -917,7 +917,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/gate.html b/dev/modules/physics/quantum/gate.html index a257f82ff28..8a099657176 100644 --- a/dev/modules/physics/quantum/gate.html +++ b/dev/modules/physics/quantum/gate.html @@ -814,7 +814,7 @@
Documentation Version
-class sympy.physics.quantum.gate.CGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.CGate(*args, **kwargs)[source]

A general unitary gate with control qubits.

A general control gate applies a target gate to a set of targets if all of the control qubits have a particular values (set by @@ -837,13 +837,13 @@

Documentation Version
-decompose(**options)[source]
+decompose(**options)[source]

Decompose the controlled gate into CNOT and single qubits gates.

-eval_controls(qubit)[source]
+eval_controls(qubit)[source]

Return True/False to indicate if the controls are satisfied.

@@ -869,7 +869,7 @@
Documentation Version
-plot_gate(circ_plot, gate_idx)[source]
+plot_gate(circ_plot, gate_idx)[source]

Plot the controlled gate. If simplify_cgate is true, simplify C-X and C-Z gates into their more familiar forms.

@@ -884,20 +884,20 @@
Documentation Version
-class sympy.physics.quantum.gate.CGateS(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.CGateS(*args, **kwargs)[source]

Version of CGate that allows gate simplifications. I.e. cnot looks like an oplus, cphase has dots, etc.

-sympy.physics.quantum.gate.CNOT[source]
+sympy.physics.quantum.gate.CNOT[source]

alias of CNotGate

-class sympy.physics.quantum.gate.CNotGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.CNotGate(*args, **kwargs)[source]

Two qubit controlled-NOT.

This gate performs the NOT or X gate on the target qubit if the control qubits all have the value 1.

@@ -946,7 +946,7 @@
Documentation Version
-class sympy.physics.quantum.gate.Gate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.Gate(*args, **kwargs)[source]

Non-controlled unitary gate operator that acts on qubits.

This is a general abstract gate that needs to be subclassed to do anything useful.

@@ -960,7 +960,7 @@
Documentation Version
-get_target_matrix(format='sympy')[source]
+get_target_matrix(format='sympy')[source]

The matrix representation of the target part of the gate.

Parameters:
@@ -996,13 +996,13 @@
Documentation Version
-sympy.physics.quantum.gate.H[source]
+sympy.physics.quantum.gate.H[source]

alias of HadamardGate

-class sympy.physics.quantum.gate.HadamardGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.HadamardGate(*args, **kwargs)[source]

The single qubit Hadamard gate.

Parameters:
@@ -1029,7 +1029,7 @@
Documentation Version
-class sympy.physics.quantum.gate.IdentityGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.IdentityGate(*args, **kwargs)[source]

The single qubit identity gate.

Parameters:
@@ -1043,19 +1043,19 @@
Documentation Version
-class sympy.physics.quantum.gate.OneQubitGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.OneQubitGate(*args, **kwargs)[source]

A single qubit unitary gate base class.

-sympy.physics.quantum.gate.Phase[source]
+sympy.physics.quantum.gate.Phase[source]

alias of PhaseGate

-class sympy.physics.quantum.gate.PhaseGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.PhaseGate(*args, **kwargs)[source]

The single qubit phase, or S, gate.

This gate rotates the phase of the state by pi/2 if the state is |1> and does nothing if the state is |0>.

@@ -1071,19 +1071,19 @@
Documentation Version
-sympy.physics.quantum.gate.S[source]
+sympy.physics.quantum.gate.S[source]

alias of PhaseGate

-sympy.physics.quantum.gate.SWAP[source]
+sympy.physics.quantum.gate.SWAP[source]

alias of SwapGate

-class sympy.physics.quantum.gate.SwapGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.SwapGate(*args, **kwargs)[source]

Two qubit SWAP gate.

This gate swap the values of the two qubits.

@@ -1096,7 +1096,7 @@
Documentation Version
-decompose(**options)[source]
+decompose(**options)[source]

Decompose the SWAP gate into CNOT gates.

@@ -1104,13 +1104,13 @@
Documentation Version
-sympy.physics.quantum.gate.T[source]
+sympy.physics.quantum.gate.T[source]

alias of TGate

-class sympy.physics.quantum.gate.TGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.TGate(*args, **kwargs)[source]

The single qubit pi/8 gate.

This gate rotates the phase of the state by pi/4 if the state is |1> and does nothing if the state is |0>.

@@ -1126,13 +1126,13 @@
Documentation Version
-class sympy.physics.quantum.gate.TwoQubitGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.TwoQubitGate(*args, **kwargs)[source]

A two qubit unitary gate base class.

-class sympy.physics.quantum.gate.UGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.UGate(*args, **kwargs)[source]

General gate specified by a set of targets and a target matrix.

Parameters:
@@ -1146,7 +1146,7 @@
Documentation Version
-get_target_matrix(format='sympy')[source]
+get_target_matrix(format='sympy')[source]

The matrix rep. of the target part of the gate.

Parameters:
@@ -1168,13 +1168,13 @@
Documentation Version
-sympy.physics.quantum.gate.X[source]
+sympy.physics.quantum.gate.X[source]

alias of XGate

-class sympy.physics.quantum.gate.XGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.XGate(*args, **kwargs)[source]

The single qubit X, or NOT, gate.

Parameters:
@@ -1188,13 +1188,13 @@
Documentation Version
-sympy.physics.quantum.gate.Y[source]
+sympy.physics.quantum.gate.Y[source]

alias of YGate

-class sympy.physics.quantum.gate.YGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.YGate(*args, **kwargs)[source]

The single qubit Y gate.

Parameters:
@@ -1208,13 +1208,13 @@
Documentation Version
-sympy.physics.quantum.gate.Z[source]
+sympy.physics.quantum.gate.Z[source]

alias of ZGate

-class sympy.physics.quantum.gate.ZGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.ZGate(*args, **kwargs)[source]

The single qubit Z gate.

Parameters:
@@ -1228,7 +1228,7 @@
Documentation Version
-sympy.physics.quantum.gate.gate_simp(circuit)[source]
+sympy.physics.quantum.gate.gate_simp(circuit)[source]

Simplifies gates symbolically

It first sorts gates using gate_sort. It then applies basic simplification rules to the circuit, e.g., XGate**2 = Identity

@@ -1236,7 +1236,7 @@
Documentation Version
-sympy.physics.quantum.gate.gate_sort(circuit)[source]
+sympy.physics.quantum.gate.gate_sort(circuit)[source]

Sorts the gates while keeping track of commutation relations

This function uses a bubble sort to rearrange the order of gate application. Keeps track of Quantum computations special commutation @@ -1247,7 +1247,7 @@

Documentation Version
-sympy.physics.quantum.gate.normalized(normalize)[source]
+sympy.physics.quantum.gate.normalized(normalize)[source]

Set flag controlling normalization of Hadamard gates by \(1/\sqrt{2}\).

This is a global setting that can be used to simplify the look of various expressions, by leaving off the leading \(1/\sqrt{2}\) of the Hadamard gate.

@@ -1280,7 +1280,7 @@
Documentation Version
<class 'sympy.physics.quantum.gate.SwapGate'>),
-)[source] +)[source]

Return a random circuit of ngates and nqubits.

This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP) gates.

@@ -1341,7 +1341,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/grover.html b/dev/modules/physics/quantum/grover.html index 4da7729c751..ee284e6ca5a 100644 --- a/dev/modules/physics/quantum/grover.html +++ b/dev/modules/physics/quantum/grover.html @@ -810,7 +810,7 @@
Documentation Version
-class sympy.physics.quantum.grover.OracleGate(*args, **kwargs)[source]
+class sympy.physics.quantum.grover.OracleGate(*args, **kwargs)[source]

A black box gate.

The gate marks the desired qubits of an unknown function by flipping the sign of the qubits. The unknown function returns true when it @@ -856,7 +856,7 @@

Documentation Version
-class sympy.physics.quantum.grover.WGate(*args, **kwargs)[source]
+class sympy.physics.quantum.grover.WGate(*args, **kwargs)[source]

General n qubit W Gate in Grover’s algorithm.

The gate performs the operation 2|phi><phi| - 1 on some qubits. |phi> = (tensor product of n Hadamards)*(|0> with n qubits)

@@ -872,7 +872,7 @@
Documentation Version
-sympy.physics.quantum.grover.apply_grover(oracle, nqubits, iterations=None)[source]
+sympy.physics.quantum.grover.apply_grover(oracle, nqubits, iterations=None)[source]

Applies grover’s algorithm.

Parameters:
@@ -903,7 +903,7 @@
Documentation Version
-sympy.physics.quantum.grover.grover_iteration(qstate, oracle)[source]
+sympy.physics.quantum.grover.grover_iteration(qstate, oracle)[source]

Applies one application of the Oracle and W Gate, WV.

Parameters:
@@ -939,7 +939,7 @@
Documentation Version
-sympy.physics.quantum.grover.superposition_basis(nqubits)[source]
+sympy.physics.quantum.grover.superposition_basis(nqubits)[source]

Creates an equal superposition of the computational basis.

Parameters:
@@ -1001,7 +1001,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/hilbert.html b/dev/modules/physics/quantum/hilbert.html index 83e796d1996..54270ed5517 100644 --- a/dev/modules/physics/quantum/hilbert.html +++ b/dev/modules/physics/quantum/hilbert.html @@ -806,7 +806,7 @@
Documentation Version
* Matt Curry

-class sympy.physics.quantum.hilbert.ComplexSpace(dimension)[source]
+class sympy.physics.quantum.hilbert.ComplexSpace(dimension)[source]

Finite dimensional Hilbert space of complex vectors.

The elements of this Hilbert space are n-dimensional complex valued vectors with the usual inner product that takes the complex conjugate @@ -837,7 +837,7 @@

Documentation Version
-class sympy.physics.quantum.hilbert.DirectSumHilbertSpace(*args)[source]
+class sympy.physics.quantum.hilbert.DirectSumHilbertSpace(*args)[source]

A direct sum of Hilbert spaces [R758].

This class uses the + operator to represent direct sums between different Hilbert spaces.

@@ -869,7 +869,7 @@
Documentation Version
-classmethod eval(args)[source]
+classmethod eval(args)[source]

Evaluates the direct product.

@@ -883,7 +883,7 @@
Documentation Version
-class sympy.physics.quantum.hilbert.FockSpace[source]
+class sympy.physics.quantum.hilbert.FockSpace[source]

The Hilbert space for second quantization.

Technically, this Hilbert space is a infinite direct sum of direct products of single particle Hilbert spaces [R759]. This is a mess, so we have @@ -909,7 +909,7 @@

Documentation Version
-class sympy.physics.quantum.hilbert.HilbertSpace[source]
+class sympy.physics.quantum.hilbert.HilbertSpace[source]

An abstract Hilbert space for quantum mechanics.

In short, a Hilbert space is an abstract vector space that is complete with inner products defined [R760].

@@ -938,7 +938,7 @@
Documentation Version
-class sympy.physics.quantum.hilbert.L2(interval)[source]
+class sympy.physics.quantum.hilbert.L2(interval)[source]

The Hilbert space of square integrable functions on an interval.

An L2 object takes in a single SymPy Interval argument which represents the interval its functions (vectors) are defined on.

@@ -958,7 +958,7 @@
Documentation Version
-class sympy.physics.quantum.hilbert.TensorPowerHilbertSpace(*args)[source]
+class sympy.physics.quantum.hilbert.TensorPowerHilbertSpace(*args)[source]

An exponentiated Hilbert space [R761].

Tensor powers (repeated tensor products) are represented by the operator ** Identical Hilbert spaces that are multiplied together @@ -1000,7 +1000,7 @@

Documentation Version
-class sympy.physics.quantum.hilbert.TensorProductHilbertSpace(*args)[source]
+class sympy.physics.quantum.hilbert.TensorProductHilbertSpace(*args)[source]

A tensor product of Hilbert spaces [R762].

The tensor product between Hilbert spaces is represented by the operator * Products of the same Hilbert space will be combined into @@ -1045,7 +1045,7 @@

Documentation Version
-classmethod eval(args)[source]
+classmethod eval(args)[source]

Evaluates the direct product.

@@ -1094,7 +1094,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/index.html b/dev/modules/physics/quantum/index.html index dcbfe4f7af9..688c6ceb600 100644 --- a/dev/modules/physics/quantum/index.html +++ b/dev/modules/physics/quantum/index.html @@ -891,7 +891,7 @@

Analytic SolutionsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/quantum/innerproduct.html b/dev/modules/physics/quantum/innerproduct.html index 2bd1e5cf406..4403bce2617 100644 --- a/dev/modules/physics/quantum/innerproduct.html +++ b/dev/modules/physics/quantum/innerproduct.html @@ -803,7 +803,7 @@
Documentation Version

Symbolic inner product.

-class sympy.physics.quantum.innerproduct.InnerProduct(bra, ket)[source]
+class sympy.physics.quantum.innerproduct.InnerProduct(bra, ket)[source]

An unevaluated inner product between a Bra and a Ket [1].

Parameters:
@@ -897,7 +897,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/operator.html b/dev/modules/physics/quantum/operator.html index 665b93a6382..5045e3f2b01 100644 --- a/dev/modules/physics/quantum/operator.html +++ b/dev/modules/physics/quantum/operator.html @@ -811,7 +811,7 @@
Documentation Version
-class sympy.physics.quantum.operator.DifferentialOperator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.DifferentialOperator(*args, **kwargs)[source]

An operator for representing the differential operator, i.e. d/dx

It is initialized by passing two arguments. The first is an arbitrary expression that involves a function, such as Derivative(f(x), x). The @@ -925,7 +925,7 @@

Documentation Version
-class sympy.physics.quantum.operator.HermitianOperator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.HermitianOperator(*args, **kwargs)[source]

A Hermitian operator that satisfies H == Dagger(H).

Parameters:
@@ -947,7 +947,7 @@
Documentation Version
-class sympy.physics.quantum.operator.IdentityOperator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.IdentityOperator(*args, **kwargs)[source]

An identity operator I that satisfies op * I == I * op == op for any operator op.

@@ -969,7 +969,7 @@
Documentation Version
-class sympy.physics.quantum.operator.Operator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.Operator(*args, **kwargs)[source]

Base class for non-commuting quantum operators.

An operator maps between quantum states [R764]. In quantum mechanics, observables (including, but not limited to, measured physical values) are @@ -1044,7 +1044,7 @@

Documentation Version
-class sympy.physics.quantum.operator.OuterProduct(*args, **old_assumptions)[source]
+class sympy.physics.quantum.operator.OuterProduct(*args, **old_assumptions)[source]

An unevaluated outer product between a ket and bra.

This constructs an outer product between any subclass of KetBase and BraBase as |a><b|. An OuterProduct inherits from Operator as they act as @@ -1124,7 +1124,7 @@

Documentation Version
-class sympy.physics.quantum.operator.UnitaryOperator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.UnitaryOperator(*args, **kwargs)[source]

A unitary operator that satisfies U*Dagger(U) == 1.

Parameters:
@@ -1181,7 +1181,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/operatorset.html b/dev/modules/physics/quantum/operatorset.html index d0ed7718a5d..81872881fa5 100644 --- a/dev/modules/physics/quantum/operatorset.html +++ b/dev/modules/physics/quantum/operatorset.html @@ -813,7 +813,7 @@
Documentation Version
- Update the dictionary with a complete list of state-operator pairs

-sympy.physics.quantum.operatorset.operators_to_state(operators, **options)[source]
+sympy.physics.quantum.operatorset.operators_to_state(operators, **options)[source]

Returns the eigenstate of the given operator or set of operators

A global function for mapping operator classes to their associated states. It takes either an Operator or a set of operators and @@ -864,7 +864,7 @@

Documentation Version
-sympy.physics.quantum.operatorset.state_to_operators(state, **options)[source]
+sympy.physics.quantum.operatorset.state_to_operators(state, **options)[source]

Returns the operator or set of operators corresponding to the given eigenstate

A global function for mapping state classes to their associated @@ -955,7 +955,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/piab.html b/dev/modules/physics/quantum/piab.html index 0103dbd3ca9..29eaeab7780 100644 --- a/dev/modules/physics/quantum/piab.html +++ b/dev/modules/physics/quantum/piab.html @@ -803,19 +803,19 @@
Documentation Version

1D quantum particle in a box.

-class sympy.physics.quantum.piab.PIABBra(*args, **kwargs)[source]
+class sympy.physics.quantum.piab.PIABBra(*args, **kwargs)[source]

Particle in a box eigenbra.

-class sympy.physics.quantum.piab.PIABHamiltonian(*args, **kwargs)[source]
+class sympy.physics.quantum.piab.PIABHamiltonian(*args, **kwargs)[source]

Particle in a box Hamiltonian operator.

-class sympy.physics.quantum.piab.PIABKet(*args, **kwargs)[source]
+class sympy.physics.quantum.piab.PIABKet(*args, **kwargs)[source]

Particle in a box eigenket.

@@ -856,7 +856,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/qapply.html b/dev/modules/physics/quantum/qapply.html index c8f717d59bd..f335a0bae21 100644 --- a/dev/modules/physics/quantum/qapply.html +++ b/dev/modules/physics/quantum/qapply.html @@ -805,7 +805,7 @@
Documentation Version
* Sometimes the final result needs to be expanded, we should do this by hand.

-sympy.physics.quantum.qapply.qapply(e, **options)[source]
+sympy.physics.quantum.qapply.qapply(e, **options)[source]

Apply operators to states in a quantum expression.

Parameters:
@@ -888,7 +888,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/qft.html b/dev/modules/physics/quantum/qft.html index 53d454e375e..430410c9a3a 100644 --- a/dev/modules/physics/quantum/qft.html +++ b/dev/modules/physics/quantum/qft.html @@ -813,11 +813,11 @@
Documentation Version
-class sympy.physics.quantum.qft.IQFT(*args, **kwargs)[source]
+class sympy.physics.quantum.qft.IQFT(*args, **kwargs)[source]

The inverse quantum Fourier transform.

-decompose()[source]
+decompose()[source]

Decomposes IQFT into elementary gates.

@@ -825,11 +825,11 @@
Documentation Version
-class sympy.physics.quantum.qft.QFT(*args, **kwargs)[source]
+class sympy.physics.quantum.qft.QFT(*args, **kwargs)[source]

The forward quantum Fourier transform.

-decompose()[source]
+decompose()[source]

Decomposes QFT into elementary gates.

@@ -837,13 +837,13 @@
Documentation Version
-sympy.physics.quantum.qft.Rk[source]
+sympy.physics.quantum.qft.Rk[source]

alias of RkGate

-class sympy.physics.quantum.qft.RkGate(*args)[source]
+class sympy.physics.quantum.qft.RkGate(*args)[source]

This is the R_k gate of the QTF.

@@ -884,7 +884,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/qubit.html b/dev/modules/physics/quantum/qubit.html index 7857136a21a..07f9de7c65a 100644 --- a/dev/modules/physics/quantum/qubit.html +++ b/dev/modules/physics/quantum/qubit.html @@ -807,7 +807,7 @@
Documentation Version
* Update tests.

-class sympy.physics.quantum.qubit.IntQubit(*args, **kwargs)[source]
+class sympy.physics.quantum.qubit.IntQubit(*args, **kwargs)[source]

A qubit ket that store integers as binary numbers in qubit values.

The differences between this class and Qubit are:

    @@ -882,13 +882,13 @@
    Documentation Version
    -class sympy.physics.quantum.qubit.IntQubitBra(*args, **kwargs)[source]
    +class sympy.physics.quantum.qubit.IntQubitBra(*args, **kwargs)[source]

    A qubit bra that store integers as binary numbers in qubit values.

    -class sympy.physics.quantum.qubit.Qubit(*args, **kwargs)[source]
    +class sympy.physics.quantum.qubit.Qubit(*args, **kwargs)[source]

    A multi-qubit ket in the computational (z) basis.

    We use the normal convention that the least significant qubit is on the right, so |00001> has a 1 in the least significant qubit.

    @@ -945,7 +945,7 @@
    Documentation Version
    -class sympy.physics.quantum.qubit.QubitBra(*args, **kwargs)[source]
    +class sympy.physics.quantum.qubit.QubitBra(*args, **kwargs)[source]

    A multi-qubit bra in the computational (z) basis.

    We use the normal convention that the least significant qubit is on the right, so |00001> has a 1 in the least significant qubit.

    @@ -968,7 +968,7 @@
    Documentation Version
    -sympy.physics.quantum.qubit.matrix_to_density(mat)[source]
    +sympy.physics.quantum.qubit.matrix_to_density(mat)[source]

    Works by finding the eigenvectors and eigenvalues of the matrix. We know we can decompose rho by doing: sum(EigenVal*|Eigenvect><Eigenvect|)

    @@ -976,7 +976,7 @@
    Documentation Version
    -sympy.physics.quantum.qubit.matrix_to_qubit(matrix)[source]
    +sympy.physics.quantum.qubit.matrix_to_qubit(matrix)[source]

    Convert from the matrix repr. to a sum of Qubit objects.

    Parameters:
    @@ -1000,7 +1000,7 @@
    Documentation Version
    -sympy.physics.quantum.qubit.measure_all(qubit, format='sympy', normalize=True)[source]
    +sympy.physics.quantum.qubit.measure_all(qubit, format='sympy', normalize=True)[source]

    Perform an ensemble measurement of all qubits.

    Parameters:
    @@ -1041,7 +1041,7 @@
    Documentation Version
    -sympy.physics.quantum.qubit.measure_all_oneshot(qubit, format='sympy')[source]
    +sympy.physics.quantum.qubit.measure_all_oneshot(qubit, format='sympy')[source]

    Perform a oneshot ensemble measurement on all qubits.

    A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities @@ -1082,7 +1082,7 @@

    Documentation Version
    normalize=True,
    -)[source] +)[source]

    Perform a partial ensemble measure on the specified qubits.

    Parameters:
    @@ -1135,7 +1135,7 @@
    Documentation Version
    format='sympy',
    -)[source] +)[source]

    Perform a partial oneshot measurement on the specified qubits.

    A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities @@ -1171,7 +1171,7 @@

    Documentation Version
    -sympy.physics.quantum.qubit.qubit_to_matrix(qubit, format='sympy')[source]
    +sympy.physics.quantum.qubit.qubit_to_matrix(qubit, format='sympy')[source]

    Converts an Add/Mul of Qubit objects into it’s matrix representation

    This function is the inverse of matrix_to_qubit and is a shorthand for represent(qubit).

    @@ -1214,7 +1214,7 @@
    Documentation Version
    Furo
    - Last updated on Aug 03, 2024
    + Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/represent.html b/dev/modules/physics/quantum/represent.html index 46fd13805aa..0d516eb4ab3 100644 --- a/dev/modules/physics/quantum/represent.html +++ b/dev/modules/physics/quantum/represent.html @@ -808,7 +808,7 @@
Documentation Version
-sympy.physics.quantum.represent.enumerate_states(*args, **options)[source]
+sympy.physics.quantum.represent.enumerate_states(*args, **options)[source]

Returns instances of the given state with dummy indices appended

Operates in two different modes:

    @@ -852,7 +852,7 @@
    Documentation Version
    **options,
-)[source] +)[source]

Returns a basis state instance corresponding to the basis specified in options=s. If no basis is specified, the function tries to form a default basis state of the given expression.

@@ -899,7 +899,7 @@
Documentation Version
-sympy.physics.quantum.represent.integrate_result(orig_expr, result, **options)[source]
+sympy.physics.quantum.represent.integrate_result(orig_expr, result, **options)[source]

Returns the result of integrating over any unities (|x><x|) in the given expression. Intended for integrating over the result of representations in continuous bases.

@@ -941,7 +941,7 @@
Documentation Version
-sympy.physics.quantum.represent.rep_expectation(expr, **options)[source]
+sympy.physics.quantum.represent.rep_expectation(expr, **options)[source]

Returns an <x'|A|x> type representation for the given operator.

Parameters:
@@ -966,7 +966,7 @@
Documentation Version
-sympy.physics.quantum.represent.rep_innerproduct(expr, **options)[source]
+sympy.physics.quantum.represent.rep_innerproduct(expr, **options)[source]

Returns an innerproduct like representation (e.g. <x'|x>) for the given state.

Attempts to calculate inner product with a bra from the specified @@ -994,7 +994,7 @@

Documentation Version
-sympy.physics.quantum.represent.represent(expr, **options)[source]
+sympy.physics.quantum.represent.represent(expr, **options)[source]

Represent the quantum expression in the given basis.

In quantum mechanics abstract states and operators can be represented in various basis sets. Under this operation the follow transforms happen:

@@ -1119,7 +1119,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/shor.html b/dev/modules/physics/quantum/shor.html index 14c7bb0a1bf..1cfd5091341 100644 --- a/dev/modules/physics/quantum/shor.html +++ b/dev/modules/physics/quantum/shor.html @@ -809,7 +809,7 @@
Documentation Version
-class sympy.physics.quantum.shor.CMod(*args, **kwargs)[source]
+class sympy.physics.quantum.shor.CMod(*args, **kwargs)[source]

A controlled mod gate.

This is black box controlled Mod function for use by shor’s algorithm. TODO: implement a decompose property that returns how to do this in terms @@ -836,7 +836,7 @@

Documentation Version
-sympy.physics.quantum.shor.period_find(a, N)[source]
+sympy.physics.quantum.shor.period_find(a, N)[source]

Finds the period of a in modulo N arithmetic

This is quantum part of Shor’s algorithm. It takes two registers, puts first in superposition of states with Hadamards so: |k>|0> @@ -846,7 +846,7 @@

Documentation Version
-sympy.physics.quantum.shor.shor(N)[source]
+sympy.physics.quantum.shor.shor(N)[source]

This function implements Shor’s factoring algorithm on the Integer N

The algorithm starts by picking a random number (a) and seeing if it is coprime with N. If it is not, then the gcd of the two numbers is a factor @@ -893,7 +893,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/spin.html b/dev/modules/physics/quantum/spin.html index 5fdfa45b128..77173fd5e54 100644 --- a/dev/modules/physics/quantum/spin.html +++ b/dev/modules/physics/quantum/spin.html @@ -803,13 +803,13 @@
Documentation Version

Quantum mechanical angular momemtum.

-class sympy.physics.quantum.spin.J2Op(*args, **kwargs)[source]
+class sympy.physics.quantum.spin.J2Op(*args, **kwargs)[source]

The J^2 operator.

-class sympy.physics.quantum.spin.JxBra(j, m)[source]
+class sympy.physics.quantum.spin.JxBra(j, m)[source]

Eigenbra of Jx.

See JzKet for the usage of spin eigenstates.

@@ -823,7 +823,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JxBraCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JxBraCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenbra of Jx.

See JzKetCoupled for the usage of coupled spin eigenstates.

@@ -837,7 +837,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JxKet(j, m)[source]
+class sympy.physics.quantum.spin.JxKet(j, m)[source]

Eigenket of Jx.

See JzKet for the usage of spin eigenstates.

@@ -851,7 +851,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JxKetCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JxKetCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenket of Jx.

See JzKetCoupled for the usage of coupled spin eigenstates.

@@ -865,7 +865,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JyBra(j, m)[source]
+class sympy.physics.quantum.spin.JyBra(j, m)[source]

Eigenbra of Jy.

See JzKet for the usage of spin eigenstates.

@@ -879,7 +879,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JyBraCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JyBraCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenbra of Jy.

See JzKetCoupled for the usage of coupled spin eigenstates.

@@ -893,7 +893,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JyKet(j, m)[source]
+class sympy.physics.quantum.spin.JyKet(j, m)[source]

Eigenket of Jy.

See JzKet for the usage of spin eigenstates.

@@ -907,7 +907,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JyKetCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JyKetCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenket of Jy.

See JzKetCoupled for the usage of coupled spin eigenstates.

@@ -921,7 +921,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JzBra(j, m)[source]
+class sympy.physics.quantum.spin.JzBra(j, m)[source]

Eigenbra of Jz.

See the JzKet for the usage of spin eigenstates.

@@ -935,7 +935,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JzBraCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JzBraCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenbra of Jz.

See the JzKetCoupled for the usage of coupled spin eigenstates.

@@ -949,7 +949,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JzKet(j, m)[source]
+class sympy.physics.quantum.spin.JzKet(j, m)[source]

Eigenket of Jz.

Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin @@ -1065,7 +1065,7 @@

Documentation Version
-class sympy.physics.quantum.spin.JzKetCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JzKetCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenket of Jz

Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces.

@@ -1183,13 +1183,13 @@
Documentation Version
-class sympy.physics.quantum.spin.JzOp(*args, **kwargs)[source]
+class sympy.physics.quantum.spin.JzOp(*args, **kwargs)[source]

The Jz operator.

-class sympy.physics.quantum.spin.Rotation(*args, **kwargs)[source]
+class sympy.physics.quantum.spin.Rotation(*args, **kwargs)[source]

Wigner D operator in terms of Euler angles.

Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate @@ -1251,7 +1251,7 @@

Documentation Version
-classmethod D(j, m, mp, alpha, beta, gamma)[source]
+classmethod D(j, m, mp, alpha, beta, gamma)[source]

Wigner D-function.

Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters.

@@ -1304,7 +1304,7 @@
Documentation Version
-classmethod d(j, m, mp, beta)[source]
+classmethod d(j, m, mp, beta)[source]

Wigner small-d function.

Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters with the alpha and gamma angles @@ -1352,7 +1352,7 @@

Documentation Version
-class sympy.physics.quantum.spin.WignerD(*args, **hints)[source]
+class sympy.physics.quantum.spin.WignerD(*args, **hints)[source]

Wigner-D function

The Wigner D-function gives the matrix elements of the rotation operator in the jm-representation. For the Euler angles \(\alpha\), @@ -1445,7 +1445,7 @@

Documentation Version
-sympy.physics.quantum.spin.couple(expr, jcoupling_list=None)[source]
+sympy.physics.quantum.spin.couple(expr, jcoupling_list=None)[source]

Couple a tensor product of spin states

This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It @@ -1504,7 +1504,7 @@

Documentation Version
-sympy.physics.quantum.spin.uncouple(expr, jn=None, jcoupling_list=None)[source]
+sympy.physics.quantum.spin.uncouple(expr, jn=None, jcoupling_list=None)[source]

Uncouple a coupled spin state

Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin @@ -1610,7 +1610,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/state.html b/dev/modules/physics/quantum/state.html index 81c54706d12..173472cb91f 100644 --- a/dev/modules/physics/quantum/state.html +++ b/dev/modules/physics/quantum/state.html @@ -803,7 +803,7 @@
Documentation Version

Dirac notation for states.

-class sympy.physics.quantum.state.Bra(*args, **kwargs)[source]
+class sympy.physics.quantum.state.Bra(*args, **kwargs)[source]

A general time-independent Bra in quantum mechanics.

Inherits from State and BraBase. A Bra is the dual of a Ket [R769]. This class and its subclasses will be the main classes that users will use for @@ -863,7 +863,7 @@

Documentation Version
-class sympy.physics.quantum.state.BraBase(*args, **kwargs)[source]
+class sympy.physics.quantum.state.BraBase(*args, **kwargs)[source]

Base class for Bras.

This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, @@ -872,7 +872,7 @@

Documentation Version
-class sympy.physics.quantum.state.Ket(*args, **kwargs)[source]
+class sympy.physics.quantum.state.Ket(*args, **kwargs)[source]

A general time-independent Ket in quantum mechanics.

Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class @@ -936,7 +936,7 @@

Documentation Version
-class sympy.physics.quantum.state.KetBase(*args, **kwargs)[source]
+class sympy.physics.quantum.state.KetBase(*args, **kwargs)[source]

Base class for Kets.

This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead @@ -945,13 +945,13 @@

Documentation Version
-class sympy.physics.quantum.state.OrthogonalBra(*args, **kwargs)[source]
+class sympy.physics.quantum.state.OrthogonalBra(*args, **kwargs)[source]

Orthogonal Bra in quantum mechanics.

-class sympy.physics.quantum.state.OrthogonalKet(*args, **kwargs)[source]
+class sympy.physics.quantum.state.OrthogonalKet(*args, **kwargs)[source]

Orthogonal Ket in quantum mechanics.

The inner product of two states with different labels will give zero, states with the same label will give one.

@@ -969,19 +969,19 @@
Documentation Version
-class sympy.physics.quantum.state.OrthogonalState(*args, **kwargs)[source]
+class sympy.physics.quantum.state.OrthogonalState(*args, **kwargs)[source]

General abstract quantum state used as a base class for Ket and Bra.

-class sympy.physics.quantum.state.State(*args, **kwargs)[source]
+class sympy.physics.quantum.state.State(*args, **kwargs)[source]

General abstract quantum state used as a base class for Ket and Bra.

-class sympy.physics.quantum.state.StateBase(*args, **kwargs)[source]
+class sympy.physics.quantum.state.StateBase(*args, **kwargs)[source]

Abstract base class for general abstract states in quantum mechanics.

All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint @@ -996,7 +996,7 @@

Documentation Version
-classmethod dual_class()[source]
+classmethod dual_class()[source]

Return the class used to construct the dual.

@@ -1010,7 +1010,7 @@
Documentation Version
-class sympy.physics.quantum.state.TimeDepBra(*args, **kwargs)[source]
+class sympy.physics.quantum.state.TimeDepBra(*args, **kwargs)[source]

General time-dependent Bra in quantum mechanics.

This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra.

@@ -1043,7 +1043,7 @@
Documentation Version
-class sympy.physics.quantum.state.TimeDepKet(*args, **kwargs)[source]
+class sympy.physics.quantum.state.TimeDepKet(*args, **kwargs)[source]

General time-dependent Ket in quantum mechanics.

This inherits from TimeDepState and KetBase and is the main class that should be used for Kets that vary with time. Its dual is a @@ -1083,7 +1083,7 @@

Documentation Version
-class sympy.physics.quantum.state.TimeDepState(*args, **kwargs)[source]
+class sympy.physics.quantum.state.TimeDepState(*args, **kwargs)[source]

Base class for a general time-dependent quantum state.

This class is used as a base class for any time-dependent state. The main difference between this class and the time-independent state is that this @@ -1115,7 +1115,7 @@

Documentation Version
-class sympy.physics.quantum.state.Wavefunction(*args)[source]
+class sympy.physics.quantum.state.Wavefunction(*args)[source]

Class for representations in continuous bases

This class takes an expression and coordinates in its constructor. It can be used to easily calculate normalizations and probabilities.

@@ -1285,7 +1285,7 @@
Documentation Version
-normalize()[source]
+normalize()[source]

Return a normalized version of the Wavefunction

Examples

>>> from sympy import symbols, pi
@@ -1304,7 +1304,7 @@ 
Documentation Version
-prob()[source]
+prob()[source]

Return the absolute magnitude of the w.f., \(|\psi(x)|^2\)

Examples

>>> from sympy import symbols, pi
@@ -1377,7 +1377,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/quantum/tensorproduct.html b/dev/modules/physics/quantum/tensorproduct.html index 9e6ca6eba38..f5a08af9732 100644 --- a/dev/modules/physics/quantum/tensorproduct.html +++ b/dev/modules/physics/quantum/tensorproduct.html @@ -803,7 +803,7 @@
Documentation Version

Abstract tensor product.

-class sympy.physics.quantum.tensorproduct.TensorProduct(*args)[source]
+class sympy.physics.quantum.tensorproduct.TensorProduct(*args)[source]

The tensor product of two or more arguments.

For matrices, this uses matrix_tensor_product to compute the Kronecker or tensor product matrix. For other objects a symbolic TensorProduct @@ -872,7 +872,7 @@

Documentation Version
-sympy.physics.quantum.tensorproduct.tensor_product_simp(e, **hints)[source]
+sympy.physics.quantum.tensorproduct.tensor_product_simp(e, **hints)[source]

Try to simplify and combine TensorProducts.

In general this will try to pull expressions inside of TensorProducts. It currently only works for relatively simple cases where the products have @@ -941,7 +941,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/secondquant.html b/dev/modules/physics/secondquant.html index aaed95ce4ea..9c8f8de501d 100644 --- a/dev/modules/physics/secondquant.html +++ b/dev/modules/physics/secondquant.html @@ -805,7 +805,7 @@
Documentation Version
of Many-Particle Systems.”

-class sympy.physics.secondquant.AnnihilateBoson(k)[source]
+class sympy.physics.secondquant.AnnihilateBoson(k)[source]

Bosonic annihilation operator.

Examples

>>> from sympy.physics.secondquant import B
@@ -816,7 +816,7 @@ 
Documentation Version
-apply_operator(state)[source]
+apply_operator(state)[source]

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

Examples

@@ -834,11 +834,11 @@
Documentation Version
-class sympy.physics.secondquant.AnnihilateFermion(k)[source]
+class sympy.physics.secondquant.AnnihilateFermion(k)[source]

Fermionic annihilation operator.

-apply_operator(state)[source]
+apply_operator(state)[source]

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

Examples

@@ -946,7 +946,7 @@
Documentation Version
-class sympy.physics.secondquant.AntiSymmetricTensor(symbol, upper, lower)[source]
+class sympy.physics.secondquant.AntiSymmetricTensor(symbol, upper, lower)[source]

Stores upper and lower indices in separate Tuple’s.

Each group of indices is assumed to be antisymmetric.

Examples

@@ -1016,37 +1016,37 @@
Documentation Version
-sympy.physics.secondquant.B[source]
+sympy.physics.secondquant.B[source]

alias of AnnihilateBoson

-sympy.physics.secondquant.BBra[source]
+sympy.physics.secondquant.BBra[source]

alias of FockStateBosonBra

-sympy.physics.secondquant.BKet[source]
+sympy.physics.secondquant.BKet[source]

alias of FockStateBosonKet

-sympy.physics.secondquant.Bd[source]
+sympy.physics.secondquant.Bd[source]

alias of CreateBoson

-class sympy.physics.secondquant.BosonicBasis[source]
+class sympy.physics.secondquant.BosonicBasis[source]

Base class for a basis set of bosonic Fock states.

-class sympy.physics.secondquant.Commutator(a, b)[source]
+class sympy.physics.secondquant.Commutator(a, b)[source]

The Commutator: [A, B] = A*B - B*A

The arguments are ordered according to .__cmp__()

Examples

@@ -1087,7 +1087,7 @@
Documentation Version
-doit(**hints)[source]
+doit(**hints)[source]

Enables the computation of complex expressions.

Examples

>>> from sympy.physics.secondquant import Commutator, F, Fd
@@ -1103,7 +1103,7 @@ 
Documentation Version
-classmethod eval(a, b)[source]
+classmethod eval(a, b)[source]

The Commutator [A,B] is on canonical form if A < B.

Examples

>>> from sympy.physics.secondquant import Commutator, F, Fd
@@ -1120,11 +1120,11 @@ 
Documentation Version
-class sympy.physics.secondquant.CreateBoson(k)[source]
+class sympy.physics.secondquant.CreateBoson(k)[source]

Bosonic creation operator.

-apply_operator(state)[source]
+apply_operator(state)[source]

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

Examples

@@ -1142,11 +1142,11 @@
Documentation Version
-class sympy.physics.secondquant.CreateFermion(k)[source]
+class sympy.physics.secondquant.CreateFermion(k)[source]

Fermionic creation operator.

-apply_operator(state)[source]
+apply_operator(state)[source]

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

Examples

@@ -1254,7 +1254,7 @@
Documentation Version
-class sympy.physics.secondquant.Dagger(arg)[source]
+class sympy.physics.secondquant.Dagger(arg)[source]

Hermitian conjugate of creation/annihilation operators.

Examples

>>> from sympy import I
@@ -1269,7 +1269,7 @@ 
Documentation Version
-classmethod eval(arg)[source]
+classmethod eval(arg)[source]

Evaluates the Dagger instance.

Examples

>>> from sympy import I
@@ -1289,31 +1289,31 @@ 
Documentation Version
-sympy.physics.secondquant.F[source]
+sympy.physics.secondquant.F[source]

alias of AnnihilateFermion

-sympy.physics.secondquant.FBra[source]
+sympy.physics.secondquant.FBra[source]

alias of FockStateFermionBra

-sympy.physics.secondquant.FKet[source]
+sympy.physics.secondquant.FKet[source]

alias of FockStateFermionKet

-sympy.physics.secondquant.Fd[source]
+sympy.physics.secondquant.Fd[source]

alias of CreateFermion

-class sympy.physics.secondquant.FixedBosonicBasis(n_particles, n_levels)[source]
+class sympy.physics.secondquant.FixedBosonicBasis(n_particles, n_levels)[source]

Fixed particle number basis set.

Examples

>>> from sympy.physics.secondquant import FixedBosonicBasis
@@ -1329,7 +1329,7 @@ 
Documentation Version
-index(state)[source]
+index(state)[source]

Returns the index of state in basis.

Examples

>>> from sympy.physics.secondquant import FixedBosonicBasis
@@ -1342,7 +1342,7 @@ 
Documentation Version
-state(i)[source]
+state(i)[source]

Returns the state that lies at index i of the basis

Examples

>>> from sympy.physics.secondquant import FixedBosonicBasis
@@ -1357,7 +1357,7 @@ 
Documentation Version
-class sympy.physics.secondquant.FockState(occupations)[source]
+class sympy.physics.secondquant.FockState(occupations)[source]

Many particle Fock state with a sequence of occupation numbers.

Anywhere you can have a FockState, you can also have S.Zero. All code must check for this!

@@ -1366,7 +1366,7 @@
Documentation Version
-class sympy.physics.secondquant.FockStateBosonBra(occupations)[source]
+class sympy.physics.secondquant.FockStateBosonBra(occupations)[source]

Describes a collection of BosonBra particles.

Examples

>>> from sympy.physics.secondquant import BBra
@@ -1378,7 +1378,7 @@ 
Documentation Version
-class sympy.physics.secondquant.FockStateBosonKet(occupations)[source]
+class sympy.physics.secondquant.FockStateBosonKet(occupations)[source]

Many particle Fock state with a sequence of occupation numbers.

Occupation numbers can be any integer >= 0.

Examples

@@ -1391,13 +1391,13 @@
Documentation Version
-class sympy.physics.secondquant.FockStateBra(occupations)[source]
+class sympy.physics.secondquant.FockStateBra(occupations)[source]

Representation of a bra.

-class sympy.physics.secondquant.FockStateFermionBra(occupations, fermi_level=0)[source]
+class sympy.physics.secondquant.FockStateFermionBra(occupations, fermi_level=0)[source]

Examples

>>> from sympy.physics.secondquant import FBra
 >>> FBra([1, 2])
@@ -1412,7 +1412,7 @@ 
Documentation Version
-class sympy.physics.secondquant.FockStateFermionKet(occupations, fermi_level=0)[source]
+class sympy.physics.secondquant.FockStateFermionKet(occupations, fermi_level=0)[source]

Many-particle Fock state with a sequence of occupied orbits.

Explanation

Each state can only have one particle, so we choose to store a list of @@ -1431,13 +1431,13 @@

Documentation Version
-class sympy.physics.secondquant.FockStateKet(occupations)[source]
+class sympy.physics.secondquant.FockStateKet(occupations)[source]

Representation of a ket.

-class sympy.physics.secondquant.InnerProduct(bra, ket)[source]
+class sympy.physics.secondquant.InnerProduct(bra, ket)[source]

An unevaluated inner product between a bra and ket.

Explanation

Currently this class just reduces things to a product of @@ -1460,7 +1460,7 @@

Documentation Version
-class sympy.physics.secondquant.KroneckerDelta(i, j, delta_range=None)[source]
+class sympy.physics.secondquant.KroneckerDelta(i, j, delta_range=None)[source]

The discrete, or Kronecker, delta function.

Parameters:
@@ -1511,7 +1511,7 @@
Documentation Version
-classmethod eval(i, j, delta_range=None)[source]
+classmethod eval(i, j, delta_range=None)[source]

Evaluates the discrete delta function.

Examples

>>> from sympy import KroneckerDelta
@@ -1708,7 +1708,7 @@ 
Documentation Version
-class sympy.physics.secondquant.NO(arg)[source]
+class sympy.physics.secondquant.NO(arg)[source]

This Object is used to represent normal ordering brackets.

i.e. {abcd} sometimes written :abcd:

Explanation

@@ -1733,7 +1733,7 @@
Documentation Version
Nothing more, nothing less.

-doit(**hints)[source]
+doit(**hints)[source]

Either removes the brackets or enables complex computations in its arguments.

Examples

@@ -1754,7 +1754,7 @@
Documentation Version
-get_subNO(i)[source]
+get_subNO(i)[source]

Returns a NO() without FermionicOperator at index i.

Examples

>>> from sympy import symbols
@@ -1814,7 +1814,7 @@ 
Documentation Version
-iter_q_annihilators()[source]
+iter_q_annihilators()[source]

Iterates over the annihilation operators.

Examples

>>> from sympy import symbols
@@ -1836,7 +1836,7 @@ 
Documentation Version
-iter_q_creators()[source]
+iter_q_creators()[source]

Iterates over the creation operators.

Examples

>>> from sympy import symbols
@@ -1860,12 +1860,12 @@ 
Documentation Version
-class sympy.physics.secondquant.PermutationOperator(i, j)[source]
+class sympy.physics.secondquant.PermutationOperator(i, j)[source]

Represents the index permutation operator P(ij).

P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i)

-get_permuted(expr)[source]
+get_permuted(expr)[source]

Returns -expr with permuted indices.

Explanation

>>> from sympy import symbols, Function
@@ -1882,7 +1882,7 @@ 
Documentation Version
-class sympy.physics.secondquant.VarBosonicBasis(n_max)[source]
+class sympy.physics.secondquant.VarBosonicBasis(n_max)[source]

A single state, variable particle number basis set.

Examples

>>> from sympy.physics.secondquant import VarBosonicBasis
@@ -1894,7 +1894,7 @@ 
Documentation Version
-index(state)[source]
+index(state)[source]

Returns the index of state in basis.

Examples

>>> from sympy.physics.secondquant import VarBosonicBasis
@@ -1912,7 +1912,7 @@ 
Documentation Version
-state(i)[source]
+state(i)[source]

The state of a single basis.

Examples

>>> from sympy.physics.secondquant import VarBosonicBasis
@@ -1927,7 +1927,7 @@ 
Documentation Version
-sympy.physics.secondquant.apply_operators(e)[source]
+sympy.physics.secondquant.apply_operators(e)[source]

Take a SymPy expression with operators and states and apply the operators.

Examples

>>> from sympy.physics.secondquant import apply_operators
@@ -1940,7 +1940,7 @@ 
Documentation Version
-sympy.physics.secondquant.contraction(a, b)[source]
+sympy.physics.secondquant.contraction(a, b)[source]

Calculates contraction of Fermionic operators a and b.

Examples

>>> from sympy import symbols
@@ -1977,7 +1977,7 @@ 
Documentation Version
-sympy.physics.secondquant.evaluate_deltas(e)[source]
+sympy.physics.secondquant.evaluate_deltas(e)[source]

We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.

Explanation

If one index is repeated it is summed over and in effect substituted with @@ -2037,7 +2037,7 @@

Documentation Version
-sympy.physics.secondquant.matrix_rep(op, basis)[source]
+sympy.physics.secondquant.matrix_rep(op, basis)[source]

Find the representation of an operator in a basis.

Examples

>>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep
@@ -2063,7 +2063,7 @@ 
Documentation Version
permutation_operators,
-)[source] +)[source]

Performs simplification by introducing PermutationOperators where appropriate.

Explanation

@@ -2106,7 +2106,7 @@
Documentation Version
pretty_indices={},
-)[source] +)[source]

Collect terms by substitution of dummy variables.

Explanation

This routine allows simplification of Add expressions containing terms @@ -2165,7 +2165,7 @@

Documentation Version
-sympy.physics.secondquant.wicks(e, **kw_args)[source]
+sympy.physics.secondquant.wicks(e, **kw_args)[source]

Returns the normal ordered equivalent of an expression using Wicks Theorem.

Examples

>>> from sympy import symbols, Dummy
@@ -2231,7 +2231,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/sho.html b/dev/modules/physics/sho.html index 04724282690..372c8323ec2 100644 --- a/dev/modules/physics/sho.html +++ b/dev/modules/physics/sho.html @@ -802,7 +802,7 @@
Documentation Version

Quantum Harmonic Oscillator in 3-D

-sympy.physics.sho.E_nl(n, l, hw)[source]
+sympy.physics.sho.E_nl(n, l, hw)[source]

Returns the Energy of an isotropic harmonic oscillator.

Parameters:
@@ -838,7 +838,7 @@
Documentation Version
-sympy.physics.sho.R_nl(n, l, nu, r)[source]
+sympy.physics.sho.R_nl(n, l, nu, r)[source]

Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic oscillator.

@@ -929,7 +929,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/units/dimensions.html b/dev/modules/physics/units/dimensions.html index c94d3913ec5..a5763a0339d 100644 --- a/dev/modules/physics/units/dimensions.html +++ b/dev/modules/physics/units/dimensions.html @@ -809,7 +809,7 @@
Documentation Version
question of adding time to length has no meaning.

-class sympy.physics.units.dimensions.Dimension(name, symbol=None)[source]
+class sympy.physics.units.dimensions.Dimension(name, symbol=None)[source]

This class represent the dimension of a physical quantities.

The Dimension constructor takes as parameters a name and an optional symbol.

@@ -850,7 +850,7 @@
Documentation Version
-has_integer_powers(dim_sys)[source]
+has_integer_powers(dim_sys)[source]

Check if the dimension object has only integer powers.

All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the @@ -869,7 +869,7 @@

Documentation Version
dimensional_dependencies={},
-)[source] +)[source]

DimensionSystem represents a coherent set of dimensions.

The constructor takes three parameters:

    @@ -902,7 +902,7 @@
    Documentation Version
    -dim_can_vector(dim)[source]
    +dim_can_vector(dim)[source]

    Useless method, kept for compatibility with previous versions.

    DO NOT USE.

    Dimensional representation in terms of the canonical base dimensions.

    @@ -910,7 +910,7 @@
    Documentation Version
    -dim_vector(dim)[source]
    +dim_vector(dim)[source]

    Useless method, kept for compatibility with previous versions.

    DO NOT USE.

    Vector representation in terms of the base dimensions.

    @@ -941,7 +941,7 @@
    Documentation Version
    -is_dimensionless(dimension)[source]
    +is_dimensionless(dimension)[source]

    Check if the dimension object really has a dimension.

    A dimension should have at least one component with non-zero power.

    @@ -956,7 +956,7 @@
    Documentation Version
    -print_dim_base(dim)[source]
    +print_dim_base(dim)[source]

    Give the string expression of a dimension in term of the basis symbols.

    @@ -999,7 +999,7 @@
    Documentation Version
    Furo
    - Last updated on Aug 03, 2024
    + Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/units/examples.html b/dev/modules/physics/units/examples.html index 62311ed83b7..a13d8f79dbe 100644 --- a/dev/modules/physics/units/examples.html +++ b/dev/modules/physics/units/examples.html @@ -953,7 +953,7 @@

Equation with quantitiesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/units/index.html b/dev/modules/physics/units/index.html index 85ffb92076a..81ba59919ef 100644 --- a/dev/modules/physics/units/index.html +++ b/dev/modules/physics/units/index.html @@ -925,7 +925,7 @@

MoreFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/units/philosophy.html b/dev/modules/physics/units/philosophy.html index 7d03f565ca1..b38b32cb734 100644 --- a/dev/modules/physics/units/philosophy.html +++ b/dev/modules/physics/units/philosophy.html @@ -1119,7 +1119,7 @@

LiteratureFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/units/prefixes.html b/dev/modules/physics/units/prefixes.html index db23a5e2965..7149b2da9da 100644 --- a/dev/modules/physics/units/prefixes.html +++ b/dev/modules/physics/units/prefixes.html @@ -815,7 +815,7 @@
Documentation Version
latex_repr=None,
-)[source] +)[source]

This class represent prefixes, with their name, symbol and factor.

Prefixes are used to create derived units from a given unit. They should always be encapsulated into units.

@@ -869,7 +869,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/units/quantities.html b/dev/modules/physics/units/quantities.html index 11f45c3e3eb..36535001a3e 100644 --- a/dev/modules/physics/units/quantities.html +++ b/dev/modules/physics/units/quantities.html @@ -816,7 +816,7 @@
Documentation Version
**assumptions,
-)[source] +)[source]

Physical quantity: can be a unit of measure, a constant or a generic quantity.

@@ -827,7 +827,7 @@
Documentation Version
-convert_to(other, unit_system='SI')[source]
+convert_to(other, unit_system='SI')[source]

Convert the quantity to another quantity of same dimensions.

Examples

>>> from sympy.physics.units import speed_of_light, meter, second
@@ -871,7 +871,7 @@ 
Documentation Version
reference_quantity,
-)[source] +)[source]

Setting a scale factor that is valid across all unit system.

@@ -882,7 +882,7 @@
Documentation Version

Several methods to simplify expressions involving unit objects.

-sympy.physics.units.util.convert_to(expr, target_units, unit_system='SI')[source]
+sympy.physics.units.util.convert_to(expr, target_units, unit_system='SI')[source]

Convert expr to the same expression with all of its units and quantities represented as factors of target_units, whenever the dimension is compatible.

target_units may be a single unit/quantity, or a collection of @@ -961,7 +961,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/units/unitsystem.html b/dev/modules/physics/units/unitsystem.html index 2c97e51dfad..bf89054f796 100644 --- a/dev/modules/physics/units/unitsystem.html +++ b/dev/modules/physics/units/unitsystem.html @@ -814,7 +814,7 @@
Documentation Version
derived_units: Dict[Dimension, Quantity] = {},
-)[source] +)[source]

UnitSystem represents a coherent set of units.

A unit system is basically a dimension system with notions of scales. Many of the methods are defined in the same way.

@@ -839,7 +839,7 @@
Documentation Version
derived_units: Dict[Dimension, Quantity] = {},
-)[source] +)[source]

Extend the current system into a new one.

Take the base and normal units of the current system to merge them to the base and normal units given in argument. @@ -848,7 +848,7 @@

Documentation Version
-get_units_non_prefixed() Set[Quantity][source]
+get_units_non_prefixed() Set[Quantity][source]

Return the units of the system that do not have a prefix.

@@ -897,7 +897,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/physics/vector/api/classes.html b/dev/modules/physics/vector/api/classes.html index 9c2c3257809..aea6440281f 100644 --- a/dev/modules/physics/vector/api/classes.html +++ b/dev/modules/physics/vector/api/classes.html @@ -802,7 +802,7 @@
Documentation Version

Essential Classes

-class sympy.physics.vector.frame.CoordinateSym(name, frame, index)[source]
+class sympy.physics.vector.frame.CoordinateSym(name, frame, index)[source]

A coordinate symbol/base scalar associated wrt a Reference Frame.

Ideally, users should not instantiate this class. Instances of this class must only be accessed through the corresponding frame @@ -850,7 +850,7 @@

Essential Classesvariables=None,

-)[source] +)[source]

A reference frame in classical mechanics.

ReferenceFrame is a class used to represent a reference frame in classical mechanics. It has a standard basis of three unit vectors in the frame’s @@ -861,7 +861,7 @@

Essential Classes
-ang_acc_in(otherframe)[source]
+ang_acc_in(otherframe)[source]

Returns the angular acceleration Vector of the ReferenceFrame.

Effectively returns the Vector:

N_alpha_B

@@ -889,7 +889,7 @@

Essential Classes
-ang_vel_in(otherframe)[source]
+ang_vel_in(otherframe)[source]

Returns the angular velocity Vector of the ReferenceFrame.

Effectively returns the Vector:

^N omega ^B

@@ -917,7 +917,7 @@

Essential Classes
-dcm(otherframe)[source]
+dcm(otherframe)[source]

Returns the direction cosine matrix of this reference frame relative to the provided reference frame.

The returned matrix can be used to express the orthogonal unit vectors @@ -994,7 +994,7 @@

Essential Classesrot_order='',

-)[source] +)[source]

Sets the orientation of this reference frame relative to another (parent) reference frame.

@@ -1057,7 +1057,7 @@

Essential Classes
-orient_axis(parent, axis, angle)[source]
+orient_axis(parent, axis, angle)[source]

Sets the orientation of this reference frame with respect to a parent reference frame by rotating through an angle about an axis fixed in the parent reference frame.

@@ -1131,7 +1131,7 @@

Essential Classesrotation_order,

-)[source] +)[source]

Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive body fixed simple axis rotations. Each subsequent axis of rotation is about the “body fixed” @@ -1216,7 +1216,7 @@

Essential Classes
-orient_dcm(parent, dcm)[source]
+orient_dcm(parent, dcm)[source]

Sets the orientation of this reference frame relative to another (parent) reference frame using a direction cosine matrix that describes the rotation from the child to the parent.

@@ -1275,7 +1275,7 @@

Essential Classes
-orient_quaternion(parent, numbers)[source]
+orient_quaternion(parent, numbers)[source]

Sets the orientation of this reference frame relative to a parent reference frame via an orientation quaternion. An orientation quaternion is defined as a finite rotation a unit vector, (lambda_x, @@ -1339,7 +1339,7 @@

Essential Classesrotation_order,

-)[source] +)[source]

Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive space fixed simple axis rotations. Each subsequent axis of rotation is about the “space fixed” @@ -1439,7 +1439,7 @@

Essential Classeslatexs=None,

-)[source] +)[source]

Returns a new reference frame oriented with respect to this reference frame.

See ReferenceFrame.orient() for detailed examples of how to orient @@ -1538,7 +1538,7 @@

Essential Classes*gen_speeds,

-)[source] +)[source]

Returns the partial angular velocities of this frame in the given frame with respect to one or more provided generalized speeds.

@@ -1576,7 +1576,7 @@

Essential Classes
-set_ang_acc(otherframe, value)[source]
+set_ang_acc(otherframe, value)[source]

Define the angular acceleration Vector in a ReferenceFrame.

Defines the angular acceleration of this ReferenceFrame, in another. Angular acceleration can be defined with respect to multiple different @@ -1608,7 +1608,7 @@

Essential Classes
-set_ang_vel(otherframe, value)[source]
+set_ang_vel(otherframe, value)[source]

Define the angular velocity vector in a ReferenceFrame.

Defines the angular velocity of this ReferenceFrame, in another. Angular velocity can be defined with respect to multiple different @@ -1646,7 +1646,7 @@

Essential Classes
-variable_map(otherframe)[source]
+variable_map(otherframe)[source]

Returns a dictionary which expresses the coordinate variables of this frame in terms of the variables of otherframe.

If Vector.simp is True, returns a simplified version of the mapped @@ -1747,7 +1747,7 @@

Essential Classes
-class sympy.physics.vector.vector.Vector(inlist)[source]
+class sympy.physics.vector.vector.Vector(inlist)[source]

The class used to define vectors.

It along with ReferenceFrame are the building blocks of describing a classical mechanics system in PyDy and sympy.physics.vector.

@@ -1763,7 +1763,7 @@

Essential Classes
-angle_between(vec)[source]
+angle_between(vec)[source]

Returns the smallest angle between Vector ‘vec’ and self.

Warning

@@ -1794,13 +1794,13 @@

Essential Classes
-applyfunc(f)[source]
+applyfunc(f)[source]

Apply a function to each component of a vector.

-cross(other)[source]
+cross(other)[source]

The cross product operator for two Vectors.

Returns a Vector, expressed in the same ReferenceFrames as self.

@@ -1830,7 +1830,7 @@

Essential Classes
-diff(var, frame, var_in_dcm=True)[source]
+diff(var, frame, var_in_dcm=True)[source]

Returns the partial derivative of the vector with respect to a variable in the provided reference frame.

@@ -1878,13 +1878,13 @@

Essential Classes
-doit(**hints)[source]
+doit(**hints)[source]

Calls .doit() on each term in the Vector

-dot(other)[source]
+dot(other)[source]

Dot product of two vectors.

Returns a scalar, the dot product of the two Vectors

@@ -1913,7 +1913,7 @@

Essential Classes
-dt(otherframe)[source]
+dt(otherframe)[source]

Returns a Vector which is the time derivative of the self Vector, taken in frame otherframe.

Calls the global time_derivative method

@@ -1929,7 +1929,7 @@

Essential Classes
-express(otherframe, variables=False)[source]
+express(otherframe, variables=False)[source]

Returns a Vector equivalent to this one, expressed in otherframe. Uses the global express method.

@@ -1960,7 +1960,7 @@

Essential Classes
-free_dynamicsymbols(reference_frame)[source]
+free_dynamicsymbols(reference_frame)[source]

Returns the free dynamic symbols (functions of time t) in the measure numbers of the vector expressed in the given reference frame.

@@ -1983,7 +1983,7 @@

Essential Classes
-free_symbols(reference_frame)[source]
+free_symbols(reference_frame)[source]

Returns the free symbols in the measure numbers of the vector expressed in the given reference frame.

@@ -2012,7 +2012,7 @@

Essential Classes
-magnitude()[source]
+magnitude()[source]

Returns the magnitude (Euclidean norm) of self.

Warning

@@ -2025,13 +2025,13 @@

Essential Classes
-normalize()[source]
+normalize()[source]

Returns a Vector of magnitude 1, codirectional with self.

-outer(other)[source]
+outer(other)[source]

Outer product between two Vectors.

A rank increasing operation, which returns a Dyadic from two Vectors

@@ -2053,7 +2053,7 @@

Essential Classes
-separate()[source]
+separate()[source]

The constituents of this vector in different reference frames, as per its definition.

Returns a dict mapping each ReferenceFrame to the corresponding @@ -2071,13 +2071,13 @@

Essential Classes
-simplify()[source]
+simplify()[source]

Returns a simplified Vector.

-subs(*args, **kwargs)[source]
+subs(*args, **kwargs)[source]

Substitution on the Vector.

Examples

>>> from sympy.physics.vector import ReferenceFrame
@@ -2093,7 +2093,7 @@ 

Essential Classes
-to_matrix(reference_frame)[source]
+to_matrix(reference_frame)[source]

Returns the matrix form of the vector with respect to the given frame.

@@ -2134,7 +2134,7 @@

Essential Classes
-xreplace(rule)[source]
+xreplace(rule)[source]

Replace occurrences of objects within the measure numbers of the vector.

@@ -2176,7 +2176,7 @@

Essential Classes
-class sympy.physics.vector.dyadic.Dyadic(inlist)[source]
+class sympy.physics.vector.dyadic.Dyadic(inlist)[source]

A Dyadic object.

See: https://en.wikipedia.org/wiki/Dyadic_tensor @@ -2186,13 +2186,13 @@

Essential Classes
-applyfunc(f)[source]
+applyfunc(f)[source]

Apply a function to each component of a Dyadic.

-cross(other)[source]
+cross(other)[source]

Returns the dyadic resulting from the dyadic vector cross product: Dyadic x Vector.

@@ -2215,13 +2215,13 @@

Essential Classes
-doit(**hints)[source]
+doit(**hints)[source]

Calls .doit() on each term in the Dyadic

-dot(other)[source]
+dot(other)[source]

The inner product operator for a Dyadic and a Dyadic or Vector.

Parameters:
@@ -2246,7 +2246,7 @@

Essential Classes
-dt(frame)[source]
+dt(frame)[source]

Take the time derivative of this Dyadic in a frame.

This function calls the global time_derivative method

@@ -2273,7 +2273,7 @@

Essential Classes
-express(frame1, frame2=None)[source]
+express(frame1, frame2=None)[source]

Expresses this Dyadic in alternate frame(s)

The first frame is the list side expression, the second frame is the right side; if Dyadic is in form A.x|B.y, you can express it in two @@ -2314,13 +2314,13 @@

Essential Classes
-simplify()[source]
+simplify()[source]

Returns a simplified Dyadic.

-subs(*args, **kwargs)[source]
+subs(*args, **kwargs)[source]

Substitution on the Dyadic.

Examples

>>> from sympy.physics.vector import ReferenceFrame
@@ -2343,7 +2343,7 @@ 

Essential Classessecond_reference_frame=None,

-)[source] +)[source]

Returns the matrix form of the dyadic with respect to one or two reference frames.

@@ -2392,7 +2392,7 @@

Essential Classes
-xreplace(rule)[source]
+xreplace(rule)[source]

Replace occurrences of objects within the measure numbers of the Dyadic.

@@ -2470,7 +2470,7 @@

Essential ClassesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/vector/api/fieldfunctions.html b/dev/modules/physics/vector/api/fieldfunctions.html index b9df45a59e5..09ee156f204 100644 --- a/dev/modules/physics/vector/api/fieldfunctions.html +++ b/dev/modules/physics/vector/api/fieldfunctions.html @@ -806,7 +806,7 @@

Field operation functions
-sympy.physics.vector.fieldfunctions.curl(vect, frame)[source]
+sympy.physics.vector.fieldfunctions.curl(vect, frame)[source]

Returns the curl of a vector field computed wrt the coordinate symbols of the given frame.

@@ -837,7 +837,7 @@

Field operation functions
-sympy.physics.vector.fieldfunctions.divergence(vect, frame)[source]
+sympy.physics.vector.fieldfunctions.divergence(vect, frame)[source]

Returns the divergence of a vector field computed wrt the coordinate symbols of the given frame.

@@ -868,7 +868,7 @@

Field operation functions
-sympy.physics.vector.fieldfunctions.gradient(scalar, frame)[source]
+sympy.physics.vector.fieldfunctions.gradient(scalar, frame)[source]

Returns the vector gradient of a scalar field computed wrt the coordinate symbols of the given frame.

@@ -899,7 +899,7 @@

Field operation functions
-sympy.physics.vector.fieldfunctions.scalar_potential(field, frame)[source]
+sympy.physics.vector.fieldfunctions.scalar_potential(field, frame)[source]

Returns the scalar potential function of a field in a given frame (without the added integration constant).

@@ -941,7 +941,7 @@

Field operation functionsorigin,

-)[source] +)[source]

Returns the scalar potential difference between two points in a certain frame, wrt a given field.

If a scalar field is provided, its values at the two points are @@ -994,7 +994,7 @@

Field operation functions

-sympy.physics.vector.fieldfunctions.is_conservative(field)[source]
+sympy.physics.vector.fieldfunctions.is_conservative(field)[source]

Checks if a field is conservative.

Parameters:
@@ -1018,7 +1018,7 @@

Checking the type of vector field
-sympy.physics.vector.fieldfunctions.is_solenoidal(field)[source]
+sympy.physics.vector.fieldfunctions.is_solenoidal(field)[source]

Checks if a field is solenoidal.

Parameters:
@@ -1078,7 +1078,7 @@

Checking the type of vector fieldFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/vector/api/functions.html b/dev/modules/physics/vector/api/functions.html index 73da3b9ea7a..45e7dbbd6a6 100644 --- a/dev/modules/physics/vector/api/functions.html +++ b/dev/modules/physics/vector/api/functions.html @@ -802,7 +802,7 @@
Documentation Version

Essential Functions (Docstrings)

-sympy.physics.vector.dynamicsymbols(names, level=0, **assumptions)[source]
+sympy.physics.vector.dynamicsymbols(names, level=0, **assumptions)[source]

Uses symbols and Function for functions of time.

Creates a SymPy UndefinedFunction, which is then initialized as a function of a variable, the default being Symbol(‘t’).

@@ -871,7 +871,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.dot(vec1, vec2)[source]
+sympy.physics.vector.functions.dot(vec1, vec2)[source]

Dot product convenience wrapper for Vector.dot(): Dot product of two vectors.

@@ -903,7 +903,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.cross(vec1, vec2)[source]
+sympy.physics.vector.functions.cross(vec1, vec2)[source]

Cross product convenience wrapper for Vector.cross(): The cross product operator for two Vectors.

@@ -936,7 +936,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.outer(vec1, vec2)[source]
+sympy.physics.vector.functions.outer(vec1, vec2)[source]

Outer product convenience wrapper for Vector.outer(): Outer product between two Vectors.

@@ -961,7 +961,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.express(expr, frame, frame2=None, variables=False)[source]
+sympy.physics.vector.functions.express(expr, frame, frame2=None, variables=False)[source]

Global function for ‘express’ functionality.

Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame.

Refer to the local methods of Vector and Dyadic for details. @@ -1011,7 +1011,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.time_derivative(expr, frame, order=1)[source]
+sympy.physics.vector.functions.time_derivative(expr, frame, order=1)[source]

Calculate the time derivative of a vector/scalar field function or dyadic expression in given frame.

@@ -1094,7 +1094,7 @@

Essential Functions (Docstrings)Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/vector/api/index.html b/dev/modules/physics/vector/api/index.html index a7695e64451..5a2f324e88a 100644 --- a/dev/modules/physics/vector/api/index.html +++ b/dev/modules/physics/vector/api/index.html @@ -876,7 +876,7 @@

Guide to VectorFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/vector/api/kinematics.html b/dev/modules/physics/vector/api/kinematics.html index 12ba5ecc1f3..143aa12018f 100644 --- a/dev/modules/physics/vector/api/kinematics.html +++ b/dev/modules/physics/vector/api/kinematics.html @@ -802,7 +802,7 @@
Documentation Version

Kinematics (Docstrings)

-class sympy.physics.vector.point.Point(name)[source]
+class sympy.physics.vector.point.Point(name)[source]

This object represents a point in a dynamic system.

It stores the: position, velocity, and acceleration of a point. The position is a vector defined as the vector distance from a parent @@ -855,7 +855,7 @@

Documentation Version
interframe,
-)[source] +)[source]

Sets the acceleration of this point with the 1-point theory.

The 1-point theory for point acceleration looks like this:

^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B @@ -910,7 +910,7 @@

Documentation Version
fixedframe,
-)[source] +)[source]

Sets the acceleration of this point with the 2-point theory.

The 2-point theory for point acceleration looks like this:

^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP)

@@ -951,7 +951,7 @@
Documentation Version
-acc(frame)[source]
+acc(frame)[source]

The acceleration Vector of this Point in a ReferenceFrame.

Parameters:
@@ -975,7 +975,7 @@
Documentation Version
-locatenew(name, value)[source]
+locatenew(name, value)[source]

Creates a new point with a position defined from this point.

Parameters:
@@ -1000,7 +1000,7 @@
Documentation Version
-partial_velocity(frame, *gen_speeds)[source]
+partial_velocity(frame, *gen_speeds)[source]

Returns the partial velocities of the linear velocity vector of this point in the given frame with respect to one or more provided generalized speeds.

@@ -1041,7 +1041,7 @@
Documentation Version
-pos_from(otherpoint)[source]
+pos_from(otherpoint)[source]

Returns a Vector distance between this Point and the other Point.

Parameters:
@@ -1065,7 +1065,7 @@
Documentation Version
-set_acc(frame, value)[source]
+set_acc(frame, value)[source]

Used to set the acceleration of this Point in a ReferenceFrame.

Parameters:
@@ -1092,7 +1092,7 @@
Documentation Version
-set_pos(otherpoint, value)[source]
+set_pos(otherpoint, value)[source]

Used to set the position of this point w.r.t. another point.

Parameters:
@@ -1120,7 +1120,7 @@
Documentation Version
-set_vel(frame, value)[source]
+set_vel(frame, value)[source]

Sets the velocity Vector of this Point in a ReferenceFrame.

Parameters:
@@ -1155,7 +1155,7 @@
Documentation Version
interframe,
-)[source] +)[source]

Sets the velocity of this point with the 1-point theory.

The 1-point theory for point velocity looks like this:

^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP

@@ -1209,7 +1209,7 @@
Documentation Version
fixedframe,
-)[source] +)[source]

Sets the velocity of this point with the 2-point theory.

The 2-point theory for point velocity looks like this:

^N v^P = ^N v^O + ^N omega^B x r^OP

@@ -1250,7 +1250,7 @@
Documentation Version
-vel(frame)[source]
+vel(frame)[source]

The velocity Vector of this Point in the ReferenceFrame.

Parameters:
@@ -1293,7 +1293,7 @@
Documentation Version

kinematic_equations

-sympy.physics.vector.functions.get_motion_params(frame, **kwargs)[source]
+sympy.physics.vector.functions.get_motion_params(frame, **kwargs)[source]

Returns the three motion parameters - (acceleration, velocity, and position) as vectorial functions of time in the given frame.

If a higher order differential function is provided, the lower order @@ -1374,7 +1374,7 @@

Documentation Version
rot_order='',
-)[source] +)[source]

Gives equations relating the qdot’s to u’s for a rotation type.

Supply rotation type and order as in orient. Speeds are assumed to be body-fixed; if we are defining the orientation of B in A using by rot_type, @@ -1415,7 +1415,7 @@

Documentation Version
-sympy.physics.vector.functions.partial_velocity(vel_vecs, gen_speeds, frame)[source]
+sympy.physics.vector.functions.partial_velocity(vel_vecs, gen_speeds, frame)[source]

Returns a list of partial velocities with respect to the provided generalized speeds in the given reference frame for each of the supplied velocity vectors.

@@ -1494,7 +1494,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/vector/api/printing.html b/dev/modules/physics/vector/api/printing.html index 7a3b0c7127d..c8052af6230 100644 --- a/dev/modules/physics/vector/api/printing.html +++ b/dev/modules/physics/vector/api/printing.html @@ -802,7 +802,7 @@
Documentation Version

Printing (Docstrings)

-sympy.physics.vector.printing.init_vprinting(**kwargs)[source]
+sympy.physics.vector.printing.init_vprinting(**kwargs)[source]

Initializes time derivative printing for all SymPy objects, i.e. any functions of time will be displayed in a more compact notation. The main benefit of this is for printing of time derivatives; instead of @@ -950,7 +950,7 @@

Printing (Docstrings)
-sympy.physics.vector.printing.vprint(expr, **settings)[source]
+sympy.physics.vector.printing.vprint(expr, **settings)[source]

Function for printing of expressions generated in the sympy.physics vector package.

Extends SymPy’s StrPrinter, takes the same setting accepted by SymPy’s @@ -980,7 +980,7 @@

Printing (Docstrings)
-sympy.physics.vector.printing.vpprint(expr, **settings)[source]
+sympy.physics.vector.printing.vpprint(expr, **settings)[source]

Function for pretty printing of expressions generated in the sympy.physics vector package.

Mainly used for expressions not inside a vector; the output of running @@ -1002,7 +1002,7 @@

Printing (Docstrings)
-sympy.physics.vector.printing.vlatex(expr, **settings)[source]
+sympy.physics.vector.printing.vlatex(expr, **settings)[source]

Function for printing latex representation of sympy.physics.vector objects.

For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the @@ -1077,7 +1077,7 @@

Printing (Docstrings)Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/physics/wigner.html b/dev/modules/physics/wigner.html index b430c35cce9..09841404ce2 100644 --- a/dev/modules/physics/wigner.html +++ b/dev/modules/physics/wigner.html @@ -868,7 +868,7 @@

Authors
-sympy.physics.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3)[source]
+sympy.physics.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3)[source]

Calculates the Clebsch-Gordan coefficient. \(\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle\).

The reference for this function is [Edmonds74].

@@ -913,7 +913,7 @@

Authors
-sympy.physics.wigner.dot_rot_grad_Ynm(j, p, l, m, theta, phi)[source]
+sympy.physics.wigner.dot_rot_grad_Ynm(j, p, l, m, theta, phi)[source]

Returns dot product of rotational gradients of spherical harmonics.

Explanation

This function returns the right hand side of the following expression:

@@ -938,7 +938,7 @@

Authors
-sympy.physics.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)[source]
+sympy.physics.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)[source]

Calculate the Gaunt coefficient.

Parameters:
@@ -1033,7 +1033,7 @@

Authors
-sympy.physics.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)[source]
+sympy.physics.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)[source]

Calculate the Racah symbol \(W(a,b,c,d;e,f)\).

Parameters:
@@ -1093,7 +1093,7 @@

Authors
prec=None,

-)[source] +)[source]

Calculate the real Gaunt coefficient.

Parameters:
@@ -1209,7 +1209,7 @@

Authors
-sympy.physics.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3)[source]
+sympy.physics.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3)[source]

Calculate the Wigner 3j symbol \(\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)\).

Parameters:
@@ -1292,7 +1292,7 @@

Authors
-sympy.physics.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)[source]
+sympy.physics.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)[source]

Calculate the Wigner 6j symbol \(\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)\).

Parameters:
@@ -1396,7 +1396,7 @@

Authors
prec=None,

-)[source] +)[source]

Calculate the Wigner 9j symbol \(\operatorname{Wigner9j}(j_1,j_2,j_3,j_4,j_5,j_6,j_7,j_8,j_9)\).

@@ -1448,7 +1448,7 @@

Authors
-sympy.physics.wigner.wigner_d(J, alpha, beta, gamma)[source]
+sympy.physics.wigner.wigner_d(J, alpha, beta, gamma)[source]

Return the Wigner D matrix for angular momentum J.

Returns:
@@ -1498,7 +1498,7 @@

Authors
-sympy.physics.wigner.wigner_d_small(J, beta)[source]
+sympy.physics.wigner.wigner_d_small(J, beta)[source]

Return the small Wigner d matrix for angular momentum J.

Returns:
@@ -1651,7 +1651,7 @@

AuthorsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/plotting.html b/dev/modules/plotting.html index 980ed3464d3..f565cc64e6a 100644 --- a/dev/modules/plotting.html +++ b/dev/modules/plotting.html @@ -850,7 +850,7 @@

Plot Class**kwargs,

-)[source] +)[source]

Base class for all backends. A backend represents the plotting library, which implements the necessary functionalities in order to use SymPy plotting functions.

@@ -1007,7 +1007,7 @@

Plot Class
-append(arg)[source]
+append(arg)[source]

Adds an element from a plot’s series to an existing plot.

Examples

Consider two Plot objects, p1 and p2. To add the @@ -1038,7 +1038,7 @@

Plot Class
-extend(arg)[source]
+extend(arg)[source]

Adds all series from another plot.

Examples

Consider two Plot objects, p1 and p2. To add the @@ -1094,7 +1094,7 @@

Plot Class

-sympy.plotting.plot.plot(*args, show=True, **kwargs)[source]
+sympy.plotting.plot.plot(*args, show=True, **kwargs)[source]

Plots a function of a single variable as a curve.

Parameters:
@@ -1303,7 +1303,7 @@

Plotting Function Reference
-sympy.plotting.plot.plot_parametric(*args, show=True, **kwargs)[source]
+sympy.plotting.plot.plot_parametric(*args, show=True, **kwargs)[source]

Plots a 2D parametric curve.

Parameters:
@@ -1488,7 +1488,7 @@

Plotting Function Reference
-sympy.plotting.plot.plot3d(*args, show=True, **kwargs)[source]
+sympy.plotting.plot.plot3d(*args, show=True, **kwargs)[source]

Plots a 3D surface plot.

Usage

Single plot

@@ -1587,7 +1587,7 @@

Plotting Function Reference
-sympy.plotting.plot.plot3d_parametric_line(*args, show=True, **kwargs)[source]
+sympy.plotting.plot.plot3d_parametric_line(*args, show=True, **kwargs)[source]

Plots a 3D parametric line plot.

Usage

Single plot:

@@ -1681,7 +1681,7 @@

Plotting Function Reference**kwargs,

-)[source] +)[source]

Plots a 3D parametric surface plot.

Explanation

Single plot.

@@ -1771,7 +1771,7 @@

Plotting Function Reference**kwargs,

-)[source] +)[source]

A plot function to plot implicit equations / inequalities.

Arguments

    @@ -1930,7 +1930,7 @@

    PlotGrid Class**kwargs,

-)[source] +)[source]

This class helps to plot subplots from already created SymPy plots in a single figure.

Examples

@@ -2026,7 +2026,7 @@

PlotGrid Class

-class sympy.plotting.series.BaseSeries(*args, **kwargs)[source]
+class sympy.plotting.series.BaseSeries(*args, **kwargs)[source]

Base class for the data objects containing stuff to be plotted.

Notes

The backend should check if it supports the data series that is given. @@ -2041,7 +2041,7 @@

Series Classes
-eval_color_func(*args)[source]
+eval_color_func(*args)[source]

Evaluate the color function.

Parameters:
@@ -2067,7 +2067,7 @@

Series Classes
-get_data()[source]
+get_data()[source]

Compute and returns the numerical data.

The number of parameters returned by this method depends on the specific instance. If s is the series, make sure to read @@ -2083,7 +2083,7 @@

Series Classeswrapper='$%s$',

-)[source] +)[source]

Return the label to be used to display the expression.

Parameters:
@@ -2131,7 +2131,7 @@

Series Classes
-class sympy.plotting.series.Line2DBaseSeries(**kwargs)[source]
+class sympy.plotting.series.Line2DBaseSeries(**kwargs)[source]

A base class for 2D lines.

  • adding the label, steps and only_integers options

  • @@ -2140,7 +2140,7 @@

    Series Classes
    -get_data()[source]
    +get_data()[source]

    Return coordinates for plotting the line.

    Returns:
    @@ -2180,11 +2180,11 @@

    Series Classes**kwargs,

-)[source] +)[source]

Representation for a line consisting of a SymPy expression over a range.

-get_points()[source]
+get_points()[source]

Return lists of coordinates for plotting. Depending on the adaptive option, this function will either use an adaptive algorithm or it will uniformly sample the expression over the provided range.

@@ -2220,14 +2220,14 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for a line consisting of two parametric SymPy expressions over a range.

-class sympy.plotting.series.Line3DBaseSeries[source]
+class sympy.plotting.series.Line3DBaseSeries[source]

A base class for 3D lines.

Most of the stuff is derived from Line2DBaseSeries.

@@ -2245,14 +2245,14 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for a 3D line consisting of three parametric SymPy expressions and a range.

-class sympy.plotting.series.SurfaceBaseSeries(*args, **kwargs)[source]
+class sympy.plotting.series.SurfaceBaseSeries(*args, **kwargs)[source]

A base class for 3D surfaces.

@@ -2268,12 +2268,12 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for a 3D surface consisting of a SymPy expression and 2D range.

-get_data()[source]
+get_data()[source]

Return arrays of coordinates for plotting.

Returns:
@@ -2295,7 +2295,7 @@

Series Classes
-get_meshes()[source]
+get_meshes()[source]

Return the x,y,z coordinates for plotting the surface. This function is available for back-compatibility purposes. Consider using get_data() instead.

@@ -2317,12 +2317,12 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for a 3D surface consisting of three parametric SymPy expressions and a range.

-get_data()[source]
+get_data()[source]

Return arrays of coordinates for plotting.

Returns:
@@ -2352,7 +2352,7 @@

Series Classes
-get_meshes()[source]
+get_meshes()[source]

Return the x,y,z coordinates for plotting the surface. This function is available for back-compatibility purposes. Consider using get_data() instead.

@@ -2372,11 +2372,11 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for 2D Implicit plot.

-get_data()[source]
+get_data()[source]

Returns numerical data.

Returns:
@@ -2413,7 +2413,7 @@

Series Classeswrapper='$%s$',

-)[source] +)[source]

Return the label to be used to display the expression.

Parameters:
@@ -2441,12 +2441,12 @@

Series Classes

-class sympy.plotting.plot.MatplotlibBackend(*series, **kwargs)[source]
+class sympy.plotting.plot.MatplotlibBackend(*series, **kwargs)[source]

This class implements the functionalities to use Matplotlib with SymPy plotting functions.

-static get_segments(x, y, z=None)[source]
+static get_segments(x, y, z=None)[source]

Convert two list of coordinates to a list of segments to be used with Matplotlib’s LineCollection.

@@ -2469,7 +2469,7 @@

Backends
-process_series()[source]
+process_series()[source]

Iterates over every Plot object and further calls _process_series()

@@ -2478,7 +2478,7 @@

Backends
-class sympy.plotting.plot.TextBackend(*args, **kwargs)[source]
+class sympy.plotting.plot.TextBackend(*args, **kwargs)[source]
@@ -2712,7 +2712,7 @@

Using Custom Color Functions

-sympy.plotting.textplot.textplot(expr, a, b, W=55, H=21)[source]
+sympy.plotting.textplot.textplot(expr, a, b, W=55, H=21)[source]

Print a crude ASCII art plot of the SymPy expression ‘expr’ (which should contain a single symbol, e.g. x or something else) over the interval [a, b].

@@ -2785,7 +2785,7 @@

Plotting with ASCII artFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/agca.html b/dev/modules/polys/agca.html index b78cc35ee5a..50ef45904b5 100644 --- a/dev/modules/polys/agca.html +++ b/dev/modules/polys/agca.html @@ -900,11 +900,11 @@

Base Rings
-class sympy.polys.domains.ring.Ring[source]
+class sympy.polys.domains.ring.Ring[source]

Represents a ring domain.

-free_module(rank)[source]
+free_module(rank)[source]

Generate a free module of rank rank over self.

>>> from sympy.abc import x
 >>> from sympy import QQ
@@ -916,7 +916,7 @@ 

Base Rings
-ideal(*gens)[source]
+ideal(*gens)[source]

Generate an ideal of self.

>>> from sympy.abc import x
 >>> from sympy import QQ
@@ -928,7 +928,7 @@ 

Base Rings
-quotient_ring(e)[source]
+quotient_ring(e)[source]

Form a quotient ring of self.

Here e can be an ideal or an iterable.

>>> from sympy.abc import x
@@ -958,13 +958,13 @@ 

Base Ringsorder=None,

-)[source] +)[source]

A class for representing multivariate polynomial rings.

-class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]
+class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]

Class representing (commutative) quotient rings.

You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction.

@@ -1044,7 +1044,7 @@

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.Module(ring)[source]
+class sympy.polys.agca.modules.Module(ring)[source]

Abstract base class for modules.

Do not instantiate - use ring explicit constructors instead:

>>> from sympy import QQ
@@ -1069,56 +1069,56 @@ 

Modules, Ideals and their Elementary Properties
-contains(elem)[source]
+contains(elem)[source]

Return True if elem is an element of this module.

-convert(elem, M=None)[source]
+convert(elem, M=None)[source]

Convert elem into internal representation of this module.

If M is not None, it should be a module containing it.

-identity_hom()[source]
+identity_hom()[source]

Return the identity homomorphism on self.

-is_submodule(other)[source]
+is_submodule(other)[source]

Returns True if other is a submodule of self.

-is_zero()[source]
+is_zero()[source]

Returns True if self is a zero module.

-multiply_ideal(other)[source]
+multiply_ideal(other)[source]

Multiply self by the ideal other.

-quotient_module(other)[source]
+quotient_module(other)[source]

Generate a quotient module.

-submodule(*gens)[source]
+submodule(*gens)[source]

Generate a submodule.

-subset(other)[source]
+subset(other)[source]

Returns True if other is is a subset of self.

Examples

>>> from sympy.abc import x
@@ -1136,7 +1136,7 @@ 

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.FreeModule(ring, rank)[source]
+class sympy.polys.agca.modules.FreeModule(ring, rank)[source]

Abstract base class for free modules.

Additional attributes:

    @@ -1148,7 +1148,7 @@

    Modules, Ideals and their Elementary Properties
    -basis()[source]
    +basis()[source]

    Return a set of basis elements.

    Examples

    >>> from sympy.abc import x
    @@ -1161,7 +1161,7 @@ 

    Modules, Ideals and their Elementary Properties
    -convert(elem, M=None)[source]
    +convert(elem, M=None)[source]

    Convert elem into the internal representation.

    This method is called implicitly whenever computations involve elements not in the internal representation.

    @@ -1177,13 +1177,13 @@

    Modules, Ideals and their Elementary Properties
    -dtype[source]
    +dtype[source]

    alias of FreeModuleElement

-identity_hom()[source]
+identity_hom()[source]

Return the identity homomorphism on self.

Examples

>>> from sympy.abc import x
@@ -1198,7 +1198,7 @@ 

Modules, Ideals and their Elementary Properties
-is_submodule(other)[source]
+is_submodule(other)[source]

Returns True if other is a submodule of self.

Examples

>>> from sympy.abc import x
@@ -1217,7 +1217,7 @@ 

Modules, Ideals and their Elementary Properties
-is_zero()[source]
+is_zero()[source]

Returns True if self is a zero module.

(If, as this implementation assumes, the coefficient ring is not the zero ring, then this is equivalent to the rank being zero.)

@@ -1234,7 +1234,7 @@

Modules, Ideals and their Elementary Properties
-multiply_ideal(other)[source]
+multiply_ideal(other)[source]

Multiply self by the ideal other.

Examples

>>> from sympy.abc import x
@@ -1249,7 +1249,7 @@ 

Modules, Ideals and their Elementary Properties
-quotient_module(submodule)[source]
+quotient_module(submodule)[source]

Return a quotient module.

Examples

>>> from sympy.abc import x
@@ -1270,13 +1270,13 @@ 

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.FreeModuleElement(module, data)[source]
+class sympy.polys.agca.modules.FreeModuleElement(module, data)[source]

Element of a free module. Data stored as a tuple.

-class sympy.polys.agca.modules.SubModule(gens, container)[source]
+class sympy.polys.agca.modules.SubModule(gens, container)[source]

Base class for submodules.

Attributes:

    @@ -1298,7 +1298,7 @@

    Modules, Ideals and their Elementary Properties
    -convert(elem, M=None)[source]
    +convert(elem, M=None)[source]

    Convert elem into the internal represantition.

    Mostly called implicitly.

    Examples

    @@ -1313,7 +1313,7 @@

    Modules, Ideals and their Elementary Properties
    -identity_hom()[source]
    +identity_hom()[source]

    Return the identity homomorphism on self.

    Examples

    >>> from sympy.abc import x
    @@ -1328,7 +1328,7 @@ 

    Modules, Ideals and their Elementary Properties
    -in_terms_of_generators(e)[source]
    +in_terms_of_generators(e)[source]

    Express element e of self in terms of the generators.

    Examples

    >>> from sympy.abc import x
    @@ -1343,7 +1343,7 @@ 

    Modules, Ideals and their Elementary Properties
    -inclusion_hom()[source]
    +inclusion_hom()[source]

    Return a homomorphism representing the inclusion map of self.

    That is, the natural map from self to self.container.

    Examples

    @@ -1359,7 +1359,7 @@

    Modules, Ideals and their Elementary Properties
    -intersect(other, **options)[source]
    +intersect(other, **options)[source]

    Returns the intersection of self with submodule other.

    Examples

    >>> from sympy.abc import x, y
    @@ -1387,7 +1387,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_full_module()[source]
    +is_full_module()[source]

    Return True if self is the entire free module.

    Examples

    >>> from sympy.abc import x
    @@ -1403,7 +1403,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_submodule(other)[source]
    +is_submodule(other)[source]

    Returns True if other is a submodule of self.

    >>> from sympy.abc import x
     >>> from sympy import QQ
    @@ -1422,7 +1422,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_zero()[source]
    +is_zero()[source]

    Return True if self is a zero module.

    Examples

    >>> from sympy.abc import x
    @@ -1438,7 +1438,7 @@ 

    Modules, Ideals and their Elementary Properties
    -module_quotient(other, **options)[source]
    +module_quotient(other, **options)[source]

    Returns the module quotient of self by submodule other.

    That is, if self is the module \(M\) and other is \(N\), then return the ideal \(\{f \in R | fN \subset M\}\).

    @@ -1470,7 +1470,7 @@

    Modules, Ideals and their Elementary Properties
    -multiply_ideal(I)[source]
    +multiply_ideal(I)[source]

    Multiply self by the ideal I.

    Examples

    >>> from sympy.abc import x
    @@ -1485,7 +1485,7 @@ 

    Modules, Ideals and their Elementary Properties
    -quotient_module(other, **opts)[source]
    +quotient_module(other, **opts)[source]

    Return a quotient module.

    This is the same as taking a submodule of a quotient of the containing module.

    @@ -1508,7 +1508,7 @@

    Modules, Ideals and their Elementary Properties
    -reduce_element(x)[source]
    +reduce_element(x)[source]

    Reduce the element x of our ring modulo the ideal self.

    Here “reduce” has no specific meaning, it could return a unique normal form, simplify the expression a bit, or just do nothing.

    @@ -1516,7 +1516,7 @@

    Modules, Ideals and their Elementary Properties
    -submodule(*gens)[source]
    +submodule(*gens)[source]

    Generate a submodule.

    Examples

    >>> from sympy.abc import x
    @@ -1530,7 +1530,7 @@ 

    Modules, Ideals and their Elementary Properties
    -syzygy_module(**opts)[source]
    +syzygy_module(**opts)[source]

    Compute the syzygy module of the generators of self.

    Suppose \(M\) is generated by \(f_1, \ldots, f_n\) over the ring \(R\). Consider the homomorphism \(\phi: R^n \to M\), given by @@ -1556,7 +1556,7 @@

    Modules, Ideals and their Elementary Properties
    -union(other)[source]
    +union(other)[source]

    Returns the module generated by the union of self and other.

    Examples

    >>> from sympy.abc import x
    @@ -1590,7 +1590,7 @@ 

    Modules, Ideals and their Elementary Properties
    -class sympy.polys.agca.ideals.Ideal(ring)[source]
    +class sympy.polys.agca.ideals.Ideal(ring)[source]

    Abstract base class for ideals.

    Do not instantiate - use explicit constructors in the ring class instead:

    >>> from sympy import QQ
    @@ -1624,7 +1624,7 @@ 

    Modules, Ideals and their Elementary Properties
    -contains(elem)[source]
    +contains(elem)[source]

    Return True if elem is an element of this ideal.

    Examples

    >>> from sympy.abc import x
    @@ -1639,19 +1639,19 @@ 

    Modules, Ideals and their Elementary Properties
    -depth()[source]
    +depth()[source]

    Compute the depth of self.

-height()[source]
+height()[source]

Compute the height of self.

-intersect(J)[source]
+intersect(J)[source]

Compute the intersection of self with ideal J.

Examples

>>> from sympy.abc import x, y
@@ -1665,49 +1665,49 @@ 

Modules, Ideals and their Elementary Properties
-is_maximal()[source]
+is_maximal()[source]

Return True if self is a maximal ideal.

-is_primary()[source]
+is_primary()[source]

Return True if self is a primary ideal.

-is_prime()[source]
+is_prime()[source]

Return True if self is a prime ideal.

-is_principal()[source]
+is_principal()[source]

Return True if self is a principal ideal.

-is_radical()[source]
+is_radical()[source]

Return True if self is a radical ideal.

-is_whole_ring()[source]
+is_whole_ring()[source]

Return True if self is the whole ring.

-is_zero()[source]
+is_zero()[source]

Return True if self is the zero ideal.

-product(J)[source]
+product(J)[source]

Compute the ideal product of self and J.

That is, compute the ideal generated by products \(xy\), for \(x\) an element of self and \(y \in J\).

@@ -1722,7 +1722,7 @@

Modules, Ideals and their Elementary Properties
-quotient(J, **opts)[source]
+quotient(J, **opts)[source]

Compute the ideal quotient of self by J.

That is, if self is the ideal \(I\), compute the set \(I : J = \{x \in R | xJ \subset I \}\).

@@ -1738,13 +1738,13 @@

Modules, Ideals and their Elementary Properties
-radical()[source]
+radical()[source]

Compute the radical of self.

-reduce_element(x)[source]
+reduce_element(x)[source]

Reduce the element x of our ring modulo the ideal self.

Here “reduce” has no specific meaning: it could return a unique normal form, simplify the expression a bit, or just do nothing.

@@ -1752,7 +1752,7 @@

Modules, Ideals and their Elementary Properties
-saturate(J)[source]
+saturate(J)[source]

Compute the ideal saturation of self by J.

That is, if self is the ideal \(I\), compute the set \(I : J^\infty = \{x \in R | xJ^n \subset I \text{ for some } n\}\).

@@ -1760,7 +1760,7 @@

Modules, Ideals and their Elementary Properties
-subset(other)[source]
+subset(other)[source]

Returns True if other is is a subset of self.

Here other may be an ideal.

Examples

@@ -1779,7 +1779,7 @@

Modules, Ideals and their Elementary Properties
-union(J)[source]
+union(J)[source]

Compute the ideal generated by the union of self and J.

Examples

>>> from sympy.abc import x
@@ -1801,7 +1801,7 @@ 

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.QuotientModule(ring, base, submodule)[source]
+class sympy.polys.agca.modules.QuotientModule(ring, base, submodule)[source]

Class for quotient modules.

Do not instantiate this directly. For subquotients, see the SubQuotientModule class.

@@ -1813,7 +1813,7 @@

Modules, Ideals and their Elementary Properties
-convert(elem, M=None)[source]
+convert(elem, M=None)[source]

Convert elem into the internal representation.

This method is called implicitly whenever computations involve elements not in the internal representation.

@@ -1829,13 +1829,13 @@

Modules, Ideals and their Elementary Properties
-dtype[source]
+dtype[source]

alias of QuotientModuleElement

-identity_hom()[source]
+identity_hom()[source]

Return the identity homomorphism on self.

Examples

>>> from sympy.abc import x
@@ -1851,7 +1851,7 @@ 

Modules, Ideals and their Elementary Properties
-is_submodule(other)[source]
+is_submodule(other)[source]

Return True if other is a submodule of self.

Examples

>>> from sympy.abc import x
@@ -1868,7 +1868,7 @@ 

Modules, Ideals and their Elementary Properties
-is_zero()[source]
+is_zero()[source]

Return True if self is a zero module.

This happens if and only if the base module is the same as the submodule being killed.

@@ -1886,7 +1886,7 @@

Modules, Ideals and their Elementary Properties
-quotient_hom()[source]
+quotient_hom()[source]

Return the quotient homomorphism to self.

That is, return a homomorphism representing the natural map from self.base to self.

@@ -1904,7 +1904,7 @@

Modules, Ideals and their Elementary Properties
-submodule(*gens, **opts)[source]
+submodule(*gens, **opts)[source]

Generate a submodule.

This is the same as taking a quotient of a submodule of the base module.

@@ -1922,11 +1922,11 @@

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.QuotientModuleElement(module, data)[source]
+class sympy.polys.agca.modules.QuotientModuleElement(module, data)[source]

Element of a quotient module.

-eq(d1, d2)[source]
+eq(d1, d2)[source]

Equality comparison.

@@ -1934,7 +1934,7 @@

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.SubQuotientModule(gens, container, **opts)[source]
+class sympy.polys.agca.modules.SubQuotientModule(gens, container, **opts)[source]

Submodule of a quotient module.

Equivalently, quotient module of a submodule.

Do not instantiate this, instead use the submodule or quotient_module @@ -1955,7 +1955,7 @@

Modules, Ideals and their Elementary Properties
-is_full_module()[source]
+is_full_module()[source]

Return True if self is the entire free module.

Examples

>>> from sympy.abc import x
@@ -1971,7 +1971,7 @@ 

Modules, Ideals and their Elementary Properties
-quotient_hom()[source]
+quotient_hom()[source]

Return the quotient homomorphism to self.

That is, return the natural map from self.base to self.

Examples

@@ -2050,7 +2050,7 @@

Module Homomorphisms and Syzygies
-sympy.polys.agca.homomorphisms.homomorphism(domain, codomain, matrix)[source]
+sympy.polys.agca.homomorphisms.homomorphism(domain, codomain, matrix)[source]

Create a homomorphism object.

This function tries to build a homomorphism from domain to codomain via the matrix matrix.

@@ -2111,7 +2111,7 @@

Module Homomorphisms and Syzygies
-class sympy.polys.agca.homomorphisms.ModuleHomomorphism(domain, codomain)[source]
+class sympy.polys.agca.homomorphisms.ModuleHomomorphism(domain, codomain)[source]

Abstract base class for module homomoprhisms. Do not instantiate.

Instead, use the homomorphism function:

>>> from sympy import QQ
@@ -2149,7 +2149,7 @@ 

Module Homomorphisms and Syzygies
-image()[source]
+image()[source]

Compute the image of self.

That is, if self is the homomorphism \(\phi: M \to N\), then compute \(im(\phi) = \{\phi(x) | x \in M \}\). This is a submodule of \(N\).

@@ -2168,7 +2168,7 @@

Module Homomorphisms and Syzygies
-is_injective()[source]
+is_injective()[source]

Return True if self is injective.

That is, check if the elements of the domain are mapped to the same codomain element.

@@ -2190,7 +2190,7 @@

Module Homomorphisms and Syzygies
-is_isomorphism()[source]
+is_isomorphism()[source]

Return True if self is an isomorphism.

That is, check if every element of the codomain has precisely one preimage. Equivalently, self is both injective and surjective.

@@ -2213,7 +2213,7 @@

Module Homomorphisms and Syzygies
-is_surjective()[source]
+is_surjective()[source]

Return True if self is surjective.

That is, check if every element of the codomain has at least one preimage.

@@ -2235,7 +2235,7 @@

Module Homomorphisms and Syzygies
-is_zero()[source]
+is_zero()[source]

Return True if self is a zero morphism.

That is, check if every element of the domain is mapped to zero under self.

@@ -2259,7 +2259,7 @@

Module Homomorphisms and Syzygies
-kernel()[source]
+kernel()[source]

Compute the kernel of self.

That is, if self is the homomorphism \(\phi: M \to N\), then compute \(ker(\phi) = \{x \in M | \phi(x) = 0\}\). This is a submodule of \(M\).

@@ -2278,7 +2278,7 @@

Module Homomorphisms and Syzygies
-quotient_codomain(sm)[source]
+quotient_codomain(sm)[source]

Return self with codomain replaced by codomain/sm.

Here sm must be a submodule of self.codomain.

Examples

@@ -2310,7 +2310,7 @@

Module Homomorphisms and Syzygies
-quotient_domain(sm)[source]
+quotient_domain(sm)[source]

Return self with domain replaced by domain/sm.

Here sm must be a submodule of self.kernel().

Examples

@@ -2335,7 +2335,7 @@

Module Homomorphisms and Syzygies
-restrict_codomain(sm)[source]
+restrict_codomain(sm)[source]

Return self, with codomain restricted to to sm.

Here sm has to be a submodule of self.codomain containing the image.

@@ -2361,7 +2361,7 @@

Module Homomorphisms and Syzygies
-restrict_domain(sm)[source]
+restrict_domain(sm)[source]

Return self, with the domain restricted to sm.

Here sm has to be a submodule of self.domain.

Examples

@@ -2414,7 +2414,7 @@

Finite Extensions\(t\).

-class sympy.polys.agca.extensions.MonogenicFiniteExtension(mod)[source]
+class sympy.polys.agca.extensions.MonogenicFiniteExtension(mod)[source]

Finite extension generated by an integral element.

The generator is defined by a monic univariate polynomial derived from the argument mod.

@@ -2450,7 +2450,7 @@

Finite Extensions
-dtype[source]
+dtype[source]

alias of ExtensionElement

@@ -2458,7 +2458,7 @@

Finite Extensions
-class sympy.polys.agca.extensions.ExtensionElement(rep, ext)[source]
+class sympy.polys.agca.extensions.ExtensionElement(rep, ext)[source]

Element of a finite extension.

A class of univariate polynomials modulo the modulus of the extension ext. It is represented by the @@ -2467,7 +2467,7 @@

Finite Extensions
-inverse()[source]
+inverse()[source]

Multiplicative inverse.

Raises:
@@ -2520,7 +2520,7 @@

Finite ExtensionsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/basics.html b/dev/modules/polys/basics.html index cfaa91e14a1..acfd9c77d3a 100644 --- a/dev/modules/polys/basics.html +++ b/dev/modules/polys/basics.html @@ -1389,7 +1389,7 @@

Solving EquationsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/domainmatrix.html b/dev/modules/polys/domainmatrix.html index 855ee9b8af1..2f279d2c0c0 100644 --- a/dev/modules/polys/domainmatrix.html +++ b/dev/modules/polys/domainmatrix.html @@ -833,7 +833,7 @@

What is domainmatrix?
-sympy.polys.matrices.domainmatrix.DM(rows, domain)[source]
+sympy.polys.matrices.domainmatrix.DM(rows, domain)[source]

Convenient alias for DomainMatrix.from_list

Examples

>>> from sympy import ZZ
@@ -850,7 +850,7 @@ 

What is domainmatrix?
-class sympy.polys.matrices.domainmatrix.DomainMatrix(rows, shape, domain, *, fmt=None)[source]
+class sympy.polys.matrices.domainmatrix.DomainMatrix(rows, shape, domain, *, fmt=None)[source]

Associate Matrix with Domain

Explanation

DomainMatrix uses Domain for its internal representation @@ -887,7 +887,7 @@

What is domainmatrix?
-add(B)[source]
+add(B)[source]

Adds two DomainMatrix matrices of the same Domain

Parameters:
@@ -936,7 +936,7 @@

What is domainmatrix?
-adj_det()[source]
+adj_det()[source]

Adjugate and determinant of a square DomainMatrix.

Returns:
@@ -974,7 +974,7 @@

What is domainmatrix?
-adj_poly_det(cp=None)[source]
+adj_poly_det(cp=None)[source]

Return the polynomial \(p\) such that \(p(A) = adj(A)\) and also the determinant of \(A\).

Examples

@@ -1003,7 +1003,7 @@

What is domainmatrix?
-adjugate()[source]
+adjugate()[source]

Adjugate of a square DomainMatrix.

The adjugate matrix is the transpose of the cofactor matrix and is related to the inverse by:

@@ -1036,7 +1036,7 @@

What is domainmatrix?
-cancel_denom(denom)[source]
+cancel_denom(denom)[source]

Cancel factors between a matrix and a denominator.

Returns a matrix and denominator on lowest terms.

Requires gcd in the ground domain.

@@ -1104,7 +1104,7 @@

What is domainmatrix?
-cancel_denom_elementwise(denom)[source]
+cancel_denom_elementwise(denom)[source]

Cancel factors between the elements of a matrix and a denominator.

Returns a matrix of numerators and matrix of denominators.

Requires gcd in the ground domain.

@@ -1143,7 +1143,7 @@

What is domainmatrix?
-charpoly()[source]
+charpoly()[source]

Characteristic polynomial of a square matrix.

Computes the characteristic polynomial in a fully expanded form using division free arithmetic. If a factorization of the characteristic @@ -1183,7 +1183,7 @@

What is domainmatrix?
-charpoly_base()[source]
+charpoly_base()[source]

Base case for charpoly_factor_blocks() after block decomposition.

This method is used internally by charpoly_factor_blocks() as the base case for computing the characteristic polynomial of a block. It is @@ -1201,7 +1201,7 @@

What is domainmatrix?
-charpoly_berk()[source]
+charpoly_berk()[source]

Compute the characteristic polynomial using the Berkowitz algorithm.

This method directly calls the underlying implementation of the Berkowitz algorithm (sympy.polys.matrices.dense.ddm_berk() or @@ -1232,7 +1232,7 @@

What is domainmatrix?
-charpoly_factor_blocks()[source]
+charpoly_factor_blocks()[source]

Partial factorisation of the characteristic polynomial.

This factorisation arises from a block structure of the matrix (if any) and so the factors are not guaranteed to be irreducible. The @@ -1293,7 +1293,7 @@

What is domainmatrix?
-charpoly_factor_list()[source]
+charpoly_factor_list()[source]

Full factorization of the characteristic polynomial.

Returns:
@@ -1342,7 +1342,7 @@

What is domainmatrix?
-choose_domain(**opts)[source]
+choose_domain(**opts)[source]

Convert to a domain found by construct_domain().

Examples

>>> from sympy import ZZ
@@ -1369,7 +1369,7 @@ 

What is domainmatrix?
-clear_denoms(convert=False)[source]
+clear_denoms(convert=False)[source]

Clear denominators, but keep the domain unchanged.

Examples

>>> from sympy import QQ
@@ -1409,7 +1409,7 @@ 

What is domainmatrix?
-clear_denoms_rowwise(convert=False)[source]
+clear_denoms_rowwise(convert=False)[source]

Clear denominators from each row of the matrix.

Examples

>>> from sympy import QQ
@@ -1455,7 +1455,7 @@ 

What is domainmatrix?
-columnspace()[source]
+columnspace()[source]

Returns the columnspace for the DomainMatrix

Returns:
@@ -1479,7 +1479,7 @@

What is domainmatrix?
-content()[source]
+content()[source]

Return the gcd of the elements of the matrix.

Requires gcd in the ground domain.

Examples

@@ -1498,7 +1498,7 @@

What is domainmatrix?
-convert_to(K)[source]
+convert_to(K)[source]

Change the domain of DomainMatrix to desired domain or field

Parameters:
@@ -1531,7 +1531,7 @@

What is domainmatrix?
-det()[source]
+det()[source]

Returns the determinant of a square DomainMatrix.

Returns:
@@ -1563,7 +1563,7 @@

What is domainmatrix?
-classmethod diag(diagonal, domain, shape=None)[source]
+classmethod diag(diagonal, domain, shape=None)[source]

Return diagonal matrix with entries from diagonal.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -1576,7 +1576,7 @@ 

What is domainmatrix?
-diagonal()[source]
+diagonal()[source]

Get the diagonal entries of the matrix as a list.

Examples

>>> from sympy import ZZ
@@ -1594,7 +1594,7 @@ 

What is domainmatrix?
-eval_poly(p)[source]
+eval_poly(p)[source]

Evaluate polynomial function of a matrix \(p(A)\).

Examples

>>> from sympy import QQ
@@ -1616,7 +1616,7 @@ 

What is domainmatrix?
-eval_poly_mul(p, B)[source]
+eval_poly_mul(p, B)[source]

Evaluate polynomial matrix product \(p(A) \times B\).

Evaluate the polynomial matrix product \(p(A) \times B\) using Horner’s method without creating the matrix \(p(A)\) explicitly. If \(B\) is a @@ -1648,7 +1648,7 @@

What is domainmatrix?
-classmethod eye(shape, domain)[source]
+classmethod eye(shape, domain)[source]

Return identity matrix of size n or shape (m, n).

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -1669,7 +1669,7 @@ 

What is domainmatrix?**kwargs,

-)[source] +)[source]

Convert Matrix to DomainMatrix

Parameters:
@@ -1713,7 +1713,7 @@

What is domainmatrix?**kwargs,

-)[source] +)[source]
Parameters:

nrows: number of rows

@@ -1741,7 +1741,7 @@

What is domainmatrix?
-classmethod from_dod(dod, shape, domain)[source]
+classmethod from_dod(dod, shape, domain)[source]

Create sparse DomainMatrix from dict of dict (dod) format.

See to_dod() for explanation.

@@ -1752,7 +1752,7 @@

What is domainmatrix?
-from_dod_like(dod, domain=None)[source]
+from_dod_like(dod, domain=None)[source]

Create DomainMatrix like self from dict of dict (dod) format.

See to_dod() for explanation.

@@ -1763,7 +1763,7 @@

What is domainmatrix?
-classmethod from_dok(dok, shape, domain)[source]
+classmethod from_dok(dok, shape, domain)[source]

Create DomainMatrix from dictionary of keys (dok) format.

See to_dok() for explanation.

@@ -1774,7 +1774,7 @@

What is domainmatrix?
-from_flat_nz(elements, data, domain)[source]
+from_flat_nz(elements, data, domain)[source]

Reconstruct DomainMatrix after calling to_flat_nz().

See to_flat_nz() for explanation.

@@ -1785,7 +1785,7 @@

What is domainmatrix?
-classmethod from_list(rows, domain)[source]
+classmethod from_list(rows, domain)[source]

Convert a list of lists into a DomainMatrix

Parameters:
@@ -1830,7 +1830,7 @@

What is domainmatrix?domain,

-)[source] +)[source]

Create DomainMatrix from flat list.

Examples

>>> from sympy import ZZ
@@ -1860,7 +1860,7 @@ 

What is domainmatrix?**kwargs,

-)[source] +)[source]

Convert a list of lists of Expr into a DomainMatrix using construct_domain

Parameters:
@@ -1888,7 +1888,7 @@

What is domainmatrix?
-classmethod from_rep(rep)[source]
+classmethod from_rep(rep)[source]

Create a new DomainMatrix efficiently from DDM/SDM.

Parameters:
@@ -1936,7 +1936,7 @@

What is domainmatrix?
-hstack(*B)[source]
+hstack(*B)[source]

Horizontally stack the given matrices.

Parameters:
@@ -1976,7 +1976,7 @@

What is domainmatrix?
-inv()[source]
+inv()[source]

Finds the inverse of the DomainMatrix if exists

Returns:
@@ -2015,7 +2015,7 @@

What is domainmatrix?
-inv_den(method=None)[source]
+inv_den(method=None)[source]

Return the inverse as a DomainMatrix with denominator.

Parameters:
@@ -2109,7 +2109,7 @@

What is domainmatrix?
-iter_items()[source]
+iter_items()[source]

Iterate over indices and values of nonzero elements of the matrix.

Examples

>>> from sympy import ZZ
@@ -2127,7 +2127,7 @@ 

What is domainmatrix?
-iter_values()[source]
+iter_values()[source]

Iterate over nonzero elements of the matrix.

Examples

>>> from sympy import ZZ
@@ -2145,7 +2145,7 @@ 

What is domainmatrix?
-lll(delta=MPQ(3, 4))[source]
+lll(delta=MPQ(3, 4))[source]

Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm. See [R772] and [R773].

@@ -2210,7 +2210,7 @@

What is domainmatrix?
-lll_transform(delta=MPQ(3, 4))[source]
+lll_transform(delta=MPQ(3, 4))[source]

Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm and returns the reduced basis and transformation matrix.

Explanation

@@ -2239,7 +2239,7 @@

What is domainmatrix?
-lu()[source]
+lu()[source]

Returns Lower and Upper decomposition of the DomainMatrix

Returns:
@@ -2280,7 +2280,7 @@

What is domainmatrix?
-lu_solve(rhs)[source]
+lu_solve(rhs)[source]

Solver for DomainMatrix x in the A*x = B

Parameters:
@@ -2326,7 +2326,7 @@

What is domainmatrix?
-matmul(B)[source]
+matmul(B)[source]

Performs matrix multiplication of two DomainMatrix matrices

Parameters:
@@ -2365,7 +2365,7 @@

What is domainmatrix?
-mul(b)[source]
+mul(b)[source]

Performs term by term multiplication for the second DomainMatrix w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are list of DomainMatrix matrices created after term by term multiplication.

@@ -2404,7 +2404,7 @@

What is domainmatrix?
-neg()[source]
+neg()[source]

Returns the negative of DomainMatrix

Parameters:
@@ -2433,7 +2433,7 @@

What is domainmatrix?
-nnz()[source]
+nnz()[source]

Number of nonzero elements in the matrix.

Examples

>>> from sympy import ZZ
@@ -2447,7 +2447,7 @@ 

What is domainmatrix?
-nullspace(divide_last=False)[source]
+nullspace(divide_last=False)[source]

Returns the nullspace for the DomainMatrix

Parameters:
@@ -2539,7 +2539,7 @@

What is domainmatrix?
-nullspace_from_rref(pivots=None)[source]
+nullspace_from_rref(pivots=None)[source]

Compute nullspace from rref and pivots.

The domain of the matrix can be any domain.

The matrix must be in reduced row echelon form already. Otherwise the @@ -2553,7 +2553,7 @@

What is domainmatrix?
-classmethod ones(shape, domain)[source]
+classmethod ones(shape, domain)[source]

Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -2566,7 +2566,7 @@ 

What is domainmatrix?
-pow(n)[source]
+pow(n)[source]

Computes A**n

Parameters:
@@ -2606,7 +2606,7 @@

What is domainmatrix?
-primitive()[source]
+primitive()[source]

Factor out gcd of the elements of a matrix.

Requires gcd in the ground domain.

Examples

@@ -2632,7 +2632,7 @@

What is domainmatrix?
-rowspace()[source]
+rowspace()[source]

Returns the rowspace for the DomainMatrix

Returns:
@@ -2656,7 +2656,7 @@

What is domainmatrix?
-rref(*, method='auto')[source]
+rref(*, method='auto')[source]

Returns reduced-row echelon form (RREF) and list of pivots.

If the domain is not a field then it will be converted to a field. See rref_den() for the fraction-free version of this routine that @@ -2751,7 +2751,7 @@

What is domainmatrix?keep_domain=True,

-)[source] +)[source]

Returns reduced-row echelon form with denominator and list of pivots.

Requires exact division in the ground domain (exquo).

@@ -2856,7 +2856,7 @@

What is domainmatrix?
-scc()[source]
+scc()[source]

Compute the strongly connected components of a DomainMatrix

Returns:
@@ -2924,7 +2924,7 @@

What is domainmatrix?
-solve_den(b, method=None)[source]
+solve_den(b, method=None)[source]

Solve matrix equation \(Ax = b\) without fractions in the ground domain.

Parameters:
@@ -3058,7 +3058,7 @@

What is domainmatrix?check=True,

-)[source] +)[source]

Solve matrix equation \(Ax = b\) using the characteristic polynomial.

This method solves the square matrix equation \(Ax = b\) for \(x\) using the characteristic polynomial without any division or fractions in the @@ -3129,7 +3129,7 @@

What is domainmatrix?
-solve_den_rref(b)[source]
+solve_den_rref(b)[source]

Solve matrix equation \(Ax = b\) using fraction-free RREF

Solves the matrix equation \(Ax = b\) for \(x\) and returns the solution as a numerator/denominator pair.

@@ -3155,7 +3155,7 @@

What is domainmatrix?
-sub(B)[source]
+sub(B)[source]

Subtracts two DomainMatrix matrices of the same Domain

Parameters:
@@ -3204,7 +3204,7 @@

What is domainmatrix?
-to_Matrix()[source]
+to_Matrix()[source]

Convert DomainMatrix to Matrix

Returns:
@@ -3236,7 +3236,7 @@

What is domainmatrix?
-to_ddm()[source]
+to_ddm()[source]

Return a DDM representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3257,7 +3257,7 @@ 

What is domainmatrix?
-to_dense()[source]
+to_dense()[source]

Return a dense DomainMatrix representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3274,7 +3274,7 @@ 

What is domainmatrix?
-to_dfm()[source]
+to_dfm()[source]

Return a DFM representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3295,7 +3295,7 @@ 

What is domainmatrix?
-to_dfm_or_ddm()[source]
+to_dfm_or_ddm()[source]

Return a DFM or DDM representation of self.

Explanation

The DFM representation can only be used if the ground types @@ -3332,7 +3332,7 @@

What is domainmatrix?
-to_dod()[source]
+to_dod()[source]

Convert DomainMatrix to dictionary of dictionaries (dod) format.

Explanation

Returns a dictionary of dictionaries representing the matrix.

@@ -3356,7 +3356,7 @@

What is domainmatrix?
-to_dok()[source]
+to_dok()[source]

Convert DomainMatrix to dictionary of keys (dok) format.

Examples

>>> from sympy import ZZ
@@ -3382,7 +3382,7 @@ 

What is domainmatrix?
-to_field()[source]
+to_field()[source]

Returns a DomainMatrix with the appropriate field

Returns:
@@ -3408,7 +3408,7 @@

What is domainmatrix?
-to_flat_nz()[source]
+to_flat_nz()[source]

Convert DomainMatrix to list of nonzero elements and data.

Explanation

Returns a tuple (elements, data) where elements is a list of @@ -3451,7 +3451,7 @@

What is domainmatrix?
-to_list()[source]
+to_list()[source]

Convert DomainMatrix to list of lists.

See also

@@ -3461,7 +3461,7 @@

What is domainmatrix?
-to_list_flat()[source]
+to_list_flat()[source]

Convert DomainMatrix to flat list.

Examples

>>> from sympy import ZZ
@@ -3479,7 +3479,7 @@ 

What is domainmatrix?
-to_sdm()[source]
+to_sdm()[source]

Return a SDM representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3500,7 +3500,7 @@ 

What is domainmatrix?
-to_sparse()[source]
+to_sparse()[source]

Return a sparse DomainMatrix representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3517,13 +3517,13 @@ 

What is domainmatrix?
-transpose()[source]
+transpose()[source]

Matrix transpose of self

-unify(*others, fmt=None)[source]
+unify(*others, fmt=None)[source]

Unifies the domains and the format of self and other matrices.

@@ -3576,7 +3576,7 @@

What is domainmatrix?
-vstack(*B)[source]
+vstack(*B)[source]

Vertically stack the given matrices.

Parameters:
@@ -3616,7 +3616,7 @@

What is domainmatrix?
-classmethod zeros(shape, domain, *, fmt='sparse')[source]
+classmethod zeros(shape, domain, *, fmt='sparse')[source]

Returns a zero DomainMatrix of size shape, belonging to the specified domain

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3686,31 +3686,31 @@ 

What is domainmatrix?
-class sympy.polys.matrices.ddm.DDM(rowslist, shape, domain)[source]
+class sympy.polys.matrices.ddm.DDM(rowslist, shape, domain)[source]

Dense matrix based on polys domain elements

This is a list subclass and is a wrapper for a list of lists that supports basic matrix arithmetic +, -, , *.

-add(b)[source]
+add(b)[source]

a + b

-charpoly()[source]
+charpoly()[source]

Coefficients of characteristic polynomial of a

-det()[source]
+det()[source]

Determinant of a

-classmethod diag(values, domain)[source]
+classmethod diag(values, domain)[source]

Returns a square diagonal matrix with values on the diagonal.

Examples

>>> from sympy import ZZ
@@ -3727,13 +3727,13 @@ 

What is domainmatrix?
-diagonal()[source]
+diagonal()[source]

Returns a list of the elements from the diagonal of the matrix.

-classmethod from_dod(dod, shape, domain)[source]
+classmethod from_dod(dod, shape, domain)[source]

Create a DDM from a dictionary of dictionaries (dod) format.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3752,7 +3752,7 @@ 

What is domainmatrix?
-classmethod from_dok(dok, shape, domain)[source]
+classmethod from_dok(dok, shape, domain)[source]

Create a DDM from a dictionary of keys (dok) format.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3771,7 +3771,7 @@ 

What is domainmatrix?
-classmethod from_flat_nz(elements, data, domain)[source]
+classmethod from_flat_nz(elements, data, domain)[source]

Reconstruct a DDM after calling to_flat_nz().

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3792,7 +3792,7 @@ 

What is domainmatrix?
-classmethod from_list(rowslist, shape, domain)[source]
+classmethod from_list(rowslist, shape, domain)[source]

Create a DDM from a list of lists.

Examples

>>> from sympy import ZZ
@@ -3812,7 +3812,7 @@ 

What is domainmatrix?
-classmethod from_list_flat(flat, shape, domain)[source]
+classmethod from_list_flat(flat, shape, domain)[source]

Create a DDM from a flat list of elements.

Examples

>>> from sympy import QQ
@@ -3832,7 +3832,7 @@ 

What is domainmatrix?
-hstack(*B)[source]
+hstack(*B)[source]

Horizontally stacks DDM matrices.

Examples

>>> from sympy import ZZ
@@ -3854,40 +3854,40 @@ 

What is domainmatrix?
-inv()[source]
+inv()[source]

Inverse of a

-is_diagonal()[source]
+is_diagonal()[source]

Says whether this matrix is diagonal. True can be returned even if the matrix is not square.

-is_lower()[source]
+is_lower()[source]

Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.

-is_upper()[source]
+is_upper()[source]

Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.

-is_zero_matrix()[source]
+is_zero_matrix()[source]

Says whether this matrix has all zero entries.

-iter_items()[source]
+iter_items()[source]

Iterate over indices and values of nonzero elements of the matrix.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3905,7 +3905,7 @@ 

What is domainmatrix?
-iter_values()[source]
+iter_values()[source]

Iterater over the non-zero values of the matrix.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3923,31 +3923,31 @@ 

What is domainmatrix?
-lu()[source]
+lu()[source]

L, U decomposition of a

-lu_solve(b)[source]
+lu_solve(b)[source]

x where a*x = b

-matmul(b)[source]
+matmul(b)[source]

a @ b (matrix product)

-neg()[source]
+neg()[source]

-a

-nnz()[source]
+nnz()[source]

Number of non-zero entries in DDM matrix.

See also

@@ -3957,7 +3957,7 @@

What is domainmatrix?
-nullspace()[source]
+nullspace()[source]

Returns a basis for the nullspace of a.

The domain of the matrix must be a field.

@@ -3968,7 +3968,7 @@

What is domainmatrix?
-nullspace_from_rref(pivots=None)[source]
+nullspace_from_rref(pivots=None)[source]

Compute the nullspace of a matrix from its rref.

The domain of the matrix can be any domain.

Returns a tuple (basis, nonpivots).

@@ -3983,7 +3983,7 @@

What is domainmatrix?
-rref()[source]
+rref()[source]

Reduced-row echelon form of a and list of pivots.

See also

@@ -3998,7 +3998,7 @@

What is domainmatrix?
-rref_den()[source]
+rref_den()[source]

Reduced-row echelon form of a with denominator and list of pivots

See also

@@ -4013,7 +4013,7 @@

What is domainmatrix?
-scc()[source]
+scc()[source]

Strongly connected components of a square matrix a.

Examples

>>> from sympy import ZZ
@@ -4031,13 +4031,13 @@ 

What is domainmatrix?
-sub(b)[source]
+sub(b)[source]

a - b

-to_ddm()[source]
+to_ddm()[source]

Convert to a DDM.

This just returns self but exists to parallel the corresponding method in other matrix types like SDM.

@@ -4049,7 +4049,7 @@

What is domainmatrix?
-to_dfm()[source]
+to_dfm()[source]

Convert to DDM to DFM.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4069,7 +4069,7 @@ 

What is domainmatrix?
-to_dfm_or_ddm()[source]
+to_dfm_or_ddm()[source]

Convert to DFM if possible or otherwise return self.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4089,7 +4089,7 @@ 

What is domainmatrix?
-to_dod()[source]
+to_dod()[source]

Convert to a dictionary of dictionaries (dod) format.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4107,7 +4107,7 @@ 

What is domainmatrix?
-to_dok()[source]
+to_dok()[source]

Convert DDM to dictionary of keys (dok) format.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4125,7 +4125,7 @@ 

What is domainmatrix?
-to_flat_nz()[source]
+to_flat_nz()[source]

Convert to a flat list of nonzero elements and data.

Explanation

This is used to operate on a list of the elements of a matrix and then @@ -4150,7 +4150,7 @@

What is domainmatrix?
-to_list()[source]
+to_list()[source]

Convert to a list of lists.

Examples

>>> from sympy import QQ
@@ -4168,7 +4168,7 @@ 

What is domainmatrix?
-to_list_flat()[source]
+to_list_flat()[source]

Convert to a flat list of elements.

Examples

>>> from sympy import QQ
@@ -4188,7 +4188,7 @@ 

What is domainmatrix?
-to_sdm()[source]
+to_sdm()[source]

Convert to a SDM.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4208,7 +4208,7 @@ 

What is domainmatrix?
-vstack(*B)[source]
+vstack(*B)[source]

Vertically stacks DDM matrices.

Examples

>>> from sympy import ZZ
@@ -4277,7 +4277,7 @@ 

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_berk(M, K)[source]
+sympy.polys.matrices.dense.ddm_berk(M, K)[source]

Berkowitz algorithm for computing the characteristic polynomial.

Explanation

The Berkowitz algorithm is a division-free algorithm for computing the @@ -4319,13 +4319,13 @@

What is domainmatrix?b: Sequence[Sequence[R]],

-) None[source] +) None[source]

a += b

-sympy.polys.matrices.dense.ddm_idet(a, K)[source]
+sympy.polys.matrices.dense.ddm_idet(a, K)[source]

a <– echelon(a); return det

Explanation

Compute the determinant of \(a\) using the Bareiss fraction-free algorithm. @@ -4368,7 +4368,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_iinv(ainv, a, K)[source]
+sympy.polys.matrices.dense.ddm_iinv(ainv, a, K)[source]

ainv <– inv(a)

Compute the inverse of a matrix \(a\) over a field \(K\) using Gauss-Jordan elimination. The result is stored in \(ainv\).

@@ -4398,7 +4398,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_ilu(a)[source]
+sympy.polys.matrices.dense.ddm_ilu(a)[source]

a <– LU(a)

Computes the LU decomposition of a matrix in place. Returns a list of row swaps that were performed.

@@ -4443,7 +4443,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_ilu_solve(x, L, U, swaps, b)[source]
+sympy.polys.matrices.dense.ddm_ilu_solve(x, L, U, swaps, b)[source]

x <– solve(L*U*x = swaps(b))

Solve a linear system, \(A*x = b\), given an LU factorization of \(A\).

Uses division in the ground domain which must be a field.

@@ -4482,7 +4482,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_ilu_split(L, U, K)[source]
+sympy.polys.matrices.dense.ddm_ilu_split(L, U, K)[source]

L, U <– LU(U)

Compute the LU decomposition of a matrix \(L\) in place and store the lower and upper triangular matrices in \(L\) and \(U\), respectively. Returns a list @@ -4518,7 +4518,7 @@

What is domainmatrix?c: Sequence[Sequence[R]],

-) None[source] +) None[source]

a += b @ c

@@ -4531,7 +4531,7 @@

What is domainmatrix?b: R,

-) None[source] +) None[source]

a <– a*b

@@ -4543,7 +4543,7 @@

What is domainmatrix?a: list[list[R]],

-) None[source] +) None[source]

a <– -a

@@ -4556,13 +4556,13 @@

What is domainmatrix?b: R,

-) None[source] +) None[source]

a <– b*a

-sympy.polys.matrices.dense.ddm_irref(a, _partial_pivot=False)[source]
+sympy.polys.matrices.dense.ddm_irref(a, _partial_pivot=False)[source]

In-place reduced row echelon form of a matrix.

Compute the reduced row echelon form of \(a\). Modifies \(a\) in place and returns a list of the pivot columns.

@@ -4611,7 +4611,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_irref_den(a, K)[source]
+sympy.polys.matrices.dense.ddm_irref_den(a, K)[source]

a <– rref(a); return (den, pivots)

Compute the fraction-free reduced row echelon form (RREF) of \(a\). Modifies \(a\) in place and returns a tuple containing the denominator of the RREF and @@ -4677,7 +4677,7 @@

What is domainmatrix?b: Sequence[Sequence[R]],

-) None[source] +) None[source]

a -= b

@@ -4689,13 +4689,13 @@

What is domainmatrix?matrix: Sequence[Sequence[T]],

-) list[list[T]][source] +) list[list[T]][source]

matrix transpose

-class sympy.polys.matrices._typing.RingElement(*args, **kwargs)[source]
+class sympy.polys.matrices._typing.RingElement(*args, **kwargs)[source]

A ring element.

Must support +, -, *, ** and -.

@@ -4703,7 +4703,7 @@

What is domainmatrix?Module for the SDM class.

-class sympy.polys.matrices.sdm.SDM(elemsdict, shape, domain)[source]
+class sympy.polys.matrices.sdm.SDM(elemsdict, shape, domain)[source]

Sparse matrix based on polys domain elements

This is a dict subclass and is a wrapper for a dict of dicts that supports basic matrix arithmetic +, -, , *.

@@ -4747,7 +4747,7 @@

What is domainmatrix?
-add(B)[source]
+add(B)[source]

Adds two SDM matrices

Examples

>>> from sympy import ZZ
@@ -4762,7 +4762,7 @@ 

What is domainmatrix?
-charpoly()[source]
+charpoly()[source]

Returns the coefficients of the characteristic polynomial of the SDM matrix. These elements will be domain elements. The domain of the elements will be same as domain of the SDM.

@@ -4787,7 +4787,7 @@

What is domainmatrix?
-convert_to(K)[source]
+convert_to(K)[source]

Converts the Domain of a SDM matrix to K

Examples

>>> from sympy import ZZ, QQ
@@ -4801,7 +4801,7 @@ 

What is domainmatrix?
-copy()[source]
+copy()[source]

Returns the copy of a SDM object

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -4817,7 +4817,7 @@ 

What is domainmatrix?
-det()[source]
+det()[source]

Returns determinant of A

Examples

>>> from sympy import QQ
@@ -4831,13 +4831,13 @@ 

What is domainmatrix?
-diagonal()[source]
+diagonal()[source]

Returns the diagonal of the matrix as a list.

-classmethod eye(shape, domain)[source]
+classmethod eye(shape, domain)[source]

Returns a identity SDM matrix of dimensions size x size, belonging to the specified domain

Examples

@@ -4852,7 +4852,7 @@

What is domainmatrix?
-classmethod from_ddm(ddm)[source]
+classmethod from_ddm(ddm)[source]

Create SDM from a DDM.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4874,7 +4874,7 @@ 

What is domainmatrix?
-classmethod from_dod(dod, shape, domain)[source]
+classmethod from_dod(dod, shape, domain)[source]

Create SDM from dictionary of dictionaries (dod) format.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -4895,7 +4895,7 @@ 

What is domainmatrix?
-classmethod from_dok(dok, shape, domain)[source]
+classmethod from_dok(dok, shape, domain)[source]

Create SDM from dictionary of keys (dok) format.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -4916,7 +4916,7 @@ 

What is domainmatrix?
-classmethod from_flat_nz(elements, data, domain)[source]
+classmethod from_flat_nz(elements, data, domain)[source]

Reconstruct a SDM after calling to_flat_nz().

See to_flat_nz() for explanation.

@@ -4927,7 +4927,7 @@

What is domainmatrix?
-classmethod from_list(ddm, shape, domain)[source]
+classmethod from_list(ddm, shape, domain)[source]

Create SDM object from a list of lists.

Parameters:
@@ -4965,7 +4965,7 @@

What is domainmatrix?
-classmethod from_list_flat(elements, shape, domain)[source]
+classmethod from_list_flat(elements, shape, domain)[source]

Create SDM from a flat list of elements.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -4985,7 +4985,7 @@ 

What is domainmatrix?
-hstack(*B)[source]
+hstack(*B)[source]

Horizontally stacks SDM matrices.

Examples

>>> from sympy import ZZ
@@ -5007,7 +5007,7 @@ 

What is domainmatrix?
-inv()[source]
+inv()[source]

Returns inverse of a matrix A

Examples

>>> from sympy import QQ
@@ -5021,34 +5021,34 @@ 

What is domainmatrix?
-is_diagonal()[source]
+is_diagonal()[source]

Says whether this matrix is diagonal. True can be returned even if the matrix is not square.

-is_lower()[source]
+is_lower()[source]

Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.

-is_upper()[source]
+is_upper()[source]

Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.

-is_zero_matrix()[source]
+is_zero_matrix()[source]

Says whether this matrix has all zero entries.

-iter_items()[source]
+iter_items()[source]

Iterate over indices and values of the nonzero elements.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5066,7 +5066,7 @@ 

What is domainmatrix?
-iter_values()[source]
+iter_values()[source]

Iterate over the nonzero values of a SDM matrix.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5080,19 +5080,19 @@ 

What is domainmatrix?
-lll(delta=MPQ(3, 4))[source]
+lll(delta=MPQ(3, 4))[source]

Returns the LLL-reduced basis for the SDM matrix.

-lll_transform(delta=MPQ(3, 4))[source]
+lll_transform(delta=MPQ(3, 4))[source]

Returns the LLL-reduced basis and transformation matrix.

-lu()[source]
+lu()[source]

Returns LU decomposition for a matrix A

Examples

>>> from sympy import QQ
@@ -5106,7 +5106,7 @@ 

What is domainmatrix?
-lu_solve(b)[source]
+lu_solve(b)[source]

Uses LU decomposition to solve Ax = b,

Examples

>>> from sympy import QQ
@@ -5121,7 +5121,7 @@ 

What is domainmatrix?
-matmul(B)[source]
+matmul(B)[source]

Performs matrix multiplication of two SDM matrices

Parameters:
@@ -5154,7 +5154,7 @@

What is domainmatrix?
-mul(b)[source]
+mul(b)[source]

Multiplies each element of A with a scalar b

Examples

>>> from sympy import ZZ
@@ -5168,7 +5168,7 @@ 

What is domainmatrix?
-neg()[source]
+neg()[source]

Returns the negative of a SDM matrix

Examples

>>> from sympy import ZZ
@@ -5182,7 +5182,7 @@ 

What is domainmatrix?
-classmethod new(sdm, shape, domain)[source]
+classmethod new(sdm, shape, domain)[source]
Parameters:

sdm: A dict of dicts for non-zero elements in SDM

@@ -5206,7 +5206,7 @@

What is domainmatrix?
-nnz()[source]
+nnz()[source]

Number of non-zero elements in the SDM matrix.

Examples

>>> from sympy import ZZ
@@ -5224,7 +5224,7 @@ 

What is domainmatrix?
-nullspace()[source]
+nullspace()[source]

Nullspace of a SDM matrix A.

The domain of the matrix must be a field.

It is better to use the nullspace() method rather @@ -5248,7 +5248,7 @@

What is domainmatrix?
-nullspace_from_rref(pivots=None)[source]
+nullspace_from_rref(pivots=None)[source]

Returns nullspace for a SDM matrix A in RREF.

The domain of the matrix can be any domain.

The matrix must already be in reduced row echelon form (RREF).

@@ -5281,7 +5281,7 @@

What is domainmatrix?
-rref()[source]
+rref()[source]

Returns reduced-row echelon form and list of pivots for the SDM

Examples

>>> from sympy import QQ
@@ -5295,7 +5295,7 @@ 

What is domainmatrix?
-rref_den()[source]
+rref_den()[source]

Returns reduced-row echelon form (RREF) with denominator and pivots.

Examples

>>> from sympy import QQ
@@ -5309,7 +5309,7 @@ 

What is domainmatrix?
-scc()[source]
+scc()[source]

Strongly connected components of a square matrix A.

Examples

>>> from sympy import ZZ
@@ -5327,7 +5327,7 @@ 

What is domainmatrix?
-sub(B)[source]
+sub(B)[source]

Subtracts two SDM matrices

Examples

>>> from sympy import ZZ
@@ -5342,7 +5342,7 @@ 

What is domainmatrix?
-to_ddm()[source]
+to_ddm()[source]

Convert a SDM object to a DDM object

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5356,7 +5356,7 @@ 

What is domainmatrix?
-to_dfm()[source]
+to_dfm()[source]

Convert a SDM object to a DFM object

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5374,7 +5374,7 @@ 

What is domainmatrix?
-to_dfm_or_ddm()[source]
+to_dfm_or_ddm()[source]

Convert to DFM if possible, else DDM.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5394,7 +5394,7 @@ 

What is domainmatrix?
-to_dod()[source]
+to_dod()[source]

Convert to dictionary of dictionaries (dod) format.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5412,7 +5412,7 @@ 

What is domainmatrix?
-to_dok()[source]
+to_dok()[source]

Convert to dictionary of keys (dok) format.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5430,7 +5430,7 @@ 

What is domainmatrix?
-to_flat_nz()[source]
+to_flat_nz()[source]

Convert SDM to a flat list of nonzero elements and data.

Explanation

This is used to operate on a list of the elements of a matrix and then @@ -5455,7 +5455,7 @@

What is domainmatrix?
-to_list()[source]
+to_list()[source]

Convert a SDM object to a list of lists.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5470,7 +5470,7 @@ 

What is domainmatrix?
-to_list_flat()[source]
+to_list_flat()[source]

Convert SDM to a flat list.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5490,13 +5490,13 @@ 

What is domainmatrix?
-to_sdm()[source]
+to_sdm()[source]

Convert to SDM format (returns self).

-transpose()[source]
+transpose()[source]

Returns the transpose of a SDM matrix

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5510,7 +5510,7 @@ 

What is domainmatrix?
-vstack(*B)[source]
+vstack(*B)[source]

Vertically stacks SDM matrices.

Examples

>>> from sympy import ZZ
@@ -5532,7 +5532,7 @@ 

What is domainmatrix?
-classmethod zeros(shape, domain)[source]
+classmethod zeros(shape, domain)[source]

Returns a SDM of size shape, belonging to the specified domain

In the example below we declare a matrix A where,

@@ -5555,7 +5555,7 @@

What is domainmatrix?
-sympy.polys.matrices.sdm.sdm_berk(M, n, K)[source]
+sympy.polys.matrices.sdm.sdm_berk(M, n, K)[source]

Berkowitz algorithm for computing the characteristic polynomial.

Explanation

The Berkowitz algorithm is a division-free algorithm for computing the @@ -5593,7 +5593,7 @@

What is domainmatrix?
-sympy.polys.matrices.sdm.sdm_irref(A)[source]
+sympy.polys.matrices.sdm.sdm_irref(A)[source]

RREF and pivots of a sparse matrix A.

Compute the reduced row echelon form (RREF) of the matrix A and return a list of the pivot columns. This routine does not work in place and leaves @@ -5660,19 +5660,19 @@

What is domainmatrix?nonzero_cols,

-)[source] +)[source]

Get nullspace from A which is in RREF

-sympy.polys.matrices.sdm.sdm_particular_from_rref(A, ncols, pivots)[source]
+sympy.polys.matrices.sdm.sdm_particular_from_rref(A, ncols, pivots)[source]

Get a particular solution from A which is in RREF

-sympy.polys.matrices.sdm.sdm_rref_den(A, K)[source]
+sympy.polys.matrices.sdm.sdm_rref_den(A, K)[source]

Return the reduced row echelon form (RREF) of A with denominator.

The RREF is computed using fraction-free Gauss-Jordan elimination.

Explanation

@@ -5726,7 +5726,7 @@

What is domainmatrix?
-class sympy.polys.matrices._dfm.DFM(rowslist, shape, domain)[source]
+class sympy.polys.matrices._dfm.DFM(rowslist, shape, domain)[source]

Dense FLINT matrix. This class is a wrapper for matrices from python-flint.

>>> from sympy.polys.domains import ZZ
 >>> from sympy.polys.matrices.dfm import DFM
@@ -5760,19 +5760,19 @@ 

What is domainmatrix?
-add(other)[source]
+add(other)[source]

Add two DFM matrices.

-applyfunc(func, domain)[source]
+applyfunc(func, domain)[source]

Apply a function to each entry of a DFM matrix.

-charpoly()[source]
+charpoly()[source]

Compute the characteristic polynomial of the matrix using FLINT.

Examples

>>> from sympy import Matrix
@@ -5807,19 +5807,19 @@ 

What is domainmatrix?
-convert_to(domain)[source]
+convert_to(domain)[source]

Convert to a new domain.

-copy()[source]
+copy()[source]

Return a copy of self.

-det()[source]
+det()[source]

Compute the determinant of the matrix using FLINT.

Examples

>>> from sympy import Matrix
@@ -5860,85 +5860,85 @@ 

What is domainmatrix?
-classmethod diag(elements, domain)[source]
+classmethod diag(elements, domain)[source]

Return a diagonal matrix.

-diagonal()[source]
+diagonal()[source]

Return the diagonal of a DFM matrix.

-extract(rowslist, colslist)[source]
+extract(rowslist, colslist)[source]

Extract a submatrix.

-extract_slice(rowslice, colslice)[source]
+extract_slice(rowslice, colslice)[source]

Slice a DFM.

-classmethod eye(n, domain)[source]
+classmethod eye(n, domain)[source]

Return the identity matrix of size n.

-classmethod from_ddm(ddm)[source]
+classmethod from_ddm(ddm)[source]

Convert from a DDM.

-classmethod from_dod(dod, shape, domain)[source]
+classmethod from_dod(dod, shape, domain)[source]

Inverse of to_dod().

-classmethod from_dok(dok, shape, domain)[source]
+classmethod from_dok(dok, shape, domain)[source]

Inverse of \(to_dod\).

-classmethod from_flat_nz(elements, data, domain)[source]
+classmethod from_flat_nz(elements, data, domain)[source]

Inverse of to_flat_nz().

-classmethod from_list(rowslist, shape, domain)[source]
+classmethod from_list(rowslist, shape, domain)[source]

Construct from a nested list.

-classmethod from_list_flat(elements, shape, domain)[source]
+classmethod from_list_flat(elements, shape, domain)[source]

Inverse of to_list_flat().

-getitem(i, j)[source]
+getitem(i, j)[source]

Get the (i, j)-th entry.

-hstack(*others)[source]
+hstack(*others)[source]

Horizontally stack matrices.

-inv()[source]
+inv()[source]

Compute the inverse of a matrix using FLINT.

Examples

>>> from sympy import Matrix, QQ
@@ -5974,43 +5974,43 @@ 

What is domainmatrix?
-is_diagonal()[source]
+is_diagonal()[source]

Return True if the matrix is diagonal.

-is_lower()[source]
+is_lower()[source]

Return True if the matrix is lower triangular.

-is_upper()[source]
+is_upper()[source]

Return True if the matrix is upper triangular.

-is_zero_matrix()[source]
+is_zero_matrix()[source]

Return True if the matrix is the zero matrix.

-iter_items()[source]
+iter_items()[source]

Iterate over indices and values of nonzero elements of the matrix.

-iter_values()[source]
+iter_values()[source]

Iterater over the non-zero values of the matrix.

-lll(delta=0.75)[source]
+lll(delta=0.75)[source]

Compute LLL-reduced basis using FLINT.

See lll_transform() for more information.

Examples

@@ -6033,7 +6033,7 @@

What is domainmatrix?
-lll_transform(delta=0.75)[source]
+lll_transform(delta=0.75)[source]

Compute LLL-reduced basis and transform using FLINT.

Examples

>>> from sympy import Matrix
@@ -6060,13 +6060,13 @@ 

What is domainmatrix?
-lu()[source]
+lu()[source]

Return the LU decomposition of the matrix.

-lu_solve(rhs)[source]
+lu_solve(rhs)[source]

Solve a matrix equation using FLINT.

Examples

>>> from sympy import Matrix, QQ
@@ -6109,97 +6109,97 @@ 

What is domainmatrix?
-matmul(other)[source]
+matmul(other)[source]

Multiply two DFM matrices.

-mul(other)[source]
+mul(other)[source]

Multiply a DFM matrix from the right by a scalar.

-mul_elementwise(other)[source]
+mul_elementwise(other)[source]

Elementwise multiplication of two DFM matrices.

-neg()[source]
+neg()[source]

Negate a DFM matrix.

-nnz()[source]
+nnz()[source]

Return the number of non-zero elements in the matrix.

-nullspace()[source]
+nullspace()[source]

Return a basis for the nullspace of the matrix.

-nullspace_from_rref(pivots=None)[source]
+nullspace_from_rref(pivots=None)[source]

Return a basis for the nullspace of the matrix.

-classmethod ones(shape, domain)[source]
+classmethod ones(shape, domain)[source]

Return a one DFM matrix.

-particular()[source]
+particular()[source]

Return a particular solution to the system.

-rmul(other)[source]
+rmul(other)[source]

Multiply a DFM matrix from the left by a scalar.

-scc()[source]
+scc()[source]

Return the strongly connected components of the matrix.

-setitem(i, j, value)[source]
+setitem(i, j, value)[source]

Set the (i, j)-th entry.

-sub(other)[source]
+sub(other)[source]

Subtract two DFM matrices.

-to_ddm()[source]
+to_ddm()[source]

Convert to a DDM.

-to_dfm()[source]
+to_dfm()[source]

Return self.

-to_dfm_or_ddm()[source]
+to_dfm_or_ddm()[source]

Convert to a DFM.

This DFM method exists to parallel the DDM and SDM methods. For DFM it will always return self.

@@ -6211,55 +6211,55 @@

What is domainmatrix?
-to_dod()[source]
+to_dod()[source]

Convert to a DOD.

-to_dok()[source]
+to_dok()[source]

Convert to a DOK.

-to_flat_nz()[source]
+to_flat_nz()[source]

Convert to a flat list of non-zeros.

-to_list()[source]
+to_list()[source]

Convert to a nested list.

-to_list_flat()[source]
+to_list_flat()[source]

Convert to a flat list.

-to_sdm()[source]
+to_sdm()[source]

Convert to a SDM.

-transpose()[source]
+transpose()[source]

Transpose a DFM matrix.

-vstack(*others)[source]
+vstack(*others)[source]

Vertically stack matrices.

-classmethod zeros(shape, domain)[source]
+classmethod zeros(shape, domain)[source]

Return a zero DFM matrix.

@@ -6267,7 +6267,7 @@

What is domainmatrix?
-sympy.polys.matrices.normalforms.smith_normal_form(m)[source]
+sympy.polys.matrices.normalforms.smith_normal_form(m)[source]

Return the Smith Normal Form of a matrix \(m\) over the ring \(domain\). This will only work if the ring is a principal ideal domain.

Examples

@@ -6294,7 +6294,7 @@

What is domainmatrix?check_rank=False,

-)[source] +)[source]

Compute the Hermite Normal Form of DomainMatrix A over ZZ.

@@ -6394,7 +6394,7 @@

What is domainmatrix?Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/domainsintro.html b/dev/modules/polys/domainsintro.html index fea8f9b25df..188678d82c5 100644 --- a/dev/modules/polys/domainsintro.html +++ b/dev/modules/polys/domainsintro.html @@ -2317,7 +2317,7 @@

Algebraically dependent generatorsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/domainsref.html b/dev/modules/polys/domainsref.html index ae07c7ef553..3b962def067 100644 --- a/dev/modules/polys/domainsref.html +++ b/dev/modules/polys/domainsref.html @@ -827,7 +827,7 @@

Domains

Abstract Domains

-class sympy.polys.domains.domain.Domain[source]
+class sympy.polys.domains.domain.Domain[source]

Superclass for all domains in the polys domains system.

See Introducing the Domains of the poly module for an introductory explanation of the domains system.

@@ -998,13 +998,13 @@

Abstract Domains
-abs(a)[source]
+abs(a)[source]

Absolute value of a, implies __abs__.

-add(a, b)[source]
+add(a, b)[source]

Sum of a and b, implies __add__.

@@ -1018,7 +1018,7 @@

Abstract Domainsroot_index=-1,

-)[source] +)[source]

Convenience method to construct an algebraic extension on a root of a polynomial, chosen by root index.

@@ -1061,37 +1061,37 @@

Abstract Domains
-algebraic_field(*extension, alias=None)[source]
+algebraic_field(*extension, alias=None)[source]

Returns an algebraic field, i.e. \(K(\alpha, \ldots)\).

-almosteq(a, b, tolerance=None)[source]
+almosteq(a, b, tolerance=None)[source]

Check if a and b are almost equal.

-characteristic()[source]
+characteristic()[source]

Return the characteristic of this domain.

-cofactors(a, b)[source]
+cofactors(a, b)[source]

Returns GCD and cofactors of a and b.

-convert(element, base=None)[source]
+convert(element, base=None)[source]

Convert element to self.dtype.

-convert_from(element, base)[source]
+convert_from(element, base)[source]

Convert element to self.dtype given the base domain.

@@ -1107,7 +1107,7 @@

Abstract Domainsroot_index=-1,

-)[source] +)[source]

Convenience method to construct a cyclotomic field.

Parameters:
@@ -1153,13 +1153,13 @@

Abstract Domains
-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-div(a, b)[source]
+div(a, b)[source]

Quotient and remainder for a and b. Analogue of divmod(a, b)

Parameters:
@@ -1241,7 +1241,7 @@

Abstract Domains
-drop(*symbols)[source]
+drop(*symbols)[source]

Drop generators from this domain.

@@ -1271,13 +1271,13 @@

Abstract Domains
-evalf(a, prec=None, **options)[source]
+evalf(a, prec=None, **options)[source]

Returns numerical approximation of a.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b. Analogue of a / b.

Parameters:
@@ -1365,7 +1365,7 @@

Abstract Domains
-exsqrt(a)[source]
+exsqrt(a)[source]

Principal square root of a within the domain if a is square.

Explanation

The implementation of this method should return an element b in the @@ -1381,109 +1381,109 @@

Abstract Domains
-frac_field(*symbols, order=LexOrder())[source]
+frac_field(*symbols, order=LexOrder())[source]

Returns a fraction field, i.e. \(K(X)\).

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an algebraic number to dtype.

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a complex element to dtype.

-from_ExpressionDomain(a, K0)[source]
+from_ExpressionDomain(a, K0)[source]

Convert a EX object to dtype.

-from_ExpressionRawDomain(a, K0)[source]
+from_ExpressionRawDomain(a, K0)[source]

Convert a EX object to dtype.

-from_FF(a, K0)[source]
+from_FF(a, K0)[source]

Convert ModularInteger(int) to dtype.

-from_FF_gmpy(a, K0)[source]
+from_FF_gmpy(a, K0)[source]

Convert ModularInteger(mpz) to dtype.

-from_FF_python(a, K0)[source]
+from_FF_python(a, K0)[source]

Convert ModularInteger(int) to dtype.

-from_FractionField(a, K0)[source]
+from_FractionField(a, K0)[source]

Convert a rational function to dtype.

-from_GlobalPolynomialRing(a, K0)[source]
+from_GlobalPolynomialRing(a, K0)[source]

Convert a polynomial to dtype.

-from_MonogenicFiniteExtension(a, K0)[source]
+from_MonogenicFiniteExtension(a, K0)[source]

Convert an ExtensionElement to dtype.

-from_PolynomialRing(a, K0)[source]
+from_PolynomialRing(a, K0)[source]

Convert a polynomial to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a real element object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert a SymPy expression to an element of this domain.

Parameters:
@@ -1509,37 +1509,37 @@

Abstract Domains
-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of a and b.

-gcdex(a, b)[source]
+gcdex(a, b)[source]

Extended GCD of a and b.

-get_exact()[source]
+get_exact()[source]

Returns an exact domain associated with self.

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-half_gcdex(a, b)[source]
+half_gcdex(a, b)[source]

Half extended GCD of a and b.

@@ -1581,13 +1581,13 @@

Abstract Domains
-inject(*symbols)[source]
+inject(*symbols)[source]

Inject generators into this domain.

-invert(a, b)[source]
+invert(a, b)[source]

Returns inversion of a mod b, implies something.

@@ -1644,37 +1644,37 @@

Abstract Domains
-is_negative(a)[source]
+is_negative(a)[source]

Returns True if a is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if a is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if a is non-positive.

-is_one(a)[source]
+is_one(a)[source]

Returns True if a is one.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if a is positive.

-is_square(a)[source]
+is_square(a)[source]

Returns whether a is a square in the domain.

Explanation

Returns True if there is an element b in the domain such that @@ -1689,67 +1689,67 @@

Abstract Domains
-is_zero(a)[source]
+is_zero(a)[source]

Returns True if a is zero.

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of a and b.

-log(a, b)[source]
+log(a, b)[source]

Returns b-base logarithm of a.

-map(seq)[source]
+map(seq)[source]

Rersively apply self to all elements of seq.

-mul(a, b)[source]
+mul(a, b)[source]

Product of a and b, implies __mul__.

-n(a, prec=None, **options)[source]
+n(a, prec=None, **options)[source]

Returns numerical approximation of a.

-neg(a)[source]
+neg(a)[source]

Returns a negated, implies __neg__.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-of_type(element)[source]
+of_type(element)[source]

Check if a is of type dtype.

-old_frac_field(*symbols, **kwargs)[source]
+old_frac_field(*symbols, **kwargs)[source]

Returns a fraction field, i.e. \(K(X)\).

-old_poly_ring(*symbols, **kwargs)[source]
+old_poly_ring(*symbols, **kwargs)[source]

Returns a polynomial ring, i.e. \(K[X]\).

@@ -1772,25 +1772,25 @@

Abstract Domains
-poly_ring(*symbols, order=LexOrder())[source]
+poly_ring(*symbols, order=LexOrder())[source]

Returns a polynomial ring, i.e. \(K[X]\).

-pos(a)[source]
+pos(a)[source]

Returns a positive, implies __pos__.

-pow(a, b)[source]
+pow(a, b)[source]

Raise a to power b, implies __pow__.

-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b. Analogue of a // b.

K.quo(a, b) is equivalent to K.div(a, b)[0]. See div() for more explanation.

@@ -1809,7 +1809,7 @@

Abstract Domains
-rem(a, b)[source]
+rem(a, b)[source]

Modulo division of a and b. Analogue of a % b.

K.rem(a, b) is equivalent to K.div(a, b)[1]. See div() for more explanation.

@@ -1828,13 +1828,13 @@

Abstract Domains
-revert(a)[source]
+revert(a)[source]

Returns a**(-1) if possible.

-sqrt(a)[source]
+sqrt(a)[source]

Returns a (possibly inexact) square root of a.

Explanation

There is no universal definition of “inexact square root” for all @@ -1848,13 +1848,13 @@

Abstract Domains
-sub(a, b)[source]
+sub(a, b)[source]

Difference of a and b, implies __sub__.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert domain element a to a SymPy expression (Expr).

Parameters:
@@ -1949,7 +1949,7 @@

Abstract Domains
-unify(K1, symbols=None)[source]
+unify(K1, symbols=None)[source]

Construct a minimal domain that contains elements of K0 and K1.

Known domains (from smallest to largest):

@@ -1992,13 +1992,13 @@

Abstract Domains
-class sympy.polys.domains.domainelement.DomainElement[source]
+class sympy.polys.domains.domainelement.DomainElement[source]

Represents an element of a domain.

Mix in this trait into a class whose instances should be recognized as elements of a domain. Method parent() gives that domain.

-parent()[source]
+parent()[source]

Get the domain associated with self

Examples

>>> from sympy import ZZ, symbols
@@ -2020,23 +2020,23 @@ 

Abstract Domains
-class sympy.polys.domains.field.Field[source]
+class sympy.polys.domains.field.Field[source]

Represents a field domain.

-div(a, b)[source]
+div(a, b)[source]

Division of a and b, implies __truediv__.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b, implies __truediv__.

-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of a and b.

This definition of GCD over fields allows to clear denominators in \(primitive()\).

@@ -2058,25 +2058,25 @@

Abstract Domains
-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-is_unit(a)[source]
+is_unit(a)[source]

Return true if a is a invertible

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of a and b.

>>> from sympy.polys.domains import QQ
 >>> from sympy import S, lcm
@@ -2092,19 +2092,19 @@ 

Abstract Domains
-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b, implies __truediv__.

-rem(a, b)[source]
+rem(a, b)[source]

Remainder of a and b, implies nothing.

-revert(a)[source]
+revert(a)[source]

Returns a**(-1) if possible.

@@ -2112,29 +2112,29 @@

Abstract Domains
-class sympy.polys.domains.ring.Ring[source]
+class sympy.polys.domains.ring.Ring[source]

Represents a ring domain.

-denom(a)[source]
+denom(a)[source]

Returns denominator of \(a\).

-div(a, b)[source]
+div(a, b)[source]

Division of a and b, implies __divmod__.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b, implies __floordiv__.

-free_module(rank)[source]
+free_module(rank)[source]

Generate a free module of rank rank over self.

>>> from sympy.abc import x
 >>> from sympy import QQ
@@ -2146,13 +2146,13 @@ 

Abstract Domains
-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-ideal(*gens)[source]
+ideal(*gens)[source]

Generate an ideal of self.

>>> from sympy.abc import x
 >>> from sympy import QQ
@@ -2164,25 +2164,25 @@ 

Abstract Domains
-invert(a, b)[source]
+invert(a, b)[source]

Returns inversion of a mod b.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b, implies __floordiv__.

-quotient_ring(e)[source]
+quotient_ring(e)[source]

Form a quotient ring of self.

Here e can be an ideal or an iterable.

>>> from sympy.abc import x
@@ -2202,13 +2202,13 @@ 

Abstract Domains
-rem(a, b)[source]
+rem(a, b)[source]

Remainder of a and b, implies __mod__.

-revert(a)[source]
+revert(a)[source]

Returns a**(-1) if possible.

@@ -2216,11 +2216,11 @@

Abstract Domains
-class sympy.polys.domains.simpledomain.SimpleDomain[source]
+class sympy.polys.domains.simpledomain.SimpleDomain[source]

Base class for simple domains, e.g. ZZ, QQ.

-inject(*gens)[source]
+inject(*gens)[source]

Inject generators into this domain.

@@ -2228,23 +2228,23 @@

Abstract Domains
-class sympy.polys.domains.compositedomain.CompositeDomain[source]
+class sympy.polys.domains.compositedomain.CompositeDomain[source]

Base class for composite domains, e.g. ZZ[x], ZZ(X).

-drop(*symbols)[source]
+drop(*symbols)[source]

Drop generators from this domain.

-get_exact()[source]
+get_exact()[source]

Returns an exact version of this domain.

-inject(*symbols)[source]
+inject(*symbols)[source]

Inject generators into this domain.

@@ -2256,7 +2256,7 @@

Abstract Domains
-set_domain(domain)[source]
+set_domain(domain)[source]

Set the ground domain of this domain.

@@ -2267,7 +2267,7 @@

Abstract Domains

GF(p)

-class sympy.polys.domains.FiniteField(mod, symmetric=True)[source]
+class sympy.polys.domains.FiniteField(mod, symmetric=True)[source]

Finite field of prime order GF(p)

A GF(p) domain represents a finite field \(\mathbb{F}_p\) of prime order as Domain in the domain system (see @@ -2350,13 +2350,13 @@

Abstract DomainsGF(p**n)) but these are not yet implemented in SymPY.

-characteristic()[source]
+characteristic()[source]

Return the characteristic of this domain.

-exsqrt(a)[source]
+exsqrt(a)[source]

Square root modulo p of a if it is a quadratic residue.

Explanation

Always returns the square root that is no larger than p // 2.

@@ -2364,115 +2364,115 @@

Abstract Domains
-from_FF(a, K0=None)[source]
+from_FF(a, K0=None)[source]

Convert ModularInteger(int) to dtype.

-from_FF_gmpy(a, K0=None)[source]
+from_FF_gmpy(a, K0=None)[source]

Convert ModularInteger(mpz) to dtype.

-from_FF_python(a, K0=None)[source]
+from_FF_python(a, K0=None)[source]

Convert ModularInteger(int) to dtype.

-from_QQ(a, K0=None)[source]
+from_QQ(a, K0=None)[source]

Convert Python’s Fraction to dtype.

-from_QQ_gmpy(a, K0=None)[source]
+from_QQ_gmpy(a, K0=None)[source]

Convert GMPY’s mpq to dtype.

-from_QQ_python(a, K0=None)[source]
+from_QQ_python(a, K0=None)[source]

Convert Python’s Fraction to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert mpmath’s mpf to dtype.

-from_ZZ(a, K0=None)[source]
+from_ZZ(a, K0=None)[source]

Convert Python’s int to dtype.

-from_ZZ_gmpy(a, K0=None)[source]
+from_ZZ_gmpy(a, K0=None)[source]

Convert GMPY’s mpz to dtype.

-from_ZZ_python(a, K0=None)[source]
+from_ZZ_python(a, K0=None)[source]

Convert Python’s int to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to SymPy’s Integer.

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-is_negative(a)[source]
+is_negative(a)[source]

Returns True if a is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if a is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if a is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if a is positive.

-is_square(a)[source]
+is_square(a)[source]

Returns True if a is a quadratic residue modulo p.

-to_int(a)[source]
+to_int(a)[source]

Convert val to a Python int object.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -2480,13 +2480,13 @@

Abstract Domains
-class sympy.polys.domains.PythonFiniteField(mod, symmetric=True)[source]
+class sympy.polys.domains.PythonFiniteField(mod, symmetric=True)[source]

Finite field based on Python’s integers.

-class sympy.polys.domains.GMPYFiniteField(mod, symmetric=True)[source]
+class sympy.polys.domains.GMPYFiniteField(mod, symmetric=True)[source]

Finite field based on GMPY integers.

@@ -2542,7 +2542,7 @@

Abstract Domains
-class sympy.polys.domains.IntegerRing[source]
+class sympy.polys.domains.IntegerRing[source]

The domain ZZ representing the integers \(\mathbb{Z}\).

The IntegerRing class represents the ring of integers as a Domain in the domain system. IntegerRing is a @@ -2562,7 +2562,7 @@

Abstract Domainsalias=None,

-)[source] +)[source]

Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots)\).

Parameters:
@@ -2594,7 +2594,7 @@

Abstract Domains
-exsqrt(a)[source]
+exsqrt(a)[source]

Non-negative square root of a if a is a square.

See also

@@ -2604,104 +2604,104 @@

Abstract Domains
-factorial(a)[source]
+factorial(a)[source]

Compute factorial of a.

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert a ANP object to ZZ.

See convert().

-from_EX(a, K0)[source]
+from_EX(a, K0)[source]

Convert Expression to GMPY’s mpz.

-from_FF(a, K0)[source]
+from_FF(a, K0)[source]

Convert ModularInteger(int) to GMPY’s mpz.

-from_FF_gmpy(a, K0)[source]
+from_FF_gmpy(a, K0)[source]

Convert ModularInteger(mpz) to GMPY’s mpz.

-from_FF_python(a, K0)[source]
+from_FF_python(a, K0)[source]

Convert ModularInteger(int) to GMPY’s mpz.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert Python’s Fraction to GMPY’s mpz.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert GMPY mpq to GMPY’s mpz.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert Python’s Fraction to GMPY’s mpz.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert mpmath’s mpf to GMPY’s mpz.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert Python’s int to GMPY’s mpz.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert GMPY’s mpz to GMPY’s mpz.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert Python’s int to GMPY’s mpz.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to dtype.

-gcd(a, b)[source]
+gcd(a, b)[source]

Compute GCD of a and b.

-gcdex(a, b)[source]
+gcdex(a, b)[source]

Compute extended GCD of a and b.

-get_field()[source]
+get_field()[source]

Return the associated field of fractions QQ

Returns:
@@ -2723,7 +2723,7 @@

Abstract Domains
-is_square(a)[source]
+is_square(a)[source]

Return True if a is a square.

Explanation

An integer is a square if and only if there exists an integer @@ -2732,13 +2732,13 @@

Abstract Domains
-lcm(a, b)[source]
+lcm(a, b)[source]

Compute LCM of a and b.

-log(a, b)[source]
+log(a, b)[source]

Logarithm of a to the base b.

Parameters:
@@ -2767,13 +2767,13 @@

Abstract Domains
-sqrt(a)[source]
+sqrt(a)[source]

Compute square root of a.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -2781,7 +2781,7 @@

Abstract Domains
-class sympy.polys.domains.PythonIntegerRing[source]
+class sympy.polys.domains.PythonIntegerRing[source]

Integer ring based on Python’s int type.

This will be used as ZZ if gmpy and gmpy2 are not installed. Elements are instances of the standard Python int type.

@@ -2789,97 +2789,97 @@

Abstract Domains
-class sympy.polys.domains.GMPYIntegerRing[source]
+class sympy.polys.domains.GMPYIntegerRing[source]

Integer ring based on GMPY’s mpz type.

This will be the implementation of ZZ if gmpy or gmpy2 is installed. Elements will be of type gmpy.mpz.

-factorial(a)[source]
+factorial(a)[source]

Compute factorial of a.

-from_FF_gmpy(a, K0)[source]
+from_FF_gmpy(a, K0)[source]

Convert ModularInteger(mpz) to GMPY’s mpz.

-from_FF_python(a, K0)[source]
+from_FF_python(a, K0)[source]

Convert ModularInteger(int) to GMPY’s mpz.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert Python’s Fraction to GMPY’s mpz.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert GMPY mpq to GMPY’s mpz.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert Python’s Fraction to GMPY’s mpz.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert mpmath’s mpf to GMPY’s mpz.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert GMPY’s mpz to GMPY’s mpz.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert Python’s int to GMPY’s mpz.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to dtype.

-gcd(a, b)[source]
+gcd(a, b)[source]

Compute GCD of a and b.

-gcdex(a, b)[source]
+gcdex(a, b)[source]

Compute extended GCD of a and b.

-lcm(a, b)[source]
+lcm(a, b)[source]

Compute LCM of a and b.

-sqrt(a)[source]
+sqrt(a)[source]

Compute square root of a.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -2929,7 +2929,7 @@

Abstract Domains
-class sympy.polys.domains.RationalField[source]
+class sympy.polys.domains.RationalField[source]

Abstract base class for the domain QQ.

The RationalField class represents the field of rational numbers \(\mathbb{Q}\) as a Domain in the domain system. @@ -2950,7 +2950,7 @@

Abstract Domainsalias=None,

-)[source] +)[source]

Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots)\).

Parameters:
@@ -2982,25 +2982,25 @@

Abstract Domains
-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-div(a, b)[source]
+div(a, b)[source]

Division of a and b, implies __truediv__.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b, implies __truediv__.

-exsqrt(a)[source]
+exsqrt(a)[source]

Non-negative square root of a if a is a square.

See also

@@ -3010,74 +3010,74 @@

Abstract Domains
-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert a ANP object to QQ.

See convert()

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a GaussianElement object to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python int object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to dtype.

-get_ring()[source]
+get_ring()[source]

Returns ring associated with self.

-is_square(a)[source]
+is_square(a)[source]

Return True if a is a square.

Explanation

A rational number is a square if and only if there exists @@ -3086,25 +3086,25 @@

Abstract Domains
-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b, implies __truediv__.

-rem(a, b)[source]
+rem(a, b)[source]

Remainder of a and b, implies nothing.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -3112,7 +3112,7 @@

Abstract Domains
-class sympy.polys.domains.PythonRationalField[source]
+class sympy.polys.domains.PythonRationalField[source]

Rational field based on MPQ.

This will be used as QQ if gmpy and gmpy2 are not installed. Elements are instances of MPQ.

@@ -3120,31 +3120,31 @@

Abstract Domains
-class sympy.polys.domains.GMPYRationalField[source]
+class sympy.polys.domains.GMPYRationalField[source]

Rational field based on GMPY’s mpq type.

This will be the implementation of QQ if gmpy or gmpy2 is installed. Elements will be of type gmpy.mpq.

-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-div(a, b)[source]
+div(a, b)[source]

Division of a and b, implies __truediv__.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b, implies __truediv__.

-factorial(a)[source]
+factorial(a)[source]

Returns factorial of a.

@@ -3157,73 +3157,73 @@

Abstract DomainsK0,

-)[source] +)[source]

Convert a GaussianElement object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to dtype.

-get_ring()[source]
+get_ring()[source]

Returns ring associated with self.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b, implies __truediv__.

-rem(a, b)[source]
+rem(a, b)[source]

Remainder of a and b, implies nothing.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -3231,7 +3231,7 @@

Abstract Domains
-class sympy.external.pythonmpq.PythonMPQ(numerator, denominator=None)[source]
+class sympy.external.pythonmpq.PythonMPQ(numerator, denominator=None)[source]

Rational number implementation that is intended to be compatible with gmpy2’s mpq.

Also slightly faster than fractions.Fraction.

@@ -3252,89 +3252,89 @@

Gaussian domainsGaussianDomain for the domains themselves.

-class sympy.polys.domains.gaussiandomains.GaussianDomain[source]
+class sympy.polys.domains.gaussiandomains.GaussianDomain[source]

Base class for Gaussian domains.

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an element from ZZ<I> or QQ<I> to self.dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a GMPY mpq to self.dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq to self.dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a QQ_python element to self.dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a ZZ_python element to self.dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz to self.dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a ZZ_python element to self.dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert a SymPy object to self.dtype.

-inject(*gens)[source]
+inject(*gens)[source]

Inject generators into this domain.

-is_negative(element)[source]
+is_negative(element)[source]

Returns False for any GaussianElement.

-is_nonnegative(element)[source]
+is_nonnegative(element)[source]

Returns False for any GaussianElement.

-is_nonpositive(element)[source]
+is_nonpositive(element)[source]

Returns False for any GaussianElement.

-is_positive(element)[source]
+is_positive(element)[source]

Returns False for any GaussianElement.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -3342,23 +3342,23 @@

Gaussian domains
-class sympy.polys.domains.gaussiandomains.GaussianElement(x, y=0)[source]
+class sympy.polys.domains.gaussiandomains.GaussianElement(x, y=0)[source]

Base class for elements of Gaussian type domains.

-classmethod new(x, y)[source]
+classmethod new(x, y)[source]

Create a new GaussianElement of the same domain.

-parent()[source]
+parent()[source]

The domain that this is an element of (ZZ_I or QQ_I)

-quadrant()[source]
+quadrant()[source]

Return quadrant index 0-3.

0 is included in quadrant 0.

@@ -3370,7 +3370,7 @@

Gaussian domains

ZZ_I

-class sympy.polys.domains.gaussiandomains.GaussianIntegerRing[source]
+class sympy.polys.domains.gaussiandomains.GaussianIntegerRing[source]

Ring of Gaussian integers ZZ_I

The ZZ_I domain represents the Gaussian integers \(\mathbb{Z}[i]\) as a Domain in the domain system (see @@ -3466,7 +3466,7 @@

Gaussian domains
-dtype[source]
+dtype[source]

alias of GaussianInteger

@@ -3479,7 +3479,7 @@

Gaussian domainsK0,

-)[source] +)[source]

Convert a ZZ_I element to ZZ_I.

@@ -3492,37 +3492,37 @@

Gaussian domainsK0,

-)[source] +)[source]

Convert a QQ_I element to ZZ_I.

-gcd(a, b)[source]
+gcd(a, b)[source]

Greatest common divisor of a and b over ZZ_I.

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-lcm(a, b)[source]
+lcm(a, b)[source]

Least common multiple of a and b over ZZ_I.

-normalize(d, *args)[source]
+normalize(d, *args)[source]

Return first quadrant element associated with d.

Also multiply the other arguments by the same power of i.

@@ -3531,7 +3531,7 @@

Gaussian domains
-class sympy.polys.domains.gaussiandomains.GaussianInteger(x, y=0)[source]
+class sympy.polys.domains.gaussiandomains.GaussianInteger(x, y=0)[source]

Gaussian integer: domain element for ZZ_I

>>> from sympy import ZZ_I
 >>> z = ZZ_I(2, 3)
@@ -3548,7 +3548,7 @@ 

Gaussian domains

QQ_I

-class sympy.polys.domains.gaussiandomains.GaussianRationalField[source]
+class sympy.polys.domains.gaussiandomains.GaussianRationalField[source]

Field of Gaussian rationals QQ_I

The QQ_I domain represents the Gaussian rationals \(\mathbb{Q}(i)\) as a Domain in the domain system (see @@ -3663,25 +3663,25 @@

Gaussian domains
-as_AlgebraicField()[source]
+as_AlgebraicField()[source]

Get equivalent domain as an AlgebraicField.

-denom(a)[source]
+denom(a)[source]

Get the denominator of a.

-dtype[source]
+dtype[source]

alias of GaussianRational

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a ComplexField element to QQ_I.

@@ -3694,7 +3694,7 @@

Gaussian domainsK0,

-)[source] +)[source]

Convert a ZZ_I element to QQ_I.

@@ -3707,25 +3707,25 @@

Gaussian domainsK0,

-)[source] +)[source]

Convert a QQ_I element to QQ_I.

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-numer(a)[source]
+numer(a)[source]

Get the numerator of a.

@@ -3733,7 +3733,7 @@

Gaussian domains
-class sympy.polys.domains.gaussiandomains.GaussianRational(x, y=0)[source]
+class sympy.polys.domains.gaussiandomains.GaussianRational(x, y=0)[source]

Gaussian rational: domain element for QQ_I

>>> from sympy import QQ_I, QQ
 >>> z = QQ_I(QQ(2, 3), QQ(4, 5))
@@ -3750,7 +3750,7 @@ 

Gaussian domains

QQ<a>

-class sympy.polys.domains.AlgebraicField(dom, *ext, alias=None)[source]
+class sympy.polys.domains.AlgebraicField(dom, *ext, alias=None)[source]

Algebraic number field QQ<a>

A QQ<a> domain represents an algebraic number field \(\mathbb{Q}(a)\) as a Domain in the domain system (see @@ -3975,25 +3975,25 @@

Gaussian domainsalias=None,

-)[source] +)[source]

Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots)\).

-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-discriminant()[source]
+discriminant()[source]

Get the discriminant of the field.

-dtype[source]
+dtype[source]

alias of ANP

@@ -4011,67 +4011,67 @@

Gaussian domains
-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert AlgebraicField element ‘a’ to another AlgebraicField

-from_GaussianIntegerRing(a, K0)[source]
+from_GaussianIntegerRing(a, K0)[source]

Convert a GaussianInteger element ‘a’ to dtype.

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a GaussianRational element ‘a’ to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python int object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s expression to dtype.

@@ -4085,7 +4085,7 @@

Gaussian domainsrandomize=False,

-)[source] +)[source]

Compute the Galois group of the Galois closure of this field.

Examples

If the field is Galois, the order of the group will equal the degree @@ -4115,13 +4115,13 @@

Gaussian domains
-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-integral_basis(fmt=None)[source]
+integral_basis(fmt=None)[source]

Get an integral basis for the field.

Parameters:
@@ -4166,31 +4166,31 @@

Gaussian domains
-is_negative(a)[source]
+is_negative(a)[source]

Returns True if a is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if a is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if a is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if a is positive.

-maximal_order()[source]
+maximal_order()[source]

Compute the maximal order, or ring of integers, of the field.

Returns:
@@ -4217,7 +4217,7 @@

Gaussian domains
-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

@@ -4235,19 +4235,19 @@

Gaussian domains
-primes_above(p)[source]
+primes_above(p)[source]

Compute the prime ideals lying above a given rational prime p.

-to_alg_num(a)[source]
+to_alg_num(a)[source]

Convert a of dtype to an AlgebraicNumber.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a of dtype to a SymPy object.

@@ -4258,17 +4258,17 @@

Gaussian domains

RR

-class sympy.polys.domains.RealField(prec=None, dps=None, tol=None)[source]
+class sympy.polys.domains.RealField(prec=None, dps=None, tol=None)[source]

Real numbers up to the given precision.

-almosteq(a, b, tolerance=None)[source]
+almosteq(a, b, tolerance=None)[source]

Check if a and b are almost equal.

-exsqrt(a)[source]
+exsqrt(a)[source]

Non-negative square root for a >= 0 and None otherwise.

Explanation

The square root may be slightly inaccurate due to floating point @@ -4277,49 +4277,49 @@

Gaussian domains
-from_sympy(expr)[source]
+from_sympy(expr)[source]

Convert SymPy’s number to dtype.

-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of a and b.

-get_exact()[source]
+get_exact()[source]

Returns an exact domain associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-is_square(a)[source]
+is_square(a)[source]

Returns True if a >= 0 and False otherwise.

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of a and b.

-to_rational(element, limit=True)[source]
+to_rational(element, limit=True)[source]

Convert a real number to rational number.

-to_sympy(element)[source]
+to_sympy(element)[source]

Convert element to SymPy number.

@@ -4330,17 +4330,17 @@

Gaussian domains

CC

-class sympy.polys.domains.ComplexField(prec=None, dps=None, tol=None)[source]
+class sympy.polys.domains.ComplexField(prec=None, dps=None, tol=None)[source]

Complex numbers up to the given precision.

-almosteq(a, b, tolerance=None)[source]
+almosteq(a, b, tolerance=None)[source]

Check if a and b are almost equal.

-exsqrt(a)[source]
+exsqrt(a)[source]

Returns the principal complex square root of a.

Explanation

The argument of the principal square root is always within @@ -4350,67 +4350,67 @@

Gaussian domains
-from_sympy(expr)[source]
+from_sympy(expr)[source]

Convert SymPy’s number to dtype.

-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of a and b.

-get_exact()[source]
+get_exact()[source]

Returns an exact domain associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-is_negative(element)[source]
+is_negative(element)[source]

Returns False for any ComplexElement.

-is_nonnegative(element)[source]
+is_nonnegative(element)[source]

Returns False for any ComplexElement.

-is_nonpositive(element)[source]
+is_nonpositive(element)[source]

Returns False for any ComplexElement.

-is_positive(element)[source]
+is_positive(element)[source]

Returns False for any ComplexElement.

-is_square(a)[source]
+is_square(a)[source]

Returns True. Every complex number has a complex square root.

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of a and b.

-to_sympy(element)[source]
+to_sympy(element)[source]

Convert element to SymPy number.

@@ -4429,161 +4429,161 @@

Gaussian domainsorder=None,

-)[source] +)[source]

A class for representing multivariate polynomial rings.

-factorial(a)[source]
+factorial(a)[source]

Returns factorial of \(a\).

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an algebraic number to dtype.

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a mpmath \(mpf\) object to \(dtype\).

-from_FractionField(a, K0)[source]
+from_FractionField(a, K0)[source]

Convert a rational function to dtype.

-from_GaussianIntegerRing(a, K0)[source]
+from_GaussianIntegerRing(a, K0)[source]

Convert a \(GaussianInteger\) object to \(dtype\).

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a \(GaussianRational\) object to \(dtype\).

-from_GlobalPolynomialRing(a, K0)[source]
+from_GlobalPolynomialRing(a, K0)[source]

Convert from old poly ring to dtype.

-from_PolynomialRing(a, K0)[source]
+from_PolynomialRing(a, K0)[source]

Convert a polynomial to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python \(Fraction\) object to \(dtype\).

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY \(mpq\) object to \(dtype\).

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python \(Fraction\) object to \(dtype\).

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath \(mpf\) object to \(dtype\).

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python \(int\) object to \(dtype\).

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY \(mpz\) object to \(dtype\).

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python \(int\) object to \(dtype\).

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s expression to \(dtype\).

-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of \(a\) and \(b\).

-gcdex(a, b)[source]
+gcdex(a, b)[source]

Extended GCD of \(a\) and \(b\).

-get_field()[source]
+get_field()[source]

Returns a field associated with \(self\).

-is_negative(a)[source]
+is_negative(a)[source]

Returns True if \(LC(a)\) is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if \(LC(a)\) is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if \(LC(a)\) is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if \(LC(a)\) is positive.

-is_unit(a)[source]
+is_unit(a)[source]

Returns True if a is a unit of self

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of \(a\) and \(b\).

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert \(a\) to a SymPy object.

@@ -4602,143 +4602,143 @@

Gaussian domainsorder=None,

-)[source] +)[source]

A class for representing multivariate rational function fields.

-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-factorial(a)[source]
+factorial(a)[source]

Returns factorial of a.

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an algebraic number to dtype.

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_FractionField(a, K0)[source]
+from_FractionField(a, K0)[source]

Convert a rational function to dtype.

-from_GaussianIntegerRing(a, K0)[source]
+from_GaussianIntegerRing(a, K0)[source]

Convert a GaussianInteger object to dtype.

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a GaussianRational object to dtype.

-from_PolynomialRing(a, K0)[source]
+from_PolynomialRing(a, K0)[source]

Convert a polynomial to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python int object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s expression to dtype.

-get_ring()[source]
+get_ring()[source]

Returns a field associated with self.

-is_negative(a)[source]
+is_negative(a)[source]

Returns True if LC(a) is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if LC(a) is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if LC(a) is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if LC(a) is positive.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -4749,161 +4749,161 @@

Gaussian domains

EX

-class sympy.polys.domains.ExpressionDomain[source]
+class sympy.polys.domains.ExpressionDomain[source]

A class for arbitrary expressions.

-class Expression(ex)[source]
+class Expression(ex)[source]

An arbitrary expression.

-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-dtype[source]
+dtype[source]

alias of Expression

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an ANP object to dtype.

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a mpmath mpc object to dtype.

-from_ExpressionDomain(a, K0)[source]
+from_ExpressionDomain(a, K0)[source]

Convert a EX object to dtype.

-from_FractionField(a, K0)[source]
+from_FractionField(a, K0)[source]

Convert a DMF object to dtype.

-from_GaussianIntegerRing(a, K0)[source]
+from_GaussianIntegerRing(a, K0)[source]

Convert a GaussianRational object to dtype.

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a GaussianRational object to dtype.

-from_PolynomialRing(a, K0)[source]
+from_PolynomialRing(a, K0)[source]

Convert a DMP object to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python int object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s expression to dtype.

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-is_negative(a)[source]
+is_negative(a)[source]

Returns True if a is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if a is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if a is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if a is positive.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -4911,7 +4911,7 @@

Gaussian domains
-class ExpressionDomain.Expression(ex)[source]
+class ExpressionDomain.Expression(ex)[source]

An arbitrary expression.

@@ -4920,7 +4920,7 @@

Gaussian domains

-class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]
+class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]

Class representing (commutative) quotient rings.

You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction.

@@ -4953,7 +4953,7 @@

Sparse polynomials
-sympy.polys.rings.ring(symbols, domain, order=LexOrder())[source]
+sympy.polys.rings.ring(symbols, domain, order=LexOrder())[source]

Construct a polynomial ring returning (ring, x_1, ..., x_n).

Parameters:
@@ -4984,7 +4984,7 @@

Sparse polynomials
-sympy.polys.rings.xring(symbols, domain, order=LexOrder())[source]
+sympy.polys.rings.xring(symbols, domain, order=LexOrder())[source]

Construct a polynomial ring returning (ring, (x_1, ..., x_n)).

Parameters:
@@ -5015,7 +5015,7 @@

Sparse polynomials
-sympy.polys.rings.vring(symbols, domain, order=LexOrder())[source]
+sympy.polys.rings.vring(symbols, domain, order=LexOrder())[source]

Construct a polynomial ring and inject x_1, ..., x_n into the global namespace.

Parameters:
@@ -5045,7 +5045,7 @@

Sparse polynomials
-sympy.polys.rings.sring(exprs, *symbols, **options)[source]
+sympy.polys.rings.sring(exprs, *symbols, **options)[source]

Construct a ring deriving generators and domain from options and input expressions.

Parameters:
@@ -5072,11 +5072,11 @@

Sparse polynomials
-class sympy.polys.rings.PolyRing(symbols, domain, order=LexOrder())[source]
+class sympy.polys.rings.PolyRing(symbols, domain, order=LexOrder())[source]

Multivariate distributed polynomial ring.

-add(*objs)[source]
+add(*objs)[source]

Add a sequence of polynomials or containers of polynomials.

Examples

>>> from sympy.polys.rings import ring
@@ -5094,44 +5094,44 @@ 

Sparse polynomials
-add_gens(symbols)[source]
+add_gens(symbols)[source]

Add the elements of symbols as generators to self

-compose(other)[source]
+compose(other)[source]

Add the generators of other to self

-drop(*gens)[source]
+drop(*gens)[source]

Remove specified generators from this ring.

-drop_to_ground(*gens)[source]
+drop_to_ground(*gens)[source]

Remove specified generators from the ring and inject them into its domain.

-index(gen)[source]
+index(gen)[source]

Compute index of gen in self.gens.

-monomial_basis(i)[source]
+monomial_basis(i)[source]

Return the ith-basis element.

-mul(*objs)[source]
+mul(*objs)[source]

Multiply a sequence of polynomials or containers of polynomials.

Examples

>>> from sympy.polys.rings import ring
@@ -5149,7 +5149,7 @@ 

Sparse polynomials
-symmetric_poly(n)[source]
+symmetric_poly(n)[source]

Return the elementary symmetric polynomial of degree n over this ring’s generators.

@@ -5158,17 +5158,17 @@

Sparse polynomials
-class sympy.polys.rings.PolyElement[source]
+class sympy.polys.rings.PolyElement[source]

Element of multivariate distributed polynomial ring.

-almosteq(p2, tolerance=None)[source]
+almosteq(p2, tolerance=None)[source]

Approximate equality test for polynomials.

-cancel(g)[source]
+cancel(g)[source]

Cancel common factors in a rational function f/g.

Examples

>>> from sympy.polys import ring, ZZ
@@ -5183,7 +5183,7 @@ 

Sparse polynomials
-coeff(element)[source]
+coeff(element)[source]

Returns the coefficient that stands next to the given monomial.

Parameters:
@@ -5211,7 +5211,7 @@

Sparse polynomials
-coeff_wrt(x, deg)[source]
+coeff_wrt(x, deg)[source]

Coefficient of self with respect to x**deg.

Treating self as a univariate polynomial in x this finds the coefficient of x**deg as a polynomial in the other generators.

@@ -5256,7 +5256,7 @@

Sparse polynomials
-coeffs(order=None)[source]
+coeffs(order=None)[source]

Ordered list of polynomial coefficients.

Parameters:
@@ -5283,19 +5283,19 @@

Sparse polynomials
-const()[source]
+const()[source]

Returns the constant coefficient.

-content()[source]
+content()[source]

Returns GCD of polynomial’s coefficients.

-copy()[source]
+copy()[source]

Return a copy of polynomial self.

Polynomials are mutable; if one is interested in preserving a polynomial, and one plans to use inplace operations, one @@ -5322,21 +5322,21 @@

Sparse polynomials
-degree(x=None)[source]
+degree(x=None)[source]

The leading degree in x or the main variable.

Note that the degree of 0 is negative infinity (float('-inf'))

-degrees()[source]
+degrees()[source]

A tuple containing leading degrees in all variables.

Note that the degree of 0 is negative infinity (float('-inf'))

-diff(x)[source]
+diff(x)[source]

Computes partial derivative in x.

Examples

>>> from sympy.polys.rings import ring
@@ -5353,7 +5353,7 @@ 

Sparse polynomials
-div(fv)[source]
+div(fv)[source]

Division algorithm, see [CLO] p64.

fv array of polynomials

return qv, r such that @@ -5383,7 +5383,7 @@

Sparse polynomials
-imul_num(c)[source]
+imul_num(c)[source]

multiply inplace the polynomial p by an element in the coefficient ring, provided p is not one of the generators; else multiply not inplace

@@ -5411,25 +5411,25 @@

Sparse polynomials
-itercoeffs()[source]
+itercoeffs()[source]

Iterator over coefficients of a polynomial.

-itermonoms()[source]
+itermonoms()[source]

Iterator over monomials of a polynomial.

-iterterms()[source]
+iterterms()[source]

Iterator over terms of a polynomial.

-leading_expv()[source]
+leading_expv()[source]

Leading monomial tuple according to the monomial ordering.

Examples

>>> from sympy.polys.rings import ring
@@ -5446,7 +5446,7 @@ 

Sparse polynomials
-leading_monom()[source]
+leading_monom()[source]

Leading monomial as a polynomial element.

Examples

>>> from sympy.polys.rings import ring
@@ -5462,7 +5462,7 @@ 

Sparse polynomials
-leading_term()[source]
+leading_term()[source]

Leading term as a polynomial element.

Examples

>>> from sympy.polys.rings import ring
@@ -5478,31 +5478,31 @@ 

Sparse polynomials
-listcoeffs()[source]
+listcoeffs()[source]

Unordered list of polynomial coefficients.

-listmonoms()[source]
+listmonoms()[source]

Unordered list of polynomial monomials.

-listterms()[source]
+listterms()[source]

Unordered list of polynomial terms.

-monic()[source]
+monic()[source]

Divides all coefficients by the leading coefficient.

-monoms(order=None)[source]
+monoms(order=None)[source]

Ordered list of polynomial monomials.

Parameters:
@@ -5529,7 +5529,7 @@

Sparse polynomials
-pdiv(g, x=None)[source]
+pdiv(g, x=None)[source]

Computes the pseudo-division of the polynomial self with respect to g.

The pseudo-division algorithm is used to find the pseudo-quotient q and pseudo-remainder r such that m*f = g*q + r, where m @@ -5606,7 +5606,7 @@

Sparse polynomials
-pexquo(g, x=None)[source]
+pexquo(g, x=None)[source]

Polynomial exact pseudo-quotient in multivariate polynomial ring.

Examples

>>> from sympy.polys import ring, ZZ
@@ -5636,7 +5636,7 @@ 

Sparse polynomials
-pquo(g, x=None)[source]
+pquo(g, x=None)[source]

Polynomial pseudo-quotient in multivariate polynomial ring.

Examples

>>> from sympy.polys import ring, ZZ
@@ -5664,7 +5664,7 @@ 

Sparse polynomials
-prem(g, x=None)[source]
+prem(g, x=None)[source]

Pseudo-remainder of the polynomial self with respect to g.

The pseudo-quotient q and pseudo-remainder r with respect to z when dividing f by g satisfy m*f = g*q + r, @@ -5717,13 +5717,13 @@

Sparse polynomials
-primitive()[source]
+primitive()[source]

Returns content and a primitive polynomial.

-square()[source]
+square()[source]

square of a polynomial

Examples

>>> from sympy.polys.rings import ring
@@ -5740,13 +5740,13 @@ 

Sparse polynomials
-strip_zero()[source]
+strip_zero()[source]

Eliminate monomials with zero coefficient.

-subresultants(g, x=None)[source]
+subresultants(g, x=None)[source]

Computes the subresultant PRS of two polynomials self and g.

Parameters:
@@ -5785,7 +5785,7 @@

Sparse polynomials
-symmetrize()[source]
+symmetrize()[source]

Rewrite self in terms of elementary symmetric polynomials.

Returns:
@@ -5843,21 +5843,21 @@

Sparse polynomials
-tail_degree(x=None)[source]
+tail_degree(x=None)[source]

The tail degree in x or the main variable.

Note that the degree of 0 is negative infinity (float('-inf'))

-tail_degrees()[source]
+tail_degrees()[source]

A tuple containing tail degrees in all variables.

Note that the degree of 0 is negative infinity (float('-inf'))

-terms(order=None)[source]
+terms(order=None)[source]

Ordered list of polynomial terms.

Parameters:
@@ -5890,25 +5890,25 @@

Sparse rational functions
-sympy.polys.fields.field(symbols, domain, order=LexOrder())[source]
+sympy.polys.fields.field(symbols, domain, order=LexOrder())[source]

Construct new rational function field returning (field, x1, …, xn).

-sympy.polys.fields.xfield(symbols, domain, order=LexOrder())[source]
+sympy.polys.fields.xfield(symbols, domain, order=LexOrder())[source]

Construct new rational function field returning (field, (x1, …, xn)).

-sympy.polys.fields.vfield(symbols, domain, order=LexOrder())[source]
+sympy.polys.fields.vfield(symbols, domain, order=LexOrder())[source]

Construct new rational function field and inject generators into global namespace.

-sympy.polys.fields.sfield(exprs, *symbols, **options)[source]
+sympy.polys.fields.sfield(exprs, *symbols, **options)[source]

Construct a field deriving generators and domain from options and input expressions.

@@ -5934,17 +5934,17 @@

Sparse rational functions
-class sympy.polys.fields.FracField(symbols, domain, order=LexOrder())[source]
+class sympy.polys.fields.FracField(symbols, domain, order=LexOrder())[source]

Multivariate distributed rational function field.

-class sympy.polys.fields.FracElement(numer, denom=None)[source]
+class sympy.polys.fields.FracElement(numer, denom=None)[source]

Element of multivariate distributed rational function field.

-diff(x)[source]
+diff(x)[source]

Computes partial derivative in x.

Examples

>>> from sympy.polys.fields import field
@@ -5965,179 +5965,179 @@ 

Sparse rational functions

-class sympy.polys.polyclasses.DMP(rep, dom, lev=None)[source]
+class sympy.polys.polyclasses.DMP(rep, dom, lev=None)[source]

Dense Multivariate Polynomials over \(K\).

-LC()[source]
+LC()[source]

Returns the leading coefficient of f.

-TC()[source]
+TC()[source]

Returns the trailing coefficient of f.

-abs()[source]
+abs()[source]

Make all coefficients in f positive.

-add(g)[source]
+add(g)[source]

Add two multivariate polynomials f and g.

-add_ground(c)[source]
+add_ground(c)[source]

Add an element of the ground domain to f.

-all_coeffs()[source]
+all_coeffs()[source]

Returns all coefficients from f.

-all_monoms()[source]
+all_monoms()[source]

Returns all monomials from f.

-all_terms()[source]
+all_terms()[source]

Returns all terms from a f.

-cancel(g, include=True)[source]
+cancel(g, include=True)[source]

Cancel common factors in a rational function f/g.

-cauchy_lower_bound()[source]
+cauchy_lower_bound()[source]

Computes the Cauchy lower bound on the nonzero roots of f.

-cauchy_upper_bound()[source]
+cauchy_upper_bound()[source]

Computes the Cauchy upper bound on the roots of f.

-clear_denoms()[source]
+clear_denoms()[source]

Clear denominators, but keep the ground domain.

-coeffs(order=None)[source]
+coeffs(order=None)[source]

Returns all non-zero coefficients from f in lex order.

-cofactors(g)[source]
+cofactors(g)[source]

Returns GCD of f and g and their cofactors.

-compose(g)[source]
+compose(g)[source]

Computes functional composition of f and g.

-content()[source]
+content()[source]

Returns GCD of polynomial coefficients.

-convert(dom)[source]
+convert(dom)[source]

Convert f to a DMP over the new domain.

-count_complex_roots(inf=None, sup=None)[source]
+count_complex_roots(inf=None, sup=None)[source]

Return the number of complex roots of f in [inf, sup].

-count_real_roots(inf=None, sup=None)[source]
+count_real_roots(inf=None, sup=None)[source]

Return the number of real roots of f in [inf, sup].

-decompose()[source]
+decompose()[source]

Computes functional decomposition of f.

-deflate()[source]
+deflate()[source]

Reduce degree of \(f\) by mapping \(x_i^m\) to \(y_i\).

-degree(j=0)[source]
+degree(j=0)[source]

Returns the leading degree of f in x_j.

-degree_list()[source]
+degree_list()[source]

Returns a list of degrees of f.

-diff(m=1, j=0)[source]
+diff(m=1, j=0)[source]

Computes the m-th order derivative of f in x_j.

-discriminant()[source]
+discriminant()[source]

Computes discriminant of f.

-div(g)[source]
+div(g)[source]

Polynomial division with remainder of f and g.

-eject(dom, front=False)[source]
+eject(dom, front=False)[source]

Eject selected generators into the ground domain.

-eval(a, j=0)[source]
+eval(a, j=0)[source]

Evaluates f at the given point a in x_j.

-exclude()[source]
+exclude()[source]

Remove useless generators from f.

Returns the removed generators and the new excluded f.

Examples

@@ -6153,91 +6153,91 @@

Dense polynomials
-exquo(g)[source]
+exquo(g)[source]

Computes polynomial exact quotient of f and g.

-exquo_ground(c)[source]
+exquo_ground(c)[source]

Exact quotient of f by a an element of the ground domain.

-factor_list()[source]
+factor_list()[source]

Returns a list of irreducible factors of f.

-factor_list_include()[source]
+factor_list_include()[source]

Returns a list of irreducible factors of f.

-classmethod from_list(rep, lev, dom)[source]
+classmethod from_list(rep, lev, dom)[source]

Create an instance of cls given a list of native coefficients.

-classmethod from_sympy_list(rep, lev, dom)[source]
+classmethod from_sympy_list(rep, lev, dom)[source]

Create an instance of cls given a list of SymPy coefficients.

-gcd(g)[source]
+gcd(g)[source]

Returns polynomial GCD of f and g.

-gcdex(g)[source]
+gcdex(g)[source]

Extended Euclidean algorithm, if univariate.

-gff_list()[source]
+gff_list()[source]

Computes greatest factorial factorization of f.

-ground_new(coeff)[source]
+ground_new(coeff)[source]

Construct a new ground instance of f.

-half_gcdex(g)[source]
+half_gcdex(g)[source]

Half extended Euclidean algorithm, if univariate.

-homogeneous_order()[source]
+homogeneous_order()[source]

Returns the homogeneous order of f.

-homogenize(s)[source]
+homogenize(s)[source]

Return homogeneous polynomial of f

-inject(front=False)[source]
+inject(front=False)[source]

Inject ground domain generators into f.

-integrate(m=1, j=0)[source]
+integrate(m=1, j=0)[source]

Computes the m-th order indefinite integral of f in x_j.

@@ -6254,13 +6254,13 @@

Dense polynomialssqf=False,

-)[source] +)[source]

Compute isolating intervals for roots of f.

-invert(g)[source]
+invert(g)[source]

Invert f modulo g, if possible.

@@ -6338,91 +6338,91 @@

Dense polynomials
-l1_norm()[source]
+l1_norm()[source]

Returns l1 norm of f.

-l2_norm_squared()[source]
+l2_norm_squared()[source]

Return squared l2 norm of f.

-lcm(g)[source]
+lcm(g)[source]

Returns polynomial LCM of f and g.

-lift()[source]
+lift()[source]

Convert algebraic coefficients to rationals.

-max_norm()[source]
+max_norm()[source]

Returns maximum norm of f.

-mignotte_sep_bound_squared()[source]
+mignotte_sep_bound_squared()[source]

Computes the squared Mignotte bound on root separations of f.

-monic()[source]
+monic()[source]

Divides all coefficients by LC(f).

-monoms(order=None)[source]
+monoms(order=None)[source]

Returns all non-zero monomials from f in lex order.

-mul(g)[source]
+mul(g)[source]

Multiply two multivariate polynomials f and g.

-mul_ground(c)[source]
+mul_ground(c)[source]

Multiply f by a an element of the ground domain.

-neg()[source]
+neg()[source]

Negate all coefficients in f.

-norm()[source]
+norm()[source]

Computes Norm(f).

-nth(*N)[source]
+nth(*N)[source]

Returns the n-th coefficient of f.

-pdiv(g)[source]
+pdiv(g)[source]

Polynomial pseudo-division of f and g.

-permute(P)[source]
+permute(P)[source]

Returns a polynomial in \(K[x_{P(1)}, ..., x_{P(n)}]\).

Examples

>>> from sympy.polys.polyclasses import DMP
@@ -6441,43 +6441,43 @@ 

Dense polynomials
-pexquo(g)[source]
+pexquo(g)[source]

Polynomial exact pseudo-quotient of f and g.

-pow(n)[source]
+pow(n)[source]

Raise f to a non-negative power n.

-pquo(g)[source]
+pquo(g)[source]

Polynomial pseudo-quotient of f and g.

-prem(g)[source]
+prem(g)[source]

Polynomial pseudo-remainder of f and g.

-primitive()[source]
+primitive()[source]

Returns content and a primitive form of f.

-quo(g)[source]
+quo(g)[source]

Computes polynomial quotient of f and g.

-quo_ground(c)[source]
+quo_ground(c)[source]

Quotient of f by a an element of the ground domain.

@@ -6493,14 +6493,14 @@

Dense polynomialsfast=False,

-)[source] +)[source]

Refine an isolating interval to the given precision.

eps should be a rational number.

-rem(g)[source]
+rem(g)[source]

Computes polynomial remainder of f and g.

@@ -6512,103 +6512,103 @@

Dense polynomials
-resultant(g, includePRS=False)[source]
+resultant(g, includePRS=False)[source]

Computes resultant of f and g via PRS.

-revert(n)[source]
+revert(n)[source]

Compute f**(-1) mod x**n.

-shift(a)[source]
+shift(a)[source]

Efficiently compute Taylor shift f(x + a).

-shift_list(a)[source]
+shift_list(a)[source]

Efficiently compute Taylor shift f(X + A).

-slice(m, n, j=0)[source]
+slice(m, n, j=0)[source]

Take a continuous subsequence of terms of f.

-sqf_list(all=False)[source]
+sqf_list(all=False)[source]

Returns a list of square-free factors of f.

-sqf_list_include(all=False)[source]
+sqf_list_include(all=False)[source]

Returns a list of square-free factors of f.

-sqf_norm()[source]
+sqf_norm()[source]

Computes square-free norm of f.

-sqf_part()[source]
+sqf_part()[source]

Computes square-free part of f.

-sqr()[source]
+sqr()[source]

Square a multivariate polynomial f.

-sturm()[source]
+sturm()[source]

Computes the Sturm sequence of f.

-sub(g)[source]
+sub(g)[source]

Subtract two multivariate polynomials f and g.

-sub_ground(c)[source]
+sub_ground(c)[source]

Subtract an element of the ground domain from f.

-subresultants(g)[source]
+subresultants(g)[source]

Computes subresultant PRS sequence of f and g.

-terms(order=None)[source]
+terms(order=None)[source]

Returns all non-zero terms from f in lex order.

-terms_gcd()[source]
+terms_gcd()[source]

Remove GCD of terms from the polynomial f.

-to_best()[source]
+to_best()[source]

Convert to DUP_Flint if possible.

This method should be used when the domain or level is changed and it potentially becomes possible to convert from DMP_Python to DUP_Flint.

@@ -6616,74 +6616,74 @@

Dense polynomials
-to_dict(zero=False)[source]
+to_dict(zero=False)[source]

Convert f to a dict representation with native coefficients.

-to_exact()[source]
+to_exact()[source]

Make the ground domain exact.

-to_field()[source]
+to_field()[source]

Make the ground domain a field.

-to_list()[source]
+to_list()[source]

Convert f to a list representation with native coefficients.

-to_ring()[source]
+to_ring()[source]

Make the ground domain a ring.

-to_sympy_dict(zero=False)[source]
+to_sympy_dict(zero=False)[source]

Convert f to a dict representation with SymPy coefficients.

-to_sympy_list()[source]
+to_sympy_list()[source]

Convert f to a list representation with SymPy coefficients.

-to_tuple()[source]
+to_tuple()[source]

Convert f to a tuple representation with native coefficients.

This is needed for hashing.

-total_degree()[source]
+total_degree()[source]

Returns the total degree of f.

-transform(p, q)[source]
+transform(p, q)[source]

Evaluate functional transformation q**n * f(p/q).

-trunc(p)[source]
+trunc(p)[source]

Reduce f modulo a constant p.

-unify_DMP(g)[source]
+unify_DMP(g)[source]

Unify and return DMP instances of f and g.

@@ -6691,53 +6691,53 @@

Dense polynomials
-class sympy.polys.polyclasses.DMF(rep, dom, lev=None)[source]
+class sympy.polys.polyclasses.DMF(rep, dom, lev=None)[source]

Dense Multivariate Fractions over \(K\).

-add(g)[source]
+add(g)[source]

Add two multivariate fractions f and g.

-add_ground(c)[source]
+add_ground(c)[source]

Add an element of the ground domain to f.

-cancel()[source]
+cancel()[source]

Remove common factors from f.num and f.den.

-denom()[source]
+denom()[source]

Returns the denominator of f.

-exquo(g)[source]
+exquo(g)[source]

Computes quotient of fractions f and g.

-frac_unify(g)[source]
+frac_unify(g)[source]

Unify representations of two multivariate fractions.

-half_per(rep, kill=False)[source]
+half_per(rep, kill=False)[source]

Create a DMP out of the given representation.

-invert(check=True)[source]
+invert(check=True)[source]

Computes inverse of a fraction f.

@@ -6755,49 +6755,49 @@

Dense polynomials
-mul(g)[source]
+mul(g)[source]

Multiply two multivariate fractions f and g.

-neg()[source]
+neg()[source]

Negate all coefficients in f.

-numer()[source]
+numer()[source]

Returns the numerator of f.

-per(num, den, cancel=True, kill=False)[source]
+per(num, den, cancel=True, kill=False)[source]

Create a DMF out of the given representation.

-poly_unify(g)[source]
+poly_unify(g)[source]

Unify a multivariate fraction and a polynomial.

-pow(n)[source]
+pow(n)[source]

Raise f to a non-negative power n.

-quo(g)[source]
+quo(g)[source]

Computes quotient of fractions f and g.

-sub(g)[source]
+sub(g)[source]

Subtract two multivariate fractions f and g.

@@ -6805,29 +6805,29 @@

Dense polynomials
-class sympy.polys.polyclasses.ANP(rep, mod, dom)[source]
+class sympy.polys.polyclasses.ANP(rep, mod, dom)[source]

Dense Algebraic Number Polynomials over a field.

-LC()[source]
+LC()[source]

Returns the leading coefficient of f.

-TC()[source]
+TC()[source]

Returns the trailing coefficient of f.

-add_ground(c)[source]
+add_ground(c)[source]

Add an element of the ground domain to f.

-convert(dom)[source]
+convert(dom)[source]

Convert f to a ANP over a new domain.

@@ -6851,74 +6851,74 @@

Dense polynomials
-mod_to_list()[source]
+mod_to_list()[source]

Return f.mod as a list with native coefficients.

-mul_ground(c)[source]
+mul_ground(c)[source]

Multiply f by an element of the ground domain.

-pow(n)[source]
+pow(n)[source]

Raise f to a non-negative power n.

-quo_ground(c)[source]
+quo_ground(c)[source]

Quotient of f by an element of the ground domain.

-sub_ground(c)[source]
+sub_ground(c)[source]

Subtract an element of the ground domain from f.

-to_dict()[source]
+to_dict()[source]

Convert f to a dict representation with native coefficients.

-to_list()[source]
+to_list()[source]

Convert f to a list representation with native coefficients.

-to_sympy_dict()[source]
+to_sympy_dict()[source]

Convert f to a dict representation with SymPy coefficients.

-to_sympy_list()[source]
+to_sympy_list()[source]

Convert f to a list representation with SymPy coefficients.

-to_tuple()[source]
+to_tuple()[source]

Convert f to a tuple representation with native coefficients.

This is needed for hashing.

-unify(g)[source]
+unify(g)[source]

Unify representations of two algebraic numbers.

-unify_ANP(g)[source]
+unify_ANP(g)[source]

Unify and return DMP instances of f and g.

@@ -6962,7 +6962,7 @@

Dense polynomialsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/index.html b/dev/modules/polys/index.html index 1e38832bc97..723eabe639d 100644 --- a/dev/modules/polys/index.html +++ b/dev/modules/polys/index.html @@ -864,7 +864,7 @@

Contents Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/internals.html b/dev/modules/polys/internals.html index ecd185811cf..c85e4954486 100644 --- a/dev/modules/polys/internals.html +++ b/dev/modules/polys/internals.html @@ -850,7 +850,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_LC(f, K)[source]
+sympy.polys.densebasic.dmp_LC(f, K)[source]

Return leading coefficient of f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -867,7 +867,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_TC(f, K)[source]
+sympy.polys.densebasic.dmp_TC(f, K)[source]

Return trailing coefficient of f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -884,7 +884,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground_LC(f, u, K)[source]
+sympy.polys.densebasic.dmp_ground_LC(f, u, K)[source]

Return the ground leading coefficient.

Examples

>>> from sympy.polys.domains import ZZ
@@ -902,7 +902,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground_TC(f, u, K)[source]
+sympy.polys.densebasic.dmp_ground_TC(f, u, K)[source]

Return the ground trailing coefficient.

Examples

>>> from sympy.polys.domains import ZZ
@@ -920,7 +920,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_true_LT(f, u, K)[source]
+sympy.polys.densebasic.dmp_true_LT(f, u, K)[source]

Return the leading term c * x_1**n_1 ... x_k**n_k.

Examples

>>> from sympy.polys.domains import ZZ
@@ -938,7 +938,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_degree(f, u)[source]
+sympy.polys.densebasic.dmp_degree(f, u)[source]

Return the leading degree of f in x_0 in K[X].

Note that the degree of 0 is negative infinity (float('-inf')).

Examples

@@ -961,7 +961,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_degree_in(f, j, u)[source]
+sympy.polys.densebasic.dmp_degree_in(f, j, u)[source]

Return the leading degree of f in x_j in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -981,7 +981,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_degree_list(f, u)[source]
+sympy.polys.densebasic.dmp_degree_list(f, u)[source]

Return a list of degrees of f in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -999,7 +999,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_strip(f, u)[source]
+sympy.polys.densebasic.dmp_strip(f, u)[source]

Remove leading zeros from f in K[X].

Examples

>>> from sympy.polys.densebasic import dmp_strip
@@ -1013,7 +1013,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_validate(f, K=None)[source]
+sympy.polys.densebasic.dmp_validate(f, K=None)[source]

Return the number of levels in f and recursively strip it.

Examples

>>> from sympy.polys.densebasic import dmp_validate
@@ -1033,7 +1033,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dup_reverse(f)[source]
+sympy.polys.densebasic.dup_reverse(f)[source]

Compute x**n * f(1/x), i.e.: reverse f in K[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1051,7 +1051,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_copy(f, u)[source]
+sympy.polys.densebasic.dmp_copy(f, u)[source]

Create a new copy of a polynomial f in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1069,7 +1069,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_to_tuple(f, u)[source]
+sympy.polys.densebasic.dmp_to_tuple(f, u)[source]

Convert \(f\) into a nested tuple of tuples.

This is needed for hashing. This is similar to dmp_copy().

Examples

@@ -1088,7 +1088,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_normal(f, u, K)[source]
+sympy.polys.densebasic.dmp_normal(f, u, K)[source]

Normalize a multivariate polynomial in the given domain.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1103,7 +1103,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_convert(f, u, K0, K1)[source]
+sympy.polys.densebasic.dmp_convert(f, u, K0, K1)[source]

Convert the ground domain of f from K0 to K1.

Examples

>>> from sympy.polys.rings import ring
@@ -1124,7 +1124,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_from_sympy(f, u, K)[source]
+sympy.polys.densebasic.dmp_from_sympy(f, u, K)[source]

Convert the ground domain of f from SymPy to K.

Examples

>>> from sympy import S
@@ -1140,7 +1140,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_nth(f, n, u, K)[source]
+sympy.polys.densebasic.dmp_nth(f, n, u, K)[source]

Return the n-th coefficient of f in K[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1160,7 +1160,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground_nth(f, N, u, K)[source]
+sympy.polys.densebasic.dmp_ground_nth(f, N, u, K)[source]

Return the ground n-th coefficient of f in K[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1178,7 +1178,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_zero_p(f, u)[source]
+sympy.polys.densebasic.dmp_zero_p(f, u)[source]

Return True if f is zero in K[X].

Examples

>>> from sympy.polys.densebasic import dmp_zero_p
@@ -1194,7 +1194,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_zero(u)[source]
+sympy.polys.densebasic.dmp_zero(u)[source]

Return a multivariate zero.

Examples

>>> from sympy.polys.densebasic import dmp_zero
@@ -1208,7 +1208,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_one_p(f, u, K)[source]
+sympy.polys.densebasic.dmp_one_p(f, u, K)[source]

Return True if f is one in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1223,7 +1223,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_one(u, K)[source]
+sympy.polys.densebasic.dmp_one(u, K)[source]

Return a multivariate one over K.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1238,7 +1238,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground_p(f, c, u)[source]
+sympy.polys.densebasic.dmp_ground_p(f, c, u)[source]

Return True if f is constant in K[X].

Examples

>>> from sympy.polys.densebasic import dmp_ground_p
@@ -1254,7 +1254,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground(c, u)[source]
+sympy.polys.densebasic.dmp_ground(c, u)[source]

Return a multivariate constant.

Examples

>>> from sympy.polys.densebasic import dmp_ground
@@ -1270,7 +1270,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_zeros(n, u, K)[source]
+sympy.polys.densebasic.dmp_zeros(n, u, K)[source]

Return a list of multivariate zeros.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1287,7 +1287,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_grounds(c, n, u)[source]
+sympy.polys.densebasic.dmp_grounds(c, n, u)[source]

Return a list of multivariate constants.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1304,7 +1304,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_negative_p(f, u, K)[source]
+sympy.polys.densebasic.dmp_negative_p(f, u, K)[source]

Return True if LC(f) is negative.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1321,7 +1321,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_positive_p(f, u, K)[source]
+sympy.polys.densebasic.dmp_positive_p(f, u, K)[source]

Return True if LC(f) is positive.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1338,7 +1338,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_from_dict(f, u, K)[source]
+sympy.polys.densebasic.dmp_from_dict(f, u, K)[source]

Create a K[X] polynomial from a dict.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1355,7 +1355,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_to_dict(f, u, K=None, zero=False)[source]
+sympy.polys.densebasic.dmp_to_dict(f, u, K=None, zero=False)[source]

Convert a K[X] polynomial to a dict``.

Examples

>>> from sympy.polys.densebasic import dmp_to_dict
@@ -1371,7 +1371,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_swap(f, i, j, u, K)[source]
+sympy.polys.densebasic.dmp_swap(f, i, j, u, K)[source]

Transform K[..x_i..x_j..] to K[..x_j..x_i..].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1393,7 +1393,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_permute(f, P, u, K)[source]
+sympy.polys.densebasic.dmp_permute(f, P, u, K)[source]

Return a polynomial in K[x_{P(1)},..,x_{P(n)}].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1413,7 +1413,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_nest(f, l, K)[source]
+sympy.polys.densebasic.dmp_nest(f, l, K)[source]

Return a multivariate value nested l-levels.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1428,7 +1428,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_raise(f, l, u, K)[source]
+sympy.polys.densebasic.dmp_raise(f, l, u, K)[source]

Return a multivariate polynomial raised l-levels.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1446,7 +1446,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_deflate(f, u, K)[source]
+sympy.polys.densebasic.dmp_deflate(f, u, K)[source]

Map x_i**m_i to y_i in a polynomial in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1464,7 +1464,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_multi_deflate(polys, u, K)[source]
+sympy.polys.densebasic.dmp_multi_deflate(polys, u, K)[source]

Map x_i**m_i to y_i in a set of polynomials in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1483,7 +1483,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_inflate(f, M, u, K)[source]
+sympy.polys.densebasic.dmp_inflate(f, M, u, K)[source]

Map y_i to x_i**k_i in a polynomial in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1501,7 +1501,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_exclude(f, u, K)[source]
+sympy.polys.densebasic.dmp_exclude(f, u, K)[source]

Exclude useless levels from f.

Return the levels excluded, the new excluded f, and the new u.

Examples

@@ -1520,7 +1520,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_include(f, J, u, K)[source]
+sympy.polys.densebasic.dmp_include(f, J, u, K)[source]

Include useless levels in f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1538,7 +1538,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_inject(f, u, K, front=False)[source]
+sympy.polys.densebasic.dmp_inject(f, u, K, front=False)[source]

Convert f from K[X][Y] to K[X,Y].

Examples

>>> from sympy.polys.rings import ring
@@ -1559,7 +1559,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_eject(f, u, K, front=False)[source]
+sympy.polys.densebasic.dmp_eject(f, u, K, front=False)[source]

Convert f from K[X,Y] to K[X][Y].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1574,7 +1574,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_terms_gcd(f, u, K)[source]
+sympy.polys.densebasic.dmp_terms_gcd(f, u, K)[source]

Remove GCD of terms from f in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1592,7 +1592,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_list_terms(f, u, K, order=None)[source]
+sympy.polys.densebasic.dmp_list_terms(f, u, K, order=None)[source]

List all non-zero terms from f in the given order order.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1612,7 +1612,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_apply_pairs(f, g, h, args, u, K)[source]
+sympy.polys.densebasic.dmp_apply_pairs(f, g, h, args, u, K)[source]

Apply h to pairs of coefficients of f and g.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1630,13 +1630,13 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_slice(f, m, n, u, K)[source]
+sympy.polys.densebasic.dmp_slice(f, m, n, u, K)[source]

Take a continuous subsequence of terms of f in K[X].

-sympy.polys.densebasic.dup_random(n, a, b, K)[source]
+sympy.polys.densebasic.dup_random(n, a, b, K)[source]

Return a polynomial of degree n with coefficients in [a, b].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1652,7 +1652,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_add_term(f, c, i, u, K)[source]
+sympy.polys.densearith.dmp_add_term(f, c, i, u, K)[source]

Add c(x_2..x_u)*x_0**i to f in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1667,7 +1667,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sub_term(f, c, i, u, K)[source]
+sympy.polys.densearith.dmp_sub_term(f, c, i, u, K)[source]

Subtract c(x_2..x_u)*x_0**i from f in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1682,7 +1682,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_mul_term(f, c, i, u, K)[source]
+sympy.polys.densearith.dmp_mul_term(f, c, i, u, K)[source]

Multiply f by c(x_2..x_u)*x_0**i in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1697,7 +1697,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_add_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_add_ground(f, c, u, K)[source]

Add an element of the ground domain to f.

Examples

>>> from sympy.polys import ring, ZZ
@@ -1712,7 +1712,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sub_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_sub_ground(f, c, u, K)[source]

Subtract an element of the ground domain from f.

Examples

>>> from sympy.polys import ring, ZZ
@@ -1727,7 +1727,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_mul_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_mul_ground(f, c, u, K)[source]

Multiply f by a constant value in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1742,7 +1742,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_quo_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_quo_ground(f, c, u, K)[source]

Quotient by a constant in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -1762,7 +1762,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_exquo_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_exquo_ground(f, c, u, K)[source]

Exact quotient by a constant in K[X].

Examples

>>> from sympy.polys import ring, QQ
@@ -1777,7 +1777,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dup_lshift(f, n, K)[source]
+sympy.polys.densearith.dup_lshift(f, n, K)[source]

Efficiently multiply f by x**n in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1792,7 +1792,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dup_rshift(f, n, K)[source]
+sympy.polys.densearith.dup_rshift(f, n, K)[source]

Efficiently divide f by x**n in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1809,7 +1809,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_abs(f, u, K)[source]
+sympy.polys.densearith.dmp_abs(f, u, K)[source]

Make all coefficients positive in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1824,7 +1824,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_neg(f, u, K)[source]
+sympy.polys.densearith.dmp_neg(f, u, K)[source]

Negate a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1839,7 +1839,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_add(f, g, u, K)[source]
+sympy.polys.densearith.dmp_add(f, g, u, K)[source]

Add dense polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1854,7 +1854,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sub(f, g, u, K)[source]
+sympy.polys.densearith.dmp_sub(f, g, u, K)[source]

Subtract dense polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1869,7 +1869,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_add_mul(f, g, h, u, K)[source]
+sympy.polys.densearith.dmp_add_mul(f, g, h, u, K)[source]

Returns f + g*h where f, g, h are in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1884,7 +1884,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sub_mul(f, g, h, u, K)[source]
+sympy.polys.densearith.dmp_sub_mul(f, g, h, u, K)[source]

Returns f - g*h where f, g, h are in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1899,7 +1899,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_mul(f, g, u, K)[source]
+sympy.polys.densearith.dmp_mul(f, g, u, K)[source]

Multiply dense polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1914,7 +1914,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sqr(f, u, K)[source]
+sympy.polys.densearith.dmp_sqr(f, u, K)[source]

Square dense polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1929,7 +1929,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_pow(f, n, u, K)[source]
+sympy.polys.densearith.dmp_pow(f, n, u, K)[source]

Raise f to the n-th power in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1944,7 +1944,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_pdiv(f, g, u, K)[source]
+sympy.polys.densearith.dmp_pdiv(f, g, u, K)[source]

Polynomial pseudo-division in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1959,7 +1959,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_prem(f, g, u, K)[source]
+sympy.polys.densearith.dmp_prem(f, g, u, K)[source]

Polynomial pseudo-remainder in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1974,7 +1974,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_pquo(f, g, u, K)[source]
+sympy.polys.densearith.dmp_pquo(f, g, u, K)[source]

Polynomial exact pseudo-quotient in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1998,7 +1998,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_pexquo(f, g, u, K)[source]
+sympy.polys.densearith.dmp_pexquo(f, g, u, K)[source]

Polynomial pseudo-quotient in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2024,7 +2024,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_rr_div(f, g, u, K)[source]
+sympy.polys.densearith.dmp_rr_div(f, g, u, K)[source]

Multivariate division with remainder over a ring.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2039,7 +2039,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_ff_div(f, g, u, K)[source]
+sympy.polys.densearith.dmp_ff_div(f, g, u, K)[source]

Polynomial division with remainder over a field.

Examples

>>> from sympy.polys import ring, QQ
@@ -2054,7 +2054,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_div(f, g, u, K)[source]
+sympy.polys.densearith.dmp_div(f, g, u, K)[source]

Polynomial division with remainder in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2074,7 +2074,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_rem(f, g, u, K)[source]
+sympy.polys.densearith.dmp_rem(f, g, u, K)[source]

Returns polynomial remainder in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2094,7 +2094,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_quo(f, g, u, K)[source]
+sympy.polys.densearith.dmp_quo(f, g, u, K)[source]

Returns exact polynomial quotient in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2114,7 +2114,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_exquo(f, g, u, K)[source]
+sympy.polys.densearith.dmp_exquo(f, g, u, K)[source]

Returns polynomial quotient in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2140,7 +2140,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_max_norm(f, u, K)[source]
+sympy.polys.densearith.dmp_max_norm(f, u, K)[source]

Returns maximum norm of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2155,7 +2155,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_l1_norm(f, u, K)[source]
+sympy.polys.densearith.dmp_l1_norm(f, u, K)[source]

Returns l1 norm of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2170,7 +2170,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_expand(polys, u, K)[source]
+sympy.polys.densearith.dmp_expand(polys, u, K)[source]

Multiply together several polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2186,7 +2186,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_integrate(f, m, u, K)[source]
+sympy.polys.densetools.dmp_integrate(f, m, u, K)[source]

Computes the indefinite integral of f in x_0 in K[X].

Examples

>>> from sympy.polys import ring, QQ
@@ -2203,7 +2203,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_integrate_in(f, m, j, u, K)[source]
+sympy.polys.densetools.dmp_integrate_in(f, m, j, u, K)[source]

Computes the indefinite integral of f in x_j in K[X].

Examples

>>> from sympy.polys import ring, QQ
@@ -2220,7 +2220,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_diff(f, m, u, K)[source]
+sympy.polys.densetools.dmp_diff(f, m, u, K)[source]

m-th order derivative in x_0 of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2240,7 +2240,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_diff_in(f, m, j, u, K)[source]
+sympy.polys.densetools.dmp_diff_in(f, m, j, u, K)[source]

m-th order derivative in x_j of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2260,7 +2260,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_eval(f, a, u, K)[source]
+sympy.polys.densetools.dmp_eval(f, a, u, K)[source]

Evaluate a polynomial at x_0 = a in K[X] using the Horner scheme.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2275,7 +2275,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_eval_in(f, a, j, u, K)[source]
+sympy.polys.densetools.dmp_eval_in(f, a, j, u, K)[source]

Evaluate a polynomial at x_j = a in K[X] using the Horner scheme.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2295,7 +2295,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_eval_tail(f, A, u, K)[source]
+sympy.polys.densetools.dmp_eval_tail(f, A, u, K)[source]

Evaluate a polynomial at x_j = a_j, ... in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2315,7 +2315,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_diff_eval_in(f, m, a, j, u, K)[source]
+sympy.polys.densetools.dmp_diff_eval_in(f, m, a, j, u, K)[source]

Differentiate and evaluate a polynomial in x_j at a in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2335,7 +2335,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_trunc(f, p, u, K)[source]
+sympy.polys.densetools.dmp_trunc(f, p, u, K)[source]

Reduce a K[X] polynomial modulo a polynomial p in K[Y].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2354,7 +2354,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_trunc(f, p, u, K)[source]
+sympy.polys.densetools.dmp_ground_trunc(f, p, u, K)[source]

Reduce a K[X] polynomial modulo a constant p in K.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2372,7 +2372,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_monic(f, K)[source]
+sympy.polys.densetools.dup_monic(f, K)[source]

Divide all coefficients by LC(f) in K[x].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2392,7 +2392,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_monic(f, u, K)[source]
+sympy.polys.densetools.dmp_ground_monic(f, u, K)[source]

Divide all coefficients by LC(f) in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2418,7 +2418,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_content(f, K)[source]
+sympy.polys.densetools.dup_content(f, K)[source]

Compute the GCD of coefficients of f in K[x].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2444,7 +2444,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_content(f, u, K)[source]
+sympy.polys.densetools.dmp_ground_content(f, u, K)[source]

Compute the GCD of coefficients of f in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2470,7 +2470,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_primitive(f, K)[source]
+sympy.polys.densetools.dup_primitive(f, K)[source]

Compute content and the primitive form of f in K[x].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2496,7 +2496,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_primitive(f, u, K)[source]
+sympy.polys.densetools.dmp_ground_primitive(f, u, K)[source]

Compute content and the primitive form of f in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2522,7 +2522,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_extract(f, g, K)[source]
+sympy.polys.densetools.dup_extract(f, g, K)[source]

Extract common content from a pair of polynomials in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2537,7 +2537,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_extract(f, g, u, K)[source]
+sympy.polys.densetools.dmp_ground_extract(f, g, u, K)[source]

Extract common content from a pair of polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2552,7 +2552,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_real_imag(f, K)[source]
+sympy.polys.densetools.dup_real_imag(f, K)[source]

Find f1 and f2, such that f(x+I*y) = f1(x,y) + f2(x,y)*I.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2573,7 +2573,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_mirror(f, K)[source]
+sympy.polys.densetools.dup_mirror(f, K)[source]

Evaluate efficiently the composition f(-x) in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2588,7 +2588,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_scale(f, a, K)[source]
+sympy.polys.densetools.dup_scale(f, a, K)[source]

Evaluate efficiently composition f(a*x) in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2603,7 +2603,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_shift(f, a, K)[source]
+sympy.polys.densetools.dup_shift(f, a, K)[source]

Evaluate efficiently Taylor shift f(x + a) in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2618,7 +2618,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_transform(f, p, q, K)[source]
+sympy.polys.densetools.dup_transform(f, p, q, K)[source]

Evaluate functional transformation q**n * f(p/q) in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2633,7 +2633,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_compose(f, g, u, K)[source]
+sympy.polys.densetools.dmp_compose(f, g, u, K)[source]

Evaluate functional composition f(g) in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2648,7 +2648,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_decompose(f, K)[source]
+sympy.polys.densetools.dup_decompose(f, K)[source]

Computes functional decomposition of f in K[x].

Given a univariate polynomial f with coefficients in a field of characteristic zero, returns list [f_1, f_2, ..., f_n], where:

@@ -2685,7 +2685,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_lift(f, u, K)[source]
+sympy.polys.densetools.dmp_lift(f, u, K)[source]

Convert algebraic coefficients to integers in K[X].

Examples

>>> from sympy.polys import ring, QQ
@@ -2707,7 +2707,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_sign_variations(f, K)[source]
+sympy.polys.densetools.dup_sign_variations(f, K)[source]

Compute the number of sign variations of f in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2722,7 +2722,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_clear_denoms(f, u, K0, K1=None, convert=False)[source]
+sympy.polys.densetools.dmp_clear_denoms(f, u, K0, K1=None, convert=False)[source]

Clear denominators, i.e. transform K_0 to K_1.

Examples

>>> from sympy.polys import ring, QQ
@@ -2742,7 +2742,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_revert(f, g, u, K)[source]
+sympy.polys.densetools.dmp_revert(f, g, u, K)[source]

Compute f**(-1) mod x**n using Newton iteration.

Examples

>>> from sympy.polys import ring, QQ
@@ -2762,7 +2762,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients fields.

-sympy.polys.galoistools.gf_crt(U, M, K=None)[source]
+sympy.polys.galoistools.gf_crt(U, M, K=None)[source]

Chinese Remainder Theorem.

Given a set of integer residues u_0,...,u_n and a set of co-prime integer moduli m_0,...,m_n, returns an integer @@ -2795,7 +2795,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_crt1(M, K)[source]
+sympy.polys.galoistools.gf_crt1(M, K)[source]

First part of the Chinese Remainder Theorem.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2836,7 +2836,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_crt2(U, M, p, E, S, K)[source]
+sympy.polys.galoistools.gf_crt2(U, M, p, E, S, K)[source]

Second part of the Chinese Remainder Theorem.

See gf_crt1 for usage.

Examples

@@ -2867,7 +2867,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_int(a, p)[source]
+sympy.polys.galoistools.gf_int(a, p)[source]

Coerce a mod p to an integer in the range [-p/2, p/2].

Examples

>>> from sympy.polys.galoistools import gf_int
@@ -2883,7 +2883,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_degree(f)[source]
+sympy.polys.galoistools.gf_degree(f)[source]

Return the leading degree of f.

Examples

>>> from sympy.polys.galoistools import gf_degree
@@ -2899,7 +2899,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_LC(f, K)[source]
+sympy.polys.galoistools.gf_LC(f, K)[source]

Return the leading coefficient of f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2914,7 +2914,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_TC(f, K)[source]
+sympy.polys.galoistools.gf_TC(f, K)[source]

Return the trailing coefficient of f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2929,7 +2929,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_strip(f)[source]
+sympy.polys.galoistools.gf_strip(f)[source]

Remove leading zeros from f.

Examples

>>> from sympy.polys.galoistools import gf_strip
@@ -2943,7 +2943,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_trunc(f, p)[source]
+sympy.polys.galoistools.gf_trunc(f, p)[source]

Reduce all coefficients modulo p.

Examples

>>> from sympy.polys.galoistools import gf_trunc
@@ -2957,7 +2957,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_normal(f, p, K)[source]
+sympy.polys.galoistools.gf_normal(f, p, K)[source]

Normalize all coefficients in K.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2972,7 +2972,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_from_dict(f, p, K)[source]
+sympy.polys.galoistools.gf_from_dict(f, p, K)[source]

Create a GF(p)[x] polynomial from a dict.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2987,7 +2987,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_to_dict(f, p, symmetric=True)[source]
+sympy.polys.galoistools.gf_to_dict(f, p, symmetric=True)[source]

Convert a GF(p)[x] polynomial to a dict.

Examples

>>> from sympy.polys.galoistools import gf_to_dict
@@ -3003,7 +3003,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_from_int_poly(f, p)[source]
+sympy.polys.galoistools.gf_from_int_poly(f, p)[source]

Create a GF(p)[x] polynomial from Z[x].

Examples

>>> from sympy.polys.galoistools import gf_from_int_poly
@@ -3017,7 +3017,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_to_int_poly(f, p, symmetric=True)[source]
+sympy.polys.galoistools.gf_to_int_poly(f, p, symmetric=True)[source]

Convert a GF(p)[x] polynomial to Z[x].

Examples

>>> from sympy.polys.galoistools import gf_to_int_poly
@@ -3033,7 +3033,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_neg(f, p, K)[source]
+sympy.polys.galoistools.gf_neg(f, p, K)[source]

Negate a polynomial in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3048,7 +3048,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_add_ground(f, a, p, K)[source]
+sympy.polys.galoistools.gf_add_ground(f, a, p, K)[source]

Compute f + a where f in GF(p)[x] and a in GF(p).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3063,7 +3063,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sub_ground(f, a, p, K)[source]
+sympy.polys.galoistools.gf_sub_ground(f, a, p, K)[source]

Compute f - a where f in GF(p)[x] and a in GF(p).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3078,7 +3078,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_mul_ground(f, a, p, K)[source]
+sympy.polys.galoistools.gf_mul_ground(f, a, p, K)[source]

Compute f * a where f in GF(p)[x] and a in GF(p).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3093,7 +3093,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_quo_ground(f, a, p, K)[source]
+sympy.polys.galoistools.gf_quo_ground(f, a, p, K)[source]

Compute f/a where f in GF(p)[x] and a in GF(p).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3108,7 +3108,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_add(f, g, p, K)[source]
+sympy.polys.galoistools.gf_add(f, g, p, K)[source]

Add polynomials in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3123,7 +3123,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sub(f, g, p, K)[source]
+sympy.polys.galoistools.gf_sub(f, g, p, K)[source]

Subtract polynomials in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3138,7 +3138,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_mul(f, g, p, K)[source]
+sympy.polys.galoistools.gf_mul(f, g, p, K)[source]

Multiply polynomials in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3153,7 +3153,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sqr(f, p, K)[source]
+sympy.polys.galoistools.gf_sqr(f, p, K)[source]

Square polynomials in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3168,7 +3168,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_add_mul(f, g, h, p, K)[source]
+sympy.polys.galoistools.gf_add_mul(f, g, h, p, K)[source]

Returns f + g*h where f, g, h in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3181,7 +3181,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sub_mul(f, g, h, p, K)[source]
+sympy.polys.galoistools.gf_sub_mul(f, g, h, p, K)[source]

Compute f - g*h where f, g, h in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3196,7 +3196,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_expand(F, p, K)[source]
+sympy.polys.galoistools.gf_expand(F, p, K)[source]

Expand results of factor() in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3211,7 +3211,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_div(f, g, p, K)[source]
+sympy.polys.galoistools.gf_div(f, g, p, K)[source]

Division with remainder in GF(p)[x].

Given univariate polynomials f and g with coefficients in a finite field with p elements, returns polynomials q and r @@ -3244,7 +3244,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_rem(f, g, p, K)[source]
+sympy.polys.galoistools.gf_rem(f, g, p, K)[source]

Compute polynomial remainder in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3259,7 +3259,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_quo(f, g, p, K)[source]
+sympy.polys.galoistools.gf_quo(f, g, p, K)[source]

Compute exact quotient in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3276,7 +3276,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_exquo(f, g, p, K)[source]
+sympy.polys.galoistools.gf_exquo(f, g, p, K)[source]

Compute polynomial quotient in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3297,7 +3297,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_lshift(f, n, K)[source]
+sympy.polys.galoistools.gf_lshift(f, n, K)[source]

Efficiently multiply f by x**n.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3312,7 +3312,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_rshift(f, n, K)[source]
+sympy.polys.galoistools.gf_rshift(f, n, K)[source]

Efficiently divide f by x**n.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3327,7 +3327,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_pow(f, n, p, K)[source]
+sympy.polys.galoistools.gf_pow(f, n, p, K)[source]

Compute f**n in GF(p)[x] using repeated squaring.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3342,7 +3342,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_pow_mod(f, n, g, p, K)[source]
+sympy.polys.galoistools.gf_pow_mod(f, n, g, p, K)[source]

Compute f**n in GF(p)[x]/(g) using repeated squaring.

Given polynomials f and g in GF(p)[x] and a non-negative integer n, efficiently computes f**n (mod g) i.e. the remainder @@ -3367,7 +3367,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_gcd(f, g, p, K)[source]
+sympy.polys.galoistools.gf_gcd(f, g, p, K)[source]

Euclidean Algorithm in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3382,7 +3382,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_lcm(f, g, p, K)[source]
+sympy.polys.galoistools.gf_lcm(f, g, p, K)[source]

Compute polynomial LCM in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3397,7 +3397,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_cofactors(f, g, p, K)[source]
+sympy.polys.galoistools.gf_cofactors(f, g, p, K)[source]

Compute polynomial GCD and cofactors in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3412,7 +3412,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_gcdex(f, g, p, K)[source]
+sympy.polys.galoistools.gf_gcdex(f, g, p, K)[source]

Extended Euclidean Algorithm in GF(p)[x].

Given polynomials f and g in GF(p)[x], computes polynomials s, t and h, such that h = gcd(f, g) and s*f + t*g = h. @@ -3447,7 +3447,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_monic(f, p, K)[source]
+sympy.polys.galoistools.gf_monic(f, p, K)[source]

Compute LC and a monic polynomial in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3462,7 +3462,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_diff(f, p, K)[source]
+sympy.polys.galoistools.gf_diff(f, p, K)[source]

Differentiate polynomial in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3477,7 +3477,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_eval(f, a, p, K)[source]
+sympy.polys.galoistools.gf_eval(f, a, p, K)[source]

Evaluate f(a) in GF(p) using Horner scheme.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3492,7 +3492,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_multi_eval(f, A, p, K)[source]
+sympy.polys.galoistools.gf_multi_eval(f, A, p, K)[source]

Evaluate f(a) for a in [a_1, ..., a_n].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3507,7 +3507,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_compose(f, g, p, K)[source]
+sympy.polys.galoistools.gf_compose(f, g, p, K)[source]

Compute polynomial composition f(g) in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3522,7 +3522,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_compose_mod(g, h, f, p, K)[source]
+sympy.polys.galoistools.gf_compose_mod(g, h, f, p, K)[source]

Compute polynomial composition g(h) in GF(p)[x]/(f).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3537,7 +3537,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_trace_map(a, b, c, n, f, p, K)[source]
+sympy.polys.galoistools.gf_trace_map(a, b, c, n, f, p, K)[source]

Compute polynomial trace map in GF(p)[x]/(f).

Given a polynomial f in GF(p)[x], polynomials a, b, c in the quotient ring GF(p)[x]/(f) such that b = c**t @@ -3570,7 +3570,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_random(n, p, K)[source]
+sympy.polys.galoistools.gf_random(n, p, K)[source]

Generate a random polynomial in GF(p)[x] of degree n.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3583,7 +3583,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_irreducible(n, p, K)[source]
+sympy.polys.galoistools.gf_irreducible(n, p, K)[source]

Generate random irreducible polynomial of degree n in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3596,7 +3596,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_irreducible_p(f, p, K)[source]
+sympy.polys.galoistools.gf_irreducible_p(f, p, K)[source]

Test irreducibility of a polynomial f in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3613,7 +3613,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sqf_p(f, p, K)[source]
+sympy.polys.galoistools.gf_sqf_p(f, p, K)[source]

Return True if f is square-free in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3630,7 +3630,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sqf_part(f, p, K)[source]
+sympy.polys.galoistools.gf_sqf_part(f, p, K)[source]

Return square-free part of a GF(p)[x] polynomial.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3645,7 +3645,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sqf_list(f, p, K, all=False)[source]
+sympy.polys.galoistools.gf_sqf_list(f, p, K, all=False)[source]

Return the square-free decomposition of a GF(p)[x] polynomial.

Given a polynomial f in GF(p)[x], returns the leading coefficient of f and a square-free decomposition f_1**e_1 f_2**e_2 ... f_k**e_k @@ -3690,7 +3690,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_Qmatrix(f, p, K)[source]
+sympy.polys.galoistools.gf_Qmatrix(f, p, K)[source]

Calculate Berlekamp’s Q matrix.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3713,7 +3713,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_Qbasis(Q, p, K)[source]
+sympy.polys.galoistools.gf_Qbasis(Q, p, K)[source]

Compute a basis of the kernel of Q.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3732,7 +3732,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_berlekamp(f, p, K)[source]
+sympy.polys.galoistools.gf_berlekamp(f, p, K)[source]

Factor a square-free f in GF(p)[x] for small p.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3747,7 +3747,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_zassenhaus(f, p, K)[source]
+sympy.polys.galoistools.gf_zassenhaus(f, p, K)[source]

Factor a square-free f in GF(p)[x] for medium p.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3762,7 +3762,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_shoup(f, p, K)[source]
+sympy.polys.galoistools.gf_shoup(f, p, K)[source]

Factor a square-free f in GF(p)[x] for large p.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3777,7 +3777,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_factor_sqf(f, p, K, method=None)[source]
+sympy.polys.galoistools.gf_factor_sqf(f, p, K, method=None)[source]

Factor a square-free polynomial f in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3792,7 +3792,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_factor(f, p, K)[source]
+sympy.polys.galoistools.gf_factor(f, p, K)[source]

Factor (non square-free) polynomials in GF(p)[x].

Given a possibly non square-free polynomial f in GF(p)[x], returns its complete factorization into irreducibles:

@@ -3841,7 +3841,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_value(f, a)[source]
+sympy.polys.galoistools.gf_value(f, a)[source]

Value of polynomial ‘f’ at ‘a’ in field R.

Examples

>>> from sympy.polys.galoistools import gf_value
@@ -3855,7 +3855,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_csolve(f, n)[source]
+sympy.polys.galoistools.gf_csolve(f, n)[source]

To solve f(x) congruent 0 mod(n).

n is divided into canonical factors and f(x) cong 0 mod(p**e) will be solved for each factor. Applying the Chinese Remainder Theorem to the @@ -3901,7 +3901,7 @@

Manipulation of sparse, distributed polynomials and vectors\(f_1, f_2, \ldots\).

-sympy.polys.distributedmodules.sdm_monomial_mul(M, X)[source]
+sympy.polys.distributedmodules.sdm_monomial_mul(M, X)[source]

Multiply tuple X representing a monomial of \(K[X]\) into the tuple M representing a monomial of \(F\).

Examples

@@ -3915,7 +3915,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_monomial_deg(M)[source]
+sympy.polys.distributedmodules.sdm_monomial_deg(M)[source]

Return the total degree of M.

Examples

For example, the total degree of \(x^2 y f_5\) is 3:

@@ -3928,7 +3928,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_monomial_divides(A, B)[source]
+sympy.polys.distributedmodules.sdm_monomial_divides(A, B)[source]

Does there exist a (polynomial) monomial X such that XA = B?

Examples

Positive examples:

@@ -3974,19 +3974,19 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_LC(f, K)[source]
+sympy.polys.distributedmodules.sdm_LC(f, K)[source]

Returns the leading coefficient of f.

-sympy.polys.distributedmodules.sdm_to_dict(f)[source]
+sympy.polys.distributedmodules.sdm_to_dict(f)[source]

Make a dictionary from a distributed polynomial.

-sympy.polys.distributedmodules.sdm_from_dict(d, O)[source]
+sympy.polys.distributedmodules.sdm_from_dict(d, O)[source]

Create an sdm from a dictionary.

Here O is the monomial order to use.

Examples

@@ -4001,7 +4001,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_add(f, g, O, K)[source]
+sympy.polys.distributedmodules.sdm_add(f, g, O, K)[source]

Add two module elements f, g.

Addition is done over the ground field K, monomials are ordered according to O.

@@ -4033,7 +4033,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_LM(f)[source]
+sympy.polys.distributedmodules.sdm_LM(f)[source]

Returns the leading monomial of f.

Only valid if \(f \ne 0\).

Examples

@@ -4048,7 +4048,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_LT(f)[source]
+sympy.polys.distributedmodules.sdm_LT(f)[source]

Returns the leading term of f.

Only valid if \(f \ne 0\).

Examples

@@ -4063,7 +4063,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_mul_term(f, term, O, K)[source]
+sympy.polys.distributedmodules.sdm_mul_term(f, term, O, K)[source]

Multiply a distributed module element f by a (polynomial) term term.

Multiplication of coefficients is done over the ground field K, and monomials are ordered according to O.

@@ -4095,13 +4095,13 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_zero()[source]
+sympy.polys.distributedmodules.sdm_zero()[source]

Return the zero module element.

-sympy.polys.distributedmodules.sdm_deg(f)[source]
+sympy.polys.distributedmodules.sdm_deg(f)[source]

Degree of f.

This is the maximum of the degrees of all its monomials. Invalid if f is zero.

@@ -4115,7 +4115,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_from_vector(vec, O, K, **opts)[source]
+sympy.polys.distributedmodules.sdm_from_vector(vec, O, K, **opts)[source]

Create an sdm from an iterable of expressions.

Coefficients are created in the ground field K, and terms are ordered according to monomial order O. Named arguments are passed on to the @@ -4132,7 +4132,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_to_vector(f, gens, K, n=None)[source]
+sympy.polys.distributedmodules.sdm_to_vector(f, gens, K, n=None)[source]

Convert sdm f into a list of polynomial expressions.

The generators for the polynomial ring are specified via gens. The rank of the module is guessed, or passed via n. The ground field is assumed @@ -4206,7 +4206,7 @@

Classical remainder sequence
-sympy.polys.euclidtools.dmp_half_gcdex(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_half_gcdex(f, g, u, K)[source]

Half extended Euclidean algorithm in \(F[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4217,7 +4217,7 @@ 

Classical remainder sequence
-sympy.polys.euclidtools.dmp_gcdex(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_gcdex(f, g, u, K)[source]

Extended Euclidean algorithm in \(F[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4228,7 +4228,7 @@ 

Classical remainder sequence
-sympy.polys.euclidtools.dmp_invert(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_invert(f, g, u, K)[source]

Compute multiplicative inverse of \(f\) modulo \(g\) in \(F[X]\).

Examples

>>> from sympy.polys import ring, QQ
@@ -4239,7 +4239,7 @@ 

Classical remainder sequence
-sympy.polys.euclidtools.dmp_euclidean_prs(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_euclidean_prs(f, g, u, K)[source]

Euclidean polynomial remainder sequence (PRS) in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4279,7 +4279,7 @@ 

Simplified remainder sequences
-sympy.polys.euclidtools.dmp_primitive_prs(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_primitive_prs(f, g, u, K)[source]

Primitive polynomial remainder sequence (PRS) in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4397,7 +4397,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_inner_subresultants(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_inner_subresultants(f, g, u, K)[source]

Subresultant PRS algorithm in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4424,7 +4424,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_subresultants(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_subresultants(f, g, u, K)[source]

Computes subresultant PRS of two polynomials in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4447,7 +4447,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_prs_resultant(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_prs_resultant(f, g, u, K)[source]

Resultant algorithm in \(K[X]\) using subresultant PRS.

Examples

>>> from sympy.polys import ring, ZZ
@@ -4477,7 +4477,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_zz_modular_resultant(f, g, p, u, K)[source]
+sympy.polys.euclidtools.dmp_zz_modular_resultant(f, g, p, u, K)[source]

Compute resultant of \(f\) and \(g\) modulo a prime \(p\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4496,7 +4496,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_zz_collins_resultant(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_zz_collins_resultant(f, g, u, K)[source]

Collins’s modular resultant algorithm in \(Z[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4515,7 +4515,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_qq_collins_resultant(f, g, u, K0)[source]
+sympy.polys.euclidtools.dmp_qq_collins_resultant(f, g, u, K0)[source]

Collins’s modular resultant algorithm in \(Q[X]\).

Examples

>>> from sympy.polys import ring, QQ
@@ -4534,7 +4534,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_resultant(f, g, u, K, includePRS=False)[source]
+sympy.polys.euclidtools.dmp_resultant(f, g, u, K, includePRS=False)[source]

Computes resultant of two polynomials in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4553,7 +4553,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_discriminant(f, u, K)[source]
+sympy.polys.euclidtools.dmp_discriminant(f, u, K)[source]

Computes discriminant of a polynomial in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4568,7 +4568,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_rr_prs_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_rr_prs_gcd(f, g, u, K)[source]

Computes polynomial GCD using subresultants over a ring.

Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

@@ -4589,7 +4589,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_ff_prs_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_ff_prs_gcd(f, g, u, K)[source]

Computes polynomial GCD using subresultants over a field.

Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

@@ -4610,7 +4610,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_zz_heu_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_zz_heu_gcd(f, g, u, K)[source]

Heuristic polynomial GCD in \(Z[X]\).

Given univariate polynomials \(f\) and \(g\) in \(Z[X]\), returns their GCD and cofactors, i.e. polynomials h, cff and cfg @@ -4652,7 +4652,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_qq_heu_gcd(f, g, u, K0)[source]
+sympy.polys.euclidtools.dmp_qq_heu_gcd(f, g, u, K0)[source]

Heuristic polynomial GCD in \(Q[X]\).

Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

@@ -4673,7 +4673,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_inner_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_inner_gcd(f, g, u, K)[source]

Computes polynomial GCD and cofactors of \(f\) and \(g\) in \(K[X]\).

Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

@@ -4694,7 +4694,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_gcd(f, g, u, K)[source]

Computes polynomial GCD of \(f\) and \(g\) in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4713,7 +4713,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_lcm(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_lcm(f, g, u, K)[source]

Computes polynomial LCM of \(f\) and \(g\) in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4732,7 +4732,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_content(f, u, K)[source]
+sympy.polys.euclidtools.dmp_content(f, u, K)[source]

Returns GCD of multivariate coefficients.

Examples

>>> from sympy.polys import ring, ZZ
@@ -4747,7 +4747,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_primitive(f, u, K)[source]
+sympy.polys.euclidtools.dmp_primitive(f, u, K)[source]

Returns multivariate content and a primitive polynomial.

Examples

>>> from sympy.polys import ring, ZZ
@@ -4762,7 +4762,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_cancel(f, g, u, K, include=True)[source]
+sympy.polys.euclidtools.dmp_cancel(f, g, u, K, include=True)[source]

Cancel common factors in a rational function \(f/g\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4778,7 +4778,7 @@ 

Subresultant sequencePolynomial factorization in characteristic zero:

-sympy.polys.factortools.dup_trial_division(f, factors, K)[source]
+sympy.polys.factortools.dup_trial_division(f, factors, K)[source]

Determine multiplicities of factors for a univariate polynomial using trial division.

An error will be raised if any factor does not divide f.

@@ -4786,7 +4786,7 @@

Subresultant sequence
-sympy.polys.factortools.dmp_trial_division(f, factors, u, K)[source]
+sympy.polys.factortools.dmp_trial_division(f, factors, u, K)[source]

Determine multiplicities of factors for a multivariate polynomial using trial division.

An error will be raised if any factor does not divide f.

@@ -4794,7 +4794,7 @@

Subresultant sequence
-sympy.polys.factortools.dup_zz_mignotte_bound(f, K)[source]
+sympy.polys.factortools.dup_zz_mignotte_bound(f, K)[source]

The Knuth-Cohen variant of Mignotte bound for univariate polynomials in K[x].

Examples

@@ -4830,13 +4830,13 @@

Subresultant sequence
-sympy.polys.factortools.dmp_zz_mignotte_bound(f, u, K)[source]
+sympy.polys.factortools.dmp_zz_mignotte_bound(f, u, K)[source]

Mignotte bound for multivariate polynomials in \(K[X]\).

-sympy.polys.factortools.dup_zz_hensel_step(m, f, g, h, s, t, K)[source]
+sympy.polys.factortools.dup_zz_hensel_step(m, f, g, h, s, t, K)[source]

One step in Hensel lifting in \(Z[x]\).

Given positive integer \(m\) and \(Z[x]\) polynomials \(f\), \(g\), \(h\), \(s\) and \(t\) such that:

@@ -4867,7 +4867,7 @@

Subresultant sequence
-sympy.polys.factortools.dup_zz_hensel_lift(p, f, f_list, l, K)[source]
+sympy.polys.factortools.dup_zz_hensel_lift(p, f, f_list, l, K)[source]

Multifactor Hensel lifting in \(Z[x]\).

Given a prime \(p\), polynomial \(f\) over \(Z[x]\) such that \(lc(f)\) is a unit modulo \(p\), monic pair-wise coprime polynomials \(f_i\) @@ -4893,19 +4893,19 @@

Subresultant sequence
-sympy.polys.factortools.dup_zz_zassenhaus(f, K)[source]
+sympy.polys.factortools.dup_zz_zassenhaus(f, K)[source]

Factor primitive square-free polynomials in \(Z[x]\).

-sympy.polys.factortools.dup_zz_irreducible_p(f, K)[source]
+sympy.polys.factortools.dup_zz_irreducible_p(f, K)[source]

Test irreducibility using Eisenstein’s criterion.

-sympy.polys.factortools.dup_cyclotomic_p(f, K, irreducible=False)[source]
+sympy.polys.factortools.dup_cyclotomic_p(f, K, irreducible=False)[source]

Efficiently test if f is a cyclotomic polynomial.

Examples

>>> from sympy.polys import ring, ZZ
@@ -4930,13 +4930,13 @@ 

Subresultant sequence
-sympy.polys.factortools.dup_zz_cyclotomic_poly(n, K)[source]
+sympy.polys.factortools.dup_zz_cyclotomic_poly(n, K)[source]

Efficiently generate n-th cyclotomic polynomial.

-sympy.polys.factortools.dup_zz_cyclotomic_factor(f, K)[source]
+sympy.polys.factortools.dup_zz_cyclotomic_factor(f, K)[source]

Efficiently factor polynomials \(x**n - 1\) and \(x**n + 1\) in \(Z[x]\).

Given a univariate polynomial \(f\) in \(Z[x]\) returns a list of factors of \(f\), provided that \(f\) is in the form \(x**n - 1\) or \(x**n + 1\) for @@ -4955,13 +4955,13 @@

Subresultant sequence
-sympy.polys.factortools.dup_zz_factor_sqf(f, K)[source]
+sympy.polys.factortools.dup_zz_factor_sqf(f, K)[source]

Factor square-free (non-primitive) polynomials in \(Z[x]\).

-sympy.polys.factortools.dup_zz_factor(f, K)[source]
+sympy.polys.factortools.dup_zz_factor(f, K)[source]

Factor (non square-free) polynomials in \(Z[x]\).

Given a univariate polynomial \(f\) in \(Z[x]\) computes its complete factorization \(f_1, ..., f_n\) into irreducibles over integers:

@@ -5005,43 +5005,43 @@

Subresultant sequence
-sympy.polys.factortools.dmp_zz_wang_non_divisors(E, cs, ct, K)[source]
+sympy.polys.factortools.dmp_zz_wang_non_divisors(E, cs, ct, K)[source]

Wang/EEZ: Compute a set of valid divisors.

-sympy.polys.factortools.dmp_zz_wang_test_points(f, T, ct, A, u, K)[source]
+sympy.polys.factortools.dmp_zz_wang_test_points(f, T, ct, A, u, K)[source]

Wang/EEZ: Test evaluation points for suitability.

-sympy.polys.factortools.dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)[source]
+sympy.polys.factortools.dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)[source]

Wang/EEZ: Compute correct leading coefficients.

-sympy.polys.factortools.dup_zz_diophantine(F, m, p, K)[source]
+sympy.polys.factortools.dup_zz_diophantine(F, m, p, K)[source]

Wang/EEZ: Solve univariate Diophantine equations.

-sympy.polys.factortools.dmp_zz_diophantine(F, c, A, d, p, u, K)[source]
+sympy.polys.factortools.dmp_zz_diophantine(F, c, A, d, p, u, K)[source]

Wang/EEZ: Solve multivariate Diophantine equations.

-sympy.polys.factortools.dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)[source]
+sympy.polys.factortools.dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)[source]

Wang/EEZ: Parallel Hensel lifting algorithm.

-sympy.polys.factortools.dmp_zz_wang(f, u, K, mod=None, seed=None)[source]
+sympy.polys.factortools.dmp_zz_wang(f, u, K, mod=None, seed=None)[source]

Factor primitive square-free polynomials in \(Z[X]\).

Given a multivariate polynomial \(f\) in \(Z[x_1,...,x_n]\), which is primitive and square-free in \(x_1\), computes factorization of \(f\) into @@ -5074,7 +5074,7 @@

Subresultant sequence
-sympy.polys.factortools.dmp_zz_factor(f, u, K)[source]
+sympy.polys.factortools.dmp_zz_factor(f, u, K)[source]

Factor (non square-free) polynomials in \(Z[X]\).

Given a multivariate polynomial \(f\) in \(Z[x]\) computes its complete factorization \(f_1, \dots, f_n\) into irreducibles over integers:

@@ -5112,31 +5112,31 @@

Subresultant sequence
-sympy.polys.factortools.dup_qq_i_factor(f, K0)[source]
+sympy.polys.factortools.dup_qq_i_factor(f, K0)[source]

Factor univariate polynomials into irreducibles in \(QQ_I[x]\).

-sympy.polys.factortools.dup_zz_i_factor(f, K0)[source]
+sympy.polys.factortools.dup_zz_i_factor(f, K0)[source]

Factor univariate polynomials into irreducibles in \(ZZ_I[x]\).

-sympy.polys.factortools.dmp_qq_i_factor(f, u, K0)[source]
+sympy.polys.factortools.dmp_qq_i_factor(f, u, K0)[source]

Factor multivariate polynomials into irreducibles in \(QQ_I[X]\).

-sympy.polys.factortools.dmp_zz_i_factor(f, u, K0)[source]
+sympy.polys.factortools.dmp_zz_i_factor(f, u, K0)[source]

Factor multivariate polynomials into irreducibles in \(ZZ_I[X]\).

-sympy.polys.factortools.dup_ext_factor(f, K)[source]
+sympy.polys.factortools.dup_ext_factor(f, K)[source]

Factor univariate polynomials over algebraic number fields.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Examples

@@ -5196,7 +5196,7 @@

Subresultant sequence
-sympy.polys.factortools.dmp_ext_factor(f, u, K)[source]
+sympy.polys.factortools.dmp_ext_factor(f, u, K)[source]

Factor multivariate polynomials over algebraic number fields.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Examples

@@ -5240,50 +5240,50 @@

Subresultant sequence
-sympy.polys.factortools.dup_gf_factor(f, K)[source]
+sympy.polys.factortools.dup_gf_factor(f, K)[source]

Factor univariate polynomials over finite fields.

-sympy.polys.factortools.dmp_gf_factor(f, u, K)[source]
+sympy.polys.factortools.dmp_gf_factor(f, u, K)[source]

Factor multivariate polynomials over finite fields.

-sympy.polys.factortools.dup_factor_list(f, K0)[source]
+sympy.polys.factortools.dup_factor_list(f, K0)[source]

Factor univariate polynomials into irreducibles in \(K[x]\).

-sympy.polys.factortools.dup_factor_list_include(f, K)[source]
+sympy.polys.factortools.dup_factor_list_include(f, K)[source]

Factor univariate polynomials into irreducibles in \(K[x]\).

-sympy.polys.factortools.dmp_factor_list(f, u, K0)[source]
+sympy.polys.factortools.dmp_factor_list(f, u, K0)[source]

Factor multivariate polynomials into irreducibles in \(K[X]\).

-sympy.polys.factortools.dmp_factor_list_include(f, u, K)[source]
+sympy.polys.factortools.dmp_factor_list_include(f, u, K)[source]

Factor multivariate polynomials into irreducibles in \(K[X]\).

-sympy.polys.factortools.dup_irreducible_p(f, K)[source]
+sympy.polys.factortools.dup_irreducible_p(f, K)[source]

Returns True if a univariate polynomial f has no factors over its domain.

-sympy.polys.factortools.dmp_irreducible_p(f, u, K)[source]
+sympy.polys.factortools.dmp_irreducible_p(f, u, K)[source]

Returns True if a multivariate polynomial f has no factors over its domain.

@@ -5291,7 +5291,7 @@

Subresultant sequenceSquare-free factorization:

-sympy.polys.sqfreetools.dup_sqf_p(f, K)[source]
+sympy.polys.sqfreetools.dup_sqf_p(f, K)[source]

Return True if f is a square-free polynomial in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5308,7 +5308,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_p(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_sqf_p(f, u, K)[source]

Return True if f is a square-free polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5325,7 +5325,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dup_sqf_norm(f, K)[source]
+sympy.polys.sqfreetools.dup_sqf_norm(f, K)[source]

Find a shift of \(f\) in \(K[x]\) that has square-free norm.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Returns \((s,g,r)\), such that \(g(x)=f(x-sa)\), \(r(x)=\text{Norm}(g(x))\) and @@ -5387,7 +5387,7 @@

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_norm(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_sqf_norm(f, u, K)[source]

Find a shift of f in K[X] that has square-free norm.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Returns \((s,g,r)\), such that \(g(x_1,x_2,\cdots)=f(x_1-s_1 a, x_2 - s_2 a, @@ -5450,7 +5450,7 @@

Subresultant sequence
-sympy.polys.sqfreetools.dmp_norm(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_norm(f, u, K)[source]

Norm of f in K[X], often not square-free.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Examples

@@ -5518,19 +5518,19 @@

Subresultant sequence
-sympy.polys.sqfreetools.dup_gf_sqf_part(f, K)[source]
+sympy.polys.sqfreetools.dup_gf_sqf_part(f, K)[source]

Compute square-free part of f in GF(p)[x].

-sympy.polys.sqfreetools.dmp_gf_sqf_part(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_gf_sqf_part(f, u, K)[source]

Compute square-free part of f in GF(p)[X].

-sympy.polys.sqfreetools.dup_sqf_part(f, K)[source]
+sympy.polys.sqfreetools.dup_sqf_part(f, K)[source]

Returns square-free part of a polynomial in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5549,7 +5549,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_part(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_sqf_part(f, u, K)[source]

Returns square-free part of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5564,19 +5564,19 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dup_gf_sqf_list(f, K, all=False)[source]
+sympy.polys.sqfreetools.dup_gf_sqf_list(f, K, all=False)[source]

Compute square-free decomposition of f in GF(p)[x].

-sympy.polys.sqfreetools.dmp_gf_sqf_list(f, u, K, all=False)[source]
+sympy.polys.sqfreetools.dmp_gf_sqf_list(f, u, K, all=False)[source]

Compute square-free decomposition of f in GF(p)[X].

-sympy.polys.sqfreetools.dup_sqf_list(f, K, all=False)[source]
+sympy.polys.sqfreetools.dup_sqf_list(f, K, all=False)[source]

Return square-free decomposition of a polynomial in K[x].

Uses Yun’s algorithm from [Yun76].

Examples

@@ -5610,7 +5610,7 @@

Subresultant sequence
-sympy.polys.sqfreetools.dup_sqf_list_include(f, K, all=False)[source]
+sympy.polys.sqfreetools.dup_sqf_list_include(f, K, all=False)[source]

Return square-free decomposition of a polynomial in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5630,7 +5630,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_list(f, u, K, all=False)[source]
+sympy.polys.sqfreetools.dmp_sqf_list(f, u, K, all=False)[source]

Return square-free decomposition of a polynomial in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -5668,7 +5668,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_list_include(f, u, K, all=False)[source]
+sympy.polys.sqfreetools.dmp_sqf_list_include(f, u, K, all=False)[source]

Return square-free decomposition of a polynomial in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5688,7 +5688,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dup_gff_list(f, K)[source]
+sympy.polys.sqfreetools.dup_gff_list(f, K)[source]

Compute greatest factorial factorization of f in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5703,7 +5703,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_gff_list(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_gff_list(f, u, K)[source]

Compute greatest factorial factorization of f in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5723,7 +5723,7 @@ 

Groebner basis algorithms
-sympy.polys.groebnertools.groebner(seq, ring, method=None)[source]
+sympy.polys.groebnertools.groebner(seq, ring, method=None)[source]

Computes Groebner basis for a set of polynomials in \(K[X]\).

Wrapper around the (default) improved Buchberger and the other algorithms for computing Groebner bases. The choice of algorithm can be changed via @@ -5733,14 +5733,14 @@

Groebner basis algorithms
-sympy.polys.groebnertools.spoly(p1, p2, ring)[source]
+sympy.polys.groebnertools.spoly(p1, p2, ring)[source]

Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2 This is the S-poly provided p1 and p2 are monic

-sympy.polys.groebnertools.red_groebner(G, ring)[source]
+sympy.polys.groebnertools.red_groebner(G, ring)[source]

Compute reduced Groebner basis, from BeckerWeispfenning93, p. 216

Selects a subset of generators, that already generate the ideal and computes a reduced Groebner basis for them.

@@ -5748,25 +5748,25 @@

Groebner basis algorithms
-sympy.polys.groebnertools.is_groebner(G, ring)[source]
+sympy.polys.groebnertools.is_groebner(G, ring)[source]

Check if G is a Groebner basis.

-sympy.polys.groebnertools.is_minimal(G, ring)[source]
+sympy.polys.groebnertools.is_minimal(G, ring)[source]

Checks if G is a minimal Groebner basis.

-sympy.polys.groebnertools.is_reduced(G, ring)[source]
+sympy.polys.groebnertools.is_reduced(G, ring)[source]

Checks if G is a reduced Groebner basis.

-sympy.polys.fglmtools.matrix_fglm(F, ring, O_to)[source]
+sympy.polys.fglmtools.matrix_fglm(F, ring, O_to)[source]

Converts the reduced Groebner basis F of a zero-dimensional ideal w.r.t. O_from to a reduced Groebner basis w.r.t. O_to.

@@ -5784,7 +5784,7 @@

Groebner basis algorithms
-sympy.polys.distributedmodules.sdm_spoly(f, g, O, K, phantom=None)[source]
+sympy.polys.distributedmodules.sdm_spoly(f, g, O, K, phantom=None)[source]

Compute the generalized s-polynomial of f and g.

The ground field is assumed to be K, and monomials ordered according to O.

@@ -5812,7 +5812,7 @@

Groebner basis algorithms
-sympy.polys.distributedmodules.sdm_ecart(f)[source]
+sympy.polys.distributedmodules.sdm_ecart(f)[source]

Compute the ecart of f.

This is defined to be the difference of the total degree of \(f\) and the total degree of the leading monomial of \(f\) [SCA, defn 2.3.7].

@@ -5829,7 +5829,7 @@

Groebner basis algorithms
-sympy.polys.distributedmodules.sdm_nf_mora(f, G, O, K, phantom=None)[source]
+sympy.polys.distributedmodules.sdm_nf_mora(f, G, O, K, phantom=None)[source]

Compute a weak normal form of f with respect to G and order O.

The ground field is assumed to be K, and monomials ordered according to O.

@@ -5851,7 +5851,7 @@

Groebner basis algorithms
-sympy.polys.distributedmodules.sdm_groebner(G, NF, O, K, extended=False)[source]
+sympy.polys.distributedmodules.sdm_groebner(G, NF, O, K, extended=False)[source]

Compute a minimal standard basis of G with respect to order O.

The algorithm uses a normal form NF, for example sdm_nf_mora. The ground field is assumed to be K, and monomials ordered according @@ -5880,7 +5880,7 @@

Groebner basis algorithmsPoly and public API functions.

-class sympy.polys.polyoptions.Options(gens, args, flags=None, strict=False)[source]
+class sympy.polys.polyoptions.Options(gens, args, flags=None, strict=False)[source]

Options manager for polynomial manipulation module.

Examples

>>> from sympy.polys.polyoptions import Options
@@ -5928,7 +5928,7 @@ 

Groebner basis algorithms
-clone(updates={})[source]
+clone(updates={})[source]

Clone self and update specified options.

@@ -5936,7 +5936,7 @@

Groebner basis algorithms
-sympy.polys.polyoptions.build_options(gens, args=None)[source]
+sympy.polys.polyoptions.build_options(gens, args=None)[source]

Construct options from keyword arguments or … options.

@@ -5946,7 +5946,7 @@

Groebner basis algorithms
-sympy.polys.polyconfig.setup(key, value=None)[source]
+sympy.polys.polyconfig.setup(key, value=None)[source]

Assign a value to (or reset) a configuration item.

@@ -5957,123 +5957,123 @@

Exceptions
-class sympy.polys.polyerrors.BasePolynomialError[source]
+class sympy.polys.polyerrors.BasePolynomialError[source]

Base class for polynomial related exceptions.

-class sympy.polys.polyerrors.ExactQuotientFailed(f, g, dom=None)[source]
+class sympy.polys.polyerrors.ExactQuotientFailed(f, g, dom=None)[source]
-class sympy.polys.polyerrors.OperationNotSupported(poly, func)[source]
+class sympy.polys.polyerrors.OperationNotSupported(poly, func)[source]
-class sympy.polys.polyerrors.HeuristicGCDFailed[source]
+class sympy.polys.polyerrors.HeuristicGCDFailed[source]
-class sympy.polys.polyerrors.HomomorphismFailed[source]
+class sympy.polys.polyerrors.HomomorphismFailed[source]
-class sympy.polys.polyerrors.IsomorphismFailed[source]
+class sympy.polys.polyerrors.IsomorphismFailed[source]
-class sympy.polys.polyerrors.ExtraneousFactors[source]
+class sympy.polys.polyerrors.ExtraneousFactors[source]
-class sympy.polys.polyerrors.EvaluationFailed[source]
+class sympy.polys.polyerrors.EvaluationFailed[source]
-class sympy.polys.polyerrors.RefinementFailed[source]
+class sympy.polys.polyerrors.RefinementFailed[source]
-class sympy.polys.polyerrors.CoercionFailed[source]
+class sympy.polys.polyerrors.CoercionFailed[source]
-class sympy.polys.polyerrors.NotInvertible[source]
+class sympy.polys.polyerrors.NotInvertible[source]
-class sympy.polys.polyerrors.NotReversible[source]
+class sympy.polys.polyerrors.NotReversible[source]
-class sympy.polys.polyerrors.NotAlgebraic[source]
+class sympy.polys.polyerrors.NotAlgebraic[source]
-class sympy.polys.polyerrors.DomainError[source]
+class sympy.polys.polyerrors.DomainError[source]
-class sympy.polys.polyerrors.PolynomialError[source]
+class sympy.polys.polyerrors.PolynomialError[source]
-class sympy.polys.polyerrors.UnificationFailed[source]
+class sympy.polys.polyerrors.UnificationFailed[source]
-class sympy.polys.polyerrors.GeneratorsNeeded[source]
+class sympy.polys.polyerrors.GeneratorsNeeded[source]
-class sympy.polys.polyerrors.ComputationFailed(func, nargs, exc)[source]
+class sympy.polys.polyerrors.ComputationFailed(func, nargs, exc)[source]
-class sympy.polys.polyerrors.GeneratorsError[source]
+class sympy.polys.polyerrors.GeneratorsError[source]
-class sympy.polys.polyerrors.UnivariatePolynomialError[source]
+class sympy.polys.polyerrors.UnivariatePolynomialError[source]
-class sympy.polys.polyerrors.MultivariatePolynomialError[source]
+class sympy.polys.polyerrors.MultivariatePolynomialError[source]
-class sympy.polys.polyerrors.PolificationFailed(opt, origs, exprs, seq=False)[source]
+class sympy.polys.polyerrors.PolificationFailed(opt, origs, exprs, seq=False)[source]
-class sympy.polys.polyerrors.OptionError[source]
+class sympy.polys.polyerrors.OptionError[source]
-class sympy.polys.polyerrors.FlagError[source]
+class sympy.polys.polyerrors.FlagError[source]
@@ -6083,7 +6083,7 @@

Reference

-sympy.polys.modulargcd.modgcd_univariate(f, g)[source]
+sympy.polys.modulargcd.modgcd_univariate(f, g)[source]

Computes the GCD of two polynomials in \(\mathbb{Z}[x]\) using a modular algorithm.

The algorithm computes the GCD of two univariate integer polynomials @@ -6163,7 +6163,7 @@

Modular GCD
-sympy.polys.modulargcd.modgcd_bivariate(f, g)[source]
+sympy.polys.modulargcd.modgcd_bivariate(f, g)[source]

Computes the GCD of two polynomials in \(\mathbb{Z}[x, y]\) using a modular algorithm.

The algorithm computes the GCD of two bivariate integer polynomials @@ -6249,7 +6249,7 @@

Modular GCD
-sympy.polys.modulargcd.modgcd_multivariate(f, g)[source]
+sympy.polys.modulargcd.modgcd_multivariate(f, g)[source]

Compute the GCD of two polynomials in \(\mathbb{Z}[x_0, \ldots, x_{k-1}]\) using a modular algorithm.

The algorithm computes the GCD of two multivariate integer polynomials @@ -6350,7 +6350,7 @@

Modular GCDcontbound,

-)[source] +)[source]

Compute the GCD of two polynomials in \(\mathbb{Z}_p[x_0, \ldots, x_{k-1}]\).

The algorithm reduces the problem step by step by evaluating the @@ -6407,7 +6407,7 @@

Modular GCD
-sympy.polys.modulargcd.func_field_modgcd(f, g)[source]
+sympy.polys.modulargcd.func_field_modgcd(f, g)[source]

Compute the GCD of two polynomials \(f\) and \(g\) in \(\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]\) using a modular algorithm.

The algorithm first computes the primitive associate @@ -6567,7 +6567,7 @@

UndocumentedFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/literature.html b/dev/modules/polys/literature.html index 4b48ea59391..f601d931605 100644 --- a/dev/modules/polys/literature.html +++ b/dev/modules/polys/literature.html @@ -1072,7 +1072,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/polys/numberfields.html b/dev/modules/polys/numberfields.html index 9927dbb97b6..3701f99e8a0 100644 --- a/dev/modules/polys/numberfields.html +++ b/dev/modules/polys/numberfields.html @@ -923,7 +923,7 @@

Solving the Main Problems

-sympy.polys.numberfields.basis.round_two(T, radicals=None)[source]
+sympy.polys.numberfields.basis.round_two(T, radicals=None)[source]

Zassenhaus’s “Round 2” algorithm.

Parameters:
@@ -1025,7 +1025,7 @@

Prime Decompositionradical=None,

-)[source] +)[source]

Compute the decomposition of rational prime p in a number field.

Parameters:
@@ -1082,11 +1082,11 @@

Prime Decomposition
-class sympy.polys.numberfields.primes.PrimeIdeal(ZK, p, alpha, f, e=None)[source]
+class sympy.polys.numberfields.primes.PrimeIdeal(ZK, p, alpha, f, e=None)[source]

A prime ideal in a ring of algebraic integers.

-__init__(ZK, p, alpha, f, e=None)[source]
+__init__(ZK, p, alpha, f, e=None)[source]
Parameters:

ZK : Submodule

@@ -1116,7 +1116,7 @@

Prime Decomposition
-__add__(other)[source]
+__add__(other)[source]

Convert to a Submodule and add to another Submodule.

@@ -1127,7 +1127,7 @@

Prime Decomposition
-__mul__(other)[source]
+__mul__(other)[source]

Convert to a Submodule and multiply by another Submodule or a rational number.

@@ -1138,7 +1138,7 @@

Prime Decomposition
-as_submodule()[source]
+as_submodule()[source]

Represent this prime ideal as a Submodule.

Returns:
@@ -1194,7 +1194,7 @@

Prime Decomposition
-reduce_ANP(a)[source]
+reduce_ANP(a)[source]

Reduce an ANP to a “small representative” modulo this prime ideal.

@@ -1219,7 +1219,7 @@

Prime Decomposition
-reduce_alg_num(a)[source]
+reduce_alg_num(a)[source]

Reduce an AlgebraicNumber to a “small representative” modulo this prime ideal.

@@ -1244,7 +1244,7 @@

Prime Decomposition
-reduce_element(elt)[source]
+reduce_element(elt)[source]

Reduce a PowerBasisElement to a “small representative” modulo this prime ideal.

@@ -1269,7 +1269,7 @@

Prime Decomposition
-repr(field_gen=None, just_gens=False)[source]
+repr(field_gen=None, just_gens=False)[source]

Print a representation of this prime ideal.

Parameters:
@@ -1306,7 +1306,7 @@

Prime Decomposition
-test_factor()[source]
+test_factor()[source]

Compute a test factor for this prime ideal.

Explanation

Write \(\mathfrak{p}\) for this prime ideal, \(p\) for the rational prime @@ -1320,7 +1320,7 @@

Prime Decomposition
-valuation(I)[source]
+valuation(I)[source]

Compute the \(\mathfrak{p}\)-adic valuation of integral ideal I at this prime ideal.

@@ -1341,7 +1341,7 @@

Prime Decomposition

-sympy.polys.numberfields.primes.prime_valuation(I, P)[source]
+sympy.polys.numberfields.primes.prime_valuation(I, P)[source]

Compute the P-adic valuation for an integral ideal I.

Parameters:
@@ -1398,7 +1398,7 @@

Galois Groups**args,

-)[source] +)[source]

Compute the Galois group for polynomials f up to degree 6.

Parameters:
@@ -1518,7 +1518,7 @@

Finding Minimal Polynomialsdomain=None,

-)[source] +)[source]

Computes the minimal polynomial of an algebraic element.

Parameters:
@@ -1584,7 +1584,7 @@

Finding Minimal Polynomialsdomain=None,

-)[source] +)[source]

This is a synonym for minimal_polynomial().

@@ -1622,7 +1622,7 @@

The Subfield Problem
-sympy.polys.numberfields.subfield.field_isomorphism(a, b, *, fast=True)[source]
+sympy.polys.numberfields.subfield.field_isomorphism(a, b, *, fast=True)[source]

Find an embedding of one number field into another.

Parameters:
@@ -1679,7 +1679,7 @@

The Subfield Problempolys=False,

-)[source] +)[source]

Find a single generator for a number field given by several generators.

Parameters:
@@ -1774,7 +1774,7 @@

The Subfield Problemalias=None,

-)[source] +)[source]

Express one algebraic number in the field generated by another.

Parameters:
@@ -2059,7 +2059,7 @@

Module HomomorphismsClass Reference

-class sympy.polys.numberfields.modules.Module[source]
+class sympy.polys.numberfields.modules.Module[source]

Generic finitely-generated module.

This is an abstract base class, and should not be instantiated directly. The two concrete subclasses are PowerBasis and @@ -2072,7 +2072,7 @@

Class ReferencePowerBasis.

-__call__(spec, denom=1)[source]
+__call__(spec, denom=1)[source]

Generate a ModuleElement belonging to this module.

Parameters:
@@ -2116,7 +2116,7 @@

Class Reference
-ancestors(include_self=False)[source]
+ancestors(include_self=False)[source]

Return the list of ancestor modules of this module, from the foundational PowerBasis downward, optionally including self.

@@ -2128,14 +2128,14 @@

Class Reference
-basis_elements()[source]
+basis_elements()[source]

Get list of ModuleElement being the generators of this module.

-element_from_rational(a)[source]
+element_from_rational(a)[source]

Return a ModuleElement representing a rational number.

Parameters:
@@ -2163,19 +2163,19 @@

Class Reference
-endomorphism_ring()[source]
+endomorphism_ring()[source]

Form the EndomorphismRing for this module.

-is_compat_col(col)[source]
+is_compat_col(col)[source]

Say whether col is a suitable column vector for this module.

-mult_tab()[source]
+mult_tab()[source]

Get the multiplication table for this module (if closed under mult).

Returns:
@@ -2218,7 +2218,7 @@

Class Reference
-nearest_common_ancestor(other)[source]
+nearest_common_ancestor(other)[source]

Locate the nearest common ancestor of this module and another.

Returns:
@@ -2250,7 +2250,7 @@

Class Reference
-one()[source]
+one()[source]

Return a ModuleElement representing unity, and belonging to the first ancestor of this module (including itself) that starts with unity.

@@ -2276,7 +2276,7 @@

Class Reference
-power_basis_ancestor()[source]
+power_basis_ancestor()[source]

Return the PowerBasis that is an ancestor of this module.

See also

@@ -2286,7 +2286,7 @@

Class Reference
-represent(elt)[source]
+represent(elt)[source]

Represent a module element as an integer-linear combination over the generators of this module.

@@ -2367,7 +2367,7 @@

Class Reference
-starts_with_unity()[source]
+starts_with_unity()[source]

Say whether the module’s first generator equals unity.

@@ -2381,7 +2381,7 @@

Class Referencehnf_modulus=None,

-)[source] +)[source]

Form the submodule generated by a list of ModuleElement belonging to this module.

@@ -2421,7 +2421,7 @@

Class Reference
-submodule_from_matrix(B, denom=1)[source]
+submodule_from_matrix(B, denom=1)[source]

Form the submodule generated by the elements of this module indicated by the columns of a matrix, with an optional denominator.

@@ -2470,7 +2470,7 @@

Class Reference
-whole_submodule()[source]
+whole_submodule()[source]

Return a submodule equal to this entire module.

Explanation

This is useful when you have a PowerBasis and want to @@ -2480,7 +2480,7 @@

Class Reference
-zero()[source]
+zero()[source]

Return a ModuleElement representing zero.

@@ -2488,11 +2488,11 @@

Class Reference
-class sympy.polys.numberfields.modules.PowerBasis(T)[source]
+class sympy.polys.numberfields.modules.PowerBasis(T)[source]

The module generated by the powers of an algebraic integer.

-__init__(T)[source]
+__init__(T)[source]
Parameters:

T : Poly, AlgebraicField

@@ -2508,19 +2508,19 @@

Class Reference
-element_from_ANP(a)[source]
+element_from_ANP(a)[source]

Convert an ANP into a PowerBasisElement.

-element_from_alg_num(a)[source]
+element_from_alg_num(a)[source]

Convert an AlgebraicNumber into a PowerBasisElement.

-element_from_poly(f)[source]
+element_from_poly(f)[source]

Produce an element of this module, representing f after reduction mod our defining minimal polynomial.

@@ -2535,7 +2535,7 @@

Class Reference
-represent(elt)[source]
+represent(elt)[source]

Represent a module element as an integer-linear combination over the generators of this module.

@@ -2548,7 +2548,7 @@

Class Reference
-class sympy.polys.numberfields.modules.Submodule(parent, matrix, denom=1, mult_tab=None)[source]
+class sympy.polys.numberfields.modules.Submodule(parent, matrix, denom=1, mult_tab=None)[source]

A submodule of another module.

@@ -2561,7 +2561,7 @@

Class Referencemult_tab=None,

-)[source] +)[source]
Parameters:

parent : Module

@@ -2618,7 +2618,7 @@

Class Reference
-add(other, hnf=True, hnf_modulus=None)[source]
+add(other, hnf=True, hnf_modulus=None)[source]

Add this Submodule to another.

Parameters:
@@ -2646,21 +2646,21 @@

Class Reference
-basis_element_pullbacks()[source]
+basis_element_pullbacks()[source]

Return list of this submodule’s basis elements as elements of the submodule’s parent module.

-discard_before(r)[source]
+discard_before(r)[source]

Produce a new module by discarding all generators before a given index r.

-mul(other, hnf=True, hnf_modulus=None)[source]
+mul(other, hnf=True, hnf_modulus=None)[source]

Multiply this Submodule by a rational number, a ModuleElement, or another Submodule.

@@ -2693,7 +2693,7 @@

Class Reference
-reduce_element(elt)[source]
+reduce_element(elt)[source]

If this submodule \(B\) has defining matrix \(W\) in square, maximal-rank Hermite normal form, then, given an element \(x\) of the parent module \(A\), we produce an element \(y \in A\) such that \(x - y \in B\), and the @@ -2756,7 +2756,7 @@

Class Reference
-reduced()[source]
+reduced()[source]

Produce a reduced version of this submodule.

Returns:
@@ -2771,7 +2771,7 @@

Class Reference
-represent(elt)[source]
+represent(elt)[source]

Represent a module element as an integer-linear combination over the generators of this module.

@@ -2784,14 +2784,14 @@

Class Reference
-class sympy.polys.numberfields.modules.ModuleElement(module, col, denom=1)[source]
+class sympy.polys.numberfields.modules.ModuleElement(module, col, denom=1)[source]

Represents an element of a Module.

NOTE: Should not be constructed directly. Use the __call__() method or the make_mod_elt() factory function instead.

-__init__(module, col, denom=1)[source]
+__init__(module, col, denom=1)[source]
Parameters:

module : Module

@@ -2813,7 +2813,7 @@

Class Reference
-__add__(other)[source]
+__add__(other)[source]

A ModuleElement can be added to a rational number, or to another ModuleElement.

Explanation

@@ -2827,7 +2827,7 @@

Class Reference
-__mul__(other)[source]
+__mul__(other)[source]

A ModuleElement can be multiplied by a rational number, or by another ModuleElement.

Explanation

@@ -2843,7 +2843,7 @@

Class Reference
-__mod__(m)[source]
+__mod__(m)[source]

Reduce this ModuleElement mod a Submodule.

Parameters:
@@ -2874,13 +2874,13 @@

Class Reference
-column(domain=None)[source]
+column(domain=None)[source]

Get a copy of this element’s column, optionally converting to a domain.

-equiv(other)[source]
+equiv(other)[source]

A ModuleElement may test as equivalent to a rational number or another ModuleElement, if they represent the same algebraic number.

@@ -2918,14 +2918,14 @@

Class Referencedenom=1,

-)[source] +)[source]

Make a ModuleElement from a list of ints (instead of a column vector).

-is_compat(other)[source]
+is_compat(other)[source]

Test whether other is another ModuleElement with same module.

@@ -2938,28 +2938,28 @@

Class Reference
-over_power_basis()[source]
+over_power_basis()[source]

Transform into a PowerBasisElement over our PowerBasis ancestor.

-reduced()[source]
+reduced()[source]

Produce a reduced version of this ModuleElement, i.e. one in which the gcd of the denominator together with all numerator coefficients is 1.

-reduced_mod_p(p)[source]
+reduced_mod_p(p)[source]

Produce a version of this ModuleElement in which all numerator coefficients have been reduced mod p.

-to_ancestor(anc)[source]
+to_ancestor(anc)[source]

Transform into a ModuleElement belonging to a given ancestor of this element’s module.

@@ -2971,14 +2971,14 @@

Class Reference
-to_parent()[source]
+to_parent()[source]

Transform into a ModuleElement belonging to the parent of this element’s module.

-unify(other)[source]
+unify(other)[source]

Try to make a compatible pair of ModuleElement, one equivalent to this one, and one equivalent to the other.

@@ -3006,7 +3006,7 @@

Class Reference
-class sympy.polys.numberfields.modules.PowerBasisElement(module, col, denom=1)[source]
+class sympy.polys.numberfields.modules.PowerBasisElement(module, col, denom=1)[source]

Subclass for ModuleElement instances whose module is a PowerBasis.

@@ -3017,7 +3017,7 @@

Class Reference
-as_expr(x=None)[source]
+as_expr(x=None)[source]

Create a Basic expression from self.

@@ -3039,31 +3039,31 @@

Class Reference
-norm(T=None)[source]
+norm(T=None)[source]

Compute the norm of this number.

-numerator(x=None)[source]
+numerator(x=None)[source]

Obtain the numerator as a polynomial over ZZ.

-poly(x=None)[source]
+poly(x=None)[source]

Obtain the number as a polynomial over QQ.

-to_ANP()[source]
+to_ANP()[source]

Convert to an equivalent ANP.

-to_alg_num()[source]
+to_alg_num()[source]

Try to convert to an equivalent AlgebraicNumber.

Returns:
@@ -3092,7 +3092,7 @@

Class Reference
-sympy.polys.numberfields.modules.make_mod_elt(module, col, denom=1)[source]
+sympy.polys.numberfields.modules.make_mod_elt(module, col, denom=1)[source]

Factory function which builds a ModuleElement, but ensures that it is a PowerBasisElement if the module is a PowerBasis.

@@ -3100,7 +3100,7 @@

Class Reference
-class sympy.polys.numberfields.modules.ModuleHomomorphism(domain, codomain, mapping)[source]
+class sympy.polys.numberfields.modules.ModuleHomomorphism(domain, codomain, mapping)[source]

A homomorphism from one module to another.

@@ -3112,7 +3112,7 @@

Class Referencemapping,

-)[source] +)[source]
Parameters:

domain : Module

@@ -3146,7 +3146,7 @@

Class Reference
-kernel(modulus=None)[source]
+kernel(modulus=None)[source]

Compute a Submodule representing the kernel of this homomorphism.

Parameters:
@@ -3169,7 +3169,7 @@

Class Reference
-matrix(modulus=None)[source]
+matrix(modulus=None)[source]

Compute the matrix of this homomorphism.

Parameters:
@@ -3193,11 +3193,11 @@

Class Reference
-class sympy.polys.numberfields.modules.ModuleEndomorphism(domain, mapping)[source]
+class sympy.polys.numberfields.modules.ModuleEndomorphism(domain, mapping)[source]

A homomorphism from one module to itself.

-__init__(domain, mapping)[source]
+__init__(domain, mapping)[source]
Parameters:

domain : Module

@@ -3218,12 +3218,12 @@

Class Reference
-class sympy.polys.numberfields.modules.InnerEndomorphism(domain, multiplier)[source]
+class sympy.polys.numberfields.modules.InnerEndomorphism(domain, multiplier)[source]

An inner endomorphism on a module, i.e. the endomorphism corresponding to multiplication by a fixed element.

-__init__(domain, multiplier)[source]
+__init__(domain, multiplier)[source]
Parameters:

domain : Module

@@ -3242,11 +3242,11 @@

Class Reference
-class sympy.polys.numberfields.modules.EndomorphismRing(domain)[source]
+class sympy.polys.numberfields.modules.EndomorphismRing(domain)[source]

The ring of endomorphisms on a module.

-__init__(domain)[source]
+__init__(domain)[source]
Parameters:

domain : Module

@@ -3259,7 +3259,7 @@

Class Reference
-inner_endomorphism(multiplier)[source]
+inner_endomorphism(multiplier)[source]

Form an inner endomorphism belonging to this endomorphism ring.

Parameters:
@@ -3276,7 +3276,7 @@

Class Reference
-represent(element)[source]
+represent(element)[source]

Represent an element of this endomorphism ring, as a single column vector.

@@ -3358,7 +3358,7 @@

Class Reference
-sympy.polys.numberfields.modules.find_min_poly(alpha, domain, x=None, powers=None)[source]
+sympy.polys.numberfields.modules.find_min_poly(alpha, domain, x=None, powers=None)[source]

Find a polynomial of least degree (not necessarily irreducible) satisfied by an element of a finitely-generated ring with unity.

@@ -3434,7 +3434,7 @@

Class Reference

-sympy.polys.numberfields.utilities.is_rat(c)[source]
+sympy.polys.numberfields.utilities.is_rat(c)[source]

Test whether an argument is of an acceptable type to be used as a rational number.

Explanation

@@ -3447,7 +3447,7 @@

Utilities
-sympy.polys.numberfields.utilities.is_int(c)[source]
+sympy.polys.numberfields.utilities.is_int(c)[source]

Test whether an argument is of an acceptable type to be used as an integer.

Explanation

Returns True on any argument of type int or ZZ.

@@ -3459,7 +3459,7 @@

Utilities
-sympy.polys.numberfields.utilities.get_num_denom(c)[source]
+sympy.polys.numberfields.utilities.get_num_denom(c)[source]

Given any argument on which is_rat() is True, return the numerator and denominator of this number.

@@ -3470,7 +3470,7 @@

Utilities
-sympy.polys.numberfields.utilities.extract_fundamental_discriminant(a)[source]
+sympy.polys.numberfields.utilities.extract_fundamental_discriminant(a)[source]

Extract a fundamental discriminant from an integer a.

Parameters:
@@ -3519,7 +3519,7 @@

Utilities
-class sympy.polys.numberfields.utilities.AlgIntPowers(T, modulus=None)[source]
+class sympy.polys.numberfields.utilities.AlgIntPowers(T, modulus=None)[source]

Compute the powers of an algebraic integer.

Explanation

Given an algebraic integer \(\theta\) by its monic irreducible polynomial @@ -3553,7 +3553,7 @@

Utilities
-__init__(T, modulus=None)[source]
+__init__(T, modulus=None)[source]
Parameters:

T : Poly

@@ -3573,7 +3573,7 @@

Utilities +sympy.polys.numberfields.utilities.coeff_search(m, R)[source]

Generate coefficients for searching through polynomials.

Parameters:
@@ -3610,7 +3610,7 @@

Utilities
-sympy.polys.numberfields.utilities.supplement_a_subspace(M)[source]
+sympy.polys.numberfields.utilities.supplement_a_subspace(M)[source]

Extend a basis for a subspace to a basis for the whole space.

Parameters:
@@ -3676,7 +3676,7 @@

Utilities
-sympy.polys.numberfields.utilities.isolate(alg, eps=None, fast=False)[source]
+sympy.polys.numberfields.utilities.isolate(alg, eps=None, fast=False)[source]

Find a rational isolating interval for a real algebraic number.

Parameters:
@@ -3754,7 +3754,7 @@

UtilitiesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/reference.html b/dev/modules/polys/reference.html index 6d3309f199c..4feac58ec72 100644 --- a/dev/modules/polys/reference.html +++ b/dev/modules/polys/reference.html @@ -807,7 +807,7 @@
Documentation Version

Basic polynomial manipulation functions

-sympy.polys.polytools.poly(expr, *gens, **args)[source]
+sympy.polys.polytools.poly(expr, *gens, **args)[source]

Efficiently transform an expression into a polynomial.

Examples

>>> from sympy import poly
@@ -822,19 +822,19 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.poly_from_expr(expr, *gens, **args)[source]
+sympy.polys.polytools.poly_from_expr(expr, *gens, **args)[source]

Construct a polynomial from an expression.

-sympy.polys.polytools.parallel_poly_from_expr(exprs, *gens, **args)[source]
+sympy.polys.polytools.parallel_poly_from_expr(exprs, *gens, **args)[source]

Construct polynomials from expressions.

-sympy.polys.polytools.degree(f, gen=0)[source]
+sympy.polys.polytools.degree(f, gen=0)[source]

Return the degree of f in the given variable.

The degree of 0 is negative infinity.

Examples

@@ -858,7 +858,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.degree_list(f, *gens, **args)[source]
+sympy.polys.polytools.degree_list(f, *gens, **args)[source]

Return a list of degrees of f in all variables.

Examples

>>> from sympy import degree_list
@@ -873,7 +873,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.LC(f, *gens, **args)[source]
+sympy.polys.polytools.LC(f, *gens, **args)[source]

Return the leading coefficient of f.

Examples

>>> from sympy import LC
@@ -888,7 +888,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.LM(f, *gens, **args)[source]
+sympy.polys.polytools.LM(f, *gens, **args)[source]

Return the leading monomial of f.

Examples

>>> from sympy import LM
@@ -903,7 +903,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.LT(f, *gens, **args)[source]
+sympy.polys.polytools.LT(f, *gens, **args)[source]

Return the leading term of f.

Examples

>>> from sympy import LT
@@ -918,7 +918,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.pdiv(f, g, *gens, **args)[source]
+sympy.polys.polytools.pdiv(f, g, *gens, **args)[source]

Compute polynomial pseudo-division of f and g.

Examples

>>> from sympy import pdiv
@@ -933,7 +933,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.prem(f, g, *gens, **args)[source]
+sympy.polys.polytools.prem(f, g, *gens, **args)[source]

Compute polynomial pseudo-remainder of f and g.

Examples

>>> from sympy import prem
@@ -948,7 +948,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.pquo(f, g, *gens, **args)[source]
+sympy.polys.polytools.pquo(f, g, *gens, **args)[source]

Compute polynomial pseudo-quotient of f and g.

Examples

>>> from sympy import pquo
@@ -965,7 +965,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.pexquo(f, g, *gens, **args)[source]
+sympy.polys.polytools.pexquo(f, g, *gens, **args)[source]

Compute polynomial exact pseudo-quotient of f and g.

Examples

>>> from sympy import pexquo
@@ -986,7 +986,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.div(f, g, *gens, **args)[source]
+sympy.polys.polytools.div(f, g, *gens, **args)[source]

Compute polynomial division of f and g.

Examples

>>> from sympy import div, ZZ, QQ
@@ -1003,7 +1003,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.rem(f, g, *gens, **args)[source]
+sympy.polys.polytools.rem(f, g, *gens, **args)[source]

Compute polynomial remainder of f and g.

Examples

>>> from sympy import rem, ZZ, QQ
@@ -1020,7 +1020,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.quo(f, g, *gens, **args)[source]
+sympy.polys.polytools.quo(f, g, *gens, **args)[source]

Compute polynomial quotient of f and g.

Examples

>>> from sympy import quo
@@ -1037,7 +1037,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.exquo(f, g, *gens, **args)[source]
+sympy.polys.polytools.exquo(f, g, *gens, **args)[source]

Compute polynomial exact quotient of f and g.

Examples

>>> from sympy import exquo
@@ -1058,7 +1058,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.half_gcdex(f, g, *gens, **args)[source]
+sympy.polys.polytools.half_gcdex(f, g, *gens, **args)[source]

Half extended Euclidean algorithm of f and g.

Returns (s, h) such that h = gcd(f, g) and s*f = h (mod g).

Examples

@@ -1074,7 +1074,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.gcdex(f, g, *gens, **args)[source]
+sympy.polys.polytools.gcdex(f, g, *gens, **args)[source]

Extended Euclidean algorithm of f and g.

Returns (s, t, h) such that h = gcd(f, g) and s*f + t*g = h.

Examples

@@ -1090,7 +1090,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.invert(f, g, *gens, **args)[source]
+sympy.polys.polytools.invert(f, g, *gens, **args)[source]

Invert f modulo g when possible.

Examples

>>> from sympy import invert, S, mod_inverse
@@ -1123,7 +1123,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.subresultants(f, g, *gens, **args)[source]
+sympy.polys.polytools.subresultants(f, g, *gens, **args)[source]

Compute subresultant PRS of f and g.

Examples

>>> from sympy import subresultants
@@ -1138,7 +1138,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.resultant(f, g, *gens, includePRS=False, **args)[source]
+sympy.polys.polytools.resultant(f, g, *gens, includePRS=False, **args)[source]

Compute resultant of f and g.

Examples

>>> from sympy import resultant
@@ -1153,7 +1153,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.discriminant(f, *gens, **args)[source]
+sympy.polys.polytools.discriminant(f, *gens, **args)[source]

Compute discriminant of f.

Examples

>>> from sympy import discriminant
@@ -1168,7 +1168,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.terms_gcd(f, *gens, **args)[source]
+sympy.polys.polytools.terms_gcd(f, *gens, **args)[source]

Remove GCD of terms from f.

If the deep flag is True, then the arguments of f will have terms_gcd applied to them.

@@ -1231,7 +1231,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.cofactors(f, g, *gens, **args)[source]
+sympy.polys.polytools.cofactors(f, g, *gens, **args)[source]

Compute GCD and cofactors of f and g.

Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors @@ -1249,7 +1249,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.gcd(f, g=None, *gens, **args)[source]
+sympy.polys.polytools.gcd(f, g=None, *gens, **args)[source]

Compute GCD of f and g.

Examples

>>> from sympy import gcd
@@ -1264,7 +1264,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.gcd_list(seq, *gens, **args)[source]
+sympy.polys.polytools.gcd_list(seq, *gens, **args)[source]

Compute GCD of a list of polynomials.

Examples

>>> from sympy import gcd_list
@@ -1279,7 +1279,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.lcm(f, g=None, *gens, **args)[source]
+sympy.polys.polytools.lcm(f, g=None, *gens, **args)[source]

Compute LCM of f and g.

Examples

>>> from sympy import lcm
@@ -1294,7 +1294,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.lcm_list(seq, *gens, **args)[source]
+sympy.polys.polytools.lcm_list(seq, *gens, **args)[source]

Compute LCM of a list of polynomials.

Examples

>>> from sympy import lcm_list
@@ -1309,7 +1309,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.trunc(f, p, *gens, **args)[source]
+sympy.polys.polytools.trunc(f, p, *gens, **args)[source]

Reduce f modulo a constant p.

Examples

>>> from sympy import trunc
@@ -1324,7 +1324,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.monic(f, *gens, **args)[source]
+sympy.polys.polytools.monic(f, *gens, **args)[source]

Divide all coefficients of f by LC(f).

Examples

>>> from sympy import monic
@@ -1339,7 +1339,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.content(f, *gens, **args)[source]
+sympy.polys.polytools.content(f, *gens, **args)[source]

Compute GCD of coefficients of f.

Examples

>>> from sympy import content
@@ -1354,7 +1354,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.primitive(f, *gens, **args)[source]
+sympy.polys.polytools.primitive(f, *gens, **args)[source]

Compute content and the primitive form of f.

Examples

>>> from sympy.polys.polytools import primitive
@@ -1388,7 +1388,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.compose(f, g, *gens, **args)[source]
+sympy.polys.polytools.compose(f, g, *gens, **args)[source]

Compute functional composition f(g).

Examples

>>> from sympy import compose
@@ -1403,7 +1403,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.decompose(f, *gens, **args)[source]
+sympy.polys.polytools.decompose(f, *gens, **args)[source]

Compute functional decomposition of f.

Examples

>>> from sympy import decompose
@@ -1418,7 +1418,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.sturm(f, *gens, **args)[source]
+sympy.polys.polytools.sturm(f, *gens, **args)[source]

Compute Sturm sequence of f.

Examples

>>> from sympy import sturm
@@ -1433,7 +1433,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.gff_list(f, *gens, **args)[source]
+sympy.polys.polytools.gff_list(f, *gens, **args)[source]

Compute a list of greatest factorial factors of f.

Note that the input to ff() and rf() should be Poly instances to use the definitions here.

@@ -1468,13 +1468,13 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.gff(f, *gens, **args)[source]
+sympy.polys.polytools.gff(f, *gens, **args)[source]

Compute greatest factorial factorization of f.

-sympy.polys.polytools.sqf_norm(f, *gens, **args)[source]
+sympy.polys.polytools.sqf_norm(f, *gens, **args)[source]

Compute square-free norm of f.

Returns s, f, r, such that g(x) = f(x-sa) and r(x) = Norm(g(x)) is a square-free polynomial over K, @@ -1492,7 +1492,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.sqf_part(f, *gens, **args)[source]
+sympy.polys.polytools.sqf_part(f, *gens, **args)[source]

Compute square-free part of f.

Examples

>>> from sympy import sqf_part
@@ -1507,7 +1507,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.sqf_list(f, *gens, **args)[source]
+sympy.polys.polytools.sqf_list(f, *gens, **args)[source]

Compute a list of square-free factors of f.

Examples

>>> from sympy import sqf_list
@@ -1522,7 +1522,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.sqf(f, *gens, **args)[source]
+sympy.polys.polytools.sqf(f, *gens, **args)[source]

Compute square-free factorization of f.

Examples

>>> from sympy import sqf
@@ -1537,7 +1537,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.factor_list(f, *gens, **args)[source]
+sympy.polys.polytools.factor_list(f, *gens, **args)[source]

Compute a list of irreducible factors of f.

Examples

>>> from sympy import factor_list
@@ -1552,7 +1552,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.factor(f, *gens, deep=False, **args)[source]
+sympy.polys.polytools.factor(f, *gens, deep=False, **args)[source]

Compute the factorization of expression, f, into irreducibles. (To factor an integer into primes, use factorint.)

There two modes implemented: symbolic and formal. If f is not an @@ -1633,7 +1633,7 @@

Basic polynomial manipulation functionssqf=False,

-)[source] +)[source]

Compute isolating intervals for roots of f.

Examples

>>> from sympy import intervals
@@ -1662,7 +1662,7 @@ 

Basic polynomial manipulation functionscheck_sqf=False,

-)[source] +)[source]

Refine an isolating interval of a root to the given precision.

Examples

>>> from sympy import refine_root
@@ -1677,7 +1677,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.count_roots(f, inf=None, sup=None)[source]
+sympy.polys.polytools.count_roots(f, inf=None, sup=None)[source]

Return the number of roots of f in [inf, sup] interval.

If one of inf or sup is complex, it will return the number of roots in the complex rectangle with corners at inf and sup.

@@ -1696,7 +1696,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.all_roots(f, multiple=True, radicals=True)[source]
+sympy.polys.polytools.all_roots(f, multiple=True, radicals=True)[source]

Returns the real and complex roots of f with multiplicities.

Parameters:
@@ -1828,7 +1828,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.real_roots(f, multiple=True, radicals=True)[source]
+sympy.polys.polytools.real_roots(f, multiple=True, radicals=True)[source]

Returns the real roots of f with multiplicities.

Parameters:
@@ -1990,7 +1990,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.nroots(f, n=15, maxsteps=50, cleanup=True)[source]
+sympy.polys.polytools.nroots(f, n=15, maxsteps=50, cleanup=True)[source]

Compute numerical approximations of roots of f.

Examples

>>> from sympy import nroots
@@ -2007,7 +2007,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.ground_roots(f, *gens, **args)[source]
+sympy.polys.polytools.ground_roots(f, *gens, **args)[source]

Compute roots of f by factorization in the ground domain.

Examples

>>> from sympy import ground_roots
@@ -2022,7 +2022,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.nth_power_roots_poly(f, n, *gens, **args)[source]
+sympy.polys.polytools.nth_power_roots_poly(f, n, *gens, **args)[source]

Construct a polynomial with n-th powers of roots of f.

Examples

>>> from sympy import nth_power_roots_poly, factor, roots
@@ -2049,7 +2049,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.cancel(f, *gens, _signsimp=True, **args)[source]
+sympy.polys.polytools.cancel(f, *gens, _signsimp=True, **args)[source]

Cancel common factors in a rational function f.

Examples

>>> from sympy import cancel, sqrt, Symbol, together
@@ -2075,7 +2075,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.reduced(f, G, *gens, **args)[source]
+sympy.polys.polytools.reduced(f, G, *gens, **args)[source]

Reduces a polynomial f modulo a set of polynomials G.

Given a polynomial f and a set of polynomials G = (g_1, ..., g_n), computes a set of quotients q = (q_1, ..., q_n) and the remainder r @@ -2094,7 +2094,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.groebner(F, *gens, **args)[source]
+sympy.polys.polytools.groebner(F, *gens, **args)[source]

Computes the reduced Groebner basis for a set of polynomials.

Use the order argument to set the monomial ordering that will be used to compute the basis. Allowed orders are lex, grlex and @@ -2143,7 +2143,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.is_zero_dimensional(F, *gens, **args)[source]
+sympy.polys.polytools.is_zero_dimensional(F, *gens, **args)[source]

Checks if the ideal generated by a Groebner basis is zero-dimensional.

The algorithm checks if the set of monomials not divisible by the leading monomial of any element of F is bounded.

@@ -2154,7 +2154,7 @@

Basic polynomial manipulation functions
-class sympy.polys.polytools.Poly(rep, *gens, **args)[source]
+class sympy.polys.polytools.Poly(rep, *gens, **args)[source]

Generic class for representing and operating on polynomial expressions.

See Polynomial Manipulation for general documentation.

Poly is a subclass of Basic rather than Expr but instances can be @@ -2201,7 +2201,7 @@

Basic polynomial manipulation functions
-EC(order=None)[source]
+EC(order=None)[source]

Returns the last non-zero coefficient of f.

Examples

>>> from sympy import Poly
@@ -2216,7 +2216,7 @@ 

Basic polynomial manipulation functions
-EM(order=None)[source]
+EM(order=None)[source]

Returns the last non-zero monomial of f.

Examples

>>> from sympy import Poly
@@ -2231,7 +2231,7 @@ 

Basic polynomial manipulation functions
-ET(order=None)[source]
+ET(order=None)[source]

Returns the last non-zero term of f.

Examples

>>> from sympy import Poly
@@ -2246,7 +2246,7 @@ 

Basic polynomial manipulation functions
-LC(order=None)[source]
+LC(order=None)[source]

Returns the leading coefficient of f.

Examples

>>> from sympy import Poly
@@ -2261,7 +2261,7 @@ 

Basic polynomial manipulation functions
-LM(order=None)[source]
+LM(order=None)[source]

Returns the leading monomial of f.

The Leading monomial signifies the monomial having the highest power of the principal generator in the @@ -2279,7 +2279,7 @@

Basic polynomial manipulation functions
-LT(order=None)[source]
+LT(order=None)[source]

Returns the leading term of f.

The Leading term signifies the term having the highest power of the principal generator in the @@ -2297,7 +2297,7 @@

Basic polynomial manipulation functions
-TC()[source]
+TC()[source]

Returns the trailing coefficient of f.

Examples

>>> from sympy import Poly
@@ -2312,7 +2312,7 @@ 

Basic polynomial manipulation functions
-abs()[source]
+abs()[source]

Make all coefficients in f positive.

Examples

>>> from sympy import Poly
@@ -2327,7 +2327,7 @@ 

Basic polynomial manipulation functions
-add(g)[source]
+add(g)[source]

Add two polynomials f and g.

Examples

>>> from sympy import Poly
@@ -2346,7 +2346,7 @@ 

Basic polynomial manipulation functions
-add_ground(coeff)[source]
+add_ground(coeff)[source]

Add an element of the ground domain to f.

Examples

>>> from sympy import Poly
@@ -2361,7 +2361,7 @@ 

Basic polynomial manipulation functions
-all_coeffs()[source]
+all_coeffs()[source]

Returns all coefficients from a univariate polynomial f.

Examples

>>> from sympy import Poly
@@ -2376,7 +2376,7 @@ 

Basic polynomial manipulation functions
-all_monoms()[source]
+all_monoms()[source]

Returns all monomials from a univariate polynomial f.

Examples

>>> from sympy import Poly
@@ -2395,7 +2395,7 @@ 

Basic polynomial manipulation functions
-all_roots(multiple=True, radicals=True)[source]
+all_roots(multiple=True, radicals=True)[source]

Return a list of real and complex roots with multiplicities.

See all_roots() for more explanation.

Examples

@@ -2415,7 +2415,7 @@

Basic polynomial manipulation functions
-all_terms()[source]
+all_terms()[source]

Returns all terms from a univariate polynomial f.

Examples

>>> from sympy import Poly
@@ -2430,7 +2430,7 @@ 

Basic polynomial manipulation functions
-as_dict(native=False, zero=False)[source]
+as_dict(native=False, zero=False)[source]

Switch to a dict representation.

Examples

>>> from sympy import Poly
@@ -2445,7 +2445,7 @@ 

Basic polynomial manipulation functions
-as_expr(*gens)[source]
+as_expr(*gens)[source]

Convert a Poly instance to an Expr instance.

Examples

>>> from sympy import Poly
@@ -2467,13 +2467,13 @@ 

Basic polynomial manipulation functions
-as_list(native=False)[source]
+as_list(native=False)[source]

Switch to a list representation.

-as_poly(*gens, **args)[source]
+as_poly(*gens, **args)[source]

Converts self to a polynomial or returns None.

>>> from sympy import sin
 >>> from sympy.abc import x, y
@@ -2495,7 +2495,7 @@ 

Basic polynomial manipulation functions
-cancel(g, include=False)[source]
+cancel(g, include=False)[source]

Cancel common factors in a rational function f/g.

Examples

>>> from sympy import Poly
@@ -2514,7 +2514,7 @@ 

Basic polynomial manipulation functions
-clear_denoms(convert=False)[source]
+clear_denoms(convert=False)[source]

Clear denominators, but keep the ground domain.

Examples

>>> from sympy import Poly, S, QQ
@@ -2534,7 +2534,7 @@ 

Basic polynomial manipulation functions
-coeff_monomial(monom)[source]
+coeff_monomial(monom)[source]

Returns the coefficient of monom in f if there, else None.

Examples

>>> from sympy import Poly, exp
@@ -2574,7 +2574,7 @@ 

Basic polynomial manipulation functions
-coeffs(order=None)[source]
+coeffs(order=None)[source]

Returns all non-zero coefficients from f in lex order.

Examples

>>> from sympy import Poly
@@ -2593,7 +2593,7 @@ 

Basic polynomial manipulation functions
-cofactors(g)[source]
+cofactors(g)[source]

Returns the GCD of f and g and their cofactors.

Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors @@ -2613,7 +2613,7 @@

Basic polynomial manipulation functions
-compose(g)[source]
+compose(g)[source]

Computes the functional composition of f and g.

Examples

>>> from sympy import Poly
@@ -2628,7 +2628,7 @@ 

Basic polynomial manipulation functions
-content()[source]
+content()[source]

Returns the GCD of polynomial coefficients.

Examples

>>> from sympy import Poly
@@ -2643,7 +2643,7 @@ 

Basic polynomial manipulation functions
-count_roots(inf=None, sup=None)[source]
+count_roots(inf=None, sup=None)[source]

Return the number of roots of f in [inf, sup] interval.

Examples

>>> from sympy import Poly, I
@@ -2660,7 +2660,7 @@ 

Basic polynomial manipulation functions
-decompose()[source]
+decompose()[source]

Computes a functional decomposition of f.

Examples

>>> from sympy import Poly
@@ -2675,7 +2675,7 @@ 

Basic polynomial manipulation functions
-deflate()[source]
+deflate()[source]

Reduce degree of f by mapping x_i**m to y_i.

Examples

>>> from sympy import Poly
@@ -2690,7 +2690,7 @@ 

Basic polynomial manipulation functions
-degree(gen=0)[source]
+degree(gen=0)[source]

Returns degree of f in x_j.

The degree of 0 is negative infinity.

Examples

@@ -2710,7 +2710,7 @@

Basic polynomial manipulation functions
-degree_list()[source]
+degree_list()[source]

Returns a list of degrees of f.

Examples

>>> from sympy import Poly
@@ -2725,7 +2725,7 @@ 

Basic polynomial manipulation functions
-diff(*specs, **kwargs)[source]
+diff(*specs, **kwargs)[source]

Computes partial derivative of f.

Examples

>>> from sympy import Poly
@@ -2744,7 +2744,7 @@ 

Basic polynomial manipulation functions
-discriminant()[source]
+discriminant()[source]

Computes the discriminant of f.

Examples

>>> from sympy import Poly
@@ -2759,7 +2759,7 @@ 

Basic polynomial manipulation functions
-dispersion(g=None)[source]
+dispersion(g=None)[source]

Compute the dispersion of polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\operatorname{dis}(f, g)\) is defined as:

@@ -2830,7 +2830,7 @@

Basic polynomial manipulation functions
-dispersionset(g=None)[source]
+dispersionset(g=None)[source]

Compute the dispersion set of two polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion set \(\operatorname{J}(f, g)\) is defined as:

@@ -2901,7 +2901,7 @@

Basic polynomial manipulation functions
-div(g, auto=True)[source]
+div(g, auto=True)[source]

Polynomial division with remainder of f by g.

Examples

>>> from sympy import Poly
@@ -2944,7 +2944,7 @@ 

Basic polynomial manipulation functions
-eject(*gens)[source]
+eject(*gens)[source]

Eject selected generators into the ground domain.

Examples

>>> from sympy import Poly
@@ -2964,7 +2964,7 @@ 

Basic polynomial manipulation functions
-eval(x, a=None, auto=True)[source]
+eval(x, a=None, auto=True)[source]

Evaluate f at a in the given variable.

Examples

>>> from sympy import Poly
@@ -3000,7 +3000,7 @@ 

Basic polynomial manipulation functions
-exclude()[source]
+exclude()[source]

Remove unnecessary generators from f.

Examples

>>> from sympy import Poly
@@ -3015,7 +3015,7 @@ 

Basic polynomial manipulation functions
-exquo(g, auto=True)[source]
+exquo(g, auto=True)[source]

Computes polynomial exact quotient of f by g.

Examples

>>> from sympy import Poly
@@ -3036,7 +3036,7 @@ 

Basic polynomial manipulation functions
-exquo_ground(coeff)[source]
+exquo_ground(coeff)[source]

Exact quotient of f by a an element of the ground domain.

Examples

>>> from sympy import Poly
@@ -3057,7 +3057,7 @@ 

Basic polynomial manipulation functions
-factor_list()[source]
+factor_list()[source]

Returns a list of irreducible factors of f.

Examples

>>> from sympy import Poly
@@ -3076,7 +3076,7 @@ 

Basic polynomial manipulation functions
-factor_list_include()[source]
+factor_list_include()[source]

Returns a list of irreducible factors of f.

Examples

>>> from sympy import Poly
@@ -3135,25 +3135,25 @@ 

Basic polynomial manipulation functions
-classmethod from_dict(rep, *gens, **args)[source]
+classmethod from_dict(rep, *gens, **args)[source]

Construct a polynomial from a dict.

-classmethod from_expr(rep, *gens, **args)[source]
+classmethod from_expr(rep, *gens, **args)[source]

Construct a polynomial from an expression.

-classmethod from_list(rep, *gens, **args)[source]
+classmethod from_list(rep, *gens, **args)[source]

Construct a polynomial from a list.

-classmethod from_poly(rep, *gens, **args)[source]
+classmethod from_poly(rep, *gens, **args)[source]

Construct a polynomial from a polynomial.

@@ -3167,7 +3167,7 @@

Basic polynomial manipulation functionsrandomize=False,

-)[source] +)[source]

Compute the Galois group of this polynomial.

Examples

>>> from sympy import Poly
@@ -3186,7 +3186,7 @@ 

Basic polynomial manipulation functions
-gcd(g)[source]
+gcd(g)[source]

Returns the polynomial GCD of f and g.

Examples

>>> from sympy import Poly
@@ -3201,7 +3201,7 @@ 

Basic polynomial manipulation functions
-gcdex(g, auto=True)[source]
+gcdex(g, auto=True)[source]

Extended Euclidean algorithm of f and g.

Returns (s, t, h) such that h = gcd(f, g) and s*f + t*g = h.

Examples

@@ -3238,13 +3238,13 @@

Basic polynomial manipulation functions
-get_domain()[source]
+get_domain()[source]

Get the ground domain of f.

-get_modulus()[source]
+get_modulus()[source]

Get the modulus of f.

Examples

>>> from sympy import Poly
@@ -3259,7 +3259,7 @@ 

Basic polynomial manipulation functions
-gff_list()[source]
+gff_list()[source]

Computes greatest factorial factorization of f.

Examples

>>> from sympy import Poly
@@ -3277,7 +3277,7 @@ 

Basic polynomial manipulation functions
-ground_roots()[source]
+ground_roots()[source]

Compute roots of f by factorization in the ground domain.

Examples

>>> from sympy import Poly
@@ -3292,7 +3292,7 @@ 

Basic polynomial manipulation functions
-half_gcdex(g, auto=True)[source]
+half_gcdex(g, auto=True)[source]

Half extended Euclidean algorithm of f and g.

Returns (s, h) such that h = gcd(f, g) and s*f = h (mod g).

Examples

@@ -3312,7 +3312,7 @@

Basic polynomial manipulation functions
-has_only_gens(*gens)[source]
+has_only_gens(*gens)[source]

Return True if Poly(f, *gens) retains ground domain.

Examples

>>> from sympy import Poly
@@ -3329,7 +3329,7 @@ 

Basic polynomial manipulation functions
-homogeneous_order()[source]
+homogeneous_order()[source]

Returns the homogeneous order of f.

A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. This degree is @@ -3349,7 +3349,7 @@

Basic polynomial manipulation functions
-homogenize(s)[source]
+homogenize(s)[source]

Returns the homogeneous polynomial of f.

A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you only @@ -3371,7 +3371,7 @@

Basic polynomial manipulation functions
-inject(front=False)[source]
+inject(front=False)[source]

Inject ground domain generators into f.

Examples

>>> from sympy import Poly
@@ -3391,7 +3391,7 @@ 

Basic polynomial manipulation functions
-integrate(*specs, **args)[source]
+integrate(*specs, **args)[source]

Computes indefinite integral of f.

Examples

>>> from sympy import Poly
@@ -3421,7 +3421,7 @@ 

Basic polynomial manipulation functionssqf=False,

-)[source] +)[source]

Compute isolating intervals for roots of f.

For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.

Examples

@@ -3453,7 +3453,7 @@

Basic polynomial manipulation functions
-invert(g, auto=True)[source]
+invert(g, auto=True)[source]

Invert f modulo g when possible.

Examples

>>> from sympy import Poly
@@ -3734,7 +3734,7 @@ 

Basic polynomial manipulation functions
-l1_norm()[source]
+l1_norm()[source]

Returns l1 norm of f.

Examples

>>> from sympy import Poly
@@ -3749,7 +3749,7 @@ 

Basic polynomial manipulation functions
-lcm(g)[source]
+lcm(g)[source]

Returns polynomial LCM of f and g.

Examples

>>> from sympy import Poly
@@ -3764,7 +3764,7 @@ 

Basic polynomial manipulation functions
-length()[source]
+length()[source]

Returns the number of non-zero terms in f.

Examples

>>> from sympy import Poly
@@ -3779,7 +3779,7 @@ 

Basic polynomial manipulation functions
-lift()[source]
+lift()[source]

Convert algebraic coefficients to rationals.

Examples

>>> from sympy import Poly, I
@@ -3794,7 +3794,7 @@ 

Basic polynomial manipulation functions
-ltrim(gen)[source]
+ltrim(gen)[source]

Remove dummy generators from f that are to the left of specified gen in the generators as ordered. When gen is an integer, it refers to the generator located at that @@ -3814,7 +3814,7 @@

Basic polynomial manipulation functions
-make_monic_over_integers_by_scaling_roots()[source]
+make_monic_over_integers_by_scaling_roots()[source]

Turn any univariate polynomial over QQ or ZZ into a monic polynomial over ZZ, by scaling the roots as necessary.

@@ -3842,13 +3842,13 @@

Basic polynomial manipulation functions
-match(*args, **kwargs)[source]
+match(*args, **kwargs)[source]

Match expression from Poly. See Basic.match()

-max_norm()[source]
+max_norm()[source]

Returns maximum norm of f.

Examples

>>> from sympy import Poly
@@ -3863,7 +3863,7 @@ 

Basic polynomial manipulation functions
-monic(auto=True)[source]
+monic(auto=True)[source]

Divides all coefficients by LC(f).

Examples

>>> from sympy import Poly, ZZ
@@ -3882,7 +3882,7 @@ 

Basic polynomial manipulation functions
-monoms(order=None)[source]
+monoms(order=None)[source]

Returns all non-zero monomials from f in lex order.

Examples

>>> from sympy import Poly
@@ -3901,7 +3901,7 @@ 

Basic polynomial manipulation functions
-mul(g)[source]
+mul(g)[source]

Multiply two polynomials f and g.

Examples

>>> from sympy import Poly
@@ -3920,7 +3920,7 @@ 

Basic polynomial manipulation functions
-mul_ground(coeff)[source]
+mul_ground(coeff)[source]

Multiply f by a an element of the ground domain.

Examples

>>> from sympy import Poly
@@ -3935,7 +3935,7 @@ 

Basic polynomial manipulation functions
-neg()[source]
+neg()[source]

Negate all coefficients in f.

Examples

>>> from sympy import Poly
@@ -3954,13 +3954,13 @@ 

Basic polynomial manipulation functions
-classmethod new(rep, *gens)[source]
+classmethod new(rep, *gens)[source]

Construct Poly instance from raw representation.

-norm()[source]
+norm()[source]

Computes the product, Norm(f), of the conjugates of a polynomial f defined over a number field K.

Examples

@@ -3989,7 +3989,7 @@

Basic polynomial manipulation functions
-nroots(n=15, maxsteps=50, cleanup=True)[source]
+nroots(n=15, maxsteps=50, cleanup=True)[source]

Compute numerical approximations of roots of f.

Parameters:
@@ -4014,7 +4014,7 @@

Basic polynomial manipulation functions
-nth(*N)[source]
+nth(*N)[source]

Returns the n-th coefficient of f where N are the exponents of the generators in the term of interest.

Examples

@@ -4040,7 +4040,7 @@

Basic polynomial manipulation functions
-nth_power_roots_poly(n)[source]
+nth_power_roots_poly(n)[source]

Construct a polynomial with n-th powers of roots of f.

Examples

>>> from sympy import Poly
@@ -4070,7 +4070,7 @@ 

Basic polynomial manipulation functions
-pdiv(g)[source]
+pdiv(g)[source]

Polynomial pseudo-division of f by g.

Examples

>>> from sympy import Poly
@@ -4085,7 +4085,7 @@ 

Basic polynomial manipulation functions
-per(rep, gens=None, remove=None)[source]
+per(rep, gens=None, remove=None)[source]

Create a Poly out of the given representation.

Examples

>>> from sympy import Poly, ZZ
@@ -4106,7 +4106,7 @@ 

Basic polynomial manipulation functions
-pexquo(g)[source]
+pexquo(g)[source]

Polynomial exact pseudo-quotient of f by g.

Examples

>>> from sympy import Poly
@@ -4127,7 +4127,7 @@ 

Basic polynomial manipulation functions
-pow(n)[source]
+pow(n)[source]

Raise f to a non-negative power n.

Examples

>>> from sympy import Poly
@@ -4146,7 +4146,7 @@ 

Basic polynomial manipulation functions
-pquo(g)[source]
+pquo(g)[source]

Polynomial pseudo-quotient of f by g.

See the Caveat note in the function prem(f, g).

Examples

@@ -4166,7 +4166,7 @@

Basic polynomial manipulation functions
-prem(g)[source]
+prem(g)[source]

Polynomial pseudo-remainder of f by g.

Caveat: The function prem(f, g, x) can be safely used to compute

in Z[x] _only_ subresultant polynomial remainder sequences (prs’s).

@@ -4195,7 +4195,7 @@

Basic polynomial manipulation functions
-primitive()[source]
+primitive()[source]

Returns the content and a primitive form of f.

Examples

>>> from sympy import Poly
@@ -4210,7 +4210,7 @@ 

Basic polynomial manipulation functions
-quo(g, auto=True)[source]
+quo(g, auto=True)[source]

Computes polynomial quotient of f by g.

Examples

>>> from sympy import Poly
@@ -4229,7 +4229,7 @@ 

Basic polynomial manipulation functions
-quo_ground(coeff)[source]
+quo_ground(coeff)[source]

Quotient of f by a an element of the ground domain.

Examples

>>> from sympy import Poly
@@ -4248,7 +4248,7 @@ 

Basic polynomial manipulation functions
-rat_clear_denoms(g)[source]
+rat_clear_denoms(g)[source]

Clear denominators in a rational function f/g.

Examples

>>> from sympy import Poly
@@ -4272,7 +4272,7 @@ 

Basic polynomial manipulation functions
-real_roots(multiple=True, radicals=True)[source]
+real_roots(multiple=True, radicals=True)[source]

Return a list of real roots with multiplicities.

See real_roots() for more explanation.

Examples

@@ -4301,7 +4301,7 @@

Basic polynomial manipulation functionscheck_sqf=False,

-)[source] +)[source]

Refine an isolating interval of a root to the given precision.

Examples

>>> from sympy import Poly
@@ -4316,7 +4316,7 @@ 

Basic polynomial manipulation functions
-rem(g, auto=True)[source]
+rem(g, auto=True)[source]

Computes the polynomial remainder of f by g.

Examples

>>> from sympy import Poly
@@ -4335,7 +4335,7 @@ 

Basic polynomial manipulation functions
-reorder(*gens, **args)[source]
+reorder(*gens, **args)[source]

Efficiently apply new order of generators.

Examples

>>> from sympy import Poly
@@ -4350,7 +4350,7 @@ 

Basic polynomial manipulation functions
-replace(x, y=None, **_ignore)[source]
+replace(x, y=None, **_ignore)[source]

Replace x with y in generators list.

Examples

>>> from sympy import Poly
@@ -4365,7 +4365,7 @@ 

Basic polynomial manipulation functions
-resultant(g, includePRS=False)[source]
+resultant(g, includePRS=False)[source]

Computes the resultant of f and g via PRS.

If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more @@ -4389,7 +4389,7 @@

Basic polynomial manipulation functions
-retract(field=None)[source]
+retract(field=None)[source]

Recalculate the ground domain of a polynomial.

Examples

>>> from sympy import Poly
@@ -4411,7 +4411,7 @@ 

Basic polynomial manipulation functions
-revert(n)[source]
+revert(n)[source]

Compute f**(-1) mod x**n.

Examples

>>> from sympy import Poly
@@ -4442,7 +4442,7 @@ 

Basic polynomial manipulation functions
-root(index, radicals=True)[source]
+root(index, radicals=True)[source]

Get an indexed root of a polynomial.

Examples

>>> from sympy import Poly
@@ -4472,7 +4472,7 @@ 

Basic polynomial manipulation functions
-same_root(a, b)[source]
+same_root(a, b)[source]

Decide whether two roots of this polynomial are equal.

Raises:
@@ -4504,13 +4504,13 @@

Basic polynomial manipulation functions
-set_domain(domain)[source]
+set_domain(domain)[source]

Set the ground domain of f.

-set_modulus(modulus)[source]
+set_modulus(modulus)[source]

Set the modulus of f.

Examples

>>> from sympy import Poly
@@ -4525,7 +4525,7 @@ 

Basic polynomial manipulation functions
-shift(a)[source]
+shift(a)[source]

Efficiently compute Taylor shift f(x + a).

Examples

>>> from sympy import Poly
@@ -4547,7 +4547,7 @@ 

Basic polynomial manipulation functions
-shift_list(a)[source]
+shift_list(a)[source]

Efficiently compute Taylor shift f(X + A).

Examples

>>> from sympy import Poly
@@ -4569,13 +4569,13 @@ 

Basic polynomial manipulation functions
-slice(x, m, n=None)[source]
+slice(x, m, n=None)[source]

Take a continuous subsequence of terms of f.

-sqf_list(all=False)[source]
+sqf_list(all=False)[source]

Returns a list of square-free factors of f.

Examples

>>> from sympy import Poly
@@ -4600,7 +4600,7 @@ 

Basic polynomial manipulation functions
-sqf_list_include(all=False)[source]
+sqf_list_include(all=False)[source]

Returns a list of square-free factors of f.

Examples

>>> from sympy import Poly, expand
@@ -4629,7 +4629,7 @@ 

Basic polynomial manipulation functions
-sqf_norm()[source]
+sqf_norm()[source]

Computes square-free norm of f.

Returns s, f, r, such that g(x) = f(x-sa) and r(x) = Norm(g(x)) is a square-free polynomial over K, @@ -4654,7 +4654,7 @@

Basic polynomial manipulation functions
-sqf_part()[source]
+sqf_part()[source]

Computes square-free part of f.

Examples

>>> from sympy import Poly
@@ -4669,7 +4669,7 @@ 

Basic polynomial manipulation functions
-sqr()[source]
+sqr()[source]

Square a polynomial f.

Examples

>>> from sympy import Poly
@@ -4688,7 +4688,7 @@ 

Basic polynomial manipulation functions
-sturm(auto=True)[source]
+sturm(auto=True)[source]

Computes the Sturm sequence of f.

Examples

>>> from sympy import Poly
@@ -4706,7 +4706,7 @@ 

Basic polynomial manipulation functions
-sub(g)[source]
+sub(g)[source]

Subtract two polynomials f and g.

Examples

>>> from sympy import Poly
@@ -4725,7 +4725,7 @@ 

Basic polynomial manipulation functions
-sub_ground(coeff)[source]
+sub_ground(coeff)[source]

Subtract an element of the ground domain from f.

Examples

>>> from sympy import Poly
@@ -4740,7 +4740,7 @@ 

Basic polynomial manipulation functions
-subresultants(g)[source]
+subresultants(g)[source]

Computes the subresultant PRS of f and g.

Examples

>>> from sympy import Poly
@@ -4757,7 +4757,7 @@ 

Basic polynomial manipulation functions
-terms(order=None)[source]
+terms(order=None)[source]

Returns all non-zero terms from f in lex order.

Examples

>>> from sympy import Poly
@@ -4776,7 +4776,7 @@ 

Basic polynomial manipulation functions
-terms_gcd()[source]
+terms_gcd()[source]

Remove GCD of terms from the polynomial f.

Examples

>>> from sympy import Poly
@@ -4791,7 +4791,7 @@ 

Basic polynomial manipulation functions
-termwise(func, *gens, **args)[source]
+termwise(func, *gens, **args)[source]

Apply a function to all terms of f.

Examples

>>> from sympy import Poly
@@ -4811,7 +4811,7 @@ 

Basic polynomial manipulation functions
-to_exact()[source]
+to_exact()[source]

Make the ground domain exact.

Examples

>>> from sympy import Poly, RR
@@ -4826,7 +4826,7 @@ 

Basic polynomial manipulation functions
-to_field()[source]
+to_field()[source]

Make the ground domain a field.

Examples

>>> from sympy import Poly, ZZ
@@ -4841,7 +4841,7 @@ 

Basic polynomial manipulation functions
-to_ring()[source]
+to_ring()[source]

Make the ground domain a ring.

Examples

>>> from sympy import Poly, QQ
@@ -4856,7 +4856,7 @@ 

Basic polynomial manipulation functions
-total_degree()[source]
+total_degree()[source]

Returns the total degree of f.

Examples

>>> from sympy import Poly
@@ -4873,7 +4873,7 @@ 

Basic polynomial manipulation functions
-transform(p, q)[source]
+transform(p, q)[source]

Efficiently evaluate the functional transformation q**n * f(p/q).

Examples

>>> from sympy import Poly
@@ -4888,7 +4888,7 @@ 

Basic polynomial manipulation functions
-trunc(p)[source]
+trunc(p)[source]

Reduce f modulo a constant p.

Examples

>>> from sympy import Poly
@@ -4903,7 +4903,7 @@ 

Basic polynomial manipulation functions
-unify(g)[source]
+unify(g)[source]

Make f and g belong to the same domain.

Examples

>>> from sympy import Poly
@@ -4946,7 +4946,7 @@ 

Basic polynomial manipulation functions
-class sympy.polys.polytools.PurePoly(rep, *gens, **args)[source]
+class sympy.polys.polytools.PurePoly(rep, *gens, **args)[source]

Class for representing pure polynomials.

@@ -4971,11 +4971,11 @@

Basic polynomial manipulation functions
-class sympy.polys.polytools.GroebnerBasis(F, *gens, **args)[source]
+class sympy.polys.polytools.GroebnerBasis(F, *gens, **args)[source]

Represents a reduced Groebner basis.

-contains(poly)[source]
+contains(poly)[source]

Check if poly belongs the ideal generated by self.

Examples

>>> from sympy import groebner
@@ -4996,7 +4996,7 @@ 

Basic polynomial manipulation functions
-fglm(order)[source]
+fglm(order)[source]

Convert a Groebner basis from one ordering to another.

The FGLM algorithm converts reduced Groebner bases of zero-dimensional ideals from one ordering to another. This method is often used when it @@ -5041,7 +5041,7 @@

Basic polynomial manipulation functions
-reduce(expr, auto=True)[source]
+reduce(expr, auto=True)[source]

Reduces a polynomial modulo a Groebner basis.

Given a polynomial f and a set of polynomials G = (g_1, ..., g_n), computes a set of quotients q = (q_1, ..., q_n) and the remainder r @@ -5076,7 +5076,7 @@

Basic polynomial manipulation functions

-sympy.polys.polyfuncs.symmetrize(F, *gens, **args)[source]
+sympy.polys.polyfuncs.symmetrize(F, *gens, **args)[source]

Rewrite a polynomial in terms of elementary symmetric polynomials.

A symmetric polynomial is a multivariate polynomial that remains invariant under any variable permutation, i.e., if \(f = f(x_1, x_2, \dots, x_n)\), @@ -5110,7 +5110,7 @@

Extra polynomial manipulation functions
-sympy.polys.polyfuncs.horner(f, *gens, **args)[source]
+sympy.polys.polyfuncs.horner(f, *gens, **args)[source]

Rewrite a polynomial in Horner form.

Among other applications, evaluation of a polynomial at a point is optimal when it is applied using the Horner scheme ([1]).

@@ -5144,7 +5144,7 @@

Extra polynomial manipulation functions
-sympy.polys.polyfuncs.interpolate(data, x)[source]
+sympy.polys.polyfuncs.interpolate(data, x)[source]

Construct an interpolating polynomial for the data points evaluated at point x (which can be symbolic or numeric).

Examples

@@ -5186,7 +5186,7 @@

Extra polynomial manipulation functions
-sympy.polys.polyfuncs.viete(f, roots=None, *gens, **args)[source]
+sympy.polys.polyfuncs.viete(f, roots=None, *gens, **args)[source]

Generate Viete’s formulas for f.

Examples

>>> from sympy.polys.polyfuncs import viete
@@ -5207,7 +5207,7 @@ 

Extra polynomial manipulation functions

-sympy.polys.constructor.construct_domain(obj, **args)[source]
+sympy.polys.constructor.construct_domain(obj, **args)[source]

Construct a minimal domain for a list of expressions.

Parameters:
@@ -5291,23 +5291,23 @@

Domain constructors

-class sympy.polys.monomials.Monomial(monom, gens=None)[source]
+class sympy.polys.monomials.Monomial(monom, gens=None)[source]

Class representing a monomial, i.e. a product of powers.

-as_expr(*gens)[source]
+as_expr(*gens)[source]

Convert a monomial instance to a SymPy expression.

-gcd(other)[source]
+gcd(other)[source]

Greatest common divisor of monomials.

-lcm(other)[source]
+lcm(other)[source]

Least common multiple of monomials.

@@ -5323,7 +5323,7 @@

Monomials encoded as tuplesmin_degrees=None,

-)[source] +)[source]

max_degrees and min_degrees are either both integers or both lists. Unless otherwise specified, min_degrees is either 0 or [0, ..., 0].

@@ -5394,7 +5394,7 @@

Monomials encoded as tuples
-sympy.polys.monomials.monomial_count(V, N)[source]
+sympy.polys.monomials.monomial_count(V, N)[source]

Computes the number of monomials.

The number of monomials is given by the following formula:

@@ -5428,25 +5428,25 @@

Monomials encoded as tuples

-class sympy.polys.orderings.MonomialOrder[source]
+class sympy.polys.orderings.MonomialOrder[source]

Base class for monomial orderings.

-class sympy.polys.orderings.LexOrder[source]
+class sympy.polys.orderings.LexOrder[source]

Lexicographic order of monomials.

-class sympy.polys.orderings.GradedLexOrder[source]
+class sympy.polys.orderings.GradedLexOrder[source]

Graded lexicographic order of monomials.

-class sympy.polys.orderings.ReversedGradedLexOrder[source]
+class sympy.polys.orderings.ReversedGradedLexOrder[source]

Reversed graded lexicographic order of monomials.

@@ -5465,7 +5465,7 @@

Formal manipulation of roots of polynomialsexpand=True,

-)[source] +)[source]

An indexed root of a univariate polynomial.

Returns either a ComplexRootOf object or an explicit expression involving radicals.

@@ -5504,7 +5504,7 @@

Formal manipulation of roots of polynomialsexpand=True,

-)[source] +)[source]

Represents a root of a univariate polynomial.

Base class for roots of different kinds of polynomials. Only complex roots are currently supported.

@@ -5522,7 +5522,7 @@

Formal manipulation of roots of polynomialsexpand=True,

-)[source] +)[source]

Represents an indexed complex root of a polynomial.

Roots of a univariate polynomial separated into disjoint real or complex intervals and indexed in a fixed order:

@@ -5645,56 +5645,56 @@

Formal manipulation of roots of polynomials
-classmethod _all_roots(poly, use_cache=True)[source]
+classmethod _all_roots(poly, use_cache=True)[source]

Get real and complex roots of a composite polynomial.

-classmethod _complexes_index(complexes, index)[source]
+classmethod _complexes_index(complexes, index)[source]

Map initial complex root index to an index in a factor where the root belongs.

-classmethod _complexes_sorted(complexes)[source]
+classmethod _complexes_sorted(complexes)[source]

Make complex isolating intervals disjoint and sort roots.

-classmethod _count_roots(roots)[source]
+classmethod _count_roots(roots)[source]

Count the number of real or complex roots with multiplicities.

-_ensure_complexes_init()[source]
+_ensure_complexes_init()[source]

Ensure that our poly has entries in the complexes cache.

-_ensure_reals_init()[source]
+_ensure_reals_init()[source]

Ensure that our poly has entries in the reals cache.

-_eval_evalf(prec, **kwargs)[source]
+_eval_evalf(prec, **kwargs)[source]

Evaluate this complex root to the given precision.

-_eval_is_imaginary()[source]
+_eval_is_imaginary()[source]

Return True if the root is imaginary.

-_eval_is_real()[source]
+_eval_is_real()[source]

Return True if the root is real.

@@ -5707,7 +5707,7 @@

Formal manipulation of roots of polynomialsuse_cache=True,

-)[source] +)[source]

Compute complex root isolating intervals for a list of factors.

@@ -5720,19 +5720,19 @@

Formal manipulation of roots of polynomialsuse_cache=True,

-)[source] +)[source]

Get complex root isolating intervals for a square-free factor.

-_get_interval()[source]
+_get_interval()[source]

Internal function for retrieving isolation interval from cache.

-classmethod _get_reals(factors, use_cache=True)[source]
+classmethod _get_reals(factors, use_cache=True)[source]

Compute real root isolating intervals for a list of factors.

@@ -5745,13 +5745,13 @@

Formal manipulation of roots of polynomialsuse_cache=True,

-)[source] +)[source]

Get real root isolating intervals for a square-free factor.

-classmethod _get_roots(method, poly, radicals)[source]
+classmethod _get_roots(method, poly, radicals)[source]

Return postprocessed roots of specified kind.

@@ -5765,50 +5765,50 @@

Formal manipulation of roots of polynomialslazy=False,

-)[source] +)[source]

Get a root of a composite polynomial by index.

-classmethod _new(poly, index)[source]
+classmethod _new(poly, index)[source]

Construct new CRootOf object from raw data.

-classmethod _postprocess_root(root, radicals)[source]
+classmethod _postprocess_root(root, radicals)[source]

Return the root if it is trivial or a CRootOf object.

-classmethod _preprocess_roots(poly)[source]
+classmethod _preprocess_roots(poly)[source]

Take heroic measures to make poly compatible with CRootOf.

-classmethod _real_roots(poly)[source]
+classmethod _real_roots(poly)[source]

Get real roots of a composite polynomial.

-classmethod _reals_index(reals, index)[source]
+classmethod _reals_index(reals, index)[source]

Map initial real root index to an index in a factor where the root belongs.

-classmethod _reals_sorted(reals)[source]
+classmethod _reals_sorted(reals)[source]

Make real isolating intervals disjoint and sort roots.

-classmethod _refine_complexes(complexes)[source]
+classmethod _refine_complexes(complexes)[source]

return complexes such that no bounding rectangles of non-conjugate roots would intersect. In addition, assure that neither ay nor by is 0 to guarantee that non-real roots are distinct from real roots in @@ -5817,31 +5817,31 @@

Formal manipulation of roots of polynomials
-_reset()[source]
+_reset()[source]

Reset all intervals

-classmethod _roots_trivial(poly, radicals)[source]
+classmethod _roots_trivial(poly, radicals)[source]

Compute roots in linear, quadratic and binomial cases.

-_set_interval(interval)[source]
+_set_interval(interval)[source]

Internal function for updating isolation interval in cache.

-classmethod all_roots(poly, radicals=True)[source]
+classmethod all_roots(poly, radicals=True)[source]

Get real and complex roots of a polynomial.

-classmethod clear_cache()[source]
+classmethod clear_cache()[source]

Reset cache for reals and complexes.

The intervals used to approximate a root instance are updated as needed. When a request is made to see the intervals, the @@ -5855,7 +5855,7 @@

Formal manipulation of roots of polynomials
-eval_approx(n, return_mpmath=False)[source]
+eval_approx(n, return_mpmath=False)[source]

Evaluate this complex root to the given precision.

This uses secant method and root bounds are used to both generate an initial guess and to check that the root @@ -5873,7 +5873,7 @@

Formal manipulation of roots of polynomialsn=15,

-)[source] +)[source]

Return a Rational approximation of self that has real and imaginary component approximations that are within dx and dy of the true values, respectively. Alternatively, @@ -5906,7 +5906,7 @@

Formal manipulation of roots of polynomials
-classmethod real_roots(poly, radicals=True)[source]
+classmethod real_roots(poly, radicals=True)[source]

Get real roots of a polynomial.

@@ -5924,11 +5924,11 @@

Formal manipulation of roots of polynomialsquadratic=False,

-)[source] +)[source]

Represents a sum of all roots of a univariate polynomial.

-classmethod new(poly, func, auto=True)[source]
+classmethod new(poly, func, auto=True)[source]

Construct new RootSum instance.

@@ -5956,7 +5956,7 @@

Symbolic root-finding algorithms**flags,

-)[source] +)[source]

Computes symbolic roots of a univariate polynomial.

Given a univariate polynomial f with symbolic coefficients (or a list of the polynomial’s coefficients), returns a dictionary @@ -6058,7 +6058,7 @@

Symbolic root-finding algorithms

-sympy.polys.specialpolys.swinnerton_dyer_poly(n, x=None, polys=False)[source]
+sympy.polys.specialpolys.swinnerton_dyer_poly(n, x=None, polys=False)[source]

Generates n-th Swinnerton-Dyer polynomial in \(x\).

Parameters:
@@ -6078,7 +6078,7 @@

Special polynomials
-sympy.polys.specialpolys.interpolating_poly(n, x, X='x', Y='y')[source]
+sympy.polys.specialpolys.interpolating_poly(n, x, X='x', Y='y')[source]

Construct Lagrange interpolating polynomial for n data points. If a sequence of values are given for X and Y then the first n values will be used.

@@ -6086,7 +6086,7 @@

Special polynomials
-sympy.polys.specialpolys.cyclotomic_poly(n, x=None, polys=False)[source]
+sympy.polys.specialpolys.cyclotomic_poly(n, x=None, polys=False)[source]

Generates cyclotomic polynomial of order \(n\) in \(x\).

Parameters:
@@ -6106,7 +6106,7 @@

Special polynomials
-sympy.polys.specialpolys.symmetric_poly(n, *gens, polys=False)[source]
+sympy.polys.specialpolys.symmetric_poly(n, *gens, polys=False)[source]

Generates symmetric polynomial of order \(n\).

Parameters:
@@ -6132,7 +6132,7 @@

Special polynomialspolys=False,

-)[source] +)[source]

Generates a polynomial of degree n with coefficients in [inf, sup].

@@ -6172,7 +6172,7 @@

Special polynomials

-sympy.polys.orthopolys.chebyshevt_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.chebyshevt_poly(n, x=None, polys=False)[source]

Generates the Chebyshev polynomial of the first kind \(T_n(x)\).

Parameters:
@@ -6191,7 +6191,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.chebyshevu_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.chebyshevu_poly(n, x=None, polys=False)[source]

Generates the Chebyshev polynomial of the second kind \(U_n(x)\).

Parameters:
@@ -6210,7 +6210,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.gegenbauer_poly(n, a, x=None, polys=False)[source]
+sympy.polys.orthopolys.gegenbauer_poly(n, a, x=None, polys=False)[source]

Generates the Gegenbauer polynomial \(C_n^{(a)}(x)\).

Parameters:
@@ -6233,7 +6233,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.hermite_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.hermite_poly(n, x=None, polys=False)[source]

Generates the Hermite polynomial \(H_n(x)\).

Parameters:
@@ -6252,7 +6252,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.hermite_prob_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.hermite_prob_poly(n, x=None, polys=False)[source]

Generates the probabilist’s Hermite polynomial \(He_n(x)\).

Parameters:
@@ -6271,7 +6271,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.jacobi_poly(n, a, b, x=None, polys=False)[source]
+sympy.polys.orthopolys.jacobi_poly(n, a, b, x=None, polys=False)[source]

Generates the Jacobi polynomial \(P_n^{(a,b)}(x)\).

Parameters:
@@ -6298,7 +6298,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.legendre_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.legendre_poly(n, x=None, polys=False)[source]

Generates the Legendre polynomial \(P_n(x)\).

Parameters:
@@ -6317,7 +6317,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.laguerre_poly(n, x=None, alpha=0, polys=False)[source]
+sympy.polys.orthopolys.laguerre_poly(n, x=None, alpha=0, polys=False)[source]

Generates the Laguerre polynomial \(L_n^{(\alpha)}(x)\).

Parameters:
@@ -6340,7 +6340,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.spherical_bessel_fn(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.spherical_bessel_fn(n, x=None, polys=False)[source]

Coefficients for the spherical Bessel functions.

These are only needed in the jn() function.

The coefficients are calculated from:

@@ -6381,7 +6381,7 @@

Orthogonal polynomialsAppell sequences

-sympy.polys.appellseqs.bernoulli_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.bernoulli_poly(n, x=None, polys=False)[source]

Generates the Bernoulli polynomial \(\operatorname{B}_n(x)\).

\(\operatorname{B}_n(x)\) is the unique polynomial satisfying

@@ -6449,7 +6449,7 @@

Appell sequences
-sympy.polys.appellseqs.bernoulli_c_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.bernoulli_c_poly(n, x=None, polys=False)[source]

Generates the central Bernoulli polynomial \(\operatorname{B}_n^c(x)\).

These are scaled and shifted versions of the plain Bernoulli polynomials, done in such a way that \(\operatorname{B}_n^c(x)\) is an even or odd function @@ -6476,7 +6476,7 @@

Appell sequences
-sympy.polys.appellseqs.genocchi_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.genocchi_poly(n, x=None, polys=False)[source]

Generates the Genocchi polynomial \(\operatorname{G}_n(x)\).

\(\operatorname{G}_n(x)\) is twice the difference between the plain and central Bernoulli polynomials, so has degree \(n-1\):

@@ -6508,7 +6508,7 @@

Appell sequences
-sympy.polys.appellseqs.euler_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.euler_poly(n, x=None, polys=False)[source]

Generates the Euler polynomial \(\operatorname{E}_n(x)\).

These are scaled and reindexed versions of the Genocchi polynomials:

@@ -6536,7 +6536,7 @@

Appell sequences
-sympy.polys.appellseqs.andre_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.andre_poly(n, x=None, polys=False)[source]

Generates the Andre polynomial \(\mathcal{A}_n(x)\).

This is the Appell sequence where the constant coefficients form the sequence of Euler numbers euler(n). As such they have integer coefficients @@ -6604,7 +6604,7 @@

Appell sequences

-sympy.polys.rationaltools.together(expr, deep=False, fraction=True)[source]
+sympy.polys.rationaltools.together(expr, deep=False, fraction=True)[source]

Denest and combine rational expressions using symbolic methods.

This function takes an expression or a container of expressions and puts it (them) together by denesting and combining rational @@ -6662,7 +6662,7 @@

Manipulation of rational functions

-sympy.polys.partfrac.apart(f, x=None, full=False, **options)[source]
+sympy.polys.partfrac.apart(f, x=None, full=False, **options)[source]

Compute partial fraction decomposition of a rational function.

Given a rational function f, computes the partial fraction decomposition of f. Two algorithms are available: One is based on the @@ -6712,7 +6712,7 @@

Partial fraction decomposition
-sympy.polys.partfrac.apart_list(f, x=None, dummies=None, **options)[source]
+sympy.polys.partfrac.apart_list(f, x=None, dummies=None, **options)[source]

Compute partial fraction decomposition of a rational function and return the result in structured form.

Given a rational function f compute the partial fraction decomposition @@ -6817,7 +6817,7 @@

Partial fraction decomposition
-sympy.polys.partfrac.assemble_partfrac_list(partial_list)[source]
+sympy.polys.partfrac.assemble_partfrac_list(partial_list)[source]

Reassemble a full partial fraction decomposition from a structured result obtained by the function apart_list.

Examples

@@ -6880,7 +6880,7 @@

Partial fraction decomposition

-sympy.polys.dispersion.dispersionset(p, q=None, *gens, **args)[source]
+sympy.polys.dispersion.dispersionset(p, q=None, *gens, **args)[source]

Compute the dispersion set of two polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion set \(\operatorname{J}(f, g)\) is defined as:

@@ -6963,7 +6963,7 @@

Dispersion of Polynomials
-sympy.polys.dispersion.dispersion(p, q=None, *gens, **args)[source]
+sympy.polys.dispersion.dispersion(p, q=None, *gens, **args)[source]

Compute the dispersion of polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\operatorname{dis}(f, g)\) is defined as:

@@ -7085,7 +7085,7 @@

Dispersion of PolynomialsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/ringseries.html b/dev/modules/polys/ringseries.html index eaae3f62bc5..dbbe8a3765b 100644 --- a/dev/modules/polys/ringseries.html +++ b/dev/modules/polys/ringseries.html @@ -963,7 +963,7 @@

Reference
-sympy.polys.ring_series.rs_log(p, x, prec)[source]
+sympy.polys.ring_series.rs_log(p, x, prec)[source]

The Logarithm of p modulo O(x**prec).

Notes

Truncation of integral dx p**-1*d p/dx is used.

@@ -982,7 +982,7 @@

Reference
-sympy.polys.ring_series.rs_LambertW(p, x, prec)[source]
+sympy.polys.ring_series.rs_LambertW(p, x, prec)[source]

Calculate the series expansion of the principal branch of the Lambert W function.

Examples

@@ -1002,7 +1002,7 @@

Reference
-sympy.polys.ring_series.rs_exp(p, x, prec)[source]
+sympy.polys.ring_series.rs_exp(p, x, prec)[source]

Exponentiation of a series modulo O(x**prec)

Examples

>>> from sympy.polys.domains import QQ
@@ -1017,7 +1017,7 @@ 

Reference
-sympy.polys.ring_series.rs_atan(p, x, prec)[source]
+sympy.polys.ring_series.rs_atan(p, x, prec)[source]

The arctangent of a series

Return the series expansion of the atan of p, about 0.

Examples

@@ -1037,7 +1037,7 @@

Reference
-sympy.polys.ring_series.rs_asin(p, x, prec)[source]
+sympy.polys.ring_series.rs_asin(p, x, prec)[source]

Arcsine of a series

Return the series expansion of the asin of p, about 0.

Examples

@@ -1057,7 +1057,7 @@

Reference
-sympy.polys.ring_series.rs_tan(p, x, prec)[source]
+sympy.polys.ring_series.rs_tan(p, x, prec)[source]

Tangent of a series.

Return the series expansion of the tan of p, about 0.

@@ -1079,7 +1079,7 @@

Reference
-sympy.polys.ring_series._tan1(p, x, prec)[source]
+sympy.polys.ring_series._tan1(p, x, prec)[source]

Helper function of rs_tan().

Return the series expansion of tan of a univariate series using Newton’s method. It takes advantage of the fact that series expansion of atan is @@ -1092,7 +1092,7 @@

Reference
-sympy.polys.ring_series.rs_cot(p, x, prec)[source]
+sympy.polys.ring_series.rs_cot(p, x, prec)[source]

Cotangent of a series

Return the series expansion of the cot of p, about 0.

Examples

@@ -1112,7 +1112,7 @@

Reference
-sympy.polys.ring_series.rs_sin(p, x, prec)[source]
+sympy.polys.ring_series.rs_sin(p, x, prec)[source]

Sine of a series

Return the series expansion of the sin of p, about 0.

Examples

@@ -1134,7 +1134,7 @@

Reference
-sympy.polys.ring_series.rs_cos(p, x, prec)[source]
+sympy.polys.ring_series.rs_cos(p, x, prec)[source]

Cosine of a series

Return the series expansion of the cos of p, about 0.

Examples

@@ -1156,14 +1156,14 @@

Reference
-sympy.polys.ring_series.rs_cos_sin(p, x, prec)[source]
+sympy.polys.ring_series.rs_cos_sin(p, x, prec)[source]

Return the tuple (rs_cos(p, x, prec)`, `rs_sin(p, x, prec)).

Is faster than calling rs_cos and rs_sin separately

-sympy.polys.ring_series.rs_atanh(p, x, prec)[source]
+sympy.polys.ring_series.rs_atanh(p, x, prec)[source]

Hyperbolic arctangent of a series

Return the series expansion of the atanh of p, about 0.

Examples

@@ -1183,7 +1183,7 @@

Reference
-sympy.polys.ring_series.rs_sinh(p, x, prec)[source]
+sympy.polys.ring_series.rs_sinh(p, x, prec)[source]

Hyperbolic sine of a series

Return the series expansion of the sinh of p, about 0.

Examples

@@ -1203,7 +1203,7 @@

Reference
-sympy.polys.ring_series.rs_cosh(p, x, prec)[source]
+sympy.polys.ring_series.rs_cosh(p, x, prec)[source]

Hyperbolic cosine of a series

Return the series expansion of the cosh of p, about 0.

Examples

@@ -1223,7 +1223,7 @@

Reference
-sympy.polys.ring_series.rs_tanh(p, x, prec)[source]
+sympy.polys.ring_series.rs_tanh(p, x, prec)[source]

Hyperbolic tangent of a series

Return the series expansion of the tanh of p, about 0.

Examples

@@ -1243,7 +1243,7 @@

Reference
-sympy.polys.ring_series.rs_hadamard_exp(p1, inverse=False)[source]
+sympy.polys.ring_series.rs_hadamard_exp(p1, inverse=False)[source]

Return sum f_i/i!*x**i from sum f_i*x**i, where x is the first variable.

If invers=True return sum f_i*i!*x**i

@@ -1262,7 +1262,7 @@

Reference
-sympy.polys.ring_series.rs_mul(p1, p2, x, prec)[source]
+sympy.polys.ring_series.rs_mul(p1, p2, x, prec)[source]

Return the product of the given two series, modulo O(x**prec).

x is the series variable or its position in the generators.

Examples

@@ -1280,7 +1280,7 @@

Reference
-sympy.polys.ring_series.rs_square(p1, x, prec)[source]
+sympy.polys.ring_series.rs_square(p1, x, prec)[source]

Square the series modulo O(x**prec)

Examples

>>> from sympy.polys.domains import QQ
@@ -1296,7 +1296,7 @@ 

Reference
-sympy.polys.ring_series.rs_pow(p1, n, x, prec)[source]
+sympy.polys.ring_series.rs_pow(p1, n, x, prec)[source]

Return p1**n modulo O(x**prec)

Examples

>>> from sympy.polys.domains import QQ
@@ -1312,7 +1312,7 @@ 

Reference
-sympy.polys.ring_series.rs_series_inversion(p, x, prec)[source]
+sympy.polys.ring_series.rs_series_inversion(p, x, prec)[source]

Multivariate series inversion 1/p modulo O(x**prec).

Examples

>>> from sympy.polys.domains import QQ
@@ -1331,7 +1331,7 @@ 

Reference
-sympy.polys.ring_series.rs_series_reversion(p, x, n, y)[source]
+sympy.polys.ring_series.rs_series_reversion(p, x, n, y)[source]

Reversion of a series.

p is a series with O(x**n) of the form \(p = ax + f(x)\) where \(a\) is a number different from 0.

@@ -1376,7 +1376,7 @@

Reference
-sympy.polys.ring_series.rs_nth_root(p, n, x, prec)[source]
+sympy.polys.ring_series.rs_nth_root(p, n, x, prec)[source]

Multivariate series expansion of the nth root of p.

Parameters:
@@ -1416,7 +1416,7 @@

Reference
-sympy.polys.ring_series.rs_trunc(p1, x, prec)[source]
+sympy.polys.ring_series.rs_trunc(p1, x, prec)[source]

Truncate the series in the x variable with precision prec, that is, modulo O(x**prec)

Examples

@@ -1435,7 +1435,7 @@

Reference
-sympy.polys.ring_series.rs_subs(p, rules, x, prec)[source]
+sympy.polys.ring_series.rs_subs(p, rules, x, prec)[source]

Substitution with truncation according to the mapping in rules.

Return a series with precision prec in the generator x

Note that substitutions are not done one after the other

@@ -1476,7 +1476,7 @@

Reference
-sympy.polys.ring_series.rs_diff(p, x)[source]
+sympy.polys.ring_series.rs_diff(p, x)[source]

Return partial derivative of p with respect to x.

Parameters:
@@ -1497,7 +1497,7 @@

Reference
-sympy.polys.ring_series.rs_integrate(p, x)[source]
+sympy.polys.ring_series.rs_integrate(p, x)[source]

Integrate p with respect to x.

Parameters:
@@ -1518,7 +1518,7 @@

Reference
-sympy.polys.ring_series.rs_newton(p, x, prec)[source]
+sympy.polys.ring_series.rs_newton(p, x, prec)[source]

Compute the truncated Newton sum of the polynomial p

Examples

>>> from sympy.polys.domains import QQ
@@ -1534,7 +1534,7 @@ 

Reference
-sympy.polys.ring_series.rs_compose_add(p1, p2)[source]
+sympy.polys.ring_series.rs_compose_add(p1, p2)[source]

compute the composed sum prod(p2(x - beta) for beta root of p1)

Examples

>>> from sympy.polys.domains import QQ
@@ -1562,7 +1562,7 @@ 

Reference
-sympy.polys.ring_series.rs_is_puiseux(p, x)[source]
+sympy.polys.ring_series.rs_is_puiseux(p, x)[source]

Test if p is Puiseux series in x.

Raise an exception if it has a negative power in x.

Examples

@@ -1579,7 +1579,7 @@

Reference
-sympy.polys.ring_series.rs_puiseux(f, p, x, prec)[source]
+sympy.polys.ring_series.rs_puiseux(f, p, x, prec)[source]

Return the puiseux series for \(f(p, x, prec)\).

To be used when function f is implemented only for regular series.

Examples

@@ -1596,14 +1596,14 @@

Reference
-sympy.polys.ring_series.rs_puiseux2(f, p, q, x, prec)[source]
+sympy.polys.ring_series.rs_puiseux2(f, p, q, x, prec)[source]

Return the puiseux series for \(f(p, q, x, prec)\).

To be used when function f is implemented only for regular series.

-sympy.polys.ring_series.rs_series_from_list(p, c, x, prec, concur=1)[source]
+sympy.polys.ring_series.rs_series_from_list(p, c, x, prec, concur=1)[source]

Return a series \(sum c[n]*p**n\) modulo \(O(x**prec)\).

It reduces the number of multiplications by summing concurrently.

\(ax = [1, p, p**2, .., p**(J - 1)]\) @@ -1629,7 +1629,7 @@

Reference
-sympy.polys.ring_series.rs_fun(p, f, *args)[source]
+sympy.polys.ring_series.rs_fun(p, f, *args)[source]

Function of a multivariate series computed by substitution.

The case with f method name is used to compute \(rs\_tan\) and \(rs\_nth\_root\) of a multivariate series:

@@ -1661,14 +1661,14 @@

Reference
-sympy.polys.ring_series.mul_xin(p, i, n)[source]
+sympy.polys.ring_series.mul_xin(p, i, n)[source]

Return \(p*x_i**n\).

\(x\_i\) is the ith variable in p.

-sympy.polys.ring_series.pow_xin(p, i, n)[source]
+sympy.polys.ring_series.pow_xin(p, i, n)[source]
>>> from sympy.polys.domains import QQ
 >>> from sympy.polys.rings import ring
 >>> from sympy.polys.ring_series import pow_xin
@@ -1719,7 +1719,7 @@ 

ReferenceFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/polys/solvers.html b/dev/modules/polys/solvers.html index 63c628af0a8..d7e5ec1bb1f 100644 --- a/dev/modules/polys/solvers.html +++ b/dev/modules/polys/solvers.html @@ -805,7 +805,7 @@
Documentation Version

Low-level linear systems solver.

-sympy.polys.solvers.solve_lin_sys(eqs, ring, _raw=True)[source]
+sympy.polys.solvers.solve_lin_sys(eqs, ring, _raw=True)[source]

Solve a system of linear equations from a PolynomialRing

Parameters:
@@ -874,7 +874,7 @@
Documentation Version
-sympy.polys.solvers.eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain)[source]
+sympy.polys.solvers.eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain)[source]

Get matrix from linear equations in dict format.

Parameters:
@@ -927,7 +927,7 @@
Documentation Version
-sympy.polys.solvers.sympy_eqs_to_ring(eqs, symbols)[source]
+sympy.polys.solvers.sympy_eqs_to_ring(eqs, symbols)[source]

Convert a system of equations from Expr to a PolyRing

Parameters:
@@ -975,7 +975,7 @@
Documentation Version
-sympy.polys.solvers._solve_lin_sys(eqs_coeffs, eqs_rhs, ring)[source]
+sympy.polys.solvers._solve_lin_sys(eqs_coeffs, eqs_rhs, ring)[source]

Solve a linear system from dict of PolynomialRing coefficients

Explanation

This is an internal function used by solve_lin_sys() after the @@ -1013,7 +1013,7 @@

Documentation Version
ring,
-)[source] +)[source]

Solve a linear system from dict of PolynomialRing coefficients

Explanation

This is an internal function used by solve_lin_sys() after the @@ -1079,7 +1079,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/polys/wester.html b/dev/modules/polys/wester.html index 310dd586d50..2cf630158d3 100644 --- a/dev/modules/polys/wester.html +++ b/dev/modules/polys/wester.html @@ -1298,7 +1298,7 @@

LiteratureFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/printing.html b/dev/modules/printing.html index d8bb75c1706..61140e10d8b 100644 --- a/dev/modules/printing.html +++ b/dev/modules/printing.html @@ -1012,7 +1012,7 @@

Common mistakessource code):

-class sympy.printing.printer.Printer(settings=None)[source]
+class sympy.printing.printer.Printer(settings=None)[source]

Generic printer

Its job is to provide infrastructure for implementing new printers easily.

If you want to define your custom Printer or your custom printing method @@ -1024,7 +1024,7 @@

Common mistakes
-_print(expr, **kwargs) str[source]
+_print(expr, **kwargs) str[source]

Internal dispatcher

Tries the following concepts to print an expression:
    @@ -1038,13 +1038,13 @@

    Common mistakes
    -doprint(expr)[source]
    +doprint(expr)[source]

    Returns printer’s representation for expr (as a string)

-classmethod set_global_settings(**settings)[source]
+classmethod set_global_settings(**settings)[source]

Set system-wide printing settings.

@@ -1066,7 +1066,7 @@

PrettyPrinter Class
-class sympy.printing.pretty.pretty.PrettyPrinter(settings=None)[source]
+class sympy.printing.pretty.pretty.PrettyPrinter(settings=None)[source]

Printer, which converts an expression into 2D ASCII-art figure.

@@ -1101,7 +1101,7 @@

PrettyPrinter Class
-sympy.printing.pretty.pretty.pretty_print(expr, **kwargs)[source]
+sympy.printing.pretty.pretty.pretty_print(expr, **kwargs)[source]

Prints expr in pretty form.

pprint is just a shortcut for this function.

@@ -1186,7 +1186,7 @@

PrettyPrinter Class
-class sympy.printing.c.C89CodePrinter(settings=None)[source]
+class sympy.printing.c.C89CodePrinter(settings=None)[source]

A printer to convert Python expressions to strings of C code

@@ -1195,7 +1195,7 @@

PrettyPrinter Class
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -1203,7 +1203,7 @@

PrettyPrinter Class
-class sympy.printing.c.C99CodePrinter(settings=None)[source]
+class sympy.printing.c.C99CodePrinter(settings=None)[source]
printmethod: str = '_ccode'
@@ -1222,7 +1222,7 @@

PrettyPrinter Class**settings,

-)[source] +)[source]

Converts an expr to a string of c code

Parameters:
@@ -1370,7 +1370,7 @@

PrettyPrinter Class
-sympy.printing.c.print_ccode(expr, **settings)[source]
+sympy.printing.c.print_ccode(expr, **settings)[source]

Prints C representation of the given expression.

@@ -1389,7 +1389,7 @@

PrettyPrinter Class
-class sympy.printing.cxx.CXX98CodePrinter(settings=None)[source]
+class sympy.printing.cxx.CXX98CodePrinter(settings=None)[source]
printmethod: str = '_cxxcode'
@@ -1399,7 +1399,7 @@

PrettyPrinter Class
-class sympy.printing.cxx.CXX11CodePrinter(settings=None)[source]
+class sympy.printing.cxx.CXX11CodePrinter(settings=None)[source]
printmethod: str = '_cxxcode'
@@ -1418,7 +1418,7 @@

PrettyPrinter Class**settings,

-)[source] +)[source]

C++ equivalent of ccode().

@@ -1446,7 +1446,7 @@

PrettyPrinter Class
-class sympy.printing.rcode.RCodePrinter(settings={})[source]
+class sympy.printing.rcode.RCodePrinter(settings={})[source]

A printer to convert SymPy expressions to strings of R code

@@ -1455,7 +1455,7 @@

PrettyPrinter Class
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -1463,7 +1463,7 @@

PrettyPrinter Class
-sympy.printing.rcode.rcode(expr, assign_to=None, **settings)[source]
+sympy.printing.rcode.rcode(expr, assign_to=None, **settings)[source]

Converts an expr to a string of r code

Parameters:
@@ -1582,7 +1582,7 @@

PrettyPrinter Class
-sympy.printing.rcode.print_rcode(expr, **settings)[source]
+sympy.printing.rcode.print_rcode(expr, **settings)[source]

Prints R representation of the given expression.

@@ -1597,7 +1597,7 @@

Fortran Printing
-sympy.printing.fortran.fcode(expr, assign_to=None, **settings)[source]
+sympy.printing.fortran.fcode(expr, assign_to=None, **settings)[source]

Converts an expr to a string of fortran code

Parameters:
@@ -1733,14 +1733,14 @@

Fortran Printing
-sympy.printing.fortran.print_fcode(expr, **settings)[source]
+sympy.printing.fortran.print_fcode(expr, **settings)[source]

Prints the Fortran representation of the given expression.

See fcode for the meaning of the optional arguments.

-class sympy.printing.fortran.FCodePrinter(settings=None)[source]
+class sympy.printing.fortran.FCodePrinter(settings=None)[source]

A printer to convert SymPy expressions to strings of Fortran code

@@ -1749,7 +1749,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -1883,7 +1883,7 @@

Fortran Printingsymbol_table=None,

-)[source] +)[source]
printmethod: str = '_smtlib'
@@ -1914,7 +1914,7 @@

Fortran Printinglog_warn=None,

-)[source] +)[source]

Converts expr to a string of smtlib code.

Parameters:
@@ -2029,7 +2029,7 @@

Fortran Printing
-class sympy.printing.mathematica.MCodePrinter(settings={})[source]
+class sympy.printing.mathematica.MCodePrinter(settings={})[source]

A printer to convert Python expressions to strings of the Wolfram’s Mathematica code

@@ -2041,7 +2041,7 @@

Fortran Printing
-sympy.printing.mathematica.mathematica_code(expr, **settings)[source]
+sympy.printing.mathematica.mathematica_code(expr, **settings)[source]

Converts an expr to a string of the Wolfram Mathematica code

Examples

>>> from sympy import mathematica_code as mcode, symbols, sin
@@ -2057,7 +2057,7 @@ 

Fortran Printing

Maple code printing

-class sympy.printing.maple.MapleCodePrinter(settings=None)[source]
+class sympy.printing.maple.MapleCodePrinter(settings=None)[source]

Printer which converts a SymPy expression into a maple code.

@@ -2068,7 +2068,7 @@

Fortran Printing
-sympy.printing.maple.maple_code(expr, assign_to=None, **settings)[source]
+sympy.printing.maple.maple_code(expr, assign_to=None, **settings)[source]

Converts expr to a string of Maple code.

Parameters:
@@ -2120,7 +2120,7 @@

Fortran Printing
-sympy.printing.maple.print_maple_code(expr, **settings)[source]
+sympy.printing.maple.print_maple_code(expr, **settings)[source]

Prints the Maple representation of the given expression.

See maple_code() for the meaning of the optional arguments.

Examples

@@ -2142,7 +2142,7 @@

Fortran Printing
-class sympy.printing.jscode.JavascriptCodePrinter(settings={})[source]
+class sympy.printing.jscode.JavascriptCodePrinter(settings={})[source]

“A Printer to convert Python expressions to strings of JavaScript code

@@ -2151,7 +2151,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -2159,7 +2159,7 @@

Fortran Printing
-sympy.printing.jscode.jscode(expr, assign_to=None, **settings)[source]
+sympy.printing.jscode.jscode(expr, assign_to=None, **settings)[source]

Converts an expr to a string of javascript code

Parameters:
@@ -2293,7 +2293,7 @@

Fortran Printing
-class sympy.printing.julia.JuliaCodePrinter(settings={})[source]
+class sympy.printing.julia.JuliaCodePrinter(settings={})[source]

A printer to convert expressions to strings of Julia code.

@@ -2302,7 +2302,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -2310,7 +2310,7 @@

Fortran Printing
-sympy.printing.julia.julia_code(expr, assign_to=None, **settings)[source]
+sympy.printing.julia.julia_code(expr, assign_to=None, **settings)[source]

Converts \(expr\) to a string of Julia code.

Parameters:
@@ -2477,7 +2477,7 @@

Fortran Printing
-class sympy.printing.octave.OctaveCodePrinter(settings={})[source]
+class sympy.printing.octave.OctaveCodePrinter(settings={})[source]

A printer to convert expressions to strings of Octave/Matlab code.

@@ -2486,7 +2486,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -2494,7 +2494,7 @@

Fortran Printing
-sympy.printing.octave.octave_code(expr, assign_to=None, **settings)[source]
+sympy.printing.octave.octave_code(expr, assign_to=None, **settings)[source]

Converts \(expr\) to a string of Octave (or Matlab) code.

The string uses a subset of the Octave language for Matlab compatibility.

@@ -2654,7 +2654,7 @@

Fortran Printing
-class sympy.printing.rust.RustCodePrinter(settings={})[source]
+class sympy.printing.rust.RustCodePrinter(settings={})[source]

A printer to convert SymPy expressions to strings of Rust code

@@ -2663,7 +2663,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -2671,7 +2671,7 @@

Fortran Printing
-sympy.printing.rust.rust_code(expr, assign_to=None, **settings)[source]
+sympy.printing.rust.rust_code(expr, assign_to=None, **settings)[source]

Converts an expr to a string of Rust code

Parameters:
@@ -2798,7 +2798,7 @@

Fortran Printing

Aesara Code printing

-class sympy.printing.aesaracode.AesaraPrinter(*args, **kwargs)[source]
+class sympy.printing.aesaracode.AesaraPrinter(*args, **kwargs)[source]

Code printer which creates Aesara symbolic expression graphs.

Parameters:
@@ -2839,7 +2839,7 @@

Fortran Printingbroadcastables=None,

-)[source] +)[source]

Convert a SymPy expression to a Aesara graph variable.

The dtypes and broadcastables arguments are used to specify the data type, dimension, and broadcasting behavior of the Aesara variables @@ -2883,7 +2883,7 @@

Fortran Printing
-sympy.printing.aesaracode.aesara_code(expr, cache=None, **kwargs)[source]
+sympy.printing.aesaracode.aesara_code(expr, cache=None, **kwargs)[source]

Convert a SymPy expression into a Aesara graph variable.

Parameters:
@@ -2929,7 +2929,7 @@

Fortran Printing**kwargs,

-)[source] +)[source]

Create a Aesara function from SymPy expressions.

The inputs and outputs are converted to Aesara variables using aesara_code() and then passed to aesara.function.

@@ -3033,7 +3033,7 @@

Fortran Printingbroadcastables=None,

-)[source] +)[source]

Get value of broadcastables argument to aesara_code() from keyword arguments to aesara_function().

Included for backwards compatibility.

@@ -3084,7 +3084,7 @@

Fortran Printing
-sympy.printing.gtk.print_gtk(x, start_viewer=True)[source]
+sympy.printing.gtk.print_gtk(x, start_viewer=True)[source]

Print to Gtkmathview, a gtk widget capable of rendering MathML.

Needs libgtkmathview-bin

@@ -3096,7 +3096,7 @@

Fortran Printingsympy.utilities.lambdify.lambdify() function.

-class sympy.printing.lambdarepr.LambdaPrinter(settings=None)[source]
+class sympy.printing.lambdarepr.LambdaPrinter(settings=None)[source]

This printer converts expressions into strings that can be used by lambdify.

@@ -3108,7 +3108,7 @@

Fortran Printing
-sympy.printing.lambdarepr.lambdarepr(expr, **settings)[source]
+sympy.printing.lambdarepr.lambdarepr(expr, **settings)[source]

Returns a string usable for lambdifying.

@@ -3126,7 +3126,7 @@

Fortran Printing
-class sympy.printing.latex.LatexPrinter(settings=None)[source]
+class sympy.printing.latex.LatexPrinter(settings=None)[source]
printmethod: str = '_latex'
@@ -3134,7 +3134,7 @@

Fortran Printing
-parenthesize_super(s)[source]
+parenthesize_super(s)[source]

Protect superscripts in s

If the parenthesize_super option is set, protect with parentheses, else wrap in braces.

@@ -3437,7 +3437,7 @@

Fortran Printing
-sympy.printing.latex.print_latex(expr, **settings)[source]
+sympy.printing.latex.print_latex(expr, **settings)[source]

Prints LaTeX representation of the given expression. Takes the same settings as latex().

@@ -3449,12 +3449,12 @@

Fortran Printinghttps://www.w3.org/TR/MathML2

-class sympy.printing.mathml.MathMLPrinterBase(settings=None)[source]
+class sympy.printing.mathml.MathMLPrinterBase(settings=None)[source]

Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter.

-doprint(expr)[source]
+doprint(expr)[source]

Prints the expression as MathML.

@@ -3462,7 +3462,7 @@

Fortran Printing
-class sympy.printing.mathml.MathMLContentPrinter(settings=None)[source]
+class sympy.printing.mathml.MathMLContentPrinter(settings=None)[source]

Prints an expression to the Content MathML markup language.

References: https://www.w3.org/TR/MathML2/chapter4.html

@@ -3472,7 +3472,7 @@

Fortran Printing
-mathml_tag(e)[source]
+mathml_tag(e)[source]

Returns the MathML tag for an expression.

@@ -3480,7 +3480,7 @@

Fortran Printing
-class sympy.printing.mathml.MathMLPresentationPrinter(settings=None)[source]
+class sympy.printing.mathml.MathMLPresentationPrinter(settings=None)[source]

Prints an expression to the Presentation MathML markup language.

References: https://www.w3.org/TR/MathML2/chapter3.html

@@ -3490,7 +3490,7 @@

Fortran Printing
-mathml_tag(e)[source]
+mathml_tag(e)[source]

Returns the MathML tag for an expression.

@@ -3527,7 +3527,7 @@

Fortran Printing
-sympy.printing.mathml.print_mathml(expr, printer='content', **settings)[source]
+sympy.printing.mathml.print_mathml(expr, printer='content', **settings)[source]

Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML.

Examples

@@ -3557,13 +3557,13 @@

Fortran Printing
-class sympy.printing.pycode.MpmathPrinter(settings=None)[source]
+class sympy.printing.pycode.MpmathPrinter(settings=None)[source]

Lambda printer for mpmath which maintains precision for floats

-sympy.printing.pycode.pycode(expr, **settings)[source]
+sympy.printing.pycode.pycode(expr, **settings)[source]

Converts an expr to a string of Python code

Parameters:
@@ -3625,7 +3625,7 @@

Fortran Printingstr() or print().

-class sympy.printing.repr.ReprPrinter(settings=None)[source]
+class sympy.printing.repr.ReprPrinter(settings=None)[source]
printmethod: str = '_sympyrepr'
@@ -3633,13 +3633,13 @@

Fortran Printing
-emptyPrinter(expr)[source]
+emptyPrinter(expr)[source]

The fallback printer.

-reprify(args, sep)[source]
+reprify(args, sep)[source]

Prints each item in \(args\) and joins them with \(sep\).

@@ -3657,7 +3657,7 @@

Fortran Printing
-class sympy.printing.str.StrPrinter(settings=None)[source]
+class sympy.printing.str.StrPrinter(settings=None)[source]
printmethod: str = '_sympystr'
@@ -3725,7 +3725,7 @@

Fortran Printing
-sympy.printing.tree.pprint_nodes(subtrees)[source]
+sympy.printing.tree.pprint_nodes(subtrees)[source]

Prettyprints systems of nodes.

Examples

>>> from sympy.printing.tree import pprint_nodes
@@ -3740,7 +3740,7 @@ 

Fortran Printing
-sympy.printing.tree.print_node(node, assumptions=True)[source]
+sympy.printing.tree.print_node(node, assumptions=True)[source]

Returns information about the “node”.

This includes class name, string representation and assumptions.

@@ -3755,7 +3755,7 @@

Fortran Printing
-sympy.printing.tree.tree(node, assumptions=True)[source]
+sympy.printing.tree.tree(node, assumptions=True)[source]

Returns a tree representation of “node” as a string.

It uses print_node() together with pprint_nodes() on node.args recursively.

@@ -3779,7 +3779,7 @@

Fortran Printing
-sympy.printing.tree.print_tree(node, assumptions=True)[source]
+sympy.printing.tree.print_tree(node, assumptions=True)[source]

Prints a tree representation of “node”.

Parameters:
@@ -3880,7 +3880,7 @@

Preview
**latex_settings,

-)[source] +)[source]

View expression or LaTeX markup in PNG, DVI, PostScript or PDF form.

If the expr argument is an expression, it will be exported to LaTeX and then compiled using the available TeX distribution. The first argument, @@ -3979,7 +3979,7 @@

Preview

Implementation - Helper Classes/Functions

-sympy.printing.conventions.split_super_sub(text)[source]
+sympy.printing.conventions.split_super_sub(text)[source]

Split a symbol name into a name, superscripts and subscripts

The first part of the symbol name is considered to be its actual ‘name’, followed by super- and subscripts. Each superscript is @@ -4003,7 +4003,7 @@

Preview¶ easily translated to C or Fortran.

-class sympy.printing.codeprinter.CodePrinter(settings=None)[source]
+class sympy.printing.codeprinter.CodePrinter(settings=None)[source]

The base class for code-printing subclasses.

@@ -4012,7 +4012,7 @@

Preview
-doprint(expr, assign_to=None)[source]
+doprint(expr, assign_to=None)[source]

Print the expression as code.

Parameters:
@@ -4033,7 +4033,7 @@

Preview
-exception sympy.printing.codeprinter.AssignmentError[source]
+exception sympy.printing.codeprinter.AssignmentError[source]

Raised if an assignment variable for a loop is missing.

@@ -4065,7 +4065,7 @@

Preview
-sympy.printing.precedence.precedence(item)[source]
+sympy.printing.precedence.precedence(item)[source]

Returns the precedence of a given object.

This is the precedence for StrPrinter.

@@ -4076,38 +4076,38 @@

Preview

Pretty-Printing Implementation Helpers

-sympy.printing.pretty.pretty_symbology.U(name)[source]
+sympy.printing.pretty.pretty_symbology.U(name)[source]

Get a unicode character by name or, None if not found.

This exists because older versions of Python use older unicode databases.

-sympy.printing.pretty.pretty_symbology.pretty_use_unicode(flag=None)[source]
+sympy.printing.pretty.pretty_symbology.pretty_use_unicode(flag=None)[source]

Set whether pretty-printer should use unicode by default

-sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode()[source]
+sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode()[source]

See if unicode output is available and leverage it if possible

-sympy.printing.pretty.pretty_symbology.xstr(*args)[source]
+sympy.printing.pretty.pretty_symbology.xstr(*args)[source]

The following two functions return the Unicode version of the inputted Greek letter.

-sympy.printing.pretty.pretty_symbology.g(l)[source]
+sympy.printing.pretty.pretty_symbology.g(l)[source]
-sympy.printing.pretty.pretty_symbology.G(l)[source]
+sympy.printing.pretty.pretty_symbology.G(l)[source]
@@ -4143,21 +4143,21 @@

Preview

The following functions return Unicode vertical objects.

-sympy.printing.pretty.pretty_symbology.xobj(symb, length)[source]
+sympy.printing.pretty.pretty_symbology.xobj(symb, length)[source]

Construct spatial object of given length.

return: [] of equal-length strings

-sympy.printing.pretty.pretty_symbology.vobj(symb, height)[source]
+sympy.printing.pretty.pretty_symbology.vobj(symb, height)[source]

Construct vertical object of a given height

see: xobj

-sympy.printing.pretty.pretty_symbology.hobj(symb, width)[source]
+sympy.printing.pretty.pretty_symbology.hobj(symb, width)[source]

Construct horizontal object of a given width

see: xobj

@@ -4170,7 +4170,7 @@

Preview
-sympy.printing.pretty.pretty_symbology.VF(txt)[source]
+sympy.printing.pretty.pretty_symbology.VF(txt)[source]
@@ -4181,7 +4181,7 @@

Preview

The following constants/functions are for rendering atoms and symbols.

-sympy.printing.pretty.pretty_symbology.xsym(sym)[source]
+sympy.printing.pretty.pretty_symbology.xsym(sym)[source]

get symbology for a ‘character’

@@ -4192,19 +4192,19 @@

Preview
-sympy.printing.pretty.pretty_symbology.pretty_atom(atom_name, default=None, printer=None)[source]
+sympy.printing.pretty.pretty_symbology.pretty_atom(atom_name, default=None, printer=None)[source]

return pretty representation of an atom

-sympy.printing.pretty.pretty_symbology.pretty_symbol(symb_name, bold_name=False)[source]
+sympy.printing.pretty.pretty_symbology.pretty_symbol(symb_name, bold_name=False)[source]

return pretty representation of a symbol

-sympy.printing.pretty.pretty_symbology.annotated(letter)[source]
+sympy.printing.pretty.pretty_symbology.annotated(letter)[source]

Return a stylised drawing of the letter letter, together with information on how to put annotations (super- and subscripts to the left and to the right) on it.

@@ -4230,12 +4230,12 @@

Preview

-class sympy.printing.pretty.stringpict.stringPict(s, baseline=0)[source]
+class sympy.printing.pretty.stringpict.stringPict(s, baseline=0)[source]

An ASCII picture. The pictures are represented as a list of equal length strings.

-above(*args)[source]
+above(*args)[source]

Put pictures above this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of bottom picture.

@@ -4243,7 +4243,7 @@

Preview
-below(*args)[source]
+below(*args)[source]

Put pictures under this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of top picture

@@ -4260,26 +4260,26 @@

Preview
-height()[source]
+height()[source]

The height of the picture in characters.

-left(*args)[source]
+left(*args)[source]

Put pictures (left to right) at left. Returns string, baseline arguments for stringPict.

-leftslash()[source]
+leftslash()[source]

Precede object by a slash of the proper size.

-static next(*args)[source]
+static next(*args)[source]

Put a string of stringPicts next to each other. Returns string, baseline arguments for stringPict.

@@ -4294,7 +4294,7 @@

Preview
ifascii_nougly=False,

-)[source] +)[source]

Put parentheses around self. Returns string, baseline arguments for stringPict.

left or right can be None or empty string which means ‘no paren from @@ -4303,7 +4303,7 @@

Preview
-render(*args, **kwargs)[source]
+render(*args, **kwargs)[source]

Return the string form of self.

Unless the argument line_break is set to False, it will break the expression in a form that can be printed @@ -4312,7 +4312,7 @@

Preview
-right(*args)[source]
+right(*args)[source]

Put pictures next to this one. Returns string, baseline arguments for stringPict. (Multiline) strings are allowed, and are given a baseline of 0.

@@ -4328,14 +4328,14 @@

Preview
-root(n=None)[source]
+root(n=None)[source]

Produce a nice root symbol. Produces ugly results for big n inserts.

-static stack(*args)[source]
+static stack(*args)[source]

Put pictures on top of each other, from top to bottom. Returns string, baseline arguments for stringPict. @@ -4348,13 +4348,13 @@

Preview
-terminal_width()[source]
+terminal_width()[source]

Return the terminal width if possible, otherwise return 0.

-width()[source]
+width()[source]

The width of the picture in characters.

@@ -4362,7 +4362,7 @@

Preview
-class sympy.printing.pretty.stringpict.prettyForm(s, baseline=0, binding=0, unicode=None)[source]
+class sympy.printing.pretty.stringpict.prettyForm(s, baseline=0, binding=0, unicode=None)[source]

Extension of the stringPict class that knows about basic math applications, optimizing double minus signs.

“Binding” is interpreted as follows:

@@ -4380,7 +4380,7 @@

Preview

-static apply(function, *args)[source]
+static apply(function, *args)[source]

Functions of one or more variables.

@@ -4407,7 +4407,7 @@

dotprint
**kwargs,

-)[source] +)[source]

DOT description of a SymPy expression tree

Parameters:
@@ -4530,7 +4530,7 @@

dotprint Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/rewriting.html b/dev/modules/rewriting.html index 9c78de174b8..0c68e519331 100644 --- a/dev/modules/rewriting.html +++ b/dev/modules/rewriting.html @@ -914,7 +914,7 @@

Common Subexpression Detection and Collectionlist=True,

-)[source] +)[source]

Perform common subexpression elimination on an expression.

Parameters:
@@ -1046,7 +1046,7 @@

Common Subexpression Detection and CollectionFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/series/formal.html b/dev/modules/series/formal.html index 755bd49cb6d..2bd665a0dbc 100644 --- a/dev/modules/series/formal.html +++ b/dev/modules/series/formal.html @@ -803,7 +803,7 @@

Formal Power Series
-class sympy.series.formal.FormalPowerSeries(*args)[source]
+class sympy.series.formal.FormalPowerSeries(*args)[source]

Represents Formal Power Series of a function.

Explanation

No computation is performed. This class should only to be used to represent @@ -815,7 +815,7 @@

Formal Power Series
-coeff_bell(n)[source]
+coeff_bell(n)[source]

self.coeff_bell(n) returns a sequence of Bell polynomials of the second kind. Note that n should be a integer.

The second kind of Bell polynomials (are sometimes called “partial” Bell @@ -841,7 +841,7 @@

Formal Power Series
-compose(other, x=None, n=6)[source]
+compose(other, x=None, n=6)[source]

Returns the truncated terms of the formal power series of the composed function, up to specified n.

@@ -897,7 +897,7 @@

Formal Power Series
-integrate(x=None, **kwargs)[source]
+integrate(x=None, **kwargs)[source]

Integrate Formal Power Series.

Examples

>>> from sympy import fps, sin, integrate
@@ -913,7 +913,7 @@ 

Formal Power Series
-inverse(x=None, n=6)[source]
+inverse(x=None, n=6)[source]

Returns the truncated terms of the inverse of the formal power series, up to specified n.

@@ -963,7 +963,7 @@

Formal Power Series
-polynomial(n=6)[source]
+polynomial(n=6)[source]

Truncated series as polynomial.

Explanation

Returns series expansion of f upto order O(x**n) @@ -972,7 +972,7 @@

Formal Power Series
-product(other, x=None, n=6)[source]
+product(other, x=None, n=6)[source]

Multiplies two Formal Power Series, using discrete convolution and return the truncated terms upto specified order.

@@ -1003,7 +1003,7 @@

Formal Power Series
-truncate(n=6)[source]
+truncate(n=6)[source]

Truncated series.

Explanation

Returns truncated series expansion of f upto @@ -1028,7 +1028,7 @@

Formal Power Seriesfull=False,

-)[source] +)[source]

Generates Formal Power Series of f.

Parameters:
@@ -1116,7 +1116,7 @@

Formal Power Seriesfull=False,

-)[source] +)[source]

Computes the formula for Formal Power Series of a function.

Parameters:
@@ -1186,7 +1186,7 @@

Formal Power Series
-class sympy.series.formal.FormalPowerSeriesCompose(*args)[source]
+class sympy.series.formal.FormalPowerSeriesCompose(*args)[source]

Represents the composed formal power series of two functions.

Explanation

No computation is performed. Terms are calculated using a term by term logic, @@ -1211,7 +1211,7 @@

Formal Power Series
-class sympy.series.formal.FormalPowerSeriesInverse(*args)[source]
+class sympy.series.formal.FormalPowerSeriesInverse(*args)[source]

Represents the Inverse of a formal power series.

Explanation

No computation is performed. Terms are calculated using a term by term logic, @@ -1234,7 +1234,7 @@

Formal Power Series
-class sympy.series.formal.FormalPowerSeriesProduct(*args)[source]
+class sympy.series.formal.FormalPowerSeriesProduct(*args)[source]

Represents the product of two formal power series of two functions.

Explanation

No computation is performed. Terms are calculated using a term by term logic, @@ -1257,7 +1257,7 @@

Formal Power Series
-class sympy.series.formal.FiniteFormalPowerSeries(*args)[source]
+class sympy.series.formal.FiniteFormalPowerSeries(*args)[source]

Base Class for Product, Compose and Inverse classes

@@ -1265,7 +1265,7 @@

Formal Power Series

-sympy.series.formal.rational_independent(terms, x)[source]
+sympy.series.formal.rational_independent(terms, x)[source]

Returns a list of all the rationally independent terms.

Examples

>>> from sympy import sin, cos
@@ -1283,7 +1283,7 @@ 

Rational Algorithm
-sympy.series.formal.rational_algorithm(f, x, k, order=4, full=False)[source]
+sympy.series.formal.rational_algorithm(f, x, k, order=4, full=False)[source]

Rational algorithm for computing formula of coefficients of Formal Power Series of a function.

@@ -1359,7 +1359,7 @@

Rational Algorithm

-sympy.series.formal.simpleDE(f, x, g, order=4)[source]
+sympy.series.formal.simpleDE(f, x, g, order=4)[source]

Generates simple DE.

Explanation

DE is of the form

@@ -1375,7 +1375,7 @@

Hypergeometric Algorithm
-sympy.series.formal.exp_re(DE, r, k)[source]
+sympy.series.formal.exp_re(DE, r, k)[source]

Converts a DE with constant coefficients (explike) into a RE.

Explanation

Performs the substitution:

@@ -1405,7 +1405,7 @@

Hypergeometric Algorithm
-sympy.series.formal.hyper_re(DE, r, k)[source]
+sympy.series.formal.hyper_re(DE, r, k)[source]

Converts a DE into a RE.

Explanation

Performs the substitution:

@@ -1435,7 +1435,7 @@

Hypergeometric Algorithm
-sympy.series.formal.rsolve_hypergeometric(f, x, P, Q, k, m)[source]
+sympy.series.formal.rsolve_hypergeometric(f, x, P, Q, k, m)[source]

Solves RE of hypergeometric type.

Returns:
@@ -1491,7 +1491,7 @@

Hypergeometric Algorithm
-sympy.series.formal.solve_de(f, x, DE, order, g, k)[source]
+sympy.series.formal.solve_de(f, x, DE, order, g, k)[source]

Solves the DE.

Returns:
@@ -1527,7 +1527,7 @@

Hypergeometric Algorithm
-sympy.series.formal.hyper_algorithm(f, x, k, order=4)[source]
+sympy.series.formal.hyper_algorithm(f, x, k, order=4)[source]

Hypergeometric algorithm for computing Formal Power Series.

Explanation

@@ -1599,7 +1599,7 @@

Hypergeometric AlgorithmFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/series/fourier.html b/dev/modules/series/fourier.html index 301318a5298..bc112ebe4e0 100644 --- a/dev/modules/series/fourier.html +++ b/dev/modules/series/fourier.html @@ -803,7 +803,7 @@

Fourier Series
-class sympy.series.fourier.FourierSeries(*args)[source]
+class sympy.series.fourier.FourierSeries(*args)[source]

Represents Fourier sine/cosine series.

Explanation

This class only represents a fourier series. @@ -816,7 +816,7 @@

Fourier Series
-scale(s)[source]
+scale(s)[source]

Scale the function by a term independent of x.

Explanation

f(x) -> s * f(x)

@@ -834,7 +834,7 @@

Fourier Series
-scalex(s)[source]
+scalex(s)[source]

Scale x by a term independent of x.

Explanation

f(x) -> f(s*x)

@@ -852,7 +852,7 @@

Fourier Series
-shift(s)[source]
+shift(s)[source]

Shift the function by a term independent of x.

Explanation

f(x) -> f(x) + s

@@ -870,7 +870,7 @@

Fourier Series
-shiftx(s)[source]
+shiftx(s)[source]

Shift x by a term independent of x.

Explanation

f(x) -> f(x + s)

@@ -888,7 +888,7 @@

Fourier Series
-sigma_approximation(n=3)[source]
+sigma_approximation(n=3)[source]

Return \(\sigma\)-approximation of Fourier series with respect to order n.

@@ -955,7 +955,7 @@

Fourier Series
-truncate(n=3)[source]
+truncate(n=3)[source]

Return the first n nonzero terms of the series.

If n is None return an iterator.

@@ -990,7 +990,7 @@

Fourier Series
-sympy.series.fourier.fourier_series(f, limits=None, finite=True)[source]
+sympy.series.fourier.fourier_series(f, limits=None, finite=True)[source]

Computes the Fourier trigonometric series expansion.

Parameters:
@@ -1185,7 +1185,7 @@

Fourier SeriesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/series/index.html b/dev/modules/series/index.html index 30a4fc26765..de2f0d26fcb 100644 --- a/dev/modules/series/index.html +++ b/dev/modules/series/index.html @@ -851,7 +851,7 @@

Contents Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/series/limitseq.html b/dev/modules/series/limitseq.html index 93aa33d2f3e..190caa0608c 100644 --- a/dev/modules/series/limitseq.html +++ b/dev/modules/series/limitseq.html @@ -803,7 +803,7 @@

Limits of Sequences
-sympy.series.limitseq.difference_delta(expr, n=None, step=1)[source]
+sympy.series.limitseq.difference_delta(expr, n=None, step=1)[source]

Difference Operator.

Explanation

Discrete analog of differential operator. Given a sequence x[n], @@ -828,7 +828,7 @@

Limits of Sequences
-sympy.series.limitseq.dominant(expr, n)[source]
+sympy.series.limitseq.dominant(expr, n)[source]

Finds the dominant term in a sum, that is a term that dominates every other term.

Explanation

@@ -854,7 +854,7 @@

Limits of Sequences
-sympy.series.limitseq.limit_seq(expr, n=None, trials=5)[source]
+sympy.series.limitseq.limit_seq(expr, n=None, trials=5)[source]

Finds the limit of a sequence as index n tends to infinity.

Parameters:
@@ -942,7 +942,7 @@

Limits of SequencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/series/sequences.html b/dev/modules/series/sequences.html index b509d175a90..b4f2dd51314 100644 --- a/dev/modules/series/sequences.html +++ b/dev/modules/series/sequences.html @@ -803,7 +803,7 @@

Sequences
-sympy.series.sequences.sequence(seq, limits=None)[source]
+sympy.series.sequences.sequence(seq, limits=None)[source]

Returns appropriate sequence object.

Explanation

If seq is a SymPy sequence, returns SeqPer object @@ -827,17 +827,17 @@

Sequences

-class sympy.series.sequences.SeqBase(*args)[source]
+class sympy.series.sequences.SeqBase(*args)[source]

Base class for sequences

-coeff(pt)[source]
+coeff(pt)[source]

Returns the coefficient at point pt

-coeff_mul(other)[source]
+coeff_mul(other)[source]

Should be used when other is not a sequence. Should be defined to define custom behaviour.

Examples

@@ -861,7 +861,7 @@

Sequences Basegfvar=None,

-)[source] +)[source]

Finds the shortest linear recurrence that satisfies the first n terms of sequence of order \(\leq\) n/2 if possible. If d is specified, find shortest linear recurrence of order @@ -951,7 +951,7 @@

Sequences Base

-class sympy.series.sequences.SeqFormula(formula, limits=None)[source]
+class sympy.series.sequences.SeqFormula(formula, limits=None)[source]

Represents sequence based on a formula.

Elements are generated using a formula.

Examples

@@ -988,7 +988,7 @@

Elementary Sequences
-coeff_mul(coeff)[source]
+coeff_mul(coeff)[source]

See docstring of SeqBase.coeff_mul

@@ -996,7 +996,7 @@

Elementary Sequences
-class sympy.series.sequences.SeqPer(periodical, limits=None)[source]
+class sympy.series.sequences.SeqPer(periodical, limits=None)[source]

Represents a periodic sequence.

The elements are repeated after a given period.

Examples

@@ -1042,7 +1042,7 @@

Elementary Sequences
-coeff_mul(coeff)[source]
+coeff_mul(coeff)[source]

See docstring of SeqBase.coeff_mul

@@ -1053,7 +1053,7 @@

Elementary SequencesSingleton Sequences

-class sympy.series.sequences.EmptySequence[source]
+class sympy.series.sequences.EmptySequence[source]

Represents an empty sequence.

The empty sequence is also available as a singleton as S.EmptySequence.

@@ -1072,7 +1072,7 @@

Singleton Sequences
-coeff_mul(coeff)[source]
+coeff_mul(coeff)[source]

See docstring of SeqBase.coeff_mul

@@ -1083,7 +1083,7 @@

Singleton Sequences

-class sympy.series.sequences.SeqAdd(*args, **kwargs)[source]
+class sympy.series.sequences.SeqAdd(*args, **kwargs)[source]

Represents term-wise addition of sequences.

Rules:
-)[source] +)[source]

A finite degree recursive sequence.

Parameters:
@@ -1349,7 +1349,7 @@

Recursive SequencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/series/series.html b/dev/modules/series/series.html index 34e33881517..8beed479782 100644 --- a/dev/modules/series/series.html +++ b/dev/modules/series/series.html @@ -805,7 +805,7 @@

LimitsThe main purpose of this module is the computation of limits.

-sympy.series.limits.limit(e, z, z0, dir='+')[source]
+sympy.series.limits.limit(e, z, z0, dir='+')[source]

Computes the limit of e(z) at the point z0.

Parameters:
@@ -859,7 +859,7 @@

Limits
-class sympy.series.limits.Limit(e, z, z0, dir='+')[source]
+class sympy.series.limits.Limit(e, z, z0, dir='+')[source]

Represents an unevaluated limit.

Examples

>>> from sympy import Limit, sin
@@ -872,7 +872,7 @@ 

Limits
-doit(**hints)[source]
+doit(**hints)[source]

Evaluates the limit.

Parameters:
@@ -968,7 +968,7 @@

Notes

Reference

-sympy.series.gruntz.gruntz(e, z, z0, dir='+')[source]
+sympy.series.gruntz.gruntz(e, z, z0, dir='+')[source]

Compute the limit of e(z) at the point z0 using the Gruntz algorithm.

Explanation

z0 can be any expression, including oo and -oo.

@@ -982,13 +982,13 @@

Reference
-sympy.series.gruntz.compare(a, b, x)[source]
+sympy.series.gruntz.compare(a, b, x)[source]

Returns “<” if a<b, “=” for a == b, “>” for a>b

-sympy.series.gruntz.rewrite(e, Omega, x, wsym)[source]
+sympy.series.gruntz.rewrite(e, Omega, x, wsym)[source]

e(x) … the function Omega … the mrv set wsym … the symbol which is going to be used for w

@@ -998,7 +998,7 @@

Reference
-sympy.series.gruntz.build_expression_tree(Omega, rewrites)[source]
+sympy.series.gruntz.build_expression_tree(Omega, rewrites)[source]

Helper function for rewrite.

We need to sort Omega (mrv set) so that we replace an expression before we replace any expression in terms of which it has to be rewritten:

@@ -1014,26 +1014,26 @@

Reference
-sympy.series.gruntz.mrv_leadterm(e, x)[source]
+sympy.series.gruntz.mrv_leadterm(e, x)[source]

Returns (c0, e0) for e.

-sympy.series.gruntz.calculate_series(e, x, logx=None)[source]
+sympy.series.gruntz.calculate_series(e, x, logx=None)[source]

Calculates at least one term of the series of e in x.

This is a place that fails most often, so it is in its own function.

-sympy.series.gruntz.limitinf(e, x)[source]
+sympy.series.gruntz.limitinf(e, x)[source]

Limit e(x) for x-> oo.

-sympy.series.gruntz.sign(e, x)[source]
+sympy.series.gruntz.sign(e, x)[source]

Returns a sign of an expression e(x) for x->oo.

e >  0 for x sufficiently large ...  1
 e == 0 for x sufficiently large ...  0
@@ -1049,14 +1049,14 @@ 

Reference
-sympy.series.gruntz.mrv(e, x)[source]
+sympy.series.gruntz.mrv(e, x)[source]

Returns a SubsSet of most rapidly varying (mrv) subexpressions of ‘e’, and e rewritten in terms of these

-sympy.series.gruntz.mrv_max1(f, g, exps, x)[source]
+sympy.series.gruntz.mrv_max1(f, g, exps, x)[source]

Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. mrv_max1() compares (two elements of) f and g and returns the set, which is in the higher comparability class @@ -1066,7 +1066,7 @@

Reference
-sympy.series.gruntz.mrv_max3(f, expsf, g, expsg, union, expsboth, x)[source]
+sympy.series.gruntz.mrv_max3(f, expsf, g, expsg, union, expsboth, x)[source]

Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. max() compares (two elements of) f and g and returns either (f, expsf) [if f is larger], (g, expsg) @@ -1075,7 +1075,7 @@

Reference
-class sympy.series.gruntz.SubsSet[source]
+class sympy.series.gruntz.SubsSet[source]

Stores (expr, dummy) pairs, and how to rewrite expr-s.

Explanation

The gruntz algorithm needs to rewrite certain expressions in term of a new @@ -1119,25 +1119,25 @@

Reference
-copy()[source]
+copy()[source]

Create a shallow copy of SubsSet

-do_subs(e)[source]
+do_subs(e)[source]

Substitute the variables with expressions

-meets(s2)[source]
+meets(s2)[source]

Tell whether or not self and s2 have non-empty intersection

-union(s2, exps=None)[source]
+union(s2, exps=None)[source]

Compute the union of self and s2, adjusting exps

@@ -1164,7 +1164,7 @@

Examples

Reference

-sympy.series.series.series(expr, x=None, x0=0, n=6, dir='+')[source]
+sympy.series.series.series(expr, x=None, x0=0, n=6, dir='+')[source]

Series expansion of expr around point \(x = x0\).

Parameters:
@@ -1253,7 +1253,7 @@

ExamplesReference

-class sympy.series.order.Order(expr, *args, **kwargs)[source]
+class sympy.series.order.Order(expr, *args, **kwargs)[source]

Represents the limiting behavior of some function.

Explanation

The order of a function characterizes the function based on the limiting @@ -1361,7 +1361,7 @@

Reference
-contains(expr)[source]
+contains(expr)[source]

Return True if expr belongs to Order(self.expr, *self.variables). Return False if self belongs to expr. Return None if the inclusion relation cannot be determined @@ -1379,7 +1379,7 @@

Series Acceleration

-sympy.series.acceleration.richardson(A, k, n, N)[source]
+sympy.series.acceleration.richardson(A, k, n, N)[source]

Calculate an approximation for lim k->oo A(k) using Richardson extrapolation with the terms A(n), A(n+1), …, A(n+N+1). Choosing N ~= 2*n often gives good results.

@@ -1425,7 +1425,7 @@

Reference
-sympy.series.acceleration.shanks(A, k, n, m=1)[source]
+sympy.series.acceleration.shanks(A, k, n, m=1)[source]

Calculate an approximation for lim k->oo A(k) using the n-term Shanks transformation S(A)(n). With m > 1, calculate the m-fold recursive Shanks transformation S(S(…S(A)…))(n).

@@ -1455,7 +1455,7 @@

Residues

Reference

-sympy.series.residues.residue(expr, x, x0)[source]
+sympy.series.residues.residue(expr, x, x0)[source]

Finds the residue of expr at the point x=x0.

The residue is defined as the coefficient of 1/(x-x0) in the power series expansion about x=x0.

@@ -1519,7 +1519,7 @@

ReferenceFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/sets.html b/dev/modules/sets.html index 2390f8f8432..694da81c1e8 100644 --- a/dev/modules/sets.html +++ b/dev/modules/sets.html @@ -804,7 +804,7 @@
Documentation Version

Basic Sets

-class sympy.sets.sets.Set(*args)[source]
+class sympy.sets.sets.Set(*args)[source]

The base class for any kind of set.

Explanation

This is not meant to be used directly as a container of items. It does not @@ -857,7 +857,7 @@

Documentation Version
-complement(universe)[source]
+complement(universe)[source]

The complement of ‘self’ w.r.t the given universe.

Examples

>>> from sympy import Interval, S
@@ -873,7 +873,7 @@ 
Documentation Version
-contains(other)[source]
+contains(other)[source]

Returns a SymPy value indicating whether other is contained in self: true if it is, false if it is not, else an unevaluated Contains expression (or, as in the case of @@ -940,7 +940,7 @@

Documentation Version
-intersect(other)[source]
+intersect(other)[source]

Returns the intersection of ‘self’ and ‘other’.

Examples

>>> from sympy import Interval
@@ -961,7 +961,7 @@ 
Documentation Version
-intersection(other)[source]
+intersection(other)[source]

Alias for intersect()

@@ -983,7 +983,7 @@
Documentation Version
-is_disjoint(other)[source]
+is_disjoint(other)[source]

Returns True if self and other are disjoint.

Examples

>>> from sympy import Interval
@@ -1023,7 +1023,7 @@ 
Documentation Version
-is_proper_subset(other)[source]
+is_proper_subset(other)[source]

Returns True if self is a proper subset of other.

Examples

>>> from sympy import Interval
@@ -1037,7 +1037,7 @@ 
Documentation Version
-is_proper_superset(other)[source]
+is_proper_superset(other)[source]

Returns True if self is a proper superset of other.

Examples

>>> from sympy import Interval
@@ -1051,7 +1051,7 @@ 
Documentation Version
-is_subset(other)[source]
+is_subset(other)[source]

Returns True if self is a subset of other.

Examples

>>> from sympy import Interval
@@ -1065,7 +1065,7 @@ 
Documentation Version
-is_superset(other)[source]
+is_superset(other)[source]

Returns True if self is a superset of other.

Examples

>>> from sympy import Interval
@@ -1079,19 +1079,19 @@ 
Documentation Version
-isdisjoint(other)[source]
+isdisjoint(other)[source]

Alias for is_disjoint()

-issubset(other)[source]
+issubset(other)[source]

Alias for is_subset()

-issuperset(other)[source]
+issuperset(other)[source]

Alias for is_superset()

@@ -1171,7 +1171,7 @@
Documentation Version
-powerset()[source]
+powerset()[source]

Find the Power set of self.

Examples

>>> from sympy import EmptySet, FiniteSet, Interval
@@ -1220,7 +1220,7 @@ 
Documentation Version
-symmetric_difference(other)[source]
+symmetric_difference(other)[source]

Returns symmetric difference of self and other.

Examples

>>> from sympy import Interval, S
@@ -1246,7 +1246,7 @@ 
Documentation Version
-union(other)[source]
+union(other)[source]

Returns the union of self and other.

Examples

As a shortcut it is possible to use the + operator:

@@ -1272,7 +1272,7 @@
Documentation Version
-sympy.sets.sets.imageset(*args)[source]
+sympy.sets.sets.imageset(*args)[source]

Return an image of the set under transformation f.

Explanation

If this function cannot compute the image, it returns an @@ -1332,7 +1332,7 @@

Elementary Setsright_open=False,

-)[source] +)[source]

Represents a real interval as a Set.

Usage:

Returns an interval with end points start and end.

@@ -1376,19 +1376,19 @@

Elementary Sets
-classmethod Lopen(a, b)[source]
+classmethod Lopen(a, b)[source]

Return an interval not including the left boundary.

-classmethod Ropen(a, b)[source]
+classmethod Ropen(a, b)[source]

Return an interval not including the right boundary.

-as_relational(x)[source]
+as_relational(x)[source]

Rewrite an interval in terms of inequalities and logic operators.

@@ -1433,7 +1433,7 @@

Elementary Sets
-classmethod open(a, b)[source]
+classmethod open(a, b)[source]

Return an interval including neither boundary.

@@ -1468,7 +1468,7 @@

Elementary Sets
-class sympy.sets.sets.FiniteSet(*args, **kwargs)[source]
+class sympy.sets.sets.FiniteSet(*args, **kwargs)[source]

Represents a finite set of Sympy expressions.

Examples

>>> from sympy import FiniteSet, Symbol, Interval, Naturals0
@@ -1499,7 +1499,7 @@ 

Elementary Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite a FiniteSet in terms of equalities and logic operators.

@@ -1510,7 +1510,7 @@

Elementary Sets

-class sympy.sets.sets.Union(*args, **kwargs)[source]
+class sympy.sets.sets.Union(*args, **kwargs)[source]

Represents a union of sets as a Set.

Examples

>>> from sympy import Union, Interval
@@ -1537,7 +1537,7 @@ 

Compound Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite a Union in terms of equalities and logic operators.

@@ -1545,7 +1545,7 @@

Compound Sets
-class sympy.sets.sets.Intersection(*args, evaluate=None)[source]
+class sympy.sets.sets.Intersection(*args, evaluate=None)[source]

Represents an intersection of sets as a Set.

Examples

>>> from sympy import Intersection, Interval
@@ -1571,7 +1571,7 @@ 

Compound Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite an Intersection in terms of equalities and logic operators

@@ -1579,7 +1579,7 @@

Compound Sets
-class sympy.sets.sets.ProductSet(*sets, **assumptions)[source]
+class sympy.sets.sets.ProductSet(*sets, **assumptions)[source]

Represents a Cartesian Product of Sets.

Explanation

Returns a Cartesian product given several sets as either an iterable @@ -1644,7 +1644,7 @@

Compound Sets
-class sympy.sets.sets.Complement(a, b, evaluate=True)[source]
+class sympy.sets.sets.Complement(a, b, evaluate=True)[source]

Represents the set difference or relative complement of a set with another set.

@@ -1671,14 +1671,14 @@

Compound Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite a complement in terms of equalities and logic operators

-static reduce(A, B)[source]
+static reduce(A, B)[source]

Simplify a Complement.

@@ -1686,7 +1686,7 @@

Compound Sets
-class sympy.sets.sets.SymmetricDifference(a, b, evaluate=True)[source]
+class sympy.sets.sets.SymmetricDifference(a, b, evaluate=True)[source]

Represents the set of elements which are in either of the sets and not in their intersection.

Examples

@@ -1708,7 +1708,7 @@

Compound Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite a symmetric_difference in terms of equalities and logic operators

@@ -1717,7 +1717,7 @@

Compound Sets
-class sympy.sets.sets.DisjointUnion(*sets)[source]
+class sympy.sets.sets.DisjointUnion(*sets)[source]

Represents the disjoint union (also known as the external disjoint union) of a finite number of sets.

Examples

@@ -1744,7 +1744,7 @@

Compound Sets

-class sympy.sets.sets.EmptySet[source]
+class sympy.sets.sets.EmptySet[source]

Represents the empty set. The empty set is available as a singleton as S.EmptySet.

Examples

@@ -1772,7 +1772,7 @@

Singleton Sets
-class sympy.sets.sets.UniversalSet[source]
+class sympy.sets.sets.UniversalSet[source]

Represents the set of all things. The universal set is available as a singleton as S.UniversalSet.

Examples

@@ -1803,7 +1803,7 @@

Singleton Sets

Special Sets

-class sympy.sets.fancysets.Rationals[source]
+class sympy.sets.fancysets.Rationals[source]

Represents the rational numbers. This set is also available as the singleton S.Rationals.

Examples

@@ -1819,7 +1819,7 @@

Singleton Sets
-class sympy.sets.fancysets.Naturals[source]
+class sympy.sets.fancysets.Naturals[source]

Represents the natural numbers (or counting numbers) which are all positive integers starting from 1. This set is also available as the singleton S.Naturals.

@@ -1851,7 +1851,7 @@

Singleton Sets
-class sympy.sets.fancysets.Naturals0[source]
+class sympy.sets.fancysets.Naturals0[source]

Represents the whole numbers which are all the non-negative integers, inclusive of zero.

@@ -1867,7 +1867,7 @@

Singleton Sets
-class sympy.sets.fancysets.Integers[source]
+class sympy.sets.fancysets.Integers[source]

Represents all integers: positive, negative and zero. This set is also available as the singleton S.Integers.

Examples

@@ -1902,7 +1902,7 @@

Singleton Sets
-class sympy.sets.fancysets.Reals[source]
+class sympy.sets.fancysets.Reals[source]

Represents all real numbers from negative infinity to positive infinity, including all integer, rational and irrational numbers. @@ -1929,7 +1929,7 @@

Singleton Sets
-class sympy.sets.fancysets.Complexes[source]
+class sympy.sets.fancysets.Complexes[source]

The Set of all complex numbers

Examples

>>> from sympy import S, I
@@ -1947,7 +1947,7 @@ 

Singleton Sets
-class sympy.sets.fancysets.ImageSet(flambda, *sets)[source]
+class sympy.sets.fancysets.ImageSet(flambda, *sets)[source]

Image of a set under a mathematical function. The transformation must be given as a Lambda function which has as many arguments as the elements of the set upon which it operates, e.g. 1 argument @@ -2005,7 +2005,7 @@

Singleton Sets
-class sympy.sets.fancysets.Range(*args)[source]
+class sympy.sets.fancysets.Range(*args)[source]

Represents a range of integers. Can be called as Range(stop), Range(start, stop), or Range(start, stop, step); when step is not given it defaults to 1.

@@ -2087,7 +2087,7 @@

Singleton Sets
-as_relational(x)[source]
+as_relational(x)[source]

Rewrite a Range in terms of equalities and logic operators.

@@ -2107,7 +2107,7 @@

Singleton Sets
-class sympy.sets.fancysets.ComplexRegion(sets, polar=False)[source]
+class sympy.sets.fancysets.ComplexRegion(sets, polar=False)[source]

Represents the Set of all Complex Numbers. It can represent a region of Complex Plane in both the standard forms Polar and Rectangular coordinates.

@@ -2235,7 +2235,7 @@

Singleton Sets
-classmethod from_real(sets)[source]
+classmethod from_real(sets)[source]

Converts given subset of real numbers to a complex region.

Examples

>>> from sympy import Interval, ComplexRegion
@@ -2288,7 +2288,7 @@ 

Singleton Sets
-class sympy.sets.fancysets.CartesianComplexRegion(sets)[source]
+class sympy.sets.fancysets.CartesianComplexRegion(sets)[source]

Set representing a square region of the complex plane.

@@ -2311,7 +2311,7 @@

Singleton Sets
-class sympy.sets.fancysets.PolarComplexRegion(sets)[source]
+class sympy.sets.fancysets.PolarComplexRegion(sets)[source]

Set representing a polar region of the complex plane.

@@ -2336,7 +2336,7 @@

Singleton Sets
-sympy.sets.fancysets.normalize_theta_set(theta)[source]
+sympy.sets.fancysets.normalize_theta_set(theta)[source]

Normalize a Real Set \(theta\) in the interval \([0, 2\pi)\). It returns a normalized value of theta in the Set. For Interval, a maximum of one cycle \([0, 2\pi]\), is returned i.e. for theta equal to \([0, 10\pi]\), @@ -2383,7 +2383,7 @@

Singleton Sets

Power sets

-class sympy.sets.powerset.PowerSet(arg, evaluate=None)[source]
+class sympy.sets.powerset.PowerSet(arg, evaluate=None)[source]

A symbolic object representing a power set.

Parameters:
@@ -2457,7 +2457,7 @@

Singleton Setsbase_set=UniversalSet,

-)[source] +)[source]

Set of elements which satisfies a given condition.

@@ -2527,7 +2527,7 @@

Singleton Sets
-class sympy.sets.conditionset.Contains(x, s, evaluate=None)[source]
+class sympy.sets.conditionset.Contains(x, s, evaluate=None)[source]

Asserts that x is an element of the set S.

Examples

>>> from sympy import Symbol, Integer, S, Contains
@@ -2554,7 +2554,7 @@ 

Singleton Sets

-class sympy.sets.conditionset.SetKind(element_kind=None)[source]
+class sympy.sets.conditionset.SetKind(element_kind=None)[source]

SetKind is kind for all Sets

Every instance of Set will have kind SetKind parametrised by the kind of the elements of the Set. The kind of the elements might be @@ -2646,7 +2646,7 @@

Iteration over setsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/simplify/fu.html b/dev/modules/simplify/fu.html index dbf34d9dd4f..6078a9bb6c9 100644 --- a/dev/modules/simplify/fu.html +++ b/dev/modules/simplify/fu.html @@ -969,14 +969,14 @@
Documentation Version

Rules

-sympy.simplify.fu.TR0(rv)[source]
+sympy.simplify.fu.TR0(rv)[source]

Simplification of rational polynomials, trying to simplify the expression, e.g. combine things like 3*x + 2*x, etc….

-sympy.simplify.fu.TR1(rv)[source]
+sympy.simplify.fu.TR1(rv)[source]

Replace sec, csc with 1/cos, 1/sin

Examples

>>> from sympy.simplify.fu import TR1, sec, csc
@@ -989,7 +989,7 @@ 

Rules
-sympy.simplify.fu.TR2(rv)[source]
+sympy.simplify.fu.TR2(rv)[source]

Replace tan and cot with sin/cos and cos/sin

Examples

>>> from sympy.simplify.fu import TR2
@@ -1007,7 +1007,7 @@ 

Rules
-sympy.simplify.fu.TR2i(rv, half=False)[source]
+sympy.simplify.fu.TR2i(rv, half=False)[source]
Converts ratios involving sin and cos as follows::

sin(x)/cos(x) -> tan(x) sin(x)/(cos(x) + 1) -> tan(x/2) if half=True

@@ -1037,7 +1037,7 @@

Rules
-sympy.simplify.fu.TR3(rv)[source]
+sympy.simplify.fu.TR3(rv)[source]

Induced formula: example sin(-a) = -sin(a)

Examples

>>> from sympy.simplify.fu import TR3
@@ -1056,7 +1056,7 @@ 

Rules
-sympy.simplify.fu.TR4(rv)[source]
+sympy.simplify.fu.TR4(rv)[source]

Identify values of special angles.

A= 0 Pi/6 Pi/4 Pi/3 Pi/2

sin(a) 0 1/2 sqrt(2)/2 sqrt(3)/2 1 @@ -1079,7 +1079,7 @@

Rules
-sympy.simplify.fu.TR5(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR5(rv, max=4, pow=False)[source]

Replacement of sin**2 with 1 - cos(x)**2.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1098,7 +1098,7 @@

Rules
-sympy.simplify.fu.TR6(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR6(rv, max=4, pow=False)[source]

Replacement of cos**2 with 1 - sin(x)**2.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1117,7 +1117,7 @@

Rules
-sympy.simplify.fu.TR7(rv)[source]
+sympy.simplify.fu.TR7(rv)[source]

Lowering the degree of cos(x)**2.

Examples

>>> from sympy.simplify.fu import TR7
@@ -1133,7 +1133,7 @@ 

Rules
-sympy.simplify.fu.TR8(rv, first=True)[source]
+sympy.simplify.fu.TR8(rv, first=True)[source]

Converting products of cos and/or sin to a sum or difference of cos and or sin terms.

Examples

@@ -1151,7 +1151,7 @@

Rules
-sympy.simplify.fu.TR9(rv)[source]
+sympy.simplify.fu.TR9(rv)[source]

Sum of cos or sin terms as a product of cos or sin.

Examples

>>> from sympy.simplify.fu import TR9
@@ -1174,7 +1174,7 @@ 

Rules
-sympy.simplify.fu.TR10(rv, first=True)[source]
+sympy.simplify.fu.TR10(rv, first=True)[source]

Separate sums in cos and sin.

Examples

>>> from sympy.simplify.fu import TR10
@@ -1192,7 +1192,7 @@ 

Rules
-sympy.simplify.fu.TR10i(rv)[source]
+sympy.simplify.fu.TR10i(rv)[source]

Sum of products to function of sum.

Examples

>>> from sympy.simplify.fu import TR10i
@@ -1212,7 +1212,7 @@ 

Rules
-sympy.simplify.fu.TR11(rv, base=None)[source]
+sympy.simplify.fu.TR11(rv, base=None)[source]

Function of double angle to product. The base argument can be used to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base then cosine and sine functions with argument 6*pi/7 will be replaced.

@@ -1254,7 +1254,7 @@

Rules
-sympy.simplify.fu.TR12(rv, first=True)[source]
+sympy.simplify.fu.TR12(rv, first=True)[source]

Separate sums in tan.

Examples

>>> from sympy.abc import x, y
@@ -1268,7 +1268,7 @@ 

Rules
-sympy.simplify.fu.TR12i(rv)[source]
+sympy.simplify.fu.TR12i(rv)[source]

Combine tan arguments as (tan(y) + tan(x))/(tan(x)*tan(y) - 1) -> -tan(x + y).

Examples

@@ -1291,7 +1291,7 @@

Rules
-sympy.simplify.fu.TR13(rv)[source]
+sympy.simplify.fu.TR13(rv)[source]

Change products of tan or cot.

Examples

>>> from sympy.simplify.fu import TR13
@@ -1306,7 +1306,7 @@ 

Rules
-sympy.simplify.fu.TRmorrie(rv)[source]
+sympy.simplify.fu.TRmorrie(rv)[source]

Returns cos(x)*cos(2*x)*…*cos(2**(k-1)*x) -> sin(2**k*x)/(2**k*sin(x))

Examples

>>> from sympy.simplify.fu import TRmorrie, TR8, TR3
@@ -1367,7 +1367,7 @@ 

Rules
-sympy.simplify.fu.TR14(rv, first=True)[source]
+sympy.simplify.fu.TR14(rv, first=True)[source]

Convert factored powers of sin and cos identities into simpler expressions.

Examples

@@ -1389,7 +1389,7 @@

Rules
-sympy.simplify.fu.TR15(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR15(rv, max=4, pow=False)[source]

Convert sin(x)**-2 to 1 + cot(x)**2.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1404,7 +1404,7 @@

Rules
-sympy.simplify.fu.TR16(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR16(rv, max=4, pow=False)[source]

Convert cos(x)**-2 to 1 + tan(x)**2.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1419,7 +1419,7 @@

Rules
-sympy.simplify.fu.TR111(rv)[source]
+sympy.simplify.fu.TR111(rv)[source]

Convert f(x)**-i to g(x)**i where either i is an integer or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec.

Examples

@@ -1434,7 +1434,7 @@

Rules
-sympy.simplify.fu.TR22(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR22(rv, max=4, pow=False)[source]

Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1451,7 +1451,7 @@

Rules
-sympy.simplify.fu.TRpower(rv)[source]
+sympy.simplify.fu.TRpower(rv)[source]

Convert sin(x)**n and cos(x)**n with positive n to sums.

Examples

>>> from sympy.simplify.fu import TRpower
@@ -1474,7 +1474,7 @@ 

Rules
-sympy.simplify.fu.fu(rv, measure=<function <lambda>>)[source]
+sympy.simplify.fu.fu(rv, measure=<function <lambda>>)[source]

Attempt to simplify expression by using transformation rules given in the algorithm by Fu et al.

fu() will try to minimize the objective function measure. @@ -1608,7 +1608,7 @@

ReferencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/simplify/hyperexpand.html b/dev/modules/simplify/hyperexpand.html index 2f185f41dbe..42b41b4a9c4 100644 --- a/dev/modules/simplify/hyperexpand.html +++ b/dev/modules/simplify/hyperexpand.html @@ -1249,8 +1249,8 @@

An example
-\[B_0 = \frac{ \sqrt{\pi} \exp\left(-\frac{\mathbf{\imath}\pi}{4}\right) -C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\mathbf{\imath}\pi}{4}\right) z^{\frac{1}{4}}\right)} +\[B_0 = \frac{ \sqrt{\pi} \exp\left(-\frac{\imath\pi}{4}\right) +C\left( \frac{2}{\sqrt{\pi}} \exp\left(\frac{\imath\pi}{4}\right) z^{\frac{1}{4}}\right)} {2 z^{\frac{1}{4}}}\]

Next we compute \(z\frac{\mathrm{d}}{\mathrm{d}z} B_0\). For this we can @@ -1271,8 +1271,8 @@

An exampleFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/simplify/index.html b/dev/modules/simplify/index.html index 697675d4abd..afeb1693794 100644 --- a/dev/modules/simplify/index.html +++ b/dev/modules/simplify/index.html @@ -844,7 +844,7 @@

Simplify Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/simplify/simplify.html b/dev/modules/simplify/simplify.html index 088ef83051a..4adbb6bab34 100644 --- a/dev/modules/simplify/simplify.html +++ b/dev/modules/simplify/simplify.html @@ -814,7 +814,7 @@
Documentation Version
**kwargs,
-)[source] +)[source]

Simplifies the given expression.

Explanation

Simplification is not a well defined term and the exact strategies @@ -971,7 +971,7 @@

Documentation Version
force=False,

-)[source] +)[source]

Separates variables in an expression, if possible. By default, it separates with respect to all symbols in an expression and collects constant coefficients that are @@ -1031,7 +1031,7 @@

Documentation Version
-sympy.simplify.simplify.nthroot(expr, n, max_len=4, prec=15)[source]
+sympy.simplify.simplify.nthroot(expr, n, max_len=4, prec=15)[source]

Compute a real nth-root of a sum of surds.

Parameters:
@@ -1055,7 +1055,7 @@
Documentation Version
-sympy.simplify.simplify.kroneckersimp(expr)[source]
+sympy.simplify.simplify.kroneckersimp(expr)[source]

Simplify expressions with KroneckerDelta.

The only simplification currently attempted is to identify multiplicative cancellation:

Examples

@@ -1069,7 +1069,7 @@
Documentation Version
-sympy.simplify.simplify.besselsimp(expr)[source]
+sympy.simplify.simplify.besselsimp(expr)[source]

Simplify bessel-type functions.

Explanation

This routine tries to simplify bessel-type functions. Currently it only @@ -1096,7 +1096,7 @@

Documentation Version
-sympy.simplify.simplify.hypersimp(f, k)[source]
+sympy.simplify.simplify.hypersimp(f, k)[source]

Given combinatorial term f(k) simplify its consecutive term ratio i.e. f(k+1)/f(k). The input term can be composed of functions and integer sequences which have equivalent representation in terms @@ -1124,7 +1124,7 @@

Documentation Version
-sympy.simplify.simplify.hypersimilar(f, g, k)[source]
+sympy.simplify.simplify.hypersimilar(f, g, k)[source]

Returns True if f and g are hyper-similar.

Explanation

Similarity in hypergeometric sense means that a quotient of @@ -1146,7 +1146,7 @@

Documentation Version
rational_conversion='base10',
-)[source] +)[source]

Find a simple representation for a number or, if there are free symbols or if rational=True, then replace Floats with their Rational equivalents. If no change is made and rational is not False then Floats will at least be @@ -1192,7 +1192,7 @@

Documentation Version
-sympy.simplify.simplify.posify(eq)[source]
+sympy.simplify.simplify.posify(eq)[source]

Return eq (with generic symbols made positive) and a dictionary containing the mapping between the old and new symbols.

@@ -1234,7 +1234,7 @@
Documentation Version
-sympy.simplify.simplify.logcombine(expr, force=False)[source]
+sympy.simplify.simplify.logcombine(expr, force=False)[source]

Takes logarithms and combines them using the following rules:

-commutes_with(other)[source]
+commutes_with(other)[source]

Returns 0 if self and other commute, 1 if they anticommute.

Returns None if self and other neither commute nor anticommute.

@@ -1082,13 +1082,13 @@
Documentation Version
comm=0,
-)[source] +)[source]

Returns a sequence of TensorHeads from a string \(s\)

-class sympy.tensor.tensor.TensExpr(*args)[source]
+class sympy.tensor.tensor.TensExpr(*args)[source]

Abstract base class for tensor expressions

Notes

A tensor expression is an expression formed by tensors; @@ -1103,7 +1103,7 @@

Documentation Version

Contracted indices are therefore nameless in the internal representation.

-get_matrix()[source]
+get_matrix()[source]

DEPRECATED: do not use.

Returns ndarray components data as a matrix, if components data are available and ndarray dimension does not exceed 2.

@@ -1118,7 +1118,7 @@
Documentation Version
indices=None,
-)[source] +)[source]

Replace the tensorial expressions with arrays. The final array will correspond to the N-dimensional array with indices arranged according to indices.

@@ -1193,7 +1193,7 @@
Documentation Version
-class sympy.tensor.tensor.TensAdd(*args, **kw_args)[source]
+class sympy.tensor.tensor.TensAdd(*args, **kw_args)[source]

Sum of tensors.

Parameters:
@@ -1242,14 +1242,14 @@
Documentation Version

-canon_bp()[source]
+canon_bp()[source]

Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries.

-contract_metric(g)[source]
+contract_metric(g)[source]

Raise or lower indices with the metric g.

Parameters:
@@ -1265,7 +1265,7 @@
Documentation Version
-class sympy.tensor.tensor.TensMul(*args, **kw_args)[source]
+class sympy.tensor.tensor.TensMul(*args, **kw_args)[source]

Product of tensors.

Parameters:
@@ -1319,7 +1319,7 @@
Documentation Version
-canon_bp()[source]
+canon_bp()[source]

Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries.

Examples

@@ -1339,7 +1339,7 @@
Documentation Version
-contract_metric(g)[source]
+contract_metric(g)[source]

Raise or lower indices with the metric g.

Parameters:
@@ -1365,7 +1365,7 @@
Documentation Version
-get_free_indices() list[TensorIndex][source]
+get_free_indices() list[TensorIndex][source]

Returns the list of free indices of the tensor.

Explanation

The indices are listed in the order in which they appear in the @@ -1388,7 +1388,7 @@

Documentation Version
-get_indices()[source]
+get_indices()[source]

Returns the list of indices of the tensor.

Explanation

The indices are listed in the order in which they appear in the @@ -1413,20 +1413,20 @@

Documentation Version
-perm2tensor(g, is_canon_bp=False)[source]
+perm2tensor(g, is_canon_bp=False)[source]

Returns the tensor corresponding to the permutation g

For further details, see the method in TIDS with the same name.

-sorted_components()[source]
+sorted_components()[source]

Returns a tensor product with sorted components.

-split()[source]
+split()[source]

Returns a list of tensors, whose product is self.

Explanation

Dummy indices contracted among different tensor components @@ -1450,21 +1450,21 @@

Documentation Version
-sympy.tensor.tensor.canon_bp(p)[source]
+sympy.tensor.tensor.canon_bp(p)[source]

Butler-Portugal canonicalization. See tensor_can.py from the combinatorics module for the details.

-sympy.tensor.tensor.riemann_cyclic_replace(t_r)[source]
+sympy.tensor.tensor.riemann_cyclic_replace(t_r)[source]

replace Riemann tensor with an equivalent expression

R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)

-sympy.tensor.tensor.riemann_cyclic(t2)[source]
+sympy.tensor.tensor.riemann_cyclic(t2)[source]

Replace each Riemann tensor with an equivalent expression satisfying the cyclic identity.

This trick is discussed in the reference guide to Cadabra.

@@ -1482,7 +1482,7 @@
Documentation Version
-class sympy.tensor.tensor.TensorSymmetry(*args, **kw_args)[source]
+class sympy.tensor.tensor.TensorSymmetry(*args, **kw_args)[source]

Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric index permutation). For the relevant terminology see tensor_can.py section of the combinatorics module.

@@ -1533,7 +1533,7 @@
Documentation Version

-classmethod direct_product(*args)[source]
+classmethod direct_product(*args)[source]

Returns a TensorSymmetry object that is being a direct product of fully (anti-)symmetric index permutation groups.

Notes

@@ -1547,20 +1547,20 @@
Documentation Version
-classmethod fully_symmetric(rank)[source]
+classmethod fully_symmetric(rank)[source]

Returns a fully symmetric (antisymmetric if rank``<0) TensorSymmetry object for ``abs(rank) indices.

-classmethod no_symmetry(rank)[source]
+classmethod no_symmetry(rank)[source]

TensorSymmetry object for rank indices with no symmetry

-classmethod riemann()[source]
+classmethod riemann()[source]

Returns a monotorem symmetry of the Riemann tensor

@@ -1568,7 +1568,7 @@
Documentation Version
-sympy.tensor.tensor.tensorsymmetry(*args)[source]
+sympy.tensor.tensor.tensorsymmetry(*args)[source]

Returns a TensorSymmetry object. This method is deprecated, use TensorSymmetry.direct_product() or .riemann() instead.

Explanation

@@ -1597,7 +1597,7 @@
Documentation Version
-class sympy.tensor.tensor.TensorType(*args, **kwargs)[source]
+class sympy.tensor.tensor.TensorType(*args, **kwargs)[source]

Class of tensor types. Deprecated, use tensor_heads() instead.

Parameters:
@@ -1625,7 +1625,7 @@
Documentation Version
-class sympy.tensor.tensor._TensorManager[source]
+class sympy.tensor.tensor._TensorManager[source]

Class to manage tensor properties.

Notes

Tensors belong to tensor commutation groups; each group has a label @@ -1638,19 +1638,19 @@

Documentation Version
do not commute with any other group.

-clear()[source]
+clear()[source]

Clear the TensorManager.

-comm_i2symbol(i)[source]
+comm_i2symbol(i)[source]

Returns the symbol corresponding to the commutation group number.

-comm_symbols2i(i)[source]
+comm_symbols2i(i)[source]

Get the commutation group number corresponding to i.

i can be a symbol or a number or a string.

If i is not already defined its commutation group number @@ -1659,14 +1659,14 @@

Documentation Version
-get_comm(i, j)[source]
+get_comm(i, j)[source]

Return the commutation parameter for commutation group numbers i, j

see _TensorManager.set_comm

-set_comm(i, j, c)[source]
+set_comm(i, j, c)[source]

Set the commutation parameter c for commutation groups i, j.

Parameters:
@@ -1708,7 +1708,7 @@
Documentation Version
-set_comms(*args)[source]
+set_comms(*args)[source]

Set the commutation group numbers c for symbols i, j.

Parameters:
@@ -1756,7 +1756,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/tensor/toperators.html b/dev/modules/tensor/toperators.html index 31b79bf7d42..48fe5c9d7f3 100644 --- a/dev/modules/tensor/toperators.html +++ b/dev/modules/tensor/toperators.html @@ -802,7 +802,7 @@
Documentation Version

Tensor Operators

-class sympy.tensor.toperators.PartialDerivative(expr, *variables)[source]
+class sympy.tensor.toperators.PartialDerivative(expr, *variables)[source]

Partial derivative for tensor expressions.

Examples

>>> from sympy.tensor.tensor import TensorIndexType, TensorHead
@@ -924,7 +924,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/testing/index.html b/dev/modules/testing/index.html index 0ee81eb8d0f..a29fb098d46 100644 --- a/dev/modules/testing/index.html +++ b/dev/modules/testing/index.html @@ -846,7 +846,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/testing/pytest.html b/dev/modules/testing/pytest.html index 866e8cf4a26..ccf7ac59bb7 100644 --- a/dev/modules/testing/pytest.html +++ b/dev/modules/testing/pytest.html @@ -803,19 +803,19 @@
Documentation Version

py.test hacks to support XFAIL/XPASS

-sympy.testing.pytest.SKIP(reason)[source]
+sympy.testing.pytest.SKIP(reason)[source]

Similar to skip(), but this is a decorator.

-sympy.testing.pytest.nocache_fail(func)[source]
+sympy.testing.pytest.nocache_fail(func)[source]

Dummy decorator for marking tests that fail when cache is disabled

-sympy.testing.pytest.raises(expectedException, code=None)[source]
+sympy.testing.pytest.raises(expectedException, code=None)[source]

Tests that code raises the exception expectedException.

code may be a callable, such as a lambda expression or function name.

@@ -867,7 +867,7 @@
Documentation Version
-sympy.testing.pytest.skip_under_pyodide(message)[source]
+sympy.testing.pytest.skip_under_pyodide(message)[source]

Decorator to skip a test if running under pyodide.

@@ -882,7 +882,7 @@
Documentation Version
test_stacklevel=True,
-)[source] +)[source]

Like raises but tests that warnings are emitted.

>>> from sympy.testing.pytest import warns
 >>> import warnings
@@ -911,7 +911,7 @@ 
Documentation Version
-sympy.testing.pytest.warns_deprecated_sympy()[source]
+sympy.testing.pytest.warns_deprecated_sympy()[source]

Shorthand for warns(SymPyDeprecationWarning)

This is the recommended way to test that SymPyDeprecationWarning is emitted for deprecated features in SymPy. To test for other warnings use @@ -996,7 +996,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/testing/randtest.html b/dev/modules/testing/randtest.html index 62221f7f64e..de560f6d68d 100644 --- a/dev/modules/testing/randtest.html +++ b/dev/modules/testing/randtest.html @@ -841,7 +841,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/testing/runtests.html b/dev/modules/testing/runtests.html index b81c4b16052..17d4045acb8 100644 --- a/dev/modules/testing/runtests.html +++ b/dev/modules/testing/runtests.html @@ -822,7 +822,7 @@
Documentation Version
split=None,
-)[source] +)[source]

Py.test like reporter. Should produce output identical to py.test.

@@ -836,7 +836,7 @@
Documentation Version
force_colors=False,
-)[source] +)[source]

Prints a text on the screen.

It uses sys.stdout.write(), so no readline library is necessary.

@@ -856,7 +856,7 @@
Documentation Version
-class sympy.testing.runtests.Reporter[source]
+class sympy.testing.runtests.Reporter[source]

Parent class for all reporters.

@@ -871,7 +871,7 @@
Documentation Version
exclude_empty=True,
-)[source] +)[source]

A class used to extract the DocTests that are relevant to a given object, from its docstring and the docstrings of its contained objects. Doctests can currently be extracted from the following @@ -893,7 +893,7 @@

Documentation Version
optionflags=0,
-)[source] +)[source]

A class used to run DocTest test cases, and accumulate statistics. The run method is used to process a single DocTest case. It returns a tuple (f, t), where t is the number of test cases @@ -912,7 +912,7 @@

Documentation Version
clear_globs=True,

-)[source] +)[source]

Run the examples in test, and display the results using the writer function out.

The examples are run in the namespace test.globs. If @@ -933,7 +933,7 @@

Documentation Version
-class sympy.testing.runtests.SymPyOutputChecker[source]
+class sympy.testing.runtests.SymPyOutputChecker[source]

Compared to the OutputChecker from the stdlib our OutputChecker class supports numerical comparison of floats occurring in the output of the doctest examples

@@ -947,7 +947,7 @@
Documentation Version
optionflags,
-)[source] +)[source]

Return True iff the actual output from an example (\(got\)) matches the expected output (\(want\)). These strings are always considered to match if they are identical; but @@ -961,7 +961,7 @@

Documentation Version
-class sympy.testing.runtests.SymPyTestResults(failed, attempted)[source]
+class sympy.testing.runtests.SymPyTestResults(failed, attempted)[source]
attempted
@@ -978,7 +978,7 @@
Documentation Version
-sympy.testing.runtests.convert_to_native_paths(lst)[source]
+sympy.testing.runtests.convert_to_native_paths(lst)[source]

Converts a list of ‘/’ separated paths into a list of native (os.sep separated) paths and converts to lowercase if the system is case insensitive.

@@ -995,7 +995,7 @@
Documentation Version
**kwargs,
-)[source] +)[source]

Runs doctests in all *.py files in the SymPy directory which match any of the given strings in paths or all tests if paths=[].

Notes:

@@ -1044,14 +1044,14 @@
Documentation Version
-sympy.testing.runtests.get_sympy_dir()[source]
+sympy.testing.runtests.get_sympy_dir()[source]

Returns the root SymPy directory and set the global value indicating whether the system is case sensitive or not.

-sympy.testing.runtests.raise_on_deprecated()[source]
+sympy.testing.runtests.raise_on_deprecated()[source]

Context manager to make DeprecationWarning raise an error

This is to catch SymPyDeprecationWarning from library code while running tests and doctests. It is important to use this context manager around @@ -1072,7 +1072,7 @@

Documentation Version
examples_kwargs=None,
-)[source] +)[source]

Run all tests.

Right now, this runs the regular tests (bin/test), the doctests (bin/doctest), and the examples (examples/all.py).

@@ -1101,7 +1101,7 @@
Documentation Version
force=False,
-)[source] +)[source]

Run a function in a Python subprocess with hash randomization enabled.

If hash randomization is not supported by the version of Python given, it returns False. Otherwise, it returns the exit value of the command. The @@ -1144,7 +1144,7 @@

Documentation Version
-sympy.testing.runtests.split_list(l, split, density=None)[source]
+sympy.testing.runtests.split_list(l, split, density=None)[source]

Splits a list into part a of b

split should be a string of the form ‘a/b’. For instance, ‘1/3’ would give the split one of three.

@@ -1184,7 +1184,7 @@
Documentation Version
encoding=None,
-)[source] +)[source]

Test examples in the given file. Return (#failures, #tests).

Optional keyword arg module_relative specifies how filenames should be interpreted:

@@ -1252,7 +1252,7 @@
Documentation Version
-sympy.testing.runtests.test(*paths, subprocess=True, rerun=0, **kwargs)[source]
+sympy.testing.runtests.test(*paths, subprocess=True, rerun=0, **kwargs)[source]

Run tests in the specified test_*.py files.

Tests in a particular test_*.py file are run if any of the given strings in paths matches a part of the test file’s path. If paths=[], @@ -1441,7 +1441,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/utilities/autowrap.html b/dev/modules/utilities/autowrap.html index 45dc21e5fcf..03b3b7d9e1e 100644 --- a/dev/modules/utilities/autowrap.html +++ b/dev/modules/utilities/autowrap.html @@ -937,17 +937,17 @@

Implementation detailsverbose=False,

-)[source] +)[source]

Base Class for code wrappers

-class sympy.utilities.autowrap.CythonCodeWrapper(*args, **kwargs)[source]
+class sympy.utilities.autowrap.CythonCodeWrapper(*args, **kwargs)[source]

Wrapper that uses Cython

-dump_pyx(routines, f, prefix)[source]
+dump_pyx(routines, f, prefix)[source]

Write a Cython file with Python wrappers

This file contains all the definitions of the routines in c code and refers to the header file.

@@ -976,19 +976,19 @@

Implementation detailsverbose=False,

-)[source] +)[source]

Class used for testing independent of backends

-class sympy.utilities.autowrap.F2PyCodeWrapper(*args, **kwargs)[source]
+class sympy.utilities.autowrap.F2PyCodeWrapper(*args, **kwargs)[source]

Wrapper that uses f2py

-class sympy.utilities.autowrap.UfuncifyCodeWrapper(*args, **kwargs)[source]
+class sympy.utilities.autowrap.UfuncifyCodeWrapper(*args, **kwargs)[source]

Wrapper for Ufuncify

@@ -1001,7 +1001,7 @@

Implementation detailsfuncname=None,

-)[source] +)[source]

Write a C file with Python wrappers

This file contains all the definitions of the routines in c code.

Arguments

@@ -1036,7 +1036,7 @@

Implementation details**kwargs,

-)[source] +)[source]

Generates Python callable binaries based on the math expression.

Parameters:
@@ -1131,7 +1131,7 @@

Implementation details
-sympy.utilities.autowrap.binary_function(symfunc, expr, **kwargs)[source]
+sympy.utilities.autowrap.binary_function(symfunc, expr, **kwargs)[source]

Returns a SymPy function with expr as binary implementation

This is a convenience function that automates the steps needed to autowrap the SymPy expression and attaching it to a Function object @@ -1183,7 +1183,7 @@

Implementation details**kwargs,

-)[source] +)[source]

Generates a binary function that supports broadcasting on numpy arrays.

Parameters:
@@ -1322,7 +1322,7 @@

Implementation detailsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/utilities/codegen.html b/dev/modules/utilities/codegen.html index 0e6304653fa..673d38e8d6f 100644 --- a/dev/modules/utilities/codegen.html +++ b/dev/modules/utilities/codegen.html @@ -924,7 +924,7 @@

Routine
precision=None,

-)[source] +)[source]

An abstract Argument data structure: a name and a data type.

This structure is refined in the descendants below.

@@ -940,7 +940,7 @@

Routine
cse=False,

-)[source] +)[source]

Generator for C code.

The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.c and <prefix>.h respectively.

@@ -956,7 +956,7 @@

Routine
empty=True,

-)[source] +)[source]

Write the code by calling language specific methods.

The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

@@ -1001,7 +1001,7 @@

Routine
empty=True,

-)[source] +)[source]

Writes the C header file.

This file contains all the function declarations.

@@ -1035,7 +1035,7 @@

Routine
-get_prototype(routine)[source]
+get_prototype(routine)[source]

Returns a string for the function prototype of the routine.

If the routine has multiple result objects, an CodeGenError is raised.

@@ -1046,7 +1046,7 @@

Routine
-class sympy.utilities.codegen.CodeGen(project='project', cse=False)[source]
+class sympy.utilities.codegen.CodeGen(project='project', cse=False)[source]

Abstract class for the code generators.

@@ -1060,7 +1060,7 @@

Routine
empty=True,

-)[source] +)[source]

Write the code by calling language specific methods.

The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

@@ -1104,7 +1104,7 @@

Routine
global_vars=None,

-)[source] +)[source]

Creates an Routine object that is appropriate for this language.

This implementation is appropriate for at least C/Fortran. Subclasses can override this if necessary.

@@ -1128,7 +1128,7 @@

Routine
empty=True,

-)[source] +)[source]

Writes all the source code files for the given routines.

The generated source is returned as a list of (filename, contents) tuples, or is written to files (see below). Each filename consists @@ -1177,13 +1177,13 @@

Routine
rsname,

-)[source] +)[source]

Holds strings for a certain datatype in different languages.

-class sympy.utilities.codegen.FCodeGen(project='project', printer=None)[source]
+class sympy.utilities.codegen.FCodeGen(project='project', printer=None)[source]

Generator for Fortran 95 code

The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.f90 and <prefix>.h respectively.

@@ -1199,7 +1199,7 @@

Routine
empty=True,

-)[source] +)[source]

Write the code by calling language specific methods.

The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

@@ -1244,7 +1244,7 @@

Routine
empty=True,

-)[source] +)[source]

Writes the interface to a header file.

This file contains all the function declarations.

@@ -1277,7 +1277,7 @@

Routine
-get_interface(routine)[source]
+get_interface(routine)[source]

Returns a string for the function interface.

The routine should have a single result object, which can be None. If the routine has multiple result objects, a CodeGenError is @@ -1289,7 +1289,7 @@

Routine
-class sympy.utilities.codegen.JuliaCodeGen(project='project', printer=None)[source]
+class sympy.utilities.codegen.JuliaCodeGen(project='project', printer=None)[source]

Generator for Julia code.

The .write() method inherited from CodeGen will output a code file <prefix>.jl.

@@ -1305,7 +1305,7 @@

Routine
empty=True,

-)[source] +)[source]

Write the code by calling language specific methods.

The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

@@ -1349,7 +1349,7 @@

Routine
global_vars,

-)[source] +)[source]

Specialized Routine creation for Julia.

@@ -1357,7 +1357,7 @@

Routine
-class sympy.utilities.codegen.OctaveCodeGen(project='project', printer=None)[source]
+class sympy.utilities.codegen.OctaveCodeGen(project='project', printer=None)[source]

Generator for Octave code.

The .write() method inherited from CodeGen will output a code file <prefix>.m.

@@ -1380,7 +1380,7 @@

Routine
inline=True,

-)[source] +)[source]

Write the code by calling language specific methods.

The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

@@ -1424,7 +1424,7 @@

Routine
global_vars,

-)[source] +)[source]

Specialized Routine creation for Octave.

@@ -1443,7 +1443,7 @@

Routine
precision=None,

-)[source] +)[source]

OutputArgument are always initialized in the routine.

@@ -1460,7 +1460,7 @@

Routine
precision=None,

-)[source] +)[source]

An expression for a return value.

The name result is used to avoid conflicts with the reserved word “return” in the Python language. It is also shorter than ReturnValue.

@@ -1480,7 +1480,7 @@

Routine
global_vars,

-)[source] +)[source]

Generic description of evaluation routine for set of expressions.

A CodeGen class can translate instances of this class into code in a particular language. The routine specification covers all the features @@ -1508,7 +1508,7 @@

Routine
-class sympy.utilities.codegen.RustCodeGen(project='project', printer=None)[source]
+class sympy.utilities.codegen.RustCodeGen(project='project', printer=None)[source]

Generator for Rust code.

The .write() method inherited from CodeGen will output a code file <prefix>.rs

@@ -1524,7 +1524,7 @@

Routine
empty=True,

-)[source] +)[source]

Write the code by calling language specific methods.

The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

@@ -1559,7 +1559,7 @@

Routine
-get_prototype(routine)[source]
+get_prototype(routine)[source]

Returns a string for the function prototype of the routine.

If the routine has multiple result objects, an CodeGenError is raised.

@@ -1577,7 +1577,7 @@

Routine
global_vars,

-)[source] +)[source]

Specialized Routine creation for Rust.

@@ -1602,7 +1602,7 @@

Routine
printer=None,

-)[source] +)[source]

Generate source code for expressions in a given language.

Parameters:
@@ -1740,7 +1740,7 @@

Routine
-sympy.utilities.codegen.get_default_datatype(expr, complex_allowed=None)[source]
+sympy.utilities.codegen.get_default_datatype(expr, complex_allowed=None)[source]

Derives an appropriate datatype based on the expression.

@@ -1756,7 +1756,7 @@

Routine
language='F95',

-)[source] +)[source]

A factory that makes an appropriate Routine from an expression.

Parameters:
@@ -1882,7 +1882,7 @@

RoutineFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/utilities/decorator.html b/dev/modules/utilities/decorator.html index 97ab25d9d74..8551b627583 100644 --- a/dev/modules/utilities/decorator.html +++ b/dev/modules/utilities/decorator.html @@ -813,7 +813,7 @@
Documentation Version
stacklevel=3,
-)[source] +)[source]

Mark a function as deprecated.

This decorator should be used if an entire function or class is deprecated. If only a certain functionality is deprecated, you should use @@ -869,7 +869,7 @@

Documentation Version
-sympy.utilities.decorator.conserve_mpmath_dps(func)[source]
+sympy.utilities.decorator.conserve_mpmath_dps(func)[source]

After the function finishes, resets the value of mpmath.mp.dps to the value it had before the function was run.

@@ -886,7 +886,7 @@
Documentation Version
ground_types=None,

-)[source] +)[source]

Adds metadata about the dependencies which need to be met for doctesting the docstrings of the decorated objects.

exe should be a list of executables

@@ -898,7 +898,7 @@
Documentation Version
-sympy.utilities.decorator.memoize_property(propfunc)[source]
+sympy.utilities.decorator.memoize_property(propfunc)[source]

Property decorator that caches the value of potentially expensive propfunc after the first evaluation. The cached value is stored in the corresponding property name with an attached underscore.

@@ -906,7 +906,7 @@
Documentation Version
-class sympy.utilities.decorator.no_attrs_in_subclass(cls, f)[source]
+class sympy.utilities.decorator.no_attrs_in_subclass(cls, f)[source]

Don’t ‘inherit’ certain attributes from a base class

>>> from sympy.utilities.decorator import no_attrs_in_subclass
 
@@ -932,7 +932,7 @@
Documentation Version
-sympy.utilities.decorator.public(obj)[source]
+sympy.utilities.decorator.public(obj)[source]

Append obj’s name to global __all__ variable (call site).

By using this decorator on functions or classes you achieve the same goal as by filling __all__ variables manually, you just do not have to repeat @@ -965,7 +965,7 @@

Documentation Version
-sympy.utilities.decorator.threaded(func)[source]
+sympy.utilities.decorator.threaded(func)[source]

Apply func to sub–elements of an object, including Add.

This decorator is intended to make it uniformly possible to apply a function to all elements of composite objects, e.g. matrices, lists, tuples @@ -982,13 +982,13 @@

Documentation Version
-sympy.utilities.decorator.threaded_factory(func, use_add)[source]
+sympy.utilities.decorator.threaded_factory(func, use_add)[source]

A factory for threaded decorators.

-sympy.utilities.decorator.xthreaded(func)[source]
+sympy.utilities.decorator.xthreaded(func)[source]

Apply func to sub–elements of an object, excluding Add.

This decorator is intended to make it uniformly possible to apply a function to all elements of composite objects, e.g. matrices, lists, tuples @@ -1040,7 +1040,7 @@

Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/utilities/enumerative.html b/dev/modules/utilities/enumerative.html index c2e305190b7..6c695c335bc 100644 --- a/dev/modules/utilities/enumerative.html +++ b/dev/modules/utilities/enumerative.html @@ -804,7 +804,7 @@
Documentation Version
counting multiset partitions.

-sympy.utilities.enumerative.multiset_partitions_taocp(multiplicities)[source]
+sympy.utilities.enumerative.multiset_partitions_taocp(multiplicities)[source]

Enumerates partitions of a multiset.

Parameters:
@@ -867,7 +867,7 @@
Documentation Version
-sympy.utilities.enumerative.factoring_visitor(state, primes)[source]
+sympy.utilities.enumerative.factoring_visitor(state, primes)[source]

Use with multiset_partitions_taocp to enumerate the ways a number can be expressed as a product of factors. For this usage, the exponents of the prime factors of a number are arguments to @@ -894,7 +894,7 @@

Documentation Version
-sympy.utilities.enumerative.list_visitor(state, components)[source]
+sympy.utilities.enumerative.list_visitor(state, components)[source]

Return a list of lists to represent the partition.

Examples

>>> from sympy.utilities.enumerative import list_visitor
@@ -914,7 +914,7 @@ 
Documentation Version
and generalized by the class MultisetPartitionTraverser.

-class sympy.utilities.enumerative.MultisetPartitionTraverser[source]
+class sympy.utilities.enumerative.MultisetPartitionTraverser[source]

Has methods to enumerate and count the partitions of a multiset.

This implements a refactored and extended version of Knuth’s algorithm 7.1.2.5M [AOCP].”

@@ -964,7 +964,7 @@
Documentation Version
multiplicities,
-)[source] +)[source]

Returns the number of partitions of a multiset whose components have the multiplicities given in multiplicities.

For larger counts, this method is much faster than calling one @@ -1035,7 +1035,7 @@

Documentation Version
multiplicities,
-)[source] +)[source]

Enumerate the partitions of a multiset.

Examples

>>> from sympy.utilities.enumerative import list_visitor
@@ -1072,7 +1072,7 @@ 
Documentation Version
lb,
-)[source] +)[source]

Enumerate the partitions of a multiset with lb < num(parts)

Equivalent to enum_range(multiplicities, lb, sum(multiplicities))

@@ -1116,7 +1116,7 @@
Documentation Version
ub,
-)[source] +)[source]

Enumerate the partitions of a multiset with lb < num(parts) <= ub.

In particular, if partitions with exactly k parts are @@ -1145,7 +1145,7 @@

Documentation Version
ub,
-)[source] +)[source]

Enumerate multiset partitions with no more than ub parts.

Equivalent to enum_range(multiplicities, 0, ub)

@@ -1220,7 +1220,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/utilities/exceptions.html b/dev/modules/utilities/exceptions.html index fb7b88f27a4..b39a9c38b95 100644 --- a/dev/modules/utilities/exceptions.html +++ b/dev/modules/utilities/exceptions.html @@ -812,7 +812,7 @@
Documentation Version
active_deprecations_target,
-)[source] +)[source]

A warning for deprecated features of SymPy.

See the Deprecation Policy document for details on when and how things should be deprecated in SymPy.

@@ -843,7 +843,7 @@
Documentation Version
-sympy.utilities.exceptions.ignore_warnings(warningcls)[source]
+sympy.utilities.exceptions.ignore_warnings(warningcls)[source]

Context manager to suppress warnings during tests.

Note

@@ -898,7 +898,7 @@
Documentation Version
stacklevel=3,
-)[source] +)[source]

Warn that a feature is deprecated in SymPy.

See the Deprecation Policy document for details on when and how things should be deprecated in SymPy.

@@ -1035,7 +1035,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/utilities/index.html b/dev/modules/utilities/index.html index 5c0cee6a36c..3eaff84b871 100644 --- a/dev/modules/utilities/index.html +++ b/dev/modules/utilities/index.html @@ -855,7 +855,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/utilities/iterables.html b/dev/modules/utilities/iterables.html index 5a01a7f5290..5844b545aff 100644 --- a/dev/modules/utilities/iterables.html +++ b/dev/modules/utilities/iterables.html @@ -802,7 +802,7 @@
Documentation Version

Iterables

-class sympy.utilities.iterables.NotIterable[source]
+class sympy.utilities.iterables.NotIterable[source]

Use this as mixin when creating a class which is not supposed to return true when iterable() is called on its instances because calling list() on the instance, for example, would result in @@ -811,7 +811,7 @@

Documentation Version
-sympy.utilities.iterables.binary_partitions(n)[source]
+sympy.utilities.iterables.binary_partitions(n)[source]

Generates the binary partition of n.

A binary partition consists only of numbers that are powers of two. Each step reduces a \(2^{k+1}\) to \(2^k\) and @@ -838,13 +838,13 @@

Documentation Version
-sympy.utilities.iterables.bracelets(n, k)[source]
+sympy.utilities.iterables.bracelets(n, k)[source]

Wrapper to necklaces to return a free (unrestricted) necklace.

-sympy.utilities.iterables.capture(func)[source]
+sympy.utilities.iterables.capture(func)[source]

Return the printed output of func().

func should be a function without arguments that produces output with print statements.

@@ -864,7 +864,7 @@
Documentation Version
-sympy.utilities.iterables.common_prefix(*seqs)[source]
+sympy.utilities.iterables.common_prefix(*seqs)[source]

Return the subsequence that is a common start of sequences in seqs.

>>> from sympy.utilities.iterables import common_prefix
 >>> common_prefix(list(range(3)))
@@ -881,7 +881,7 @@ 
Documentation Version
-sympy.utilities.iterables.common_suffix(*seqs)[source]
+sympy.utilities.iterables.common_suffix(*seqs)[source]

Return the subsequence that is a common ending of sequences in seqs.

>>> from sympy.utilities.iterables import common_suffix
 >>> common_suffix(list(range(3)))
@@ -898,7 +898,7 @@ 
Documentation Version
-sympy.utilities.iterables.connected_components(G)[source]
+sympy.utilities.iterables.connected_components(G)[source]

Connected components of an undirected graph or weakly connected components of a directed graph.

@@ -959,13 +959,13 @@
Documentation Version
-sympy.utilities.iterables.dict_merge(*dicts)[source]
+sympy.utilities.iterables.dict_merge(*dicts)[source]

Merge dictionaries into a single dictionary.

-sympy.utilities.iterables.filter_symbols(iterator, exclude)[source]
+sympy.utilities.iterables.filter_symbols(iterator, exclude)[source]

Only yield elements from \(iterator\) that do not occur in \(exclude\).

Parameters:
@@ -989,7 +989,7 @@
Documentation Version
-sympy.utilities.iterables.flatten(iterable, levels=None, cls=None)[source]
+sympy.utilities.iterables.flatten(iterable, levels=None, cls=None)[source]

Recursively denest iterable containers.

>>> from sympy import flatten
 
@@ -1029,7 +1029,7 @@
Documentation Version
-sympy.utilities.iterables.generate_bell(n)[source]
+sympy.utilities.iterables.generate_bell(n)[source]

Return permutations of [0, 1, …, n - 1] such that each permutation differs from the last by the exchange of a single pair of neighbors. The n! permutations are returned as an iterator. In order to obtain @@ -1103,7 +1103,7 @@

Documentation Version
-sympy.utilities.iterables.generate_derangements(s)[source]
+sympy.utilities.iterables.generate_derangements(s)[source]

Return unique derangements of the elements of iterable s.

Examples

>>> from sympy.utilities.iterables import generate_derangements
@@ -1123,7 +1123,7 @@ 
Documentation Version
-sympy.utilities.iterables.generate_involutions(n)[source]
+sympy.utilities.iterables.generate_involutions(n)[source]

Generates involutions.

An involution is a permutation that when multiplied by itself equals the identity permutation. In this @@ -1151,7 +1151,7 @@

Documentation Version
-sympy.utilities.iterables.generate_oriented_forest(n)[source]
+sympy.utilities.iterables.generate_oriented_forest(n)[source]

This algorithm generates oriented forests.

An oriented graph is a directed graph having no symmetric pair of directed edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can @@ -1179,7 +1179,7 @@

Documentation Version
-sympy.utilities.iterables.group(seq, multiple=True)[source]
+sympy.utilities.iterables.group(seq, multiple=True)[source]

Splits a sequence into a list of lists of equal, adjacent elements.

Examples

>>> from sympy import group
@@ -1201,7 +1201,7 @@ 
Documentation Version
-sympy.utilities.iterables.has_dups(seq)[source]
+sympy.utilities.iterables.has_dups(seq)[source]

Return True if there are any duplicate elements in seq.

Examples

>>> from sympy import has_dups, Dict, Set
@@ -1217,7 +1217,7 @@ 
Documentation Version
-sympy.utilities.iterables.has_variety(seq)[source]
+sympy.utilities.iterables.has_variety(seq)[source]

Return True if there are any different elements in seq.

Examples

>>> from sympy import has_variety
@@ -1233,7 +1233,7 @@ 
Documentation Version
-sympy.utilities.iterables.ibin(n, bits=None, str=False)[source]
+sympy.utilities.iterables.ibin(n, bits=None, str=False)[source]

Return a list of length bits corresponding to the binary value of n with small bits to the right (last). If bits is omitted, the length will be the number required to represent n. If the bits are @@ -1276,7 +1276,7 @@

Documentation Version
-sympy.utilities.iterables.iproduct(*iterables)[source]
+sympy.utilities.iterables.iproduct(*iterables)[source]

Cartesian product of iterables.

Generator of the Cartesian product of iterables. This is analogous to itertools.product except that it works with infinite iterables and will @@ -1303,7 +1303,7 @@

Documentation Version
-sympy.utilities.iterables.is_palindromic(s, i=0, j=None)[source]
+sympy.utilities.iterables.is_palindromic(s, i=0, j=None)[source]

Return True if the sequence is the same from left to right as it is from right to left in the whole sequence (default) or in the Python slice s[i: j]; else False.

@@ -1336,7 +1336,7 @@
Documentation Version
-sympy.utilities.iterables.is_sequence(i, include=None)[source]
+sympy.utilities.iterables.is_sequence(i, include=None)[source]

Return a boolean indicating whether i is a sequence in the SymPy sense. If anything that fails the test below should be included as being a sequence for your application, set ‘include’ to that object’s @@ -1377,7 +1377,7 @@

Documentation Version
<class 'sympy.utilities.iterables.NotIterable'>),
-)[source] +)[source]

Return a boolean indicating whether i is SymPy iterable. True also indicates that the iterator is finite, e.g. you can call list(…) on the instance.

@@ -1421,7 +1421,7 @@
Documentation Version
-sympy.utilities.iterables.kbins(l, k, ordered=None)[source]
+sympy.utilities.iterables.kbins(l, k, ordered=None)[source]

Return sequence l partitioned into k bins.

Examples

The default is to give the items in the same order, but grouped @@ -1501,7 +1501,7 @@

Documentation Version
-sympy.utilities.iterables.least_rotation(x, key=None)[source]
+sympy.utilities.iterables.least_rotation(x, key=None)[source]

Returns the number of steps of left rotation required to obtain lexicographically minimal string/list/tuple, etc.

Examples

@@ -1524,7 +1524,7 @@
Documentation Version
-sympy.utilities.iterables.minlex(seq, directed=True, key=None)[source]
+sympy.utilities.iterables.minlex(seq, directed=True, key=None)[source]

Return the rotation of the sequence in which the lexically smallest elements appear first, e.g. \(cba \rightarrow acb\).

The sequence returned is a tuple, unless the input sequence is a string @@ -1558,7 +1558,7 @@

Documentation Version
-sympy.utilities.iterables.multiset(seq)[source]
+sympy.utilities.iterables.multiset(seq)[source]

Return the hashable sequence in multiset form with values being the multiplicity of the item in the sequence.

Examples

@@ -1575,7 +1575,7 @@
Documentation Version
-sympy.utilities.iterables.multiset_combinations(m, n, g=None)[source]
+sympy.utilities.iterables.multiset_combinations(m, n, g=None)[source]

Return the unique combinations of size n from multiset m.

Examples

>>> from sympy.utilities.iterables import multiset_combinations
@@ -1602,7 +1602,7 @@ 
Documentation Version
-sympy.utilities.iterables.multiset_derangements(s)[source]
+sympy.utilities.iterables.multiset_derangements(s)[source]

Generate derangements of the elements of s in place.

Examples

>>> from sympy.utilities.iterables import multiset_derangements, uniq
@@ -1623,7 +1623,7 @@ 
Documentation Version
-sympy.utilities.iterables.multiset_partitions(multiset, m=None)[source]
+sympy.utilities.iterables.multiset_partitions(multiset, m=None)[source]

Return unique partitions of the given multiset (in list form). If m is None, all multisets will be returned, otherwise only partitions with m parts will be returned.

@@ -1687,7 +1687,7 @@
Documentation Version
-sympy.utilities.iterables.multiset_permutations(m, size=None, g=None)[source]
+sympy.utilities.iterables.multiset_permutations(m, size=None, g=None)[source]

Return the unique permutations of multiset m.

Examples

>>> from sympy.utilities.iterables import multiset_permutations
@@ -1704,7 +1704,7 @@ 
Documentation Version
-sympy.utilities.iterables.necklaces(n, k, free=False)[source]
+sympy.utilities.iterables.necklaces(n, k, free=False)[source]

A routine to generate necklaces that may (free=True) or may not (free=False) be turned over to be viewed. The “necklaces” returned are comprised of n integers (beads) with k different @@ -1765,7 +1765,7 @@

Documentation Version
**assumptions,
-)[source] +)[source]

Generate an infinite stream of Symbols consisting of a prefix and increasing subscripts provided that they do not occur in exclude.

@@ -1804,7 +1804,7 @@
Documentation Version
-sympy.utilities.iterables.ordered_partitions(n, m=None, sort=True)[source]
+sympy.utilities.iterables.ordered_partitions(n, m=None, sort=True)[source]

Generates ordered partitions of integer n.

Parameters:
@@ -1894,7 +1894,7 @@
Documentation Version
-sympy.utilities.iterables.partitions(n, m=None, k=None, size=False)[source]
+sympy.utilities.iterables.partitions(n, m=None, k=None, size=False)[source]

Generate all partitions of positive integer, n.

Each partition is represented as a dictionary, mapping an integer to the number of copies of that integer in the partition. For example, @@ -1960,7 +1960,7 @@

Documentation Version
-sympy.utilities.iterables.permute_signs(t)[source]
+sympy.utilities.iterables.permute_signs(t)[source]

Return iterator in which the signs of non-zero elements of t are permuted.

Examples

@@ -1973,7 +1973,7 @@
Documentation Version
-sympy.utilities.iterables.postfixes(seq)[source]
+sympy.utilities.iterables.postfixes(seq)[source]

Generate all postfixes of a sequence.

Examples

>>> from sympy.utilities.iterables import postfixes
@@ -1987,7 +1987,7 @@ 
Documentation Version
-sympy.utilities.iterables.prefixes(seq)[source]
+sympy.utilities.iterables.prefixes(seq)[source]

Generate all prefixes of a sequence.

Examples

>>> from sympy.utilities.iterables import prefixes
@@ -2001,7 +2001,7 @@ 
Documentation Version
-sympy.utilities.iterables.random_derangement(t, choice=None, strict=True)[source]
+sympy.utilities.iterables.random_derangement(t, choice=None, strict=True)[source]

Return a list of elements in which none are in the same positions as they were originally. If an element fills more than half of the positions then an error will be raised since no derangement is possible. To obtain @@ -2035,7 +2035,7 @@

Documentation Version
-sympy.utilities.iterables.reshape(seq, how)[source]
+sympy.utilities.iterables.reshape(seq, how)[source]

Reshape the sequence according to the template in how.

Examples

>>> from sympy.utilities import reshape
@@ -2082,7 +2082,7 @@ 
Documentation Version
-sympy.utilities.iterables.rotate_left(x, y)[source]
+sympy.utilities.iterables.rotate_left(x, y)[source]

Left rotates a list x by the number of steps specified in y.

Examples

@@ -2096,7 +2096,7 @@
Documentation Version
-sympy.utilities.iterables.rotate_right(x, y)[source]
+sympy.utilities.iterables.rotate_right(x, y)[source]

Right rotates a list x by the number of steps specified in y.

Examples

@@ -2110,7 +2110,7 @@
Documentation Version
-sympy.utilities.iterables.rotations(s, dir=1)[source]
+sympy.utilities.iterables.rotations(s, dir=1)[source]

Return a generator giving the items in s as list where each subsequent list has the items rotated to the left (default) or right (dir=-1) relative to the previous list.

@@ -2126,7 +2126,7 @@
Documentation Version
-sympy.utilities.iterables.roundrobin(*iterables)[source]
+sympy.utilities.iterables.roundrobin(*iterables)[source]

roundrobin recipe taken from itertools documentation: https://docs.python.org/3/library/itertools.html#itertools-recipes

roundrobin(‘ABC’, ‘D’, ‘EF’) –> A D E B F C

@@ -2135,7 +2135,7 @@
Documentation Version
-sympy.utilities.iterables.runs(seq, op=<built-in function gt>)[source]
+sympy.utilities.iterables.runs(seq, op=<built-in function gt>)[source]

Group the sequence into lists in which successive elements all compare the same with the comparison operator, op: op(seq[i + 1], seq[i]) is True from all elements in a run.

@@ -2152,7 +2152,7 @@
Documentation Version
-sympy.utilities.iterables.sequence_partitions(l, n, /)[source]
+sympy.utilities.iterables.sequence_partitions(l, n, /)[source]

Returns the partition of sequence \(l\) into \(n\) bins

Parameters:
@@ -2202,7 +2202,7 @@
Documentation Version
-sympy.utilities.iterables.sequence_partitions_empty(l, n, /)[source]
+sympy.utilities.iterables.sequence_partitions_empty(l, n, /)[source]

Returns the partition of sequence \(l\) into \(n\) bins with empty sequence

@@ -2255,7 +2255,7 @@
Documentation Version
-sympy.utilities.iterables.sift(seq, keyfunc, binary=False)[source]
+sympy.utilities.iterables.sift(seq, keyfunc, binary=False)[source]

Sift the sequence, seq according to keyfunc.

Returns:
@@ -2327,7 +2327,7 @@
Documentation Version
-sympy.utilities.iterables.signed_permutations(t)[source]
+sympy.utilities.iterables.signed_permutations(t)[source]

Return iterator in which the signs of non-zero elements of t and the order of the elements are permuted and all returned values are unique.

@@ -2345,7 +2345,7 @@
Documentation Version
-sympy.utilities.iterables.strongly_connected_components(G)[source]
+sympy.utilities.iterables.strongly_connected_components(G)[source]

Strongly connected components of a directed graph in reverse topological order.

@@ -2419,7 +2419,7 @@
Documentation Version
-sympy.utilities.iterables.subsets(seq, k=None, repetition=False)[source]
+sympy.utilities.iterables.subsets(seq, k=None, repetition=False)[source]

Generates all \(k\)-subsets (combinations) from an \(n\)-element set, seq.

A \(k\)-subset of an \(n\)-element set is any subset of length exactly \(k\). The number of \(k\)-subsets of an \(n\)-element set is given by binomial(n, k), @@ -2460,13 +2460,13 @@

Documentation Version
-sympy.utilities.iterables.take(iter, n)[source]
+sympy.utilities.iterables.take(iter, n)[source]

Return n items from iter iterator.

-sympy.utilities.iterables.topological_sort(graph, key=None)[source]
+sympy.utilities.iterables.topological_sort(graph, key=None)[source]

Topological sort of graph’s vertices.

Parameters:
@@ -2541,14 +2541,14 @@
Documentation Version
-sympy.utilities.iterables.unflatten(iter, n=2)[source]
+sympy.utilities.iterables.unflatten(iter, n=2)[source]

Group iter into tuples of length n. Raise an error if the length of iter is not a multiple of n.

-sympy.utilities.iterables.uniq(seq, result=None)[source]
+sympy.utilities.iterables.uniq(seq, result=None)[source]

Yield unique elements from seq as an iterator. The second parameter result is used internally; it is not necessary to pass anything for this.

@@ -2575,7 +2575,7 @@
Documentation Version
-sympy.utilities.iterables.variations(seq, n, repetition=False)[source]
+sympy.utilities.iterables.variations(seq, n, repetition=False)[source]

Returns an iterator over the n-sized variations of seq (size N). repetition controls whether items in seq can appear more than once;

Examples

@@ -2720,7 +2720,7 @@

See Also Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/utilities/lambdify.html b/dev/modules/utilities/lambdify.html index af4c23c23df..739eaae2aaf 100644 --- a/dev/modules/utilities/lambdify.html +++ b/dev/modules/utilities/lambdify.html @@ -804,7 +804,7 @@
Documentation Version
lambda functions which can be used to calculate numerical values very fast.

-sympy.utilities.lambdify.implemented_function(symfunc, implementation)[source]
+sympy.utilities.lambdify.implemented_function(symfunc, implementation)[source]

Add numerical implementation to function symfunc.

symfunc can be an UndefinedFunction instance, or a name string. In the latter case we create an UndefinedFunction instance with that @@ -847,7 +847,7 @@

Documentation Version
-sympy.utilities.lambdify.lambdastr(args, expr, printer=None, dummify=None)[source]
+sympy.utilities.lambdify.lambdastr(args, expr, printer=None, dummify=None)[source]

Returns a string that can be evaluated to a lambda function.

Examples

>>> from sympy.abc import x, y, z
@@ -882,7 +882,7 @@ 
Documentation Version
docstring_limit=1000,
-)[source] +)[source]

Convert a SymPy expression into a function that allows for fast numeric evaluation.

@@ -1468,7 +1468,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/utilities/memoization.html b/dev/modules/utilities/memoization.html index c92d8646004..154b70bf81a 100644 --- a/dev/modules/utilities/memoization.html +++ b/dev/modules/utilities/memoization.html @@ -802,7 +802,7 @@
Documentation Version

Memoization

-sympy.utilities.memoization.assoc_recurrence_memo(base_seq)[source]
+sympy.utilities.memoization.assoc_recurrence_memo(base_seq)[source]

Memo decorator for associated sequences defined by recurrence starting from base

base_seq(n) – callable to get base sequence elements

XXX works only for Pn0 = base_seq(0) cases @@ -811,7 +811,7 @@

Documentation Version
-sympy.utilities.memoization.recurrence_memo(initial)[source]
+sympy.utilities.memoization.recurrence_memo(initial)[source]

Memo decorator for sequences defined by recurrence

Examples

>>> from sympy.utilities.memoization import recurrence_memo
@@ -867,7 +867,7 @@ 
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/utilities/misc.html b/dev/modules/utilities/misc.html index 30f36c866c2..32aadf78459 100644 --- a/dev/modules/utilities/misc.html +++ b/dev/modules/utilities/misc.html @@ -803,7 +803,7 @@
Documentation Version

Miscellaneous stuff that does not really fit anywhere else.

-sympy.utilities.misc.as_int(n, strict=True)[source]
+sympy.utilities.misc.as_int(n, strict=True)[source]

Convert the argument to a builtin integer.

The return value is guaranteed to be equal to the input. ValueError is raised if the input has a non-integral value. When strict is True, this @@ -852,27 +852,27 @@

Documentation Version
-sympy.utilities.misc.debug(*args)[source]
+sympy.utilities.misc.debug(*args)[source]

Print *args if SYMPY_DEBUG is True, else do nothing.

-sympy.utilities.misc.debug_decorator(func)[source]
+sympy.utilities.misc.debug_decorator(func)[source]

If SYMPY_DEBUG is True, it will print a nice execution tree with arguments and results of all decorated functions, else do nothing.

-sympy.utilities.misc.debugf(string, args)[source]
+sympy.utilities.misc.debugf(string, args)[source]

Print string%args if SYMPY_DEBUG is True, else do nothing. This is intended for debug messages using formatted strings.

-sympy.utilities.misc.filldedent(s, w=70, **kwargs)[source]
+sympy.utilities.misc.filldedent(s, w=70, **kwargs)[source]

Strips leading and trailing empty lines from a copy of s, then dedents, fills and returns it.

Empty line stripping serves to deal with docstrings like this one that @@ -887,7 +887,7 @@

Documentation Version
-sympy.utilities.misc.find_executable(executable, path=None)[source]
+sympy.utilities.misc.find_executable(executable, path=None)[source]

Try to find ‘executable’ in the directories listed in ‘path’ (a string listing directories separated by ‘os.pathsep’; defaults to os.environ[‘PATH’]). Returns the complete filename or None if not @@ -896,7 +896,7 @@

Documentation Version
-sympy.utilities.misc.func_name(x, short=False)[source]
+sympy.utilities.misc.func_name(x, short=False)[source]

Return function name of \(x\) (if defined) else the \(type(x)\). If short is True and there is a shorter alias for the result, return the alias.

@@ -916,13 +916,13 @@
Documentation Version
-sympy.utilities.misc.ordinal(num)[source]
+sympy.utilities.misc.ordinal(num)[source]

Return ordinal number string of num, e.g. 1 becomes 1st.

-sympy.utilities.misc.rawlines(s)[source]
+sympy.utilities.misc.rawlines(s)[source]

Return a cut-and-pastable string that, when printed, is equivalent to the input. Use this when there is more than one line in the string. The string returned is formatted so it can be indented @@ -986,7 +986,7 @@

Documentation Version
-sympy.utilities.misc.replace(string, *reps)[source]
+sympy.utilities.misc.replace(string, *reps)[source]

Return string with all keys in reps replaced with their corresponding values, longer strings first, irrespective of the order they are given. reps may be passed as tuples @@ -1021,7 +1021,7 @@

Documentation Version
-sympy.utilities.misc.strlines(s, c=64, short=False)[source]
+sympy.utilities.misc.strlines(s, c=64, short=False)[source]

Return a cut-and-pastable string that, when printed, is equivalent to the input. The lines will be surrounded by parentheses and no line will be longer than c (default 64) @@ -1052,7 +1052,7 @@

Documentation Version
-sympy.utilities.misc.translate(s, a, b=None, c=None)[source]
+sympy.utilities.misc.translate(s, a, b=None, c=None)[source]

Return s where characters have been replaced or deleted.

Syntax

@@ -1130,7 +1130,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/utilities/source.html b/dev/modules/utilities/source.html index 3d4e2469770..df1b544e701 100644 --- a/dev/modules/utilities/source.html +++ b/dev/modules/utilities/source.html @@ -803,7 +803,7 @@
Documentation Version

This module adds several functions for interactive source code inspection.

-sympy.utilities.source.get_class(lookup_view)[source]
+sympy.utilities.source.get_class(lookup_view)[source]

Convert a string version of a class name to the object.

For example, get_class(‘sympy.core.Basic’) will return class Basic located in module sympy.core

@@ -811,7 +811,7 @@
Documentation Version
-sympy.utilities.source.get_mod_func(callback)[source]
+sympy.utilities.source.get_mod_func(callback)[source]

splits the string path to a class into a string path to the module and the name of the class.

Examples

@@ -859,7 +859,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/utilities/timeutils.html b/dev/modules/utilities/timeutils.html index 96cebc0fb7e..5698a6e6308 100644 --- a/dev/modules/utilities/timeutils.html +++ b/dev/modules/utilities/timeutils.html @@ -803,7 +803,7 @@
Documentation Version

Simple tools for timing functions’ execution, when IPython is not available.

-sympy.utilities.timeutils.timed(func, setup='pass', limit=None)[source]
+sympy.utilities.timeutils.timed(func, setup='pass', limit=None)[source]

Adaptively measure execution time of a function.

@@ -844,7 +844,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/modules/vector/api/classes.html b/dev/modules/vector/api/classes.html index febc9c21d1d..c358389303f 100644 --- a/dev/modules/vector/api/classes.html +++ b/dev/modules/vector/api/classes.html @@ -814,7 +814,7 @@

Essential Classes in sympy.vector (docstrings)variable_names=None,

-)[source] +)[source]

Represents a coordinate system in 3-D space.

@@ -834,7 +834,7 @@

Essential Classes in sympy.vector (docstrings)transformation=None,

-)[source] +)[source]

The orientation/location parameters are necessary if this system is being defined at a certain orientation or location wrt another.

@@ -885,7 +885,7 @@

Essential Classes in sympy.vector (docstrings)vector_names=None,

-)[source] +)[source]

Returns a CoordSys3D which is connected to self by transformation.

Parameters:
@@ -929,7 +929,7 @@

Essential Classes in sympy.vector (docstrings)variable_names=None,

-)[source] +)[source]

Returns a CoordSys3D with its origin located at the given position wrt this coordinate system’s origin.

@@ -973,7 +973,7 @@

Essential Classes in sympy.vector (docstrings)variable_names=None,

-)[source] +)[source]

Creates a new CoordSys3D oriented in the user-specified way with respect to this system.

Please refer to the documentation of the orienter classes @@ -1053,7 +1053,7 @@

Essential Classes in sympy.vector (docstrings)variable_names=None,

-)[source] +)[source]

Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector.

@@ -1110,7 +1110,7 @@

Essential Classes in sympy.vector (docstrings)variable_names=None,

-)[source] +)[source]

Body orientation takes this coordinate system through three successive simple rotations.

Body fixed rotations include both Euler Angles and @@ -1190,7 +1190,7 @@

Essential Classes in sympy.vector (docstrings)variable_names=None,

-)[source] +)[source]

Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.

@@ -1249,7 +1249,7 @@

Essential Classes in sympy.vector (docstrings)variable_names=None,

-)[source] +)[source]

Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

@@ -1312,7 +1312,7 @@

Essential Classes in sympy.vector (docstrings)
-position_wrt(other)[source]
+position_wrt(other)[source]

Returns the position vector of the origin of this coordinate system with respect to another Point/CoordSys3D.

@@ -1337,7 +1337,7 @@

Essential Classes in sympy.vector (docstrings)
-rotation_matrix(other)[source]
+rotation_matrix(other)[source]

Returns the direction cosine matrix(DCM), also known as the ‘rotation matrix’ of this coordinate system with respect to another system.

@@ -1370,7 +1370,7 @@

Essential Classes in sympy.vector (docstrings)
-scalar_map(other)[source]
+scalar_map(other)[source]

Returns a dictionary which expresses the coordinate variables (base scalars) of this frame in terms of the variables of otherframe.

@@ -1398,7 +1398,7 @@

Essential Classes in sympy.vector (docstrings)
-class sympy.vector.vector.Vector(*args)[source]
+class sympy.vector.vector.Vector(*args)[source]

Super class for all Vector classes. Ideally, neither this class nor any of its subclasses should be instantiated by the user.

@@ -1420,7 +1420,7 @@

Essential Classes in sympy.vector (docstrings)
-cross(other)[source]
+cross(other)[source]

Returns the cross product of this Vector with another Vector or Dyadic instance. The cross product is a Vector, if ‘other’ is a Vector. If ‘other’ @@ -1452,7 +1452,7 @@

Essential Classes in sympy.vector (docstrings)
-dot(other)[source]
+dot(other)[source]

Returns the dot product of this Vector, either with another Vector, or a Dyadic, or a Del operator. If ‘other’ is a Vector, returns the dot product scalar (SymPy @@ -1492,19 +1492,19 @@

Essential Classes in sympy.vector (docstrings)
-magnitude()[source]
+magnitude()[source]

Returns the magnitude of this vector.

-normalize()[source]
+normalize()[source]

Returns the normalized version of this vector.

-outer(other)[source]
+outer(other)[source]

Returns the outer product of this vector with another, in the form of a Dyadic instance.

@@ -1527,7 +1527,7 @@

Essential Classes in sympy.vector (docstrings)
-projection(other, scalar=False)[source]
+projection(other, scalar=False)[source]

Returns the vector or scalar projection of the ‘other’ on ‘self’.

Examples

>>> from sympy.vector.coordsysrect import CoordSys3D
@@ -1545,7 +1545,7 @@ 

Essential Classes in sympy.vector (docstrings)
-separate()[source]
+separate()[source]

The constituents of this vector in different coordinate systems, as per its definition.

Returns a dict mapping each CoordSys3D to the corresponding @@ -1563,7 +1563,7 @@

Essential Classes in sympy.vector (docstrings)
-to_matrix(system)[source]
+to_matrix(system)[source]

Returns the matrix form of this vector with respect to the specified coordinate system.

@@ -1592,7 +1592,7 @@

Essential Classes in sympy.vector (docstrings)
-class sympy.vector.dyadic.Dyadic(*args)[source]
+class sympy.vector.dyadic.Dyadic(*args)[source]

Super class for all Dyadic-classes.

References

@@ -1616,7 +1616,7 @@

Essential Classes in sympy.vector (docstrings)
-cross(other)[source]
+cross(other)[source]

Returns the cross product between this Dyadic, and a Vector, as a Vector instance.

@@ -1639,7 +1639,7 @@

Essential Classes in sympy.vector (docstrings)
-dot(other)[source]
+dot(other)[source]

Returns the dot product(also called inner product) of this Dyadic, with another Dyadic or Vector. If ‘other’ is a Dyadic, this returns a Dyadic. Else, it returns @@ -1667,7 +1667,7 @@

Essential Classes in sympy.vector (docstrings)
-to_matrix(system, second_system=None)[source]
+to_matrix(system, second_system=None)[source]

Returns the matrix form of the dyadic with respect to one or two coordinate systems.

@@ -1711,12 +1711,12 @@

Essential Classes in sympy.vector (docstrings)
-class sympy.vector.deloperator.Del[source]
+class sympy.vector.deloperator.Del[source]

Represents the vector differential operator, usually represented in mathematical expressions as the ‘nabla’ symbol.

-cross(vect, doit=False)[source]
+cross(vect, doit=False)[source]

Represents the cross product between this operator and a given vector - equal to the curl of the vector field.

@@ -1749,7 +1749,7 @@

Essential Classes in sympy.vector (docstrings)
-dot(vect, doit=False)[source]
+dot(vect, doit=False)[source]

Represents the dot product between this operator and a given vector - equal to the divergence of the vector field.

@@ -1781,7 +1781,7 @@

Essential Classes in sympy.vector (docstrings)
-gradient(scalar_field, doit=False)[source]
+gradient(scalar_field, doit=False)[source]

Returns the gradient of the given scalar field, as a Vector instance.

@@ -1814,7 +1814,7 @@

Essential Classes in sympy.vector (docstrings)
-class sympy.vector.parametricregion.ParametricRegion(definition, *bounds)[source]
+class sympy.vector.parametricregion.ParametricRegion(definition, *bounds)[source]

Represents a parametric region in space.

Parameters:
@@ -1857,7 +1857,7 @@

Essential Classes in sympy.vector (docstrings)
-class sympy.vector.implicitregion.ImplicitRegion(variables, equation)[source]
+class sympy.vector.implicitregion.ImplicitRegion(variables, equation)[source]

Represents an implicit region in space.

Parameters:
@@ -1897,7 +1897,7 @@

Essential Classes in sympy.vector (docstrings)
-multiplicity(point)[source]
+multiplicity(point)[source]

Returns the multiplicity of a singular point on the region.

A singular point (x,y) of region is said to be of multiplicity m if all the partial derivatives off to order m - 1 vanish there.

@@ -1922,7 +1922,7 @@

Essential Classes in sympy.vector (docstrings)reg_point=None,

-)[source] +)[source]

Returns the rational parametrization of implicit region.

Examples

>>> from sympy import Eq
@@ -1973,7 +1973,7 @@ 

Essential Classes in sympy.vector (docstrings)
-regular_point()[source]
+regular_point()[source]

Returns a point on the implicit region.

Examples

>>> from sympy.abc import x, y, z
@@ -1999,7 +1999,7 @@ 

Essential Classes in sympy.vector (docstrings)
-singular_points()[source]
+singular_points()[source]

Returns a set of singular points of the region.

The singular points are those points on the region where all partial derivatives vanish.

@@ -2017,7 +2017,7 @@

Essential Classes in sympy.vector (docstrings)
-class sympy.vector.integrals.ParametricIntegral(field, parametricregion)[source]
+class sympy.vector.integrals.ParametricIntegral(field, parametricregion)[source]

Represents integral of a scalar or vector field over a Parametric Region

Examples

@@ -2081,7 +2081,7 @@

Essential Classes in sympy.vector (docstrings)Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/api/index.html b/dev/modules/vector/api/index.html index 7be428d66e8..e557cac5401 100644 --- a/dev/modules/vector/api/index.html +++ b/dev/modules/vector/api/index.html @@ -844,7 +844,7 @@

Vector APIFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/api/orienterclasses.html b/dev/modules/vector/api/orienterclasses.html index 96017accf83..89a60daefff 100644 --- a/dev/modules/vector/api/orienterclasses.html +++ b/dev/modules/vector/api/orienterclasses.html @@ -802,11 +802,11 @@
Documentation Version

Orienter classes (docstrings)

-class sympy.vector.orienters.Orienter(*args)[source]
+class sympy.vector.orienters.Orienter(*args)[source]

Super-class for all orienter classes.

-rotation_matrix()[source]
+rotation_matrix()[source]

The rotation matrix corresponding to this orienter instance.

@@ -815,11 +815,11 @@

Orienter classes (docstrings)
-class sympy.vector.orienters.AxisOrienter(angle, axis)[source]
+class sympy.vector.orienters.AxisOrienter(angle, axis)[source]

Class to denote an axis orienter.

-__init__(angle, axis)[source]
+__init__(angle, axis)[source]

Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector.

@@ -849,7 +849,7 @@

Orienter classes (docstrings)
-rotation_matrix(system)[source]
+rotation_matrix(system)[source]

The rotation matrix corresponding to this orienter instance.

@@ -867,7 +867,7 @@

Orienter classes (docstrings)
-class sympy.vector.orienters.BodyOrienter(angle1, angle2, angle3, rot_order)[source]
+class sympy.vector.orienters.BodyOrienter(angle1, angle2, angle3, rot_order)[source]

Class to denote a body-orienter.

@@ -880,7 +880,7 @@

Orienter classes (docstrings)rot_order,

-)[source] +)[source]

Body orientation takes this coordinate system through three successive simple rotations.

Body fixed rotations include both Euler Angles and @@ -938,7 +938,7 @@

Orienter classes (docstrings)
-class sympy.vector.orienters.SpaceOrienter(angle1, angle2, angle3, rot_order)[source]
+class sympy.vector.orienters.SpaceOrienter(angle1, angle2, angle3, rot_order)[source]

Class to denote a space-orienter.

@@ -951,7 +951,7 @@

Orienter classes (docstrings)rot_order,

-)[source] +)[source]

Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

@@ -1005,7 +1005,7 @@

Orienter classes (docstrings)
-class sympy.vector.orienters.QuaternionOrienter(q0, q1, q2, q3)[source]
+class sympy.vector.orienters.QuaternionOrienter(q0, q1, q2, q3)[source]

Class to denote a quaternion-orienter.

@@ -1018,7 +1018,7 @@

Orienter classes (docstrings)rot_order,

-)[source] +)[source]

Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.

@@ -1087,7 +1087,7 @@

Orienter classes (docstrings)Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/api/vectorfunctions.html b/dev/modules/vector/api/vectorfunctions.html index 8f56e390d4f..1e60522f8aa 100644 --- a/dev/modules/vector/api/vectorfunctions.html +++ b/dev/modules/vector/api/vectorfunctions.html @@ -802,7 +802,7 @@
Documentation Version

Essential Functions in sympy.vector (docstrings)

-sympy.vector.matrix_to_vector(matrix, system)[source]
+sympy.vector.matrix_to_vector(matrix, system)[source]

Converts a vector in matrix form to a Vector instance.

It is assumed that the elements of the Matrix represent the measure numbers of the components of the vector along basis @@ -844,7 +844,7 @@

Essential Functions in sympy.vector (docstrings)variables=False,

-)[source] +)[source]

Global function for ‘express’ functionality.

Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given coordinate system.

@@ -894,7 +894,7 @@

Essential Functions in sympy.vector (docstrings)
-sympy.vector.curl(vect, doit=True)[source]
+sympy.vector.curl(vect, doit=True)[source]

Returns the curl of a vector field computed wrt the base scalars of the given coordinate system.

@@ -926,7 +926,7 @@

Essential Functions in sympy.vector (docstrings)
-sympy.vector.divergence(vect, doit=True)[source]
+sympy.vector.divergence(vect, doit=True)[source]

Returns the divergence of a vector field computed wrt the base scalars of the given coordinate system.

@@ -960,7 +960,7 @@

Essential Functions in sympy.vector (docstrings)
-sympy.vector.gradient(scalar_field, doit=True)[source]
+sympy.vector.gradient(scalar_field, doit=True)[source]

Returns the vector gradient of a scalar field computed wrt the base scalars of the given coordinate system.

@@ -992,7 +992,7 @@

Essential Functions in sympy.vector (docstrings)
-sympy.vector.is_conservative(field)[source]
+sympy.vector.is_conservative(field)[source]

Checks if a field is conservative.

Parameters:
@@ -1016,7 +1016,7 @@

Essential Functions in sympy.vector (docstrings)
-sympy.vector.is_solenoidal(field)[source]
+sympy.vector.is_solenoidal(field)[source]

Checks if a field is solenoidal.

Parameters:
@@ -1040,7 +1040,7 @@

Essential Functions in sympy.vector (docstrings)
-sympy.vector.scalar_potential(field, coord_sys)[source]
+sympy.vector.scalar_potential(field, coord_sys)[source]

Returns the scalar potential function of a field in a given coordinate system (without the added integration constant).

@@ -1081,7 +1081,7 @@

Essential Functions in sympy.vector (docstrings)point2,

-)[source] +)[source]

Returns the scalar potential difference between two points in a certain coordinate system, wrt a given field.

If a scalar field is provided, its values at the two points are @@ -1127,7 +1127,7 @@

Essential Functions in sympy.vector (docstrings)
-sympy.vector.integrals.vector_integrate(field, *region)[source]
+sympy.vector.integrals.vector_integrate(field, *region)[source]

Compute the integral of a vector/scalar field over a a region or a set of parameters.

Examples

@@ -1210,7 +1210,7 @@

Essential Functions in sympy.vector (docstrings)Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/basics.html b/dev/modules/vector/basics.html index e0159e184c4..29223131c5f 100644 --- a/dev/modules/vector/basics.html +++ b/dev/modules/vector/basics.html @@ -1077,7 +1077,7 @@

DyadicsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/coordsys.html b/dev/modules/vector/coordsys.html index 203fb57337b..72c5f102b93 100644 --- a/dev/modules/vector/coordsys.html +++ b/dev/modules/vector/coordsys.html @@ -1358,7 +1358,7 @@

Other expression-dependent methodsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/examples.html b/dev/modules/vector/examples.html index f139ba569dc..2e56bd0f9ed 100644 --- a/dev/modules/vector/examples.html +++ b/dev/modules/vector/examples.html @@ -956,7 +956,7 @@

SolutionFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/fields.html b/dev/modules/vector/fields.html index 160577e74ec..76ad5764505 100644 --- a/dev/modules/vector/fields.html +++ b/dev/modules/vector/fields.html @@ -1154,7 +1154,7 @@

Scalar potential functionsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/index.html b/dev/modules/vector/index.html index fdd0bd45f28..2c33a7bf105 100644 --- a/dev/modules/vector/index.html +++ b/dev/modules/vector/index.html @@ -877,7 +877,7 @@

References for VectorFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/intro.html b/dev/modules/vector/intro.html index 33285322ed9..c9b0bd6cbb0 100644 --- a/dev/modules/vector/intro.html +++ b/dev/modules/vector/intro.html @@ -928,7 +928,7 @@

FieldsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/modules/vector/vector_integration.html b/dev/modules/vector/vector_integration.html index 3e1427f06a5..f343a6e4716 100644 --- a/dev/modules/vector/vector_integration.html +++ b/dev/modules/vector/vector_integration.html @@ -980,7 +980,7 @@

Verifying Divergence TheoremFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/py-modindex.html b/dev/py-modindex.html index c44a2792bbb..795eff8a187 100644 --- a/dev/py-modindex.html +++ b/dev/py-modindex.html @@ -2514,7 +2514,7 @@

Python Module Index

Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/reference/index.html b/dev/reference/index.html index 3c2d6097dab..f054fd8ab98 100644 --- a/dev/reference/index.html +++ b/dev/reference/index.html @@ -895,7 +895,7 @@

Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/reference/public/basics/index.html b/dev/reference/public/basics/index.html index 5cd8e057a38..acf6112743b 100644 --- a/dev/reference/public/basics/index.html +++ b/dev/reference/public/basics/index.html @@ -912,7 +912,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/reference/public/codegeneration/index.html b/dev/reference/public/codegeneration/index.html index 3a14dd628ca..c7e7951f6a7 100644 --- a/dev/reference/public/codegeneration/index.html +++ b/dev/reference/public/codegeneration/index.html @@ -843,7 +843,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/reference/public/logic/index.html b/dev/reference/public/logic/index.html index 9d2a68c3813..712e308f216 100644 --- a/dev/reference/public/logic/index.html +++ b/dev/reference/public/logic/index.html @@ -844,7 +844,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/reference/public/matrices/index.html b/dev/reference/public/matrices/index.html index 098b92853a0..1a596236ba1 100644 --- a/dev/reference/public/matrices/index.html +++ b/dev/reference/public/matrices/index.html @@ -877,7 +877,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/reference/public/numbertheory/index.html b/dev/reference/public/numbertheory/index.html index 45dd9b621d8..a6950c23c78 100644 --- a/dev/reference/public/numbertheory/index.html +++ b/dev/reference/public/numbertheory/index.html @@ -843,7 +843,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/reference/public/physics/index.html b/dev/reference/public/physics/index.html index 092c816ac89..1a7e735dc34 100644 --- a/dev/reference/public/physics/index.html +++ b/dev/reference/public/physics/index.html @@ -935,7 +935,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/reference/public/topics/index.html b/dev/reference/public/topics/index.html index 5d9b9c6c207..1d21b332a0e 100644 --- a/dev/reference/public/topics/index.html +++ b/dev/reference/public/topics/index.html @@ -883,7 +883,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/reference/public/utilities/index.html b/dev/reference/public/utilities/index.html index ee83efe3d77..9226f474087 100644 --- a/dev/reference/public/utilities/index.html +++ b/dev/reference/public/utilities/index.html @@ -865,7 +865,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/search.html b/dev/search.html index 082d3fa17ba..29f5592b174 100644 --- a/dev/search.html +++ b/dev/search.html @@ -821,7 +821,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/searchindex.js b/dev/searchindex.js index 2f83c6e94f3..c3630cd0013 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"(Optional) Configure Git Settings": [[9, "optional-configure-git-settings"]], "1. Completing Dynamics Online": [[22, "completing-dynamics-online"]], "1. Single-Sentence Summary": [[4, "single-sentence-summary"]], "1. Symbolic linearization with A_and_B=True is slow": [[27, "symbolic-linearization-with-a-and-b-true-is-slow"]], "1. Using the Linearizer class directly:": [[27, "using-the-linearizer-class-directly"], [27, "id2"]], "2. Explanation Section": [[4, "explanation-section"]], "2. Fixing Issues": [[22, "fixing-issues"]], "2. The linearized form has nan, zoo, or oo as matrix elements": [[27, "the-linearized-form-has-nan-zoo-or-oo-as-matrix-elements"]], "2. Using the linearize class method:": [[27, "using-the-linearize-class-method"], [27, "id3"]], "3. Examples Section": [[4, "examples-section"]], "3. Switching to an AST": [[22, "switching-to-an-ast"]], "4. Parameters Section": [[4, "parameters-section"]], "5. See Also Section": [[4, "see-also-section"]], "6. References Section": [[4, "references-section"]], "A Direct Method Using SymPy Matrices": [[39, "a-direct-method-using-sympy-matrices"]], "A More Interesting Example": [[291, "a-more-interesting-example"]], "A Note about Equations": [[298, "a-note-about-equations"]], "A Note on Dependent Coordinates and Speeds": [[27, null]], "A Simple Musculotendon Model": [[18, "a-simple-musculotendon-model"]], "A bicycle": [[302, null]], "A four bar linkage": [[304, null]], "A rolling disc": [[308, null]], "A rolling disc using Lagrange\u2019s Method": [[311, null]], "A rolling disc, with Kane\u2019s method": [[309, null]], "A rolling disc, with Kane\u2019s method and constraint forces": [[310, null]], "AGCA - Algebraic Geometry and Commutative Algebra Module": [[208, null]], "ANTLR Backend": [[130, "antlr-backend"]], "ANTLR \\mathrm{\\LaTeX} Parser Caveats": [[130, "antlr-mathrm-latex-parser-caveats"]], "API Reference": [[58, "api-reference"], [253, "module-sympy.utilities.autowrap"], [254, "module-sympy.utilities.codegen"], [276, null]], "API reference": [[115, "api-reference"], [115, "id39"]], "ASCII Pretty Printer": [[296, "ascii-pretty-printer"]], "AST Type Tree": [[69, "ast-type-tree"]], "About Holonomic Functions": [[106, null]], "Abstract": [[133, null], [139, null], [143, null], [145, null], [151, null], [161, null], [178, null], [203, null]], "Abstract Domains": [[212, "abstract-domains"]], "Acceleration of Points": [[21, "acceleration-of-points"], [32, "acceleration-of-points"]], "Accessing Rows and Columns": [[293, "accessing-rows-and-columns"]], "Accuracy and error handling": [[92, "accuracy-and-error-handling"]], "Activation (Docstrings)": [[131, null]], "Activation Dynamics": [[18, "activation-dynamics"]], "Actuator (Docstrings)": [[148, null]], "Actuators": [[18, "actuators"]], "Add Tests": [[11, "add-tests"]], "Add your name and email address to the .mailmap file.": [[11, "add-your-name-and-email-address-to-the-mailmap-file"]], "Adding the deprecation to the code": [[3, "adding-the-deprecation-to-the-code"]], "Addition and Multiplication": [[110, "addition-and-multiplication"]], "Additional Tips": [[43, "additional-tips"]], "Advanced Expression Manipulation": [[292, null]], "Advanced Functionality": [[21, "advanced-functionality"]], "Advanced Interfaces": [[21, "advanced-interfaces"], [32, "advanced-interfaces"]], "Advanced Methods": [[293, "advanced-methods"]], "Advanced Usage": [[14, "advanced-usage"]], "Advanced factoring over finite fields": [[220, "advanced-factoring-over-finite-fields"]], "Aesara": [[129, "aesara"]], "Aesara Code printing": [[221, "module-sympy.printing.aesaracode"]], "Airy Functions": [[96, "airy-functions"]], "Algebraic Solution With Root Multiplicities": [[48, "algebraic-solution-with-root-multiplicities"]], "Algebraic Solution Without Root Multiplicities": [[48, "algebraic-solution-without-root-multiplicities"]], "Algebraic equations": [[239, "algebraic-equations"]], "Algebraic number fields": [[211, "algebraic-number-fields"], [216, "algebraic-number-fields"]], "Algebraically dependent generators": [[211, "algebraically-dependent-generators"]], "Algebras": [[61, null]], "Algorithms (sympy.codegen.algorithms)": [[69, "module-sympy.codegen.algorithms"]], "Alternative Representation": [[36, "alternative-representation"]], "Alternatives to Consider": [[48, "alternatives-to-consider"], [50, "alternatives-to-consider"], [51, "alternatives-to-consider"], [53, "alternatives-to-consider"], [54, "alternatives-to-consider"], [55, "alternatives-to-consider"], [56, "alternatives-to-consider"]], "Alternatives to consider": [[52, "alternatives-to-consider"]], "An example": [[196, "an-example"], [231, "an-example"]], "An in-depth example: Pappus\u2019 Hexagon Theorem": [[100, "an-in-depth-example-pappus-hexagon-theorem"]], "Anaconda": [[59, "anaconda"]], "Analytic Solutions": [[178, "analytic-solutions"]], "Angular Acceleration": [[35, "angular-acceleration"]], "Angular Momentum": [[28, "angular-momentum"]], "Angular Velocity": [[35, "angular-velocity"]], "Anticommutator": [[168, null]], "Appell sequences": [[217, "appell-sequences"]], "Applications of Vector Integrals": [[275, null]], "Applying assumptions to string inputs": [[41, "applying-assumptions-to-string-inputs"]], "Applying the Integral Theorems": [[113, "applying-the-integral-theorems"]], "Applying the Operators": [[231, "applying-the-operators"]], "Approximate Numeric Solution With Root Multiplicities": [[48, "approximate-numeric-solution-with-root-multiplicities"]], "Arch": [[135, "module-sympy.physics.continuum_mechanics.Arch"], [139, "arch"]], "Arch (Docstrings)": [[135, null]], "Args Invariants": [[14, "args-invariants"]], "Arithmetic with module elements": [[216, "arithmetic-with-module-elements"]], "As elements of finitely-generated modules": [[216, "as-elements-of-finitely-generated-modules"]], "As number field elements": [[216, "as-number-field-elements"]], "Ask": [[62, null]], "Assume": [[63, null]], "Assumptions": [[41, null], [43, "assumptions"], [64, null]], "Assumptions predicates for the (old) assumptions": [[41, "id28"]], "Attributes of Collector": [[78, "attributes-of-collector"]], "Attributes of CosetTable": [[70, "attributes-of-cosettable"]], "Attributes of PolycyclicGroup": [[78, "attributes-of-polycyclicgroup"]], "Authors": [[206, "authors"]], "Auto-Rebuild with the Live Server": [[8, "auto-rebuild-with-the-live-server"]], "Autolev Parser": [[22, null]], "Autowrap": [[2, "autowrap"], [69, "autowrap"]], "Autowrap Module": [[253, null]], "Available Entities": [[100, "available-entities"]], "Avoid Manipulating Expressions as Strings": [[14, "avoid-manipulating-expressions-as-strings"]], "Avoid Storing Extra Attributes on an Object": [[14, "avoid-storing-extra-attributes-on-an-object"]], "Avoid String Inputs": [[14, "avoid-string-inputs"]], "Avoid Too Much Automatic Evaluation": [[14, "avoid-too-much-automatic-evaluation"]], "Avoid simplify()": [[14, "avoid-simplify"]], "Avoiding Infinite Recursion from Assumptions Handlers": [[14, "avoiding-infinite-recursion-from-assumptions-handlers"]], "B-Splines": [[96, "b-splines"]], "Backends": [[207, "backends"]], "Background": [[27, "background"]], "Base Class Reference": [[68, "module-sympy.categories"], [90, "base-class-reference"]], "Base Rings": [[208, "base-rings"]], "Basic Implementation details": [[269, null]], "Basic Manipulation": [[124, "basic-manipulation"]], "Basic Methods": [[293, "basic-methods"]], "Basic Operations": [[286, null], [293, "basic-operations"]], "Basic Sets": [[229, "module-sympy.sets.sets"]], "Basic Usage": [[14, "basic-usage"]], "Basic concepts": [[209, "basic-concepts"]], "Basic functionality": [[209, "basic-functionality"]], "Basic functionality of the module": [[209, null]], "Basic polynomial manipulation functions": [[217, "basic-polynomial-manipulation-functions"]], "Basic usage of domains": [[211, "basic-usage-of-domains"]], "Basics": [[92, "basics"], [276, "basics"], [277, null]], "Basics for Writing Tests": [[12, "basics-for-writing-tests"]], "Be Careful Comparing and Sorting Symbolic Objects": [[14, "be-careful-comparing-and-sorting-symbolic-objects"]], "Beam": [[137, "beam"], [139, "beam"]], "Beam (Docstrings)": [[136, null]], "Bessel Type Functions": [[96, "module-sympy.functions.special.bessel"]], "Best Practices": [[14, null]], "Best Practices for Writing Docstrings": [[4, "best-practices-for-writing-docstrings"]], "Best Practices for Writing Documentation": [[5, "best-practices-for-writing-documentation"]], "Best Practices for eval()": [[43, "best-practices-for-eval"]], "Beware Copying and Pasting Results": [[55, "beware-copying-and-pasting-results"]], "Bibliography": [[70, "bibliography"], [78, "bibliography"]], "Biceps": [[299, "biceps"]], "Biomechanical Model Example": [[299, null]], "Biomechanics": [[19, null]], "Biomechanics API Reference": [[133, null]], "Biomechanics Tutorials": [[300, null]], "Block Matrices": [[120, "block-matrices"]], "Bode Plot": [[142, "bode-plot"]], "Bodies": [[155, "bodies"]], "Bodies, Inertias, Loads & Other Functions (Docstrings)": [[155, null]], "Boolean functions": [[118, "boolean-functions"]], "Boolean or Relational": [[37, "boolean-or-relational"]], "Branch names": [[11, "branch-names"]], "Build the Docs": [[8, "build-the-docs"]], "Building the Documentation": [[2, "building-the-documentation"], [8, null]], "C code printers": [[221, "module-sympy.printing.c"]], "C specific AST nodes (sympy.codegen.cnodes)": [[69, "module-sympy.codegen.cnodes"]], "C utilities (sympy.codegen.cutils)": [[69, "module-sympy.codegen.cutils"]], "C++ code printers": [[221, "module-sympy.printing.cxx"]], "C++ specific AST nodes (sympy.codegen.cxxnodes)": [[69, "module-sympy.codegen.cxxnodes"]], "CC": [[212, "cc"]], "Cable": [[138, "module-sympy.physics.continuum_mechanics.cable"], [139, "cable"]], "Cable (Docstrings)": [[138, null]], "Calculation of Flux": [[275, "calculation-of-flux"]], "Calculation of Perimeter, Surface Area, and Volume": [[275, "calculation-of-perimeter-surface-area-and-volume"]], "Calculation of mass of a body": [[275, "calculation-of-mass-of-a-body"]], "Calculus": [[65, "calculus"], [67, null], [287, null]], "Calling sympy.stats.StochasticProcess.distribution with RandomIndexedSymbol": [[13, "calling-sympy-stats-stochasticprocess-distribution-with-randomindexedsymbol"]], "Capitalization": [[5, "capitalization"]], "Cartesian Operators and States": [[169, null]], "Category Theory": [[68, null]], "Caveats": [[60, "caveats"]], "Change in joint attachment point argument": [[13, "change-in-joint-attachment-point-argument"]], "Chebyshev Polynomials": [[96, "chebyshev-polynomials"]], "Checking the type of vector field": [[201, "checking-the-type-of-vector-field"]], "Checklist": [[3, "checklist"]], "Checklist for Contributions": [[11, "checklist-for-contributions"]], "Choice of Coordinates and Speeds": [[21, "choice-of-coordinates-and-speeds"]], "Choosing a domain": [[211, "choosing-a-domain"]], "Choosing a domain for a Poly": [[211, "choosing-a-domain-for-a-poly"]], "Choosing generators": [[211, "choosing-generators"]], "Circuit Plot": [[171, null]], "Citing SymPy": [[0, null]], "Class Reference": [[216, "class-reference"]], "Classes": [[242, "classes"]], "Classes and functions for rewriting expressions (sympy.codegen.rewriting)": [[69, "module-sympy.codegen.rewriting"]], "Classes for abstract syntax trees (sympy.codegen.ast)": [[69, "module-sympy.codegen.ast"]], "Classical Mechanics": [[23, null]], "Classical remainder sequence": [[214, "classical-remainder-sequence"]], "Classification of SymPy objects": [[38, null]], "Clebsch-Gordan Coefficients": [[170, null]], "Co-Author": [[11, "co-author"]], "Code": [[5, "code"]], "Code Generation": [[2, "code-generation"], [69, null], [276, "code-generation"], [278, null]], "Code Output": [[21, "code-output"]], "Code Printers": [[2, "code-printers"]], "Code Quality": [[11, "code-quality"]], "Code Quality Checks": [[12, "code-quality-checks"]], "Code printers (sympy.printing)": [[69, "code-printers-sympy-printing"]], "CodePrinter": [[221, "module-sympy.printing.codeprinter"]], "Codegen": [[254, null]], "Codegen (sympy.utilities.codegen)": [[69, "codegen-sympy-utilities-codegen"]], "Columnspace": [[293, "columnspace"]], "Combinatorial": [[93, null]], "Combinatorics": [[75, null]], "Combining predicates with or": [[41, "combining-predicates-with-or"]], "Commit the changes": [[11, "commit-the-changes"]], "Common": [[65, "common"]], "Common Issues": [[21, "common-issues"], [32, "common-issues"]], "Common Subexpression Detection and Collection": [[222, "common-subexpression-detection-and-collection"]], "Common mistakes": [[221, "common-mistakes"]], "Commutator": [[172, null]], "Compatibility with matrices": [[243, "compatibility-with-matrices"]], "Complete Examples": [[43, "complete-examples"]], "Complex Functions": [[94, "complex-functions"]], "Complex Roots": [[48, "complex-roots"]], "Composition with polynomials": [[110, "composition-with-polynomials"]], "Compound Distribution": [[241, "compound-distribution"]], "Compound Sequences": [[227, "compound-sequences"]], "Compound Sets": [[229, "compound-sets"]], "Compression and Standardization": [[70, "compression-and-standardization"]], "Computation of Collected Word": [[78, "computation-of-collected-word"]], "Computation of Exponent Vector": [[78, "computation-of-exponent-vector"]], "Computation of Leading Exponent": [[78, "computation-of-leading-exponent"]], "Computation of Minimal Uncollected Subword": [[78, "computation-of-minimal-uncollected-subword"]], "Computation of Polycyclic Presentation": [[78, "computation-of-polycyclic-presentation"]], "Computation of Subword Index": [[78, "computation-of-subword-index"]], "Computing Integrals using Meijer G-Functions": [[113, null]], "Computing reduced Gr\u00f6bner bases": [[220, "computing-reduced-grobner-bases"]], "Computing with automatic field extensions": [[220, "computing-with-automatic-field-extensions"]], "Conclusion": [[299, "conclusion"]], "Concrete": [[87, null]], "Concrete Class Reference": [[87, "concrete-class-reference"]], "Concrete Functions Reference": [[87, "concrete-functions-reference"]], "Condition Sets": [[229, "module-sympy.sets.conditionset"]], "Conditions of Convergence for Integral (1)": [[113, "conditions-of-convergence-for-integral-1"]], "Conditions of Convergence for Integral (2)": [[113, "conditions-of-convergence-for-integral-2"]], "Configuration": [[214, "module-sympy.polys.polyconfig"]], "Configure Your Name and Email in Git": [[9, "configure-your-name-and-email-in-git"]], "Conservative and Solenoidal fields": [[33, "conservative-and-solenoidal-fields"], [272, "conservative-and-solenoidal-fields"]], "Consistency Checks": [[12, "consistency-checks"]], "Constants": [[173, null], [196, "constants"]], "Constructing a presentation for a subgroup": [[70, "constructing-a-presentation-for-a-subgroup"]], "Constructing array expressions from index-explicit forms": [[243, "constructing-array-expressions-from-index-explicit-forms"]], "Construction of a Free Group": [[70, "construction-of-a-free-group"]], "Construction of words": [[70, "construction-of-words"]], "Contents": [[64, "contents"], [75, "contents"], [95, "contents"], [108, "contents"], [114, "contents"], [213, "contents"], [225, "contents"], [235, "contents"], [244, "contents"]], "Continuous Types": [[241, "continuous-types"]], "Continuum Mechanics": [[139, null]], "Contribute": [[218, "contribute"]], "Contributing": [[6, null], [58, "contributing"]], "Control": [[141, null], [143, null]], "Control API": [[144, null]], "Control Package Examples": [[46, null]], "Control System Plots": [[142, null]], "Conversion between quantities": [[198, "module-sympy.physics.units.util"]], "Convert to a linear combination of Meijer G-functions": [[110, "convert-to-a-linear-combination-of-meijer-g-functions"]], "Convert to a linear combination of hypergeometric functions": [[110, "convert-to-a-linear-combination-of-hypergeometric-functions"]], "Convert to expressions": [[110, "convert-to-expressions"]], "Convert to holonomic sequence": [[110, "convert-to-holonomic-sequence"]], "Converting Meijer G-functions": [[107, "converting-meijer-g-functions"]], "Converting Strings to SymPy Expressions": [[286, "converting-strings-to-sympy-expressions"]], "Converting elements between different domains": [[211, "converting-elements-between-different-domains"]], "Converting hypergeometric functions": [[107, "converting-hypergeometric-functions"]], "Converting other representations to holonomic": [[107, null]], "Converting symbolic expressions": [[107, "converting-symbolic-expressions"]], "Convolution": [[91, "convolution"]], "Convolution using Fast Fourier Transform": [[91, "convolution-using-fast-fourier-transform"]], "Convolution using Fast Walsh Hadamard Transform": [[91, "convolution-using-fast-walsh-hadamard-transform"]], "Convolution using Number Theoretic Transform": [[91, "convolution-using-number-theoretic-transform"]], "Convolutions": [[91, "module-sympy.discrete.convolutions"]], "Coordinate Modes": [[207, "coordinate-modes"]], "Coordinate Systems": [[274, "coordinate-systems"]], "Coordinate Systems and Vectors": [[269, "coordinate-systems-and-vectors"]], "Coordinate Variables": [[270, "coordinate-variables"]], "Core": [[88, null]], "Core operators no longer accept non-Expr args": [[13, "core-operators-no-longer-accept-non-expr-args"]], "Coset Enumeration: The Todd-Coxeter Algorithm": [[70, "coset-enumeration-the-todd-coxeter-algorithm"]], "CosetTable": [[70, "cosettable"]], "Covering Product": [[91, "covering-product"]], "Create a Function That Can Be Solved With SciPy": [[54, "create-a-function-that-can-be-solved-with-scipy"]], "Create a GitHub Account": [[9, "create-a-github-account"]], "Create a new branch": [[11, "create-a-new-branch"]], "Creating Matrices": [[124, "creating-matrices"]], "Creating a Custom Function": [[43, "creating-a-custom-function"]], "Creating an indefinite Integral with an Eq argument": [[13, "creating-an-indefinite-integral-with-an-eq-argument"]], "Credits and Copyright": [[206, "credits-and-copyright"]], "Cross-Referencing": [[4, "cross-referencing"]], "Cryptography": [[89, null]], "Curl": [[33, "curl"], [272, "curl"]], "Curve (Docstrings)": [[132, null]], "Curves": [[97, null]], "Custom": [[18, "custom"]], "Custom SymPy Objects": [[14, "custom-sympy-objects"]], "DMP representation": [[211, "dmp-representation"]], "DUP representation": [[211, "dup-representation"]], "Dagger": [[174, null]], "Debian/Ubuntu": [[8, "debian-ubuntu"]], "Debugging": [[1, null]], "Debugging Test Failures on GitHub Actions": [[12, "debugging-test-failures-on-github-actions"]], "Decorator": [[255, null]], "Define Forces": [[299, "define-forces"], [303, "define-forces"]], "Define Inertia": [[299, "define-inertia"]], "Define Kinematics": [[299, "define-kinematics"], [303, "define-kinematics"]], "Define Variables": [[299, "define-variables"], [303, "define-variables"]], "Defining Automatic Evaluation with eval()": [[43, "defining-automatic-evaluation-with-eval"]], "Defining Derivatives": [[55, "defining-derivatives"]], "Defining Symbols": [[14, "defining-symbols"]], "Definition": [[43, "definition"], [43, "id2"], [43, "id4"], [106, "definition"]], "Deleting and Inserting Rows and Columns": [[293, "deleting-and-inserting-rows-and-columns"]], "Deleting junk files": [[11, "deleting-junk-files"]], "Dense Matrices": [[119, null]], "Dense polynomials": [[212, "dense-polynomials"]], "Dependencies": [[2, null]], "Deprecate Eq.rewrite(Add)": [[13, "deprecate-eq-rewrite-add"]], "Deprecate markers, annotations, fill, rectangles of the Plot class": [[13, "deprecate-markers-annotations-fill-rectangles-of-the-plot-class"]], "Deprecate the DMP.rep attribute.": [[13, "deprecate-the-dmp-rep-attribute"]], "Deprecate the pkgdata module": [[13, "deprecate-the-pkgdata-module"]], "Deprecated Classes (Docstrings)": [[149, null]], "Deprecated matrix mixin classes": [[13, "deprecated-matrix-mixin-classes"]], "Deprecated mechanics Body class": [[13, "deprecated-mechanics-body-class"]], "Deprecated mechanics JointsMethod": [[13, "deprecated-mechanics-jointsmethod"]], "Deprecation Policy": [[3, null]], "Depth of Polycyclic generator": [[78, "depth-of-polycyclic-generator"]], "Derivatives": [[287, "derivatives"]], "Derivatives by array": [[242, "derivatives-by-array"]], "Derivatives of Vectors": [[36, "derivatives-of-vectors"]], "Derivatives with Multiple Frames": [[36, "derivatives-with-multiple-frames"]], "Determinant": [[293, "determinant"]], "Deutils (Utilities for solving ODE\u2019s and PDE\u2019s)": [[239, "deutils-utilities-for-solving-ode-s-and-pde-s"]], "Developers Notes": [[88, "developers-notes"]], "Development Dependencies": [[2, "development-dependencies"]], "Development Workflow Process": [[11, null]], "Diagonal operator": [[242, "diagonal-operator"]], "Diagram Drawing": [[68, "module-sympy.categories.diagram_drawing"]], "Dictionaries": [[16, "dictionaries"]], "Dictionary (roots)": [[48, "dictionary-roots"]], "Differential Geometry": [[90, null]], "Differentiating": [[21, "differentiating"]], "Differentiation": [[43, "differentiation"]], "Dimensional analysis": [[194, "dimensional-analysis"]], "Dimensions": [[196, "dimensions"]], "Dimensions and dimension systems": [[193, null]], "Diophantine": [[234, null]], "Diophantine Equation Can be Expressed as Expression That Equals Zero": [[51, "diophantine-equation-can-be-expressed-as-expression-that-equals-zero"]], "Diophantine Equations (DEs)": [[239, "diophantine-equations-des"], [240, "diophantine-equations-des"]], "Diophantine equations": [[234, "diophantine-equations"]], "Dirac Delta and Related Discontinuous Functions": [[96, "dirac-delta-and-related-discontinuous-functions"]], "Directional Derivative": [[272, "directional-derivative"]], "Discrete": [[91, null]], "Discrete Types": [[241, "discrete-types"]], "Dispersion of Polynomials": [[217, "dispersion-of-polynomials"]], "Divergence": [[33, "divergence"], [272, "divergence"]], "Divisibility": [[209, "divisibility"]], "Divisibility of polynomials": [[209, "divisibility-of-polynomials"]], "Division": [[209, "division"]], "Do Not Simplify Solutions": [[57, "do-not-simplify-solutions"]], "Docker": [[8, "docker"], [8, "id2"], [8, "id3"]], "Docstrings Style Guide": [[4, null]], "Docstrings for Classes that are Mathematical Functions": [[4, "docstrings-for-classes-that-are-mathematical-functions"]], "Docstrings for basic field functions": [[201, null]], "Doctests": [[12, "doctests"]], "Documentation": [[7, "documentation"], [11, "documentation"]], "Documentation Style Guide": [[5, null]], "Documentation using Markdown": [[5, "documentation-using-markdown"]], "Documenting a deprecation": [[3, "documenting-a-deprecation"]], "Domain constructors": [[217, "domain-constructors"]], "Domain elements vs sympy expressions": [[211, "domain-elements-vs-sympy-expressions"]], "Domains": [[212, "domains"]], "Don\u2019t Denest Collections": [[14, "don-t-denest-collections"]], "Don\u2019t Hardcode Symbol Names in Python Functions": [[14, "don-t-hardcode-symbol-names-in-python-functions"]], "Don\u2019t Overwrite __eq__": [[14, "don-t-overwrite-eq"]], "Dot": [[296, "dot"]], "Double Equals Signs": [[16, "double-equals-signs"]], "Duffing Oscillator with a Pendulum": [[303, null]], "Dyadic": [[32, "dyadic"]], "Dyadics": [[269, "dyadics"]], "ECM function": [[128, "ecm-function"]], "EX": [[212, "ex"]], "Easy Cases: Fully Symbolic or Fully Evaluated": [[43, "easy-cases-fully-symbolic-or-fully-evaluated"]], "Eigenvalues, Eigenvectors, and Diagonalization": [[293, "eigenvalues-eigenvectors-and-diagonalization"]], "Elastic Tendon Dynamics": [[18, "elastic-tendon-dynamics"]], "Elementary": [[94, null]], "Elementary Sequences": [[227, "elementary-sequences"]], "Elementary Sets": [[229, "elementary-sets"]], "Ellipses": [[98, null]], "Elliptic integrals": [[96, "module-sympy.functions.special.elliptic_integrals"]], "Empty List": [[37, "empty-list"]], "Ensure Consistent Formatting From solve()": [[57, "ensure-consistent-formatting-from-solve"]], "Ensure the Root Found is in a Given Interval": [[54, "ensure-the-root-found-is-in-a-given-interval"]], "Entities": [[99, null]], "Enumeration": [[93, "enumeration"]], "Enumerative": [[256, null]], "Equals Signs (=)": [[16, "equals-signs"]], "Equals signs": [[289, "equals-signs"]], "Equation with quantities": [[194, "equation-with-quantities"]], "Equations Which Have a Closed-Form Solution, and SymPy Cannot Solve": [[52, "equations-which-have-a-closed-form-solution-and-sympy-cannot-solve"], [56, "equations-which-have-a-closed-form-solution-and-sympy-cannot-solve"]], "Equations With No Closed-Form Solution": [[48, "equations-with-no-closed-form-solution"], [52, "equations-with-no-closed-form-solution"], [55, "equations-with-no-closed-form-solution"]], "Equations With No Solution": [[51, "equations-with-no-solution"], [53, "equations-with-no-solution"], [55, "equations-with-no-solution"]], "Equations With no Closed-Form Solution": [[57, "equations-with-no-closed-form-solution"]], "Equations With no Solution": [[54, "equations-with-no-solution"]], "Equations of Motion": [[299, "equations-of-motion"]], "Error Functions and Fresnel Integrals": [[96, "module-sympy.functions.special.error_functions"]], "Essential Classes": [[200, null]], "Essential Classes in sympy.vector (docstrings)": [[265, null]], "Essential Functions (Docstrings)": [[202, null]], "Essential Functions in sympy.vector (docstrings)": [[268, null]], "Euclidean domains": [[209, "euclidean-domains"]], "Evaluate the System Differential Equations": [[299, "evaluate-the-system-differential-equations"]], "Evaluating Expressions with Floats and Rationals": [[16, "evaluating-expressions-with-floats-and-rationals"]], "Exact Numeric Solution With Root Multiplicities": [[48, "exact-numeric-solution-with-root-multiplicities"]], "Exact Rational Numbers vs. Floats": [[14, "exact-rational-numbers-vs-floats"]], "Example": [[135, "example"]], "Example 1": [[46, "example-1"], [137, "example-1"]], "Example 10": [[137, "example-10"]], "Example 11": [[137, "example-11"]], "Example 2": [[46, "example-2"], [137, "example-2"]], "Example 3": [[46, "example-3"], [137, "example-3"]], "Example 4": [[46, "example-4"], [137, "example-4"]], "Example 5": [[46, "example-5"], [137, "example-5"]], "Example 6": [[137, "example-6"]], "Example 7": [[137, "example-7"]], "Example 8": [[137, "example-8"]], "Example 9": [[137, "example-9"]], "Example Usage": [[100, "example-usage"]], "Example of Custom Printer": [[221, "example-of-custom-printer"]], "Example of Custom Printing Method": [[221, "example-of-custom-printing-method"]], "Example of Finding the Roots of a Polynomial Algebraically": [[48, "example-of-finding-the-roots-of-a-polynomial-algebraically"]], "Example of Numerically Solving an Equation": [[54, "example-of-numerically-solving-an-equation"]], "Example of Solving a Diophantine Equation": [[51, "example-of-solving-a-diophantine-equation"]], "Example of a good commit message": [[11, "example-of-a-good-commit-message"]], "Example: Continued Fractions": [[297, "example-continued-fractions"]], "Examples": [[36, "examples"], [36, "id1"], [43, "examples"], [43, "id3"], [43, "id5"], [50, "examples"], [60, "examples"], [88, "examples"], [88, "id52"], [112, "examples"], [115, "examples"], [115, "id38"], [128, "examples"], [128, "id83"], [137, "examples"], [145, "examples"], [163, "examples"], [195, "examples"], [220, "examples"], [228, "examples"], [228, "id3"], [241, "examples"], [242, "examples"], [243, "examples"], [246, "examples"]], "Examples from Wester\u2019s Article": [[220, null]], "Examples of Solving a System of Equations Algebraically": [[56, "examples-of-solving-a-system-of-equations-algebraically"]], "Exceptions": [[214, "exceptions"]], "Exceptions and Warnings": [[257, null]], "Exercises": [[295, "exercises"]], "Expanding": [[222, "expanding"]], "Expanding expressions and factoring back": [[220, "expanding-expressions-and-factoring-back"]], "Experimental \\mathrm{\\LaTeX} Parsing": [[130, "experimental-mathrm-latex-parsing"]], "Explanations": [[17, null], [58, "explanations"]], "Explicitly Represent Infinite Sets of Possible Solutions": [[52, "explicitly-represent-infinite-sets-of-possible-solutions"]], "Exponential": [[94, "exponential"]], "Exponential, Logarithmic and Trigonometric Integrals": [[96, "exponential-logarithmic-and-trigonometric-integrals"]], "Exponentials and logarithms": [[297, "exponentials-and-logarithms"]], "Expression (factor)": [[48, "expression-factor"]], "Expression Manipulation (Docstrings)": [[150, null]], "Expression domain": [[211, "expression-domain"]], "Expression of quantities in different coordinate systems": [[270, "expression-of-quantities-in-different-coordinate-systems"]], "Extending The Hypergeometric Tables": [[231, "extending-the-hypergeometric-tables"]], "Extra polynomial manipulation functions": [[217, "extra-polynomial-manipulation-functions"]], "Extract Elements From the Solution": [[53, "extract-elements-from-the-solution"]], "Extract Expressions From the Result": [[51, "extract-expressions-from-the-result"]], "Extract a List of Decomposed Relations": [[50, "extract-a-list-of-decomposed-relations"]], "Extract a Tuple of Relations": [[50, "extract-a-tuple-of-relations"]], "Extract the Result for Multiple Function-Solution Pairs": [[55, "extract-the-result-for-multiple-function-solution-pairs"]], "Extract the Result for One Solution and Function": [[55, "extract-the-result-for-one-solution-and-function"]], "Factor the Equation": [[48, "factor-the-equation"]], "Factorial domains": [[209, "factorial-domains"]], "Factoring in terms of cyclotomic polynomials": [[220, "factoring-in-terms-of-cyclotomic-polynomials"]], "Factoring polynomials into linear factors": [[220, "factoring-polynomials-into-linear-factors"]], "Factorization": [[209, "factorization"]], "Fast Fourier Transform": [[91, "fast-fourier-transform"]], "Fast Walsh Hadamard Transform": [[91, "fast-walsh-hadamard-transform"]], "Fedora": [[8, "fedora"]], "Fiber Active Force-Length": [[18, "fiber-active-force-length"]], "Fiber Damping": [[18, "fiber-damping"]], "Fiber Force-Velocity": [[18, "fiber-force-velocity"]], "Fiber Passive Force-Length": [[18, "fiber-passive-force-length"]], "Field operation functions": [[201, "field-operation-functions"]], "Field operator in orthogonal curvilinear coordinate system": [[272, "field-operator-in-orthogonal-curvilinear-coordinate-system"]], "Field operators and other related functions": [[33, "field-operators-and-other-related-functions"]], "Field operators and related functions": [[272, "field-operators-and-related-functions"]], "Fields": [[33, "fields"], [274, "fields"]], "Find Complex Roots of a Real Function": [[54, "find-complex-roots-of-a-real-function"]], "Find the Roots of a Polynomial": [[48, "find-the-roots-of-a-polynomial"]], "Find the Roots of a Polynomial Algebraically or Numerically": [[48, null]], "Finding Minimal Polynomials": [[216, "finding-minimal-polynomials"]], "Finite Difference Approximations to Derivatives": [[39, null]], "Finite Extensions": [[208, "finite-extensions"]], "Finite Types": [[241, "finite-types"]], "Finite difference weights": [[67, "finite-difference-weights"]], "Finite differences": [[287, "finite-differences"]], "Finite fields": [[211, "finite-fields"]], "Finitely Presented Groups": [[70, null]], "Finitely-generated modules": [[216, "module-sympy.polys.numberfields.modules"]], "First-Order": [[18, "first-order"]], "Floating-point numbers": [[92, "floating-point-numbers"]], "For 2D Polygons": [[115, "for-2d-polygons"]], "For 3-Polytopes/Polyhedra": [[115, "for-3-polytopes-polyhedra"]], "Fork SymPy": [[9, "fork-sympy"]], "Formal Power Series": [[223, null]], "Formal manipulation of roots of polynomials": [[217, "formal-manipulation-of-roots-of-polynomials"]], "Formatting": [[4, "formatting"]], "Formatting Preferences": [[5, "formatting-preferences"]], "Forming logical expressions": [[118, "forming-logical-expressions"]], "Fortran Printing": [[221, "fortran-printing"]], "Fortran specific AST nodes (sympy.codegen.fnodes)": [[69, "module-sympy.codegen.fnodes"]], "Fortran utilities (sympy.codegen.futils)": [[69, "module-sympy.codegen.futils"]], "Fourier Series": [[224, null]], "Free Groups and Words": [[70, "free-groups-and-words"]], "Functions": [[16, "functions"], [95, null], [242, "functions"]], "Functions to Find the Roots of a Polynomial": [[48, "functions-to-find-the-roots-of-a-polynomial"]], "Further Examples": [[27, "further-examples"]], "Further Reading": [[289, "further-reading"]], "Fused Multiply-Add (FMA)": [[43, "fused-multiply-add-fma"]], "Future Features": [[21, "future-features"]], "Future Improvements": [[22, "future-improvements"]], "Future Work": [[100, "future-work"]], "GCD and LCM": [[209, "gcd-and-lcm"]], "GF(p)": [[212, "gf-p"]], "Galois Groups": [[71, null], [216, "galois-groups"]], "Gamma matrices": [[145, "module-sympy.physics.hep.gamma_matrices"]], "Gamma, Beta and Related Functions": [[96, "module-sympy.functions.special.gamma_functions"]], "Gates": [[175, null]], "Gaussian Optics": [[160, null]], "Gaussian domains": [[212, "gaussian-domains"]], "Gaussian integers and Gaussian rationals": [[211, "gaussian-integers-and-gaussian-rationals"]], "Gegenbauer Polynomials": [[96, "gegenbauer-polynomials"]], "General Guidelines": [[4, "general-guidelines"], [5, "general-guidelines"]], "General examples of usage": [[271, null]], "Generators": [[80, "module-sympy.combinatorics.generators"]], "Geometry": [[100, null]], "Geometry Visualization": [[100, "geometry-visualization"]], "Get All Roots, Perhaps Implicitly": [[48, "get-all-roots-perhaps-implicitly"]], "Get familiar using the software": [[7, "get-familiar-using-the-software"]], "Get the SymPy Code": [[9, "get-the-sympy-code"]], "Getting help from within SymPy": [[16, "getting-help-from-within-sympy"]], "Getting the Source Code": [[2, "getting-the-source-code"]], "Git": [[59, "git"]], "Glossary": [[15, null]], "Gotcha: symbols with different assumptions": [[41, "gotcha-symbols-with-different-assumptions"]], "Gotchas": [[22, "gotchas"], [289, null]], "Gotchas and Pitfalls": [[16, null]], "Gradient": [[33, "gradient"], [272, "gradient"]], "Gray Code": [[72, null]], "Groebner bases": [[209, "groebner-bases"]], "Groebner basis algorithms": [[214, "groebner-basis-algorithms"]], "Group constructors": [[73, null]], "Group structure": [[196, "group-structure"]], "Grover\u2019s Algorithm": [[176, null]], "Gtk": [[221, "module-sympy.printing.gtk"]], "Guidance": [[48, "guidance"], [50, "guidance"], [51, "guidance"], [52, "guidance"], [53, "guidance"], [54, "guidance"], [55, "guidance"], [56, "guidance"]], "Guide for New Contributors": [[10, null]], "Guide to Biomechanics": [[19, "guide-to-biomechanics"], [133, "guide-to-biomechanics"]], "Guide to Classical Mechanics": [[23, "guide-to-classical-mechanics"]], "Guide to Mechanics": [[151, "guide-to-mechanics"]], "Guide to Vector": [[34, "guide-to-vector"], [203, "guide-to-vector"], [273, "guide-to-vector"]], "Hard Dependencies": [[2, "hard-dependencies"]], "Headings": [[5, "headings"]], "Hermite Polynomials": [[96, "hermite-polynomials"]], "High Energy Physics": [[145, null]], "Hilbert Space": [[177, null]], "Hint Functions": [[237, "hint-functions"]], "Hint Methods": [[238, "hint-methods"]], "Holonomic": [[108, null]], "Hongguang Fu\u2019s Trigonometric Simplification": [[230, null]], "How Vectors are Coded": [[36, "how-vectors-are-coded"]], "How are symbolic parameters handled in solveset?": [[240, "how-are-symbolic-parameters-handled-in-solveset"]], "How do we deal with cases where only some of the solutions are known?": [[240, "how-do-we-deal-with-cases-where-only-some-of-the-solutions-are-known"]], "How do we manipulate and return an infinite solution?": [[240, "how-do-we-manipulate-and-return-an-infinite-solution"]], "How does solveset ensure that it is not returning any wrong solution?": [[240, "how-does-solveset-ensure-that-it-is-not-returning-any-wrong-solution"]], "How long should deprecations last?": [[3, "how-long-should-deprecations-last"]], "How to compute the integral": [[113, "how-to-compute-the-integral"]], "How to deprecate code": [[3, "how-to-deprecate-code"]], "How-to Guides": [[44, null], [58, "how-to-guides"]], "Hydrogen Wavefunctions": [[146, null]], "Hyperbolic": [[94, "hyperbolic"]], "Hyperbolic Functions": [[94, "hyperbolic-functions"]], "Hyperbolic Inverses": [[94, "hyperbolic-inverses"]], "Hypergeometric Algorithm": [[223, "hypergeometric-algorithm"]], "Hypergeometric Expansion": [[231, null]], "Hypergeometric Function Expansion Algorithm": [[231, "hypergeometric-function-expansion-algorithm"]], "Hypergeometric Functions": [[96, "hypergeometric-functions"]], "Hypergeometric terms": [[87, "hypergeometric-terms"]], "Hypothesis Testing": [[12, "hypothesis-testing"]], "Identify something to work on": [[7, "identify-something-to-work-on"]], "If There are Multiple Solution Sets": [[55, "if-there-are-multiple-solution-sets"]], "If There is One Solution Set": [[55, "if-there-is-one-solution-set"]], "Immutability of Expressions": [[16, "immutability-of-expressions"]], "Immutable Matrices": [[121, null]], "ImmutableMatrix Class Reference": [[121, "module-sympy.matrices.immutable"]], "ImmutableSparseMatrix Class Reference": [[126, "immutablesparsematrix-class-reference"]], "Implementation - Helper Classes/Functions": [[221, "module-sympy.printing.conventions"]], "Implementation Details": [[254, "implementation-details"]], "Implementation details": [[253, "implementation-details"]], "Implementation in sympy.vector": [[272, "implementation-in-sympy-vector"]], "Implementation of fields in sympy.physics.vector": [[33, "implementation-of-fields-in-sympy-physics-vector"]], "Implemented G-Function Formulae": [[113, "implemented-g-function-formulae"]], "Implemented Hypergeometric Formulae": [[231, "implemented-hypergeometric-formulae"]], "Implementing assumptions handlers": [[41, "implementing-assumptions-handlers"]], "Implications": [[41, "implications"]], "Importing Docstrings into the Sphinx Documentation": [[4, "importing-docstrings-into-the-sphinx-documentation"]], "Impulse-Response Plot": [[142, "impulse-response-plot"]], "Include Solutions Making Any Denominator Zero": [[57, "include-solutions-making-any-denominator-zero"]], "Include the Variable to Be Reduced for in the Function Call": [[50, "include-the-variable-to-be-reduced-for-in-the-function-call"]], "Include the Variable to be Solved for in the Function Call": [[57, "include-the-variable-to-be-solved-for-in-the-function-call"]], "Increase Precision of the Solution": [[54, "increase-precision-of-the-solution"]], "Incrementing and decrementing indices": [[231, "incrementing-and-decrementing-indices"]], "Index": [[10, "index"]], "Indexed Objects": [[246, null]], "Inequalities": [[239, "inequalities"], [240, "inequalities"]], "Inequalities Which Can Be Reduced Analytically, and SymPy Cannot Reduce": [[50, "inequalities-which-can-be-reduced-analytically-and-sympy-cannot-reduce"]], "Inequality Solvers": [[236, null]], "Inertia": [[28, "inertia"]], "Inertia (Dyadics)": [[28, "inertia-dyadics"]], "Inertias": [[155, "inertias"]], "Inference": [[118, "module-sympy.logic.inference"]], "Information on the ode module": [[237, "module-sympy.solvers.ode.ode"]], "Information on the pde module": [[238, "module-sympy.solvers.pde"]], "Inner Product": [[179, null]], "Input API of solveset": [[240, "input-api-of-solveset"]], "Install Git": [[9, "install-git"]], "Installation": [[58, "installation"], [59, null], [295, "installation"]], "Integer Functions": [[94, "integer-functions"]], "Integral Basis": [[216, "integral-basis"]], "Integral Transforms": [[115, "module-sympy.integrals.transforms"]], "Integral domains": [[209, "integral-domains"]], "Integrals": [[114, null], [115, null], [287, "integrals"]], "Integration": [[112, "integration"]], "Integration and Differentiation": [[110, "integration-and-differentiation"]], "Integration over Polytopes": [[115, "module-sympy.integrals.intpoly"]], "Interactive": [[116, null]], "Interactive Use": [[2, "interactive-use"]], "Interface": [[241, "interface"]], "Internal API": [[109, null]], "Internal API Reference": [[113, "module-sympy.integrals.meijerint"]], "Internal Classes": [[234, "internal-classes"]], "Internal Functions": [[234, "internal-functions"]], "Internals": [[115, "internals"], [216, "internals"]], "Internals of a Poly": [[211, "internals-of-a-poly"]], "Internals of the Polynomial Manipulation Module": [[214, null]], "Interpretation of the predicates": [[41, "interpretation-of-the-predicates"]], "Intersecting Product": [[91, "intersecting-product"]], "Intersection of medians": [[100, "intersection-of-medians"]], "Introducing the Domains of the poly module": [[211, null]], "Introducing the domainmatrix of the poly module": [[210, null]], "Introduction": [[16, "introduction"], [22, "introduction"], [30, "introduction"], [33, "introduction"], [39, "introduction"], [61, "introduction"], [68, "introduction"], [69, "introduction"], [70, "introduction"], [78, "introduction"], [90, "introduction"], [100, "introduction"], [118, "introduction"], [133, "introduction"], [196, "introduction"], [207, "introduction"], [208, "introduction"], [209, "introduction"], [216, "introduction"], [220, "introduction"], [274, null], [291, null]], "Introduction to Biomechanical Modeling": [[18, null]], "Introduction to Contributing": [[7, null]], "Introduction to Kinematics": [[35, "introduction-to-kinematics"]], "Introductory Tutorial": [[285, "introductory-tutorial"], [290, null]], "Inverse Trig Functions": [[16, "inverse-trig-functions"]], "Iterables": [[259, null]], "Iteration over sets": [[229, "iteration-over-sets"]], "Jacobi Polynomials": [[96, "jacobi-polynomials"]], "Javascript Code printing": [[221, "module-sympy.printing.jscode"]], "Join our mailing list": [[7, "join-our-mailing-list"]], "Joint (Docstrings)": [[152, "module-sympy.physics.mechanics.joint"]], "Joint Types": [[241, "joint-types"]], "Joints Framework (Docstrings)": [[152, null]], "Joints Framework in Physics/Mechanics": [[24, null]], "Joints in Physics/Mechanics": [[24, "joints-in-physics-mechanics"]], "Julia code printing": [[221, "module-sympy.printing.julia"]], "K(x)": [[212, "id11"]], "K[x]": [[212, "k-x"]], "Kane\u2019s Method": [[306, "kane-s-method"]], "Kane\u2019s Method & Lagrange\u2019s Method (Docstrings)": [[153, null]], "Kane\u2019s Method in Physics/Mechanics": [[25, null], [25, "id2"]], "Key Invariant": [[292, null]], "Key Point": [[43, null]], "Keyword Arguments": [[16, "keyword-arguments"]], "Kinematics (Docstrings)": [[204, null]], "Kinematics in physics.vector": [[35, "kinematics-in-physics-vector"]], "Kinetic Energy": [[28, "kinetic-energy"]], "LaTeX Recommendations": [[5, "latex-recommendations"]], "Lagrange\u2019s Method": [[303, "lagrange-s-method"], [306, "lagrange-s-method"]], "Lagrange\u2019s Method in Physics/Mechanics": [[26, null], [26, "id1"]], "Lagrangian": [[28, "lagrangian"]], "Laguerre Polynomials": [[96, "laguerre-polynomials"]], "LambdaPrinter": [[221, "module-sympy.printing.lambdarepr"]], "Lambdify": [[129, "lambdify"], [260, null]], "Lark Backend": [[130, "lark-backend"]], "Lark \\mathrm{\\LaTeX} Parser Capabilities": [[130, "lark-mathrm-latex-parser-capabilities"]], "Lark \\mathrm{\\LaTeX} Parser Classes": [[130, "lark-mathrm-latex-parser-classes"]], "Lark \\mathrm{\\LaTeX} Parser Features": [[130, "lark-mathrm-latex-parser-features"]], "Lark \\mathrm{\\LaTeX} Parser Functions": [[130, "lark-mathrm-latex-parser-functions"]], "LatexPrinter": [[221, "module-sympy.printing.latex"]], "Legendre Polynomials": [[96, "legendre-polynomials"]], "Level Zero": [[214, "level-zero"]], "Lie Algebra": [[117, null]], "Lie heuristics": [[237, "lie-heuristics"]], "Limitations": [[41, "limitations"], [51, "limitations"], [112, "limitations"]], "Limitations and Issues": [[22, "limitations-and-issues"]], "Limitations of Inequality Reduction Using SymPy": [[50, "limitations-of-inequality-reduction-using-sympy"]], "Limitations on Types of Inequalities That SymPy Can Solve": [[50, "limitations-on-types-of-inequalities-that-sympy-can-solve"]], "Limits": [[228, "limits"], [287, "limits"]], "Limits of Sequences": [[226, null]], "Linear Momentum": [[28, "linear-momentum"]], "Linear Programming (Optimization)": [[239, "module-sympy.solvers.simplex"]], "Linear algebra": [[124, "linear-algebra"]], "Linear space representation": [[196, "linear-space-representation"]], "Linearization": [[21, "linearization"]], "Linearization (Docstrings)": [[154, null]], "Linearization in Physics/Mechanics": [[27, null]], "Linearizing Kane\u2019s Equations": [[27, "linearizing-kane-s-equations"]], "Linearizing Lagrange\u2019s Equations": [[27, "linearizing-lagrange-s-equations"]], "Lines": [[101, null]], "Links": [[30, "links"]], "List (all_roots, real_roots, nroots)": [[48, "list-all-roots-real-roots-nroots"]], "List Of Values": [[37, "list-of-values"]], "List of Dictionaries": [[37, "list-of-dictionaries"]], "List of Tuples": [[37, "list-of-tuples"]], "List of active deprecations": [[13, null]], "List of dictionaries (solve)": [[48, "list-of-dictionaries-solve"]], "Lists": [[16, "lists"]], "Literature": [[196, "literature"], [215, null], [220, "literature"]], "Loads": [[18, "loads"], [28, "loads"], [155, "loads"]], "Local Installation": [[8, "local-installation"], [8, "id4"]], "Locating new systems": [[270, "locating-new-systems"]], "Logic": [[2, "logic"], [118, null], [276, "logic"], [279, null]], "Loose Ends": [[231, "loose-ends"]], "Low Index Subgroups": [[70, "low-index-subgroups"]], "MPQ": [[212, "mpq"]], "Mac": [[8, "mac"]], "Make Your Equation Into an Expression That Equals Zero": [[52, "make-your-equation-into-an-expression-that-equals-zero"]], "Make a Pull Request": [[11, "make-a-pull-request"]], "Manipulating expressions": [[118, "manipulating-expressions"]], "Manipulation of dense, multivariate polynomials": [[214, "manipulation-of-dense-multivariate-polynomials"]], "Manipulation of dense, univariate polynomials with finite field coefficients": [[214, "manipulation-of-dense-univariate-polynomials-with-finite-field-coefficients"]], "Manipulation of rational functions": [[217, "manipulation-of-rational-functions"]], "Manipulation of sparse, distributed polynomials and vectors": [[214, "manipulation-of-sparse-distributed-polynomials-and-vectors"]], "Maple code printing": [[221, "module-sympy.printing.maple"]], "Mapping user names to AUTHORS file entry": [[11, "mapping-user-names-to-authors-file-entry"]], "Marking Tests as Expected to Fail": [[12, "marking-tests-as-expected-to-fail"]], "Marking Tests as Slow": [[12, "marking-tests-as-slow"]], "Mass": [[28, "mass"]], "Masses, Inertias, Particles and Rigid Bodies in Physics/Mechanics": [[28, null]], "Math": [[5, "math"]], "MathML": [[296, "mathml"]], "MathMLPrinter": [[221, "module-sympy.printing.mathml"]], "Mathematica code printing": [[221, "module-sympy.printing.mathematica"]], "Mathematical Equivalents": [[30, "mathematical-equivalents"]], "Mathematical Exactness, Completeness of List of Roots, and Speed": [[48, "mathematical-exactness-completeness-of-list-of-roots-and-speed"]], "Mathematical Operators": [[16, "mathematical-operators"]], "Mathieu Functions": [[96, "module-sympy.functions.special.mathieu_functions"]], "Matrices": [[122, null], [147, null], [276, "matrices"], [280, null], [293, null]], "Matrices (linear algebra)": [[124, null]], "Matrix": [[65, "matrix"]], "Matrix Base Classes": [[124, "matrix-base-classes"]], "Matrix Constructors": [[293, "matrix-constructors"]], "Matrix Distributions": [[241, "matrix-distributions"]], "Matrix Exceptions": [[124, "matrix-exceptions"]], "Matrix Expressions": [[120, null]], "Matrix Expressions Core Reference": [[120, "matrix-expressions-core-reference"]], "Matrix Functions": [[124, "matrix-functions"]], "Matrix Kind": [[123, null]], "Matrix Normal Forms": [[125, null]], "Matrix Usually Must Be Square": [[53, "matrix-usually-must-be-square"]], "Mechanics": [[23, "mechanics"], [133, "mechanics"], [151, "mechanics"], [241, "module-sympy.stats.rv"]], "Mechanics API Reference": [[151, null]], "Mechanics Tutorials": [[305, null]], "Mechanism of the assumptions system": [[41, "mechanism-of-the-assumptions-system"]], "Medium": [[162, null]], "Meijer G-Functions of Finite Confluence": [[231, "meijer-g-functions-of-finite-confluence"]], "Memoization": [[261, null]], "Methods": [[245, null]], "Methods for Solving Matrix Equations": [[53, "methods-for-solving-matrix-equations"]], "Misc": [[64, "misc"]], "Miscellaneous": [[94, "miscellaneous"], [262, null]], "Miscellaneous Notes": [[100, "miscellaneous-notes"]], "Miscellaneous _eval_* methods": [[43, "miscellaneous-eval-methods"]], "Mixing Poly and non-polynomial expressions in binary operations": [[13, "mixing-poly-and-non-polynomial-expressions-in-binary-operations"]], "Model Description": [[299, "model-description"]], "Modify code": [[11, "modify-code"]], "Modular GCD": [[214, "modular-gcd"]], "Module Homomorphisms": [[216, "module-homomorphisms"]], "Module Homomorphisms and Syzygies": [[208, "module-homomorphisms-and-syzygies"]], "Module structure": [[234, "module-structure"]], "Modules sympy.tensor.array.expressions.conv_* renamed to sympy.tensor.array.expressions.from_*": [[13, "modules-sympy-tensor-array-expressions-conv-renamed-to-sympy-tensor-array-expressions-from"]], "Modules, Ideals and their Elementary Properties": [[208, "modules-ideals-and-their-elementary-properties"]], "Monomials encoded as tuples": [[217, "monomials-encoded-as-tuples"]], "More": [[195, "more"]], "More Intuitive Series Expansion": [[228, "more-intuitive-series-expansion"]], "More about Coordinate Systems": [[270, null]], "More examples": [[194, null]], "Moved mechanics functions": [[13, "moved-mechanics-functions"]], "Moving Around in the Parameter Space": [[231, "moving-around-in-the-parameter-space"]], "Multi Degree of Freedom Holonomic System": [[307, null]], "Multiplication": [[216, "multiplication"]], "Multivariate GCD and factorization": [[220, "multivariate-gcd-and-factorization"]], "Multivariate factoring over algebraic numbers": [[220, "multivariate-factoring-over-algebraic-numbers"]], "Muscle Activation Differential Equations": [[299, "muscle-activation-differential-equations"]], "Musculotendon (Docstrings)": [[134, null]], "Musculotendon Curves": [[18, "musculotendon-curves"]], "Musculotendon Dynamics": [[18, "musculotendon-dynamics"]], "Mutable attributes in sympy.diffgeom": [[13, "mutable-attributes-in-sympy-diffgeom"]], "M\u00f6bius Transform": [[91, "mobius-transform"]], "N-dim array": [[242, null]], "N-dim array expressions": [[243, null]], "Named Groups": [[76, null]], "Narrative Documentation Guidelines": [[5, "narrative-documentation-guidelines"]], "New Joint coordinate format": [[13, "new-joint-coordinate-format"]], "New Joint intermediate frames": [[13, "new-joint-intermediate-frames"]], "New Mathematica code parser": [[13, "new-mathematica-code-parser"]], "Non-Expr objects in a Matrix": [[13, "non-expr-objects-in-a-matrix"]], "Non-tuple iterable for the first argument to Lambda": [[13, "non-tuple-iterable-for-the-first-argument-to-lambda"]], "Nonminimal Coordinates Pendulum": [[306, null]], "Normalizing simple rational functions": [[220, "normalizing-simple-rational-functions"]], "Not All Equations Can Be Solved": [[48, "not-all-equations-can-be-solved"], [51, "not-all-equations-can-be-solved"], [52, "not-all-equations-can-be-solved"], [55, "not-all-equations-can-be-solved"]], "Not All Results Are Returned for Periodic Functions": [[50, "not-all-results-are-returned-for-periodic-functions"]], "Not All Systems of Equations Can be Solved": [[56, "not-all-systems-of-equations-can-be-solved"]], "Not All Systems of Inequalities Can Be Reduced": [[50, "not-all-systems-of-inequalities-can-be-reduced"]], "Not Public API": [[3, null]], "Not all Equations Can be Solved": [[54, "not-all-equations-can-be-solved"]], "Notation": [[231, "notation"]], "Note": [[43, null]], "Notes": [[88, "notes"], [228, "notes"], [230, "notes"]], "Ntheory Class Reference": [[128, "ntheory-class-reference"]], "Ntheory Functions Reference": [[128, "ntheory-functions-reference"]], "Nullspace": [[293, "nullspace"]], "Number Fields": [[216, null]], "Number Theoretic Transform": [[91, "number-theoretic-transform"]], "Number Theory": [[65, "number-theory"], [128, null], [276, "number-theory"], [281, null]], "Number of groups": [[74, null]], "Numeric Computation": [[129, null]], "Numeric Integrals": [[115, "numeric-integrals"]], "Numeric Integration": [[287, "numeric-integration"]], "Numeric Solutions": [[57, "numeric-solutions"]], "Numerical Evaluation": [[92, null]], "Numerical Evaluation and Visualization": [[30, "numerical-evaluation-and-visualization"]], "Numerical Evaluation with evalf()": [[43, "numerical-evaluation-with-evalf"]], "Numerical evaluation": [[110, "numerical-evaluation"]], "Numerical simplification": [[92, "numerical-simplification"]], "Numerically Evaluate CRootOf Roots": [[48, "numerically-evaluate-crootof-roots"]], "Numerically Integrating Code": [[21, "numerically-integrating-code"]], "Numerically Solve an ODE in SciPy": [[55, "numerically-solve-an-ode-in-scipy"]], "Numpy Utility Functions": [[124, "numpy-utility-functions"]], "ODE": [[237, null]], "Octave (and Matlab) Code printing": [[221, "module-sympy.printing.octave"]], "Old (dense) polynomial rings": [[211, "old-dense-polynomial-rings"]], "Operations on entries": [[124, "operations-on-entries"]], "Operations on holonomic functions": [[110, null]], "Operator": [[180, null]], "Operator/State Helper Functions": [[181, null]], "Optics": [[161, null]], "Option 1: Define a Function Without Including Its Independent Variable": [[55, "option-1-define-a-function-without-including-its-independent-variable"]], "Option 2: Define a Function of an Independent Variable": [[55, "option-2-define-a-function-of-an-independent-variable"]], "Optional Dependencies": [[2, "optional-dependencies"]], "Optional SymEngine Backend": [[2, "optional-symengine-backend"]], "Options": [[214, "module-sympy.polys.polyoptions"]], "Options That Can Speed up solve()": [[52, "options-that-can-speed-up-solve"], [56, "options-that-can-speed-up-solve"], [57, "options-that-can-speed-up-solve"]], "Options to Define an ODE": [[55, "options-to-define-an-ode"]], "Order": [[65, "order"]], "Order Terms": [[228, "order-terms"]], "Ordered comparisons like a < b with modular integers": [[13, "ordered-comparisons-like-a-b-with-modular-integers"]], "Orderings of monomials": [[217, "orderings-of-monomials"]], "Ordinary Differential Equation Solving Hints": [[55, "ordinary-differential-equation-solving-hints"]], "Ordinary Differential equations (ODEs)": [[239, "ordinary-differential-equations-odes"], [240, "ordinary-differential-equations-odes"]], "Orienter classes (docstrings)": [[267, null]], "Orienting AND Locating new systems": [[270, "orienting-and-locating-new-systems"]], "Orienting new systems": [[270, "orienting-new-systems"]], "Orthogonal Polynomials": [[96, "module-sympy.functions.special.polynomials"]], "Orthogonal polynomials": [[217, "orthogonal-polynomials"]], "Other Functions": [[155, "other-functions"]], "Other Methods": [[43, "other-methods"], [59, "other-methods"]], "Other expression-dependent methods": [[270, "other-expression-dependent-methods"]], "Other is_* properties": [[41, "other-is-properties"]], "Overview": [[113, "overview"]], "Overview of Facilities": [[70, "overview-of-facilities"]], "Overview of functionalities": [[78, "overview-of-functionalities"]], "PDE": [[238, null]], "PDF Documentation": [[8, "pdf-documentation"]], "Parse a String Representing the Equation": [[57, "parse-a-string-representing-the-equation"]], "Parsing": [[2, "parsing"], [130, null]], "Parsing Functions Reference": [[130, "parsing-functions-reference"]], "Parsing Transformations Reference": [[130, "parsing-transformations-reference"]], "Partial Differential Equations (PDEs)": [[239, "partial-differential-equations-pdes"], [240, "partial-differential-equations-pdes"]], "Partial fraction decomposition": [[217, "partial-fraction-decomposition"], [220, "partial-fraction-decomposition"]], "Particle": [[28, "particle"]], "Particle in a Box": [[182, null]], "Partitions": [[77, null]], "Passing the arguments to lambdify as a set": [[13, "passing-the-arguments-to-lambdify-as-a-set"]], "Pathway (Docstrings)": [[156, null]], "Pathways": [[18, "pathways"]], "Pauli Algebra": [[166, null]], "Performance improvements": [[64, "performance-improvements"]], "Permutation Groups": [[79, null]], "Permutations": [[80, null]], "Peruse the documentation": [[7, "peruse-the-documentation"]], "Philosophy behind unit systems": [[196, null]], "Physical Equivalents": [[30, "physical-equivalents"]], "Physical quantities": [[198, null]], "Physics": [[20, null], [47, null], [276, "physics"], [282, null]], "Physics Tutorial": [[285, "physics-tutorial"]], "Physics Tutorials": [[301, null]], "Physics Vector API": [[203, null]], "Pick an issue to fix": [[11, "pick-an-issue-to-fix"]], "Piecewise": [[94, "piecewise"]], "Plane": [[102, null]], "Plot Class": [[207, "plot-class"]], "Plot Window Controls": [[207, "plot-window-controls"]], "PlotGrid Class": [[207, "plotgrid-class"]], "Plotting": [[2, "plotting"], [207, null]], "Plotting Function Reference": [[207, "plotting-function-reference"]], "Plotting Geometric Entities": [[207, "plotting-geometric-entities"]], "Plotting with ASCII art": [[207, "plotting-with-ascii-art"]], "Point Velocity & Acceleration": [[35, "point-velocity-acceleration"]], "Points": [[103, null], [269, "points"]], "Polar Numbers and Branched Functions": [[113, "polar-numbers-and-branched-functions"]], "Polarization": [[163, null]], "Pole-Zero Plot": [[142, "pole-zero-plot"]], "Poly solvers": [[219, null]], "PolyRing vs PolynomialRing": [[211, "polyring-vs-polynomialring"]], "Polycyclic Groups": [[78, null]], "Polygons": [[104, null]], "Polyhedron": [[81, null]], "Polynomial Manipulation": [[213, null]], "Polynomial factorization algorithms": [[214, "polynomial-factorization-algorithms"]], "Polynomial ring domains": [[211, "polynomial-ring-domains"]], "Polynomial/Rational Function Simplification": [[297, "polynomial-rational-function-simplification"]], "Polynomials": [[209, "polynomials"]], "Polynomials Manipulation Module Reference": [[217, null]], "Possible Issues": [[293, "possible-issues"]], "Potential Energy": [[28, "potential-energy"]], "Potential Issues": [[27, "potential-issues"]], "Potential Issues/Advanced Topics/Future Features in Physics/Mechanics": [[21, null]], "Potential Issues/Advanced Topics/Future Features in Physics/Vector Module": [[32, null]], "Power sets": [[229, "module-sympy.sets.powerset"]], "Powers": [[297, "powers"]], "Precedence": [[221, "module-sympy.printing.precedence"]], "Predefined types": [[69, "predefined-types"]], "Predicate": [[64, "predicate"]], "Predicates": [[41, "predicates"], [65, null]], "Preliminaries": [[295, null]], "Pretty-Printing Implementation Helpers": [[221, "module-sympy.printing.pretty.pretty_symbology"]], "PrettyPrinter Class": [[221, "prettyprinter-class"]], "Prevent expression evaluation": [[292, "prevent-expression-evaluation"]], "Preview": [[221, "preview"]], "Prime Decomposition": [[216, "prime-decomposition"]], "Printer Class": [[221, "module-sympy.printing.printer"]], "Printers": [[296, "printers"]], "Printing": [[2, "printing"], [21, "printing"], [32, "printing"], [43, "printing"], [116, "module-sympy.interactive.printing"], [221, null], [296, null]], "Printing (Docstrings)": [[157, null], [205, null]], "Printing Functions": [[296, "printing-functions"]], "ProductSet(iterable)": [[13, "productset-iterable"]], "Products and contractions": [[242, "products-and-contractions"]], "Programmatically Extract Parameter Symbols": [[51, "programmatically-extract-parameter-symbols"]], "Prufer Sequences": [[82, null]], "Public API": [[3, null]], "Put Your Equation Into Eq Form": [[52, "put-your-equation-into-eq-form"]], "Pyglet Plotting": [[207, "module-sympy.plotting.pygletplot"]], "Python numbers vs. SymPy Numbers": [[16, "python-numbers-vs-sympy-numbers"]], "Python utilities (sympy.codegen.pyutils)": [[69, "module-sympy.codegen.pyutils"]], "PythonCodePrinter": [[221, "module-sympy.printing.pycode"]], "PythonPrinter": [[221, "module-sympy.printing.python"]], "QFT": [[184, null]], "QQ": [[212, "qq"]], "QQ": [[212, "qq-a"]], "QQ_I": [[212, "qq-i"]], "QS function": [[128, "qs-function"]], "Qapply": [[183, null]], "Quadrilateral problem": [[271, "quadrilateral-problem"]], "Quantities": [[196, "quantities"]], "Quantum Computation": [[178, "quantum-computation"]], "Quantum Functions": [[178, "quantum-functions"]], "Quantum Harmonic Oscillator in 1-D": [[167, null]], "Quantum Harmonic Oscillator in 3-D": [[192, null]], "Quantum Mechanics": [[178, null]], "Quaternion Reference": [[61, "module-sympy.algebras"]], "Qubit": [[185, null]], "Querying": [[64, "querying"]], "Questions": [[59, "questions"]], "Quick Tip": [[286, null], [287, null], [289, null], [292, null], [293, null]], "Quotient ring": [[212, "quotient-ring"]], "RCodePrinter": [[221, "module-sympy.printing.rcode"]], "RR": [[212, "rr"]], "RREF": [[293, "rref"]], "Ramp-Response Plot": [[142, "ramp-response-plot"]], "Random": [[88, "module-sympy.core.random"]], "Random Tests": [[12, "random-tests"]], "Random Variable Types": [[241, "random-variable-types"]], "Randomised Testing": [[251, null]], "Rational Algorithm": [[223, "rational-algorithm"]], "Rational Riccati Solver": [[237, "rational-riccati-solver"]], "Rational function fields": [[211, "rational-function-fields"]], "Read the paper": [[7, "read-the-paper"]], "Real and complex fields": [[211, "real-and-complex-fields"]], "Recommended Optional Dependencies": [[2, "recommended-optional-dependencies"]], "Recurrence Equations": [[239, "module-sympy.solvers.recurr"]], "Recursing through an Expression Tree": [[292, "recursing-through-an-expression-tree"]], "Recursive Sequences": [[227, "recursive-sequences"]], "Reduce One or a System of Inequalities for a Single Variable Algebraically": [[50, null]], "Reduce a System of Inequalities Algebraically": [[50, "reduce-a-system-of-inequalities-algebraically"]], "Reducing One Inequality for a Single Variable Algebraically": [[50, "reducing-one-inequality-for-a-single-variable-algebraically"]], "Reducing a System of Inequalities for a Single Variable Algebraically": [[50, "reducing-a-system-of-inequalities-for-a-single-variable-algebraically"]], "Reduction of Order": [[231, "reduction-of-order"]], "Redundant static methods in carmichael": [[13, "redundant-static-methods-in-carmichael"]], "Reference": [[124, "reference"], [208, "reference"], [214, "reference"], [218, "reference"], [228, "reference"], [228, "id2"], [228, "id4"], [228, "id7"], [228, "id8"]], "Reference docs for the Poly Domains": [[212, null]], "ReferenceFrame": [[32, "referenceframe"]], "References": [[18, "references"], [46, "references"], [71, "references"], [88, "references"], [100, "references"], [106, "references"], [115, "references"], [163, "references"], [166, "references"], [206, "references"], [230, "references"], [231, "references"], [234, "references"], [240, "references"], [299, "references"], [303, "references"]], "References for Physics/Mechanics": [[29, null]], "References for Physics/Vector": [[34, "references-for-physics-vector"], [203, "references-for-physics-vector"]], "References for Vector": [[273, "references-for-vector"]], "References for the above definitions": [[41, "references-for-the-above-definitions"]], "Refine": [[66, null]], "Regression Tests": [[12, "regression-tests"]], "Reidemeister Schreier algorithm": [[70, "reidemeister-schreier-algorithm"]], "Relating Sets of Basis Vectors": [[36, "relating-sets-of-basis-vectors"]], "Relations between different symbols": [[41, "relations-between-different-symbols"]], "Release notes entry": [[3, "release-notes-entry"]], "Relocate symbolic functions from ntheory to functions": [[13, "relocate-symbolic-functions-from-ntheory-to-functions"]], "Reminder": [[43, null]], "Report a Bug": [[48, "report-a-bug"], [50, "report-a-bug"], [51, "report-a-bug"], [52, "report-a-bug"], [53, "report-a-bug"], [54, "report-a-bug"], [55, "report-a-bug"], [56, "report-a-bug"], [57, "report-a-bug"]], "Represent": [[186, null]], "Representation of holonomic functions in SymPy": [[111, null]], "Representing Branched Functions on the Argand Plane": [[113, "representing-branched-functions-on-the-argand-plane"]], "Representing Roots": [[48, "representing-roots"]], "Representing algebraic numbers": [[216, "representing-algebraic-numbers"]], "Representing expressions symbolically": [[211, "representing-expressions-symbolically"]], "Required dependencies": [[8, "required-dependencies"]], "Residues": [[228, "residues"]], "Restrict the Domain of Solutions": [[52, "restrict-the-domain-of-solutions"]], "Return Unevaluated Integrals": [[55, "return-unevaluated-integrals"]], "Revealing noncontributing forces": [[304, "revealing-noncontributing-forces"]], "Review pull requests": [[7, "review-pull-requests"]], "Review the Code of Conduct": [[7, "review-the-code-of-conduct"]], "Rewriting and Simplification": [[43, "rewriting-and-simplification"]], "Riemann Zeta and Related Functions": [[96, "module-sympy.functions.special.zeta_functions"]], "Rigid Body": [[28, "rigid-body"]], "Rigid Tendon Dynamics": [[18, "rigid-tendon-dynamics"]], "Rotation matrices": [[124, "rotation-matrices"]], "Rough Autolev-SymPy Equivalents": [[30, "rough-autolev-sympy-equivalents"]], "Routine": [[254, "routine"]], "Rules": [[230, "rules"]], "Run SymPy": [[59, "run-sympy"]], "Run Tests": [[252, null]], "Run the Tests": [[11, "run-the-tests"]], "Running Tests": [[12, "running-tests"]], "Running the Benchmarks": [[2, "running-the-benchmarks"]], "Running the Tests": [[2, "running-the-tests"]], "Runtime Installation": [[130, "runtime-installation"]], "Rust code printing": [[221, "module-sympy.printing.rust"]], "SMT-Lib printing": [[221, "module-sympy.printing.smtlib"]], "Sage": [[2, "sage"]], "Sample Docstring": [[4, "sample-docstring"]], "Scalar and Vector Field Functionality": [[33, null], [272, null]], "Scalar and vector fields": [[272, "scalar-and-vector-fields"]], "Scalar potential functions": [[33, "scalar-potential-functions"], [272, "scalar-potential-functions"]], "Search based solver and step-by-step solution": [[240, "search-based-solver-and-step-by-step-solution"]], "Second Quantization": [[191, null]], "Sections": [[4, "sections"]], "See": [[271, "see"]], "See Also": [[88, "see-also"], [259, "see-also"]], "Select a Specific Solver": [[55, "select-a-specific-solver"]], "Separate Symbolic and Numeric Code": [[14, "separate-symbolic-and-numeric-code"]], "Sequences": [[227, null]], "Sequences Base": [[227, "sequences-base"]], "Series": [[225, null]], "Series Acceleration": [[228, "series-acceleration"]], "Series Classes": [[207, "series-classes"]], "Series Expansion": [[287, "series-expansion"]], "Series Expansions": [[228, null]], "Series Manipulation using Polynomials": [[218, null]], "Series expansion": [[110, "series-expansion"]], "Session": [[116, "module-sympy.interactive.session"]], "SetKind": [[229, "setkind"]], "Sets": [[65, "sets"], [229, null]], "Setting up Pretty Printing": [[296, "setting-up-pretty-printing"]], "Setup Development Environment": [[9, null]], "Setup GitHub": [[9, "setup-github"]], "Setup SSH Keys": [[9, "setup-ssh-keys"]], "Setup your development environment": [[7, "setup-your-development-environment"]], "Shape": [[293, "shape"]], "Shor\u2019s Algorithm": [[187, null]], "Silencing SymPy Deprecation Warnings": [[13, "silencing-sympy-deprecation-warnings"]], "Simple univariate polynomial factorization": [[220, "simple-univariate-polynomial-factorization"]], "Simplification": [[297, null]], "Simplification and equivalence-testing": [[118, "simplification-and-equivalence-testing"]], "Simplified remainder sequences": [[214, "simplified-remainder-sequences"]], "Simplify": [[232, null], [233, null]], "Simulate the Muscle-actuated Motion": [[299, "simulate-the-muscle-actuated-motion"]], "Single Dictionary": [[37, "single-dictionary"]], "Single Equals Sign": [[16, "single-equals-sign"]], "Singleton Sequences": [[227, "singleton-sequences"]], "Singleton Sets": [[229, "singleton-sets"]], "Singularities": [[67, "singularities"]], "Skipping Tests": [[12, "skipping-tests"]], "So Which Should I Use?": [[129, "so-which-should-i-use"]], "Solution": [[271, "solution"], [271, "id2"]], "Solve Equations": [[49, null]], "Solve Into a Solution Given as a Dictionary": [[56, "solve-into-a-solution-given-as-a-dictionary"]], "Solve One or a System of Equations Numerically": [[54, null]], "Solve Output by Type": [[37, null]], "Solve Results in a Set": [[56, "solve-results-in-a-set"]], "Solve a Diophantine Equation Algebraically": [[51, null]], "Solve a Matrix Equation": [[53, "solve-a-matrix-equation"]], "Solve a Matrix Equation Algebraically": [[53, null]], "Solve a System of Equations Algebraically": [[56, null]], "Solve a System of Equations Numerically": [[54, "solve-a-system-of-equations-numerically"]], "Solve a System of Linear Equations Algebraically": [[56, "solve-a-system-of-linear-equations-algebraically"]], "Solve a System of Nonlinear Equations Algebraically": [[56, "solve-a-system-of-nonlinear-equations-algebraically"]], "Solve an Equation Algebraically": [[52, null], [52, "id1"]], "Solve an Ordinary Differential Equation (ODE)": [[55, "solve-an-ordinary-differential-equation-ode"]], "Solve an Ordinary Differential Equation (ODE) Algebraically": [[55, null]], "Solve and Use Results in a Dictionary": [[56, "solve-and-use-results-in-a-dictionary"]], "Solvers": [[235, null], [239, null], [298, null]], "Solveset": [[240, null]], "Solveset Module Reference": [[240, "solveset-module-reference"]], "Solving Beam Bending Problems using Singularity Functions": [[137, null]], "Solving Differential Equations": [[298, "solving-differential-equations"]], "Solving Equations": [[209, "solving-equations"]], "Solving Equations Algebraically": [[298, "solving-equations-algebraically"]], "Solving Functions": [[52, "solving-functions"]], "Solving Guidance": [[57, null]], "Solving Several Matrix Equations With the Same Matrix": [[53, "solving-several-matrix-equations-with-the-same-matrix"]], "Solving Vector Equations": [[32, "solving-vector-equations"]], "Solving the Main Problems": [[216, "solving-the-main-problems"]], "Some Key Differences": [[30, "some-key-differences"]], "Some ODEs Cannot Be Solved Explicitly, Only Implicitly": [[55, "some-odes-cannot-be-solved-explicitly-only-implicitly"]], "Some traversal functions have been moved": [[13, "some-traversal-functions-have-been-moved"]], "Sorting": [[88, "sorting"]], "Source Code Inspection": [[263, null]], "Sparse Matrices": [[126, null]], "Sparse Tools": [[127, null]], "Sparse polynomial representation": [[211, "sparse-polynomial-representation"]], "Sparse polynomials": [[212, "sparse-polynomials"]], "Sparse rational functions": [[212, "sparse-rational-functions"]], "SparseMatrix Class Reference": [[126, "sparsematrix-class-reference"]], "Special": [[96, null]], "Special C math functions (sympy.codegen.cfunctions)": [[69, "module-sympy.codegen.cfunctions"]], "Special Functions": [[297, "special-functions"]], "Special Sets": [[229, "module-sympy.sets.fancysets"]], "Special Symbols": [[16, "special-symbols"]], "Special Types of Tests": [[12, "special-types-of-tests"]], "Special polynomials": [[217, "special-polynomials"]], "Specify Initial Conditions or Boundary Conditions": [[55, "specify-initial-conditions-or-boundary-conditions"], [55, "id1"]], "Specify the Order of Symbols in the Result": [[51, "specify-the-order-of-symbols-in-the-result"]], "Specifying Intervals for Variables": [[207, "specifying-intervals-for-variables"]], "Speed up Solving Matrix Equations": [[53, "speed-up-solving-matrix-equations"]], "Spelling and Punctuation": [[5, "spelling-and-punctuation"]], "Spherical Harmonics": [[96, "spherical-harmonics"]], "Spin": [[188, null]], "Sqrt is not a Function": [[16, "sqrt-is-not-a-function"]], "Square-free factorization": [[209, "square-free-factorization"]], "State": [[189, null]], "States and Operators": [[178, "states-and-operators"]], "Statistics": [[2, "statistics"]], "Stats": [[241, null]], "Step-Response Plot": [[142, "step-response-plot"]], "Stochastic Processes": [[241, "stochastic-processes"]], "StrPrinter": [[221, "module-sympy.printing.str"]], "Structure of Equations": [[25, "structure-of-equations"], [26, "structure-of-equations"]], "Style Preferences": [[5, "style-preferences"]], "Subgroups of Finite Index": [[70, "subgroups-of-finite-index"]], "Submodules": [[100, "submodules"]], "Subresultant sequence": [[214, "subresultant-sequence"]], "Subs/evalf": [[129, "subs-evalf"]], "Subset Convolution": [[91, "subset-convolution"]], "Subsets": [[83, null]], "Substitute Solutions From solve() Into an Expression": [[52, "substitute-solutions-from-solve-into-an-expression"]], "Substitute the Result Into an Expression": [[54, "substitute-the-result-into-an-expression"]], "Substitution": [[21, "substitution"], [32, "substitution"], [286, "substitution"]], "Sums and integrals": [[92, "sums-and-integrals"]], "Support for symbols in exponents": [[220, "support-for-symbols-in-exponents"]], "SymPy Can Reduce for Only One Symbol of Interest Per Inequality": [[50, "sympy-can-reduce-for-only-one-symbol-of-interest-per-inequality"]], "SymPy Codebase": [[7, "sympy-codebase"]], "SymPy Expression Reference": [[130, "module-sympy.parsing.sym_expr"]], "SymPy Features": [[288, null]], "SymPy Logo": [[45, null]], "SymPy Mechanics for Autolev Users": [[30, null]], "SymPy Special Topics": [[40, null]], "SymPy operations on Vectors": [[269, "sympy-operations-on-vectors"]], "Symbolic Boolean vs three valued bool": [[42, "symbolic-boolean-vs-three-valued-bool"]], "Symbolic Expressions": [[16, "symbolic-expressions"]], "Symbolic Systems in Physics/Mechanics": [[31, null]], "Symbolic and fuzzy booleans": [[42, null]], "Symbolic root-finding algorithms": [[217, "symbolic-root-finding-algorithms"]], "SymbolicSystem Example Usage": [[31, "symbolicsystem-example-usage"]], "Symbols": [[16, "symbols"], [289, "symbols"]], "System (Docstrings)": [[158, null]], "System in Physics/Mechanics": [[24, "system-in-physics-mechanics"]], "System of ODEs": [[237, "system-of-odes"]], "Systems of Equations With no Closed-Form Solution": [[56, "systems-of-equations-with-no-closed-form-solution"]], "Systems of Equations With no Solution": [[56, "systems-of-equations-with-no-solution"]], "Systems of Inequalities That Cannot Be Reduced Analytically": [[50, "systems-of-inequalities-that-cannot-be-reduced-analytically"]], "Systems of Inequalities Which Cannot Be Satisfied": [[50, "systems-of-inequalities-which-cannot-be-satisfied"]], "Systems of Polynomial Equations": [[239, "systems-of-polynomial-equations"]], "TODO and Bugs": [[115, "todo-and-bugs"]], "Table Lookups and Inverse Mellin Transforms": [[113, "table-lookups-and-inverse-mellin-transforms"]], "Tendon Force-Length": [[18, "tendon-force-length"]], "Tensor": [[244, null], [247, null]], "Tensor Canonicalization": [[84, null]], "Tensor Functions": [[96, "tensor-functions"]], "Tensor Operators": [[248, null]], "Tensor Product": [[190, null]], "Tensor.fun_eval and Tensor.__call__": [[13, "tensor-fun-eval-and-tensor-call"]], "TensorIndexType.data and related methods": [[13, "tensorindextype-data-and-related-methods"]], "TensorType": [[13, "tensortype"]], "Term Rewriting": [[222, null]], "Test Coverage": [[12, "test-coverage"]], "Test Deprecated Functionality": [[12, "test-deprecated-functionality"]], "Test Utilities": [[85, null]], "Testing": [[249, null]], "Testing Exceptions": [[12, "testing-exceptions"]], "Testing Expressions with Dummy": [[12, "testing-expressions-with-dummy"]], "Testing Policies": [[12, "testing-policies"]], "Testing Warnings": [[12, "testing-warnings"]], "Testing if polynomials have common zeros": [[220, "testing-if-polynomials-have-common-zeros"]], "Testing that Something is Unchanged": [[12, "testing-that-something-is-unchanged"]], "Testing-Only Dependencies": [[2, "testing-only-dependencies"]], "Tests Style Guide": [[12, "tests-style-guide"]], "The (old) assumptions system": [[41, "the-old-assumptions-system"]], "The Construction of Collector": [[78, "the-construction-of-collector"]], "The Construction of Finitely Presented Groups": [[70, "the-construction-of-finitely-presented-groups"]], "The Construction of Polycyclic Groups": [[78, "the-construction-of-polycyclic-groups"]], "The Del operator": [[272, "the-del-operator"]], "The Fully Evaluated Case": [[43, "the-fully-evaluated-case"]], "The Fully Symbolic Case": [[43, "the-fully-symbolic-case"]], "The G-Function Integration Theorems": [[113, "the-g-function-integration-theorems"]], "The Gruntz Algorithm": [[228, "the-gruntz-algorithm"]], "The Inverse Laplace Transform of a G-function": [[113, "the-inverse-laplace-transform-of-a-g-function"]], "The ManagedProperties metaclass": [[13, "the-managedproperties-metaclass"]], "The ModularInteger.to_int() method": [[13, "the-modularinteger-to-int-method"]], "The Power of Symbolic Computation": [[291, "the-power-of-symbolic-computation"]], "The Problem": [[271, "the-problem"], [271, "id1"]], "The Subfield Problem": [[216, "the-subfield-problem"]], "The check argument to HadamardProduct, MatAdd and MatMul": [[13, "the-check-argument-to-hadamardproduct-matadd-and-matmul"]], "The dummy_fmt argument to TensorIndexType": [[13, "the-dummy-fmt-argument-to-tensorindextype"]], "The evaluate flag to differentiate_finite": [[13, "the-evaluate-flag-to-differentiate-finite"]], "The get_kronecker_delta() and get_epsilon() methods of TensorIndexType": [[13, "the-get-kronecker-delta-and-get-epsilon-methods-of-tensorindextype"]], "The get_segments attribute of plotting objects": [[13, "the-get-segments-attribute-of-plotting-objects"]], "The is_EmptySet attribute of sets": [[13, "the-is-emptyset-attribute-of-sets"]], "The max_degree and get_upper_degree properties of sympy.polys.multivariate_resultants.DixonResultant": [[13, "the-max-degree-and-get-upper-degree-properties-of-sympy-polys-multivariate-resultants-dixonresultant"]], "The mdft function in sympy.physics.matrices": [[13, "the-mdft-function-in-sympy-physics-matrices"]], "The metric argument to TensorIndexType": [[13, "the-metric-argument-to-tensorindextype"]], "The need for a reference": [[196, "the-need-for-a-reference"]], "The print_cyclic flag of sympy.combinatorics.Permutation": [[13, "the-print-cyclic-flag-of-sympy-combinatorics-permutation"]], "The private SparseMatrix._smat and DenseMatrix._mat attributes": [[13, "the-private-sparsematrix-smat-and-densematrix-mat-attributes"]], "The purpose of deprecation": [[3, "the-purpose-of-deprecation"]], "The set_potential_energy method in sympy.physics.mechanics": [[13, "the-set-potential-energy-method-in-sympy-physics-mechanics"]], "The string fallback in sympify()": [[13, "the-string-fallback-in-sympify"]], "The sympy.core.compatibility submodule": [[13, "the-sympy-core-compatibility-submodule"]], "The tensorhead() function": [[13, "the-tensorhead-function"]], "The tensorsymmetry() function": [[13, "the-tensorsymmetry-function"]], "The unicode argument and attribute to sympy.printing.pretty.stringpict.prettyForm and the sympy.printing.pretty.pretty_symbology.xstr function": [[13, "the-unicode-argument-and-attribute-to-sympy-printing-pretty-stringpict-prettyform-and-the-sympy-printing-pretty-pretty-symbology-xstr-function"]], "Third product rule for Del operator": [[271, "third-product-rule-for-del-operator"]], "Three Dimensions and Beyond": [[100, "three-dimensions-and-beyond"]], "Three-valued logic with fuzzy bools": [[42, "three-valued-logic-with-fuzzy-bools"]], "Three-valued logic with symbolic Booleans": [[42, "three-valued-logic-with-symbolic-booleans"]], "Timing Utilities": [[264, null]], "Tone Preferences": [[5, "tone-preferences"]], "Tools for simplifying expressions using approximations (sympy.codegen.approximations)": [[69, "module-sympy.codegen.approximations"]], "Topics": [[276, "topics"], [283, null]], "Tradeoffs": [[48, "tradeoffs"]], "Transforming new system": [[270, "transforming-new-system"]], "Transforms": [[91, "module-sympy.discrete.transforms"]], "Traversal": [[88, "module-sympy.core.traversal"]], "Tree Printing": [[221, "module-sympy.printing.tree"]], "Tree representation": [[211, "tree-representation"]], "Triceps": [[299, "triceps"]], "Trigonometric": [[94, "trigonometric"]], "Trigonometric Functions": [[94, "trigonometric-functions"]], "Trigonometric Inverses": [[94, "trigonometric-inverses"]], "Trigonometric Simplification": [[297, "trigonometric-simplification"]], "Truss": [[139, "truss"]], "Truss (Docstrings)": [[140, null]], "Truth Setting Expressions": [[100, "truth-setting-expressions"]], "Truth tables and related functions": [[118, "truth-tables-and-related-functions"]], "Try to avoid backwards incompatible changes in the first place": [[3, "try-to-avoid-backwards-incompatible-changes-in-the-first-place"]], "Tuples": [[16, "tuples"]], "Tutorial": [[234, "tutorial"]], "Tutorials": [[58, "tutorials"], [285, null]], "Two Final Notes: ^ and /": [[289, "two-final-notes-and"]], "Types of Documentation": [[5, "types-of-documentation"]], "Understanding Expression Trees": [[292, "understanding-expression-trees"]], "Undocumented": [[214, "undocumented"]], "Unicode Pretty Printer": [[296, "unicode-pretty-printer"]], "Unifying domains": [[211, "unifying-domains"]], "Unit Systems": [[195, null]], "Unit prefixes": [[197, null]], "Units": [[196, "units"]], "Units and unit systems": [[199, null]], "Univariate GCD, resultant and factorization": [[220, "univariate-gcd-resultant-and-factorization"]], "Univariate factoring over Gaussian numbers": [[220, "univariate-factoring-over-gaussian-numbers"]], "Univariate factoring over various domains": [[220, "univariate-factoring-over-various-domains"]], "Updating Existing Tests": [[12, "updating-existing-tests"]], "Usage": [[22, "usage"]], "Use Exact Values": [[57, "use-exact-values"]], "Use a Solution Given as a Dictionary": [[56, "use-a-solution-given-as-a-dictionary"]], "Use the Result": [[50, "use-the-result"]], "Use the Solution Result": [[48, "use-the-solution-result"], [51, "use-the-solution-result"], [52, "use-the-solution-result"], [53, "use-the-solution-result"], [54, "use-the-solution-result"], [55, "use-the-solution-result"]], "Use the Solution as a Vector": [[53, "use-the-solution-as-a-vector"]], "User Functions": [[234, "user-functions"], [237, "user-functions"], [238, "user-functions"]], "Uses and Current limitations": [[112, null]], "Using Custom Color Functions": [[207, "using-custom-color-functions"]], "Using Orienter(s) and the orient_new method": [[270, "using-orienter-s-and-the-orient-new-method"]], "Using Vectors and Reference Frames": [[36, "using-vectors-and-reference-frames"]], "Using a method of CoordSys3D directly": [[270, "using-a-method-of-coordsys3d-directly"]], "Using a set for the condition in ConditionSet": [[13, "using-a-set-for-the-condition-in-conditionset"]], "Using energy functions in Mechanics": [[28, "using-energy-functions-in-mechanics"]], "Using integrate with Poly": [[13, "using-integrate-with-poly"]], "Using momenta functions in Mechanics": [[28, "using-momenta-functions-in-mechanics"]], "Using the Interactive Interface": [[207, "using-the-interactive-interface"]], "Using the nodes": [[69, "using-the-nodes"]], "Utilities": [[86, null], [164, null], [216, "utilities"], [258, null], [276, "utilities"], [284, null]], "Utils": [[105, null]], "Variables": [[16, "variables"]], "Variables Assignment does not Create a Relation Between Expressions": [[16, "variables-assignment-does-not-create-a-relation-between-expressions"]], "Various sympy.utilities submodules have moved": [[13, "various-sympy-utilities-submodules-have-moved"]], "Vector": [[23, "vector"], [34, null], [36, "vector"], [151, "vector"], [273, null]], "Vector & ReferenceFrame": [[36, null]], "Vector API": [[266, null]], "Vector Algebra": [[36, "vector-algebra"]], "Vector Algebra, in physics.vector": [[36, "vector-algebra-in-physics-vector"]], "Vector Calculus": [[36, "vector-calculus"]], "Vector Calculus, in physics.vector": [[36, "vector-calculus-in-physics-vector"]], "Vector Operations": [[36, "vector-operations"]], "Vector: Kinematics": [[35, null]], "Vectors and Dyadics": [[270, "vectors-and-dyadics"]], "Vectors and Scalars": [[33, "vectors-and-scalars"], [274, "vectors-and-scalars"]], "Verify a Solution": [[51, "verify-a-solution"]], "Verifying Divergence Theorem": [[275, "verifying-divergence-theorem"]], "Verifying Stoke\u2019s Theorem": [[275, "verifying-stoke-s-theorem"]], "Versine": [[43, "versine"]], "Version 1.10": [[13, "version-1-10"]], "Version 1.11": [[13, "version-1-11"]], "Version 1.12": [[13, "version-1-12"]], "Version 1.13": [[13, "version-1-13"]], "Version 1.14": [[13, "version-1-14"]], "Version 1.4": [[13, "version-1-4"]], "Version 1.5": [[13, "version-1-5"]], "Version 1.6": [[13, "version-1-6"]], "Version 1.7": [[13, "version-1-7"]], "Version 1.7.1": [[13, "version-1-7-1"]], "Version 1.8": [[13, "version-1-8"]], "Version 1.9": [[13, "version-1-9"]], "View the Docs": [[8, "view-the-docs"]], "Virtual Environment Setup": [[9, "virtual-environment-setup"]], "Walking the Tree": [[292, "walking-the-tree"]], "Waves": [[165, null]], "Welcome to SymPy\u2019s documentation!": [[58, null]], "What are the domains?": [[211, "what-are-the-domains"]], "What are the general methods employed by solveset to solve an equation?": [[240, "what-are-the-general-methods-employed-by-solveset-to-solve-an-equation"]], "What is Symbolic Computation?": [[291, "what-is-symbolic-computation"]], "What is a deprecation?": [[3, "what-is-a-deprecation"]], "What is domainmatrix?": [[210, "what-is-domainmatrix"]], "What is the plan for solve and solveset?": [[240, "what-is-the-plan-for-solve-and-solveset"]], "What is this domain argument about?": [[240, "what-is-this-domain-argument-about"]], "What\u2019s Next": [[294, null]], "What\u2019s with the new_method kwarg?": [[27, null]], "What\u2019s wrong with solve():": [[240, "what-s-wrong-with-solve"]], "When You Might Prefer a Numeric Solution": [[57, "when-you-might-prefer-a-numeric-solution"]], "When does a change require deprecation?": [[3, "when-does-a-change-require-deprecation"]], "When it is not technically possible to deprecate": [[3, "when-it-is-not-technically-possible-to-deprecate"]], "When the integral exists": [[113, "when-the-integral-exists"]], "When this computation is valid": [[113, "when-this-computation-is-valid"]], "Which Method is Responsible for Printing?": [[221, "which-method-is-responsible-for-printing"]], "Why Solveset?": [[240, "why-solveset"]], "Why SymPy?": [[291, "why-sympy"]], "Why do we use Sets as an output type?": [[240, "why-do-we-use-sets-as-an-output-type"]], "Wigner Symbols": [[206, null]], "Windows 10": [[8, "windows-10"]], "Work With Arbitrary Constants": [[55, "work-with-arbitrary-constants"]], "Work With Parameters": [[51, "work-with-parameters"]], "Work With Symbolic Matrices": [[53, "work-with-symbolic-matrices"]], "Working with expressions as polynomials": [[220, "working-with-expressions-as-polynomials"]], "Wrapping Geometries": [[18, "wrapping-geometries"]], "Wrapping Geometry (Docstrings)": [[159, null]], "Writing Custom Functions": [[43, null]], "Writing Tests": [[12, null]], "Writing Tests with External Dependencies": [[12, "writing-tests-with-external-dependencies"]], "Writing commit messages": [[11, "writing-commit-messages"]], "Writing pull request title and description": [[11, "writing-pull-request-title-and-description"]], "ZZ": [[212, "zz"]], "ZZ_I": [[212, "zz-i"]], "Zero Testing": [[293, "zero-testing"]], "Zeroth-Order": [[18, "zeroth-order"]], "\\mathrm{\\LaTeX}": [[296, "mathrm-latex"]], "\\mathrm{\\LaTeX} Parsing Exceptions Reference": [[130, "mathrm-latex-parsing-exceptions-reference"]], "\\mathrm{\\LaTeX} Parsing Functions Reference": [[130, "mathrm-latex-parsing-functions-reference"]], "abc": [[60, null]], "add": [[88, "module-sympy.core.add"]], "apart": [[297, "apart"]], "args": [[292, "args"]], "as_real_imag()": [[43, "as-real-imag"]], "assumptions": [[88, "module-sympy.core.assumptions"]], "basic": [[88, "module-sympy.core.basic"]], "cache": [[88, "module-sympy.core.cache"]], "cancel": [[297, "cancel"]], "class": [[38, "class"]], "collect": [[297, "collect"]], "combsimp": [[297, "combsimp"]], "containers": [[88, "module-sympy.core.containers"]], "divides": [[43, "divides"]], "doit()": [[43, "doit"]], "dotprint": [[221, "dotprint"]], "dynamicsymbols": [[32, "dynamicsymbols"]], "evalf": [[88, "module-sympy.core.evalf"], [286, "evalf"]], "expand": [[297, "expand"]], "expand()": [[43, "expand"]], "expand_func": [[297, "expand-func"]], "expand_log": [[297, "expand-log"]], "expand_power_exp / expand_power_base": [[297, "expand-power-exp-expand-power-base"]], "expand_trig": [[297, "expand-trig"]], "expr": [[88, "module-sympy.core.expr"]], "expr_free_symbols": [[13, "expr-free-symbols"]], "exprtools": [[88, "module-sympy.core.exprtools"]], "factor": [[297, "factor"]], "func": [[38, "func"], [292, "func"]], "function": [[88, "module-sympy.core.function"]], "gammasimp": [[297, "gammasimp"]], "help()": [[16, "help"]], "hyperexpand": [[297, "hyperexpand"]], "intfunc": [[88, "module-sympy.core.intfunc"]], "inverse()": [[43, "inverse"]], "kind": [[38, "kind"], [88, "module-sympy.core.kind"]], "kinematic_equations": [[204, "module-sympy.physics.vector.functions"]], "lambdify": [[2, "lambdify"], [286, "lambdify"]], "laplace_transform of a Matrix with noconds=False": [[13, "laplace-transform-of-a-matrix-with-noconds-false"]], "logcombine": [[297, "logcombine"]], "lti": [[144, "module-sympy.physics.control.lti"]], "mechanics_printing": [[157, "mechanics-printing"]], "mlatex": [[157, "mlatex"]], "mod": [[88, "module-sympy.core.mod"]], "mpmath": [[59, "mpmath"]], "mpprint": [[157, "mpprint"]], "mprint": [[157, "mprint"]], "mul": [[88, "module-sympy.core.mul"]], "multidimensional": [[88, "module-sympy.core.multidimensional"]], "nroots": [[48, "nroots"]], "numbers": [[88, "module-sympy.core.numbers"]], "p-adic Valuation": [[216, "p-adic-valuation"]], "partitions": [[259, "partitions"]], "powdenest": [[297, "powdenest"]], "power": [[88, "module-sympy.core.power"]], "powsimp": [[297, "powsimp"]], "pytest": [[250, null]], "real_roots": [[48, "real-roots"]], "relational": [[88, "module-sympy.core.relational"]], "rewrite": [[297, "rewrite"]], "rewrite()": [[43, "rewrite"]], "roots": [[48, "roots"]], "rs_series": [[218, "rs-series"]], "sets and assumptions": [[38, "sets-and-assumptions"]], "simplify": [[297, "simplify"]], "singleton": [[88, "module-sympy.core.singleton"]], "solveset() Solution Sets Cannot Necessarily Be Interrogated Programmatically": [[52, "solveset-solution-sets-cannot-necessarily-be-interrogated-programmatically"]], "srepr": [[221, "module-sympy.printing.repr"], [296, "srepr"]], "str": [[296, "str"]], "symbol": [[88, "module-sympy.core.symbol"]], "sympify": [[88, "module-sympy.core.sympify"]], "sympy.assumptions.handlers.AskHandler and related methods": [[13, "sympy-assumptions-handlers-askhandler-and-related-methods"]], "sympy.core.trace": [[13, "sympy-core-trace"]], "sympy.polys.solvers.RawMatrix": [[13, "sympy-polys-solvers-rawmatrix"]], "sympy.printing.theanocode": [[13, "sympy-printing-theanocode"]], "sympy.stats.DiscreteMarkovChain.absorbing_probabilites()": [[13, "sympy-stats-discretemarkovchain-absorbing-probabilites"]], "sympy.stats.sample(numsamples=n)": [[13, "sympy-stats-sample-numsamples-n"]], "sympy.testing.randtest": [[13, "sympy-testing-randtest"]], "sympy.utilities.misc.find_executable()": [[13, "sympy-utilities-misc-find-executable"]], "transolve": [[240, "transolve"]], "trigsimp": [[297, "trigsimp"]], "uFuncify": [[129, "ufuncify"]], "variations": [[259, "variations"]]}, "docnames": ["citing", "contributing/debug", "contributing/dependencies", "contributing/deprecations", "contributing/docstring", "contributing/documentation-style-guide", "contributing/index", "contributing/introduction-to-contributing", "contributing/new-contributors-guide/build-docs", "contributing/new-contributors-guide/dev-setup", "contributing/new-contributors-guide/index", "contributing/new-contributors-guide/workflow-process", "contributing/new-contributors-guide/writing-tests", "explanation/active-deprecations", "explanation/best-practices", "explanation/glossary", "explanation/gotchas", "explanation/index", "explanation/modules/physics/biomechanics/biomechanics", "explanation/modules/physics/biomechanics/index", "explanation/modules/physics/index", "explanation/modules/physics/mechanics/advanced", "explanation/modules/physics/mechanics/autolev_parser", "explanation/modules/physics/mechanics/index", "explanation/modules/physics/mechanics/joints", "explanation/modules/physics/mechanics/kane", "explanation/modules/physics/mechanics/lagrange", "explanation/modules/physics/mechanics/linearize", "explanation/modules/physics/mechanics/masses", "explanation/modules/physics/mechanics/reference", "explanation/modules/physics/mechanics/sympy_mechanics_for_autolev_users", "explanation/modules/physics/mechanics/symsystem", "explanation/modules/physics/vector/advanced", "explanation/modules/physics/vector/fields", "explanation/modules/physics/vector/index", "explanation/modules/physics/vector/kinematics/kinematics", "explanation/modules/physics/vector/vectors/vectors", "explanation/solve_output", "explanation/special_topics/classification", "explanation/special_topics/finite_diff_derivatives", "explanation/special_topics/index", "guides/assumptions", "guides/booleans", "guides/custom-functions", "guides/index", "guides/logo", "guides/physics/control_problems", "guides/physics/index", "guides/solving/find-roots-polynomial", "guides/solving/index", "guides/solving/reduce-inequalities-algebraically", "guides/solving/solve-diophantine-equation", "guides/solving/solve-equation-algebraically", "guides/solving/solve-matrix-equation", "guides/solving/solve-numerically", "guides/solving/solve-ode", "guides/solving/solve-system-of-equations-algebraically", "guides/solving/solving-guidance", "index", "install", "modules/abc", "modules/algebras", "modules/assumptions/ask", "modules/assumptions/assume", "modules/assumptions/index", "modules/assumptions/predicates", "modules/assumptions/refine", "modules/calculus/index", "modules/categories", "modules/codegen", "modules/combinatorics/fp_groups", "modules/combinatorics/galois", "modules/combinatorics/graycode", "modules/combinatorics/group_constructs", "modules/combinatorics/group_numbers", "modules/combinatorics/index", "modules/combinatorics/named_groups", "modules/combinatorics/partitions", "modules/combinatorics/pc_groups", "modules/combinatorics/perm_groups", "modules/combinatorics/permutations", "modules/combinatorics/polyhedron", "modules/combinatorics/prufer", "modules/combinatorics/subsets", "modules/combinatorics/tensor_can", "modules/combinatorics/testutil", "modules/combinatorics/util", "modules/concrete", "modules/core", "modules/crypto", "modules/diffgeom", "modules/discrete", "modules/evalf", "modules/functions/combinatorial", "modules/functions/elementary", "modules/functions/index", "modules/functions/special", "modules/geometry/curves", "modules/geometry/ellipses", "modules/geometry/entities", "modules/geometry/index", "modules/geometry/lines", "modules/geometry/plane", "modules/geometry/points", "modules/geometry/polygons", "modules/geometry/utils", "modules/holonomic/about", "modules/holonomic/convert", "modules/holonomic/index", "modules/holonomic/internal", "modules/holonomic/operations", "modules/holonomic/represent", "modules/holonomic/uses", "modules/integrals/g-functions", "modules/integrals/index", "modules/integrals/integrals", "modules/interactive", "modules/liealgebras/index", "modules/logic", "modules/matrices/dense", "modules/matrices/expressions", "modules/matrices/immutablematrices", "modules/matrices/index", "modules/matrices/kind", "modules/matrices/matrices", "modules/matrices/normalforms", "modules/matrices/sparse", "modules/matrices/sparsetools", "modules/ntheory", "modules/numeric-computation", "modules/parsing", "modules/physics/biomechanics/api/activation", "modules/physics/biomechanics/api/curve", "modules/physics/biomechanics/api/index", "modules/physics/biomechanics/api/musculotendon", "modules/physics/continuum_mechanics/arches", "modules/physics/continuum_mechanics/beam", "modules/physics/continuum_mechanics/beam_problems", "modules/physics/continuum_mechanics/cable", "modules/physics/continuum_mechanics/index", "modules/physics/continuum_mechanics/truss", "modules/physics/control/control", "modules/physics/control/control_plots", "modules/physics/control/index", "modules/physics/control/lti", "modules/physics/hep/index", "modules/physics/hydrogen", "modules/physics/matrices", "modules/physics/mechanics/api/actuator", "modules/physics/mechanics/api/deprecated_classes", "modules/physics/mechanics/api/expr_manip", "modules/physics/mechanics/api/index", "modules/physics/mechanics/api/joint", "modules/physics/mechanics/api/kane_lagrange", "modules/physics/mechanics/api/linearize", "modules/physics/mechanics/api/part_bod", "modules/physics/mechanics/api/pathway", "modules/physics/mechanics/api/printing", "modules/physics/mechanics/api/system", "modules/physics/mechanics/api/wrapping_geometry", "modules/physics/optics/gaussopt", "modules/physics/optics/index", "modules/physics/optics/medium", "modules/physics/optics/polarization", "modules/physics/optics/utils", "modules/physics/optics/waves", "modules/physics/paulialgebra", "modules/physics/qho_1d", "modules/physics/quantum/anticommutator", "modules/physics/quantum/cartesian", "modules/physics/quantum/cg", "modules/physics/quantum/circuitplot", "modules/physics/quantum/commutator", "modules/physics/quantum/constants", "modules/physics/quantum/dagger", "modules/physics/quantum/gate", "modules/physics/quantum/grover", "modules/physics/quantum/hilbert", "modules/physics/quantum/index", "modules/physics/quantum/innerproduct", "modules/physics/quantum/operator", "modules/physics/quantum/operatorset", "modules/physics/quantum/piab", "modules/physics/quantum/qapply", "modules/physics/quantum/qft", "modules/physics/quantum/qubit", "modules/physics/quantum/represent", "modules/physics/quantum/shor", "modules/physics/quantum/spin", "modules/physics/quantum/state", "modules/physics/quantum/tensorproduct", "modules/physics/secondquant", "modules/physics/sho", "modules/physics/units/dimensions", "modules/physics/units/examples", "modules/physics/units/index", "modules/physics/units/philosophy", "modules/physics/units/prefixes", "modules/physics/units/quantities", "modules/physics/units/unitsystem", "modules/physics/vector/api/classes", "modules/physics/vector/api/fieldfunctions", "modules/physics/vector/api/functions", "modules/physics/vector/api/index", "modules/physics/vector/api/kinematics", "modules/physics/vector/api/printing", "modules/physics/wigner", "modules/plotting", "modules/polys/agca", "modules/polys/basics", "modules/polys/domainmatrix", "modules/polys/domainsintro", "modules/polys/domainsref", "modules/polys/index", "modules/polys/internals", "modules/polys/literature", "modules/polys/numberfields", "modules/polys/reference", "modules/polys/ringseries", "modules/polys/solvers", "modules/polys/wester", "modules/printing", "modules/rewriting", "modules/series/formal", "modules/series/fourier", "modules/series/index", "modules/series/limitseq", "modules/series/sequences", "modules/series/series", "modules/sets", "modules/simplify/fu", "modules/simplify/hyperexpand", "modules/simplify/index", "modules/simplify/simplify", "modules/solvers/diophantine", "modules/solvers/index", "modules/solvers/inequalities", "modules/solvers/ode", "modules/solvers/pde", "modules/solvers/solvers", "modules/solvers/solveset", "modules/stats", "modules/tensor/array", "modules/tensor/array_expressions", "modules/tensor/index", "modules/tensor/index_methods", "modules/tensor/indexed", "modules/tensor/tensor", "modules/tensor/toperators", "modules/testing/index", "modules/testing/pytest", "modules/testing/randtest", "modules/testing/runtests", "modules/utilities/autowrap", "modules/utilities/codegen", "modules/utilities/decorator", "modules/utilities/enumerative", "modules/utilities/exceptions", "modules/utilities/index", "modules/utilities/iterables", "modules/utilities/lambdify", "modules/utilities/memoization", "modules/utilities/misc", "modules/utilities/source", "modules/utilities/timeutils", "modules/vector/api/classes", "modules/vector/api/index", "modules/vector/api/orienterclasses", "modules/vector/api/vectorfunctions", "modules/vector/basics", "modules/vector/coordsys", "modules/vector/examples", "modules/vector/fields", "modules/vector/index", "modules/vector/intro", "modules/vector/vector_integration", "reference/index", "reference/public/basics/index", "reference/public/codegeneration/index", "reference/public/logic/index", "reference/public/matrices/index", "reference/public/numbertheory/index", "reference/public/physics/index", "reference/public/topics/index", "reference/public/utilities/index", "tutorials/index", "tutorials/intro-tutorial/basic_operations", "tutorials/intro-tutorial/calculus", "tutorials/intro-tutorial/features", "tutorials/intro-tutorial/gotchas", "tutorials/intro-tutorial/index", "tutorials/intro-tutorial/intro", "tutorials/intro-tutorial/manipulation", "tutorials/intro-tutorial/matrices", "tutorials/intro-tutorial/next", "tutorials/intro-tutorial/preliminaries", "tutorials/intro-tutorial/printing", "tutorials/intro-tutorial/simplification", "tutorials/intro-tutorial/solvers", "tutorials/physics/biomechanics/biomechanical-model-example", "tutorials/physics/biomechanics/index", "tutorials/physics/index", "tutorials/physics/mechanics/bicycle_example", "tutorials/physics/mechanics/duffing-example", "tutorials/physics/mechanics/four_bar_linkage_example", "tutorials/physics/mechanics/index", "tutorials/physics/mechanics/lin_pend_nonmin_example", "tutorials/physics/mechanics/multi_degree_freedom_holonomic_system", "tutorials/physics/mechanics/rollingdisc_example", "tutorials/physics/mechanics/rollingdisc_example_kane", "tutorials/physics/mechanics/rollingdisc_example_kane_constraints", "tutorials/physics/mechanics/rollingdisc_example_lagrange"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1}, "filenames": ["citing.md", "contributing/debug.rst", "contributing/dependencies.md", "contributing/deprecations.md", "contributing/docstring.rst", "contributing/documentation-style-guide.rst", "contributing/index.md", "contributing/introduction-to-contributing.md", "contributing/new-contributors-guide/build-docs.rst", "contributing/new-contributors-guide/dev-setup.md", "contributing/new-contributors-guide/index.md", "contributing/new-contributors-guide/workflow-process.md", "contributing/new-contributors-guide/writing-tests.md", "explanation/active-deprecations.md", "explanation/best-practices.md", "explanation/glossary.md", "explanation/gotchas.rst", "explanation/index.rst", "explanation/modules/physics/biomechanics/biomechanics.rst", "explanation/modules/physics/biomechanics/index.rst", "explanation/modules/physics/index.rst", "explanation/modules/physics/mechanics/advanced.rst", "explanation/modules/physics/mechanics/autolev_parser.rst", "explanation/modules/physics/mechanics/index.rst", "explanation/modules/physics/mechanics/joints.rst", "explanation/modules/physics/mechanics/kane.rst", "explanation/modules/physics/mechanics/lagrange.rst", "explanation/modules/physics/mechanics/linearize.rst", "explanation/modules/physics/mechanics/masses.rst", "explanation/modules/physics/mechanics/reference.rst", "explanation/modules/physics/mechanics/sympy_mechanics_for_autolev_users.rst", "explanation/modules/physics/mechanics/symsystem.rst", "explanation/modules/physics/vector/advanced.rst", "explanation/modules/physics/vector/fields.rst", "explanation/modules/physics/vector/index.rst", "explanation/modules/physics/vector/kinematics/kinematics.rst", "explanation/modules/physics/vector/vectors/vectors.rst", "explanation/solve_output.rst", "explanation/special_topics/classification.rst", "explanation/special_topics/finite_diff_derivatives.rst", "explanation/special_topics/index.rst", "guides/assumptions.rst", "guides/booleans.rst", "guides/custom-functions.md", "guides/index.rst", "guides/logo.rst", "guides/physics/control_problems.rst", "guides/physics/index.rst", "guides/solving/find-roots-polynomial.md", "guides/solving/index.md", "guides/solving/reduce-inequalities-algebraically.md", "guides/solving/solve-diophantine-equation.md", "guides/solving/solve-equation-algebraically.md", "guides/solving/solve-matrix-equation.md", "guides/solving/solve-numerically.md", "guides/solving/solve-ode.md", "guides/solving/solve-system-of-equations-algebraically.md", "guides/solving/solving-guidance.md", "index.rst", "install.md", "modules/abc.rst", "modules/algebras.rst", "modules/assumptions/ask.rst", "modules/assumptions/assume.rst", "modules/assumptions/index.rst", "modules/assumptions/predicates.rst", "modules/assumptions/refine.rst", "modules/calculus/index.rst", "modules/categories.rst", "modules/codegen.rst", "modules/combinatorics/fp_groups.rst", "modules/combinatorics/galois.rst", "modules/combinatorics/graycode.rst", "modules/combinatorics/group_constructs.rst", "modules/combinatorics/group_numbers.rst", "modules/combinatorics/index.rst", "modules/combinatorics/named_groups.rst", "modules/combinatorics/partitions.rst", "modules/combinatorics/pc_groups.rst", "modules/combinatorics/perm_groups.rst", "modules/combinatorics/permutations.rst", "modules/combinatorics/polyhedron.rst", "modules/combinatorics/prufer.rst", "modules/combinatorics/subsets.rst", "modules/combinatorics/tensor_can.rst", "modules/combinatorics/testutil.rst", "modules/combinatorics/util.rst", "modules/concrete.rst", "modules/core.rst", "modules/crypto.rst", "modules/diffgeom.rst", "modules/discrete.rst", "modules/evalf.rst", "modules/functions/combinatorial.rst", "modules/functions/elementary.rst", "modules/functions/index.rst", "modules/functions/special.rst", "modules/geometry/curves.rst", "modules/geometry/ellipses.rst", "modules/geometry/entities.rst", "modules/geometry/index.rst", "modules/geometry/lines.rst", "modules/geometry/plane.rst", "modules/geometry/points.rst", "modules/geometry/polygons.rst", "modules/geometry/utils.rst", "modules/holonomic/about.rst", "modules/holonomic/convert.rst", "modules/holonomic/index.rst", "modules/holonomic/internal.rst", "modules/holonomic/operations.rst", "modules/holonomic/represent.rst", "modules/holonomic/uses.rst", "modules/integrals/g-functions.rst", "modules/integrals/index.rst", "modules/integrals/integrals.rst", "modules/interactive.rst", "modules/liealgebras/index.rst", "modules/logic.rst", "modules/matrices/dense.rst", "modules/matrices/expressions.rst", "modules/matrices/immutablematrices.rst", "modules/matrices/index.rst", "modules/matrices/kind.rst", "modules/matrices/matrices.rst", "modules/matrices/normalforms.rst", "modules/matrices/sparse.rst", "modules/matrices/sparsetools.rst", "modules/ntheory.rst", "modules/numeric-computation.rst", "modules/parsing.rst", "modules/physics/biomechanics/api/activation.rst", "modules/physics/biomechanics/api/curve.rst", "modules/physics/biomechanics/api/index.rst", "modules/physics/biomechanics/api/musculotendon.rst", "modules/physics/continuum_mechanics/arches.rst", "modules/physics/continuum_mechanics/beam.rst", "modules/physics/continuum_mechanics/beam_problems.rst", "modules/physics/continuum_mechanics/cable.rst", "modules/physics/continuum_mechanics/index.rst", "modules/physics/continuum_mechanics/truss.rst", "modules/physics/control/control.rst", "modules/physics/control/control_plots.rst", "modules/physics/control/index.rst", "modules/physics/control/lti.rst", "modules/physics/hep/index.rst", "modules/physics/hydrogen.rst", "modules/physics/matrices.rst", "modules/physics/mechanics/api/actuator.rst", "modules/physics/mechanics/api/deprecated_classes.rst", "modules/physics/mechanics/api/expr_manip.rst", "modules/physics/mechanics/api/index.rst", "modules/physics/mechanics/api/joint.rst", "modules/physics/mechanics/api/kane_lagrange.rst", "modules/physics/mechanics/api/linearize.rst", "modules/physics/mechanics/api/part_bod.rst", "modules/physics/mechanics/api/pathway.rst", "modules/physics/mechanics/api/printing.rst", "modules/physics/mechanics/api/system.rst", "modules/physics/mechanics/api/wrapping_geometry.rst", "modules/physics/optics/gaussopt.rst", "modules/physics/optics/index.rst", "modules/physics/optics/medium.rst", "modules/physics/optics/polarization.rst", "modules/physics/optics/utils.rst", "modules/physics/optics/waves.rst", "modules/physics/paulialgebra.rst", "modules/physics/qho_1d.rst", "modules/physics/quantum/anticommutator.rst", "modules/physics/quantum/cartesian.rst", "modules/physics/quantum/cg.rst", "modules/physics/quantum/circuitplot.rst", "modules/physics/quantum/commutator.rst", "modules/physics/quantum/constants.rst", "modules/physics/quantum/dagger.rst", "modules/physics/quantum/gate.rst", "modules/physics/quantum/grover.rst", "modules/physics/quantum/hilbert.rst", "modules/physics/quantum/index.rst", "modules/physics/quantum/innerproduct.rst", "modules/physics/quantum/operator.rst", "modules/physics/quantum/operatorset.rst", "modules/physics/quantum/piab.rst", "modules/physics/quantum/qapply.rst", "modules/physics/quantum/qft.rst", "modules/physics/quantum/qubit.rst", "modules/physics/quantum/represent.rst", "modules/physics/quantum/shor.rst", "modules/physics/quantum/spin.rst", "modules/physics/quantum/state.rst", "modules/physics/quantum/tensorproduct.rst", "modules/physics/secondquant.rst", "modules/physics/sho.rst", "modules/physics/units/dimensions.rst", "modules/physics/units/examples.rst", "modules/physics/units/index.rst", "modules/physics/units/philosophy.rst", "modules/physics/units/prefixes.rst", "modules/physics/units/quantities.rst", "modules/physics/units/unitsystem.rst", "modules/physics/vector/api/classes.rst", "modules/physics/vector/api/fieldfunctions.rst", "modules/physics/vector/api/functions.rst", "modules/physics/vector/api/index.rst", "modules/physics/vector/api/kinematics.rst", "modules/physics/vector/api/printing.rst", "modules/physics/wigner.rst", "modules/plotting.rst", "modules/polys/agca.rst", "modules/polys/basics.rst", "modules/polys/domainmatrix.rst", "modules/polys/domainsintro.rst", "modules/polys/domainsref.rst", "modules/polys/index.rst", "modules/polys/internals.rst", "modules/polys/literature.rst", "modules/polys/numberfields.rst", "modules/polys/reference.rst", "modules/polys/ringseries.rst", "modules/polys/solvers.rst", "modules/polys/wester.rst", "modules/printing.rst", "modules/rewriting.rst", "modules/series/formal.rst", "modules/series/fourier.rst", "modules/series/index.rst", "modules/series/limitseq.rst", "modules/series/sequences.rst", "modules/series/series.rst", "modules/sets.rst", "modules/simplify/fu.rst", "modules/simplify/hyperexpand.rst", "modules/simplify/index.rst", "modules/simplify/simplify.rst", "modules/solvers/diophantine.rst", "modules/solvers/index.rst", "modules/solvers/inequalities.rst", "modules/solvers/ode.rst", "modules/solvers/pde.rst", "modules/solvers/solvers.rst", "modules/solvers/solveset.rst", "modules/stats.rst", "modules/tensor/array.rst", "modules/tensor/array_expressions.rst", "modules/tensor/index.rst", "modules/tensor/index_methods.rst", "modules/tensor/indexed.rst", "modules/tensor/tensor.rst", "modules/tensor/toperators.rst", "modules/testing/index.rst", "modules/testing/pytest.rst", "modules/testing/randtest.rst", "modules/testing/runtests.rst", "modules/utilities/autowrap.rst", "modules/utilities/codegen.rst", "modules/utilities/decorator.rst", "modules/utilities/enumerative.rst", "modules/utilities/exceptions.rst", "modules/utilities/index.rst", "modules/utilities/iterables.rst", "modules/utilities/lambdify.rst", "modules/utilities/memoization.rst", "modules/utilities/misc.rst", "modules/utilities/source.rst", "modules/utilities/timeutils.rst", "modules/vector/api/classes.rst", "modules/vector/api/index.rst", "modules/vector/api/orienterclasses.rst", "modules/vector/api/vectorfunctions.rst", "modules/vector/basics.rst", "modules/vector/coordsys.rst", "modules/vector/examples.rst", "modules/vector/fields.rst", "modules/vector/index.rst", "modules/vector/intro.rst", "modules/vector/vector_integration.rst", "reference/index.rst", "reference/public/basics/index.rst", "reference/public/codegeneration/index.rst", "reference/public/logic/index.rst", "reference/public/matrices/index.rst", "reference/public/numbertheory/index.rst", "reference/public/physics/index.rst", "reference/public/topics/index.rst", "reference/public/utilities/index.rst", "tutorials/index.rst", "tutorials/intro-tutorial/basic_operations.rst", "tutorials/intro-tutorial/calculus.rst", "tutorials/intro-tutorial/features.rst", "tutorials/intro-tutorial/gotchas.rst", "tutorials/intro-tutorial/index.rst", "tutorials/intro-tutorial/intro.rst", "tutorials/intro-tutorial/manipulation.rst", "tutorials/intro-tutorial/matrices.rst", "tutorials/intro-tutorial/next.rst", "tutorials/intro-tutorial/preliminaries.rst", "tutorials/intro-tutorial/printing.rst", "tutorials/intro-tutorial/simplification.rst", "tutorials/intro-tutorial/solvers.rst", "tutorials/physics/biomechanics/biomechanical-model-example.rst", "tutorials/physics/biomechanics/index.rst", "tutorials/physics/index.rst", "tutorials/physics/mechanics/bicycle_example.rst", "tutorials/physics/mechanics/duffing-example.rst", "tutorials/physics/mechanics/four_bar_linkage_example.rst", "tutorials/physics/mechanics/index.rst", "tutorials/physics/mechanics/lin_pend_nonmin_example.rst", "tutorials/physics/mechanics/multi_degree_freedom_holonomic_system.rst", "tutorials/physics/mechanics/rollingdisc_example.rst", "tutorials/physics/mechanics/rollingdisc_example_kane.rst", "tutorials/physics/mechanics/rollingdisc_example_kane_constraints.rst", "tutorials/physics/mechanics/rollingdisc_example_lagrange.rst"], "indexentries": {"__abs__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__abs__", false]], "__add__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__add__", false]], "__add__() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.__add__", false]], "__add__() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.__add__", false]], "__cacheit() (in module sympy.core.cache)": [[88, "sympy.core.cache.__cacheit", false]], "__call__() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.__call__", false]], "__contains__() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.__contains__", false]], "__getitem__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__getitem__", false]], "__init__() (sympy.physics.mechanics.linearize.linearizer method)": [[154, "sympy.physics.mechanics.linearize.Linearizer.__init__", false]], "__init__() (sympy.polys.numberfields.modules.endomorphismring method)": [[216, "sympy.polys.numberfields.modules.EndomorphismRing.__init__", false]], "__init__() (sympy.polys.numberfields.modules.innerendomorphism method)": [[216, "sympy.polys.numberfields.modules.InnerEndomorphism.__init__", false]], "__init__() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.__init__", false]], "__init__() (sympy.polys.numberfields.modules.moduleendomorphism method)": [[216, "sympy.polys.numberfields.modules.ModuleEndomorphism.__init__", false]], "__init__() (sympy.polys.numberfields.modules.modulehomomorphism method)": [[216, "sympy.polys.numberfields.modules.ModuleHomomorphism.__init__", false]], "__init__() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.__init__", false]], "__init__() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.__init__", false]], "__init__() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.__init__", false]], "__init__() (sympy.polys.numberfields.utilities.algintpowers method)": [[216, "sympy.polys.numberfields.utilities.AlgIntPowers.__init__", false]], "__init__() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.__init__", false]], "__init__() (sympy.vector.orienters.axisorienter method)": [[267, "sympy.vector.orienters.AxisOrienter.__init__", false]], "__init__() (sympy.vector.orienters.bodyorienter method)": [[267, "sympy.vector.orienters.BodyOrienter.__init__", false]], "__init__() (sympy.vector.orienters.quaternionorienter method)": [[267, "sympy.vector.orienters.QuaternionOrienter.__init__", false]], "__init__() (sympy.vector.orienters.spaceorienter method)": [[267, "sympy.vector.orienters.SpaceOrienter.__init__", false]], "__len__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__len__", false]], "__mod__() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.__mod__", false]], "__mul__() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.__mul__", false]], "__mul__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__mul__", false]], "__mul__() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.__mul__", false]], "__mul__() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.__mul__", false]], "__new__() (sympy.combinatorics.perm_groups.permutationgroup static method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.__new__", false]], "__new__() (sympy.core.numbers.algebraicnumber static method)": [[88, "sympy.core.numbers.AlgebraicNumber.__new__", false]], "__pow__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__pow__", false]], "__weakref__ (sympy.combinatorics.perm_groups.permutationgroup attribute)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.__weakref__", false]], "__weakref__ (sympy.matrices.kind.matrixkind attribute)": [[123, "sympy.matrices.kind.MatrixKind.__weakref__", false]], "__weakref__ (sympy.matrices.matrixbase.matrixbase attribute)": [[124, "sympy.matrices.matrixbase.MatrixBase.__weakref__", false]], "_af_parity() (in module sympy.combinatorics.permutations)": [[80, "sympy.combinatorics.permutations._af_parity", false]], "_all_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._all_roots", false]], "_base_ordering() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._base_ordering", false]], "_check_antecedents() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._check_antecedents", false]], "_check_antecedents_1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._check_antecedents_1", false]], "_check_antecedents_inversion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._check_antecedents_inversion", false]], "_check_cycles_alt_sym() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._check_cycles_alt_sym", false]], "_cmp_perm_lists() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._cmp_perm_lists", false]], "_coeffexpvalueerror": [[113, "sympy.integrals.meijerint._CoeffExpValueError", false]], "_complexes_index() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._complexes_index", false]], "_complexes_sorted() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._complexes_sorted", false]], "_condsimp() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._condsimp", false]], "_convert_poly_rat_alg() (in module sympy.holonomic.holonomic)": [[109, "sympy.holonomic.holonomic._convert_poly_rat_alg", false]], "_coset_representative() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._coset_representative", false]], "_count_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._count_roots", false]], "_create_lookup_table() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._create_lookup_table", false]], "_create_table() (in module sympy.holonomic.holonomic)": [[109, "sympy.holonomic.holonomic._create_table", false]], "_csrtodok() (in module sympy.matrices.sparsetools)": [[127, "sympy.matrices.sparsetools._csrtodok", false]], "_default_settings (sympy.printing.smtlib.smtlibprinter attribute)": [[221, "sympy.printing.smtlib.SMTLibPrinter._default_settings", false]], "_diff_wrt (sympy.core.function.derivative property)": [[88, "sympy.core.function.Derivative._diff_wrt", false]], "_distinct_primes_lemma() (sympy.combinatorics.perm_groups.permutationgroup class method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._distinct_primes_lemma", false]], "_distribute_gens_by_base() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._distribute_gens_by_base", false]], "_doktocsr() (in module sympy.matrices.sparsetools)": [[127, "sympy.matrices.sparsetools._doktocsr", false]], "_dummy() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._dummy", false]], "_dummy_() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._dummy_", false]], "_ensure_complexes_init() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._ensure_complexes_init", false]], "_ensure_reals_init() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._ensure_reals_init", false]], "_eval_*": [[15, "term-_eval_", true]], "_eval_cond() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._eval_cond", false]], "_eval_evalf() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._eval_evalf", false]], "_eval_integral() (sympy.functions.elementary.piecewise.piecewise method)": [[94, "sympy.functions.elementary.piecewise.Piecewise._eval_integral", false]], "_eval_is_alt_sym_monte_carlo() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._eval_is_alt_sym_monte_carlo", false]], "_eval_is_alt_sym_naive() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._eval_is_alt_sym_naive", false]], "_eval_is_imaginary() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._eval_is_imaginary", false]], "_eval_is_real() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._eval_is_real", false]], "_exponents() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._exponents", false]], "_find_splitting_points() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._find_splitting_points", false]], "_flip_g() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._flip_g", false]], "_fourier_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms._fourier_transform", false]], "_functions() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._functions", false]], "_get_coeff_exp() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._get_coeff_exp", false]], "_get_complexes() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_complexes", false]], "_get_complexes_sqf() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_complexes_sqf", false]], "_get_interval() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_interval", false]], "_get_reals() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_reals", false]], "_get_reals_sqf() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_reals_sqf", false]], "_get_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_roots", false]], "_guess_expansion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._guess_expansion", false]], "_handle_integral() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._handle_Integral", false]], "_handle_precomputed_bsgs() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._handle_precomputed_bsgs", false]], "_indexed_root() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._indexed_root", false]], "_inflate_fox_h() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._inflate_fox_h", false]], "_inflate_g() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._inflate_g", false]], "_int0oo() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._int0oo", false]], "_int0oo_1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._int0oo_1", false]], "_int_inversion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._int_inversion", false]], "_is_analytic() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._is_analytic", false]], "_is_exponential() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._is_exponential", false]], "_is_logarithmic() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._is_logarithmic", false]], "_linear_2eq_order1_type6() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._linear_2eq_order1_type6", false]], "_linear_2eq_order1_type7() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._linear_2eq_order1_type7", false]], "_meijerint_definite_2() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._meijerint_definite_2", false]], "_meijerint_definite_3() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._meijerint_definite_3", false]], "_meijerint_definite_4() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._meijerint_definite_4", false]], "_meijerint_indefinite_1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._meijerint_indefinite_1", false]], "_modgcd_multivariate_p() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd._modgcd_multivariate_p", false]], "_mul_args() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._mul_args", false]], "_mul_as_two_parts() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._mul_as_two_parts", false]], "_my_principal_branch() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._my_principal_branch", false]], "_mytype() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._mytype", false]], "_naive_list_centralizer() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._naive_list_centralizer", false]], "_new() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._new", false]], "_nonlinear_2eq_order1_type1() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type1", false]], "_nonlinear_2eq_order1_type2() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type2", false]], "_nonlinear_2eq_order1_type3() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type3", false]], "_nonlinear_2eq_order1_type4() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type4", false]], "_nonlinear_2eq_order1_type5() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type5", false]], "_nonlinear_3eq_order1_type1() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type1", false]], "_nonlinear_3eq_order1_type2() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type2", false]], "_nonlinear_3eq_order1_type3() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type3", false]], "_nonlinear_3eq_order1_type4() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type4", false]], "_nonlinear_3eq_order1_type5() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type5", false]], "_orbits_transversals_from_bsgs() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._orbits_transversals_from_bsgs", false]], "_p_elements_group() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._p_elements_group", false]], "_postprocess_root() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._postprocess_root", false]], "_preprocess_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._preprocess_roots", false]], "_print() (sympy.printing.printer.printer method)": [[221, "sympy.printing.printer.Printer._print", false]], "_randint() (in module sympy.core.random)": [[88, "sympy.core.random._randint", false]], "_random_pr_init() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._random_pr_init", false]], "_randrange() (in module sympy.core.random)": [[88, "sympy.core.random._randrange", false]], "_real_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._real_roots", false]], "_reals_index() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._reals_index", false]], "_reals_sorted() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._reals_sorted", false]], "_refine_complexes() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._refine_complexes", false]], "_remove_gens() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._remove_gens", false]], "_reset() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._reset", false]], "_rewrite1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite1", false]], "_rewrite2() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite2", false]], "_rewrite_inversion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite_inversion", false]], "_rewrite_saxena() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite_saxena", false]], "_rewrite_saxena_1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite_saxena_1", false]], "_rewrite_single() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite_single", false]], "_roots_trivial() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._roots_trivial", false]], "_set_interval() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._set_interval", false]], "_solve_exponential() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._solve_exponential", false]], "_solve_lin_sys() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers._solve_lin_sys", false]], "_solve_lin_sys_component() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers._solve_lin_sys_component", false]], "_solve_logarithm() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._solve_logarithm", false]], "_sort_variable_count() (sympy.core.function.derivative class method)": [[88, "sympy.core.function.Derivative._sort_variable_count", false]], "_split_mul() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._split_mul", false]], "_strip() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._strip", false]], "_strong_gens_from_distr() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._strong_gens_from_distr", false]], "_sylow_alt_sym() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._sylow_alt_sym", false]], "_tan1() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series._tan1", false]], "_tensormanager (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor._TensorManager", false]], "_transolve() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._transolve", false]], "_union_find_merge() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._union_find_merge", false]], "_union_find_rep() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._union_find_rep", false]], "_verify() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._verify", false]], "_verify_bsgs() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._verify_bsgs", false]], "_verify_centralizer() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._verify_centralizer", false]], "_verify_normal_closure() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._verify_normal_closure", false]], "a (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.a", false]], "a (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.a", false]], "a (sympy.physics.optics.gaussopt.raytransfermatrix property)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix.A", false]], "a (sympy.physics.quantum.shor.cmod property)": [[187, "sympy.physics.quantum.shor.CMod.a", false]], "a1pt_theory() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.a1pt_theory", false]], "a2idx() (in module sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.a2idx", false]], "a2pt_theory() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.a2pt_theory", false]], "a4_in_s6() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.A4_in_S6", false]], "a4xc2() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.A4xC2", false]], "a_interval (sympy.sets.fancysets.complexregion property)": [[229, "sympy.sets.fancysets.ComplexRegion.a_interval", false]], "abbrev (sympy.physics.units.quantities.quantity property)": [[198, "sympy.physics.units.quantities.Quantity.abbrev", false]], "abelian_invariants() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.abelian_invariants", false]], "abeliangroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.AbelianGroup", false]], "above() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.above", false]], "abs (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.Abs", false]], "abs() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.abs", false]], "abs() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.abs", false]], "abs() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.abs", false]], "absorbing_probabilities() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.absorbing_probabilities", false]], "abundance() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.abundance", false]], "acc() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.acc", false]], "accepted_latex_functions (in module sympy.printing.latex)": [[221, "sympy.printing.latex.accepted_latex_functions", false]], "acos (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.acos", false]], "acosh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.acosh", false]], "acot (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.acot", false]], "acoth (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.acoth", false]], "acsc (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.acsc", false]], "acsch (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.acsch", false]], "activation (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.activation", false]], "activation (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.activation", false]], "activation_dynamics (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.activation_dynamics", false]], "activation_time_constant (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.activation_time_constant", false]], "activationbase (class in sympy.physics.biomechanics.activation)": [[131, "sympy.physics.biomechanics.activation.ActivationBase", false]], "actuatorbase (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.ActuatorBase", false]], "actuators (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.actuators", false]], "add (class in sympy.core.add)": [[88, "sympy.core.add.Add", false]], "add() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.add", false]], "add() (sympy.assumptions.assume.assumptionscontext method)": [[63, "sympy.assumptions.assume.AssumptionsContext.add", false]], "add() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.add", false]], "add() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.add", false]], "add() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.add", false]], "add() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.add", false]], "add() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.add", false]], "add() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.add", false]], "add() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.add", false]], "add() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.add", false]], "add() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.add", false]], "add() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.add", false]], "add() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.add", false]], "add_actuators() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_actuators", false]], "add_as_roots() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.add_as_roots", false]], "add_auxiliary_speeds() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_auxiliary_speeds", false]], "add_bodies() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_bodies", false]], "add_coordinates() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_coordinates", false]], "add_gens() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.add_gens", false]], "add_ground() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.add_ground", false]], "add_ground() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.add_ground", false]], "add_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.add_ground", false]], "add_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.add_ground", false]], "add_holonomic_constraints() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_holonomic_constraints", false]], "add_joints() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_joints", false]], "add_kdes() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_kdes", false]], "add_loads() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_loads", false]], "add_member() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.add_member", false]], "add_node() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.add_node", false]], "add_nonholonomic_constraints() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_nonholonomic_constraints", false]], "add_simple_roots() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.add_simple_roots", false]], "add_speeds() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_speeds", false]], "adj_det() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.adj_det", false]], "adj_poly_det() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.adj_poly_det", false]], "adjoint() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.adjoint", false]], "adjugate() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.adjugate", false]], "adjugate() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.adjugate", false]], "aesara_code() (in module sympy.printing.aesaracode)": [[221, "sympy.printing.aesaracode.aesara_code", false]], "aesara_function() (in module sympy.printing.aesaracode)": [[221, "sympy.printing.aesaracode.aesara_function", false]], "aesaraprinter (class in sympy.printing.aesaracode)": [[221, "sympy.printing.aesaracode.AesaraPrinter", false]], "affine_rank() (sympy.geometry.point.point static method)": [[103, "sympy.geometry.point.Point.affine_rank", false]], "airyai (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.airyai", false]], "airyaiprime (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.airyaiprime", false]], "airybase (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.AiryBase", false]], "airybi (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.airybi", false]], "airybiprime (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.airybiprime", false]], "alg_con (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.alg_con", false]], "alg_field_from_poly() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.alg_field_from_poly", false]], "algebraic": [[88, "term-algebraic", true]], "algebraic_field() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.algebraic_field", false]], "algebraic_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.algebraic_field", false]], "algebraic_field() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.algebraic_field", false]], "algebraic_field() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.algebraic_field", false]], "algebraicfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.AlgebraicField", false]], "algebraichandler (sympy.assumptions.predicates.sets.algebraicpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.AlgebraicPredicate.AlgebraicHandler", false]], "algebraicnumber (class in sympy.core.numbers)": [[88, "sympy.core.numbers.AlgebraicNumber", false]], "algebraicpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.AlgebraicPredicate", false]], "algintpowers (class in sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.AlgIntPowers", false]], "alignof() (in module sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.alignof", false]], "all_coeffs() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.all_coeffs", false]], "all_coeffs() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.all_coeffs", false]], "all_monoms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.all_monoms", false]], "all_monoms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.all_monoms", false]], "all_roots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.all_roots", false]], "all_roots() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.all_roots", false]], "all_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.all_roots", false]], "all_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.all_roots", false]], "all_terms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.all_terms", false]], "all_terms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.all_terms", false]], "allhints (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.allhints", false]], "allocated() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.allocated", false]], "almosteq() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.almosteq", false]], "almosteq() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.almosteq", false]], "almosteq() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.almosteq", false]], "almosteq() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.almosteq", false]], "almostlinear (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.AlmostLinear", false]], "alpha_opt (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.alpha_opt", false]], "alternating() (sympy.combinatorics.generators method)": [[80, "sympy.combinatorics.generators.alternating", false]], "alternatinggroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.AlternatingGroup", false]], "altitudes (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.altitudes", false]], "ambient_dimension (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.ambient_dimension", false]], "ambient_dimension (sympy.geometry.entity.geometryentity property)": [[99, "sympy.geometry.entity.GeometryEntity.ambient_dimension", false]], "ambient_dimension (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.ambient_dimension", false]], "ambient_dimension (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.ambient_dimension", false]], "amplitude (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.amplitude", false]], "an (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.an", false]], "analytic_func() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.analytic_func", false]], "ancestors() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.ancestors", false]], "and (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.And", false]], "andre (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.andre", false]], "andre_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.andre_poly", false]], "anf_coeffs() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.anf_coeffs", false]], "anfform() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.ANFform", false]], "ang_acc_in() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.ang_acc_in", false]], "ang_vel_in() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.ang_vel_in", false]], "ang_vel_in() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.ang_vel_in", false]], "angle (sympy.physics.optics.gaussopt.geometricray property)": [[160, "sympy.physics.optics.gaussopt.GeometricRay.angle", false]], "angle() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.angle", false]], "angle_between() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.angle_between", false]], "angle_between() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.angle_between", false]], "angle_between() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.angle_between", false]], "angles (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.angles", false]], "angles (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.angles", false]], "angular_deflection() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.angular_deflection", false]], "angular_momentum() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.angular_momentum", false]], "angular_momentum() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.angular_momentum", false]], "angular_momentum() (sympy.physics.mechanics.particle.particle method)": [[155, "sympy.physics.mechanics.particle.Particle.angular_momentum", false]], "angular_momentum() (sympy.physics.mechanics.rigidbody.rigidbody method)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.angular_momentum", false]], "angular_velocity (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.angular_velocity", false]], "annihilateboson (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.AnnihilateBoson", false]], "annihilatefermion (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.AnnihilateFermion", false]], "annotated() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.annotated", false]], "annotations (sympy.plotting.plot.plot property)": [[207, "sympy.plotting.plot.Plot.annotations", false]], "anp (class in sympy.polys.polyclasses)": [[212, "sympy.polys.polyclasses.ANP", false]], "anticommutator (class in sympy.physics.quantum.anticommutator)": [[168, "sympy.physics.quantum.anticommutator.AntiCommutator", false]], "antiderivative": [[15, "term-Antiderivative", true]], "antidivisor_count() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.antidivisor_count", false]], "antidivisors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.antidivisors", false]], "antihermitian": [[88, "term-antihermitian", true]], "antihermitianpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.AntihermitianPredicate", false]], "antisymmetrictensor (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.AntiSymmetricTensor", false]], "aother (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.aother", false]], "ap (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.ap", false]], "ap (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.ap", false]], "apart() (in module sympy.polys.partfrac)": [[217, "sympy.polys.partfrac.apart", false]], "apart() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.apart", false]], "apart_list() (in module sympy.polys.partfrac)": [[217, "sympy.polys.partfrac.apart_list", false]], "apoapsis (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.apoapsis", false]], "apothem (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.apothem", false]], "appellf1 (class in sympy.functions.special.hyper)": [[96, "sympy.functions.special.hyper.appellf1", false]], "append() (sympy.plotting.plot.plot method)": [[207, "sympy.plotting.plot.Plot.append", false]], "applied_loads (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.applied_loads", false]], "appliedpredicate (class in sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.AppliedPredicate", false]], "apply() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.apply", false]], "apply() (sympy.printing.pretty.stringpict.prettyform static method)": [[221, "sympy.printing.pretty.stringpict.prettyForm.apply", false]], "apply() (sympy.simplify.epathtools.epath method)": [[233, "sympy.simplify.epathtools.EPath.apply", false]], "apply_finite_diff() (in module sympy.calculus.finite_diff)": [[67, "sympy.calculus.finite_diff.apply_finite_diff", false]], "apply_force() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.apply_force", false]], "apply_grover() (in module sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.apply_grover", false]], "apply_length() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.apply_length", false]], "apply_load() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.apply_load", false]], "apply_load() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.apply_load", false]], "apply_load() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.apply_load", false]], "apply_load() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.apply_load", false]], "apply_moment_load() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.apply_moment_load", false]], "apply_operator() (sympy.physics.secondquant.annihilateboson method)": [[191, "sympy.physics.secondquant.AnnihilateBoson.apply_operator", false]], "apply_operator() (sympy.physics.secondquant.annihilatefermion method)": [[191, "sympy.physics.secondquant.AnnihilateFermion.apply_operator", false]], "apply_operator() (sympy.physics.secondquant.createboson method)": [[191, "sympy.physics.secondquant.CreateBoson.apply_operator", false]], "apply_operator() (sympy.physics.secondquant.createfermion method)": [[191, "sympy.physics.secondquant.CreateFermion.apply_operator", false]], "apply_operators() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.apply_operators", false]], "apply_rotation_hinge() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.apply_rotation_hinge", false]], "apply_sliding_hinge() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.apply_sliding_hinge", false]], "apply_support() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.apply_support", false]], "apply_support() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.apply_support", false]], "apply_torque() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.apply_torque", false]], "apply_uniform_gravity() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.apply_uniform_gravity", false]], "applyfunc() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.applyfunc", false]], "applyfunc() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.applyfunc", false]], "applyfunc() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.applyfunc", false]], "applyfunc() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.applyfunc", false]], "approximation() (sympy.core.numbers.numbersymbol method)": [[88, "sympy.core.numbers.NumberSymbol.approximation", false]], "arbitrary_point() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.arbitrary_point", false]], "arbitrary_point() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.arbitrary_point", false]], "arbitrary_point() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.arbitrary_point", false]], "arbitrary_point() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.arbitrary_point", false]], "arbitrary_point() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.arbitrary_point", false]], "arc_coplanar() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.arc_coplanar", false]], "arcsin() (in module sympy.stats)": [[241, "sympy.stats.Arcsin", false]], "are_collinear() (sympy.geometry.point.point3d static method)": [[103, "sympy.geometry.point.Point3D.are_collinear", false]], "are_concurrent() (sympy.geometry.line.linearentity static method)": [[101, "sympy.geometry.line.LinearEntity.are_concurrent", false]], "are_concurrent() (sympy.geometry.plane.plane static method)": [[102, "sympy.geometry.plane.Plane.are_concurrent", false]], "are_coplanar() (sympy.geometry.point.point class method)": [[103, "sympy.geometry.point.Point.are_coplanar", false]], "are_similar() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.are_similar", false]], "area (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.area", false]], "area (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.area", false]], "area (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.area", false]], "area (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.area", false]], "area (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.area", false]], "arg (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.arg", false]], "arg (sympy.assumptions.assume.appliedpredicate property)": [[63, "sympy.assumptions.assume.AppliedPredicate.arg", false]], "args": [[15, "term-args", true]], "args (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.args", false]], "args (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.args", false]], "args_cnc() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.args_cnc", false]], "argument (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.Argument", false]], "argument (sympy.functions.special.bessel.besselbase property)": [[96, "sympy.functions.special.bessel.BesselBase.argument", false]], "argument (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.argument", false]], "argument (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.argument", false]], "arguments (sympy.assumptions.assume.appliedpredicate property)": [[63, "sympy.assumptions.assume.AppliedPredicate.arguments", false]], "array() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.array", false]], "array_form (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.array_form", false]], "array_form (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.array_form", false]], "arrayconstructor (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.ArrayConstructor", false]], "arraycontraction (class in sympy.tensor.array.expressions)": [[243, "sympy.tensor.array.expressions.ArrayContraction", false]], "arraydiagonal (class in sympy.tensor.array.expressions)": [[243, "sympy.tensor.array.expressions.ArrayDiagonal", false]], "arraytensorproduct (class in sympy.tensor.array.expressions)": [[243, "sympy.tensor.array.expressions.ArrayTensorProduct", false]], "arrowstringdescription (class in sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.ArrowStringDescription", false]], "as_algebraicfield() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.as_AlgebraicField", false]], "as_base_exp() (sympy.core.function.function method)": [[88, "sympy.core.function.Function.as_base_exp", false]], "as_base_exp() (sympy.core.power.pow method)": [[88, "sympy.core.power.Pow.as_base_exp", false]], "as_base_exp() (sympy.functions.elementary.exponential.log method)": [[94, "sympy.functions.elementary.exponential.log.as_base_exp", false]], "as_coeff_add() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_coeff_Add", false], [88, "sympy.core.add.Add.as_coeff_add", false]], "as_coeff_add() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coeff_Add", false], [88, "sympy.core.expr.Expr.as_coeff_add", false]], "as_coeff_add() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.as_coeff_Add", false]], "as_coeff_add() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.as_coeff_Add", false]], "as_coeff_exponent() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coeff_exponent", false]], "as_coeff_mul() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coeff_Mul", false], [88, "sympy.core.expr.Expr.as_coeff_mul", false]], "as_coeff_mul() (sympy.core.mul.mul method)": [[88, "sympy.core.mul.Mul.as_coeff_Mul", false]], "as_coeff_mul() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.as_coeff_Mul", false]], "as_coeff_mul() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.as_coeff_Mul", false]], "as_coeff_mul() (sympy.matrices.expressions.matrixexpr method)": [[120, "sympy.matrices.expressions.MatrixExpr.as_coeff_Mul", false]], "as_coefficient() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coefficient", false]], "as_coefficients_dict() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coefficients_dict", false]], "as_content_primitive() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_content_primitive", false]], "as_content_primitive() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.as_content_primitive", false]], "as_content_primitive() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_content_primitive", false]], "as_content_primitive() (sympy.core.mul.mul method)": [[88, "sympy.core.mul.Mul.as_content_primitive", false]], "as_content_primitive() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.as_content_primitive", false]], "as_content_primitive() (sympy.core.power.pow method)": [[88, "sympy.core.power.Pow.as_content_primitive", false]], "as_declaration() (sympy.codegen.ast.variable method)": [[69, "sympy.codegen.ast.Variable.as_Declaration", false]], "as_dict() (sympy.combinatorics.partitions.integerpartition method)": [[77, "sympy.combinatorics.partitions.IntegerPartition.as_dict", false]], "as_dict() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.as_dict", false]], "as_dummy() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.as_dummy", false]], "as_explicit() (sympy.matrices.expressions.matrixexpr method)": [[120, "sympy.matrices.expressions.MatrixExpr.as_explicit", false]], "as_expr() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_expr", false]], "as_expr() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.as_expr", false]], "as_expr() (sympy.polys.monomials.monomial method)": [[217, "sympy.polys.monomials.Monomial.as_expr", false]], "as_expr() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.as_expr", false]], "as_expr() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.as_expr", false]], "as_expr_set_pairs() (sympy.functions.elementary.piecewise.piecewise method)": [[94, "sympy.functions.elementary.piecewise.Piecewise.as_expr_set_pairs", false]], "as_ferrers() (sympy.combinatorics.partitions.integerpartition method)": [[77, "sympy.combinatorics.partitions.IntegerPartition.as_ferrers", false]], "as_finite_difference() (sympy.core.function.derivative method)": [[88, "sympy.core.function.Derivative.as_finite_difference", false]], "as_immutable() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.as_immutable", false]], "as_independent() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_independent", false]], "as_int() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.as_int", false]], "as_leading_term() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_leading_term", false]], "as_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.as_list", false]], "as_mutable() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.as_mutable", false]], "as_mutable() (sympy.matrices.expressions.matrixexpr method)": [[120, "sympy.matrices.expressions.MatrixExpr.as_mutable", false]], "as_numer_denom() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_numer_denom", false]], "as_numer_denom() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_numer_denom", false]], "as_ordered_factors() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_ordered_factors", false]], "as_ordered_factors() (sympy.core.mul.mul method)": [[88, "sympy.core.mul.Mul.as_ordered_factors", false]], "as_ordered_terms() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_ordered_terms", false]], "as_poly() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_poly", false]], "as_poly() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.as_poly", false]], "as_poly() (sympy.core.relational.equality method)": [[88, "sympy.core.relational.Equality.as_poly", false]], "as_poly() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.as_poly", false]], "as_powers_dict() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_powers_dict", false]], "as_real_imag() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_real_imag", false]], "as_real_imag() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.complexes.im method)": [[94, "sympy.functions.elementary.complexes.im.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.complexes.re method)": [[94, "sympy.functions.elementary.complexes.re.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.exponential.exp method)": [[94, "sympy.functions.elementary.exponential.exp.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.exponential.log method)": [[94, "sympy.functions.elementary.exponential.log.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.hyperbolic.sinh method)": [[94, "sympy.functions.elementary.hyperbolic.sinh.as_real_imag", false]], "as_real_imag() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.as_real_imag", false]], "as_relational() (sympy.sets.fancysets.range method)": [[229, "sympy.sets.fancysets.Range.as_relational", false]], "as_relational() (sympy.sets.sets.complement method)": [[229, "sympy.sets.sets.Complement.as_relational", false]], "as_relational() (sympy.sets.sets.finiteset method)": [[229, "sympy.sets.sets.FiniteSet.as_relational", false]], "as_relational() (sympy.sets.sets.intersection method)": [[229, "sympy.sets.sets.Intersection.as_relational", false]], "as_relational() (sympy.sets.sets.interval method)": [[229, "sympy.sets.sets.Interval.as_relational", false]], "as_relational() (sympy.sets.sets.symmetricdifference method)": [[229, "sympy.sets.sets.SymmetricDifference.as_relational", false]], "as_relational() (sympy.sets.sets.union method)": [[229, "sympy.sets.sets.Union.as_relational", false]], "as_set() (sympy.logic.boolalg.boolean method)": [[118, "sympy.logic.boolalg.Boolean.as_set", false]], "as_set() (sympy.logic.boolalg.booleanfalse method)": [[118, "sympy.logic.boolalg.BooleanFalse.as_set", false]], "as_set() (sympy.logic.boolalg.booleantrue method)": [[118, "sympy.logic.boolalg.BooleanTrue.as_set", false]], "as_submodule() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.as_submodule", false]], "as_sum() (sympy.integrals.integrals.integral method)": [[115, "sympy.integrals.integrals.Integral.as_sum", false]], "as_terms() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_terms", false]], "as_two_terms() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_two_terms", false]], "as_two_terms() (sympy.core.mul.mul method)": [[88, "sympy.core.mul.Mul.as_two_terms", false]], "ascents() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.ascents", false]], "asec (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.asec", false]], "asech (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.asech", false]], "aseries() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.aseries", false]], "asin (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.asin", false]], "asinh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.asinh", false]], "ask() (in module sympy.assumptions.ask)": [[62, "sympy.assumptions.ask.ask", false]], "assemble_partfrac_list() (in module sympy.polys.partfrac)": [[217, "sympy.polys.partfrac.assemble_partfrac_list", false]], "assignment (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Assignment", false]], "assignmentbase (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.AssignmentBase", false]], "assignmenterror": [[221, "sympy.printing.codeprinter.AssignmentError", false]], "assoc_laguerre (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.assoc_laguerre", false]], "assoc_legendre (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.assoc_legendre", false]], "assoc_recurrence_memo() (in module sympy.utilities.memoization)": [[261, "sympy.utilities.memoization.assoc_recurrence_memo", false]], "assuming() (in module sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.assuming", false]], "assumptionkeys (class in sympy.assumptions.ask)": [[62, "sympy.assumptions.ask.AssumptionKeys", false]], "assumptions": [[15, "term-Assumptions", true]], "assumptions0 (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.assumptions0", false]], "assumptionscontext (class in sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.AssumptionsContext", false]], "at_pin_joint() (sympy.physics.mechanics.actuator.torqueactuator class method)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.at_pin_joint", false]], "atan (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.atan", false]], "atan2 (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.atan2", false]], "atanh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.atanh", false]], "atom": [[15, "term-Atom", true]], "atom (class in sympy.core.basic)": [[88, "sympy.core.basic.Atom", false]], "atomicexpr (class in sympy.core.expr)": [[88, "sympy.core.expr.AtomicExpr", false]], "atoms() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.atoms", false]], "atoms() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.atoms", false]], "atoms() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.atoms", false]], "atoms_table (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.atoms_table", false]], "attachments (sympy.physics.mechanics.pathway.obstaclesetpathway property)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway.attachments", false]], "attachments (sympy.physics.mechanics.pathway.pathwaybase property)": [[156, "sympy.physics.mechanics.pathway.PathwayBase.attachments", false]], "attempted (sympy.testing.runtests.sympytestresults attribute)": [[252, "sympy.testing.runtests.SymPyTestResults.attempted", false]], "attr_params() (sympy.codegen.ast.node method)": [[69, "sympy.codegen.ast.Node.attr_params", false]], "attribute (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Attribute", false]], "aug_assign() (in module sympy.codegen.ast)": [[69, "sympy.codegen.ast.aug_assign", false]], "augmentedassignment (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.AugmentedAssignment", false]], "auto_number() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.auto_number", false]], "auto_symbol() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.auto_symbol", false]], "automatic simplification": [[15, "term-Automatic-Simplification", true]], "autowrap() (in module sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.autowrap", false]], "auxiliary_circle() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.auxiliary_circle", false]], "auxiliary_eqs (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.auxiliary_eqs", false]], "axial_force() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.axial_force", false]], "axial_stress() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.axial_stress", false]], "axis (sympy.physics.mechanics.actuator.torqueactuator property)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.axis", false]], "axis (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.axis", false]], "axis() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.axis", false]], "axisorienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.AxisOrienter", false]], "az() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.AZ", false]], "b (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.B", false]], "b (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.b", false]], "b (sympy.physics.optics.gaussopt.raytransfermatrix property)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix.B", false]], "b_interval (sympy.sets.fancysets.complexregion property)": [[229, "sympy.sets.fancysets.ComplexRegion.b_interval", false]], "backward_diff() (in module sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.backward_diff", false]], "banded() (in module sympy.matrices.sparsetools)": [[127, "sympy.matrices.sparsetools.banded", false]], "base (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.base", false]], "base (sympy.functions.elementary.exponential.exp property)": [[94, "sympy.functions.elementary.exponential.exp.base", false]], "base (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.base", false]], "base_oneform() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_oneform", false]], "base_oneforms() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_oneforms", false]], "base_scalar() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_scalar", false]], "base_scalars() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_scalars", false]], "base_solution_linear() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.base_solution_linear", false]], "base_vector() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_vector", false]], "base_vectors() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_vectors", false]], "basecovarderivativeop (class in sympy.diffgeom)": [[90, "sympy.diffgeom.BaseCovarDerivativeOp", false]], "basepolynomialerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.BasePolynomialError", false]], "basescalarfield (class in sympy.diffgeom)": [[90, "sympy.diffgeom.BaseScalarField", false]], "baseseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.BaseSeries", false]], "baseswap() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.baseswap", false]], "basevectorfield (class in sympy.diffgeom)": [[90, "sympy.diffgeom.BaseVectorField", false]], "basic": [[15, "term-Basic", true]], "basic (class in sympy.core.basic)": [[88, "sympy.core.basic.Basic", false]], "basic_orbits (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.basic_orbits", false]], "basic_root() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.basic_root", false]], "basic_root() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.basic_root", false]], "basic_root() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.basic_root", false]], "basic_root() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.basic_root", false]], "basic_root() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.basic_root", false]], "basic_root() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.basic_root", false]], "basic_stabilizers (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.basic_stabilizers", false]], "basic_transversals (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.basic_transversals", false]], "basis() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.basis", false]], "basis() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.basis", false]], "basis() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.basis", false]], "basis() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.basis", false]], "basis() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.basis", false]], "basis() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.basis", false]], "basis() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.basis", false]], "basis() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.basis", false]], "basis_element_pullbacks() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.basis_element_pullbacks", false]], "basis_elements() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.basis_elements", false]], "bbra (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.BBra", false]], "bd (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.Bd", false]], "beam (class in sympy.physics.continuum_mechanics.beam)": [[136, "sympy.physics.continuum_mechanics.beam.Beam", false]], "beam3d (class in sympy.physics.continuum_mechanics.beam)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D", false]], "beamparameter (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.BeamParameter", false]], "bell (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.bell", false]], "below() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.below", false]], "bending_moment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.bending_moment", false]], "bending_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.bending_moment", false]], "benini() (in module sympy.stats)": [[241, "sympy.stats.Benini", false]], "berkowitz_det() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.berkowitz_det", false]], "berkowitz_eigenvals() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.berkowitz_eigenvals", false]], "berkowitz_minors() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.berkowitz_minors", false]], "bernoulli (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.bernoulli", false]], "bernoulli (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.Bernoulli", false]], "bernoulli() (in module sympy.stats)": [[241, "sympy.stats.Bernoulli", false]], "bernoulli_c_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.bernoulli_c_poly", false]], "bernoulli_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.bernoulli_poly", false]], "bernoulliprocess (class in sympy.stats)": [[241, "sympy.stats.BernoulliProcess", false]], "besselbase (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.BesselBase", false]], "besseli (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.besseli", false]], "besselj (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.besselj", false]], "besselk (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.besselk", false]], "besselsimp() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.besselsimp", false]], "bessely (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.bessely", false]], "beta (class in sympy.functions.special.beta_functions)": [[96, "sympy.functions.special.beta_functions.beta", false]], "beta (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.beta", false]], "beta() (in module sympy.stats)": [[241, "sympy.stats.Beta", false]], "betabinomial() (in module sympy.stats)": [[241, "sympy.stats.BetaBinomial", false]], "betanoncentral() (in module sympy.stats)": [[241, "sympy.stats.BetaNoncentral", false]], "betaprime() (in module sympy.stats)": [[241, "sympy.stats.BetaPrime", false]], "bidiagonal_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.bidiagonal_decomposition", false]], "bidiagonalize() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.bidiagonalize", false]], "bifid5_square() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.bifid5_square", false]], "bifid6_square() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.bifid6_square", false]], "bilinear() (in module sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.bilinear", false]], "bin_to_gray() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.bin_to_gray", false]], "binary_function() (in module sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.binary_function", false]], "binary_partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.binary_partitions", false]], "binaryquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.BinaryQuadratic", false]], "bind_c() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.bind_C", false]], "binomial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.binomial", false]], "binomial() (in module sympy.stats)": [[241, "sympy.stats.Binomial", false]], "binomial_coefficients() (in module sympy.ntheory.multinomial)": [[128, "sympy.ntheory.multinomial.binomial_coefficients", false]], "binomial_coefficients_list() (in module sympy.ntheory.multinomial)": [[128, "sympy.ntheory.multinomial.binomial_coefficients_list", false]], "binomial_mod() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.binomial_mod", false]], "bisectors() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.bisectors", false]], "bisectors() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.bisectors", false]], "bisectors() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.bisectors", false]], "bitlist_from_subset() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.bitlist_from_subset", false]], "bket (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.BKet", false]], "block_collapse() (in module sympy.matrices.expressions.blockmatrix)": [[120, "sympy.matrices.expressions.blockmatrix.block_collapse", false]], "blockdiagmatrix (class in sympy.matrices.expressions.blockmatrix)": [[120, "sympy.matrices.expressions.blockmatrix.BlockDiagMatrix", false]], "blockmatrix (class in sympy.matrices.expressions.blockmatrix)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix", false]], "bm (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.bm", false]], "bode_magnitude_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_magnitude_numerical_data", false]], "bode_magnitude_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_magnitude_plot", false]], "bode_phase_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_phase_numerical_data", false]], "bode_phase_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_phase_plot", false]], "bode_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_plot", false]], "bodies (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.bodies", false]], "bodies (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.bodies", false]], "bodies (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.bodies", false]], "body (class in sympy.physics.mechanics.body)": [[149, "sympy.physics.mechanics.body.Body", false]], "bodyorienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.BodyOrienter", false]], "bool_map() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.bool_map", false]], "bool_maxterm() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.bool_maxterm", false]], "bool_minterm() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.bool_minterm", false]], "bool_monomial() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.bool_monomial", false]], "boolean": [[15, "term-Boolean", true]], "boolean (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Boolean", false]], "booleanfalse (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.BooleanFalse", false]], "booleankind (in module sympy.core.kind)": [[88, "sympy.core.kind.BooleanKind", false]], "booleantrue (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.BooleanTrue", false]], "bosonicbasis (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.BosonicBasis", false]], "bother (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.bother", false]], "bottom_up() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.bottom_up", false]], "bound symbols": [[15, "term-Bound-symbols", true]], "bound_symbols (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.bound_symbols", false]], "bound_symbols (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.bound_symbols", false]], "bound_symbols (sympy.core.function.subs property)": [[88, "sympy.core.function.Subs.bound_symbols", false]], "boundary (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.boundary", false]], "boundary_conditions (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.boundary_conditions", false]], "boundary_conditions (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.boundary_conditions", false]], "boundedpareto() (in module sympy.stats)": [[241, "sympy.stats.BoundedPareto", false]], "bounds (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.bounds", false]], "bounds (sympy.geometry.entity.geometryentity property)": [[99, "sympy.geometry.entity.GeometryEntity.bounds", false]], "bounds (sympy.geometry.line.linearentity2d property)": [[101, "sympy.geometry.line.LinearEntity2D.bounds", false]], "bounds (sympy.geometry.point.point2d property)": [[103, "sympy.geometry.point.Point2D.bounds", false]], "bounds (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.bounds", false]], "bq (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.bq", false]], "bq (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.bq", false]], "bra (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.Bra", false]], "bra (sympy.physics.quantum.operator.outerproduct property)": [[180, "sympy.physics.quantum.operator.OuterProduct.bra", false]], "bra (sympy.physics.secondquant.innerproduct property)": [[191, "sympy.physics.secondquant.InnerProduct.bra", false]], "brabase (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.BraBase", false]], "bracelets() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.bracelets", false]], "breaktoken (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.BreakToken", false]], "brewster_angle() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.brewster_angle", false]], "bsgs_direct_product() (in module sympy.combinatorics.tensor_can)": [[84, "sympy.combinatorics.tensor_can.bsgs_direct_product", false]], "bspline_basis() (in module sympy.functions.special.bsplines)": [[96, "sympy.functions.special.bsplines.bspline_basis", false]], "bspline_basis_set() (in module sympy.functions.special.bsplines)": [[96, "sympy.functions.special.bsplines.bspline_basis_set", false]], "build_expression_tree() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.build_expression_tree", false]], "build_options() (in module sympy.polys.polyoptions)": [[214, "sympy.polys.polyoptions.build_options", false]], "c (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.C", false]], "c (sympy.physics.optics.gaussopt.raytransfermatrix property)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix.C", false]], "c89codeprinter (class in sympy.printing.c)": [[221, "sympy.printing.c.C89CodePrinter", false]], "c99codeprinter (class in sympy.printing.c)": [[221, "sympy.printing.c.C99CodePrinter", false]], "cable (class in sympy.physics.continuum_mechanics.cable)": [[138, "sympy.physics.continuum_mechanics.cable.Cable", false]], "calculate_series() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.calculate_series", false]], "can_transf_matrix (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.can_transf_matrix", false]], "canberra_distance() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.canberra_distance", false]], "cancel() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.cancel", false]], "cancel() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.cancel", false]], "cancel() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.cancel", false]], "cancel() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.cancel", false]], "cancel() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.cancel", false]], "cancel() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.cancel", false]], "cancel_denom() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.cancel_denom", false]], "cancel_denom_elementwise() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.cancel_denom_elementwise", false]], "canon_bp() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.canon_bp", false]], "canon_bp() (sympy.tensor.tensor.tensadd method)": [[247, "sympy.tensor.tensor.TensAdd.canon_bp", false]], "canon_bp() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.canon_bp", false]], "canonical (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.canonical", false]], "canonical form": [[15, "term-Canonical-Form", true]], "canonical_form() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.canonical_form", false]], "canonical_odes() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.canonical_odes", false]], "canonical_variables (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.canonical_variables", false]], "canonicalize": [[15, "term-Canonicalize", true]], "canonicalize() (in module sympy.combinatorics.tensor_can)": [[84, "sympy.combinatorics.tensor_can.canonicalize", false]], "capture() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.capture", false]], "cardinality (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.cardinality", false]], "cardinality (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.cardinality", false]], "cartan_matrix() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.cartan_matrix", false]], "cartanmatrix() (in module sympy.liealgebras.cartan_matrix)": [[117, "sympy.liealgebras.cartan_matrix.CartanMatrix", false]], "cartantype_generator (class in sympy.liealgebras.cartan_type)": [[117, "sympy.liealgebras.cartan_type.CartanType_generator", false]], "cartesiancomplexregion (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.CartesianComplexRegion", false]], "casoratian() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.casoratian", false]], "cast_check() (sympy.codegen.ast.type method)": [[69, "sympy.codegen.ast.Type.cast_check", false]], "cast_nocheck (sympy.codegen.ast.floatbasetype attribute)": [[69, "sympy.codegen.ast.FloatBaseType.cast_nocheck", false]], "cast_nocheck() (sympy.codegen.ast.floattype method)": [[69, "sympy.codegen.ast.FloatType.cast_nocheck", false]], "catalan (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Catalan", false]], "catalan (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.catalan", false]], "category (class in sympy.categories)": [[68, "sympy.categories.Category", false]], "cauchy() (in module sympy.stats)": [[241, "sympy.stats.Cauchy", false]], "cauchy_lower_bound() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.cauchy_lower_bound", false]], "cauchy_upper_bound() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.cauchy_upper_bound", false]], "cbrt (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.Cbrt", false]], "cbrt() (in module sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.cbrt", false]], "ccode() (in module sympy.printing.c)": [[221, "sympy.printing.c.ccode", false]], "ccodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.CCodeGen", false]], "ceiling (class in sympy.functions.elementary.integers)": [[94, "sympy.functions.elementary.integers.ceiling", false]], "center (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.center", false]], "center (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.center", false]], "center() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.center", false]], "center_of_mass() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.center_of_mass", false]], "central_inertia (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.central_inertia", false]], "central_inertia (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.central_inertia", false]], "centralizer() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.centralizer", false]], "centralmoment (class in sympy.stats)": [[241, "sympy.stats.CentralMoment", false]], "centroid (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.centroid", false]], "centroid (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.centroid", false]], "centroid() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.centroid", false]], "cg (class in sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.CG", false]], "cg_simp() (in module sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.cg_simp", false]], "cgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.CGate", false]], "cgates (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.CGateS", false]], "change_index() (sympy.concrete.expr_with_intlimits.exprwithintlimits method)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.change_index", false]], "change_member_label() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.change_member_label", false]], "change_node_label() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.change_node_label", false]], "change_support() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.change_support", false]], "characteristic() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.characteristic", false]], "characteristic() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.characteristic", false]], "characteristiccurvecollection (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.CharacteristicCurveCollection", false]], "characteristiccurvefunction (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.CharacteristicCurveFunction", false]], "charpoly() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.charpoly", false]], "charpoly() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.charpoly", false]], "charpoly() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.charpoly", false]], "charpoly() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly", false]], "charpoly() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.charpoly", false]], "charpoly_base() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly_base", false]], "charpoly_berk() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly_berk", false]], "charpoly_factor_blocks() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly_factor_blocks", false]], "charpoly_factor_list() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly_factor_list", false]], "chebyshevt (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.chebyshevt", false]], "chebyshevt_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.chebyshevt_poly", false]], "chebyshevt_root (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.chebyshevt_root", false]], "chebyshevu (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.chebyshevu", false]], "chebyshevu_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.chebyshevu_poly", false]], "chebyshevu_root (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.chebyshevu_root", false]], "check_and_join() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.check_and_join", false]], "check_output() (sympy.testing.runtests.sympyoutputchecker method)": [[252, "sympy.testing.runtests.SymPyOutputChecker.check_output", false]], "checkinfsol() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.checkinfsol", false]], "checkodesol() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.checkodesol", false]], "checkpdesol() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.checkpdesol", false]], "checksol() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.checksol", false]], "chi (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Chi", false]], "chi() (in module sympy.stats)": [[241, "sympy.stats.Chi", false]], "child (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.child", false]], "child_axis (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.child_axis", false]], "child_point (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.child_point", false]], "chinoncentral() (in module sympy.stats)": [[241, "sympy.stats.ChiNoncentral", false]], "chisquared() (in module sympy.stats)": [[241, "sympy.stats.ChiSquared", false]], "cholesky() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.cholesky", false]], "cholesky() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cholesky", false]], "cholesky_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cholesky_solve", false]], "choose_domain() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.choose_domain", false]], "ci (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Ci", false]], "circle (class in sympy.geometry.ellipse)": [[98, "sympy.geometry.ellipse.Circle", false]], "circuit_plot() (in module sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.circuit_plot", false]], "circuitplot (class in sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot", false]], "circumcenter (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.circumcenter", false]], "circumcenter (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.circumcenter", false]], "circumcircle (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.circumcircle", false]], "circumcircle (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.circumcircle", false]], "circumference (sympy.geometry.ellipse.circle property)": [[98, "sympy.geometry.ellipse.Circle.circumference", false]], "circumference (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.circumference", false]], "circumradius (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.circumradius", false]], "circumradius (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.circumradius", false]], "class_key() (sympy.core.basic.basic class method)": [[88, "sympy.core.basic.Basic.class_key", false]], "classify_diop() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.classify_diop", false]], "classify_ode() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.classify_ode", false]], "classify_pde() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.classify_pde", false]], "clear() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.clear", false]], "clear_cache() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.clear_cache", false]], "clear_denoms() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.clear_denoms", false]], "clear_denoms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.clear_denoms", false]], "clear_denoms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.clear_denoms", false]], "clear_denoms_rowwise() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.clear_denoms_rowwise", false]], "clear_loads() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.clear_loads", false]], "clebsch_gordan() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.clebsch_gordan", false]], "clone() (sympy.polys.polyoptions.options method)": [[214, "sympy.polys.polyoptions.Options.clone", false]], "closing_angle() (sympy.geometry.line.ray2d method)": [[101, "sympy.geometry.line.Ray2D.closing_angle", false]], "closure (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.closure", false]], "cmod (class in sympy.physics.quantum.shor)": [[187, "sympy.physics.quantum.shor.CMod", false]], "cmoment() (in module sympy.stats)": [[241, "sympy.stats.cmoment", false]], "cmplx (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.cmplx", false]], "cnot (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.CNOT", false]], "cnotgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.CNotGate", false]], "code generation": [[15, "term-Code-Generation", true]], "codeblock (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.CodeBlock", false]], "codegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.CodeGen", false]], "codegen() (in module sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.codegen", false]], "codeprinter (class in sympy.printing.codeprinter)": [[221, "sympy.printing.codeprinter.CodePrinter", false]], "codewrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.CodeWrapper", false]], "codomain (sympy.categories.compositemorphism property)": [[68, "sympy.categories.CompositeMorphism.codomain", false]], "codomain (sympy.categories.morphism property)": [[68, "sympy.categories.Morphism.codomain", false]], "coeff() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.coeff", false]], "coeff() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.coeff", false]], "coeff() (sympy.series.sequences.seqbase method)": [[227, "sympy.series.sequences.SeqBase.coeff", false]], "coeff_bell() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.coeff_bell", false]], "coeff_monomial() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.coeff_monomial", false]], "coeff_mul() (sympy.series.sequences.emptysequence method)": [[227, "sympy.series.sequences.EmptySequence.coeff_mul", false]], "coeff_mul() (sympy.series.sequences.seqbase method)": [[227, "sympy.series.sequences.SeqBase.coeff_mul", false]], "coeff_mul() (sympy.series.sequences.seqformula method)": [[227, "sympy.series.sequences.SeqFormula.coeff_mul", false]], "coeff_mul() (sympy.series.sequences.seqper method)": [[227, "sympy.series.sequences.SeqPer.coeff_mul", false]], "coeff_search() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.coeff_search", false]], "coeff_wrt() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.coeff_wrt", false]], "coefficients (sympy.geometry.line.line2d property)": [[101, "sympy.geometry.line.Line2D.coefficients", false]], "coeffs() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.coeffs", false]], "coeffs() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.coeffs", false]], "coeffs() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.coeffs", false]], "coeffs() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.coeffs", false]], "coercionfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.CoercionFailed", false]], "cofactor() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cofactor", false]], "cofactor_matrix() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cofactor_matrix", false]], "cofactors() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.cofactors", false]], "cofactors() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.cofactors", false]], "cofactors() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.cofactors", false]], "cofactors() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.cofactors", false]], "cofactors() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.cofactors", false]], "coherent_state() (in module sympy.physics.qho_1d)": [[167, "sympy.physics.qho_1d.coherent_state", false]], "coin() (in module sympy.stats)": [[241, "sympy.stats.Coin", false]], "col() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.col", false]], "col_del() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.col_del", false]], "col_insert() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.col_insert", false]], "col_join() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.col_join", false]], "collect() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.collect", false]], "collect() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.collect", false]], "collect_const() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.collect_const", false]], "collect_sqrt() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.collect_sqrt", false]], "column() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.column", false]], "columnspace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.columnspace", false]], "columnspace() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.columnspace", false]], "comb_explicit_rhs (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.comb_explicit_rhs", false]], "comb_implicit_mat (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.comb_implicit_mat", false]], "comb_implicit_rhs (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.comb_implicit_rhs", false]], "combsimp() (in module sympy.simplify.combsimp)": [[233, "sympy.simplify.combsimp.combsimp", false]], "combsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.combsimp", false]], "comm_i2symbol() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.comm_i2symbol", false]], "comm_symbols2i() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.comm_symbols2i", false]], "commaoperator (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.CommaOperator", false]], "comment (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Comment", false]], "common_prefix() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.common_prefix", false]], "common_suffix() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.common_suffix", false]], "communication_classes() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.communication_classes", false]], "commutative": [[88, "term-commutative", true]], "commutative_diagrams (sympy.categories.category property)": [[68, "sympy.categories.Category.commutative_diagrams", false]], "commutativepredicate (class in sympy.assumptions.predicates.common)": [[65, "sympy.assumptions.predicates.common.CommutativePredicate", false]], "commutator (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Commutator", false]], "commutator (class in sympy.physics.quantum.commutator)": [[172, "sympy.physics.quantum.commutator.Commutator", false]], "commutator (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.Commutator", false]], "commutator() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.commutator", false]], "commutator() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.commutator", false]], "commutes_with() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.commutes_with", false]], "commutes_with() (sympy.tensor.tensor.tensorhead method)": [[247, "sympy.tensor.tensor.TensorHead.commutes_with", false]], "companion() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.companion", false]], "companionmatrix (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.CompanionMatrix", false]], "compare() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.compare", false]], "compare() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.compare", false]], "complement (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Complement", false]], "complement() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.complement", false]], "complex": [[88, "term-complex", true]], "complexelementspredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.ComplexElementsPredicate", false]], "complexes (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Complexes", false]], "complexfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.ComplexField", false]], "complexinfinity (class in sympy.core.numbers)": [[88, "sympy.core.numbers.ComplexInfinity", false]], "complexpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.ComplexPredicate", false]], "complexregion (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.ComplexRegion", false]], "complexrootof (class in sympy.polys.rootoftools)": [[217, "sympy.polys.rootoftools.ComplexRootOf", false]], "complexspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.ComplexSpace", false]], "complextype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.ComplexType", false]], "components (sympy.categories.compositemorphism property)": [[68, "sympy.categories.CompositeMorphism.components", false]], "components (sympy.vector.dyadic.dyadic property)": [[265, "sympy.vector.dyadic.Dyadic.components", false]], "components (sympy.vector.vector.vector property)": [[265, "sympy.vector.vector.Vector.components", false]], "components() (in module sympy.integrals.heurisch)": [[115, "sympy.integrals.heurisch.components", false]], "compose() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.compose", false]], "compose() (sympy.categories.morphism method)": [[68, "sympy.categories.Morphism.compose", false]], "compose() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.compose", false]], "compose() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.compose", false]], "compose() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.compose", false]], "compose() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.compose", false]], "composite": [[88, "term-composite", true]], "composite() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.composite", false]], "compositedomain (class in sympy.polys.domains.compositedomain)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain", false]], "compositemorphism (class in sympy.categories)": [[68, "sympy.categories.CompositeMorphism", false]], "compositepi() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.compositepi", false]], "compositepredicate (class in sympy.assumptions.predicates.ntheory)": [[65, "sympy.assumptions.predicates.ntheory.CompositePredicate", false]], "composition() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.composition", false]], "composition_series() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.composition_series", false]], "compounddistribution (class in sympy.stats.compound_rv)": [[241, "sympy.stats.compound_rv.CompoundDistribution", false]], "computationfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.ComputationFailed", false]], "compute_explicit_form() (sympy.physics.mechanics.system.symbolicsystem method)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.compute_explicit_form", false]], "compute_fps() (in module sympy.series.formal)": [[223, "sympy.series.formal.compute_fps", false]], "compute_leading_term() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.compute_leading_term", false]], "compute_m_ybar() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.compute_m_ybar", false]], "conclusions (sympy.categories.diagram property)": [[68, "sympy.categories.Diagram.conclusions", false]], "cond (sympy.functions.elementary.piecewise.exprcondpair property)": [[94, "sympy.functions.elementary.piecewise.ExprCondPair.cond", false]], "condition_number() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.condition_number", false]], "conditionaldomain (class in sympy.stats.rv)": [[241, "sympy.stats.rv.ConditionalDomain", false]], "conditionset (class in sympy.sets.conditionset)": [[229, "sympy.sets.conditionset.ConditionSet", false]], "conjugacy_class() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.conjugacy_class", false]], "conjugacy_classes() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.conjugacy_classes", false]], "conjugate (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.conjugate", false]], "conjugate (sympy.combinatorics.partitions.integerpartition property)": [[77, "sympy.combinatorics.partitions.IntegerPartition.conjugate", false]], "conjugate() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.conjugate", false]], "conjugate() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.conjugate", false]], "conjugate_gauss_beams() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.conjugate_gauss_beams", false]], "connected_components() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.connected_components", false]], "connected_components() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.connected_components", false]], "connected_components_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.connected_components_decomposition", false]], "conserve_mpmath_dps() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.conserve_mpmath_dps", false]], "const() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.const", false]], "constant_renumber() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.constant_renumber", false]], "constant_symbols() (sympy.physics.mechanics.system.symbolicsystem method)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.constant_symbols", false]], "constants (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.constants", false]], "constants (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.constants", false]], "constants (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.constants", false]], "constants (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.constants", false]], "constantsimp() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.constantsimp", false]], "construct_c() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.construct_c", false]], "construct_d() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.construct_d", false]], "construct_domain() (in module sympy.polys.constructor)": [[217, "sympy.polys.constructor.construct_domain", false]], "contains (class in sympy.sets.conditionset)": [[229, "sympy.sets.conditionset.Contains", false]], "contains() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.contains", false]], "contains() (sympy.geometry.line.line method)": [[101, "sympy.geometry.line.Line.contains", false]], "contains() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.contains", false]], "contains() (sympy.geometry.line.ray method)": [[101, "sympy.geometry.line.Ray.contains", false]], "contains() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.contains", false]], "contains() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.contains", false]], "contains() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.contains", false]], "contains() (sympy.polys.polytools.groebnerbasis method)": [[217, "sympy.polys.polytools.GroebnerBasis.contains", false]], "contains() (sympy.series.order.order method)": [[228, "sympy.series.order.Order.contains", false]], "contains() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.contains", false]], "content() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.content", false]], "content() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.content", false]], "content() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.content", false]], "content() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.content", false]], "content() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.content", false]], "continued_fraction() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction", false]], "continued_fraction_convergents() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction_convergents", false]], "continued_fraction_iterator() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction_iterator", false]], "continued_fraction_periodic() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction_periodic", false]], "continued_fraction_reduce() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction_reduce", false]], "continuetoken (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.ContinueToken", false]], "continuous_domain() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.continuous_domain", false]], "continuousdomain (class in sympy.stats.crv)": [[241, "sympy.stats.crv.ContinuousDomain", false]], "continuousmarkovchain (class in sympy.stats)": [[241, "sympy.stats.ContinuousMarkovChain", false]], "continuouspspace (class in sympy.stats.crv)": [[241, "sympy.stats.crv.ContinuousPSpace", false]], "continuousrv() (in module sympy.stats)": [[241, "sympy.stats.ContinuousRV", false]], "contract_metric() (sympy.tensor.tensor.tensadd method)": [[247, "sympy.tensor.tensor.TensAdd.contract_metric", false]], "contract_metric() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.contract_metric", false]], "contraction() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.contraction", false]], "control_line() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.control_line", false]], "control_point() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.control_point", false]], "controls (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.controls", false]], "controls (sympy.physics.quantum.gate.cnotgate property)": [[175, "sympy.physics.quantum.gate.CNotGate.controls", false]], "convergence_statement (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.convergence_statement", false]], "convert() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.convert", false]], "convert() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.convert", false]], "convert() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.convert", false]], "convert() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.convert", false]], "convert() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.convert", false]], "convert() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.convert", false]], "convert() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.convert", false]], "convert_from() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.convert_from", false]], "convert_to() (in module sympy.physics.units.util)": [[198, "sympy.physics.units.util.convert_to", false]], "convert_to() (sympy.physics.units.quantities.quantity method)": [[198, "sympy.physics.units.quantities.Quantity.convert_to", false]], "convert_to() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.convert_to", false]], "convert_to() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.convert_to", false]], "convert_to() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.convert_to", false]], "convert_to_c() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.convert_to_c", false]], "convert_to_expr() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.convert_to_expr", false]], "convert_to_fortran() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.convert_to_fortran", false]], "convert_to_native_paths() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.convert_to_native_paths", false]], "convert_to_python() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.convert_to_python", false]], "convert_xor() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.convert_xor", false]], "convex_hull() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.convex_hull", false]], "convolution() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution", false]], "convolution_fft() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution_fft", false]], "convolution_fwht() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution_fwht", false]], "convolution_ntt() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution_ntt", false]], "convolution_subset() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution_subset", false]], "coord_function() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.coord_function", false]], "coord_functions() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.coord_functions", false]], "coord_tuple_transform_to() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.coord_tuple_transform_to", false]], "coordinates (sympy.geometry.point.point2d property)": [[103, "sympy.geometry.point.Point2D.coordinates", false]], "coordinates (sympy.geometry.point.point3d property)": [[103, "sympy.geometry.point.Point3D.coordinates", false]], "coordinates (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.coordinates", false]], "coordinates (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.coordinates", false]], "coordinatesym (class in sympy.physics.vector.frame)": [[200, "sympy.physics.vector.frame.CoordinateSym", false]], "coordinatesymbol (class in sympy.diffgeom)": [[90, "sympy.diffgeom.CoordinateSymbol", false]], "coords() (sympy.diffgeom.point method)": [[90, "sympy.diffgeom.Point.coords", false]], "coordsys3d (class in sympy.vector.coordsysrect)": [[265, "sympy.vector.coordsysrect.CoordSys3D", false]], "coordsystem (class in sympy.diffgeom)": [[90, "sympy.diffgeom.CoordSystem", false]], "copy() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.copy", false]], "copy() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.copy", false]], "copy() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.copy", false]], "copy() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.copy", false]], "copy() (sympy.series.gruntz.subsset method)": [[228, "sympy.series.gruntz.SubsSet.copy", false]], "core": [[15, "term-Core", true]], "core() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.core", false]], "cornacchia() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.cornacchia", false]], "corners (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.corners", false]], "correlation() (in module sympy.stats)": [[241, "sympy.stats.correlation", false]], "cos (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.cos", false]], "coset_factor() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_factor", false]], "coset_rank() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_rank", false]], "coset_table() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_table", false]], "coset_transversal() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_transversal", false]], "coset_unrank() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_unrank", false]], "cosh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.cosh", false]], "cosine_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.cosine_transform", false]], "cosinetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.CosineTransform", false]], "coskewness() (in module sympy.stats)": [[241, "sympy.stats.coskewness", false]], "cot (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.cot", false]], "coth (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.coth", false]], "could_extract_minus_sign() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.could_extract_minus_sign", false]], "count() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.count", false]], "count_complex_roots() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.count_complex_roots", false]], "count_digits() (in module sympy.ntheory.digits)": [[128, "sympy.ntheory.digits.count_digits", false]], "count_ops() (in module sympy.core.function)": [[88, "sympy.core.function.count_ops", false]], "count_ops() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.count_ops", false]], "count_partitions() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.count_partitions", false]], "count_real_roots() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.count_real_roots", false]], "count_roots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.count_roots", false]], "count_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.count_roots", false]], "couple() (in module sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.couple", false]], "covarderivativeop (class in sympy.diffgeom)": [[90, "sympy.diffgeom.CovarDerivativeOp", false]], "covariance (class in sympy.stats)": [[241, "sympy.stats.Covariance", false]], "covariance() (in module sympy.stats)": [[241, "sympy.stats.covariance", false]], "covering_product() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.covering_product", false]], "coxeter_diagram() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.coxeter_diagram", false]], "cramer_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cramer_solve", false]], "create_expand_pow_optimization() (in module sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.create_expand_pow_optimization", false]], "create_new() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.create_new", false]], "createboson (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.CreateBoson", false]], "createcgate() (in module sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.CreateCGate", false]], "createfermion (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.CreateFermion", false]], "critical_angle() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.critical_angle", false]], "cross() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.cross", false]], "cross() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cross", false]], "cross() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.cross", false]], "cross() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.cross", false]], "cross() (sympy.vector.deloperator.del method)": [[265, "sympy.vector.deloperator.Del.cross", false]], "cross() (sympy.vector.dyadic.dyadic method)": [[265, "sympy.vector.dyadic.Dyadic.cross", false]], "cross() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.cross", false]], "cross_section (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.cross_section", false]], "crosscovariancematrix (class in sympy.stats)": [[241, "sympy.stats.CrossCovarianceMatrix", false]], "crt() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.crt", false]], "crt1() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.crt1", false]], "crt2() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.crt2", false]], "csc (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.csc", false]], "csch (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.csch", false]], "cse() (in module sympy.simplify.cse_main)": [[233, "sympy.simplify.cse_main.cse", false]], "cse() (sympy.codegen.ast.codeblock method)": [[69, "sympy.codegen.ast.CodeBlock.cse", false]], "cubicthue (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.CubicThue", false]], "curl() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.curl", false]], "curl() (in module sympy.vector)": [[268, "sympy.vector.curl", false]], "current (sympy.combinatorics.graycode.graycode property)": [[72, "sympy.combinatorics.graycode.GrayCode.current", false]], "curve (class in sympy.geometry.curve)": [[97, "sympy.geometry.curve.Curve", false]], "curvedmirror (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.CurvedMirror", false]], "curvedrefraction (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.CurvedRefraction", false]], "curves() (sympy.physics.biomechanics.musculotendon.musculotendonbase method)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.curves", false]], "cut_section() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.cut_section", false]], "cxx11codeprinter (class in sympy.printing.cxx)": [[221, "sympy.printing.cxx.CXX11CodePrinter", false]], "cxx98codeprinter (class in sympy.printing.cxx)": [[221, "sympy.printing.cxx.CXX98CodePrinter", false]], "cxxcode() (in module sympy.printing.codeprinter)": [[221, "sympy.printing.codeprinter.cxxcode", false]], "cycle (class in sympy.combinatorics.permutations)": [[80, "sympy.combinatorics.permutations.Cycle", false]], "cycle_length() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.cycle_length", false]], "cycle_list() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.cycle_list", false]], "cycle_structure (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.cycle_structure", false]], "cycles (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.cycles", false]], "cyclic() (sympy.combinatorics.generators method)": [[80, "sympy.combinatorics.generators.cyclic", false]], "cyclic_form (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.cyclic_form", false]], "cyclic_form (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.cyclic_form", false]], "cyclicgroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.CyclicGroup", false]], "cyclotomic_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.cyclotomic_field", false]], "cyclotomic_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.cyclotomic_poly", false]], "cylindricaljoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint", false]], "cythoncodewrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.CythonCodeWrapper", false]], "d (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.D", false]], "d (sympy.physics.optics.gaussopt.raytransfermatrix property)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix.D", false]], "d() (sympy.physics.quantum.spin.rotation class method)": [[188, "sympy.physics.quantum.spin.Rotation.D", false], [188, "sympy.physics.quantum.spin.Rotation.d", false]], "dagger (class in sympy.physics.quantum.dagger)": [[174, "sympy.physics.quantum.dagger.Dagger", false]], "dagger (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.Dagger", false]], "dagum() (in module sympy.stats)": [[241, "sympy.stats.Dagum", false]], "damping (sympy.physics.mechanics.actuator.lineardamper property)": [[148, "sympy.physics.mechanics.actuator.LinearDamper.damping", false]], "datatype (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.DataType", false]], "davis() (in module sympy.stats)": [[241, "sympy.stats.Davis", false]], "dc_gain() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.dc_gain", false]], "dcm() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.dcm", false]], "dcm() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.dcm", false]], "ddm (class in sympy.polys.matrices.ddm)": [[210, "sympy.polys.matrices.ddm.DDM", false]], "ddm_berk() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_berk", false]], "ddm_iadd() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_iadd", false]], "ddm_idet() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_idet", false]], "ddm_iinv() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_iinv", false]], "ddm_ilu() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_ilu", false]], "ddm_ilu_solve() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_ilu_solve", false]], "ddm_ilu_split() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_ilu_split", false]], "ddm_imatmul() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_imatmul", false]], "ddm_imul() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_imul", false]], "ddm_ineg() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_ineg", false]], "ddm_irmul() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_irmul", false]], "ddm_irref() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_irref", false]], "ddm_irref_den() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_irref_den", false]], "ddm_isub() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_isub", false]], "ddm_transpose() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_transpose", false]], "deactivation_time_constant (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.deactivation_time_constant", false]], "debug() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.debug", false]], "debug_decorator() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.debug_decorator", false]], "debugf() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.debugf", false]], "decimal_dig (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.decimal_dig", false]], "decipher_affine() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_affine", false]], "decipher_atbash() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_atbash", false]], "decipher_bifid() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_bifid", false]], "decipher_bifid5() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_bifid5", false]], "decipher_bifid6() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_bifid6", false]], "decipher_elgamal() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_elgamal", false]], "decipher_gm() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_gm", false]], "decipher_hill() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_hill", false]], "decipher_kid_rsa() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_kid_rsa", false]], "decipher_railfence() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_railfence", false]], "decipher_rot13() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_rot13", false]], "decipher_rsa() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_rsa", false]], "decipher_shift() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_shift", false]], "decipher_vigenere() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_vigenere", false]], "declaration (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Declaration", false]], "decode_morse() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decode_morse", false]], "decompose() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.decompose", false]], "decompose() (sympy.physics.quantum.gate.cgate method)": [[175, "sympy.physics.quantum.gate.CGate.decompose", false]], "decompose() (sympy.physics.quantum.gate.swapgate method)": [[175, "sympy.physics.quantum.gate.SwapGate.decompose", false]], "decompose() (sympy.physics.quantum.qft.iqft method)": [[184, "sympy.physics.quantum.qft.IQFT.decompose", false]], "decompose() (sympy.physics.quantum.qft.qft method)": [[184, "sympy.physics.quantum.qft.QFT.decompose", false]], "decompose() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.decompose", false]], "decompose() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.decompose", false]], "decompose() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.decompose", false]], "deduced() (sympy.codegen.ast.variable class method)": [[69, "sympy.codegen.ast.Variable.deduced", false]], "default_sort_key() (in module sympy.core.sorting)": [[88, "sympy.core.sorting.default_sort_key", false]], "deflate() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.deflate", false]], "deflate() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.deflate", false]], "deflection() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.deflection", false]], "deflection() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.deflection", false]], "deflection_jumps (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.deflection_jumps", false]], "degree (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.degree", false]], "degree() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.degree", false]], "degree() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.degree", false]], "degree() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.degree", false]], "degree() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.degree", false]], "degree_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.degree_list", false]], "degree_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.degree_list", false]], "degree_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.degree_list", false]], "degrees() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.degrees", false]], "del (class in sympy.vector.deloperator)": [[265, "sympy.vector.deloperator.Del", false]], "delete_doubles() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.delete_doubles", false]], "delta (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.delta", false]], "deltaintegrate() (in module sympy.integrals.deltafunctions)": [[115, "sympy.integrals.deltafunctions.deltaintegrate", false]], "den (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.den", false]], "den (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.den", false]], "denom() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.denom", false]], "denom() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.denom", false]], "denom() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.denom", false]], "denom() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.denom", false]], "denom() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.denom", false]], "denom() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.denom", false]], "denom() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.denom", false]], "denom() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.denom", false]], "denom() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.denom", false]], "densematrix (class in sympy.matrices.dense)": [[119, "sympy.matrices.dense.DenseMatrix", false]], "density() (in module sympy.stats)": [[241, "sympy.stats.density", false]], "deprecated() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.deprecated", false]], "depth() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.depth", false]], "derivative (class in sympy.core.function)": [[88, "sympy.core.function.Derivative", false]], "derive_by_array() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.derive_by_array", false]], "derived_series() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.derived_series", false]], "derived_subgroup() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.derived_subgroup", false]], "descent() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.descent", false]], "descents() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.descents", false]], "det() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.det", false]], "det() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.det", false]], "det() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.det", false]], "det() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.det", false]], "det() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.det", false]], "det_lu_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.det_LU_decomposition", false]], "deviation() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.deviation", false]], "dfm (class in sympy.polys.matrices._dfm)": [[210, "sympy.polys.matrices._dfm.DFM", false]], "dh_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.dh_private_key", false]], "dh_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.dh_public_key", false]], "dh_shared_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.dh_shared_key", false]], "diag() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.diag", false]], "diag() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diag", false]], "diag() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.diag", false]], "diag() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.diag", false]], "diag() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.diag", false]], "diagonal() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diagonal", false]], "diagonal() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.diagonal", false]], "diagonal() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.diagonal", false]], "diagonal() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.diagonal", false]], "diagonal() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.diagonal", false]], "diagonal_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diagonal_solve", false]], "diagonalize() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diagonalize", false]], "diagonalpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.DiagonalPredicate", false]], "diagram (class in sympy.categories)": [[68, "sympy.categories.Diagram", false]], "diagramgrid (class in sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.DiagramGrid", false]], "dict (class in sympy.core.containers)": [[88, "sympy.core.containers.Dict", false]], "dict_merge() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.dict_merge", false]], "die() (in module sympy.stats)": [[241, "sympy.stats.Die", false]], "diepspace (class in sympy.stats.frv_types)": [[241, "sympy.stats.frv_types.DiePSpace", false]], "diff() (in module sympy.core.function)": [[88, "sympy.core.function.diff", false]], "diff() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.diff", false]], "diff() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diff", false]], "diff() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.diff", false]], "diff() (sympy.polys.fields.fracelement method)": [[212, "sympy.polys.fields.FracElement.diff", false]], "diff() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.diff", false]], "diff() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.diff", false]], "diff() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.diff", false]], "difference_delta() (in module sympy.series.limitseq)": [[226, "sympy.series.limitseq.difference_delta", false]], "differential (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Differential", false]], "differentialoperator (class in sympy.holonomic.holonomic)": [[111, "sympy.holonomic.holonomic.DifferentialOperator", false]], "differentialoperator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.DifferentialOperator", false]], "differentialoperatoralgebra (class in sympy.holonomic.holonomic)": [[111, "sympy.holonomic.holonomic.DifferentialOperatorAlgebra", false]], "differentialoperators() (in module sympy.holonomic.holonomic)": [[111, "sympy.holonomic.holonomic.DifferentialOperators", false]], "differentiate_finite() (in module sympy.calculus.finite_diff)": [[67, "sympy.calculus.finite_diff.differentiate_finite", false]], "dig (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.dig", false]], "digamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.digamma", false]], "digit_2txt (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.digit_2txt", false]], "digits() (in module sympy.ntheory.digits)": [[128, "sympy.ntheory.digits.digits", false]], "digits() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.digits", false]], "dihedral() (sympy.combinatorics.generators method)": [[80, "sympy.combinatorics.generators.dihedral", false]], "dihedralgroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.DihedralGroup", false]], "dim (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.dim", false]], "dim (sympy.physics.units.unitsystem.unitsystem property)": [[199, "sympy.physics.units.unitsystem.UnitSystem.dim", false]], "dim_can_vector() (sympy.physics.units.dimensions.dimensionsystem method)": [[193, "sympy.physics.units.dimensions.DimensionSystem.dim_can_vector", false]], "dim_handling() (in module sympy.printing.aesaracode)": [[221, "sympy.printing.aesaracode.dim_handling", false]], "dim_vector() (sympy.physics.units.dimensions.dimensionsystem method)": [[193, "sympy.physics.units.dimensions.DimensionSystem.dim_vector", false]], "dimension (class in sympy.physics.units.dimensions)": [[193, "sympy.physics.units.dimensions.Dimension", false]], "dimension (sympy.physics.quantum.hilbert.hilbertspace property)": [[177, "sympy.physics.quantum.hilbert.HilbertSpace.dimension", false]], "dimension() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.dimension", false]], "dimension() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.dimension", false]], "dimension() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.dimension", false]], "dimension() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.dimension", false]], "dimension() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.dimension", false]], "dimension() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.dimension", false]], "dimension() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.dimension", false]], "dimension() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.dimension", false]], "dimensionsystem (class in sympy.physics.units.dimensions)": [[193, "sympy.physics.units.dimensions.DimensionSystem", false]], "diop_bf_dn() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_bf_DN", false]], "diop_dn() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_DN", false]], "diop_general_pythagorean() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_general_pythagorean", false]], "diop_general_sum_of_even_powers() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_general_sum_of_even_powers", false]], "diop_general_sum_of_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_general_sum_of_squares", false]], "diop_linear() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_linear", false]], "diop_quadratic() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_quadratic", false]], "diop_solve() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_solve", false]], "diop_ternary_quadratic() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_ternary_quadratic", false]], "diop_ternary_quadratic_normal() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_ternary_quadratic_normal", false]], "diophantine() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diophantine", false]], "diophantineequationtype (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.DiophantineEquationType", false]], "diophantinesolutionset (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.DiophantineSolutionSet", false]], "diracdelta (class in sympy.functions.special.delta_functions)": [[96, "sympy.functions.special.delta_functions.DiracDelta", false]], "direct_product() (sympy.tensor.tensor.tensorsymmetry class method)": [[247, "sympy.tensor.tensor.TensorSymmetry.direct_product", false]], "direction (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.direction", false]], "direction_cosine (sympy.geometry.line.linearentity3d property)": [[101, "sympy.geometry.line.LinearEntity3D.direction_cosine", false]], "direction_cosine() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.direction_cosine", false]], "direction_ratio (sympy.geometry.line.linearentity3d property)": [[101, "sympy.geometry.line.LinearEntity3D.direction_ratio", false]], "direction_ratio() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.direction_ratio", false]], "director_circle() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.director_circle", false]], "directproduct() (in module sympy.combinatorics.group_constructs)": [[73, "sympy.combinatorics.group_constructs.DirectProduct", false]], "directsumhilbertspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.DirectSumHilbertSpace", false]], "dirichlet_eta (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.dirichlet_eta", false]], "discard_before() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.discard_before", false]], "discrete_log() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.discrete_log", false]], "discretemarkovchain (class in sympy.stats)": [[241, "sympy.stats.DiscreteMarkovChain", false]], "discreteuniform() (in module sympy.stats)": [[241, "sympy.stats.DiscreteUniform", false]], "discriminant() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.discriminant", false]], "discriminant() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.discriminant", false]], "discriminant() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.discriminant", false]], "discriminant() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.discriminant", false]], "disjointunion (class in sympy.sets.sets)": [[229, "sympy.sets.sets.DisjointUnion", false]], "dispersion() (in module sympy.polys.dispersion)": [[217, "sympy.polys.dispersion.dispersion", false]], "dispersion() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.dispersion", false]], "dispersionset() (in module sympy.polys.dispersion)": [[217, "sympy.polys.dispersion.dispersionset", false]], "dispersionset() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.dispersionset", false]], "distance() (sympy.geometry.line.line method)": [[101, "sympy.geometry.line.Line.distance", false]], "distance() (sympy.geometry.line.line3d method)": [[101, "sympy.geometry.line.Line3D.distance", false]], "distance() (sympy.geometry.line.ray method)": [[101, "sympy.geometry.line.Ray.distance", false]], "distance() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.distance", false]], "distance() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.distance", false]], "distance() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.distance", false]], "distance() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.distance", false]], "distribute_and_over_or() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.distribute_and_over_or", false]], "distribute_or_over_and() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.distribute_or_over_and", false]], "distribute_xor_over_and() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.distribute_xor_over_and", false]], "div() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.div", false]], "div() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.div", false]], "div() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.div", false]], "div() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.div", false]], "div() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.div", false]], "div() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.div", false]], "div() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.div", false]], "div() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.div", false]], "div() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.div", false]], "divergence (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.divergence", false]], "divergence() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.divergence", false]], "divergence() (in module sympy.vector)": [[268, "sympy.vector.divergence", false]], "divisible() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.divisible", false]], "divisor_count() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.divisor_count", false]], "divisor_sigma (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.divisor_sigma", false]], "divisor_sigma() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.divisor_sigma", false]], "divisors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.divisors", false]], "dm() (in module sympy.polys.matrices.domainmatrix)": [[210, "sympy.polys.matrices.domainmatrix.DM", false]], "dmf (class in sympy.polys.polyclasses)": [[212, "sympy.polys.polyclasses.DMF", false]], "dmp (class in sympy.polys.polyclasses)": [[212, "sympy.polys.polyclasses.DMP", false]], "dmp_abs() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_abs", false]], "dmp_add() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_add", false]], "dmp_add_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_add_ground", false]], "dmp_add_mul() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_add_mul", false]], "dmp_add_term() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_add_term", false]], "dmp_apply_pairs() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_apply_pairs", false]], "dmp_cancel() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_cancel", false]], "dmp_clear_denoms() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_clear_denoms", false]], "dmp_compose() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_compose", false]], "dmp_content() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_content", false]], "dmp_convert() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_convert", false]], "dmp_copy() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_copy", false]], "dmp_deflate() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_deflate", false]], "dmp_degree() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_degree", false]], "dmp_degree_in() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_degree_in", false]], "dmp_degree_list() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_degree_list", false]], "dmp_diff() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_diff", false]], "dmp_diff_eval_in() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_diff_eval_in", false]], "dmp_diff_in() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_diff_in", false]], "dmp_discriminant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_discriminant", false]], "dmp_div() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_div", false]], "dmp_eject() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_eject", false]], "dmp_euclidean_prs() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_euclidean_prs", false]], "dmp_eval() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_eval", false]], "dmp_eval_in() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_eval_in", false]], "dmp_eval_tail() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_eval_tail", false]], "dmp_exclude() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_exclude", false]], "dmp_expand() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_expand", false]], "dmp_exquo() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_exquo", false]], "dmp_exquo_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_exquo_ground", false]], "dmp_ext_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_ext_factor", false]], "dmp_factor_list() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_factor_list", false]], "dmp_factor_list_include() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_factor_list_include", false]], "dmp_ff_div() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_ff_div", false]], "dmp_ff_prs_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_ff_prs_gcd", false]], "dmp_from_dict() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_from_dict", false]], "dmp_from_sympy() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_from_sympy", false]], "dmp_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_gcd", false]], "dmp_gcdex() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_gcdex", false]], "dmp_gf_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_gf_factor", false]], "dmp_gf_sqf_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_gf_sqf_list", false]], "dmp_gf_sqf_part() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_gf_sqf_part", false]], "dmp_gff_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_gff_list", false]], "dmp_ground() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground", false]], "dmp_ground_content() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_content", false]], "dmp_ground_extract() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_extract", false]], "dmp_ground_lc() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground_LC", false]], "dmp_ground_monic() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_monic", false]], "dmp_ground_nth() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground_nth", false]], "dmp_ground_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground_p", false]], "dmp_ground_primitive() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_primitive", false]], "dmp_ground_tc() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground_TC", false]], "dmp_ground_trunc() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_trunc", false]], "dmp_grounds() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_grounds", false]], "dmp_half_gcdex() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_half_gcdex", false]], "dmp_include() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_include", false]], "dmp_inflate() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_inflate", false]], "dmp_inject() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_inject", false]], "dmp_inner_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_inner_gcd", false]], "dmp_inner_subresultants() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_inner_subresultants", false]], "dmp_integrate() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_integrate", false]], "dmp_integrate_in() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_integrate_in", false]], "dmp_invert() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_invert", false]], "dmp_irreducible_p() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_irreducible_p", false]], "dmp_l1_norm() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_l1_norm", false]], "dmp_lc() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_LC", false]], "dmp_lcm() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_lcm", false]], "dmp_lift() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_lift", false]], "dmp_list_terms() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_list_terms", false]], "dmp_max_norm() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_max_norm", false]], "dmp_mul() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_mul", false]], "dmp_mul_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_mul_ground", false]], "dmp_mul_term() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_mul_term", false]], "dmp_multi_deflate() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_multi_deflate", false]], "dmp_neg() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_neg", false]], "dmp_negative_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_negative_p", false]], "dmp_nest() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_nest", false]], "dmp_norm() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_norm", false]], "dmp_normal() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_normal", false]], "dmp_nth() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_nth", false]], "dmp_one() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_one", false]], "dmp_one_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_one_p", false]], "dmp_pdiv() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_pdiv", false]], "dmp_permute() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_permute", false]], "dmp_pexquo() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_pexquo", false]], "dmp_positive_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_positive_p", false]], "dmp_pow() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_pow", false]], "dmp_pquo() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_pquo", false]], "dmp_prem() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_prem", false]], "dmp_primitive() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_primitive", false]], "dmp_primitive_prs() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_primitive_prs", false]], "dmp_prs_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_prs_resultant", false]], "dmp_qq_collins_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_qq_collins_resultant", false]], "dmp_qq_heu_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_qq_heu_gcd", false]], "dmp_qq_i_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_qq_i_factor", false]], "dmp_quo() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_quo", false]], "dmp_quo_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_quo_ground", false]], "dmp_raise() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_raise", false]], "dmp_rem() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_rem", false]], "dmp_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_resultant", false]], "dmp_revert() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_revert", false]], "dmp_rr_div() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_rr_div", false]], "dmp_rr_prs_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_rr_prs_gcd", false]], "dmp_slice() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_slice", false]], "dmp_sqf_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_list", false]], "dmp_sqf_list_include() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_list_include", false]], "dmp_sqf_norm() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_norm", false]], "dmp_sqf_p() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_p", false]], "dmp_sqf_part() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_part", false]], "dmp_sqr() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sqr", false]], "dmp_strip() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_strip", false]], "dmp_sub() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sub", false]], "dmp_sub_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sub_ground", false]], "dmp_sub_mul() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sub_mul", false]], "dmp_sub_term() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sub_term", false]], "dmp_subresultants() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_subresultants", false]], "dmp_swap() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_swap", false]], "dmp_tc() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_TC", false]], "dmp_terms_gcd() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_terms_gcd", false]], "dmp_to_dict() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_to_dict", false]], "dmp_to_tuple() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_to_tuple", false]], "dmp_trial_division() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_trial_division", false]], "dmp_true_lt() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_true_LT", false]], "dmp_trunc() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_trunc", false]], "dmp_validate() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_validate", false]], "dmp_zero() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_zero", false]], "dmp_zero_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_zero_p", false]], "dmp_zeros() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_zeros", false]], "dmp_zz_collins_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_zz_collins_resultant", false]], "dmp_zz_diophantine() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_diophantine", false]], "dmp_zz_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_factor", false]], "dmp_zz_heu_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_zz_heu_gcd", false]], "dmp_zz_i_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_i_factor", false]], "dmp_zz_mignotte_bound() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_mignotte_bound", false]], "dmp_zz_modular_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_zz_modular_resultant", false]], "dmp_zz_wang() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang", false]], "dmp_zz_wang_hensel_lifting() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang_hensel_lifting", false]], "dmp_zz_wang_lead_coeffs() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang_lead_coeffs", false]], "dmp_zz_wang_non_divisors() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang_non_divisors", false]], "dmp_zz_wang_test_points() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang_test_points", false]], "do (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Do", false]], "do_subs() (sympy.series.gruntz.subsset method)": [[228, "sympy.series.gruntz.SubsSet.do_subs", false]], "doctest() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.doctest", false]], "doctest_depends_on() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.doctest_depends_on", false]], "doit() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.doit", false]], "doit() (sympy.functions.elementary.piecewise.piecewise method)": [[94, "sympy.functions.elementary.piecewise.Piecewise.doit", false]], "doit() (sympy.integrals.integrals.integral method)": [[115, "sympy.integrals.integrals.Integral.doit", false]], "doit() (sympy.integrals.transforms.integraltransform method)": [[115, "sympy.integrals.transforms.IntegralTransform.doit", false]], "doit() (sympy.integrals.transforms.inverselaplacetransform method)": [[115, "sympy.integrals.transforms.InverseLaplaceTransform.doit", false]], "doit() (sympy.integrals.transforms.laplacetransform method)": [[115, "sympy.integrals.transforms.LaplaceTransform.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcelengthactivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.doit", false]], "doit() (sympy.physics.control.lti.feedback method)": [[144, "sympy.physics.control.lti.Feedback.doit", false]], "doit() (sympy.physics.control.lti.mimofeedback method)": [[144, "sympy.physics.control.lti.MIMOFeedback.doit", false]], "doit() (sympy.physics.control.lti.mimoparallel method)": [[144, "sympy.physics.control.lti.MIMOParallel.doit", false]], "doit() (sympy.physics.control.lti.mimoseries method)": [[144, "sympy.physics.control.lti.MIMOSeries.doit", false]], "doit() (sympy.physics.control.lti.parallel method)": [[144, "sympy.physics.control.lti.Parallel.doit", false]], "doit() (sympy.physics.control.lti.series method)": [[144, "sympy.physics.control.lti.Series.doit", false]], "doit() (sympy.physics.quantum.anticommutator.anticommutator method)": [[168, "sympy.physics.quantum.anticommutator.AntiCommutator.doit", false]], "doit() (sympy.physics.quantum.commutator.commutator method)": [[172, "sympy.physics.quantum.commutator.Commutator.doit", false]], "doit() (sympy.physics.secondquant.commutator method)": [[191, "sympy.physics.secondquant.Commutator.doit", false]], "doit() (sympy.physics.secondquant.no method)": [[191, "sympy.physics.secondquant.NO.doit", false]], "doit() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.doit", false]], "doit() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.doit", false]], "doit() (sympy.series.limits.limit method)": [[228, "sympy.series.limits.Limit.doit", false]], "doit_numerically() (sympy.core.function.derivative method)": [[88, "sympy.core.function.Derivative.doit_numerically", false]], "domain (class in sympy.polys.domains.domain)": [[212, "sympy.polys.domains.domain.Domain", false]], "domain (sympy.categories.compositemorphism property)": [[68, "sympy.categories.CompositeMorphism.domain", false]], "domain (sympy.categories.morphism property)": [[68, "sympy.categories.Morphism.domain", false]], "domain (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.domain", false]], "domain_check() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.domain_check", false]], "domainelement (class in sympy.polys.domains.domainelement)": [[212, "sympy.polys.domains.domainelement.DomainElement", false]], "domainerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.DomainError", false]], "domainmatrix (class in sympy.polys.matrices.domainmatrix)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix", false]], "dominant() (in module sympy.series.limitseq)": [[226, "sympy.series.limitseq.dominant", false]], "doprint() (sympy.printing.aesaracode.aesaraprinter method)": [[221, "sympy.printing.aesaracode.AesaraPrinter.doprint", false]], "doprint() (sympy.printing.codeprinter.codeprinter method)": [[221, "sympy.printing.codeprinter.CodePrinter.doprint", false]], "doprint() (sympy.printing.mathml.mathmlprinterbase method)": [[221, "sympy.printing.mathml.MathMLPrinterBase.doprint", false]], "doprint() (sympy.printing.printer.printer method)": [[221, "sympy.printing.printer.Printer.doprint", false]], "dot() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.dot", false]], "dot() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.dot", false]], "dot() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.dot", false]], "dot() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.dot", false]], "dot() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.dot", false]], "dot() (sympy.vector.deloperator.del method)": [[265, "sympy.vector.deloperator.Del.dot", false]], "dot() (sympy.vector.dyadic.dyadic method)": [[265, "sympy.vector.dyadic.Dyadic.dot", false]], "dot() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.dot", false]], "dot_rot_grad_ynm() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.dot_rot_grad_Ynm", false]], "dotprint() (in module sympy.printing.dot)": [[221, "sympy.printing.dot.dotprint", false]], "double_coset_can_rep() (in module sympy.combinatorics.tensor_can)": [[84, "sympy.combinatorics.tensor_can.double_coset_can_rep", false]], "draw() (sympy.categories.diagram_drawing.xypicdiagramdrawer method)": [[68, "sympy.categories.diagram_drawing.XypicDiagramDrawer.draw", false]], "draw() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.draw", false]], "draw() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.draw", false]], "draw() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.draw", false]], "drop() (sympy.polys.domains.compositedomain.compositedomain method)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.drop", false]], "drop() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.drop", false]], "drop() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.drop", false]], "drop_to_ground() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.drop_to_ground", false]], "dsign (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.dsign", false]], "dsolve() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.dsolve", false]], "dsolve_system() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.dsolve_system", false]], "dt() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.dt", false]], "dt() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.dt", false]], "dtype (sympy.polys.agca.extensions.monogenicfiniteextension attribute)": [[208, "sympy.polys.agca.extensions.MonogenicFiniteExtension.dtype", false]], "dtype (sympy.polys.agca.modules.freemodule attribute)": [[208, "sympy.polys.agca.modules.FreeModule.dtype", false]], "dtype (sympy.polys.agca.modules.quotientmodule attribute)": [[208, "sympy.polys.agca.modules.QuotientModule.dtype", false]], "dtype (sympy.polys.domains.algebraicfield attribute)": [[212, "sympy.polys.domains.AlgebraicField.dtype", false]], "dtype (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.dtype", false]], "dtype (sympy.polys.domains.expressiondomain attribute)": [[212, "sympy.polys.domains.ExpressionDomain.dtype", false]], "dtype (sympy.polys.domains.gaussiandomains.gaussianintegerring attribute)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.dtype", false]], "dtype (sympy.polys.domains.gaussiandomains.gaussianrationalfield attribute)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.dtype", false]], "dual (sympy.physics.quantum.state.statebase property)": [[189, "sympy.physics.quantum.state.StateBase.dual", false]], "dual() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.dual", false]], "dual_class() (sympy.physics.quantum.state.statebase class method)": [[189, "sympy.physics.quantum.state.StateBase.dual_class", false]], "duffingspring (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.DuffingSpring", false]], "dummy": [[15, "term-Dummy", true]], "dummy (class in sympy.core.symbol)": [[88, "sympy.core.symbol.Dummy", false]], "dummy_eq() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.dummy_eq", false]], "dummywrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.DummyWrapper", false]], "dump_c() (sympy.utilities.autowrap.ufuncifycodewrapper method)": [[253, "sympy.utilities.autowrap.UfuncifyCodeWrapper.dump_c", false]], "dump_c() (sympy.utilities.codegen.ccodegen method)": [[254, "sympy.utilities.codegen.CCodeGen.dump_c", false]], "dump_code() (sympy.utilities.codegen.codegen method)": [[254, "sympy.utilities.codegen.CodeGen.dump_code", false]], "dump_f95() (sympy.utilities.codegen.fcodegen method)": [[254, "sympy.utilities.codegen.FCodeGen.dump_f95", false]], "dump_h() (sympy.utilities.codegen.ccodegen method)": [[254, "sympy.utilities.codegen.CCodeGen.dump_h", false]], "dump_h() (sympy.utilities.codegen.fcodegen method)": [[254, "sympy.utilities.codegen.FCodeGen.dump_h", false]], "dump_jl() (sympy.utilities.codegen.juliacodegen method)": [[254, "sympy.utilities.codegen.JuliaCodeGen.dump_jl", false]], "dump_m() (sympy.utilities.codegen.octavecodegen method)": [[254, "sympy.utilities.codegen.OctaveCodeGen.dump_m", false]], "dump_pyx() (sympy.utilities.autowrap.cythoncodewrapper method)": [[253, "sympy.utilities.autowrap.CythonCodeWrapper.dump_pyx", false]], "dump_rs() (sympy.utilities.codegen.rustcodegen method)": [[254, "sympy.utilities.codegen.RustCodeGen.dump_rs", false]], "dup_content() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_content", false]], "dup_cyclotomic_p() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_cyclotomic_p", false]], "dup_decompose() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_decompose", false]], "dup_ext_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_ext_factor", false]], "dup_extract() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_extract", false]], "dup_factor_list() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_factor_list", false]], "dup_factor_list_include() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_factor_list_include", false]], "dup_gf_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_gf_factor", false]], "dup_gf_sqf_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_gf_sqf_list", false]], "dup_gf_sqf_part() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_gf_sqf_part", false]], "dup_gff_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_gff_list", false]], "dup_irreducible_p() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_irreducible_p", false]], "dup_lshift() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dup_lshift", false]], "dup_mirror() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_mirror", false]], "dup_monic() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_monic", false]], "dup_primitive() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_primitive", false]], "dup_qq_i_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_qq_i_factor", false]], "dup_random() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dup_random", false]], "dup_real_imag() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_real_imag", false]], "dup_reverse() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dup_reverse", false]], "dup_rshift() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dup_rshift", false]], "dup_scale() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_scale", false]], "dup_shift() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_shift", false]], "dup_sign_variations() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_sign_variations", false]], "dup_sqf_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_list", false]], "dup_sqf_list_include() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_list_include", false]], "dup_sqf_norm() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_norm", false]], "dup_sqf_p() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_p", false]], "dup_sqf_part() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_part", false]], "dup_transform() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_transform", false]], "dup_trial_division() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_trial_division", false]], "dup_zz_cyclotomic_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_cyclotomic_factor", false]], "dup_zz_cyclotomic_poly() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_cyclotomic_poly", false]], "dup_zz_diophantine() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_diophantine", false]], "dup_zz_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_factor", false]], "dup_zz_factor_sqf() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_factor_sqf", false]], "dup_zz_hensel_lift() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_hensel_lift", false]], "dup_zz_hensel_step() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_hensel_step", false]], "dup_zz_i_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_i_factor", false]], "dup_zz_irreducible_p() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_irreducible_p", false]], "dup_zz_mignotte_bound() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_mignotte_bound", false]], "dup_zz_zassenhaus() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_zassenhaus", false]], "dyadic (class in sympy.physics.vector.dyadic)": [[200, "sympy.physics.vector.dyadic.Dyadic", false]], "dyadic (class in sympy.vector.dyadic)": [[265, "sympy.vector.dyadic.Dyadic", false]], "dyn_implicit_mat (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.dyn_implicit_mat", false]], "dyn_implicit_rhs (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.dyn_implicit_rhs", false]], "dynamic_symbols() (sympy.physics.mechanics.system.symbolicsystem method)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.dynamic_symbols", false]], "dynamicsymbols() (in module sympy.physics.vector)": [[202, "sympy.physics.vector.dynamicsymbols", false]], "dynkin_diagram() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.dynkin_diagram", false]], "dynkindiagram() (in module sympy.liealgebras.dynkin_diagram)": [[117, "sympy.liealgebras.dynkin_diagram.DynkinDiagram", false]], "e (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.e", false]], "e (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.e", false]], "e() (in module sympy.stats)": [[241, "sympy.stats.E", false]], "e1() (in module sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.E1", false]], "e_n() (in module sympy.physics.qho_1d)": [[167, "sympy.physics.qho_1d.E_n", false]], "e_nl() (in module sympy.physics.hydrogen)": [[146, "sympy.physics.hydrogen.E_nl", false]], "e_nl() (in module sympy.physics.sho)": [[192, "sympy.physics.sho.E_nl", false]], "e_nl_dirac() (in module sympy.physics.hydrogen)": [[146, "sympy.physics.hydrogen.E_nl_dirac", false]], "ec() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.EC", false]], "eccentricity (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.eccentricity", false]], "echelon_form() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.echelon_form", false]], "ecm() (in module sympy.ntheory.ecm)": [[128, "sympy.ntheory.ecm.ecm", false]], "edges (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.edges", false]], "edges() (sympy.combinatorics.prufer.prufer static method)": [[82, "sympy.combinatorics.prufer.Prufer.edges", false]], "egyptian_fraction() (in module sympy.ntheory.egyptian_fraction)": [[128, "sympy.ntheory.egyptian_fraction.egyptian_fraction", false]], "ei (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Ei", false]], "eigenvals() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.eigenvals", false]], "eigenvects() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.eigenvects", false]], "eijk() (in module sympy.functions.special.tensor_functions)": [[96, "sympy.functions.special.tensor_functions.Eijk", false]], "eject() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.eject", false]], "eject() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.eject", false]], "elastic_modulus (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.elastic_modulus", false]], "elem_poles() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.elem_poles", false]], "elem_zeros() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.elem_zeros", false]], "element (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Element", false]], "element_from_alg_num() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.element_from_alg_num", false]], "element_from_anp() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.element_from_ANP", false]], "element_from_poly() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.element_from_poly", false]], "element_from_rational() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.element_from_rational", false]], "element_order() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.element_order", false]], "elementary_col_op() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.elementary_col_op", false]], "elementary_row_op() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.elementary_row_op", false]], "elements (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.elements", false]], "elgamal_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.elgamal_private_key", false]], "elgamal_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.elgamal_public_key", false]], "eliminate_implications() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.eliminate_implications", false]], "ellipse (class in sympy.geometry.ellipse)": [[98, "sympy.geometry.ellipse.Ellipse", false]], "elliptic_e (class in sympy.functions.special.elliptic_integrals)": [[96, "sympy.functions.special.elliptic_integrals.elliptic_e", false]], "elliptic_f (class in sympy.functions.special.elliptic_integrals)": [[96, "sympy.functions.special.elliptic_integrals.elliptic_f", false]], "elliptic_k (class in sympy.functions.special.elliptic_integrals)": [[96, "sympy.functions.special.elliptic_integrals.elliptic_k", false]], "elliptic_pi (class in sympy.functions.special.elliptic_integrals)": [[96, "sympy.functions.special.elliptic_integrals.elliptic_pi", false]], "em() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.EM", false]], "emptyprinter() (sympy.printing.repr.reprprinter method)": [[221, "sympy.printing.repr.ReprPrinter.emptyPrinter", false]], "emptysequence (class in sympy.series.sequences)": [[227, "sympy.series.sequences.EmptySequence", false]], "emptyset (class in sympy.sets.sets)": [[229, "sympy.sets.sets.EmptySet", false]], "enable_automatic_int_sympification() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.enable_automatic_int_sympification", false]], "enable_automatic_symbols() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.enable_automatic_symbols", false]], "encipher_affine() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_affine", false]], "encipher_atbash() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_atbash", false]], "encipher_bifid() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_bifid", false]], "encipher_bifid5() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_bifid5", false]], "encipher_bifid6() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_bifid6", false]], "encipher_elgamal() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_elgamal", false]], "encipher_gm() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_gm", false]], "encipher_hill() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_hill", false]], "encipher_kid_rsa() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_kid_rsa", false]], "encipher_railfence() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_railfence", false]], "encipher_rot13() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_rot13", false]], "encipher_rsa() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_rsa", false]], "encipher_shift() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_shift", false]], "encipher_substitution() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_substitution", false]], "encipher_vigenere() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_vigenere", false]], "encloses() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.encloses", false]], "encloses_point() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.encloses_point", false]], "encloses_point() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.encloses_point", false]], "encloses_point() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.encloses_point", false]], "encode_morse() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encode_morse", false]], "end (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.end", false]], "endomorphism_ring() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.endomorphism_ring", false]], "endomorphismring (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.EndomorphismRing", false]], "entropy() (in module sympy.stats)": [[241, "sympy.stats.entropy", false]], "enum_all() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.enum_all", false]], "enum_large() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.enum_large", false]], "enum_range() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.enum_range", false]], "enum_small() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.enum_small", false]], "enumerate_states() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.enumerate_states", false]], "eom_method (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.eom_method", false]], "epath (class in sympy.simplify.epathtools)": [[233, "sympy.simplify.epathtools.EPath", false]], "epath() (in module sympy.simplify.epathtools)": [[233, "sympy.simplify.epathtools.epath", false]], "eps (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.eps", false]], "eq (in module sympy.core.relational)": [[88, "sympy.core.relational.Eq", false]], "eq() (sympy.polys.agca.modules.quotientmoduleelement method)": [[208, "sympy.polys.agca.modules.QuotientModuleElement.eq", false]], "eqs_to_matrix() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers.eqs_to_matrix", false]], "equal_valued() (in module sympy.core.numbers)": [[88, "sympy.core.numbers.equal_valued", false]], "equality (class in sympy.core.relational)": [[88, "sympy.core.relational.Equality", false]], "equals() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.equals", false]], "equals() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.equals", false]], "equals() (sympy.core.relational.relational method)": [[88, "sympy.core.relational.Relational.equals", false]], "equals() (sympy.geometry.line.line method)": [[101, "sympy.geometry.line.Line.equals", false]], "equals() (sympy.geometry.line.ray method)": [[101, "sympy.geometry.line.Ray.equals", false]], "equals() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.equals", false]], "equals() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.equals", false]], "equals() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.equals", false]], "equals() (sympy.logic.boolalg.boolean method)": [[118, "sympy.logic.boolalg.Boolean.equals", false]], "equals() (sympy.matrices.expressions.matrixexpr method)": [[120, "sympy.matrices.expressions.MatrixExpr.equals", false]], "equation": [[15, "term-Equation", true]], "equation() (sympy.geometry.ellipse.circle method)": [[98, "sympy.geometry.ellipse.Circle.equation", false]], "equation() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.equation", false]], "equation() (sympy.geometry.line.line2d method)": [[101, "sympy.geometry.line.Line2D.equation", false]], "equation() (sympy.geometry.line.line3d method)": [[101, "sympy.geometry.line.Line3D.equation", false]], "equation() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.equation", false]], "equilibrium_length (sympy.physics.mechanics.actuator.linearspring property)": [[148, "sympy.physics.mechanics.actuator.LinearSpring.equilibrium_length", false]], "equiv() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.equiv", false]], "equivalent (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Equivalent", false]], "equivalent() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.equivalent", false]], "erf (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erf", false]], "erf2 (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erf2", false]], "erf2inv (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erf2inv", false]], "erfc (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erfc", false]], "erfcinv (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erfcinv", false]], "erfi (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erfi", false]], "erfinv (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erfinv", false]], "erlang() (in module sympy.stats)": [[241, "sympy.stats.Erlang", false]], "et() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.ET", false]], "eta (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.eta", false]], "euler (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.euler", false]], "euler_equations() (in module sympy.calculus.euler)": [[67, "sympy.calculus.euler.euler_equations", false]], "euler_maclaurin() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.euler_maclaurin", false]], "euler_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.euler_poly", false]], "eulergamma (class in sympy.core.numbers)": [[88, "sympy.core.numbers.EulerGamma", false]], "eulerline (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.eulerline", false]], "eval() (sympy.assumptions.assume.predicate method)": [[63, "sympy.assumptions.assume.Predicate.eval", false]], "eval() (sympy.functions.elementary.piecewise.piecewise class method)": [[94, "sympy.functions.elementary.piecewise.Piecewise.eval", false]], "eval() (sympy.functions.special.delta_functions.diracdelta class method)": [[96, "sympy.functions.special.delta_functions.DiracDelta.eval", false]], "eval() (sympy.functions.special.delta_functions.heaviside class method)": [[96, "sympy.functions.special.delta_functions.Heaviside.eval", false]], "eval() (sympy.functions.special.singularity_functions.singularityfunction class method)": [[96, "sympy.functions.special.singularity_functions.SingularityFunction.eval", false]], "eval() (sympy.functions.special.tensor_functions.kroneckerdelta class method)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcelengthactivedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.eval", false]], "eval() (sympy.physics.quantum.hilbert.directsumhilbertspace class method)": [[177, "sympy.physics.quantum.hilbert.DirectSumHilbertSpace.eval", false]], "eval() (sympy.physics.quantum.hilbert.tensorproducthilbertspace class method)": [[177, "sympy.physics.quantum.hilbert.TensorProductHilbertSpace.eval", false]], "eval() (sympy.physics.secondquant.commutator class method)": [[191, "sympy.physics.secondquant.Commutator.eval", false]], "eval() (sympy.physics.secondquant.dagger class method)": [[191, "sympy.physics.secondquant.Dagger.eval", false]], "eval() (sympy.physics.secondquant.kroneckerdelta class method)": [[191, "sympy.physics.secondquant.KroneckerDelta.eval", false]], "eval() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.eval", false]], "eval() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.eval", false]], "eval_approx() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.eval_approx", false]], "eval_color_func() (sympy.plotting.series.baseseries method)": [[207, "sympy.plotting.series.BaseSeries.eval_color_func", false]], "eval_controls() (sympy.physics.quantum.gate.cgate method)": [[175, "sympy.physics.quantum.gate.CGate.eval_controls", false]], "eval_expr() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.eval_expr", false]], "eval_frequency() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.eval_frequency", false]], "eval_frequency() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.eval_frequency", false]], "eval_levicivita() (in module sympy.functions.special.tensor_functions)": [[96, "sympy.functions.special.tensor_functions.eval_levicivita", false]], "eval_poly() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.eval_poly", false]], "eval_poly_mul() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.eval_poly_mul", false]], "eval_rational() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.eval_rational", false]], "eval_zeta_function() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.eval_zeta_function", false]], "evalf": [[15, "term-evalf", true]], "evalf() (sympy.core.evalf.evalfmixin method)": [[88, "sympy.core.evalf.EvalfMixin.evalf", false]], "evalf() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.evalf", false]], "evalf() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.evalf", false]], "evalf() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.evalf", false]], "evalfmixin (class in sympy.core.evalf)": [[88, "sympy.core.evalf.EvalfMixin", false]], "evaluate": [[15, "term-Evaluate", true]], "evaluate_deltas() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.evaluate_deltas", false]], "evaluate_pauli_product() (in module sympy.physics.paulialgebra)": [[166, "sympy.physics.paulialgebra.evaluate_pauli_product", false]], "evaluationfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.EvaluationFailed", false]], "even": [[88, "term-even", true]], "evenpredicate (class in sympy.assumptions.predicates.ntheory)": [[65, "sympy.assumptions.predicates.ntheory.EvenPredicate", false]], "evolute() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.evolute", false]], "exactquotientfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.ExactQuotientFailed", false]], "excenters (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.excenters", false]], "excitation (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.excitation", false]], "excitation (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.excitation", false]], "exclude() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.exclude", false]], "exclude() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.exclude", false]], "exclusive (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Exclusive", false]], "exgaussian() (in module sympy.stats)": [[241, "sympy.stats.ExGaussian", false]], "exp (class in sympy.functions.elementary.exponential)": [[94, "sympy.functions.elementary.exponential.exp", false]], "exp() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.exp", false]], "exp() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.exp", false]], "exp1 (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Exp1", false]], "exp2 (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.exp2", false]], "exp_polar (class in sympy.functions.elementary.exponential)": [[94, "sympy.functions.elementary.exponential.exp_polar", false]], "exp_re() (in module sympy.series.formal)": [[223, "sympy.series.formal.exp_re", false]], "expand() (in module sympy.core.function)": [[88, "sympy.core.function.expand", false]], "expand() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.expand", false]], "expand() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.expand", false]], "expand() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.expand", false]], "expand() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.expand", false]], "expand_complex() (in module sympy.core.function)": [[88, "sympy.core.function.expand_complex", false]], "expand_func() (in module sympy.core.function)": [[88, "sympy.core.function.expand_func", false]], "expand_log() (in module sympy.core.function)": [[88, "sympy.core.function.expand_log", false]], "expand_mul() (in module sympy.core.function)": [[88, "sympy.core.function.expand_mul", false]], "expand_multinomial() (in module sympy.core.function)": [[88, "sympy.core.function.expand_multinomial", false]], "expand_power_base() (in module sympy.core.function)": [[88, "sympy.core.function.expand_power_base", false]], "expand_power_exp() (in module sympy.core.function)": [[88, "sympy.core.function.expand_power_exp", false]], "expand_trig() (in module sympy.core.function)": [[88, "sympy.core.function.expand_trig", false]], "expectation (class in sympy.stats)": [[241, "sympy.stats.Expectation", false]], "expectation() (sympy.stats.bernoulliprocess method)": [[241, "sympy.stats.BernoulliProcess.expectation", false]], "expectationmatrix (class in sympy.stats)": [[241, "sympy.stats.ExpectationMatrix", false]], "expint (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.expint", false]], "expm1 (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.expm1", false]], "exponential() (in module sympy.stats)": [[241, "sympy.stats.Exponential", false]], "expr": [[15, "term-Expr", true]], "expr (class in sympy.core.expr)": [[88, "sympy.core.expr.Expr", false]], "expr (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.expr", false]], "expr (sympy.core.function.subs property)": [[88, "sympy.core.function.Subs.expr", false]], "expr (sympy.functions.elementary.piecewise.exprcondpair property)": [[94, "sympy.functions.elementary.piecewise.ExprCondPair.expr", false]], "expr (sympy.physics.quantum.operator.differentialoperator property)": [[180, "sympy.physics.quantum.operator.DifferentialOperator.expr", false]], "expr (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.expr", false]], "expr (sympy.plotting.series.baseseries property)": [[207, "sympy.plotting.series.BaseSeries.expr", false]], "expr_free_symbols (sympy.core.expr.expr property)": [[88, "sympy.core.expr.Expr.expr_free_symbols", false]], "expr_to_holonomic() (in module sympy.holonomic.holonomic)": [[107, "sympy.holonomic.holonomic.expr_to_holonomic", false]], "exprcondpair (class in sympy.functions.elementary.piecewise)": [[94, "sympy.functions.elementary.piecewise.ExprCondPair", false]], "express() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.express", false]], "express() (in module sympy.vector)": [[268, "sympy.vector.express", false]], "express() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.express", false]], "express() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.express", false]], "expression": [[15, "term-Expression", true]], "expression tree": [[15, "term-Expression-Tree", true]], "expressiondomain (class in sympy.polys.domains)": [[212, "sympy.polys.domains.ExpressionDomain", false]], "expressiondomain.expression (class in sympy.polys.domains)": [[212, "sympy.polys.domains.ExpressionDomain.Expression", false]], "expressiondomain.expression (class in sympy.polys.domains.expressiondomain)": [[212, "sympy.polys.domains.expressiondomain.ExpressionDomain.Expression", false]], "exprwithintlimits (class in sympy.concrete.expr_with_intlimits)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits", false]], "exprwithlimits (class in sympy.concrete.expr_with_limits)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits", false]], "exquo() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.exquo", false]], "exquo() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.exquo", false]], "exquo() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.exquo", false]], "exquo() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.exquo", false]], "exquo() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.exquo", false]], "exquo() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.exquo", false]], "exquo() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.exquo", false]], "exquo() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.exquo", false]], "exquo() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.exquo", false]], "exquo_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.exquo_ground", false]], "exquo_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.exquo_ground", false]], "exradii (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.exradii", false]], "exsqrt() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.exsqrt", false]], "exsqrt() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.exsqrt", false]], "exsqrt() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.exsqrt", false]], "exsqrt() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.exsqrt", false]], "exsqrt() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.exsqrt", false]], "exsqrt() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.exsqrt", false]], "ext (sympy.polys.domains.algebraicfield attribute)": [[212, "sympy.polys.domains.AlgebraicField.ext", false]], "extend() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.extend", false]], "extend() (sympy.physics.units.unitsystem.unitsystem method)": [[199, "sympy.physics.units.unitsystem.UnitSystem.extend", false]], "extend() (sympy.plotting.plot.plot method)": [[207, "sympy.plotting.plot.Plot.extend", false]], "extend_to_no() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.extend_to_no", false]], "extended_negative": [[88, "term-extended_negative", true]], "extended_nonnegative": [[88, "term-extended_nonnegative", true]], "extended_nonpositive": [[88, "term-extended_nonpositive", true]], "extended_nonzero": [[88, "term-extended_nonzero", true]], "extended_positive": [[88, "term-extended_positive", true]], "extended_real": [[88, "term-extended_real", true]], "extendedrealpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.ExtendedRealPredicate", false]], "extension_velocity (sympy.physics.mechanics.pathway.linearpathway property)": [[156, "sympy.physics.mechanics.pathway.LinearPathway.extension_velocity", false]], "extension_velocity (sympy.physics.mechanics.pathway.obstaclesetpathway property)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway.extension_velocity", false]], "extension_velocity (sympy.physics.mechanics.pathway.pathwaybase property)": [[156, "sympy.physics.mechanics.pathway.PathwayBase.extension_velocity", false]], "extension_velocity (sympy.physics.mechanics.pathway.wrappingpathway property)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway.extension_velocity", false]], "extensionelement (class in sympy.polys.agca.extensions)": [[208, "sympy.polys.agca.extensions.ExtensionElement", false]], "extent (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Extent", false]], "exterior_angle (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.exterior_angle", false]], "extract() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.extract", false]], "extract() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.extract", false]], "extract_additively() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.extract_additively", false]], "extract_branch_factor() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.extract_branch_factor", false]], "extract_fundamental_discriminant() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.extract_fundamental_discriminant", false]], "extract_leading_order() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.extract_leading_order", false]], "extract_multiplicatively() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.extract_multiplicatively", false]], "extract_slice() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.extract_slice", false]], "extract_type_tens() (in module sympy.physics.hep.gamma_matrices)": [[145, "sympy.physics.hep.gamma_matrices.extract_type_tens", false]], "extraneousfactors (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.ExtraneousFactors", false]], "eye() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.eye", false]], "eye() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.eye", false]], "eye() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.eye", false]], "eye() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.eye", false]], "eye() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.eye", false]], "f (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.F", false]], "f (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.F", false]], "f (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.F", false]], "f (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.F", false]], "f (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.F", false]], "f2pycodewrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.F2PyCodeWrapper", false]], "f_m_max (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.F_M_max", false]], "faces (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.faces", false]], "factor() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.factor", false]], "factor() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.factor", false]], "factor_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.factor_list", false]], "factor_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.factor_list", false]], "factor_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.factor_list", false]], "factor_list_include() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.factor_list_include", false]], "factor_list_include() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.factor_list_include", false]], "factor_terms() (in module sympy.core.exprtools)": [[88, "sympy.core.exprtools.factor_terms", false]], "factorable (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.Factorable", false]], "factorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.factorial", false]], "factorial() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.factorial", false]], "factorial() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.factorial", false]], "factorial() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.factorial", false]], "factorial() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.factorial", false]], "factorial() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.factorial", false]], "factorial2 (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.factorial2", false]], "factorial_moment() (in module sympy.stats)": [[241, "sympy.stats.factorial_moment", false]], "factorial_notation() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.factorial_notation", false]], "factoring_visitor() (in module sympy.utilities.enumerative)": [[256, "sympy.utilities.enumerative.factoring_visitor", false]], "factorint() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.factorint", false]], "factorrat() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.factorrat", false]], "factors() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.factors", false]], "failed (sympy.testing.runtests.sympytestresults attribute)": [[252, "sympy.testing.runtests.SymPyTestResults.failed", false]], "fallingfactorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.FallingFactorial", false]], "fbra (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FBra", false]], "fcode() (in module sympy.printing.fortran)": [[221, "sympy.printing.fortran.fcode", false]], "fcodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.FCodeGen", false]], "fcodeprinter (class in sympy.printing.fortran)": [[221, "sympy.printing.fortran.FCodePrinter", false]], "fd (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.Fd", false]], "fdiff() (sympy.codegen.cfunctions.cbrt method)": [[69, "sympy.codegen.cfunctions.Cbrt.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.exp2 method)": [[69, "sympy.codegen.cfunctions.exp2.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.expm1 method)": [[69, "sympy.codegen.cfunctions.expm1.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.fma method)": [[69, "sympy.codegen.cfunctions.fma.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.hypot method)": [[69, "sympy.codegen.cfunctions.hypot.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.log10 method)": [[69, "sympy.codegen.cfunctions.log10.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.log1p method)": [[69, "sympy.codegen.cfunctions.log1p.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.log2 method)": [[69, "sympy.codegen.cfunctions.log2.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.sqrt method)": [[69, "sympy.codegen.cfunctions.Sqrt.fdiff", false]], "fdiff() (sympy.core.function.function method)": [[88, "sympy.core.function.Function.fdiff", false]], "fdiff() (sympy.functions.elementary.complexes.abs method)": [[94, "sympy.functions.elementary.complexes.Abs.fdiff", false]], "fdiff() (sympy.functions.elementary.exponential.exp method)": [[94, "sympy.functions.elementary.exponential.exp.fdiff", false]], "fdiff() (sympy.functions.elementary.exponential.lambertw method)": [[94, "sympy.functions.elementary.exponential.LambertW.fdiff", false]], "fdiff() (sympy.functions.elementary.exponential.log method)": [[94, "sympy.functions.elementary.exponential.log.fdiff", false]], "fdiff() (sympy.functions.elementary.hyperbolic.csch method)": [[94, "sympy.functions.elementary.hyperbolic.csch.fdiff", false]], "fdiff() (sympy.functions.elementary.hyperbolic.sinh method)": [[94, "sympy.functions.elementary.hyperbolic.sinh.fdiff", false]], "fdiff() (sympy.functions.special.delta_functions.diracdelta method)": [[96, "sympy.functions.special.delta_functions.DiracDelta.fdiff", false]], "fdiff() (sympy.functions.special.delta_functions.heaviside method)": [[96, "sympy.functions.special.delta_functions.Heaviside.fdiff", false]], "fdiff() (sympy.functions.special.singularity_functions.singularityfunction method)": [[96, "sympy.functions.special.singularity_functions.SingularityFunction.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcelengthactivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.fdiff", false]], "fdistribution() (in module sympy.stats)": [[241, "sympy.stats.FDistribution", false]], "feedback (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.Feedback", false]], "fft() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.fft", false]], "fglm() (sympy.polys.polytools.groebnerbasis method)": [[217, "sympy.polys.polytools.GroebnerBasis.fglm", false]], "fiber_damping_coefficient (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.fiber_damping_coefficient", false]], "fiberforcelengthactivedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016", false]], "fiberforcelengthpassivedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016", false]], "fiberforcelengthpassiveinversedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016", false]], "fiberforcevelocitydegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016", false]], "fiberforcevelocityinversedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016", false]], "fibonacci (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.fibonacci", false]], "field (class in sympy.polys.domains.field)": [[212, "sympy.polys.domains.field.Field", false]], "field() (in module sympy.polys.fields)": [[212, "sympy.polys.fields.field", false]], "field_element() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.field_element", false]], "field_isomorphism() (in module sympy.polys.numberfields.subfield)": [[216, "sympy.polys.numberfields.subfield.field_isomorphism", false]], "fill (sympy.plotting.plot.plot property)": [[207, "sympy.plotting.plot.Plot.fill", false]], "filldedent() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.filldedent", false]], "filter_symbols() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.filter_symbols", false]], "find() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.find", false]], "find_carmichael_numbers_in_range() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.find_carmichael_numbers_in_range", false]], "find_dn() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.find_DN", false]], "find_dynamicsymbols() (in module sympy.physics.mechanics)": [[150, "sympy.physics.mechanics.find_dynamicsymbols", false]], "find_dynamicsymbols() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.find_dynamicsymbols", false]], "find_executable() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.find_executable", false]], "find_first_n_carmichaels() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.find_first_n_carmichaels", false]], "find_linear_recurrence() (sympy.series.sequences.seqbase method)": [[227, "sympy.series.sequences.SeqBase.find_linear_recurrence", false]], "find_min_poly() (in module sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.find_min_poly", false]], "find_transitive_subgroups_of_s6() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.find_transitive_subgroups_of_S6", false]], "finite": [[88, "term-finite", true]], "finite_diff_weights() (in module sympy.calculus.finite_diff)": [[67, "sympy.calculus.finite_diff.finite_diff_weights", false]], "finitedomain (class in sympy.stats.frv)": [[241, "sympy.stats.frv.FiniteDomain", false]], "finitefield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.FiniteField", false]], "finiteformalpowerseries (class in sympy.series.formal)": [[223, "sympy.series.formal.FiniteFormalPowerSeries", false]], "finitepredicate (class in sympy.assumptions.predicates.calculus)": [[65, "sympy.assumptions.predicates.calculus.FinitePredicate", false]], "finitepspace (class in sympy.stats.frv)": [[241, "sympy.stats.frv.FinitePSpace", false]], "finiterv() (in module sympy.stats)": [[241, "sympy.stats.FiniteRV", false]], "finiteset (class in sympy.sets.sets)": [[229, "sympy.sets.sets.FiniteSet", false]], "first_moment_of_area() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.first_moment_of_area", false]], "firstexact (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.FirstExact", false]], "firstlinear (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.FirstLinear", false]], "firstorderactivationdegroote2016 (class in sympy.physics.biomechanics.activation)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016", false]], "fisherz() (in module sympy.stats)": [[241, "sympy.stats.FisherZ", false]], "fixed_point (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.fixed_point", false]], "fixed_row_vector() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.fixed_row_vector", false]], "fixedbosonicbasis (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FixedBosonicBasis", false]], "fket (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FKet", false]], "flagerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.FlagError", false]], "flat() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.flat", false]], "flatmirror (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.FlatMirror", false]], "flatrefraction (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.FlatRefraction", false]], "flatten() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.flatten", false]], "flatten() (sympy.categories.compositemorphism method)": [[68, "sympy.categories.CompositeMorphism.flatten", false]], "flatten() (sympy.core.add.add class method)": [[88, "sympy.core.add.Add.flatten", false]], "flatten() (sympy.core.mul.mul class method)": [[88, "sympy.core.mul.Mul.flatten", false]], "float (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Float", false]], "floatbasetype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FloatBaseType", false]], "floattype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FloatType", false]], "floor (class in sympy.functions.elementary.integers)": [[94, "sympy.functions.elementary.integers.floor", false]], "fma (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.fma", false]], "foci (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.foci", false]], "fockspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.FockSpace", false]], "fockstate (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockState", false]], "fockstatebosonbra (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateBosonBra", false]], "fockstatebosonket (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateBosonKet", false]], "fockstatebra (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateBra", false]], "fockstatefermionbra (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateFermionBra", false]], "fockstatefermionket (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateFermionKet", false]], "fockstateket (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateKet", false]], "focus_distance (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.focus_distance", false]], "for (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.For", false]], "force (class in sympy.physics.mechanics.loads)": [[155, "sympy.physics.mechanics.loads.Force", false]], "force (sympy.physics.mechanics.actuator.duffingspring property)": [[148, "sympy.physics.mechanics.actuator.DuffingSpring.force", false]], "force (sympy.physics.mechanics.actuator.forceactuator property)": [[148, "sympy.physics.mechanics.actuator.ForceActuator.force", false]], "force (sympy.physics.mechanics.actuator.lineardamper property)": [[148, "sympy.physics.mechanics.actuator.LinearDamper.force", false]], "force (sympy.physics.mechanics.actuator.linearspring property)": [[148, "sympy.physics.mechanics.actuator.LinearSpring.force", false]], "forceactuator (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.ForceActuator", false]], "forcing (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.forcing", false]], "forcing (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.forcing", false]], "forcing (sympy.physics.mechanics.lagrange.lagrangesmethod property)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.forcing", false]], "forcing (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.forcing", false]], "forcing_full (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.forcing_full", false]], "forcing_full (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.forcing_full", false]], "forcing_full (sympy.physics.mechanics.lagrange.lagrangesmethod property)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.forcing_full", false]], "forcing_full (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.forcing_full", false]], "forcing_kin (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.forcing_kin", false]], "form_eoms() (sympy.physics.mechanics.jointsmethod.jointsmethod method)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.form_eoms", false]], "form_eoms() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.form_eoms", false]], "form_lagranges_equations() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.form_lagranges_equations", false]], "formalpowerseries (class in sympy.series.formal)": [[223, "sympy.series.formal.FormalPowerSeries", false]], "formalpowerseriescompose (class in sympy.series.formal)": [[223, "sympy.series.formal.FormalPowerSeriesCompose", false]], "formalpowerseriesinverse (class in sympy.series.formal)": [[223, "sympy.series.formal.FormalPowerSeriesInverse", false]], "formalpowerseriesproduct (class in sympy.series.formal)": [[223, "sympy.series.formal.FormalPowerSeriesProduct", false]], "fortranreturn (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.FortranReturn", false]], "forward_diff() (in module sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.forward_diff", false]], "four_group() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.four_group", false]], "fourier_series() (in module sympy.series.fourier)": [[224, "sympy.series.fourier.fourier_series", false]], "fourier_series() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.fourier_series", false]], "fourier_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.fourier_transform", false]], "fourierseries (class in sympy.series.fourier)": [[224, "sympy.series.fourier.FourierSeries", false]], "fouriertransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.FourierTransform", false]], "fps() (in module sympy.series.formal)": [[223, "sympy.series.formal.fps", false]], "fps() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.fps", false]], "frac (class in sympy.functions.elementary.integers)": [[94, "sympy.functions.elementary.integers.frac", false]], "frac (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.frac", false]], "frac_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.frac_field", false]], "frac_unify() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.frac_unify", false]], "fracelement (class in sympy.polys.fields)": [[212, "sympy.polys.fields.FracElement", false]], "fracfield (class in sympy.polys.fields)": [[212, "sympy.polys.fields.FracField", false]], "fraction() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.fraction", false]], "fractionfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.FractionField", false]], "frame (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.frame", false]], "frame (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.frame", false]], "frame (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.frame", false]], "frechet() (in module sympy.stats)": [[241, "sympy.stats.Frechet", false]], "free symbols": [[15, "term-Free-symbols", true]], "free_dynamicsymbols() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.free_dynamicsymbols", false]], "free_module() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.free_module", false]], "free_symbols (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.free_symbols", false]], "free_symbols (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.free_symbols", false]], "free_symbols (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.free_symbols", false]], "free_symbols (sympy.integrals.integrals.integral property)": [[115, "sympy.integrals.integrals.Integral.free_symbols", false]], "free_symbols (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.free_symbols", false]], "free_symbols (sympy.physics.quantum.operator.differentialoperator property)": [[180, "sympy.physics.quantum.operator.DifferentialOperator.free_symbols", false]], "free_symbols (sympy.physics.units.quantities.quantity property)": [[198, "sympy.physics.units.quantities.Quantity.free_symbols", false]], "free_symbols (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.free_symbols", false]], "free_symbols (sympy.polys.polytools.purepoly property)": [[217, "sympy.polys.polytools.PurePoly.free_symbols", false]], "free_symbols (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.free_symbols", false]], "free_symbols() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.free_symbols", false]], "free_symbols_in_domain (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.free_symbols_in_domain", false]], "freemodule (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.FreeModule", false]], "freemoduleelement (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.FreeModuleElement", false]], "freespace (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.FreeSpace", false]], "frequency (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.frequency", false]], "fresnel_coefficients() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.fresnel_coefficients", false]], "fresnelc (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.fresnelc", false]], "fresnelintegral (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.FresnelIntegral", false]], "fresnels (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.fresnels", false]], "from_algebraicfield() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_AlgebraicField", false]], "from_axis_angle() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.from_axis_angle", false]], "from_coeff_lists() (sympy.physics.control.lti.transferfunction class method)": [[144, "sympy.physics.control.lti.TransferFunction.from_coeff_lists", false]], "from_complexfield() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ComplexField", false]], "from_complexfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ComplexField", false]], "from_complexfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_ComplexField", false]], "from_complexfield() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.from_ComplexField", false]], "from_complexfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_ComplexField", false]], "from_ddm() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_ddm", false]], "from_ddm() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_ddm", false]], "from_dict() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.from_dict", false]], "from_dict_sympy() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_dict_sympy", false]], "from_dod() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_dod", false]], "from_dod() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_dod", false]], "from_dod() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_dod", false]], "from_dod() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_dod", false]], "from_dod_like() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_dod_like", false]], "from_dok() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.from_dok", false]], "from_dok() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_dok", false]], "from_dok() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_dok", false]], "from_dok() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_dok", false]], "from_dok() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_dok", false]], "from_euler() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.from_euler", false]], "from_ex() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_EX", false]], "from_expr() (sympy.codegen.ast.type class method)": [[69, "sympy.codegen.ast.Type.from_expr", false]], "from_expr() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.from_expr", false]], "from_expressiondomain() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ExpressionDomain", false]], "from_expressiondomain() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ExpressionDomain", false]], "from_expressionrawdomain() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ExpressionRawDomain", false]], "from_ff() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_FF", false]], "from_ff() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_FF", false]], "from_ff() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_FF", false]], "from_ff_gmpy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_FF_gmpy", false]], "from_ff_gmpy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_FF_gmpy", false]], "from_ff_gmpy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_FF_gmpy", false]], "from_ff_gmpy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_FF_gmpy", false]], "from_ff_python() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_FF_python", false]], "from_ff_python() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_FF_python", false]], "from_ff_python() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_FF_python", false]], "from_ff_python() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_FF_python", false]], "from_flat_nz() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_flat_nz", false]], "from_flat_nz() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_flat_nz", false]], "from_flat_nz() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_flat_nz", false]], "from_flat_nz() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_flat_nz", false]], "from_fractionfield() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_FractionField", false]], "from_fractionfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_FractionField", false]], "from_fractionfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_FractionField", false]], "from_fractionfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_FractionField", false]], "from_gaussianintegerring() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_GaussianIntegerRing", false]], "from_gaussianrationalfield() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_GaussianRationalField", false]], "from_globalpolynomialring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_GlobalPolynomialRing", false]], "from_globalpolynomialring() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_GlobalPolynomialRing", false]], "from_hyper() (in module sympy.holonomic.holonomic)": [[107, "sympy.holonomic.holonomic.from_hyper", false]], "from_index_summation() (sympy.matrices.expressions.matrixexpr static method)": [[120, "sympy.matrices.expressions.MatrixExpr.from_index_summation", false]], "from_inertia_scalars() (sympy.physics.mechanics.inertia.inertia class method)": [[155, "sympy.physics.mechanics.inertia.Inertia.from_inertia_scalars", false]], "from_int_list() (sympy.polys.numberfields.modules.moduleelement class method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.from_int_list", false]], "from_inversion_vector() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.from_inversion_vector", false]], "from_list() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_list", false]], "from_list() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_list", false]], "from_list() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_list", false]], "from_list() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_list", false]], "from_list() (sympy.polys.polyclasses.dmp class method)": [[212, "sympy.polys.polyclasses.DMP.from_list", false]], "from_list() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.from_list", false]], "from_list_flat() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_list_flat", false]], "from_list_flat() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_list_flat", false]], "from_list_flat() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_list_flat", false]], "from_list_flat() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_list_flat", false]], "from_list_sympy() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_list_sympy", false]], "from_matrix() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.from_Matrix", false]], "from_matrix() (sympy.physics.control.lti.transferfunctionmatrix class method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.from_Matrix", false]], "from_matrix() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_Matrix", false]], "from_meijerg() (in module sympy.holonomic.holonomic)": [[107, "sympy.holonomic.holonomic.from_meijerg", false]], "from_monogenicfiniteextension() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_MonogenicFiniteExtension", false]], "from_newtonian() (sympy.physics.mechanics.system.system class method)": [[158, "sympy.physics.mechanics.system.System.from_newtonian", false]], "from_poly() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.from_poly", false]], "from_polynomialring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_PolynomialRing", false]], "from_polynomialring() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_PolynomialRing", false]], "from_polynomialring() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_PolynomialRing", false]], "from_polynomialring() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_PolynomialRing", false]], "from_qq() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_QQ", false]], "from_qq() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_QQ", false]], "from_qq() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_QQ", false]], "from_qq() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_QQ", false]], "from_qq() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_QQ", false]], "from_qq() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_QQ", false]], "from_qq() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_QQ", false]], "from_qq() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_QQ", false]], "from_qq() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_QQ", false]], "from_qq_gmpy() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_QQ_gmpy", false]], "from_qq_python() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_QQ_python", false]], "from_rational_expression() (sympy.physics.control.lti.transferfunction class method)": [[144, "sympy.physics.control.lti.TransferFunction.from_rational_expression", false]], "from_real() (sympy.sets.fancysets.complexregion class method)": [[229, "sympy.sets.fancysets.ComplexRegion.from_real", false]], "from_realfield() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_RealField", false]], "from_realfield() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_RealField", false]], "from_realfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_RealField", false]], "from_realfield() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_RealField", false]], "from_realfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_RealField", false]], "from_realfield() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_RealField", false]], "from_realfield() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_RealField", false]], "from_realfield() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_RealField", false]], "from_realfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_RealField", false]], "from_realfield() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_RealField", false]], "from_rep() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_rep", false]], "from_rgs() (sympy.combinatorics.partitions.partition class method)": [[77, "sympy.combinatorics.partitions.Partition.from_rgs", false]], "from_rotation_matrix() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.from_rotation_matrix", false]], "from_sequence() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.from_sequence", false]], "from_sympy() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_sympy", false]], "from_sympy() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.from_sympy", false]], "from_sympy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_sympy", false]], "from_sympy() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_sympy", false]], "from_sympy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_sympy", false]], "from_sympy() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_sympy", false]], "from_sympy() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_sympy", false]], "from_sympy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_sympy", false]], "from_sympy() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_sympy", false]], "from_sympy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_sympy", false]], "from_sympy() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_sympy", false]], "from_sympy() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_sympy", false]], "from_sympy() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.from_sympy", false]], "from_sympy_list() (sympy.polys.polyclasses.dmp class method)": [[212, "sympy.polys.polyclasses.DMP.from_sympy_list", false]], "from_zpk() (sympy.physics.control.lti.transferfunction class method)": [[144, "sympy.physics.control.lti.TransferFunction.from_zpk", false]], "from_zz() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_ZZ", false]], "from_zz() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ZZ", false]], "from_zz() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_ZZ", false]], "from_zz() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_ZZ", false]], "from_zz() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_ZZ", false]], "from_zz() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_ZZ", false]], "from_zz() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_ZZ", false]], "from_zz() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_ZZ", false]], "from_zz_gmpy() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_ZZ_gmpy", false]], "from_zz_python() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_ZZ_python", false]], "fromiter() (sympy.core.basic.basic class method)": [[88, "sympy.core.basic.Basic.fromiter", false]], "fu() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.fu", false]], "full_cyclic_form (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.full_cyclic_form", false]], "fullrankpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.FullRankPredicate", false]], "fully_symmetric() (sympy.tensor.tensor.tensorsymmetry class method)": [[247, "sympy.tensor.tensor.TensorSymmetry.fully_symmetric", false]], "func": [[15, "term-func", true]], "func (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.func", false]], "func (sympy.physics.vector.dyadic.dyadic property)": [[200, "sympy.physics.vector.dyadic.Dyadic.func", false]], "func (sympy.physics.vector.vector.vector property)": [[200, "sympy.physics.vector.vector.Vector.func", false]], "func_field_modgcd() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd.func_field_modgcd", false]], "func_name() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.func_name", false]], "funcminusoneoptim (class in sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.FuncMinusOneOptim", false]], "function": [[15, "term-Function", true]], "function (class in sympy.core.function)": [[88, "sympy.core.function.Function", false]], "function (class)": [[15, "term-Function-class", true]], "function (sympy.assumptions.assume.appliedpredicate property)": [[63, "sympy.assumptions.assume.AppliedPredicate.function", false]], "function (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.function", false]], "function (sympy.integrals.transforms.integraltransform property)": [[115, "sympy.integrals.transforms.IntegralTransform.function", false]], "function (sympy.physics.quantum.operator.differentialoperator property)": [[180, "sympy.physics.quantum.operator.DifferentialOperator.function", false]], "function (sympy.series.formal.formalpowerseriescompose property)": [[223, "sympy.series.formal.FormalPowerSeriesCompose.function", false]], "function (sympy.series.formal.formalpowerseriesinverse property)": [[223, "sympy.series.formal.FormalPowerSeriesInverse.function", false]], "function (sympy.series.formal.formalpowerseriesproduct property)": [[223, "sympy.series.formal.FormalPowerSeriesProduct.function", false]], "function_exponentiation() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.function_exponentiation", false]], "function_range() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.function_range", false]], "function_variable (sympy.integrals.transforms.integraltransform property)": [[115, "sympy.integrals.transforms.IntegralTransform.function_variable", false]], "functioncall (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FunctionCall", false]], "functionclass (class in sympy.core.function)": [[88, "sympy.core.function.FunctionClass", false]], "functiondefinition (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FunctionDefinition", false]], "functionmatrix (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.FunctionMatrix", false]], "functionprototype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FunctionPrototype", false]], "functions (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.functions", false]], "fundamental_matrix() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.fundamental_matrix", false]], "fwht() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.fwht", false]], "g() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.G", false], [221, "sympy.printing.pretty.pretty_symbology.g", false]], "g18() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.G18", false]], "g36m() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.G36m", false]], "g36p() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.G36p", false]], "g72() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.G72", false]], "galois_group() (in module sympy.polys.numberfields.galoisgroups)": [[216, "sympy.polys.numberfields.galoisgroups.galois_group", false]], "galois_group() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.galois_group", false]], "galois_group() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.galois_group", false]], "gamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.gamma", false]], "gamma() (in module sympy.stats)": [[241, "sympy.stats.Gamma", false]], "gamma_trace() (in module sympy.physics.hep.gamma_matrices)": [[145, "sympy.physics.hep.gamma_matrices.gamma_trace", false]], "gammainverse() (in module sympy.stats)": [[241, "sympy.stats.GammaInverse", false]], "gammaprocess (class in sympy.stats)": [[241, "sympy.stats.GammaProcess", false]], "gammasimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.gammasimp", false]], "gate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.Gate", false]], "gate (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.gate", false]], "gate (sympy.physics.quantum.gate.cnotgate property)": [[175, "sympy.physics.quantum.gate.CNotGate.gate", false]], "gate_simp() (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.gate_simp", false]], "gate_sort() (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.gate_sort", false]], "gateinputcount() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.gateinputcount", false]], "gaunt() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.gaunt", false]], "gauss_chebyshev_t() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_chebyshev_t", false]], "gauss_chebyshev_u() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_chebyshev_u", false]], "gauss_gen_laguerre() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_gen_laguerre", false]], "gauss_hermite() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_hermite", false]], "gauss_jacobi() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_jacobi", false]], "gauss_jordan_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.gauss_jordan_solve", false]], "gauss_laguerre() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_laguerre", false]], "gauss_legendre() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_legendre", false]], "gauss_lobatto() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_lobatto", false]], "gaussian_conj() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.gaussian_conj", false]], "gaussian_reduce() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.gaussian_reduce", false]], "gaussiandomain (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain", false]], "gaussianelement (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianElement", false]], "gaussianinteger (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianInteger", false]], "gaussianintegerring (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing", false]], "gaussianrational (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRational", false]], "gaussianrationalfield (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField", false]], "gbt() (in module sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.gbt", false]], "gcd() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gcd", false]], "gcd() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.gcd", false]], "gcd() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.gcd", false]], "gcd() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.gcd", false]], "gcd() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.gcd", false]], "gcd() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.gcd", false]], "gcd() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.gcd", false]], "gcd() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.gcd", false]], "gcd() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.gcd", false]], "gcd() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.gcd", false]], "gcd() (sympy.polys.monomials.monomial method)": [[217, "sympy.polys.monomials.Monomial.gcd", false]], "gcd() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.gcd", false]], "gcd() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.gcd", false]], "gcd_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gcd_list", false]], "gcd_terms() (in module sympy.core.exprtools)": [[88, "sympy.core.exprtools.gcd_terms", false]], "gcdex() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gcdex", false]], "gcdex() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.gcdex", false]], "gcdex() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.gcdex", false]], "gcdex() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.gcdex", false]], "gcdex() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.gcdex", false]], "gcdex() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.gcdex", false]], "gcdex() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.gcdex", false]], "ge (in module sympy.core.relational)": [[88, "sympy.core.relational.Ge", false]], "gegenbauer (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.gegenbauer", false]], "gegenbauer_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.gegenbauer_poly", false]], "gen (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.gen", false]], "gen (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.gen", false]], "generalizedmultivariateloggamma() (in module sympy.stats)": [[241, "sympy.stats.GeneralizedMultivariateLogGamma", false]], "generalizedmultivariateloggammaomega() (in module sympy.stats)": [[241, "sympy.stats.GeneralizedMultivariateLogGammaOmega", false]], "generalpythagorean (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.GeneralPythagorean", false]], "generalsumofevenpowers (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.GeneralSumOfEvenPowers", false]], "generalsumofsquares (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.GeneralSumOfSquares", false]], "generate() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generate", false]], "generate_bell() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.generate_bell", false]], "generate_derangements() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.generate_derangements", false]], "generate_dimino() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generate_dimino", false]], "generate_gray() (sympy.combinatorics.graycode.graycode method)": [[72, "sympy.combinatorics.graycode.GrayCode.generate_gray", false]], "generate_involutions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.generate_involutions", false]], "generate_oriented_forest() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.generate_oriented_forest", false]], "generate_schreier_sims() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generate_schreier_sims", false]], "generator (sympy.polys.numberfields.modules.powerbasiselement property)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.generator", false]], "generator_product() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generator_product", false]], "generators (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generators", false]], "generators() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.generators", false]], "generatorserror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.GeneratorsError", false]], "generatorsneeded (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.GeneratorsNeeded", false]], "genocchi (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.genocchi", false]], "genocchi_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.genocchi_poly", false]], "geodesic_end_vectors() (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.geodesic_end_vectors", false]], "geodesic_end_vectors() (sympy.physics.mechanics.wrapping_geometry.wrappinggeometrybase method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase.geodesic_end_vectors", false]], "geodesic_end_vectors() (sympy.physics.mechanics.wrapping_geometry.wrappingsphere method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.geodesic_end_vectors", false]], "geodesic_length() (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.geodesic_length", false]], "geodesic_length() (sympy.physics.mechanics.wrapping_geometry.wrappinggeometrybase method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase.geodesic_length", false]], "geodesic_length() (sympy.physics.mechanics.wrapping_geometry.wrappingsphere method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.geodesic_length", false]], "geometric() (in module sympy.stats)": [[241, "sympy.stats.Geometric", false]], "geometric_conj_ab() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.geometric_conj_ab", false]], "geometric_conj_af() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.geometric_conj_af", false]], "geometric_conj_bf() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.geometric_conj_bf", false]], "geometricray (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.GeometricRay", false]], "geometry (sympy.physics.mechanics.pathway.wrappingpathway property)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway.geometry", false]], "geometryentity (class in sympy.geometry.entity)": [[99, "sympy.geometry.entity.GeometryEntity", false]], "get() (sympy.core.containers.dict method)": [[88, "sympy.core.containers.Dict.get", false]], "get_adjacency_distance() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_adjacency_distance", false]], "get_adjacency_matrix() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_adjacency_matrix", false]], "get_basis() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.get_basis", false]], "get_body() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.get_body", false]], "get_class() (in module sympy.utilities.source)": [[263, "sympy.utilities.source.get_class", false]], "get_comm() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.get_comm", false]], "get_contraction_structure() (in module sympy.tensor.index_methods)": [[245, "sympy.tensor.index_methods.get_contraction_structure", false]], "get_data() (sympy.plotting.series.baseseries method)": [[207, "sympy.plotting.series.BaseSeries.get_data", false]], "get_data() (sympy.plotting.series.implicitseries method)": [[207, "sympy.plotting.series.ImplicitSeries.get_data", false]], "get_data() (sympy.plotting.series.line2dbaseseries method)": [[207, "sympy.plotting.series.Line2DBaseSeries.get_data", false]], "get_data() (sympy.plotting.series.parametricsurfaceseries method)": [[207, "sympy.plotting.series.ParametricSurfaceSeries.get_data", false]], "get_data() (sympy.plotting.series.surfaceover2drangeseries method)": [[207, "sympy.plotting.series.SurfaceOver2DRangeSeries.get_data", false]], "get_default_datatype() (in module sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.get_default_datatype", false]], "get_diag_blocks() (sympy.matrices.expressions.blockmatrix.blockdiagmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockDiagMatrix.get_diag_blocks", false]], "get_diag_blocks() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.get_diag_blocks", false]], "get_domain() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.get_domain", false]], "get_exact() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.get_exact", false]], "get_exact() (sympy.polys.domains.compositedomain.compositedomain method)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.get_exact", false]], "get_exact() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.get_exact", false]], "get_exact() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.get_exact", false]], "get_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.get_field", false]], "get_field() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.get_field", false]], "get_field() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.get_field", false]], "get_field() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.get_field", false]], "get_field() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.get_field", false]], "get_field() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.get_field", false]], "get_field() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.get_field", false]], "get_field() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.get_field", false]], "get_free_indices() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.get_free_indices", false]], "get_gen_sol_from_part_sol() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.get_gen_sol_from_part_sol", false]], "get_indices() (in module sympy.tensor.index_methods)": [[245, "sympy.tensor.index_methods.get_indices", false]], "get_indices() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.get_indices", false]], "get_interface() (sympy.utilities.codegen.fcodegen method)": [[254, "sympy.utilities.codegen.FCodeGen.get_interface", false]], "get_joint() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.get_joint", false]], "get_label() (sympy.plotting.series.baseseries method)": [[207, "sympy.plotting.series.BaseSeries.get_label", false]], "get_label() (sympy.plotting.series.implicitseries method)": [[207, "sympy.plotting.series.ImplicitSeries.get_label", false]], "get_matrix() (sympy.tensor.tensor.tensexpr method)": [[247, "sympy.tensor.tensor.TensExpr.get_matrix", false]], "get_meshes() (sympy.plotting.series.parametricsurfaceseries method)": [[207, "sympy.plotting.series.ParametricSurfaceSeries.get_meshes", false]], "get_meshes() (sympy.plotting.series.surfaceover2drangeseries method)": [[207, "sympy.plotting.series.SurfaceOver2DRangeSeries.get_meshes", false]], "get_mod_func() (in module sympy.utilities.source)": [[263, "sympy.utilities.source.get_mod_func", false]], "get_modulus() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.get_modulus", false]], "get_motion_params() (in module sympy.physics.vector.functions)": [[204, "sympy.physics.vector.functions.get_motion_params", false]], "get_num_denom() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.get_num_denom", false]], "get_period() (sympy.functions.special.hyper.meijerg method)": [[96, "sympy.functions.special.hyper.meijerg.get_period", false]], "get_permuted() (sympy.physics.secondquant.permutationoperator method)": [[191, "sympy.physics.secondquant.PermutationOperator.get_permuted", false]], "get_points() (sympy.plotting.series.lineover1drangeseries method)": [[207, "sympy.plotting.series.LineOver1DRangeSeries.get_points", false]], "get_positional_distance() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_positional_distance", false]], "get_precedence_distance() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_precedence_distance", false]], "get_precedence_matrix() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_precedence_matrix", false]], "get_prototype() (sympy.utilities.codegen.ccodegen method)": [[254, "sympy.utilities.codegen.CCodeGen.get_prototype", false]], "get_prototype() (sympy.utilities.codegen.rustcodegen method)": [[254, "sympy.utilities.codegen.RustCodeGen.get_prototype", false]], "get_ring() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.get_ring", false]], "get_ring() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.get_ring", false]], "get_ring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.get_ring", false]], "get_ring() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.get_ring", false]], "get_ring() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.get_ring", false]], "get_ring() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.get_ring", false]], "get_ring() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.get_ring", false]], "get_ring() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.get_ring", false]], "get_ring() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.get_ring", false]], "get_ring() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.get_ring", false]], "get_ring() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.get_ring", false]], "get_ring() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.get_ring", false]], "get_segments() (sympy.plotting.plot.matplotlibbackend static method)": [[207, "sympy.plotting.plot.MatplotlibBackend.get_segments", false]], "get_subno() (sympy.physics.secondquant.no method)": [[191, "sympy.physics.secondquant.NO.get_subNO", false]], "get_subset_from_bitstring() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.get_subset_from_bitstring", false]], "get_symmetric_group_sgs() (in module sympy.combinatorics.tensor_can)": [[84, "sympy.combinatorics.tensor_can.get_symmetric_group_sgs", false]], "get_sympy_dir() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.get_sympy_dir", false]], "get_target_matrix() (sympy.physics.quantum.gate.gate method)": [[175, "sympy.physics.quantum.gate.Gate.get_target_matrix", false]], "get_target_matrix() (sympy.physics.quantum.gate.ugate method)": [[175, "sympy.physics.quantum.gate.UGate.get_target_matrix", false]], "get_units_non_prefixed() (sympy.physics.units.unitsystem.unitsystem method)": [[199, "sympy.physics.units.unitsystem.UnitSystem.get_units_non_prefixed", false]], "getitem() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.getitem", false]], "getn() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.getn", false]], "geto() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.getO", false]], "gf_add() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_add", false]], "gf_add_ground() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_add_ground", false]], "gf_add_mul() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_add_mul", false]], "gf_berlekamp() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_berlekamp", false]], "gf_cofactors() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_cofactors", false]], "gf_compose() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_compose", false]], "gf_compose_mod() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_compose_mod", false]], "gf_crt() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_crt", false]], "gf_crt1() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_crt1", false]], "gf_crt2() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_crt2", false]], "gf_csolve() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_csolve", false]], "gf_degree() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_degree", false]], "gf_diff() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_diff", false]], "gf_div() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_div", false]], "gf_eval() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_eval", false]], "gf_expand() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_expand", false]], "gf_exquo() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_exquo", false]], "gf_factor() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_factor", false]], "gf_factor_sqf() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_factor_sqf", false]], "gf_from_dict() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_from_dict", false]], "gf_from_int_poly() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_from_int_poly", false]], "gf_gcd() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_gcd", false]], "gf_gcdex() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_gcdex", false]], "gf_int() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_int", false]], "gf_irreducible() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_irreducible", false]], "gf_irreducible_p() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_irreducible_p", false]], "gf_lc() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_LC", false]], "gf_lcm() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_lcm", false]], "gf_lshift() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_lshift", false]], "gf_monic() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_monic", false]], "gf_mul() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_mul", false]], "gf_mul_ground() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_mul_ground", false]], "gf_multi_eval() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_multi_eval", false]], "gf_neg() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_neg", false]], "gf_normal() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_normal", false]], "gf_pow() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_pow", false]], "gf_pow_mod() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_pow_mod", false]], "gf_qbasis() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_Qbasis", false]], "gf_qmatrix() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_Qmatrix", false]], "gf_quo() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_quo", false]], "gf_quo_ground() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_quo_ground", false]], "gf_random() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_random", false]], "gf_rem() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_rem", false]], "gf_rshift() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_rshift", false]], "gf_shoup() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_shoup", false]], "gf_sqf_list() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sqf_list", false]], "gf_sqf_p() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sqf_p", false]], "gf_sqf_part() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sqf_part", false]], "gf_sqr() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sqr", false]], "gf_strip() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_strip", false]], "gf_sub() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sub", false]], "gf_sub_ground() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sub_ground", false]], "gf_sub_mul() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sub_mul", false]], "gf_tc() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_TC", false]], "gf_to_dict() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_to_dict", false]], "gf_to_int_poly() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_to_int_poly", false]], "gf_trace_map() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_trace_map", false]], "gf_trunc() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_trunc", false]], "gf_value() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_value", false]], "gf_zassenhaus() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_zassenhaus", false]], "gff() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gff", false]], "gff_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gff_list", false]], "gff_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.gff_list", false]], "gff_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.gff_list", false]], "given() (in module sympy.stats)": [[241, "sympy.stats.given", false]], "gm_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.gm_private_key", false]], "gm_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.gm_public_key", false]], "gmpyfinitefield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.GMPYFiniteField", false]], "gmpyintegerring (class in sympy.polys.domains)": [[212, "sympy.polys.domains.GMPYIntegerRing", false]], "gmpyrationalfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.GMPYRationalField", false]], "goldenratio (class in sympy.core.numbers)": [[88, "sympy.core.numbers.GoldenRatio", false]], "gompertz() (in module sympy.stats)": [[241, "sympy.stats.Gompertz", false]], "gosper_normal() (in module sympy.concrete.gosper)": [[87, "sympy.concrete.gosper.gosper_normal", false]], "gosper_sum() (in module sympy.concrete.gosper)": [[87, "sympy.concrete.gosper.gosper_sum", false]], "gosper_term() (in module sympy.concrete.gosper)": [[87, "sympy.concrete.gosper.gosper_term", false]], "goto (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.goto", false]], "goto (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.GoTo", false]], "gouy (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.gouy", false]], "gradedlexorder (class in sympy.polys.orderings)": [[217, "sympy.polys.orderings.GradedLexOrder", false]], "gradient() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.gradient", false]], "gradient() (in module sympy.vector)": [[268, "sympy.vector.gradient", false]], "gradient() (sympy.vector.deloperator.del method)": [[265, "sympy.vector.deloperator.Del.gradient", false]], "gramschmidt() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.GramSchmidt", false]], "gray_to_bin() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.gray_to_bin", false]], "graycode (class in sympy.combinatorics.graycode)": [[72, "sympy.combinatorics.graycode.GrayCode", false]], "graycode_subsets() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.graycode_subsets", false]], "greaterthan (class in sympy.core.relational)": [[88, "sympy.core.relational.GreaterThan", false]], "greek_letters (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.greek_letters", false]], "groebner() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.groebner", false]], "groebner() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.groebner", false]], "groebnerbasis (class in sympy.polys.polytools)": [[217, "sympy.polys.polytools.GroebnerBasis", false]], "ground_new() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.ground_new", false]], "ground_roots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.ground_roots", false]], "ground_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.ground_roots", false]], "group() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.group", false]], "group_name() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.group_name", false]], "group_order() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.group_order", false]], "groups_count() (in module sympy.combinatorics.group_numbers)": [[74, "sympy.combinatorics.group_numbers.groups_count", false]], "grover_iteration() (in module sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.grover_iteration", false]], "gruntz() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.gruntz", false]], "gt (in module sympy.core.relational)": [[88, "sympy.core.relational.Gt", false]], "gumbel() (in module sympy.stats)": [[241, "sympy.stats.Gumbel", false]], "h (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.H", false]], "h (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.H", false]], "hadamard_product() (in module sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.hadamard_product", false]], "hadamardgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.HadamardGate", false]], "hadamardpower (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.HadamardPower", false]], "hadamardproduct (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.HadamardProduct", false]], "half (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Half", false]], "half_gcdex() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.half_gcdex", false]], "half_gcdex() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.half_gcdex", false]], "half_gcdex() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.half_gcdex", false]], "half_gcdex() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.half_gcdex", false]], "half_per() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.half_per", false]], "half_wave_retarder() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.half_wave_retarder", false]], "handler (sympy.assumptions.assume.predicate attribute)": [[63, "sympy.assumptions.assume.Predicate.handler", false]], "handler (sympy.assumptions.predicates.calculus.finitepredicate attribute)": [[65, "sympy.assumptions.predicates.calculus.FinitePredicate.handler", false]], "handler (sympy.assumptions.predicates.calculus.infinitepredicate attribute)": [[65, "sympy.assumptions.predicates.calculus.InfinitePredicate.handler", false]], "handler (sympy.assumptions.predicates.common.commutativepredicate attribute)": [[65, "sympy.assumptions.predicates.common.CommutativePredicate.handler", false]], "handler (sympy.assumptions.predicates.common.istruepredicate attribute)": [[65, "sympy.assumptions.predicates.common.IsTruePredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.complexelementspredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.ComplexElementsPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.diagonalpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.DiagonalPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.fullrankpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.FullRankPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.integerelementspredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.IntegerElementsPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.invertiblepredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.InvertiblePredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.lowertriangularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.LowerTriangularPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.normalpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.NormalPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.orthogonalpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.OrthogonalPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.positivedefinitepredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.PositiveDefinitePredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.realelementspredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.RealElementsPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.singularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.SingularPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.squarepredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.SquarePredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.symmetricpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.SymmetricPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.triangularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.TriangularPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.unitarypredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.UnitaryPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.unittriangularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.UnitTriangularPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.uppertriangularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.UpperTriangularPredicate.handler", false]], "handler (sympy.assumptions.predicates.ntheory.compositepredicate attribute)": [[65, "sympy.assumptions.predicates.ntheory.CompositePredicate.handler", false]], "handler (sympy.assumptions.predicates.ntheory.evenpredicate attribute)": [[65, "sympy.assumptions.predicates.ntheory.EvenPredicate.handler", false]], "handler (sympy.assumptions.predicates.ntheory.oddpredicate attribute)": [[65, "sympy.assumptions.predicates.ntheory.OddPredicate.handler", false]], "handler (sympy.assumptions.predicates.ntheory.primepredicate attribute)": [[65, "sympy.assumptions.predicates.ntheory.PrimePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.negativepredicate attribute)": [[65, "sympy.assumptions.predicates.order.NegativePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.nonnegativepredicate attribute)": [[65, "sympy.assumptions.predicates.order.NonNegativePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.nonpositivepredicate attribute)": [[65, "sympy.assumptions.predicates.order.NonPositivePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.nonzeropredicate attribute)": [[65, "sympy.assumptions.predicates.order.NonZeroPredicate.handler", false]], "handler (sympy.assumptions.predicates.order.positivepredicate attribute)": [[65, "sympy.assumptions.predicates.order.PositivePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.zeropredicate attribute)": [[65, "sympy.assumptions.predicates.order.ZeroPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.algebraicpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.AlgebraicPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.antihermitianpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.AntihermitianPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.complexpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.ComplexPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.extendedrealpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.ExtendedRealPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.hermitianpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.HermitianPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.imaginarypredicate attribute)": [[65, "sympy.assumptions.predicates.sets.ImaginaryPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.integerpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.IntegerPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.irrationalpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.IrrationalPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.rationalpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.RationalPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.realpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.RealPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.transcendentalpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.TranscendentalPredicate.handler", false]], "hankel1 (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.hankel1", false]], "hankel2 (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.hankel2", false]], "hankel_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.hankel_transform", false]], "hankeltransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.HankelTransform", false]], "harmonic (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.harmonic", false]], "has() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.has", false]], "has() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.has", false]], "has_assoc_field (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.has_assoc_Field", false]], "has_assoc_ring (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.has_assoc_Ring", false]], "has_dups() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.has_dups", false]], "has_empty_sequence (sympy.concrete.expr_with_intlimits.exprwithintlimits property)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.has_empty_sequence", false]], "has_finite_limits (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.has_finite_limits", false]], "has_free() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.has_free", false]], "has_integer_powers() (sympy.physics.units.dimensions.dimension method)": [[193, "sympy.physics.units.dimensions.Dimension.has_integer_powers", false]], "has_only_gens() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.has_only_gens", false]], "has_q_annihilators (sympy.physics.secondquant.no property)": [[191, "sympy.physics.secondquant.NO.has_q_annihilators", false]], "has_q_creators (sympy.physics.secondquant.no property)": [[191, "sympy.physics.secondquant.NO.has_q_creators", false]], "has_reversed_limits (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.has_reversed_limits", false]], "has_variety() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.has_variety", false]], "has_xfree() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.has_xfree", false]], "hat() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.hat", false]], "hbar (class in sympy.physics.quantum.constants)": [[173, "sympy.physics.quantum.constants.HBar", false]], "heaviside (class in sympy.functions.special.delta_functions)": [[96, "sympy.functions.special.delta_functions.Heaviside", false]], "height (sympy.categories.diagram_drawing.diagramgrid property)": [[68, "sympy.categories.diagram_drawing.DiagramGrid.height", false]], "height (sympy.physics.optics.gaussopt.geometricray property)": [[160, "sympy.physics.optics.gaussopt.GeometricRay.height", false]], "height() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.height", false]], "height() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.height", false]], "hermite (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.hermite", false]], "hermite() (in module sympy.stats)": [[241, "sympy.stats.Hermite", false]], "hermite_normal_form() (in module sympy.matrices.normalforms)": [[125, "sympy.matrices.normalforms.hermite_normal_form", false]], "hermite_normal_form() (in module sympy.polys.matrices.normalforms)": [[210, "sympy.polys.matrices.normalforms.hermite_normal_form", false]], "hermite_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.hermite_poly", false]], "hermite_prob (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.hermite_prob", false]], "hermite_prob_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.hermite_prob_poly", false]], "hermitian": [[88, "term-hermitian", true]], "hermitianoperator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.HermitianOperator", false]], "hermitianpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.HermitianPredicate", false]], "hessian() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.hessian", false]], "heurisch() (in module sympy.integrals.heurisch)": [[115, "sympy.integrals.heurisch.heurisch", false]], "heuristicgcdfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.HeuristicGCDFailed", false]], "highest_root() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.highest_root", false]], "hilbertspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.HilbertSpace", false]], "hobj() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.hobj", false]], "holonomic_constraints (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.holonomic_constraints", false]], "holonomicfunction (class in sympy.holonomic.holonomic)": [[111, "sympy.holonomic.holonomic.HolonomicFunction", false]], "holzer() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.holzer", false]], "hom() (sympy.categories.diagram method)": [[68, "sympy.categories.Diagram.hom", false]], "homogeneous_order() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.homogeneous_order", false]], "homogeneous_order() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.homogeneous_order", false]], "homogeneous_order() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.homogeneous_order", false]], "homogeneouscoeffbest (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.HomogeneousCoeffBest", false]], "homogeneouscoeffsubsdepdivindep (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep", false]], "homogeneouscoeffsubsindepdivdep (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep", false]], "homogeneousgeneralquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.HomogeneousGeneralQuadratic", false]], "homogeneousternaryquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.HomogeneousTernaryQuadratic", false]], "homogeneousternaryquadraticnormal (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.HomogeneousTernaryQuadraticNormal", false]], "homogenize() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.homogenize", false]], "homogenize() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.homogenize", false]], "homomorphism() (in module sympy.polys.agca.homomorphisms)": [[208, "sympy.polys.agca.homomorphisms.homomorphism", false]], "homomorphismfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.HomomorphismFailed", false]], "horner() (in module sympy.polys.polyfuncs)": [[217, "sympy.polys.polyfuncs.horner", false]], "hradius (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.hradius", false]], "hstack() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.hstack", false]], "hstack() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.hstack", false]], "hstack() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.hstack", false]], "hstack() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.hstack", false]], "hstack() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.hstack", false]], "hyper (class in sympy.functions.special.hyper)": [[96, "sympy.functions.special.hyper.hyper", false]], "hyper_algorithm() (in module sympy.series.formal)": [[223, "sympy.series.formal.hyper_algorithm", false]], "hyper_re() (in module sympy.series.formal)": [[223, "sympy.series.formal.hyper_re", false]], "hyperbolicfunction (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.HyperbolicFunction", false]], "hyperexpand() (in module sympy.simplify.hyperexpand)": [[233, "sympy.simplify.hyperexpand.hyperexpand", false]], "hyperfocal_distance() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.hyperfocal_distance", false]], "hypergeometric() (in module sympy.stats)": [[241, "sympy.stats.Hypergeometric", false]], "hypersimilar() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.hypersimilar", false]], "hypersimp() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.hypersimp", false]], "hypot (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.hypot", false]], "ibin() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.ibin", false]], "ideal (class in sympy.polys.agca.ideals)": [[208, "sympy.polys.agca.ideals.Ideal", false]], "ideal() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.ideal", false]], "identity (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.Identity", false]], "identity (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.identity", false]], "identity_hom() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.identity_hom", false]], "identity_hom() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.identity_hom", false]], "identity_hom() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.identity_hom", false]], "identity_hom() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.identity_hom", false]], "identityfunction (class in sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.IdentityFunction", false]], "identitygate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.IdentityGate", false]], "identitymorphism (class in sympy.categories)": [[68, "sympy.categories.IdentityMorphism", false]], "identityoperator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.IdentityOperator", false]], "idiff() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.idiff", false]], "idx (class in sympy.tensor.indexed)": [[246, "sympy.tensor.indexed.Idx", false]], "ifft() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.ifft", false]], "ifwht() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.ifwht", false]], "igcd() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.igcd", false]], "igcd_lehmer() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.igcd_lehmer", false]], "igcdex() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.igcdex", false]], "ignore_warnings() (in module sympy.utilities.exceptions)": [[257, "sympy.utilities.exceptions.ignore_warnings", false]], "ilcm() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.ilcm", false]], "ild_deflection_jumps (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_deflection_jumps", false]], "ild_moment (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_moment", false]], "ild_reactions (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_reactions", false]], "ild_rotation_jumps (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_rotation_jumps", false]], "ild_shear (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_shear", false]], "im (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.im", false]], "image() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.image", false]], "imageset (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.ImageSet", false]], "imageset() (in module sympy.sets.sets)": [[229, "sympy.sets.sets.imageset", false]], "imaginary": [[88, "term-imaginary", true]], "imaginarypredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.ImaginaryPredicate", false]], "imaginaryunit (class in sympy.core.numbers)": [[88, "sympy.core.numbers.ImaginaryUnit", false]], "immutable": [[15, "term-Immutable", true]], "immutabledensematrix (class in sympy.matrices.immutable)": [[121, "sympy.matrices.immutable.ImmutableDenseMatrix", false]], "immutabledensendimarray (class in sympy.tensor.array)": [[242, "sympy.tensor.array.ImmutableDenseNDimArray", false]], "immutablematrix (in module sympy.matrices.immutable)": [[121, "sympy.matrices.immutable.ImmutableMatrix", false]], "immutablesparsematrix (class in sympy.matrices.immutable)": [[126, "sympy.matrices.immutable.ImmutableSparseMatrix", false]], "immutablesparsendimarray (class in sympy.tensor.array)": [[242, "sympy.tensor.array.ImmutableSparseNDimArray", false]], "implemented_function() (in module sympy.utilities.lambdify)": [[260, "sympy.utilities.lambdify.implemented_function", false]], "implicit_application() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.implicit_application", false]], "implicit_multiplication() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.implicit_multiplication", false]], "implicit_multiplication_application() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.implicit_multiplication_application", false]], "implicitregion (class in sympy.vector.implicitregion)": [[265, "sympy.vector.implicitregion.ImplicitRegion", false]], "implicitseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.ImplicitSeries", false]], "implieddoloop (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.ImpliedDoLoop", false]], "implies (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Implies", false]], "impulse_response_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.impulse_response_numerical_data", false]], "impulse_response_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.impulse_response_plot", false]], "imul_num() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.imul_num", false]], "in_terms_of_generators() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.in_terms_of_generators", false]], "incenter (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.incenter", false]], "incircle (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.incircle", false]], "incircle (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.incircle", false]], "inclusion_hom() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.inclusion_hom", false]], "indent_code() (sympy.printing.c.c89codeprinter method)": [[221, "sympy.printing.c.C89CodePrinter.indent_code", false]], "indent_code() (sympy.printing.fortran.fcodeprinter method)": [[221, "sympy.printing.fortran.FCodePrinter.indent_code", false]], "indent_code() (sympy.printing.jscode.javascriptcodeprinter method)": [[221, "sympy.printing.jscode.JavascriptCodePrinter.indent_code", false]], "indent_code() (sympy.printing.julia.juliacodeprinter method)": [[221, "sympy.printing.julia.JuliaCodePrinter.indent_code", false]], "indent_code() (sympy.printing.octave.octavecodeprinter method)": [[221, "sympy.printing.octave.OctaveCodePrinter.indent_code", false]], "indent_code() (sympy.printing.rcode.rcodeprinter method)": [[221, "sympy.printing.rcode.RCodePrinter.indent_code", false]], "indent_code() (sympy.printing.rust.rustcodeprinter method)": [[221, "sympy.printing.rust.RustCodePrinter.indent_code", false]], "index() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.index", false]], "index() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.index", false]], "index() (sympy.concrete.expr_with_intlimits.exprwithintlimits method)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index", false]], "index() (sympy.core.containers.tuple method)": [[88, "sympy.core.containers.Tuple.index", false]], "index() (sympy.physics.secondquant.fixedbosonicbasis method)": [[191, "sympy.physics.secondquant.FixedBosonicBasis.index", false]], "index() (sympy.physics.secondquant.varbosonicbasis method)": [[191, "sympy.physics.secondquant.VarBosonicBasis.index", false]], "index() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.index", false]], "index_vector() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.index_vector", false]], "indexed (class in sympy.tensor.indexed)": [[246, "sympy.tensor.indexed.Indexed", false]], "indexedbase (class in sympy.tensor.indexed)": [[246, "sympy.tensor.indexed.IndexedBase", false]], "indices (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.indices", false]], "indices_contain_equal_information (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.indices_contain_equal_information", false]], "indices_contain_equal_information (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.indices_contain_equal_information", false]], "inertia (class in sympy.physics.mechanics.inertia)": [[155, "sympy.physics.mechanics.inertia.Inertia", false]], "inertia (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.inertia", false]], "inertia (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.inertia", false]], "inertia() (in module sympy.physics.mechanics.inertia)": [[155, "sympy.physics.mechanics.inertia.inertia", false]], "inertia_of_point_mass() (in module sympy.physics.mechanics.inertia)": [[155, "sympy.physics.mechanics.inertia.inertia_of_point_mass", false]], "inf (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.inf", false]], "infinite": [[88, "term-infinite", true]], "infinite (sympy.series.formal.formalpowerseries property)": [[223, "sympy.series.formal.FormalPowerSeries.infinite", false]], "infinitepredicate (class in sympy.assumptions.predicates.calculus)": [[65, "sympy.assumptions.predicates.calculus.InfinitePredicate", false]], "infinitesimals() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.infinitesimals", false]], "infinity (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Infinity", false]], "inhomogeneousgeneralquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.InhomogeneousGeneralQuadratic", false]], "inhomogeneousternaryquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.InhomogeneousTernaryQuadratic", false]], "init_ipython_session() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.init_ipython_session", false]], "init_printing() (in module sympy.interactive.printing)": [[116, "sympy.interactive.printing.init_printing", false]], "init_python_session() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.init_python_session", false]], "init_session() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.init_session", false]], "init_vprinting() (in module sympy.physics.vector.printing)": [[205, "sympy.physics.vector.printing.init_vprinting", false]], "initial (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.initial", false]], "inject() (sympy.polys.domains.compositedomain.compositedomain method)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.inject", false]], "inject() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.inject", false]], "inject() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.inject", false]], "inject() (sympy.polys.domains.simpledomain.simpledomain method)": [[212, "sympy.polys.domains.simpledomain.SimpleDomain.inject", false]], "inject() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.inject", false]], "inject() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.inject", false]], "inner_endomorphism() (sympy.polys.numberfields.modules.endomorphismring method)": [[216, "sympy.polys.numberfields.modules.EndomorphismRing.inner_endomorphism", false]], "innerendomorphism (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.InnerEndomorphism", false]], "innerproduct (class in sympy.physics.quantum.innerproduct)": [[179, "sympy.physics.quantum.innerproduct.InnerProduct", false]], "innerproduct (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.InnerProduct", false]], "input_vars (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.input_vars", false]], "input_vars (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.input_vars", false]], "input_vars (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.input_vars", false]], "input_vars (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.input_vars", false]], "inradius (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.inradius", false]], "inradius (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.inradius", false]], "int_to_integer() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.int_to_Integer", false]], "intbasetype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.IntBaseType", false]], "intcurve_diffequ() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.intcurve_diffequ", false]], "intcurve_series() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.intcurve_series", false]], "integer": [[88, "term-integer", true]], "integer (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Integer", false]], "integer_log() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.integer_log", false]], "integer_nthroot() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.integer_nthroot", false]], "integer_to_term() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.integer_to_term", false]], "integerelementspredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.IntegerElementsPredicate", false]], "integerpartition (class in sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.IntegerPartition", false]], "integerpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.IntegerPredicate", false]], "integerring (class in sympy.polys.domains)": [[212, "sympy.polys.domains.IntegerRing", false]], "integers (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Integers", false]], "integral (class in sympy.integrals.integrals)": [[115, "sympy.integrals.integrals.Integral", false]], "integral.is_commutative (in module sympy.integrals.integrals)": [[115, "sympy.integrals.integrals.Integral.is_commutative", false]], "integral_basis() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.integral_basis", false]], "integral_steps() (in module sympy.integrals.manualintegrate)": [[115, "sympy.integrals.manualintegrate.integral_steps", false]], "integraltransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.IntegralTransform", false]], "integraltransformerror": [[115, "sympy.integrals.transforms.IntegralTransformError", false]], "integrand() (sympy.functions.special.hyper.meijerg method)": [[96, "sympy.functions.special.hyper.meijerg.integrand", false]], "integrate() (in module sympy.integrals.integrals)": [[115, "sympy.integrals.integrals.integrate", false]], "integrate() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.integrate", false]], "integrate() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.integrate", false]], "integrate() (sympy.core.relational.equality method)": [[88, "sympy.core.relational.Equality.integrate", false]], "integrate() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.integrate", false]], "integrate() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.integrate", false]], "integrate() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.integrate", false]], "integrate() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.integrate", false]], "integrate() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.integrate", false]], "integrate_result() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.integrate_result", false]], "interactive": [[15, "term-Interactive", true]], "interior (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.interior", false]], "interior_angle (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.interior_angle", false]], "internal_forces (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.internal_forces", false]], "interpolate() (in module sympy.polys.polyfuncs)": [[217, "sympy.polys.polyfuncs.interpolate", false]], "interpolating_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.interpolating_poly", false]], "interpolating_spline() (in module sympy.functions.special.bsplines)": [[96, "sympy.functions.special.bsplines.interpolating_spline", false]], "intersect() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.intersect", false]], "intersect() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.intersect", false]], "intersect() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.intersect", false]], "intersecting_product() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.intersecting_product", false]], "intersection (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Intersection", false]], "intersection() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.intersection", false]], "intersection() (sympy.geometry.ellipse.circle method)": [[98, "sympy.geometry.ellipse.Circle.intersection", false]], "intersection() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.intersection", false]], "intersection() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.intersection", false]], "intersection() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.intersection", false]], "intersection() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.intersection", false]], "intersection() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.intersection", false]], "intersection() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.intersection", false]], "intersection() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.intersection", false]], "intersection() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.intersection", false]], "interval (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Interval", false]], "interval (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.interval", false]], "interval (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.interval", false]], "intervals() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.intervals", false]], "intervals() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.intervals", false]], "intervals() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.intervals", false]], "intqubit (class in sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.IntQubit", false]], "intqubitbra (class in sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.IntQubitBra", false]], "intt() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.intt", false]], "inv() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inv", false]], "inv() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.inv", false]], "inv() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.inv", false]], "inv() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.inv", false]], "inv() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.inv", false]], "inv_can_transf_matrix (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.inv_can_transf_matrix", false]], "inv_den() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.inv_den", false]], "inverse (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.Inverse", false]], "inverse() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.inverse", false]], "inverse() (sympy.functions.elementary.exponential.log method)": [[94, "sympy.functions.elementary.exponential.log.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.acosh method)": [[94, "sympy.functions.elementary.hyperbolic.acosh.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.acoth method)": [[94, "sympy.functions.elementary.hyperbolic.acoth.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.acsch method)": [[94, "sympy.functions.elementary.hyperbolic.acsch.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.asech method)": [[94, "sympy.functions.elementary.hyperbolic.asech.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.asinh method)": [[94, "sympy.functions.elementary.hyperbolic.asinh.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.atanh method)": [[94, "sympy.functions.elementary.hyperbolic.atanh.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.coth method)": [[94, "sympy.functions.elementary.hyperbolic.coth.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.sinh method)": [[94, "sympy.functions.elementary.hyperbolic.sinh.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.tanh method)": [[94, "sympy.functions.elementary.hyperbolic.tanh.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.acos method)": [[94, "sympy.functions.elementary.trigonometric.acos.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.acot method)": [[94, "sympy.functions.elementary.trigonometric.acot.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.acsc method)": [[94, "sympy.functions.elementary.trigonometric.acsc.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.asec method)": [[94, "sympy.functions.elementary.trigonometric.asec.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.asin method)": [[94, "sympy.functions.elementary.trigonometric.asin.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.atan method)": [[94, "sympy.functions.elementary.trigonometric.atan.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.cot method)": [[94, "sympy.functions.elementary.trigonometric.cot.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.tan method)": [[94, "sympy.functions.elementary.trigonometric.tan.inverse", false]], "inverse() (sympy.functions.special.error_functions.erf method)": [[96, "sympy.functions.special.error_functions.erf.inverse", false]], "inverse() (sympy.functions.special.error_functions.erfc method)": [[96, "sympy.functions.special.error_functions.erfc.inverse", false]], "inverse() (sympy.functions.special.error_functions.erfcinv method)": [[96, "sympy.functions.special.error_functions.erfcinv.inverse", false]], "inverse() (sympy.functions.special.error_functions.erfinv method)": [[96, "sympy.functions.special.error_functions.erfinv.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.inverse", false]], "inverse() (sympy.polys.agca.extensions.extensionelement method)": [[208, "sympy.polys.agca.extensions.ExtensionElement.inverse", false]], "inverse() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.inverse", false]], "inverse_adj() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_ADJ", false]], "inverse_block() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_BLOCK", false]], "inverse_ch() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_CH", false]], "inverse_cosine_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_cosine_transform", false]], "inverse_fourier_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_fourier_transform", false]], "inverse_ge() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_GE", false]], "inverse_hankel_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_hankel_transform", false]], "inverse_laplace_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_laplace_transform", false]], "inverse_ldl() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_LDL", false]], "inverse_lu() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_LU", false]], "inverse_mellin_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_mellin_transform", false]], "inverse_mobius_transform() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.inverse_mobius_transform", false]], "inverse_qr() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_QR", false]], "inverse_sine_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_sine_transform", false]], "inversecosinetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseCosineTransform", false]], "inversefouriertransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseFourierTransform", false]], "inversehankeltransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseHankelTransform", false]], "inverselaplacetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseLaplaceTransform", false]], "inversemellintransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseMellinTransform", false]], "inversesinetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseSineTransform", false]], "inversion_vector() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.inversion_vector", false]], "inversions() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.inversions", false]], "invert() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.invert", false]], "invert() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.invert", false]], "invert() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.invert", false]], "invert() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.invert", false]], "invert() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.invert", false]], "invert() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.invert", false]], "invert() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.invert", false]], "invert_complex() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.invert_complex", false]], "invert_real() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.invert_real", false]], "invertiblepredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.InvertiblePredicate", false]], "iproduct() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.iproduct", false]], "iqft (class in sympy.physics.quantum.qft)": [[184, "sympy.physics.quantum.qft.IQFT", false]], "irrational": [[88, "term-irrational", true]], "irrationalpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.IrrationalPredicate", false]], "irregular() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.irregular", false]], "is_*": [[15, "term-is_", true]], "is_abelian (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_abelian", false]], "is_abelian_number() (in module sympy.combinatorics.group_numbers)": [[74, "sympy.combinatorics.group_numbers.is_abelian_number", false]], "is_above_fermi (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.is_above_fermi", false]], "is_above_fermi (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.is_above_fermi", false]], "is_absolutely_convergent() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.is_absolutely_convergent", false]], "is_abundant() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_abundant", false]], "is_algebraic_expr() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_algebraic_expr", false]], "is_aliased (sympy.core.numbers.algebraicnumber property)": [[88, "sympy.core.numbers.AlgebraicNumber.is_aliased", false]], "is_alt_sym() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym", false]], "is_alternating (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_alternating", false]], "is_amicable() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_amicable", false]], "is_anf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.is_anf", false]], "is_anti_symmetric() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_anti_symmetric", false]], "is_below_fermi (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.is_below_fermi", false]], "is_below_fermi (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.is_below_fermi", false]], "is_biproper (sympy.physics.control.lti.parallel property)": [[144, "sympy.physics.control.lti.Parallel.is_biproper", false]], "is_biproper (sympy.physics.control.lti.series property)": [[144, "sympy.physics.control.lti.Series.is_biproper", false]], "is_biproper (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.is_biproper", false]], "is_carmichael() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_carmichael", false]], "is_closed (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.is_closed", false]], "is_cnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.is_cnf", false]], "is_collinear() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.is_collinear", false]], "is_commutative (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.is_commutative", false]], "is_comparable (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.is_comparable", false]], "is_compat() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.is_compat", false]], "is_compat_col() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.is_compat_col", false]], "is_concyclic() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.is_concyclic", false]], "is_conservative() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.is_conservative", false]], "is_conservative() (in module sympy.vector)": [[268, "sympy.vector.is_conservative", false]], "is_consistent (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.is_consistent", false]], "is_consistent (sympy.physics.units.unitsystem.unitsystem property)": [[199, "sympy.physics.units.unitsystem.UnitSystem.is_consistent", false]], "is_constant() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_constant", false]], "is_convergent() (sympy.concrete.products.product method)": [[87, "sympy.concrete.products.Product.is_convergent", false]], "is_convergent() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.is_convergent", false]], "is_convex() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.is_convex", false]], "is_convex() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.is_convex", false]], "is_coplanar() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.is_coplanar", false]], "is_cyclic (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_cyclic", false]], "is_cyclic_number() (in module sympy.combinatorics.group_numbers)": [[74, "sympy.combinatorics.group_numbers.is_cyclic_number", false]], "is_cyclotomic (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_cyclotomic", false]], "is_cyclotomic (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_cyclotomic", false]], "is_decreasing() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_decreasing", false]], "is_deficient() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_deficient", false]], "is_diagonal (sympy.polys.matrices.domainmatrix.domainmatrix property)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.is_diagonal", false]], "is_diagonal() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_diagonal", false]], "is_diagonal() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.is_diagonal", false]], "is_diagonal() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.is_diagonal", false]], "is_diagonal() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.is_diagonal", false]], "is_diagonalizable() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_diagonalizable", false]], "is_dihedral (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_dihedral", false]], "is_dimensionless() (sympy.physics.units.dimensions.dimensionsystem method)": [[193, "sympy.physics.units.dimensions.DimensionSystem.is_dimensionless", false]], "is_disjoint() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_disjoint", false]], "is_dnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.is_dnf", false]], "is_echelon (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_echelon", false]], "is_elementary() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_elementary", false]], "is_empty (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_Empty", false]], "is_equilateral() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_equilateral", false]], "is_euler_jacobi_pseudoprime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_euler_jacobi_pseudoprime", false]], "is_euler_pseudoprime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_euler_pseudoprime", false]], "is_even (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_even", false]], "is_exact (sympy.polys.domains.compositedomain.compositedomain property)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.is_Exact", false]], "is_extra_strong_lucas_prp() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_extra_strong_lucas_prp", false]], "is_fermat_pseudoprime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_fermat_pseudoprime", false]], "is_field (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.is_Field", false]], "is_full_module() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.is_full_module", false]], "is_full_module() (sympy.polys.agca.modules.subquotientmodule method)": [[208, "sympy.polys.agca.modules.SubQuotientModule.is_full_module", false]], "is_gaussian_prime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_gaussian_prime", false]], "is_groebner() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.is_groebner", false]], "is_ground (sympy.polys.polyclasses.anp property)": [[212, "sympy.polys.polyclasses.ANP.is_ground", false]], "is_ground (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_ground", false]], "is_ground (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_ground", false]], "is_hermitian (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_hermitian", false]], "is_homogeneous (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_homogeneous", false]], "is_homogeneous (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_homogeneous", false]], "is_identity (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_Identity", false]], "is_identity (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.is_identity", false]], "is_increasing() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_increasing", false]], "is_indefinite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_indefinite", false]], "is_inert (sympy.polys.numberfields.primes.primeideal property)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.is_inert", false]], "is_injective() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.is_injective", false]], "is_int() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.is_int", false]], "is_irreducible (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_irreducible", false]], "is_irreducible (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_irreducible", false]], "is_isomorphism() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.is_isomorphism", false]], "is_isosceles() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_isosceles", false]], "is_iterable (sympy.sets.sets.productset property)": [[229, "sympy.sets.sets.ProductSet.is_iterable", false]], "is_left_unbounded (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.is_left_unbounded", false]], "is_linear (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_linear", false]], "is_linear (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_linear", false]], "is_lower (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_lower", false]], "is_lower (sympy.polys.matrices.domainmatrix.domainmatrix property)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.is_lower", false]], "is_lower() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.is_lower", false]], "is_lower() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.is_lower", false]], "is_lower() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.is_lower", false]], "is_lower_hessenberg (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_lower_hessenberg", false]], "is_lucas_prp() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_lucas_prp", false]], "is_maximal() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_maximal", false]], "is_meromorphic() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_meromorphic", false]], "is_mersenne_prime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_mersenne_prime", false]], "is_minimal() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.is_minimal", false]], "is_monic (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_monic", false]], "is_monic (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_monic", false]], "is_monomial (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_monomial", false]], "is_monomial (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_monomial", false]], "is_monotonic() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_monotonic", false]], "is_multivariate (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_multivariate", false]], "is_negative() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.is_negative", false]], "is_negative() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_negative", false]], "is_negative() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_negative", false]], "is_negative() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.is_negative", false]], "is_negative() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_negative", false]], "is_negative() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.is_negative", false]], "is_negative() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.is_negative", false]], "is_negative() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_negative", false]], "is_negative_definite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_negative_definite", false]], "is_negative_semidefinite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_negative_semidefinite", false]], "is_nilpotent (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_nilpotent", false]], "is_nilpotent() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_nilpotent", false]], "is_nilpotent_number() (in module sympy.combinatorics.group_numbers)": [[74, "sympy.combinatorics.group_numbers.is_nilpotent_number", false]], "is_nnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.is_nnf", false]], "is_nonnegative() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_nonnegative", false]], "is_nonpositive() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_nonpositive", false]], "is_nonzero (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.is_nonzero", false]], "is_normal() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_normal", false]], "is_normalized (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.is_normalized", false]], "is_nthpow_residue() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.is_nthpow_residue", false]], "is_number (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.is_number", false]], "is_number (sympy.core.expr.expr property)": [[88, "sympy.core.expr.Expr.is_number", false]], "is_number (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.is_number", false]], "is_odd (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_odd", false]], "is_one (sympy.polys.polyclasses.anp property)": [[212, "sympy.polys.polyclasses.ANP.is_one", false]], "is_one (sympy.polys.polyclasses.dmf property)": [[212, "sympy.polys.polyclasses.DMF.is_one", false]], "is_one (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_one", false]], "is_one (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_one", false]], "is_one() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_one", false]], "is_only_above_fermi (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.is_only_above_fermi", false]], "is_only_above_fermi (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.is_only_above_fermi", false]], "is_only_below_fermi (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.is_only_below_fermi", false]], "is_only_below_fermi (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.is_only_below_fermi", false]], "is_only_q_annihilator (sympy.physics.secondquant.annihilatefermion property)": [[191, "sympy.physics.secondquant.AnnihilateFermion.is_only_q_annihilator", false]], "is_only_q_annihilator (sympy.physics.secondquant.createfermion property)": [[191, "sympy.physics.secondquant.CreateFermion.is_only_q_annihilator", false]], "is_only_q_creator (sympy.physics.secondquant.annihilatefermion property)": [[191, "sympy.physics.secondquant.AnnihilateFermion.is_only_q_creator", false]], "is_only_q_creator (sympy.physics.secondquant.createfermion property)": [[191, "sympy.physics.secondquant.CreateFermion.is_only_q_creator", false]], "is_open (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.is_open", false]], "is_palindromic() (in module sympy.ntheory.digits)": [[128, "sympy.ntheory.digits.is_palindromic", false]], "is_palindromic() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.is_palindromic", false]], "is_parallel() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.is_parallel", false]], "is_parallel() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.is_parallel", false]], "is_perfect (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_perfect", false]], "is_perfect() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_perfect", false]], "is_perpendicular() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.is_perpendicular", false]], "is_perpendicular() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.is_perpendicular", false]], "is_pid (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.is_PID", false]], "is_polycyclic (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_polycyclic", false]], "is_polynomial() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_polynomial", false]], "is_positive() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.is_positive", false]], "is_positive() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_positive", false]], "is_positive() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_positive", false]], "is_positive() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.is_positive", false]], "is_positive() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_positive", false]], "is_positive() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.is_positive", false]], "is_positive() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.is_positive", false]], "is_positive() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_positive", false]], "is_positive_definite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_positive_definite", false]], "is_positive_semidefinite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_positive_semidefinite", false]], "is_prefixed (sympy.physics.units.quantities.quantity property)": [[198, "sympy.physics.units.quantities.Quantity.is_prefixed", false]], "is_primary() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_primary", false]], "is_prime() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_prime", false]], "is_primitive (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_primitive", false]], "is_primitive (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_primitive", false]], "is_primitive() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_primitive", false]], "is_primitive_element (sympy.core.numbers.algebraicnumber property)": [[88, "sympy.core.numbers.AlgebraicNumber.is_primitive_element", false]], "is_primitive_root() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.is_primitive_root", false]], "is_principal() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_principal", false]], "is_proper (sympy.physics.control.lti.parallel property)": [[144, "sympy.physics.control.lti.Parallel.is_proper", false]], "is_proper (sympy.physics.control.lti.series property)": [[144, "sympy.physics.control.lti.Series.is_proper", false]], "is_proper (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.is_proper", false]], "is_proper_subset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_proper_subset", false]], "is_proper_superset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_proper_superset", false]], "is_pure() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.is_pure", false]], "is_q_annihilator (sympy.physics.secondquant.annihilatefermion property)": [[191, "sympy.physics.secondquant.AnnihilateFermion.is_q_annihilator", false]], "is_q_annihilator (sympy.physics.secondquant.createfermion property)": [[191, "sympy.physics.secondquant.CreateFermion.is_q_annihilator", false]], "is_q_creator (sympy.physics.secondquant.annihilatefermion property)": [[191, "sympy.physics.secondquant.AnnihilateFermion.is_q_creator", false]], "is_q_creator (sympy.physics.secondquant.createfermion property)": [[191, "sympy.physics.secondquant.CreateFermion.is_q_creator", false]], "is_quad_residue() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.is_quad_residue", false]], "is_quadratic (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_quadratic", false]], "is_quadratic (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_quadratic", false]], "is_radical() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_radical", false]], "is_rat() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.is_rat", false]], "is_rational (sympy.polys.numberfields.modules.powerbasiselement property)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.is_rational", false]], "is_rational_function() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_rational_function", false]], "is_reduced() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.is_reduced", false]], "is_right() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_right", false]], "is_right_unbounded (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.is_right_unbounded", false]], "is_ring (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.is_Ring", false]], "is_same() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.is_same", false]], "is_scalar_multiple() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.is_scalar_multiple", false]], "is_scalene() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_scalene", false]], "is_sequence() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.is_sequence", false]], "is_similar() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.is_similar", false]], "is_similar() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.is_similar", false]], "is_similar() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_similar", false]], "is_simple() (sympy.functions.special.delta_functions.diracdelta method)": [[96, "sympy.functions.special.delta_functions.DiracDelta.is_simple", false]], "is_singleton (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_Singleton", false]], "is_singular() (sympy.core.function.function class method)": [[88, "sympy.core.function.Function.is_singular", false]], "is_singular() (sympy.holonomic.holonomic.differentialoperator method)": [[111, "sympy.holonomic.holonomic.DifferentialOperator.is_singular", false]], "is_solenoidal() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.is_solenoidal", false]], "is_solenoidal() (in module sympy.vector)": [[268, "sympy.vector.is_solenoidal", false]], "is_solvable (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_solvable", false]], "is_sqf (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_sqf", false]], "is_sqf (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_sqf", false]], "is_square (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_square", false]], "is_square (sympy.polys.matrices.domainmatrix.domainmatrix property)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.is_square", false]], "is_square() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_square", false]], "is_square() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_square", false]], "is_square() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_square", false]], "is_square() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_square", false]], "is_square() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.is_square", false]], "is_square() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.is_square", false]], "is_square() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.is_square", false]], "is_stable() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.is_stable", false]], "is_strictly_decreasing() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_strictly_decreasing", false]], "is_strictly_increasing() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_strictly_increasing", false]], "is_strictly_proper (sympy.physics.control.lti.parallel property)": [[144, "sympy.physics.control.lti.Parallel.is_strictly_proper", false]], "is_strictly_proper (sympy.physics.control.lti.series property)": [[144, "sympy.physics.control.lti.Series.is_strictly_proper", false]], "is_strictly_proper (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.is_strictly_proper", false]], "is_strong_lucas_prp() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_strong_lucas_prp", false]], "is_strongly_diagonally_dominant (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_strongly_diagonally_dominant", false]], "is_subdiagram() (sympy.categories.diagram method)": [[68, "sympy.categories.Diagram.is_subdiagram", false]], "is_subgroup() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_subgroup", false]], "is_submodule() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.is_submodule", false]], "is_submodule() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.is_submodule", false]], "is_submodule() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.is_submodule", false]], "is_submodule() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.is_submodule", false]], "is_subset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_subset", false]], "is_superset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_superset", false]], "is_surjective() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.is_surjective", false]], "is_symbolic() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_symbolic", false]], "is_symmetric (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_symmetric", false]], "is_symmetric() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_symmetric", false]], "is_tangent() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.is_tangent", false]], "is_transitive() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_transitive", false]], "is_trivial (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_trivial", false]], "is_unit() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.is_unit", false]], "is_unit() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_unit", false]], "is_univariate (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_univariate", false]], "is_upper (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_upper", false]], "is_upper (sympy.polys.matrices.domainmatrix.domainmatrix property)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.is_upper", false]], "is_upper() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.is_upper", false]], "is_upper() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.is_upper", false]], "is_upper() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.is_upper", false]], "is_upper_hessenberg (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_upper_hessenberg", false]], "is_weakly_diagonally_dominant (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_weakly_diagonally_dominant", false]], "is_whole_ring() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_whole_ring", false]], "is_zero (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.is_zero", false]], "is_zero (sympy.polys.polyclasses.anp property)": [[212, "sympy.polys.polyclasses.ANP.is_zero", false]], "is_zero (sympy.polys.polyclasses.dmf property)": [[212, "sympy.polys.polyclasses.DMF.is_zero", false]], "is_zero (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_zero", false]], "is_zero (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_zero", false]], "is_zero() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.is_zero", false]], "is_zero() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_zero", false]], "is_zero() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.is_zero", false]], "is_zero() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.is_zero", false]], "is_zero() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.is_zero", false]], "is_zero() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.is_zero", false]], "is_zero() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_zero", false]], "is_zero_dimensional (sympy.polys.polytools.groebnerbasis property)": [[217, "sympy.polys.polytools.GroebnerBasis.is_zero_dimensional", false]], "is_zero_dimensional() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.is_zero_dimensional", false]], "is_zero_matrix (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_zero_matrix", false]], "is_zero_matrix() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.is_zero_matrix", false]], "is_zero_matrix() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.is_zero_matrix", false]], "is_zero_matrix() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.is_zero_matrix", false]], "is_zero_quaternion() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.is_zero_quaternion", false]], "isdisjoint() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.isdisjoint", false]], "isign (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.isign", false]], "isolate() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.isolate", false]], "isomorphismfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.IsomorphismFailed", false]], "isprime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.isprime", false]], "isqrt() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.isqrt", false]], "issubset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.issubset", false]], "issuperset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.issuperset", false]], "istruepredicate (class in sympy.assumptions.predicates.common)": [[65, "sympy.assumptions.predicates.common.IsTruePredicate", false]], "isympy": [[15, "term-isympy", true]], "ite (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.ITE", false]], "items() (sympy.core.containers.dict method)": [[88, "sympy.core.containers.Dict.items", false]], "iter_items() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.iter_items", false]], "iter_items() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.iter_items", false]], "iter_items() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.iter_items", false]], "iter_items() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.iter_items", false]], "iter_items() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.iter_items", false]], "iter_q_annihilators() (sympy.physics.secondquant.no method)": [[191, "sympy.physics.secondquant.NO.iter_q_annihilators", false]], "iter_q_creators() (sympy.physics.secondquant.no method)": [[191, "sympy.physics.secondquant.NO.iter_q_creators", false]], "iter_values() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.iter_values", false]], "iter_values() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.iter_values", false]], "iter_values() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.iter_values", false]], "iter_values() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.iter_values", false]], "iter_values() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.iter_values", false]], "iterable() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.iterable", false]], "iterate_binary() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.iterate_binary", false]], "iterate_graycode() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.iterate_graycode", false]], "itercoeffs() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.itercoeffs", false]], "itermonomials() (in module sympy.polys.monomials)": [[217, "sympy.polys.monomials.itermonomials", false]], "itermonoms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.itermonoms", false]], "iterterms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.iterterms", false]], "j2op (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.J2Op", false]], "jacobi (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.jacobi", false]], "jacobi_normalized() (in module sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.jacobi_normalized", false]], "jacobi_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.jacobi_poly", false]], "jacobi_symbol (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.jacobi_symbol", false]], "jacobi_symbol() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.jacobi_symbol", false]], "jacobian() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.jacobian", false]], "jacobian() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.jacobian", false]], "jacobian_determinant() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.jacobian_determinant", false]], "jacobian_matrix() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.jacobian_matrix", false]], "javascriptcodeprinter (class in sympy.printing.jscode)": [[221, "sympy.printing.jscode.JavascriptCodePrinter", false]], "jn (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.jn", false]], "jn_zeros() (in module sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.jn_zeros", false]], "join() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.join", false]], "joint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.Joint", false]], "joint_axis (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.joint_axis", false]], "joint_axis (sympy.physics.mechanics.joint.pinjoint property)": [[152, "sympy.physics.mechanics.joint.PinJoint.joint_axis", false]], "joint_axis (sympy.physics.mechanics.joint.prismaticjoint property)": [[152, "sympy.physics.mechanics.joint.PrismaticJoint.joint_axis", false]], "jointrv() (in module sympy.stats)": [[241, "sympy.stats.JointRV", false]], "joints (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.joints", false]], "jointsmethod (class in sympy.physics.mechanics.jointsmethod)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod", false]], "jones_2_stokes() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.jones_2_stokes", false]], "jones_vector() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.jones_vector", false]], "jordan_block() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.jordan_block", false]], "jordan_cell() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.jordan_cell", false]], "jordan_form() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.jordan_form", false]], "josephus() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.josephus", false]], "jscode() (in module sympy.printing.jscode)": [[221, "sympy.printing.jscode.jscode", false]], "julia_code() (in module sympy.printing.julia)": [[221, "sympy.printing.julia.julia_code", false]], "juliacodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.JuliaCodeGen", false]], "juliacodeprinter (class in sympy.printing.julia)": [[221, "sympy.printing.julia.JuliaCodePrinter", false]], "jxbra (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JxBra", false]], "jxbracoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JxBraCoupled", false]], "jxket (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JxKet", false]], "jxketcoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JxKetCoupled", false]], "jybra (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JyBra", false]], "jybracoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JyBraCoupled", false]], "jyket (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JyKet", false]], "jyketcoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JyKetCoupled", false]], "jzbra (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzBra", false]], "jzbracoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzBraCoupled", false]], "jzket (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzKet", false]], "jzketcoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzKetCoupled", false]], "jzop (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzOp", false]], "kahane_simplify() (in module sympy.physics.hep.gamma_matrices)": [[145, "sympy.physics.hep.gamma_matrices.kahane_simplify", false]], "kanes_equations() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.kanes_equations", false]], "kanesmethod (class in sympy.physics.mechanics.kane)": [[153, "sympy.physics.mechanics.kane.KanesMethod", false]], "kbins() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.kbins", false]], "kdes (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.kdes", false]], "kdes (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.kdes", false]], "kdes (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.kdes", false]], "kernel() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.kernel", false]], "kernel() (sympy.polys.numberfields.modules.modulehomomorphism method)": [[216, "sympy.polys.numberfields.modules.ModuleHomomorphism.kernel", false]], "ket (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.Ket", false]], "ket (sympy.physics.quantum.operator.outerproduct property)": [[180, "sympy.physics.quantum.operator.OuterProduct.ket", false]], "ket (sympy.physics.secondquant.innerproduct property)": [[191, "sympy.physics.secondquant.InnerProduct.ket", false]], "ketbase (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.KetBase", false]], "key2bounds() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.key2bounds", false]], "key2ij() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.key2ij", false]], "keys() (sympy.core.containers.dict method)": [[88, "sympy.core.containers.Dict.keys", false]], "kid_rsa_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.kid_rsa_private_key", false]], "kid_rsa_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.kid_rsa_public_key", false]], "killable_index (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.killable_index", false]], "killable_index (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.killable_index", false]], "kin_explicit_rhs (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.kin_explicit_rhs", false]], "kind": [[15, "term-Kind", true]], "kind (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.kind", false]], "kind (class in sympy.core.kind)": [[88, "sympy.core.kind.Kind", false]], "kind (sympy.core.containers.tuple property)": [[88, "sympy.core.containers.Tuple.kind", false]], "kind (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.kind", false]], "kindiffdict() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.kindiffdict", false]], "kinematic_equations() (in module sympy.physics.vector.functions)": [[204, "sympy.physics.vector.functions.kinematic_equations", false]], "kinetic_energy() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.kinetic_energy", false]], "kinetic_energy() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.kinetic_energy", false]], "kinetic_energy() (sympy.physics.mechanics.particle.particle method)": [[155, "sympy.physics.mechanics.particle.Particle.kinetic_energy", false]], "kinetic_energy() (sympy.physics.mechanics.rigidbody.rigidbody method)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.kinetic_energy", false]], "known_fcns_src1 (in module sympy.printing.julia)": [[221, "sympy.printing.julia.known_fcns_src1", false]], "known_fcns_src1 (in module sympy.printing.octave)": [[221, "sympy.printing.octave.known_fcns_src1", false]], "known_fcns_src2 (in module sympy.printing.julia)": [[221, "sympy.printing.julia.known_fcns_src2", false]], "known_fcns_src2 (in module sympy.printing.octave)": [[221, "sympy.printing.octave.known_fcns_src2", false]], "known_functions (in module sympy.printing.jscode)": [[221, "sympy.printing.jscode.known_functions", false]], "known_functions (in module sympy.printing.mathematica)": [[221, "sympy.printing.mathematica.known_functions", false]], "known_functions (in module sympy.printing.rcode)": [[221, "sympy.printing.rcode.known_functions", false]], "known_functions (in module sympy.printing.rust)": [[221, "sympy.printing.rust.known_functions", false]], "known_functions_c89 (in module sympy.printing.c)": [[221, "sympy.printing.c.known_functions_C89", false]], "known_functions_c99 (in module sympy.printing.c)": [[221, "sympy.printing.c.known_functions_C99", false]], "kronecker_symbol (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.kronecker_symbol", false]], "kroneckerdelta (class in sympy.functions.special.tensor_functions)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta", false]], "kroneckerdelta (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.KroneckerDelta", false]], "kroneckersimp() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.kroneckersimp", false]], "ksubsets() (sympy.combinatorics.subsets method)": [[83, "sympy.combinatorics.subsets.ksubsets", false]], "kumaraswamy() (in module sympy.stats)": [[241, "sympy.stats.Kumaraswamy", false]], "kurtosis() (in module sympy.stats)": [[241, "sympy.stats.kurtosis", false]], "kwargs() (sympy.codegen.ast.token method)": [[69, "sympy.codegen.ast.Token.kwargs", false]], "l1_norm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.l1_norm", false]], "l1_norm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.l1_norm", false]], "l2 (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.L2", false]], "l2_norm_squared() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.l2_norm_squared", false]], "l_m_opt (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.l_M_opt", false]], "l_t_slack (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.l_T_slack", false]], "label (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.Label", false]], "label (sympy.physics.quantum.state.timedepstate property)": [[189, "sympy.physics.quantum.state.TimeDepState.label", false]], "label (sympy.tensor.indexed.idx property)": [[246, "sympy.tensor.indexed.Idx.label", false]], "label (sympy.tensor.indexed.indexedbase property)": [[246, "sympy.tensor.indexed.IndexedBase.label", false]], "labeller() (in module sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.labeller", false]], "lagrangesmethod (class in sympy.physics.mechanics.lagrange)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod", false]], "lagrangian() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.Lagrangian", false]], "laguerre (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.laguerre", false]], "laguerre_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.laguerre_poly", false]], "lambda (class in sympy.core.function)": [[88, "sympy.core.function.Lambda", false]], "lambda_notation() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.lambda_notation", false]], "lambdaprinter (class in sympy.printing.lambdarepr)": [[221, "sympy.printing.lambdarepr.LambdaPrinter", false]], "lambdarepr() (in module sympy.printing.lambdarepr)": [[221, "sympy.printing.lambdarepr.lambdarepr", false]], "lambdastr() (in module sympy.utilities.lambdify)": [[260, "sympy.utilities.lambdify.lambdastr", false]], "lambdify()": [[15, "term-lambdify", true]], "lambdify() (in module sympy.utilities.lambdify)": [[260, "sympy.utilities.lambdify.lambdify", false]], "lambertw (class in sympy.functions.elementary.exponential)": [[94, "sympy.functions.elementary.exponential.LambertW", false]], "lamda": [[15, "term-lamda", true]], "laplace() (in module sympy.stats)": [[241, "sympy.stats.Laplace", false]], "laplace_correspondence() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.laplace_correspondence", false]], "laplace_initial_conds() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.laplace_initial_conds", false]], "laplace_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.laplace_transform", false]], "laplacetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.LaplaceTransform", false]], "larklatexparser (class in sympy.parsing.latex.lark)": [[130, "sympy.parsing.latex.lark.LarkLaTeXParser", false]], "latex() (in module sympy.printing.latex)": [[221, "sympy.printing.latex.latex", false]], "latexparsingerror (class in sympy.parsing.latex)": [[130, "sympy.parsing.latex.LaTeXParsingError", false]], "latexprinter (class in sympy.printing.latex)": [[221, "sympy.printing.latex.LatexPrinter", false]], "lbound() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.lbound", false]], "lc() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.LC", false]], "lc() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.LC", false]], "lc() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.LC", false]], "lc() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.LC", false]], "lcim() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.lcim", false]], "lcm() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.lcm", false]], "lcm() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.lcm", false]], "lcm() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.lcm", false]], "lcm() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.lcm", false]], "lcm() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.lcm", false]], "lcm() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.lcm", false]], "lcm() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.lcm", false]], "lcm() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.lcm", false]], "lcm() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.lcm", false]], "lcm() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.lcm", false]], "lcm() (sympy.polys.monomials.monomial method)": [[217, "sympy.polys.monomials.Monomial.lcm", false]], "lcm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.lcm", false]], "lcm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.lcm", false]], "lcm_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.lcm_list", false]], "ldescent() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.ldescent", false]], "ldldecomposition() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.LDLdecomposition", false]], "ldldecomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LDLdecomposition", false]], "ldlsolve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LDLsolve", false]], "ldudecomposition() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition", false]], "le (in module sympy.core.relational)": [[88, "sympy.core.relational.Le", false]], "leading_expv() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.leading_expv", false]], "leading_monom() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.leading_monom", false]], "leading_term() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.leading_term", false]], "leadterm() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.leadterm", false]], "least_rotation() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.least_rotation", false]], "left() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.left", false]], "left_eigenvects() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.left_eigenvects", false]], "left_open (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.left_open", false]], "left_support (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.left_support", false]], "leftslash() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.leftslash", false]], "legendre (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.legendre", false]], "legendre_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.legendre_poly", false]], "legendre_symbol (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.legendre_symbol", false]], "legendre_symbol() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.legendre_symbol", false]], "length (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.length", false]], "length (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.length", false]], "length (sympy.geometry.line.segment property)": [[101, "sympy.geometry.line.Segment.length", false]], "length (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.length", false]], "length (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.length", false]], "length (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.length", false]], "length (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.length", false]], "length (sympy.physics.mechanics.pathway.linearpathway property)": [[156, "sympy.physics.mechanics.pathway.LinearPathway.length", false]], "length (sympy.physics.mechanics.pathway.obstaclesetpathway property)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway.length", false]], "length (sympy.physics.mechanics.pathway.pathwaybase property)": [[156, "sympy.physics.mechanics.pathway.PathwayBase.length", false]], "length (sympy.physics.mechanics.pathway.wrappingpathway property)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway.length", false]], "length (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.length", false]], "length() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.length", false]], "length() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.length", false]], "lens_formula() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.lens_formula", false]], "lens_makers_formula() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.lens_makers_formula", false]], "lerchphi (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.lerchphi", false]], "lessthan (class in sympy.core.relational)": [[88, "sympy.core.relational.LessThan", false]], "levicivita (class in sympy.functions.special.tensor_functions)": [[96, "sympy.functions.special.tensor_functions.LeviCivita", false]], "levy() (in module sympy.stats)": [[241, "sympy.stats.Levy", false]], "lexorder (class in sympy.polys.orderings)": [[217, "sympy.polys.orderings.LexOrder", false]], "lfsr_autocorrelation() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.lfsr_autocorrelation", false]], "lfsr_connection_polynomial() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.lfsr_connection_polynomial", false]], "lfsr_sequence() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.lfsr_sequence", false]], "lhs (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.lhs", false]], "li (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Li", false], [96, "sympy.functions.special.error_functions.li", false]], "lie_algebra() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.lie_algebra", false]], "lie_algebra() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.lie_algebra", false]], "lie_algebra() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.lie_algebra", false]], "lie_algebra() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.lie_algebra", false]], "lie_heuristic_abaco1_product() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco1_product", false]], "lie_heuristic_abaco1_simple() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco1_simple", false]], "lie_heuristic_abaco2_similar() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco2_similar", false]], "lie_heuristic_abaco2_unique_general() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco2_unique_general", false]], "lie_heuristic_abaco2_unique_unknown() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco2_unique_unknown", false]], "lie_heuristic_bivariate() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_bivariate", false]], "lie_heuristic_chi() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_chi", false]], "lie_heuristic_function_sum() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_function_sum", false]], "lie_heuristic_linear() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_linear", false]], "liederivative (class in sympy.diffgeom)": [[90, "sympy.diffgeom.LieDerivative", false]], "liegroup (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.LieGroup", false]], "lift() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.lift", false]], "lift() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.lift", false]], "limit (class in sympy.series.limits)": [[228, "sympy.series.limits.Limit", false]], "limit() (in module sympy.series.limits)": [[228, "sympy.series.limits.limit", false]], "limit() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.limit", false]], "limit() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.limit", false]], "limit_denominator() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.limit_denominator", false]], "limit_seq() (in module sympy.series.limitseq)": [[226, "sympy.series.limitseq.limit_seq", false]], "limitinf() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.limitinf", false]], "limiting_distribution (sympy.stats.discretemarkovchain property)": [[241, "sympy.stats.DiscreteMarkovChain.limiting_distribution", false]], "limits (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.limits", false]], "limits (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.limits", false]], "limits (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.limits", false]], "line (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Line", false]], "line2d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Line2D", false]], "line2dbaseseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.Line2DBaseSeries", false]], "line3d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Line3D", false]], "line3dbaseseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.Line3DBaseSeries", false]], "line_integrate() (in module sympy.integrals.integrals)": [[115, "sympy.integrals.integrals.line_integrate", false]], "linear (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.Linear", false]], "linear_eq_to_matrix() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.linear_eq_to_matrix", false]], "linear_momentum() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.linear_momentum", false]], "linear_momentum() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.linear_momentum", false]], "linear_momentum() (sympy.physics.mechanics.particle.particle method)": [[155, "sympy.physics.mechanics.particle.Particle.linear_momentum", false]], "linear_momentum() (sympy.physics.mechanics.rigidbody.rigidbody method)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.linear_momentum", false]], "linear_ode_to_matrix() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.linear_ode_to_matrix", false]], "linear_polarizer() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.linear_polarizer", false]], "linearcoefficients (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.LinearCoefficients", false]], "lineardamper (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.LinearDamper", false]], "linearentity (class in sympy.geometry.line)": [[101, "sympy.geometry.line.LinearEntity", false]], "linearentity2d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.LinearEntity2D", false]], "linearentity3d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.LinearEntity3D", false]], "linearize() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.linearize", false]], "linearize() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.linearize", false]], "linearize() (sympy.physics.mechanics.linearize.linearizer method)": [[154, "sympy.physics.mechanics.linearize.Linearizer.linearize", false]], "linearizer (class in sympy.physics.mechanics.linearize)": [[154, "sympy.physics.mechanics.linearize.Linearizer", false]], "linearpathway (class in sympy.physics.mechanics.pathway)": [[156, "sympy.physics.mechanics.pathway.LinearPathway", false]], "linearspring (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.LinearSpring", false]], "lineover1drangeseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.LineOver1DRangeSeries", false]], "linodesolve() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.linodesolve", false]], "linodesolve_type() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.linodesolve_type", false]], "linprog() (in module sympy.solvers.simplex)": [[239, "sympy.solvers.simplex.linprog", false]], "linsolve() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.linsolve", false]], "liouville (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.Liouville", false]], "list() (sympy.combinatorics.permutations.cycle method)": [[80, "sympy.combinatorics.permutations.Cycle.list", false]], "list() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.list", false]], "list2numpy() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.list2numpy", false]], "list_can_dims (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.list_can_dims", false]], "list_visitor() (in module sympy.utilities.enumerative)": [[256, "sympy.utilities.enumerative.list_visitor", false]], "listcoeffs() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.listcoeffs", false]], "listmonoms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.listmonoms", false]], "listterms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.listterms", false]], "literal_dp (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.literal_dp", false]], "literal_sp (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.literal_sp", false]], "lll() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.lll", false]], "lll() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.lll", false]], "lll() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.lll", false]], "lll_transform() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.lll_transform", false]], "lll_transform() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.lll_transform", false]], "lll_transform() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.lll_transform", false]], "lm() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.LM", false]], "lm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.LM", false]], "load (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.load", false]], "load_vector (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.load_vector", false]], "loads (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.loads", false]], "loads (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.loads", false]], "loads (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.loads", false]], "loads (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.loads", false]], "loads (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.loads", false]], "loads_position (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.loads_position", false]], "locate_new() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.locate_new", false]], "locatenew() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.locatenew", false]], "log (class in sympy.functions.elementary.exponential)": [[94, "sympy.functions.elementary.exponential.log", false]], "log() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.log", false]], "log() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.log", false]], "log() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.log", false]], "log() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.log", false]], "log10 (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.log10", false]], "log1p (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.log1p", false]], "log2 (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.log2", false]], "logarithmic() (in module sympy.stats)": [[241, "sympy.stats.Logarithmic", false]], "logcombine() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.logcombine", false]], "loggamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.loggamma", false]], "logistic() (in module sympy.stats)": [[241, "sympy.stats.Logistic", false]], "loglogistic() (in module sympy.stats)": [[241, "sympy.stats.LogLogistic", false]], "lognormal() (in module sympy.stats)": [[241, "sympy.stats.LogNormal", false]], "lomax() (in module sympy.stats)": [[241, "sympy.stats.Lomax", false]], "lopen() (sympy.sets.sets.interval class method)": [[229, "sympy.sets.sets.Interval.Lopen", false]], "lower (sympy.physics.secondquant.antisymmetrictensor property)": [[191, "sympy.physics.secondquant.AntiSymmetricTensor.lower", false]], "lower (sympy.tensor.indexed.idx property)": [[246, "sympy.tensor.indexed.Idx.lower", false]], "lower_central_series() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.lower_central_series", false]], "lower_triangular() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.lower_triangular", false]], "lower_triangular_solve() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.lower_triangular_solve", false]], "lower_triangular_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.lower_triangular_solve", false]], "lowergamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.lowergamma", false]], "lowertriangularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.LowerTriangularPredicate", false]], "lpmax() (in module sympy.solvers.simplex)": [[239, "sympy.solvers.simplex.lpmax", false]], "lpmin() (in module sympy.solvers.simplex)": [[239, "sympy.solvers.simplex.lpmin", false]], "lseries() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.lseries", false]], "lt (in module sympy.core.relational)": [[88, "sympy.core.relational.Lt", false]], "lt() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.LT", false]], "lt() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.LT", false]], "ltrim() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.ltrim", false]], "lu() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.lu", false]], "lu() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.lu", false]], "lu() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.lu", false]], "lu() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.lu", false]], "lu_solve() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.lu_solve", false]], "lu_solve() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.lu_solve", false]], "lu_solve() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.lu_solve", false]], "lu_solve() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.lu_solve", false]], "lucas (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.lucas", false]], "ludecomposition() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition", false]], "ludecomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LUdecomposition", false]], "ludecomposition_simple() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LUdecomposition_Simple", false]], "ludecompositionff() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LUdecompositionFF", false]], "lusolve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LUsolve", false]], "m (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.M", false]], "m (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.M", false]], "m (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.M", false]], "m (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.M", false]], "m20() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.M20", false]], "magnitude() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.magnitude", false]], "magnitude() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.magnitude", false]], "major (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.major", false]], "make_mod_elt() (in module sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.make_mod_elt", false]], "make_monic_over_integers_by_scaling_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.make_monic_over_integers_by_scaling_roots", false]], "make_perm() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.make_perm", false]], "make_routine() (in module sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.make_routine", false]], "manifold (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Manifold", false]], "manualintegrate() (in module sympy.integrals.manualintegrate)": [[115, "sympy.integrals.manualintegrate.manualintegrate", false]], "map() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.map", false]], "maple_code() (in module sympy.printing.maple)": [[221, "sympy.printing.maple.maple_code", false]], "maplecodeprinter (class in sympy.printing.maple)": [[221, "sympy.printing.maple.MapleCodePrinter", false]], "marcumq (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.marcumq", false]], "marginal_distribution() (in module sympy.stats)": [[241, "sympy.stats.marginal_distribution", false]], "markers (sympy.plotting.plot.plot property)": [[207, "sympy.plotting.plot.Plot.markers", false]], "mass (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.mass", false]], "mass (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.mass", false]], "mass (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.mass", false]], "mass_matrix (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.mass_matrix", false]], "mass_matrix (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.mass_matrix", false]], "mass_matrix (sympy.physics.mechanics.lagrange.lagrangesmethod property)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.mass_matrix", false]], "mass_matrix (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.mass_matrix", false]], "mass_matrix_full (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.mass_matrix_full", false]], "mass_matrix_full (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.mass_matrix_full", false]], "mass_matrix_full (sympy.physics.mechanics.lagrange.lagrangesmethod property)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.mass_matrix_full", false]], "mass_matrix_full (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.mass_matrix_full", false]], "mass_matrix_kin (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.mass_matrix_kin", false]], "masscenter (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.masscenter", false]], "masscenter (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.masscenter", false]], "masscenter (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.masscenter", false]], "masscenter_vel() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.masscenter_vel", false]], "matadd (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatAdd", false]], "match() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.match", false]], "match() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.match", false]], "matches() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.matches", false]], "matches() (sympy.solvers.diophantine.diophantine.diophantineequationtype method)": [[234, "sympy.solvers.diophantine.diophantine.DiophantineEquationType.matches", false]], "mathematica_code() (in module sympy.printing.mathematica)": [[221, "sympy.printing.mathematica.mathematica_code", false]], "mathieubase (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.MathieuBase", false]], "mathieuc (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.mathieuc", false]], "mathieucprime (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.mathieucprime", false]], "mathieus (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.mathieus", false]], "mathieusprime (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.mathieusprime", false]], "mathml() (in module sympy.printing.mathml)": [[221, "sympy.printing.mathml.mathml", false]], "mathml_tag() (sympy.printing.mathml.mathmlcontentprinter method)": [[221, "sympy.printing.mathml.MathMLContentPrinter.mathml_tag", false]], "mathml_tag() (sympy.printing.mathml.mathmlpresentationprinter method)": [[221, "sympy.printing.mathml.MathMLPresentationPrinter.mathml_tag", false]], "mathmlcontentprinter (class in sympy.printing.mathml)": [[221, "sympy.printing.mathml.MathMLContentPrinter", false]], "mathmlpresentationprinter (class in sympy.printing.mathml)": [[221, "sympy.printing.mathml.MathMLPresentationPrinter", false]], "mathmlprinterbase (class in sympy.printing.mathml)": [[221, "sympy.printing.mathml.MathMLPrinterBase", false]], "matmul (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatMul", false]], "matmul() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.matmul", false]], "matmul() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.matmul", false]], "matmul() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.matmul", false]], "matmul() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.matmul", false]], "matplotlibbackend (class in sympy.plotting.plot)": [[207, "sympy.plotting.plot.MatplotlibBackend", false]], "matpow (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatPow", false]], "matrix": [[15, "term-Matrix", true]], "matrix (in module sympy.matrices.dense)": [[119, "sympy.matrices.dense.Matrix", false]], "matrix() (sympy.polys.numberfields.modules.modulehomomorphism method)": [[216, "sympy.polys.numberfields.modules.ModuleHomomorphism.matrix", false]], "matrix2numpy() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.matrix2numpy", false]], "matrix_exp() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.matrix_exp", false]], "matrix_exp_jordan_form() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.matrix_exp_jordan_form", false]], "matrix_fglm() (in module sympy.polys.fglmtools)": [[214, "sympy.polys.fglmtools.matrix_fglm", false]], "matrix_form() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.matrix_form", false]], "matrix_multiply_elementwise() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.matrix_multiply_elementwise", false]], "matrix_rep() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.matrix_rep", false]], "matrix_to_density() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.matrix_to_density", false]], "matrix_to_qubit() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.matrix_to_qubit", false]], "matrix_to_vector() (in module sympy.vector)": [[268, "sympy.vector.matrix_to_vector", false]], "matrixbase (class in sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.MatrixBase", false]], "matrixerror (class in sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.MatrixError", false]], "matrixexpr (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatrixExpr", false]], "matrixgamma() (in module sympy.stats)": [[241, "sympy.stats.MatrixGamma", false]], "matrixkind (class in sympy.matrices.kind)": [[123, "sympy.matrices.kind.MatrixKind", false]], "matrixnormal() (in module sympy.stats)": [[241, "sympy.stats.MatrixNormal", false]], "matrixpermute (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatrixPermute", false]], "matrixset (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatrixSet", false]], "matrixsolve (class in sympy.codegen.matrix_nodes)": [[69, "sympy.codegen.matrix_nodes.MatrixSolve", false]], "matrixsymbol (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatrixSymbol", false]], "max (class in sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.Max", false]], "max (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.max", false]], "max() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.max", false]], "max_bending_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.max_bending_moment", false]], "max_bmoment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.max_bmoment", false]], "max_bmoment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.max_bmoment", false]], "max_deflection() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.max_deflection", false]], "max_deflection() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.max_deflection", false]], "max_div (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.max_div", false]], "max_exponent (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.max_exponent", false]], "max_norm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.max_norm", false]], "max_norm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.max_norm", false]], "max_shear_force() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.max_shear_force", false]], "max_shear_force() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.max_shear_force", false]], "maximal_fiber_velocity (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.maximal_fiber_velocity", false]], "maximal_order() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.maximal_order", false]], "maximum() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.maximum", false]], "maxwell() (in module sympy.stats)": [[241, "sympy.stats.Maxwell", false]], "mcodeprinter (class in sympy.printing.mathematica)": [[221, "sympy.printing.mathematica.MCodePrinter", false]], "mdft() (in module sympy.physics.matrices)": [[147, "sympy.physics.matrices.mdft", false]], "measure (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.measure", false]], "measure_all() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.measure_all", false]], "measure_all_oneshot() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.measure_all_oneshot", false]], "measure_partial() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.measure_partial", false]], "measure_partial_oneshot() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.measure_partial_oneshot", false]], "medial (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.medial", false]], "median() (in module sympy.stats)": [[241, "sympy.stats.median", false]], "medians (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.medians", false]], "medium (class in sympy.physics.optics.medium)": [[162, "sympy.physics.optics.medium.Medium", false]], "meets() (sympy.series.gruntz.subsset method)": [[228, "sympy.series.gruntz.SubsSet.meets", false]], "meijerg (class in sympy.functions.special.hyper)": [[96, "sympy.functions.special.hyper.meijerg", false]], "meijerint_definite() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint.meijerint_definite", false]], "meijerint_indefinite() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint.meijerint_indefinite", false]], "meijerint_inversion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint.meijerint_inversion", false]], "mellin_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.mellin_transform", false]], "mellintransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.MellinTransform", false]], "member_lengths (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.member_lengths", false]], "members (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.members", false]], "memoize_property() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.memoize_property", false]], "mensor() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.mensor", false]], "merge (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.merge", false]], "merge_solution() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.merge_solution", false]], "mersenne_prime_exponent() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.mersenne_prime_exponent", false]], "method (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.method", false]], "metric_to_christoffel_1st() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.metric_to_Christoffel_1st", false]], "metric_to_christoffel_2nd() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.metric_to_Christoffel_2nd", false]], "metric_to_ricci_components() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.metric_to_Ricci_components", false]], "metric_to_riemann_components() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.metric_to_Riemann_components", false]], "mgamma() (in module sympy.physics.matrices)": [[147, "sympy.physics.matrices.mgamma", false]], "midpoint (sympy.geometry.line.segment property)": [[101, "sympy.geometry.line.Segment.midpoint", false]], "midpoint() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.midpoint", false]], "mignotte_sep_bound_squared() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.mignotte_sep_bound_squared", false]], "mimofeedback (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.MIMOFeedback", false]], "mimoparallel (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.MIMOParallel", false]], "mimoseries (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.MIMOSeries", false]], "min (class in sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.Min", false]], "min() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.min", false]], "min_exponent (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.min_exponent", false]], "min_qubits (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.min_qubits", false]], "min_qubits (sympy.physics.quantum.gate.cnotgate property)": [[175, "sympy.physics.quantum.gate.CNotGate.min_qubits", false]], "min_qubits (sympy.physics.quantum.gate.gate property)": [[175, "sympy.physics.quantum.gate.Gate.min_qubits", false]], "minimal_block() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.minimal_block", false]], "minimal_blocks() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.minimal_blocks", false]], "minimal_polynomial() (in module sympy.polys.numberfields.minpoly)": [[216, "sympy.polys.numberfields.minpoly.minimal_polynomial", false]], "minimum() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.minimum", false]], "minlex() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.minlex", false]], "minor (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.minor", false]], "minor() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.minor", false]], "minor_submatrix() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.minor_submatrix", false]], "minpoly() (in module sympy.polys.numberfields.minpoly)": [[216, "sympy.polys.numberfields.minpoly.minpoly", false]], "minpoly_of_element() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.minpoly_of_element", false]], "mirror_formula() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.mirror_formula", false]], "mobius (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.mobius", false]], "mobius() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.mobius", false]], "mobius_transform() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.mobius_transform", false]], "mobiusrange() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.mobiusrange", false]], "mod (class in sympy.core.mod)": [[88, "sympy.core.mod.Mod", false]], "mod (sympy.polys.domains.algebraicfield attribute)": [[212, "sympy.polys.domains.AlgebraicField.mod", false]], "mod_inverse() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.mod_inverse", false]], "mod_inverse() (in module sympy.core.numbers)": [[88, "sympy.core.numbers.mod_inverse", false]], "mod_to_list() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.mod_to_list", false]], "modgcd_bivariate() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd.modgcd_bivariate", false]], "modgcd_multivariate() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd.modgcd_multivariate", false]], "modgcd_univariate() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd.modgcd_univariate", false]], "module": [[16, "module-sympy.simplify.simplify", false], [58, "module-sympy", false], [60, "module-sympy.abc", false], [61, "module-sympy.algebras", false], [62, "module-sympy.assumptions.ask", false], [63, "module-sympy.assumptions.assume", false], [64, "module-sympy.assumptions", false], [65, "module-sympy.assumptions.predicates", false], [66, "module-sympy.assumptions.refine", false], [67, "module-sympy.calculus", false], [67, "module-sympy.calculus.euler", false], [67, "module-sympy.calculus.finite_diff", false], [67, "module-sympy.calculus.singularities", false], [67, "module-sympy.calculus.util", false], [68, "module-sympy.categories", false], [68, "module-sympy.categories.diagram_drawing", false], [69, "module-sympy.codegen.algorithms", false], [69, "module-sympy.codegen.approximations", false], [69, "module-sympy.codegen.ast", false], [69, "module-sympy.codegen.cfunctions", false], [69, "module-sympy.codegen.cnodes", false], [69, "module-sympy.codegen.cutils", false], [69, "module-sympy.codegen.cxxnodes", false], [69, "module-sympy.codegen.fnodes", false], [69, "module-sympy.codegen.futils", false], [69, "module-sympy.codegen.matrix_nodes", false], [69, "module-sympy.codegen.pyutils", false], [69, "module-sympy.codegen.rewriting", false], [71, "module-sympy.combinatorics.galois", false], [72, "module-sympy.combinatorics.graycode", false], [73, "module-sympy.combinatorics.group_constructs", false], [74, "module-sympy.combinatorics.group_numbers", false], [76, "module-sympy.combinatorics.named_groups", false], [77, "module-sympy.combinatorics.partitions", false], [79, "module-sympy.combinatorics.perm_groups", false], [80, "module-sympy.combinatorics.generators", false], [80, "module-sympy.combinatorics.permutations", false], [81, "module-sympy.combinatorics.polyhedron", false], [82, "module-sympy.combinatorics.prufer", false], [83, "module-sympy.combinatorics.subsets", false], [84, "module-sympy.combinatorics.tensor_can", false], [85, "module-sympy.combinatorics.testutil", false], [86, "module-sympy.combinatorics.util", false], [88, "module-sympy.core.add", false], [88, "module-sympy.core.assumptions", false], [88, "module-sympy.core.basic", false], [88, "module-sympy.core.cache", false], [88, "module-sympy.core.containers", false], [88, "module-sympy.core.evalf", false], [88, "module-sympy.core.expr", false], [88, "module-sympy.core.exprtools", false], [88, "module-sympy.core.function", false], [88, "module-sympy.core.intfunc", false], [88, "module-sympy.core.kind", false], [88, "module-sympy.core.mod", false], [88, "module-sympy.core.mul", false], [88, "module-sympy.core.multidimensional", false], [88, "module-sympy.core.numbers", false], [88, "module-sympy.core.power", false], [88, "module-sympy.core.random", false], [88, "module-sympy.core.relational", false], [88, "module-sympy.core.singleton", false], [88, "module-sympy.core.symbol", false], [88, "module-sympy.core.sympify", false], [88, "module-sympy.core.traversal", false], [89, "module-sympy.crypto.crypto", false], [90, "module-sympy.diffgeom", false], [91, "module-sympy.discrete", false], [91, "module-sympy.discrete.convolutions", false], [91, "module-sympy.discrete.transforms", false], [95, "module-sympy.functions", false], [96, "module-sympy.functions.special.bessel", false], [96, "module-sympy.functions.special.beta_functions", false], [96, "module-sympy.functions.special.elliptic_integrals", false], [96, "module-sympy.functions.special.error_functions", false], [96, "module-sympy.functions.special.gamma_functions", false], [96, "module-sympy.functions.special.mathieu_functions", false], [96, "module-sympy.functions.special.polynomials", false], [96, "module-sympy.functions.special.singularity_functions", false], [96, "module-sympy.functions.special.zeta_functions", false], [97, "module-sympy.geometry.curve", false], [98, "module-sympy.geometry.ellipse", false], [99, "module-sympy.geometry.entity", false], [101, "module-sympy.geometry.line", false], [102, "module-sympy.geometry.plane", false], [103, "module-sympy.geometry.point", false], [104, "module-sympy.geometry.polygon", false], [105, "module-sympy.geometry.util", false], [108, "module-sympy.holonomic", false], [113, "module-sympy.integrals.meijerint", false], [113, "module-sympy.integrals.meijerint_doc", false], [115, "module-sympy.integrals", false], [115, "module-sympy.integrals.intpoly", false], [115, "module-sympy.integrals.transforms", false], [116, "module-sympy.interactive", false], [116, "module-sympy.interactive.printing", false], [116, "module-sympy.interactive.session", false], [117, "module-sympy.liealgebras", false], [118, "module-sympy.logic", false], [118, "module-sympy.logic.inference", false], [120, "module-sympy.matrices.expressions", false], [120, "module-sympy.matrices.expressions.blockmatrix", false], [121, "module-sympy.matrices.immutable", false], [122, "module-sympy.matrices", false], [123, "module-sympy.matrices.kind", false], [124, "module-sympy.matrices.matrixbase", false], [126, "module-sympy.matrices.sparse", false], [127, "module-sympy.matrices.sparsetools", false], [128, "module-sympy.ntheory.bbp_pi", false], [128, "module-sympy.ntheory.continued_fraction", false], [128, "module-sympy.ntheory.digits", false], [128, "module-sympy.ntheory.ecm", false], [128, "module-sympy.ntheory.egyptian_fraction", false], [128, "module-sympy.ntheory.factor_", false], [128, "module-sympy.ntheory.generate", false], [128, "module-sympy.ntheory.modular", false], [128, "module-sympy.ntheory.multinomial", false], [128, "module-sympy.ntheory.partitions_", false], [128, "module-sympy.ntheory.primetest", false], [128, "module-sympy.ntheory.qs", false], [128, "module-sympy.ntheory.residue_ntheory", false], [130, "module-sympy.parsing", false], [130, "module-sympy.parsing.sym_expr", false], [131, "module-sympy.physics.biomechanics.activation", false], [132, "module-sympy.physics.biomechanics.curve", false], [133, "module-sympy.physics.biomechanics", false], [134, "module-sympy.physics.biomechanics.musculotendon", false], [135, "module-sympy.physics.continuum_mechanics.Arch", false], [136, "module-sympy.physics.continuum_mechanics.beam", false], [138, "module-sympy.physics.continuum_mechanics.cable", false], [140, "module-sympy.physics.continuum_mechanics.truss", false], [143, "module-sympy.physics.control", false], [144, "module-sympy.physics.control.lti", false], [145, "module-sympy.physics.hep.gamma_matrices", false], [146, "module-sympy.physics.hydrogen", false], [147, "module-sympy.physics.matrices", false], [148, "module-sympy.physics.mechanics.actuator", false], [151, "module-sympy.physics.mechanics", false], [152, "module-sympy.physics.mechanics.joint", false], [153, "module-sympy.physics.mechanics.kane", false], [153, "module-sympy.physics.mechanics.lagrange", false], [154, "module-sympy.physics.mechanics.linearize", false], [156, "module-sympy.physics.mechanics.pathway", false], [159, "module-sympy.physics.mechanics.wrapping_geometry", false], [160, "module-sympy.physics.optics.gaussopt", false], [162, "module-sympy.physics.optics.medium", false], [163, "module-sympy.physics.optics.polarization", false], [164, "module-sympy.physics.optics.utils", false], [165, "module-sympy.physics.optics.waves", false], [166, "module-sympy.physics.paulialgebra", false], [167, "module-sympy.physics.qho_1d", false], [168, "module-sympy.physics.quantum.anticommutator", false], [169, "module-sympy.physics.quantum.cartesian", false], [170, "module-sympy.physics.quantum.cg", false], [171, "module-sympy.physics.quantum.circuitplot", false], [172, "module-sympy.physics.quantum.commutator", false], [173, "module-sympy.physics.quantum.constants", false], [174, "module-sympy.physics.quantum.dagger", false], [175, "module-sympy.physics.quantum.gate", false], [176, "module-sympy.physics.quantum.grover", false], [177, "module-sympy.physics.quantum.hilbert", false], [179, "module-sympy.physics.quantum.innerproduct", false], [180, "module-sympy.physics.quantum.operator", false], [181, "module-sympy.physics.quantum.operatorset", false], [182, "module-sympy.physics.quantum.piab", false], [183, "module-sympy.physics.quantum.qapply", false], [184, "module-sympy.physics.quantum.qft", false], [185, "module-sympy.physics.quantum.qubit", false], [186, "module-sympy.physics.quantum.represent", false], [187, "module-sympy.physics.quantum.shor", false], [188, "module-sympy.physics.quantum.spin", false], [189, "module-sympy.physics.quantum.state", false], [190, "module-sympy.physics.quantum.tensorproduct", false], [191, "module-sympy.physics.secondquant", false], [192, "module-sympy.physics.sho", false], [193, "module-sympy.physics.units.dimensions", false], [197, "module-sympy.physics.units.prefixes", false], [198, "module-sympy.physics.units.quantities", false], [198, "module-sympy.physics.units.util", false], [199, "module-sympy.physics.units.unitsystem", false], [203, "module-sympy.physics.vector", false], [204, "module-sympy.physics.vector.functions", false], [204, "module-sympy.physics.vector.point", false], [206, "module-sympy.physics.wigner", false], [207, "module-sympy.plotting.plot", false], [207, "module-sympy.plotting.pygletplot", false], [210, "module-sympy.polys.matrices._dfm", false], [210, "module-sympy.polys.matrices._typing", false], [210, "module-sympy.polys.matrices.ddm", false], [210, "module-sympy.polys.matrices.dense", false], [210, "module-sympy.polys.matrices.domainmatrix", false], [210, "module-sympy.polys.matrices.sdm", false], [214, "module-sympy.polys.polyconfig", false], [214, "module-sympy.polys.polyoptions", false], [216, "module-sympy.polys.numberfields.modules", false], [216, "module-sympy.polys.numberfields.subfield", false], [217, "module-sympy.polys", false], [219, "module-sympy.polys.solvers", false], [221, "module-sympy.printing.aesaracode", false], [221, "module-sympy.printing.c", false], [221, "module-sympy.printing.codeprinter", false], [221, "module-sympy.printing.conventions", false], [221, "module-sympy.printing.cxx", false], [221, "module-sympy.printing.fortran", false], [221, "module-sympy.printing.gtk", false], [221, "module-sympy.printing.jscode", false], [221, "module-sympy.printing.julia", false], [221, "module-sympy.printing.lambdarepr", false], [221, "module-sympy.printing.latex", false], [221, "module-sympy.printing.maple", false], [221, "module-sympy.printing.mathematica", false], [221, "module-sympy.printing.mathml", false], [221, "module-sympy.printing.octave", false], [221, "module-sympy.printing.precedence", false], [221, "module-sympy.printing.pretty", false], [221, "module-sympy.printing.pretty.pretty", false], [221, "module-sympy.printing.pretty.pretty_symbology", false], [221, "module-sympy.printing.pretty.stringpict", false], [221, "module-sympy.printing.preview", false], [221, "module-sympy.printing.printer", false], [221, "module-sympy.printing.pycode", false], [221, "module-sympy.printing.python", false], [221, "module-sympy.printing.rcode", false], [221, "module-sympy.printing.repr", false], [221, "module-sympy.printing.rust", false], [221, "module-sympy.printing.smtlib", false], [221, "module-sympy.printing.str", false], [221, "module-sympy.printing.tree", false], [229, "module-sympy.sets.conditionset", false], [229, "module-sympy.sets.fancysets", false], [229, "module-sympy.sets.powerset", false], [229, "module-sympy.sets.sets", false], [230, "module-sympy.simplify.fu", false], [231, "module-sympy.simplify.hyperexpand_doc", false], [233, "module-sympy.simplify.combsimp", false], [233, "module-sympy.simplify.cse_main", false], [233, "module-sympy.simplify.epathtools", false], [233, "module-sympy.simplify.hyperexpand", false], [233, "module-sympy.simplify.powsimp", false], [233, "module-sympy.simplify.radsimp", false], [233, "module-sympy.simplify.ratsimp", false], [233, "module-sympy.simplify.sqrtdenest", false], [233, "module-sympy.simplify.trigsimp", false], [236, "module-sympy.solvers.inequalities", false], [237, "module-sympy.solvers.ode", false], [237, "module-sympy.solvers.ode.ode", false], [238, "module-sympy.solvers.pde", false], [239, "module-sympy.solvers", false], [239, "module-sympy.solvers.recurr", false], [239, "module-sympy.solvers.simplex", false], [240, "module-sympy.solvers.solveset", false], [241, "module-sympy.stats", false], [241, "module-sympy.stats.crv", false], [241, "module-sympy.stats.crv_types", false], [241, "module-sympy.stats.frv", false], [241, "module-sympy.stats.frv_types", false], [241, "module-sympy.stats.rv", false], [242, "module-sympy.tensor.array", false], [243, "module-sympy.tensor.array.expressions", false], [244, "module-sympy.tensor", false], [245, "module-sympy.tensor.index_methods", false], [246, "module-sympy.tensor.indexed", false], [247, "module-sympy.tensor.tensor", false], [248, "module-sympy.tensor.toperators", false], [249, "module-sympy.testing", false], [250, "module-sympy.testing.pytest", false], [251, "module-sympy.testing.randtest", false], [252, "module-sympy.testing.runtests", false], [253, "module-sympy.utilities.autowrap", false], [254, "module-sympy.utilities.codegen", false], [255, "module-sympy.utilities.decorator", false], [256, "module-sympy.utilities.enumerative", false], [257, "module-sympy.utilities.exceptions", false], [258, "module-sympy.utilities", false], [259, "module-sympy.utilities.iterables", false], [260, "module-sympy.utilities.lambdify", false], [261, "module-sympy.utilities.memoization", false], [262, "module-sympy.utilities.misc", false], [263, "module-sympy.utilities.source", false], [264, "module-sympy.utilities.timeutils", false], [273, "module-sympy.vector", false], [282, "module-sympy.physics", false]], "module (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Module", false]], "module (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.Module", false]], "module (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.Module", false]], "module_quotient() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.module_quotient", false]], "moduleelement (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.ModuleElement", false]], "moduleendomorphism (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.ModuleEndomorphism", false]], "modulehomomorphism (class in sympy.polys.agca.homomorphisms)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism", false]], "modulehomomorphism (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.ModuleHomomorphism", false]], "moment (class in sympy.stats)": [[241, "sympy.stats.Moment", false]], "moment() (in module sympy.stats)": [[241, "sympy.stats.moment", false]], "moment_load_vector (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.moment_load_vector", false]], "momentum (sympy.physics.quantum.cartesian.pxbra property)": [[169, "sympy.physics.quantum.cartesian.PxBra.momentum", false]], "momentum (sympy.physics.quantum.cartesian.pxket property)": [[169, "sympy.physics.quantum.cartesian.PxKet.momentum", false]], "monic() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.monic", false]], "monic() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.monic", false]], "monic() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.monic", false]], "monic() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.monic", false]], "monogenicfiniteextension (class in sympy.polys.agca.extensions)": [[208, "sympy.polys.agca.extensions.MonogenicFiniteExtension", false]], "monomial (class in sympy.polys.monomials)": [[217, "sympy.polys.monomials.Monomial", false]], "monomial_basis() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.monomial_basis", false]], "monomial_count() (in module sympy.polys.monomials)": [[217, "sympy.polys.monomials.monomial_count", false]], "monomialorder (class in sympy.polys.orderings)": [[217, "sympy.polys.orderings.MonomialOrder", false]], "monoms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.monoms", false]], "monoms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.monoms", false]], "monoms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.monoms", false]], "monotonicity_helper() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.monotonicity_helper", false]], "morphism (class in sympy.categories)": [[68, "sympy.categories.Morphism", false]], "morphisms (sympy.categories.diagram_drawing.diagramgrid property)": [[68, "sympy.categories.diagram_drawing.DiagramGrid.morphisms", false]], "moyal() (in module sympy.stats)": [[241, "sympy.stats.Moyal", false]], "mpmath": [[15, "term-mpmath", true]], "mpmathprinter (class in sympy.printing.pycode)": [[221, "sympy.printing.pycode.MpmathPrinter", false]], "mr() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.mr", false]], "mrv() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.mrv", false]], "mrv_leadterm() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.mrv_leadterm", false]], "mrv_max1() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.mrv_max1", false]], "mrv_max3() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.mrv_max3", false]], "msigma() (in module sympy.physics.matrices)": [[147, "sympy.physics.matrices.msigma", false]], "msubs() (in module sympy.physics.mechanics)": [[150, "sympy.physics.mechanics.msubs", false]], "mueller_matrix() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.mueller_matrix", false]], "mul (class in sympy.core.mul)": [[88, "sympy.core.mul.Mul", false]], "mul() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.mul", false]], "mul() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.mul", false]], "mul() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.mul", false]], "mul() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.mul", false]], "mul() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.mul", false]], "mul() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.mul", false]], "mul() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.mul", false]], "mul() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.mul", false]], "mul() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.mul", false]], "mul() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.mul", false]], "mul_elementwise() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.mul_elementwise", false]], "mul_ground() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.mul_ground", false]], "mul_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.mul_ground", false]], "mul_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.mul_ground", false]], "mul_inv() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.mul_inv", false]], "mul_xin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.mul_xin", false]], "mult_tab() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.mult_tab", false]], "multifactorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.MultiFactorial", false]], "multigamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.multigamma", false]], "multinomial() (in module sympy.stats)": [[241, "sympy.stats.Multinomial", false]], "multinomial_coefficients() (in module sympy.ntheory.multinomial)": [[128, "sympy.ntheory.multinomial.multinomial_coefficients", false]], "multinomial_coefficients_iterator() (in module sympy.ntheory.multinomial)": [[128, "sympy.ntheory.multinomial.multinomial_coefficients_iterator", false]], "multiplicity() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.multiplicity", false]], "multiplicity() (sympy.vector.implicitregion.implicitregion method)": [[265, "sympy.vector.implicitregion.ImplicitRegion.multiplicity", false]], "multiply() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.multiply", false]], "multiply_elementwise() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.multiply_elementwise", false]], "multiply_ideal() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.multiply_ideal", false]], "multiply_ideal() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.multiply_ideal", false]], "multiply_ideal() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.multiply_ideal", false]], "multiset() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset", false]], "multiset_combinations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset_combinations", false]], "multiset_derangements() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset_derangements", false]], "multiset_partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset_partitions", false]], "multiset_partitions_taocp() (in module sympy.utilities.enumerative)": [[256, "sympy.utilities.enumerative.multiset_partitions_taocp", false]], "multiset_permutations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset_permutations", false]], "multisetpartitiontraverser (class in sympy.utilities.enumerative)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser", false]], "multivariatebeta() (in module sympy.stats)": [[241, "sympy.stats.MultivariateBeta", false]], "multivariateewens() (in module sympy.stats)": [[241, "sympy.stats.MultivariateEwens", false]], "multivariatelaplace() (in module sympy.stats)": [[241, "sympy.stats.MultivariateLaplace", false]], "multivariatenormal() (in module sympy.stats)": [[241, "sympy.stats.MultivariateNormal", false]], "multivariatepolynomialerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.MultivariatePolynomialError", false]], "multivariatet() (in module sympy.stats)": [[241, "sympy.stats.MultivariateT", false]], "musculotendon_dynamics (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.musculotendon_dynamics", false]], "musculotendonbase (class in sympy.physics.biomechanics.musculotendon)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase", false]], "musculotendondegroote2016 (class in sympy.physics.biomechanics.musculotendon)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonDeGroote2016", false]], "musculotendonformulation (class in sympy.physics.biomechanics.musculotendon)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonFormulation", false]], "mutabledensematrix (class in sympy.matrices.dense)": [[119, "sympy.matrices.dense.MutableDenseMatrix", false]], "mutabledensendimarray (class in sympy.tensor.array)": [[242, "sympy.tensor.array.MutableDenseNDimArray", false]], "mutablesparsematrix (class in sympy.matrices.sparse)": [[126, "sympy.matrices.sparse.MutableSparseMatrix", false]], "mutablesparsendimarray (class in sympy.tensor.array)": [[242, "sympy.tensor.array.MutableSparseNDimArray", false]], "mx (class in sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.Mx", false]], "mz (class in sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.Mz", false]], "n (sympy.combinatorics.graycode.graycode property)": [[72, "sympy.combinatorics.graycode.GrayCode.n", false]], "n (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.n", false]], "n (sympy.physics.quantum.shor.cmod property)": [[187, "sympy.physics.quantum.shor.CMod.N", false]], "n (sympy.plotting.series.baseseries property)": [[207, "sympy.plotting.series.BaseSeries.n", false]], "n (sympy.polys.numberfields.modules.module property)": [[216, "sympy.polys.numberfields.modules.Module.n", false]], "n (sympy.polys.numberfields.modules.moduleelement property)": [[216, "sympy.polys.numberfields.modules.ModuleElement.n", false]], "n (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.n", false]], "n() (in module sympy.core.evalf)": [[88, "sympy.core.evalf.N", false]], "n() (sympy.core.evalf.evalfmixin method)": [[88, "sympy.core.evalf.EvalfMixin.n", false]], "n() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.n", false]], "n() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.n", false]], "n_order() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.n_order", false]], "nakagami() (in module sympy.stats)": [[241, "sympy.stats.Nakagami", false]], "name (sympy.categories.category property)": [[68, "sympy.categories.Category.name", false]], "name (sympy.categories.namedmorphism property)": [[68, "sympy.categories.NamedMorphism.name", false]], "name (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.name", false]], "name (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.name", false]], "name (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.name", false]], "name (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.name", false]], "namedmorphism (class in sympy.categories)": [[68, "sympy.categories.NamedMorphism", false]], "nan (class in sympy.core.numbers)": [[88, "sympy.core.numbers.NaN", false]], "nand (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Nand", false]], "nargs (sympy.core.function.functionclass property)": [[88, "sympy.core.function.FunctionClass.nargs", false]], "native_coeffs() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.native_coeffs", false]], "naturals (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Naturals", false]], "naturals0 (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Naturals0", false]], "nc() (in module sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.nC", false]], "ne (in module sympy.core.relational)": [[88, "sympy.core.relational.Ne", false]], "nearest_common_ancestor() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.nearest_common_ancestor", false]], "necklaces() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.necklaces", false]], "neg() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.neg", false]], "neg() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.neg", false]], "neg() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.neg", false]], "neg() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.neg", false]], "neg() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.neg", false]], "neg() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.neg", false]], "neg() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.neg", false]], "neg() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.neg", false]], "negated (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.negated", false]], "negative": [[88, "term-negative", true]], "negativebinomial() (in module sympy.stats)": [[241, "sympy.stats.NegativeBinomial", false]], "negativeinfinity (class in sympy.core.numbers)": [[88, "sympy.core.numbers.NegativeInfinity", false]], "negativemultinomial() (in module sympy.stats)": [[241, "sympy.stats.NegativeMultinomial", false]], "negativeone (class in sympy.core.numbers)": [[88, "sympy.core.numbers.NegativeOne", false]], "negativepredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.NegativePredicate", false]], "new() (sympy.polys.domains.gaussiandomains.gaussianelement class method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianElement.new", false]], "new() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.new", false]], "new() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.new", false]], "new() (sympy.polys.rootoftools.rootsum class method)": [[217, "sympy.polys.rootoftools.RootSum.new", false]], "newtons_method() (in module sympy.codegen.algorithms)": [[69, "sympy.codegen.algorithms.newtons_method", false]], "newtons_method_function() (in module sympy.codegen.algorithms)": [[69, "sympy.codegen.algorithms.newtons_method_function", false]], "next() (sympy.combinatorics.graycode.graycode method)": [[72, "sympy.combinatorics.graycode.GrayCode.next", false]], "next() (sympy.combinatorics.prufer.prufer method)": [[82, "sympy.combinatorics.prufer.Prufer.next", false]], "next() (sympy.printing.pretty.stringpict.stringpict static method)": [[221, "sympy.printing.pretty.stringpict.stringPict.next", false]], "next_binary() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.next_binary", false]], "next_gray() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.next_gray", false]], "next_lex() (sympy.combinatorics.partitions.integerpartition method)": [[77, "sympy.combinatorics.partitions.IntegerPartition.next_lex", false]], "next_lex() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.next_lex", false]], "next_lexicographic() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.next_lexicographic", false]], "next_nonlex() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.next_nonlex", false]], "next_trotterjohnson() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.next_trotterjohnson", false]], "nextprime() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.nextprime", false]], "nfloat() (in module sympy.core.function)": [[88, "sympy.core.function.nfloat", false]], "nine_point_circle (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.nine_point_circle", false]], "nnz() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.nnz", false]], "nnz() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.nnz", false]], "nnz() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.nnz", false]], "nnz() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.nnz", false]], "no (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.NO", false]], "no_attrs_in_subclass (class in sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.no_attrs_in_subclass", false]], "no_symmetry() (sympy.tensor.tensor.tensorsymmetry class method)": [[247, "sympy.tensor.tensor.TensorSymmetry.no_symmetry", false]], "nocache_fail() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.nocache_fail", false]], "node (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Node", false]], "node_labels (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.node_labels", false]], "node_positions (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.node_positions", false]], "nodes (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.nodes", false]], "nodes (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.nodes", false]], "nonelementaryintegral (class in sympy.integrals.risch)": [[115, "sympy.integrals.risch.NonElementaryIntegral", false]], "nonetoken (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.NoneToken", false]], "nonholonomic_constraints (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.nonholonomic_constraints", false]], "nonlinsolve() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.nonlinsolve", false]], "nonnegative": [[88, "term-nonnegative", true]], "nonnegativepredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.NonNegativePredicate", false]], "nonpositive": [[88, "term-nonpositive", true]], "nonpositivepredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.NonPositivePredicate", false]], "nonsquarematrixerror (class in sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.NonSquareMatrixError", false]], "nonzero": [[88, "term-nonzero", true]], "nonzeropredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.NonZeroPredicate", false]], "nor (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Nor", false]], "norm (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.norm", false]], "norm() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.norm", false]], "norm() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.norm", false]], "norm() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.norm", false]], "norm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.norm", false]], "norm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.norm", false]], "normal() (in module sympy.stats)": [[241, "sympy.stats.Normal", false]], "normal() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.normal", false]], "normal_closure() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.normal_closure", false]], "normal_lines() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.normal_lines", false]], "normal_vector (sympy.geometry.plane.plane property)": [[102, "sympy.geometry.plane.Plane.normal_vector", false]], "normalgamma() (in module sympy.stats)": [[241, "sympy.stats.NormalGamma", false]], "normalize() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.normalize", false]], "normalize() (sympy.physics.quantum.state.wavefunction method)": [[189, "sympy.physics.quantum.state.Wavefunction.normalize", false]], "normalize() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.normalize", false]], "normalize() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.normalize", false]], "normalize() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.normalize", false]], "normalize_theta_set() (in module sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.normalize_theta_set", false]], "normalized() (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.normalized", false]], "normalized() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.normalized", false]], "normalpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.NormalPredicate", false]], "normalpspace (class in sympy.stats.crv_types)": [[241, "sympy.stats.crv_types.NormalPSpace", false]], "not (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Not", false]], "not_empty_in() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.not_empty_in", false]], "not_point() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.not_point", false]], "notalgebraic (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.NotAlgebraic", false]], "notinvertible (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.NotInvertible", false]], "notiterable (class in sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.NotIterable", false]], "notreversible (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.NotReversible", false]], "np() (in module sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.nP", false]], "npartitions() (in module sympy.ntheory.partitions_)": [[128, "sympy.ntheory.partitions_.npartitions", false]], "nqubits (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.nqubits", false]], "nqubits (sympy.physics.quantum.gate.gate property)": [[175, "sympy.physics.quantum.gate.Gate.nqubits", false]], "nroots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.nroots", false]], "nroots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.nroots", false]], "nseries() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.nseries", false]], "nsimplify() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.nsimplify", false]], "nsimplify() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.nsimplify", false]], "nsolve() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.nsolve", false]], "nt() (in module sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.nT", false]], "nth() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.nth", false]], "nth() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.nth", false]], "nth_power_roots_poly() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.nth_power_roots_poly", false]], "nth_power_roots_poly() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.nth_power_roots_poly", false]], "nthalgebraic (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthAlgebraic", false]], "nthlinearconstantcoeffhomogeneous (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearConstantCoeffHomogeneous", false]], "nthlinearconstantcoeffundeterminedcoefficients (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearConstantCoeffUndeterminedCoefficients", false]], "nthlinearconstantcoeffvariationofparameters (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearConstantCoeffVariationOfParameters", false]], "nthlineareulereqhomogeneous (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearEulerEqHomogeneous", false]], "nthlineareulereqnonhomogeneousundeterminedcoefficients (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearEulerEqNonhomogeneousUndeterminedCoefficients", false]], "nthlineareulereqnonhomogeneousvariationofparameters (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearEulerEqNonhomogeneousVariationOfParameters", false]], "nthorderreducible (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthOrderReducible", false]], "nthroot() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.nthroot", false]], "nthroot_mod() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.nthroot_mod", false]], "ntt() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.ntt", false]], "nu (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.nu", false]], "nullspace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.nullspace", false]], "nullspace() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.nullspace", false]], "nullspace() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.nullspace", false]], "nullspace() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace", false]], "nullspace() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.nullspace", false]], "nullspace_from_rref() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.nullspace_from_rref", false]], "nullspace_from_rref() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.nullspace_from_rref", false]], "nullspace_from_rref() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace_from_rref", false]], "nullspace_from_rref() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.nullspace_from_rref", false]], "num (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.num", false]], "num (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.num", false]], "num_digits() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.num_digits", false]], "num_inputs (sympy.physics.control.lti.mimoparallel property)": [[144, "sympy.physics.control.lti.MIMOParallel.num_inputs", false]], "num_inputs (sympy.physics.control.lti.mimoseries property)": [[144, "sympy.physics.control.lti.MIMOSeries.num_inputs", false]], "num_inputs (sympy.physics.control.lti.transferfunctionmatrix property)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.num_inputs", false]], "num_outputs (sympy.physics.control.lti.mimoparallel property)": [[144, "sympy.physics.control.lti.MIMOParallel.num_outputs", false]], "num_outputs (sympy.physics.control.lti.mimoseries property)": [[144, "sympy.physics.control.lti.MIMOSeries.num_outputs", false]], "num_outputs (sympy.physics.control.lti.transferfunctionmatrix property)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.num_outputs", false]], "number": [[15, "term-Number", true]], "number (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Number", false]], "number_field (sympy.polys.numberfields.modules.module property)": [[216, "sympy.polys.numberfields.modules.Module.number_field", false]], "numbered_symbols() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.numbered_symbols", false]], "numberkind (in module sympy.core.kind)": [[88, "sympy.core.kind.NumberKind", false]], "numbersymbol (class in sympy.core.numbers)": [[88, "sympy.core.numbers.NumberSymbol", false]], "numer() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.numer", false]], "numer() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.numer", false]], "numer() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.numer", false]], "numer() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.numer", false]], "numer() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.numer", false]], "numer() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.numer", false]], "numer() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.numer", false]], "numer() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.numer", false]], "numer() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.numer", false]], "numerator() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.numerator", false]], "numeric": [[15, "term-Numeric", true]], "object (class in sympy.categories)": [[68, "sympy.categories.Object", false]], "objects (sympy.categories.category property)": [[68, "sympy.categories.Category.objects", false]], "objects (sympy.categories.diagram property)": [[68, "sympy.categories.Diagram.objects", false]], "obstaclesetpathway (class in sympy.physics.mechanics.pathway)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway", false]], "octave_code() (in module sympy.printing.octave)": [[221, "sympy.printing.octave.octave_code", false]], "octavecodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.OctaveCodeGen", false]], "octavecodeprinter (class in sympy.printing.octave)": [[221, "sympy.printing.octave.OctaveCodePrinter", false]], "odd": [[88, "term-odd", true]], "oddpredicate (class in sympy.assumptions.predicates.ntheory)": [[65, "sympy.assumptions.predicates.ntheory.OddPredicate", false]], "ode_1st_power_series() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.ode_1st_power_series", false]], "ode_2nd_power_series_ordinary() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.ode_2nd_power_series_ordinary", false]], "ode_2nd_power_series_regular() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.ode_2nd_power_series_regular", false]], "ode_order() (in module sympy.solvers.deutils)": [[239, "sympy.solvers.deutils.ode_order", false]], "ode_sol_simplicity() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.ode_sol_simplicity", false]], "odesimp() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.odesimp", false]], "of_type() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.of_type", false]], "offset (sympy.tensor.indexed.indexedbase property)": [[246, "sympy.tensor.indexed.IndexedBase.offset", false]], "old_frac_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.old_frac_field", false]], "old_poly_ring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.old_poly_ring", false]], "one (class in sympy.core.numbers)": [[88, "sympy.core.numbers.One", false]], "one (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.one", false]], "one (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.one", false]], "one() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.one", false]], "one_qubit_box() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.one_qubit_box", false]], "onequbitgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.OneQubitGate", false]], "ones() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.ones", false]], "ones() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.ones", false]], "ones() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.ones", false]], "ones() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.ones", false]], "oo": [[15, "term-oo", true]], "open() (sympy.sets.sets.interval class method)": [[229, "sympy.sets.sets.Interval.open", false]], "operationnotsupported (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.OperationNotSupported", false]], "operator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.Operator", false]], "operators (sympy.physics.quantum.state.statebase property)": [[189, "sympy.physics.quantum.state.StateBase.operators", false]], "operators_to_state() (in module sympy.physics.quantum.operatorset)": [[181, "sympy.physics.quantum.operatorset.operators_to_state", false]], "opt_cse() (in module sympy.simplify.cse_main)": [[233, "sympy.simplify.cse_main.opt_cse", false]], "optimal_fiber_length (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.optimal_fiber_length", false]], "optimal_pennation_angle (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.optimal_pennation_angle", false]], "optimization (class in sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.Optimization", false]], "optimize() (in module sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.optimize", false]], "optionerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.OptionError", false]], "options (class in sympy.polys.polyoptions)": [[214, "sympy.polys.polyoptions.Options", false]], "or (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Or", false]], "oraclegate (class in sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.OracleGate", false]], "orbit() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.orbit", false]], "orbit_rep() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.orbit_rep", false]], "orbit_transversal() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.orbit_transversal", false]], "orbits() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.orbits", false]], "order (class in sympy.series.order)": [[228, "sympy.series.order.Order", false]], "order (sympy.functions.special.bessel.besselbase property)": [[96, "sympy.functions.special.bessel.BesselBase.order", false]], "order (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.order", false]], "order (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.order", false]], "order (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.order", false]], "order() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.order", false]], "order() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.order", false]], "ordered() (in module sympy.core.sorting)": [[88, "sympy.core.sorting.ordered", false]], "ordered_partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.ordered_partitions", false]], "ordinal() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.ordinal", false]], "orient() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient", false]], "orient_axis() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_axis", false]], "orient_body_fixed() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_body_fixed", false]], "orient_dcm() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_dcm", false]], "orient_new() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new", false]], "orient_new_axis() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new_axis", false]], "orient_new_body() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new_body", false]], "orient_new_quaternion() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new_quaternion", false]], "orient_new_space() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new_space", false]], "orient_quaternion() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_quaternion", false]], "orient_space_fixed() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_space_fixed", false]], "orienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.Orienter", false]], "orientnew() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orientnew", false]], "orig_ext (sympy.polys.domains.algebraicfield attribute)": [[212, "sympy.polys.domains.AlgebraicField.orig_ext", false]], "origin (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.origin", false]], "orthocenter (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.orthocenter", false]], "orthogonal() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.orthogonal", false]], "orthogonal_direction (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.orthogonal_direction", false]], "orthogonalbra (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.OrthogonalBra", false]], "orthogonalize() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.orthogonalize", false]], "orthogonalket (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.OrthogonalKet", false]], "orthogonalpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.OrthogonalPredicate", false]], "orthogonalstate (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.OrthogonalState", false]], "outer() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.outer", false]], "outer() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.outer", false]], "outer() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.outer", false]], "outerproduct (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.OuterProduct", false]], "outputargument (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.OutputArgument", false]], "over_power_basis() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.over_power_basis", false]], "p (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.p", false]], "p (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.p", false]], "p (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.p", false]], "p (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.p", false]], "p() (in module sympy.stats)": [[241, "sympy.stats.P", false]], "p1 (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.p1", false]], "p1 (sympy.geometry.plane.plane property)": [[102, "sympy.geometry.plane.Plane.p1", false]], "p2 (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.p2", false]], "padded_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.padded_key", false]], "parallel (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.Parallel", false]], "parallel() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.parallel", false]], "parallel_axis() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.parallel_axis", false]], "parallel_axis() (sympy.physics.mechanics.particle.particle method)": [[155, "sympy.physics.mechanics.particle.Particle.parallel_axis", false]], "parallel_axis() (sympy.physics.mechanics.rigidbody.rigidbody method)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.parallel_axis", false]], "parallel_line() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.parallel_line", false]], "parallel_plane() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.parallel_plane", false]], "parallel_poly_from_expr() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.parallel_poly_from_expr", false]], "parameter (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.parameter", false]], "parameter_value() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.parameter_value", false]], "parameter_value() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.parameter_value", false]], "parametric2dlineseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.Parametric2DLineSeries", false]], "parametric3dlineseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.Parametric3DLineSeries", false]], "parametricintegral (class in sympy.vector.integrals)": [[265, "sympy.vector.integrals.ParametricIntegral", false]], "parametricregion (class in sympy.vector.parametricregion)": [[265, "sympy.vector.parametricregion.ParametricRegion", false]], "parametricsurfaceseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.ParametricSurfaceSeries", false]], "parametrize_ternary_quadratic() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.parametrize_ternary_quadratic", false]], "params (sympy.plotting.series.baseseries property)": [[207, "sympy.plotting.series.BaseSeries.params", false]], "parens() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.parens", false]], "parent (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.parent", false]], "parent (sympy.polys.numberfields.modules.module property)": [[216, "sympy.polys.numberfields.modules.Module.parent", false]], "parent() (sympy.polys.domains.domainelement.domainelement method)": [[212, "sympy.polys.domains.domainelement.DomainElement.parent", false]], "parent() (sympy.polys.domains.gaussiandomains.gaussianelement method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianElement.parent", false]], "parent_axis (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.parent_axis", false]], "parent_point (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.parent_point", false]], "parenthesize_super() (sympy.printing.latex.latexprinter method)": [[221, "sympy.printing.latex.LatexPrinter.parenthesize_super", false]], "pareto() (in module sympy.stats)": [[241, "sympy.stats.Pareto", false]], "pargs (sympy.functions.special.delta_functions.heaviside property)": [[96, "sympy.functions.special.delta_functions.Heaviside.pargs", false]], "parity() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.parity", false]], "parse_expr() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.parse_expr", false]], "parse_latex() (in module sympy.parsing.latex)": [[130, "sympy.parsing.latex.parse_latex", false]], "parse_latex_lark() (in module sympy.parsing.latex)": [[130, "sympy.parsing.latex.parse_latex_lark", false]], "parse_mathematica() (in module sympy.parsing.mathematica)": [[130, "sympy.parsing.mathematica.parse_mathematica", false]], "parse_maxima() (in module sympy.parsing.maxima)": [[130, "sympy.parsing.maxima.parse_maxima", false]], "partial_velocity() (in module sympy.physics.vector.functions)": [[204, "sympy.physics.vector.functions.partial_velocity", false]], "partial_velocity() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.partial_velocity", false]], "partial_velocity() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.partial_velocity", false]], "partialderivative (class in sympy.tensor.toperators)": [[248, "sympy.tensor.toperators.PartialDerivative", false]], "particle (class in sympy.physics.mechanics.particle)": [[155, "sympy.physics.mechanics.particle.Particle", false]], "particular() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.particular", false]], "partition (class in sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.Partition", false]], "partition (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.partition", false]], "partition (sympy.combinatorics.partitions.partition property)": [[77, "sympy.combinatorics.partitions.Partition.partition", false]], "partition() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.partition", false]], "partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.partitions", false]], "pat_matrix() (in module sympy.physics.matrices)": [[147, "sympy.physics.matrices.pat_matrix", false]], "patch (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Patch", false]], "pathway (sympy.physics.mechanics.actuator.forceactuator property)": [[148, "sympy.physics.mechanics.actuator.ForceActuator.pathway", false]], "pathwaybase (class in sympy.physics.mechanics.pathway)": [[156, "sympy.physics.mechanics.pathway.PathwayBase", false]], "pde_1st_linear_constant_coeff() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_1st_linear_constant_coeff", false]], "pde_1st_linear_constant_coeff_homogeneous() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_1st_linear_constant_coeff_homogeneous", false]], "pde_1st_linear_variable_coeff() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_1st_linear_variable_coeff", false]], "pde_separate() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_separate", false]], "pde_separate_add() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_separate_add", false]], "pde_separate_mul() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_separate_mul", false]], "pdiv() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.pdiv", false]], "pdiv() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.pdiv", false]], "pdiv() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.pdiv", false]], "pdiv() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.pdiv", false]], "pdsolve() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pdsolve", false]], "peak_isometric_force (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.peak_isometric_force", false]], "pep 335": [[88, "index-0", false], [88, "index-1", false], [88, "index-2", false], [88, "index-3", false]], "per() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.per", false]], "per() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.per", false]], "per() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.per", false]], "perfect_power() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.perfect_power", false]], "periapsis (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.periapsis", false]], "perimeter (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.perimeter", false]], "period_find() (in module sympy.physics.quantum.shor)": [[187, "sympy.physics.quantum.shor.period_find", false]], "periodic_argument (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.periodic_argument", false]], "periodicity() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.periodicity", false]], "perm2tensor() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.perm2tensor", false]], "permutation (class in sympy.combinatorics.permutations)": [[80, "sympy.combinatorics.permutations.Permutation", false]], "permutationgroup (class in sympy.combinatorics.perm_groups)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup", false]], "permutationmatrix (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.PermutationMatrix", false]], "permutationoperator (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.PermutationOperator", false]], "permute() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permute", false]], "permute() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.permute", false]], "permute_cols() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permute_cols", false]], "permute_rows() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permute_rows", false]], "permute_signs() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.permute_signs", false]], "permutebkwd() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permuteBkwd", false]], "permutedims (class in sympy.tensor.array.expressions)": [[243, "sympy.tensor.array.expressions.PermuteDims", false]], "permutedims() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.permutedims", false]], "permutefwd() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permuteFwd", false]], "perpendicular_bisector() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.perpendicular_bisector", false]], "perpendicular_line() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.perpendicular_line", false]], "perpendicular_line() (sympy.geometry.line.linearentity2d method)": [[101, "sympy.geometry.line.LinearEntity2D.perpendicular_line", false]], "perpendicular_line() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.perpendicular_line", false]], "perpendicular_plane() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.perpendicular_plane", false]], "perpendicular_segment() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.perpendicular_segment", false]], "pexquo() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.pexquo", false]], "pexquo() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.pexquo", false]], "pexquo() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.pexquo", false]], "pexquo() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.pexquo", false]], "pgl2f5() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.PGL2F5", false]], "pgroup (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.pgroup", false]], "phase (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.Phase", false]], "phase (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.phase", false]], "phase_retarder() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.phase_retarder", false]], "phasegate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.PhaseGate", false]], "pi (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Pi", false]], "pi_hex_digits() (in module sympy.ntheory.bbp_pi)": [[128, "sympy.ntheory.bbp_pi.pi_hex_digits", false]], "piabbra (class in sympy.physics.quantum.piab)": [[182, "sympy.physics.quantum.piab.PIABBra", false]], "piabhamiltonian (class in sympy.physics.quantum.piab)": [[182, "sympy.physics.quantum.piab.PIABHamiltonian", false]], "piabket (class in sympy.physics.quantum.piab)": [[182, "sympy.physics.quantum.piab.PIABKet", false]], "piecewise (class in sympy.functions.elementary.piecewise)": [[94, "sympy.functions.elementary.piecewise.Piecewise", false]], "piecewise_exclusive() (in module sympy.functions.elementary.piecewise)": [[94, "sympy.functions.elementary.piecewise.piecewise_exclusive", false]], "piecewise_fold() (in module sympy.functions.elementary.piecewise)": [[94, "sympy.functions.elementary.piecewise.piecewise_fold", false]], "piecewise_integrate() (sympy.functions.elementary.piecewise.piecewise method)": [[94, "sympy.functions.elementary.piecewise.Piecewise.piecewise_integrate", false]], "pinjoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.PinJoint", false]], "pinv() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.pinv", false]], "pinv_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.pinv_solve", false]], "planar_coordinates (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.planar_coordinates", false]], "planar_speeds (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.planar_speeds", false]], "planar_vectors (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.planar_vectors", false]], "planarjoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.PlanarJoint", false]], "plane (class in sympy.geometry.plane)": [[102, "sympy.geometry.plane.Plane", false]], "plot (class in sympy.plotting.plot)": [[207, "sympy.plotting.plot.Plot", false]], "plot() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot", false]], "plot3d() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot3d", false]], "plot3d_parametric_line() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot3d_parametric_line", false]], "plot3d_parametric_surface() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot3d_parametric_surface", false]], "plot_bending_moment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_bending_moment", false]], "plot_bending_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_bending_moment", false]], "plot_deflection() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_deflection", false]], "plot_deflection() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_deflection", false]], "plot_gate() (sympy.physics.quantum.gate.cgate method)": [[175, "sympy.physics.quantum.gate.CGate.plot_gate", false]], "plot_ild_moment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_ild_moment", false]], "plot_ild_reactions() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_ild_reactions", false]], "plot_ild_shear() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_ild_shear", false]], "plot_implicit() (in module sympy.plotting.plot_implicit)": [[207, "sympy.plotting.plot_implicit.plot_implicit", false]], "plot_interval() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.plot_interval", false]], "plot_interval() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.plot_interval", false]], "plot_interval() (sympy.geometry.line.line method)": [[101, "sympy.geometry.line.Line.plot_interval", false]], "plot_interval() (sympy.geometry.line.ray method)": [[101, "sympy.geometry.line.Ray.plot_interval", false]], "plot_interval() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.plot_interval", false]], "plot_interval() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.plot_interval", false]], "plot_loading_results() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_loading_results", false]], "plot_loading_results() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_loading_results", false]], "plot_parametric() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot_parametric", false]], "plot_shear_force() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_shear_force", false]], "plot_shear_force() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_shear_force", false]], "plot_shear_stress() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_shear_stress", false]], "plot_shear_stress() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_shear_stress", false]], "plot_slope() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_slope", false]], "plot_slope() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_slope", false]], "plot_tension() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.plot_tension", false]], "plotgrid (class in sympy.plotting.plot)": [[207, "sympy.plotting.plot.PlotGrid", false]], "point (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Point", false]], "point (class in sympy.geometry.point)": [[103, "sympy.geometry.point.Point", false]], "point (class in sympy.physics.vector.point)": [[204, "sympy.physics.vector.point.Point", false]], "point (sympy.core.function.subs property)": [[88, "sympy.core.function.Subs.point", false]], "point (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.point", false]], "point (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.point", false]], "point (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.point", false]], "point (sympy.physics.mechanics.wrapping_geometry.wrappinggeometrybase property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase.point", false]], "point (sympy.physics.mechanics.wrapping_geometry.wrappingsphere property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.point", false]], "point() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.point", false]], "point2d (class in sympy.geometry.point)": [[103, "sympy.geometry.point.Point2D", false]], "point3d (class in sympy.geometry.point)": [[103, "sympy.geometry.point.Point3D", false]], "point_cflexure() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.point_cflexure", false]], "point_on_surface() (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.point_on_surface", false]], "point_on_surface() (sympy.physics.mechanics.wrapping_geometry.wrappinggeometrybase method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase.point_on_surface", false]], "point_on_surface() (sympy.physics.mechanics.wrapping_geometry.wrappingsphere method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.point_on_surface", false]], "point_to_coords() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.point_to_coords", false]], "pointer (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Pointer", false]], "points (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.points", false]], "pointwise_stabilizer() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.pointwise_stabilizer", false]], "poisson() (in module sympy.stats)": [[241, "sympy.stats.Poisson", false]], "poissonprocess (class in sympy.stats)": [[241, "sympy.stats.PoissonProcess", false]], "polar_lift (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.polar_lift", false]], "polar_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.polar_moment", false]], "polar_second_moment_of_area() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.polar_second_moment_of_area", false]], "polar_second_moment_of_area() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.polar_second_moment_of_area", false]], "polarcomplexregion (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.PolarComplexRegion", false]], "polarizing_beam_splitter() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.polarizing_beam_splitter", false]], "pole_zero_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.pole_zero_numerical_data", false]], "pole_zero_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.pole_zero_plot", false]], "poleerror (class in sympy.core.function)": [[88, "sympy.core.function.PoleError", false]], "poles() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.poles", false]], "polificationfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.PolificationFailed", false]], "pollard_pm1() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.pollard_pm1", false]], "pollard_rho() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.pollard_rho", false]], "poly (class in sympy.polys.polytools)": [[217, "sympy.polys.polytools.Poly", false]], "poly() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.poly", false]], "poly() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.poly", false]], "poly_from_expr() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.poly_from_expr", false]], "poly_ring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.poly_ring", false]], "poly_unify() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.poly_unify", false]], "polycyclic_group() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.polycyclic_group", false]], "polyelement (class in sympy.polys.rings)": [[212, "sympy.polys.rings.PolyElement", false]], "polygamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.polygamma", false]], "polygon (class in sympy.geometry.polygon)": [[104, "sympy.geometry.polygon.Polygon", false]], "polyhedron (class in sympy.combinatorics.polyhedron)": [[81, "sympy.combinatorics.polyhedron.Polyhedron", false]], "polylog (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.polylog", false]], "polynomial() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.polynomial", false]], "polynomial_congruence() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.polynomial_congruence", false]], "polynomialerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.PolynomialError", false]], "polynomialring (class in sympy.polys.domains)": [[212, "sympy.polys.domains.PolynomialRing", false]], "polyring (class in sympy.polys.rings)": [[212, "sympy.polys.rings.PolyRing", false]], "polys": [[15, "term-Polys", true]], "polytope_integrate() (in module sympy.integrals.intpoly)": [[115, "sympy.integrals.intpoly.polytope_integrate", false]], "pos() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.pos", false]], "pos_from() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.pos_from", false]], "posform() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.POSform", false]], "posify() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.posify", false]], "position (sympy.physics.quantum.cartesian.xbra property)": [[169, "sympy.physics.quantum.cartesian.XBra.position", false]], "position (sympy.physics.quantum.cartesian.xket property)": [[169, "sympy.physics.quantum.cartesian.XKet.position", false]], "position_wrt() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.position_wrt", false]], "position_x (sympy.physics.quantum.cartesian.positionstate3d property)": [[169, "sympy.physics.quantum.cartesian.PositionState3D.position_x", false]], "position_y (sympy.physics.quantum.cartesian.positionstate3d property)": [[169, "sympy.physics.quantum.cartesian.PositionState3D.position_y", false]], "position_z (sympy.physics.quantum.cartesian.positionstate3d property)": [[169, "sympy.physics.quantum.cartesian.PositionState3D.position_z", false]], "positionbra3d (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PositionBra3D", false]], "positionket3d (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PositionKet3D", false]], "positionstate3d (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PositionState3D", false]], "positive": [[88, "term-positive", true]], "positive_roots() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.positive_roots", false]], "positivedefinitepredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.PositiveDefinitePredicate", false]], "positivepredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.PositivePredicate", false]], "postdecrement (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.PostDecrement", false]], "postfixes() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.postfixes", false]], "postincrement (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.PostIncrement", false]], "postorder_traversal() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.postorder_traversal", false]], "potential_energy (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.potential_energy", false]], "potential_energy (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.potential_energy", false]], "potential_energy (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.potential_energy", false]], "potential_energy() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.potential_energy", false]], "pow (class in sympy.core.power)": [[88, "sympy.core.power.Pow", false]], "pow() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.pow", false]], "pow() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.pow", false]], "pow() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.pow", false]], "pow() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.pow", false]], "pow() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.pow", false]], "pow() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.pow", false]], "pow() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.pow", false]], "pow() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.pow", false]], "pow_cos_sin() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.pow_cos_sin", false]], "pow_xin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.pow_xin", false]], "powdenest() (in module sympy.simplify.powsimp)": [[233, "sympy.simplify.powsimp.powdenest", false]], "power_basis_ancestor() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.power_basis_ancestor", false]], "power_representation() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.power_representation", false]], "powerbasis (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.PowerBasis", false]], "powerbasiselement (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement", false]], "powerfunction() (in module sympy.stats)": [[241, "sympy.stats.PowerFunction", false]], "powerset (class in sympy.sets.powerset)": [[229, "sympy.sets.powerset.PowerSet", false]], "powerset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.powerset", false]], "powsimp() (in module sympy.simplify.powsimp)": [[233, "sympy.simplify.powsimp.powsimp", false]], "powsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.powsimp", false]], "pprint_nodes() (in module sympy.printing.tree)": [[221, "sympy.printing.tree.pprint_nodes", false]], "pqa() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.PQa", false]], "pquo() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.pquo", false]], "pquo() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.pquo", false]], "pquo() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.pquo", false]], "pquo() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.pquo", false]], "precedence (in module sympy.printing.precedence)": [[221, "sympy.printing.precedence.PRECEDENCE", false]], "precedence() (in module sympy.printing.precedence)": [[221, "sympy.printing.precedence.precedence", false]], "precedence_functions (in module sympy.printing.precedence)": [[221, "sympy.printing.precedence.PRECEDENCE_FUNCTIONS", false]], "precedence_values (in module sympy.printing.precedence)": [[221, "sympy.printing.precedence.PRECEDENCE_VALUES", false]], "precisionexhausted (class in sympy.core.evalf)": [[88, "sympy.core.evalf.PrecisionExhausted", false]], "predecrement (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.PreDecrement", false]], "predicate (class in sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.Predicate", false]], "preferred_index (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.preferred_index", false]], "preferred_index (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.preferred_index", false]], "prefix (class in sympy.physics.units.prefixes)": [[197, "sympy.physics.units.prefixes.Prefix", false]], "prefixes() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.prefixes", false]], "preincrement (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.PreIncrement", false]], "prem() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.prem", false]], "prem() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.prem", false]], "prem() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.prem", false]], "prem() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.prem", false]], "premises (sympy.categories.diagram property)": [[68, "sympy.categories.Diagram.premises", false]], "preorder_traversal() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.preorder_traversal", false]], "presentation() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.presentation", false]], "pretty() (in module sympy.printing.pretty.pretty)": [[221, "sympy.printing.pretty.pretty.pretty", false]], "pretty_atom() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.pretty_atom", false]], "pretty_print() (in module sympy.printing.pretty.pretty)": [[221, "sympy.printing.pretty.pretty.pretty_print", false]], "pretty_symbol() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.pretty_symbol", false]], "pretty_try_use_unicode() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode", false]], "pretty_use_unicode() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.pretty_use_unicode", false]], "prettyform (class in sympy.printing.pretty.stringpict)": [[221, "sympy.printing.pretty.stringpict.prettyForm", false]], "prettyprinter (class in sympy.printing.pretty.pretty)": [[221, "sympy.printing.pretty.pretty.PrettyPrinter", false]], "prev() (sympy.combinatorics.prufer.prufer method)": [[82, "sympy.combinatorics.prufer.Prufer.prev", false]], "prev_binary() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.prev_binary", false]], "prev_gray() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.prev_gray", false]], "prev_lex() (sympy.combinatorics.partitions.integerpartition method)": [[77, "sympy.combinatorics.partitions.IntegerPartition.prev_lex", false]], "prev_lexicographic() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.prev_lexicographic", false]], "preview() (in module sympy.printing.preview)": [[221, "sympy.printing.preview.preview", false]], "preview_diagram() (in module sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.preview_diagram", false]], "prevprime() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.prevprime", false]], "prime": [[88, "term-prime", true]], "prime() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.prime", false]], "prime_as_sum_of_two_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.prime_as_sum_of_two_squares", false]], "prime_decomp() (in module sympy.polys.numberfields.primes)": [[216, "sympy.polys.numberfields.primes.prime_decomp", false]], "prime_valuation() (in module sympy.polys.numberfields.primes)": [[216, "sympy.polys.numberfields.primes.prime_valuation", false]], "primefactors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.primefactors", false]], "primeideal (class in sympy.polys.numberfields.primes)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal", false]], "primenu (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.primenu", false]], "primenu() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.primenu", false]], "primeomega (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.primeomega", false]], "primeomega() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.primeomega", false]], "primepi (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.primepi", false]], "primepi() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.primepi", false]], "primepredicate (class in sympy.assumptions.predicates.ntheory)": [[65, "sympy.assumptions.predicates.ntheory.PrimePredicate", false]], "primerange() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.primerange", false]], "primerange() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.primerange", false]], "primes_above() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.primes_above", false]], "primitive() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.primitive", false]], "primitive() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.primitive", false]], "primitive() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.primitive", false]], "primitive() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.primitive", false]], "primitive() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.primitive", false]], "primitive() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.primitive", false]], "primitive() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.primitive", false]], "primitive_element() (in module sympy.polys.numberfields.subfield)": [[216, "sympy.polys.numberfields.subfield.primitive_element", false]], "primitive_element() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.primitive_element", false]], "primitive_root() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.primitive_root", false]], "primorial() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.primorial", false]], "principal_branch (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.principal_branch", false]], "principal_value() (sympy.integrals.integrals.integral method)": [[115, "sympy.integrals.integrals.Integral.principal_value", false]], "print (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Print", false]], "print_ccode() (in module sympy.printing.c)": [[221, "sympy.printing.c.print_ccode", false]], "print_dim_base() (sympy.physics.units.dimensions.dimensionsystem method)": [[193, "sympy.physics.units.dimensions.DimensionSystem.print_dim_base", false]], "print_fcode() (in module sympy.printing.fortran)": [[221, "sympy.printing.fortran.print_fcode", false]], "print_gtk() (in module sympy.printing.gtk)": [[221, "sympy.printing.gtk.print_gtk", false]], "print_latex() (in module sympy.printing.latex)": [[221, "sympy.printing.latex.print_latex", false]], "print_maple_code() (in module sympy.printing.maple)": [[221, "sympy.printing.maple.print_maple_code", false]], "print_mathml() (in module sympy.printing.mathml)": [[221, "sympy.printing.mathml.print_mathml", false]], "print_node() (in module sympy.printing.tree)": [[221, "sympy.printing.tree.print_node", false]], "print_nonzero() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.print_nonzero", false]], "print_rcode() (in module sympy.printing.rcode)": [[221, "sympy.printing.rcode.print_rcode", false]], "print_tree() (in module sympy.printing.tree)": [[221, "sympy.printing.tree.print_tree", false]], "printer (class in sympy.printing.printer)": [[221, "sympy.printing.printer.Printer", false]], "printing": [[15, "term-Printing", true]], "printmethod (sympy.printing.aesaracode.aesaraprinter attribute)": [[221, "sympy.printing.aesaracode.AesaraPrinter.printmethod", false]], "printmethod (sympy.printing.c.c89codeprinter attribute)": [[221, "sympy.printing.c.C89CodePrinter.printmethod", false]], "printmethod (sympy.printing.c.c99codeprinter attribute)": [[221, "sympy.printing.c.C99CodePrinter.printmethod", false]], "printmethod (sympy.printing.codeprinter.codeprinter attribute)": [[221, "sympy.printing.codeprinter.CodePrinter.printmethod", false]], "printmethod (sympy.printing.cxx.cxx11codeprinter attribute)": [[221, "sympy.printing.cxx.CXX11CodePrinter.printmethod", false]], "printmethod (sympy.printing.cxx.cxx98codeprinter attribute)": [[221, "sympy.printing.cxx.CXX98CodePrinter.printmethod", false]], "printmethod (sympy.printing.fortran.fcodeprinter attribute)": [[221, "sympy.printing.fortran.FCodePrinter.printmethod", false]], "printmethod (sympy.printing.jscode.javascriptcodeprinter attribute)": [[221, "sympy.printing.jscode.JavascriptCodePrinter.printmethod", false]], "printmethod (sympy.printing.julia.juliacodeprinter attribute)": [[221, "sympy.printing.julia.JuliaCodePrinter.printmethod", false]], "printmethod (sympy.printing.lambdarepr.lambdaprinter attribute)": [[221, "sympy.printing.lambdarepr.LambdaPrinter.printmethod", false]], "printmethod (sympy.printing.latex.latexprinter attribute)": [[221, "sympy.printing.latex.LatexPrinter.printmethod", false]], "printmethod (sympy.printing.maple.maplecodeprinter attribute)": [[221, "sympy.printing.maple.MapleCodePrinter.printmethod", false]], "printmethod (sympy.printing.mathematica.mcodeprinter attribute)": [[221, "sympy.printing.mathematica.MCodePrinter.printmethod", false]], "printmethod (sympy.printing.mathml.mathmlcontentprinter attribute)": [[221, "sympy.printing.mathml.MathMLContentPrinter.printmethod", false]], "printmethod (sympy.printing.mathml.mathmlpresentationprinter attribute)": [[221, "sympy.printing.mathml.MathMLPresentationPrinter.printmethod", false]], "printmethod (sympy.printing.octave.octavecodeprinter attribute)": [[221, "sympy.printing.octave.OctaveCodePrinter.printmethod", false]], "printmethod (sympy.printing.pretty.pretty.prettyprinter attribute)": [[221, "sympy.printing.pretty.pretty.PrettyPrinter.printmethod", false]], "printmethod (sympy.printing.printer.printer attribute)": [[221, "sympy.printing.printer.Printer.printmethod", false]], "printmethod (sympy.printing.rcode.rcodeprinter attribute)": [[221, "sympy.printing.rcode.RCodePrinter.printmethod", false]], "printmethod (sympy.printing.repr.reprprinter attribute)": [[221, "sympy.printing.repr.ReprPrinter.printmethod", false]], "printmethod (sympy.printing.rust.rustcodeprinter attribute)": [[221, "sympy.printing.rust.RustCodePrinter.printmethod", false]], "printmethod (sympy.printing.smtlib.smtlibprinter attribute)": [[221, "sympy.printing.smtlib.SMTLibPrinter.printmethod", false]], "printmethod (sympy.printing.str.strprinter attribute)": [[221, "sympy.printing.str.StrPrinter.printmethod", false]], "prismaticjoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.PrismaticJoint", false]], "prob() (sympy.physics.quantum.state.wavefunction method)": [[189, "sympy.physics.quantum.state.Wavefunction.prob", false]], "probability (class in sympy.stats)": [[241, "sympy.stats.Probability", false]], "probability() (sympy.stats.bernoulliprocess method)": [[241, "sympy.stats.BernoulliProcess.probability", false]], "process_series() (sympy.plotting.plot.matplotlibbackend method)": [[207, "sympy.plotting.plot.MatplotlibBackend.process_series", false]], "prod() (in module sympy.core.mul)": [[88, "sympy.core.mul.prod", false]], "product (class in sympy.concrete.products)": [[87, "sympy.concrete.products.Product", false]], "product() (in module sympy.concrete.products)": [[87, "sympy.concrete.products.product", false]], "product() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.product", false]], "product() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.product", false]], "product_matrix_left (sympy.algebras.quaternion property)": [[61, "sympy.algebras.Quaternion.product_matrix_left", false]], "product_matrix_right (sympy.algebras.quaternion property)": [[61, "sympy.algebras.Quaternion.product_matrix_right", false]], "productdomain (class in sympy.stats.rv)": [[241, "sympy.stats.rv.ProductDomain", false]], "productpspace (class in sympy.stats.rv)": [[241, "sympy.stats.rv.ProductPSpace", false]], "productset (class in sympy.sets.sets)": [[229, "sympy.sets.sets.ProductSet", false]], "program (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Program", false]], "project() (sympy.geometry.point.point static method)": [[103, "sympy.geometry.point.Point.project", false]], "project() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.project", false]], "projection() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.projection", false]], "projection() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.projection", false]], "projection() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.projection", false]], "projection_line() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.projection_line", false]], "proper_divisor_count() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.proper_divisor_count", false]], "proper_divisors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.proper_divisors", false]], "proth_test() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.proth_test", false]], "prufer (class in sympy.combinatorics.prufer)": [[82, "sympy.combinatorics.prufer.Prufer", false]], "prufer_rank() (sympy.combinatorics.prufer.prufer method)": [[82, "sympy.combinatorics.prufer.Prufer.prufer_rank", false]], "prufer_repr (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.prufer_repr", false]], "psets (sympy.sets.fancysets.complexregion property)": [[229, "sympy.sets.fancysets.ComplexRegion.psets", false]], "psi_n() (in module sympy.physics.qho_1d)": [[167, "sympy.physics.qho_1d.psi_n", false]], "psi_nlm() (in module sympy.physics.hydrogen)": [[146, "sympy.physics.hydrogen.Psi_nlm", false]], "psl2f5() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.PSL2F5", false]], "pspace (class in sympy.stats.rv)": [[241, "sympy.stats.rv.PSpace", false]], "pspace() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.pspace", false]], "public() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.public", false]], "purepoly (class in sympy.polys.polytools)": [[217, "sympy.polys.polytools.PurePoly", false]], "pxbra (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PxBra", false]], "pxket (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PxKet", false]], "pxop (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PxOp", false]], "pycode() (in module sympy.printing.pycode)": [[221, "sympy.printing.pycode.pycode", false]], "pytestreporter (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.PyTestReporter", false]], "python enhancement proposals": [[88, "index-0", false], [88, "index-1", false], [88, "index-2", false], [88, "index-3", false]], "pythonfinitefield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.PythonFiniteField", false]], "pythonintegerring (class in sympy.polys.domains)": [[212, "sympy.polys.domains.PythonIntegerRing", false]], "pythonmpq (class in sympy.external.pythonmpq)": [[212, "sympy.external.pythonmpq.PythonMPQ", false]], "pythonrationalfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.PythonRationalField", false]], "q (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.q", false]], "q (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.q", false]], "q (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.q", false]], "q_dep (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.q_dep", false]], "q_ind (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.q_ind", false]], "qapply() (in module sympy.physics.quantum.qapply)": [[183, "sympy.physics.quantum.qapply.qapply", false]], "qft (class in sympy.physics.quantum.qft)": [[184, "sympy.physics.quantum.qft.QFT", false]], "qq_col (sympy.polys.numberfields.modules.moduleelement property)": [[216, "sympy.polys.numberfields.modules.ModuleElement.QQ_col", false]], "qq_matrix (sympy.polys.numberfields.modules.submodule property)": [[216, "sympy.polys.numberfields.modules.Submodule.QQ_matrix", false]], "qrdecomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.QRdecomposition", false]], "qrsolve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.QRsolve", false]], "qs() (in module sympy.ntheory.qs)": [[128, "sympy.ntheory.qs.qs", false]], "quadrant() (sympy.polys.domains.gaussiandomains.gaussianelement method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianElement.quadrant", false]], "quadratic_congruence() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.quadratic_congruence", false]], "quadratic_residues() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.quadratic_residues", false]], "quadraticu() (in module sympy.stats)": [[241, "sympy.stats.QuadraticU", false]], "quantile() (in module sympy.stats)": [[241, "sympy.stats.quantile", false]], "quantity (class in sympy.physics.units.quantities)": [[198, "sympy.physics.units.quantities.Quantity", false]], "quarter_wave_retarder() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.quarter_wave_retarder", false]], "quaternion (class in sympy.algebras)": [[61, "sympy.algebras.Quaternion", false]], "quaternionorienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.QuaternionOrienter", false]], "qubit (class in sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.Qubit", false]], "qubit_to_matrix() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.qubit_to_matrix", false]], "qubitbra (class in sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.QubitBra", false]], "quo() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.quo", false]], "quo() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.quo", false]], "quo() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.quo", false]], "quo() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.quo", false]], "quo() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.quo", false]], "quo() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.quo", false]], "quo() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.quo", false]], "quo() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.quo", false]], "quo() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.quo", false]], "quo_ground() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.quo_ground", false]], "quo_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.quo_ground", false]], "quo_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.quo_ground", false]], "quotedstring (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.QuotedString", false]], "quotient() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.quotient", false]], "quotient_codomain() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.quotient_codomain", false]], "quotient_domain() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.quotient_domain", false]], "quotient_hom() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.quotient_hom", false]], "quotient_hom() (sympy.polys.agca.modules.subquotientmodule method)": [[208, "sympy.polys.agca.modules.SubQuotientModule.quotient_hom", false]], "quotient_module() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.quotient_module", false]], "quotient_module() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.quotient_module", false]], "quotient_module() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.quotient_module", false]], "quotient_ring() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.quotient_ring", false]], "quotientmodule (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.QuotientModule", false]], "quotientmoduleelement (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.QuotientModuleElement", false]], "quotientring (class in sympy.polys.domains.quotientring)": [[212, "sympy.polys.domains.quotientring.QuotientRing", false]], "r (class in sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.R", false]], "r (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.r", false]], "r (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.r", false]], "r (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.r", false]], "r (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.r", false]], "r_nl() (in module sympy.physics.hydrogen)": [[146, "sympy.physics.hydrogen.R_nl", false]], "r_nl() (in module sympy.physics.sho)": [[192, "sympy.physics.sho.R_nl", false]], "racah() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.racah", false]], "rad_rationalize() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.rad_rationalize", false]], "rademacher() (in module sympy.stats)": [[241, "sympy.stats.Rademacher", false]], "radical() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.radical", false]], "radius (sympy.geometry.ellipse.circle property)": [[98, "sympy.geometry.ellipse.Circle.radius", false]], "radius (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.radius", false]], "radius (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.radius", false]], "radius (sympy.physics.mechanics.wrapping_geometry.wrappingsphere property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.radius", false]], "radius (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.radius", false]], "radius_of_convergence (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.radius_of_convergence", false]], "radsimp() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.radsimp", false]], "radsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.radsimp", false]], "raise (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Raise", false]], "raise_on_deprecated() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.raise_on_deprecated", false]], "raisedcosine() (in module sympy.stats)": [[241, "sympy.stats.RaisedCosine", false]], "raises() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.raises", false]], "ramp_response_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.ramp_response_numerical_data", false]], "ramp_response_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.ramp_response_plot", false]], "randmatrix() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.randMatrix", false]], "random() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.random", false]], "random() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.random", false]], "random_bitstring() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.random_bitstring", false]], "random_circuit() (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.random_circuit", false]], "random_complex_number() (in module sympy.core.random)": [[88, "sympy.core.random.random_complex_number", false]], "random_derangement() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.random_derangement", false]], "random_integer_partition() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.random_integer_partition", false]], "random_point() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.random_point", false]], "random_point() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.random_point", false]], "random_point() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.random_point", false]], "random_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.random_poly", false]], "random_pr() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.random_pr", false]], "random_stab() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.random_stab", false]], "random_symbols() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.random_symbols", false]], "randomdomain (class in sympy.stats.rv)": [[241, "sympy.stats.rv.RandomDomain", false]], "randomsymbol (class in sympy.stats.rv)": [[241, "sympy.stats.rv.RandomSymbol", false]], "randprime() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.randprime", false]], "range (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Range", false]], "ranges (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.ranges", false]], "rank (sympy.combinatorics.graycode.graycode property)": [[72, "sympy.combinatorics.graycode.GrayCode.rank", false]], "rank (sympy.combinatorics.partitions.partition property)": [[77, "sympy.combinatorics.partitions.Partition.rank", false]], "rank (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.rank", false]], "rank (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.rank", false]], "rank() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.rank", false]], "rank() (sympy.liealgebras.cartan_type.standard_cartan method)": [[117, "sympy.liealgebras.cartan_type.Standard_Cartan.rank", false]], "rank() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rank", false]], "rank_binary (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.rank_binary", false]], "rank_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rank_decomposition", false]], "rank_gray (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.rank_gray", false]], "rank_lexicographic (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.rank_lexicographic", false]], "rank_nonlex() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.rank_nonlex", false]], "rank_trotterjohnson() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.rank_trotterjohnson", false]], "rat_clear_denoms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.rat_clear_denoms", false]], "ratint() (in module sympy.integrals.rationaltools)": [[115, "sympy.integrals.rationaltools.ratint", false]], "ratint_logpart() (in module sympy.integrals.rationaltools)": [[115, "sympy.integrals.rationaltools.ratint_logpart", false]], "ratint_ratpart() (in module sympy.integrals.rationaltools)": [[115, "sympy.integrals.rationaltools.ratint_ratpart", false]], "rational": [[88, "term-rational", true]], "rational (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Rational", false]], "rational_algorithm() (in module sympy.series.formal)": [[223, "sympy.series.formal.rational_algorithm", false]], "rational_independent() (in module sympy.series.formal)": [[223, "sympy.series.formal.rational_independent", false]], "rational_laurent_series() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.rational_laurent_series", false]], "rational_parametrization() (sympy.vector.implicitregion.implicitregion method)": [[265, "sympy.vector.implicitregion.ImplicitRegion.rational_parametrization", false]], "rationalfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.RationalField", false]], "rationalize() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.rationalize", false]], "rationalpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.RationalPredicate", false]], "rationalriccati (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.RationalRiccati", false]], "rationals (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Rationals", false]], "ratsimp() (in module sympy.simplify.ratsimp)": [[233, "sympy.simplify.ratsimp.ratsimp", false]], "ratsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.ratsimp", false]], "ratsimpmodprime() (in module sympy.simplify.ratsimp)": [[233, "sympy.simplify.ratsimp.ratsimpmodprime", false]], "rawlines() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.rawlines", false]], "ray (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Ray", false]], "ray2d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Ray2D", false]], "ray3d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Ray3D", false]], "rayleigh() (in module sympy.stats)": [[241, "sympy.stats.Rayleigh", false]], "rayleigh2waist() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.rayleigh2waist", false]], "raytransfermatrix (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix", false]], "rcall() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.rcall", false]], "rcode() (in module sympy.printing.rcode)": [[221, "sympy.printing.rcode.rcode", false]], "rcodeprinter (class in sympy.printing.rcode)": [[221, "sympy.printing.rcode.RCodePrinter", false]], "rcollect() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.rcollect", false]], "re (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.re", false]], "reaction_frame (sympy.physics.mechanics.actuator.torqueactuator property)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.reaction_frame", false]], "reaction_loads (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.reaction_loads", false]], "reaction_loads (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.reaction_loads", false]], "reaction_loads (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.reaction_loads", false]], "real": [[88, "term-real", true]], "real_gaunt() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.real_gaunt", false]], "real_root() (in module sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.real_root", false]], "real_roots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.real_roots", false]], "real_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.real_roots", false]], "real_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.real_roots", false]], "realelementspredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.RealElementsPredicate", false]], "realfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.RealField", false]], "realnumber (in module sympy.core.numbers)": [[88, "sympy.core.numbers.RealNumber", false]], "realpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.RealPredicate", false]], "reals (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Reals", false]], "reciprocal() (in module sympy.stats)": [[241, "sympy.stats.Reciprocal", false]], "reconstruct() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.reconstruct", false]], "rectangles (sympy.plotting.plot.plot property)": [[207, "sympy.plotting.plot.Plot.rectangles", false]], "recurrence (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.recurrence", false]], "recurrence_memo() (in module sympy.utilities.memoization)": [[261, "sympy.utilities.memoization.recurrence_memo", false]], "recursiveseq (class in sympy.series.sequences)": [[227, "sympy.series.sequences.RecursiveSeq", false]], "red_groebner() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.red_groebner", false]], "reduce() (sympy.polys.polytools.groebnerbasis method)": [[217, "sympy.polys.polytools.GroebnerBasis.reduce", false]], "reduce() (sympy.series.sequences.seqadd static method)": [[227, "sympy.series.sequences.SeqAdd.reduce", false]], "reduce() (sympy.series.sequences.seqmul static method)": [[227, "sympy.series.sequences.SeqMul.reduce", false]], "reduce() (sympy.sets.sets.complement static method)": [[229, "sympy.sets.sets.Complement.reduce", false]], "reduce_abs_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.reduce_abs_inequalities", false]], "reduce_abs_inequality() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.reduce_abs_inequality", false]], "reduce_alg_num() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.reduce_alg_num", false]], "reduce_anp() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.reduce_ANP", false]], "reduce_element() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.reduce_element", false]], "reduce_element() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.reduce_element", false]], "reduce_element() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.reduce_element", false]], "reduce_element() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.reduce_element", false]], "reduce_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.reduce_inequalities", false]], "reduce_rational_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.reduce_rational_inequalities", false]], "reduced() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.reduced", false]], "reduced() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.reduced", false]], "reduced() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.reduced", false]], "reduced_mod_p() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.reduced_mod_p", false]], "reduced_totient (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.reduced_totient", false]], "reduced_totient() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.reduced_totient", false]], "referenceframe (class in sympy.physics.vector.frame)": [[200, "sympy.physics.vector.frame.ReferenceFrame", false]], "refine() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine", false]], "refine() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.refine", false]], "refine() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.refine", false]], "refine_abs() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_abs", false]], "refine_arg() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_arg", false]], "refine_atan2() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_atan2", false]], "refine_im() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_im", false]], "refine_matrixelement() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_matrixelement", false]], "refine_pow() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_Pow", false]], "refine_re() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_re", false]], "refine_root() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.refine_root", false]], "refine_root() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.refine_root", false]], "refine_root() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.refine_root", false]], "refine_sign() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_sign", false]], "refinementfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.RefinementFailed", false]], "reflect() (sympy.geometry.ellipse.circle method)": [[98, "sympy.geometry.ellipse.Circle.reflect", false]], "reflect() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.reflect", false]], "reflect() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.reflect", false]], "reflect() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.reflect", false]], "reflective_filter() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.reflective_filter", false]], "refraction_angle() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.refraction_angle", false]], "refractive_index (sympy.physics.optics.medium.medium property)": [[162, "sympy.physics.optics.medium.Medium.refractive_index", false]], "register() (sympy.assumptions.assume.predicate class method)": [[63, "sympy.assumptions.assume.Predicate.register", false]], "register_handler() (in module sympy.assumptions.ask)": [[62, "sympy.assumptions.ask.register_handler", false]], "register_many() (sympy.assumptions.assume.predicate class method)": [[63, "sympy.assumptions.assume.Predicate.register_many", false]], "regular_point() (sympy.vector.implicitregion.implicitregion method)": [[265, "sympy.vector.implicitregion.ImplicitRegion.regular_point", false]], "regularpolygon (class in sympy.geometry.polygon)": [[104, "sympy.geometry.polygon.RegularPolygon", false]], "rel (in module sympy.core.relational)": [[88, "sympy.core.relational.Rel", false]], "relational": [[15, "term-Relational", true]], "relational (class in sympy.core.relational)": [[88, "sympy.core.relational.Relational", false]], "rem() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.rem", false]], "rem() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.rem", false]], "rem() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.rem", false]], "rem() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.rem", false]], "rem() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.rem", false]], "rem() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.rem", false]], "rem() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.rem", false]], "rem() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.rem", false]], "remove_handler() (in module sympy.assumptions.ask)": [[62, "sympy.assumptions.ask.remove_handler", false]], "remove_load() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.remove_load", false]], "remove_load() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.remove_load", false]], "remove_load() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.remove_load", false]], "remove_loads() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.remove_loads", false]], "remove_member() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.remove_member", false]], "remove_node() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.remove_node", false]], "remove_redundant_sols() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.remove_redundant_sols", false]], "remove_support() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.remove_support", false]], "removeo() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.removeO", false]], "render() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.render", false]], "render_as_module() (in module sympy.codegen.futils)": [[69, "sympy.codegen.futils.render_as_module", false]], "render_as_module() (in module sympy.codegen.pyutils)": [[69, "sympy.codegen.pyutils.render_as_module", false]], "render_as_source_file() (in module sympy.codegen.cutils)": [[69, "sympy.codegen.cutils.render_as_source_file", false]], "reorder() (sympy.concrete.expr_with_intlimits.exprwithintlimits method)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder", false]], "reorder() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.reorder", false]], "reorder_limit() (sympy.concrete.expr_with_intlimits.exprwithintlimits method)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder_limit", false]], "rep (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.rep", false]], "rep_expectation() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.rep_expectation", false]], "rep_innerproduct() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.rep_innerproduct", false]], "repeated_decimals() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.repeated_decimals", false]], "replace() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.replace", false]], "replace() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.replace", false]], "replace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.replace", false]], "replace() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.replace", false]], "replace_in_add() (sympy.codegen.rewriting.funcminusoneoptim method)": [[69, "sympy.codegen.rewriting.FuncMinusOneOptim.replace_in_Add", false]], "replace_with_arrays() (sympy.tensor.tensor.tensexpr method)": [[247, "sympy.tensor.tensor.TensExpr.replace_with_arrays", false]], "replaceoptim (class in sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.ReplaceOptim", false]], "reporter (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.Reporter", false]], "repr() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.repr", false]], "represent() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.represent", false]], "represent() (sympy.polys.numberfields.modules.endomorphismring method)": [[216, "sympy.polys.numberfields.modules.EndomorphismRing.represent", false]], "represent() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.represent", false]], "represent() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.represent", false]], "represent() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.represent", false]], "reprify() (sympy.printing.repr.reprprinter method)": [[221, "sympy.printing.repr.ReprPrinter.reprify", false]], "reprprinter (class in sympy.printing.repr)": [[221, "sympy.printing.repr.ReprPrinter", false]], "reset() (sympy.combinatorics.polyhedron.polyhedron method)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.reset", false]], "reshape() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.reshape", false]], "reshape() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.reshape", false]], "reshape() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.reshape", false]], "residue() (in module sympy.series.residues)": [[228, "sympy.series.residues.residue", false]], "resize() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.resize", false]], "restrict_codomain() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.restrict_codomain", false]], "restrict_domain() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.restrict_domain", false]], "result (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.Result", false]], "result_variables (sympy.utilities.codegen.routine property)": [[254, "sympy.utilities.codegen.Routine.result_variables", false]], "resultant() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.resultant", false]], "resultant() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.resultant", false]], "resultant() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.resultant", false]], "retract() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.retract", false]], "return (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Return", false]], "return_expr() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.return_expr", false]], "reverse_order() (sympy.concrete.products.product method)": [[87, "sympy.concrete.products.Product.reverse_order", false]], "reverse_order() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.reverse_order", false]], "reversed (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.reversed", false]], "reversed (sympy.sets.fancysets.range property)": [[229, "sympy.sets.fancysets.Range.reversed", false]], "reversedgradedlexorder (class in sympy.polys.orderings)": [[217, "sympy.polys.orderings.ReversedGradedLexOrder", false]], "reversedsign (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.reversedsign", false]], "revert() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.revert", false]], "revert() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.revert", false]], "revert() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.revert", false]], "revert() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.revert", false]], "revert() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.revert", false]], "rewrite() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.rewrite", false]], "rewrite() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.rewrite", false]], "rgs (sympy.combinatorics.partitions.partition property)": [[77, "sympy.combinatorics.partitions.Partition.RGS", false]], "rgs_enum() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.RGS_enum", false]], "rgs_generalized() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.RGS_generalized", false]], "rgs_rank() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.RGS_rank", false]], "rgs_unrank() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.RGS_unrank", false]], "rhs (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.rhs", false]], "rhs() (sympy.physics.biomechanics.activation.activationbase method)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.rhs", false]], "rhs() (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 method)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.rhs", false]], "rhs() (sympy.physics.biomechanics.activation.zerothorderactivation method)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.rhs", false]], "rhs() (sympy.physics.biomechanics.musculotendon.musculotendonbase method)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.rhs", false]], "rhs() (sympy.physics.mechanics.jointsmethod.jointsmethod method)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.rhs", false]], "rhs() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.rhs", false]], "rhs() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.rhs", false]], "rhs() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.rhs", false]], "riccati_inverse_normal() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.riccati_inverse_normal", false]], "riccati_normal() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.riccati_normal", false]], "riccati_reduced() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.riccati_reduced", false]], "riccatispecial (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.RiccatiSpecial", false]], "richardson() (in module sympy.series.acceleration)": [[228, "sympy.series.acceleration.richardson", false]], "riemann() (sympy.tensor.tensor.tensorsymmetry class method)": [[247, "sympy.tensor.tensor.TensorSymmetry.riemann", false]], "riemann_cyclic() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.riemann_cyclic", false]], "riemann_cyclic_replace() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.riemann_cyclic_replace", false]], "right() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.right", false]], "right_open (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.right_open", false]], "right_support (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.right_support", false]], "rigidbody (class in sympy.physics.mechanics.rigidbody)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody", false]], "ring (class in sympy.polys.domains.ring)": [[212, "sympy.polys.domains.ring.Ring", false]], "ring() (in module sympy.polys.rings)": [[212, "sympy.polys.rings.ring", false]], "ringelement (class in sympy.polys.matrices._typing)": [[210, "sympy.polys.matrices._typing.RingElement", false]], "risch_integrate() (in module sympy.integrals.risch)": [[115, "sympy.integrals.risch.risch_integrate", false]], "risingfactorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.RisingFactorial", false]], "rk (in module sympy.physics.quantum.qft)": [[184, "sympy.physics.quantum.qft.Rk", false]], "rkgate (class in sympy.physics.quantum.qft)": [[184, "sympy.physics.quantum.qft.RkGate", false]], "rmul() (sympy.combinatorics.permutations.permutation static method)": [[80, "sympy.combinatorics.permutations.Permutation.rmul", false]], "rmul() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.rmul", false]], "rmul_with_af() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.rmul_with_af", false]], "rmultiply() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rmultiply", false]], "root (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.root", false]], "root() (in module sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.root", false]], "root() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.root", false]], "root() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.root", false]], "root_space() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.root_space", false]], "rootof (class in sympy.polys.rootoftools)": [[217, "sympy.polys.rootoftools.RootOf", false]], "rootof() (in module sympy.polys.rootoftools)": [[217, "sympy.polys.rootoftools.rootof", false]], "roots() (in module sympy.polys.polyroots)": [[217, "sympy.polys.polyroots.roots", false]], "roots() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.roots", false]], "roots() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.roots", false]], "roots() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.roots", false]], "roots() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.roots", false]], "roots() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.roots", false]], "roots() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.roots", false]], "roots() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.roots", false]], "rootsum (class in sympy.polys.rootoftools)": [[217, "sympy.polys.rootoftools.RootSum", false]], "rootsystem (class in sympy.liealgebras.root_system)": [[117, "sympy.liealgebras.root_system.RootSystem", false]], "ropen() (sympy.sets.sets.interval class method)": [[229, "sympy.sets.sets.Interval.Ropen", false]], "rot90() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rot90", false]], "rot_axis1() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_axis1", false]], "rot_axis2() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_axis2", false]], "rot_axis3() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_axis3", false]], "rot_ccw_axis1() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_ccw_axis1", false]], "rot_ccw_axis2() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_ccw_axis2", false]], "rot_ccw_axis3() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_ccw_axis3", false]], "rot_givens() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_givens", false]], "rotate() (sympy.combinatorics.polyhedron.polyhedron method)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.rotate", false]], "rotate() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.rotate", false]], "rotate() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.rotate", false]], "rotate() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.rotate", false]], "rotate() (sympy.geometry.point.point2d method)": [[103, "sympy.geometry.point.Point2D.rotate", false]], "rotate() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.rotate", false]], "rotate_left() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.rotate_left", false]], "rotate_point() (sympy.algebras.quaternion static method)": [[61, "sympy.algebras.Quaternion.rotate_point", false]], "rotate_right() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.rotate_right", false]], "rotation (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.Rotation", false]], "rotation (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.rotation", false]], "rotation_axis (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.rotation_axis", false]], "rotation_coordinate (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.rotation_coordinate", false]], "rotation_coordinate (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.rotation_coordinate", false]], "rotation_jumps (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.rotation_jumps", false]], "rotation_matrix() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.rotation_matrix", false]], "rotation_matrix() (sympy.vector.orienters.axisorienter method)": [[267, "sympy.vector.orienters.AxisOrienter.rotation_matrix", false]], "rotation_matrix() (sympy.vector.orienters.orienter method)": [[267, "sympy.vector.orienters.Orienter.rotation_matrix", false]], "rotation_speed (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.rotation_speed", false]], "rotation_speed (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.rotation_speed", false]], "rotations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.rotations", false]], "round() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.round", false]], "round_two() (in module sympy.polys.numberfields.basis)": [[216, "sympy.polys.numberfields.basis.round_two", false]], "roundfunction (class in sympy.functions.elementary.integers)": [[94, "sympy.functions.elementary.integers.RoundFunction", false]], "roundrobin() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.roundrobin", false]], "routine (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.Routine", false]], "routine() (sympy.utilities.codegen.codegen method)": [[254, "sympy.utilities.codegen.CodeGen.routine", false]], "routine() (sympy.utilities.codegen.juliacodegen method)": [[254, "sympy.utilities.codegen.JuliaCodeGen.routine", false]], "routine() (sympy.utilities.codegen.octavecodegen method)": [[254, "sympy.utilities.codegen.OctaveCodeGen.routine", false]], "routine() (sympy.utilities.codegen.rustcodegen method)": [[254, "sympy.utilities.codegen.RustCodeGen.routine", false]], "row() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.row", false]], "row_del() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.row_del", false]], "row_insert() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.row_insert", false]], "row_join() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.row_join", false]], "rowspace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rowspace", false]], "rowspace() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.rowspace", false]], "rref() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rref", false]], "rref() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.rref", false]], "rref() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.rref", false]], "rref() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.rref", false]], "rref_den() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.rref_den", false]], "rref_den() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den", false]], "rref_den() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.rref_den", false]], "rref_rhs() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rref_rhs", false]], "rs_asin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_asin", false]], "rs_atan() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_atan", false]], "rs_atanh() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_atanh", false]], "rs_compose_add() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_compose_add", false]], "rs_cos() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_cos", false]], "rs_cos_sin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_cos_sin", false]], "rs_cosh() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_cosh", false]], "rs_cot() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_cot", false]], "rs_diff() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_diff", false]], "rs_exp() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_exp", false]], "rs_fun() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_fun", false]], "rs_hadamard_exp() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_hadamard_exp", false]], "rs_integrate() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_integrate", false]], "rs_is_puiseux() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_is_puiseux", false]], "rs_lambertw() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_LambertW", false]], "rs_log() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_log", false]], "rs_mul() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_mul", false]], "rs_newton() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_newton", false]], "rs_nth_root() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_nth_root", false]], "rs_pow() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_pow", false]], "rs_puiseux() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_puiseux", false]], "rs_puiseux2() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_puiseux2", false]], "rs_series_from_list() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_series_from_list", false]], "rs_series_inversion() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_series_inversion", false]], "rs_series_reversion() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_series_reversion", false]], "rs_sin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_sin", false]], "rs_sinh() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_sinh", false]], "rs_square() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_square", false]], "rs_subs() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_subs", false]], "rs_swap() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.rs_swap", false]], "rs_tan() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_tan", false]], "rs_tanh() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_tanh", false]], "rs_trunc() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_trunc", false]], "rsa_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.rsa_private_key", false]], "rsa_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.rsa_public_key", false]], "rsolve() (in module sympy.solvers.recurr)": [[239, "sympy.solvers.recurr.rsolve", false]], "rsolve_hyper() (in module sympy.solvers.recurr)": [[239, "sympy.solvers.recurr.rsolve_hyper", false]], "rsolve_hypergeometric() (in module sympy.series.formal)": [[223, "sympy.series.formal.rsolve_hypergeometric", false]], "rsolve_poly() (in module sympy.solvers.recurr)": [[239, "sympy.solvers.recurr.rsolve_poly", false]], "rsolve_ratio() (in module sympy.solvers.recurr)": [[239, "sympy.solvers.recurr.rsolve_ratio", false]], "run() (sympy.testing.runtests.sympydoctestrunner method)": [[252, "sympy.testing.runtests.SymPyDocTestRunner.run", false]], "run_all_tests() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.run_all_tests", false]], "run_in_subprocess_with_hash_randomization() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.run_in_subprocess_with_hash_randomization", false]], "runs() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.runs", false]], "runs() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.runs", false]], "runtimeerror_ (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.RuntimeError_", false]], "rust_code() (in module sympy.printing.rust)": [[221, "sympy.printing.rust.rust_code", false]], "rustcodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.RustCodeGen", false]], "rustcodeprinter (class in sympy.printing.rust)": [[221, "sympy.printing.rust.RustCodePrinter", false]], "s": [[15, "term-S", true]], "s (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.S", false]], "s1transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S1TransitiveSubgroups", false]], "s2transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S2TransitiveSubgroups", false]], "s3_in_s6() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S3_in_S6", false]], "s3transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S3TransitiveSubgroups", false]], "s4m() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S4m", false]], "s4p() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S4p", false]], "s4transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S4TransitiveSubgroups", false]], "s4xc2() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S4xC2", false]], "s5transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S5TransitiveSubgroups", false]], "s6transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S6TransitiveSubgroups", false]], "same_root() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.same_root", false]], "sample() (in module sympy.stats)": [[241, "sympy.stats.sample", false]], "sample() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.sample", false]], "sample_iter() (in module sympy.stats)": [[241, "sympy.stats.sample_iter", false]], "sampling_density() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.sampling_density", false]], "sampling_e() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.sampling_E", false]], "sampling_p() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.sampling_P", false]], "satisfiable() (in module sympy.logic.inference)": [[118, "sympy.logic.inference.satisfiable", false]], "saturate() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.saturate", false]], "scalar_map() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.scalar_map", false]], "scalar_part() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.scalar_part", false]], "scalar_potential() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.scalar_potential", false]], "scalar_potential() (in module sympy.vector)": [[268, "sympy.vector.scalar_potential", false]], "scalar_potential_difference() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.scalar_potential_difference", false]], "scalar_potential_difference() (in module sympy.vector)": [[268, "sympy.vector.scalar_potential_difference", false]], "scale() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.scale", false]], "scale() (sympy.geometry.ellipse.circle method)": [[98, "sympy.geometry.ellipse.Circle.scale", false]], "scale() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.scale", false]], "scale() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.scale", false]], "scale() (sympy.geometry.point.point2d method)": [[103, "sympy.geometry.point.Point2D.scale", false]], "scale() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.scale", false]], "scale() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.scale", false]], "scale() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.scale", false]], "scale_factor (sympy.physics.units.quantities.quantity property)": [[198, "sympy.physics.units.quantities.Quantity.scale_factor", false]], "scalex() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.scalex", false]], "scc() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.scc", false]], "scc() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.scc", false]], "scc() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.scc", false]], "scc() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.scc", false]], "schreier_sims() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims", false]], "schreier_sims_incremental() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_incremental", false]], "schreier_sims_random() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random", false]], "schreier_vector() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.schreier_vector", false]], "schur() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.schur", false]], "scope (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Scope", false]], "sdm (class in sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.SDM", false]], "sdm_add() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_add", false]], "sdm_berk() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_berk", false]], "sdm_deg() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_deg", false]], "sdm_ecart() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_ecart", false]], "sdm_from_dict() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_from_dict", false]], "sdm_from_vector() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_from_vector", false]], "sdm_groebner() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_groebner", false]], "sdm_irref() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_irref", false]], "sdm_lc() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_LC", false]], "sdm_lm() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_LM", false]], "sdm_lt() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_LT", false]], "sdm_monomial_deg() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_monomial_deg", false]], "sdm_monomial_divides() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_monomial_divides", false]], "sdm_monomial_mul() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_monomial_mul", false]], "sdm_mul_term() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_mul_term", false]], "sdm_nf_mora() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_nf_mora", false]], "sdm_nullspace_from_rref() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_nullspace_from_rref", false]], "sdm_particular_from_rref() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_particular_from_rref", false]], "sdm_rref_den() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_rref_den", false]], "sdm_spoly() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_spoly", false]], "sdm_to_dict() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_to_dict", false]], "sdm_to_vector() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_to_vector", false]], "sdm_zero() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_zero", false]], "search() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.search", false]], "search_function (sympy.physics.quantum.grover.oraclegate property)": [[176, "sympy.physics.quantum.grover.OracleGate.search_function", false]], "sec (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.sec", false]], "sech (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.sech", false]], "second_moment (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.second_moment", false]], "second_moment (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.second_moment", false]], "second_moment_of_area() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.second_moment_of_area", false]], "second_moment_of_area() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.second_moment_of_area", false]], "secondhypergeometric (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.SecondHypergeometric", false]], "secondlinearairy (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.SecondLinearAiry", false]], "secondlinearbessel (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.SecondLinearBessel", false]], "section_modulus() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.section_modulus", false]], "section_modulus() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.section_modulus", false]], "segment (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Segment", false]], "segment2d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Segment2D", false]], "segment3d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Segment3D", false]], "select() (sympy.simplify.epathtools.epath method)": [[233, "sympy.simplify.epathtools.EPath.select", false]], "selections (sympy.combinatorics.graycode.graycode property)": [[72, "sympy.combinatorics.graycode.GrayCode.selections", false]], "semilatus_rectum (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.semilatus_rectum", false]], "sensitivity (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.sensitivity", false]], "sensitivity (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.sensitivity", false]], "separable (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.Separable", false]], "separablereduced (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.SeparableReduced", false]], "separate() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.separate", false]], "separate() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.separate", false]], "separate() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.separate", false]], "separatevars() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.separatevars", false]], "seqadd (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqAdd", false]], "seqbase (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqBase", false]], "seqformula (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqFormula", false]], "seqmul (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqMul", false]], "seqper (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqPer", false]], "sequence() (in module sympy.series.sequences)": [[227, "sympy.series.sequences.sequence", false]], "sequence_partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.sequence_partitions", false]], "sequence_partitions_empty() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.sequence_partitions_empty", false]], "series (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.Series", false]], "series() (in module sympy.series.series)": [[228, "sympy.series.series.series", false]], "series() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.series", false]], "series() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.series", false]], "series() (sympy.liealgebras.cartan_type.standard_cartan method)": [[117, "sympy.liealgebras.cartan_type.Standard_Cartan.series", false]], "seriesapprox (class in sympy.codegen.approximations)": [[69, "sympy.codegen.approximations.SeriesApprox", false]], "set (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Set", false]], "set_acc() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.set_acc", false]], "set_ang_acc() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.set_ang_acc", false]], "set_ang_vel() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.set_ang_vel", false]], "set_comm() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.set_comm", false]], "set_comms() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.set_comms", false]], "set_domain() (sympy.polys.domains.compositedomain.compositedomain method)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.set_domain", false]], "set_domain() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.set_domain", false]], "set_global_relative_scale_factor() (sympy.physics.units.quantities.quantity method)": [[198, "sympy.physics.units.quantities.Quantity.set_global_relative_scale_factor", false]], "set_global_settings() (sympy.printing.printer.printer class method)": [[221, "sympy.printing.printer.Printer.set_global_settings", false]], "set_modulus() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.set_modulus", false]], "set_norm() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.set_norm", false]], "set_pos() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.set_pos", false]], "set_vel() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.set_vel", false]], "seterr() (in module sympy.core.numbers)": [[88, "sympy.core.numbers.seterr", false]], "setitem() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.setitem", false]], "setkind (class in sympy.sets.conditionset)": [[229, "sympy.sets.conditionset.SetKind", false]], "sets (sympy.sets.fancysets.complexregion property)": [[229, "sympy.sets.fancysets.ComplexRegion.sets", false]], "setup() (in module sympy.polys.polyconfig)": [[214, "sympy.polys.polyconfig.setup", false]], "sfield() (in module sympy.polys.fields)": [[212, "sympy.polys.fields.sfield", false]], "shanks() (in module sympy.series.acceleration)": [[228, "sympy.series.acceleration.shanks", false]], "shape (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.shape", false]], "shape (sympy.physics.control.lti.mimoparallel property)": [[144, "sympy.physics.control.lti.MIMOParallel.shape", false]], "shape (sympy.physics.control.lti.mimoseries property)": [[144, "sympy.physics.control.lti.MIMOSeries.shape", false]], "shape (sympy.physics.control.lti.transferfunctionmatrix property)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.shape", false]], "shape (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.shape", false]], "shape (sympy.tensor.indexed.indexedbase property)": [[246, "sympy.tensor.indexed.IndexedBase.shape", false]], "shape() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.shape", false]], "shapeerror (class in sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.ShapeError", false]], "shear_force() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.shear_force", false]], "shear_force() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.shear_force", false]], "shear_modulus (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.shear_modulus", false]], "shear_stress() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.shear_stress", false]], "shear_stress() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.shear_stress", false]], "shi (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Shi", false]], "shift() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.shift", false]], "shift() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.shift", false]], "shift() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.shift", false]], "shift_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.shift_list", false]], "shift_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.shift_list", false]], "shiftedgompertz() (in module sympy.stats)": [[241, "sympy.stats.ShiftedGompertz", false]], "shiftx() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.shiftx", false]], "shor() (in module sympy.physics.quantum.shor)": [[187, "sympy.physics.quantum.shor.shor", false]], "si (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Si", false]], "sides (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.sides", false]], "sieve (class in sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.Sieve", false]], "sift() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.sift", false]], "sigma_approximation() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.sigma_approximation", false]], "sign (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.sign", false]], "sign (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.sign", false]], "sign (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.sign", false]], "sign() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.sign", false]], "signature (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.signature", false]], "signature() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.signature", false]], "signed_permutations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.signed_permutations", false]], "signedinttype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.SignedIntType", false]], "simple_root() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.simple_root", false]], "simple_root() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.simple_root", false]], "simple_root() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.simple_root", false]], "simple_root() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.simple_root", false]], "simple_root() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.simple_root", false]], "simple_root() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.simple_root", false]], "simple_root() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.simple_root", false]], "simple_roots() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.simple_roots", false]], "simplede() (in module sympy.series.formal)": [[223, "sympy.series.formal.simpleDE", false]], "simpledomain (class in sympy.polys.domains.simpledomain)": [[212, "sympy.polys.domains.simpledomain.SimpleDomain", false]], "simplification": [[15, "term-Simplification", true]], "simplify() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.simplify", false]], "simplify() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.simplify", false]], "simplify() (sympy.matrices.dense.mutabledensematrix method)": [[119, "sympy.matrices.dense.MutableDenseMatrix.simplify", false]], "simplify() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.simplify", false]], "simplify() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.simplify", false]], "simplify() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.simplify", false]], "simplify_gpgp() (in module sympy.physics.hep.gamma_matrices)": [[145, "sympy.physics.hep.gamma_matrices.simplify_gpgp", false]], "simplify_index_permutations() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.simplify_index_permutations", false]], "simplify_logic() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.simplify_logic", false]], "sin (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.sin", false]], "sinc (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.sinc", false]], "sine_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.sine_transform", false]], "sinetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.SineTransform", false]], "singledomain (class in sympy.stats.rv)": [[241, "sympy.stats.rv.SingleDomain", false]], "singlepspace (class in sympy.stats.rv)": [[241, "sympy.stats.rv.SinglePSpace", false]], "singleton (class in sympy.core.singleton)": [[88, "sympy.core.singleton.Singleton", false]], "singletonregistry (class in sympy.core.singleton)": [[88, "sympy.core.singleton.SingletonRegistry", false]], "singular_points() (sympy.vector.implicitregion.implicitregion method)": [[265, "sympy.vector.implicitregion.ImplicitRegion.singular_points", false]], "singular_value_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.singular_value_decomposition", false]], "singular_values() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.singular_values", false]], "singularities() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.singularities", false]], "singularityfunction (class in sympy.functions.special.singularity_functions)": [[96, "sympy.functions.special.singularity_functions.SingularityFunction", false]], "singularityintegrate() (in module sympy.integrals.singularityfunctions)": [[115, "sympy.integrals.singularityfunctions.singularityintegrate", false]], "singularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.SingularPredicate", false]], "sinh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.sinh", false]], "size (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.size", false]], "size (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.size", false]], "size (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.size", false]], "size (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.size", false]], "size() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.size", false]], "sizeof() (in module sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.sizeof", false]], "skellam() (in module sympy.stats)": [[241, "sympy.stats.Skellam", false]], "skewness() (in module sympy.stats)": [[241, "sympy.stats.skewness", false]], "skip() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.SKIP", false]], "skip() (sympy.combinatorics.graycode.graycode method)": [[72, "sympy.combinatorics.graycode.GrayCode.skip", false]], "skip_under_pyodide() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.skip_under_pyodide", false]], "slice() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.slice", false]], "slice() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.slice", false]], "slope (sympy.geometry.line.linearentity2d property)": [[101, "sympy.geometry.line.LinearEntity2D.slope", false]], "slope() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.slope", false]], "slope() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.slope", false]], "smallest_angle_between() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.smallest_angle_between", false]], "smith_normal_form() (in module sympy.matrices.normalforms)": [[125, "sympy.matrices.normalforms.smith_normal_form", false]], "smith_normal_form() (in module sympy.polys.matrices.normalforms)": [[210, "sympy.polys.matrices.normalforms.smith_normal_form", false]], "smoothing_rate (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.smoothing_rate", false]], "smoothness() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.smoothness", false]], "smoothness_p() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.smoothness_p", false]], "smtlib_code() (in module sympy.printing.smtlib)": [[221, "sympy.printing.smtlib.smtlib_code", false]], "smtlibprinter (class in sympy.printing.smtlib)": [[221, "sympy.printing.smtlib.SMTLibPrinter", false]], "solve": [[15, "term-Solve", true]], "solve() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve", false]], "solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.solve", false]], "solve() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.solve", false]], "solve() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.solve", false]], "solve_aux_eq() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.solve_aux_eq", false]], "solve_congruence() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.solve_congruence", false]], "solve_de() (in module sympy.series.formal)": [[223, "sympy.series.formal.solve_de", false]], "solve_den() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.solve_den", false]], "solve_den_charpoly() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.solve_den_charpoly", false]], "solve_den_rref() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.solve_den_rref", false]], "solve_for_ild_moment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.solve_for_ild_moment", false]], "solve_for_ild_reactions() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.solve_for_ild_reactions", false]], "solve_for_ild_shear() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.solve_for_ild_shear", false]], "solve_for_reaction_loads() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.solve_for_reaction_loads", false]], "solve_for_reaction_loads() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.solve_for_reaction_loads", false]], "solve_for_torsion() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.solve_for_torsion", false]], "solve_least_squares() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.solve_least_squares", false]], "solve_lin_sys() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers.solve_lin_sys", false]], "solve_linear() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve_linear", false]], "solve_linear_system() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve_linear_system", false]], "solve_linear_system_lu() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve_linear_system_LU", false]], "solve_multipliers() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.solve_multipliers", false]], "solve_poly_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.solve_poly_inequalities", false]], "solve_poly_inequality() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.solve_poly_inequality", false]], "solve_poly_system() (in module sympy.solvers.polysys)": [[239, "sympy.solvers.polysys.solve_poly_system", false]], "solve_rational_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.solve_rational_inequalities", false]], "solve_riccati() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.solve_riccati", false]], "solve_triangulated() (in module sympy.solvers.polysys)": [[239, "sympy.solvers.polysys.solve_triangulated", false]], "solve_undetermined_coeffs() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve_undetermined_coeffs", false]], "solve_univariate_inequality() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.solve_univariate_inequality", false]], "solvers": [[15, "term-Solvers", true]], "solveset() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.solveset", false]], "solveset_complex() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.solveset_complex", false]], "solveset_real() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.solveset_real", false]], "solvify() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.solvify", false]], "sopform() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.SOPform", false]], "sort_key() (sympy.combinatorics.partitions.partition method)": [[77, "sympy.combinatorics.partitions.Partition.sort_key", false]], "sort_key() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.sort_key", false]], "sorted_components() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.sorted_components", false]], "source (sympy.geometry.line.ray property)": [[101, "sympy.geometry.line.Ray.source", false]], "spaceorienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.SpaceOrienter", false]], "spaces (sympy.physics.quantum.hilbert.directsumhilbertspace property)": [[177, "sympy.physics.quantum.hilbert.DirectSumHilbertSpace.spaces", false]], "spaces (sympy.physics.quantum.hilbert.tensorproducthilbertspace property)": [[177, "sympy.physics.quantum.hilbert.TensorProductHilbertSpace.spaces", false]], "sparsematrix (in module sympy.matrices.sparse)": [[126, "sympy.matrices.sparse.SparseMatrix", false]], "speed (sympy.physics.optics.medium.medium property)": [[162, "sympy.physics.optics.medium.Medium.speed", false]], "speed (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.speed", false]], "speeds (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.speeds", false]], "speeds (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.speeds", false]], "spherical_bessel_fn() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.spherical_bessel_fn", false]], "sphericaljoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.SphericalJoint", false]], "spin() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.spin", false]], "split() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.split", false]], "split_list() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.split_list", false]], "split_super_sub() (in module sympy.printing.conventions)": [[221, "sympy.printing.conventions.split_super_sub", false]], "split_symbols() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.split_symbols", false]], "split_symbols_custom() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.split_symbols_custom", false]], "spoly() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.spoly", false]], "sqf() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sqf", false]], "sqf_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sqf_list", false]], "sqf_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqf_list", false]], "sqf_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqf_list", false]], "sqf_list_include() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqf_list_include", false]], "sqf_list_include() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqf_list_include", false]], "sqf_norm() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sqf_norm", false]], "sqf_norm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqf_norm", false]], "sqf_norm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqf_norm", false]], "sqf_normal() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sqf_normal", false]], "sqf_part() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sqf_part", false]], "sqf_part() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqf_part", false]], "sqf_part() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqf_part", false]], "sqr() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqr", false]], "sqr() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqr", false]], "sqrt (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.Sqrt", false]], "sqrt() (in module sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.sqrt", false]], "sqrt() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.sqrt", false]], "sqrt() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.sqrt", false]], "sqrt() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.sqrt", false]], "sqrt_mod() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.sqrt_mod", false]], "sqrt_mod_iter() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.sqrt_mod_iter", false]], "sqrtdenest() (in module sympy.simplify.sqrtdenest)": [[233, "sympy.simplify.sqrtdenest.sqrtdenest", false]], "square() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.square", false]], "square_factor() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.square_factor", false]], "squarepredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.SquarePredicate", false]], "srepr() (in module sympy.printing.repr)": [[221, "sympy.printing.repr.srepr", false]], "sring() (in module sympy.polys.rings)": [[212, "sympy.polys.rings.sring", false]], "sstr() (in module sympy.printing.str)": [[221, "sympy.printing.str.sstr", false]], "sstrrepr() (in module sympy.printing.str)": [[221, "sympy.printing.str.sstrrepr", false]], "stabilizer() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.stabilizer", false]], "stack() (sympy.printing.pretty.stringpict.stringpict static method)": [[221, "sympy.printing.pretty.stringpict.stringPict.stack", false]], "standard_cartan (class in sympy.liealgebras.cartan_type)": [[117, "sympy.liealgebras.cartan_type.Standard_Cartan", false]], "standard_transformations (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.standard_transformations", false]], "start (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.start", false]], "start (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.start", false]], "start (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.start", false]], "starts_with_unity() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.starts_with_unity", false]], "state (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.State", false]], "state() (sympy.physics.secondquant.fixedbosonicbasis method)": [[191, "sympy.physics.secondquant.FixedBosonicBasis.state", false]], "state() (sympy.physics.secondquant.varbosonicbasis method)": [[191, "sympy.physics.secondquant.VarBosonicBasis.state", false]], "state_to_operators() (in module sympy.physics.quantum.operatorset)": [[181, "sympy.physics.quantum.operatorset.state_to_operators", false]], "state_vars (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.state_vars", false]], "state_vars (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.state_vars", false]], "state_vars (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.state_vars", false]], "state_vars (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.state_vars", false]], "statebase (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.StateBase", false]], "states (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.states", false]], "stationary_distribution() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.stationary_distribution", false]], "stationary_points() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.stationary_points", false]], "std() (in module sympy.stats)": [[241, "sympy.stats.std", false]], "step_response_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.step_response_numerical_data", false]], "step_response_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.step_response_plot", false]], "stieltjes (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.stieltjes", false]], "stiffness (sympy.physics.mechanics.actuator.linearspring property)": [[148, "sympy.physics.mechanics.actuator.LinearSpring.stiffness", false]], "stirling() (in module sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.stirling", false]], "stokes_vector() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.stokes_vector", false]], "stop (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.stop", false]], "stop (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.stop", false]], "stream (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Stream", false]], "strict (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.strict", false]], "strictgreaterthan (class in sympy.core.relational)": [[88, "sympy.core.relational.StrictGreaterThan", false]], "strictlessthan (class in sympy.core.relational)": [[88, "sympy.core.relational.StrictLessThan", false]], "strides (sympy.tensor.indexed.indexedbase property)": [[246, "sympy.tensor.indexed.IndexedBase.strides", false]], "string (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.String", false]], "stringify_expr() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.stringify_expr", false]], "stringpict (class in sympy.printing.pretty.stringpict)": [[221, "sympy.printing.pretty.stringpict.stringPict", false]], "strip_zero() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.strip_zero", false]], "strlines() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.strlines", false]], "strong_gens (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.strong_gens", false]], "strong_presentation() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.strong_presentation", false]], "strongly_connected_components() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.strongly_connected_components", false]], "strongly_connected_components() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.strongly_connected_components", false]], "strongly_connected_components_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.strongly_connected_components_decomposition", false]], "strprinter (class in sympy.printing.str)": [[221, "sympy.printing.str.StrPrinter", false]], "struct (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.struct", false]], "structural equality": [[15, "term-Structural-Equality", true]], "studentt() (in module sympy.stats)": [[241, "sympy.stats.StudentT", false]], "sturm() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sturm", false]], "sturm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sturm", false]], "sturm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sturm", false]], "sub (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.sub", false]], "sub() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.sub", false]], "sub() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.sub", false]], "sub() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.sub", false]], "sub() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.sub", false]], "sub() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.sub", false]], "sub() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.sub", false]], "sub() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sub", false]], "sub() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sub", false]], "sub_ground() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.sub_ground", false]], "sub_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sub_ground", false]], "sub_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sub_ground", false]], "subdiagram_from_objects() (sympy.categories.diagram method)": [[68, "sympy.categories.Diagram.subdiagram_from_objects", false]], "subexpression": [[15, "term-Subexpression", true]], "subfactorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.subfactorial", false]], "subgroup() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.subgroup", false]], "subgroup_search() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.subgroup_search", false]], "submodule (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.SubModule", false]], "submodule (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.Submodule", false]], "submodule() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.submodule", false]], "submodule() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.submodule", false]], "submodule() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.submodule", false]], "submodule_from_gens() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.submodule_from_gens", false]], "submodule_from_matrix() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.submodule_from_matrix", false]], "subquotientmodule (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.SubQuotientModule", false]], "subresultants() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.subresultants", false]], "subresultants() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.subresultants", false]], "subresultants() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.subresultants", false]], "subresultants() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.subresultants", false]], "subroutine (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Subroutine", false]], "subroutinecall (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.SubroutineCall", false]], "subs (class in sympy.core.function)": [[88, "sympy.core.function.Subs", false]], "subs() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.subs", false]], "subs() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.subs", false]], "subs() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.subs", false]], "subs() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.subs", false]], "subset (class in sympy.combinatorics.subsets)": [[83, "sympy.combinatorics.subsets.Subset", false]], "subset (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.subset", false]], "subset() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.subset", false]], "subset() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.subset", false]], "subset_from_bitlist() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.subset_from_bitlist", false]], "subset_indices() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.subset_indices", false]], "subsets() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.subsets", false]], "subsset (class in sympy.series.gruntz)": [[228, "sympy.series.gruntz.SubsSet", false]], "substitute_dummies() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.substitute_dummies", false]], "substitution": [[15, "term-Substitution", true]], "sum (class in sympy.concrete.summations)": [[87, "sympy.concrete.summations.Sum", false]], "sum_of_four_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sum_of_four_squares", false]], "sum_of_powers() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sum_of_powers", false]], "sum_of_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sum_of_squares", false]], "sum_of_three_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sum_of_three_squares", false]], "sumapprox (class in sympy.codegen.approximations)": [[69, "sympy.codegen.approximations.SumApprox", false]], "summation() (in module sympy.concrete.summations)": [[87, "sympy.concrete.summations.summation", false]], "sup (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.sup", false]], "sup (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.sup", false]], "superposition_basis() (in module sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.superposition_basis", false]], "superset (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.superset", false]], "superset_size (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.superset_size", false]], "supplement_a_subspace() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.supplement_a_subspace", false]], "support() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.support", false]], "supports (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.supports", false]], "supports (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.supports", false]], "surfacebaseseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.SurfaceBaseSeries", false]], "surfaceover2drangeseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.SurfaceOver2DRangeSeries", false]], "swap (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.SWAP", false]], "swap_point() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.swap_point", false]], "swapgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.SwapGate", false]], "swinnerton_dyer_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.swinnerton_dyer_poly", false]], "sylow_subgroup() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.sylow_subgroup", false]], "symarray() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.symarray", false]], "symb_2txt (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.symb_2txt", false]], "symbol": [[15, "term-Symbol", true]], "symbol (class in sympy.core.symbol)": [[88, "sympy.core.symbol.Symbol", false]], "symbol (sympy.physics.secondquant.antisymmetrictensor property)": [[191, "sympy.physics.secondquant.AntiSymmetricTensor.symbol", false]], "symbolic": [[15, "term-Symbolic", true]], "symbolicsystem (class in sympy.physics.mechanics.system)": [[158, "sympy.physics.mechanics.system.SymbolicSystem", false]], "symbols() (in module sympy.core.symbol)": [[88, "sympy.core.symbol.symbols", false]], "symmetric() (sympy.combinatorics.generators method)": [[80, "sympy.combinatorics.generators.symmetric", false]], "symmetric_difference() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.symmetric_difference", false]], "symmetric_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.symmetric_poly", false]], "symmetric_poly() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.symmetric_poly", false]], "symmetric_residue() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.symmetric_residue", false]], "symmetricdifference (class in sympy.sets.sets)": [[229, "sympy.sets.sets.SymmetricDifference", false]], "symmetricgroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.SymmetricGroup", false]], "symmetricpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.SymmetricPredicate", false]], "symmetrize() (in module sympy.polys.polyfuncs)": [[217, "sympy.polys.polyfuncs.symmetrize", false]], "symmetrize() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.symmetrize", false]], "sympify()": [[15, "term-sympify", true]], "sympify() (in module sympy.core.sympify)": [[88, "sympy.core.sympify.sympify", false]], "sympy": [[58, "module-sympy", false]], "sympy.abc": [[60, "module-sympy.abc", false]], "sympy.algebras": [[61, "module-sympy.algebras", false]], "sympy.assumptions": [[64, "module-sympy.assumptions", false]], "sympy.assumptions.ask": [[62, "module-sympy.assumptions.ask", false]], "sympy.assumptions.assume": [[63, "module-sympy.assumptions.assume", false]], "sympy.assumptions.predicates": [[65, "module-sympy.assumptions.predicates", false]], "sympy.assumptions.refine": [[66, "module-sympy.assumptions.refine", false]], "sympy.calculus": [[67, "module-sympy.calculus", false]], "sympy.calculus.euler": [[67, "module-sympy.calculus.euler", false]], "sympy.calculus.finite_diff": [[67, "module-sympy.calculus.finite_diff", false]], "sympy.calculus.singularities": [[67, "module-sympy.calculus.singularities", false]], "sympy.calculus.util": [[67, "module-sympy.calculus.util", false]], "sympy.categories": [[68, "module-sympy.categories", false]], "sympy.categories.diagram_drawing": [[68, "module-sympy.categories.diagram_drawing", false]], "sympy.codegen.algorithms": [[69, "module-sympy.codegen.algorithms", false]], "sympy.codegen.approximations": [[69, "module-sympy.codegen.approximations", false]], "sympy.codegen.ast": [[69, "module-sympy.codegen.ast", false]], "sympy.codegen.cfunctions": [[69, "module-sympy.codegen.cfunctions", false]], "sympy.codegen.cnodes": [[69, "module-sympy.codegen.cnodes", false]], "sympy.codegen.cutils": [[69, "module-sympy.codegen.cutils", false]], "sympy.codegen.cxxnodes": [[69, "module-sympy.codegen.cxxnodes", false]], "sympy.codegen.fnodes": [[69, "module-sympy.codegen.fnodes", false]], "sympy.codegen.futils": [[69, "module-sympy.codegen.futils", false]], "sympy.codegen.matrix_nodes": [[69, "module-sympy.codegen.matrix_nodes", false]], "sympy.codegen.pyutils": [[69, "module-sympy.codegen.pyutils", false]], "sympy.codegen.rewriting": [[69, "module-sympy.codegen.rewriting", false]], "sympy.combinatorics.galois": [[71, "module-sympy.combinatorics.galois", false]], "sympy.combinatorics.generators": [[80, "module-sympy.combinatorics.generators", false]], "sympy.combinatorics.graycode": [[72, "module-sympy.combinatorics.graycode", false]], "sympy.combinatorics.group_constructs": [[73, "module-sympy.combinatorics.group_constructs", false]], "sympy.combinatorics.group_numbers": [[74, "module-sympy.combinatorics.group_numbers", false]], "sympy.combinatorics.named_groups": [[76, "module-sympy.combinatorics.named_groups", false]], "sympy.combinatorics.partitions": [[77, "module-sympy.combinatorics.partitions", false]], "sympy.combinatorics.perm_groups": [[79, "module-sympy.combinatorics.perm_groups", false]], "sympy.combinatorics.permutations": [[80, "module-sympy.combinatorics.permutations", false]], "sympy.combinatorics.polyhedron": [[81, "module-sympy.combinatorics.polyhedron", false]], "sympy.combinatorics.prufer": [[82, "module-sympy.combinatorics.prufer", false]], "sympy.combinatorics.subsets": [[83, "module-sympy.combinatorics.subsets", false]], "sympy.combinatorics.tensor_can": [[84, "module-sympy.combinatorics.tensor_can", false]], "sympy.combinatorics.testutil": [[85, "module-sympy.combinatorics.testutil", false]], "sympy.combinatorics.util": [[86, "module-sympy.combinatorics.util", false]], "sympy.core.add": [[88, "module-sympy.core.add", false]], "sympy.core.assumptions": [[88, "module-sympy.core.assumptions", false]], "sympy.core.basic": [[88, "module-sympy.core.basic", false]], "sympy.core.cache": [[88, "module-sympy.core.cache", false]], "sympy.core.containers": [[88, "module-sympy.core.containers", false]], "sympy.core.evalf": [[88, "module-sympy.core.evalf", false]], "sympy.core.expr": [[88, "module-sympy.core.expr", false]], "sympy.core.exprtools": [[88, "module-sympy.core.exprtools", false]], "sympy.core.function": [[88, "module-sympy.core.function", false]], "sympy.core.intfunc": [[88, "module-sympy.core.intfunc", false]], "sympy.core.kind": [[88, "module-sympy.core.kind", false]], "sympy.core.mod": [[88, "module-sympy.core.mod", false]], "sympy.core.mul": [[88, "module-sympy.core.mul", false]], "sympy.core.multidimensional": [[88, "module-sympy.core.multidimensional", false]], "sympy.core.numbers": [[88, "module-sympy.core.numbers", false]], "sympy.core.power": [[88, "module-sympy.core.power", false]], "sympy.core.random": [[88, "module-sympy.core.random", false]], "sympy.core.relational": [[88, "module-sympy.core.relational", false]], "sympy.core.singleton": [[88, "module-sympy.core.singleton", false]], "sympy.core.symbol": [[88, "module-sympy.core.symbol", false]], "sympy.core.sympify": [[88, "module-sympy.core.sympify", false]], "sympy.core.traversal": [[88, "module-sympy.core.traversal", false]], "sympy.crypto.crypto": [[89, "module-sympy.crypto.crypto", false]], "sympy.diffgeom": [[90, "module-sympy.diffgeom", false]], "sympy.discrete": [[91, "module-sympy.discrete", false]], "sympy.discrete.convolutions": [[91, "module-sympy.discrete.convolutions", false]], "sympy.discrete.transforms": [[91, "module-sympy.discrete.transforms", false]], "sympy.functions": [[95, "module-sympy.functions", false]], "sympy.functions.special.bessel": [[96, "module-sympy.functions.special.bessel", false]], "sympy.functions.special.beta_functions": [[96, "module-sympy.functions.special.beta_functions", false]], "sympy.functions.special.elliptic_integrals": [[96, "module-sympy.functions.special.elliptic_integrals", false]], "sympy.functions.special.error_functions": [[96, "module-sympy.functions.special.error_functions", false]], "sympy.functions.special.gamma_functions": [[96, "module-sympy.functions.special.gamma_functions", false]], "sympy.functions.special.mathieu_functions": [[96, "module-sympy.functions.special.mathieu_functions", false]], "sympy.functions.special.polynomials": [[96, "module-sympy.functions.special.polynomials", false]], "sympy.functions.special.singularity_functions": [[96, "module-sympy.functions.special.singularity_functions", false]], "sympy.functions.special.zeta_functions": [[96, "module-sympy.functions.special.zeta_functions", false]], "sympy.geometry.curve": [[97, "module-sympy.geometry.curve", false]], "sympy.geometry.ellipse": [[98, "module-sympy.geometry.ellipse", false]], "sympy.geometry.entity": [[99, "module-sympy.geometry.entity", false]], "sympy.geometry.line": [[101, "module-sympy.geometry.line", false]], "sympy.geometry.plane": [[102, "module-sympy.geometry.plane", false]], "sympy.geometry.point": [[103, "module-sympy.geometry.point", false]], "sympy.geometry.polygon": [[104, "module-sympy.geometry.polygon", false]], "sympy.geometry.util": [[105, "module-sympy.geometry.util", false]], "sympy.holonomic": [[108, "module-sympy.holonomic", false]], "sympy.integrals": [[115, "module-sympy.integrals", false]], "sympy.integrals.intpoly": [[115, "module-sympy.integrals.intpoly", false]], "sympy.integrals.meijerint": [[113, "module-sympy.integrals.meijerint", false]], "sympy.integrals.meijerint_doc": [[113, "module-sympy.integrals.meijerint_doc", false]], "sympy.integrals.transforms": [[115, "module-sympy.integrals.transforms", false]], "sympy.interactive": [[116, "module-sympy.interactive", false]], "sympy.interactive.printing": [[116, "module-sympy.interactive.printing", false]], "sympy.interactive.session": [[116, "module-sympy.interactive.session", false]], "sympy.liealgebras": [[117, "module-sympy.liealgebras", false]], "sympy.logic": [[118, "module-sympy.logic", false]], "sympy.logic.inference": [[118, "module-sympy.logic.inference", false]], "sympy.matrices": [[122, "module-sympy.matrices", false]], "sympy.matrices.expressions": [[120, "module-sympy.matrices.expressions", false]], "sympy.matrices.expressions.blockmatrix": [[120, "module-sympy.matrices.expressions.blockmatrix", false]], "sympy.matrices.immutable": [[121, "module-sympy.matrices.immutable", false]], "sympy.matrices.kind": [[123, "module-sympy.matrices.kind", false]], "sympy.matrices.matrixbase": [[124, "module-sympy.matrices.matrixbase", false]], "sympy.matrices.sparse": [[126, "module-sympy.matrices.sparse", false]], "sympy.matrices.sparsetools": [[127, "module-sympy.matrices.sparsetools", false]], "sympy.ntheory.bbp_pi": [[128, "module-sympy.ntheory.bbp_pi", false]], "sympy.ntheory.continued_fraction": [[128, "module-sympy.ntheory.continued_fraction", false]], "sympy.ntheory.digits": [[128, "module-sympy.ntheory.digits", false]], "sympy.ntheory.ecm": [[128, "module-sympy.ntheory.ecm", false]], "sympy.ntheory.egyptian_fraction": [[128, "module-sympy.ntheory.egyptian_fraction", false]], "sympy.ntheory.factor_": [[128, "module-sympy.ntheory.factor_", false]], "sympy.ntheory.generate": [[128, "module-sympy.ntheory.generate", false]], "sympy.ntheory.modular": [[128, "module-sympy.ntheory.modular", false]], "sympy.ntheory.multinomial": [[128, "module-sympy.ntheory.multinomial", false]], "sympy.ntheory.partitions_": [[128, "module-sympy.ntheory.partitions_", false]], "sympy.ntheory.primetest": [[128, "module-sympy.ntheory.primetest", false]], "sympy.ntheory.qs": [[128, "module-sympy.ntheory.qs", false]], "sympy.ntheory.residue_ntheory": [[128, "module-sympy.ntheory.residue_ntheory", false]], "sympy.parsing": [[130, "module-sympy.parsing", false]], "sympy.parsing.sym_expr": [[130, "module-sympy.parsing.sym_expr", false]], "sympy.physics": [[282, "module-sympy.physics", false]], "sympy.physics.biomechanics": [[133, "module-sympy.physics.biomechanics", false]], "sympy.physics.biomechanics.activation": [[131, "module-sympy.physics.biomechanics.activation", false]], "sympy.physics.biomechanics.curve": [[132, "module-sympy.physics.biomechanics.curve", false]], "sympy.physics.biomechanics.musculotendon": [[134, "module-sympy.physics.biomechanics.musculotendon", false]], "sympy.physics.continuum_mechanics.arch": [[135, "module-sympy.physics.continuum_mechanics.Arch", false]], "sympy.physics.continuum_mechanics.beam": [[136, "module-sympy.physics.continuum_mechanics.beam", false]], "sympy.physics.continuum_mechanics.cable": [[138, "module-sympy.physics.continuum_mechanics.cable", false]], "sympy.physics.continuum_mechanics.truss": [[140, "module-sympy.physics.continuum_mechanics.truss", false]], "sympy.physics.control": [[143, "module-sympy.physics.control", false]], "sympy.physics.control.lti": [[144, "module-sympy.physics.control.lti", false]], "sympy.physics.hep.gamma_matrices": [[145, "module-sympy.physics.hep.gamma_matrices", false]], "sympy.physics.hydrogen": [[146, "module-sympy.physics.hydrogen", false]], "sympy.physics.matrices": [[147, "module-sympy.physics.matrices", false]], "sympy.physics.mechanics": [[151, "module-sympy.physics.mechanics", false]], "sympy.physics.mechanics.actuator": [[148, "module-sympy.physics.mechanics.actuator", false]], "sympy.physics.mechanics.joint": [[152, "module-sympy.physics.mechanics.joint", false]], "sympy.physics.mechanics.kane": [[153, "module-sympy.physics.mechanics.kane", false]], "sympy.physics.mechanics.lagrange": [[153, "module-sympy.physics.mechanics.lagrange", false]], "sympy.physics.mechanics.linearize": [[154, "module-sympy.physics.mechanics.linearize", false]], "sympy.physics.mechanics.pathway": [[156, "module-sympy.physics.mechanics.pathway", false]], "sympy.physics.mechanics.wrapping_geometry": [[159, "module-sympy.physics.mechanics.wrapping_geometry", false]], "sympy.physics.optics.gaussopt": [[160, "module-sympy.physics.optics.gaussopt", false]], "sympy.physics.optics.medium": [[162, "module-sympy.physics.optics.medium", false]], "sympy.physics.optics.polarization": [[163, "module-sympy.physics.optics.polarization", false]], "sympy.physics.optics.utils": [[164, "module-sympy.physics.optics.utils", false]], "sympy.physics.optics.waves": [[165, "module-sympy.physics.optics.waves", false]], "sympy.physics.paulialgebra": [[166, "module-sympy.physics.paulialgebra", false]], "sympy.physics.qho_1d": [[167, "module-sympy.physics.qho_1d", false]], "sympy.physics.quantum.anticommutator": [[168, "module-sympy.physics.quantum.anticommutator", false]], "sympy.physics.quantum.cartesian": [[169, "module-sympy.physics.quantum.cartesian", false]], "sympy.physics.quantum.cg": [[170, "module-sympy.physics.quantum.cg", false]], "sympy.physics.quantum.circuitplot": [[171, "module-sympy.physics.quantum.circuitplot", false]], "sympy.physics.quantum.commutator": [[172, "module-sympy.physics.quantum.commutator", false]], "sympy.physics.quantum.constants": [[173, "module-sympy.physics.quantum.constants", false]], "sympy.physics.quantum.dagger": [[174, "module-sympy.physics.quantum.dagger", false]], "sympy.physics.quantum.gate": [[175, "module-sympy.physics.quantum.gate", false]], "sympy.physics.quantum.grover": [[176, "module-sympy.physics.quantum.grover", false]], "sympy.physics.quantum.hilbert": [[177, "module-sympy.physics.quantum.hilbert", false]], "sympy.physics.quantum.innerproduct": [[179, "module-sympy.physics.quantum.innerproduct", false]], "sympy.physics.quantum.operator": [[180, "module-sympy.physics.quantum.operator", false]], "sympy.physics.quantum.operatorset": [[181, "module-sympy.physics.quantum.operatorset", false]], "sympy.physics.quantum.piab": [[182, "module-sympy.physics.quantum.piab", false]], "sympy.physics.quantum.qapply": [[183, "module-sympy.physics.quantum.qapply", false]], "sympy.physics.quantum.qft": [[184, "module-sympy.physics.quantum.qft", false]], "sympy.physics.quantum.qubit": [[185, "module-sympy.physics.quantum.qubit", false]], "sympy.physics.quantum.represent": [[186, "module-sympy.physics.quantum.represent", false]], "sympy.physics.quantum.shor": [[187, "module-sympy.physics.quantum.shor", false]], "sympy.physics.quantum.spin": [[188, "module-sympy.physics.quantum.spin", false]], "sympy.physics.quantum.state": [[189, "module-sympy.physics.quantum.state", false]], "sympy.physics.quantum.tensorproduct": [[190, "module-sympy.physics.quantum.tensorproduct", false]], "sympy.physics.secondquant": [[191, "module-sympy.physics.secondquant", false]], "sympy.physics.sho": [[192, "module-sympy.physics.sho", false]], "sympy.physics.units.dimensions": [[193, "module-sympy.physics.units.dimensions", false]], "sympy.physics.units.prefixes": [[197, "module-sympy.physics.units.prefixes", false]], "sympy.physics.units.quantities": [[198, "module-sympy.physics.units.quantities", false]], "sympy.physics.units.unitsystem": [[199, "module-sympy.physics.units.unitsystem", false]], "sympy.physics.units.util": [[198, "module-sympy.physics.units.util", false]], "sympy.physics.vector": [[203, "module-sympy.physics.vector", false]], "sympy.physics.vector.functions": [[204, "module-sympy.physics.vector.functions", false]], "sympy.physics.vector.point": [[204, "module-sympy.physics.vector.point", false]], "sympy.physics.wigner": [[206, "module-sympy.physics.wigner", false]], "sympy.plotting.plot": [[207, "module-sympy.plotting.plot", false]], "sympy.plotting.pygletplot": [[207, "module-sympy.plotting.pygletplot", false]], "sympy.polys": [[217, "module-sympy.polys", false]], "sympy.polys.matrices._dfm": [[210, "module-sympy.polys.matrices._dfm", false]], "sympy.polys.matrices._typing": [[210, "module-sympy.polys.matrices._typing", false]], "sympy.polys.matrices.ddm": [[210, "module-sympy.polys.matrices.ddm", false]], "sympy.polys.matrices.dense": [[210, "module-sympy.polys.matrices.dense", false]], "sympy.polys.matrices.domainmatrix": [[210, "module-sympy.polys.matrices.domainmatrix", false]], "sympy.polys.matrices.sdm": [[210, "module-sympy.polys.matrices.sdm", false]], "sympy.polys.numberfields.modules": [[216, "module-sympy.polys.numberfields.modules", false]], "sympy.polys.numberfields.subfield": [[216, "module-sympy.polys.numberfields.subfield", false]], "sympy.polys.polyconfig": [[214, "module-sympy.polys.polyconfig", false]], "sympy.polys.polyoptions": [[214, "module-sympy.polys.polyoptions", false]], "sympy.polys.solvers": [[219, "module-sympy.polys.solvers", false]], "sympy.printing.aesaracode": [[221, "module-sympy.printing.aesaracode", false]], "sympy.printing.c": [[221, "module-sympy.printing.c", false]], "sympy.printing.codeprinter": [[221, "module-sympy.printing.codeprinter", false]], "sympy.printing.conventions": [[221, "module-sympy.printing.conventions", false]], "sympy.printing.cxx": [[221, "module-sympy.printing.cxx", false]], "sympy.printing.fortran": [[221, "module-sympy.printing.fortran", false]], "sympy.printing.gtk": [[221, "module-sympy.printing.gtk", false]], "sympy.printing.jscode": [[221, "module-sympy.printing.jscode", false]], "sympy.printing.julia": [[221, "module-sympy.printing.julia", false]], "sympy.printing.lambdarepr": [[221, "module-sympy.printing.lambdarepr", false]], "sympy.printing.latex": [[221, "module-sympy.printing.latex", false]], "sympy.printing.maple": [[221, "module-sympy.printing.maple", false]], "sympy.printing.mathematica": [[221, "module-sympy.printing.mathematica", false]], "sympy.printing.mathml": [[221, "module-sympy.printing.mathml", false]], "sympy.printing.octave": [[221, "module-sympy.printing.octave", false]], "sympy.printing.precedence": [[221, "module-sympy.printing.precedence", false]], "sympy.printing.pretty": [[221, "module-sympy.printing.pretty", false]], "sympy.printing.pretty.pretty": [[221, "module-sympy.printing.pretty.pretty", false]], "sympy.printing.pretty.pretty_symbology": [[221, "module-sympy.printing.pretty.pretty_symbology", false]], "sympy.printing.pretty.stringpict": [[221, "module-sympy.printing.pretty.stringpict", false]], "sympy.printing.preview": [[221, "module-sympy.printing.preview", false]], "sympy.printing.printer": [[221, "module-sympy.printing.printer", false]], "sympy.printing.pycode": [[221, "module-sympy.printing.pycode", false]], "sympy.printing.python": [[221, "module-sympy.printing.python", false]], "sympy.printing.rcode": [[221, "module-sympy.printing.rcode", false]], "sympy.printing.repr": [[221, "module-sympy.printing.repr", false]], "sympy.printing.rust": [[221, "module-sympy.printing.rust", false]], "sympy.printing.smtlib": [[221, "module-sympy.printing.smtlib", false]], "sympy.printing.str": [[221, "module-sympy.printing.str", false]], "sympy.printing.tree": [[221, "module-sympy.printing.tree", false]], "sympy.sets.conditionset": [[229, "module-sympy.sets.conditionset", false]], "sympy.sets.fancysets": [[229, "module-sympy.sets.fancysets", false]], "sympy.sets.powerset": [[229, "module-sympy.sets.powerset", false]], "sympy.sets.sets": [[229, "module-sympy.sets.sets", false]], "sympy.simplify.combsimp": [[233, "module-sympy.simplify.combsimp", false]], "sympy.simplify.cse_main": [[233, "module-sympy.simplify.cse_main", false]], "sympy.simplify.epathtools": [[233, "module-sympy.simplify.epathtools", false]], "sympy.simplify.fu": [[230, "module-sympy.simplify.fu", false]], "sympy.simplify.hyperexpand": [[233, "module-sympy.simplify.hyperexpand", false]], "sympy.simplify.hyperexpand_doc": [[231, "module-sympy.simplify.hyperexpand_doc", false]], "sympy.simplify.powsimp": [[233, "module-sympy.simplify.powsimp", false]], "sympy.simplify.radsimp": [[233, "module-sympy.simplify.radsimp", false]], "sympy.simplify.ratsimp": [[233, "module-sympy.simplify.ratsimp", false]], "sympy.simplify.simplify": [[16, "module-sympy.simplify.simplify", false]], "sympy.simplify.sqrtdenest": [[233, "module-sympy.simplify.sqrtdenest", false]], "sympy.simplify.trigsimp": [[233, "module-sympy.simplify.trigsimp", false]], "sympy.solvers": [[239, "module-sympy.solvers", false]], "sympy.solvers.inequalities": [[236, "module-sympy.solvers.inequalities", false]], "sympy.solvers.ode": [[237, "module-sympy.solvers.ode", false]], "sympy.solvers.ode.ode": [[237, "module-sympy.solvers.ode.ode", false]], "sympy.solvers.pde": [[238, "module-sympy.solvers.pde", false]], "sympy.solvers.recurr": [[239, "module-sympy.solvers.recurr", false]], "sympy.solvers.simplex": [[239, "module-sympy.solvers.simplex", false]], "sympy.solvers.solveset": [[240, "module-sympy.solvers.solveset", false]], "sympy.stats": [[241, "module-sympy.stats", false]], "sympy.stats.crv": [[241, "module-sympy.stats.crv", false]], "sympy.stats.crv_types": [[241, "module-sympy.stats.crv_types", false]], "sympy.stats.die() (in module sympy.stats.crv_types)": [[241, "sympy.stats.crv_types.sympy.stats.Die", false]], "sympy.stats.frv": [[241, "module-sympy.stats.frv", false]], "sympy.stats.frv_types": [[241, "module-sympy.stats.frv_types", false]], "sympy.stats.normal() (in module sympy.stats.crv_types)": [[241, "sympy.stats.crv_types.sympy.stats.Normal", false]], "sympy.stats.rv": [[241, "module-sympy.stats.rv", false]], "sympy.tensor": [[244, "module-sympy.tensor", false]], "sympy.tensor.array": [[242, "module-sympy.tensor.array", false]], "sympy.tensor.array.expressions": [[243, "module-sympy.tensor.array.expressions", false]], "sympy.tensor.index_methods": [[245, "module-sympy.tensor.index_methods", false]], "sympy.tensor.indexed": [[246, "module-sympy.tensor.indexed", false]], "sympy.tensor.tensor": [[247, "module-sympy.tensor.tensor", false]], "sympy.tensor.toperators": [[248, "module-sympy.tensor.toperators", false]], "sympy.testing": [[249, "module-sympy.testing", false]], "sympy.testing.pytest": [[250, "module-sympy.testing.pytest", false]], "sympy.testing.randtest": [[251, "module-sympy.testing.randtest", false]], "sympy.testing.runtests": [[252, "module-sympy.testing.runtests", false]], "sympy.utilities": [[258, "module-sympy.utilities", false]], "sympy.utilities.autowrap": [[253, "module-sympy.utilities.autowrap", false]], "sympy.utilities.codegen": [[254, "module-sympy.utilities.codegen", false]], "sympy.utilities.decorator": [[255, "module-sympy.utilities.decorator", false]], "sympy.utilities.enumerative": [[256, "module-sympy.utilities.enumerative", false]], "sympy.utilities.exceptions": [[257, "module-sympy.utilities.exceptions", false]], "sympy.utilities.iterables": [[259, "module-sympy.utilities.iterables", false]], "sympy.utilities.lambdify": [[260, "module-sympy.utilities.lambdify", false]], "sympy.utilities.memoization": [[261, "module-sympy.utilities.memoization", false]], "sympy.utilities.misc": [[262, "module-sympy.utilities.misc", false]], "sympy.utilities.source": [[263, "module-sympy.utilities.source", false]], "sympy.utilities.timeutils": [[264, "module-sympy.utilities.timeutils", false]], "sympy.vector": [[273, "module-sympy.vector", false]], "sympy_deprecation_warning() (in module sympy.utilities.exceptions)": [[257, "sympy.utilities.exceptions.sympy_deprecation_warning", false]], "sympy_eqs_to_ring() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers.sympy_eqs_to_ring", false]], "sympydeprecationwarning": [[257, "sympy.utilities.exceptions.SymPyDeprecationWarning", false]], "sympydoctestfinder (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.SymPyDocTestFinder", false]], "sympydoctestrunner (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.SymPyDocTestRunner", false]], "sympyexpression (class in sympy.parsing.sym_expr)": [[130, "sympy.parsing.sym_expr.SymPyExpression", false]], "sympyoutputchecker (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.SymPyOutputChecker", false]], "sympytestfile() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.sympytestfile", false]], "sympytestresults (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.SymPyTestResults", false]], "sys1 (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.sys1", false]], "sys1 (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.sys1", false]], "sys2 (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.sys2", false]], "sys2 (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.sys2", false]], "system (class in sympy.physics.mechanics.system)": [[158, "sympy.physics.mechanics.system.System", false]], "syzygy_module() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.syzygy_module", false]], "t (class in sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.T", false]], "t (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.T", false]], "t (sympy.matrices.expressions.matrixexpr property)": [[120, "sympy.matrices.expressions.MatrixExpr.T", false]], "t (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.T", false]], "t (sympy.physics.quantum.shor.cmod property)": [[187, "sympy.physics.quantum.shor.CMod.t", false]], "t (sympy.polys.numberfields.modules.powerbasiselement property)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.T", false]], "table() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.table", false]], "tail_degree() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.tail_degree", false]], "tail_degrees() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.tail_degrees", false]], "take() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.take", false]], "tan (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.tan", false]], "tangent_lines() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.tangent_lines", false]], "tanh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.tanh", false]], "target_frame (sympy.physics.mechanics.actuator.torqueactuator property)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.target_frame", false]], "targets (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.targets", false]], "targets (sympy.physics.quantum.gate.cnotgate property)": [[175, "sympy.physics.quantum.gate.CNotGate.targets", false]], "targets (sympy.physics.quantum.gate.gate property)": [[175, "sympy.physics.quantum.gate.Gate.targets", false]], "targets (sympy.physics.quantum.gate.ugate property)": [[175, "sympy.physics.quantum.gate.UGate.targets", false]], "targets (sympy.physics.quantum.grover.oraclegate property)": [[176, "sympy.physics.quantum.grover.OracleGate.targets", false]], "tau_a (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.tau_a", false]], "tau_d (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.tau_d", false]], "taxicab_distance() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.taxicab_distance", false]], "taylor_term() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.taylor_term", false]], "taylor_term() (sympy.functions.elementary.exponential.exp static method)": [[94, "sympy.functions.elementary.exponential.exp.taylor_term", false]], "taylor_term() (sympy.functions.elementary.exponential.log static method)": [[94, "sympy.functions.elementary.exponential.log.taylor_term", false]], "taylor_term() (sympy.functions.elementary.hyperbolic.csch static method)": [[94, "sympy.functions.elementary.hyperbolic.csch.taylor_term", false]], "taylor_term() (sympy.functions.elementary.hyperbolic.sinh static method)": [[94, "sympy.functions.elementary.hyperbolic.sinh.taylor_term", false]], "tc() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.TC", false]], "tc() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.TC", false]], "tc() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.TC", false]], "tendon_slack_length (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.tendon_slack_length", false]], "tendonforcelengthdegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016", false]], "tendonforcelengthinversedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016", false]], "tensadd (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensAdd", false]], "tensexpr (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensExpr", false]], "tension (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.tension", false]], "tension_at() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.tension_at", false]], "tensmul (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensMul", false]], "tensor_heads() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.tensor_heads", false]], "tensor_product_simp() (in module sympy.physics.quantum.tensorproduct)": [[190, "sympy.physics.quantum.tensorproduct.tensor_product_simp", false]], "tensorcontraction() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.tensorcontraction", false]], "tensordiagonal() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.tensordiagonal", false]], "tensorhead (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorHead", false]], "tensorindex (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorIndex", false]], "tensorindextype (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorIndexType", false]], "tensorpowerhilbertspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.TensorPowerHilbertSpace", false]], "tensorproduct (class in sympy.diffgeom)": [[90, "sympy.diffgeom.TensorProduct", false]], "tensorproduct (class in sympy.physics.quantum.tensorproduct)": [[190, "sympy.physics.quantum.tensorproduct.TensorProduct", false]], "tensorproduct() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.tensorproduct", false]], "tensorproducthilbertspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.TensorProductHilbertSpace", false]], "tensorsymmetry (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorSymmetry", false]], "tensorsymmetry() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.tensorsymmetry", false]], "tensortype (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorType", false]], "term_to_integer() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.term_to_integer", false]], "terminal_width() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.terminal_width", false]], "terms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.terms", false]], "terms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.terms", false]], "terms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.terms", false]], "terms_gcd() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.terms_gcd", false]], "terms_gcd() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.terms_gcd", false]], "terms_gcd() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.terms_gcd", false]], "termwise() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.termwise", false]], "test() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.test", false]], "test_derivative_numerically() (in module sympy.core.random)": [[88, "sympy.core.random.test_derivative_numerically", false]], "test_factor() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.test_factor", false]], "textbackend (class in sympy.plotting.plot)": [[207, "sympy.plotting.plot.TextBackend", false]], "textplot() (in module sympy.plotting.textplot)": [[207, "sympy.plotting.textplot.textplot", false]], "tgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.TGate", false]], "thinlens (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.ThinLens", false]], "threaded() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.threaded", false]], "threaded_factory() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.threaded_factory", false]], "three-valued logic": [[15, "term-Three-valued-logic", true]], "time (sympy.physics.quantum.state.timedepstate property)": [[189, "sympy.physics.quantum.state.TimeDepState.time", false]], "time_derivative() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.time_derivative", false]], "time_period (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.time_period", false]], "timed() (in module sympy.utilities.timeutils)": [[264, "sympy.utilities.timeutils.timed", false]], "timedepbra (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.TimeDepBra", false]], "timedepket (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.TimeDepKet", false]], "timedepstate (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.TimeDepState", false]], "tiny (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.tiny", false]], "to_alg_num() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.to_alg_num", false]], "to_alg_num() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.to_alg_num", false]], "to_algebraic_integer() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.to_algebraic_integer", false]], "to_ancestor() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.to_ancestor", false]], "to_anf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_anf", false]], "to_anp() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.to_ANP", false]], "to_axis_angle() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.to_axis_angle", false]], "to_best() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_best", false]], "to_cnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_cnf", false]], "to_ddm() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_ddm", false]], "to_ddm() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_ddm", false]], "to_ddm() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_ddm", false]], "to_ddm() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_ddm", false]], "to_dense() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dense", false]], "to_dfm() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_dfm", false]], "to_dfm() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_dfm", false]], "to_dfm() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dfm", false]], "to_dfm() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_dfm", false]], "to_dfm_or_ddm() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_dfm_or_ddm", false]], "to_dfm_or_ddm() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_dfm_or_ddm", false]], "to_dfm_or_ddm() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dfm_or_ddm", false]], "to_dfm_or_ddm() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_dfm_or_ddm", false]], "to_dict() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_dict", false]], "to_dict() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_dict", false]], "to_dnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_dnf", false]], "to_dod() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_dod", false]], "to_dod() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_dod", false]], "to_dod() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dod", false]], "to_dod() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_dod", false]], "to_dok() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_dok", false]], "to_dok() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_dok", false]], "to_dok() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dok", false]], "to_dok() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_dok", false]], "to_euler() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.to_euler", false]], "to_exact() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_exact", false]], "to_exact() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.to_exact", false]], "to_expr() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.to_expr", false]], "to_expr() (sympy.physics.control.lti.feedback method)": [[144, "sympy.physics.control.lti.Feedback.to_expr", false]], "to_expr() (sympy.physics.control.lti.parallel method)": [[144, "sympy.physics.control.lti.Parallel.to_expr", false]], "to_expr() (sympy.physics.control.lti.series method)": [[144, "sympy.physics.control.lti.Series.to_expr", false]], "to_expr() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.to_expr", false]], "to_field() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_field", false]], "to_field() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_field", false]], "to_field() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.to_field", false]], "to_flat_nz() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_flat_nz", false]], "to_flat_nz() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_flat_nz", false]], "to_flat_nz() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_flat_nz", false]], "to_flat_nz() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_flat_nz", false]], "to_hyper() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.to_hyper", false]], "to_int() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.to_int", false]], "to_int_repr() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_int_repr", false]], "to_linearizer() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.to_linearizer", false]], "to_linearizer() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.to_linearizer", false]], "to_list() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_list", false]], "to_list() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_list", false]], "to_list() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_list", false]], "to_list() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_list", false]], "to_list() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_list", false]], "to_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_list", false]], "to_list_flat() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_list_flat", false]], "to_list_flat() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_list_flat", false]], "to_list_flat() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_list_flat", false]], "to_list_flat() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_list_flat", false]], "to_loads() (sympy.physics.mechanics.actuator.actuatorbase method)": [[148, "sympy.physics.mechanics.actuator.ActuatorBase.to_loads", false]], "to_loads() (sympy.physics.mechanics.actuator.forceactuator method)": [[148, "sympy.physics.mechanics.actuator.ForceActuator.to_loads", false]], "to_loads() (sympy.physics.mechanics.actuator.torqueactuator method)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.to_loads", false]], "to_loads() (sympy.physics.mechanics.pathway.linearpathway method)": [[156, "sympy.physics.mechanics.pathway.LinearPathway.to_loads", false]], "to_loads() (sympy.physics.mechanics.pathway.obstaclesetpathway method)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway.to_loads", false]], "to_loads() (sympy.physics.mechanics.pathway.pathwaybase method)": [[156, "sympy.physics.mechanics.pathway.PathwayBase.to_loads", false]], "to_loads() (sympy.physics.mechanics.pathway.wrappingpathway method)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway.to_loads", false]], "to_matrix() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.to_Matrix", false]], "to_matrix() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.to_matrix", false]], "to_matrix() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.to_matrix", false]], "to_matrix() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_Matrix", false]], "to_matrix() (sympy.vector.dyadic.dyadic method)": [[265, "sympy.vector.dyadic.Dyadic.to_matrix", false]], "to_matrix() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.to_matrix", false]], "to_meijerg() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.to_meijerg", false]], "to_nnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_nnf", false]], "to_number_field() (in module sympy.polys.numberfields.subfield)": [[216, "sympy.polys.numberfields.subfield.to_number_field", false]], "to_parent() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.to_parent", false]], "to_primitive_element() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.to_primitive_element", false]], "to_prufer() (sympy.combinatorics.prufer.prufer static method)": [[82, "sympy.combinatorics.prufer.Prufer.to_prufer", false]], "to_rational() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.to_rational", false]], "to_ring() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_ring", false]], "to_ring() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.to_ring", false]], "to_root() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.to_root", false]], "to_rotation_matrix() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.to_rotation_matrix", false]], "to_sdm() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_sdm", false]], "to_sdm() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_sdm", false]], "to_sdm() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_sdm", false]], "to_sdm() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_sdm", false]], "to_sequence() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.to_sequence", false]], "to_sparse() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_sparse", false]], "to_sympy() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.to_sympy", false]], "to_sympy() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.to_sympy", false]], "to_sympy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.to_sympy", false]], "to_sympy() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.to_sympy", false]], "to_sympy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.to_sympy", false]], "to_sympy() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.to_sympy", false]], "to_sympy() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.to_sympy", false]], "to_sympy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.to_sympy", false]], "to_sympy() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.to_sympy", false]], "to_sympy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.to_sympy", false]], "to_sympy() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.to_sympy", false]], "to_sympy() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.to_sympy", false]], "to_sympy() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.to_sympy", false]], "to_sympy_dict() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_sympy_dict", false]], "to_sympy_dict() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_sympy_dict", false]], "to_sympy_list() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_sympy_list", false]], "to_sympy_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_sympy_list", false]], "to_tree() (sympy.combinatorics.prufer.prufer static method)": [[82, "sympy.combinatorics.prufer.Prufer.to_tree", false]], "to_tuple() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_tuple", false]], "to_tuple() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_tuple", false]], "todod() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.todod", false]], "todok() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.todok", false]], "together() (in module sympy.polys.rationaltools)": [[217, "sympy.polys.rationaltools.together", false]], "together() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.together", false]], "token (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Token", false]], "tolist() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.tolist", false]], "topological_sort() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.topological_sort", false]], "topological_sort() (sympy.codegen.ast.codeblock class method)": [[69, "sympy.codegen.ast.CodeBlock.topological_sort", false]], "torque (class in sympy.physics.mechanics.loads)": [[155, "sympy.physics.mechanics.loads.Torque", false]], "torque (sympy.physics.mechanics.actuator.torqueactuator property)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.torque", false]], "torqueactuator (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator", false]], "torsional_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.torsional_moment", false]], "total_degree() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.total_degree", false]], "total_degree() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.total_degree", false]], "totient (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.totient", false]], "totient() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.totient", false]], "totientrange() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.totientrange", false]], "tp (sympy.polys.domains.domain.domain property)": [[212, "sympy.polys.domains.domain.Domain.tp", false]], "tr0() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR0", false]], "tr1() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR1", false]], "tr10() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR10", false]], "tr10i() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR10i", false]], "tr11() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR11", false]], "tr111() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR111", false]], "tr12() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR12", false]], "tr12i() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR12i", false]], "tr13() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR13", false]], "tr14() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR14", false]], "tr15() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR15", false]], "tr16() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR16", false]], "tr2() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR2", false]], "tr22() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR22", false]], "tr2i() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR2i", false]], "tr3() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR3", false]], "tr4() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR4", false]], "tr5() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR5", false]], "tr6() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR6", false]], "tr7() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR7", false]], "tr8() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR8", false]], "tr9() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR9", false]], "trace (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.Trace", false]], "trace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.trace", false]], "trailing() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.trailing", false]], "transcendental": [[88, "term-transcendental", true]], "transcendentalpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.TranscendentalPredicate", false]], "transferfunction (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.TransferFunction", false]], "transferfunctionmatrix (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix", false]], "transform() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.transform", false]], "transform() (sympy.geometry.point.point2d method)": [[103, "sympy.geometry.point.Point2D.transform", false]], "transform() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.transform", false]], "transform() (sympy.integrals.integrals.integral method)": [[115, "sympy.integrals.integrals.Integral.transform", false]], "transform() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.transform", false]], "transform() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.transform", false]], "transform_variable (sympy.integrals.transforms.integraltransform property)": [[115, "sympy.integrals.transforms.IntegralTransform.transform_variable", false]], "transformation() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.transformation", false]], "transformation_to_dn() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.transformation_to_DN", false]], "transformation_to_normal() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.transformation_to_normal", false]], "transformtosympyexpr (class in sympy.parsing.latex.lark)": [[130, "sympy.parsing.latex.lark.TransformToSymPyExpr", false]], "transition_probabilities (sympy.stats.discretemarkovchain property)": [[241, "sympy.stats.DiscreteMarkovChain.transition_probabilities", false]], "transitivity_degree (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.transitivity_degree", false]], "translate() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.translate", false]], "translate() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.translate", false]], "translate() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.translate", false]], "translate() (sympy.geometry.point.point2d method)": [[103, "sympy.geometry.point.Point2D.translate", false]], "translate() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.translate", false]], "translation_coordinate (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.translation_coordinate", false]], "translation_speed (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.translation_speed", false]], "transmissive_filter() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.transmissive_filter", false]], "transpose (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.Transpose", false]], "transpose() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.transpose", false]], "transpose() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.transpose", false]], "transpose() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.transpose", false]], "transpose() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.transpose", false]], "transpose() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.transpose", false]], "transpose() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.transpose", false]], "transpositions() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.transpositions", false]], "transverse_magnification() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.transverse_magnification", false]], "trapezoidal() (in module sympy.stats)": [[241, "sympy.stats.Trapezoidal", false]], "tree() (in module sympy.printing.tree)": [[221, "sympy.printing.tree.tree", false]], "tree_cse() (in module sympy.simplify.cse_main)": [[233, "sympy.simplify.cse_main.tree_cse", false]], "tree_repr (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.tree_repr", false]], "triangle (class in sympy.geometry.polygon)": [[104, "sympy.geometry.polygon.Triangle", false]], "triangular() (in module sympy.stats)": [[241, "sympy.stats.Triangular", false]], "triangularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.TriangularPredicate", false]], "tribonacci (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.tribonacci", false]], "tribonacciconstant (class in sympy.core.numbers)": [[88, "sympy.core.numbers.TribonacciConstant", false]], "trigamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.trigamma", false]], "trigintegrate() (in module sympy.integrals.trigonometry)": [[115, "sympy.integrals.trigonometry.trigintegrate", false]], "trigsimp() (in module sympy.simplify.trigsimp)": [[233, "sympy.simplify.trigsimp.trigsimp", false]], "trigsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.trigsimp", false]], "trmorrie() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TRmorrie", false]], "trpower() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TRpower", false]], "trunc() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.trunc", false]], "trunc() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.trunc", false]], "trunc() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.trunc", false]], "truncate() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.truncate", false]], "truncate() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.truncate", false]], "truss (class in sympy.physics.continuum_mechanics.truss)": [[140, "sympy.physics.continuum_mechanics.truss.Truss", false]], "truth_table() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.truth_table", false]], "tuple (class in sympy.core.containers)": [[88, "sympy.core.containers.Tuple", false]], "tuple_count() (sympy.core.containers.tuple method)": [[88, "sympy.core.containers.Tuple.tuple_count", false]], "tuplekind (class in sympy.core.containers)": [[88, "sympy.core.containers.TupleKind", false]], "twave (class in sympy.physics.optics.waves)": [[165, "sympy.physics.optics.waves.TWave", false]], "two_qubit_box() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.two_qubit_box", false]], "twoform_to_matrix() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.twoform_to_matrix", false]], "twoqubitgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.TwoQubitGate", false]], "type (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Type", false]], "typea (class in sympy.liealgebras.type_a)": [[117, "sympy.liealgebras.type_a.TypeA", false]], "typeb (class in sympy.liealgebras.type_b)": [[117, "sympy.liealgebras.type_b.TypeB", false]], "typec (class in sympy.liealgebras.type_c)": [[117, "sympy.liealgebras.type_c.TypeC", false]], "typed (class in sympy.liealgebras.type_d)": [[117, "sympy.liealgebras.type_d.TypeD", false]], "typee (class in sympy.liealgebras.type_e)": [[117, "sympy.liealgebras.type_e.TypeE", false]], "typef (class in sympy.liealgebras.type_f)": [[117, "sympy.liealgebras.type_f.TypeF", false]], "typeg (class in sympy.liealgebras.type_g)": [[117, "sympy.liealgebras.type_g.TypeG", false]], "u (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.u", false]], "u (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.u", false]], "u (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.u", false]], "u() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.U", false]], "u_aux (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.u_aux", false]], "u_dep (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.u_dep", false]], "u_ind (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.u_ind", false]], "udivisor_count() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.udivisor_count", false]], "udivisor_sigma (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.udivisor_sigma", false]], "udivisor_sigma() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.udivisor_sigma", false]], "udivisors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.udivisors", false]], "udldecomposition() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition", false]], "ufuncify() (in module sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.ufuncify", false]], "ufuncifycodewrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.UfuncifyCodeWrapper", false]], "ugate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.UGate", false]], "uncouple() (in module sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.uncouple", false]], "undefined function": [[15, "term-Undefined-Function", true]], "undefinedkind (in module sympy.core.kind)": [[88, "sympy.core.kind.UndefinedKind", false]], "undefinedpredicate (class in sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.UndefinedPredicate", false]], "unequality (class in sympy.core.relational)": [[88, "sympy.core.relational.Unequality", false]], "unevaluated": [[15, "term-Unevaluated", true]], "unevaluatedexpr (class in sympy.core.expr)": [[88, "sympy.core.expr.UnevaluatedExpr", false]], "unflatten() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.unflatten", false]], "unificationfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.UnificationFailed", false]], "uniform() (in module sympy.stats)": [[241, "sympy.stats.Uniform", false]], "uniformsum() (in module sympy.stats)": [[241, "sympy.stats.UniformSum", false]], "unify() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.unify", false]], "unify() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.unify", false]], "unify() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.unify", false]], "unify() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.unify", false]], "unify() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.unify", false]], "unify_anp() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.unify_ANP", false]], "unify_composite() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.unify_composite", false]], "unify_dmp() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.unify_DMP", false]], "union (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.union", false]], "union (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Union", false]], "union() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.union", false]], "union() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.union", false]], "union() (sympy.series.gruntz.subsset method)": [[228, "sympy.series.gruntz.SubsSet.union", false]], "union() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.union", false]], "uniq() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.uniq", false]], "unit (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.unit", false]], "unit (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.unit", false]], "unitaryoperator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.UnitaryOperator", false]], "unitarypredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.UnitaryPredicate", false]], "unitsystem (class in sympy.physics.units.unitsystem)": [[199, "sympy.physics.units.unitsystem.UnitSystem", false]], "unittriangularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.UnitTriangularPredicate", false]], "univariate (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.Univariate", false]], "univariatepolynomialerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.UnivariatePolynomialError", false]], "universalset (class in sympy.sets.sets)": [[229, "sympy.sets.sets.UniversalSet", false]], "unrad() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.unrad", false]], "unrank() (sympy.combinatorics.graycode.graycode class method)": [[72, "sympy.combinatorics.graycode.GrayCode.unrank", false]], "unrank() (sympy.combinatorics.prufer.prufer class method)": [[82, "sympy.combinatorics.prufer.Prufer.unrank", false]], "unrank_binary() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.unrank_binary", false]], "unrank_gray() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.unrank_gray", false]], "unrank_lex() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.unrank_lex", false]], "unrank_nonlex() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.unrank_nonlex", false]], "unrank_trotterjohnson() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.unrank_trotterjohnson", false]], "unsignedinttype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.UnsignedIntType", false]], "update() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.update", false]], "upper (sympy.physics.secondquant.antisymmetrictensor property)": [[191, "sympy.physics.secondquant.AntiSymmetricTensor.upper", false]], "upper (sympy.tensor.indexed.idx property)": [[246, "sympy.tensor.indexed.Idx.upper", false]], "upper_hessenberg_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.upper_hessenberg_decomposition", false]], "upper_triangular() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.upper_triangular", false]], "upper_triangular_solve() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.upper_triangular_solve", false]], "upper_triangular_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.upper_triangular_solve", false]], "uppergamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.uppergamma", false]], "uppertriangularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.UpperTriangularPredicate", false]], "use (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.use", false]], "use() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.use", false]], "use_rename (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.use_rename", false]], "using (class in sympy.codegen.cxxnodes)": [[69, "sympy.codegen.cxxnodes.using", false]], "v1pt_theory() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.v1pt_theory", false]], "v2pt_theory() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.v2pt_theory", false]], "v_m_max (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.v_M_max", false]], "validate_system() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.validate_system", false]], "valuation() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.valuation", false]], "values() (sympy.core.containers.dict method)": [[88, "sympy.core.containers.Dict.values", false]], "values() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.values", false]], "var (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.var", false]], "var (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.var", false]], "var (sympy.physics.control.lti.mimoparallel property)": [[144, "sympy.physics.control.lti.MIMOParallel.var", false]], "var (sympy.physics.control.lti.mimoseries property)": [[144, "sympy.physics.control.lti.MIMOSeries.var", false]], "var (sympy.physics.control.lti.parallel property)": [[144, "sympy.physics.control.lti.Parallel.var", false]], "var (sympy.physics.control.lti.series property)": [[144, "sympy.physics.control.lti.Series.var", false]], "var (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.var", false]], "var (sympy.physics.control.lti.transferfunctionmatrix property)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.var", false]], "var() (in module sympy.core.symbol)": [[88, "sympy.core.symbol.var", false]], "varbosonicbasis (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.VarBosonicBasis", false]], "variable (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Variable", false]], "variable (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.variable", false]], "variable_map() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.variable_map", false]], "variables (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.variables", false]], "variables (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.variables", false]], "variables (sympy.core.function.subs property)": [[88, "sympy.core.function.Subs.variables", false]], "variables (sympy.physics.quantum.operator.differentialoperator property)": [[180, "sympy.physics.quantum.operator.DifferentialOperator.variables", false]], "variables (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.variables", false]], "variables (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.variables", false]], "variables (sympy.utilities.codegen.routine property)": [[254, "sympy.utilities.codegen.Routine.variables", false]], "variance (class in sympy.stats)": [[241, "sympy.stats.Variance", false]], "variance() (in module sympy.stats)": [[241, "sympy.stats.variance", false]], "variancematrix (class in sympy.stats)": [[241, "sympy.stats.VarianceMatrix", false]], "variations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.variations", false]], "vec() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.vec", false]], "vech() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.vech", false]], "vector (class in sympy.physics.vector.vector)": [[200, "sympy.physics.vector.vector.Vector", false]], "vector (class in sympy.vector.vector)": [[265, "sympy.vector.vector.Vector", false]], "vector_coplanar() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.vector_coplanar", false]], "vector_integrate() (in module sympy.vector.integrals)": [[268, "sympy.vector.integrals.vector_integrate", false]], "vector_part() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.vector_part", false]], "vectorize (class in sympy.core.multidimensional)": [[88, "sympy.core.multidimensional.vectorize", false]], "vectors_in_basis() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.vectors_in_basis", false]], "vee() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.vee", false]], "vel() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.vel", false]], "velocity_constraints (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.velocity_constraints", false]], "verify_numerically() (in module sympy.core.random)": [[88, "sympy.core.random.verify_numerically", false]], "vertices (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.vertices", false]], "vertices (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.vertices", false]], "vertices (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.vertices", false]], "vertices (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.vertices", false]], "vf() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.VF", false]], "vfield() (in module sympy.polys.fields)": [[212, "sympy.polys.fields.vfield", false]], "viete() (in module sympy.polys.polyfuncs)": [[217, "sympy.polys.polyfuncs.viete", false]], "vlatex() (in module sympy.physics.vector.printing)": [[205, "sympy.physics.vector.printing.vlatex", false]], "vobj() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.vobj", false]], "vonmises() (in module sympy.stats)": [[241, "sympy.stats.VonMises", false]], "vpprint() (in module sympy.physics.vector.printing)": [[205, "sympy.physics.vector.printing.vpprint", false]], "vprint() (in module sympy.physics.vector.printing)": [[205, "sympy.physics.vector.printing.vprint", false]], "vradius (sympy.geometry.ellipse.circle property)": [[98, "sympy.geometry.ellipse.Circle.vradius", false]], "vradius (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.vradius", false]], "vring() (in module sympy.polys.rings)": [[212, "sympy.polys.rings.vring", false]], "vstack() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.vstack", false]], "vstack() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.vstack", false]], "vstack() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.vstack", false]], "vstack() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.vstack", false]], "vstack() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.vstack", false]], "w (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.w", false]], "w_0 (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.w_0", false]], "waist2rayleigh() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.waist2rayleigh", false]], "waist_approximation_limit (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.waist_approximation_limit", false]], "wald() (in module sympy.stats)": [[241, "sympy.stats.Wald", false]], "walk() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.walk", false]], "warns() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.warns", false]], "warns_deprecated_sympy() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.warns_deprecated_sympy", false]], "wavefunction (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.Wavefunction", false]], "wavelength (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.wavelength", false]], "wavenumber (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.wavenumber", false]], "weak (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.weak", false]], "wedgeproduct (class in sympy.diffgeom)": [[90, "sympy.diffgeom.WedgeProduct", false]], "weibull() (in module sympy.stats)": [[241, "sympy.stats.Weibull", false]], "weldjoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.WeldJoint", false]], "weylgroup (class in sympy.liealgebras.weyl_group)": [[117, "sympy.liealgebras.weyl_group.WeylGroup", false]], "wgate (class in sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.WGate", false]], "where() (in module sympy.stats)": [[241, "sympy.stats.where", false]], "while (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.While", false]], "whole_submodule() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.whole_submodule", false]], "wicks() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.wicks", false]], "width (sympy.categories.diagram_drawing.diagramgrid property)": [[68, "sympy.categories.diagram_drawing.DiagramGrid.width", false]], "width() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.width", false]], "wienerprocess (class in sympy.stats)": [[241, "sympy.stats.WienerProcess", false]], "wigner3j (class in sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.Wigner3j", false]], "wigner6j (class in sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.Wigner6j", false]], "wigner9j (class in sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.Wigner9j", false]], "wigner_3j() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_3j", false]], "wigner_6j() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_6j", false]], "wigner_9j() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_9j", false]], "wigner_d() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_d", false]], "wigner_d_small() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_d_small", false]], "wignerd (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.WignerD", false]], "wignersemicircle() (in module sympy.stats)": [[241, "sympy.stats.WignerSemicircle", false]], "wild (class in sympy.core.symbol)": [[88, "sympy.core.symbol.Wild", false]], "wildfunction (class in sympy.core.function)": [[88, "sympy.core.function.WildFunction", false]], "wilkinson() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.wilkinson", false]], "wishart() (in module sympy.stats)": [[241, "sympy.stats.Wishart", false]], "with_defaults() (sympy.physics.biomechanics.activation.activationbase class method)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 class method)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.activation.zerothorderactivation class method)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcelengthactivedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.musculotendon.musculotendonbase class method)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.with_defaults", false]], "wrappingcylinder (class in sympy.physics.mechanics.wrapping_geometry)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder", false]], "wrappinggeometrybase (class in sympy.physics.mechanics.wrapping_geometry)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase", false]], "wrappingpathway (class in sympy.physics.mechanics.pathway)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway", false]], "wrappingsphere (class in sympy.physics.mechanics.wrapping_geometry)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere", false]], "write() (sympy.testing.runtests.pytestreporter method)": [[252, "sympy.testing.runtests.PyTestReporter.write", false]], "write() (sympy.utilities.codegen.codegen method)": [[254, "sympy.utilities.codegen.CodeGen.write", false]], "wronskian() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.wronskian", false]], "x (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.X", false]], "x (sympy.geometry.point.point2d property)": [[103, "sympy.geometry.point.Point2D.x", false]], "x (sympy.geometry.point.point3d property)": [[103, "sympy.geometry.point.Point3D.x", false]], "x (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.x", false]], "x (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.x", false]], "x (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.x", false]], "x (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.x", false]], "x (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.x", false]], "x (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.x", false]], "x (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.x", false]], "x (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.x", false]], "xbra (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.XBra", false]], "xdirection (sympy.geometry.line.ray2d property)": [[101, "sympy.geometry.line.Ray2D.xdirection", false]], "xdirection (sympy.geometry.line.ray3d property)": [[101, "sympy.geometry.line.Ray3D.xdirection", false]], "xfield() (in module sympy.polys.fields)": [[212, "sympy.polys.fields.xfield", false]], "xgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.XGate", false]], "xket (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.XKet", false]], "xnor (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Xnor", false]], "xobj() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.xobj", false]], "xop (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.XOp", false]], "xor (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Xor", false]], "xreplace() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.xreplace", false]], "xreplace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.xreplace", false]], "xreplace() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.xreplace", false]], "xreplace() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.xreplace", false]], "xring() (in module sympy.polys.rings)": [[212, "sympy.polys.rings.xring", false]], "xstr() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.xstr", false]], "xsym() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.xsym", false]], "xthreaded() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.xthreaded", false]], "xx (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.xx", false]], "xy (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.xy", false]], "xypic_draw_diagram() (in module sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.xypic_draw_diagram", false]], "xypicdiagramdrawer (class in sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.XypicDiagramDrawer", false]], "xz (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.xz", false]], "y (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.Y", false]], "y (sympy.geometry.point.point2d property)": [[103, "sympy.geometry.point.Point2D.y", false]], "y (sympy.geometry.point.point3d property)": [[103, "sympy.geometry.point.Point3D.y", false]], "y (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.y", false]], "y (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.y", false]], "y (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.y", false]], "y (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.y", false]], "y (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.y", false]], "ydirection (sympy.geometry.line.ray2d property)": [[101, "sympy.geometry.line.Ray2D.ydirection", false]], "ydirection (sympy.geometry.line.ray3d property)": [[101, "sympy.geometry.line.Ray3D.ydirection", false]], "ygate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.YGate", false]], "yn (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.yn", false]], "yn (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.yn", false]], "ynm (class in sympy.functions.special.spherical_harmonics)": [[96, "sympy.functions.special.spherical_harmonics.Ynm", false]], "ynm_c() (in module sympy.functions.special.spherical_harmonics)": [[96, "sympy.functions.special.spherical_harmonics.Ynm_c", false]], "yop (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.YOp", false]], "yulesimon() (in module sympy.stats)": [[241, "sympy.stats.YuleSimon", false]], "yx (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.yx", false]], "yy (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.yy", false]], "yz (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.yz", false]], "z (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.Z", false]], "z (sympy.geometry.point.point3d property)": [[103, "sympy.geometry.point.Point3D.z", false]], "z (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.z", false]], "z (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.z", false]], "z (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.z", false]], "z (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.z", false]], "zdirection (sympy.geometry.line.ray3d property)": [[101, "sympy.geometry.line.Ray3D.zdirection", false]], "zero": [[88, "term-zero", true]], "zero (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Zero", false]], "zero (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.zero", false]], "zero (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.zero", false]], "zero() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.zero", false]], "zeromatrix (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.ZeroMatrix", false]], "zeropredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.ZeroPredicate", false]], "zeros() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.zeros", false]], "zeros() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.zeros", false]], "zeros() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.zeros", false]], "zeros() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.zeros", false]], "zeros() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.zeros", false]], "zeros() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.zeros", false]], "zerothorderactivation (class in sympy.physics.biomechanics.activation)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation", false]], "zeta (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.zeta", false]], "zeta() (in module sympy.stats)": [[241, "sympy.stats.Zeta", false]], "zgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.ZGate", false]], "znm (class in sympy.functions.special.spherical_harmonics)": [[96, "sympy.functions.special.spherical_harmonics.Znm", false]], "zoo": [[15, "term-zoo", true]], "zop (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.ZOp", false]], "zx (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.zx", false]], "zy (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.zy", false]], "zz (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.zz", false]]}, "objects": {"": [[58, 0, 0, "-", "sympy"]], "sympy": [[60, 0, 0, "-", "abc"], [61, 0, 0, "-", "algebras"], [64, 0, 0, "-", "assumptions"], [67, 0, 0, "-", "calculus"], [68, 0, 0, "-", "categories"], [90, 0, 0, "-", "diffgeom"], [91, 0, 0, "-", "discrete"], [95, 0, 0, "-", "functions"], [108, 0, 0, "-", "holonomic"], [115, 0, 0, "-", "integrals"], [116, 0, 0, "-", "interactive"], [117, 0, 0, "-", "liealgebras"], [118, 0, 0, "-", "logic"], [122, 0, 0, "-", "matrices"], [130, 0, 0, "-", "parsing"], [282, 0, 0, "-", "physics"], [217, 0, 0, "-", "polys"], [239, 0, 0, "-", "solvers"], [241, 0, 0, "-", "stats"], [244, 0, 0, "-", "tensor"], [249, 0, 0, "-", "testing"], [258, 0, 0, "-", "utilities"], [273, 0, 0, "-", "vector"]], "sympy.algebras": [[61, 1, 1, "", "Quaternion"]], "sympy.algebras.Quaternion": [[61, 2, 1, "", "add"], [61, 2, 1, "", "angle"], [61, 2, 1, "", "arc_coplanar"], [61, 2, 1, "", "axis"], [61, 2, 1, "", "exp"], [61, 2, 1, "", "from_Matrix"], [61, 2, 1, "", "from_axis_angle"], [61, 2, 1, "", "from_euler"], [61, 2, 1, "", "from_rotation_matrix"], [61, 2, 1, "", "index_vector"], [61, 2, 1, "", "integrate"], [61, 2, 1, "", "inverse"], [61, 2, 1, "", "is_pure"], [61, 2, 1, "", "is_zero_quaternion"], [61, 2, 1, "", "log"], [61, 2, 1, "", "mensor"], [61, 2, 1, "", "mul"], [61, 2, 1, "", "norm"], [61, 2, 1, "", "normalize"], [61, 2, 1, "", "orthogonal"], [61, 2, 1, "", "parallel"], [61, 2, 1, "", "pow"], [61, 2, 1, "", "pow_cos_sin"], [61, 3, 1, "", "product_matrix_left"], [61, 3, 1, "", "product_matrix_right"], [61, 2, 1, "", "rotate_point"], [61, 2, 1, "", "scalar_part"], [61, 2, 1, "", "set_norm"], [61, 2, 1, "", "to_Matrix"], [61, 2, 1, "", "to_axis_angle"], [61, 2, 1, "", "to_euler"], [61, 2, 1, "", "to_rotation_matrix"], [61, 2, 1, "", "vector_coplanar"], [61, 2, 1, "", "vector_part"]], "sympy.assumptions": [[62, 0, 0, "-", "ask"], [63, 0, 0, "-", "assume"], [65, 0, 0, "-", "predicates"], [66, 0, 0, "-", "refine"]], "sympy.assumptions.ask": [[62, 1, 1, "", "AssumptionKeys"], [62, 4, 1, "", "ask"], [62, 4, 1, "", "register_handler"], [62, 4, 1, "", "remove_handler"]], "sympy.assumptions.assume": [[63, 1, 1, "", "AppliedPredicate"], [63, 1, 1, "", "AssumptionsContext"], [63, 1, 1, "", "Predicate"], [63, 1, 1, "", "UndefinedPredicate"], [63, 4, 1, "", "assuming"]], "sympy.assumptions.assume.AppliedPredicate": [[63, 3, 1, "", "arg"], [63, 3, 1, "", "arguments"], [63, 3, 1, "", "function"]], "sympy.assumptions.assume.AssumptionsContext": [[63, 2, 1, "", "add"]], "sympy.assumptions.assume.Predicate": [[63, 2, 1, "", "eval"], [63, 5, 1, "", "handler"], [63, 2, 1, "", "register"], [63, 2, 1, "", "register_many"]], "sympy.assumptions.predicates.calculus": [[65, 1, 1, "", "FinitePredicate"], [65, 1, 1, "", "InfinitePredicate"]], "sympy.assumptions.predicates.calculus.FinitePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.calculus.InfinitePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.common": [[65, 1, 1, "", "CommutativePredicate"], [65, 1, 1, "", "IsTruePredicate"]], "sympy.assumptions.predicates.common.CommutativePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.common.IsTruePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices": [[65, 1, 1, "", "ComplexElementsPredicate"], [65, 1, 1, "", "DiagonalPredicate"], [65, 1, 1, "", "FullRankPredicate"], [65, 1, 1, "", "IntegerElementsPredicate"], [65, 1, 1, "", "InvertiblePredicate"], [65, 1, 1, "", "LowerTriangularPredicate"], [65, 1, 1, "", "NormalPredicate"], [65, 1, 1, "", "OrthogonalPredicate"], [65, 1, 1, "", "PositiveDefinitePredicate"], [65, 1, 1, "", "RealElementsPredicate"], [65, 1, 1, "", "SingularPredicate"], [65, 1, 1, "", "SquarePredicate"], [65, 1, 1, "", "SymmetricPredicate"], [65, 1, 1, "", "TriangularPredicate"], [65, 1, 1, "", "UnitTriangularPredicate"], [65, 1, 1, "", "UnitaryPredicate"], [65, 1, 1, "", "UpperTriangularPredicate"]], "sympy.assumptions.predicates.matrices.ComplexElementsPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.DiagonalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.FullRankPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.IntegerElementsPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.InvertiblePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.LowerTriangularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.NormalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.OrthogonalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.PositiveDefinitePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.RealElementsPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.SingularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.SquarePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.SymmetricPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.TriangularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.UnitTriangularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.UnitaryPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.UpperTriangularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.ntheory": [[65, 1, 1, "", "CompositePredicate"], [65, 1, 1, "", "EvenPredicate"], [65, 1, 1, "", "OddPredicate"], [65, 1, 1, "", "PrimePredicate"]], "sympy.assumptions.predicates.ntheory.CompositePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.ntheory.EvenPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.ntheory.OddPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.ntheory.PrimePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order": [[65, 1, 1, "", "NegativePredicate"], [65, 1, 1, "", "NonNegativePredicate"], [65, 1, 1, "", "NonPositivePredicate"], [65, 1, 1, "", "NonZeroPredicate"], [65, 1, 1, "", "PositivePredicate"], [65, 1, 1, "", "ZeroPredicate"]], "sympy.assumptions.predicates.order.NegativePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.NonNegativePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.NonPositivePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.NonZeroPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.PositivePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.ZeroPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets": [[65, 1, 1, "", "AlgebraicPredicate"], [65, 1, 1, "", "AntihermitianPredicate"], [65, 1, 1, "", "ComplexPredicate"], [65, 1, 1, "", "ExtendedRealPredicate"], [65, 1, 1, "", "HermitianPredicate"], [65, 1, 1, "", "ImaginaryPredicate"], [65, 1, 1, "", "IntegerPredicate"], [65, 1, 1, "", "IrrationalPredicate"], [65, 1, 1, "", "RationalPredicate"], [65, 1, 1, "", "RealPredicate"], [65, 1, 1, "", "TranscendentalPredicate"]], "sympy.assumptions.predicates.sets.AlgebraicPredicate": [[65, 5, 1, "", "AlgebraicHandler"], [65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.AntihermitianPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.ComplexPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.ExtendedRealPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.HermitianPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.ImaginaryPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.IntegerPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.IrrationalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.RationalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.RealPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.TranscendentalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.refine": [[66, 4, 1, "", "refine"], [66, 4, 1, "", "refine_Pow"], [66, 4, 1, "", "refine_abs"], [66, 4, 1, "", "refine_arg"], [66, 4, 1, "", "refine_atan2"], [66, 4, 1, "", "refine_im"], [66, 4, 1, "", "refine_matrixelement"], [66, 4, 1, "", "refine_re"], [66, 4, 1, "", "refine_sign"]], "sympy.calculus": [[67, 0, 0, "-", "euler"], [67, 0, 0, "-", "finite_diff"], [67, 0, 0, "-", "singularities"], [67, 0, 0, "-", "util"]], "sympy.calculus.euler": [[67, 4, 1, "", "euler_equations"]], "sympy.calculus.finite_diff": [[67, 4, 1, "", "apply_finite_diff"], [67, 4, 1, "", "differentiate_finite"], [67, 4, 1, "", "finite_diff_weights"]], "sympy.calculus.singularities": [[67, 4, 1, "", "is_decreasing"], [67, 4, 1, "", "is_increasing"], [67, 4, 1, "", "is_monotonic"], [67, 4, 1, "", "is_strictly_decreasing"], [67, 4, 1, "", "is_strictly_increasing"], [67, 4, 1, "", "monotonicity_helper"], [67, 4, 1, "", "singularities"]], "sympy.calculus.util": [[67, 4, 1, "", "continuous_domain"], [67, 4, 1, "", "function_range"], [67, 4, 1, "", "is_convex"], [67, 4, 1, "", "lcim"], [67, 4, 1, "", "maximum"], [67, 4, 1, "", "minimum"], [67, 4, 1, "", "not_empty_in"], [67, 4, 1, "", "periodicity"], [67, 4, 1, "", "stationary_points"]], "sympy.categories": [[68, 1, 1, "", "Category"], [68, 1, 1, "", "CompositeMorphism"], [68, 1, 1, "", "Diagram"], [68, 1, 1, "", "IdentityMorphism"], [68, 1, 1, "", "Morphism"], [68, 1, 1, "", "NamedMorphism"], [68, 1, 1, "", "Object"], [68, 0, 0, "-", "diagram_drawing"]], "sympy.categories.Category": [[68, 3, 1, "", "commutative_diagrams"], [68, 3, 1, "", "name"], [68, 3, 1, "", "objects"]], "sympy.categories.CompositeMorphism": [[68, 3, 1, "", "codomain"], [68, 3, 1, "", "components"], [68, 3, 1, "", "domain"], [68, 2, 1, "", "flatten"]], "sympy.categories.Diagram": [[68, 3, 1, "", "conclusions"], [68, 2, 1, "", "hom"], [68, 2, 1, "", "is_subdiagram"], [68, 3, 1, "", "objects"], [68, 3, 1, "", "premises"], [68, 2, 1, "", "subdiagram_from_objects"]], "sympy.categories.Morphism": [[68, 3, 1, "", "codomain"], [68, 2, 1, "", "compose"], [68, 3, 1, "", "domain"]], "sympy.categories.NamedMorphism": [[68, 3, 1, "", "name"]], "sympy.categories.diagram_drawing": [[68, 1, 1, "", "ArrowStringDescription"], [68, 1, 1, "", "DiagramGrid"], [68, 1, 1, "", "XypicDiagramDrawer"], [68, 4, 1, "", "preview_diagram"], [68, 4, 1, "", "xypic_draw_diagram"]], "sympy.categories.diagram_drawing.DiagramGrid": [[68, 3, 1, "", "height"], [68, 3, 1, "", "morphisms"], [68, 3, 1, "", "width"]], "sympy.categories.diagram_drawing.XypicDiagramDrawer": [[68, 2, 1, "", "draw"]], "sympy.codegen": [[69, 0, 0, "-", "algorithms"], [69, 0, 0, "-", "approximations"], [69, 0, 0, "-", "ast"], [69, 0, 0, "-", "cfunctions"], [69, 0, 0, "-", "cnodes"], [69, 0, 0, "-", "cutils"], [69, 0, 0, "-", "cxxnodes"], [69, 0, 0, "-", "fnodes"], [69, 0, 0, "-", "futils"], [69, 0, 0, "-", "matrix_nodes"], [69, 0, 0, "-", "pyutils"], [69, 0, 0, "-", "rewriting"]], "sympy.codegen.algorithms": [[69, 4, 1, "", "newtons_method"], [69, 4, 1, "", "newtons_method_function"]], "sympy.codegen.approximations": [[69, 1, 1, "", "SeriesApprox"], [69, 1, 1, "", "SumApprox"]], "sympy.codegen.ast": [[69, 1, 1, "", "Assignment"], [69, 1, 1, "", "AssignmentBase"], [69, 1, 1, "", "Attribute"], [69, 1, 1, "", "AugmentedAssignment"], [69, 1, 1, "", "BreakToken"], [69, 1, 1, "", "CodeBlock"], [69, 1, 1, "", "Comment"], [69, 1, 1, "", "ComplexType"], [69, 1, 1, "", "ContinueToken"], [69, 1, 1, "", "Declaration"], [69, 1, 1, "", "Element"], [69, 1, 1, "", "FloatBaseType"], [69, 1, 1, "", "FloatType"], [69, 1, 1, "", "For"], [69, 1, 1, "", "FunctionCall"], [69, 1, 1, "", "FunctionDefinition"], [69, 1, 1, "", "FunctionPrototype"], [69, 1, 1, "", "IntBaseType"], [69, 1, 1, "", "Node"], [69, 1, 1, "", "NoneToken"], [69, 1, 1, "", "Pointer"], [69, 1, 1, "", "Print"], [69, 1, 1, "", "QuotedString"], [69, 1, 1, "", "Raise"], [69, 1, 1, "", "Return"], [69, 1, 1, "", "RuntimeError_"], [69, 1, 1, "", "Scope"], [69, 1, 1, "", "SignedIntType"], [69, 1, 1, "", "Stream"], [69, 1, 1, "", "String"], [69, 1, 1, "", "Token"], [69, 1, 1, "", "Type"], [69, 1, 1, "", "UnsignedIntType"], [69, 1, 1, "", "Variable"], [69, 1, 1, "", "While"], [69, 4, 1, "", "aug_assign"]], "sympy.codegen.ast.CodeBlock": [[69, 2, 1, "", "cse"], [69, 2, 1, "", "topological_sort"]], "sympy.codegen.ast.FloatBaseType": [[69, 5, 1, "", "cast_nocheck"]], "sympy.codegen.ast.FloatType": [[69, 2, 1, "", "cast_nocheck"], [69, 3, 1, "", "decimal_dig"], [69, 3, 1, "", "dig"], [69, 3, 1, "", "eps"], [69, 3, 1, "", "max"], [69, 3, 1, "", "max_exponent"], [69, 3, 1, "", "min_exponent"], [69, 3, 1, "", "tiny"]], "sympy.codegen.ast.Node": [[69, 2, 1, "", "attr_params"]], "sympy.codegen.ast.Token": [[69, 2, 1, "", "kwargs"]], "sympy.codegen.ast.Type": [[69, 2, 1, "", "cast_check"], [69, 2, 1, "", "from_expr"]], "sympy.codegen.ast.Variable": [[69, 2, 1, "", "as_Declaration"], [69, 2, 1, "", "deduced"]], "sympy.codegen.cfunctions": [[69, 1, 1, "", "Cbrt"], [69, 1, 1, "", "Sqrt"], [69, 1, 1, "", "exp2"], [69, 1, 1, "", "expm1"], [69, 1, 1, "", "fma"], [69, 1, 1, "", "hypot"], [69, 1, 1, "", "log10"], [69, 1, 1, "", "log1p"], [69, 1, 1, "", "log2"]], "sympy.codegen.cfunctions.Cbrt": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.Sqrt": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.exp2": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.expm1": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.fma": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.hypot": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.log10": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.log1p": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.log2": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cnodes": [[69, 1, 1, "", "CommaOperator"], [69, 1, 1, "", "Label"], [69, 1, 1, "", "PostDecrement"], [69, 1, 1, "", "PostIncrement"], [69, 1, 1, "", "PreDecrement"], [69, 1, 1, "", "PreIncrement"], [69, 4, 1, "", "alignof"], [69, 1, 1, "", "goto"], [69, 4, 1, "", "sizeof"], [69, 1, 1, "", "struct"], [69, 1, 1, "", "union"]], "sympy.codegen.cutils": [[69, 4, 1, "", "render_as_source_file"]], "sympy.codegen.cxxnodes": [[69, 1, 1, "", "using"]], "sympy.codegen.fnodes": [[69, 1, 1, "", "ArrayConstructor"], [69, 1, 1, "", "Do"], [69, 1, 1, "", "Extent"], [69, 1, 1, "", "FortranReturn"], [69, 1, 1, "", "GoTo"], [69, 1, 1, "", "ImpliedDoLoop"], [69, 1, 1, "", "Module"], [69, 1, 1, "", "Program"], [69, 1, 1, "", "Subroutine"], [69, 1, 1, "", "SubroutineCall"], [69, 4, 1, "", "allocated"], [69, 4, 1, "", "array"], [69, 4, 1, "", "bind_C"], [69, 1, 1, "", "cmplx"], [69, 4, 1, "", "dimension"], [69, 1, 1, "", "dsign"], [69, 1, 1, "", "isign"], [69, 1, 1, "", "kind"], [69, 4, 1, "", "lbound"], [69, 1, 1, "", "literal_dp"], [69, 1, 1, "", "literal_sp"], [69, 1, 1, "", "merge"], [69, 4, 1, "", "reshape"], [69, 4, 1, "", "shape"], [69, 4, 1, "", "size"], [69, 1, 1, "", "use"], [69, 1, 1, "", "use_rename"]], "sympy.codegen.futils": [[69, 4, 1, "", "render_as_module"]], "sympy.codegen.matrix_nodes": [[69, 1, 1, "", "MatrixSolve"]], "sympy.codegen.pyutils": [[69, 4, 1, "", "render_as_module"]], "sympy.codegen.rewriting": [[69, 1, 1, "", "FuncMinusOneOptim"], [69, 1, 1, "", "Optimization"], [69, 1, 1, "", "ReplaceOptim"], [69, 4, 1, "", "create_expand_pow_optimization"], [69, 4, 1, "", "optimize"]], "sympy.codegen.rewriting.FuncMinusOneOptim": [[69, 2, 1, "", "replace_in_Add"]], "sympy.combinatorics": [[71, 0, 0, "-", "galois"], [80, 0, 0, "-", "generators"], [72, 0, 0, "-", "graycode"], [73, 0, 0, "-", "group_constructs"], [74, 0, 0, "-", "group_numbers"], [76, 0, 0, "-", "named_groups"], [77, 0, 0, "-", "partitions"], [79, 0, 0, "-", "perm_groups"], [80, 0, 0, "-", "permutations"], [81, 0, 0, "-", "polyhedron"], [82, 0, 0, "-", "prufer"], [83, 0, 0, "-", "subsets"], [84, 0, 0, "-", "tensor_can"], [85, 0, 0, "-", "testutil"], [86, 0, 0, "-", "util"]], "sympy.combinatorics.galois": [[71, 4, 1, "", "A4_in_S6"], [71, 4, 1, "", "A4xC2"], [71, 4, 1, "", "G18"], [71, 4, 1, "", "G36m"], [71, 4, 1, "", "G36p"], [71, 4, 1, "", "G72"], [71, 4, 1, "", "M20"], [71, 4, 1, "", "PGL2F5"], [71, 4, 1, "", "PSL2F5"], [71, 1, 1, "", "S1TransitiveSubgroups"], [71, 1, 1, "", "S2TransitiveSubgroups"], [71, 1, 1, "", "S3TransitiveSubgroups"], [71, 4, 1, "", "S3_in_S6"], [71, 1, 1, "", "S4TransitiveSubgroups"], [71, 4, 1, "", "S4m"], [71, 4, 1, "", "S4p"], [71, 4, 1, "", "S4xC2"], [71, 1, 1, "", "S5TransitiveSubgroups"], [71, 1, 1, "", "S6TransitiveSubgroups"], [71, 4, 1, "", "find_transitive_subgroups_of_S6"], [71, 4, 1, "", "four_group"]], "sympy.combinatorics.generators": [[80, 2, 1, "", "alternating"], [80, 2, 1, "", "cyclic"], [80, 2, 1, "", "dihedral"], [80, 2, 1, "", "symmetric"]], "sympy.combinatorics.graycode": [[72, 1, 1, "", "GrayCode"], [72, 2, 1, "", "bin_to_gray"], [72, 2, 1, "", "get_subset_from_bitstring"], [72, 2, 1, "", "gray_to_bin"], [72, 2, 1, "", "graycode_subsets"], [72, 2, 1, "", "random_bitstring"]], "sympy.combinatorics.graycode.GrayCode": [[72, 3, 1, "", "current"], [72, 2, 1, "", "generate_gray"], [72, 3, 1, "", "n"], [72, 2, 1, "", "next"], [72, 3, 1, "", "rank"], [72, 3, 1, "", "selections"], [72, 2, 1, "", "skip"], [72, 2, 1, "", "unrank"]], "sympy.combinatorics.group_constructs": [[73, 4, 1, "", "DirectProduct"]], "sympy.combinatorics.group_numbers": [[74, 4, 1, "", "groups_count"], [74, 4, 1, "", "is_abelian_number"], [74, 4, 1, "", "is_cyclic_number"], [74, 4, 1, "", "is_nilpotent_number"]], "sympy.combinatorics.named_groups": [[76, 4, 1, "", "AbelianGroup"], [76, 4, 1, "", "AlternatingGroup"], [76, 4, 1, "", "CyclicGroup"], [76, 4, 1, "", "DihedralGroup"], [76, 4, 1, "", "SymmetricGroup"]], "sympy.combinatorics.partitions": [[77, 1, 1, "", "IntegerPartition"], [77, 1, 1, "", "Partition"], [77, 4, 1, "", "RGS_enum"], [77, 4, 1, "", "RGS_generalized"], [77, 4, 1, "", "RGS_rank"], [77, 4, 1, "", "RGS_unrank"], [77, 4, 1, "", "random_integer_partition"]], "sympy.combinatorics.partitions.IntegerPartition": [[77, 2, 1, "", "as_dict"], [77, 2, 1, "", "as_ferrers"], [77, 3, 1, "", "conjugate"], [77, 2, 1, "", "next_lex"], [77, 2, 1, "", "prev_lex"]], "sympy.combinatorics.partitions.Partition": [[77, 3, 1, "", "RGS"], [77, 2, 1, "", "from_rgs"], [77, 3, 1, "", "partition"], [77, 3, 1, "", "rank"], [77, 2, 1, "", "sort_key"]], "sympy.combinatorics.perm_groups": [[79, 1, 1, "", "PermutationGroup"]], "sympy.combinatorics.perm_groups.PermutationGroup": [[79, 2, 1, "", "__contains__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "__new__"], [79, 5, 1, "", "__weakref__"], [79, 2, 1, "", "_coset_representative"], [79, 2, 1, "", "_distinct_primes_lemma"], [79, 2, 1, "", "_eval_is_alt_sym_monte_carlo"], [79, 2, 1, "", "_eval_is_alt_sym_naive"], [79, 2, 1, "", "_p_elements_group"], [79, 2, 1, "", "_random_pr_init"], [79, 2, 1, "", "_sylow_alt_sym"], [79, 2, 1, "", "_union_find_merge"], [79, 2, 1, "", "_union_find_rep"], [79, 2, 1, "", "_verify"], [79, 2, 1, "", "abelian_invariants"], [79, 3, 1, "", "base"], [79, 2, 1, "", "baseswap"], [79, 3, 1, "", "basic_orbits"], [79, 3, 1, "", "basic_stabilizers"], [79, 3, 1, "", "basic_transversals"], [79, 2, 1, "", "center"], [79, 2, 1, "", "centralizer"], [79, 2, 1, "", "commutator"], [79, 2, 1, "", "composition_series"], [79, 2, 1, "", "conjugacy_class"], [79, 2, 1, "", "conjugacy_classes"], [79, 2, 1, "", "contains"], [79, 2, 1, "", "coset_factor"], [79, 2, 1, "", "coset_rank"], [79, 2, 1, "", "coset_table"], [79, 2, 1, "", "coset_transversal"], [79, 2, 1, "", "coset_unrank"], [79, 3, 1, "", "degree"], [79, 2, 1, "", "derived_series"], [79, 2, 1, "", "derived_subgroup"], [79, 3, 1, "", "elements"], [79, 2, 1, "", "equals"], [79, 2, 1, "", "generate"], [79, 2, 1, "", "generate_dimino"], [79, 2, 1, "", "generate_schreier_sims"], [79, 2, 1, "", "generator_product"], [79, 3, 1, "", "generators"], [79, 3, 1, "", "identity"], [79, 2, 1, "", "index"], [79, 3, 1, "", "is_abelian"], [79, 2, 1, "", "is_alt_sym"], [79, 3, 1, "", "is_alternating"], [79, 3, 1, "", "is_cyclic"], [79, 3, 1, "", "is_dihedral"], [79, 2, 1, "", "is_elementary"], [79, 3, 1, "", "is_nilpotent"], [79, 2, 1, "", "is_normal"], [79, 3, 1, "", "is_perfect"], [79, 3, 1, "", "is_polycyclic"], [79, 2, 1, "", "is_primitive"], [79, 3, 1, "", "is_solvable"], [79, 2, 1, "", "is_subgroup"], [79, 3, 1, "", "is_symmetric"], [79, 2, 1, "", "is_transitive"], [79, 3, 1, "", "is_trivial"], [79, 2, 1, "", "lower_central_series"], [79, 2, 1, "", "make_perm"], [79, 3, 1, "", "max_div"], [79, 2, 1, "", "minimal_block"], [79, 2, 1, "", "minimal_blocks"], [79, 2, 1, "", "normal_closure"], [79, 2, 1, "", "orbit"], [79, 2, 1, "", "orbit_rep"], [79, 2, 1, "", "orbit_transversal"], [79, 2, 1, "", "orbits"], [79, 2, 1, "", "order"], [79, 2, 1, "", "pointwise_stabilizer"], [79, 2, 1, "", "polycyclic_group"], [79, 2, 1, "", "presentation"], [79, 2, 1, "", "random"], [79, 2, 1, "", "random_pr"], [79, 2, 1, "", "random_stab"], [79, 2, 1, "", "schreier_sims"], [79, 2, 1, "", "schreier_sims_incremental"], [79, 2, 1, "", "schreier_sims_random"], [79, 2, 1, "", "schreier_vector"], [79, 2, 1, "", "stabilizer"], [79, 3, 1, "", "strong_gens"], [79, 2, 1, "", "strong_presentation"], [79, 2, 1, "", "subgroup"], [79, 2, 1, "", "subgroup_search"], [79, 2, 1, "", "sylow_subgroup"], [79, 3, 1, "", "transitivity_degree"]], "sympy.combinatorics.permutations": [[80, 1, 1, "", "Cycle"], [80, 1, 1, "", "Permutation"], [80, 4, 1, "", "_af_parity"]], "sympy.combinatorics.permutations.Cycle": [[80, 2, 1, "", "list"]], "sympy.combinatorics.permutations.Permutation": [[80, 2, 1, "", "apply"], [80, 3, 1, "", "array_form"], [80, 2, 1, "", "ascents"], [80, 2, 1, "", "atoms"], [80, 3, 1, "", "cardinality"], [80, 2, 1, "", "commutator"], [80, 2, 1, "", "commutes_with"], [80, 3, 1, "", "cycle_structure"], [80, 3, 1, "", "cycles"], [80, 3, 1, "", "cyclic_form"], [80, 2, 1, "", "descents"], [80, 2, 1, "", "from_inversion_vector"], [80, 2, 1, "", "from_sequence"], [80, 3, 1, "", "full_cyclic_form"], [80, 2, 1, "", "get_adjacency_distance"], [80, 2, 1, "", "get_adjacency_matrix"], [80, 2, 1, "", "get_positional_distance"], [80, 2, 1, "", "get_precedence_distance"], [80, 2, 1, "", "get_precedence_matrix"], [80, 2, 1, "", "index"], [80, 2, 1, "", "inversion_vector"], [80, 2, 1, "", "inversions"], [80, 3, 1, "", "is_Empty"], [80, 3, 1, "", "is_Identity"], [80, 3, 1, "", "is_Singleton"], [80, 3, 1, "", "is_even"], [80, 3, 1, "", "is_odd"], [80, 2, 1, "", "josephus"], [80, 2, 1, "", "length"], [80, 2, 1, "", "list"], [80, 2, 1, "", "max"], [80, 2, 1, "", "min"], [80, 2, 1, "", "mul_inv"], [80, 2, 1, "", "next_lex"], [80, 2, 1, "", "next_nonlex"], [80, 2, 1, "", "next_trotterjohnson"], [80, 2, 1, "", "order"], [80, 2, 1, "", "parity"], [80, 2, 1, "", "random"], [80, 2, 1, "", "rank"], [80, 2, 1, "", "rank_nonlex"], [80, 2, 1, "", "rank_trotterjohnson"], [80, 2, 1, "", "resize"], [80, 2, 1, "", "rmul"], [80, 2, 1, "", "rmul_with_af"], [80, 2, 1, "", "runs"], [80, 2, 1, "", "signature"], [80, 3, 1, "", "size"], [80, 2, 1, "", "support"], [80, 2, 1, "", "transpositions"], [80, 2, 1, "", "unrank_lex"], [80, 2, 1, "", "unrank_nonlex"], [80, 2, 1, "", "unrank_trotterjohnson"]], "sympy.combinatorics.polyhedron": [[81, 1, 1, "", "Polyhedron"]], "sympy.combinatorics.polyhedron.Polyhedron": [[81, 3, 1, "", "array_form"], [81, 3, 1, "", "corners"], [81, 3, 1, "", "cyclic_form"], [81, 3, 1, "", "edges"], [81, 3, 1, "", "faces"], [81, 3, 1, "", "pgroup"], [81, 2, 1, "", "reset"], [81, 2, 1, "", "rotate"], [81, 3, 1, "", "size"], [81, 3, 1, "", "vertices"]], "sympy.combinatorics.prufer": [[82, 1, 1, "", "Prufer"]], "sympy.combinatorics.prufer.Prufer": [[82, 2, 1, "", "edges"], [82, 2, 1, "", "next"], [82, 3, 1, "", "nodes"], [82, 2, 1, "", "prev"], [82, 2, 1, "", "prufer_rank"], [82, 3, 1, "", "prufer_repr"], [82, 3, 1, "", "rank"], [82, 3, 1, "", "size"], [82, 2, 1, "", "to_prufer"], [82, 2, 1, "", "to_tree"], [82, 3, 1, "", "tree_repr"], [82, 2, 1, "", "unrank"]], "sympy.combinatorics.subsets": [[83, 1, 1, "", "Subset"], [83, 2, 1, "", "ksubsets"]], "sympy.combinatorics.subsets.Subset": [[83, 2, 1, "", "bitlist_from_subset"], [83, 3, 1, "", "cardinality"], [83, 2, 1, "", "iterate_binary"], [83, 2, 1, "", "iterate_graycode"], [83, 2, 1, "", "next_binary"], [83, 2, 1, "", "next_gray"], [83, 2, 1, "", "next_lexicographic"], [83, 2, 1, "", "prev_binary"], [83, 2, 1, "", "prev_gray"], [83, 2, 1, "", "prev_lexicographic"], [83, 3, 1, "", "rank_binary"], [83, 3, 1, "", "rank_gray"], [83, 3, 1, "", "rank_lexicographic"], [83, 3, 1, "", "size"], [83, 3, 1, "", "subset"], [83, 2, 1, "", "subset_from_bitlist"], [83, 2, 1, "", "subset_indices"], [83, 3, 1, "", "superset"], [83, 3, 1, "", "superset_size"], [83, 2, 1, "", "unrank_binary"], [83, 2, 1, "", "unrank_gray"]], "sympy.combinatorics.tensor_can": [[84, 4, 1, "", "bsgs_direct_product"], [84, 4, 1, "", "canonicalize"], [84, 4, 1, "", "double_coset_can_rep"], [84, 4, 1, "", "get_symmetric_group_sgs"]], "sympy.combinatorics.testutil": [[85, 4, 1, "", "_cmp_perm_lists"], [85, 4, 1, "", "_naive_list_centralizer"], [85, 4, 1, "", "_verify_bsgs"], [85, 4, 1, "", "_verify_centralizer"], [85, 4, 1, "", "_verify_normal_closure"]], "sympy.combinatorics.util": [[86, 4, 1, "", "_base_ordering"], [86, 4, 1, "", "_check_cycles_alt_sym"], [86, 4, 1, "", "_distribute_gens_by_base"], [86, 4, 1, "", "_handle_precomputed_bsgs"], [86, 4, 1, "", "_orbits_transversals_from_bsgs"], [86, 4, 1, "", "_remove_gens"], [86, 4, 1, "", "_strip"], [86, 4, 1, "", "_strong_gens_from_distr"]], "sympy.concrete.expr_with_intlimits": [[87, 1, 1, "", "ExprWithIntLimits"]], "sympy.concrete.expr_with_intlimits.ExprWithIntLimits": [[87, 2, 1, "", "change_index"], [87, 3, 1, "", "has_empty_sequence"], [87, 2, 1, "", "index"], [87, 2, 1, "", "reorder"], [87, 2, 1, "", "reorder_limit"]], "sympy.concrete.expr_with_limits": [[115, 1, 1, "", "ExprWithLimits"]], "sympy.concrete.expr_with_limits.ExprWithLimits": [[115, 3, 1, "", "bound_symbols"], [115, 3, 1, "", "free_symbols"], [115, 3, 1, "", "function"], [115, 3, 1, "", "has_finite_limits"], [115, 3, 1, "", "has_reversed_limits"], [115, 3, 1, "", "is_number"], [115, 3, 1, "", "limits"], [115, 3, 1, "", "variables"]], "sympy.concrete.gosper": [[87, 4, 1, "", "gosper_normal"], [87, 4, 1, "", "gosper_sum"], [87, 4, 1, "", "gosper_term"]], "sympy.concrete.products": [[87, 1, 1, "", "Product"], [87, 4, 1, "", "product"]], "sympy.concrete.products.Product": [[87, 2, 1, "", "is_convergent"], [87, 2, 1, "", "reverse_order"]], "sympy.concrete.summations": [[87, 1, 1, "", "Sum"], [87, 4, 1, "", "summation"]], "sympy.concrete.summations.Sum": [[87, 2, 1, "", "euler_maclaurin"], [87, 2, 1, "", "eval_zeta_function"], [87, 2, 1, "", "is_absolutely_convergent"], [87, 2, 1, "", "is_convergent"], [87, 2, 1, "", "reverse_order"]], "sympy.core": [[88, 0, 0, "-", "add"], [88, 0, 0, "-", "assumptions"], [88, 0, 0, "-", "basic"], [88, 0, 0, "-", "cache"], [88, 0, 0, "-", "containers"], [88, 0, 0, "-", "evalf"], [88, 0, 0, "-", "expr"], [88, 0, 0, "-", "exprtools"], [88, 0, 0, "-", "function"], [88, 0, 0, "-", "intfunc"], [88, 0, 0, "-", "kind"], [88, 0, 0, "-", "mod"], [88, 0, 0, "-", "mul"], [88, 0, 0, "-", "multidimensional"], [88, 0, 0, "-", "numbers"], [88, 0, 0, "-", "power"], [88, 0, 0, "-", "random"], [88, 0, 0, "-", "relational"], [88, 0, 0, "-", "singleton"], [88, 0, 0, "-", "symbol"], [88, 0, 0, "-", "sympify"], [88, 0, 0, "-", "traversal"]], "sympy.core.add": [[88, 1, 1, "", "Add"]], "sympy.core.add.Add": [[88, 2, 1, "", "as_coeff_Add"], [88, 2, 1, "", "as_coeff_add"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "as_numer_denom"], [88, 2, 1, "", "as_real_imag"], [88, 2, 1, "", "as_two_terms"], [88, 2, 1, "", "extract_leading_order"], [88, 2, 1, "", "flatten"], [88, 2, 1, "", "primitive"]], "sympy.core.basic": [[88, 1, 1, "", "Atom"], [88, 1, 1, "", "Basic"]], "sympy.core.basic.Basic": [[88, 3, 1, "", "args"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "as_dummy"], [88, 3, 1, "", "assumptions0"], [88, 2, 1, "", "atoms"], [88, 3, 1, "", "canonical_variables"], [88, 2, 1, "", "class_key"], [88, 2, 1, "", "compare"], [88, 2, 1, "", "count"], [88, 2, 1, "", "count_ops"], [88, 2, 1, "", "doit"], [88, 2, 1, "", "dummy_eq"], [88, 2, 1, "", "find"], [88, 3, 1, "", "free_symbols"], [88, 2, 1, "", "fromiter"], [88, 3, 1, "", "func"], [88, 2, 1, "", "has"], [88, 2, 1, "", "has_free"], [88, 2, 1, "", "has_xfree"], [88, 3, 1, "", "is_comparable"], [88, 2, 1, "", "is_same"], [88, 2, 1, "", "match"], [88, 2, 1, "", "matches"], [88, 2, 1, "", "rcall"], [88, 2, 1, "", "refine"], [88, 2, 1, "", "replace"], [88, 2, 1, "", "rewrite"], [88, 2, 1, "", "simplify"], [88, 2, 1, "", "sort_key"], [88, 2, 1, "", "subs"], [88, 2, 1, "", "xreplace"]], "sympy.core.cache": [[88, 4, 1, "", "__cacheit"]], "sympy.core.containers": [[88, 1, 1, "", "Dict"], [88, 1, 1, "", "Tuple"], [88, 1, 1, "", "TupleKind"]], "sympy.core.containers.Dict": [[88, 2, 1, "", "get"], [88, 2, 1, "", "items"], [88, 2, 1, "", "keys"], [88, 2, 1, "", "values"]], "sympy.core.containers.Tuple": [[88, 2, 1, "", "index"], [88, 3, 1, "", "kind"], [88, 2, 1, "", "tuple_count"]], "sympy.core.evalf": [[88, 1, 1, "", "EvalfMixin"], [88, 4, 1, "", "N"], [88, 1, 1, "", "PrecisionExhausted"]], "sympy.core.evalf.EvalfMixin": [[88, 2, 1, "", "evalf"], [88, 2, 1, "", "n"]], "sympy.core.expr": [[88, 1, 1, "", "AtomicExpr"], [88, 1, 1, "", "Expr"], [88, 1, 1, "", "UnevaluatedExpr"]], "sympy.core.expr.Expr": [[88, 2, 1, "", "apart"], [88, 2, 1, "", "args_cnc"], [88, 2, 1, "", "as_coeff_Add"], [88, 2, 1, "", "as_coeff_Mul"], [88, 2, 1, "", "as_coeff_add"], [88, 2, 1, "", "as_coeff_exponent"], [88, 2, 1, "", "as_coeff_mul"], [88, 2, 1, "", "as_coefficient"], [88, 2, 1, "", "as_coefficients_dict"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "as_expr"], [88, 2, 1, "", "as_independent"], [88, 2, 1, "", "as_leading_term"], [88, 2, 1, "", "as_numer_denom"], [88, 2, 1, "", "as_ordered_factors"], [88, 2, 1, "", "as_ordered_terms"], [88, 2, 1, "", "as_poly"], [88, 2, 1, "", "as_powers_dict"], [88, 2, 1, "", "as_real_imag"], [88, 2, 1, "", "as_terms"], [88, 2, 1, "", "aseries"], [88, 2, 1, "", "cancel"], [88, 2, 1, "", "coeff"], [88, 2, 1, "", "collect"], [88, 2, 1, "", "combsimp"], [88, 2, 1, "", "compute_leading_term"], [88, 2, 1, "", "conjugate"], [88, 2, 1, "", "could_extract_minus_sign"], [88, 2, 1, "", "equals"], [88, 2, 1, "", "expand"], [88, 3, 1, "", "expr_free_symbols"], [88, 2, 1, "", "extract_additively"], [88, 2, 1, "", "extract_branch_factor"], [88, 2, 1, "", "extract_multiplicatively"], [88, 2, 1, "", "factor"], [88, 2, 1, "", "fourier_series"], [88, 2, 1, "", "fps"], [88, 2, 1, "", "gammasimp"], [88, 2, 1, "", "getO"], [88, 2, 1, "", "getn"], [88, 2, 1, "", "integrate"], [88, 2, 1, "", "invert"], [88, 2, 1, "", "is_algebraic_expr"], [88, 2, 1, "", "is_constant"], [88, 2, 1, "", "is_meromorphic"], [88, 3, 1, "", "is_number"], [88, 2, 1, "", "is_polynomial"], [88, 2, 1, "", "is_rational_function"], [88, 2, 1, "", "leadterm"], [88, 2, 1, "", "limit"], [88, 2, 1, "", "lseries"], [88, 2, 1, "", "normal"], [88, 2, 1, "", "nseries"], [88, 2, 1, "", "nsimplify"], [88, 2, 1, "", "powsimp"], [88, 2, 1, "", "primitive"], [88, 2, 1, "", "radsimp"], [88, 2, 1, "", "ratsimp"], [88, 2, 1, "", "removeO"], [88, 2, 1, "", "round"], [88, 2, 1, "", "separate"], [88, 2, 1, "", "series"], [88, 2, 1, "", "taylor_term"], [88, 2, 1, "", "together"], [88, 2, 1, "", "trigsimp"]], "sympy.core.exprtools": [[88, 4, 1, "", "factor_terms"], [88, 4, 1, "", "gcd_terms"]], "sympy.core.function": [[88, 1, 1, "", "Derivative"], [88, 1, 1, "", "Function"], [88, 1, 1, "", "FunctionClass"], [88, 1, 1, "", "Lambda"], [88, 1, 1, "", "PoleError"], [88, 1, 1, "", "Subs"], [88, 1, 1, "", "WildFunction"], [88, 4, 1, "", "count_ops"], [88, 4, 1, "", "diff"], [88, 4, 1, "", "expand"], [88, 4, 1, "", "expand_complex"], [88, 4, 1, "", "expand_func"], [88, 4, 1, "", "expand_log"], [88, 4, 1, "", "expand_mul"], [88, 4, 1, "", "expand_multinomial"], [88, 4, 1, "", "expand_power_base"], [88, 4, 1, "", "expand_power_exp"], [88, 4, 1, "", "expand_trig"], [88, 4, 1, "", "nfloat"]], "sympy.core.function.Derivative": [[88, 3, 1, "", "_diff_wrt"], [88, 2, 1, "", "_sort_variable_count"], [88, 2, 1, "", "as_finite_difference"], [88, 2, 1, "", "doit_numerically"]], "sympy.core.function.Function": [[88, 2, 1, "", "as_base_exp"], [88, 2, 1, "", "fdiff"], [88, 2, 1, "", "is_singular"]], "sympy.core.function.FunctionClass": [[88, 3, 1, "", "nargs"]], "sympy.core.function.Lambda": [[88, 3, 1, "", "bound_symbols"], [88, 3, 1, "", "expr"], [88, 3, 1, "", "is_identity"], [88, 3, 1, "", "signature"], [88, 3, 1, "", "variables"]], "sympy.core.function.Subs": [[88, 3, 1, "", "bound_symbols"], [88, 3, 1, "", "expr"], [88, 3, 1, "", "point"], [88, 3, 1, "", "variables"]], "sympy.core.intfunc": [[88, 4, 1, "", "igcd"], [88, 4, 1, "", "igcd_lehmer"], [88, 4, 1, "", "igcdex"], [88, 4, 1, "", "ilcm"], [88, 4, 1, "", "integer_log"], [88, 4, 1, "", "integer_nthroot"], [88, 4, 1, "", "isqrt"], [88, 4, 1, "", "mod_inverse"], [88, 4, 1, "", "num_digits"], [88, 4, 1, "", "trailing"]], "sympy.core.kind": [[88, 5, 1, "", "BooleanKind"], [88, 1, 1, "", "Kind"], [88, 5, 1, "", "NumberKind"], [88, 5, 1, "", "UndefinedKind"]], "sympy.core.mod": [[88, 1, 1, "", "Mod"]], "sympy.core.mul": [[88, 1, 1, "", "Mul"], [88, 4, 1, "", "prod"]], "sympy.core.mul.Mul": [[88, 2, 1, "", "as_coeff_Mul"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "as_ordered_factors"], [88, 2, 1, "", "as_two_terms"], [88, 2, 1, "", "flatten"]], "sympy.core.multidimensional": [[88, 1, 1, "", "vectorize"]], "sympy.core.numbers": [[88, 1, 1, "", "AlgebraicNumber"], [88, 1, 1, "", "Catalan"], [88, 1, 1, "", "ComplexInfinity"], [88, 1, 1, "", "EulerGamma"], [88, 1, 1, "", "Exp1"], [88, 1, 1, "", "Float"], [88, 1, 1, "", "GoldenRatio"], [88, 1, 1, "", "Half"], [88, 1, 1, "", "ImaginaryUnit"], [88, 1, 1, "", "Infinity"], [88, 1, 1, "", "Integer"], [88, 1, 1, "", "NaN"], [88, 1, 1, "", "NegativeInfinity"], [88, 1, 1, "", "NegativeOne"], [88, 1, 1, "", "Number"], [88, 1, 1, "", "NumberSymbol"], [88, 1, 1, "", "One"], [88, 1, 1, "", "Pi"], [88, 1, 1, "", "Rational"], [88, 5, 1, "", "RealNumber"], [88, 1, 1, "", "TribonacciConstant"], [88, 1, 1, "", "Zero"], [88, 4, 1, "", "equal_valued"], [88, 4, 1, "", "mod_inverse"], [88, 4, 1, "", "seterr"]], "sympy.core.numbers.AlgebraicNumber": [[88, 2, 1, "", "__new__"], [88, 2, 1, "", "as_expr"], [88, 2, 1, "", "as_poly"], [88, 2, 1, "", "coeffs"], [88, 2, 1, "", "field_element"], [88, 3, 1, "", "is_aliased"], [88, 3, 1, "", "is_primitive_element"], [88, 2, 1, "", "minpoly_of_element"], [88, 2, 1, "", "native_coeffs"], [88, 2, 1, "", "primitive_element"], [88, 2, 1, "", "to_algebraic_integer"], [88, 2, 1, "", "to_primitive_element"], [88, 2, 1, "", "to_root"]], "sympy.core.numbers.Number": [[88, 2, 1, "", "as_coeff_Add"], [88, 2, 1, "", "as_coeff_Mul"], [88, 2, 1, "", "cofactors"], [88, 2, 1, "", "gcd"], [88, 2, 1, "", "lcm"]], "sympy.core.numbers.NumberSymbol": [[88, 2, 1, "", "approximation"]], "sympy.core.numbers.Rational": [[88, 2, 1, "", "as_coeff_Add"], [88, 2, 1, "", "as_coeff_Mul"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "factors"], [88, 2, 1, "", "limit_denominator"]], "sympy.core.power": [[88, 1, 1, "", "Pow"]], "sympy.core.power.Pow": [[88, 2, 1, "", "as_base_exp"], [88, 2, 1, "", "as_content_primitive"]], "sympy.core.random": [[88, 4, 1, "", "_randint"], [88, 4, 1, "", "_randrange"], [88, 4, 1, "", "random_complex_number"], [88, 4, 1, "", "test_derivative_numerically"], [88, 4, 1, "", "verify_numerically"]], "sympy.core.relational": [[88, 5, 1, "", "Eq"], [88, 1, 1, "", "Equality"], [88, 5, 1, "", "Ge"], [88, 1, 1, "", "GreaterThan"], [88, 5, 1, "", "Gt"], [88, 5, 1, "", "Le"], [88, 1, 1, "", "LessThan"], [88, 5, 1, "", "Lt"], [88, 5, 1, "", "Ne"], [88, 5, 1, "", "Rel"], [88, 1, 1, "", "Relational"], [88, 1, 1, "", "StrictGreaterThan"], [88, 1, 1, "", "StrictLessThan"], [88, 1, 1, "", "Unequality"]], "sympy.core.relational.Equality": [[88, 2, 1, "", "as_poly"], [88, 2, 1, "", "integrate"]], "sympy.core.relational.Relational": [[88, 3, 1, "", "canonical"], [88, 2, 1, "", "equals"], [88, 3, 1, "", "lhs"], [88, 3, 1, "", "negated"], [88, 3, 1, "", "reversed"], [88, 3, 1, "", "reversedsign"], [88, 3, 1, "", "rhs"], [88, 3, 1, "", "strict"], [88, 3, 1, "", "weak"]], "sympy.core.singleton": [[88, 1, 1, "", "Singleton"], [88, 1, 1, "", "SingletonRegistry"]], "sympy.core.sorting": [[88, 4, 1, "", "default_sort_key"], [88, 4, 1, "", "ordered"]], "sympy.core.symbol": [[88, 1, 1, "", "Dummy"], [88, 1, 1, "", "Symbol"], [88, 1, 1, "", "Wild"], [88, 4, 1, "", "symbols"], [88, 4, 1, "", "var"]], "sympy.core.sympify": [[88, 4, 1, "", "sympify"]], "sympy.core.traversal": [[88, 4, 1, "", "bottom_up"], [88, 4, 1, "", "postorder_traversal"], [88, 4, 1, "", "preorder_traversal"], [88, 4, 1, "", "use"], [88, 4, 1, "", "walk"]], "sympy.crypto": [[89, 0, 0, "-", "crypto"]], "sympy.crypto.crypto": [[89, 4, 1, "", "AZ"], [89, 4, 1, "", "bifid5_square"], [89, 4, 1, "", "bifid6_square"], [89, 4, 1, "", "check_and_join"], [89, 4, 1, "", "cycle_list"], [89, 4, 1, "", "decipher_affine"], [89, 4, 1, "", "decipher_atbash"], [89, 4, 1, "", "decipher_bifid"], [89, 4, 1, "", "decipher_bifid5"], [89, 4, 1, "", "decipher_bifid6"], [89, 4, 1, "", "decipher_elgamal"], [89, 4, 1, "", "decipher_gm"], [89, 4, 1, "", "decipher_hill"], [89, 4, 1, "", "decipher_kid_rsa"], [89, 4, 1, "", "decipher_railfence"], [89, 4, 1, "", "decipher_rot13"], [89, 4, 1, "", "decipher_rsa"], [89, 4, 1, "", "decipher_shift"], [89, 4, 1, "", "decipher_vigenere"], [89, 4, 1, "", "decode_morse"], [89, 4, 1, "", "dh_private_key"], [89, 4, 1, "", "dh_public_key"], [89, 4, 1, "", "dh_shared_key"], [89, 4, 1, "", "elgamal_private_key"], [89, 4, 1, "", "elgamal_public_key"], [89, 4, 1, "", "encipher_affine"], [89, 4, 1, "", "encipher_atbash"], [89, 4, 1, "", "encipher_bifid"], [89, 4, 1, "", "encipher_bifid5"], [89, 4, 1, "", "encipher_bifid6"], [89, 4, 1, "", "encipher_elgamal"], [89, 4, 1, "", "encipher_gm"], [89, 4, 1, "", "encipher_hill"], [89, 4, 1, "", "encipher_kid_rsa"], [89, 4, 1, "", "encipher_railfence"], [89, 4, 1, "", "encipher_rot13"], [89, 4, 1, "", "encipher_rsa"], [89, 4, 1, "", "encipher_shift"], [89, 4, 1, "", "encipher_substitution"], [89, 4, 1, "", "encipher_vigenere"], [89, 4, 1, "", "encode_morse"], [89, 4, 1, "", "gm_private_key"], [89, 4, 1, "", "gm_public_key"], [89, 4, 1, "", "kid_rsa_private_key"], [89, 4, 1, "", "kid_rsa_public_key"], [89, 4, 1, "", "lfsr_autocorrelation"], [89, 4, 1, "", "lfsr_connection_polynomial"], [89, 4, 1, "", "lfsr_sequence"], [89, 4, 1, "", "padded_key"], [89, 4, 1, "", "rsa_private_key"], [89, 4, 1, "", "rsa_public_key"]], "sympy.diffgeom": [[90, 1, 1, "", "BaseCovarDerivativeOp"], [90, 1, 1, "", "BaseScalarField"], [90, 1, 1, "", "BaseVectorField"], [90, 1, 1, "", "Commutator"], [90, 1, 1, "", "CoordSystem"], [90, 1, 1, "", "CoordinateSymbol"], [90, 1, 1, "", "CovarDerivativeOp"], [90, 1, 1, "", "Differential"], [90, 1, 1, "", "LieDerivative"], [90, 1, 1, "", "Manifold"], [90, 1, 1, "", "Patch"], [90, 1, 1, "", "Point"], [90, 1, 1, "", "TensorProduct"], [90, 1, 1, "", "WedgeProduct"], [90, 4, 1, "", "intcurve_diffequ"], [90, 4, 1, "", "intcurve_series"], [90, 4, 1, "", "metric_to_Christoffel_1st"], [90, 4, 1, "", "metric_to_Christoffel_2nd"], [90, 4, 1, "", "metric_to_Ricci_components"], [90, 4, 1, "", "metric_to_Riemann_components"], [90, 4, 1, "", "twoform_to_matrix"], [90, 4, 1, "", "vectors_in_basis"]], "sympy.diffgeom.CoordSystem": [[90, 2, 1, "", "base_oneform"], [90, 2, 1, "", "base_oneforms"], [90, 2, 1, "", "base_scalar"], [90, 2, 1, "", "base_scalars"], [90, 2, 1, "", "base_vector"], [90, 2, 1, "", "base_vectors"], [90, 2, 1, "", "coord_function"], [90, 2, 1, "", "coord_functions"], [90, 2, 1, "", "coord_tuple_transform_to"], [90, 2, 1, "", "jacobian"], [90, 2, 1, "", "jacobian_determinant"], [90, 2, 1, "", "jacobian_matrix"], [90, 2, 1, "", "point"], [90, 2, 1, "", "point_to_coords"], [90, 2, 1, "", "transform"], [90, 2, 1, "", "transformation"]], "sympy.diffgeom.Point": [[90, 2, 1, "", "coords"]], "sympy.discrete": [[91, 0, 0, "-", "convolutions"], [91, 0, 0, "-", "transforms"]], "sympy.discrete.convolutions": [[91, 4, 1, "", "convolution"], [91, 4, 1, "", "convolution_fft"], [91, 4, 1, "", "convolution_fwht"], [91, 4, 1, "", "convolution_ntt"], [91, 4, 1, "", "convolution_subset"], [91, 4, 1, "", "covering_product"], [91, 4, 1, "", "intersecting_product"]], "sympy.discrete.transforms": [[91, 4, 1, "", "fft"], [91, 4, 1, "", "fwht"], [91, 4, 1, "", "ifft"], [91, 4, 1, "", "ifwht"], [91, 4, 1, "", "intt"], [91, 4, 1, "", "inverse_mobius_transform"], [91, 4, 1, "", "mobius_transform"], [91, 4, 1, "", "ntt"]], "sympy.external.pythonmpq": [[212, 1, 1, "", "PythonMPQ"]], "sympy.functions.combinatorial.factorials": [[93, 1, 1, "", "FallingFactorial"], [93, 1, 1, "", "MultiFactorial"], [93, 1, 1, "", "RisingFactorial"], [93, 1, 1, "", "binomial"], [93, 1, 1, "", "factorial"], [93, 1, 1, "", "factorial2"], [93, 1, 1, "", "subfactorial"]], "sympy.functions.combinatorial.numbers": [[93, 1, 1, "", "andre"], [93, 1, 1, "", "bell"], [93, 1, 1, "", "bernoulli"], [93, 1, 1, "", "catalan"], [93, 1, 1, "", "divisor_sigma"], [93, 1, 1, "", "euler"], [93, 1, 1, "", "fibonacci"], [93, 1, 1, "", "genocchi"], [93, 1, 1, "", "harmonic"], [93, 1, 1, "", "jacobi_symbol"], [93, 1, 1, "", "kronecker_symbol"], [93, 1, 1, "", "legendre_symbol"], [93, 1, 1, "", "lucas"], [93, 1, 1, "", "mobius"], [93, 4, 1, "", "nC"], [93, 4, 1, "", "nP"], [93, 4, 1, "", "nT"], [93, 1, 1, "", "partition"], [93, 1, 1, "", "primenu"], [93, 1, 1, "", "primeomega"], [93, 1, 1, "", "primepi"], [93, 1, 1, "", "reduced_totient"], [93, 4, 1, "", "stirling"], [93, 1, 1, "", "totient"], [93, 1, 1, "", "tribonacci"], [93, 1, 1, "", "udivisor_sigma"]], "sympy.functions.elementary.complexes": [[94, 1, 1, "", "Abs"], [94, 1, 1, "", "arg"], [94, 1, 1, "", "conjugate"], [94, 1, 1, "", "im"], [94, 1, 1, "", "periodic_argument"], [94, 1, 1, "", "polar_lift"], [94, 1, 1, "", "principal_branch"], [94, 1, 1, "", "re"], [94, 1, 1, "", "sign"]], "sympy.functions.elementary.complexes.Abs": [[94, 2, 1, "", "fdiff"]], "sympy.functions.elementary.complexes.im": [[94, 2, 1, "", "as_real_imag"]], "sympy.functions.elementary.complexes.re": [[94, 2, 1, "", "as_real_imag"]], "sympy.functions.elementary.exponential": [[94, 1, 1, "", "LambertW"], [94, 1, 1, "", "exp"], [94, 1, 1, "", "exp_polar"], [94, 1, 1, "", "log"]], "sympy.functions.elementary.exponential.LambertW": [[94, 2, 1, "", "fdiff"]], "sympy.functions.elementary.exponential.exp": [[94, 2, 1, "", "as_real_imag"], [94, 3, 1, "", "base"], [94, 2, 1, "", "fdiff"], [94, 2, 1, "", "taylor_term"]], "sympy.functions.elementary.exponential.log": [[94, 2, 1, "", "as_base_exp"], [94, 2, 1, "", "as_real_imag"], [94, 2, 1, "", "fdiff"], [94, 2, 1, "", "inverse"], [94, 2, 1, "", "taylor_term"]], "sympy.functions.elementary.hyperbolic": [[94, 1, 1, "", "HyperbolicFunction"], [94, 1, 1, "", "acosh"], [94, 1, 1, "", "acoth"], [94, 1, 1, "", "acsch"], [94, 1, 1, "", "asech"], [94, 1, 1, "", "asinh"], [94, 1, 1, "", "atanh"], [94, 1, 1, "", "cosh"], [94, 1, 1, "", "coth"], [94, 1, 1, "", "csch"], [94, 1, 1, "", "sech"], [94, 1, 1, "", "sinh"], [94, 1, 1, "", "tanh"]], "sympy.functions.elementary.hyperbolic.acosh": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.acoth": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.acsch": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.asech": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.asinh": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.atanh": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.coth": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.csch": [[94, 2, 1, "", "fdiff"], [94, 2, 1, "", "taylor_term"]], "sympy.functions.elementary.hyperbolic.sinh": [[94, 2, 1, "", "as_real_imag"], [94, 2, 1, "", "fdiff"], [94, 2, 1, "", "inverse"], [94, 2, 1, "", "taylor_term"]], "sympy.functions.elementary.hyperbolic.tanh": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.integers": [[94, 1, 1, "", "RoundFunction"], [94, 1, 1, "", "ceiling"], [94, 1, 1, "", "floor"], [94, 1, 1, "", "frac"]], "sympy.functions.elementary.miscellaneous": [[94, 1, 1, "", "IdentityFunction"], [94, 1, 1, "", "Max"], [94, 1, 1, "", "Min"], [94, 4, 1, "", "cbrt"], [94, 4, 1, "", "real_root"], [94, 4, 1, "", "root"], [94, 4, 1, "", "sqrt"]], "sympy.functions.elementary.piecewise": [[94, 1, 1, "", "ExprCondPair"], [94, 1, 1, "", "Piecewise"], [94, 4, 1, "", "piecewise_exclusive"], [94, 4, 1, "", "piecewise_fold"]], "sympy.functions.elementary.piecewise.ExprCondPair": [[94, 3, 1, "", "cond"], [94, 3, 1, "", "expr"]], "sympy.functions.elementary.piecewise.Piecewise": [[94, 2, 1, "", "_eval_integral"], [94, 2, 1, "", "as_expr_set_pairs"], [94, 2, 1, "", "doit"], [94, 2, 1, "", "eval"], [94, 2, 1, "", "piecewise_integrate"]], "sympy.functions.elementary.trigonometric": [[94, 1, 1, "", "acos"], [94, 1, 1, "", "acot"], [94, 1, 1, "", "acsc"], [94, 1, 1, "", "asec"], [94, 1, 1, "", "asin"], [94, 1, 1, "", "atan"], [94, 1, 1, "", "atan2"], [94, 1, 1, "", "cos"], [94, 1, 1, "", "cot"], [94, 1, 1, "", "csc"], [94, 1, 1, "", "sec"], [94, 1, 1, "", "sin"], [94, 1, 1, "", "sinc"], [94, 1, 1, "", "tan"]], "sympy.functions.elementary.trigonometric.acos": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.acot": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.acsc": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.asec": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.asin": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.atan": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.cot": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.tan": [[94, 2, 1, "", "inverse"]], "sympy.functions.special": [[96, 0, 0, "-", "bessel"], [96, 0, 0, "-", "beta_functions"], [96, 0, 0, "-", "elliptic_integrals"], [96, 0, 0, "-", "error_functions"], [96, 0, 0, "-", "gamma_functions"], [96, 0, 0, "-", "mathieu_functions"], [96, 0, 0, "-", "polynomials"], [96, 0, 0, "-", "singularity_functions"], [96, 0, 0, "-", "zeta_functions"]], "sympy.functions.special.bessel": [[96, 1, 1, "", "AiryBase"], [96, 1, 1, "", "BesselBase"], [96, 1, 1, "", "airyai"], [96, 1, 1, "", "airyaiprime"], [96, 1, 1, "", "airybi"], [96, 1, 1, "", "airybiprime"], [96, 1, 1, "", "besseli"], [96, 1, 1, "", "besselj"], [96, 1, 1, "", "besselk"], [96, 1, 1, "", "bessely"], [96, 1, 1, "", "hankel1"], [96, 1, 1, "", "hankel2"], [96, 1, 1, "", "jn"], [96, 4, 1, "", "jn_zeros"], [96, 1, 1, "", "marcumq"], [96, 1, 1, "", "yn"]], "sympy.functions.special.bessel.BesselBase": [[96, 3, 1, "", "argument"], [96, 3, 1, "", "order"]], "sympy.functions.special.beta_functions": [[96, 1, 1, "", "beta"]], "sympy.functions.special.bsplines": [[96, 4, 1, "", "bspline_basis"], [96, 4, 1, "", "bspline_basis_set"], [96, 4, 1, "", "interpolating_spline"]], "sympy.functions.special.delta_functions": [[96, 1, 1, "", "DiracDelta"], [96, 1, 1, "", "Heaviside"]], "sympy.functions.special.delta_functions.DiracDelta": [[96, 2, 1, "", "eval"], [96, 2, 1, "", "fdiff"], [96, 2, 1, "", "is_simple"]], "sympy.functions.special.delta_functions.Heaviside": [[96, 2, 1, "", "eval"], [96, 2, 1, "", "fdiff"], [96, 3, 1, "", "pargs"]], "sympy.functions.special.elliptic_integrals": [[96, 1, 1, "", "elliptic_e"], [96, 1, 1, "", "elliptic_f"], [96, 1, 1, "", "elliptic_k"], [96, 1, 1, "", "elliptic_pi"]], "sympy.functions.special.error_functions": [[96, 1, 1, "", "Chi"], [96, 1, 1, "", "Ci"], [96, 4, 1, "", "E1"], [96, 1, 1, "", "Ei"], [96, 1, 1, "", "FresnelIntegral"], [96, 1, 1, "", "Li"], [96, 1, 1, "", "Shi"], [96, 1, 1, "", "Si"], [96, 1, 1, "", "erf"], [96, 1, 1, "", "erf2"], [96, 1, 1, "", "erf2inv"], [96, 1, 1, "", "erfc"], [96, 1, 1, "", "erfcinv"], [96, 1, 1, "", "erfi"], [96, 1, 1, "", "erfinv"], [96, 1, 1, "", "expint"], [96, 1, 1, "", "fresnelc"], [96, 1, 1, "", "fresnels"], [96, 1, 1, "", "li"]], "sympy.functions.special.error_functions.erf": [[96, 2, 1, "", "inverse"]], "sympy.functions.special.error_functions.erfc": [[96, 2, 1, "", "inverse"]], "sympy.functions.special.error_functions.erfcinv": [[96, 2, 1, "", "inverse"]], "sympy.functions.special.error_functions.erfinv": [[96, 2, 1, "", "inverse"]], "sympy.functions.special.gamma_functions": [[96, 1, 1, "", "digamma"], [96, 1, 1, "", "gamma"], [96, 1, 1, "", "loggamma"], [96, 1, 1, "", "lowergamma"], [96, 1, 1, "", "multigamma"], [96, 1, 1, "", "polygamma"], [96, 1, 1, "", "trigamma"], [96, 1, 1, "", "uppergamma"]], "sympy.functions.special.hyper": [[96, 1, 1, "", "appellf1"], [96, 1, 1, "", "hyper"], [96, 1, 1, "", "meijerg"]], "sympy.functions.special.hyper.hyper": [[96, 3, 1, "", "ap"], [96, 3, 1, "", "argument"], [96, 3, 1, "", "bq"], [96, 3, 1, "", "convergence_statement"], [96, 3, 1, "", "eta"], [96, 3, 1, "", "radius_of_convergence"]], "sympy.functions.special.hyper.meijerg": [[96, 3, 1, "", "an"], [96, 3, 1, "", "aother"], [96, 3, 1, "", "ap"], [96, 3, 1, "", "argument"], [96, 3, 1, "", "bm"], [96, 3, 1, "", "bother"], [96, 3, 1, "", "bq"], [96, 3, 1, "", "delta"], [96, 2, 1, "", "get_period"], [96, 2, 1, "", "integrand"], [96, 3, 1, "", "is_number"], [96, 3, 1, "", "nu"]], "sympy.functions.special.mathieu_functions": [[96, 1, 1, "", "MathieuBase"], [96, 1, 1, "", "mathieuc"], [96, 1, 1, "", "mathieucprime"], [96, 1, 1, "", "mathieus"], [96, 1, 1, "", "mathieusprime"]], "sympy.functions.special.polynomials": [[96, 1, 1, "", "assoc_laguerre"], [96, 1, 1, "", "assoc_legendre"], [96, 1, 1, "", "chebyshevt"], [96, 1, 1, "", "chebyshevt_root"], [96, 1, 1, "", "chebyshevu"], [96, 1, 1, "", "chebyshevu_root"], [96, 1, 1, "", "gegenbauer"], [96, 1, 1, "", "hermite"], [96, 1, 1, "", "hermite_prob"], [96, 1, 1, "", "jacobi"], [96, 4, 1, "", "jacobi_normalized"], [96, 1, 1, "", "laguerre"], [96, 1, 1, "", "legendre"]], "sympy.functions.special.singularity_functions": [[96, 1, 1, "", "SingularityFunction"]], "sympy.functions.special.singularity_functions.SingularityFunction": [[96, 2, 1, "", "eval"], [96, 2, 1, "", "fdiff"]], "sympy.functions.special.spherical_harmonics": [[96, 1, 1, "", "Ynm"], [96, 4, 1, "", "Ynm_c"], [96, 1, 1, "", "Znm"]], "sympy.functions.special.tensor_functions": [[96, 4, 1, "", "Eijk"], [96, 1, 1, "", "KroneckerDelta"], [96, 1, 1, "", "LeviCivita"], [96, 4, 1, "", "eval_levicivita"]], "sympy.functions.special.tensor_functions.KroneckerDelta": [[96, 2, 1, "", "eval"], [96, 3, 1, "", "indices_contain_equal_information"], [96, 3, 1, "", "is_above_fermi"], [96, 3, 1, "", "is_below_fermi"], [96, 3, 1, "", "is_only_above_fermi"], [96, 3, 1, "", "is_only_below_fermi"], [96, 3, 1, "", "killable_index"], [96, 3, 1, "", "preferred_index"]], "sympy.functions.special.zeta_functions": [[96, 1, 1, "", "dirichlet_eta"], [96, 1, 1, "", "lerchphi"], [96, 1, 1, "", "polylog"], [96, 1, 1, "", "stieltjes"], [96, 1, 1, "", "zeta"]], "sympy.geometry": [[97, 0, 0, "-", "curve"], [98, 0, 0, "-", "ellipse"], [99, 0, 0, "-", "entity"], [101, 0, 0, "-", "line"], [102, 0, 0, "-", "plane"], [103, 0, 0, "-", "point"], [104, 0, 0, "-", "polygon"], [105, 0, 0, "-", "util"]], "sympy.geometry.curve": [[97, 1, 1, "", "Curve"]], "sympy.geometry.curve.Curve": [[97, 3, 1, "", "ambient_dimension"], [97, 2, 1, "", "arbitrary_point"], [97, 3, 1, "", "free_symbols"], [97, 3, 1, "", "functions"], [97, 3, 1, "", "length"], [97, 3, 1, "", "limits"], [97, 3, 1, "", "parameter"], [97, 2, 1, "", "plot_interval"], [97, 2, 1, "", "rotate"], [97, 2, 1, "", "scale"], [97, 2, 1, "", "translate"]], "sympy.geometry.ellipse": [[98, 1, 1, "", "Circle"], [98, 1, 1, "", "Ellipse"]], "sympy.geometry.ellipse.Circle": [[98, 3, 1, "", "circumference"], [98, 2, 1, "", "equation"], [98, 2, 1, "", "intersection"], [98, 3, 1, "", "radius"], [98, 2, 1, "", "reflect"], [98, 2, 1, "", "scale"], [98, 3, 1, "", "vradius"]], "sympy.geometry.ellipse.Ellipse": [[98, 3, 1, "", "apoapsis"], [98, 2, 1, "", "arbitrary_point"], [98, 3, 1, "", "area"], [98, 2, 1, "", "auxiliary_circle"], [98, 3, 1, "", "bounds"], [98, 3, 1, "", "center"], [98, 3, 1, "", "circumference"], [98, 2, 1, "", "director_circle"], [98, 3, 1, "", "eccentricity"], [98, 2, 1, "", "encloses_point"], [98, 2, 1, "", "equation"], [98, 2, 1, "", "evolute"], [98, 3, 1, "", "foci"], [98, 3, 1, "", "focus_distance"], [98, 3, 1, "", "hradius"], [98, 2, 1, "", "intersection"], [98, 2, 1, "", "is_tangent"], [98, 3, 1, "", "major"], [98, 3, 1, "", "minor"], [98, 2, 1, "", "normal_lines"], [98, 3, 1, "", "periapsis"], [98, 2, 1, "", "plot_interval"], [98, 2, 1, "", "polar_second_moment_of_area"], [98, 2, 1, "", "random_point"], [98, 2, 1, "", "reflect"], [98, 2, 1, "", "rotate"], [98, 2, 1, "", "scale"], [98, 2, 1, "", "second_moment_of_area"], [98, 2, 1, "", "section_modulus"], [98, 3, 1, "", "semilatus_rectum"], [98, 2, 1, "", "tangent_lines"], [98, 3, 1, "", "vradius"]], "sympy.geometry.entity": [[99, 1, 1, "", "GeometryEntity"]], "sympy.geometry.entity.GeometryEntity": [[99, 3, 1, "", "ambient_dimension"], [99, 3, 1, "", "bounds"], [99, 2, 1, "", "encloses"], [99, 2, 1, "", "intersection"], [99, 2, 1, "", "is_similar"], [99, 2, 1, "", "parameter_value"], [99, 2, 1, "", "reflect"], [99, 2, 1, "", "rotate"], [99, 2, 1, "", "scale"], [99, 2, 1, "", "translate"]], "sympy.geometry.line": [[101, 1, 1, "", "Line"], [101, 1, 1, "", "Line2D"], [101, 1, 1, "", "Line3D"], [101, 1, 1, "", "LinearEntity"], [101, 1, 1, "", "LinearEntity2D"], [101, 1, 1, "", "LinearEntity3D"], [101, 1, 1, "", "Ray"], [101, 1, 1, "", "Ray2D"], [101, 1, 1, "", "Ray3D"], [101, 1, 1, "", "Segment"], [101, 1, 1, "", "Segment2D"], [101, 1, 1, "", "Segment3D"]], "sympy.geometry.line.Line": [[101, 2, 1, "", "contains"], [101, 2, 1, "", "distance"], [101, 2, 1, "", "equals"], [101, 2, 1, "", "plot_interval"]], "sympy.geometry.line.Line2D": [[101, 3, 1, "", "coefficients"], [101, 2, 1, "", "equation"]], "sympy.geometry.line.Line3D": [[101, 2, 1, "", "distance"], [101, 2, 1, "", "equation"]], "sympy.geometry.line.LinearEntity": [[101, 3, 1, "", "ambient_dimension"], [101, 2, 1, "", "angle_between"], [101, 2, 1, "", "arbitrary_point"], [101, 2, 1, "", "are_concurrent"], [101, 2, 1, "", "bisectors"], [101, 2, 1, "", "contains"], [101, 3, 1, "", "direction"], [101, 2, 1, "", "intersection"], [101, 2, 1, "", "is_parallel"], [101, 2, 1, "", "is_perpendicular"], [101, 2, 1, "", "is_similar"], [101, 3, 1, "", "length"], [101, 3, 1, "", "p1"], [101, 3, 1, "", "p2"], [101, 2, 1, "", "parallel_line"], [101, 2, 1, "", "perpendicular_line"], [101, 2, 1, "", "perpendicular_segment"], [101, 3, 1, "", "points"], [101, 2, 1, "", "projection"], [101, 2, 1, "", "random_point"], [101, 2, 1, "", "smallest_angle_between"]], "sympy.geometry.line.LinearEntity2D": [[101, 3, 1, "", "bounds"], [101, 2, 1, "", "perpendicular_line"], [101, 3, 1, "", "slope"]], "sympy.geometry.line.LinearEntity3D": [[101, 3, 1, "", "direction_cosine"], [101, 3, 1, "", "direction_ratio"]], "sympy.geometry.line.Ray": [[101, 2, 1, "", "contains"], [101, 2, 1, "", "distance"], [101, 2, 1, "", "equals"], [101, 2, 1, "", "plot_interval"], [101, 3, 1, "", "source"]], "sympy.geometry.line.Ray2D": [[101, 2, 1, "", "closing_angle"], [101, 3, 1, "", "xdirection"], [101, 3, 1, "", "ydirection"]], "sympy.geometry.line.Ray3D": [[101, 3, 1, "", "xdirection"], [101, 3, 1, "", "ydirection"], [101, 3, 1, "", "zdirection"]], "sympy.geometry.line.Segment": [[101, 2, 1, "", "contains"], [101, 2, 1, "", "distance"], [101, 2, 1, "", "equals"], [101, 3, 1, "", "length"], [101, 3, 1, "", "midpoint"], [101, 2, 1, "", "perpendicular_bisector"], [101, 2, 1, "", "plot_interval"]], "sympy.geometry.plane": [[102, 1, 1, "", "Plane"]], "sympy.geometry.plane.Plane": [[102, 2, 1, "", "angle_between"], [102, 2, 1, "", "arbitrary_point"], [102, 2, 1, "", "are_concurrent"], [102, 2, 1, "", "distance"], [102, 2, 1, "", "equals"], [102, 2, 1, "", "equation"], [102, 2, 1, "", "intersection"], [102, 2, 1, "", "is_coplanar"], [102, 2, 1, "", "is_parallel"], [102, 2, 1, "", "is_perpendicular"], [102, 3, 1, "", "normal_vector"], [102, 3, 1, "", "p1"], [102, 2, 1, "", "parallel_plane"], [102, 2, 1, "", "parameter_value"], [102, 2, 1, "", "perpendicular_line"], [102, 2, 1, "", "perpendicular_plane"], [102, 2, 1, "", "projection"], [102, 2, 1, "", "projection_line"], [102, 2, 1, "", "random_point"]], "sympy.geometry.point": [[103, 1, 1, "", "Point"], [103, 1, 1, "", "Point2D"], [103, 1, 1, "", "Point3D"]], "sympy.geometry.point.Point": [[103, 2, 1, "", "affine_rank"], [103, 3, 1, "", "ambient_dimension"], [103, 2, 1, "", "are_coplanar"], [103, 2, 1, "", "canberra_distance"], [103, 2, 1, "", "distance"], [103, 2, 1, "", "dot"], [103, 2, 1, "", "equals"], [103, 2, 1, "", "intersection"], [103, 2, 1, "", "is_collinear"], [103, 2, 1, "", "is_concyclic"], [103, 3, 1, "", "is_nonzero"], [103, 2, 1, "", "is_scalar_multiple"], [103, 3, 1, "", "is_zero"], [103, 3, 1, "", "length"], [103, 2, 1, "", "midpoint"], [103, 3, 1, "", "origin"], [103, 3, 1, "", "orthogonal_direction"], [103, 2, 1, "", "project"], [103, 2, 1, "", "taxicab_distance"], [103, 3, 1, "", "unit"]], "sympy.geometry.point.Point2D": [[103, 3, 1, "", "bounds"], [103, 3, 1, "", "coordinates"], [103, 2, 1, "", "rotate"], [103, 2, 1, "", "scale"], [103, 2, 1, "", "transform"], [103, 2, 1, "", "translate"], [103, 3, 1, "", "x"], [103, 3, 1, "", "y"]], "sympy.geometry.point.Point3D": [[103, 2, 1, "", "are_collinear"], [103, 3, 1, "", "coordinates"], [103, 2, 1, "", "direction_cosine"], [103, 2, 1, "", "direction_ratio"], [103, 2, 1, "", "intersection"], [103, 2, 1, "", "scale"], [103, 2, 1, "", "transform"], [103, 2, 1, "", "translate"], [103, 3, 1, "", "x"], [103, 3, 1, "", "y"], [103, 3, 1, "", "z"]], "sympy.geometry.polygon": [[104, 1, 1, "", "Polygon"], [104, 1, 1, "", "RegularPolygon"], [104, 1, 1, "", "Triangle"]], "sympy.geometry.polygon.Polygon": [[104, 3, 1, "", "angles"], [104, 2, 1, "", "arbitrary_point"], [104, 3, 1, "", "area"], [104, 2, 1, "", "bisectors"], [104, 3, 1, "", "bounds"], [104, 3, 1, "", "centroid"], [104, 2, 1, "", "cut_section"], [104, 2, 1, "", "distance"], [104, 2, 1, "", "encloses_point"], [104, 2, 1, "", "first_moment_of_area"], [104, 2, 1, "", "intersection"], [104, 2, 1, "", "is_convex"], [104, 3, 1, "", "perimeter"], [104, 2, 1, "", "plot_interval"], [104, 2, 1, "", "polar_second_moment_of_area"], [104, 2, 1, "", "second_moment_of_area"], [104, 2, 1, "", "section_modulus"], [104, 3, 1, "", "sides"], [104, 3, 1, "", "vertices"]], "sympy.geometry.polygon.RegularPolygon": [[104, 3, 1, "", "angles"], [104, 3, 1, "", "apothem"], [104, 3, 1, "", "area"], [104, 3, 1, "", "args"], [104, 3, 1, "", "center"], [104, 3, 1, "", "centroid"], [104, 3, 1, "", "circumcenter"], [104, 3, 1, "", "circumcircle"], [104, 3, 1, "", "circumradius"], [104, 2, 1, "", "encloses_point"], [104, 3, 1, "", "exterior_angle"], [104, 3, 1, "", "incircle"], [104, 3, 1, "", "inradius"], [104, 3, 1, "", "interior_angle"], [104, 3, 1, "", "length"], [104, 3, 1, "", "radius"], [104, 2, 1, "", "reflect"], [104, 2, 1, "", "rotate"], [104, 3, 1, "", "rotation"], [104, 2, 1, "", "scale"], [104, 2, 1, "", "spin"], [104, 3, 1, "", "vertices"]], "sympy.geometry.polygon.Triangle": [[104, 3, 1, "", "altitudes"], [104, 2, 1, "", "bisectors"], [104, 3, 1, "", "circumcenter"], [104, 3, 1, "", "circumcircle"], [104, 3, 1, "", "circumradius"], [104, 3, 1, "", "eulerline"], [104, 3, 1, "", "excenters"], [104, 3, 1, "", "exradii"], [104, 3, 1, "", "incenter"], [104, 3, 1, "", "incircle"], [104, 3, 1, "", "inradius"], [104, 2, 1, "", "is_equilateral"], [104, 2, 1, "", "is_isosceles"], [104, 2, 1, "", "is_right"], [104, 2, 1, "", "is_scalene"], [104, 2, 1, "", "is_similar"], [104, 3, 1, "", "medial"], [104, 3, 1, "", "medians"], [104, 3, 1, "", "nine_point_circle"], [104, 3, 1, "", "orthocenter"], [104, 3, 1, "", "vertices"]], "sympy.geometry.util": [[105, 4, 1, "", "are_similar"], [105, 4, 1, "", "centroid"], [105, 4, 1, "", "convex_hull"], [105, 4, 1, "", "idiff"], [105, 4, 1, "", "intersection"]], "sympy.holonomic.holonomic": [[111, 1, 1, "", "DifferentialOperator"], [111, 1, 1, "", "DifferentialOperatorAlgebra"], [111, 4, 1, "", "DifferentialOperators"], [111, 1, 1, "", "HolonomicFunction"], [109, 4, 1, "", "_convert_poly_rat_alg"], [109, 4, 1, "", "_create_table"], [107, 4, 1, "", "expr_to_holonomic"], [107, 4, 1, "", "from_hyper"], [107, 4, 1, "", "from_meijerg"]], "sympy.holonomic.holonomic.DifferentialOperator": [[111, 2, 1, "", "is_singular"]], "sympy.holonomic.holonomic.HolonomicFunction": [[110, 2, 1, "", "composition"], [110, 2, 1, "", "diff"], [110, 2, 1, "", "evalf"], [110, 2, 1, "", "integrate"], [110, 2, 1, "", "series"], [110, 2, 1, "", "to_expr"], [110, 2, 1, "", "to_hyper"], [110, 2, 1, "", "to_meijerg"], [110, 2, 1, "", "to_sequence"]], "sympy.integrals": [[115, 0, 0, "-", "intpoly"], [113, 0, 0, "-", "meijerint"], [113, 0, 0, "-", "meijerint_doc"], [115, 0, 0, "-", "transforms"]], "sympy.integrals.deltafunctions": [[115, 4, 1, "", "deltaintegrate"]], "sympy.integrals.heurisch": [[115, 4, 1, "", "components"], [115, 4, 1, "", "heurisch"]], "sympy.integrals.integrals": [[115, 1, 1, "", "Integral"], [115, 4, 1, "", "integrate"], [115, 4, 1, "", "line_integrate"]], "sympy.integrals.integrals.Integral": [[115, 2, 1, "", "as_sum"], [115, 2, 1, "", "doit"], [115, 3, 1, "", "free_symbols"], [115, 6, 1, "", "is_commutative"], [115, 2, 1, "", "principal_value"], [115, 2, 1, "", "transform"]], "sympy.integrals.intpoly": [[115, 4, 1, "", "polytope_integrate"]], "sympy.integrals.manualintegrate": [[115, 4, 1, "", "integral_steps"], [115, 4, 1, "", "manualintegrate"]], "sympy.integrals.meijerint": [[113, 7, 1, "", "_CoeffExpValueError"], [113, 4, 1, "", "_check_antecedents"], [113, 4, 1, "", "_check_antecedents_1"], [113, 4, 1, "", "_check_antecedents_inversion"], [113, 4, 1, "", "_condsimp"], [113, 4, 1, "", "_create_lookup_table"], [113, 4, 1, "", "_dummy"], [113, 4, 1, "", "_dummy_"], [113, 4, 1, "", "_eval_cond"], [113, 4, 1, "", "_exponents"], [113, 4, 1, "", "_find_splitting_points"], [113, 4, 1, "", "_flip_g"], [113, 4, 1, "", "_functions"], [113, 4, 1, "", "_get_coeff_exp"], [113, 4, 1, "", "_guess_expansion"], [113, 4, 1, "", "_inflate_fox_h"], [113, 4, 1, "", "_inflate_g"], [113, 4, 1, "", "_int0oo"], [113, 4, 1, "", "_int0oo_1"], [113, 4, 1, "", "_int_inversion"], [113, 4, 1, "", "_is_analytic"], [113, 4, 1, "", "_meijerint_definite_2"], [113, 4, 1, "", "_meijerint_definite_3"], [113, 4, 1, "", "_meijerint_definite_4"], [113, 4, 1, "", "_meijerint_indefinite_1"], [113, 4, 1, "", "_mul_args"], [113, 4, 1, "", "_mul_as_two_parts"], [113, 4, 1, "", "_my_principal_branch"], [113, 4, 1, "", "_mytype"], [113, 4, 1, "", "_rewrite1"], [113, 4, 1, "", "_rewrite2"], [113, 4, 1, "", "_rewrite_inversion"], [113, 4, 1, "", "_rewrite_saxena"], [113, 4, 1, "", "_rewrite_saxena_1"], [113, 4, 1, "", "_rewrite_single"], [113, 4, 1, "", "_split_mul"], [113, 4, 1, "", "meijerint_definite"], [113, 4, 1, "", "meijerint_indefinite"], [113, 4, 1, "", "meijerint_inversion"]], "sympy.integrals.quadrature": [[115, 4, 1, "", "gauss_chebyshev_t"], [115, 4, 1, "", "gauss_chebyshev_u"], [115, 4, 1, "", "gauss_gen_laguerre"], [115, 4, 1, "", "gauss_hermite"], [115, 4, 1, "", "gauss_jacobi"], [115, 4, 1, "", "gauss_laguerre"], [115, 4, 1, "", "gauss_legendre"], [115, 4, 1, "", "gauss_lobatto"]], "sympy.integrals.rationaltools": [[115, 4, 1, "", "ratint"], [115, 4, 1, "", "ratint_logpart"], [115, 4, 1, "", "ratint_ratpart"]], "sympy.integrals.risch": [[115, 1, 1, "", "NonElementaryIntegral"], [115, 4, 1, "", "risch_integrate"]], "sympy.integrals.singularityfunctions": [[115, 4, 1, "", "singularityintegrate"]], "sympy.integrals.transforms": [[115, 1, 1, "", "CosineTransform"], [115, 1, 1, "", "FourierTransform"], [115, 1, 1, "", "HankelTransform"], [115, 1, 1, "", "IntegralTransform"], [115, 7, 1, "", "IntegralTransformError"], [115, 1, 1, "", "InverseCosineTransform"], [115, 1, 1, "", "InverseFourierTransform"], [115, 1, 1, "", "InverseHankelTransform"], [115, 1, 1, "", "InverseLaplaceTransform"], [115, 1, 1, "", "InverseMellinTransform"], [115, 1, 1, "", "InverseSineTransform"], [115, 1, 1, "", "LaplaceTransform"], [115, 1, 1, "", "MellinTransform"], [115, 1, 1, "", "SineTransform"], [115, 4, 1, "", "_fourier_transform"], [115, 4, 1, "", "cosine_transform"], [115, 4, 1, "", "fourier_transform"], [115, 4, 1, "", "hankel_transform"], [115, 4, 1, "", "inverse_cosine_transform"], [115, 4, 1, "", "inverse_fourier_transform"], [115, 4, 1, "", "inverse_hankel_transform"], [115, 4, 1, "", "inverse_laplace_transform"], [115, 4, 1, "", "inverse_mellin_transform"], [115, 4, 1, "", "inverse_sine_transform"], [115, 4, 1, "", "laplace_correspondence"], [115, 4, 1, "", "laplace_initial_conds"], [115, 4, 1, "", "laplace_transform"], [115, 4, 1, "", "mellin_transform"], [115, 4, 1, "", "sine_transform"]], "sympy.integrals.transforms.IntegralTransform": [[115, 2, 1, "", "doit"], [115, 3, 1, "", "function"], [115, 3, 1, "", "function_variable"], [115, 3, 1, "", "transform_variable"]], "sympy.integrals.transforms.InverseLaplaceTransform": [[115, 2, 1, "", "doit"]], "sympy.integrals.transforms.LaplaceTransform": [[115, 2, 1, "", "doit"]], "sympy.integrals.trigonometry": [[115, 4, 1, "", "trigintegrate"]], "sympy.interactive": [[116, 0, 0, "-", "printing"], [116, 0, 0, "-", "session"]], "sympy.interactive.printing": [[116, 4, 1, "", "init_printing"]], "sympy.interactive.session": [[116, 4, 1, "", "enable_automatic_int_sympification"], [116, 4, 1, "", "enable_automatic_symbols"], [116, 4, 1, "", "init_ipython_session"], [116, 4, 1, "", "init_python_session"], [116, 4, 1, "", "init_session"], [116, 4, 1, "", "int_to_Integer"]], "sympy.liealgebras.cartan_matrix": [[117, 4, 1, "", "CartanMatrix"]], "sympy.liealgebras.cartan_type": [[117, 1, 1, "", "CartanType_generator"], [117, 1, 1, "", "Standard_Cartan"]], "sympy.liealgebras.cartan_type.Standard_Cartan": [[117, 2, 1, "", "rank"], [117, 2, 1, "", "series"]], "sympy.liealgebras.dynkin_diagram": [[117, 4, 1, "", "DynkinDiagram"]], "sympy.liealgebras.root_system": [[117, 1, 1, "", "RootSystem"]], "sympy.liealgebras.root_system.RootSystem": [[117, 2, 1, "", "add_as_roots"], [117, 2, 1, "", "add_simple_roots"], [117, 2, 1, "", "all_roots"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dynkin_diagram"], [117, 2, 1, "", "root_space"], [117, 2, 1, "", "simple_roots"]], "sympy.liealgebras.type_a": [[117, 1, 1, "", "TypeA"]], "sympy.liealgebras.type_a.TypeA": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "highest_root"], [117, 2, 1, "", "lie_algebra"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_b": [[117, 1, 1, "", "TypeB"]], "sympy.liealgebras.type_b.TypeB": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "lie_algebra"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_c": [[117, 1, 1, "", "TypeC"]], "sympy.liealgebras.type_c.TypeC": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "lie_algebra"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_d": [[117, 1, 1, "", "TypeD"]], "sympy.liealgebras.type_d.TypeD": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "lie_algebra"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_e": [[117, 1, 1, "", "TypeE"]], "sympy.liealgebras.type_e.TypeE": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_f": [[117, 1, 1, "", "TypeF"]], "sympy.liealgebras.type_f.TypeF": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_g": [[117, 1, 1, "", "TypeG"]], "sympy.liealgebras.type_g.TypeG": [[117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.weyl_group": [[117, 1, 1, "", "WeylGroup"]], "sympy.liealgebras.weyl_group.WeylGroup": [[117, 2, 1, "", "coxeter_diagram"], [117, 2, 1, "", "delete_doubles"], [117, 2, 1, "", "element_order"], [117, 2, 1, "", "generators"], [117, 2, 1, "", "group_name"], [117, 2, 1, "", "group_order"], [117, 2, 1, "", "matrix_form"]], "sympy.logic": [[118, 0, 0, "-", "inference"]], "sympy.logic.boolalg": [[118, 4, 1, "", "ANFform"], [118, 1, 1, "", "And"], [118, 1, 1, "", "Boolean"], [118, 1, 1, "", "BooleanFalse"], [118, 1, 1, "", "BooleanTrue"], [118, 1, 1, "", "Equivalent"], [118, 1, 1, "", "Exclusive"], [118, 1, 1, "", "ITE"], [118, 1, 1, "", "Implies"], [118, 1, 1, "", "Nand"], [118, 1, 1, "", "Nor"], [118, 1, 1, "", "Not"], [118, 1, 1, "", "Or"], [118, 4, 1, "", "POSform"], [118, 4, 1, "", "SOPform"], [118, 1, 1, "", "Xnor"], [118, 1, 1, "", "Xor"], [118, 4, 1, "", "anf_coeffs"], [118, 4, 1, "", "bool_map"], [118, 4, 1, "", "bool_maxterm"], [118, 4, 1, "", "bool_minterm"], [118, 4, 1, "", "bool_monomial"], [118, 4, 1, "", "distribute_and_over_or"], [118, 4, 1, "", "distribute_or_over_and"], [118, 4, 1, "", "distribute_xor_over_and"], [118, 4, 1, "", "eliminate_implications"], [118, 4, 1, "", "gateinputcount"], [118, 4, 1, "", "integer_to_term"], [118, 4, 1, "", "is_anf"], [118, 4, 1, "", "is_cnf"], [118, 4, 1, "", "is_dnf"], [118, 4, 1, "", "is_nnf"], [118, 4, 1, "", "simplify_logic"], [118, 4, 1, "", "term_to_integer"], [118, 4, 1, "", "to_anf"], [118, 4, 1, "", "to_cnf"], [118, 4, 1, "", "to_dnf"], [118, 4, 1, "", "to_int_repr"], [118, 4, 1, "", "to_nnf"], [118, 4, 1, "", "truth_table"]], "sympy.logic.boolalg.Boolean": [[118, 2, 1, "", "as_set"], [118, 2, 1, "", "equals"]], "sympy.logic.boolalg.BooleanFalse": [[118, 2, 1, "", "as_set"]], "sympy.logic.boolalg.BooleanTrue": [[118, 2, 1, "", "as_set"]], "sympy.logic.inference": [[118, 4, 1, "", "satisfiable"]], "sympy.matrices": [[120, 0, 0, "-", "expressions"], [121, 0, 0, "-", "immutable"], [123, 0, 0, "-", "kind"], [124, 0, 0, "-", "matrixbase"], [126, 0, 0, "-", "sparse"], [127, 0, 0, "-", "sparsetools"]], "sympy.matrices.dense": [[119, 1, 1, "", "DenseMatrix"], [124, 4, 1, "", "GramSchmidt"], [119, 5, 1, "", "Matrix"], [119, 1, 1, "", "MutableDenseMatrix"], [124, 4, 1, "", "casoratian"], [124, 4, 1, "", "diag"], [124, 4, 1, "", "eye"], [124, 4, 1, "", "hessian"], [124, 4, 1, "", "jordan_cell"], [124, 4, 1, "", "list2numpy"], [124, 4, 1, "", "matrix2numpy"], [124, 4, 1, "", "matrix_multiply_elementwise"], [124, 4, 1, "", "ones"], [124, 4, 1, "", "randMatrix"], [124, 4, 1, "", "rot_axis1"], [124, 4, 1, "", "rot_axis2"], [124, 4, 1, "", "rot_axis3"], [124, 4, 1, "", "rot_ccw_axis1"], [124, 4, 1, "", "rot_ccw_axis2"], [124, 4, 1, "", "rot_ccw_axis3"], [124, 4, 1, "", "rot_givens"], [124, 4, 1, "", "symarray"], [124, 4, 1, "", "wronskian"], [124, 4, 1, "", "zeros"]], "sympy.matrices.dense.DenseMatrix": [[119, 2, 1, "", "LDLdecomposition"], [119, 2, 1, "", "as_immutable"], [119, 2, 1, "", "as_mutable"], [119, 2, 1, "", "cholesky"], [119, 2, 1, "", "lower_triangular_solve"], [119, 2, 1, "", "upper_triangular_solve"]], "sympy.matrices.dense.MutableDenseMatrix": [[119, 2, 1, "", "simplify"]], "sympy.matrices.expressions": [[120, 1, 1, "", "CompanionMatrix"], [120, 1, 1, "", "FunctionMatrix"], [120, 1, 1, "", "HadamardPower"], [120, 1, 1, "", "HadamardProduct"], [120, 1, 1, "", "Identity"], [120, 1, 1, "", "Inverse"], [120, 1, 1, "", "MatAdd"], [120, 1, 1, "", "MatMul"], [120, 1, 1, "", "MatPow"], [120, 1, 1, "", "MatrixExpr"], [120, 1, 1, "", "MatrixPermute"], [120, 1, 1, "", "MatrixSet"], [120, 1, 1, "", "MatrixSymbol"], [120, 1, 1, "", "PermutationMatrix"], [120, 1, 1, "", "Trace"], [120, 1, 1, "", "Transpose"], [120, 1, 1, "", "ZeroMatrix"], [120, 0, 0, "-", "blockmatrix"], [120, 4, 1, "", "hadamard_product"]], "sympy.matrices.expressions.MatrixExpr": [[120, 3, 1, "", "T"], [120, 2, 1, "", "as_coeff_Mul"], [120, 2, 1, "", "as_explicit"], [120, 2, 1, "", "as_mutable"], [120, 2, 1, "", "equals"], [120, 2, 1, "", "from_index_summation"]], "sympy.matrices.expressions.blockmatrix": [[120, 1, 1, "", "BlockDiagMatrix"], [120, 1, 1, "", "BlockMatrix"], [120, 4, 1, "", "block_collapse"]], "sympy.matrices.expressions.blockmatrix.BlockDiagMatrix": [[120, 2, 1, "", "get_diag_blocks"]], "sympy.matrices.expressions.blockmatrix.BlockMatrix": [[120, 2, 1, "", "LDUdecomposition"], [120, 2, 1, "", "LUdecomposition"], [120, 2, 1, "", "UDLdecomposition"], [120, 2, 1, "", "schur"], [120, 2, 1, "", "transpose"]], "sympy.matrices.immutable": [[121, 1, 1, "", "ImmutableDenseMatrix"], [121, 5, 1, "", "ImmutableMatrix"], [126, 1, 1, "", "ImmutableSparseMatrix"]], "sympy.matrices.kind": [[123, 1, 1, "", "MatrixKind"]], "sympy.matrices.kind.MatrixKind": [[123, 5, 1, "", "__weakref__"]], "sympy.matrices.matrixbase": [[124, 1, 1, "", "MatrixBase"], [124, 1, 1, "", "MatrixError"], [124, 1, 1, "", "NonSquareMatrixError"], [124, 1, 1, "", "ShapeError"], [124, 4, 1, "", "a2idx"]], "sympy.matrices.matrixbase.MatrixBase": [[124, 3, 1, "", "C"], [124, 3, 1, "", "D"], [124, 3, 1, "", "H"], [124, 2, 1, "", "LDLdecomposition"], [124, 2, 1, "", "LDLsolve"], [124, 2, 1, "", "LUdecomposition"], [124, 2, 1, "", "LUdecompositionFF"], [124, 2, 1, "", "LUdecomposition_Simple"], [124, 2, 1, "", "LUsolve"], [124, 2, 1, "", "QRdecomposition"], [124, 2, 1, "", "QRsolve"], [124, 3, 1, "", "T"], [124, 2, 1, "", "__abs__"], [124, 2, 1, "", "__add__"], [124, 2, 1, "", "__getitem__"], [124, 2, 1, "", "__len__"], [124, 2, 1, "", "__mul__"], [124, 2, 1, "", "__pow__"], [124, 5, 1, "", "__weakref__"], [124, 2, 1, "", "add"], [124, 2, 1, "", "adjoint"], [124, 2, 1, "", "adjugate"], [124, 2, 1, "", "analytic_func"], [124, 2, 1, "", "applyfunc"], [124, 2, 1, "", "as_real_imag"], [124, 2, 1, "", "atoms"], [124, 2, 1, "", "berkowitz_det"], [124, 2, 1, "", "berkowitz_eigenvals"], [124, 2, 1, "", "berkowitz_minors"], [124, 2, 1, "", "bidiagonal_decomposition"], [124, 2, 1, "", "bidiagonalize"], [124, 2, 1, "", "charpoly"], [124, 2, 1, "", "cholesky"], [124, 2, 1, "", "cholesky_solve"], [124, 2, 1, "", "cofactor"], [124, 2, 1, "", "cofactor_matrix"], [124, 2, 1, "", "col"], [124, 2, 1, "", "col_del"], [124, 2, 1, "", "col_insert"], [124, 2, 1, "", "col_join"], [124, 2, 1, "", "columnspace"], [124, 2, 1, "", "companion"], [124, 2, 1, "", "condition_number"], [124, 2, 1, "", "conjugate"], [124, 2, 1, "", "connected_components"], [124, 2, 1, "", "connected_components_decomposition"], [124, 2, 1, "", "copy"], [124, 2, 1, "", "cramer_solve"], [124, 2, 1, "", "cross"], [124, 2, 1, "", "det"], [124, 2, 1, "", "det_LU_decomposition"], [124, 2, 1, "", "diag"], [124, 2, 1, "", "diagonal"], [124, 2, 1, "", "diagonal_solve"], [124, 2, 1, "", "diagonalize"], [124, 2, 1, "", "diff"], [124, 2, 1, "", "dot"], [124, 2, 1, "", "dual"], [124, 2, 1, "", "echelon_form"], [124, 2, 1, "", "eigenvals"], [124, 2, 1, "", "eigenvects"], [124, 2, 1, "", "elementary_col_op"], [124, 2, 1, "", "elementary_row_op"], [124, 2, 1, "", "evalf"], [124, 2, 1, "", "exp"], [124, 2, 1, "", "expand"], [124, 2, 1, "", "extract"], [124, 2, 1, "", "eye"], [124, 2, 1, "", "flat"], [124, 3, 1, "", "free_symbols"], [124, 2, 1, "", "from_dok"], [124, 2, 1, "", "gauss_jordan_solve"], [124, 2, 1, "", "get_diag_blocks"], [124, 2, 1, "", "has"], [124, 2, 1, "", "hat"], [124, 2, 1, "", "hstack"], [124, 2, 1, "", "integrate"], [124, 2, 1, "", "inv"], [124, 2, 1, "", "inverse_ADJ"], [124, 2, 1, "", "inverse_BLOCK"], [124, 2, 1, "", "inverse_CH"], [124, 2, 1, "", "inverse_GE"], [124, 2, 1, "", "inverse_LDL"], [124, 2, 1, "", "inverse_LU"], [124, 2, 1, "", "inverse_QR"], [124, 2, 1, "", "irregular"], [124, 2, 1, "", "is_anti_symmetric"], [124, 2, 1, "", "is_diagonal"], [124, 2, 1, "", "is_diagonalizable"], [124, 3, 1, "", "is_echelon"], [124, 3, 1, "", "is_hermitian"], [124, 3, 1, "", "is_indefinite"], [124, 3, 1, "", "is_lower"], [124, 3, 1, "", "is_lower_hessenberg"], [124, 3, 1, "", "is_negative_definite"], [124, 3, 1, "", "is_negative_semidefinite"], [124, 2, 1, "", "is_nilpotent"], [124, 3, 1, "", "is_positive_definite"], [124, 3, 1, "", "is_positive_semidefinite"], [124, 3, 1, "", "is_square"], [124, 3, 1, "", "is_strongly_diagonally_dominant"], [124, 2, 1, "", "is_symbolic"], [124, 2, 1, "", "is_symmetric"], [124, 3, 1, "", "is_upper"], [124, 3, 1, "", "is_upper_hessenberg"], [124, 3, 1, "", "is_weakly_diagonally_dominant"], [124, 3, 1, "", "is_zero_matrix"], [124, 2, 1, "", "iter_items"], [124, 2, 1, "", "iter_values"], [124, 2, 1, "", "jacobian"], [124, 2, 1, "", "jordan_block"], [124, 2, 1, "", "jordan_form"], [124, 2, 1, "", "key2bounds"], [124, 2, 1, "", "key2ij"], [124, 2, 1, "", "left_eigenvects"], [124, 2, 1, "", "limit"], [124, 2, 1, "", "log"], [124, 2, 1, "", "lower_triangular"], [124, 2, 1, "", "lower_triangular_solve"], [124, 2, 1, "", "minor"], [124, 2, 1, "", "minor_submatrix"], [124, 2, 1, "", "multiply"], [124, 2, 1, "", "multiply_elementwise"], [124, 2, 1, "", "n"], [124, 2, 1, "", "norm"], [124, 2, 1, "", "normalized"], [124, 2, 1, "", "nullspace"], [124, 2, 1, "", "ones"], [124, 2, 1, "", "orthogonalize"], [124, 2, 1, "", "per"], [124, 2, 1, "", "permute"], [124, 2, 1, "", "permuteBkwd"], [124, 2, 1, "", "permuteFwd"], [124, 2, 1, "", "permute_cols"], [124, 2, 1, "", "permute_rows"], [124, 2, 1, "", "pinv"], [124, 2, 1, "", "pinv_solve"], [124, 2, 1, "", "pow"], [124, 2, 1, "", "print_nonzero"], [124, 2, 1, "", "project"], [124, 2, 1, "", "rank"], [124, 2, 1, "", "rank_decomposition"], [124, 2, 1, "", "refine"], [124, 2, 1, "", "replace"], [124, 2, 1, "", "reshape"], [124, 2, 1, "", "rmultiply"], [124, 2, 1, "", "rot90"], [124, 2, 1, "", "row"], [124, 2, 1, "", "row_del"], [124, 2, 1, "", "row_insert"], [124, 2, 1, "", "row_join"], [124, 2, 1, "", "rowspace"], [124, 2, 1, "", "rref"], [124, 2, 1, "", "rref_rhs"], [124, 3, 1, "", "shape"], [124, 2, 1, "", "simplify"], [124, 2, 1, "", "singular_value_decomposition"], [124, 2, 1, "", "singular_values"], [124, 2, 1, "", "solve"], [124, 2, 1, "", "solve_least_squares"], [124, 2, 1, "", "strongly_connected_components"], [124, 2, 1, "", "strongly_connected_components_decomposition"], [124, 2, 1, "", "subs"], [124, 2, 1, "", "table"], [124, 2, 1, "", "todod"], [124, 2, 1, "", "todok"], [124, 2, 1, "", "tolist"], [124, 2, 1, "", "trace"], [124, 2, 1, "", "transpose"], [124, 2, 1, "", "upper_hessenberg_decomposition"], [124, 2, 1, "", "upper_triangular"], [124, 2, 1, "", "upper_triangular_solve"], [124, 2, 1, "", "values"], [124, 2, 1, "", "vec"], [124, 2, 1, "", "vech"], [124, 2, 1, "", "vee"], [124, 2, 1, "", "vstack"], [124, 2, 1, "", "wilkinson"], [124, 2, 1, "", "xreplace"], [124, 2, 1, "", "zeros"]], "sympy.matrices.normalforms": [[125, 4, 1, "", "hermite_normal_form"], [125, 4, 1, "", "smith_normal_form"]], "sympy.matrices.sparse": [[126, 1, 1, "", "MutableSparseMatrix"], [126, 5, 1, "", "SparseMatrix"]], "sympy.matrices.sparsetools": [[127, 2, 1, "", "_csrtodok"], [127, 2, 1, "", "_doktocsr"], [127, 2, 1, "", "banded"]], "sympy.ntheory": [[128, 0, 0, "-", "bbp_pi"], [128, 0, 0, "-", "continued_fraction"], [128, 0, 0, "-", "digits"], [128, 0, 0, "-", "ecm"], [128, 0, 0, "-", "egyptian_fraction"], [128, 0, 0, "-", "factor_"], [128, 0, 0, "-", "generate"], [128, 0, 0, "-", "modular"], [128, 0, 0, "-", "multinomial"], [128, 0, 0, "-", "partitions_"], [128, 0, 0, "-", "primetest"], [128, 0, 0, "-", "qs"], [128, 0, 0, "-", "residue_ntheory"]], "sympy.ntheory.bbp_pi": [[128, 4, 1, "", "pi_hex_digits"]], "sympy.ntheory.continued_fraction": [[128, 4, 1, "", "continued_fraction"], [128, 4, 1, "", "continued_fraction_convergents"], [128, 4, 1, "", "continued_fraction_iterator"], [128, 4, 1, "", "continued_fraction_periodic"], [128, 4, 1, "", "continued_fraction_reduce"]], "sympy.ntheory.digits": [[128, 4, 1, "", "count_digits"], [128, 4, 1, "", "digits"], [128, 4, 1, "", "is_palindromic"]], "sympy.ntheory.ecm": [[128, 4, 1, "", "ecm"]], "sympy.ntheory.egyptian_fraction": [[128, 4, 1, "", "egyptian_fraction"]], "sympy.ntheory.factor_": [[128, 4, 1, "", "abundance"], [128, 4, 1, "", "antidivisor_count"], [128, 4, 1, "", "antidivisors"], [128, 4, 1, "", "core"], [128, 4, 1, "", "digits"], [128, 4, 1, "", "divisor_count"], [128, 4, 1, "", "divisor_sigma"], [128, 4, 1, "", "divisors"], [128, 4, 1, "", "factorint"], [128, 4, 1, "", "factorrat"], [128, 4, 1, "", "find_carmichael_numbers_in_range"], [128, 4, 1, "", "find_first_n_carmichaels"], [128, 4, 1, "", "is_abundant"], [128, 4, 1, "", "is_amicable"], [128, 4, 1, "", "is_carmichael"], [128, 4, 1, "", "is_deficient"], [128, 4, 1, "", "is_perfect"], [128, 4, 1, "", "mersenne_prime_exponent"], [128, 4, 1, "", "multiplicity"], [128, 4, 1, "", "perfect_power"], [128, 4, 1, "", "pollard_pm1"], [128, 4, 1, "", "pollard_rho"], [128, 4, 1, "", "primefactors"], [128, 4, 1, "", "primenu"], [128, 4, 1, "", "primeomega"], [128, 4, 1, "", "proper_divisor_count"], [128, 4, 1, "", "proper_divisors"], [128, 4, 1, "", "reduced_totient"], [128, 4, 1, "", "smoothness"], [128, 4, 1, "", "smoothness_p"], [128, 4, 1, "", "totient"], [128, 4, 1, "", "udivisor_count"], [128, 4, 1, "", "udivisor_sigma"], [128, 4, 1, "", "udivisors"]], "sympy.ntheory.generate": [[128, 1, 1, "", "Sieve"], [128, 4, 1, "", "composite"], [128, 4, 1, "", "compositepi"], [128, 4, 1, "", "cycle_length"], [128, 4, 1, "", "nextprime"], [128, 4, 1, "", "prevprime"], [128, 4, 1, "", "prime"], [128, 4, 1, "", "primepi"], [128, 4, 1, "", "primerange"], [128, 4, 1, "", "primorial"], [128, 4, 1, "", "randprime"]], "sympy.ntheory.generate.Sieve": [[128, 2, 1, "", "extend"], [128, 2, 1, "", "extend_to_no"], [128, 2, 1, "", "mobiusrange"], [128, 2, 1, "", "primerange"], [128, 2, 1, "", "search"], [128, 2, 1, "", "totientrange"]], "sympy.ntheory.modular": [[128, 4, 1, "", "crt"], [128, 4, 1, "", "crt1"], [128, 4, 1, "", "crt2"], [128, 4, 1, "", "solve_congruence"], [128, 4, 1, "", "symmetric_residue"]], "sympy.ntheory.multinomial": [[128, 4, 1, "", "binomial_coefficients"], [128, 4, 1, "", "binomial_coefficients_list"], [128, 4, 1, "", "multinomial_coefficients"], [128, 4, 1, "", "multinomial_coefficients_iterator"]], "sympy.ntheory.partitions_": [[128, 4, 1, "", "npartitions"]], "sympy.ntheory.primetest": [[128, 4, 1, "", "is_euler_jacobi_pseudoprime"], [128, 4, 1, "", "is_euler_pseudoprime"], [128, 4, 1, "", "is_extra_strong_lucas_prp"], [128, 4, 1, "", "is_fermat_pseudoprime"], [128, 4, 1, "", "is_gaussian_prime"], [128, 4, 1, "", "is_lucas_prp"], [128, 4, 1, "", "is_mersenne_prime"], [128, 4, 1, "", "is_square"], [128, 4, 1, "", "is_strong_lucas_prp"], [128, 4, 1, "", "isprime"], [128, 4, 1, "", "mr"], [128, 4, 1, "", "proth_test"]], "sympy.ntheory.qs": [[128, 4, 1, "", "qs"]], "sympy.ntheory.residue_ntheory": [[128, 4, 1, "", "binomial_mod"], [128, 4, 1, "", "discrete_log"], [128, 4, 1, "", "is_nthpow_residue"], [128, 4, 1, "", "is_primitive_root"], [128, 4, 1, "", "is_quad_residue"], [128, 4, 1, "", "jacobi_symbol"], [128, 4, 1, "", "legendre_symbol"], [128, 4, 1, "", "mobius"], [128, 4, 1, "", "n_order"], [128, 4, 1, "", "nthroot_mod"], [128, 4, 1, "", "polynomial_congruence"], [128, 4, 1, "", "primitive_root"], [128, 4, 1, "", "quadratic_congruence"], [128, 4, 1, "", "quadratic_residues"], [128, 4, 1, "", "sqrt_mod"], [128, 4, 1, "", "sqrt_mod_iter"]], "sympy.parsing": [[130, 0, 0, "-", "sym_expr"]], "sympy.parsing.latex": [[130, 1, 1, "", "LaTeXParsingError"], [130, 4, 1, "", "parse_latex"], [130, 4, 1, "", "parse_latex_lark"]], "sympy.parsing.latex.lark": [[130, 1, 1, "", "LarkLaTeXParser"], [130, 1, 1, "", "TransformToSymPyExpr"]], "sympy.parsing.mathematica": [[130, 4, 1, "", "parse_mathematica"]], "sympy.parsing.maxima": [[130, 4, 1, "", "parse_maxima"]], "sympy.parsing.sym_expr": [[130, 1, 1, "", "SymPyExpression"]], "sympy.parsing.sym_expr.SymPyExpression": [[130, 2, 1, "", "convert_to_c"], [130, 2, 1, "", "convert_to_expr"], [130, 2, 1, "", "convert_to_fortran"], [130, 2, 1, "", "convert_to_python"], [130, 2, 1, "", "return_expr"]], "sympy.parsing.sympy_parser": [[130, 4, 1, "", "auto_number"], [130, 4, 1, "", "auto_symbol"], [130, 4, 1, "", "convert_xor"], [130, 4, 1, "", "eval_expr"], [130, 4, 1, "", "factorial_notation"], [130, 4, 1, "", "function_exponentiation"], [130, 4, 1, "", "implicit_application"], [130, 4, 1, "", "implicit_multiplication"], [130, 4, 1, "", "implicit_multiplication_application"], [130, 4, 1, "", "lambda_notation"], [130, 4, 1, "", "parse_expr"], [130, 4, 1, "", "rationalize"], [130, 4, 1, "", "repeated_decimals"], [130, 4, 1, "", "split_symbols"], [130, 4, 1, "", "split_symbols_custom"], [130, 6, 1, "", "standard_transformations"], [130, 4, 1, "", "stringify_expr"]], "sympy.physics": [[133, 0, 0, "-", "biomechanics"], [143, 0, 0, "-", "control"], [146, 0, 0, "-", "hydrogen"], [147, 0, 0, "-", "matrices"], [151, 0, 0, "-", "mechanics"], [166, 0, 0, "-", "paulialgebra"], [167, 0, 0, "-", "qho_1d"], [191, 0, 0, "-", "secondquant"], [192, 0, 0, "-", "sho"], [203, 0, 0, "-", "vector"], [206, 0, 0, "-", "wigner"]], "sympy.physics.biomechanics": [[131, 0, 0, "-", "activation"], [132, 0, 0, "-", "curve"], [134, 0, 0, "-", "musculotendon"]], "sympy.physics.biomechanics.activation": [[131, 1, 1, "", "ActivationBase"], [131, 1, 1, "", "FirstOrderActivationDeGroote2016"], [131, 1, 1, "", "ZerothOrderActivation"]], "sympy.physics.biomechanics.activation.ActivationBase": [[131, 3, 1, "", "F"], [131, 3, 1, "", "M"], [131, 3, 1, "", "a"], [131, 3, 1, "", "activation"], [131, 3, 1, "", "constants"], [131, 3, 1, "", "e"], [131, 3, 1, "", "excitation"], [131, 3, 1, "", "input_vars"], [131, 3, 1, "", "order"], [131, 3, 1, "", "p"], [131, 3, 1, "", "r"], [131, 2, 1, "", "rhs"], [131, 3, 1, "", "state_vars"], [131, 2, 1, "", "with_defaults"], [131, 3, 1, "", "x"]], "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016": [[131, 3, 1, "", "F"], [131, 3, 1, "", "M"], [131, 3, 1, "", "activation_time_constant"], [131, 3, 1, "", "b"], [131, 3, 1, "", "constants"], [131, 3, 1, "", "deactivation_time_constant"], [131, 3, 1, "", "input_vars"], [131, 3, 1, "", "order"], [131, 3, 1, "", "p"], [131, 3, 1, "", "r"], [131, 2, 1, "", "rhs"], [131, 3, 1, "", "smoothing_rate"], [131, 3, 1, "", "state_vars"], [131, 3, 1, "", "tau_a"], [131, 3, 1, "", "tau_d"], [131, 2, 1, "", "with_defaults"], [131, 3, 1, "", "x"]], "sympy.physics.biomechanics.activation.ZerothOrderActivation": [[131, 3, 1, "", "F"], [131, 3, 1, "", "M"], [131, 3, 1, "", "constants"], [131, 3, 1, "", "input_vars"], [131, 3, 1, "", "order"], [131, 3, 1, "", "p"], [131, 3, 1, "", "r"], [131, 2, 1, "", "rhs"], [131, 3, 1, "", "state_vars"], [131, 2, 1, "", "with_defaults"], [131, 3, 1, "", "x"]], "sympy.physics.biomechanics.curve": [[132, 1, 1, "", "CharacteristicCurveCollection"], [132, 1, 1, "", "CharacteristicCurveFunction"], [132, 1, 1, "", "FiberForceLengthActiveDeGroote2016"], [132, 1, 1, "", "FiberForceLengthPassiveDeGroote2016"], [132, 1, 1, "", "FiberForceLengthPassiveInverseDeGroote2016"], [132, 1, 1, "", "FiberForceVelocityDeGroote2016"], [132, 1, 1, "", "FiberForceVelocityInverseDeGroote2016"], [132, 1, 1, "", "TendonForceLengthDeGroote2016"], [132, 1, 1, "", "TendonForceLengthInverseDeGroote2016"]], "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.musculotendon": [[134, 1, 1, "", "MusculotendonBase"], [134, 1, 1, "", "MusculotendonDeGroote2016"], [134, 1, 1, "", "MusculotendonFormulation"]], "sympy.physics.biomechanics.musculotendon.MusculotendonBase": [[134, 3, 1, "", "F"], [134, 3, 1, "", "F_M_max"], [134, 3, 1, "", "M"], [134, 3, 1, "", "a"], [134, 3, 1, "", "activation"], [134, 3, 1, "", "activation_dynamics"], [134, 3, 1, "", "alpha_opt"], [134, 3, 1, "", "beta"], [134, 3, 1, "", "constants"], [134, 2, 1, "", "curves"], [134, 3, 1, "", "e"], [134, 3, 1, "", "excitation"], [134, 3, 1, "", "fiber_damping_coefficient"], [134, 3, 1, "", "input_vars"], [134, 3, 1, "", "l_M_opt"], [134, 3, 1, "", "l_T_slack"], [134, 3, 1, "", "maximal_fiber_velocity"], [134, 3, 1, "", "musculotendon_dynamics"], [134, 3, 1, "", "optimal_fiber_length"], [134, 3, 1, "", "optimal_pennation_angle"], [134, 3, 1, "", "p"], [134, 3, 1, "", "peak_isometric_force"], [134, 3, 1, "", "r"], [134, 2, 1, "", "rhs"], [134, 3, 1, "", "state_vars"], [134, 3, 1, "", "tendon_slack_length"], [134, 3, 1, "", "v_M_max"], [134, 2, 1, "", "with_defaults"], [134, 3, 1, "", "x"]], "sympy.physics.continuum_mechanics": [[135, 0, 0, "-", "Arch"], [136, 0, 0, "-", "beam"], [138, 0, 0, "-", "cable"], [140, 0, 0, "-", "truss"]], "sympy.physics.continuum_mechanics.beam": [[136, 1, 1, "", "Beam"], [136, 1, 1, "", "Beam3D"]], "sympy.physics.continuum_mechanics.beam.Beam": [[136, 3, 1, "", "applied_loads"], [136, 2, 1, "", "apply_load"], [136, 2, 1, "", "apply_rotation_hinge"], [136, 2, 1, "", "apply_sliding_hinge"], [136, 2, 1, "", "apply_support"], [136, 3, 1, "", "area"], [136, 2, 1, "", "bending_moment"], [136, 3, 1, "", "boundary_conditions"], [136, 3, 1, "", "cross_section"], [136, 2, 1, "", "deflection"], [136, 3, 1, "", "deflection_jumps"], [136, 2, 1, "", "draw"], [136, 3, 1, "", "elastic_modulus"], [136, 3, 1, "", "ild_deflection_jumps"], [136, 3, 1, "", "ild_moment"], [136, 3, 1, "", "ild_reactions"], [136, 3, 1, "", "ild_rotation_jumps"], [136, 3, 1, "", "ild_shear"], [136, 2, 1, "", "join"], [136, 3, 1, "", "length"], [136, 3, 1, "", "load"], [136, 2, 1, "", "max_bmoment"], [136, 2, 1, "", "max_deflection"], [136, 2, 1, "", "max_shear_force"], [136, 2, 1, "", "plot_bending_moment"], [136, 2, 1, "", "plot_deflection"], [136, 2, 1, "", "plot_ild_moment"], [136, 2, 1, "", "plot_ild_reactions"], [136, 2, 1, "", "plot_ild_shear"], [136, 2, 1, "", "plot_loading_results"], [136, 2, 1, "", "plot_shear_force"], [136, 2, 1, "", "plot_shear_stress"], [136, 2, 1, "", "plot_slope"], [136, 2, 1, "", "point_cflexure"], [136, 3, 1, "", "reaction_loads"], [136, 2, 1, "", "remove_load"], [136, 3, 1, "", "rotation_jumps"], [136, 3, 1, "", "second_moment"], [136, 2, 1, "", "shear_force"], [136, 2, 1, "", "shear_stress"], [136, 2, 1, "", "slope"], [136, 2, 1, "", "solve_for_ild_moment"], [136, 2, 1, "", "solve_for_ild_reactions"], [136, 2, 1, "", "solve_for_ild_shear"], [136, 2, 1, "", "solve_for_reaction_loads"], [136, 3, 1, "", "variable"]], "sympy.physics.continuum_mechanics.beam.Beam3D": [[136, 2, 1, "", "angular_deflection"], [136, 2, 1, "", "apply_load"], [136, 2, 1, "", "apply_moment_load"], [136, 3, 1, "", "area"], [136, 2, 1, "", "axial_force"], [136, 2, 1, "", "axial_stress"], [136, 2, 1, "", "bending_moment"], [136, 3, 1, "", "boundary_conditions"], [136, 2, 1, "", "deflection"], [136, 3, 1, "", "load_vector"], [136, 2, 1, "", "max_bending_moment"], [136, 2, 1, "", "max_bmoment"], [136, 2, 1, "", "max_deflection"], [136, 2, 1, "", "max_shear_force"], [136, 3, 1, "", "moment_load_vector"], [136, 2, 1, "", "plot_bending_moment"], [136, 2, 1, "", "plot_deflection"], [136, 2, 1, "", "plot_loading_results"], [136, 2, 1, "", "plot_shear_force"], [136, 2, 1, "", "plot_shear_stress"], [136, 2, 1, "", "plot_slope"], [136, 2, 1, "", "polar_moment"], [136, 3, 1, "", "second_moment"], [136, 2, 1, "", "shear_force"], [136, 3, 1, "", "shear_modulus"], [136, 2, 1, "", "shear_stress"], [136, 2, 1, "", "slope"], [136, 2, 1, "", "solve_for_reaction_loads"], [136, 2, 1, "", "solve_for_torsion"], [136, 2, 1, "", "torsional_moment"]], "sympy.physics.continuum_mechanics.cable": [[138, 1, 1, "", "Cable"]], "sympy.physics.continuum_mechanics.cable.Cable": [[138, 2, 1, "", "apply_length"], [138, 2, 1, "", "apply_load"], [138, 2, 1, "", "change_support"], [138, 2, 1, "", "draw"], [138, 3, 1, "", "left_support"], [138, 3, 1, "", "length"], [138, 3, 1, "", "loads"], [138, 3, 1, "", "loads_position"], [138, 2, 1, "", "plot_tension"], [138, 3, 1, "", "reaction_loads"], [138, 2, 1, "", "remove_loads"], [138, 3, 1, "", "right_support"], [138, 2, 1, "", "solve"], [138, 3, 1, "", "supports"], [138, 3, 1, "", "tension"], [138, 2, 1, "", "tension_at"]], "sympy.physics.continuum_mechanics.truss": [[140, 1, 1, "", "Truss"]], "sympy.physics.continuum_mechanics.truss.Truss": [[140, 2, 1, "", "add_member"], [140, 2, 1, "", "add_node"], [140, 2, 1, "", "apply_load"], [140, 2, 1, "", "apply_support"], [140, 2, 1, "", "change_member_label"], [140, 2, 1, "", "change_node_label"], [140, 2, 1, "", "draw"], [140, 3, 1, "", "internal_forces"], [140, 3, 1, "", "loads"], [140, 3, 1, "", "member_lengths"], [140, 3, 1, "", "members"], [140, 3, 1, "", "node_labels"], [140, 3, 1, "", "node_positions"], [140, 3, 1, "", "nodes"], [140, 3, 1, "", "reaction_loads"], [140, 2, 1, "", "remove_load"], [140, 2, 1, "", "remove_member"], [140, 2, 1, "", "remove_node"], [140, 2, 1, "", "remove_support"], [140, 2, 1, "", "solve"], [140, 3, 1, "", "supports"]], "sympy.physics.control": [[144, 0, 0, "-", "lti"]], "sympy.physics.control.control_plots": [[142, 2, 1, "", "bode_magnitude_numerical_data"], [142, 2, 1, "", "bode_magnitude_plot"], [142, 2, 1, "", "bode_phase_numerical_data"], [142, 2, 1, "", "bode_phase_plot"], [142, 2, 1, "", "bode_plot"], [142, 2, 1, "", "impulse_response_numerical_data"], [142, 2, 1, "", "impulse_response_plot"], [142, 2, 1, "", "pole_zero_numerical_data"], [142, 2, 1, "", "pole_zero_plot"], [142, 2, 1, "", "ramp_response_numerical_data"], [142, 2, 1, "", "ramp_response_plot"], [142, 2, 1, "", "step_response_numerical_data"], [142, 2, 1, "", "step_response_plot"]], "sympy.physics.control.lti": [[144, 1, 1, "", "Feedback"], [144, 1, 1, "", "MIMOFeedback"], [144, 1, 1, "", "MIMOParallel"], [144, 1, 1, "", "MIMOSeries"], [144, 1, 1, "", "Parallel"], [144, 1, 1, "", "Series"], [144, 1, 1, "", "TransferFunction"], [144, 1, 1, "", "TransferFunctionMatrix"], [144, 4, 1, "", "backward_diff"], [144, 4, 1, "", "bilinear"], [144, 4, 1, "", "forward_diff"], [144, 4, 1, "", "gbt"]], "sympy.physics.control.lti.Feedback": [[144, 3, 1, "", "den"], [144, 2, 1, "", "doit"], [144, 3, 1, "", "num"], [144, 3, 1, "", "sensitivity"], [144, 3, 1, "", "sign"], [144, 3, 1, "", "sys1"], [144, 3, 1, "", "sys2"], [144, 2, 1, "", "to_expr"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.MIMOFeedback": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "sensitivity"], [144, 3, 1, "", "sign"], [144, 3, 1, "", "sys1"], [144, 3, 1, "", "sys2"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.MIMOParallel": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "num_inputs"], [144, 3, 1, "", "num_outputs"], [144, 3, 1, "", "shape"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.MIMOSeries": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "num_inputs"], [144, 3, 1, "", "num_outputs"], [144, 3, 1, "", "shape"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.Parallel": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "is_biproper"], [144, 3, 1, "", "is_proper"], [144, 3, 1, "", "is_strictly_proper"], [144, 2, 1, "", "to_expr"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.Series": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "is_biproper"], [144, 3, 1, "", "is_proper"], [144, 3, 1, "", "is_strictly_proper"], [144, 2, 1, "", "to_expr"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.TransferFunction": [[144, 2, 1, "", "dc_gain"], [144, 3, 1, "", "den"], [144, 2, 1, "", "eval_frequency"], [144, 2, 1, "", "expand"], [144, 2, 1, "", "from_coeff_lists"], [144, 2, 1, "", "from_rational_expression"], [144, 2, 1, "", "from_zpk"], [144, 3, 1, "", "is_biproper"], [144, 3, 1, "", "is_proper"], [144, 2, 1, "", "is_stable"], [144, 3, 1, "", "is_strictly_proper"], [144, 3, 1, "", "num"], [144, 2, 1, "", "poles"], [144, 2, 1, "", "to_expr"], [144, 3, 1, "", "var"], [144, 2, 1, "", "zeros"]], "sympy.physics.control.lti.TransferFunctionMatrix": [[144, 2, 1, "", "elem_poles"], [144, 2, 1, "", "elem_zeros"], [144, 2, 1, "", "eval_frequency"], [144, 2, 1, "", "expand"], [144, 2, 1, "", "from_Matrix"], [144, 3, 1, "", "num_inputs"], [144, 3, 1, "", "num_outputs"], [144, 3, 1, "", "shape"], [144, 2, 1, "", "transpose"], [144, 3, 1, "", "var"]], "sympy.physics.hep": [[145, 0, 0, "-", "gamma_matrices"]], "sympy.physics.hep.gamma_matrices": [[145, 4, 1, "", "extract_type_tens"], [145, 4, 1, "", "gamma_trace"], [145, 4, 1, "", "kahane_simplify"], [145, 4, 1, "", "simplify_gpgp"]], "sympy.physics.hydrogen": [[146, 4, 1, "", "E_nl"], [146, 4, 1, "", "E_nl_dirac"], [146, 4, 1, "", "Psi_nlm"], [146, 4, 1, "", "R_nl"]], "sympy.physics.matrices": [[147, 4, 1, "", "mdft"], [147, 4, 1, "", "mgamma"], [147, 4, 1, "", "msigma"], [147, 4, 1, "", "pat_matrix"]], "sympy.physics.mechanics": [[148, 0, 0, "-", "actuator"], [150, 4, 1, "", "find_dynamicsymbols"], [152, 0, 0, "-", "joint"], [153, 0, 0, "-", "kane"], [153, 0, 0, "-", "lagrange"], [154, 0, 0, "-", "linearize"], [150, 4, 1, "", "msubs"], [156, 0, 0, "-", "pathway"], [159, 0, 0, "-", "wrapping_geometry"]], "sympy.physics.mechanics.actuator": [[148, 1, 1, "", "ActuatorBase"], [148, 1, 1, "", "DuffingSpring"], [148, 1, 1, "", "ForceActuator"], [148, 1, 1, "", "LinearDamper"], [148, 1, 1, "", "LinearSpring"], [148, 1, 1, "", "TorqueActuator"]], "sympy.physics.mechanics.actuator.ActuatorBase": [[148, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.actuator.DuffingSpring": [[148, 3, 1, "", "force"]], "sympy.physics.mechanics.actuator.ForceActuator": [[148, 3, 1, "", "force"], [148, 3, 1, "", "pathway"], [148, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.actuator.LinearDamper": [[148, 3, 1, "", "damping"], [148, 3, 1, "", "force"]], "sympy.physics.mechanics.actuator.LinearSpring": [[148, 3, 1, "", "equilibrium_length"], [148, 3, 1, "", "force"], [148, 3, 1, "", "stiffness"]], "sympy.physics.mechanics.actuator.TorqueActuator": [[148, 2, 1, "", "at_pin_joint"], [148, 3, 1, "", "axis"], [148, 3, 1, "", "reaction_frame"], [148, 3, 1, "", "target_frame"], [148, 2, 1, "", "to_loads"], [148, 3, 1, "", "torque"]], "sympy.physics.mechanics.body": [[149, 1, 1, "", "Body"]], "sympy.physics.mechanics.body.Body": [[149, 2, 1, "", "ang_vel_in"], [149, 2, 1, "", "angular_momentum"], [149, 2, 1, "", "apply_force"], [149, 2, 1, "", "apply_torque"], [149, 3, 1, "", "central_inertia"], [149, 2, 1, "", "clear_loads"], [149, 2, 1, "", "dcm"], [149, 3, 1, "", "frame"], [149, 3, 1, "", "inertia"], [149, 2, 1, "", "kinetic_energy"], [149, 2, 1, "", "linear_momentum"], [149, 3, 1, "", "mass"], [149, 3, 1, "", "masscenter"], [149, 2, 1, "", "masscenter_vel"], [149, 3, 1, "", "name"], [149, 2, 1, "", "parallel_axis"], [149, 3, 1, "", "point"], [149, 3, 1, "", "potential_energy"], [149, 2, 1, "", "remove_load"], [149, 3, 1, "", "x"], [149, 3, 1, "", "y"], [149, 3, 1, "", "z"]], "sympy.physics.mechanics.functions": [[155, 4, 1, "", "Lagrangian"], [155, 4, 1, "", "angular_momentum"], [155, 4, 1, "", "center_of_mass"], [155, 4, 1, "", "find_dynamicsymbols"], [155, 4, 1, "", "kinetic_energy"], [155, 4, 1, "", "linear_momentum"], [155, 4, 1, "", "potential_energy"]], "sympy.physics.mechanics.inertia": [[155, 1, 1, "", "Inertia"], [155, 4, 1, "", "inertia"], [155, 4, 1, "", "inertia_of_point_mass"]], "sympy.physics.mechanics.inertia.Inertia": [[155, 2, 1, "", "from_inertia_scalars"]], "sympy.physics.mechanics.joint": [[152, 1, 1, "", "CylindricalJoint"], [152, 1, 1, "", "Joint"], [152, 1, 1, "", "PinJoint"], [152, 1, 1, "", "PlanarJoint"], [152, 1, 1, "", "PrismaticJoint"], [152, 1, 1, "", "SphericalJoint"], [152, 1, 1, "", "WeldJoint"]], "sympy.physics.mechanics.joint.CylindricalJoint": [[152, 3, 1, "", "joint_axis"], [152, 3, 1, "", "rotation_coordinate"], [152, 3, 1, "", "rotation_speed"], [152, 3, 1, "", "translation_coordinate"], [152, 3, 1, "", "translation_speed"]], "sympy.physics.mechanics.joint.Joint": [[152, 3, 1, "", "child"], [152, 3, 1, "", "child_axis"], [152, 3, 1, "", "child_point"], [152, 3, 1, "", "coordinates"], [152, 3, 1, "", "kdes"], [152, 3, 1, "", "name"], [152, 3, 1, "", "parent"], [152, 3, 1, "", "parent_axis"], [152, 3, 1, "", "parent_point"], [152, 3, 1, "", "speeds"]], "sympy.physics.mechanics.joint.PinJoint": [[152, 3, 1, "", "joint_axis"]], "sympy.physics.mechanics.joint.PlanarJoint": [[152, 3, 1, "", "planar_coordinates"], [152, 3, 1, "", "planar_speeds"], [152, 3, 1, "", "planar_vectors"], [152, 3, 1, "", "rotation_axis"], [152, 3, 1, "", "rotation_coordinate"], [152, 3, 1, "", "rotation_speed"]], "sympy.physics.mechanics.joint.PrismaticJoint": [[152, 3, 1, "", "joint_axis"]], "sympy.physics.mechanics.jointsmethod": [[149, 1, 1, "", "JointsMethod"]], "sympy.physics.mechanics.jointsmethod.JointsMethod": [[149, 3, 1, "", "bodies"], [149, 3, 1, "", "forcing"], [149, 3, 1, "", "forcing_full"], [149, 2, 1, "", "form_eoms"], [149, 3, 1, "", "kdes"], [149, 3, 1, "", "loads"], [149, 3, 1, "", "mass_matrix"], [149, 3, 1, "", "mass_matrix_full"], [149, 3, 1, "", "method"], [149, 3, 1, "", "q"], [149, 2, 1, "", "rhs"], [149, 3, 1, "", "u"]], "sympy.physics.mechanics.kane": [[153, 1, 1, "", "KanesMethod"]], "sympy.physics.mechanics.kane.KanesMethod": [[153, 3, 1, "", "auxiliary_eqs"], [153, 3, 1, "", "forcing"], [153, 3, 1, "", "forcing_full"], [153, 3, 1, "", "forcing_kin"], [153, 2, 1, "", "kanes_equations"], [153, 2, 1, "", "kindiffdict"], [153, 2, 1, "", "linearize"], [153, 3, 1, "", "mass_matrix"], [153, 3, 1, "", "mass_matrix_full"], [153, 3, 1, "", "mass_matrix_kin"], [153, 2, 1, "", "rhs"], [153, 2, 1, "", "to_linearizer"]], "sympy.physics.mechanics.lagrange": [[153, 1, 1, "", "LagrangesMethod"]], "sympy.physics.mechanics.lagrange.LagrangesMethod": [[153, 3, 1, "", "forcing"], [153, 3, 1, "", "forcing_full"], [153, 2, 1, "", "form_lagranges_equations"], [153, 2, 1, "", "linearize"], [153, 3, 1, "", "mass_matrix"], [153, 3, 1, "", "mass_matrix_full"], [153, 2, 1, "", "rhs"], [153, 2, 1, "", "solve_multipliers"], [153, 2, 1, "", "to_linearizer"]], "sympy.physics.mechanics.linearize": [[154, 1, 1, "", "Linearizer"]], "sympy.physics.mechanics.linearize.Linearizer": [[154, 2, 1, "", "__init__"], [154, 2, 1, "", "linearize"]], "sympy.physics.mechanics.loads": [[155, 1, 1, "", "Force"], [155, 1, 1, "", "Torque"]], "sympy.physics.mechanics.particle": [[155, 1, 1, "", "Particle"]], "sympy.physics.mechanics.particle.Particle": [[155, 2, 1, "", "angular_momentum"], [155, 2, 1, "", "kinetic_energy"], [155, 2, 1, "", "linear_momentum"], [155, 3, 1, "", "mass"], [155, 3, 1, "", "masscenter"], [155, 3, 1, "", "name"], [155, 2, 1, "", "parallel_axis"], [155, 3, 1, "", "point"], [155, 3, 1, "", "potential_energy"]], "sympy.physics.mechanics.pathway": [[156, 1, 1, "", "LinearPathway"], [156, 1, 1, "", "ObstacleSetPathway"], [156, 1, 1, "", "PathwayBase"], [156, 1, 1, "", "WrappingPathway"]], "sympy.physics.mechanics.pathway.LinearPathway": [[156, 3, 1, "", "extension_velocity"], [156, 3, 1, "", "length"], [156, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.pathway.ObstacleSetPathway": [[156, 3, 1, "", "attachments"], [156, 3, 1, "", "extension_velocity"], [156, 3, 1, "", "length"], [156, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.pathway.PathwayBase": [[156, 3, 1, "", "attachments"], [156, 3, 1, "", "extension_velocity"], [156, 3, 1, "", "length"], [156, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.pathway.WrappingPathway": [[156, 3, 1, "", "extension_velocity"], [156, 3, 1, "", "geometry"], [156, 3, 1, "", "length"], [156, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.rigidbody": [[155, 1, 1, "", "RigidBody"]], "sympy.physics.mechanics.rigidbody.RigidBody": [[155, 2, 1, "", "angular_momentum"], [155, 3, 1, "", "central_inertia"], [155, 3, 1, "", "frame"], [155, 3, 1, "", "inertia"], [155, 2, 1, "", "kinetic_energy"], [155, 2, 1, "", "linear_momentum"], [155, 3, 1, "", "mass"], [155, 3, 1, "", "masscenter"], [155, 3, 1, "", "name"], [155, 2, 1, "", "parallel_axis"], [155, 3, 1, "", "potential_energy"], [155, 3, 1, "", "x"], [155, 3, 1, "", "y"], [155, 3, 1, "", "z"]], "sympy.physics.mechanics.system": [[158, 1, 1, "", "SymbolicSystem"], [158, 1, 1, "", "System"]], "sympy.physics.mechanics.system.SymbolicSystem": [[158, 3, 1, "", "alg_con"], [158, 3, 1, "", "bodies"], [158, 3, 1, "", "comb_explicit_rhs"], [158, 3, 1, "", "comb_implicit_mat"], [158, 3, 1, "", "comb_implicit_rhs"], [158, 2, 1, "", "compute_explicit_form"], [158, 2, 1, "", "constant_symbols"], [158, 3, 1, "", "coordinates"], [158, 3, 1, "", "dyn_implicit_mat"], [158, 3, 1, "", "dyn_implicit_rhs"], [158, 2, 1, "", "dynamic_symbols"], [158, 3, 1, "", "kin_explicit_rhs"], [158, 3, 1, "", "loads"], [158, 3, 1, "", "speeds"], [158, 3, 1, "", "states"]], "sympy.physics.mechanics.system.System": [[158, 3, 1, "", "actuators"], [158, 2, 1, "", "add_actuators"], [158, 2, 1, "", "add_auxiliary_speeds"], [158, 2, 1, "", "add_bodies"], [158, 2, 1, "", "add_coordinates"], [158, 2, 1, "", "add_holonomic_constraints"], [158, 2, 1, "", "add_joints"], [158, 2, 1, "", "add_kdes"], [158, 2, 1, "", "add_loads"], [158, 2, 1, "", "add_nonholonomic_constraints"], [158, 2, 1, "", "add_speeds"], [158, 2, 1, "", "apply_uniform_gravity"], [158, 3, 1, "", "bodies"], [158, 3, 1, "", "eom_method"], [158, 3, 1, "", "fixed_point"], [158, 3, 1, "", "forcing"], [158, 3, 1, "", "forcing_full"], [158, 2, 1, "", "form_eoms"], [158, 3, 1, "", "frame"], [158, 2, 1, "", "from_newtonian"], [158, 2, 1, "", "get_body"], [158, 2, 1, "", "get_joint"], [158, 3, 1, "", "holonomic_constraints"], [158, 3, 1, "", "joints"], [158, 3, 1, "", "kdes"], [158, 3, 1, "", "loads"], [158, 3, 1, "", "mass_matrix"], [158, 3, 1, "", "mass_matrix_full"], [158, 3, 1, "", "nonholonomic_constraints"], [158, 3, 1, "", "q"], [158, 3, 1, "", "q_dep"], [158, 3, 1, "", "q_ind"], [158, 2, 1, "", "rhs"], [158, 3, 1, "", "u"], [158, 3, 1, "", "u_aux"], [158, 3, 1, "", "u_dep"], [158, 3, 1, "", "u_ind"], [158, 2, 1, "", "validate_system"], [158, 3, 1, "", "velocity_constraints"], [158, 3, 1, "", "x"], [158, 3, 1, "", "y"], [158, 3, 1, "", "z"]], "sympy.physics.mechanics.wrapping_geometry": [[159, 1, 1, "", "WrappingCylinder"], [159, 1, 1, "", "WrappingGeometryBase"], [159, 1, 1, "", "WrappingSphere"]], "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder": [[159, 3, 1, "", "axis"], [159, 2, 1, "", "geodesic_end_vectors"], [159, 2, 1, "", "geodesic_length"], [159, 3, 1, "", "point"], [159, 2, 1, "", "point_on_surface"], [159, 3, 1, "", "radius"]], "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase": [[159, 2, 1, "", "geodesic_end_vectors"], [159, 2, 1, "", "geodesic_length"], [159, 3, 1, "", "point"], [159, 2, 1, "", "point_on_surface"]], "sympy.physics.mechanics.wrapping_geometry.WrappingSphere": [[159, 2, 1, "", "geodesic_end_vectors"], [159, 2, 1, "", "geodesic_length"], [159, 3, 1, "", "point"], [159, 2, 1, "", "point_on_surface"], [159, 3, 1, "", "radius"]], "sympy.physics.optics": [[160, 0, 0, "-", "gaussopt"], [162, 0, 0, "-", "medium"], [163, 0, 0, "-", "polarization"], [164, 0, 0, "-", "utils"], [165, 0, 0, "-", "waves"]], "sympy.physics.optics.gaussopt": [[160, 1, 1, "", "BeamParameter"], [160, 1, 1, "", "CurvedMirror"], [160, 1, 1, "", "CurvedRefraction"], [160, 1, 1, "", "FlatMirror"], [160, 1, 1, "", "FlatRefraction"], [160, 1, 1, "", "FreeSpace"], [160, 1, 1, "", "GeometricRay"], [160, 1, 1, "", "RayTransferMatrix"], [160, 1, 1, "", "ThinLens"], [160, 4, 1, "", "conjugate_gauss_beams"], [160, 4, 1, "", "gaussian_conj"], [160, 4, 1, "", "geometric_conj_ab"], [160, 4, 1, "", "geometric_conj_af"], [160, 4, 1, "", "geometric_conj_bf"], [160, 4, 1, "", "rayleigh2waist"], [160, 4, 1, "", "waist2rayleigh"]], "sympy.physics.optics.gaussopt.BeamParameter": [[160, 3, 1, "", "divergence"], [160, 3, 1, "", "gouy"], [160, 3, 1, "", "q"], [160, 3, 1, "", "radius"], [160, 3, 1, "", "w"], [160, 3, 1, "", "w_0"], [160, 3, 1, "", "waist_approximation_limit"]], "sympy.physics.optics.gaussopt.GeometricRay": [[160, 3, 1, "", "angle"], [160, 3, 1, "", "height"]], "sympy.physics.optics.gaussopt.RayTransferMatrix": [[160, 3, 1, "", "A"], [160, 3, 1, "", "B"], [160, 3, 1, "", "C"], [160, 3, 1, "", "D"]], "sympy.physics.optics.medium": [[162, 1, 1, "", "Medium"]], "sympy.physics.optics.medium.Medium": [[162, 3, 1, "", "refractive_index"], [162, 3, 1, "", "speed"]], "sympy.physics.optics.polarization": [[163, 4, 1, "", "half_wave_retarder"], [163, 4, 1, "", "jones_2_stokes"], [163, 4, 1, "", "jones_vector"], [163, 4, 1, "", "linear_polarizer"], [163, 4, 1, "", "mueller_matrix"], [163, 4, 1, "", "phase_retarder"], [163, 4, 1, "", "polarizing_beam_splitter"], [163, 4, 1, "", "quarter_wave_retarder"], [163, 4, 1, "", "reflective_filter"], [163, 4, 1, "", "stokes_vector"], [163, 4, 1, "", "transmissive_filter"]], "sympy.physics.optics.utils": [[164, 4, 1, "", "brewster_angle"], [164, 4, 1, "", "critical_angle"], [164, 4, 1, "", "deviation"], [164, 4, 1, "", "fresnel_coefficients"], [164, 4, 1, "", "hyperfocal_distance"], [164, 4, 1, "", "lens_formula"], [164, 4, 1, "", "lens_makers_formula"], [164, 4, 1, "", "mirror_formula"], [164, 4, 1, "", "refraction_angle"], [164, 4, 1, "", "transverse_magnification"]], "sympy.physics.optics.waves": [[165, 1, 1, "", "TWave"]], "sympy.physics.optics.waves.TWave": [[165, 3, 1, "", "amplitude"], [165, 3, 1, "", "angular_velocity"], [165, 3, 1, "", "frequency"], [165, 3, 1, "", "n"], [165, 3, 1, "", "phase"], [165, 3, 1, "", "speed"], [165, 3, 1, "", "time_period"], [165, 3, 1, "", "wavelength"], [165, 3, 1, "", "wavenumber"]], "sympy.physics.paulialgebra": [[166, 4, 1, "", "evaluate_pauli_product"]], "sympy.physics.qho_1d": [[167, 4, 1, "", "E_n"], [167, 4, 1, "", "coherent_state"], [167, 4, 1, "", "psi_n"]], "sympy.physics.quantum": [[168, 0, 0, "-", "anticommutator"], [169, 0, 0, "-", "cartesian"], [170, 0, 0, "-", "cg"], [171, 0, 0, "-", "circuitplot"], [172, 0, 0, "-", "commutator"], [173, 0, 0, "-", "constants"], [174, 0, 0, "-", "dagger"], [175, 0, 0, "-", "gate"], [176, 0, 0, "-", "grover"], [177, 0, 0, "-", "hilbert"], [179, 0, 0, "-", "innerproduct"], [180, 0, 0, "-", "operator"], [181, 0, 0, "-", "operatorset"], [182, 0, 0, "-", "piab"], [183, 0, 0, "-", "qapply"], [184, 0, 0, "-", "qft"], [185, 0, 0, "-", "qubit"], [186, 0, 0, "-", "represent"], [187, 0, 0, "-", "shor"], [188, 0, 0, "-", "spin"], [189, 0, 0, "-", "state"], [190, 0, 0, "-", "tensorproduct"]], "sympy.physics.quantum.anticommutator": [[168, 1, 1, "", "AntiCommutator"]], "sympy.physics.quantum.anticommutator.AntiCommutator": [[168, 2, 1, "", "doit"]], "sympy.physics.quantum.cartesian": [[169, 1, 1, "", "PositionBra3D"], [169, 1, 1, "", "PositionKet3D"], [169, 1, 1, "", "PositionState3D"], [169, 1, 1, "", "PxBra"], [169, 1, 1, "", "PxKet"], [169, 1, 1, "", "PxOp"], [169, 1, 1, "", "XBra"], [169, 1, 1, "", "XKet"], [169, 1, 1, "", "XOp"], [169, 1, 1, "", "YOp"], [169, 1, 1, "", "ZOp"]], "sympy.physics.quantum.cartesian.PositionState3D": [[169, 3, 1, "", "position_x"], [169, 3, 1, "", "position_y"], [169, 3, 1, "", "position_z"]], "sympy.physics.quantum.cartesian.PxBra": [[169, 3, 1, "", "momentum"]], "sympy.physics.quantum.cartesian.PxKet": [[169, 3, 1, "", "momentum"]], "sympy.physics.quantum.cartesian.XBra": [[169, 3, 1, "", "position"]], "sympy.physics.quantum.cartesian.XKet": [[169, 3, 1, "", "position"]], "sympy.physics.quantum.cg": [[170, 1, 1, "", "CG"], [170, 1, 1, "", "Wigner3j"], [170, 1, 1, "", "Wigner6j"], [170, 1, 1, "", "Wigner9j"], [170, 4, 1, "", "cg_simp"]], "sympy.physics.quantum.circuitplot": [[171, 1, 1, "", "CircuitPlot"], [171, 4, 1, "", "CreateCGate"], [171, 1, 1, "", "Mx"], [171, 1, 1, "", "Mz"], [171, 4, 1, "", "circuit_plot"], [171, 4, 1, "", "labeller"]], "sympy.physics.quantum.circuitplot.CircuitPlot": [[171, 2, 1, "", "control_line"], [171, 2, 1, "", "control_point"], [171, 2, 1, "", "not_point"], [171, 2, 1, "", "one_qubit_box"], [171, 2, 1, "", "swap_point"], [171, 2, 1, "", "two_qubit_box"], [171, 2, 1, "", "update"]], "sympy.physics.quantum.commutator": [[172, 1, 1, "", "Commutator"]], "sympy.physics.quantum.commutator.Commutator": [[172, 2, 1, "", "doit"]], "sympy.physics.quantum.constants": [[173, 1, 1, "", "HBar"]], "sympy.physics.quantum.dagger": [[174, 1, 1, "", "Dagger"]], "sympy.physics.quantum.gate": [[175, 1, 1, "", "CGate"], [175, 1, 1, "", "CGateS"], [175, 5, 1, "", "CNOT"], [175, 1, 1, "", "CNotGate"], [175, 1, 1, "", "Gate"], [175, 5, 1, "", "H"], [175, 1, 1, "", "HadamardGate"], [175, 1, 1, "", "IdentityGate"], [175, 1, 1, "", "OneQubitGate"], [175, 5, 1, "", "Phase"], [175, 1, 1, "", "PhaseGate"], [175, 5, 1, "", "S"], [175, 5, 1, "", "SWAP"], [175, 1, 1, "", "SwapGate"], [175, 5, 1, "", "T"], [175, 1, 1, "", "TGate"], [175, 1, 1, "", "TwoQubitGate"], [175, 1, 1, "", "UGate"], [175, 5, 1, "", "X"], [175, 1, 1, "", "XGate"], [175, 5, 1, "", "Y"], [175, 1, 1, "", "YGate"], [175, 5, 1, "", "Z"], [175, 1, 1, "", "ZGate"], [175, 4, 1, "", "gate_simp"], [175, 4, 1, "", "gate_sort"], [175, 4, 1, "", "normalized"], [175, 4, 1, "", "random_circuit"]], "sympy.physics.quantum.gate.CGate": [[175, 3, 1, "", "controls"], [175, 2, 1, "", "decompose"], [175, 2, 1, "", "eval_controls"], [175, 3, 1, "", "gate"], [175, 3, 1, "", "min_qubits"], [175, 3, 1, "", "nqubits"], [175, 2, 1, "", "plot_gate"], [175, 3, 1, "", "targets"]], "sympy.physics.quantum.gate.CNotGate": [[175, 3, 1, "", "controls"], [175, 3, 1, "", "gate"], [175, 3, 1, "", "min_qubits"], [175, 3, 1, "", "targets"]], "sympy.physics.quantum.gate.Gate": [[175, 2, 1, "", "get_target_matrix"], [175, 3, 1, "", "min_qubits"], [175, 3, 1, "", "nqubits"], [175, 3, 1, "", "targets"]], "sympy.physics.quantum.gate.SwapGate": [[175, 2, 1, "", "decompose"]], "sympy.physics.quantum.gate.UGate": [[175, 2, 1, "", "get_target_matrix"], [175, 3, 1, "", "targets"]], "sympy.physics.quantum.grover": [[176, 1, 1, "", "OracleGate"], [176, 1, 1, "", "WGate"], [176, 4, 1, "", "apply_grover"], [176, 4, 1, "", "grover_iteration"], [176, 4, 1, "", "superposition_basis"]], "sympy.physics.quantum.grover.OracleGate": [[176, 3, 1, "", "search_function"], [176, 3, 1, "", "targets"]], "sympy.physics.quantum.hilbert": [[177, 1, 1, "", "ComplexSpace"], [177, 1, 1, "", "DirectSumHilbertSpace"], [177, 1, 1, "", "FockSpace"], [177, 1, 1, "", "HilbertSpace"], [177, 1, 1, "", "L2"], [177, 1, 1, "", "TensorPowerHilbertSpace"], [177, 1, 1, "", "TensorProductHilbertSpace"]], "sympy.physics.quantum.hilbert.DirectSumHilbertSpace": [[177, 2, 1, "", "eval"], [177, 3, 1, "", "spaces"]], "sympy.physics.quantum.hilbert.HilbertSpace": [[177, 3, 1, "", "dimension"]], "sympy.physics.quantum.hilbert.TensorProductHilbertSpace": [[177, 2, 1, "", "eval"], [177, 3, 1, "", "spaces"]], "sympy.physics.quantum.innerproduct": [[179, 1, 1, "", "InnerProduct"]], "sympy.physics.quantum.operator": [[180, 1, 1, "", "DifferentialOperator"], [180, 1, 1, "", "HermitianOperator"], [180, 1, 1, "", "IdentityOperator"], [180, 1, 1, "", "Operator"], [180, 1, 1, "", "OuterProduct"], [180, 1, 1, "", "UnitaryOperator"]], "sympy.physics.quantum.operator.DifferentialOperator": [[180, 3, 1, "", "expr"], [180, 3, 1, "", "free_symbols"], [180, 3, 1, "", "function"], [180, 3, 1, "", "variables"]], "sympy.physics.quantum.operator.OuterProduct": [[180, 3, 1, "", "bra"], [180, 3, 1, "", "ket"]], "sympy.physics.quantum.operatorset": [[181, 4, 1, "", "operators_to_state"], [181, 4, 1, "", "state_to_operators"]], "sympy.physics.quantum.piab": [[182, 1, 1, "", "PIABBra"], [182, 1, 1, "", "PIABHamiltonian"], [182, 1, 1, "", "PIABKet"]], "sympy.physics.quantum.qapply": [[183, 4, 1, "", "qapply"]], "sympy.physics.quantum.qft": [[184, 1, 1, "", "IQFT"], [184, 1, 1, "", "QFT"], [184, 5, 1, "", "Rk"], [184, 1, 1, "", "RkGate"]], "sympy.physics.quantum.qft.IQFT": [[184, 2, 1, "", "decompose"]], "sympy.physics.quantum.qft.QFT": [[184, 2, 1, "", "decompose"]], "sympy.physics.quantum.qubit": [[185, 1, 1, "", "IntQubit"], [185, 1, 1, "", "IntQubitBra"], [185, 1, 1, "", "Qubit"], [185, 1, 1, "", "QubitBra"], [185, 4, 1, "", "matrix_to_density"], [185, 4, 1, "", "matrix_to_qubit"], [185, 4, 1, "", "measure_all"], [185, 4, 1, "", "measure_all_oneshot"], [185, 4, 1, "", "measure_partial"], [185, 4, 1, "", "measure_partial_oneshot"], [185, 4, 1, "", "qubit_to_matrix"]], "sympy.physics.quantum.represent": [[186, 4, 1, "", "enumerate_states"], [186, 4, 1, "", "get_basis"], [186, 4, 1, "", "integrate_result"], [186, 4, 1, "", "rep_expectation"], [186, 4, 1, "", "rep_innerproduct"], [186, 4, 1, "", "represent"]], "sympy.physics.quantum.shor": [[187, 1, 1, "", "CMod"], [187, 4, 1, "", "period_find"], [187, 4, 1, "", "shor"]], "sympy.physics.quantum.shor.CMod": [[187, 3, 1, "", "N"], [187, 3, 1, "", "a"], [187, 3, 1, "", "t"]], "sympy.physics.quantum.spin": [[188, 1, 1, "", "J2Op"], [188, 1, 1, "", "JxBra"], [188, 1, 1, "", "JxBraCoupled"], [188, 1, 1, "", "JxKet"], [188, 1, 1, "", "JxKetCoupled"], [188, 1, 1, "", "JyBra"], [188, 1, 1, "", "JyBraCoupled"], [188, 1, 1, "", "JyKet"], [188, 1, 1, "", "JyKetCoupled"], [188, 1, 1, "", "JzBra"], [188, 1, 1, "", "JzBraCoupled"], [188, 1, 1, "", "JzKet"], [188, 1, 1, "", "JzKetCoupled"], [188, 1, 1, "", "JzOp"], [188, 1, 1, "", "Rotation"], [188, 1, 1, "", "WignerD"], [188, 4, 1, "", "couple"], [188, 4, 1, "", "uncouple"]], "sympy.physics.quantum.spin.Rotation": [[188, 2, 1, "", "D"], [188, 2, 1, "", "d"]], "sympy.physics.quantum.state": [[189, 1, 1, "", "Bra"], [189, 1, 1, "", "BraBase"], [189, 1, 1, "", "Ket"], [189, 1, 1, "", "KetBase"], [189, 1, 1, "", "OrthogonalBra"], [189, 1, 1, "", "OrthogonalKet"], [189, 1, 1, "", "OrthogonalState"], [189, 1, 1, "", "State"], [189, 1, 1, "", "StateBase"], [189, 1, 1, "", "TimeDepBra"], [189, 1, 1, "", "TimeDepKet"], [189, 1, 1, "", "TimeDepState"], [189, 1, 1, "", "Wavefunction"]], "sympy.physics.quantum.state.StateBase": [[189, 3, 1, "", "dual"], [189, 2, 1, "", "dual_class"], [189, 3, 1, "", "operators"]], "sympy.physics.quantum.state.TimeDepState": [[189, 3, 1, "", "label"], [189, 3, 1, "", "time"]], "sympy.physics.quantum.state.Wavefunction": [[189, 3, 1, "", "expr"], [189, 3, 1, "", "is_commutative"], [189, 3, 1, "", "is_normalized"], [189, 3, 1, "", "limits"], [189, 3, 1, "", "norm"], [189, 2, 1, "", "normalize"], [189, 2, 1, "", "prob"], [189, 3, 1, "", "variables"]], "sympy.physics.quantum.tensorproduct": [[190, 1, 1, "", "TensorProduct"], [190, 4, 1, "", "tensor_product_simp"]], "sympy.physics.secondquant": [[191, 1, 1, "", "AnnihilateBoson"], [191, 1, 1, "", "AnnihilateFermion"], [191, 1, 1, "", "AntiSymmetricTensor"], [191, 5, 1, "", "B"], [191, 5, 1, "", "BBra"], [191, 5, 1, "", "BKet"], [191, 5, 1, "", "Bd"], [191, 1, 1, "", "BosonicBasis"], [191, 1, 1, "", "Commutator"], [191, 1, 1, "", "CreateBoson"], [191, 1, 1, "", "CreateFermion"], [191, 1, 1, "", "Dagger"], [191, 5, 1, "", "F"], [191, 5, 1, "", "FBra"], [191, 5, 1, "", "FKet"], [191, 5, 1, "", "Fd"], [191, 1, 1, "", "FixedBosonicBasis"], [191, 1, 1, "", "FockState"], [191, 1, 1, "", "FockStateBosonBra"], [191, 1, 1, "", "FockStateBosonKet"], [191, 1, 1, "", "FockStateBra"], [191, 1, 1, "", "FockStateFermionBra"], [191, 1, 1, "", "FockStateFermionKet"], [191, 1, 1, "", "FockStateKet"], [191, 1, 1, "", "InnerProduct"], [191, 1, 1, "", "KroneckerDelta"], [191, 1, 1, "", "NO"], [191, 1, 1, "", "PermutationOperator"], [191, 1, 1, "", "VarBosonicBasis"], [191, 4, 1, "", "apply_operators"], [191, 4, 1, "", "contraction"], [191, 4, 1, "", "evaluate_deltas"], [191, 4, 1, "", "matrix_rep"], [191, 4, 1, "", "simplify_index_permutations"], [191, 4, 1, "", "substitute_dummies"], [191, 4, 1, "", "wicks"]], "sympy.physics.secondquant.AnnihilateBoson": [[191, 2, 1, "", "apply_operator"]], "sympy.physics.secondquant.AnnihilateFermion": [[191, 2, 1, "", "apply_operator"], [191, 3, 1, "", "is_only_q_annihilator"], [191, 3, 1, "", "is_only_q_creator"], [191, 3, 1, "", "is_q_annihilator"], [191, 3, 1, "", "is_q_creator"]], "sympy.physics.secondquant.AntiSymmetricTensor": [[191, 3, 1, "", "lower"], [191, 3, 1, "", "symbol"], [191, 3, 1, "", "upper"]], "sympy.physics.secondquant.Commutator": [[191, 2, 1, "", "doit"], [191, 2, 1, "", "eval"]], "sympy.physics.secondquant.CreateBoson": [[191, 2, 1, "", "apply_operator"]], "sympy.physics.secondquant.CreateFermion": [[191, 2, 1, "", "apply_operator"], [191, 3, 1, "", "is_only_q_annihilator"], [191, 3, 1, "", "is_only_q_creator"], [191, 3, 1, "", "is_q_annihilator"], [191, 3, 1, "", "is_q_creator"]], "sympy.physics.secondquant.Dagger": [[191, 2, 1, "", "eval"]], "sympy.physics.secondquant.FixedBosonicBasis": [[191, 2, 1, "", "index"], [191, 2, 1, "", "state"]], "sympy.physics.secondquant.InnerProduct": [[191, 3, 1, "", "bra"], [191, 3, 1, "", "ket"]], "sympy.physics.secondquant.KroneckerDelta": [[191, 2, 1, "", "eval"], [191, 3, 1, "", "indices_contain_equal_information"], [191, 3, 1, "", "is_above_fermi"], [191, 3, 1, "", "is_below_fermi"], [191, 3, 1, "", "is_only_above_fermi"], [191, 3, 1, "", "is_only_below_fermi"], [191, 3, 1, "", "killable_index"], [191, 3, 1, "", "preferred_index"]], "sympy.physics.secondquant.NO": [[191, 2, 1, "", "doit"], [191, 2, 1, "", "get_subNO"], [191, 3, 1, "", "has_q_annihilators"], [191, 3, 1, "", "has_q_creators"], [191, 2, 1, "", "iter_q_annihilators"], [191, 2, 1, "", "iter_q_creators"]], "sympy.physics.secondquant.PermutationOperator": [[191, 2, 1, "", "get_permuted"]], "sympy.physics.secondquant.VarBosonicBasis": [[191, 2, 1, "", "index"], [191, 2, 1, "", "state"]], "sympy.physics.sho": [[192, 4, 1, "", "E_nl"], [192, 4, 1, "", "R_nl"]], "sympy.physics.units": [[193, 0, 0, "-", "dimensions"], [197, 0, 0, "-", "prefixes"], [198, 0, 0, "-", "quantities"], [199, 0, 0, "-", "unitsystem"], [198, 0, 0, "-", "util"]], "sympy.physics.units.dimensions": [[193, 1, 1, "", "Dimension"], [193, 1, 1, "", "DimensionSystem"]], "sympy.physics.units.dimensions.Dimension": [[193, 2, 1, "", "has_integer_powers"]], "sympy.physics.units.dimensions.DimensionSystem": [[193, 3, 1, "", "can_transf_matrix"], [193, 3, 1, "", "dim"], [193, 2, 1, "", "dim_can_vector"], [193, 2, 1, "", "dim_vector"], [193, 3, 1, "", "inv_can_transf_matrix"], [193, 3, 1, "", "is_consistent"], [193, 2, 1, "", "is_dimensionless"], [193, 3, 1, "", "list_can_dims"], [193, 2, 1, "", "print_dim_base"]], "sympy.physics.units.prefixes": [[197, 1, 1, "", "Prefix"]], "sympy.physics.units.quantities": [[198, 1, 1, "", "Quantity"]], "sympy.physics.units.quantities.Quantity": [[198, 3, 1, "", "abbrev"], [198, 2, 1, "", "convert_to"], [198, 3, 1, "", "free_symbols"], [198, 3, 1, "", "is_prefixed"], [198, 3, 1, "", "scale_factor"], [198, 2, 1, "", "set_global_relative_scale_factor"]], "sympy.physics.units.unitsystem": [[199, 1, 1, "", "UnitSystem"]], "sympy.physics.units.unitsystem.UnitSystem": [[199, 3, 1, "", "dim"], [199, 2, 1, "", "extend"], [199, 2, 1, "", "get_units_non_prefixed"], [199, 3, 1, "", "is_consistent"]], "sympy.physics.units.util": [[198, 4, 1, "", "convert_to"]], "sympy.physics.vector": [[202, 4, 1, "", "dynamicsymbols"], [204, 0, 0, "-", "functions"], [204, 0, 0, "-", "point"]], "sympy.physics.vector.dyadic": [[200, 1, 1, "", "Dyadic"]], "sympy.physics.vector.dyadic.Dyadic": [[200, 2, 1, "", "applyfunc"], [200, 2, 1, "", "cross"], [200, 2, 1, "", "doit"], [200, 2, 1, "", "dot"], [200, 2, 1, "", "dt"], [200, 2, 1, "", "express"], [200, 3, 1, "", "func"], [200, 2, 1, "", "simplify"], [200, 2, 1, "", "subs"], [200, 2, 1, "", "to_matrix"], [200, 2, 1, "", "xreplace"]], "sympy.physics.vector.fieldfunctions": [[201, 4, 1, "", "curl"], [201, 4, 1, "", "divergence"], [201, 4, 1, "", "gradient"], [201, 4, 1, "", "is_conservative"], [201, 4, 1, "", "is_solenoidal"], [201, 4, 1, "", "scalar_potential"], [201, 4, 1, "", "scalar_potential_difference"]], "sympy.physics.vector.frame": [[200, 1, 1, "", "CoordinateSym"], [200, 1, 1, "", "ReferenceFrame"]], "sympy.physics.vector.frame.ReferenceFrame": [[200, 2, 1, "", "ang_acc_in"], [200, 2, 1, "", "ang_vel_in"], [200, 2, 1, "", "dcm"], [200, 2, 1, "", "orient"], [200, 2, 1, "", "orient_axis"], [200, 2, 1, "", "orient_body_fixed"], [200, 2, 1, "", "orient_dcm"], [200, 2, 1, "", "orient_quaternion"], [200, 2, 1, "", "orient_space_fixed"], [200, 2, 1, "", "orientnew"], [200, 2, 1, "", "partial_velocity"], [200, 2, 1, "", "set_ang_acc"], [200, 2, 1, "", "set_ang_vel"], [200, 3, 1, "", "u"], [200, 2, 1, "", "variable_map"], [200, 3, 1, "", "x"], [200, 3, 1, "", "xx"], [200, 3, 1, "", "xy"], [200, 3, 1, "", "xz"], [200, 3, 1, "", "y"], [200, 3, 1, "", "yx"], [200, 3, 1, "", "yy"], [200, 3, 1, "", "yz"], [200, 3, 1, "", "z"], [200, 3, 1, "", "zx"], [200, 3, 1, "", "zy"], [200, 3, 1, "", "zz"]], "sympy.physics.vector.functions": [[202, 4, 1, "", "cross"], [202, 4, 1, "", "dot"], [202, 4, 1, "", "express"], [204, 4, 1, "", "get_motion_params"], [204, 4, 1, "", "kinematic_equations"], [202, 4, 1, "", "outer"], [204, 4, 1, "", "partial_velocity"], [202, 4, 1, "", "time_derivative"]], "sympy.physics.vector.point": [[204, 1, 1, "", "Point"]], "sympy.physics.vector.point.Point": [[204, 2, 1, "", "a1pt_theory"], [204, 2, 1, "", "a2pt_theory"], [204, 2, 1, "", "acc"], [204, 2, 1, "", "locatenew"], [204, 2, 1, "", "partial_velocity"], [204, 2, 1, "", "pos_from"], [204, 2, 1, "", "set_acc"], [204, 2, 1, "", "set_pos"], [204, 2, 1, "", "set_vel"], [204, 2, 1, "", "v1pt_theory"], [204, 2, 1, "", "v2pt_theory"], [204, 2, 1, "", "vel"]], "sympy.physics.vector.printing": [[205, 4, 1, "", "init_vprinting"], [205, 4, 1, "", "vlatex"], [205, 4, 1, "", "vpprint"], [205, 4, 1, "", "vprint"]], "sympy.physics.vector.vector": [[200, 1, 1, "", "Vector"]], "sympy.physics.vector.vector.Vector": [[200, 2, 1, "", "angle_between"], [200, 2, 1, "", "applyfunc"], [200, 2, 1, "", "cross"], [200, 2, 1, "", "diff"], [200, 2, 1, "", "doit"], [200, 2, 1, "", "dot"], [200, 2, 1, "", "dt"], [200, 2, 1, "", "express"], [200, 2, 1, "", "free_dynamicsymbols"], [200, 2, 1, "", "free_symbols"], [200, 3, 1, "", "func"], [200, 2, 1, "", "magnitude"], [200, 2, 1, "", "normalize"], [200, 2, 1, "", "outer"], [200, 2, 1, "", "separate"], [200, 2, 1, "", "simplify"], [200, 2, 1, "", "subs"], [200, 2, 1, "", "to_matrix"], [200, 2, 1, "", "xreplace"]], "sympy.physics.wigner": [[206, 4, 1, "", "clebsch_gordan"], [206, 4, 1, "", "dot_rot_grad_Ynm"], [206, 4, 1, "", "gaunt"], [206, 4, 1, "", "racah"], [206, 4, 1, "", "real_gaunt"], [206, 4, 1, "", "wigner_3j"], [206, 4, 1, "", "wigner_6j"], [206, 4, 1, "", "wigner_9j"], [206, 4, 1, "", "wigner_d"], [206, 4, 1, "", "wigner_d_small"]], "sympy.plotting": [[207, 0, 0, "-", "plot"], [207, 0, 0, "-", "pygletplot"]], "sympy.plotting.plot": [[207, 1, 1, "", "MatplotlibBackend"], [207, 1, 1, "", "Plot"], [207, 1, 1, "", "PlotGrid"], [207, 1, 1, "", "TextBackend"], [207, 4, 1, "", "plot"], [207, 4, 1, "", "plot3d"], [207, 4, 1, "", "plot3d_parametric_line"], [207, 4, 1, "", "plot3d_parametric_surface"], [207, 4, 1, "", "plot_parametric"]], "sympy.plotting.plot.MatplotlibBackend": [[207, 2, 1, "", "get_segments"], [207, 2, 1, "", "process_series"]], "sympy.plotting.plot.Plot": [[207, 3, 1, "", "annotations"], [207, 2, 1, "", "append"], [207, 2, 1, "", "extend"], [207, 3, 1, "", "fill"], [207, 3, 1, "", "markers"], [207, 3, 1, "", "rectangles"]], "sympy.plotting.plot_implicit": [[207, 4, 1, "", "plot_implicit"]], "sympy.plotting.series": [[207, 1, 1, "", "BaseSeries"], [207, 1, 1, "", "ImplicitSeries"], [207, 1, 1, "", "Line2DBaseSeries"], [207, 1, 1, "", "Line3DBaseSeries"], [207, 1, 1, "", "LineOver1DRangeSeries"], [207, 1, 1, "", "Parametric2DLineSeries"], [207, 1, 1, "", "Parametric3DLineSeries"], [207, 1, 1, "", "ParametricSurfaceSeries"], [207, 1, 1, "", "SurfaceBaseSeries"], [207, 1, 1, "", "SurfaceOver2DRangeSeries"]], "sympy.plotting.series.BaseSeries": [[207, 2, 1, "", "eval_color_func"], [207, 3, 1, "", "expr"], [207, 2, 1, "", "get_data"], [207, 2, 1, "", "get_label"], [207, 3, 1, "", "n"], [207, 3, 1, "", "params"]], "sympy.plotting.series.ImplicitSeries": [[207, 2, 1, "", "get_data"], [207, 2, 1, "", "get_label"]], "sympy.plotting.series.Line2DBaseSeries": [[207, 2, 1, "", "get_data"]], "sympy.plotting.series.LineOver1DRangeSeries": [[207, 2, 1, "", "get_points"]], "sympy.plotting.series.ParametricSurfaceSeries": [[207, 2, 1, "", "get_data"], [207, 2, 1, "", "get_meshes"]], "sympy.plotting.series.SurfaceOver2DRangeSeries": [[207, 2, 1, "", "get_data"], [207, 2, 1, "", "get_meshes"]], "sympy.plotting.textplot": [[207, 4, 1, "", "textplot"]], "sympy.polys": [[214, 0, 0, "-", "polyconfig"], [214, 0, 0, "-", "polyoptions"], [219, 0, 0, "-", "solvers"]], "sympy.polys.agca.extensions": [[208, 1, 1, "", "ExtensionElement"], [208, 1, 1, "", "MonogenicFiniteExtension"]], "sympy.polys.agca.extensions.ExtensionElement": [[208, 2, 1, "", "inverse"]], "sympy.polys.agca.extensions.MonogenicFiniteExtension": [[208, 5, 1, "", "dtype"]], "sympy.polys.agca.homomorphisms": [[208, 1, 1, "", "ModuleHomomorphism"], [208, 4, 1, "", "homomorphism"]], "sympy.polys.agca.homomorphisms.ModuleHomomorphism": [[208, 2, 1, "", "image"], [208, 2, 1, "", "is_injective"], [208, 2, 1, "", "is_isomorphism"], [208, 2, 1, "", "is_surjective"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "kernel"], [208, 2, 1, "", "quotient_codomain"], [208, 2, 1, "", "quotient_domain"], [208, 2, 1, "", "restrict_codomain"], [208, 2, 1, "", "restrict_domain"]], "sympy.polys.agca.ideals": [[208, 1, 1, "", "Ideal"]], "sympy.polys.agca.ideals.Ideal": [[208, 2, 1, "", "contains"], [208, 2, 1, "", "depth"], [208, 2, 1, "", "height"], [208, 2, 1, "", "intersect"], [208, 2, 1, "", "is_maximal"], [208, 2, 1, "", "is_primary"], [208, 2, 1, "", "is_prime"], [208, 2, 1, "", "is_principal"], [208, 2, 1, "", "is_radical"], [208, 2, 1, "", "is_whole_ring"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "product"], [208, 2, 1, "", "quotient"], [208, 2, 1, "", "radical"], [208, 2, 1, "", "reduce_element"], [208, 2, 1, "", "saturate"], [208, 2, 1, "", "subset"], [208, 2, 1, "", "union"]], "sympy.polys.agca.modules": [[208, 1, 1, "", "FreeModule"], [208, 1, 1, "", "FreeModuleElement"], [208, 1, 1, "", "Module"], [208, 1, 1, "", "QuotientModule"], [208, 1, 1, "", "QuotientModuleElement"], [208, 1, 1, "", "SubModule"], [208, 1, 1, "", "SubQuotientModule"]], "sympy.polys.agca.modules.FreeModule": [[208, 2, 1, "", "basis"], [208, 2, 1, "", "convert"], [208, 5, 1, "", "dtype"], [208, 2, 1, "", "identity_hom"], [208, 2, 1, "", "is_submodule"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "multiply_ideal"], [208, 2, 1, "", "quotient_module"]], "sympy.polys.agca.modules.Module": [[208, 2, 1, "", "contains"], [208, 2, 1, "", "convert"], [208, 2, 1, "", "identity_hom"], [208, 2, 1, "", "is_submodule"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "multiply_ideal"], [208, 2, 1, "", "quotient_module"], [208, 2, 1, "", "submodule"], [208, 2, 1, "", "subset"]], "sympy.polys.agca.modules.QuotientModule": [[208, 2, 1, "", "convert"], [208, 5, 1, "", "dtype"], [208, 2, 1, "", "identity_hom"], [208, 2, 1, "", "is_submodule"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "quotient_hom"], [208, 2, 1, "", "submodule"]], "sympy.polys.agca.modules.QuotientModuleElement": [[208, 2, 1, "", "eq"]], "sympy.polys.agca.modules.SubModule": [[208, 2, 1, "", "convert"], [208, 2, 1, "", "identity_hom"], [208, 2, 1, "", "in_terms_of_generators"], [208, 2, 1, "", "inclusion_hom"], [208, 2, 1, "", "intersect"], [208, 2, 1, "", "is_full_module"], [208, 2, 1, "", "is_submodule"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "module_quotient"], [208, 2, 1, "", "multiply_ideal"], [208, 2, 1, "", "quotient_module"], [208, 2, 1, "", "reduce_element"], [208, 2, 1, "", "submodule"], [208, 2, 1, "", "syzygy_module"], [208, 2, 1, "", "union"]], "sympy.polys.agca.modules.SubQuotientModule": [[208, 2, 1, "", "is_full_module"], [208, 2, 1, "", "quotient_hom"]], "sympy.polys.appellseqs": [[217, 4, 1, "", "andre_poly"], [217, 4, 1, "", "bernoulli_c_poly"], [217, 4, 1, "", "bernoulli_poly"], [217, 4, 1, "", "euler_poly"], [217, 4, 1, "", "genocchi_poly"]], "sympy.polys.constructor": [[217, 4, 1, "", "construct_domain"]], "sympy.polys.densearith": [[214, 4, 1, "", "dmp_abs"], [214, 4, 1, "", "dmp_add"], [214, 4, 1, "", "dmp_add_ground"], [214, 4, 1, "", "dmp_add_mul"], [214, 4, 1, "", "dmp_add_term"], [214, 4, 1, "", "dmp_div"], [214, 4, 1, "", "dmp_expand"], [214, 4, 1, "", "dmp_exquo"], [214, 4, 1, "", "dmp_exquo_ground"], [214, 4, 1, "", "dmp_ff_div"], [214, 4, 1, "", "dmp_l1_norm"], [214, 4, 1, "", "dmp_max_norm"], [214, 4, 1, "", "dmp_mul"], [214, 4, 1, "", "dmp_mul_ground"], [214, 4, 1, "", "dmp_mul_term"], [214, 4, 1, "", "dmp_neg"], [214, 4, 1, "", "dmp_pdiv"], [214, 4, 1, "", "dmp_pexquo"], [214, 4, 1, "", "dmp_pow"], [214, 4, 1, "", "dmp_pquo"], [214, 4, 1, "", "dmp_prem"], [214, 4, 1, "", "dmp_quo"], [214, 4, 1, "", "dmp_quo_ground"], [214, 4, 1, "", "dmp_rem"], [214, 4, 1, "", "dmp_rr_div"], [214, 4, 1, "", "dmp_sqr"], [214, 4, 1, "", "dmp_sub"], [214, 4, 1, "", "dmp_sub_ground"], [214, 4, 1, "", "dmp_sub_mul"], [214, 4, 1, "", "dmp_sub_term"], [214, 4, 1, "", "dup_lshift"], [214, 4, 1, "", "dup_rshift"]], "sympy.polys.densebasic": [[214, 4, 1, "", "dmp_LC"], [214, 4, 1, "", "dmp_TC"], [214, 4, 1, "", "dmp_apply_pairs"], [214, 4, 1, "", "dmp_convert"], [214, 4, 1, "", "dmp_copy"], [214, 4, 1, "", "dmp_deflate"], [214, 4, 1, "", "dmp_degree"], [214, 4, 1, "", "dmp_degree_in"], [214, 4, 1, "", "dmp_degree_list"], [214, 4, 1, "", "dmp_eject"], [214, 4, 1, "", "dmp_exclude"], [214, 4, 1, "", "dmp_from_dict"], [214, 4, 1, "", "dmp_from_sympy"], [214, 4, 1, "", "dmp_ground"], [214, 4, 1, "", "dmp_ground_LC"], [214, 4, 1, "", "dmp_ground_TC"], [214, 4, 1, "", "dmp_ground_nth"], [214, 4, 1, "", "dmp_ground_p"], [214, 4, 1, "", "dmp_grounds"], [214, 4, 1, "", "dmp_include"], [214, 4, 1, "", "dmp_inflate"], [214, 4, 1, "", "dmp_inject"], [214, 4, 1, "", "dmp_list_terms"], [214, 4, 1, "", "dmp_multi_deflate"], [214, 4, 1, "", "dmp_negative_p"], [214, 4, 1, "", "dmp_nest"], [214, 4, 1, "", "dmp_normal"], [214, 4, 1, "", "dmp_nth"], [214, 4, 1, "", "dmp_one"], [214, 4, 1, "", "dmp_one_p"], [214, 4, 1, "", "dmp_permute"], [214, 4, 1, "", "dmp_positive_p"], [214, 4, 1, "", "dmp_raise"], [214, 4, 1, "", "dmp_slice"], [214, 4, 1, "", "dmp_strip"], [214, 4, 1, "", "dmp_swap"], [214, 4, 1, "", "dmp_terms_gcd"], [214, 4, 1, "", "dmp_to_dict"], [214, 4, 1, "", "dmp_to_tuple"], [214, 4, 1, "", "dmp_true_LT"], [214, 4, 1, "", "dmp_validate"], [214, 4, 1, "", "dmp_zero"], [214, 4, 1, "", "dmp_zero_p"], [214, 4, 1, "", "dmp_zeros"], [214, 4, 1, "", "dup_random"], [214, 4, 1, "", "dup_reverse"]], "sympy.polys.densetools": [[214, 4, 1, "", "dmp_clear_denoms"], [214, 4, 1, "", "dmp_compose"], [214, 4, 1, "", "dmp_diff"], [214, 4, 1, "", "dmp_diff_eval_in"], [214, 4, 1, "", "dmp_diff_in"], [214, 4, 1, "", "dmp_eval"], [214, 4, 1, "", "dmp_eval_in"], [214, 4, 1, "", "dmp_eval_tail"], [214, 4, 1, "", "dmp_ground_content"], [214, 4, 1, "", "dmp_ground_extract"], [214, 4, 1, "", "dmp_ground_monic"], [214, 4, 1, "", "dmp_ground_primitive"], [214, 4, 1, "", "dmp_ground_trunc"], [214, 4, 1, "", "dmp_integrate"], [214, 4, 1, "", "dmp_integrate_in"], [214, 4, 1, "", "dmp_lift"], [214, 4, 1, "", "dmp_revert"], [214, 4, 1, "", "dmp_trunc"], [214, 4, 1, "", "dup_content"], [214, 4, 1, "", "dup_decompose"], [214, 4, 1, "", "dup_extract"], [214, 4, 1, "", "dup_mirror"], [214, 4, 1, "", "dup_monic"], [214, 4, 1, "", "dup_primitive"], [214, 4, 1, "", "dup_real_imag"], [214, 4, 1, "", "dup_scale"], [214, 4, 1, "", "dup_shift"], [214, 4, 1, "", "dup_sign_variations"], [214, 4, 1, "", "dup_transform"]], "sympy.polys.dispersion": [[217, 4, 1, "", "dispersion"], [217, 4, 1, "", "dispersionset"]], "sympy.polys.distributedmodules": [[214, 4, 1, "", "sdm_LC"], [214, 4, 1, "", "sdm_LM"], [214, 4, 1, "", "sdm_LT"], [214, 4, 1, "", "sdm_add"], [214, 4, 1, "", "sdm_deg"], [214, 4, 1, "", "sdm_ecart"], [214, 4, 1, "", "sdm_from_dict"], [214, 4, 1, "", "sdm_from_vector"], [214, 4, 1, "", "sdm_groebner"], [214, 4, 1, "", "sdm_monomial_deg"], [214, 4, 1, "", "sdm_monomial_divides"], [214, 4, 1, "", "sdm_monomial_mul"], [214, 4, 1, "", "sdm_mul_term"], [214, 4, 1, "", "sdm_nf_mora"], [214, 4, 1, "", "sdm_spoly"], [214, 4, 1, "", "sdm_to_dict"], [214, 4, 1, "", "sdm_to_vector"], [214, 4, 1, "", "sdm_zero"]], "sympy.polys.domains": [[212, 1, 1, "", "AlgebraicField"], [212, 1, 1, "", "ComplexField"], [212, 1, 1, "", "ExpressionDomain"], [212, 1, 1, "", "FiniteField"], [212, 1, 1, "", "FractionField"], [212, 1, 1, "", "GMPYFiniteField"], [212, 1, 1, "", "GMPYIntegerRing"], [212, 1, 1, "", "GMPYRationalField"], [212, 1, 1, "", "IntegerRing"], [212, 1, 1, "", "PolynomialRing"], [212, 1, 1, "", "PythonFiniteField"], [212, 1, 1, "", "PythonIntegerRing"], [212, 1, 1, "", "PythonRationalField"], [212, 1, 1, "", "RationalField"], [212, 1, 1, "", "RealField"]], "sympy.polys.domains.AlgebraicField": [[212, 2, 1, "", "algebraic_field"], [212, 2, 1, "", "denom"], [212, 2, 1, "", "discriminant"], [212, 5, 1, "", "dtype"], [212, 5, 1, "", "ext"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "galois_group"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "integral_basis"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "maximal_order"], [212, 5, 1, "", "mod"], [212, 2, 1, "", "numer"], [212, 5, 1, "", "orig_ext"], [212, 2, 1, "", "primes_above"], [212, 2, 1, "", "to_alg_num"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.ComplexField": [[212, 2, 1, "", "almosteq"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "get_exact"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.ExpressionDomain": [[212, 1, 1, "", "Expression"], [212, 2, 1, "", "denom"], [212, 5, 1, "", "dtype"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_ExpressionDomain"], [212, 2, 1, "", "from_FractionField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_PolynomialRing"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.FiniteField": [[212, 2, 1, "", "characteristic"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "from_FF"], [212, 2, 1, "", "from_FF_gmpy"], [212, 2, 1, "", "from_FF_python"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "to_int"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.FractionField": [[212, 2, 1, "", "denom"], [212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_FractionField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_PolynomialRing"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.GMPYIntegerRing": [[212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_FF_gmpy"], [212, 2, 1, "", "from_FF_python"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "sqrt"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.GMPYRationalField": [[212, 2, 1, "", "denom"], [212, 2, 1, "", "div"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.IntegerRing": [[212, 2, 1, "", "algebraic_field"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_EX"], [212, 2, 1, "", "from_FF"], [212, 2, 1, "", "from_FF_gmpy"], [212, 2, 1, "", "from_FF_python"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "log"], [212, 2, 1, "", "sqrt"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.PolynomialRing": [[212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_FractionField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_GlobalPolynomialRing"], [212, 2, 1, "", "from_PolynomialRing"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "is_unit"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.RationalField": [[212, 2, 1, "", "algebraic_field"], [212, 2, 1, "", "denom"], [212, 2, 1, "", "div"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.RealField": [[212, 2, 1, "", "almosteq"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "get_exact"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "to_rational"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.compositedomain": [[212, 1, 1, "", "CompositeDomain"]], "sympy.polys.domains.compositedomain.CompositeDomain": [[212, 2, 1, "", "drop"], [212, 2, 1, "", "get_exact"], [212, 2, 1, "", "inject"], [212, 3, 1, "", "is_Exact"], [212, 2, 1, "", "set_domain"]], "sympy.polys.domains.domain": [[212, 1, 1, "", "Domain"]], "sympy.polys.domains.domain.Domain": [[212, 2, 1, "", "abs"], [212, 2, 1, "", "add"], [212, 2, 1, "", "alg_field_from_poly"], [212, 2, 1, "", "algebraic_field"], [212, 2, 1, "", "almosteq"], [212, 2, 1, "", "characteristic"], [212, 2, 1, "", "cofactors"], [212, 2, 1, "", "convert"], [212, 2, 1, "", "convert_from"], [212, 2, 1, "", "cyclotomic_field"], [212, 2, 1, "", "denom"], [212, 2, 1, "", "div"], [212, 2, 1, "", "drop"], [212, 5, 1, "", "dtype"], [212, 2, 1, "", "evalf"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "frac_field"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_ExpressionDomain"], [212, 2, 1, "", "from_ExpressionRawDomain"], [212, 2, 1, "", "from_FF"], [212, 2, 1, "", "from_FF_gmpy"], [212, 2, 1, "", "from_FF_python"], [212, 2, 1, "", "from_FractionField"], [212, 2, 1, "", "from_GlobalPolynomialRing"], [212, 2, 1, "", "from_MonogenicFiniteExtension"], [212, 2, 1, "", "from_PolynomialRing"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "get_exact"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "half_gcdex"], [212, 5, 1, "", "has_assoc_Field"], [212, 5, 1, "", "has_assoc_Ring"], [212, 2, 1, "", "inject"], [212, 2, 1, "", "invert"], [212, 5, 1, "", "is_Field"], [212, 5, 1, "", "is_PID"], [212, 5, 1, "", "is_Ring"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_one"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "is_zero"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "log"], [212, 2, 1, "", "map"], [212, 2, 1, "", "mul"], [212, 2, 1, "", "n"], [212, 2, 1, "", "neg"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "of_type"], [212, 2, 1, "", "old_frac_field"], [212, 2, 1, "", "old_poly_ring"], [212, 5, 1, "", "one"], [212, 2, 1, "", "poly_ring"], [212, 2, 1, "", "pos"], [212, 2, 1, "", "pow"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "revert"], [212, 2, 1, "", "sqrt"], [212, 2, 1, "", "sub"], [212, 2, 1, "", "to_sympy"], [212, 3, 1, "", "tp"], [212, 2, 1, "", "unify"], [212, 2, 1, "", "unify_composite"], [212, 5, 1, "", "zero"]], "sympy.polys.domains.domainelement": [[212, 1, 1, "", "DomainElement"]], "sympy.polys.domains.domainelement.DomainElement": [[212, 2, 1, "", "parent"]], "sympy.polys.domains.expressiondomain.ExpressionDomain": [[212, 1, 1, "", "Expression"]], "sympy.polys.domains.field": [[212, 1, 1, "", "Field"]], "sympy.polys.domains.field.Field": [[212, 2, 1, "", "div"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_unit"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "revert"]], "sympy.polys.domains.gaussiandomains": [[212, 1, 1, "", "GaussianDomain"], [212, 1, 1, "", "GaussianElement"], [212, 1, 1, "", "GaussianInteger"], [212, 1, 1, "", "GaussianIntegerRing"], [212, 1, 1, "", "GaussianRational"], [212, 1, 1, "", "GaussianRationalField"]], "sympy.polys.domains.gaussiandomains.GaussianDomain": [[212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "inject"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.gaussiandomains.GaussianElement": [[212, 2, 1, "", "new"], [212, 2, 1, "", "parent"], [212, 2, 1, "", "quadrant"]], "sympy.polys.domains.gaussiandomains.GaussianIntegerRing": [[212, 5, 1, "", "dtype"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "normalize"]], "sympy.polys.domains.gaussiandomains.GaussianRationalField": [[212, 2, 1, "", "as_AlgebraicField"], [212, 2, 1, "", "denom"], [212, 5, 1, "", "dtype"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "numer"]], "sympy.polys.domains.quotientring": [[212, 1, 1, "", "QuotientRing"]], "sympy.polys.domains.ring": [[212, 1, 1, "", "Ring"]], "sympy.polys.domains.ring.Ring": [[212, 2, 1, "", "denom"], [212, 2, 1, "", "div"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "free_module"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "ideal"], [212, 2, 1, "", "invert"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "quotient_ring"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "revert"]], "sympy.polys.domains.simpledomain": [[212, 1, 1, "", "SimpleDomain"]], "sympy.polys.domains.simpledomain.SimpleDomain": [[212, 2, 1, "", "inject"]], "sympy.polys.euclidtools": [[214, 4, 1, "", "dmp_cancel"], [214, 4, 1, "", "dmp_content"], [214, 4, 1, "", "dmp_discriminant"], [214, 4, 1, "", "dmp_euclidean_prs"], [214, 4, 1, "", "dmp_ff_prs_gcd"], [214, 4, 1, "", "dmp_gcd"], [214, 4, 1, "", "dmp_gcdex"], [214, 4, 1, "", "dmp_half_gcdex"], [214, 4, 1, "", "dmp_inner_gcd"], [214, 4, 1, "", "dmp_inner_subresultants"], [214, 4, 1, "", "dmp_invert"], [214, 4, 1, "", "dmp_lcm"], [214, 4, 1, "", "dmp_primitive"], [214, 4, 1, "", "dmp_primitive_prs"], [214, 4, 1, "", "dmp_prs_resultant"], [214, 4, 1, "", "dmp_qq_collins_resultant"], [214, 4, 1, "", "dmp_qq_heu_gcd"], [214, 4, 1, "", "dmp_resultant"], [214, 4, 1, "", "dmp_rr_prs_gcd"], [214, 4, 1, "", "dmp_subresultants"], [214, 4, 1, "", "dmp_zz_collins_resultant"], [214, 4, 1, "", "dmp_zz_heu_gcd"], [214, 4, 1, "", "dmp_zz_modular_resultant"]], "sympy.polys.factortools": [[214, 4, 1, "", "dmp_ext_factor"], [214, 4, 1, "", "dmp_factor_list"], [214, 4, 1, "", "dmp_factor_list_include"], [214, 4, 1, "", "dmp_gf_factor"], [214, 4, 1, "", "dmp_irreducible_p"], [214, 4, 1, "", "dmp_qq_i_factor"], [214, 4, 1, "", "dmp_trial_division"], [214, 4, 1, "", "dmp_zz_diophantine"], [214, 4, 1, "", "dmp_zz_factor"], [214, 4, 1, "", "dmp_zz_i_factor"], [214, 4, 1, "", "dmp_zz_mignotte_bound"], [214, 4, 1, "", "dmp_zz_wang"], [214, 4, 1, "", "dmp_zz_wang_hensel_lifting"], [214, 4, 1, "", "dmp_zz_wang_lead_coeffs"], [214, 4, 1, "", "dmp_zz_wang_non_divisors"], [214, 4, 1, "", "dmp_zz_wang_test_points"], [214, 4, 1, "", "dup_cyclotomic_p"], [214, 4, 1, "", "dup_ext_factor"], [214, 4, 1, "", "dup_factor_list"], [214, 4, 1, "", "dup_factor_list_include"], [214, 4, 1, "", "dup_gf_factor"], [214, 4, 1, "", "dup_irreducible_p"], [214, 4, 1, "", "dup_qq_i_factor"], [214, 4, 1, "", "dup_trial_division"], [214, 4, 1, "", "dup_zz_cyclotomic_factor"], [214, 4, 1, "", "dup_zz_cyclotomic_poly"], [214, 4, 1, "", "dup_zz_diophantine"], [214, 4, 1, "", "dup_zz_factor"], [214, 4, 1, "", "dup_zz_factor_sqf"], [214, 4, 1, "", "dup_zz_hensel_lift"], [214, 4, 1, "", "dup_zz_hensel_step"], [214, 4, 1, "", "dup_zz_i_factor"], [214, 4, 1, "", "dup_zz_irreducible_p"], [214, 4, 1, "", "dup_zz_mignotte_bound"], [214, 4, 1, "", "dup_zz_zassenhaus"]], "sympy.polys.fglmtools": [[214, 4, 1, "", "matrix_fglm"]], "sympy.polys.fields": [[212, 1, 1, "", "FracElement"], [212, 1, 1, "", "FracField"], [212, 4, 1, "", "field"], [212, 4, 1, "", "sfield"], [212, 4, 1, "", "vfield"], [212, 4, 1, "", "xfield"]], "sympy.polys.fields.FracElement": [[212, 2, 1, "", "diff"]], "sympy.polys.galoistools": [[214, 4, 1, "", "gf_LC"], [214, 4, 1, "", "gf_Qbasis"], [214, 4, 1, "", "gf_Qmatrix"], [214, 4, 1, "", "gf_TC"], [214, 4, 1, "", "gf_add"], [214, 4, 1, "", "gf_add_ground"], [214, 4, 1, "", "gf_add_mul"], [214, 4, 1, "", "gf_berlekamp"], [214, 4, 1, "", "gf_cofactors"], [214, 4, 1, "", "gf_compose"], [214, 4, 1, "", "gf_compose_mod"], [214, 4, 1, "", "gf_crt"], [214, 4, 1, "", "gf_crt1"], [214, 4, 1, "", "gf_crt2"], [214, 4, 1, "", "gf_csolve"], [214, 4, 1, "", "gf_degree"], [214, 4, 1, "", "gf_diff"], [214, 4, 1, "", "gf_div"], [214, 4, 1, "", "gf_eval"], [214, 4, 1, "", "gf_expand"], [214, 4, 1, "", "gf_exquo"], [214, 4, 1, "", "gf_factor"], [214, 4, 1, "", "gf_factor_sqf"], [214, 4, 1, "", "gf_from_dict"], [214, 4, 1, "", "gf_from_int_poly"], [214, 4, 1, "", "gf_gcd"], [214, 4, 1, "", "gf_gcdex"], [214, 4, 1, "", "gf_int"], [214, 4, 1, "", "gf_irreducible"], [214, 4, 1, "", "gf_irreducible_p"], [214, 4, 1, "", "gf_lcm"], [214, 4, 1, "", "gf_lshift"], [214, 4, 1, "", "gf_monic"], [214, 4, 1, "", "gf_mul"], [214, 4, 1, "", "gf_mul_ground"], [214, 4, 1, "", "gf_multi_eval"], [214, 4, 1, "", "gf_neg"], [214, 4, 1, "", "gf_normal"], [214, 4, 1, "", "gf_pow"], [214, 4, 1, "", "gf_pow_mod"], [214, 4, 1, "", "gf_quo"], [214, 4, 1, "", "gf_quo_ground"], [214, 4, 1, "", "gf_random"], [214, 4, 1, "", "gf_rem"], [214, 4, 1, "", "gf_rshift"], [214, 4, 1, "", "gf_shoup"], [214, 4, 1, "", "gf_sqf_list"], [214, 4, 1, "", "gf_sqf_p"], [214, 4, 1, "", "gf_sqf_part"], [214, 4, 1, "", "gf_sqr"], [214, 4, 1, "", "gf_strip"], [214, 4, 1, "", "gf_sub"], [214, 4, 1, "", "gf_sub_ground"], [214, 4, 1, "", "gf_sub_mul"], [214, 4, 1, "", "gf_to_dict"], [214, 4, 1, "", "gf_to_int_poly"], [214, 4, 1, "", "gf_trace_map"], [214, 4, 1, "", "gf_trunc"], [214, 4, 1, "", "gf_value"], [214, 4, 1, "", "gf_zassenhaus"]], "sympy.polys.groebnertools": [[214, 4, 1, "", "groebner"], [214, 4, 1, "", "is_groebner"], [214, 4, 1, "", "is_minimal"], [214, 4, 1, "", "is_reduced"], [214, 4, 1, "", "red_groebner"], [214, 4, 1, "", "spoly"]], "sympy.polys.matrices": [[210, 0, 0, "-", "_dfm"], [210, 0, 0, "-", "_typing"], [210, 0, 0, "-", "ddm"], [210, 0, 0, "-", "dense"], [210, 0, 0, "-", "domainmatrix"], [210, 0, 0, "-", "sdm"]], "sympy.polys.matrices._dfm": [[210, 1, 1, "", "DFM"]], "sympy.polys.matrices._dfm.DFM": [[210, 2, 1, "", "add"], [210, 2, 1, "", "applyfunc"], [210, 2, 1, "", "charpoly"], [210, 2, 1, "", "convert_to"], [210, 2, 1, "", "copy"], [210, 2, 1, "", "det"], [210, 2, 1, "", "diag"], [210, 2, 1, "", "diagonal"], [210, 2, 1, "", "extract"], [210, 2, 1, "", "extract_slice"], [210, 2, 1, "", "eye"], [210, 2, 1, "", "from_ddm"], [210, 2, 1, "", "from_dod"], [210, 2, 1, "", "from_dok"], [210, 2, 1, "", "from_flat_nz"], [210, 2, 1, "", "from_list"], [210, 2, 1, "", "from_list_flat"], [210, 2, 1, "", "getitem"], [210, 2, 1, "", "hstack"], [210, 2, 1, "", "inv"], [210, 2, 1, "", "is_diagonal"], [210, 2, 1, "", "is_lower"], [210, 2, 1, "", "is_upper"], [210, 2, 1, "", "is_zero_matrix"], [210, 2, 1, "", "iter_items"], [210, 2, 1, "", "iter_values"], [210, 2, 1, "", "lll"], [210, 2, 1, "", "lll_transform"], [210, 2, 1, "", "lu"], [210, 2, 1, "", "lu_solve"], [210, 2, 1, "", "matmul"], [210, 2, 1, "", "mul"], [210, 2, 1, "", "mul_elementwise"], [210, 2, 1, "", "neg"], [210, 2, 1, "", "nnz"], [210, 2, 1, "", "nullspace"], [210, 2, 1, "", "nullspace_from_rref"], [210, 2, 1, "", "ones"], [210, 2, 1, "", "particular"], [210, 2, 1, "", "rmul"], [210, 2, 1, "", "scc"], [210, 2, 1, "", "setitem"], [210, 2, 1, "", "sub"], [210, 2, 1, "", "to_ddm"], [210, 2, 1, "", "to_dfm"], [210, 2, 1, "", "to_dfm_or_ddm"], [210, 2, 1, "", "to_dod"], [210, 2, 1, "", "to_dok"], [210, 2, 1, "", "to_flat_nz"], [210, 2, 1, "", "to_list"], [210, 2, 1, "", "to_list_flat"], [210, 2, 1, "", "to_sdm"], [210, 2, 1, "", "transpose"], [210, 2, 1, "", "vstack"], [210, 2, 1, "", "zeros"]], "sympy.polys.matrices._typing": [[210, 1, 1, "", "RingElement"]], "sympy.polys.matrices.ddm": [[210, 1, 1, "", "DDM"]], "sympy.polys.matrices.ddm.DDM": [[210, 2, 1, "", "add"], [210, 2, 1, "", "charpoly"], [210, 2, 1, "", "det"], [210, 2, 1, "", "diag"], [210, 2, 1, "", "diagonal"], [210, 2, 1, "", "from_dod"], [210, 2, 1, "", "from_dok"], [210, 2, 1, "", "from_flat_nz"], [210, 2, 1, "", "from_list"], [210, 2, 1, "", "from_list_flat"], [210, 2, 1, "", "hstack"], [210, 2, 1, "", "inv"], [210, 2, 1, "", "is_diagonal"], [210, 2, 1, "", "is_lower"], [210, 2, 1, "", "is_upper"], [210, 2, 1, "", "is_zero_matrix"], [210, 2, 1, "", "iter_items"], [210, 2, 1, "", "iter_values"], [210, 2, 1, "", "lu"], [210, 2, 1, "", "lu_solve"], [210, 2, 1, "", "matmul"], [210, 2, 1, "", "neg"], [210, 2, 1, "", "nnz"], [210, 2, 1, "", "nullspace"], [210, 2, 1, "", "nullspace_from_rref"], [210, 2, 1, "", "rref"], [210, 2, 1, "", "rref_den"], [210, 2, 1, "", "scc"], [210, 2, 1, "", "sub"], [210, 2, 1, "", "to_ddm"], [210, 2, 1, "", "to_dfm"], [210, 2, 1, "", "to_dfm_or_ddm"], [210, 2, 1, "", "to_dod"], [210, 2, 1, "", "to_dok"], [210, 2, 1, "", "to_flat_nz"], [210, 2, 1, "", "to_list"], [210, 2, 1, "", "to_list_flat"], [210, 2, 1, "", "to_sdm"], [210, 2, 1, "", "vstack"]], "sympy.polys.matrices.dense": [[210, 1, 1, "", "R"], [210, 1, 1, "", "T"], [210, 4, 1, "", "ddm_berk"], [210, 4, 1, "", "ddm_iadd"], [210, 4, 1, "", "ddm_idet"], [210, 4, 1, "", "ddm_iinv"], [210, 4, 1, "", "ddm_ilu"], [210, 4, 1, "", "ddm_ilu_solve"], [210, 4, 1, "", "ddm_ilu_split"], [210, 4, 1, "", "ddm_imatmul"], [210, 4, 1, "", "ddm_imul"], [210, 4, 1, "", "ddm_ineg"], [210, 4, 1, "", "ddm_irmul"], [210, 4, 1, "", "ddm_irref"], [210, 4, 1, "", "ddm_irref_den"], [210, 4, 1, "", "ddm_isub"], [210, 4, 1, "", "ddm_transpose"]], "sympy.polys.matrices.domainmatrix": [[210, 4, 1, "", "DM"], [210, 1, 1, "", "DomainMatrix"]], "sympy.polys.matrices.domainmatrix.DomainMatrix": [[210, 2, 1, "", "add"], [210, 2, 1, "", "adj_det"], [210, 2, 1, "", "adj_poly_det"], [210, 2, 1, "", "adjugate"], [210, 2, 1, "", "cancel_denom"], [210, 2, 1, "", "cancel_denom_elementwise"], [210, 2, 1, "", "charpoly"], [210, 2, 1, "", "charpoly_base"], [210, 2, 1, "", "charpoly_berk"], [210, 2, 1, "", "charpoly_factor_blocks"], [210, 2, 1, "", "charpoly_factor_list"], [210, 2, 1, "", "choose_domain"], [210, 2, 1, "", "clear_denoms"], [210, 2, 1, "", "clear_denoms_rowwise"], [210, 2, 1, "", "columnspace"], [210, 2, 1, "", "content"], [210, 2, 1, "", "convert_to"], [210, 2, 1, "", "det"], [210, 2, 1, "", "diag"], [210, 2, 1, "", "diagonal"], [210, 2, 1, "", "eval_poly"], [210, 2, 1, "", "eval_poly_mul"], [210, 2, 1, "", "eye"], [210, 2, 1, "", "from_Matrix"], [210, 2, 1, "", "from_dict_sympy"], [210, 2, 1, "", "from_dod"], [210, 2, 1, "", "from_dod_like"], [210, 2, 1, "", "from_dok"], [210, 2, 1, "", "from_flat_nz"], [210, 2, 1, "", "from_list"], [210, 2, 1, "", "from_list_flat"], [210, 2, 1, "", "from_list_sympy"], [210, 2, 1, "", "from_rep"], [210, 2, 1, "", "hstack"], [210, 2, 1, "", "inv"], [210, 2, 1, "", "inv_den"], [210, 3, 1, "", "is_diagonal"], [210, 3, 1, "", "is_lower"], [210, 3, 1, "", "is_square"], [210, 3, 1, "", "is_upper"], [210, 2, 1, "", "iter_items"], [210, 2, 1, "", "iter_values"], [210, 2, 1, "", "lll"], [210, 2, 1, "", "lll_transform"], [210, 2, 1, "", "lu"], [210, 2, 1, "", "lu_solve"], [210, 2, 1, "", "matmul"], [210, 2, 1, "", "mul"], [210, 2, 1, "", "neg"], [210, 2, 1, "", "nnz"], [210, 2, 1, "", "nullspace"], [210, 2, 1, "", "nullspace_from_rref"], [210, 2, 1, "", "ones"], [210, 2, 1, "", "pow"], [210, 2, 1, "", "primitive"], [210, 2, 1, "", "rowspace"], [210, 2, 1, "", "rref"], [210, 2, 1, "", "rref_den"], [210, 2, 1, "", "scc"], [210, 2, 1, "", "solve_den"], [210, 2, 1, "", "solve_den_charpoly"], [210, 2, 1, "", "solve_den_rref"], [210, 2, 1, "", "sub"], [210, 2, 1, "", "to_Matrix"], [210, 2, 1, "", "to_ddm"], [210, 2, 1, "", "to_dense"], [210, 2, 1, "", "to_dfm"], [210, 2, 1, "", "to_dfm_or_ddm"], [210, 2, 1, "", "to_dod"], [210, 2, 1, "", "to_dok"], [210, 2, 1, "", "to_field"], [210, 2, 1, "", "to_flat_nz"], [210, 2, 1, "", "to_list"], [210, 2, 1, "", "to_list_flat"], [210, 2, 1, "", "to_sdm"], [210, 2, 1, "", "to_sparse"], [210, 2, 1, "", "transpose"], [210, 2, 1, "", "unify"], [210, 2, 1, "", "vstack"], [210, 2, 1, "", "zeros"]], "sympy.polys.matrices.normalforms": [[210, 4, 1, "", "hermite_normal_form"], [210, 4, 1, "", "smith_normal_form"]], "sympy.polys.matrices.sdm": [[210, 1, 1, "", "SDM"], [210, 4, 1, "", "sdm_berk"], [210, 4, 1, "", "sdm_irref"], [210, 4, 1, "", "sdm_nullspace_from_rref"], [210, 4, 1, "", "sdm_particular_from_rref"], [210, 4, 1, "", "sdm_rref_den"]], "sympy.polys.matrices.sdm.SDM": [[210, 2, 1, "", "add"], [210, 2, 1, "", "charpoly"], [210, 2, 1, "", "convert_to"], [210, 2, 1, "", "copy"], [210, 2, 1, "", "det"], [210, 2, 1, "", "diagonal"], [210, 2, 1, "", "eye"], [210, 2, 1, "", "from_ddm"], [210, 2, 1, "", "from_dod"], [210, 2, 1, "", "from_dok"], [210, 2, 1, "", "from_flat_nz"], [210, 2, 1, "", "from_list"], [210, 2, 1, "", "from_list_flat"], [210, 2, 1, "", "hstack"], [210, 2, 1, "", "inv"], [210, 2, 1, "", "is_diagonal"], [210, 2, 1, "", "is_lower"], [210, 2, 1, "", "is_upper"], [210, 2, 1, "", "is_zero_matrix"], [210, 2, 1, "", "iter_items"], [210, 2, 1, "", "iter_values"], [210, 2, 1, "", "lll"], [210, 2, 1, "", "lll_transform"], [210, 2, 1, "", "lu"], [210, 2, 1, "", "lu_solve"], [210, 2, 1, "", "matmul"], [210, 2, 1, "", "mul"], [210, 2, 1, "", "neg"], [210, 2, 1, "", "new"], [210, 2, 1, "", "nnz"], [210, 2, 1, "", "nullspace"], [210, 2, 1, "", "nullspace_from_rref"], [210, 2, 1, "", "rref"], [210, 2, 1, "", "rref_den"], [210, 2, 1, "", "scc"], [210, 2, 1, "", "sub"], [210, 2, 1, "", "to_ddm"], [210, 2, 1, "", "to_dfm"], [210, 2, 1, "", "to_dfm_or_ddm"], [210, 2, 1, "", "to_dod"], [210, 2, 1, "", "to_dok"], [210, 2, 1, "", "to_flat_nz"], [210, 2, 1, "", "to_list"], [210, 2, 1, "", "to_list_flat"], [210, 2, 1, "", "to_sdm"], [210, 2, 1, "", "transpose"], [210, 2, 1, "", "vstack"], [210, 2, 1, "", "zeros"]], "sympy.polys.modulargcd": [[214, 4, 1, "", "_modgcd_multivariate_p"], [214, 4, 1, "", "func_field_modgcd"], [214, 4, 1, "", "modgcd_bivariate"], [214, 4, 1, "", "modgcd_multivariate"], [214, 4, 1, "", "modgcd_univariate"]], "sympy.polys.monomials": [[217, 1, 1, "", "Monomial"], [217, 4, 1, "", "itermonomials"], [217, 4, 1, "", "monomial_count"]], "sympy.polys.monomials.Monomial": [[217, 2, 1, "", "as_expr"], [217, 2, 1, "", "gcd"], [217, 2, 1, "", "lcm"]], "sympy.polys.numberfields": [[216, 0, 0, "-", "modules"], [216, 0, 0, "-", "subfield"]], "sympy.polys.numberfields.basis": [[216, 4, 1, "", "round_two"]], "sympy.polys.numberfields.galoisgroups": [[216, 4, 1, "", "galois_group"]], "sympy.polys.numberfields.minpoly": [[216, 4, 1, "", "minimal_polynomial"], [216, 4, 1, "", "minpoly"]], "sympy.polys.numberfields.modules": [[216, 1, 1, "", "EndomorphismRing"], [216, 1, 1, "", "InnerEndomorphism"], [216, 1, 1, "", "Module"], [216, 1, 1, "", "ModuleElement"], [216, 1, 1, "", "ModuleEndomorphism"], [216, 1, 1, "", "ModuleHomomorphism"], [216, 1, 1, "", "PowerBasis"], [216, 1, 1, "", "PowerBasisElement"], [216, 1, 1, "", "Submodule"], [216, 4, 1, "", "find_min_poly"], [216, 4, 1, "", "make_mod_elt"]], "sympy.polys.numberfields.modules.EndomorphismRing": [[216, 2, 1, "", "__init__"], [216, 2, 1, "", "inner_endomorphism"], [216, 2, 1, "", "represent"]], "sympy.polys.numberfields.modules.InnerEndomorphism": [[216, 2, 1, "", "__init__"]], "sympy.polys.numberfields.modules.Module": [[216, 2, 1, "", "__call__"], [216, 2, 1, "", "ancestors"], [216, 2, 1, "", "basis_elements"], [216, 2, 1, "", "element_from_rational"], [216, 2, 1, "", "endomorphism_ring"], [216, 2, 1, "", "is_compat_col"], [216, 2, 1, "", "mult_tab"], [216, 3, 1, "", "n"], [216, 2, 1, "", "nearest_common_ancestor"], [216, 3, 1, "", "number_field"], [216, 2, 1, "", "one"], [216, 3, 1, "", "parent"], [216, 2, 1, "", "power_basis_ancestor"], [216, 2, 1, "", "represent"], [216, 2, 1, "", "starts_with_unity"], [216, 2, 1, "", "submodule_from_gens"], [216, 2, 1, "", "submodule_from_matrix"], [216, 2, 1, "", "whole_submodule"], [216, 2, 1, "", "zero"]], "sympy.polys.numberfields.modules.ModuleElement": [[216, 3, 1, "", "QQ_col"], [216, 2, 1, "", "__add__"], [216, 2, 1, "", "__init__"], [216, 2, 1, "", "__mod__"], [216, 2, 1, "", "__mul__"], [216, 2, 1, "", "column"], [216, 2, 1, "", "equiv"], [216, 2, 1, "", "from_int_list"], [216, 2, 1, "", "is_compat"], [216, 3, 1, "", "n"], [216, 2, 1, "", "over_power_basis"], [216, 2, 1, "", "reduced"], [216, 2, 1, "", "reduced_mod_p"], [216, 2, 1, "", "to_ancestor"], [216, 2, 1, "", "to_parent"], [216, 2, 1, "", "unify"]], "sympy.polys.numberfields.modules.ModuleEndomorphism": [[216, 2, 1, "", "__init__"]], "sympy.polys.numberfields.modules.ModuleHomomorphism": [[216, 2, 1, "", "__init__"], [216, 2, 1, "", "kernel"], [216, 2, 1, "", "matrix"]], "sympy.polys.numberfields.modules.PowerBasis": [[216, 2, 1, "", "__init__"], [216, 2, 1, "", "element_from_ANP"], [216, 2, 1, "", "element_from_alg_num"], [216, 2, 1, "", "element_from_poly"], [216, 2, 1, "", "represent"]], "sympy.polys.numberfields.modules.PowerBasisElement": [[216, 3, 1, "", "T"], [216, 2, 1, "", "as_expr"], [216, 3, 1, "", "generator"], [216, 3, 1, "", "is_rational"], [216, 2, 1, "", "norm"], [216, 2, 1, "", "numerator"], [216, 2, 1, "", "poly"], [216, 2, 1, "", "to_ANP"], [216, 2, 1, "", "to_alg_num"]], "sympy.polys.numberfields.modules.Submodule": [[216, 3, 1, "", "QQ_matrix"], [216, 2, 1, "", "__init__"], [216, 2, 1, "", "add"], [216, 2, 1, "", "basis_element_pullbacks"], [216, 2, 1, "", "discard_before"], [216, 2, 1, "", "mul"], [216, 2, 1, "", "reduce_element"], [216, 2, 1, "", "reduced"], [216, 2, 1, "", "represent"]], "sympy.polys.numberfields.primes": [[216, 1, 1, "", "PrimeIdeal"], [216, 4, 1, "", "prime_decomp"], [216, 4, 1, "", "prime_valuation"]], "sympy.polys.numberfields.primes.PrimeIdeal": [[216, 2, 1, "", "__add__"], [216, 2, 1, "", "__init__"], [216, 2, 1, "", "__mul__"], [216, 2, 1, "", "as_submodule"], [216, 3, 1, "", "is_inert"], [216, 2, 1, "", "reduce_ANP"], [216, 2, 1, "", "reduce_alg_num"], [216, 2, 1, "", "reduce_element"], [216, 2, 1, "", "repr"], [216, 2, 1, "", "test_factor"], [216, 2, 1, "", "valuation"]], "sympy.polys.numberfields.subfield": [[216, 4, 1, "", "field_isomorphism"], [216, 4, 1, "", "primitive_element"], [216, 4, 1, "", "to_number_field"]], "sympy.polys.numberfields.utilities": [[216, 1, 1, "", "AlgIntPowers"], [216, 4, 1, "", "coeff_search"], [216, 4, 1, "", "extract_fundamental_discriminant"], [216, 4, 1, "", "get_num_denom"], [216, 4, 1, "", "is_int"], [216, 4, 1, "", "is_rat"], [216, 4, 1, "", "isolate"], [216, 4, 1, "", "supplement_a_subspace"]], "sympy.polys.numberfields.utilities.AlgIntPowers": [[216, 2, 1, "", "__init__"]], "sympy.polys.orderings": [[217, 1, 1, "", "GradedLexOrder"], [217, 1, 1, "", "LexOrder"], [217, 1, 1, "", "MonomialOrder"], [217, 1, 1, "", "ReversedGradedLexOrder"]], "sympy.polys.orthopolys": [[217, 4, 1, "", "chebyshevt_poly"], [217, 4, 1, "", "chebyshevu_poly"], [217, 4, 1, "", "gegenbauer_poly"], [217, 4, 1, "", "hermite_poly"], [217, 4, 1, "", "hermite_prob_poly"], [217, 4, 1, "", "jacobi_poly"], [217, 4, 1, "", "laguerre_poly"], [217, 4, 1, "", "legendre_poly"], [217, 4, 1, "", "spherical_bessel_fn"]], "sympy.polys.partfrac": [[217, 4, 1, "", "apart"], [217, 4, 1, "", "apart_list"], [217, 4, 1, "", "assemble_partfrac_list"]], "sympy.polys.polyclasses": [[212, 1, 1, "", "ANP"], [212, 1, 1, "", "DMF"], [212, 1, 1, "", "DMP"]], "sympy.polys.polyclasses.ANP": [[212, 2, 1, "", "LC"], [212, 2, 1, "", "TC"], [212, 2, 1, "", "add_ground"], [212, 2, 1, "", "convert"], [212, 3, 1, "", "is_ground"], [212, 3, 1, "", "is_one"], [212, 3, 1, "", "is_zero"], [212, 2, 1, "", "mod_to_list"], [212, 2, 1, "", "mul_ground"], [212, 2, 1, "", "pow"], [212, 2, 1, "", "quo_ground"], [212, 2, 1, "", "sub_ground"], [212, 2, 1, "", "to_dict"], [212, 2, 1, "", "to_list"], [212, 2, 1, "", "to_sympy_dict"], [212, 2, 1, "", "to_sympy_list"], [212, 2, 1, "", "to_tuple"], [212, 2, 1, "", "unify"], [212, 2, 1, "", "unify_ANP"]], "sympy.polys.polyclasses.DMF": [[212, 2, 1, "", "add"], [212, 2, 1, "", "add_ground"], [212, 2, 1, "", "cancel"], [212, 2, 1, "", "denom"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "frac_unify"], [212, 2, 1, "", "half_per"], [212, 2, 1, "", "invert"], [212, 3, 1, "", "is_one"], [212, 3, 1, "", "is_zero"], [212, 2, 1, "", "mul"], [212, 2, 1, "", "neg"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "per"], [212, 2, 1, "", "poly_unify"], [212, 2, 1, "", "pow"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "sub"]], "sympy.polys.polyclasses.DMP": [[212, 2, 1, "", "LC"], [212, 2, 1, "", "TC"], [212, 2, 1, "", "abs"], [212, 2, 1, "", "add"], [212, 2, 1, "", "add_ground"], [212, 2, 1, "", "all_coeffs"], [212, 2, 1, "", "all_monoms"], [212, 2, 1, "", "all_terms"], [212, 2, 1, "", "cancel"], [212, 2, 1, "", "cauchy_lower_bound"], [212, 2, 1, "", "cauchy_upper_bound"], [212, 2, 1, "", "clear_denoms"], [212, 2, 1, "", "coeffs"], [212, 2, 1, "", "cofactors"], [212, 2, 1, "", "compose"], [212, 2, 1, "", "content"], [212, 2, 1, "", "convert"], [212, 2, 1, "", "count_complex_roots"], [212, 2, 1, "", "count_real_roots"], [212, 2, 1, "", "decompose"], [212, 2, 1, "", "deflate"], [212, 2, 1, "", "degree"], [212, 2, 1, "", "degree_list"], [212, 2, 1, "", "diff"], [212, 2, 1, "", "discriminant"], [212, 2, 1, "", "div"], [212, 2, 1, "", "eject"], [212, 2, 1, "", "eval"], [212, 2, 1, "", "exclude"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "exquo_ground"], [212, 2, 1, "", "factor_list"], [212, 2, 1, "", "factor_list_include"], [212, 2, 1, "", "from_list"], [212, 2, 1, "", "from_sympy_list"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "gff_list"], [212, 2, 1, "", "ground_new"], [212, 2, 1, "", "half_gcdex"], [212, 2, 1, "", "homogeneous_order"], [212, 2, 1, "", "homogenize"], [212, 2, 1, "", "inject"], [212, 2, 1, "", "integrate"], [212, 2, 1, "", "intervals"], [212, 2, 1, "", "invert"], [212, 3, 1, "", "is_cyclotomic"], [212, 3, 1, "", "is_ground"], [212, 3, 1, "", "is_homogeneous"], [212, 3, 1, "", "is_irreducible"], [212, 3, 1, "", "is_linear"], [212, 3, 1, "", "is_monic"], [212, 3, 1, "", "is_monomial"], [212, 3, 1, "", "is_one"], [212, 3, 1, "", "is_primitive"], [212, 3, 1, "", "is_quadratic"], [212, 3, 1, "", "is_sqf"], [212, 3, 1, "", "is_zero"], [212, 2, 1, "", "l1_norm"], [212, 2, 1, "", "l2_norm_squared"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "lift"], [212, 2, 1, "", "max_norm"], [212, 2, 1, "", "mignotte_sep_bound_squared"], [212, 2, 1, "", "monic"], [212, 2, 1, "", "monoms"], [212, 2, 1, "", "mul"], [212, 2, 1, "", "mul_ground"], [212, 2, 1, "", "neg"], [212, 2, 1, "", "norm"], [212, 2, 1, "", "nth"], [212, 2, 1, "", "pdiv"], [212, 2, 1, "", "permute"], [212, 2, 1, "", "pexquo"], [212, 2, 1, "", "pow"], [212, 2, 1, "", "pquo"], [212, 2, 1, "", "prem"], [212, 2, 1, "", "primitive"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "quo_ground"], [212, 2, 1, "", "refine_root"], [212, 2, 1, "", "rem"], [212, 3, 1, "", "rep"], [212, 2, 1, "", "resultant"], [212, 2, 1, "", "revert"], [212, 2, 1, "", "shift"], [212, 2, 1, "", "shift_list"], [212, 2, 1, "", "slice"], [212, 2, 1, "", "sqf_list"], [212, 2, 1, "", "sqf_list_include"], [212, 2, 1, "", "sqf_norm"], [212, 2, 1, "", "sqf_part"], [212, 2, 1, "", "sqr"], [212, 2, 1, "", "sturm"], [212, 2, 1, "", "sub"], [212, 2, 1, "", "sub_ground"], [212, 2, 1, "", "subresultants"], [212, 2, 1, "", "terms"], [212, 2, 1, "", "terms_gcd"], [212, 2, 1, "", "to_best"], [212, 2, 1, "", "to_dict"], [212, 2, 1, "", "to_exact"], [212, 2, 1, "", "to_field"], [212, 2, 1, "", "to_list"], [212, 2, 1, "", "to_ring"], [212, 2, 1, "", "to_sympy_dict"], [212, 2, 1, "", "to_sympy_list"], [212, 2, 1, "", "to_tuple"], [212, 2, 1, "", "total_degree"], [212, 2, 1, "", "transform"], [212, 2, 1, "", "trunc"], [212, 2, 1, "", "unify_DMP"]], "sympy.polys.polyconfig": [[214, 4, 1, "", "setup"]], "sympy.polys.polyerrors": [[214, 1, 1, "", "BasePolynomialError"], [214, 1, 1, "", "CoercionFailed"], [214, 1, 1, "", "ComputationFailed"], [214, 1, 1, "", "DomainError"], [214, 1, 1, "", "EvaluationFailed"], [214, 1, 1, "", "ExactQuotientFailed"], [214, 1, 1, "", "ExtraneousFactors"], [214, 1, 1, "", "FlagError"], [214, 1, 1, "", "GeneratorsError"], [214, 1, 1, "", "GeneratorsNeeded"], [214, 1, 1, "", "HeuristicGCDFailed"], [214, 1, 1, "", "HomomorphismFailed"], [214, 1, 1, "", "IsomorphismFailed"], [214, 1, 1, "", "MultivariatePolynomialError"], [214, 1, 1, "", "NotAlgebraic"], [214, 1, 1, "", "NotInvertible"], [214, 1, 1, "", "NotReversible"], [214, 1, 1, "", "OperationNotSupported"], [214, 1, 1, "", "OptionError"], [214, 1, 1, "", "PolificationFailed"], [214, 1, 1, "", "PolynomialError"], [214, 1, 1, "", "RefinementFailed"], [214, 1, 1, "", "UnificationFailed"], [214, 1, 1, "", "UnivariatePolynomialError"]], "sympy.polys.polyfuncs": [[217, 4, 1, "", "horner"], [217, 4, 1, "", "interpolate"], [217, 4, 1, "", "symmetrize"], [217, 4, 1, "", "viete"]], "sympy.polys.polyoptions": [[214, 1, 1, "", "Options"], [214, 4, 1, "", "build_options"]], "sympy.polys.polyoptions.Options": [[214, 2, 1, "", "clone"]], "sympy.polys.polyroots": [[217, 4, 1, "", "roots"]], "sympy.polys.polytools": [[217, 1, 1, "", "GroebnerBasis"], [217, 4, 1, "", "LC"], [217, 4, 1, "", "LM"], [217, 4, 1, "", "LT"], [217, 1, 1, "", "Poly"], [217, 1, 1, "", "PurePoly"], [217, 4, 1, "", "all_roots"], [217, 4, 1, "", "cancel"], [217, 4, 1, "", "cofactors"], [217, 4, 1, "", "compose"], [217, 4, 1, "", "content"], [217, 4, 1, "", "count_roots"], [217, 4, 1, "", "decompose"], [217, 4, 1, "", "degree"], [217, 4, 1, "", "degree_list"], [217, 4, 1, "", "discriminant"], [217, 4, 1, "", "div"], [217, 4, 1, "", "exquo"], [217, 4, 1, "", "factor"], [217, 4, 1, "", "factor_list"], [217, 4, 1, "", "gcd"], [217, 4, 1, "", "gcd_list"], [217, 4, 1, "", "gcdex"], [217, 4, 1, "", "gff"], [217, 4, 1, "", "gff_list"], [217, 4, 1, "", "groebner"], [217, 4, 1, "", "ground_roots"], [217, 4, 1, "", "half_gcdex"], [217, 4, 1, "", "intervals"], [217, 4, 1, "", "invert"], [217, 4, 1, "", "is_zero_dimensional"], [217, 4, 1, "", "lcm"], [217, 4, 1, "", "lcm_list"], [217, 4, 1, "", "monic"], [217, 4, 1, "", "nroots"], [217, 4, 1, "", "nth_power_roots_poly"], [217, 4, 1, "", "parallel_poly_from_expr"], [217, 4, 1, "", "pdiv"], [217, 4, 1, "", "pexquo"], [217, 4, 1, "", "poly"], [217, 4, 1, "", "poly_from_expr"], [217, 4, 1, "", "pquo"], [217, 4, 1, "", "prem"], [217, 4, 1, "", "primitive"], [217, 4, 1, "", "quo"], [217, 4, 1, "", "real_roots"], [217, 4, 1, "", "reduced"], [217, 4, 1, "", "refine_root"], [217, 4, 1, "", "rem"], [217, 4, 1, "", "resultant"], [217, 4, 1, "", "sqf"], [217, 4, 1, "", "sqf_list"], [217, 4, 1, "", "sqf_norm"], [217, 4, 1, "", "sqf_part"], [217, 4, 1, "", "sturm"], [217, 4, 1, "", "subresultants"], [217, 4, 1, "", "terms_gcd"], [217, 4, 1, "", "trunc"]], "sympy.polys.polytools.GroebnerBasis": [[217, 2, 1, "", "contains"], [217, 2, 1, "", "fglm"], [217, 3, 1, "", "is_zero_dimensional"], [217, 2, 1, "", "reduce"]], "sympy.polys.polytools.Poly": [[217, 2, 1, "", "EC"], [217, 2, 1, "", "EM"], [217, 2, 1, "", "ET"], [217, 2, 1, "", "LC"], [217, 2, 1, "", "LM"], [217, 2, 1, "", "LT"], [217, 2, 1, "", "TC"], [217, 2, 1, "", "abs"], [217, 2, 1, "", "add"], [217, 2, 1, "", "add_ground"], [217, 2, 1, "", "all_coeffs"], [217, 2, 1, "", "all_monoms"], [217, 2, 1, "", "all_roots"], [217, 2, 1, "", "all_terms"], [217, 2, 1, "", "as_dict"], [217, 2, 1, "", "as_expr"], [217, 2, 1, "", "as_list"], [217, 2, 1, "", "as_poly"], [217, 2, 1, "", "cancel"], [217, 2, 1, "", "clear_denoms"], [217, 2, 1, "", "coeff_monomial"], [217, 2, 1, "", "coeffs"], [217, 2, 1, "", "cofactors"], [217, 2, 1, "", "compose"], [217, 2, 1, "", "content"], [217, 2, 1, "", "count_roots"], [217, 2, 1, "", "decompose"], [217, 2, 1, "", "deflate"], [217, 2, 1, "", "degree"], [217, 2, 1, "", "degree_list"], [217, 2, 1, "", "diff"], [217, 2, 1, "", "discriminant"], [217, 2, 1, "", "dispersion"], [217, 2, 1, "", "dispersionset"], [217, 2, 1, "", "div"], [217, 3, 1, "", "domain"], [217, 2, 1, "", "eject"], [217, 2, 1, "", "eval"], [217, 2, 1, "", "exclude"], [217, 2, 1, "", "exquo"], [217, 2, 1, "", "exquo_ground"], [217, 2, 1, "", "factor_list"], [217, 2, 1, "", "factor_list_include"], [217, 3, 1, "", "free_symbols"], [217, 3, 1, "", "free_symbols_in_domain"], [217, 2, 1, "", "from_dict"], [217, 2, 1, "", "from_expr"], [217, 2, 1, "", "from_list"], [217, 2, 1, "", "from_poly"], [217, 2, 1, "", "galois_group"], [217, 2, 1, "", "gcd"], [217, 2, 1, "", "gcdex"], [217, 3, 1, "", "gen"], [217, 2, 1, "", "get_domain"], [217, 2, 1, "", "get_modulus"], [217, 2, 1, "", "gff_list"], [217, 2, 1, "", "ground_roots"], [217, 2, 1, "", "half_gcdex"], [217, 2, 1, "", "has_only_gens"], [217, 2, 1, "", "homogeneous_order"], [217, 2, 1, "", "homogenize"], [217, 2, 1, "", "inject"], [217, 2, 1, "", "integrate"], [217, 2, 1, "", "intervals"], [217, 2, 1, "", "invert"], [217, 3, 1, "", "is_cyclotomic"], [217, 3, 1, "", "is_ground"], [217, 3, 1, "", "is_homogeneous"], [217, 3, 1, "", "is_irreducible"], [217, 3, 1, "", "is_linear"], [217, 3, 1, "", "is_monic"], [217, 3, 1, "", "is_monomial"], [217, 3, 1, "", "is_multivariate"], [217, 3, 1, "", "is_one"], [217, 3, 1, "", "is_primitive"], [217, 3, 1, "", "is_quadratic"], [217, 3, 1, "", "is_sqf"], [217, 3, 1, "", "is_univariate"], [217, 3, 1, "", "is_zero"], [217, 2, 1, "", "l1_norm"], [217, 2, 1, "", "lcm"], [217, 2, 1, "", "length"], [217, 2, 1, "", "lift"], [217, 2, 1, "", "ltrim"], [217, 2, 1, "", "make_monic_over_integers_by_scaling_roots"], [217, 2, 1, "", "match"], [217, 2, 1, "", "max_norm"], [217, 2, 1, "", "monic"], [217, 2, 1, "", "monoms"], [217, 2, 1, "", "mul"], [217, 2, 1, "", "mul_ground"], [217, 2, 1, "", "neg"], [217, 2, 1, "", "new"], [217, 2, 1, "", "norm"], [217, 2, 1, "", "nroots"], [217, 2, 1, "", "nth"], [217, 2, 1, "", "nth_power_roots_poly"], [217, 3, 1, "", "one"], [217, 2, 1, "", "pdiv"], [217, 2, 1, "", "per"], [217, 2, 1, "", "pexquo"], [217, 2, 1, "", "pow"], [217, 2, 1, "", "pquo"], [217, 2, 1, "", "prem"], [217, 2, 1, "", "primitive"], [217, 2, 1, "", "quo"], [217, 2, 1, "", "quo_ground"], [217, 2, 1, "", "rat_clear_denoms"], [217, 2, 1, "", "real_roots"], [217, 2, 1, "", "refine_root"], [217, 2, 1, "", "rem"], [217, 2, 1, "", "reorder"], [217, 2, 1, "", "replace"], [217, 2, 1, "", "resultant"], [217, 2, 1, "", "retract"], [217, 2, 1, "", "revert"], [217, 2, 1, "", "root"], [217, 2, 1, "", "same_root"], [217, 2, 1, "", "set_domain"], [217, 2, 1, "", "set_modulus"], [217, 2, 1, "", "shift"], [217, 2, 1, "", "shift_list"], [217, 2, 1, "", "slice"], [217, 2, 1, "", "sqf_list"], [217, 2, 1, "", "sqf_list_include"], [217, 2, 1, "", "sqf_norm"], [217, 2, 1, "", "sqf_part"], [217, 2, 1, "", "sqr"], [217, 2, 1, "", "sturm"], [217, 2, 1, "", "sub"], [217, 2, 1, "", "sub_ground"], [217, 2, 1, "", "subresultants"], [217, 2, 1, "", "terms"], [217, 2, 1, "", "terms_gcd"], [217, 2, 1, "", "termwise"], [217, 2, 1, "", "to_exact"], [217, 2, 1, "", "to_field"], [217, 2, 1, "", "to_ring"], [217, 2, 1, "", "total_degree"], [217, 2, 1, "", "transform"], [217, 2, 1, "", "trunc"], [217, 2, 1, "", "unify"], [217, 3, 1, "", "unit"], [217, 3, 1, "", "zero"]], "sympy.polys.polytools.PurePoly": [[217, 3, 1, "", "free_symbols"]], "sympy.polys.rationaltools": [[217, 4, 1, "", "together"]], "sympy.polys.ring_series": [[218, 4, 1, "", "_tan1"], [218, 4, 1, "", "mul_xin"], [218, 4, 1, "", "pow_xin"], [218, 4, 1, "", "rs_LambertW"], [218, 4, 1, "", "rs_asin"], [218, 4, 1, "", "rs_atan"], [218, 4, 1, "", "rs_atanh"], [218, 4, 1, "", "rs_compose_add"], [218, 4, 1, "", "rs_cos"], [218, 4, 1, "", "rs_cos_sin"], [218, 4, 1, "", "rs_cosh"], [218, 4, 1, "", "rs_cot"], [218, 4, 1, "", "rs_diff"], [218, 4, 1, "", "rs_exp"], [218, 4, 1, "", "rs_fun"], [218, 4, 1, "", "rs_hadamard_exp"], [218, 4, 1, "", "rs_integrate"], [218, 4, 1, "", "rs_is_puiseux"], [218, 4, 1, "", "rs_log"], [218, 4, 1, "", "rs_mul"], [218, 4, 1, "", "rs_newton"], [218, 4, 1, "", "rs_nth_root"], [218, 4, 1, "", "rs_pow"], [218, 4, 1, "", "rs_puiseux"], [218, 4, 1, "", "rs_puiseux2"], [218, 4, 1, "", "rs_series_from_list"], [218, 4, 1, "", "rs_series_inversion"], [218, 4, 1, "", "rs_series_reversion"], [218, 4, 1, "", "rs_sin"], [218, 4, 1, "", "rs_sinh"], [218, 4, 1, "", "rs_square"], [218, 4, 1, "", "rs_subs"], [218, 4, 1, "", "rs_tan"], [218, 4, 1, "", "rs_tanh"], [218, 4, 1, "", "rs_trunc"]], "sympy.polys.rings": [[212, 1, 1, "", "PolyElement"], [212, 1, 1, "", "PolyRing"], [212, 4, 1, "", "ring"], [212, 4, 1, "", "sring"], [212, 4, 1, "", "vring"], [212, 4, 1, "", "xring"]], "sympy.polys.rings.PolyElement": [[212, 2, 1, "", "almosteq"], [212, 2, 1, "", "cancel"], [212, 2, 1, "", "coeff"], [212, 2, 1, "", "coeff_wrt"], [212, 2, 1, "", "coeffs"], [212, 2, 1, "", "const"], [212, 2, 1, "", "content"], [212, 2, 1, "", "copy"], [212, 2, 1, "", "degree"], [212, 2, 1, "", "degrees"], [212, 2, 1, "", "diff"], [212, 2, 1, "", "div"], [212, 2, 1, "", "imul_num"], [212, 2, 1, "", "itercoeffs"], [212, 2, 1, "", "itermonoms"], [212, 2, 1, "", "iterterms"], [212, 2, 1, "", "leading_expv"], [212, 2, 1, "", "leading_monom"], [212, 2, 1, "", "leading_term"], [212, 2, 1, "", "listcoeffs"], [212, 2, 1, "", "listmonoms"], [212, 2, 1, "", "listterms"], [212, 2, 1, "", "monic"], [212, 2, 1, "", "monoms"], [212, 2, 1, "", "pdiv"], [212, 2, 1, "", "pexquo"], [212, 2, 1, "", "pquo"], [212, 2, 1, "", "prem"], [212, 2, 1, "", "primitive"], [212, 2, 1, "", "square"], [212, 2, 1, "", "strip_zero"], [212, 2, 1, "", "subresultants"], [212, 2, 1, "", "symmetrize"], [212, 2, 1, "", "tail_degree"], [212, 2, 1, "", "tail_degrees"], [212, 2, 1, "", "terms"]], "sympy.polys.rings.PolyRing": [[212, 2, 1, "", "add"], [212, 2, 1, "", "add_gens"], [212, 2, 1, "", "compose"], [212, 2, 1, "", "drop"], [212, 2, 1, "", "drop_to_ground"], [212, 2, 1, "", "index"], [212, 2, 1, "", "monomial_basis"], [212, 2, 1, "", "mul"], [212, 2, 1, "", "symmetric_poly"]], "sympy.polys.rootoftools": [[217, 1, 1, "", "ComplexRootOf"], [217, 1, 1, "", "RootOf"], [217, 1, 1, "", "RootSum"], [217, 4, 1, "", "rootof"]], "sympy.polys.rootoftools.ComplexRootOf": [[217, 2, 1, "", "_all_roots"], [217, 2, 1, "", "_complexes_index"], [217, 2, 1, "", "_complexes_sorted"], [217, 2, 1, "", "_count_roots"], [217, 2, 1, "", "_ensure_complexes_init"], [217, 2, 1, "", "_ensure_reals_init"], [217, 2, 1, "", "_eval_evalf"], [217, 2, 1, "", "_eval_is_imaginary"], [217, 2, 1, "", "_eval_is_real"], [217, 2, 1, "", "_get_complexes"], [217, 2, 1, "", "_get_complexes_sqf"], [217, 2, 1, "", "_get_interval"], [217, 2, 1, "", "_get_reals"], [217, 2, 1, "", "_get_reals_sqf"], [217, 2, 1, "", "_get_roots"], [217, 2, 1, "", "_indexed_root"], [217, 2, 1, "", "_new"], [217, 2, 1, "", "_postprocess_root"], [217, 2, 1, "", "_preprocess_roots"], [217, 2, 1, "", "_real_roots"], [217, 2, 1, "", "_reals_index"], [217, 2, 1, "", "_reals_sorted"], [217, 2, 1, "", "_refine_complexes"], [217, 2, 1, "", "_reset"], [217, 2, 1, "", "_roots_trivial"], [217, 2, 1, "", "_set_interval"], [217, 2, 1, "", "all_roots"], [217, 2, 1, "", "clear_cache"], [217, 2, 1, "", "eval_approx"], [217, 2, 1, "", "eval_rational"], [217, 2, 1, "", "real_roots"]], "sympy.polys.rootoftools.RootSum": [[217, 2, 1, "", "new"]], "sympy.polys.solvers": [[219, 4, 1, "", "_solve_lin_sys"], [219, 4, 1, "", "_solve_lin_sys_component"], [219, 4, 1, "", "eqs_to_matrix"], [219, 4, 1, "", "solve_lin_sys"], [219, 4, 1, "", "sympy_eqs_to_ring"]], "sympy.polys.specialpolys": [[217, 4, 1, "", "cyclotomic_poly"], [217, 4, 1, "", "interpolating_poly"], [217, 4, 1, "", "random_poly"], [217, 4, 1, "", "swinnerton_dyer_poly"], [217, 4, 1, "", "symmetric_poly"]], "sympy.polys.sqfreetools": [[214, 4, 1, "", "dmp_gf_sqf_list"], [214, 4, 1, "", "dmp_gf_sqf_part"], [214, 4, 1, "", "dmp_gff_list"], [214, 4, 1, "", "dmp_norm"], [214, 4, 1, "", "dmp_sqf_list"], [214, 4, 1, "", "dmp_sqf_list_include"], [214, 4, 1, "", "dmp_sqf_norm"], [214, 4, 1, "", "dmp_sqf_p"], [214, 4, 1, "", "dmp_sqf_part"], [214, 4, 1, "", "dup_gf_sqf_list"], [214, 4, 1, "", "dup_gf_sqf_part"], [214, 4, 1, "", "dup_gff_list"], [214, 4, 1, "", "dup_sqf_list"], [214, 4, 1, "", "dup_sqf_list_include"], [214, 4, 1, "", "dup_sqf_norm"], [214, 4, 1, "", "dup_sqf_p"], [214, 4, 1, "", "dup_sqf_part"]], "sympy.printing": [[221, 0, 0, "-", "aesaracode"], [221, 0, 0, "-", "c"], [221, 0, 0, "-", "codeprinter"], [221, 0, 0, "-", "conventions"], [221, 0, 0, "-", "cxx"], [221, 0, 0, "-", "fortran"], [221, 0, 0, "-", "gtk"], [221, 0, 0, "-", "jscode"], [221, 0, 0, "-", "julia"], [221, 0, 0, "-", "lambdarepr"], [221, 0, 0, "-", "latex"], [221, 0, 0, "-", "maple"], [221, 0, 0, "-", "mathematica"], [221, 0, 0, "-", "mathml"], [221, 0, 0, "-", "octave"], [221, 0, 0, "-", "precedence"], [221, 0, 0, "-", "pretty"], [221, 0, 0, "-", "preview"], [221, 0, 0, "-", "printer"], [221, 0, 0, "-", "pycode"], [221, 0, 0, "-", "python"], [221, 0, 0, "-", "rcode"], [221, 0, 0, "-", "repr"], [221, 0, 0, "-", "rust"], [221, 0, 0, "-", "smtlib"], [221, 0, 0, "-", "str"], [221, 0, 0, "-", "tree"]], "sympy.printing.aesaracode": [[221, 1, 1, "", "AesaraPrinter"], [221, 4, 1, "", "aesara_code"], [221, 4, 1, "", "aesara_function"], [221, 4, 1, "", "dim_handling"]], "sympy.printing.aesaracode.AesaraPrinter": [[221, 2, 1, "", "doprint"], [221, 5, 1, "", "printmethod"]], "sympy.printing.c": [[221, 1, 1, "", "C89CodePrinter"], [221, 1, 1, "", "C99CodePrinter"], [221, 4, 1, "", "ccode"], [221, 6, 1, "", "known_functions_C89"], [221, 6, 1, "", "known_functions_C99"], [221, 4, 1, "", "print_ccode"]], "sympy.printing.c.C89CodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.c.C99CodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.codeprinter": [[221, 7, 1, "", "AssignmentError"], [221, 1, 1, "", "CodePrinter"], [221, 4, 1, "", "cxxcode"]], "sympy.printing.codeprinter.CodePrinter": [[221, 2, 1, "", "doprint"], [221, 5, 1, "", "printmethod"]], "sympy.printing.conventions": [[221, 4, 1, "", "split_super_sub"]], "sympy.printing.cxx": [[221, 1, 1, "", "CXX11CodePrinter"], [221, 1, 1, "", "CXX98CodePrinter"]], "sympy.printing.cxx.CXX11CodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.cxx.CXX98CodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.dot": [[221, 4, 1, "", "dotprint"]], "sympy.printing.fortran": [[221, 1, 1, "", "FCodePrinter"], [221, 4, 1, "", "fcode"], [221, 4, 1, "", "print_fcode"]], "sympy.printing.fortran.FCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.gtk": [[221, 4, 1, "", "print_gtk"]], "sympy.printing.jscode": [[221, 1, 1, "", "JavascriptCodePrinter"], [221, 4, 1, "", "jscode"], [221, 6, 1, "", "known_functions"]], "sympy.printing.jscode.JavascriptCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.julia": [[221, 1, 1, "", "JuliaCodePrinter"], [221, 4, 1, "", "julia_code"], [221, 6, 1, "", "known_fcns_src1"], [221, 6, 1, "", "known_fcns_src2"]], "sympy.printing.julia.JuliaCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.lambdarepr": [[221, 1, 1, "", "LambdaPrinter"], [221, 4, 1, "", "lambdarepr"]], "sympy.printing.lambdarepr.LambdaPrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.latex": [[221, 1, 1, "", "LatexPrinter"], [221, 6, 1, "", "accepted_latex_functions"], [221, 4, 1, "", "latex"], [221, 4, 1, "", "print_latex"]], "sympy.printing.latex.LatexPrinter": [[221, 2, 1, "", "parenthesize_super"], [221, 5, 1, "", "printmethod"]], "sympy.printing.maple": [[221, 1, 1, "", "MapleCodePrinter"], [221, 4, 1, "", "maple_code"], [221, 4, 1, "", "print_maple_code"]], "sympy.printing.maple.MapleCodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.mathematica": [[221, 1, 1, "", "MCodePrinter"], [221, 6, 1, "", "known_functions"], [221, 4, 1, "", "mathematica_code"]], "sympy.printing.mathematica.MCodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.mathml": [[221, 1, 1, "", "MathMLContentPrinter"], [221, 1, 1, "", "MathMLPresentationPrinter"], [221, 1, 1, "", "MathMLPrinterBase"], [221, 4, 1, "", "mathml"], [221, 4, 1, "", "print_mathml"]], "sympy.printing.mathml.MathMLContentPrinter": [[221, 2, 1, "", "mathml_tag"], [221, 5, 1, "", "printmethod"]], "sympy.printing.mathml.MathMLPresentationPrinter": [[221, 2, 1, "", "mathml_tag"], [221, 5, 1, "", "printmethod"]], "sympy.printing.mathml.MathMLPrinterBase": [[221, 2, 1, "", "doprint"]], "sympy.printing.octave": [[221, 1, 1, "", "OctaveCodePrinter"], [221, 6, 1, "", "known_fcns_src1"], [221, 6, 1, "", "known_fcns_src2"], [221, 4, 1, "", "octave_code"]], "sympy.printing.octave.OctaveCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.precedence": [[221, 6, 1, "", "PRECEDENCE"], [221, 6, 1, "", "PRECEDENCE_FUNCTIONS"], [221, 6, 1, "", "PRECEDENCE_VALUES"], [221, 4, 1, "", "precedence"]], "sympy.printing.pretty": [[221, 0, 0, "-", "pretty"], [221, 0, 0, "-", "pretty_symbology"], [221, 0, 0, "-", "stringpict"]], "sympy.printing.pretty.pretty": [[221, 1, 1, "", "PrettyPrinter"], [221, 4, 1, "", "pretty"], [221, 4, 1, "", "pretty_print"]], "sympy.printing.pretty.pretty.PrettyPrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.pretty.pretty_symbology": [[221, 4, 1, "", "G"], [221, 4, 1, "", "U"], [221, 4, 1, "", "VF"], [221, 4, 1, "", "annotated"], [221, 6, 1, "", "atoms_table"], [221, 6, 1, "", "digit_2txt"], [221, 6, 1, "", "frac"], [221, 4, 1, "", "g"], [221, 6, 1, "", "greek_letters"], [221, 4, 1, "", "hobj"], [221, 4, 1, "", "pretty_atom"], [221, 4, 1, "", "pretty_symbol"], [221, 4, 1, "", "pretty_try_use_unicode"], [221, 4, 1, "", "pretty_use_unicode"], [221, 6, 1, "", "root"], [221, 6, 1, "", "sub"], [221, 6, 1, "", "sup"], [221, 6, 1, "", "symb_2txt"], [221, 4, 1, "", "vobj"], [221, 4, 1, "", "xobj"], [221, 4, 1, "", "xstr"], [221, 4, 1, "", "xsym"]], "sympy.printing.pretty.stringpict": [[221, 1, 1, "", "prettyForm"], [221, 1, 1, "", "stringPict"]], "sympy.printing.pretty.stringpict.prettyForm": [[221, 2, 1, "", "apply"]], "sympy.printing.pretty.stringpict.stringPict": [[221, 2, 1, "", "above"], [221, 2, 1, "", "below"], [221, 2, 1, "", "height"], [221, 2, 1, "", "left"], [221, 2, 1, "", "leftslash"], [221, 2, 1, "", "next"], [221, 2, 1, "", "parens"], [221, 2, 1, "", "render"], [221, 2, 1, "", "right"], [221, 2, 1, "", "root"], [221, 2, 1, "", "stack"], [221, 2, 1, "", "terminal_width"], [221, 2, 1, "", "width"]], "sympy.printing.preview": [[221, 4, 1, "", "preview"]], "sympy.printing.printer": [[221, 1, 1, "", "Printer"]], "sympy.printing.printer.Printer": [[221, 2, 1, "", "_print"], [221, 2, 1, "", "doprint"], [221, 5, 1, "", "printmethod"], [221, 2, 1, "", "set_global_settings"]], "sympy.printing.pycode": [[221, 1, 1, "", "MpmathPrinter"], [221, 4, 1, "", "pycode"]], "sympy.printing.rcode": [[221, 1, 1, "", "RCodePrinter"], [221, 6, 1, "", "known_functions"], [221, 4, 1, "", "print_rcode"], [221, 4, 1, "", "rcode"]], "sympy.printing.rcode.RCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.repr": [[221, 1, 1, "", "ReprPrinter"], [221, 4, 1, "", "srepr"]], "sympy.printing.repr.ReprPrinter": [[221, 2, 1, "", "emptyPrinter"], [221, 5, 1, "", "printmethod"], [221, 2, 1, "", "reprify"]], "sympy.printing.rust": [[221, 1, 1, "", "RustCodePrinter"], [221, 6, 1, "", "known_functions"], [221, 4, 1, "", "rust_code"]], "sympy.printing.rust.RustCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.smtlib": [[221, 1, 1, "", "SMTLibPrinter"], [221, 4, 1, "", "smtlib_code"]], "sympy.printing.smtlib.SMTLibPrinter": [[221, 5, 1, "", "_default_settings"], [221, 5, 1, "", "printmethod"]], "sympy.printing.str": [[221, 1, 1, "", "StrPrinter"], [221, 4, 1, "", "sstr"], [221, 4, 1, "", "sstrrepr"]], "sympy.printing.str.StrPrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.tree": [[221, 4, 1, "", "pprint_nodes"], [221, 4, 1, "", "print_node"], [221, 4, 1, "", "print_tree"], [221, 4, 1, "", "tree"]], "sympy.series.acceleration": [[228, 4, 1, "", "richardson"], [228, 4, 1, "", "shanks"]], "sympy.series.formal": [[223, 1, 1, "", "FiniteFormalPowerSeries"], [223, 1, 1, "", "FormalPowerSeries"], [223, 1, 1, "", "FormalPowerSeriesCompose"], [223, 1, 1, "", "FormalPowerSeriesInverse"], [223, 1, 1, "", "FormalPowerSeriesProduct"], [223, 4, 1, "", "compute_fps"], [223, 4, 1, "", "exp_re"], [223, 4, 1, "", "fps"], [223, 4, 1, "", "hyper_algorithm"], [223, 4, 1, "", "hyper_re"], [223, 4, 1, "", "rational_algorithm"], [223, 4, 1, "", "rational_independent"], [223, 4, 1, "", "rsolve_hypergeometric"], [223, 4, 1, "", "simpleDE"], [223, 4, 1, "", "solve_de"]], "sympy.series.formal.FormalPowerSeries": [[223, 2, 1, "", "coeff_bell"], [223, 2, 1, "", "compose"], [223, 3, 1, "", "infinite"], [223, 2, 1, "", "integrate"], [223, 2, 1, "", "inverse"], [223, 2, 1, "", "polynomial"], [223, 2, 1, "", "product"], [223, 2, 1, "", "truncate"]], "sympy.series.formal.FormalPowerSeriesCompose": [[223, 3, 1, "", "function"]], "sympy.series.formal.FormalPowerSeriesInverse": [[223, 3, 1, "", "function"]], "sympy.series.formal.FormalPowerSeriesProduct": [[223, 3, 1, "", "function"]], "sympy.series.fourier": [[224, 1, 1, "", "FourierSeries"], [224, 4, 1, "", "fourier_series"]], "sympy.series.fourier.FourierSeries": [[224, 2, 1, "", "scale"], [224, 2, 1, "", "scalex"], [224, 2, 1, "", "shift"], [224, 2, 1, "", "shiftx"], [224, 2, 1, "", "sigma_approximation"], [224, 2, 1, "", "truncate"]], "sympy.series.gruntz": [[228, 1, 1, "", "SubsSet"], [228, 4, 1, "", "build_expression_tree"], [228, 4, 1, "", "calculate_series"], [228, 4, 1, "", "compare"], [228, 4, 1, "", "gruntz"], [228, 4, 1, "", "limitinf"], [228, 4, 1, "", "mrv"], [228, 4, 1, "", "mrv_leadterm"], [228, 4, 1, "", "mrv_max1"], [228, 4, 1, "", "mrv_max3"], [228, 4, 1, "", "rewrite"], [228, 4, 1, "", "sign"]], "sympy.series.gruntz.SubsSet": [[228, 2, 1, "", "copy"], [228, 2, 1, "", "do_subs"], [228, 2, 1, "", "meets"], [228, 2, 1, "", "union"]], "sympy.series.limits": [[228, 1, 1, "", "Limit"], [228, 4, 1, "", "limit"]], "sympy.series.limits.Limit": [[228, 2, 1, "", "doit"]], "sympy.series.limitseq": [[226, 4, 1, "", "difference_delta"], [226, 4, 1, "", "dominant"], [226, 4, 1, "", "limit_seq"]], "sympy.series.order": [[228, 1, 1, "", "Order"]], "sympy.series.order.Order": [[228, 2, 1, "", "contains"]], "sympy.series.residues": [[228, 4, 1, "", "residue"]], "sympy.series.sequences": [[227, 1, 1, "", "EmptySequence"], [227, 1, 1, "", "RecursiveSeq"], [227, 1, 1, "", "SeqAdd"], [227, 1, 1, "", "SeqBase"], [227, 1, 1, "", "SeqFormula"], [227, 1, 1, "", "SeqMul"], [227, 1, 1, "", "SeqPer"], [227, 4, 1, "", "sequence"]], "sympy.series.sequences.EmptySequence": [[227, 2, 1, "", "coeff_mul"]], "sympy.series.sequences.RecursiveSeq": [[227, 3, 1, "", "initial"], [227, 3, 1, "", "interval"], [227, 3, 1, "", "n"], [227, 3, 1, "", "recurrence"], [227, 3, 1, "", "start"], [227, 3, 1, "", "stop"], [227, 3, 1, "", "y"], [227, 3, 1, "", "yn"]], "sympy.series.sequences.SeqAdd": [[227, 2, 1, "", "reduce"]], "sympy.series.sequences.SeqBase": [[227, 2, 1, "", "coeff"], [227, 2, 1, "", "coeff_mul"], [227, 2, 1, "", "find_linear_recurrence"], [227, 3, 1, "", "free_symbols"], [227, 3, 1, "", "gen"], [227, 3, 1, "", "interval"], [227, 3, 1, "", "length"], [227, 3, 1, "", "start"], [227, 3, 1, "", "stop"], [227, 3, 1, "", "variables"]], "sympy.series.sequences.SeqFormula": [[227, 2, 1, "", "coeff_mul"]], "sympy.series.sequences.SeqMul": [[227, 2, 1, "", "reduce"]], "sympy.series.sequences.SeqPer": [[227, 2, 1, "", "coeff_mul"]], "sympy.series.series": [[228, 4, 1, "", "series"]], "sympy.sets": [[229, 0, 0, "-", "conditionset"], [229, 0, 0, "-", "fancysets"], [229, 0, 0, "-", "powerset"], [229, 0, 0, "-", "sets"]], "sympy.sets.conditionset": [[229, 1, 1, "", "ConditionSet"], [229, 1, 1, "", "Contains"], [229, 1, 1, "", "SetKind"]], "sympy.sets.fancysets": [[229, 1, 1, "", "CartesianComplexRegion"], [229, 1, 1, "", "ComplexRegion"], [229, 1, 1, "", "Complexes"], [229, 1, 1, "", "ImageSet"], [229, 1, 1, "", "Integers"], [229, 1, 1, "", "Naturals"], [229, 1, 1, "", "Naturals0"], [229, 1, 1, "", "PolarComplexRegion"], [229, 1, 1, "", "Range"], [229, 1, 1, "", "Rationals"], [229, 1, 1, "", "Reals"], [229, 4, 1, "", "normalize_theta_set"]], "sympy.sets.fancysets.ComplexRegion": [[229, 3, 1, "", "a_interval"], [229, 3, 1, "", "b_interval"], [229, 2, 1, "", "from_real"], [229, 3, 1, "", "psets"], [229, 3, 1, "", "sets"]], "sympy.sets.fancysets.Range": [[229, 2, 1, "", "as_relational"], [229, 3, 1, "", "reversed"]], "sympy.sets.powerset": [[229, 1, 1, "", "PowerSet"]], "sympy.sets.sets": [[229, 1, 1, "", "Complement"], [229, 1, 1, "", "DisjointUnion"], [229, 1, 1, "", "EmptySet"], [229, 1, 1, "", "FiniteSet"], [229, 1, 1, "", "Intersection"], [229, 1, 1, "", "Interval"], [229, 1, 1, "", "ProductSet"], [229, 1, 1, "", "Set"], [229, 1, 1, "", "SymmetricDifference"], [229, 1, 1, "", "Union"], [229, 1, 1, "", "UniversalSet"], [229, 4, 1, "", "imageset"]], "sympy.sets.sets.Complement": [[229, 2, 1, "", "as_relational"], [229, 2, 1, "", "reduce"]], "sympy.sets.sets.FiniteSet": [[229, 2, 1, "", "as_relational"]], "sympy.sets.sets.Intersection": [[229, 2, 1, "", "as_relational"]], "sympy.sets.sets.Interval": [[229, 2, 1, "", "Lopen"], [229, 2, 1, "", "Ropen"], [229, 2, 1, "", "as_relational"], [229, 3, 1, "", "end"], [229, 3, 1, "", "is_left_unbounded"], [229, 3, 1, "", "is_right_unbounded"], [229, 3, 1, "", "left_open"], [229, 2, 1, "", "open"], [229, 3, 1, "", "right_open"], [229, 3, 1, "", "start"]], "sympy.sets.sets.ProductSet": [[229, 3, 1, "", "is_iterable"]], "sympy.sets.sets.Set": [[229, 3, 1, "", "boundary"], [229, 3, 1, "", "closure"], [229, 2, 1, "", "complement"], [229, 2, 1, "", "contains"], [229, 3, 1, "", "inf"], [229, 3, 1, "", "interior"], [229, 2, 1, "", "intersect"], [229, 2, 1, "", "intersection"], [229, 3, 1, "", "is_closed"], [229, 2, 1, "", "is_disjoint"], [229, 3, 1, "", "is_open"], [229, 2, 1, "", "is_proper_subset"], [229, 2, 1, "", "is_proper_superset"], [229, 2, 1, "", "is_subset"], [229, 2, 1, "", "is_superset"], [229, 2, 1, "", "isdisjoint"], [229, 2, 1, "", "issubset"], [229, 2, 1, "", "issuperset"], [229, 3, 1, "", "kind"], [229, 3, 1, "", "measure"], [229, 2, 1, "", "powerset"], [229, 3, 1, "", "sup"], [229, 2, 1, "", "symmetric_difference"], [229, 2, 1, "", "union"]], "sympy.sets.sets.SymmetricDifference": [[229, 2, 1, "", "as_relational"]], "sympy.sets.sets.Union": [[229, 2, 1, "", "as_relational"]], "sympy.simplify": [[233, 0, 0, "-", "combsimp"], [233, 0, 0, "-", "cse_main"], [233, 0, 0, "-", "epathtools"], [230, 0, 0, "-", "fu"], [233, 0, 0, "-", "hyperexpand"], [231, 0, 0, "-", "hyperexpand_doc"], [233, 0, 0, "-", "powsimp"], [233, 0, 0, "-", "radsimp"], [233, 0, 0, "-", "ratsimp"], [16, 0, 0, "-", "simplify"], [233, 0, 0, "-", "sqrtdenest"], [233, 0, 0, "-", "trigsimp"]], "sympy.simplify.combsimp": [[233, 4, 1, "", "combsimp"]], "sympy.simplify.cse_main": [[233, 4, 1, "", "cse"], [233, 4, 1, "", "opt_cse"], [233, 4, 1, "", "tree_cse"]], "sympy.simplify.epathtools": [[233, 1, 1, "", "EPath"], [233, 4, 1, "", "epath"]], "sympy.simplify.epathtools.EPath": [[233, 2, 1, "", "apply"], [233, 2, 1, "", "select"]], "sympy.simplify.fu": [[230, 4, 1, "", "TR0"], [230, 4, 1, "", "TR1"], [230, 4, 1, "", "TR10"], [230, 4, 1, "", "TR10i"], [230, 4, 1, "", "TR11"], [230, 4, 1, "", "TR111"], [230, 4, 1, "", "TR12"], [230, 4, 1, "", "TR12i"], [230, 4, 1, "", "TR13"], [230, 4, 1, "", "TR14"], [230, 4, 1, "", "TR15"], [230, 4, 1, "", "TR16"], [230, 4, 1, "", "TR2"], [230, 4, 1, "", "TR22"], [230, 4, 1, "", "TR2i"], [230, 4, 1, "", "TR3"], [230, 4, 1, "", "TR4"], [230, 4, 1, "", "TR5"], [230, 4, 1, "", "TR6"], [230, 4, 1, "", "TR7"], [230, 4, 1, "", "TR8"], [230, 4, 1, "", "TR9"], [230, 4, 1, "", "TRmorrie"], [230, 4, 1, "", "TRpower"], [230, 4, 1, "", "fu"]], "sympy.simplify.hyperexpand": [[233, 4, 1, "", "hyperexpand"]], "sympy.simplify.powsimp": [[233, 4, 1, "", "powdenest"], [233, 4, 1, "", "powsimp"]], "sympy.simplify.radsimp": [[233, 4, 1, "", "collect"], [233, 4, 1, "", "collect_const"], [233, 4, 1, "", "collect_sqrt"], [233, 4, 1, "", "fraction"], [233, 4, 1, "", "rad_rationalize"], [233, 4, 1, "", "radsimp"], [233, 4, 1, "", "rcollect"]], "sympy.simplify.ratsimp": [[233, 4, 1, "", "ratsimp"], [233, 4, 1, "", "ratsimpmodprime"]], "sympy.simplify.simplify": [[233, 4, 1, "", "besselsimp"], [233, 4, 1, "", "hypersimilar"], [233, 4, 1, "", "hypersimp"], [233, 4, 1, "", "kroneckersimp"], [233, 4, 1, "", "logcombine"], [233, 4, 1, "", "nsimplify"], [233, 4, 1, "", "nthroot"], [233, 4, 1, "", "posify"], [233, 4, 1, "", "separatevars"], [233, 4, 1, "", "simplify"]], "sympy.simplify.sqrtdenest": [[233, 4, 1, "", "sqrtdenest"]], "sympy.simplify.trigsimp": [[233, 4, 1, "", "trigsimp"]], "sympy.solvers": [[236, 0, 0, "-", "inequalities"], [237, 0, 0, "-", "ode"], [238, 0, 0, "-", "pde"], [239, 0, 0, "-", "recurr"], [239, 0, 0, "-", "simplex"], [240, 0, 0, "-", "solveset"]], "sympy.solvers.deutils": [[239, 4, 1, "", "ode_order"]], "sympy.solvers.diophantine.diophantine": [[234, 1, 1, "", "BinaryQuadratic"], [234, 1, 1, "", "CubicThue"], [234, 1, 1, "", "DiophantineEquationType"], [234, 1, 1, "", "DiophantineSolutionSet"], [234, 1, 1, "", "GeneralPythagorean"], [234, 1, 1, "", "GeneralSumOfEvenPowers"], [234, 1, 1, "", "GeneralSumOfSquares"], [234, 1, 1, "", "HomogeneousGeneralQuadratic"], [234, 1, 1, "", "HomogeneousTernaryQuadratic"], [234, 1, 1, "", "HomogeneousTernaryQuadraticNormal"], [234, 1, 1, "", "InhomogeneousGeneralQuadratic"], [234, 1, 1, "", "InhomogeneousTernaryQuadratic"], [234, 1, 1, "", "Linear"], [234, 4, 1, "", "PQa"], [234, 1, 1, "", "Univariate"], [234, 4, 1, "", "base_solution_linear"], [234, 4, 1, "", "classify_diop"], [234, 4, 1, "", "cornacchia"], [234, 4, 1, "", "descent"], [234, 4, 1, "", "diop_DN"], [234, 4, 1, "", "diop_bf_DN"], [234, 4, 1, "", "diop_general_pythagorean"], [234, 4, 1, "", "diop_general_sum_of_even_powers"], [234, 4, 1, "", "diop_general_sum_of_squares"], [234, 4, 1, "", "diop_linear"], [234, 4, 1, "", "diop_quadratic"], [234, 4, 1, "", "diop_solve"], [234, 4, 1, "", "diop_ternary_quadratic"], [234, 4, 1, "", "diop_ternary_quadratic_normal"], [234, 4, 1, "", "diophantine"], [234, 4, 1, "", "divisible"], [234, 4, 1, "", "equivalent"], [234, 4, 1, "", "find_DN"], [234, 4, 1, "", "gaussian_reduce"], [234, 4, 1, "", "holzer"], [234, 4, 1, "", "ldescent"], [234, 4, 1, "", "merge_solution"], [234, 4, 1, "", "parametrize_ternary_quadratic"], [234, 4, 1, "", "partition"], [234, 4, 1, "", "power_representation"], [234, 4, 1, "", "prime_as_sum_of_two_squares"], [234, 4, 1, "", "reconstruct"], [234, 4, 1, "", "sqf_normal"], [234, 4, 1, "", "square_factor"], [234, 4, 1, "", "sum_of_four_squares"], [234, 4, 1, "", "sum_of_powers"], [234, 4, 1, "", "sum_of_squares"], [234, 4, 1, "", "sum_of_three_squares"], [234, 4, 1, "", "transformation_to_DN"], [234, 4, 1, "", "transformation_to_normal"]], "sympy.solvers.diophantine.diophantine.DiophantineEquationType": [[234, 2, 1, "", "matches"]], "sympy.solvers.inequalities": [[236, 4, 1, "", "reduce_abs_inequalities"], [236, 4, 1, "", "reduce_abs_inequality"], [236, 4, 1, "", "reduce_inequalities"], [236, 4, 1, "", "reduce_rational_inequalities"], [236, 4, 1, "", "solve_poly_inequalities"], [236, 4, 1, "", "solve_poly_inequality"], [236, 4, 1, "", "solve_rational_inequalities"], [236, 4, 1, "", "solve_univariate_inequality"]], "sympy.solvers.ode": [[237, 6, 1, "", "allhints"], [237, 4, 1, "", "checkinfsol"], [237, 4, 1, "", "checkodesol"], [237, 4, 1, "", "classify_ode"], [237, 4, 1, "", "constantsimp"], [237, 4, 1, "", "dsolve"], [237, 4, 1, "", "homogeneous_order"], [237, 4, 1, "", "infinitesimals"], [237, 0, 0, "-", "ode"]], "sympy.solvers.ode.lie_group": [[237, 4, 1, "", "lie_heuristic_abaco1_product"], [237, 4, 1, "", "lie_heuristic_abaco1_simple"], [237, 4, 1, "", "lie_heuristic_abaco2_similar"], [237, 4, 1, "", "lie_heuristic_abaco2_unique_general"], [237, 4, 1, "", "lie_heuristic_abaco2_unique_unknown"], [237, 4, 1, "", "lie_heuristic_bivariate"], [237, 4, 1, "", "lie_heuristic_chi"], [237, 4, 1, "", "lie_heuristic_function_sum"], [237, 4, 1, "", "lie_heuristic_linear"]], "sympy.solvers.ode.ode": [[237, 4, 1, "", "_handle_Integral"], [237, 4, 1, "", "_linear_2eq_order1_type6"], [237, 4, 1, "", "_linear_2eq_order1_type7"], [237, 4, 1, "", "_nonlinear_2eq_order1_type1"], [237, 4, 1, "", "_nonlinear_2eq_order1_type2"], [237, 4, 1, "", "_nonlinear_2eq_order1_type3"], [237, 4, 1, "", "_nonlinear_2eq_order1_type4"], [237, 4, 1, "", "_nonlinear_2eq_order1_type5"], [237, 4, 1, "", "_nonlinear_3eq_order1_type1"], [237, 4, 1, "", "_nonlinear_3eq_order1_type2"], [237, 4, 1, "", "_nonlinear_3eq_order1_type3"], [237, 4, 1, "", "_nonlinear_3eq_order1_type4"], [237, 4, 1, "", "_nonlinear_3eq_order1_type5"], [237, 4, 1, "", "constant_renumber"], [237, 4, 1, "", "ode_1st_power_series"], [237, 4, 1, "", "ode_2nd_power_series_ordinary"], [237, 4, 1, "", "ode_2nd_power_series_regular"], [237, 4, 1, "", "ode_sol_simplicity"], [237, 4, 1, "", "odesimp"]], "sympy.solvers.ode.riccati": [[237, 4, 1, "", "compute_m_ybar"], [237, 4, 1, "", "construct_c"], [237, 4, 1, "", "construct_d"], [237, 4, 1, "", "get_gen_sol_from_part_sol"], [237, 4, 1, "", "rational_laurent_series"], [237, 4, 1, "", "remove_redundant_sols"], [237, 4, 1, "", "riccati_inverse_normal"], [237, 4, 1, "", "riccati_normal"], [237, 4, 1, "", "riccati_reduced"], [237, 4, 1, "", "solve_aux_eq"], [237, 4, 1, "", "solve_riccati"]], "sympy.solvers.ode.single": [[237, 1, 1, "", "AlmostLinear"], [237, 1, 1, "", "Bernoulli"], [237, 1, 1, "", "Factorable"], [237, 1, 1, "", "FirstExact"], [237, 1, 1, "", "FirstLinear"], [237, 1, 1, "", "HomogeneousCoeffBest"], [237, 1, 1, "", "HomogeneousCoeffSubsDepDivIndep"], [237, 1, 1, "", "HomogeneousCoeffSubsIndepDivDep"], [237, 1, 1, "", "LieGroup"], [237, 1, 1, "", "LinearCoefficients"], [237, 1, 1, "", "Liouville"], [237, 1, 1, "", "NthAlgebraic"], [237, 1, 1, "", "NthLinearConstantCoeffHomogeneous"], [237, 1, 1, "", "NthLinearConstantCoeffUndeterminedCoefficients"], [237, 1, 1, "", "NthLinearConstantCoeffVariationOfParameters"], [237, 1, 1, "", "NthLinearEulerEqHomogeneous"], [237, 1, 1, "", "NthLinearEulerEqNonhomogeneousUndeterminedCoefficients"], [237, 1, 1, "", "NthLinearEulerEqNonhomogeneousVariationOfParameters"], [237, 1, 1, "", "NthOrderReducible"], [237, 1, 1, "", "RationalRiccati"], [237, 1, 1, "", "RiccatiSpecial"], [237, 1, 1, "", "SecondHypergeometric"], [237, 1, 1, "", "SecondLinearAiry"], [237, 1, 1, "", "SecondLinearBessel"], [237, 1, 1, "", "Separable"], [237, 1, 1, "", "SeparableReduced"]], "sympy.solvers.ode.systems": [[237, 4, 1, "", "canonical_odes"], [237, 4, 1, "", "dsolve_system"], [237, 4, 1, "", "linear_ode_to_matrix"], [237, 4, 1, "", "linodesolve"], [237, 4, 1, "", "linodesolve_type"], [237, 4, 1, "", "matrix_exp"], [237, 4, 1, "", "matrix_exp_jordan_form"]], "sympy.solvers.pde": [[238, 4, 1, "", "checkpdesol"], [238, 4, 1, "", "classify_pde"], [238, 4, 1, "", "pde_1st_linear_constant_coeff"], [238, 4, 1, "", "pde_1st_linear_constant_coeff_homogeneous"], [238, 4, 1, "", "pde_1st_linear_variable_coeff"], [238, 4, 1, "", "pde_separate"], [238, 4, 1, "", "pde_separate_add"], [238, 4, 1, "", "pde_separate_mul"], [238, 4, 1, "", "pdsolve"]], "sympy.solvers.polysys": [[239, 4, 1, "", "solve_poly_system"], [239, 4, 1, "", "solve_triangulated"]], "sympy.solvers.recurr": [[239, 4, 1, "", "rsolve"], [239, 4, 1, "", "rsolve_hyper"], [239, 4, 1, "", "rsolve_poly"], [239, 4, 1, "", "rsolve_ratio"]], "sympy.solvers.simplex": [[239, 4, 1, "", "linprog"], [239, 4, 1, "", "lpmax"], [239, 4, 1, "", "lpmin"]], "sympy.solvers.solvers": [[239, 4, 1, "", "checksol"], [239, 4, 1, "", "nsolve"], [239, 4, 1, "", "solve"], [239, 4, 1, "", "solve_linear"], [239, 4, 1, "", "solve_linear_system"], [239, 4, 1, "", "solve_linear_system_LU"], [239, 4, 1, "", "solve_undetermined_coeffs"], [239, 4, 1, "", "unrad"]], "sympy.solvers.solveset": [[240, 4, 1, "", "_is_exponential"], [240, 4, 1, "", "_is_logarithmic"], [240, 4, 1, "", "_solve_exponential"], [240, 4, 1, "", "_solve_logarithm"], [240, 4, 1, "", "_transolve"], [240, 4, 1, "", "domain_check"], [240, 4, 1, "", "invert_complex"], [240, 4, 1, "", "invert_real"], [240, 4, 1, "", "linear_eq_to_matrix"], [240, 4, 1, "", "linsolve"], [240, 4, 1, "", "nonlinsolve"], [240, 4, 1, "", "solveset"], [240, 4, 1, "", "solveset_complex"], [240, 4, 1, "", "solveset_real"], [240, 4, 1, "", "solvify"]], "sympy.stats": [[241, 4, 1, "", "Arcsin"], [241, 4, 1, "", "Benini"], [241, 4, 1, "", "Bernoulli"], [241, 1, 1, "", "BernoulliProcess"], [241, 4, 1, "", "Beta"], [241, 4, 1, "", "BetaBinomial"], [241, 4, 1, "", "BetaNoncentral"], [241, 4, 1, "", "BetaPrime"], [241, 4, 1, "", "Binomial"], [241, 4, 1, "", "BoundedPareto"], [241, 4, 1, "", "Cauchy"], [241, 1, 1, "", "CentralMoment"], [241, 4, 1, "", "Chi"], [241, 4, 1, "", "ChiNoncentral"], [241, 4, 1, "", "ChiSquared"], [241, 4, 1, "", "Coin"], [241, 1, 1, "", "ContinuousMarkovChain"], [241, 4, 1, "", "ContinuousRV"], [241, 1, 1, "", "Covariance"], [241, 1, 1, "", "CrossCovarianceMatrix"], [241, 4, 1, "", "Dagum"], [241, 4, 1, "", "Davis"], [241, 4, 1, "", "Die"], [241, 1, 1, "", "DiscreteMarkovChain"], [241, 4, 1, "", "DiscreteUniform"], [241, 4, 1, "", "E"], [241, 4, 1, "", "Erlang"], [241, 4, 1, "", "ExGaussian"], [241, 1, 1, "", "Expectation"], [241, 1, 1, "", "ExpectationMatrix"], [241, 4, 1, "", "Exponential"], [241, 4, 1, "", "FDistribution"], [241, 4, 1, "", "FiniteRV"], [241, 4, 1, "", "FisherZ"], [241, 4, 1, "", "Frechet"], [241, 4, 1, "", "Gamma"], [241, 4, 1, "", "GammaInverse"], [241, 1, 1, "", "GammaProcess"], [241, 4, 1, "", "GeneralizedMultivariateLogGamma"], [241, 4, 1, "", "GeneralizedMultivariateLogGammaOmega"], [241, 4, 1, "", "Geometric"], [241, 4, 1, "", "Gompertz"], [241, 4, 1, "", "Gumbel"], [241, 4, 1, "", "Hermite"], [241, 4, 1, "", "Hypergeometric"], [241, 4, 1, "", "JointRV"], [241, 4, 1, "", "Kumaraswamy"], [241, 4, 1, "", "Laplace"], [241, 4, 1, "", "Levy"], [241, 4, 1, "", "LogLogistic"], [241, 4, 1, "", "LogNormal"], [241, 4, 1, "", "Logarithmic"], [241, 4, 1, "", "Logistic"], [241, 4, 1, "", "Lomax"], [241, 4, 1, "", "MatrixGamma"], [241, 4, 1, "", "MatrixNormal"], [241, 4, 1, "", "Maxwell"], [241, 1, 1, "", "Moment"], [241, 4, 1, "", "Moyal"], [241, 4, 1, "", "Multinomial"], [241, 4, 1, "", "MultivariateBeta"], [241, 4, 1, "", "MultivariateEwens"], [241, 4, 1, "", "MultivariateLaplace"], [241, 4, 1, "", "MultivariateNormal"], [241, 4, 1, "", "MultivariateT"], [241, 4, 1, "", "Nakagami"], [241, 4, 1, "", "NegativeBinomial"], [241, 4, 1, "", "NegativeMultinomial"], [241, 4, 1, "", "Normal"], [241, 4, 1, "", "NormalGamma"], [241, 4, 1, "", "P"], [241, 4, 1, "", "Pareto"], [241, 4, 1, "", "Poisson"], [241, 1, 1, "", "PoissonProcess"], [241, 4, 1, "", "PowerFunction"], [241, 1, 1, "", "Probability"], [241, 4, 1, "", "QuadraticU"], [241, 4, 1, "", "Rademacher"], [241, 4, 1, "", "RaisedCosine"], [241, 4, 1, "", "Rayleigh"], [241, 4, 1, "", "Reciprocal"], [241, 4, 1, "", "ShiftedGompertz"], [241, 4, 1, "", "Skellam"], [241, 4, 1, "", "StudentT"], [241, 4, 1, "", "Trapezoidal"], [241, 4, 1, "", "Triangular"], [241, 4, 1, "", "Uniform"], [241, 4, 1, "", "UniformSum"], [241, 1, 1, "", "Variance"], [241, 1, 1, "", "VarianceMatrix"], [241, 4, 1, "", "VonMises"], [241, 4, 1, "", "Wald"], [241, 4, 1, "", "Weibull"], [241, 1, 1, "", "WienerProcess"], [241, 4, 1, "", "WignerSemicircle"], [241, 4, 1, "", "Wishart"], [241, 4, 1, "", "YuleSimon"], [241, 4, 1, "", "Zeta"], [241, 4, 1, "", "cmoment"], [241, 4, 1, "", "correlation"], [241, 4, 1, "", "coskewness"], [241, 4, 1, "", "covariance"], [241, 0, 0, "-", "crv"], [241, 0, 0, "-", "crv_types"], [241, 4, 1, "", "density"], [241, 4, 1, "", "entropy"], [241, 4, 1, "", "factorial_moment"], [241, 0, 0, "-", "frv"], [241, 0, 0, "-", "frv_types"], [241, 4, 1, "", "given"], [241, 4, 1, "", "kurtosis"], [241, 4, 1, "", "marginal_distribution"], [241, 4, 1, "", "median"], [241, 4, 1, "", "moment"], [241, 4, 1, "", "quantile"], [241, 0, 0, "-", "rv"], [241, 4, 1, "", "sample"], [241, 4, 1, "", "sample_iter"], [241, 4, 1, "", "skewness"], [241, 4, 1, "", "std"], [241, 4, 1, "", "variance"], [241, 4, 1, "", "where"]], "sympy.stats.BernoulliProcess": [[241, 2, 1, "", "expectation"], [241, 2, 1, "", "probability"]], "sympy.stats.DiscreteMarkovChain": [[241, 2, 1, "", "absorbing_probabilities"], [241, 2, 1, "", "canonical_form"], [241, 2, 1, "", "communication_classes"], [241, 2, 1, "", "decompose"], [241, 2, 1, "", "fixed_row_vector"], [241, 2, 1, "", "fundamental_matrix"], [241, 3, 1, "", "limiting_distribution"], [241, 2, 1, "", "sample"], [241, 2, 1, "", "stationary_distribution"], [241, 3, 1, "", "transition_probabilities"]], "sympy.stats.compound_rv": [[241, 1, 1, "", "CompoundDistribution"]], "sympy.stats.crv": [[241, 1, 1, "", "ContinuousDomain"], [241, 1, 1, "", "ContinuousPSpace"]], "sympy.stats.crv_types": [[241, 1, 1, "", "NormalPSpace"]], "sympy.stats.crv_types.sympy.stats": [[241, 4, 1, "", "Die"], [241, 4, 1, "", "Normal"]], "sympy.stats.frv": [[241, 1, 1, "", "FiniteDomain"], [241, 1, 1, "", "FinitePSpace"]], "sympy.stats.frv_types": [[241, 1, 1, "", "DiePSpace"]], "sympy.stats.rv": [[241, 1, 1, "", "ConditionalDomain"], [241, 1, 1, "", "PSpace"], [241, 1, 1, "", "ProductDomain"], [241, 1, 1, "", "ProductPSpace"], [241, 1, 1, "", "RandomDomain"], [241, 1, 1, "", "RandomSymbol"], [241, 1, 1, "", "SingleDomain"], [241, 1, 1, "", "SinglePSpace"], [241, 4, 1, "", "pspace"], [241, 4, 1, "", "random_symbols"], [241, 4, 1, "", "rs_swap"], [241, 4, 1, "", "sampling_E"], [241, 4, 1, "", "sampling_P"], [241, 4, 1, "", "sampling_density"]], "sympy.tensor": [[242, 0, 0, "-", "array"], [245, 0, 0, "-", "index_methods"], [246, 0, 0, "-", "indexed"], [247, 0, 0, "-", "tensor"], [248, 0, 0, "-", "toperators"]], "sympy.tensor.array": [[242, 1, 1, "", "ImmutableDenseNDimArray"], [242, 1, 1, "", "ImmutableSparseNDimArray"], [242, 1, 1, "", "MutableDenseNDimArray"], [242, 1, 1, "", "MutableSparseNDimArray"], [242, 4, 1, "", "derive_by_array"], [243, 0, 0, "-", "expressions"], [242, 4, 1, "", "permutedims"], [242, 4, 1, "", "tensorcontraction"], [242, 4, 1, "", "tensordiagonal"], [242, 4, 1, "", "tensorproduct"]], "sympy.tensor.array.expressions": [[243, 1, 1, "", "ArrayContraction"], [243, 1, 1, "", "ArrayDiagonal"], [243, 1, 1, "", "ArrayTensorProduct"], [243, 1, 1, "", "PermuteDims"]], "sympy.tensor.index_methods": [[245, 4, 1, "", "get_contraction_structure"], [245, 4, 1, "", "get_indices"]], "sympy.tensor.indexed": [[246, 1, 1, "", "Idx"], [246, 1, 1, "", "Indexed"], [246, 1, 1, "", "IndexedBase"]], "sympy.tensor.indexed.Idx": [[246, 3, 1, "", "label"], [246, 3, 1, "", "lower"], [246, 3, 1, "", "upper"]], "sympy.tensor.indexed.Indexed": [[246, 3, 1, "", "base"], [246, 3, 1, "", "indices"], [246, 3, 1, "", "ranges"], [246, 3, 1, "", "rank"], [246, 3, 1, "", "shape"]], "sympy.tensor.indexed.IndexedBase": [[246, 3, 1, "", "label"], [246, 3, 1, "", "offset"], [246, 3, 1, "", "shape"], [246, 3, 1, "", "strides"]], "sympy.tensor.tensor": [[247, 1, 1, "", "TensAdd"], [247, 1, 1, "", "TensExpr"], [247, 1, 1, "", "TensMul"], [247, 1, 1, "", "TensorHead"], [247, 1, 1, "", "TensorIndex"], [247, 1, 1, "", "TensorIndexType"], [247, 1, 1, "", "TensorSymmetry"], [247, 1, 1, "", "TensorType"], [247, 1, 1, "", "_TensorManager"], [247, 4, 1, "", "canon_bp"], [247, 4, 1, "", "riemann_cyclic"], [247, 4, 1, "", "riemann_cyclic_replace"], [247, 4, 1, "", "tensor_heads"], [247, 4, 1, "", "tensorsymmetry"]], "sympy.tensor.tensor.TensAdd": [[247, 2, 1, "", "canon_bp"], [247, 2, 1, "", "contract_metric"]], "sympy.tensor.tensor.TensExpr": [[247, 2, 1, "", "get_matrix"], [247, 2, 1, "", "replace_with_arrays"]], "sympy.tensor.tensor.TensMul": [[247, 2, 1, "", "canon_bp"], [247, 2, 1, "", "contract_metric"], [247, 2, 1, "", "get_free_indices"], [247, 2, 1, "", "get_indices"], [247, 2, 1, "", "perm2tensor"], [247, 2, 1, "", "sorted_components"], [247, 2, 1, "", "split"]], "sympy.tensor.tensor.TensorHead": [[247, 2, 1, "", "commutes_with"]], "sympy.tensor.tensor.TensorSymmetry": [[247, 2, 1, "", "direct_product"], [247, 2, 1, "", "fully_symmetric"], [247, 2, 1, "", "no_symmetry"], [247, 2, 1, "", "riemann"]], "sympy.tensor.tensor._TensorManager": [[247, 2, 1, "", "clear"], [247, 2, 1, "", "comm_i2symbol"], [247, 2, 1, "", "comm_symbols2i"], [247, 2, 1, "", "get_comm"], [247, 2, 1, "", "set_comm"], [247, 2, 1, "", "set_comms"]], "sympy.tensor.toperators": [[248, 1, 1, "", "PartialDerivative"]], "sympy.testing": [[250, 0, 0, "-", "pytest"], [251, 0, 0, "-", "randtest"], [252, 0, 0, "-", "runtests"]], "sympy.testing.pytest": [[250, 4, 1, "", "SKIP"], [250, 4, 1, "", "nocache_fail"], [250, 4, 1, "", "raises"], [250, 4, 1, "", "skip_under_pyodide"], [250, 4, 1, "", "warns"], [250, 4, 1, "", "warns_deprecated_sympy"]], "sympy.testing.runtests": [[252, 1, 1, "", "PyTestReporter"], [252, 1, 1, "", "Reporter"], [252, 1, 1, "", "SymPyDocTestFinder"], [252, 1, 1, "", "SymPyDocTestRunner"], [252, 1, 1, "", "SymPyOutputChecker"], [252, 1, 1, "", "SymPyTestResults"], [252, 4, 1, "", "convert_to_native_paths"], [252, 4, 1, "", "doctest"], [252, 4, 1, "", "get_sympy_dir"], [252, 4, 1, "", "raise_on_deprecated"], [252, 4, 1, "", "run_all_tests"], [252, 4, 1, "", "run_in_subprocess_with_hash_randomization"], [252, 4, 1, "", "split_list"], [252, 4, 1, "", "sympytestfile"], [252, 4, 1, "", "test"]], "sympy.testing.runtests.PyTestReporter": [[252, 2, 1, "", "write"]], "sympy.testing.runtests.SymPyDocTestRunner": [[252, 2, 1, "", "run"]], "sympy.testing.runtests.SymPyOutputChecker": [[252, 2, 1, "", "check_output"]], "sympy.testing.runtests.SymPyTestResults": [[252, 5, 1, "", "attempted"], [252, 5, 1, "", "failed"]], "sympy.utilities": [[253, 0, 0, "-", "autowrap"], [254, 0, 0, "-", "codegen"], [255, 0, 0, "-", "decorator"], [256, 0, 0, "-", "enumerative"], [257, 0, 0, "-", "exceptions"], [259, 0, 0, "-", "iterables"], [260, 0, 0, "-", "lambdify"], [261, 0, 0, "-", "memoization"], [262, 0, 0, "-", "misc"], [263, 0, 0, "-", "source"], [264, 0, 0, "-", "timeutils"]], "sympy.utilities.autowrap": [[253, 1, 1, "", "CodeWrapper"], [253, 1, 1, "", "CythonCodeWrapper"], [253, 1, 1, "", "DummyWrapper"], [253, 1, 1, "", "F2PyCodeWrapper"], [253, 1, 1, "", "UfuncifyCodeWrapper"], [253, 4, 1, "", "autowrap"], [253, 4, 1, "", "binary_function"], [253, 4, 1, "", "ufuncify"]], "sympy.utilities.autowrap.CythonCodeWrapper": [[253, 2, 1, "", "dump_pyx"]], "sympy.utilities.autowrap.UfuncifyCodeWrapper": [[253, 2, 1, "", "dump_c"]], "sympy.utilities.codegen": [[254, 1, 1, "", "Argument"], [254, 1, 1, "", "CCodeGen"], [254, 1, 1, "", "CodeGen"], [254, 1, 1, "", "DataType"], [254, 1, 1, "", "FCodeGen"], [254, 1, 1, "", "JuliaCodeGen"], [254, 1, 1, "", "OctaveCodeGen"], [254, 1, 1, "", "OutputArgument"], [254, 1, 1, "", "Result"], [254, 1, 1, "", "Routine"], [254, 1, 1, "", "RustCodeGen"], [254, 4, 1, "", "codegen"], [254, 4, 1, "", "get_default_datatype"], [254, 4, 1, "", "make_routine"]], "sympy.utilities.codegen.CCodeGen": [[254, 2, 1, "", "dump_c"], [254, 2, 1, "", "dump_h"], [254, 2, 1, "", "get_prototype"]], "sympy.utilities.codegen.CodeGen": [[254, 2, 1, "", "dump_code"], [254, 2, 1, "", "routine"], [254, 2, 1, "", "write"]], "sympy.utilities.codegen.FCodeGen": [[254, 2, 1, "", "dump_f95"], [254, 2, 1, "", "dump_h"], [254, 2, 1, "", "get_interface"]], "sympy.utilities.codegen.JuliaCodeGen": [[254, 2, 1, "", "dump_jl"], [254, 2, 1, "", "routine"]], "sympy.utilities.codegen.OctaveCodeGen": [[254, 2, 1, "", "dump_m"], [254, 2, 1, "", "routine"]], "sympy.utilities.codegen.Routine": [[254, 3, 1, "", "result_variables"], [254, 3, 1, "", "variables"]], "sympy.utilities.codegen.RustCodeGen": [[254, 2, 1, "", "dump_rs"], [254, 2, 1, "", "get_prototype"], [254, 2, 1, "", "routine"]], "sympy.utilities.decorator": [[255, 4, 1, "", "conserve_mpmath_dps"], [255, 4, 1, "", "deprecated"], [255, 4, 1, "", "doctest_depends_on"], [255, 4, 1, "", "memoize_property"], [255, 1, 1, "", "no_attrs_in_subclass"], [255, 4, 1, "", "public"], [255, 4, 1, "", "threaded"], [255, 4, 1, "", "threaded_factory"], [255, 4, 1, "", "xthreaded"]], "sympy.utilities.enumerative": [[256, 1, 1, "", "MultisetPartitionTraverser"], [256, 4, 1, "", "factoring_visitor"], [256, 4, 1, "", "list_visitor"], [256, 4, 1, "", "multiset_partitions_taocp"]], "sympy.utilities.enumerative.MultisetPartitionTraverser": [[256, 2, 1, "", "count_partitions"], [256, 2, 1, "", "enum_all"], [256, 2, 1, "", "enum_large"], [256, 2, 1, "", "enum_range"], [256, 2, 1, "", "enum_small"]], "sympy.utilities.exceptions": [[257, 7, 1, "", "SymPyDeprecationWarning"], [257, 4, 1, "", "ignore_warnings"], [257, 4, 1, "", "sympy_deprecation_warning"]], "sympy.utilities.iterables": [[259, 1, 1, "", "NotIterable"], [259, 4, 1, "", "binary_partitions"], [259, 4, 1, "", "bracelets"], [259, 4, 1, "", "capture"], [259, 4, 1, "", "common_prefix"], [259, 4, 1, "", "common_suffix"], [259, 4, 1, "", "connected_components"], [259, 4, 1, "", "dict_merge"], [259, 4, 1, "", "filter_symbols"], [259, 4, 1, "", "flatten"], [259, 4, 1, "", "generate_bell"], [259, 4, 1, "", "generate_derangements"], [259, 4, 1, "", "generate_involutions"], [259, 4, 1, "", "generate_oriented_forest"], [259, 4, 1, "", "group"], [259, 4, 1, "", "has_dups"], [259, 4, 1, "", "has_variety"], [259, 4, 1, "", "ibin"], [259, 4, 1, "", "iproduct"], [259, 4, 1, "", "is_palindromic"], [259, 4, 1, "", "is_sequence"], [259, 4, 1, "", "iterable"], [259, 4, 1, "", "kbins"], [259, 4, 1, "", "least_rotation"], [259, 4, 1, "", "minlex"], [259, 4, 1, "", "multiset"], [259, 4, 1, "", "multiset_combinations"], [259, 4, 1, "", "multiset_derangements"], [259, 4, 1, "", "multiset_partitions"], [259, 4, 1, "", "multiset_permutations"], [259, 4, 1, "", "necklaces"], [259, 4, 1, "", "numbered_symbols"], [259, 4, 1, "", "ordered_partitions"], [259, 4, 1, "", "partitions"], [259, 4, 1, "", "permute_signs"], [259, 4, 1, "", "postfixes"], [259, 4, 1, "", "prefixes"], [259, 4, 1, "", "random_derangement"], [259, 4, 1, "", "reshape"], [259, 4, 1, "", "rotate_left"], [259, 4, 1, "", "rotate_right"], [259, 4, 1, "", "rotations"], [259, 4, 1, "", "roundrobin"], [259, 4, 1, "", "runs"], [259, 4, 1, "", "sequence_partitions"], [259, 4, 1, "", "sequence_partitions_empty"], [259, 4, 1, "", "sift"], [259, 4, 1, "", "signed_permutations"], [259, 4, 1, "", "strongly_connected_components"], [259, 4, 1, "", "subsets"], [259, 4, 1, "", "take"], [259, 4, 1, "", "topological_sort"], [259, 4, 1, "", "unflatten"], [259, 4, 1, "", "uniq"], [259, 4, 1, "", "variations"]], "sympy.utilities.lambdify": [[260, 4, 1, "", "implemented_function"], [260, 4, 1, "", "lambdastr"], [260, 4, 1, "", "lambdify"]], "sympy.utilities.memoization": [[261, 4, 1, "", "assoc_recurrence_memo"], [261, 4, 1, "", "recurrence_memo"]], "sympy.utilities.misc": [[262, 4, 1, "", "as_int"], [262, 4, 1, "", "debug"], [262, 4, 1, "", "debug_decorator"], [262, 4, 1, "", "debugf"], [262, 4, 1, "", "filldedent"], [262, 4, 1, "", "find_executable"], [262, 4, 1, "", "func_name"], [262, 4, 1, "", "ordinal"], [262, 4, 1, "", "rawlines"], [262, 4, 1, "", "replace"], [262, 4, 1, "", "strlines"], [262, 4, 1, "", "translate"]], "sympy.utilities.source": [[263, 4, 1, "", "get_class"], [263, 4, 1, "", "get_mod_func"]], "sympy.utilities.timeutils": [[264, 4, 1, "", "timed"]], "sympy.vector": [[268, 4, 1, "", "curl"], [268, 4, 1, "", "divergence"], [268, 4, 1, "", "express"], [268, 4, 1, "", "gradient"], [268, 4, 1, "", "is_conservative"], [268, 4, 1, "", "is_solenoidal"], [268, 4, 1, "", "matrix_to_vector"], [268, 4, 1, "", "scalar_potential"], [268, 4, 1, "", "scalar_potential_difference"]], "sympy.vector.coordsysrect": [[265, 1, 1, "", "CoordSys3D"]], "sympy.vector.coordsysrect.CoordSys3D": [[265, 2, 1, "", "__init__"], [265, 2, 1, "", "create_new"], [265, 2, 1, "", "locate_new"], [265, 2, 1, "", "orient_new"], [265, 2, 1, "", "orient_new_axis"], [265, 2, 1, "", "orient_new_body"], [265, 2, 1, "", "orient_new_quaternion"], [265, 2, 1, "", "orient_new_space"], [265, 2, 1, "", "position_wrt"], [265, 2, 1, "", "rotation_matrix"], [265, 2, 1, "", "scalar_map"]], "sympy.vector.deloperator": [[265, 1, 1, "", "Del"]], "sympy.vector.deloperator.Del": [[265, 2, 1, "", "cross"], [265, 2, 1, "", "dot"], [265, 2, 1, "", "gradient"]], "sympy.vector.dyadic": [[265, 1, 1, "", "Dyadic"]], "sympy.vector.dyadic.Dyadic": [[265, 3, 1, "", "components"], [265, 2, 1, "", "cross"], [265, 2, 1, "", "dot"], [265, 2, 1, "", "to_matrix"]], "sympy.vector.implicitregion": [[265, 1, 1, "", "ImplicitRegion"]], "sympy.vector.implicitregion.ImplicitRegion": [[265, 2, 1, "", "multiplicity"], [265, 2, 1, "", "rational_parametrization"], [265, 2, 1, "", "regular_point"], [265, 2, 1, "", "singular_points"]], "sympy.vector.integrals": [[265, 1, 1, "", "ParametricIntegral"], [268, 4, 1, "", "vector_integrate"]], "sympy.vector.orienters": [[267, 1, 1, "", "AxisOrienter"], [267, 1, 1, "", "BodyOrienter"], [267, 1, 1, "", "Orienter"], [267, 1, 1, "", "QuaternionOrienter"], [267, 1, 1, "", "SpaceOrienter"]], "sympy.vector.orienters.AxisOrienter": [[267, 2, 1, "", "__init__"], [267, 2, 1, "", "rotation_matrix"]], "sympy.vector.orienters.BodyOrienter": [[267, 2, 1, "", "__init__"]], "sympy.vector.orienters.Orienter": [[267, 2, 1, "", "rotation_matrix"]], "sympy.vector.orienters.QuaternionOrienter": [[267, 2, 1, "", "__init__"]], "sympy.vector.orienters.SpaceOrienter": [[267, 2, 1, "", "__init__"]], "sympy.vector.parametricregion": [[265, 1, 1, "", "ParametricRegion"]], "sympy.vector.vector": [[265, 1, 1, "", "Vector"]], "sympy.vector.vector.Vector": [[265, 3, 1, "", "components"], [265, 2, 1, "", "cross"], [265, 2, 1, "", "dot"], [265, 2, 1, "", "magnitude"], [265, 2, 1, "", "normalize"], [265, 2, 1, "", "outer"], [265, 2, 1, "", "projection"], [265, 2, 1, "", "separate"], [265, 2, 1, "", "to_matrix"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "function", "Python function"], "5": ["py", "attribute", "Python attribute"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:function", "5": "py:attribute", "6": "py:data", "7": "py:exception"}, "terms": {"": [0, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 28, 30, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107, 110, 111, 113, 115, 116, 117, 118, 120, 121, 124, 127, 128, 129, 130, 132, 134, 136, 137, 138, 140, 142, 144, 146, 148, 149, 151, 152, 154, 155, 156, 158, 159, 162, 163, 164, 170, 171, 173, 175, 177, 178, 181, 185, 186, 188, 189, 191, 194, 195, 196, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 221, 222, 223, 224, 227, 228, 229, 231, 232, 233, 234, 236, 237, 238, 241, 247, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 271, 272, 274, 277, 282, 283, 285, 286, 287, 289, 290, 291, 292, 293, 297, 298, 299, 302, 305, 308], "0": [3, 4, 11, 12, 13, 14, 15, 16, 18, 22, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 155, 156, 158, 159, 160, 163, 164, 165, 167, 170, 175, 176, 177, 180, 185, 186, 187, 188, 189, 190, 191, 192, 196, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 255, 256, 257, 259, 260, 261, 265, 267, 268, 269, 270, 271, 272, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 311], "00": [14, 16, 88, 128, 175, 185, 259], "000": [72, 92, 115, 118, 185, 259], "0000": 72, "000000000000": 16, "0000000000000": [134, 164], "00000000000000": [14, 54, 88, 92, 192, 221, 241, 287], "00000000000000e": 88, "00000000260573": 142, "00000000e": 14, "0000000154172579002800188521596734869": 96, "00001": 185, "00002480019791932209313156167176797577821140084216297395518482071448": 206, "0001": [72, 92], "00010": 72, "000100000000000000": 88, "00011001011": 259, "00011010011": 259, "0001111011": [118, 259], "0001953125": 136, "00026102": 115, "000507214304613640": 129, "000507214304614": 129, "0005241": 299, "00053": 160, "00054335718671383": 138, "00070025": 110, "001": [72, 92, 118, 160, 259], "0010": 72, "00100": 88, "00100000000000000": 160, "00101413072159615": 160, "00109772": 299, "0011": [72, 83], "0011276": 299, "00138541666666667": 136, "00141": 80, "00152436": 299, "00210803120913829": 160, "0023152": 115, "003": 92, "0033": 164, "00333333": 299, "004": 215, "00447086247086247": 138, "00453": 115, "004707066000264604": 69, "006": 124, "006046440489058766": 142, "0063339426292673": 96, "006895004219221134484332976156744208248842039317638217822322799675": 206, "00708": 302, "0075": [18, 299], "00756": 302, "00906": 115, "00996712": 299, "01": [22, 80, 88, 92, 185, 215, 233, 259], "010": [72, 118, 259], "0100": 72, "0101": [72, 185], "010389": 115, "010399": 115, "011": [72, 118, 185, 259], "0110": 72, "0111": [72, 185], "01197": 128, "012": 88, "012297": 92, "012345": 80, "01375162659678": 110, "014": 154, "01480": 234, "014895573969924817587": 96, "015": [18, 131], "0150588346410601": 18, "016": 230, "0166133211401": 132, "0170706725844998": 138, "01743115": 299, "0174533": 22, "01747268": 241, "0175000000000000": 87, "0186573603637741": [18, 132], "0189": 91, "0190": 80, "0196": 259, "02": [215, 234, 302], "02005": 164, "020599914256786": 142, "0205999155219505": 142, "020884341620842555705": 93, "0225": [18, 299], "023844582399907256": 142, "025413462339411542": 142, "02671848900111377452242355235388489324562": 96, "0276302": 61, "02841027019385211055596446229489549303819644288109756659334461284756482337867831": 92, "0299": [18, 132], "02_03_40_42": 91, "03": [206, 241, 299], "034": 89, "035581932165858e": 142, "035999037": 146, "035999037000": 146, "0365": 217, "04": [11, 124, 241], "04166666666667e": 136, "042894276802320226": 142, "045": 215, "04516378011749278484458888919": 96, "0458952018652595": 18, "0472": 115, "0484508722725343": 142, "04923615": 299, "05": [18, 34, 79, 110, 142, 203, 206], "050584": 115, "0509758447494279": 57, "0519737844841": 132, "052": 239, "05426074": 129, "05426079": 129, "05433146": 129, "05433151": 129, "05440211": 129, "054525080242173562897": 96, "05457162000000e": 173, "05457162d": 69, "05555555555555555555555555555555555555555555555555555555555555555": 206, "0555556377366884": 146, "0555558020932949": 146, "0555562951740285": 146, "0583518": 128, "05892": 302, "06": [18, 82, 88, 132, 206, 241, 302], "060": [18, 131], "0603": 302, "0633": [18, 132], "0652795784357498247001125598": 96, "06616480200395854": 142, "06743": [93, 96, 217], "06e": 160, "07": 113, "08": [57, 124, 217, 302], "08333333333333e": 136, "08346052231061726610939702133": 96, "083954101": 48, "08395410131771": 48, "083c01": 170, "084489": 115, "087": 215, "0874989834394464": 286, "08895483066e": 142, "09": [88, 142, 206, 215], "0904": 124, "0909": 259, "091999668350375232456": 92, "09326036123": 142, "0935077": 67, "095": 96, "0973": 115, "099419756723640344491": 96, "099609": 88, "0998334166468": 286, "0_": 27, "0_0": 111, "0_1": 111, "0d0": [69, 221], "0e": [14, 69, 88], "0f1": 237, "0i": 61, "0j": [61, 211], "0k": 61, "0l": [69, 221], "0o121": 128, "0o171": 128, "0right": 240, "0th": [67, 80, 89, 96], "0x": [14, 191], "0x10e997790": 12, "0x12": 116, "0x324": 128, "0x3243f6a8885a30": 128, "0xfa": 128, "1": [2, 3, 5, 7, 8, 11, 12, 14, 15, 16, 17, 18, 21, 23, 25, 26, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 138, 140, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 170, 173, 174, 175, 176, 177, 179, 180, 181, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 250, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 265, 268, 269, 270, 272, 275, 282, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 308, 309, 310, 311], "10": [0, 2, 4, 12, 14, 16, 17, 18, 22, 30, 43, 46, 48, 54, 55, 57, 59, 61, 67, 69, 74, 77, 79, 80, 84, 86, 87, 88, 89, 91, 92, 93, 94, 96, 101, 102, 104, 105, 113, 115, 116, 118, 120, 124, 125, 128, 129, 130, 131, 132, 134, 135, 136, 138, 140, 142, 144, 145, 150, 154, 155, 160, 164, 175, 185, 186, 197, 200, 201, 202, 204, 206, 207, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 224, 227, 228, 229, 230, 233, 234, 237, 240, 241, 242, 251, 252, 257, 259, 260, 262, 265, 268, 286, 293, 297, 299, 302, 303], "100": [12, 16, 43, 46, 69, 72, 77, 87, 88, 89, 92, 96, 104, 111, 118, 124, 128, 136, 138, 207, 211, 216, 218, 220, 221, 228, 239, 240, 259, 286], "1000": [16, 30, 69, 72, 88, 89, 92, 120, 128, 195, 196, 197, 198, 206, 220, 221, 230, 260], "10000": [69, 92, 128, 129, 136, 239], "100000": [92, 128, 142], "1000000": [88, 128], "10000000": [92, 217], "1000000000": 92, "100000000000000": [92, 134], "10000000000000000": 14, "100000000000000000000": 88, "100000000000000000000000000000": 92, "100000000000000005551115123126": 92, "10000000001": 128, "1000001": 93, "1001": 72, "1002": 241, "100500": 98, "100644": 11, "1007": [74, 89, 154], "1009": 128, "100x": 13, "101": [72, 96, 118, 128, 144, 185, 234, 259], "1010": [72, 88], "1010203040506070809": 128, "1010381": 128, "1011": 72, "1012": 146, "10120": 293, "101456353": 115, "1016": [80, 124, 215, 259], "102": [79, 124], "1024": [79, 221, 241], "10279": 293, "103": [0, 7, 79], "1031": 89, "103993": 128, "104": 92, "10431": 128, "104348": 128, "104755": 217, "105": [96, 128, 217, 234], "10517083333333": 110, "106": 128, "107": [74, 215], "10713341e": 14, "1072": 124, "1074": 124, "10793": 136, "108": [86, 137], "108208000e3": 194, "108270": 98, "10877": 128, "109": [128, 215, 234], "1090": [67, 128, 217, 234], "1092": 217, "10kn": 136, "10n": 129, "10pt": [116, 205, 221], "10sin": 130, "10th": 128, "11": [4, 17, 18, 22, 32, 41, 63, 64, 69, 74, 79, 82, 84, 86, 88, 89, 91, 93, 96, 100, 101, 102, 104, 105, 113, 115, 118, 119, 124, 128, 130, 132, 144, 175, 185, 206, 207, 209, 210, 212, 214, 215, 216, 217, 218, 220, 221, 228, 230, 234, 237, 239, 240, 241, 242, 253, 259, 269, 302], "110": [72, 118, 237, 239, 253, 259], "1100": 72, "1101": 72, "11010011000": 259, "1101111000": [118, 259], "1103": 92, "110896": 128, "111": [72, 91, 93, 98, 118, 124, 128, 259], "1110": 72, "1111": 72, "1111339": 128, "11163337": 241, "1118": 128, "112": [128, 214, 218], "1121416371": 69, "113": [92, 128, 234], "11337": 115, "1137796": 234, "113820": 128, "114": [79, 93, 128], "1145": [87, 210, 212, 215, 233], "1145768": 233, "1145809": 233, "115": 96, "1159": 128, "11590": 128, "115975": 93, "116": [206, 215], "1169": 230, "117": [79, 96], "1177": 230, "1178": 128, "1179": 215, "11895": 115, "1193": 89, "1197": 215, "11_0_0_intro": 241, "11_2_6_stationary_and_limiting_distribut": 241, "11_4_0_brownian_motion_wiener_process": 241, "12": [4, 12, 14, 16, 17, 18, 32, 43, 46, 48, 61, 67, 68, 69, 74, 76, 77, 79, 80, 81, 84, 86, 87, 88, 89, 91, 93, 94, 96, 98, 101, 102, 104, 113, 115, 118, 124, 125, 128, 132, 136, 137, 138, 142, 144, 146, 152, 188, 200, 206, 209, 210, 211, 214, 216, 217, 218, 220, 221, 227, 229, 230, 234, 236, 237, 241, 242, 252, 253, 256, 259, 268, 293, 296, 297, 299, 302, 303, 304], "120": [12, 39, 87, 88, 93, 94, 110, 128, 136, 137, 218, 220, 221, 223, 237, 287], "1200": 206, "12000": 136, "1202": 303, "121": [88, 93, 128, 144, 200, 239], "1211": 91, "1215": 215, "12166980856813935": 142, "122": [89, 91, 96], "1224": [93, 128], "1225": 124, "12288": 275, "122921448543883967430908091422761898618349713604256384403202282756086473494959648313841": 128, "123": [11, 88, 93, 98, 118, 152, 188, 200, 259, 265, 267], "1231": 215, "1231026625769": 128, "1233": 259, "1234": [11, 128, 234], "12345": [11, 69, 92], "123456": [69, 88, 128], "123456789": 88, "123456789012345646": 69, "123456789012345649": 69, "12345678901234567890": 16, "12345678910111213141516": 128, "123_456": 88, "124": [215, 286], "12438240242516": 132, "12465": 217, "12499999999568202": 142, "12499999999661349": 142, "124a": 238, "125": [88, 92, 115, 128, 212, 227, 234], "12500": 88, "1250000": 162, "12500000000000000000": 88, "125000000000000000000000000000": 92, "125000416028342": 146, "125002080189006": 146, "12524": 13, "125e": 136, "126": [124, 128, 220], "127": [89, 128], "12757857962640e": 54, "127750": 256, "128": [79, 88, 93, 96, 98, 128, 215, 221], "1283": 91, "1294585930293": 234, "1296": 82, "1296959": 96, "1299709": 128, "12e": 88, "12kn": 137, "12mm": 68, "13": [4, 12, 17, 22, 32, 61, 69, 77, 79, 84, 88, 89, 91, 93, 96, 100, 101, 102, 103, 113, 118, 124, 128, 132, 136, 137, 138, 142, 144, 149, 207, 210, 214, 216, 217, 218, 220, 221, 227, 234, 236, 238, 239, 241, 242, 253, 259, 275, 296], "130": 98, "130198866629986772369127970337": 92, "1307": [11, 57], "131": [96, 200], "131072": 217, "13131491": 259, "132": [86, 93, 200], "1336": 92, "134": 124, "135": 128, "1350": 136, "136": [88, 124], "137": [93, 124, 146], "1371": 61, "1373651": 128, "13750": 136, "138": 128, "1381": 89, "1385": [93, 217], "139": 214, "1391": 128, "13y": 234, "14": [4, 17, 22, 46, 48, 69, 77, 79, 83, 84, 86, 88, 89, 93, 94, 96, 113, 124, 125, 128, 129, 136, 142, 206, 207, 210, 212, 214, 215, 216, 217, 218, 220, 221, 230, 233, 234, 237, 239, 241, 242, 287], "140": 128, "1401": 217, "1405": 302, "1407633717262338957430697921446883": 128, "141": 146, "14112001": 286, "1415": 92, "1415085799262523": 142, "14155265358979": 142, "14159": 221, "14159265358979": [92, 96, 239], "141592653589793": [14, 88, 92], "141592653589793238462643383279502884197169399375105820974944592307816406286208": 92, "141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068": 286, "14159265358979323846264338328": 92, "141592653589793238462643d0": 221, "1415926535897932d0": 221, "14159265358979d0": 69, "141592654": 88, "1416": 206, "1417": [128, 234], "142": 215, "14219": 91, "1428": 206, "14285278320312500000": 16, "142857": 16, "142857142857143": 16, "143": [16, 154, 170, 206], "1430": 93, "14358881": 110, "144": [48, 57, 93, 115, 206, 210], "1441": 234, "147": 102, "14751999969868": 57, "1482": 128, "1484": 46, "149": [18, 93, 128, 132], "1495": [18, 132], "149896229": [162, 165, 195], "15": [4, 14, 16, 43, 67, 74, 77, 79, 84, 86, 88, 89, 91, 92, 93, 96, 98, 101, 102, 104, 105, 113, 115, 118, 119, 124, 125, 128, 136, 149, 164, 206, 207, 209, 210, 211, 212, 216, 217, 218, 220, 221, 223, 227, 228, 230, 233, 234, 238, 239, 240, 241, 242, 259, 286, 287, 292, 293, 299], "150": [124, 144, 234], "15033720e": 14, "151": 77, "15141": 293, "1515151515151": 164, "15154262241479": 128, "15174161": 299, "152": [93, 128, 214], "1520": 136, "1521": 93, "153": 220, "15416": 13, "15423094826093": 128, "15494982830181068512": [4, 96], "155": 217, "15502": 91, "1551": 124, "1553": 89, "15555": 91, "15605338197184": 96, "15625": [136, 198], "156675": 93, "157": [115, 128, 137, 215], "1570": 234, "15707": 115, "1577": 89, "158": [124, 137], "15x15": 210, "16": [4, 12, 14, 18, 33, 46, 48, 57, 61, 67, 69, 71, 79, 80, 83, 87, 88, 89, 93, 96, 97, 98, 102, 113, 115, 118, 124, 125, 127, 128, 136, 137, 209, 210, 211, 214, 215, 216, 217, 220, 221, 227, 229, 230, 231, 234, 241, 242, 259, 265, 274, 293, 299], "160": [16, 136, 215], "1600": [136, 137], "16000": 136, "160249952256379": 218, "161": [89, 154], "16109": 128, "162": [18, 132], "1633833": 259, "1644": 46, "165": [217, 241, 259], "1666666666666666666666666666666666666666666666666666666666666667": 206, "166666666666667": 218, "16667": 115, "167": 124, "167303978": 48, "16730397826142": 48, "16840434497100886801e": 54, "16843009": 128, "1684e": 239, "169": 217, "1692": 124, "17": [4, 18, 54, 55, 57, 77, 79, 80, 88, 89, 92, 93, 94, 98, 101, 104, 113, 124, 128, 144, 211, 212, 214, 216, 217, 220, 221, 228, 230, 234, 237, 242, 256, 291], "170": [101, 241], "170748906965121e": 142, "172": 136, "172870711": 96, "1729": 234, "175": [98, 124, 214, 215], "176": 237, "1764": 128, "1768": 93, "17737": 128, "17749": 13, "17805383034794561964694160130": 96, "1785690389": 11, "1786": 128, "1787": 128, "17881": 13, "179143454621291692285822705344": 96, "18": [4, 18, 54, 71, 79, 80, 88, 91, 93, 96, 98, 101, 104, 119, 124, 128, 136, 137, 142, 144, 146, 201, 206, 210, 214, 215, 220, 221, 229, 230, 234, 237, 239, 240, 241, 242, 268], "180": [36, 104, 215], "1800": [61, 89], "18014398509481984": [88, 233], "18056": 13, "181": [57, 217], "181232444469875": 48, "1812324445": 48, "1816": 115, "1827": 265, "1829": 128, "184": [67, 237], "18466446988997098217": 54, "1847": 216, "18482169793536e": 48, "18525034196069722536": 96, "187": [196, 215], "1870": 91, "1875": 136, "18844": 13, "1889": 115, "18891601900395472": 69, "189": 214, "18971": 128, "19": [4, 46, 54, 79, 88, 91, 96, 98, 101, 104, 124, 128, 130, 132, 136, 138, 206, 212, 216, 217, 220, 230, 234, 236, 239, 253, 286], "1901": 89, "1901263495547205e": 142, "19016": 115, "190347": 215, "190413": 215, "19093197": 96, "191": [70, 240], "1914": 124, "192": 117, "1920": 89, "1921": 128, "19287309935246": [54, 239], "192873099352460791205211": 54, "1929": 89, "193": [46, 124, 142], "1931127624": 11, "19351": 91, "1937664": 214, "19404": 91, "1944": 208, "195": 93, "1952": 196, "1953": [96, 216], "1954": 115, "19548": 293, "1955": 29, "1957": 206, "1958": [128, 206], "1959": 206, "1962": 128, "1963": 237, "1965": [4, 96, 124], "1967": [89, 215], "1968": 145, "1969": [4, 89, 96, 113, 215, 231], "197": 93, "1970": [68, 124], "1971": [215, 237], "1972": 128, "1973": [34, 70, 89, 203], "1974": 223, "1976": [212, 215], "1977": 196, "1978": [72, 79, 196, 215], "1979": [105, 196], "198": 124, "1980": [128, 259], "1981": [87, 215], "1982": [115, 206], "1983": [29, 256], "1985": [29, 115, 153, 200, 265], "1988": [67, 170, 188, 214, 215], "19882": 13, "1989": [4, 215, 239], "199": 70, "1990": [80, 113, 231, 265], "1991": [70, 215], "1992": [128, 215, 239, 259], "19923894": 299, "1993": [88, 215], "1994": [80, 214, 215, 217], "1995": [93, 215, 233, 239], "1996": [206, 215, 231, 239, 265], "1997": [87, 113, 128, 215, 231], "1998": [215, 234], "1999": [80, 124, 215, 220, 237], "1_": 88, "1_0": 111, "1_1": 111, "1_2": 14, "1cm": 68, "1d": [18, 167, 169, 182, 200, 246], "1d0": 69, "1e": [14, 69, 88, 92, 124, 142, 160, 217, 239], "1e11": 128, "1e16": 88, "1e20": 88, "1e23": [128, 262], "1e3": 128, "1e5": 69, "1f1": 237, "1g": 69, "1j": [142, 144, 211], "1kn": 136, "1m": 137, "1st": [46, 67, 80, 128, 144, 237, 238, 262, 287], "1st_exact": [4, 12, 237], "1st_exact_integr": 237, "1st_homogeneous_coeff": 237, "1st_homogeneous_coeff_best": 237, "1st_homogeneous_coeff_subs_dep_div_indep": 237, "1st_homogeneous_coeff_subs_dep_div_indep_integr": 237, "1st_homogeneous_coeff_subs_indep_div_dep": 237, "1st_homogeneous_coeff_subs_indep_div_dep_integr": 237, "1st_linear": 237, "1st_linear_constant_coeff_homogen": 238, "1st_linear_constant_coeff_integr": 238, "1st_linear_integr": 237, "1st_power_seri": 237, "1st_rational_riccati": 237, "1u": 129, "1x1": [127, 241], "1x3": 124, "2": [5, 7, 11, 12, 13, 14, 15, 16, 18, 21, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 56, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 127, 128, 130, 131, 132, 134, 135, 136, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 174, 175, 176, 177, 180, 181, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 200, 201, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 250, 252, 253, 254, 255, 256, 259, 260, 261, 262, 265, 267, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "20": [4, 14, 16, 46, 54, 57, 65, 69, 77, 79, 80, 87, 88, 89, 92, 93, 96, 104, 105, 115, 124, 128, 135, 136, 137, 138, 140, 144, 155, 196, 198, 206, 207, 210, 211, 215, 216, 217, 218, 220, 221, 227, 228, 229, 230, 233, 234, 237, 240, 241, 265, 287], "200": [89, 124, 128, 136, 142, 265], "2000": [69, 74, 115, 128, 215], "20000": 128, "20000000": [92, 217], "20000000000000": 16, "2000000000000002": 16, "2000061035": 16, "2001": [80, 128, 215], "2002": [91, 208, 215, 218], "2003": [69, 206, 215, 221, 234], "20033": 88, "2004": [88, 96, 215, 234], "2005": [70, 78, 115, 128, 217], "2006": [89, 230], "2007": [29, 128, 256], "200710": 12, "20071116100808": 89, "20078": 13, "2008": [74, 124, 206, 215, 217, 221], "2009": [93, 96, 128, 206, 217], "2010": [82, 238, 259], "2011": [34, 72, 80, 113, 124, 128, 203, 230], "2012": [88, 215, 303], "2013": [90, 100, 124, 215, 295], "2014": [7, 240, 241], "20140123": 115, "2015": [115, 154, 240], "20150716201437": 128, "2016": [7, 18, 131, 132, 134, 299], "20160": 210, "20160313023044": 259, "20160323033111": 234, "20160323033128": 234, "2017": [0, 7, 206], "20170202003812": [93, 128], "20171008094331": 80, "20180413004012": 128, "2020": [98, 170], "20200118141346": 115, "20200204081320": 241, "20200224064753": 72, "20200307091449": 293, "20200628222206": 241, "20200628222212": 241, "202008": 12, "20201021115213": 234, "20201128173312": 96, "20201230182007": 241, "20205690315959": 96, "20209": 13, "20210507012732": 93, "20210508104430": 241, "20210511015444": 105, "20210806201615": 233, "2022": 206, "20220207032113": 241, "20221029115428": 210, "2026366": 241, "202916782076162456022877024859": 128, "203": [77, 93, 210], "2048": [89, 128, 221], "205": [93, 113, 231], "2057": 91, "206": [212, 217], "20621": 13, "207": 234, "2071025955": 138, "20759": 13, "20780": 13, "2079": 217, "208": [92, 217], "20833333333333e": 136, "208341": 128, "2084": 29, "2093": 115, "2097152": 217, "20conic": 265, "20e9": 137, "20kn": [136, 137], "20on": 265, "20point": 265, "20th": 208, "21": [4, 13, 18, 32, 74, 79, 88, 91, 93, 101, 102, 110, 124, 128, 130, 132, 136, 207, 210, 212, 214, 215, 216, 218, 220, 221, 227, 237, 241, 242, 297], "210": [12, 92, 93, 128, 210, 234], "211": [113, 128, 217, 231, 237], "2111": 130, "2112166839943": 128, "2112723729365330143": 96, "21147": 93, "21177": 12, "212": [89, 115, 215], "21245": 12, "21253": 12, "213": 124, "21306132": 69, "214": 196, "21402": 13, "21427": 13, "21441": 13, "21477639576571": 128, "21494": 13, "21496": 13, "21563": 13, "216": [124, 214], "2161": 234, "21626": 13, "217": [115, 215], "218332": 259, "21875": 115, "219": 215, "21938393439552": 96, "219383934395520": 96, "22": [4, 12, 16, 32, 79, 88, 91, 92, 93, 96, 124, 128, 137, 215, 220, 233, 234, 239, 241], "220": [128, 217], "2204": 214, "2209": 146, "221": 237, "22140257085069": 110, "22169": 115, "222": 91, "22252": 115, "22285": 115, "223": 215, "224": [61, 194, 215], "22464679914735e": 14, "2247": 115, "225": [93, 128, 215], "22553956329232": 110, "225607735_dixon_result": 215, "226": [79, 215], "227": 79, "22740742820168557599192443603787379946077222541710": 96, "22827": 93, "229": 128, "22906851": 11, "22925376": 253, "23": [4, 32, 67, 79, 80, 88, 91, 94, 96, 102, 104, 124, 128, 136, 144, 212, 214, 217, 220, 227, 234, 259], "230": [217, 239], "2307": 124, "231": [128, 200], "232": 96, "233": [128, 215, 237], "2331v2": 259, "234": 128, "234137346_on_a_multivariate_log": 241, "2345": 234, "23456789123456789": 88, "23456789123457": 88, "235": 93, "235625382192159": 164, "236": 128, "236237": 214, "237": [48, 215], "2376": 0, "238": [88, 128], "239": 88, "23903": 88, "24": [4, 11, 12, 51, 53, 54, 61, 67, 76, 80, 81, 88, 91, 93, 96, 102, 110, 115, 124, 128, 136, 137, 142, 144, 188, 198, 206, 212, 214, 216, 217, 218, 220, 223, 228, 234, 237, 241, 256, 259, 261, 275, 287, 293], "240": [136, 215, 223, 268], "2400": 136, "242": 212, "243": [79, 96, 234, 239], "24310": 128, "2434931": 128, "244": [88, 214], "247": [212, 215, 239], "2478": 230, "24780825": 241, "248": 128, "2489": 128, "249": 215, "25": [4, 16, 18, 46, 51, 54, 79, 80, 89, 91, 93, 96, 98, 101, 103, 119, 124, 127, 128, 132, 136, 137, 144, 149, 155, 204, 206, 210, 214, 216, 217, 220, 221, 227, 228, 230, 234, 236, 237, 238, 241, 253], "250": [16, 128, 234], "2500": 136, "25000000000000000000": 16, "2507191691": 128, "251": 214, "2514261_algebraic_and_geometric_reasoning_using_dixon_result": 215, "25146": 198, "25165824": 253, "252": 12, "253": 80, "2531": 80, "25314": 80, "253140": 80, "255": 128, "25547445255474": 138, "256": [52, 69, 79, 128, 217, 221], "25645121643901801": 128, "257": [5, 128, 239], "2580": 128, "25882": 115, "259": 124, "25e": 137, "25x25": 210, "26": [4, 77, 88, 89, 91, 96, 100, 124, 128, 136, 137, 138, 214, 217, 234, 241], "2620": 96, "26390": 92, "264": [124, 239], "265": 217, "26629073187415": 87, "268": 93, "2690882": 124, "27": [4, 11, 52, 69, 70, 79, 83, 93, 98, 124, 128, 136, 137, 144, 146, 214, 217, 239], "270": [138, 140], "2700": [61, 136], "2702765": 93, "2709077133180915240135586837960864768806330782747": 128, "271130": 210, "271133": 210, "2715": 217, "272": [93, 217], "27261": 124, "2730": 93, "274": 93, "27433": 115, "2753": 89, "27720": 93, "278444111699106966687122": 54, "27844411169911": [54, 239], "27852": 115, "27879516692116952268509756941098324140300059345163": 96, "2788": 128, "279": 217, "2794155": 286, "27_number": 128, "27_theorem": 275, "27s_constant": 88, "27s_gcd_algorithm": 88, "27s_law": 230, "27s_method": 69, "27s_rule": 124, "27s_sampling_formula": 241, "27s_strongly_connected_components_algorithm": 259, "27s_theorem": [93, 240], "27s_totient_funct": [93, 128], "27s_z": 241, "27t": 118, "28": [4, 69, 79, 87, 91, 92, 96, 124, 128, 136, 230, 234, 237, 292, 302], "280": 93, "2809": 160, "281": 80, "282": 71, "28318530717959": 43, "28333333333333": 87, "284": [80, 128], "285": 239, "2857142857142857": 14, "286": 128, "28625": 93, "287": 128, "288037795340032417959588909060233922890": [4, 96], "288716": 256, "289": 239, "28902548222223624241": 92, "2899": 115, "28continu": 241, "28cryptosystem": 89, "28graph_theori": 259, "28group_theori": 79, "28information_theori": 241, "28mathemat": [41, 80, 88, 124, 229], "28mathematical_const": 88, "28mathematical_log": [63, 64], "28number": 88, "28number_theori": 77, "28order": 94, "28permutation_group_theori": 79, "28physic": 180, "28set_theori": 229, "28x": 128, "29": [4, 41, 61, 63, 64, 71, 77, 79, 80, 88, 89, 91, 93, 94, 101, 102, 124, 128, 144, 180, 211, 229, 241, 259], "290": [239, 268], "290764986058437": 96, "291": 88, "29128599706266": 92, "2912859970626635404072825905956005414986193682745": 92, "29136443417283": 96, "292": 128, "2922": [18, 131, 132, 134, 299], "29256885": 299, "2936": [18, 131, 132, 134, 299], "2943": 115, "2948": 240, "29541": 115, "29585191": 299, "296": 239, "297": [215, 217], "299792458": [162, 165, 195, 198], "29983226": 299, "29999999999999998890": 88, "2a": [36, 48, 49, 211, 241], "2bb46c0852bf74c9d74d1a12af6d11f69f7e8363": 215, "2c_and_li": 128, "2c_x_": 128, "2d": [2, 101, 102, 104, 136, 137, 138, 140, 169, 200, 207, 221, 234, 246, 291], "2d_1": 241, "2e": [49, 53, 88], "2f": [18, 39, 298], "2f1": 237, "2f_1": 214, "2f_log_x": 128, "2fs0025": 128, "2g": 55, "2h": 39, "2i": 88, "2j": [93, 214, 241], "2j_2": [93, 223], "2j_3": 206, "2k": [41, 88, 93, 113, 128, 234], "2l": 214, "2l_1": 206, "2l_2": 206, "2l_3": 206, "2m": 137, "2n": [26, 80, 87, 93, 96, 115, 124, 140, 145, 206, 224, 231], "2nd": [30, 46, 67, 80, 89, 128, 144, 237, 242, 259], "2nd_hypergeometr": 237, "2nd_hypergeometric_integr": 237, "2nd_linear_airi": 237, "2nd_linear_bessel": 237, "2nd_nonlinear_autonomous_conserv": 237, "2nd_nonlinear_autonomous_conserved_integr": 237, "2nd_power_series_ordinari": 237, "2nd_power_series_regular": 237, "2pq": [49, 51], "2q": 128, "2q_2": 303, "2r": 303, "2t": [46, 93], "2u": 46, "2x": [16, 51, 88, 96, 113, 128, 130, 233, 234, 240, 241, 286, 289, 297], "2x1": 160, "2x2": [120, 127, 160, 210, 237], "2x_": 234, "2xy": [214, 291], "2y": [46, 214, 234, 237, 240, 291], "2z": [49, 56, 96, 240, 241], "3": [0, 3, 5, 7, 11, 12, 13, 14, 16, 18, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 57, 59, 61, 62, 64, 65, 66, 67, 69, 70, 72, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 110, 111, 112, 113, 116, 117, 118, 119, 120, 121, 124, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 155, 158, 160, 162, 164, 168, 170, 171, 172, 176, 180, 185, 186, 188, 190, 191, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 252, 253, 255, 256, 257, 259, 260, 261, 262, 265, 267, 268, 269, 270, 272, 274, 275, 282, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "30": [4, 14, 22, 32, 61, 67, 69, 74, 88, 89, 91, 92, 93, 96, 102, 104, 115, 124, 125, 128, 136, 137, 138, 164, 210, 212, 216, 217, 221, 227, 230, 233, 241, 242, 297], "300": [33, 124, 128, 136, 207, 218, 274], "3000": [104, 136], "300000": 198, "30000000000000000000": 88, "30030": 89, "301": [136, 231, 234, 299], "301369863013699": 124, "30247": 93, "303": [210, 234], "304": [215, 217], "305": 87, "30589": 124, "306": 89, "30625": 124, "307": 88, "30769105034035": 18, "308": 231, "309016994374947": 88, "3096": 241, "31": [11, 32, 76, 88, 91, 92, 104, 128, 132, 206, 217, 234, 299], "311": [88, 128], "312": [89, 200, 239, 265, 267], "3125": [104, 241], "31250": 136, "313": 204, "313552108895239": 57, "31413": 115, "31417": 92, "3144337": 217, "315": 239, "3152519739159347": 14, "317": 12, "3176591": 241, "317843553417859": 164, "318": [18, 132], "3192": 128, "3193": 115, "32": [11, 32, 79, 91, 94, 96, 98, 115, 124, 128, 136, 142, 215, 217, 218, 230, 231, 234, 241, 252], "320": 88, "321": 102, "322248": 87, "322255": 87, "323": [71, 96, 128], "3233": 89, "3239": 128, "324": [48, 128, 210, 215], "3243f6a8885a30": 128, "3248186011": 142, "325": 71, "3251": 124, "32555634906645": 96, "3257": 128, "3267000013": 128, "327": [91, 237], "3275": 217, "32767": 128, "32768": 221, "329": 237, "33": [18, 32, 69, 88, 91, 124, 132, 154, 164, 210, 214, 218, 221, 241], "330": 215, "33062": 128, "331": 110, "33102": 128, "3312": 259, "3321": 259, "33215": 128, "333": [91, 128], "3333": 115, "33333": [92, 115], "333333333333333": [92, 211, 233], "333333333333333314830": 88, "333333333333333333333": 88, "33333333333333333333333333333": 211, "335": 88, "3358": 115, "336": 61, "33768": 210, "33795": 115, "33984": 217, "33998": 115, "34": [16, 69, 80, 93, 101, 124, 128, 149, 173, 215, 220, 227, 233, 234], "3400000000000": 16, "341": [101, 128], "34105": 93, "3416277185114782": 54, "3418463277618": 164, "34211": 241, "342923500": 120, "343415678363698242195300815958": 96, "345": 80, "3456": 234, "346": 92, "34635637913639": 92, "34665576869e": 92, "34747534407696": 94, "34785": 115, "348": 124, "348645229818821": 164, "349745826211722": 48, "34985849706254": 110, "35": [79, 82, 91, 93, 101, 102, 115, 124, 128, 210, 216, 221, 234, 237, 241, 302], "350": [87, 155], "3506": 115, "352": [57, 217], "352471546": 48, "352471546031726": 48, "353": [91, 124], "354": [18, 132], "355": [92, 128, 215], "356": [115, 216, 239], "357947691": 110, "36": [12, 48, 71, 82, 89, 93, 104, 115, 124, 128, 137, 217, 221, 234, 237, 241, 275], "360": [138, 140], "3600": [61, 93], "3602879701896397": 88, "36188804005": 142, "362": 115, "3627": 146, "363": [98, 128, 215], "364": 98, "36465": 138, "3674160": 79, "368": 206, "369": 89, "37": [77, 89, 93, 94, 98, 124, 128, 137, 138, 206, 221, 234], "374": [18, 132], "37439874427164e": 18, "3744312326": [88, 93], "376": 215, "377": 128, "379": [128, 217], "379238": 128, "37933": 241, "38": [93, 104, 124, 128, 221, 234, 236, 241], "381": 128, "38177329": 260, "38177329068": 260, "3827": 128, "384": 91, "387": 91, "38954165": 241, "39": [93, 96, 128, 138, 220], "390740740740741": [18, 132], "391": 240, "3923913114": 12, "39267e": 239, "3927": 115, "393": 234, "39439": 115, "39578": 210, "396": [22, 92], "397": 215, "397042": 128, "39764993382373624267": 93, "399": 233, "3a": [18, 131], "3af6dc1": 11, "3aintegr": 115, "3aissu": 115, "3aopen": 115, "3d": [2, 33, 61, 72, 101, 102, 136, 169, 192, 207, 269, 271, 272, 273, 274], "3e": 69, "3f_1": 214, "3i": 128, "3j": [96, 170, 206], "3j_2": [93, 223], "3kn": 136, "3m": 137, "3rd": [30, 67, 80, 94, 128, 217, 239, 242, 259], "3x": [49, 55, 88, 130, 214, 240, 289], "3x1": 124, "3x3": [39, 53, 103, 124, 210, 270], "3xy": 234, "3xyz": 130, "3y": 234, "3z": 240, "4": [2, 5, 11, 12, 14, 16, 17, 18, 22, 23, 24, 27, 28, 30, 31, 33, 36, 37, 39, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 56, 57, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 110, 111, 113, 115, 117, 118, 119, 120, 121, 124, 125, 127, 128, 130, 132, 134, 136, 138, 140, 142, 144, 145, 146, 150, 151, 160, 163, 167, 170, 175, 185, 186, 188, 189, 190, 191, 192, 194, 200, 201, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 252, 253, 256, 259, 260, 261, 265, 268, 269, 270, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 304, 306, 307, 309, 310, 311], "40": [4, 57, 69, 91, 93, 96, 98, 105, 124, 128, 136, 138, 207, 218, 220, 221, 241, 262, 286], "400": [136, 207, 217], "4000": [136, 137], "40000": 136, "4002723175": 241, "4013": 136, "40207856": 241, "40320": [11, 12], "404": 234, "4067977442463": [18, 132], "409": 241, "4096": 93, "4096000": 70, "41": [91, 98, 124, 128, 212, 234], "41152": 164, "4117304087953": 142, "41211849": 286, "412214747707527": 189, "41230258795639848808323405461146104203453483447240": 96, "413": 89, "4130533677": 138, "414": 259, "4140": 93, "4142": 217, "414213562": 88, "4142135623730951": 57, "4142135623731": [41, 54, 221, 239], "414645": 217, "415": 91, "41577": 115, "41624341514535": 94, "417": [115, 233], "42": [55, 69, 77, 88, 91, 93, 101, 102, 104, 119, 121, 124, 126, 128, 210, 212, 214, 217, 234, 252], "420": [128, 234], "4200": 128, "423": 124, "4250": 136, "42519758": 241, "42525": 93, "42658": 115, "42868": 138, "429": [93, 221], "43": [83, 124, 128, 136, 137, 241, 297], "430": 259, "432": [57, 101, 216], "433": [18, 132], "434607": 57, "43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875": 92, "43608": 115, "438990337475312": 48, "44": [14, 18, 91, 93, 124, 128, 131, 132, 134, 230, 241, 299], "4410317": 128, "4418": 146, "44224957030741": 218, "4423": 128, "4428829381583662470158809900606936986146216893757": 92, "44288293815837": 92, "4429": 92, "4433": 93, "44399": 138, "444": 91, "445": [4, 215], "44542": 234, "44626032": 69, "44721": 115, "4472354033813751e": 142, "448": 61, "44918589": 299, "4493": 115, "45": [12, 36, 68, 88, 93, 104, 124, 128, 140, 217, 218, 234], "450": [11, 124], "4503599627370496": 14, "4504508011325967e": 142, "45136923488338": 96, "45279": 241, "4536": 128, "456": [4, 88, 215], "456457160755703e": 142, "4579": 218, "45896": 115, "4596": 88, "45960141378007": 110, "459697694131860": 43, "46": [124, 128, 136, 196, 220, 239, 241], "463": [29, 70], "4641": 110, "4641991": 128, "46699555e": 14, "46792545969349058": 239, "47": [93, 96, 124, 128, 146, 164, 196, 220], "4701": 241, "4701sum07": 241, "472": 241, "473": 80, "47450": [93, 128], "4753701529": 128, "47577": 142, "47757": 210, "478": 215, "479001599": 128, "48": [91, 98, 137, 234, 239, 241, 287], "48550": 303, "4856615": 259, "4857018": 259, "4862": 93, "4869863": 128, "4877893607115270300540019e": 54, "488253406075340754500223503357": 96, "49": [92, 93, 128, 137, 214, 234], "490": [70, 80], "4915": 88, "49182424008069": 110, "49299": 234, "49315059": 260, "495": [136, 210], "49552913752915": 138, "49793": 138, "49801566811835604271": [4, 96], "499948155": 80, "4a": 256, "4ac": [48, 49, 234], "4adc6a51d8371be5b0e4c7dff287fc70": 241, "4e": [16, 69, 239], "4i": 128, "4m": 137, "4th": [30, 93, 94, 110, 124, 128], "4x": [234, 240, 286], "4x1": [163, 241], "4x4": [53, 61, 103, 127, 163, 210, 241], "4xy": [33, 274], "4y": [51, 214, 240, 286], "4z": [49, 56, 240], "5": [5, 11, 12, 14, 16, 17, 18, 22, 23, 25, 28, 33, 36, 37, 41, 43, 48, 50, 52, 54, 57, 61, 63, 64, 65, 67, 69, 70, 71, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 124, 125, 127, 128, 130, 132, 135, 136, 138, 140, 142, 144, 146, 147, 149, 151, 154, 155, 160, 164, 185, 186, 189, 191, 198, 201, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 252, 253, 259, 260, 261, 265, 268, 270, 272, 274, 275, 286, 287, 289, 292, 293, 297, 299, 302, 303, 304, 309, 310, 311], "50": [55, 70, 79, 91, 92, 93, 96, 104, 124, 128, 136, 137, 164, 195, 214, 215, 217, 221, 230, 239, 287], "500": [70, 92, 155, 299], "5000": [92, 136], "50000": 128, "50000000000000": [88, 92], "500000000000000": 144, "50000000000000000000000000000": 92, "5000000000291665e": 142, "500006656595360": 146, "5020": 5, "50232379629182": 96, "503": 216, "504": [92, 215], "5040": [39, 93, 110, 217, 218], "504067061906928": 92, "50406706190692837199": 92, "505": 215, "50521": [93, 217], "50923695405127": 96, "50u": 129, "51": [67, 124, 128], "51041666666667e": 136, "5109": 115, "511": 93, "5112118495813": 194, "512": [79, 96], "5124": 217, "514": [70, 78, 215], "5140": 252, "5148378120533502e": 142, "515": 96, "5173168": 96, "52": [77, 93, 128, 136, 137, 138, 206, 220, 234, 237, 259, 287], "5236": 115, "525": 104, "5253": 115, "5269": 93, "52818775009509558395695966887": 128, "53": [43, 89, 91, 124, 160, 209, 211], "53087": 115, "530e": 160, "532": 215, "5394769": 128, "54": [88, 124, 214, 220, 259], "5404319552844595": 88, "542": 79, "544": 206, "5459": 128, "55": [79, 91, 93, 124, 206, 207, 217, 234, 299], "55203744279187": 96, "55271367880050e": 67, "555": 91, "55556": 115, "558": 237, "55872552179222e": 48, "55998576005696": 160, "56": [57, 91, 93, 115, 128, 214, 217], "560": 136, "561": [13, 128], "562": 11, "563": 215, "5648024145755525987042919132": 96, "567": 94, "57": [79, 124, 128, 241], "5706": 88, "5718": [67, 128, 234], "5728": 88, "574": 128, "57721566490153286060651209008240243104215933593992": 92, "577215664901533": 92, "5772157": 88, "577377951366403": 164, "5777": 128, "579": 93, "58": [89, 124, 138, 247], "58602": 241, "5880": 93, "588469032184": 239, "59": [124, 237], "591382": 132, "5915587277": 128, "5917": 115, "5919532755215": 43, "5937": 303, "5937424601": 110, "59375e": 136, "5992": 0, "5b7c3e8ee5b40332abdb206c": 293, "5c52": 128, "5e": 46, "5g": 69, "5kn": 136, "5m": [137, 256], "5th": [30, 88, 214, 216], "5x": [128, 234], "5x5": 89, "5y": 234, "6": [11, 12, 14, 16, 17, 18, 28, 32, 36, 37, 39, 46, 48, 56, 57, 61, 63, 64, 67, 69, 70, 71, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 100, 101, 102, 103, 104, 110, 111, 113, 115, 117, 118, 120, 121, 124, 125, 127, 128, 130, 132, 135, 136, 138, 140, 142, 144, 145, 146, 155, 160, 164, 170, 188, 200, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 226, 227, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 252, 253, 256, 259, 260, 261, 265, 268, 270, 275, 287, 293, 297, 298, 299, 302, 304, 309, 310, 311], "60": [61, 74, 79, 81, 87, 88, 93, 96, 115, 124, 128, 136, 137, 210, 220, 221, 234, 237, 259], "6000": 88, "6004799503160655": 233, "600e": 88, "601": 18, "60123853010113e": 92, "609": 93, "609344": 198, "60986636": 299, "60e2": 88, "60n": 89, "60x60": 210, "61": [88, 89, 93, 104, 124, 128, 217, 223], "61051": 110, "6116978": 262, "6125": [124, 128], "617": 128, "61717": 138, "6174190361677": 132, "618": 130, "61803398874989": 88, "6180885085e": 142, "61825902074169104140626429133247528291577794512415": 96, "62": [124, 214], "62349": 115, "625": [104, 275], "625146415202697": 96, "62963087839509e": 198, "63": [88, 91, 124, 138], "630": 217, "631": 74, "63232916": 241, "634": 74, "6349839002": 228, "635": 92, "635564016364870": 94, "636": 89, "639985": [128, 214], "64": [8, 12, 29, 73, 79, 88, 128, 206, 214, 220, 230, 239, 241, 252, 259, 262, 296], "6400": 136, "643": [91, 128], "6435": 93, "643501108793284": 94, "6449340668": 228, "64493406684823": 92, "645": 128, "6460": 128, "64613129282185e": 92, "64705": 241, "648": 241, "64872063859684": 110, "65": [128, 144, 214, 241, 299], "65092319930185633889": 96, "651354770181179": 164, "65215": 115, "6543612251060553497428174e": 54, "6545": 217, "65504": 69, "65536": [217, 220, 221], "65537": [128, 220], "6569866": 286, "657": 230, "658921776708929": 164, "659097795948": 194, "659936": 96, "66": [18, 93, 124, 217, 221], "660539060e": 198, "662": 124, "66317": 128, "6634255": 217, "6659": 240, "666": 91, "666666666666667": [136, 137], "66666666666667": [18, 132], "6666666666667": [18, 299], "668": 61, "67": [124, 214, 215], "670250533855183": 142, "6707": 124, "6711f12": 241, "6720": 217, "676": 234, "67721": 115, "6774": 259, "67884": 142, "67894": 69, "679": 137, "68": [91, 116, 124, 128, 210, 234], "6832579186": 241, "68437": 142, "686": 256, "6868680200532414": [4, 12], "687": 48, "6875": 136, "68812842": 299, "6881721793": 228, "689": [115, 137], "69": [79, 124, 210, 239, 256], "691": 93, "6931396564": 228, "693147180559945": 130, "6931471805599453094172321215": 228, "6931471806": 228, "693147255559946": 92, "69629": 217, "6963328": 241, "6988699669998001": 128, "699": 67, "6j": [170, 206], "6k": 93, "6th": [72, 128], "6x": [88, 214], "6x6": 89, "6z": [49, 56], "7": [4, 11, 12, 14, 16, 17, 18, 25, 26, 30, 41, 43, 46, 48, 51, 55, 61, 63, 64, 67, 69, 72, 74, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 96, 98, 101, 102, 103, 104, 110, 113, 115, 118, 120, 121, 124, 128, 130, 136, 138, 142, 144, 191, 196, 198, 206, 207, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 246, 247, 252, 253, 256, 259, 260, 265, 275, 287, 292, 293, 299, 302, 311], "70": [88, 89, 105, 115, 124, 128, 220, 221, 234, 241, 262], "700000000000000": 241, "701": 194, "7042848373025861": 142, "7048138294": 228, "706": [67, 124], "7060005655815754299976961394452809": 128, "7063": 115, "70710678118654752440084436210484903928483593768847": 287, "707106781186548": [94, 287], "70711": 115, "71": [11, 79, 104, 124, 128, 194], "71109": 115, "712": [46, 115], "712328767123288": 124, "712524808": 88, "71318": 217, "7143": 241, "715": [170, 206, 221], "717": [18, 132], "71827974413517": 110, "718281828": 88, "718281828459045235360287d0": 221, "7182818284590452d0": 221, "718281828459045j": 92, "71828182845905": 110, "7182818285": 228, "718281835": 128, "72": [67, 71, 88, 101, 124, 128, 136, 206, 220, 234], "720": [11, 12, 223, 237, 259], "721": 215, "72463": 115, "729": 214, "73": [79, 87, 88, 101, 128, 237], "730": 115, "730061685774": 239, "73071763923152794095062": 96, "732": 217, "73205080756887729352744634151": 217, "73205080756888": 217, "7357232": 12, "73908513321516": 54, "73908513321516064165531208767387340401341175890076": 239, "739085133215161": [49, 54, 56, 57, 239], "74": [79, 93, 128, 144], "74126166983329d": 69, "744": [212, 214], "74720545502474": 96, "75": [88, 91, 136, 210, 241, 265, 299], "750": 93, "7523": 240, "754": 88, "7560958484519": 138, "7568025": 286, "7598d94": 11, "76": [93, 96, 124, 128, 214, 217], "760939574180767": 96, "761": 93, "7635": 96, "764": 96, "7648844336": 48, "764884433600585": 48, "7649": 88, "765": [57, 217], "7655283165378005676": 96, "766": 69, "767": 91, "77": [9, 77, 93, 96, 124, 128, 220, 221, 254], "771561": 110, "7717": 0, "77245385090552": [57, 287], "7746": 115, "7751": 115, "777": [82, 91], "778": 82, "779": 82, "78": [11, 79, 102, 124, 128, 137, 196, 237, 241], "7845": 115, "7854": 115, "787338754623378": 132, "789": [88, 128], "79": [79, 80, 137], "79115232": 241, "79150773600774": 138, "7936": [93, 217], "797": 89, "79798269973507": 132, "799333555511111": 128, "7_f64": 221, "7abb76ffed50425299b9065129ae87261668a0f7": 240, "7fa63b1": 11, "7o38": 206, "7y": 234, "8": [4, 11, 12, 14, 17, 18, 30, 39, 46, 48, 54, 59, 61, 62, 67, 69, 72, 79, 80, 81, 84, 86, 88, 89, 91, 92, 93, 94, 96, 98, 101, 102, 104, 110, 113, 115, 117, 118, 120, 121, 124, 125, 127, 128, 130, 132, 136, 138, 140, 142, 144, 146, 163, 164, 175, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 224, 227, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 246, 252, 254, 256, 259, 265, 268, 269, 275, 286, 287, 291, 293, 297, 299, 302], "80": [3, 4, 8, 12, 16, 43, 67, 79, 88, 91, 115, 124, 128, 136, 137, 142, 210, 214, 217, 220, 237, 241, 257, 259, 299], "8000": [8, 136], "800205": [212, 215], "803206": 128, "805": 217, "806320": 215, "806338": 215, "806342": 212, "809": 115, "809709509409109": 128, "81": [18, 22, 79, 93, 98, 124, 128, 206, 210, 220, 299, 302, 304], "8100": 241, "814": [18, 132], "816477005968898": 164, "817106179880225": 18, "818": 196, "81879421395609": 96, "82": [79, 115, 124, 241], "82211796209193": 110, "823": 89, "825": 132, "827230": 79, "827273": 79, "82842712474619": 286, "82842712475": 291, "828770759094287e": 142, "83": [79, 220], "831": 128, "83333": 115, "83403519": 241, "83711": 93, "8375": 115, "8392867552141611326": 88, "84": [88, 92, 128], "84092844": 129, "8411998": 129, "84119981": 129, "84147096": 129, "84147098": [129, 260, 286], "8414709848078965": [14, 260], "841470984807896506652502321630": 14, "844291913708725": 142, "846749014511809332450147": 93, "85": [77, 92, 93, 124, 128, 136, 189, 206, 241, 302], "850": 138, "850908514477849": 164, "854500743565858": 142, "85768055": 241, "85819627": 241, "86": [29, 80, 124, 220, 230], "861136": 217, "86113631159405258": 217, "86114": 115, "861246379582118": 142, "86400": 198, "86458333333333e": 136, "865": 217, "865474033102": 69, "865474033111": 69, "865477135298": 69, "86602": 115, "8660254037844386j": 142, "867263818209": 69, "869604401089358618834491d0": 221, "87": [79, 94, 124, 128, 214], "87174": 115, "8724366472624298171": 96, "873": [46, 128], "87636": 217, "877": 93, "88": [88, 124, 128, 299], "884": 234, "886": [18, 132], "88679245283019": 160, "888": 91, "888888877777777": 128, "88889": 115, "89": [79, 86, 115], "891": 128, "8a975c1405bd35c65993abf5a4edb667c1db": 128, "8am": 89, "8kn": 137, "8m": 234, "8xy": 214, "9": [4, 11, 12, 14, 17, 18, 22, 24, 30, 37, 46, 55, 57, 59, 67, 69, 76, 78, 79, 80, 84, 86, 87, 88, 89, 91, 93, 94, 96, 97, 98, 101, 102, 104, 110, 113, 115, 119, 120, 121, 124, 125, 127, 128, 130, 135, 136, 138, 142, 144, 145, 146, 147, 149, 160, 164, 196, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 227, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 252, 256, 259, 265, 268, 291, 293, 298, 299, 302, 304, 307], "90": [21, 22, 31, 67, 79, 86, 96, 124, 130, 136, 140, 221, 223, 233, 241, 254], "900": 61, "90047": 259, "90097": 115, "903": 136, "90300": 136, "906425478894557": 37, "90642547889456": 37, "9071": 128, "90929743": [260, 286], "909449841483": 96, "909672693737": 69, "91": [16, 70, 215, 220, 227, 241], "9121071": 299, "912285": [128, 214], "91403453669861": 138, "914148152112161": 128, "91596559": 88, "9179": 128, "92": [18, 101, 215, 237, 241, 259], "920": 234, "9215": 214, "921_": 88, "92242131492155809316615998938": 96, "926093295503462": 164, "92753330865999": 160, "93": [79, 215], "932": 230, "9330": 93, "93669377311689": [18, 132], "9369318": 234, "93accumulate_oper": 43, "93add": 43, "93berkowitz_algorithm": 210, "93euler_equ": 237, "93gauss_quadratur": 115, "93hadamard_transform": 91, "93jacobi_pseudoprim": 128, "93jacobi_quadratur": 115, "93johnson": 259, "93lagrange_equ": 67, "93laguerre_quadratur": 115, "93lenstra": 210, "93lobatto_rul": 115, "93lov": 210, "93mascheroni_const": 88, "93rabin_primality_test": 128, "93ruffini_theorem": 217, "93schmidt_process": 124, "93simon_distribut": 241, "93trotter_algorithm": 259, "93tukey_fft_algorithm": 91, "93zero_plot": 142, "94": [146, 215], "9405": 214, "9412172": 241, "9424": 128, "943396226415094": [18, 132], "9436": 154, "945": [212, 218], "9487171": 110, "9496": 96, "94991743": 241, "95": [18, 69, 86, 128, 214, 221, 234, 237, 239, 254], "951": 92, "951056516295154": 88, "9537590861": 138, "954": 128, "956": 92, "9562288417661": 92, "95678796130331164628399634646042209010610577945815": 92, "95892427": 286, "96": [124, 241], "9603": 214, "9625": 136, "96593": 115, "967": 115, "96716083": 241, "9696": 240, "97": [79, 88, 89, 128, 214], "971843958291041": 164, "9780470316887": 241, "97851": 115, "98": [29, 79, 89, 217, 237, 304], "9801": 92, "9804659461513846513": 128, "981": 115, "98101184": 69, "982": 29, "983": 115, "983697455232980674869851942390639915940": 93, "9855e": 115, "986": 234, "987": 128, "989": 128, "9891e30": 194, "98935825": 286, "98991349867535": [18, 132], "99": [8, 69, 88, 89, 124, 128, 144, 214, 215], "9900": 93, "99009901": 128, "9904": 115, "991": 128, "991052601328069": 96, "9927": 115, "995": [18, 132], "995322265018952734162069256367": 96, "9955291375291": 138, "9964469100598874": 18, "99862803482534211706798214808651328230664709384460955058223172535940812848111745": 92, "999": [88, 92], "9999": 250, "9999999799999999": 142, "999999984582742099719981147840": 96, "9999999999999999": 14, "99999999999999991611392": 262, "99999999999999999999": 88, "9j": [170, 206], "9th": [93, 128], "9x": 240, "9y": [49, 55], "9z": 240, "A": [0, 2, 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 19, 21, 22, 24, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 110, 111, 113, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 127, 128, 130, 131, 132, 134, 136, 137, 138, 140, 142, 144, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 163, 165, 168, 170, 171, 172, 174, 175, 176, 177, 179, 180, 181, 183, 185, 186, 187, 188, 189, 190, 191, 193, 195, 196, 197, 199, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 259, 260, 265, 267, 269, 270, 271, 272, 274, 275, 282, 288, 290, 292, 293, 297, 299, 301, 305, 306, 307], "AND": [91, 118], "And": [3, 11, 12, 13, 14, 36, 42, 43, 50, 63, 79, 80, 87, 88, 89, 96, 113, 118, 124, 127, 152, 163, 207, 209, 217, 218, 221, 229, 233, 234, 239, 240, 241, 259, 260, 270, 297], "As": [4, 13, 14, 18, 22, 24, 27, 28, 35, 38, 39, 42, 43, 48, 53, 54, 55, 60, 69, 79, 80, 88, 89, 92, 93, 94, 96, 112, 113, 118, 124, 127, 128, 130, 131, 134, 149, 152, 156, 158, 191, 196, 208, 209, 211, 212, 214, 217, 218, 220, 221, 228, 229, 231, 237, 240, 241, 259, 260, 269, 270, 286, 287, 289, 291, 292, 293, 296, 297, 302, 304, 306], "At": [2, 12, 21, 32, 36, 41, 43, 52, 67, 84, 94, 96, 115, 128, 136, 137, 196, 210, 214, 216, 231, 260], "BE": [0, 12], "BY": 234, "Be": [3, 4, 8, 43, 67, 88, 118, 124, 214, 237, 240, 248, 260], "Being": [3, 84, 98, 104, 211], "But": [2, 3, 5, 7, 12, 13, 14, 15, 16, 43, 48, 57, 87, 88, 93, 96, 102, 112, 124, 128, 179, 180, 191, 196, 200, 208, 209, 214, 218, 228, 230, 231, 233, 234, 237, 239, 240, 246, 256, 259, 260, 268, 287, 289, 291, 292, 297], "By": [2, 14, 16, 41, 43, 48, 52, 53, 55, 61, 62, 64, 69, 78, 87, 88, 90, 92, 93, 96, 102, 103, 107, 111, 113, 118, 124, 127, 128, 129, 130, 134, 136, 137, 142, 149, 186, 191, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 228, 230, 233, 234, 237, 239, 240, 241, 245, 247, 248, 252, 255, 259, 260, 272, 286, 291, 292, 297], "For": [1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 38, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96, 100, 102, 103, 106, 109, 111, 112, 113, 117, 118, 124, 128, 129, 130, 132, 134, 136, 137, 138, 140, 144, 146, 149, 150, 151, 152, 153, 154, 158, 160, 174, 175, 180, 184, 186, 188, 189, 190, 191, 193, 195, 196, 197, 200, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 239, 240, 241, 242, 245, 246, 247, 248, 252, 253, 254, 256, 257, 259, 260, 263, 265, 267, 270, 272, 274, 275, 285, 286, 287, 289, 292, 293, 297, 298, 299, 306], "ITE": [94, 118, 221], "If": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 39, 41, 42, 43, 45, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 77, 79, 80, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 116, 117, 118, 120, 124, 125, 127, 128, 129, 130, 131, 132, 134, 136, 142, 144, 145, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 164, 168, 172, 175, 181, 185, 186, 187, 188, 189, 191, 195, 199, 200, 201, 202, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 268, 270, 272, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298], "In": [2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 48, 52, 57, 59, 65, 67, 68, 69, 70, 71, 72, 74, 77, 78, 79, 80, 87, 88, 89, 90, 92, 93, 94, 96, 101, 103, 104, 105, 106, 113, 115, 116, 117, 118, 120, 124, 125, 128, 130, 133, 134, 136, 137, 140, 144, 148, 151, 152, 153, 155, 158, 177, 179, 180, 181, 186, 190, 191, 194, 195, 196, 203, 204, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 247, 250, 252, 254, 256, 257, 259, 260, 265, 269, 270, 272, 274, 286, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 303, 304, 306, 307], "It": [0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 28, 30, 35, 36, 39, 41, 42, 43, 48, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 67, 68, 69, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 100, 104, 105, 111, 113, 115, 117, 118, 124, 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 142, 144, 146, 148, 149, 150, 151, 152, 153, 156, 158, 159, 160, 164, 165, 175, 180, 181, 186, 187, 188, 189, 190, 191, 193, 196, 199, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 252, 253, 254, 255, 256, 257, 260, 265, 268, 269, 270, 272, 274, 275, 286, 287, 289, 290, 291, 292, 293, 295, 296, 297, 302, 310], "Its": [30, 88, 94, 104, 149, 189, 210, 214, 221, 229, 299], "NO": [55, 191], "NOT": [13, 14, 46, 118, 144, 171, 175, 190, 193, 250, 253], "No": [2, 4, 5, 11, 16, 18, 22, 57, 68, 88, 96, 103, 118, 128, 136, 145, 186, 207, 210, 217, 223, 224, 233, 234, 239, 240, 241, 246, 250, 256, 257, 259, 286, 298], "Not": [13, 15, 42, 43, 53, 88, 93, 118, 144, 221, 240, 241, 259, 291, 298], "OF": 256, "ONE": 221, "OR": [15, 67, 91, 118, 214], "Of": [12, 17, 39, 41, 87, 113, 124, 237, 240, 259, 297], "On": [8, 11, 13, 14, 22, 33, 41, 64, 74, 81, 88, 90, 96, 115, 118, 128, 136, 195, 196, 211, 212, 214, 215, 216, 217, 237, 239, 256, 260, 272, 274], "One": [11, 14, 15, 16, 22, 28, 30, 32, 38, 41, 43, 67, 68, 69, 78, 80, 87, 88, 93, 94, 96, 107, 110, 112, 113, 115, 118, 124, 128, 130, 136, 137, 158, 167, 196, 212, 214, 215, 217, 220, 223, 229, 233, 236, 239, 240, 241, 242, 247, 260, 272, 286, 287, 289, 292, 293, 297], "Or": [5, 8, 12, 13, 14, 16, 42, 50, 52, 79, 88, 89, 90, 96, 113, 118, 128, 155, 208, 218, 220, 221, 233, 240, 241, 252, 260, 272, 292, 295], "Ore": 111, "Such": [3, 4, 12, 41, 69, 88, 104, 208, 209, 216, 222, 230, 231, 233, 286, 292, 306], "That": [0, 3, 5, 11, 12, 14, 15, 16, 23, 35, 36, 41, 42, 43, 88, 89, 94, 118, 124, 128, 151, 188, 193, 199, 208, 209, 211, 212, 214, 216, 227, 228, 237, 241, 253, 254, 260, 286, 289, 292, 297], "The": [0, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 124, 125, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 167, 168, 169, 170, 171, 172, 174, 175, 176, 177, 179, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 268, 269, 270, 273, 274, 275, 286, 287, 289, 290, 292, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 306, 307, 308, 309, 310, 311], "Their": [4, 18, 88, 96, 113, 206, 207, 211, 214, 231], "Then": [8, 9, 11, 12, 14, 15, 18, 23, 28, 35, 39, 41, 79, 84, 87, 88, 113, 117, 124, 128, 150, 151, 153, 160, 188, 196, 208, 209, 211, 214, 216, 218, 221, 228, 231, 233, 234, 237, 239, 260, 309, 311], "There": [2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 21, 23, 25, 27, 28, 35, 36, 38, 41, 42, 43, 45, 48, 51, 52, 56, 69, 70, 74, 79, 80, 81, 82, 85, 87, 88, 89, 92, 93, 96, 112, 113, 115, 116, 117, 118, 120, 124, 128, 134, 136, 137, 140, 144, 151, 158, 164, 181, 186, 200, 205, 207, 211, 212, 213, 214, 216, 217, 218, 221, 222, 223, 229, 230, 231, 233, 234, 237, 239, 240, 241, 243, 246, 255, 256, 259, 260, 262, 270, 286, 287, 289, 291, 292, 296, 297, 299], "These": [0, 2, 4, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 27, 30, 33, 35, 36, 37, 39, 41, 42, 43, 57, 58, 60, 68, 69, 79, 87, 88, 89, 90, 96, 113, 115, 118, 124, 128, 130, 131, 132, 133, 134, 137, 144, 148, 152, 153, 154, 156, 158, 159, 181, 186, 187, 195, 200, 201, 208, 209, 210, 211, 212, 214, 217, 221, 231, 234, 237, 238, 240, 241, 243, 248, 252, 253, 254, 259, 272, 287, 290, 293, 296, 297, 299, 300, 302, 305, 306, 310], "To": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 26, 27, 28, 30, 32, 33, 36, 39, 42, 43, 46, 50, 51, 52, 54, 55, 56, 57, 59, 60, 63, 64, 67, 68, 69, 70, 78, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 111, 113, 115, 117, 118, 120, 124, 128, 130, 132, 134, 136, 137, 142, 144, 145, 147, 148, 149, 152, 153, 156, 158, 159, 168, 172, 185, 194, 196, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 228, 229, 231, 234, 237, 238, 239, 240, 241, 242, 245, 246, 250, 252, 253, 256, 257, 259, 260, 265, 267, 269, 270, 272, 274, 275, 286, 287, 289, 290, 292, 293, 296, 297, 298, 299, 304], "WILL": 12, "Will": [69, 124, 216, 221, 252], "With": [3, 13, 16, 18, 24, 26, 27, 36, 42, 46, 59, 69, 71, 87, 88, 92, 113, 128, 158, 164, 188, 191, 207, 208, 209, 210, 211, 212, 219, 220, 221, 228, 233, 242, 259, 291, 292, 299, 303, 304, 306, 307], "_": [3, 4, 5, 13, 14, 16, 18, 25, 28, 30, 32, 35, 37, 39, 43, 46, 63, 64, 68, 76, 77, 79, 80, 81, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103, 104, 113, 115, 118, 119, 120, 121, 124, 126, 128, 130, 144, 170, 191, 196, 205, 206, 210, 212, 214, 216, 217, 220, 221, 222, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 242, 243, 259, 268, 270, 296], "_0": [88, 93, 113, 124, 217, 260, 299], "_1": [96, 124, 152, 159, 200, 206, 231, 260], "_1cm": 68, "_1f_1": 96, "_2": [32, 55, 124, 152, 159, 200, 206, 237], "_2cm": 68, "_2f_1": 297, "_3": [200, 206], "_3mm": 68, "_5": [71, 208], "__": [16, 96, 115, 221, 241, 246], "__1": 96, "___": [87, 92, 115, 116, 124, 209, 233, 241, 246, 259, 296], "____": [87, 92, 115, 163, 209, 222, 241, 259, 298], "_____": [87, 241, 303], "______": 246, "________": [222, 241, 259], "__________": [69, 209], "___________": [92, 137, 237], "____________": 137, "_____________": 137, "_______________": 137, "________________": [137, 237], "_________________": [12, 137], "__________________": 237, "_____________________": 137, "______________________": 137, "_______________________": 137, "________________________": 137, "______________________________": 241, "________________________________": 137, "_____________________________________": 137, "______________________________________________": 137, "_______________________________________________": 137, "____________________________________________________": 137, "_______________________________________________________": 207, "_____________________________________________________________________________________________________": 12, "_____________________o_______________________": 137, "_______________v": 137, "____________o________________________": 137, "_______i_______": 137, "__abs__": [124, 212], "__add__": [124, 212, 216], "__all__": 255, "__bool__": 88, "__builtins__": 16, "__cacheit": 88, "__call__": [69, 80, 88, 216], "__class__": [156, 260], "__cmp__": [168, 172, 191], "__contains__": 79, "__divmod__": 212, "__doc__": [4, 16], "__file__": 16, "__floordiv__": 212, "__future__": [16, 39], "__getitem__": [13, 88, 124, 210, 246], "__globals__": 260, "__index__": 262, "__init__": [3, 4, 18, 43, 88, 153, 154, 216, 265, 267, 292, 299], "__init_subclass__": [13, 41], "__iter__": [13, 80, 88, 233], "__len__": 124, "__main__": [16, 69, 293], "__mod__": [212, 216], "__mul__": [73, 79, 124, 212, 216], "__name__": [16, 221], "__neg__": 212, "__new__": [14, 41, 43, 69, 79, 88, 292], "__package__": 16, "__pos__": 212, "__pow__": [13, 124, 212, 218], "__repr__": [13, 221], "__rmul__": 124, "__setitem__": 207, "__sub__": 212, "__truediv__": [88, 212], "__weakref__": [79, 123, 124], "_a": [84, 96, 191, 217, 299], "_add": [208, 227], "_aesara": 221, "_af_par": 80, "_af_rmul": 84, "_all_": 210, "_all_root": 217, "_amv": 217, "_appli": 208, "_apply_operators_qubit": 175, "_arg": [88, 94], "_array_form": 80, "_as_integr": 115, "_ask": 41, "_assume_rul": 41, "_assumpt": [41, 88], "_assumptions_orig": 88, "_b": [84, 96, 191], "_backend": 13, "_base_ord": 86, "_basic": 252, "_basic_orbit": 79, "_best": 237, "_build": [4, 8, 45], "_c": 191, "_ccode": [43, 221], "_check_anteced": 113, "_check_antecedents_1": 113, "_check_antecedents_invers": 113, "_check_cycles_alt_sym": [79, 86], "_clash": [60, 88], "_clash1": [60, 88], "_clash2": [60, 88], "_cmp_perm_list": 85, "_coeffexpvalueerror": 113, "_collapse_extra": 115, "_complexes_index": 217, "_complexes_sort": 217, "_components_data_full_destroi": 13, "_compos": 208, "_compute_transform": 115, "_condsimp": 113, "_construct_": 69, "_contain": 208, "_contains_elem": 208, "_contains_id": 208, "_convert_poly_rat_alg": [107, 109], "_coset_repres": 79, "_count_root": 217, "_create_lookup_t": [109, 113], "_create_t": [107, 109], "_csrtodok": 127, "_cxxcode": [43, 221], "_d": [191, 299], "_default_set": 221, "_dfm": 210, "_dict": 234, "_diff_wrt": 88, "_distinct_primes_lemma": 79, "_distribute_gens_by_bas": 86, "_doktocsr": 127, "_dummi": 113, "_dummy_": 113, "_dummy_10": 88, "_dummy_fmt": 13, "_ecm_one_factor": 128, "_ensure_complexes_init": 217, "_ensure_reals_init": 217, "_enumerate_st": 186, "_eval_": 15, "_eval_adjoint": 189, "_eval_as_leading_term": 88, "_eval_cond": 113, "_eval_deriv": [15, 43, 88, 96], "_eval_eq": 88, "_eval_evalf": [43, 217], "_eval_expand_": 43, "_eval_expand_bas": 88, "_eval_expand_complex": 88, "_eval_expand_doubl": 88, "_eval_expand_func": 14, "_eval_expand_hint": 88, "_eval_expand_trig": 43, "_eval_i": 41, "_eval_integr": [94, 115], "_eval_is_": 41, "_eval_is_algebra": 41, "_eval_is_alt_sym_monte_carlo": 79, "_eval_is_alt_sym_na": 79, "_eval_is_eq": 88, "_eval_is_finit": 41, "_eval_is_g": 88, "_eval_is_imaginari": 217, "_eval_is_integ": [14, 41], "_eval_is_nonneg": 43, "_eval_is_posit": [14, 43], "_eval_is_r": [41, 43, 217], "_eval_is_zero": [41, 43], "_eval_nseri": 88, "_eval_rewrit": [43, 88], "_eval_rewrite_as_": 88, "_eval_rewrite_as_co": 88, "_expand": 5, "_expon": 113, "_fcode": 221, "_field": 69, "_find_reasonable_pivot": 124, "_find_splitting_point": 113, "_first": [88, 94], "_flint": [210, 211], "_flip_g": 113, "_fourier_transform": 115, "_fun": 218, "_function": 113, "_g": 89, "_gcd_term": 88, "_generate_coordin": 152, "_generate_spe": 152, "_get_coeff_exp": 113, "_get_complex": 217, "_get_complexes_sqf": 217, "_get_interv": 217, "_get_ordered_dummi": 191, "_get_real": 217, "_get_reals_sqf": 217, "_get_root": 217, "_greek": 16, "_guess_expans": 113, "_h": [79, 240], "_handle_integr": 237, "_handle_precomputed_bsg": 86, "_hull": 105, "_i": [12, 115, 191, 196, 218], "_ignor": 217, "_imag": 208, "_img": 208, "_imp_": [253, 260], "_in_terms_of_gener": 208, "_indexed_root": 217, "_inflate_fox_h": 113, "_inflate_g": 113, "_int0oo": 113, "_int0oo_1": 113, "_int_invers": 113, "_integr": [55, 237, 238], "_intersect": 208, "_invers": 89, "_is_analyt": 113, "_is_class": 240, "_is_exponenti": 240, "_is_logarithm": 240, "_is_zero_after_expand_mul": 124, "_iszero": [124, 293], "_iter": 259, "_j": [191, 196, 206, 223], "_javascript": 221, "_julia": 221, "_k": [93, 96, 115, 206, 216, 241], "_k_kqdot": 302, "_ker": 208, "_kernel": 208, "_l": 206, "_lambdacod": 221, "_lambdifygener": 260, "_latex": [43, 221], "_latin": 16, "_linear_2eq_order1_type6": 237, "_linear_2eq_order1_type7": 237, "_list": 128, "_m": [43, 96, 132], "_mapl": 221, "_mathml_cont": 221, "_mathml_present": 221, "_mcode": 221, "_meijerint_definite_2": 113, "_meijerint_definite_3": 113, "_meijerint_definite_4": 113, "_meijerint_indefinite_1": 113, "_minpoly_compos": 216, "_modgcd_multivariate_p": 214, "_module_quoti": 208, "_mpc_": 211, "_mpf_": [88, 211], "_mul": 227, "_mul_arg": 113, "_mul_as_two_part": 113, "_mul_scalar": 208, "_mult_tab": 216, "_my_principal_branch": 113, "_mytyp": 113, "_n": [43, 89, 93, 96, 115, 217, 231, 240], "_naive_list_centr": 85, "_name": 115, "_new": 217, "_nocheck": 103, "_node": 88, "_nonlinear_2eq_order1_type1": 237, "_nonlinear_2eq_order1_type2": 237, "_nonlinear_2eq_order1_type3": 237, "_nonlinear_2eq_order1_type4": 237, "_nonlinear_2eq_order1_type5": 237, "_nonlinear_3eq_order1_type1": 237, "_nonlinear_3eq_order1_type2": 237, "_nonlinear_3eq_order1_type3": 237, "_nonlinear_3eq_order1_type4": 237, "_nonlinear_3eq_order1_type5": 237, "_nth": 218, "_octav": 221, "_only_": 217, "_operators_to_st": 181, "_orbits_transversals_from_bsg": 86, "_order": 78, "_orient_fram": 152, "_p": [89, 191, 212, 214, 216, 228, 231, 239], "_p_0": 191, "_p_1": 191, "_p_elements_group": 79, "_partial_pivot": 210, "_pf_q": [96, 231, 237, 297], "_pg": 217, "_postprocess_root": 217, "_prec": 88, "_preprocess": 238, "_preprocess_root": 217, "_pretti": 221, "_print": [43, 221], "_print_": 221, "_print_atom": 221, "_print_bas": 221, "_print_deriv": 221, "_print_hyp": 221, "_print_meijerg": 221, "_print_numb": 221, "_print_rat": 221, "_process_seri": 207, "_product": 208, "_q": 191, "_quotient": 208, "_quotient_codomain": 208, "_quotient_domain": 208, "_r": [88, 191, 231, 240], "_randint": [13, 88, 214], "_random_gen": 79, "_random_pr_init": 79, "_random_prec": 79, "_random_prec_n": 79, "_randrang": [13, 88, 89], "_rang": 256, "_raw": 219, "_rcode": 221, "_real_root": 217, "_reals_index": 217, "_reals_sort": 217, "_recur": 110, "_refine_complex": 217, "_remove_gen": 86, "_repres": 186, "_represent_foobasi": 186, "_represent_szop": 186, "_represent_zg": 176, "_reset": [128, 217], "_restrict_codomain": 208, "_restrict_domain": 208, "_rewrit": 5, "_rewrite1": [107, 113], "_rewrite2": 113, "_rewrite_invers": 113, "_rewrite_saxena": 113, "_rewrite_saxena_1": 113, "_rewrite_singl": 113, "_root": 218, "_roots_trivi": 217, "_rust_cod": 221, "_sage_": 2, "_seri": [207, 218], "_set": 241, "_set_angular_veloc": 152, "_set_interv": 217, "_set_linear_veloc": 152, "_signsimp": 217, "_simplifi": 124, "_sizedinttyp": 69, "_slope": 98, "_smtlib": 221, "_solve_ab": 240, "_solve_as_poli": 240, "_solve_as_poly_complex": 240, "_solve_as_poly_r": 240, "_solve_as_r": 240, "_solve_class": 240, "_solve_expo": 240, "_solve_exponenti": 240, "_solve_lin_si": 219, "_solve_lin_sys_compon": 219, "_solve_logarithm": 240, "_solve_rad": 240, "_solve_real_trig": 240, "_solve_system": 240, "_solve_using_known_valu": 240, "_some_": 210, "_sort_variable_count": 88, "_sparse_": 222, "_split_mul": 113, "_state_to_oper": 181, "_str": 32, "_strip": [79, 86], "_strong_gens_from_distr": 86, "_succ": 79, "_sylow_alt_sym": 79, "_sympifi": [13, 14, 88, 120, 292], "_sympy_": [13, 14, 88], "_sympyrepr": 221, "_sympystr": 221, "_syzygi": 208, "_t": [18, 22, 30, 32, 96, 115, 191, 200, 204, 231, 241, 299], "_tan": 218, "_tan1": 218, "_tensormanag": 247, "_test": 252, "_token_splitt": 130, "_tr56": 230, "_transolv": 240, "_try_heurisch": 115, "_tsolv": 240, "_tupl": 128, "_type": 210, "_u": [115, 191], "_union": 208, "_union_find_merg": 79, "_union_find_rep": 79, "_v": [36, 191], "_verifi": 79, "_verify_bsg": [79, 85, 86], "_verify_centr": 85, "_verify_normal_closur": 85, "_w": [217, 228], "_w0_0": 124, "_w1_0": 124, "_w2_0": 124, "_x": [24, 32, 35, 36, 41, 43, 124, 205, 212, 214, 218, 233, 237, 253, 299], "_xi_1": 238, "_y": [24, 32, 35, 36, 43, 50, 205, 299], "_z": [24, 32, 35, 36, 43, 115, 241, 299], "a0": [84, 131, 237, 297], "a000001": 74, "a000010": 93, "a000073": 93, "a000085": 96, "a000111": [93, 217], "a000720": 93, "a001221": 93, "a001222": 93, "a002322": 93, "a002997": 128, "a003277": 74, "a008683": 93, "a051532": 74, "a056867": 74, "a066272": 128, "a066272a": 128, "a1": [22, 30, 80, 84, 88, 116, 124, 128, 137, 144, 165, 214, 237, 241, 242, 271, 297], "a10": 105, "a1pt": 30, "a1pt_theori": [30, 204], "a1sz_lattice_basis_reduction_algorithm": 210, "a2": [22, 30, 80, 84, 88, 117, 124, 128, 137, 144, 165, 210, 214, 241, 242, 271, 297], "a217120": 128, "a217255": 128, "a217719": 128, "a2idx": 124, "a2pt": 30, "a2pt_theori": [30, 35, 204], "a3": [30, 80, 84, 88, 117, 124, 271, 297], "a4": [30, 71, 84, 88, 117, 297], "a4_in_s6": 71, "a4xc2": 71, "a5": [84, 88], "a6": 88, "a6_wrong": 88, "a9chet_distribut": 241, "a9vy_distribut": 241, "a_": [32, 51, 84, 88, 89, 96, 113, 117, 120, 124, 144, 145, 223, 231, 234, 237, 239, 241, 242, 243, 299], "a_0": [124, 224, 234, 237, 242, 297], "a_0_0": 124, "a_0_0_0": 124, "a_0_0_1": 124, "a_0_1": 124, "a_0_1_0": 124, "a_0_1_1": 124, "a_0_2": 124, "a_0_2_0": 124, "a_0_2_1": 124, "a_1": [78, 79, 89, 96, 110, 113, 124, 145, 191, 196, 209, 214, 231, 234, 237, 241, 297], "a_1_0": 124, "a_1_0_0": 124, "a_1_0_1": 124, "a_1_1": 124, "a_1_1_0": 124, "a_1_1_1": 124, "a_1_2": 124, "a_1_2_0": 124, "a_1_2_1": 124, "a_1x_1": [51, 234], "a_2": [79, 89, 110, 124, 214, 231, 234, 237, 241, 297], "a_2x_2": [51, 234], "a_3": 124, "a_4": 71, "a_5": 71, "a_6": 71, "a_and_b": [153, 154, 306], "a_b": 30, "a_bicep": 299, "a_eq": 239, "a_first": 18, "a_i": [36, 113, 196, 200, 209, 214, 231], "a_ij": 246, "a_interv": 229, "a_ixi": 149, "a_ixx": 149, "a_iyi": 149, "a_iyz": 149, "a_izx": 149, "a_izz": 149, "a_j": [78, 96, 113, 196, 214, 223, 231], "a_k": [79, 89, 218, 224], "a_kx_k": 218, "a_lin": 27, "a_m": [84, 237], "a_mass": 149, "a_muscl": [18, 134], "a_n": [84, 89, 96, 113, 117, 196, 209, 214, 216, 224, 234, 237, 297], "a_non_commut": 237, "a_nul": 210, "a_nx_n": [51, 234], "a_o_n": 30, "a_op": 27, "a_p": [96, 113, 231, 297], "a_prim": 88, "a_r": [78, 231], "a_real": 246, "a_rref": 210, "a_t": 237, "a_tricep": 299, "a_val": 299, "a_x": [36, 200, 221], "a_z": [36, 138, 200], "aa": [93, 206], "aaa": 259, "aaaabbbbcccc": 93, "aab": [93, 259], "aabbc": 93, "aabc": 93, "aaecc": 239, "aand": [96, 115], "aaron": 0, "aaronmeur": 12, "aau": 136, "ab": [14, 16, 18, 30, 66, 69, 70, 87, 88, 89, 92, 93, 94, 96, 100, 101, 111, 113, 118, 124, 130, 134, 140, 146, 191, 209, 212, 215, 216, 217, 221, 234, 236, 239, 240, 241, 243, 247, 256, 259, 262, 271, 297], "aba": 259, "abb": [256, 259], "abbott": 215, "abbott13": [214, 215], "abbrev": [9, 197, 198, 221], "abbrevi": [198, 209, 221, 240, 242], "abc": [3, 4, 11, 12, 16, 37, 38, 43, 46, 48, 50, 52, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 77, 79, 81, 87, 88, 89, 90, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 111, 112, 113, 115, 116, 118, 120, 123, 124, 127, 128, 129, 142, 144, 146, 162, 164, 166, 167, 172, 189, 191, 192, 208, 210, 212, 214, 216, 217, 218, 221, 222, 223, 224, 226, 227, 228, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 248, 253, 254, 255, 256, 257, 259, 260, 262, 265, 268, 269, 270, 275, 277, 289, 292, 296], "abcbb": 259, "abcd": [77, 81, 191, 243, 259, 262], "abcdef": 289, "abel": [48, 57, 124, 217], "abelian": [74, 76, 79, 117, 196, 208], "abelian_invari": 79, "abeliangroup": [76, 79], "abi": 259, "abid": 7, "abij": 191, "abil": [13, 14, 16, 23, 41, 67, 124, 151, 216, 220, 237, 240, 291, 297], "abji": 191, "abl": [2, 3, 4, 11, 12, 14, 15, 18, 22, 25, 27, 28, 30, 31, 39, 41, 43, 51, 55, 68, 69, 79, 84, 88, 89, 90, 99, 107, 115, 120, 124, 128, 131, 141, 208, 210, 211, 212, 217, 218, 237, 240, 252, 269, 291, 296, 298], "abnorm": 214, "abort": 250, "about": [3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 17, 21, 22, 27, 28, 32, 35, 36, 39, 41, 42, 43, 48, 53, 55, 57, 58, 59, 61, 62, 64, 65, 68, 69, 79, 80, 81, 82, 88, 92, 94, 96, 98, 99, 100, 102, 103, 104, 108, 110, 114, 115, 117, 124, 128, 130, 136, 137, 144, 148, 149, 150, 152, 153, 154, 155, 156, 158, 186, 188, 189, 191, 195, 200, 206, 208, 210, 211, 216, 218, 221, 223, 228, 233, 234, 235, 237, 241, 245, 246, 252, 253, 254, 255, 256, 257, 265, 267, 269, 272, 273, 280, 283, 286, 288, 289, 291, 292, 293, 297, 299, 306], "abov": [2, 3, 4, 5, 8, 11, 12, 13, 14, 16, 18, 21, 22, 23, 24, 26, 27, 28, 31, 33, 35, 36, 37, 39, 42, 43, 45, 46, 48, 50, 54, 55, 57, 67, 68, 69, 70, 72, 78, 79, 80, 84, 87, 88, 92, 93, 96, 98, 101, 104, 105, 113, 115, 118, 124, 129, 130, 137, 144, 151, 152, 153, 155, 156, 158, 186, 188, 191, 200, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 228, 231, 233, 234, 237, 239, 240, 241, 245, 246, 253, 254, 260, 269, 270, 271, 272, 275, 289, 291, 292, 293, 297, 299, 302, 304, 306, 307], "above_fermi": [96, 191], "abracadabra": 259, "abramov": [215, 239], "abramov71": [215, 217], "abramowitz": [4, 96], "abridg": 208, "abs_sqrd": 146, "absarglineseri": 207, "absenc": [71, 84, 118], "absent": [4, 72, 239], "absolt": 18, "absolut": [8, 12, 65, 66, 69, 87, 88, 94, 96, 103, 113, 115, 124, 130, 146, 189, 212, 216, 217, 231, 233, 236, 241, 252, 274, 275, 276], "absolute_converg": 87, "absorb": [13, 15, 113, 237, 241, 287], "absorbing_markov_chain": 241, "absorbing_prob": [13, 241], "absorpt": 237, "abstract": [0, 13, 18, 22, 67, 68, 77, 88, 90, 94, 96, 101, 106, 120, 131, 134, 148, 152, 156, 159, 175, 177, 186, 189, 190, 191, 208, 216, 240, 241, 243, 247, 254, 274], "abund": 128, "abundantnumb": 128, "abus": [88, 247], "ac": [28, 46, 61, 69, 80, 100, 140, 155, 168, 241, 259, 262], "academ": [0, 45, 68, 72, 215], "acb": 259, "acc": [30, 35, 68, 204], "acceler": [3, 27, 28, 30, 33, 129, 153, 155, 158, 194, 200, 204, 210, 256, 274, 299, 302, 309, 311], "acceleration_": 30, "acceleration_constraint": 153, "accept": [4, 11, 12, 14, 15, 22, 43, 50, 57, 68, 69, 79, 88, 94, 101, 102, 115, 118, 120, 124, 127, 130, 144, 185, 195, 200, 205, 207, 216, 217, 220, 221, 222, 229, 231, 233, 239, 253, 260, 265, 267, 270, 293], "accepted_latex_funct": 221, "access": [2, 4, 5, 9, 13, 15, 16, 18, 22, 31, 32, 33, 36, 41, 43, 62, 63, 64, 69, 88, 96, 117, 118, 120, 124, 129, 131, 134, 137, 144, 145, 152, 153, 156, 158, 200, 207, 210, 211, 212, 214, 216, 233, 237, 242, 245, 253, 254, 269, 272, 292, 296, 299], "accid": [11, 12, 14, 89, 260], "accident": [11, 12, 14, 15], "accompani": [11, 12, 68], "accomplish": [27, 30, 50, 115, 272], "accord": [5, 16, 23, 69, 76, 79, 80, 84, 87, 88, 89, 96, 118, 120, 124, 128, 130, 151, 152, 158, 159, 185, 191, 207, 212, 214, 216, 217, 218, 234, 239, 240, 247, 252, 254, 259, 274], "accordingli": [79, 209, 216], "account": [3, 15, 18, 94, 124, 224, 233, 237], "accumul": [79, 252, 256], "accur": [3, 13, 14, 16, 39, 43, 48, 67, 79, 88, 92, 93, 110, 115, 141, 207, 228, 286, 293], "accuraci": [14, 16, 39, 67, 88, 210, 217, 287, 293], "achiev": [13, 15, 22, 30, 32, 43, 88, 92, 96, 120, 128, 220, 228, 231, 233, 240, 243, 255, 270, 304], "acm": [70, 87, 113, 115, 210, 212, 215, 231, 233, 237, 239], "aco": [4, 16, 30, 61, 94, 101, 104, 164, 200, 221, 237, 265, 297, 302], "acosh": [94, 221], "acot": [94, 221], "acoth": [94, 221], "acquaint": 7, "across": [3, 5, 11, 79, 86, 88, 99, 115, 137, 190, 191, 198, 207, 221, 256, 258, 259, 260, 287, 295], "acsc": [94, 221], "acsch": [94, 221], "act": [12, 15, 18, 22, 26, 68, 71, 78, 79, 80, 84, 88, 96, 104, 117, 118, 124, 132, 133, 136, 138, 140, 148, 149, 152, 155, 156, 158, 163, 175, 180, 183, 184, 229, 240, 242, 243, 270, 274, 286, 299, 303, 307], "actf": 18, "actf2": 18, "action": [2, 5, 8, 11, 18, 79, 117, 134, 148, 155, 183, 186, 196, 217, 233, 240], "activ": [3, 8, 9, 17, 19, 132, 133, 134, 207, 250, 255, 257, 282, 300, 302, 304], "activation_dynam": 134, "activation_time_const": 131, "activationbas": [18, 131, 134], "active_deprecations_target": [3, 250, 255, 257], "activepython": 59, "activest": 259, "actual": [2, 3, 4, 5, 8, 9, 11, 12, 14, 15, 16, 21, 22, 25, 26, 27, 39, 41, 42, 43, 46, 68, 69, 70, 77, 79, 86, 88, 89, 96, 100, 113, 115, 117, 120, 124, 128, 132, 134, 144, 148, 156, 159, 205, 207, 208, 210, 211, 216, 221, 229, 231, 233, 234, 237, 240, 248, 252, 253, 256, 257, 259, 260, 291, 302], "actuat": [19, 134, 151, 156, 158, 282, 300], "actuatorbas": [18, 148, 158], "actz": 18, "acycl": 259, "ad": [4, 5, 7, 8, 9, 11, 12, 13, 14, 21, 22, 30, 41, 50, 52, 61, 68, 69, 72, 78, 79, 88, 89, 99, 103, 110, 113, 117, 128, 130, 136, 140, 149, 152, 158, 165, 193, 196, 201, 206, 207, 216, 218, 220, 221, 223, 231, 234, 237, 239, 240, 241, 243, 246, 247, 252, 268, 289, 299, 304], "adam": [206, 217], "adamek": 68, "adapt": [13, 142, 207, 227, 239, 259, 264], "add": [2, 3, 4, 9, 12, 14, 15, 16, 22, 30, 35, 36, 38, 41, 55, 61, 63, 67, 69, 77, 79, 84, 89, 92, 95, 103, 105, 113, 117, 120, 124, 128, 136, 138, 140, 149, 158, 169, 175, 185, 190, 191, 194, 207, 210, 211, 212, 214, 216, 217, 218, 221, 222, 231, 233, 234, 237, 238, 240, 241, 243, 245, 246, 247, 255, 260, 263, 287, 289, 292, 296, 297, 299, 304], "add_actu": [158, 307], "add_as_root": 117, "add_auxiliary_spe": 158, "add_bodi": [158, 307], "add_coordin": 158, "add_formula": 231, "add_gen": 212, "add_ground": [212, 217], "add_handl": 13, "add_holonomic_constraint": [158, 304], "add_joint": [13, 24, 158, 304, 307], "add_kd": 158, "add_load": [158, 304, 307], "add_memb": 140, "add_nod": 140, "add_nonholonomic_constraint": 158, "add_simple_root": 117, "add_spe": 158, "add_typ": 240, "addaugmentedassign": 69, "addb": 231, "addend": 247, "addison": [72, 80, 128, 215], "addit": [0, 2, 3, 5, 9, 12, 13, 14, 15, 16, 18, 21, 27, 31, 32, 35, 36, 37, 39, 59, 61, 69, 78, 79, 80, 87, 88, 94, 96, 100, 106, 108, 112, 113, 115, 116, 118, 120, 124, 128, 130, 131, 132, 134, 141, 142, 144, 149, 153, 177, 189, 190, 193, 205, 206, 207, 208, 209, 210, 211, 214, 216, 217, 221, 227, 230, 231, 233, 234, 237, 238, 239, 240, 241, 252, 253, 254, 256, 257, 259, 260, 262, 269, 289, 291, 292, 293, 296, 297, 299], "addition": [2, 4, 11, 13, 14, 18, 25, 36, 88, 189, 214, 221, 241, 250, 257, 269], "additional_transl": 13, "address": [9, 12, 88, 221, 240], "addrul": 115, "adequ": 221, "adher": [3, 5, 113], "adi": 243, "adic": 215, "adj": [124, 210], "adj_det": 210, "adj_poly_det": 210, "adja": 210, "adjac": [78, 79, 80, 88, 93, 144, 163, 210, 259], "adject": [15, 241], "adjoin": [79, 209], "adjoint": [117, 124, 168, 172, 221], "adjoint_styl": 221, "adjug": [124, 210], "adjust": [12, 18, 158, 224, 228], "admiss": [223, 226], "admit": [96, 237], "adopt": [79, 247], "advanc": [5, 17, 20, 23, 28, 34, 38, 40, 43, 63, 79, 88, 92, 93, 124, 125, 207, 210, 211, 213, 215, 216, 223, 230, 237, 252, 253, 254, 259, 286, 288, 290, 294, 295, 296, 297], "advantag": [9, 13, 37, 41, 43, 48, 64, 67, 69, 88, 89, 93, 115, 118, 124, 128, 141, 195, 210, 211, 218, 229, 234, 237, 240, 256, 289, 291, 293, 297], "advers": 88, "advertis": 5, "advis": [12, 13, 22, 41, 57, 68, 152], "ae": 218, "aegean": 89, "aeq": 239, "aesara": [2, 13, 30, 69], "aesara_cod": [13, 221], "aesara_funct": [69, 129, 221], "aesaracod": [2, 13, 69, 129, 221], "aesaraprint": [13, 221], "aeseara": 2, "aesthet": [5, 15, 207], "af": [30, 76, 79, 85], "affect": [11, 13, 14, 32, 41, 43, 87, 88, 124, 217, 239, 240, 270], "affin": [88, 89, 103, 208], "affine_ciph": 89, "affine_rank": 103, "affirm": 229, "aforement": [33, 234, 272, 302], "after": [3, 4, 5, 8, 9, 11, 12, 13, 14, 16, 24, 25, 27, 30, 32, 33, 36, 59, 61, 63, 64, 68, 70, 76, 79, 80, 84, 86, 87, 88, 89, 90, 94, 103, 105, 110, 115, 124, 128, 130, 136, 144, 158, 160, 164, 176, 188, 196, 210, 214, 216, 217, 218, 219, 221, 222, 227, 234, 237, 238, 239, 240, 242, 252, 255, 260, 262, 265, 268, 272, 286, 287, 289, 293, 297, 304], "afterward": [16, 69, 88, 155, 306], "afunc": 260, "ag": [140, 237], "again": [3, 8, 9, 12, 14, 16, 18, 22, 32, 35, 39, 42, 71, 80, 88, 103, 128, 148, 158, 186, 187, 200, 208, 209, 216, 224, 231, 237, 250, 269, 289, 297, 302], "against": [12, 13, 18, 22, 41, 43, 57, 89, 124, 136, 253, 299], "agca": [213, 283], "agnost": 254, "agre": [12, 88, 89, 96, 103, 113, 231], "agreement": 11, "ahead": [4, 128], "ai": [36, 96, 128, 217, 234, 243, 262, 270, 297, 306], "aid": [69, 302], "aim": [4, 5, 12, 106, 113, 196, 208, 231, 237, 240, 290, 291, 301], "ainv": 210, "airi": [115, 237], "airspe": 2, "airy_funct": 96, "airyai": [96, 221, 237], "airyaiprim": [96, 221], "airybas": 96, "airybi": [96, 221, 237], "airybiprim": [96, 221], "airyfunct": 96, "aitken_html": 234, "ajwa": 215, "ajwa95": 215, "ak": [87, 223], "aka": [13, 120], "akrita": 217, "al": [22, 115, 131, 132, 134, 170, 214, 230, 233], "albeit": [115, 269], "aleaxit": 92, "alembertian": 239, "alexandria": 234, "alf_b_n": 30, "alg": [212, 216, 220], "alg_con": [31, 158], "alg_con_ful": 31, "alg_factor": 214, "alg_field_from_poli": [212, 216], "algebra": [0, 5, 15, 16, 18, 23, 30, 31, 34, 37, 41, 47, 49, 54, 57, 65, 70, 71, 79, 88, 89, 92, 93, 94, 106, 109, 110, 111, 113, 115, 118, 122, 125, 128, 129, 130, 151, 158, 206, 209, 210, 212, 213, 214, 215, 217, 218, 221, 223, 231, 234, 236, 237, 240, 276, 277, 280, 282, 283, 288, 289, 291, 293], "algebraic_express": 88, "algebraic_field": [211, 212, 214, 216], "algebraic_multipl": 293, "algebraic_numb": [41, 65, 88], "algebraiccomput": 88, "algebraicfield": [211, 212, 214, 216], "algebraichandl": 65, "algebraicnumb": [88, 212, 216, 220], "algebraicpred": 65, "algintpow": 216, "algo": [69, 80], "algo2008": 80, "algorithm": [2, 4, 14, 15, 27, 41, 48, 52, 54, 56, 57, 67, 72, 73, 78, 79, 80, 82, 84, 86, 87, 88, 89, 92, 93, 94, 100, 105, 113, 115, 118, 120, 124, 125, 128, 136, 145, 152, 178, 196, 200, 206, 207, 208, 209, 210, 211, 212, 215, 216, 218, 222, 226, 229, 230, 233, 234, 237, 239, 240, 241, 247, 256, 259, 282, 287, 292, 293, 297], "algorithmist": 79, "alia": [9, 69, 81, 88, 98, 104, 119, 121, 124, 126, 131, 134, 175, 184, 191, 208, 210, 211, 212, 216, 220, 229, 252, 262, 297], "alias": [9, 121, 212], "alic": [79, 89], "align": [13, 36, 69, 98, 124, 152, 159, 206, 221, 239, 252, 299], "alignof": 69, "alkiviadi": 217, "all": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 23, 25, 27, 30, 31, 33, 36, 37, 39, 41, 42, 43, 45, 53, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 113, 115, 117, 118, 119, 120, 123, 124, 127, 128, 129, 130, 131, 132, 134, 136, 137, 140, 142, 144, 145, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 165, 170, 171, 175, 185, 187, 188, 189, 191, 193, 194, 195, 196, 198, 199, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 247, 248, 250, 252, 253, 254, 255, 257, 259, 260, 262, 265, 267, 269, 271, 272, 273, 274, 276, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 307], "all_coeff": [211, 212, 217], "all_integr": [55, 237, 238], "all_model": 118, "all_monom": [212, 217], "all_root": [117, 128, 217], "all_term": [212, 217], "allei": 96, "allhint": [237, 238], "alli": 216, "alloc": [69, 94], "allow": [2, 3, 5, 11, 12, 13, 14, 15, 16, 18, 22, 23, 27, 28, 30, 36, 41, 43, 45, 48, 65, 68, 69, 70, 72, 79, 81, 84, 87, 88, 89, 92, 94, 96, 98, 99, 100, 113, 116, 118, 120, 121, 124, 128, 129, 130, 134, 137, 151, 152, 153, 159, 163, 175, 191, 195, 196, 197, 207, 208, 211, 212, 214, 216, 217, 218, 221, 226, 228, 229, 230, 233, 234, 237, 239, 240, 241, 242, 246, 252, 255, 257, 259, 260, 270, 287, 289, 292, 302], "allow_half": 88, "allow_hyp": [96, 233], "allow_unknown_funct": 221, "almost": [12, 14, 53, 113, 121, 130, 193, 208, 212, 217, 218, 237, 241, 255, 256, 259, 291], "almost_linear": 237, "almost_linear_integr": 237, "almosteq": 212, "almostlinear": 237, "alon": [14, 41, 89, 116, 214, 237, 239, 246, 259, 291, 292], "along": [12, 18, 21, 25, 26, 27, 28, 30, 32, 33, 36, 39, 43, 48, 69, 79, 88, 89, 90, 94, 96, 97, 98, 102, 103, 106, 108, 111, 113, 120, 124, 136, 137, 138, 140, 147, 148, 152, 153, 155, 156, 158, 159, 160, 188, 200, 207, 210, 211, 216, 217, 237, 240, 268, 272, 274, 299, 302, 306, 309, 310, 311], "alongsid": [3, 11, 12, 13, 14, 43, 120, 148], "alp": 89, "alpertron": 234, "alpha": [5, 16, 18, 35, 36, 79, 88, 96, 115, 117, 130, 144, 148, 163, 167, 170, 188, 204, 206, 212, 214, 216, 217, 220, 221, 233, 237, 241], "alpha_": [18, 124, 134, 206], "alpha_0": 124, "alpha_1": [93, 124, 128, 216], "alpha_2": [93, 128, 216], "alpha_i": [88, 216], "alpha_k": [93, 128], "alpha_m": 216, "alpha_n": 216, "alpha_opt": [18, 134], "alpha_r": 231, "alphabet": [11, 88, 89, 144, 196, 209, 234, 254], "alphanumer": 237, "alreadi": [2, 3, 7, 9, 10, 11, 12, 13, 14, 16, 18, 22, 27, 33, 35, 36, 41, 43, 45, 51, 52, 55, 57, 59, 61, 79, 80, 88, 89, 97, 98, 101, 102, 104, 113, 115, 124, 125, 128, 140, 145, 149, 158, 160, 186, 188, 191, 207, 210, 211, 214, 216, 220, 224, 230, 231, 233, 237, 240, 241, 247, 270, 272, 287, 289, 290, 291, 295, 296, 297, 298, 304], "also": [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 41, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 77, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 100, 104, 106, 108, 110, 111, 113, 115, 117, 118, 121, 124, 125, 128, 129, 130, 131, 132, 134, 136, 137, 140, 141, 142, 144, 148, 149, 150, 152, 153, 155, 156, 158, 159, 160, 164, 174, 175, 177, 181, 185, 190, 191, 194, 195, 196, 200, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 253, 254, 255, 256, 257, 260, 262, 265, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 304, 306, 307, 310], "alt": [69, 216], "alter": [16, 70, 79, 88, 200, 221, 223, 240], "altern": [2, 3, 4, 8, 13, 14, 15, 16, 18, 22, 25, 27, 35, 42, 43, 59, 69, 76, 79, 80, 87, 88, 92, 93, 94, 95, 96, 120, 124, 125, 129, 130, 131, 134, 148, 200, 206, 207, 209, 210, 211, 214, 216, 217, 221, 226, 228, 230, 239, 240, 242, 243, 259, 289, 291, 293, 304], "alternating_permut": 93, "alternatinggroup": [76, 79, 85], "alternatingpermut": 93, "although": [0, 2, 3, 4, 5, 11, 12, 14, 15, 16, 21, 30, 38, 39, 41, 43, 51, 80, 88, 89, 94, 100, 112, 113, 116, 118, 120, 124, 128, 208, 210, 211, 212, 214, 216, 217, 229, 230, 233, 234, 239, 253, 259, 260, 289, 292, 297, 302], "altitud": 104, "alwai": [3, 4, 5, 11, 12, 13, 14, 15, 16, 22, 31, 33, 35, 41, 42, 43, 53, 59, 61, 68, 79, 80, 87, 88, 89, 90, 92, 94, 96, 98, 100, 103, 104, 112, 113, 115, 118, 124, 127, 128, 138, 140, 144, 145, 156, 158, 159, 191, 193, 196, 197, 208, 209, 210, 211, 212, 214, 216, 217, 221, 222, 223, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 248, 252, 254, 259, 260, 265, 267, 272, 287, 289, 290, 291, 292, 297, 299, 301, 302, 306, 310], "am": [128, 196, 221], "ama": 144, "amalgam": 113, "amat": 302, "ambient": 103, "ambient_dimens": [97, 99, 101, 103], "ambigu": [5, 13, 14, 16, 37, 88, 130, 179, 185, 233, 245, 250], "amd64": 69, "amen": [23, 151], "amend": 79, "amer": 124, "american": [5, 74, 89], "ami": 128, "ami_42_from129to134": 128, "amic": 128, "amicable_numb": 128, "amirgi": 241, "amit": [0, 240], "among": [18, 41, 68, 69, 70, 72, 79, 80, 89, 116, 129, 217, 237, 242, 245, 247, 269], "amongst": [41, 239], "amount": [4, 12, 18, 23, 33, 36, 68, 88, 89, 100, 151, 152, 200, 214, 224, 252, 265, 267], "amper": [162, 195], "amplitud": [142, 165], "amsfont": 221, "amsmath": 221, "amus": 208, "an": [0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 15, 16, 18, 21, 23, 25, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 51, 53, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 140, 142, 144, 145, 146, 148, 149, 151, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 168, 170, 171, 172, 174, 175, 176, 177, 179, 180, 181, 184, 185, 186, 188, 189, 191, 192, 193, 195, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 233, 234, 236, 237, 238, 239, 241, 242, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 269, 270, 272, 273, 274, 275, 286, 287, 288, 289, 290, 291, 293, 296, 297, 298, 299, 302, 304, 306, 307], "anaconda3": 12, "analog": [13, 28, 35, 36, 43, 48, 53, 81, 87, 89, 93, 208, 209, 210, 214, 217, 226, 242, 259], "analogi": [87, 214], "analogu": [42, 65, 87, 102, 211, 212], "analyitc": 113, "analys": [30, 46, 68, 142, 144, 241], "analysi": [27, 28, 31, 39, 69, 70, 79, 88, 89, 94, 141, 208, 217, 231, 234, 241, 287, 300, 302], "analyt": [15, 18, 23, 59, 93, 96, 113, 124, 132, 151, 156, 237, 287], "analytic_func": 124, "analyz": [12, 233, 246], "anatomi": 133, "anc": 216, "ancestor": 216, "andi": [0, 29], "andr": [93, 217], "andre_poli": [93, 217], "andreescu": 234, "andrew": [93, 105, 128], "andrica": 234, "anew": 88, "anf": 118, "anf_coeff": 118, "anfform": 118, "ang": 302, "ang_acc_in": [30, 200], "ang_vel_in": [22, 30, 35, 149, 152, 200, 303, 309, 310], "angelia": 67, "angl": [18, 22, 24, 27, 35, 36, 43, 61, 94, 96, 97, 98, 99, 101, 102, 103, 104, 134, 138, 140, 146, 152, 158, 159, 160, 163, 164, 165, 188, 196, 200, 206, 221, 230, 240, 265, 267, 270, 297, 299, 302, 303, 304, 306, 307], "angle1": [265, 267], "angle2": [265, 267], "angle3": [265, 267], "angle_addit": 61, "angle_between": [101, 102, 104, 200], "angle_of_incid": 164, "angular": [23, 24, 27, 30, 124, 136, 146, 149, 152, 155, 160, 164, 165, 167, 170, 188, 192, 200, 204, 206, 299, 302, 303, 304, 306, 307, 309, 311], "angular_deflect": 136, "angular_momentum": [28, 30, 149, 155], "angular_veloc": 165, "angvel": 30, "ani": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 23, 26, 27, 28, 31, 33, 35, 36, 37, 38, 41, 42, 43, 48, 50, 51, 52, 55, 59, 65, 66, 67, 68, 69, 70, 77, 78, 79, 80, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 99, 100, 103, 104, 105, 113, 115, 116, 118, 121, 123, 124, 125, 128, 130, 131, 132, 134, 136, 137, 140, 144, 146, 148, 149, 151, 152, 153, 154, 155, 156, 158, 160, 164, 177, 180, 185, 186, 189, 191, 193, 196, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 241, 243, 246, 247, 252, 253, 255, 256, 257, 259, 260, 265, 269, 270, 271, 272, 274, 275, 286, 287, 289, 292, 293, 296, 297, 298], "annal": [18, 80, 131, 132, 134, 299], "annihil": [87, 106, 107, 111, 167, 191, 239], "annihilateboson": 191, "annihilatefermion": 191, "annoi": 12, "annot": [55, 128, 207, 221], "annoy": 88, "anoth": [3, 4, 5, 11, 12, 13, 14, 15, 18, 24, 28, 35, 36, 38, 39, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 65, 68, 69, 80, 85, 87, 88, 89, 90, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 113, 115, 120, 124, 128, 134, 136, 137, 148, 149, 153, 155, 156, 159, 180, 195, 196, 198, 200, 204, 207, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 228, 229, 231, 237, 239, 240, 241, 253, 254, 260, 265, 269, 270, 274, 286, 289, 291, 292, 297, 298], "anp": [88, 211, 212, 216, 217], "answer": [3, 7, 12, 14, 41, 43, 48, 79, 88, 92, 110, 113, 115, 118, 124, 128, 196, 214, 218, 230, 231, 233, 239, 241, 256, 262, 291, 293, 297], "anteced": [113, 228], "anthoni": 0, "anti": [11, 15, 61, 65, 84, 94, 115, 124, 163, 168, 247], "anti_symmetr": 124, "anticip": 196, "anticlockwis": [124, 140], "anticommut": [84, 178, 180, 190, 191, 247, 282], "antideriv": [15, 94, 96, 115, 237, 287], "antiderv": 237, "antidivisor": 128, "antidivisor_count": 128, "antihermitian": [41, 65, 88], "antihermitianhandl": 65, "antihermitianpred": 65, "antipattern": [14, 43, 290], "antisym": 84, "antisymmetr": [84, 90, 124, 191, 247], "antisymmetrictensor": 191, "antlr": [2, 22], "antlr4": [2, 130], "anum": 210, "anycod": 13, "anymor": [11, 12, 207], "anyon": [4, 5, 13, 58, 217, 221, 285, 295, 296], "anyth": [3, 4, 5, 12, 13, 14, 16, 22, 43, 67, 69, 88, 89, 99, 103, 124, 165, 175, 218, 221, 227, 229, 233, 237, 239, 253, 259, 262, 289], "anyv": 89, "anywai": [113, 233, 237], "anywher": [3, 4, 13, 41, 69, 88, 96, 102, 191, 262, 291], "ao": [30, 299], "aocp": 256, "aother": 96, "ap": [96, 100, 231], "apart": [14, 33, 43, 61, 79, 84, 88, 92, 94, 115, 130, 148, 156, 209, 210, 212, 214, 217, 220, 223, 234, 240, 247, 270, 272, 292], "apart_list": 217, "aperiod": 67, "apfloat": 91, "aphras": 89, "api": [4, 5, 11, 13, 14, 18, 28, 30, 41, 44, 51, 53, 69, 88, 100, 108, 129, 130, 143, 187, 207, 214, 234, 236, 260, 269, 270, 273, 280, 282, 283, 290, 291, 294], "apoapsi": 98, "apothem": 104, "app": 115, "app1": 241, "appar": [11, 12, 14, 15, 16, 88, 262, 297], "apparatu": 13, "appdata": 8, "appeal": 113, "appear": [4, 5, 11, 12, 14, 15, 16, 22, 37, 55, 68, 69, 72, 77, 79, 88, 89, 93, 94, 97, 98, 101, 104, 107, 111, 113, 115, 124, 128, 130, 156, 175, 191, 193, 196, 207, 209, 211, 214, 216, 217, 221, 230, 233, 237, 238, 239, 241, 245, 247, 252, 259, 260, 265, 270, 306], "appel": [93, 96], "appell_seri": 96, "appellf1": [96, 221], "appellseq": [93, 217], "append": [14, 30, 50, 55, 79, 88, 89, 124, 137, 186, 207, 212, 221, 239, 242, 254, 255, 259, 297, 303], "appetit": 291, "appli": [5, 9, 11, 12, 13, 14, 15, 18, 25, 27, 29, 36, 42, 43, 46, 53, 57, 61, 62, 63, 64, 65, 69, 79, 80, 81, 86, 87, 88, 89, 90, 91, 94, 95, 98, 103, 104, 106, 115, 118, 119, 124, 128, 130, 136, 137, 138, 140, 144, 145, 148, 149, 150, 153, 155, 156, 158, 168, 172, 175, 176, 180, 183, 184, 188, 191, 200, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 227, 228, 229, 230, 233, 237, 238, 239, 240, 241, 242, 245, 252, 255, 259, 265, 267, 270, 293, 296, 297, 299, 302, 304, 307], "applic": [0, 5, 13, 18, 22, 23, 27, 29, 30, 35, 49, 52, 70, 71, 72, 78, 79, 80, 81, 88, 89, 93, 94, 115, 124, 128, 136, 138, 140, 148, 151, 152, 153, 158, 175, 176, 200, 204, 209, 210, 214, 215, 216, 217, 221, 223, 228, 234, 237, 240, 254, 259, 265, 272, 273, 280, 291], "applied_load": 136, "appliedfunct": 130, "appliedpermut": 80, "appliedpred": [38, 62, 63, 64], "appliedundef": 88, "apply_finite_diff": [67, 88, 287], "apply_forc": [13, 149], "apply_grov": 176, "apply_length": 138, "apply_load": [136, 137, 138, 140], "apply_moment_load": 136, "apply_oper": [180, 191], "apply_rotation_hing": 136, "apply_sliding_hing": 136, "apply_support": [136, 140], "apply_torqu": 149, "apply_uniform_grav": [13, 158, 304, 307], "applyfunc": [46, 119, 124, 200, 210, 242, 310], "approach": [8, 14, 23, 39, 48, 51, 52, 53, 55, 56, 57, 68, 87, 88, 115, 144, 151, 210, 211, 214, 215, 216, 218, 229, 238, 239, 241, 253, 256, 259, 287, 293, 306], "appropri": [2, 4, 5, 11, 12, 13, 14, 16, 21, 35, 39, 52, 56, 79, 88, 94, 103, 124, 180, 181, 191, 200, 207, 210, 211, 217, 218, 221, 227, 228, 233, 234, 239, 241, 246, 254, 270, 296, 302], "approx": [39, 49, 54, 88, 115], "approxim": [4, 14, 16, 17, 40, 57, 67, 79, 87, 88, 89, 92, 96, 98, 104, 113, 115, 124, 128, 137, 141, 160, 194, 211, 212, 217, 224, 228, 231, 241, 287, 291], "approximations_for_the_nth_prime_numb": 128, "apr": 100, "april": 87, "apt": [8, 9], "aq": 210, "ar": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 124, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 145, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 163, 164, 165, 166, 168, 170, 172, 175, 177, 179, 180, 181, 183, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 256, 257, 258, 259, 260, 262, 265, 267, 268, 269, 270, 271, 272, 274, 276, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311], "ar_": 218, "ar_i": 218, "ara": 89, "arab": 208, "arang": [43, 253, 286], "arb": 98, "arbitrari": [2, 4, 13, 14, 15, 16, 18, 24, 28, 36, 41, 43, 48, 52, 54, 56, 57, 67, 73, 80, 81, 87, 88, 89, 92, 93, 96, 99, 100, 102, 118, 124, 137, 154, 177, 180, 207, 208, 211, 212, 214, 216, 218, 233, 237, 238, 239, 247, 257, 260, 265, 267, 286, 287, 292, 297, 298], "arbitrarili": [37, 48, 67, 88, 101, 128, 214, 216, 228, 231, 237, 238, 239, 241], "arbitrary_matrix": 124, "arbitrary_point": [97, 98, 99, 100, 101, 102, 104], "arc": [61, 94, 159, 297, 299], "arc_coplanar": 61, "arc_length": 299, "arcco": [16, 94, 159, 221], "arccosh": 221, "arccot": [94, 221], "arccoth": 221, "arccsc": [94, 221], "arccsch": [94, 221], "arch": 282, "architectur": [0, 12, 30, 211, 252], "archiv": [29, 72, 80, 89, 93, 96, 105, 115, 128, 210, 233, 234, 241, 259, 293], "arcsec": [94, 221], "arcsech": [94, 221], "arcsin": [16, 94, 130, 218, 221, 241], "arcsine_distribut": 241, "arcsinh": 221, "arctan": [94, 218, 221], "arctan2": [94, 221], "arctang": 218, "arctanh": [130, 221], "arctanrul": 115, "arcversin": 43, "arduou": [23, 151], "are_collinear": 103, "are_concurr": [101, 102], "are_coplanar": 103, "are_similar": [4, 99, 100, 105], "area": [88, 98, 100, 104, 105, 136, 137, 158], "aren": [3, 11, 12, 13, 14, 15, 22, 43, 69, 88, 220, 240], "arg": [5, 11, 15, 36, 41, 43, 50, 52, 55, 61, 63, 64, 65, 66, 67, 68, 69, 72, 79, 80, 82, 85, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 99, 101, 103, 104, 105, 110, 113, 115, 118, 119, 120, 121, 124, 126, 128, 130, 138, 140, 144, 160, 166, 169, 171, 174, 175, 176, 177, 180, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 200, 205, 207, 210, 212, 214, 216, 217, 218, 221, 223, 224, 227, 228, 229, 230, 233, 237, 239, 240, 241, 242, 243, 246, 247, 252, 253, 254, 255, 259, 260, 262, 265, 267], "arg1": [12, 241], "arg2": [12, 241], "argand": 240, "argindex": [4, 11, 43, 69, 88, 94, 95, 96, 132], "args_cnc": 88, "argu": 128, "argular": 188, "argument": [2, 3, 4, 11, 12, 14, 15, 18, 22, 25, 26, 28, 30, 33, 38, 41, 42, 43, 48, 50, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 79, 80, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 101, 104, 105, 113, 115, 116, 118, 120, 124, 127, 128, 130, 132, 134, 136, 142, 144, 148, 152, 153, 156, 158, 159, 165, 168, 172, 174, 177, 180, 185, 186, 188, 189, 190, 191, 199, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 220, 221, 222, 223, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 241, 243, 245, 246, 252, 253, 254, 255, 256, 257, 259, 260, 262, 269, 270, 272, 286, 287, 292, 293, 297], "argument_sequ": [69, 254], "argument_test": [69, 221], "argument_tupl": 253, "argumentindexerror": [11, 43], "argv": [116, 252], "aris": [36, 41, 42, 88, 93, 113, 115, 188, 210, 211, 216], "arithmet": [2, 12, 14, 69, 88, 89, 92, 124, 128, 180, 187, 206, 207, 208, 210, 211, 212, 214, 215, 219, 222], "arithmetica": 234, "ariti": [5, 207], "arjona": 206, "arm": [299, 300], "armi": 89, "armstrong": 76, "around": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 23, 27, 31, 36, 42, 43, 59, 67, 77, 80, 88, 89, 90, 92, 94, 97, 104, 108, 124, 127, 128, 140, 149, 151, 152, 156, 159, 211, 214, 216, 221, 223, 228, 234, 237, 240, 241, 252, 265, 267, 287, 289, 291, 299], "arr": 69, "arr1": 128, "arr2": 128, "arrai": [14, 18, 30, 43, 49, 53, 54, 55, 69, 79, 80, 84, 85, 89, 96, 115, 120, 124, 128, 129, 130, 142, 154, 188, 207, 210, 212, 217, 221, 240, 241, 244, 246, 247, 248, 253, 254, 256, 260, 280, 293, 299], "arrang": [28, 30, 46, 80, 144, 153, 217, 230, 234, 247], "array_der": [242, 243], "array_express": 242, "array_form": [78, 80, 81, 243], "array_lik": [153, 154, 299], "arrayadd": 243, "arrayconstructor": 69, "arraycontract": [242, 243], "arraydiagon": [242, 243], "arrayexpr": 69, "arraysymbol": 243, "arraytensorproduct": [120, 242, 243], "arref": 210, "arriv": [90, 214, 231, 233, 237, 241, 297], "arrow": [68, 117, 136, 207, 221], "arrow_formatt": 68, "arrow_styl": 68, "arrowfrombar": 221, "arrowstringdescript": 68, "art": [72, 80, 208, 221, 223, 256], "articl": [0, 7, 88, 89, 120, 124, 213, 215, 216, 221, 230, 265, 283, 291], "articul": 216, "artifact": 124, "artifici": [215, 224], "artist": 89, "arxiv": [91, 93, 96, 124, 146, 217, 259, 303], "as_add": [43, 88], "as_algebraicfield": 212, "as_base_exp": [88, 94, 95, 259], "as_coef_add": 88, "as_coef_mul": 88, "as_coeff_add": 88, "as_coeff_expon": 88, "as_coeff_mul": [13, 14, 88, 113, 120], "as_coeffici": [14, 88], "as_coefficients_dict": 88, "as_content_primit": [88, 124, 209, 217], "as_declar": 69, "as_dict": [77, 211, 217], "as_dummi": [88, 115], "as_explicit": [13, 53, 120, 124, 147, 242, 243], "as_expr": [13, 88, 124, 210, 211, 216, 217, 218, 293], "as_expr_set_pair": 94, "as_ferr": 77, "as_finite_differ": [13, 67, 88, 287], "as_immut": 119, "as_independ": [14, 43, 88, 240], "as_int": [185, 262], "as_leading_term": [12, 88, 228], "as_list": [110, 217], "as_mut": [88, 119, 120], "as_numer_denom": [88, 239], "as_ordered_factor": 88, "as_ordered_term": 88, "as_poli": [13, 88, 209, 214, 217], "as_powers_dict": 88, "as_real_imag": [88, 94, 124, 222], "as_rel": 229, "as_set": [50, 118], "as_submodul": 216, "as_sum": 115, "as_term": 88, "as_two_term": [43, 88], "as_unevaluated_bas": 233, "asa": 104, "asarrai": [14, 129], "ascend": [80, 115, 234, 259], "ascent": 80, "ascertain": 159, "ascii": 221, "asec": [94, 221], "asech": [94, 221], "aseri": 88, "ashutosh": 0, "asid": [12, 16, 118, 237, 238, 291], "asin": [16, 94, 96, 102, 218, 221, 231, 233, 237, 241, 297, 299], "asinh": [94, 221], "ask": [2, 4, 7, 9, 11, 15, 16, 22, 38, 41, 42, 63, 64, 65, 66, 88, 100, 113, 196, 208, 227, 233, 240, 259, 277, 289], "askalgebraicpredicatehandl": 65, "askhandl": 62, "askpredicatehandl": [63, 64], "askprimehandl": 13, "asnumpi": 129, "aspect": [5, 7, 11, 12, 14, 41, 124, 133, 211, 299], "aspect_ratio": 207, "aspx": 237, "assembl": [89, 113, 228, 299], "assemble_partfrac_list": 217, "assembli": [140, 302], "assert": [3, 11, 12, 27, 68, 77, 78, 79, 80, 88, 98, 100, 130, 210, 221, 229, 237, 238, 239, 250, 257, 259], "assertionerror": [12, 250], "assess": 39, "assign": [5, 9, 22, 30, 33, 36, 41, 55, 68, 69, 70, 84, 88, 93, 104, 115, 117, 118, 124, 130, 153, 196, 207, 209, 214, 221, 239, 240, 247, 254, 269, 272, 289, 309], "assign_to": [69, 221], "assignmentbas": 69, "assignmenterror": 221, "assist": 237, "assoc_laguerr": [69, 96, 221], "assoc_legendr": [96, 221], "assoc_recurrence_memo": 261, "associ": [5, 9, 11, 15, 18, 28, 30, 32, 35, 36, 41, 51, 68, 70, 86, 88, 89, 95, 96, 110, 111, 113, 117, 131, 134, 148, 155, 158, 159, 181, 189, 200, 207, 209, 210, 211, 212, 214, 216, 221, 229, 231, 234, 247, 261, 299, 307], "associated_legendre_polynomi": 96, "associatedlaguerrepolynomi": 96, "assocop": 88, "assoic": 210, "asssumpt": 221, "assum": [2, 4, 14, 15, 16, 18, 22, 25, 26, 27, 28, 30, 33, 38, 41, 43, 52, 55, 56, 61, 64, 69, 70, 72, 77, 79, 87, 88, 89, 90, 93, 94, 96, 98, 105, 106, 113, 115, 124, 128, 136, 140, 144, 148, 156, 158, 159, 164, 186, 190, 191, 200, 204, 208, 209, 211, 214, 217, 219, 221, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 245, 246, 247, 254, 259, 262, 268, 270, 274, 277, 290, 292, 295, 297, 298, 299, 303, 308], "assump": [63, 64], "assumpt": [4, 12, 15, 16, 18, 21, 30, 40, 42, 44, 51, 52, 53, 62, 63, 65, 66, 68, 69, 79, 80, 82, 87, 90, 92, 94, 95, 115, 118, 124, 125, 136, 144, 195, 198, 202, 210, 220, 221, 229, 230, 233, 234, 237, 239, 240, 246, 254, 259, 276, 277, 297, 299], "assumptionkei": 62, "assumptions0": [41, 88], "assumptionscontext": [62, 63, 64], "assur": [3, 128, 217], "ast": [88, 221], "asterisk": 5, "astr": 68, "astrophys": 194, "asv": 2, "asym2": 247, "asymmetr": [89, 104], "asymmetri": 241, "asymp": 228, "asymptot": [88, 113, 144, 287], "asymptotic_expans": 88, "at_pin_joint": 148, "atan": [31, 61, 66, 90, 92, 94, 99, 104, 112, 115, 160, 218, 221, 223, 306], "atan2": [61, 66, 90, 94, 165, 221, 265], "atan_2": 61, "atanh": [12, 94, 218, 221, 231], "atbash": 89, "atiyah": 215, "atiyah69": [208, 215], "atkinson": 79, "atleast": 237, "atol": 69, "atom": [15, 50, 69, 80, 88, 115, 118, 124, 146, 192, 211, 218, 221, 239, 240, 246], "atom_nam": 221, "atomic_mass_const": 198, "atomicexpr": [13, 88], "atoms_t": 221, "atop": [93, 96, 223, 231], "attach": [18, 24, 36, 41, 80, 82, 113, 129, 134, 136, 148, 152, 153, 156, 253, 255, 260, 299], "attachment_1": 156, "attachment_2": 156, "attack": 89, "attain": [239, 270], "attempt": [12, 21, 37, 39, 42, 43, 48, 51, 55, 57, 69, 79, 84, 86, 88, 92, 93, 100, 113, 115, 124, 128, 150, 186, 210, 211, 212, 216, 221, 223, 230, 233, 234, 237, 239, 240, 241, 252, 289, 297], "attent": [67, 79, 94], "attenu": 163, "attr": [3, 69], "attr_param": 69, "attribut": [4, 15, 18, 28, 31, 32, 33, 36, 38, 41, 43, 63, 64, 68, 69, 79, 80, 88, 96, 97, 98, 101, 102, 103, 104, 120, 124, 130, 131, 133, 134, 137, 144, 149, 152, 153, 154, 155, 156, 158, 180, 185, 189, 196, 200, 207, 208, 211, 212, 216, 221, 229, 233, 234, 246, 247, 253, 255, 259, 260, 269, 292, 303, 309], "attributeerror": [13, 14, 41, 88, 124, 240], "au": 93, "aug": [34, 203, 240], "aug_assign": 69, "augment": [4, 19, 25, 26, 30, 69, 124, 153, 158, 219, 239, 240, 257, 260, 298], "augmentedassign": 69, "august": [237, 256], "augustu": 89, "austin": 295, "authent": 9, "author": [0, 4, 7, 128, 177, 216], "auto": [11, 13, 16, 51, 67, 88, 89, 116, 207, 210, 214, 217, 221, 233, 237, 241], "auto_assert": 221, "auto_declar": 221, "auto_int_to_integ": [2, 116], "auto_kei": 89, "auto_numb": 130, "auto_symbol": [2, 116, 130], "autoclass": 4, "autocomplet": 16, "autocorrel": 89, "autodetect": [237, 238], "autodoc": 5, "autoexpand": [16, 233], "autofunc": 69, "autofunct": [4, 11], "autogener": 171, "autolev": [2, 23, 302], "autom": [69, 94, 129, 230, 253, 291], "automat": [2, 3, 4, 5, 8, 11, 12, 13, 15, 16, 18, 22, 35, 37, 41, 51, 52, 55, 57, 68, 69, 70, 80, 88, 90, 91, 92, 93, 94, 96, 101, 103, 107, 113, 116, 118, 128, 130, 132, 134, 136, 153, 158, 177, 179, 180, 189, 191, 195, 204, 207, 208, 210, 211, 212, 216, 217, 218, 221, 224, 227, 228, 230, 231, 233, 234, 237, 239, 240, 246, 247, 252, 253, 254, 257, 260, 270, 275, 287, 289, 291, 292, 296, 297, 298, 302, 310], "automatiqu": 218, "automorphisms_of_the_symmetric_and_alternating_group": 71, "autonom": 237, "autos": [80, 127], "autoscal": 207, "autosimplif": [88, 230, 233], "autowrap": [129, 246, 254, 258, 284], "auxiliari": [22, 25, 69, 115, 153, 158, 237, 253, 304], "auxiliary_circl": 98, "auxiliary_eq": [153, 304, 310], "avail": [2, 5, 7, 8, 9, 13, 15, 16, 18, 22, 27, 30, 41, 48, 54, 57, 58, 59, 68, 69, 79, 80, 87, 88, 93, 96, 115, 124, 128, 129, 130, 207, 211, 212, 214, 217, 221, 222, 227, 229, 231, 233, 234, 239, 240, 241, 242, 246, 247, 252, 259, 260, 264, 265, 289, 296], "averag": [105, 115, 128, 214, 241], "aversin": 43, "avoid": [5, 11, 12, 13, 15, 27, 35, 36, 42, 43, 48, 51, 61, 69, 70, 88, 89, 94, 113, 115, 118, 124, 127, 130, 185, 209, 210, 211, 214, 217, 221, 222, 229, 233, 237, 239, 241, 245, 254, 257, 260, 289, 290, 306], "avoid_square_root": 61, "aw": 299, "awai": [4, 14, 18, 68, 70, 89, 136, 137, 140, 148, 156, 216, 221, 302], "awang": 215, "awar": [2, 3, 4, 12, 14, 15, 16, 42, 67, 88, 92, 118, 124, 231, 241, 260], "awhil": 158, "ax": [13, 14, 18, 35, 36, 48, 49, 51, 53, 61, 89, 92, 98, 101, 113, 119, 124, 136, 142, 152, 153, 159, 163, 188, 200, 206, 207, 210, 218, 234, 237, 240, 242, 243, 246, 265, 267, 269, 270, 272, 274, 297, 299, 306], "ax2p": 234, "axb": 190, "axc": 190, "axhlin": 13, "axi": [13, 22, 24, 27, 30, 31, 32, 33, 35, 36, 55, 61, 81, 93, 94, 98, 99, 101, 102, 104, 110, 113, 115, 120, 124, 136, 140, 142, 147, 148, 152, 156, 158, 159, 160, 163, 164, 188, 200, 202, 204, 207, 212, 240, 265, 267, 270, 272, 275, 299, 302, 303, 306, 309, 310, 311], "axial": [136, 160], "axial_forc": 136, "axial_stress": 136, "axiom": [79, 208], "axiom_of_power_set": 229, "axis_cent": 207, "axis_orient": [265, 270], "axis_orienter1": 267, "axis_orienter2": 267, "axis_orienter3": 267, "axis_point": 299, "axisorient": [265, 267, 270], "az": [89, 144, 234], "azbz": [36, 270], "azimuth": 146, "a\u2080": 297, "a\u2080\u2080": 53, "a\u2080\u2081": 53, "a\u2080\u2082": 53, "a\u2080\u2083": 53, "a\u2081": [137, 297], "a\u2081\u2080": 53, "a\u2081\u2081": 53, "a\u2081\u2082": 53, "a\u2081\u2083": 53, "a\u2082": [137, 297], "a\u2082\u2080": 53, "a\u2082\u2081": 53, "a\u2082\u2082": 53, "a\u2082\u2083": 53, "a\u2083": 297, "a\u2083\u2080": 53, "a\u2083\u2081": 53, "a\u2083\u2082": 53, "a\u2083\u2083": 53, "a\u2084": 297, "b": [0, 11, 12, 14, 15, 16, 18, 22, 27, 28, 30, 32, 35, 36, 37, 41, 42, 43, 46, 48, 49, 51, 53, 61, 68, 69, 70, 72, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 111, 113, 115, 117, 118, 119, 120, 124, 128, 130, 131, 132, 134, 136, 137, 138, 140, 142, 144, 149, 150, 152, 153, 154, 155, 156, 158, 160, 163, 168, 170, 172, 174, 179, 180, 183, 188, 189, 190, 191, 200, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 221, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 252, 255, 256, 259, 262, 265, 267, 268, 269, 270, 271, 287, 289, 293, 297, 298, 299, 303, 306, 307], "b0": [84, 96, 212, 231, 237], "b1": [22, 30, 79, 84, 96, 128, 136, 137, 144, 149, 200, 212, 221, 231, 234, 237, 271], "b11": 30, "b12": 30, "b1_frame": 149, "b1prime": 231, "b2": [22, 30, 53, 96, 128, 136, 137, 144, 149, 200, 210, 212, 221, 231, 234, 237, 271], "b21": 30, "b22": 30, "b2_frame": 149, "b3": [22, 30, 117, 200, 271], "b4": 117, "b6bius_funct": [93, 128], "b6bius_inversion_formula": 91, "b_": [79, 84, 86, 88, 93, 96, 113, 120, 144, 223, 231, 234, 242, 243], "b_0": [84, 89, 93, 231, 234, 237], "b_1": [79, 86, 96, 110, 113, 208, 231, 234, 237, 297], "b_2": [79, 86, 96, 110, 231, 237], "b_cm": [22, 155], "b_eq": 239, "b_f": [22, 155], "b_frame": [149, 152], "b_i": [79, 84, 86, 113, 208, 231], "b_ij": 246, "b_interv": 229, "b_ixx": 149, "b_j": [84, 86, 96, 113, 231], "b_k": [79, 86, 89, 93, 96, 223, 224], "b_m": [96, 113, 239], "b_mass": 149, "b_masscent": 149, "b_muscl": 134, "b_n": [89, 93, 117, 208, 224], "b_op": 27, "b_q": [96, 113, 231, 297], "b_r": 79, "b_x": [36, 200, 202, 247, 303], "b_y": [36, 200, 202, 247], "b_z": [36, 200, 247], "ba": [93, 259], "baa": 259, "bab": 76, "babbag": 89, "babi": [93, 128, 259], "back": [0, 35, 43, 51, 52, 54, 68, 69, 84, 87, 88, 89, 94, 96, 103, 104, 110, 112, 113, 115, 116, 124, 128, 129, 144, 185, 205, 207, 210, 211, 216, 217, 219, 221, 231, 237, 239, 242, 243, 299], "backcolor": [116, 205], "backend": [13, 24, 69, 116, 129, 142, 158, 205, 218, 253, 260, 304, 307], "background": [23, 35, 96, 116, 205, 295], "backport": 3, "backslash": [4, 88, 221], "backtick": [4, 5, 8], "backtrac": 221, "backtrack": 86, "backward": [2, 39, 67, 88, 124, 144, 158, 221, 259, 297], "backward_diff": 144, "bad": [8, 11, 12, 13, 14, 87, 128, 193, 210, 221], "badli": 79, "baij": 191, "bailli": 128, "baji": 191, "balanc": [29, 89, 208, 241, 252, 299], "ball": 152, "ban275": 124, "banana": 259, "band": [124, 127], "bar": [13, 69, 96, 180, 186, 262, 301, 305], "bar_10": 186, "bar_4": 186, "bar_5": 186, "bare": [16, 89, 153], "barei": 124, "bareiss": [124, 210], "bareiss_algorithm": 210, "barn": 96, "barri": [215, 259], "base": [2, 3, 4, 5, 8, 9, 10, 11, 12, 14, 15, 16, 18, 22, 30, 31, 33, 36, 41, 43, 48, 59, 61, 63, 64, 67, 69, 70, 77, 78, 79, 84, 85, 86, 88, 89, 91, 93, 94, 95, 96, 99, 101, 104, 111, 115, 116, 117, 118, 119, 120, 128, 129, 130, 131, 132, 134, 141, 148, 149, 152, 155, 156, 158, 159, 160, 169, 171, 175, 176, 180, 186, 187, 189, 191, 193, 196, 197, 199, 200, 202, 205, 206, 207, 210, 211, 212, 213, 214, 215, 216, 217, 221, 223, 228, 229, 230, 231, 233, 234, 237, 239, 241, 245, 246, 247, 252, 253, 254, 255, 256, 257, 259, 260, 261, 265, 268, 269, 272, 292, 297, 302], "base1": 84, "base10": 233, "base2": 84, "base2a": 84, "base_a": 84, "base_char": 136, "base_dim": 193, "base_f": 84, "base_i": 84, "base_id": [208, 212], "base_oneform": 90, "base_ord": 86, "base_req": 69, "base_scalar": 90, "base_seq": 261, "base_set": 229, "base_solution_linear": 234, "base_unit": 199, "base_vector": [90, 265], "basebackend": 207, "basecovarderivativeop": 90, "basedyad": [265, 269], "baselin": 221, "basenam": [252, 253, 254], "basepolynomialerror": 214, "basescalar": [270, 272], "basescalarfield": 90, "baseseri": 207, "baseswap": 79, "basevector": [265, 269, 270], "basevectorfield": 90, "basi": [3, 32, 33, 35, 88, 90, 117, 120, 124, 149, 155, 176, 185, 186, 188, 191, 193, 196, 199, 200, 206, 208, 210, 212, 217, 220, 231, 233, 234, 239, 240, 242, 247, 268, 269, 272, 295, 309, 311], "basic": [2, 3, 4, 5, 7, 10, 11, 13, 15, 17, 22, 25, 26, 28, 30, 31, 33, 36, 41, 43, 57, 61, 63, 68, 69, 70, 76, 79, 83, 86, 87, 91, 94, 104, 106, 111, 112, 113, 118, 121, 123, 125, 132, 144, 152, 158, 165, 175, 189, 196, 199, 203, 207, 208, 210, 212, 213, 214, 216, 218, 219, 221, 222, 228, 233, 234, 237, 238, 239, 240, 241, 252, 254, 259, 260, 263, 271, 272, 273, 280, 282, 283, 287, 288, 289, 290, 295, 304], "basic_orbit": [79, 86], "basic_root": 117, "basic_stabil": 79, "basic_transvers": [79, 86], "basis_el": 216, "basis_element_pullback": 216, "basis_st": 176, "batcheld": 13, "bateman": [96, 115], "batista": 89, "batman": 89, "battl": 291, "baz": 69, "bb": [93, 206, 233, 259], "bb1": 233, "bb2": 233, "bbp_pi": 128, "bbra": 191, "bby": 259, "bc": [61, 100, 140, 259, 262, 271], "bc_deflect": [136, 137], "bc_new": 140, "bc_slope": [136, 137], "bcd": 259, "bch": 89, "bd": [61, 140, 191], "bd_new": 140, "be1": 233, "be2": 233, "bead": 259, "beam": [104, 140, 160, 163, 282], "beam3d": 136, "beamparamet": 160, "beams3d": 136, "bear": [5, 41], "beat": 89, "becam": [23, 89, 151], "becaus": [2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 22, 35, 37, 41, 42, 43, 48, 51, 52, 53, 54, 55, 56, 57, 59, 60, 65, 69, 80, 87, 88, 89, 94, 100, 104, 105, 113, 115, 118, 121, 124, 128, 130, 131, 132, 134, 135, 148, 152, 158, 159, 171, 179, 191, 193, 195, 196, 207, 208, 210, 211, 212, 214, 216, 217, 218, 220, 221, 224, 228, 231, 233, 234, 237, 238, 239, 240, 250, 252, 253, 255, 259, 260, 262, 269, 287, 289, 291, 292, 293, 296, 297, 298, 304, 306], "beckerweispfenning93": 214, "becom": [0, 3, 4, 5, 11, 12, 13, 15, 16, 35, 39, 41, 79, 84, 87, 88, 89, 92, 111, 116, 124, 130, 148, 158, 205, 208, 209, 211, 212, 218, 221, 224, 230, 237, 240, 241, 247, 260, 262, 268, 270, 287, 297], "bee": 262, "been": [3, 11, 14, 16, 18, 22, 23, 27, 28, 33, 34, 35, 36, 41, 43, 48, 67, 69, 70, 74, 79, 80, 81, 84, 87, 88, 89, 94, 100, 113, 115, 124, 128, 129, 130, 131, 133, 134, 136, 149, 151, 152, 153, 158, 164, 176, 186, 188, 196, 203, 208, 211, 212, 216, 218, 219, 221, 223, 228, 231, 233, 238, 239, 240, 242, 243, 251, 252, 254, 255, 257, 259, 262, 269, 272, 289, 290, 292, 293, 297, 302], "befor": [3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 30, 32, 36, 41, 42, 43, 55, 57, 59, 69, 79, 80, 82, 84, 88, 89, 90, 96, 116, 124, 128, 130, 136, 137, 154, 158, 160, 191, 205, 209, 210, 211, 216, 217, 221, 222, 228, 229, 233, 234, 237, 239, 240, 241, 248, 252, 255, 259, 260, 269, 290, 291, 292, 297, 299, 302, 304, 306, 309, 310], "beforehand": [153, 158, 254], "begin": [4, 7, 11, 12, 13, 16, 25, 26, 27, 28, 32, 36, 41, 43, 46, 49, 53, 55, 61, 88, 89, 93, 94, 96, 113, 120, 124, 128, 130, 134, 136, 187, 196, 200, 206, 210, 221, 231, 234, 237, 238, 240, 241, 252, 262, 289, 291, 293, 297, 299, 306], "beginn": [234, 236, 237, 239, 240, 298], "behav": [13, 16, 18, 65, 67, 88, 89, 94, 96, 128, 217, 229, 233, 239, 242, 248, 293], "behavior": [2, 3, 12, 13, 14, 15, 16, 21, 23, 27, 43, 79, 88, 93, 96, 115, 130, 147, 151, 186, 208, 209, 216, 217, 221, 222, 226, 228, 230, 233, 250, 253, 255, 259, 260, 289, 299, 301], "behavior1": 3, "behavior2": 3, "behaviour": [13, 41, 113, 118, 149, 211, 214, 218, 224, 227], "behind": [17, 22, 27, 58, 145, 195, 210, 230, 233, 237, 240, 282, 289], "bei": 233, "being": [3, 5, 12, 14, 15, 16, 18, 21, 22, 27, 28, 30, 31, 32, 33, 35, 36, 37, 41, 42, 65, 67, 69, 79, 80, 86, 87, 88, 89, 93, 94, 96, 98, 100, 101, 104, 105, 113, 118, 124, 125, 128, 136, 137, 140, 148, 156, 158, 187, 196, 202, 206, 207, 208, 210, 211, 212, 214, 216, 217, 218, 220, 221, 230, 231, 233, 234, 237, 238, 239, 240, 241, 247, 250, 252, 256, 257, 259, 260, 262, 265, 270, 274, 291, 293, 302], "beings": 4, "belaso": 89, "believ": [125, 128, 210], "belittl": 5, "bell": [18, 93, 175, 223, 259], "bell_numb": 93, "bell_seq": 223, "bellnumb": 93, "bellpolynomi": 93, "belong": [5, 12, 35, 41, 65, 68, 79, 84, 88, 111, 124, 155, 191, 200, 207, 208, 210, 211, 212, 214, 216, 217, 228, 229, 233, 234, 240, 247], "below": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 18, 22, 24, 25, 26, 27, 28, 30, 36, 41, 43, 46, 48, 52, 55, 56, 57, 59, 67, 68, 69, 78, 79, 80, 88, 89, 93, 95, 96, 97, 98, 104, 105, 111, 113, 115, 124, 127, 128, 130, 134, 136, 137, 138, 144, 148, 149, 152, 153, 154, 155, 156, 158, 185, 191, 196, 200, 206, 207, 208, 210, 217, 221, 222, 224, 230, 233, 234, 236, 237, 238, 239, 240, 241, 252, 254, 259, 260, 262, 270, 272, 275, 276, 293, 297, 302, 306, 307, 308], "below_fermi": [96, 191], "ben": 124, "benchmark": [13, 29, 302], "bend": [98, 104, 135, 136, 139, 282], "bender": 237, "bending_mo": [136, 137], "benefici": 12, "benefit": [0, 2, 14, 21, 27, 43, 50, 69, 205, 210], "bengt": [39, 67], "benini": 241, "benini_distribut": 241, "beninidistribut": 241, "beq": 239, "berkelei": 124, "berkowitz": [124, 210], "berkowitz_det": 124, "berkowitz_eigenv": 124, "berkowitz_minor": 124, "berlekamp": 214, "berlin": 214, "bernd": 124, "bernoulli": [93, 96, 217, 221, 237, 239, 241], "bernoulli_c_poli": 217, "bernoulli_differential_equ": 237, "bernoulli_distribut": 241, "bernoulli_integr": 237, "bernoulli_numb": 93, "bernoulli_poli": [93, 217], "bernoulli_polynomi": [93, 217], "bernoulli_process": 241, "bernoullidistribut": 241, "bernoullinumb": 93, "bernoullipolynomi": 93, "bernoulliprocess": 241, "bertrand": 128, "besid": [7, 71, 88, 214, 239], "bess": [4, 96, 221, 233, 237, 241], "bessel": [4, 5, 94, 106, 115, 217, 233, 237, 241, 291], "bessel_funct": [4, 96], "besselbas": [4, 96], "besselj": [4, 96, 110, 221, 233, 237, 291], "besseljzero": 96, "besselk": [4, 96, 221, 241], "besselsimp": 233, "best": [3, 7, 11, 12, 13, 16, 17, 48, 52, 54, 55, 58, 59, 69, 88, 96, 113, 115, 129, 190, 207, 218, 221, 230, 231, 233, 237, 240, 245, 253, 285, 289, 290, 296, 297], "best_hint": 237, "beta": [4, 16, 18, 69, 79, 88, 115, 134, 148, 188, 200, 206, 216, 218, 221, 237, 241], "beta_": 79, "beta_1_2": 12, "beta_distribut": 241, "beta_funct": 96, "beta_prime_distribut": 241, "beta_r": 231, "betabinomi": 241, "betabinomialdistribut": 241, "betadistribut": 241, "betafunct": 96, "betanoncentr": 241, "betaprim": 241, "betaprimedistribut": 241, "better": [2, 3, 4, 8, 11, 12, 13, 14, 15, 16, 22, 41, 42, 43, 61, 68, 69, 80, 88, 92, 96, 115, 118, 144, 171, 199, 207, 210, 211, 212, 214, 224, 228, 229, 230, 231, 237, 238, 239, 240, 241, 253, 259, 260, 291, 297], "betweem": 18, "between": [2, 3, 9, 12, 13, 14, 15, 18, 22, 24, 27, 28, 30, 31, 32, 33, 35, 36, 38, 42, 43, 48, 52, 68, 69, 78, 79, 80, 82, 86, 88, 90, 93, 96, 98, 100, 101, 102, 103, 104, 105, 115, 117, 118, 120, 121, 124, 128, 129, 130, 131, 132, 134, 140, 141, 142, 144, 148, 152, 155, 156, 158, 159, 160, 163, 164, 170, 177, 179, 180, 181, 185, 188, 189, 190, 191, 194, 195, 196, 200, 201, 202, 204, 207, 208, 210, 212, 214, 216, 217, 221, 223, 233, 237, 238, 239, 240, 241, 242, 255, 260, 265, 268, 269, 272, 274, 289, 299, 304, 309, 311], "betweensubtleshadingandtheabsenc": 89, "bewar": [14, 67, 96], "beyer": 259, "beyond": [2, 11, 12, 14, 27, 41, 50, 82, 104, 128, 208, 211, 230, 233, 293], "bf": [30, 140], "bf02985731": 74, "bf0e81e12a2f75711c30f0788daf4e58f72b2a41": 11, "bfb0055738": 89, "bg": 237, "bh": 237, "bi": [36, 61, 88, 94, 96, 115, 228, 237], "bianchi": 247, "bias": 37, "bibtex": 0, "biceps_activ": 299, "biceps_pathwai": 299, "bicycl": [23, 29, 151, 301, 305], "bidiagn": 124, "bidiagon": 124, "bidiagonal_decomposit": 124, "bifid": 89, "bifid5": 89, "bifid5_squar": 89, "bifid6_squar": 89, "bifid_ciph": 89, "big": [13, 14, 16, 30, 39, 41, 72, 88, 90, 128, 171, 206, 220, 221, 228, 243, 262, 287, 289], "big_trig_ident": 16, "bigg": 46, "bigger": [43, 69, 88, 93, 124, 231, 237, 297], "biggest": 14, "bigl": 224, "bigr": 224, "biholomorph": 113, "biject": [80, 82, 89, 124, 208], "bilater": 115, "bilinear": 144, "bin": [1, 2, 4, 8, 9, 11, 12, 116, 221, 252, 259], "bin_prefix": 197, "bin_to_grai": 72, "binari": [11, 12, 16, 42, 43, 51, 65, 69, 72, 83, 88, 89, 115, 118, 128, 129, 185, 197, 208, 211, 217, 234, 253, 256, 259], "binary_cal": 253, "binary_func": [69, 253], "binary_funct": [69, 129, 253], "binary_partit": 259, "binaryquadrat": 234, "bincoeff": [93, 128, 221], "bind": [2, 69, 221, 253], "bind_c": 69, "binet": 92, "binom": [93, 128, 130, 241, 297], "binomi": [87, 88, 92, 93, 96, 128, 130, 217, 221, 226, 233, 237, 241, 259, 297], "binomial_coeffici": [93, 128], "binomial_coefficients_list": 128, "binomial_distribut": 241, "binomial_mod": 128, "binomialdistribut": 241, "binop": 69, "bio": 89, "biolog": [18, 131], "biomechan": [17, 20, 131, 132, 134, 282, 301], "biomed": [18, 131, 132, 134, 299], "biproduct": 208, "bird": 124, "bisect": [54, 128, 217, 239], "bisector": [101, 104], "bit": [8, 12, 18, 39, 43, 68, 69, 72, 88, 89, 91, 118, 124, 128, 185, 196, 208, 210, 211, 217, 231, 234, 240, 252, 259, 269, 270, 296], "bitcount": 88, "bitlist": [72, 83], "bitlist_from_subset": 83, "bitmap": 221, "bitmask": 91, "bitstr": 72, "bitwis": [42, 91, 118], "bitwiseand": 221, "bitwiseor": 221, "bitwisexor": 221, "biu": 241, "bivari": [214, 220, 237, 241], "bixk": 115, "bizarr": 240, "bket": 191, "bl": [25, 30, 153, 302], "blaback": 11, "black": [116, 136, 176, 187, 205, 221, 296], "blacklist": 252, "blais": 89, "blajer": 29, "blajer1994": [27, 29], "blank": [4, 11, 12, 130, 207], "blanklin": 12, "blazingli": 218, "bleicher": 128, "blindli": 231, "blob": 115, "block": [3, 4, 14, 18, 22, 36, 46, 57, 69, 77, 79, 89, 124, 152, 158, 200, 210, 234, 260, 269, 302, 303, 307], "block_": 79, "block_bodi": 303, "block_collaps": 120, "block_fram": 307, "block_point": 303, "blockdiagmatrix": [120, 124], "blockmatrix": [120, 124], "blockwis": 124, "blog": [12, 13, 43, 69, 93, 124, 234, 240], "blogg": 11, "blogpost": 113, "blow": 128, "blowup": [124, 210], "blue": [24, 142, 207, 221], "blurb": [79, 241], "bl\u00e5b\u00e4ck": 11, "bm": [96, 299], "bmatrix": [25, 26, 27, 32, 36, 46, 55, 61, 120, 124, 130, 200, 234, 299, 306], "bmd": 104, "bmod": [89, 217, 221], "bmtwmg": 89, "bn": 224, "bo": 221, "bob": [89, 152, 158, 303], "bob_fram": 158, "bob_mass": 158, "bob_masscent": 158, "bode": 46, "bode_magnitude_numerical_data": 142, "bode_magnitude_plot": [46, 142], "bode_phase_numerical_data": 142, "bode_phase_plot": [46, 142], "bode_plot": 142, "bodi": [11, 16, 18, 21, 22, 23, 24, 25, 30, 31, 35, 36, 69, 113, 130, 147, 148, 149, 151, 152, 153, 158, 194, 200, 204, 265, 267, 282, 299, 302, 303, 304, 306, 307, 309], "body1": 155, "body2": 155, "body3": 155, "body_b": 22, "body_b_f": 22, "body_inertia": 149, "body_orient": [265, 267, 270], "body_orienter1": 267, "body_orienter2": 267, "body_orienter3": 267, "bodybas": 158, "bodyd": [309, 310, 311], "bodyfork": 302, "bodyfram": 302, "bodylist": [309, 310], "bodyorient": [265, 267, 270], "bodywf": 302, "bodywr": 302, "boer": 196, "boil": 12, "bokeh": 13, "bold": 221, "bold_nam": 221, "boltzmann": 195, "bonazzi": 0, "bone": 18, "bonn": 70, "book": [7, 9, 22, 24, 28, 29, 68, 79, 89, 94, 153, 176, 215, 220, 221, 290, 304], "books_articl": 241, "bool": [14, 41, 61, 67, 69, 71, 74, 84, 86, 88, 89, 91, 94, 115, 116, 118, 120, 124, 128, 130, 132, 134, 142, 153, 154, 158, 174, 175, 202, 205, 207, 210, 216, 217, 219, 221, 222, 223, 228, 229, 233, 236, 241, 253, 254, 259, 260, 265, 268, 289], "bool1": 118, "bool2": 118, "bool_": 69, "bool_map": 118, "bool_maxterm": 118, "bool_minterm": 118, "bool_monomi": 118, "boolalg": [88, 118], "boolean": [13, 14, 15, 17, 43, 44, 50, 55, 62, 63, 64, 65, 66, 67, 69, 88, 94, 98, 102, 103, 104, 105, 116, 124, 125, 128, 136, 142, 144, 153, 158, 176, 200, 202, 205, 207, 210, 212, 214, 216, 218, 221, 233, 237, 239, 241, 259, 268, 293], "booleanfals": 118, "booleanfunct": 221, "booleankind": [15, 88], "booleantru": 118, "boost": 69, "boost_mp50": 69, "border": [98, 104], "borrow": 256, "bose": 215, "bose03": 215, "boson": 191, "bosonbra": 191, "bosonicbasi": 191, "bostan": 218, "bot": [3, 11], "botanist": 241, "both": [0, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 24, 27, 35, 36, 38, 41, 42, 43, 48, 50, 51, 52, 55, 60, 61, 67, 68, 69, 80, 83, 84, 86, 87, 88, 89, 93, 94, 96, 103, 112, 113, 115, 118, 124, 128, 130, 133, 134, 136, 137, 144, 148, 149, 152, 153, 155, 156, 158, 163, 164, 175, 181, 188, 191, 195, 196, 200, 204, 207, 208, 209, 211, 212, 214, 216, 217, 219, 220, 221, 223, 228, 229, 230, 231, 233, 234, 237, 239, 240, 242, 246, 252, 254, 259, 260, 265, 267, 287, 290, 291, 292, 297, 298, 299, 302, 306, 307], "both_posit": 42, "both_positive_best": 42, "both_positive_bett": 42, "bother": [14, 96, 292], "bottom": [11, 78, 79, 88, 89, 104, 124, 127, 158, 216, 221, 230, 275], "bottom_fac": 275, "bottom_up": [13, 88], "bound": [15, 18, 50, 65, 69, 70, 87, 88, 97, 98, 99, 101, 103, 104, 115, 128, 155, 189, 207, 210, 212, 214, 215, 216, 217, 221, 227, 237, 239, 240, 241, 246, 256, 262, 265], "bound_symbol": [88, 115], "boundari": [71, 99, 101, 134, 136, 137, 204, 218, 229, 237, 241], "boundary_condit": 136, "bounded_pareto_distribut": 241, "boundedpareto": 241, "box": [171, 176, 178, 187, 189, 275, 282], "bp": [36, 237], "bpp": 36, "bpr": 89, "bpsw": 128, "bq": [96, 209, 210, 231], "br": 55, "bra": [130, 174, 179, 180, 181, 183, 185, 186, 189, 191], "brabas": [179, 180, 186, 189], "brace": [4, 22, 93, 221], "bracelet": [5, 259], "bracket": [16, 43, 54, 56, 80, 88, 96, 189, 191, 200, 221], "bradford": 214, "brain": [18, 256], "branch": [12, 42, 67, 88, 93, 94, 95, 96, 218, 231, 240, 292, 297], "branchpoint": 113, "brandei": 241, "brass": 89, "braun": 237, "breach": [113, 231], "breadth": [69, 88, 241], "break": [3, 4, 11, 12, 13, 14, 35, 43, 68, 69, 80, 88, 89, 128, 218, 221, 229, 259], "break_": 69, "breakag": 3, "breaker": 88, "breaktoken": 69, "bremen": 68, "bremner": 210, "brent": [128, 256], "brew": 8, "brewster": 164, "brewster_angl": 164, "brgc": 72, "brian": [0, 177], "bridg": [22, 121, 135, 138, 140, 260], "brief": [11, 69, 240, 252, 274], "briefli": [41, 209, 214], "brien": [74, 79, 86], "bring": [5, 113, 153, 210, 224, 233, 293, 310], "brito": 206, "broad": [88, 292], "broadcast": [69, 129, 221, 246, 253], "broader": 211, "brocard": 128, "broke": 12, "broken": [12, 13, 35, 77, 88, 221, 237, 262], "bronstein": [115, 215, 217, 223, 239], "bronstein93": [215, 217], "brought": [27, 241], "brown": [214, 215, 241], "brown71": [214, 215], "brown78": [214, 215], "brownian": 241, "browntraub71": [214, 215], "brows": [7, 9], "browser": 8, "bruce": 215, "bruce97": 215, "brute": [39, 230, 234], "bryan": [152, 200, 265, 267], "brychkov": [113, 231], "brzeskia": 303, "brzeskia2012": 303, "bsd": [0, 2, 45, 291], "bsg": [79, 84, 86, 247], "bsgs_direct_product": 84, "bspline": 96, "bspline_basi": 96, "bspline_basis_set": 96, "bu_2": 234, "bubbl": 175, "buchberg": [209, 214, 215, 217], "buchberger01": [215, 217], "bug": [3, 4, 7, 11, 12, 14, 41, 43, 59, 67, 89, 214, 229, 237, 240, 289], "build": [4, 5, 6, 10, 11, 12, 14, 30, 36, 38, 63, 64, 69, 88, 90, 96, 118, 185, 196, 200, 208, 213, 216, 217, 218, 228, 241, 269, 286, 289, 292], "build_expression_tre": 228, "build_opt": 214, "built": [0, 2, 4, 5, 8, 14, 15, 16, 22, 30, 38, 62, 64, 70, 88, 94, 115, 124, 209, 212, 221, 222, 226, 237, 240, 241, 247, 256, 259, 260, 291, 292, 296], "builtin": [14, 88, 212, 221, 229, 262, 296], "bulk": [214, 231], "bullet": [5, 11, 12], "bulletin": 115, "bunch": 217, "bundl": 216, "burden": [3, 221], "burtonl": 80, "butler": [84, 247], "button": [9, 12, 207, 253], "bv_2": 234, "bvar": 296, "bw": 299, "bx": [35, 36, 48, 49, 113, 241, 247, 270], "bxc": 190, "bxy": [51, 234], "by_nam": [212, 216, 217], "bypass": [43, 217, 237], "bytesio": 221, "bz": [35, 113, 234, 247], "c": [0, 2, 7, 8, 9, 12, 14, 15, 16, 18, 21, 22, 24, 26, 27, 30, 32, 35, 36, 39, 41, 43, 46, 48, 49, 51, 53, 60, 61, 67, 68, 72, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 111, 113, 115, 117, 118, 120, 124, 128, 129, 130, 136, 137, 138, 140, 144, 146, 148, 149, 150, 152, 153, 155, 160, 164, 170, 171, 172, 175, 177, 180, 185, 188, 190, 191, 196, 200, 204, 206, 207, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 253, 254, 256, 259, 262, 265, 267, 268, 269, 270, 271, 272, 275, 287, 289, 296, 297, 298, 299, 307, 309, 310, 311], "c0": [18, 120, 124, 132, 228, 237, 239], "c1": [4, 12, 18, 39, 55, 89, 98, 105, 120, 124, 132, 144, 152, 177, 191, 229, 234, 237, 239, 271, 298, 303], "c10": [18, 132], "c11": [18, 132], "c2": [18, 55, 71, 89, 98, 105, 120, 124, 132, 144, 152, 177, 191, 229, 237, 241, 268, 271, 298], "c3": [18, 39, 55, 71, 91, 93, 117, 120, 124, 128, 132, 210, 237, 241, 271, 298], "c4": [18, 71, 117, 120, 124, 132, 237], "c5": [18, 39, 132, 237], "c6": [18, 132, 212], "c7": [18, 39, 79, 132], "c77": 128, "c8": [18, 132], "c89": [69, 221, 254], "c89codeprint": 221, "c9": [18, 132], "c99": [69, 221, 254], "c99codeprint": [43, 69, 221], "c_": [18, 36, 39, 49, 55, 89, 111, 113, 132, 209, 237], "c_0": [18, 39, 89, 111, 132], "c_0_fl_m_act_muscl": 134, "c_0_fl_m_pas_muscl": 134, "c_0_fl_t_muscl": 134, "c_0_fv_m_muscl": 134, "c_1": [18, 39, 55, 89, 111, 113, 132, 228, 231, 237, 303], "c_10_fl_m_act_muscl": 134, "c_11_fl_m_act_muscl": 134, "c_1_fl_m_act_muscl": 134, "c_1_fl_m_pas_muscl": 134, "c_1_fl_t_muscl": 134, "c_1_fv_m_muscl": 134, "c_2": [18, 39, 55, 71, 113, 132, 228, 237, 303], "c_2_fl_m_act_muscl": 134, "c_2_fl_t_muscl": 134, "c_2_fv_m_muscl": 134, "c_3": [18, 71, 113, 132, 237], "c_3_fl_m_act_muscl": 134, "c_3_fl_t_muscl": 134, "c_3_fv_m_muscl": 134, "c_4": [18, 71, 113, 132], "c_4_fl_m_act_muscl": 134, "c_5": [18, 113, 132], "c_5_fl_m_act_muscl": 134, "c_6": [18, 113, 132], "c_6_fl_m_act_muscl": 134, "c_7": [18, 113, 132], "c_7_fl_m_act_muscl": 134, "c_8": [18, 113, 132], "c_8_fl_m_act_muscl": 134, "c_9": [18, 113, 132], "c_9_fl_m_act_muscl": 134, "c_code": [69, 254], "c_explicit": 246, "c_frame": 152, "c_g": 79, "c_header": [69, 254], "c_i": [39, 113, 228, 231, 237], "c_inherit": 246, "c_j": [110, 113, 231], "c_k": 89, "c_kn": 128, "c_m": 299, "c_masscent": 152, "c_mat": 46, "c_n": [93, 96, 117, 217, 237], "c_name": [69, 254], "c_o": 299, "c_r": [70, 231], "c_t": 89, "c_u": 113, "c_w": 231, "c_x": 36, "c_xr": 90, "c_xy": 90, "c_y": 36, "c_z": 36, "ca": [5, 18, 59, 89, 93, 96, 115, 128, 131, 220, 221, 259], "cab": 242, "cabl": 282, "cach": [12, 41, 93, 113, 208, 217, 221, 250, 255, 256, 261], "cache_length": 261, "cacheit": 88, "cacr": 89, "cacr2006": 89, "cadabra": 247, "caesar": 89, "caesar_ciph": 89, "caesarsmethod": 89, "caeser": 89, "cafe": 115, "calc_transform": 124, "calcul": [2, 14, 16, 18, 21, 32, 33, 35, 39, 41, 54, 55, 61, 67, 70, 80, 86, 88, 89, 90, 91, 92, 93, 94, 96, 98, 100, 101, 102, 104, 105, 115, 120, 124, 128, 136, 137, 146, 148, 149, 153, 158, 159, 160, 163, 164, 167, 170, 186, 187, 188, 189, 191, 192, 200, 201, 202, 204, 206, 207, 208, 210, 211, 212, 214, 216, 217, 218, 223, 228, 237, 241, 245, 253, 254, 260, 265, 268, 272, 274, 287, 293, 296, 299, 302, 303, 306], "calculate_seri": 228, "calculu": [30, 33, 34, 50, 52, 88, 93, 115, 128, 230, 241, 271, 272, 273, 276, 277, 288, 290, 295], "call": [2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 21, 22, 24, 27, 28, 33, 35, 36, 38, 39, 41, 42, 43, 48, 49, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 77, 78, 79, 80, 86, 88, 89, 91, 92, 93, 95, 96, 98, 103, 104, 106, 111, 113, 115, 117, 118, 119, 120, 121, 124, 126, 127, 128, 130, 132, 133, 134, 136, 137, 144, 148, 152, 156, 181, 183, 186, 191, 195, 196, 200, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 223, 228, 229, 231, 233, 234, 236, 237, 239, 240, 241, 242, 243, 245, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 268, 269, 272, 274, 287, 289, 291, 292, 293, 296, 297, 298, 302, 306], "callabl": [2, 14, 16, 18, 55, 69, 79, 124, 130, 153, 154, 176, 216, 221, 222, 233, 250, 253, 254, 259, 260, 261], "callback": 263, "caller": [43, 210], "calori": 196, "caltech": 115, "caltechauthor": 115, "calulc": 265, "cambridg": [215, 234], "came": [23, 151, 292], "camera": 207, "can": [0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 49, 53, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 76, 77, 78, 79, 80, 81, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 104, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 163, 164, 165, 170, 172, 175, 179, 180, 181, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 198, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 256, 257, 259, 260, 261, 262, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 295, 296, 297, 298, 299, 300, 303, 304, 306, 307, 310], "can_split": 130, "can_transf_matrix": 193, "canada": 215, "canberra": 103, "canberra_dist": 103, "cancel": [12, 14, 39, 43, 46, 69, 88, 92, 96, 104, 113, 115, 124, 128, 144, 145, 148, 210, 211, 212, 214, 217, 220, 233, 239, 291], "cancel_denom": 210, "cancel_denom_elementwis": 210, "candid": [11, 52, 79, 88, 124, 128, 214, 233], "canfield": 256, "cannon": 70, "cannot": [2, 3, 4, 5, 12, 13, 14, 15, 16, 18, 32, 35, 36, 38, 42, 43, 48, 51, 54, 59, 62, 63, 64, 65, 66, 67, 69, 80, 85, 87, 88, 90, 92, 94, 98, 100, 101, 103, 105, 110, 115, 117, 119, 121, 124, 126, 128, 130, 131, 144, 148, 156, 159, 186, 194, 196, 207, 210, 212, 214, 216, 217, 218, 221, 228, 229, 233, 234, 236, 237, 239, 240, 241, 242, 250, 252, 253, 254, 259, 265, 267, 291, 292, 293, 297, 298], "canon": [4, 14, 15, 41, 50, 69, 72, 77, 79, 80, 84, 88, 89, 90, 94, 104, 113, 118, 124, 128, 130, 132, 153, 168, 172, 191, 193, 196, 198, 210, 214, 222, 229, 230, 233, 237, 239, 241, 247, 259, 297], "canon_bp": 247, "canonic": [14, 15, 75, 88, 230, 247, 277], "canonical_eq": 237, "canonical_form": 241, "canonical_fre": 84, "canonical_normal_form": 118, "canonical_od": 237, "canonical_system": 237, "canonical_vari": 88, "canonicalize_na": 84, "canonicalz": 89, "cantilev": [136, 137], "cantor": 214, "canva": 207, "cap": [89, 92, 191, 229, 240], "capabl": [7, 13, 15, 18, 23, 30, 41, 54, 67, 69, 88, 92, 100, 113, 128, 136, 137, 151, 207, 218, 221, 240, 287, 290, 291, 297, 298, 301], "capit": [15, 87, 89, 144, 237], "capital_pi_not": 87, "capitalis": 41, "captur": [2, 13, 88, 149, 259], "car2d": 90, "cardin": [79, 80, 83, 208, 229], "care": [12, 15, 16, 21, 22, 27, 36, 42, 43, 79, 88, 96, 115, 118, 124, 136, 140, 200, 210, 211, 216, 233, 234, 237, 239, 240, 245, 248, 253, 286, 289, 291], "care_term": 118, "carefulli": [12, 42, 88, 132, 214, 223], "carl": [128, 256], "carla": 259, "carlo": 79, "carmichael": [89, 93, 128], "carmichael_funct": [93, 128], "carmichael_numb": 128, "carmichaelfunct": [93, 128], "carri": [68, 69, 88, 183, 189, 196, 208, 211, 214, 216, 218, 219, 260], "cart": [13, 158], "cart_mass": [13, 158], "cart_masscent": 158, "cartan": 117, "cartan_matrix": 117, "cartan_typ": 117, "cartanmatrix": 117, "cartantyp": 117, "cartantype_gener": 117, "cartesian": [31, 33, 90, 136, 138, 140, 164, 178, 181, 186, 207, 208, 229, 240, 259, 269, 270, 272, 273, 282], "cartesian_product": 229, "cartesiancomplexregion": 229, "case": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 26, 28, 30, 35, 36, 39, 41, 42, 46, 48, 51, 52, 53, 54, 55, 56, 57, 61, 67, 68, 69, 70, 71, 73, 76, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 96, 100, 103, 104, 105, 106, 110, 113, 115, 118, 120, 124, 125, 128, 129, 130, 134, 137, 144, 148, 152, 153, 159, 164, 175, 181, 186, 188, 190, 191, 196, 197, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 226, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 242, 245, 247, 250, 252, 254, 255, 257, 259, 260, 261, 262, 265, 268, 269, 287, 291, 292, 293, 296, 297, 298, 299, 302, 304, 306, 307], "cask": 8, "casoratian": 124, "cass": 291, "cast": [69, 120, 134, 289], "cast_check": 69, "cast_nocheck": 69, "casu": 217, "casus_irreducibili": 217, "cat": [32, 68], "catalan": [88, 93, 221], "catalan_numb": 93, "catalannumb": [93, 221], "catastroph": 69, "catch": [38, 88, 237, 252, 293], "catch_warn": 257, "catchal": 297, "categor": [3, 48, 124, 208], "categori": [13, 208, 276, 283], "cauchi": [96, 113, 115, 212, 237, 241], "cauchy_distribut": 241, "cauchy_lower_bound": 212, "cauchy_principal_valu": 115, "cauchy_upper_bound": 212, "cauchydistribut": 241, "cauchyprincipalvalu": 115, "caught": [14, 237], "caus": [3, 5, 12, 13, 15, 18, 22, 27, 35, 43, 55, 59, 88, 89, 92, 94, 124, 131, 148, 156, 221, 230, 237, 238, 239, 256, 257, 293, 299, 310], "caution": [80, 88, 94, 221, 233], "caveat": [88, 217, 289], "caylei": [79, 82, 124], "cb": [209, 259], "cba": [79, 242, 259], "cbead": 77, "cbl": 241, "cbm": [96, 115], "cbrt": [69, 94, 221], "cc": [49, 53, 89, 104, 206, 209, 210, 211, 217, 293], "ccc": [210, 240], "cccc": 240, "ccode": [43, 69, 221, 246, 254], "ccodegen": 254, "ccw": [101, 104], "cd": [4, 8, 9, 45, 140, 210, 240, 243, 259], "cd_dens": 210, "cdf": 241, "cdhw73": 70, "cdir": 88, "cdot": [13, 18, 28, 32, 33, 35, 36, 41, 46, 70, 87, 93, 96, 106, 110, 111, 113, 120, 124, 128, 130, 145, 147, 159, 196, 206, 208, 209, 214, 217, 224, 228, 231, 234, 237, 239, 242, 243, 259, 271, 272, 291, 292, 297], "cdot1": 297, "cdot2": 297, "ce": [18, 49, 53, 140], "cea": 11, "ceca": 241, "ceil": [89, 94, 128, 130, 152, 221], "ceiling_joint": 152, "ceilingfunct": 94, "cell": 68, "celler": 79, "center": [5, 7, 13, 22, 24, 28, 30, 35, 39, 67, 79, 87, 88, 98, 102, 104, 105, 115, 124, 149, 152, 155, 159, 164, 207, 216, 221, 229, 275, 299, 302, 309, 311], "center_": 79, "center_of_mass": [30, 155], "centimet": 198, "centr": [68, 85, 207], "central": [28, 58, 79, 85, 96, 98, 104, 149, 155, 216, 217, 234, 241], "central_inertia": [149, 155, 307], "centralizer_and_norm": 79, "centralmo": 241, "centric": 207, "centripet": 302, "centroid": [98, 104, 105, 136], "centuri": [89, 208], "cep849r": 93, "certain": [2, 5, 12, 14, 15, 27, 43, 57, 59, 66, 68, 69, 71, 79, 86, 88, 92, 96, 104, 113, 115, 128, 130, 158, 200, 201, 208, 211, 214, 216, 221, 222, 228, 231, 233, 234, 237, 239, 240, 241, 243, 254, 255, 260, 265, 268, 274, 297], "certainli": [39, 100, 130, 256], "cexpr": 241, "cf": [128, 214], "cff": [214, 217], "cfg": [12, 214, 217], "cfrac": 297, "cfunction": 43, "cfunction_format": 221, "cfunction_str": [69, 221], "cg": [170, 188, 195, 243], "cg_simp": 170, "cgate": 175, "cgi": 265, "cgs_gauss": 195, "cgt": 79, "cgtnote": 79, "ch": [90, 124, 234], "ch4": 22, "ch5": 22, "ch6": 22, "chain": [35, 41, 43, 69, 79, 84, 88, 96, 105, 129, 216, 241], "challeng": [18, 23, 151], "chan": 237, "chanc": [3, 12, 16, 42, 88, 116, 124, 231, 241, 292], "chang": [0, 4, 5, 7, 8, 9, 12, 14, 15, 16, 18, 22, 32, 33, 35, 36, 41, 59, 68, 69, 70, 79, 80, 84, 87, 88, 89, 92, 93, 94, 96, 102, 103, 113, 115, 118, 124, 128, 130, 131, 132, 136, 138, 140, 144, 148, 152, 155, 165, 176, 186, 196, 197, 206, 207, 208, 209, 210, 212, 214, 217, 218, 221, 228, 229, 230, 231, 233, 236, 237, 239, 240, 241, 242, 252, 259, 260, 270, 272, 286, 289, 292, 296, 299, 302, 309], "change_index": 87, "change_member_label": 140, "change_node_label": 140, "change_support": 138, "chao": 215, "chaotic": 55, "chapman": [70, 78], "chapter": [4, 22, 79, 96, 128, 215], "chapter1": 7, "chapter11": 241, "chapter3": 221, "chapter4": 221, "chapui": 128, "char": 77, "charact": [3, 4, 5, 11, 12, 14, 88, 89, 113, 116, 130, 171, 200, 205, 207, 221, 237, 252, 254, 257, 262, 289, 291, 296], "character": [33, 36, 136, 137, 228, 241, 247, 274, 303], "characteris": 241, "characterist": [0, 18, 35, 90, 106, 124, 132, 134, 210, 212, 214, 215, 237, 239, 293], "characteristiccurvecollect": [132, 134], "characteristiccurvefunct": 132, "charg": [33, 274], "charl": 79, "charles_marsh_continuous_entropi": 241, "charpoli": [124, 210, 293], "charpoly_bas": 210, "charpoly_berk": 210, "charpoly_factor_block": 210, "charpoly_factor_list": 210, "chart": [90, 207], "chat": [7, 59], "cheap": [43, 88, 128], "cheat": 124, "cheb": 237, "chebyshev": [5, 67, 88, 115, 214, 217], "chebyshev1_rul": 115, "chebyshev2_rul": 115, "chebyshev_polynomi": 96, "chebyshev_root": 96, "chebyshevpolynomialofthefirstkind": 96, "chebyshevpolynomialofthesecondkind": 96, "chebyshevt": [5, 96, 221], "chebyshevt_poli": [96, 217], "chebyshevt_root": 96, "chebyshevu": [96, 221], "chebyshevu_poli": [96, 217], "chebyshevu_root": 96, "check": [2, 3, 4, 5, 7, 8, 9, 11, 14, 15, 16, 22, 27, 30, 33, 37, 38, 39, 41, 42, 43, 51, 55, 57, 63, 64, 67, 68, 69, 71, 74, 77, 79, 80, 81, 86, 87, 88, 89, 93, 96, 100, 111, 113, 117, 118, 120, 123, 124, 125, 128, 144, 149, 150, 158, 159, 171, 179, 191, 193, 194, 199, 207, 208, 210, 211, 212, 214, 216, 217, 223, 229, 231, 233, 237, 238, 239, 240, 241, 245, 246, 250, 252, 254, 257, 259, 268, 272, 289, 297, 304], "check_and_join": 89, "check_dupl": 158, "check_output": 252, "check_rank": [125, 210], "check_sqf": 217, "check_symmetri": 124, "checker": 252, "checkinfsol": 237, "checkodesol": [12, 55, 237], "checkout": [9, 11, 68], "checkpdesol": 238, "checksol": 239, "chemic": [55, 131], "chemistri": 196, "chi": [16, 96, 113, 163, 221, 231, 237, 241, 247], "chi_distribut": 241, "chi_squared_distribut": 241, "chidistribut": 241, "child": [13, 15, 24, 134, 148, 152, 158, 200, 211, 256, 299], "child_axi": [13, 152, 299], "child_force_direction_vector": 299, "child_fram": [13, 24], "child_interfram": [13, 24, 152, 158, 307], "child_izz": 24, "child_joint_po": [13, 152], "child_mass": 24, "child_point": [13, 24, 152, 158, 304, 307], "child_tangency_point": 299, "children": [15, 88, 89, 211, 256], "chin": 115, "china": 124, "chines": [89, 128, 214], "chinoncentr": 241, "chisquar": 241, "choco": 8, "chocolatei": 8, "choic": [18, 27, 32, 35, 55, 69, 80, 93, 96, 113, 115, 129, 134, 187, 196, 200, 212, 214, 217, 221, 233, 237, 259, 291], "choleski": [119, 124], "cholesky_solv": [119, 124], "choos": [4, 8, 9, 11, 14, 18, 28, 35, 36, 52, 55, 79, 84, 88, 90, 93, 124, 128, 134, 137, 142, 191, 195, 200, 210, 217, 218, 221, 228, 230, 231, 237, 238, 241, 252, 257, 297, 299, 306], "choose_domain": 210, "chop": [88, 92, 96, 124, 239, 286], "chord": 98, "chose": [8, 89], "chosen": [31, 79, 80, 88, 89, 90, 101, 102, 124, 128, 136, 193, 195, 196, 207, 208, 210, 212, 214, 216, 221, 228, 231, 237, 241, 252, 265], "christoffel": 90, "christoph": [0, 265], "chrome": 8, "chromium": 8, "chula": 80, "ci": [2, 5, 9, 11, 12, 96, 113, 221, 296], "cia": 89, "cimento": [196, 206], "cimrman": 0, "cipher": 89, "ciphertext": 89, "circ": [68, 88, 99, 105, 113, 120], "circ_plot": 175, "circl": [4, 43, 88, 98, 99, 100, 102, 103, 104, 105, 113, 159, 164, 171, 207, 240, 265, 268, 275, 299], "circuit": [88, 175, 178, 282], "circuit_plot": 171, "circuitplot": 171, "circular": [13, 16, 41, 136, 142, 159, 163, 214, 299], "circumcent": 104, "circumcircl": 104, "circumfer": [88, 98, 159], "circumradiu": 104, "circumscrib": 104, "circumst": [216, 291], "citat": 4, "cite": [4, 44], "cites": 215, "citeseerx": [215, 230], "citi": 234, "cits7209": 93, "civil": [89, 136], "civita": [90, 96, 247], "cj": 61, "cl": [14, 16, 18, 41, 43, 55, 69, 79, 88, 115, 124, 134, 191, 204, 212, 216, 237, 246, 255, 259, 271, 287, 296, 298, 299], "claim": [36, 89, 231, 240], "clairaut": 237, "clang": [2, 130], "claredon": 124, "clarifi": 4, "clariti": [5, 13, 79, 204], "clarku": 241, "clash": [15, 60, 88, 124], "class": [3, 5, 7, 11, 12, 14, 15, 16, 18, 22, 23, 24, 28, 30, 31, 40, 41, 42, 43, 46, 48, 52, 53, 57, 58, 61, 62, 63, 64, 65, 70, 71, 72, 77, 78, 79, 80, 81, 82, 83, 84, 88, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 110, 111, 113, 115, 116, 117, 118, 119, 120, 123, 131, 132, 133, 134, 136, 138, 140, 141, 142, 144, 148, 151, 152, 153, 154, 155, 156, 158, 159, 160, 162, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 193, 196, 197, 198, 199, 203, 204, 205, 208, 210, 211, 212, 214, 217, 218, 219, 220, 222, 223, 224, 227, 228, 229, 231, 233, 237, 238, 239, 240, 241, 243, 246, 247, 248, 252, 253, 254, 255, 256, 257, 259, 260, 263, 266, 269, 270, 272, 273, 275, 276, 280, 282, 287, 289, 292, 297, 299, 306], "class_kei": 88, "class_nam": 88, "classic": [17, 20, 36, 47, 55, 67, 94, 96, 124, 177, 193, 200, 208], "classif": [15, 17, 40, 88, 237, 238], "classifi": [38, 124, 211, 237, 238, 240, 241], "classify_diop": 234, "classify_od": [55, 237], "classify_pd": 238, "classify_sysod": 237, "classmethod": [14, 41, 43, 61, 63, 64, 69, 72, 77, 79, 80, 82, 83, 88, 94, 95, 96, 103, 124, 131, 132, 134, 144, 148, 155, 158, 177, 188, 189, 191, 210, 212, 216, 217, 221, 229, 247, 252], "classnam": 4, "claus": [41, 118], "clean": [3, 252], "cleaner": [12, 21, 30, 237], "cleanest": 270, "cleanup": 217, "clear": [4, 7, 11, 12, 13, 35, 36, 41, 63, 78, 88, 113, 117, 149, 207, 210, 212, 214, 217, 231, 239, 240, 247, 252, 256, 274, 289, 305], "clear_cach": 217, "clear_denom": [210, 212, 217], "clear_denoms_rowwis": 210, "clear_glob": 252, "clear_load": 149, "clearer": [12, 13, 134, 269], "clearli": [3, 4, 36, 43, 93, 128, 211, 231, 293], "clebsch": [178, 188, 206, 282], "clebsch_gordan": 206, "clebsh": 170, "clemson": 241, "cleve": 124, "click": [7, 8, 9, 11], "clickabl": 4, "client": [88, 256], "clipboard": 12, "clo": 212, "clock": [94, 230], "clockwis": [100, 115, 124, 136, 137, 138, 140], "clone": [9, 59, 214], "close": [4, 11, 14, 15, 46, 54, 69, 87, 88, 92, 93, 96, 104, 106, 113, 115, 117, 132, 144, 207, 208, 209, 215, 216, 229, 239, 240, 254, 287, 297, 304], "closed": 229, "closer": [12, 54, 148, 156, 240, 292, 302], "closest": [54, 88, 101], "closing_angl": 101, "closur": [79, 85, 111, 171, 212, 216, 229], "closurefailur": 216, "cloudi": 241, "cloudpickl": 2, "clunki": 60, "clutter": 4, "cm": [30, 68, 241, 299], "cmod": 187, "cmoment": 241, "cmplx": [69, 221], "cn": [80, 221, 296], "cname": 254, "cnf": 118, "cnot": 175, "cnotgat": 175, "co": [4, 9, 12, 13, 14, 16, 18, 22, 27, 30, 33, 35, 36, 43, 46, 49, 50, 52, 54, 55, 56, 57, 61, 67, 69, 87, 88, 90, 92, 93, 94, 96, 97, 98, 101, 102, 104, 106, 110, 111, 112, 113, 115, 124, 128, 130, 149, 150, 152, 156, 158, 159, 163, 165, 200, 202, 204, 206, 207, 211, 214, 217, 218, 220, 221, 222, 223, 224, 228, 229, 230, 231, 233, 237, 239, 240, 241, 242, 248, 260, 265, 267, 268, 269, 270, 275, 286, 287, 289, 291, 297, 298, 299, 302, 303, 304, 307, 309, 310, 311], "coalesc": 256, "coc": 164, "code": [4, 8, 10, 15, 18, 22, 23, 24, 30, 31, 32, 35, 39, 41, 42, 43, 51, 54, 55, 56, 57, 59, 60, 70, 75, 79, 82, 83, 88, 89, 90, 96, 100, 113, 115, 116, 124, 128, 129, 130, 131, 134, 149, 151, 152, 185, 191, 205, 206, 207, 208, 209, 210, 211, 214, 220, 231, 233, 237, 239, 240, 241, 243, 246, 249, 250, 252, 253, 254, 257, 258, 259, 260, 269, 277, 284, 289, 291, 294, 296, 302, 305, 310], "code_gen": [253, 254], "code_qu": 11, "code_text": 221, "codebas": [3, 12, 13, 41, 211, 250], "codeblock": [69, 130], "codegen": [2, 43, 129, 221, 253, 258, 284], "codegenast": 69, "codegenerror": 254, "codeprint": 69, "codewrapp": 253, "codifi": 3, "codirect": 200, "codomain": [68, 208, 216], "coef": [22, 30], "coeff": [30, 43, 88, 90, 118, 212, 214, 216, 217, 227, 233, 237, 239, 247, 297], "coeff_bel": 223, "coeff_monomi": [88, 217], "coeff_mul": 227, "coeff_search": 216, "coeff_wrt": 212, "coeffici": [4, 13, 14, 18, 22, 37, 39, 41, 48, 51, 53, 64, 67, 69, 87, 88, 90, 92, 93, 96, 101, 106, 107, 110, 111, 113, 117, 118, 120, 124, 125, 128, 131, 134, 144, 145, 148, 153, 164, 178, 188, 196, 206, 208, 209, 210, 211, 212, 213, 216, 217, 218, 219, 220, 223, 224, 227, 228, 231, 233, 234, 236, 237, 238, 239, 240, 241, 247, 253, 269, 272, 282, 292, 297, 299, 303], "coerc": [27, 88, 214], "coercibl": 212, "coercionfail": [211, 214], "cofactor": [88, 124, 210, 212, 214, 217], "cofactor_matrix": 124, "cogniz": 3, "cohen": [71, 125, 210, 214, 215, 216], "cohen00": 216, "cohen93": [215, 216], "coher": [167, 193, 199], "coherent_st": 167, "coin": [229, 241], "coin_flip": 241, "coincid": [11, 22, 104, 124, 127, 152, 208, 265, 270, 289], "coincis": 208, "coker": 208, "cokernel": 208, "col": [30, 120, 124, 127, 144, 210, 216, 293], "col1": 124, "col2": 124, "col_del": [124, 293], "col_insert": [124, 293], "col_join": [124, 299, 302], "col_matrix": 30, "colin": 80, "collabor": 9, "collaps": [88, 185, 233], "collect": [2, 5, 18, 30, 40, 45, 68, 69, 79, 88, 105, 115, 128, 136, 144, 158, 191, 198, 206, 212, 214, 217, 230, 231, 233, 237, 241, 252, 259, 299, 310], "collect_const": 233, "collect_sqrt": 233, "collected_expr": 297, "collected_word": 78, "collid": [60, 247], "collin": [214, 215], "collinear": [98, 100, 102, 103, 104], "collins67": [214, 215], "collis": [14, 88, 127, 221], "colloc": [18, 131, 132, 134, 299], "colloqui": [15, 49], "colmatrix": 30, "colon": [4, 88], "color": [5, 9, 14, 116, 142, 205, 221, 252, 259, 296], "colost": 79, "colour": 5, "colsep": 124, "colslic": 210, "colslist": [124, 210], "columbia": 241, "column": [18, 32, 53, 61, 65, 68, 69, 70, 116, 118, 120, 124, 125, 127, 131, 134, 144, 153, 158, 186, 193, 200, 205, 206, 210, 216, 221, 237, 239, 240, 246, 265, 302], "columnspac": [124, 210], "com": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 43, 46, 59, 61, 65, 67, 79, 81, 82, 88, 89, 91, 92, 93, 94, 96, 98, 104, 105, 113, 115, 124, 128, 142, 206, 215, 224, 226, 229, 230, 233, 234, 237, 240, 241, 259, 262, 293], "comb_explicit_rh": [31, 158], "comb_implicit_mat": [31, 158], "comb_implicit_rh": [31, 158], "combin": [4, 11, 13, 14, 16, 18, 23, 31, 43, 48, 56, 68, 88, 92, 93, 96, 115, 117, 118, 124, 128, 137, 144, 151, 152, 153, 158, 170, 177, 185, 186, 188, 189, 190, 194, 195, 196, 197, 208, 209, 211, 212, 214, 216, 217, 221, 222, 230, 231, 233, 234, 237, 239, 241, 242, 256, 259, 286, 289, 292], "combinator": [70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 93, 120, 128, 216, 223, 242, 247, 256, 259, 277, 291, 297], "combinatori": [12, 13, 43, 72, 80, 87, 88, 89, 95, 96, 128, 217, 223, 233, 259, 277, 297], "combintor": 13, "combo": 118, "combsimp": [87, 88, 93, 233], "come": [3, 11, 12, 14, 21, 22, 25, 36, 53, 59, 79, 84, 86, 87, 88, 94, 96, 113, 115, 124, 129, 194, 208, 211, 214, 216, 217, 231, 234, 237, 240, 250, 252, 257, 260, 289, 291, 292, 295, 297, 302], "comfort": [128, 129], "comm": [172, 191, 247], "comm_i2symbol": 247, "comm_symbols2i": 247, "comma": [4, 5, 12, 16, 69, 88, 221, 260, 289], "command": [2, 4, 8, 9, 11, 12, 15, 16, 22, 25, 30, 48, 51, 57, 59, 69, 92, 116, 205, 207, 221, 252, 253, 296], "commaoper": 69, "comment": [4, 5, 11, 12, 22, 69, 79, 218, 221, 254, 259, 302], "commerci": [0, 291], "commit": [9, 12], "common": [5, 9, 11, 12, 13, 14, 15, 16, 18, 23, 28, 30, 34, 35, 36, 41, 42, 43, 49, 50, 51, 52, 55, 67, 69, 79, 80, 88, 89, 94, 99, 102, 105, 115, 124, 128, 129, 130, 142, 144, 149, 151, 152, 154, 158, 163, 196, 200, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 219, 223, 229, 230, 231, 233, 234, 237, 239, 240, 241, 253, 254, 257, 259, 260, 272, 274, 286, 288, 289, 291, 292, 293, 294, 295, 296, 297, 298, 304], "common_prefix": 259, "common_suffix": 259, "commonli": [5, 15, 18, 21, 35, 80, 93, 96, 115, 124, 130, 209, 237, 272], "commun": [3, 5, 7, 11, 59, 206, 237, 239, 241, 293], "communication_class": 241, "commut": [15, 36, 41, 61, 65, 68, 79, 80, 84, 88, 90, 111, 115, 124, 168, 175, 178, 179, 180, 190, 191, 196, 202, 209, 210, 212, 213, 214, 215, 217, 221, 228, 229, 231, 237, 247, 282, 283, 292], "commutative_diagram": 68, "commutative_part": 88, "commutative_properti": [41, 88], "commutativehandl": 65, "commutativepred": 65, "commutes_with": [80, 247], "comp": [70, 128, 237], "compa": 248, "compact": [30, 82, 88, 141, 153, 189, 205, 217, 221, 239, 256], "compactif": 88, "companion": [120, 124], "companionmatrix": 120, "compar": [11, 12, 13, 16, 41, 57, 67, 69, 80, 85, 88, 93, 94, 105, 118, 124, 128, 129, 170, 194, 198, 211, 214, 217, 218, 221, 226, 228, 233, 237, 240, 242, 246, 252, 259, 289, 292, 297, 302], "comparison": [22, 69, 87, 88, 118, 124, 208, 216, 220, 239, 252, 259], "compat": [2, 3, 8, 21, 38, 69, 88, 96, 116, 124, 128, 129, 158, 193, 198, 205, 207, 210, 212, 216, 217, 221, 241, 245, 248, 252, 254, 260], "compatibli": 2, "compb": 248, "compil": [2, 21, 30, 69, 116, 129, 205, 221, 233, 246, 252, 253, 254, 276, 291], "compileflag": [16, 252], "complement": [118, 120, 217, 229, 240], "complementari": [4, 96, 144], "complementset": 229, "complet": [2, 3, 4, 9, 11, 12, 13, 14, 15, 16, 18, 21, 23, 30, 36, 41, 52, 55, 64, 69, 88, 89, 90, 92, 94, 95, 96, 104, 113, 115, 124, 128, 130, 151, 153, 154, 177, 180, 181, 210, 214, 216, 217, 218, 222, 228, 233, 234, 237, 240, 241, 252, 254, 262, 291, 292, 297, 299, 306], "complex": [4, 7, 12, 13, 14, 15, 16, 18, 21, 22, 30, 32, 36, 38, 41, 43, 51, 52, 53, 57, 61, 65, 66, 67, 69, 79, 88, 89, 91, 92, 93, 96, 100, 110, 113, 119, 124, 128, 129, 130, 131, 142, 144, 153, 156, 158, 160, 164, 174, 177, 179, 180, 191, 200, 209, 210, 212, 216, 217, 221, 222, 226, 229, 231, 233, 237, 239, 240, 241, 254, 262, 297, 298], "complex128": 69, "complex64": 69, "complex_": 69, "complex_allow": 254, "complex_beam_paramet": 160, "complex_conjug": 94, "complex_el": 65, "complex_numb": [41, 65, 88], "complexbasetyp": 69, "complexel": 212, "complexelementshandl": 65, "complexelementspred": 65, "complexfield": 212, "complexhandl": 65, "complexinfin": [88, 144], "complexpred": 65, "complexregion": [229, 240], "complexrootof": [48, 88, 124, 212, 217, 237], "complexspac": 177, "complextyp": 69, "compliant": 69, "complic": [4, 12, 14, 16, 18, 23, 25, 36, 37, 41, 43, 48, 54, 61, 69, 79, 87, 89, 90, 92, 93, 94, 96, 113, 115, 120, 130, 151, 191, 210, 211, 214, 218, 220, 231, 233, 240, 241, 245, 246, 254, 256, 260, 262, 287, 289, 292, 293], "compon": [18, 19, 23, 24, 28, 32, 33, 34, 35, 36, 48, 68, 69, 84, 88, 90, 103, 115, 120, 124, 132, 133, 134, 144, 145, 151, 152, 155, 158, 163, 188, 193, 200, 203, 206, 207, 208, 209, 210, 217, 219, 241, 243, 246, 247, 256, 259, 265, 268, 271, 272, 299], "component_": 259, "componentwis": [208, 221], "compos": [27, 35, 68, 88, 89, 193, 196, 208, 212, 216, 217, 218, 221, 223, 233, 306], "composit": [41, 65, 68, 77, 79, 80, 88, 89, 106, 108, 115, 128, 136, 212, 214, 217, 220, 233, 240, 255], "composite_numb": [41, 88], "compositedomain": 212, "compositehandl": 65, "compositemorph": 68, "compositepi": 128, "compositepred": 65, "composition_seri": 79, "compound": [88, 189, 307], "compound_pend": 307, "compound_probability_distribut": 241, "compound_rv": 241, "compounddistribut": 241, "comprehens": [13, 41, 46, 52, 53, 55, 215, 229, 241, 286, 300], "compress": [18, 79, 124, 127, 140], "compris": [28, 31, 79, 89, 120, 144, 155, 217, 259], "compulsori": 144, "comput": [0, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 21, 22, 23, 30, 32, 33, 35, 39, 41, 42, 43, 46, 48, 49, 52, 53, 54, 59, 61, 67, 69, 70, 71, 72, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 101, 103, 107, 110, 111, 112, 114, 115, 117, 120, 124, 125, 127, 128, 130, 136, 137, 142, 144, 151, 152, 153, 154, 158, 175, 176, 177, 185, 190, 191, 193, 195, 196, 200, 201, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 223, 224, 226, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 243, 253, 256, 259, 260, 265, 267, 268, 269, 270, 271, 272, 274, 277, 286, 287, 289, 290, 293, 297, 299, 302, 304, 309], "computation": [14, 53, 84, 94, 152, 153, 154], "computationfail": 214, "compute_explicit_form": 158, "compute_fp": 223, "compute_leading_term": 88, "compute_m_ybar": 237, "comtet": 223, "comupt": 237, "concaten": [89, 124, 148, 156, 259], "concav": [67, 160], "concave_funct": 67, "concentr": [18, 55, 137, 241], "concept": [13, 15, 36, 41, 79, 211, 213, 216, 221, 240, 245, 274, 290, 295, 302, 305], "conceptu": [196, 208, 274], "concern": [4, 12, 14, 15, 33, 41, 67, 70, 87, 92, 128, 207, 209, 210, 211, 220, 221, 222, 233, 234, 239, 253, 254, 256, 262], "concis": [4, 30], "conclud": [33, 41, 96, 111, 228, 239, 274, 302], "conclus": [68, 88, 300], "concret": [11, 18, 22, 41, 68, 80, 88, 93, 94, 115, 117, 124, 128, 131, 134, 148, 196, 212, 216, 221, 277], "concur": 218, "concurr": [101, 102, 218], "concycl": 103, "cond": [94, 113, 115, 229], "conda": [2, 8, 9, 59, 130], "condens": [124, 240], "condit": [12, 14, 15, 18, 23, 27, 30, 41, 42, 46, 48, 50, 69, 79, 88, 90, 94, 96, 106, 107, 110, 111, 112, 115, 118, 124, 128, 130, 136, 137, 140, 144, 150, 151, 154, 160, 204, 206, 218, 221, 224, 231, 234, 236, 237, 239, 240, 241, 246, 297, 302], "condition_numb": 124, "condition_set": 241, "conditionaldomain": 241, "conditionset": [229, 240, 241, 298], "conduct": [5, 18, 132], "cone": 275, "confederaci": 89, "confer": [93, 129, 295], "confid": 291, "config": [9, 116], "configur": [2, 3, 11, 12, 13, 18, 23, 25, 27, 46, 80, 118, 144, 149, 151, 153, 221, 299, 304, 306, 309, 311], "configura": 30, "configuration_constraint": [25, 153, 299, 302, 306], "confirm": [3, 12, 13, 79, 128, 237], "conflict": [13, 22, 94, 128, 144, 254], "confluent": [96, 231], "conform": [18, 88, 240, 245, 246, 259], "confus": [3, 5, 12, 13, 14, 15, 36, 41, 51, 88, 93, 118, 164, 209, 217, 240, 286, 287, 289], "confusingli": 96, "cong": 214, "congratul": 294, "congruenc": [79, 88, 128, 231, 234], "congruent": [214, 231, 234], "conic": [98, 234, 265], "conicis": 208, "conj": 221, "conjectur": [128, 214], "conjg": 221, "conjug": [4, 48, 65, 77, 78, 79, 88, 94, 96, 124, 130, 146, 160, 174, 177, 191, 214, 217, 221, 237, 247], "conjugaci": [70, 71, 79], "conjugacy_class": 79, "conjugate_convent": 124, "conjugate_gauss_beam": 160, "conjunct": [94, 118, 128, 207, 231, 252, 297], "conlist_coord": 302, "conlist_spe": 302, "connect": [9, 18, 24, 41, 82, 89, 90, 103, 104, 124, 129, 136, 140, 144, 149, 152, 158, 159, 208, 209, 210, 219, 237, 241, 259, 265, 302, 307], "connect_to": 13, "connected_compon": [124, 259], "connected_components_decomposit": 124, "connector": 137, "consec": 79, "consec_succ": 79, "consecut": [5, 69, 79, 84, 87, 88, 89, 93, 104, 156, 233, 239], "consequ": [12, 13, 43, 65, 88, 134, 209, 211, 289, 297], "consequenti": 133, "conserv": [26, 88, 153, 201, 268, 274, 303], "conservative_field": [33, 272], "conserve_mpmath_dp": 255, "consid": [0, 3, 5, 12, 13, 14, 15, 16, 18, 21, 25, 31, 33, 35, 38, 41, 42, 43, 46, 57, 61, 65, 68, 69, 77, 80, 83, 87, 88, 89, 91, 92, 93, 94, 96, 98, 100, 104, 112, 113, 115, 116, 117, 118, 120, 124, 128, 144, 148, 149, 155, 181, 188, 191, 195, 196, 201, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 224, 228, 233, 234, 237, 238, 239, 240, 241, 252, 254, 259, 268, 270, 272, 274, 275, 289, 293, 297], "consider": [3, 12, 21, 42, 88, 129, 211, 220, 229, 234, 237, 269], "consist": [4, 5, 13, 15, 18, 24, 28, 39, 41, 50, 52, 56, 68, 79, 80, 84, 88, 89, 93, 94, 96, 98, 104, 106, 113, 118, 128, 130, 131, 136, 140, 152, 155, 165, 185, 191, 196, 199, 204, 207, 209, 210, 211, 212, 214, 229, 237, 239, 240, 241, 245, 250, 253, 254, 259, 290, 292, 303, 304], "consol": [2, 3, 16, 88, 116, 205, 207, 296], "const": [212, 221], "constanc": 88, "constant": [12, 13, 14, 15, 18, 22, 30, 31, 33, 46, 48, 50, 51, 53, 56, 67, 69, 87, 88, 92, 94, 96, 112, 113, 115, 131, 132, 134, 136, 137, 144, 148, 158, 159, 168, 172, 178, 194, 195, 197, 198, 199, 201, 204, 207, 209, 212, 214, 216, 217, 218, 221, 223, 228, 231, 233, 234, 237, 238, 239, 240, 241, 252, 254, 259, 260, 268, 272, 275, 282, 287, 293, 298, 299, 302], "constant_problem": 293, "constant_renumb": 237, "constant_symbol": 158, "constantli": 228, "constantrul": 115, "constantsimp": 237, "constanttimesrul": 115, "constitu": [98, 104, 155, 200, 227, 265], "constitut": [3, 5, 15, 115, 128, 221], "constr": 239, "constrain": [26, 30, 153, 154, 239, 299, 304, 306], "constraint": [22, 23, 25, 26, 27, 30, 39, 50, 124, 137, 144, 149, 151, 153, 154, 158, 218, 239, 299, 302, 304, 305, 306, 308], "constraint_solv": 153, "construct": [13, 14, 18, 21, 22, 39, 46, 50, 61, 63, 64, 67, 68, 69, 71, 88, 90, 94, 96, 98, 102, 104, 116, 120, 124, 129, 132, 134, 137, 144, 148, 149, 153, 155, 156, 158, 176, 180, 189, 190, 193, 197, 208, 210, 211, 212, 214, 216, 217, 221, 234, 239, 241, 242, 246, 254, 256, 257, 269, 271, 272, 289, 292, 293, 297, 299, 300, 302], "construct_c": 237, "construct_d": 237, "construct_domain": [210, 211, 212, 217], "constructor": [13, 14, 15, 18, 43, 63, 64, 68, 69, 75, 79, 80, 81, 88, 95, 96, 117, 121, 124, 130, 131, 132, 134, 148, 156, 184, 185, 189, 193, 207, 208, 210, 211, 212, 221, 229, 237, 246, 254, 269, 277, 288, 292, 306], "construtor": 148, "constuct": 18, "consult": 70, "consum": [4, 27, 69, 96, 154], "contact": [35, 104, 245, 302, 308, 309, 310, 311], "contain": [2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 27, 28, 30, 31, 36, 37, 41, 42, 43, 50, 51, 52, 53, 55, 56, 57, 60, 62, 63, 67, 68, 69, 70, 71, 79, 80, 84, 86, 87, 90, 91, 92, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 114, 115, 117, 118, 120, 123, 124, 127, 128, 129, 130, 132, 134, 136, 138, 139, 140, 142, 143, 144, 145, 148, 149, 153, 154, 155, 158, 160, 161, 162, 164, 165, 166, 178, 181, 183, 186, 188, 191, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 221, 222, 223, 228, 229, 231, 233, 234, 235, 237, 238, 239, 240, 241, 245, 246, 247, 249, 250, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 265, 268, 276, 287, 289, 293, 297, 299, 302, 306], "contbound": 214, "content": [3, 6, 14, 17, 20, 69, 88, 89, 122, 209, 210, 212, 214, 217, 220, 221, 240, 249, 254, 257, 258, 277, 278, 279, 280, 281, 282, 283, 284, 288, 290, 301], "context": [3, 4, 5, 11, 12, 13, 14, 22, 37, 41, 43, 54, 62, 63, 64, 88, 90, 96, 118, 148, 149, 196, 211, 212, 214, 216, 229, 250, 252, 257, 265], "contigu": [88, 231, 254], "continu": [3, 4, 5, 12, 13, 39, 42, 43, 46, 67, 69, 78, 80, 82, 88, 93, 94, 96, 113, 116, 124, 128, 141, 142, 144, 186, 189, 205, 212, 214, 217, 234, 236, 237, 245, 288], "continue_": 69, "continued_fract": 128, "continued_fraction_converg": 128, "continued_fraction_iter": 128, "continued_fraction_period": 128, "continued_fraction_reduc": 128, "continuetoken": 69, "continuous_domain": [67, 236], "continuousdistributionhandmad": 241, "continuousdomain": 241, "continuousmarkovchain": 241, "continuouspspac": 241, "continuousrv": 241, "continuum": [47, 59, 282, 301], "continuum_mechan": [135, 136, 137, 138, 140], "contour": [96, 98, 113, 207, 231], "contourf": 207, "contract": [18, 69, 90, 131, 132, 134, 145, 191, 221, 230, 243, 245, 246, 247, 248, 299], "contract_al": 247, "contract_metr": 247, "contractil": [18, 134, 148], "contraction_ax": 242, "contraction_indic": 243, "contradict": [41, 221], "contrarili": 48, "contrast": [12, 14, 15, 43, 87, 88, 211, 217, 231, 237, 291, 306], "contravari": [84, 124, 247, 248], "contribut": [0, 2, 3, 4, 5, 9, 10, 12, 59, 104, 128, 153, 211, 214, 216, 237, 275, 294, 307, 310], "contributor": [2, 5, 6, 7, 8, 11, 13, 43], "control": [2, 7, 9, 13, 14, 16, 18, 27, 30, 37, 41, 43, 47, 68, 70, 88, 89, 92, 113, 118, 124, 131, 132, 134, 148, 171, 175, 186, 187, 191, 210, 217, 218, 222, 229, 234, 240, 259, 282, 286, 299], "control_lin": 171, "control_plot": 142, "control_point": 171, "control_valu": 175, "controller_mat": 144, "conv": 91, "convei": [11, 48], "conveni": [0, 8, 13, 14, 15, 16, 22, 28, 30, 35, 36, 50, 52, 57, 60, 67, 69, 80, 88, 89, 93, 96, 115, 118, 130, 202, 207, 208, 209, 210, 211, 212, 216, 219, 228, 229, 233, 239, 245, 246, 253, 255, 256, 260, 272, 287, 289], "convent": [3, 4, 5, 18, 30, 33, 43, 55, 79, 80, 84, 87, 88, 89, 93, 94, 96, 98, 103, 113, 115, 118, 130, 136, 137, 140, 144, 147, 148, 156, 160, 164, 185, 186, 188, 193, 194, 207, 221, 237, 238, 240, 241, 247, 274, 289, 297, 302], "converg": [13, 14, 69, 87, 92, 96, 115, 128, 160, 217, 224, 228, 231, 287], "convergence_stat": 96, "convergence_test": 87, "convers": [4, 5, 13, 14, 27, 41, 51, 69, 88, 108, 130, 195, 209, 210, 211, 212, 214, 216, 218, 221, 234, 246, 253, 265], "convert": [2, 3, 8, 13, 14, 15, 16, 28, 32, 37, 41, 42, 43, 46, 51, 53, 54, 55, 61, 65, 69, 72, 80, 84, 88, 89, 92, 93, 94, 101, 102, 103, 105, 108, 109, 112, 116, 118, 124, 127, 128, 130, 144, 148, 155, 185, 188, 194, 195, 196, 198, 204, 207, 208, 210, 212, 214, 216, 217, 218, 219, 221, 222, 223, 229, 230, 231, 233, 234, 237, 238, 240, 241, 242, 243, 246, 252, 253, 259, 260, 262, 263, 268, 283, 288, 289, 292, 297], "convert_array_to_matrix": 243, "convert_equals_sign": 130, "convert_from": [211, 212], "convert_indexed_to_arrai": 243, "convert_matrix_to_arrai": 243, "convert_to": [194, 195, 198, 210, 216], "convert_to_c": 130, "convert_to_expr": 130, "convert_to_fortran": 130, "convert_to_native_path": 252, "convert_to_python": 130, "convert_xor": [88, 130], "convex": [67, 104, 105, 115], "convex_funct": 67, "convex_hul": [4, 100, 104, 105], "convolut": [12, 13, 96, 223], "convolution2d": 69, "convolution_fft": 91, "convolution_fwht": 91, "convolution_ntt": 91, "convolution_subset": 91, "convolution_theorem": 91, "conwai": 74, "coolei": 91, "cooper": 88, "coord": [21, 90, 103, 105, 189, 204], "coord_con": 25, "coord_funct": 90, "coord_idx": [31, 158], "coord_index": 90, "coord_si": [90, 268], "coord_stat": 158, "coord_system": 13, "coord_tuple_transform_to": [13, 90], "coordin": [18, 22, 24, 25, 26, 29, 31, 32, 33, 36, 61, 69, 89, 90, 94, 96, 97, 99, 103, 105, 120, 124, 136, 138, 140, 142, 146, 148, 149, 152, 153, 154, 156, 158, 159, 167, 169, 188, 189, 192, 200, 201, 202, 204, 208, 216, 217, 229, 237, 265, 267, 268, 271, 273, 275, 280, 299, 301, 302, 303, 304, 305, 307, 309], "coordinate_deriv": [31, 158], "coordinate_system": 90, "coordinatesym": [200, 202], "coordinatesymbol": 90, "coordsyrect": 265, "coordsys3d": [265, 267, 268, 269, 271, 272, 275], "coordsysrect": 265, "coordsystem": [13, 90], "copi": [0, 9, 11, 12, 13, 16, 41, 45, 70, 80, 81, 88, 104, 124, 128, 129, 210, 212, 214, 216, 220, 221, 228, 239, 252, 259, 262, 296], "coplanar": [36, 61, 102], "coprim": [89, 115, 128, 187, 214, 234], "core": [2, 3, 4, 7, 11, 12, 14, 15, 16, 38, 41, 42, 43, 50, 65, 67, 69, 79, 89, 94, 95, 97, 105, 123, 124, 128, 130, 189, 190, 209, 210, 211, 212, 213, 214, 216, 217, 218, 221, 228, 229, 233, 234, 237, 241, 251, 252, 253, 259, 260, 263, 276, 277, 289, 292], "core_2": 128, "core_t": 128, "corioli": 302, "cornacchia": 234, "corner": [11, 12, 79, 81, 124, 217, 237, 240, 260], "correct": [3, 4, 5, 11, 12, 13, 14, 16, 18, 22, 27, 35, 36, 42, 43, 51, 53, 55, 69, 77, 79, 85, 87, 88, 92, 94, 112, 113, 115, 124, 128, 144, 148, 156, 214, 217, 228, 234, 237, 239, 240, 245, 253, 259, 289, 296, 299], "correctli": [2, 3, 4, 5, 8, 11, 12, 13, 14, 22, 27, 42, 43, 67, 92, 113, 116, 124, 130, 133, 148, 156, 221, 228, 234, 237, 302], "correl": 241, "correspond": [3, 4, 5, 7, 11, 12, 13, 18, 22, 31, 33, 39, 41, 42, 43, 46, 51, 55, 67, 68, 69, 70, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 111, 113, 115, 117, 118, 124, 127, 128, 132, 134, 136, 137, 144, 150, 152, 153, 154, 155, 158, 163, 167, 181, 185, 186, 188, 192, 193, 196, 200, 204, 206, 207, 209, 210, 211, 212, 214, 216, 217, 221, 227, 228, 231, 233, 234, 237, 238, 239, 240, 241, 243, 245, 246, 247, 254, 255, 256, 257, 259, 260, 262, 265, 267, 269, 270, 272, 274, 292, 298, 302, 306], "correspondingli": 68, "cosec": 94, "coset": [79, 84, 216], "coset_enumer": 70, "coset_enumeration_c": 70, "coset_enumeration_r": 70, "coset_factor": 79, "coset_rank": 79, "coset_t": [70, 79], "coset_table_bas": 70, "coset_table_max_limit": 70, "coset_transvers": 79, "coset_unrank": 79, "cosh": [43, 88, 94, 96, 107, 113, 130, 132, 218, 221, 222, 231, 233, 239, 293, 297], "coshint": 221, "coshintegr": 221, "cosin": [18, 36, 43, 88, 94, 96, 103, 115, 149, 152, 200, 217, 218, 224, 230, 241, 265, 297], "cosine_transform": 115, "cosinetransform": 115, "cosint": 221, "cosintegr": 221, "coskew": 241, "cosmet": [12, 221], "cost": [12, 67, 69, 128, 210, 240, 291, 306], "cost_funct": 69, "costli": [113, 210, 217, 293, 306], "cot": [12, 88, 94, 96, 130, 218, 221, 230], "cotang": [94, 218], "coth": [94, 221, 233], "could": [12, 13, 14, 15, 16, 18, 22, 23, 27, 39, 41, 43, 52, 54, 56, 64, 69, 81, 88, 100, 113, 115, 118, 151, 152, 155, 191, 194, 196, 208, 211, 214, 216, 218, 221, 229, 231, 233, 237, 238, 239, 240, 241, 242, 245, 246, 253, 257, 270, 271, 289, 292, 297], "could_extract_minus_sign": 88, "couldn": 115, "count": [3, 5, 15, 74, 80, 87, 88, 89, 93, 98, 118, 124, 127, 128, 186, 217, 229, 230, 233, 240, 241, 247, 256, 259], "count_complex_root": 212, "count_digit": [88, 128], "count_op": [12, 16, 88, 230, 233], "count_partit": 256, "count_real_root": 212, "count_root": 217, "countabl": [196, 240], "counter": [69, 88, 94, 100, 124, 137, 138, 140], "counterclockwis": [97, 98, 99, 103, 124, 136, 137], "counterexampl": [128, 297], "counterpart": [88, 89, 237, 287], "coupl": [18, 27, 55, 88, 124, 130, 158, 170, 185, 188, 206], "coupledspinst": 188, "cours": [12, 28, 33, 39, 41, 45, 71, 72, 79, 87, 96, 113, 115, 124, 125, 128, 210, 211, 215, 216, 228, 230, 231, 272, 297], "cov": 239, "covarderivativeop": 90, "covari": [84, 90, 124, 241, 247, 248], "cover": [12, 19, 20, 21, 22, 32, 35, 39, 94, 128, 130, 247, 254, 287, 289, 300, 301], "coverag": 4, "coverage_doctest": 4, "coverage_report": 12, "covering_product": 91, "covhtml": 12, "cox": [70, 215, 217], "cox97": [215, 217], "coxet": 117, "coxeter_diagram": 117, "cp": [0, 80, 129, 209, 210], "cphase": 175, "cpp_dec_float_50": 69, "cpp_src": 115, "cpu": [11, 30, 69, 129], "cpython": [12, 30], "crack": 128, "cramer": [124, 153, 210, 237], "cramer_solv": [119, 124], "crandal": 128, "crazi": 289, "crc": [70, 78, 80], "creat": [0, 2, 4, 5, 7, 8, 12, 14, 15, 18, 22, 24, 26, 27, 28, 30, 31, 32, 35, 36, 41, 42, 50, 51, 52, 53, 55, 56, 57, 61, 63, 68, 69, 70, 77, 79, 80, 88, 89, 90, 92, 94, 95, 96, 98, 100, 101, 103, 104, 109, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 126, 128, 129, 130, 131, 132, 134, 136, 140, 144, 148, 149, 152, 153, 155, 156, 158, 159, 168, 170, 172, 176, 179, 180, 181, 185, 186, 188, 189, 191, 194, 197, 200, 202, 204, 207, 208, 210, 211, 212, 214, 216, 217, 218, 221, 228, 233, 237, 240, 241, 242, 246, 247, 252, 253, 254, 256, 257, 259, 260, 265, 270, 272, 287, 289, 292, 293, 296, 297, 298, 299, 304, 306, 307, 309, 311], "create_expand_pow_optim": 69, "create_new": [265, 270], "createboson": 191, "createcg": 171, "createfermion": 191, "creation": [13, 16, 18, 23, 24, 25, 26, 27, 35, 36, 43, 88, 90, 124, 133, 149, 151, 155, 165, 175, 179, 180, 181, 191, 221, 241, 246, 254, 260, 309], "creator": 191, "credit": 259, "crell": 216, "cremona": 234, "criteria": [41, 88, 292], "criterion": [29, 69, 79, 209, 214], "critic": [35, 52, 67, 134, 164, 216, 240], "critical_angl": 164, "critical_point": 52, "critiqu": 220, "crmarsh": 241, "crootof": [57, 88, 217, 237, 239], "cross": [3, 5, 11, 12, 15, 30, 32, 35, 36, 88, 98, 104, 124, 136, 137, 149, 152, 155, 159, 171, 200, 202, 234, 240, 265, 269, 271, 272, 299, 310], "cross_sect": 136, "crosscovariancematrix": 241, "crown_i": 135, "crown_x": 135, "crt": [89, 128, 210, 214], "crt1": [128, 214], "crt2": [128, 214], "crucial": [79, 87, 211], "crude": [113, 207, 302], "crv": 241, "crv_type": 241, "cryptanalysi": 89, "crypto": 89, "cryptograph": 89, "cryptographi": [128, 276, 283], "cryptosystem": 89, "csail": 91, "csc": [94, 130, 221, 230], "csch": [94, 221], "cse": [21, 69, 129, 180, 222, 233, 254, 260, 299], "cse_main": [69, 222, 233], "cset": 88, "csr": 127, "csse": 93, "cst": 22, "cstech": 265, "csusm": 234, "ct": [89, 117, 214], "ctan": [116, 205], "ctimesd": 16, "ctmcnote": 241, "ctr1": 230, "ctr2": 230, "ctr3": 230, "ctr4": 230, "ctrl": 8, "cube": [48, 67, 69, 72, 79, 81, 94, 115, 214, 215, 234, 240, 275], "cube_root": 94, "cubefre": 128, "cuberoot": 94, "cubic": [48, 96, 148, 208, 217, 234, 239], "cubic_curv": 265, "cubic_equ": 217, "cubicthu": 234, "cucurezeanu": 234, "cuda": [2, 129], "cuhk": 234, "cultur": 208, "cumbersom": [4, 11, 57], "cup": [41, 217, 229, 240], "cupi": [2, 129], "curl": [201, 265, 268, 275], "curli": [16, 22, 221], "current": [3, 5, 11, 12, 13, 14, 16, 21, 22, 23, 36, 41, 50, 51, 61, 64, 67, 68, 69, 70, 72, 79, 82, 83, 85, 86, 87, 88, 90, 94, 96, 98, 100, 103, 108, 111, 113, 115, 117, 124, 128, 130, 136, 141, 149, 151, 185, 190, 191, 195, 199, 207, 208, 209, 210, 212, 214, 217, 218, 220, 221, 222, 228, 231, 233, 234, 236, 237, 238, 239, 240, 241, 247, 252, 253, 254, 256, 269, 283, 293, 298], "currentfactor": 217, "curri": [0, 177], "curv": [4, 19, 68, 90, 100, 115, 128, 133, 134, 135, 136, 160, 207, 208, 237, 265, 275, 282, 283, 287], "curvatur": [52, 160, 164], "curvedmirror": 160, "curvedrefract": 160, "curvilinear": [207, 269, 270], "curving_amount": 68, "custom": [4, 9, 13, 17, 32, 33, 44, 69, 80, 88, 92, 95, 116, 124, 130, 131, 148, 150, 152, 156, 159, 205, 223, 227, 234, 241, 247, 253, 260, 265, 274, 291, 293, 299], "custom_funct": [69, 221], "custom_sin": 260, "customarili": 209, "cut": [88, 93, 94, 96, 104, 113, 208, 231, 256, 262, 297], "cut_sect": 104, "cvd": 90, "cx": [35, 89, 137], "cxd": 190, "cxx": 221, "cxx11codeprint": [43, 221], "cxx98codeprint": 221, "cxxcode": [43, 69, 221], "cy": [35, 51, 234], "cyan": 207, "cybertest": 233, "cycl": [5, 13, 69, 76, 79, 80, 86, 88, 91, 93, 124, 128, 165, 229, 259], "cycle_detect": 128, "cycle_length": 128, "cycle_list": 89, "cycle_structur": 80, "cyclic": [74, 76, 79, 80, 81, 91, 124, 128, 247, 259], "cyclic_form": [76, 80, 81], "cyclic_ord": 76, "cyclicgroup": [73, 76, 79], "cyclotom": [88, 212, 214, 215, 216, 217], "cyclotomic_field": [212, 216], "cyclotomic_poli": [88, 216, 217], "cyclotomicpolynomi": 215, "cygwin": 8, "cyl": 18, "cylind": [18, 156, 159, 275, 299], "cylindr": [152, 159, 207, 272], "cylindricaljoint": 152, "cython": [2, 30, 69, 129, 253], "cythoncodewrapp": 253, "cz": [35, 51, 91, 144, 234], "czapor": 215, "c\u2081": [291, 298], "c\u2082": [291, 298], "d": [4, 5, 7, 8, 11, 12, 13, 15, 16, 18, 30, 32, 35, 36, 39, 43, 46, 49, 51, 53, 55, 61, 68, 72, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 93, 96, 98, 102, 106, 111, 113, 115, 117, 118, 119, 120, 124, 125, 127, 128, 130, 136, 140, 144, 152, 153, 154, 160, 163, 164, 170, 180, 188, 190, 191, 196, 200, 202, 206, 207, 209, 210, 211, 212, 214, 215, 216, 217, 218, 221, 223, 227, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 247, 259, 262, 265, 267, 268, 269, 270, 274, 282, 293, 298, 299, 303], "d0": 84, "d1": [68, 84, 144, 200, 208, 228, 241, 265], "d2": [84, 144, 200, 208, 228, 241, 259, 265], "d2fdx2": 287, "d2fdxdy": 88, "d3": [84, 228], "d4": [71, 117, 217, 241], "d6": 241, "d_": [84, 231], "d_0": [84, 89], "d_1": [113, 196, 217, 241], "d_1e": 241, "d_1z": 241, "d_2": [196, 217, 241], "d_3": 196, "d_4": 71, "d_6": 71, "d_i": [84, 113, 196], "d_ij": 191, "d_ip": 191, "d_j": [113, 196, 231], "d_m": 299, "d_n": [76, 117, 217], "d_o": 299, "d_qp": 191, "d_v": 113, "d_x": 299, "d_y": 299, "d_z": 299, "da": [18, 131, 237], "dadt": [18, 299], "dae": [31, 158], "dag": 15, "dagger": [168, 172, 178, 180, 183, 185, 190, 191, 221, 282], "dagum": 241, "dagum_distribut": 241, "dai": [194, 198, 237], "damp": [30, 134, 148, 299, 303], "damper": [18, 22, 46, 148, 149, 153, 158, 299, 303, 307], "damper_const": 18, "damping_coeffici": 148, "damping_forc": 148, "danger": [13, 209], "danilevski": 210, "dartmouth": 241, "dash": 68, "dat": [120, 259], "data": [14, 15, 39, 69, 79, 88, 89, 96, 115, 124, 129, 130, 132, 142, 153, 170, 207, 208, 210, 211, 212, 214, 217, 218, 221, 233, 246, 247, 252, 254, 256, 259], "databas": [221, 231], "datatyp": [130, 212, 221, 254], "date": 254, "daunt": 7, "davenport": [115, 214, 215], "davenport88": 215, "davi": 241, "david": [29, 215, 217], "davis_distribut": 241, "davisdistribut": 241, "dbase": 84, "dbinom": 130, "dc": [26, 46, 144], "dc_gain": [46, 144], "dcm": [13, 22, 30, 35, 36, 149, 152, 200, 265, 302], "dd": [206, 226], "ddm": 210, "ddm_": 210, "ddm_berk": 210, "ddm_iadd": 210, "ddm_idet": 210, "ddm_iinv": 210, "ddm_ilu": 210, "ddm_ilu_solv": 210, "ddm_ilu_split": 210, "ddm_imatmul": 210, "ddm_imul": 210, "ddm_ineg": 210, "ddm_irmul": 210, "ddm_irref": 210, "ddm_irref_den": 210, "ddm_isub": 210, "ddm_rref": 210, "ddm_transpos": 210, "ddot": [18, 26, 35, 120, 124, 205, 221, 297, 306], "de": [11, 18, 68, 89, 93, 128, 131, 132, 134, 140, 196, 206, 218, 223, 234, 237, 259, 299], "deactiv": [18, 131, 299], "deactivation_time_const": 131, "dead": 230, "deal": [14, 21, 22, 33, 35, 36, 41, 69, 87, 88, 92, 100, 108, 113, 115, 141, 153, 154, 209, 214, 217, 234, 239, 250, 260, 262, 269, 274, 287, 289, 291, 297], "dealt": [92, 113], "debian": 221, "deboer79": 196, "debug": [6, 69, 88, 115, 130, 180, 252, 253, 262, 302], "debug_decor": 262, "debugf": 262, "decad": 237, "decai": 115, "decent": 295, "decid": [3, 4, 9, 21, 27, 39, 41, 42, 43, 48, 68, 87, 124, 184, 211, 214, 216, 217, 221, 237, 240, 254, 293], "decim": [16, 43, 69, 88, 91, 92, 128, 130, 142, 211, 217, 291], "decimal_dig": 69, "decimal_separ": 221, "deciph": 89, "decipher_affin": 89, "decipher_atbash": 89, "decipher_bifid": 89, "decipher_bifid5": 89, "decipher_bifid6": 89, "decipher_elgam": 89, "decipher_gm": 89, "decipher_hil": 89, "decipher_kid_rsa": 89, "decipher_railf": 89, "decipher_rot13": 89, "decipher_rsa": 89, "decipher_shift": 89, "decipher_vigener": 89, "decis": [17, 58, 88, 94, 115, 230, 239, 254], "decistmt": 116, "decl1": 69, "decl2": 69, "declar": [16, 22, 30, 41, 52, 69, 101, 113, 124, 130, 145, 170, 210, 221, 228, 231, 236, 237, 238, 241, 254, 302], "decod": 89, "decode_mors": 89, "decompos": [57, 79, 80, 86, 88, 90, 94, 99, 124, 128, 175, 184, 185, 187, 212, 217, 220, 241], "decomposit": [4, 48, 53, 79, 86, 119, 120, 124, 210, 212, 214, 215, 223, 297], "decor": [3, 12, 43, 79, 88, 96, 250, 252, 257, 258, 261, 262, 284], "decoupl": 124, "decre": 113, "decreas": [18, 67, 69, 80, 214], "decrement": [69, 256], "decrypt": 89, "dedekind": 208, "dedent": [257, 262], "dedic": [5, 28, 69, 71, 213, 214, 236, 254, 270, 272], "deduc": [43, 69, 113, 118, 231, 291], "deduct": [43, 69], "deduction_stack": 70, "deem": [13, 230], "deep": [14, 16, 43, 88, 94, 118, 124, 132, 217, 228, 233, 241, 292], "deepak": 215, "deeper": [44, 245, 292], "deepest": 245, "def": [3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 39, 41, 42, 43, 63, 64, 68, 88, 93, 100, 118, 124, 128, 130, 186, 211, 217, 221, 230, 233, 240, 255, 257, 259, 260, 261, 286, 289, 292, 293, 297, 299, 310], "default": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 32, 41, 43, 48, 52, 53, 55, 60, 61, 62, 63, 64, 67, 68, 69, 70, 71, 72, 78, 79, 86, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 110, 115, 116, 118, 120, 123, 124, 125, 128, 129, 130, 131, 132, 134, 136, 137, 140, 142, 144, 146, 148, 149, 150, 152, 153, 154, 158, 164, 181, 183, 186, 188, 189, 191, 195, 197, 200, 202, 204, 205, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 246, 247, 252, 253, 254, 256, 257, 259, 260, 262, 265, 286, 287, 291, 293, 296, 297, 304], "default_arrow_formatt": 68, "default_assumpt": 41, "default_curving_amount": 68, "default_curving_step": 68, "default_formatt": 68, "default_sort_kei": [13, 68, 77, 88, 245], "defaultdict": [41, 88, 259], "defeat": [3, 12, 237], "defect": 237, "defective_matrix": 237, "defens": 12, "defer": 124, "defici": [124, 128, 240], "deficientnumb": 128, "defin": [3, 4, 5, 11, 12, 13, 15, 16, 18, 21, 22, 23, 24, 28, 30, 31, 32, 33, 35, 36, 37, 39, 41, 42, 57, 60, 61, 63, 64, 67, 69, 70, 71, 72, 78, 79, 80, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 111, 113, 115, 116, 120, 124, 128, 131, 132, 134, 136, 137, 142, 148, 149, 151, 152, 155, 156, 158, 159, 162, 168, 170, 172, 177, 180, 186, 188, 189, 193, 194, 195, 196, 197, 198, 199, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 224, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 246, 247, 253, 254, 255, 259, 260, 261, 262, 265, 267, 268, 269, 270, 271, 272, 274, 275, 289, 291, 297, 300, 302, 304, 305, 307, 309, 311], "defined_fact": 41, "definit": [4, 13, 14, 15, 16, 18, 28, 35, 36, 42, 61, 65, 69, 70, 79, 80, 85, 87, 88, 90, 91, 93, 94, 96, 101, 104, 111, 113, 115, 119, 120, 124, 128, 130, 152, 158, 193, 196, 199, 200, 208, 209, 212, 217, 218, 221, 228, 241, 242, 253, 254, 255, 259, 260, 265, 269, 270, 271, 272, 287, 297, 300, 302, 309, 310], "definite_matrix": 65, "definiteness_of_a_matrix": 124, "deflat": [212, 217], "deflect": [98, 104, 136, 137], "deflection_jump": 136, "defn": 214, "deform": [113, 137], "deg": [22, 115, 142, 209, 212, 214, 216, 217], "deg2rad": [22, 299], "degbound": 214, "degener": [61, 239, 240], "degre": [22, 31, 32, 36, 39, 48, 70, 71, 79, 86, 87, 93, 96, 104, 115, 124, 136, 138, 140, 142, 144, 149, 152, 153, 158, 163, 208, 209, 212, 214, 216, 217, 220, 221, 224, 227, 230, 231, 233, 234, 237, 239, 241, 265, 299, 301, 304, 305, 306], "degree_list": [212, 217], "degree_offset": 115, "degroote2016": [18, 299], "dejavu": 8, "dejavufont": 8, "del": [196, 256, 265, 273, 297], "delai": [18, 27, 88, 131, 142, 230, 252, 287], "delastel": 89, "delet": [12, 72, 117, 124, 218, 262, 297], "delete_doubl": 117, "deletechar": 262, "deliber": 216, "delic": [115, 208], "delimit": [5, 88, 221], "delin": 3, "delop": [265, 271, 272], "deloper": [265, 273], "delta": [13, 16, 27, 69, 72, 82, 93, 111, 113, 117, 142, 163, 191, 206, 210, 221, 228, 234, 237, 241, 242, 247], "delta_": [96, 188, 196, 206], "delta_fn": 69, "delta_funct": [11, 96, 115], "delta_i": 231, "delta_rang": [96, 191], "deltafunct": [96, 115], "deltaintegr": 115, "demand": [43, 60], "demonstr": [4, 5, 16, 18, 22, 27, 41, 43, 46, 48, 52, 53, 54, 79, 80, 88, 93, 115, 128, 149, 152, 208, 211, 271, 297, 301, 303, 305, 306, 307], "den": [144, 210, 212, 233, 237], "den_list": 144, "den_reduc": 210, "dena": 237, "denest": [13, 88, 217, 233, 239, 259], "deni": 237, "denom": [88, 210, 211, 212, 216, 233], "denomin": [16, 88, 92, 96, 115, 128, 144, 150, 209, 210, 211, 212, 214, 216, 217, 220, 221, 230, 231, 233, 234, 237, 239, 297], "denoms_invert": 210, "denot": [13, 15, 16, 33, 39, 79, 80, 88, 90, 96, 110, 111, 113, 115, 117, 118, 124, 128, 130, 140, 144, 148, 159, 196, 200, 207, 208, 209, 214, 216, 224, 228, 229, 231, 237, 241, 246, 247, 265, 267, 269, 270, 272, 274], "dens": [15, 120, 122, 124, 210, 216, 217, 242, 260, 280, 292], "densearith": 214, "densebas": 214, "densematrix": [119, 124], "densetool": 214, "densiti": [241, 252, 275, 304], "denz": 144, "dep": [88, 237], "depend": [6, 9, 11, 13, 14, 15, 16, 18, 22, 23, 25, 33, 37, 41, 43, 45, 48, 53, 54, 55, 59, 67, 69, 70, 79, 80, 87, 88, 89, 90, 93, 94, 96, 100, 105, 112, 113, 115, 116, 117, 124, 128, 129, 130, 134, 142, 146, 149, 151, 153, 154, 158, 163, 164, 165, 180, 189, 191, 193, 195, 196, 205, 207, 209, 210, 212, 214, 216, 217, 218, 220, 221, 222, 227, 231, 233, 234, 237, 238, 239, 240, 241, 252, 253, 254, 255, 259, 260, 272, 274, 275, 291, 302, 304, 306], "depict": [33, 136, 240, 274], "deploy": 59, "deprec": [4, 6, 17, 27, 50, 62, 80, 88, 115, 118, 124, 128, 147, 151, 152, 153, 207, 217, 221, 241, 247, 250, 251, 255, 257, 260, 282], "deprecat": 3, "deprecated_since_vers": [3, 250, 255, 257], "deprecationwarn": [149, 252, 257], "depth": [4, 5, 14, 16, 17, 58, 79, 88, 207, 208, 221, 302, 303], "der": [78, 79], "derang": [93, 259], "derefer": 221, "dereferenc": 221, "derek": [70, 78], "deriv": [0, 4, 11, 12, 13, 15, 17, 18, 21, 23, 25, 26, 27, 32, 33, 35, 40, 43, 52, 67, 68, 69, 72, 78, 79, 88, 90, 94, 95, 96, 98, 105, 110, 111, 113, 115, 116, 118, 120, 124, 130, 132, 134, 140, 144, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 180, 189, 193, 196, 197, 200, 202, 204, 205, 207, 208, 209, 210, 212, 214, 216, 217, 218, 221, 223, 231, 233, 237, 238, 239, 243, 248, 254, 265, 268, 269, 288, 291, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309], "derivand": 248, "derive_by_arrai": 242, "derived_dim": 193, "derived_seri": [78, 79], "derived_subgroup": 79, "derived_unit": 199, "descend": [88, 208, 216, 254], "descent": [80, 234], "descr": 199, "describ": [3, 4, 5, 7, 11, 13, 14, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33, 35, 36, 41, 42, 43, 48, 55, 61, 68, 70, 78, 79, 80, 82, 83, 86, 87, 88, 89, 93, 96, 98, 103, 104, 113, 115, 124, 127, 128, 134, 144, 148, 149, 151, 152, 153, 154, 155, 156, 158, 170, 191, 196, 200, 208, 210, 211, 214, 216, 222, 228, 231, 233, 234, 237, 240, 241, 245, 254, 259, 260, 265, 267, 272, 287, 304, 306, 307, 309, 311], "descript": [0, 3, 4, 5, 13, 14, 35, 36, 49, 58, 68, 70, 78, 96, 115, 128, 163, 181, 188, 199, 206, 221, 245, 252, 254, 256, 257, 276, 294, 300], "design": [2, 3, 4, 13, 14, 15, 17, 30, 31, 38, 42, 43, 46, 49, 54, 58, 65, 70, 78, 88, 124, 127, 130, 133, 134, 158, 210, 211, 215, 221, 226, 231, 237, 240, 291, 292, 296, 305], "desir": [4, 13, 14, 16, 23, 27, 35, 36, 39, 43, 50, 55, 57, 60, 79, 80, 88, 89, 91, 92, 93, 94, 98, 102, 104, 118, 124, 127, 128, 129, 149, 151, 153, 154, 155, 158, 176, 200, 210, 212, 214, 216, 217, 218, 221, 222, 224, 229, 233, 237, 239, 240, 253, 255, 256, 259, 272, 286], "desktop": 9, "despit": [3, 48, 57, 88, 297], "destin": 254, "destroi": [191, 230], "destruct": 217, "det": [30, 36, 53, 61, 124, 125, 210, 293], "det_lu": 124, "det_lu_decomposit": 124, "det_method": 124, "deta": 210, "detach": 8, "detail": [0, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15, 17, 22, 28, 30, 38, 41, 43, 58, 68, 79, 88, 90, 93, 95, 96, 113, 114, 115, 116, 124, 128, 142, 152, 153, 163, 181, 185, 200, 202, 206, 207, 208, 210, 214, 216, 223, 228, 233, 234, 235, 237, 238, 241, 246, 247, 252, 255, 257, 260, 270, 271, 272, 273, 276, 280, 287, 289, 293, 294, 296, 300, 305], "detect": [2, 8, 60, 67, 120, 124, 128, 130, 207, 211, 221, 237, 238, 240, 242, 259, 296], "determin": [3, 5, 13, 14, 15, 18, 28, 31, 33, 37, 39, 41, 42, 43, 46, 48, 51, 52, 53, 56, 62, 64, 65, 66, 67, 69, 70, 71, 72, 79, 88, 89, 90, 91, 92, 94, 98, 99, 101, 103, 104, 115, 116, 117, 120, 124, 128, 130, 136, 137, 144, 148, 150, 152, 154, 155, 156, 158, 170, 183, 185, 187, 188, 191, 194, 196, 200, 207, 208, 209, 210, 214, 216, 217, 221, 227, 228, 229, 231, 233, 234, 236, 237, 239, 240, 241, 245, 257, 259, 265, 272, 275, 289, 297, 311], "determinisit": 221, "determinist": [41, 79, 115, 128, 214, 215], "deterministic_vari": 128, "detool": 237, "deutil": [237, 238], "dev": [2, 3, 8, 9, 11, 257], "devel": [5, 206], "develop": [0, 3, 4, 5, 6, 10, 15, 18, 19, 30, 39, 41, 43, 67, 70, 86, 130, 138, 195, 207, 208, 211, 214, 239, 240, 291, 294, 299], "deviat": [5, 164, 241], "devis": 39, "df": [39, 90, 237], "dfdx": 287, "dfdxcheck": 39, "dfm": 210, "dfrac": [130, 241], "dft": [13, 91, 147], "dfx": 88, "dg": 90, "dh_private_kei": 89, "dh_public_kei": 89, "dh_shared_kei": 89, "di": [9, 217], "di1": 79, "di2": 79, "di3": 79, "di4": 79, "diag": [30, 120, 124, 127, 210, 247, 293], "diag_block": 120, "diagmat": 30, "diagon": [65, 93, 119, 120, 124, 127, 158, 163, 210, 243], "diagonal_ax": 242, "diagonal_indic": 243, "diagonal_matrix": 65, "diagonal_solv": [119, 124], "diagonalhandl": 65, "diagonaliz": [124, 293], "diagonalpred": 65, "diagram": [23, 46, 69, 77, 117, 136, 138, 148, 151, 156, 171, 246, 270, 292, 304, 306, 307], "diagram_draw": 68, "diagram_format": 68, "diagramgrid": 68, "diamet": [88, 98], "diaz": 215, "dic": 214, "dice": 241, "dict": [13, 14, 16, 37, 41, 48, 51, 52, 56, 57, 69, 71, 80, 88, 89, 90, 104, 105, 118, 124, 128, 130, 132, 153, 154, 171, 183, 186, 197, 199, 200, 207, 210, 211, 212, 214, 216, 217, 218, 219, 221, 233, 234, 237, 238, 239, 240, 241, 245, 252, 253, 259, 265, 298], "dict_iter": 234, "dict_merg": 259, "dictionari": [2, 12, 13, 14, 15, 17, 22, 25, 27, 36, 51, 55, 57, 68, 69, 77, 79, 80, 86, 88, 93, 102, 104, 115, 117, 124, 127, 128, 130, 136, 150, 153, 154, 158, 181, 191, 200, 207, 209, 210, 212, 214, 216, 217, 219, 221, 228, 233, 234, 237, 238, 239, 240, 241, 245, 247, 252, 256, 259, 260, 265, 286, 293, 302, 306, 309], "did": [2, 5, 11, 14, 21, 42, 88, 115, 128, 196, 214, 218, 229, 239, 250, 260, 289, 291, 297, 309], "didn": [12, 27, 115, 124], "die": [13, 216, 241], "die_rol": 241, "diedistribut": 241, "diepspac": 241, "dietrich": 74, "dif": 88, "diff": [4, 9, 11, 12, 13, 14, 15, 18, 21, 30, 33, 36, 39, 43, 46, 52, 55, 67, 69, 88, 93, 94, 95, 96, 105, 110, 115, 120, 124, 132, 150, 155, 189, 200, 202, 205, 207, 212, 217, 220, 221, 231, 237, 238, 239, 242, 243, 248, 269, 272, 287, 291, 298, 299, 304, 306], "diff_oper": 221, "diffeq": 298, "differ": [3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 27, 31, 32, 33, 36, 37, 38, 40, 42, 43, 48, 50, 51, 52, 53, 54, 55, 56, 60, 68, 69, 70, 71, 77, 78, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 96, 99, 101, 103, 104, 108, 110, 112, 113, 115, 116, 117, 118, 120, 124, 128, 129, 130, 134, 136, 142, 144, 149, 153, 155, 158, 163, 164, 176, 177, 185, 186, 189, 191, 193, 195, 196, 200, 201, 204, 205, 207, 208, 209, 210, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 226, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 245, 247, 250, 252, 253, 254, 255, 256, 257, 259, 260, 265, 268, 272, 274, 288, 289, 291, 292, 293, 296, 297, 301, 302, 303, 308], "difference_delta": 226, "differencedelta": 226, "differenti": [4, 5, 12, 13, 15, 18, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 36, 46, 49, 67, 88, 93, 94, 96, 105, 106, 108, 111, 115, 130, 131, 132, 134, 144, 151, 152, 153, 158, 180, 186, 200, 202, 204, 208, 214, 218, 220, 221, 226, 231, 233, 237, 238, 265, 272, 273, 276, 283, 287, 288, 291, 300, 302, 306, 309], "differentialoper": [110, 111, 180], "differentialoperatoralgebra": 111, "differentiate_finit": [67, 88, 287], "differnc": 212, "diffgeom": 90, "diffi": 89, "difficult": [5, 11, 12, 13, 14, 22, 41, 55, 57, 88, 124, 218, 231, 237, 238, 240, 253, 260, 275, 291, 297], "difficulti": [90, 128], "diffus": [18, 131], "dig": [43, 69, 292], "digamma": [4, 93, 96, 221], "digamma_funct": 96, "digammafunct": 96, "digit": [4, 11, 14, 15, 16, 23, 54, 69, 88, 89, 91, 92, 98, 115, 118, 128, 151, 200, 211, 217, 228, 233, 259, 286], "digit_2txt": 221, "digraph": [221, 259, 296], "dihedr": [71, 74, 76, 79, 80], "dihedral2": 79, "dihedral_group": [76, 79], "dihedralgroup": [76, 79, 86], "dilbert": 115, "dim": [69, 90, 103, 124, 129, 193, 199, 221, 244, 247, 280], "dim1": 246, "dim2": 246, "dim_can_vector": 193, "dim_handl": 221, "dim_si": 193, "dim_vector": 193, "dimens": [53, 69, 72, 89, 90, 96, 97, 99, 101, 102, 103, 105, 117, 120, 124, 127, 131, 134, 136, 145, 165, 175, 177, 180, 185, 194, 195, 198, 199, 200, 207, 210, 221, 234, 237, 239, 241, 242, 243, 246, 247, 254, 265, 268, 270, 282, 306], "dimension": [30, 33, 34, 53, 67, 69, 72, 90, 100, 101, 102, 103, 104, 120, 124, 137, 145, 165, 167, 177, 193, 203, 207, 208, 214, 216, 217, 220, 221, 239, 240, 242, 243, 247, 253, 274, 298], "dimension_system": 199, "dimensional_depend": 193, "dimensionless": [18, 195, 196], "dimensions": 193, "dimensionsystem": 193, "diment": 124, "dimino": [70, 79], "dimitar": 230, "dimsys_si": [193, 194], "diop_bf_dn": 234, "diop_dn": 234, "diop_general_pythagorean": 234, "diop_general_sum_of_even_pow": 234, "diop_general_sum_of_squar": 234, "diop_linear": 234, "diop_quadrat": 234, "diop_solv": 234, "diop_ternary_quadrat": 234, "diop_ternary_quadratic_norm": 234, "diophantin": [49, 50, 128, 214, 235, 277], "diophantineequ": 234, "diophantineequationtyp": 234, "diophantinesolutionset": 234, "diophantu": 234, "diplform": 110, "diploma": 265, "diplomat": 89, "dir": [16, 88, 136, 223, 228, 259], "dir_vec": 18, "dirac": [124, 142, 146, 147, 189, 221], "diracdelta": [4, 11, 96, 115, 186, 191, 221], "direct": [3, 4, 5, 13, 14, 15, 18, 21, 30, 33, 35, 36, 40, 55, 61, 63, 64, 68, 73, 76, 79, 84, 87, 88, 90, 92, 94, 97, 101, 102, 103, 104, 118, 124, 131, 132, 134, 136, 137, 138, 140, 148, 149, 152, 155, 156, 158, 159, 177, 200, 208, 210, 211, 214, 218, 228, 231, 239, 247, 250, 259, 265, 270, 271, 274, 299, 302, 304, 306, 310], "direct_product": 247, "direct_sum": 177, "directed_complete_partial_ord": 94, "direction": 36, "direction_cosin": [101, 103], "direction_ratio": [101, 103], "directional_deriv": 272, "directli": [2, 3, 4, 11, 12, 13, 14, 15, 16, 18, 22, 32, 39, 41, 42, 43, 48, 59, 63, 64, 67, 68, 69, 79, 87, 88, 90, 94, 99, 120, 124, 128, 130, 131, 148, 156, 159, 174, 177, 189, 194, 200, 204, 207, 208, 210, 211, 212, 214, 216, 217, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 252, 253, 254, 255, 256, 257, 287, 298], "director": 98, "director_circl": 98, "directori": [2, 4, 5, 7, 8, 11, 12, 59, 64, 69, 130, 237, 252, 253, 262], "directproduct": [73, 76], "directrix": 98, "directsumhilbertspac": 177, "dirichlet": [87, 96, 241], "dirichlet_distribut": 241, "dirichlet_eta": [96, 221], "dirichlet_eta_funct": 96, "dirichletdistribut": 241, "dirichleteta": 221, "disabl": [9, 12, 15, 55, 88, 89, 113, 115, 128, 214, 217, 221, 229, 237, 239, 250, 252, 255, 259, 260], "disable_view": 255, "disadvantag": [14, 88], "disallow": [14, 43, 88, 217, 222, 233, 255], "disambigu": 88, "disc": [35, 136, 301, 305], "discard": [88, 210, 216, 221, 240], "discard_befor": 216, "discern": [62, 64], "disciplin": 208, "disco": 215, "discontinu": [13, 67, 92, 94, 115, 136, 224, 239], "discourag": [15, 41, 88, 233], "discov": [21, 89, 113, 245, 293], "discoveri": [214, 293], "discrat": 207, "discrep": 195, "discret": [13, 67, 69, 70, 78, 80, 88, 89, 96, 128, 144, 191, 196, 207, 223, 226, 237, 239, 240, 277, 286], "discrete_fourier_transform_": 91, "discrete_log": 128, "discrete_uniform_distribut": 241, "discretedistributionhandmad": 241, "discretelogarithm": 128, "discretemarkovchain": 241, "discreterv": 241, "discreteuniform": 241, "discreteuniformdistribut": 241, "discrimin": [128, 212, 214, 216, 217], "discrit": 39, "discuss": [0, 3, 4, 5, 7, 11, 12, 13, 16, 17, 18, 21, 22, 23, 27, 28, 32, 34, 35, 36, 37, 39, 41, 42, 43, 58, 70, 79, 89, 96, 128, 133, 151, 153, 203, 211, 247, 256, 276, 286, 288, 289, 291, 292, 294, 296, 297], "disguis": 113, "disjoint": [65, 68, 77, 80, 217, 229, 259], "disjoint_set": 229, "disjoint_union": 229, "disjointunion": 229, "disjunct": 118, "disk": [69, 89, 229, 240, 260], "dispatch": [12, 15, 63, 64, 65, 88, 89, 186, 221, 240, 256], "dispers": [215, 241], "dispersionset": 217, "displac": [33, 35, 148, 274], "displai": [4, 5, 7, 11, 16, 41, 42, 55, 88, 89, 92, 113, 117, 136, 137, 142, 162, 195, 200, 204, 205, 207, 211, 212, 221, 229, 245, 252], "displayhook": [221, 252], "disregard": 68, "diss": 241, "dissimilar": 239, "dist": 241, "distanc": [18, 21, 33, 43, 68, 72, 80, 98, 101, 102, 103, 104, 136, 137, 147, 148, 152, 156, 159, 160, 164, 194, 204, 274, 306, 307], "distinct": [3, 5, 14, 15, 35, 37, 41, 43, 56, 69, 79, 80, 88, 89, 93, 101, 113, 118, 124, 128, 158, 211, 216, 217, 221, 229, 231, 297], "distinguish": [11, 22, 38, 41, 42, 68, 79, 92, 117, 190, 196, 208], "distract": 4, "distribut": [2, 8, 59, 79, 86, 88, 96, 104, 115, 136, 137, 138, 190, 209, 212, 217, 221, 247], "distribute_and_over_or": 118, "distribute_or_over_and": 118, "distribute_order_term": [88, 233], "distribute_xor_over_and": 118, "distributedmodul": 214, "distributionshandbook": 241, "distutil": 253, "div": [88, 130, 209, 211, 212, 217, 221, 233, 292], "divaugmentedassign": 69, "diverg": [87, 96, 160, 201, 265, 268], "divergence_theorem": 275, "divid": [13, 15, 79, 87, 88, 89, 93, 104, 124, 128, 153, 154, 195, 196, 209, 210, 211, 212, 214, 216, 217, 221, 237, 256, 292], "divide_last": 210, "dividend": [88, 212], "divis": [12, 16, 43, 88, 124, 128, 153, 193, 195, 208, 210, 211, 212, 213, 214, 217, 219, 221, 234, 237, 239, 252, 260, 289, 292], "divisisor": 128, "divisor": [43, 65, 79, 88, 89, 93, 124, 128, 208, 209, 210, 211, 212, 214, 215, 216, 217, 220], "divisor_count": [93, 128], "divisor_funct": [93, 128], "divisor_sigma": [13, 15, 93, 128], "divmod": [209, 211, 212], "dixon": [210, 215], "django": 289, "djoyc": 241, "dk": [61, 136, 216], "dkei": 88, "dl": [36, 87, 210, 212, 215, 233], "dlmf": [4, 94, 96], "dlp": 89, "dm": [93, 124, 128, 210, 216, 299], "dmc": [309, 310, 311], "dmdomainerror": [125, 210], "dmension": 117, "dmf": 212, "dmnc": 124, "dmnoninvertiblematrixerror": 210, "dmnonsquarematrixerror": 210, "dmnotafield": 210, "dmp": [88, 208, 212, 217], "dmp_": [211, 214], "dmp_ab": 214, "dmp_add": 214, "dmp_add_ground": 214, "dmp_add_mul": 214, "dmp_add_term": 214, "dmp_apply_pair": 214, "dmp_cancel": 214, "dmp_clear_denom": 214, "dmp_compos": 214, "dmp_content": 214, "dmp_convert": 214, "dmp_copi": 214, "dmp_deflat": 214, "dmp_degre": 214, "dmp_degree_in": 214, "dmp_degree_list": 214, "dmp_diff": 214, "dmp_diff_eval_in": 214, "dmp_diff_in": 214, "dmp_discrimin": 214, "dmp_div": 214, "dmp_eject": 214, "dmp_euclidean_pr": 214, "dmp_eval": 214, "dmp_eval_in": 214, "dmp_eval_tail": 214, "dmp_exclud": 214, "dmp_expand": 214, "dmp_exquo": 214, "dmp_exquo_ground": 214, "dmp_ext_factor": 214, "dmp_factor_list": 214, "dmp_factor_list_includ": 214, "dmp_ff_div": 214, "dmp_ff_prs_gcd": 214, "dmp_from_dict": 214, "dmp_from_sympi": 214, "dmp_gcd": 214, "dmp_gcdex": 214, "dmp_gf_factor": 214, "dmp_gf_sqf_list": 214, "dmp_gf_sqf_part": 214, "dmp_gff_list": 214, "dmp_ground": 214, "dmp_ground_cont": 214, "dmp_ground_extract": 214, "dmp_ground_lc": 214, "dmp_ground_mon": 214, "dmp_ground_nth": 214, "dmp_ground_p": 214, "dmp_ground_primit": 214, "dmp_ground_tc": 214, "dmp_ground_trunc": 214, "dmp_half_gcdex": 214, "dmp_includ": 214, "dmp_inflat": 214, "dmp_inject": 214, "dmp_inner_gcd": 214, "dmp_inner_subresult": 214, "dmp_integr": 214, "dmp_integrate_in": 214, "dmp_invert": 214, "dmp_irreducible_p": 214, "dmp_l1_norm": 214, "dmp_lc": 214, "dmp_lcm": 214, "dmp_lift": 214, "dmp_list_term": 214, "dmp_max_norm": 214, "dmp_mul": 214, "dmp_mul_ground": 214, "dmp_mul_term": 214, "dmp_multi_defl": 214, "dmp_neg": 214, "dmp_negative_p": 214, "dmp_nest": 214, "dmp_norm": 214, "dmp_normal": 214, "dmp_nth": 214, "dmp_one": 214, "dmp_one_p": 214, "dmp_pdiv": 214, "dmp_permut": 214, "dmp_pexquo": 214, "dmp_positive_p": 214, "dmp_pow": 214, "dmp_pquo": 214, "dmp_prem": 214, "dmp_primit": 214, "dmp_primitive_pr": 214, "dmp_prs_result": 214, "dmp_python": [13, 208, 211, 212], "dmp_qq_collins_result": 214, "dmp_qq_heu_gcd": 214, "dmp_qq_i_factor": 214, "dmp_quo": 214, "dmp_quo_ground": 214, "dmp_rais": 214, "dmp_rem": 214, "dmp_result": 214, "dmp_revert": 214, "dmp_rr_div": 214, "dmp_rr_prs_gcd": 214, "dmp_slice": 214, "dmp_sqf_list": 214, "dmp_sqf_list_includ": 214, "dmp_sqf_norm": 214, "dmp_sqf_p": 214, "dmp_sqf_part": 214, "dmp_sqr": 214, "dmp_strip": 214, "dmp_sub": 214, "dmp_sub_ground": 214, "dmp_sub_mul": 214, "dmp_sub_term": 214, "dmp_subresult": 214, "dmp_swap": 214, "dmp_tc": 214, "dmp_terms_gcd": 214, "dmp_to_dict": 214, "dmp_to_tupl": 214, "dmp_trial_divis": 214, "dmp_true_lt": 214, "dmp_trunc": 214, "dmp_valid": 214, "dmp_zero": 214, "dmp_zero_p": 214, "dmp_zz_collins_result": 214, "dmp_zz_diophantin": 214, "dmp_zz_factor": 214, "dmp_zz_heu_gcd": 214, "dmp_zz_i_factor": 214, "dmp_zz_mignotte_bound": 214, "dmp_zz_modular_result": 214, "dmp_zz_wang": 214, "dmp_zz_wang_hensel_lift": 214, "dmp_zz_wang_lead_coeff": 214, "dmp_zz_wang_non_divisor": 214, "dmp_zz_wang_test_point": 214, "dmrankerror": [210, 216], "dmshapeerror": [125, 210], "dmtc": 259, "dmvalueerror": 210, "dn": [80, 241], "dnf": [8, 118], "dnh": 25, "do": [1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 35, 36, 39, 41, 42, 43, 44, 45, 48, 51, 52, 53, 54, 55, 56, 58, 59, 60, 63, 64, 65, 67, 68, 69, 70, 71, 80, 84, 87, 88, 89, 90, 91, 94, 96, 98, 100, 103, 104, 107, 113, 115, 116, 118, 120, 121, 124, 125, 128, 129, 130, 141, 144, 149, 153, 158, 163, 166, 171, 175, 180, 183, 185, 187, 193, 195, 196, 199, 201, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 243, 246, 247, 250, 252, 253, 255, 257, 259, 260, 262, 268, 270, 271, 272, 274, 286, 287, 289, 290, 291, 292, 293, 295, 297, 299, 304, 306, 307, 310], "do1": 69, "do2": 69, "do_sub": 228, "dobelman": 241, "doc": [2, 3, 4, 5, 7, 9, 11, 12, 16, 45, 58, 69, 79, 87, 88, 104, 116, 193, 211, 213, 234, 237, 252, 253, 255, 257, 259, 265, 270, 283, 296], "docbook": 8, "docbook2x": 8, "dockerfil": 8, "docstr": [3, 5, 6, 7, 11, 12, 13, 16, 18, 28, 43, 50, 68, 69, 81, 88, 110, 113, 115, 124, 128, 133, 139, 143, 145, 151, 161, 178, 184, 185, 187, 203, 217, 224, 227, 228, 230, 233, 237, 238, 239, 240, 246, 247, 252, 255, 260, 262, 266, 273, 276, 280, 282], "docstring_limit": 260, "doctest": [3, 4, 5, 11, 16, 43, 81, 96, 124, 128, 180, 191, 217, 237, 252, 255, 257, 296, 302], "doctest_arg": 252, "doctest_depends_on": [12, 255], "doctest_kwarg": 252, "doctestpars": 252, "doctestrunn": 252, "document": [6, 10, 12, 13, 14, 15, 19, 21, 23, 25, 26, 28, 30, 32, 33, 34, 35, 36, 40, 43, 49, 63, 64, 65, 79, 84, 88, 89, 94, 95, 96, 100, 110, 113, 114, 116, 120, 124, 128, 129, 133, 137, 151, 153, 166, 180, 186, 203, 205, 206, 207, 208, 210, 211, 212, 214, 215, 217, 221, 231, 235, 237, 239, 240, 250, 252, 254, 255, 257, 259, 265, 272, 273, 276, 287, 289, 290, 296, 297], "documentclass": [116, 205, 221], "docutil": 5, "dod": 210, "doe": [2, 4, 5, 7, 9, 11, 12, 13, 14, 15, 18, 21, 22, 24, 28, 35, 36, 38, 41, 42, 43, 48, 49, 55, 56, 57, 58, 59, 60, 63, 64, 67, 68, 69, 70, 79, 80, 84, 86, 87, 88, 89, 90, 92, 94, 96, 98, 99, 102, 104, 113, 115, 118, 124, 127, 128, 130, 146, 150, 153, 154, 158, 171, 175, 181, 185, 187, 190, 207, 209, 210, 211, 212, 214, 216, 217, 218, 221, 228, 229, 230, 231, 233, 234, 236, 237, 239, 242, 246, 247, 250, 252, 254, 256, 259, 260, 262, 265, 267, 270, 286, 287, 289, 292, 293, 296, 297, 298, 302, 309], "doesn": [3, 4, 12, 13, 14, 16, 22, 27, 30, 36, 43, 48, 69, 112, 131, 159, 209, 218, 220, 230, 233, 240, 298, 306], "dof": 304, "doi": [0, 4, 61, 67, 74, 80, 87, 124, 128, 154, 210, 212, 215, 230, 233, 234, 241, 259, 303], "doit": [14, 18, 46, 87, 88, 90, 93, 94, 96, 115, 120, 132, 144, 168, 170, 172, 183, 185, 188, 189, 191, 200, 206, 217, 223, 228, 233, 237, 238, 241, 243, 265, 268, 269, 271, 272, 287, 292], "doit_numer": 88, "dok": [124, 127, 210], "dollar": [5, 12, 291], "dom": [211, 212, 214, 229], "domain": [2, 4, 11, 13, 15, 22, 30, 39, 43, 46, 48, 53, 67, 68, 88, 89, 91, 93, 94, 96, 107, 109, 110, 113, 115, 120, 124, 125, 128, 141, 144, 207, 208, 210, 213, 214, 216, 218, 219, 236, 237, 239, 241, 283, 293, 298], "domain_check": 240, "domain_or_field": 212, "domain_or_r": [208, 212], "domainel": [210, 211, 212, 219], "domainerror": [210, 214, 217], "domainmatrix": [13, 53, 119, 124, 213, 216, 219, 283], "domainscalar": 210, "domin": [113, 124, 226, 228], "dominik": [88, 223], "don": [3, 11, 12, 13, 16, 21, 22, 32, 35, 36, 42, 43, 64, 69, 96, 113, 118, 124, 129, 130, 132, 211, 221, 231, 240, 242, 250, 255, 274, 286, 287, 291, 292, 297], "donal": 217, "donald": [215, 256], "donaldlab": 215, "done": [3, 4, 9, 11, 12, 13, 14, 15, 16, 18, 22, 28, 30, 33, 35, 36, 39, 43, 63, 64, 66, 67, 68, 69, 79, 81, 86, 88, 89, 90, 93, 96, 99, 100, 113, 115, 124, 128, 133, 152, 153, 158, 177, 186, 187, 188, 191, 193, 194, 200, 207, 208, 210, 214, 217, 218, 220, 221, 222, 230, 233, 234, 237, 239, 240, 241, 246, 247, 252, 253, 256, 260, 269, 270, 286, 289, 291, 292, 293, 302, 310], "dont_accept_blanklin": 252, "dont_accept_true_for_1": 252, "dontcar": 118, "door": 135, "doprint": [69, 221], "dorin": 234, "doron": 87, "dot": [18, 25, 26, 27, 30, 32, 35, 36, 79, 80, 84, 86, 89, 101, 103, 110, 124, 144, 149, 153, 155, 158, 175, 200, 202, 205, 206, 208, 209, 214, 217, 221, 240, 241, 259, 265, 269, 271, 272, 299, 302, 304, 306, 309, 310, 311], "dot_rot_grad_ynm": 206, "dotprint": [12, 292, 296], "dotprodsimp": 124, "dotsb": [93, 223], "dotsc": [93, 223], "doubl": [4, 5, 8, 23, 35, 55, 67, 69, 84, 88, 89, 93, 124, 130, 151, 152, 210, 211, 221, 230, 231, 254, 297, 311], "double_coset_can_rep": 84, "double_factori": 93, "double_pendulum": 22, "doubli": 128, "doubt": [11, 22, 118], "dover": 237, "down": [3, 4, 8, 11, 12, 35, 36, 41, 93, 120, 146, 207, 212, 223, 229, 231, 233, 237, 256, 293, 297, 306], "download": [5, 7, 9, 59, 68, 110, 230, 237, 265, 291], "downsid": [11, 293], "downstream": [13, 41], "downward": [136, 137, 138, 140, 216], "doy": 79, "dozen": [3, 15, 43, 297], "dp": [43, 69, 88, 91, 96, 128, 211, 212, 239, 255], "dpi": [116, 205], "dpll": 2, "dq_dict": 306, "dqdt": 18, "dr": [68, 90, 221, 237], "draft": 11, "drag": 207, "dramat": 256, "drastic": 206, "draw": [136, 138, 140, 171, 221, 241], "drawer": 68, "drawn": [68, 79, 117, 207, 211, 219], "dreal": 221, "drep": 210, "drho": 90, "driver": [221, 253], "drop": [8, 11, 94, 115, 129, 212, 214, 309], "drop_to_ground": 212, "dsign": 69, "dsolv": [4, 12, 15, 55, 237, 238, 239, 287, 291, 298], "dsolve_system": 237, "dt": [18, 30, 32, 35, 36, 46, 55, 90, 96, 131, 200, 202, 217, 237, 297, 306], "dt2": 30, "dth": 39, "dtheta": 90, "dtmc": 241, "dtype": [14, 124, 129, 208, 210, 211, 212, 221, 260], "du": 238, "dual": [124, 183, 189], "dual_class": 189, "duart": 237, "dudt": 18, "due": [4, 8, 12, 13, 14, 18, 22, 27, 33, 36, 39, 43, 54, 67, 69, 71, 78, 79, 88, 90, 105, 124, 128, 136, 138, 140, 158, 164, 191, 211, 212, 217, 221, 224, 234, 236, 238, 241, 257, 268, 274, 297, 299, 302], "duf": [148, 301, 305], "duffingspr": [148, 303], "duke": 215, "dum": 247, "dummi": [15, 22, 30, 69, 84, 87, 88, 94, 113, 115, 124, 186, 191, 207, 212, 216, 217, 218, 227, 228, 229, 231, 233, 237, 240, 245, 247, 250, 254, 259, 260], "dummifi": 260, "dummy_eq": [12, 88], "dummy_index": 88, "dummy_nam": [13, 247], "dummy_vari": 87, "dummywrapp": 253, "dump_c": [253, 254], "dump_cod": 254, "dump_f95": 254, "dump_h": 254, "dump_jl": 254, "dump_m": 254, "dump_pyx": 253, "dump_r": 254, "dup": [79, 212], "dup_": [211, 214], "dup__": 214, "dup_cont": 214, "dup_cyclotomic_p": 214, "dup_decompos": 214, "dup_ext_factor": 214, "dup_extract": 214, "dup_factor_list": [211, 214], "dup_factor_list_includ": 214, "dup_flint": [13, 212], "dup_gf_factor": 214, "dup_gf_sqf_list": 214, "dup_gf_sqf_part": 214, "dup_gff_list": 214, "dup_irreducible_p": 214, "dup_lshift": 214, "dup_mirror": 214, "dup_mon": 214, "dup_primit": 214, "dup_qq_i_factor": 214, "dup_random": 214, "dup_real_imag": 214, "dup_revers": 214, "dup_rshift": 214, "dup_scal": 214, "dup_shift": 214, "dup_sign_vari": 214, "dup_sqf_list": 214, "dup_sqf_list_includ": 214, "dup_sqf_norm": 214, "dup_sqf_p": 214, "dup_sqf_part": 214, "dup_transform": 214, "dup_trial_divis": 214, "dup_zz_cyclotomic_factor": 214, "dup_zz_cyclotomic_poli": 214, "dup_zz_diophantin": 214, "dup_zz_factor": 214, "dup_zz_factor_sqf": 214, "dup_zz_hensel_lift": 214, "dup_zz_hensel_step": 214, "dup_zz_i_factor": 214, "dup_zz_irreducible_p": 214, "dup_zz_mignotte_bound": 214, "dup_zz_zassenhau": 214, "duplic": [12, 14, 16, 79, 82, 89, 94, 96, 124, 128, 158, 229, 237, 259, 290], "dure": [3, 12, 13, 16, 30, 31, 35, 60, 69, 88, 89, 124, 128, 130, 131, 134, 149, 153, 216, 221, 230, 239, 240, 257, 259], "dv": 234, "dvi": [116, 205, 221], "dvioption": 221, "dvip": 116, "dvipng": 8, "dx": [5, 13, 14, 15, 36, 39, 43, 51, 67, 69, 84, 88, 90, 92, 96, 105, 107, 110, 111, 112, 113, 115, 124, 130, 136, 147, 153, 180, 217, 218, 224, 234, 237, 238, 242, 287, 291, 296, 298, 299], "dxa": 111, "dxdt": 299, "dxi": 90, "dxy": [51, 234], "dy": [30, 43, 46, 69, 90, 105, 124, 136, 147, 217, 221, 234, 237, 238, 287, 299], "dy2": 30, "dyad": [21, 30, 200, 269], "dyadic": [4, 22, 23, 30, 34, 91, 149, 155, 200, 202, 203, 205, 265, 268, 273, 299, 302, 309, 311], "dyadic_product": [34, 203, 273], "dyadic_tensor": [200, 265], "dyadicadd": 269, "dyadicmul": 269, "dyadicproduct": 273, "dyer": 217, "dyn": 154, "dyn_implicit_mat": [31, 158], "dyn_implicit_rh": [31, 158], "dynam": [19, 21, 23, 25, 26, 27, 28, 29, 30, 31, 32, 35, 36, 128, 131, 133, 134, 141, 142, 144, 150, 151, 153, 154, 155, 156, 158, 159, 200, 202, 204, 256, 257, 265, 299, 301, 302, 303, 305], "dynamic_symbol": 158, "dynamicsymbol": [4, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 124, 134, 148, 149, 150, 152, 153, 155, 156, 158, 159, 200, 202, 204, 205, 299, 302, 303, 304, 306, 307, 309, 310, 311], "dynamicsystem": 142, "dynkin": 117, "dynkin_diagram": 117, "dynkindiagram": 117, "dz": [43, 136, 147, 231, 299], "e": [0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 26, 27, 30, 31, 33, 36, 41, 42, 43, 46, 49, 53, 54, 57, 59, 60, 61, 65, 67, 68, 69, 70, 74, 77, 78, 79, 80, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 117, 118, 124, 128, 130, 131, 133, 134, 136, 137, 140, 144, 145, 148, 149, 152, 153, 155, 156, 158, 159, 160, 163, 170, 171, 175, 180, 181, 183, 186, 188, 190, 191, 196, 197, 200, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 269, 272, 274, 275, 286, 287, 291, 292, 297, 299], "e0": 228, "e1": [22, 96, 98, 105, 211, 216, 228, 237, 240], "e103": 0, "e2": [22, 43, 67, 88, 91, 98, 105, 115, 124, 128, 142, 210, 211, 216, 217, 228, 237, 240, 241, 259], "e2row": 22, "e3": [22, 228, 237], "e4": [22, 228], "e6": 117, "e_": [88, 93, 124], "e_0": 89, "e_1": [78, 124, 208, 214, 217], "e_2": [214, 217], "e_bicep": 299, "e_d": 214, "e_dom": 211, "e_first": 18, "e_i": [90, 208, 231, 247], "e_j": 90, "e_k": 214, "e_muscl": [18, 134], "e_n": [78, 93, 117, 124, 167, 208, 217], "e_nl": [146, 192], "e_nl_dirac": 146, "e_r": 90, "e_rho": 90, "e_theta": 90, "e_tricep": 299, "e_val": 299, "e_x": [90, 247], "e_z": 247, "e_zeroth": 18, "each": [3, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 24, 25, 28, 32, 33, 35, 36, 37, 41, 43, 48, 50, 51, 52, 53, 55, 58, 61, 64, 65, 67, 68, 69, 70, 71, 72, 79, 80, 84, 88, 89, 90, 91, 92, 93, 94, 96, 98, 103, 104, 105, 110, 111, 113, 115, 117, 118, 120, 124, 128, 130, 134, 136, 140, 142, 144, 148, 150, 152, 153, 156, 175, 188, 191, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 219, 221, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 254, 256, 259, 260, 262, 265, 267, 268, 270, 272, 274, 287, 290, 292, 297, 298, 299, 300, 302, 305, 306, 309, 311], "eager": [88, 260], "eagertensor": 260, "earli": [3, 11, 14, 88, 128, 180, 234], "earlier": [13, 21, 130, 218, 222, 231, 233, 260, 270, 272, 292], "earth": [33, 274, 299], "eas": [0, 22, 36, 207, 221, 224], "easi": [3, 7, 11, 12, 14, 15, 18, 23, 35, 45, 76, 80, 88, 96, 113, 115, 129, 151, 208, 211, 216, 221, 228, 231, 234, 237, 240, 245, 246, 247, 286, 287, 289, 290, 291, 292, 293, 296, 306], "easier": [3, 9, 11, 12, 13, 14, 15, 18, 22, 35, 42, 56, 71, 88, 137, 212, 216, 218, 231, 237, 240, 254, 260, 269, 291, 297, 298, 302], "easiest": [5, 9, 11, 13, 15, 16, 88, 208, 211, 234, 260, 270, 286, 292, 297], "easili": [5, 13, 14, 25, 35, 41, 43, 55, 59, 71, 88, 89, 111, 113, 124, 128, 129, 148, 152, 155, 156, 189, 217, 220, 221, 226, 233, 234, 237, 239, 240, 243, 253, 291], "east": 89, "easyfit": 241, "ebnf": 233, "ec": 217, "ecart": 214, "eccentr": [96, 98], "echelon": [124, 210, 240, 293], "echelon_form": [124, 293], "eco": 259, "econ": 241, "econom": [80, 115, 259], "economi": 80, "ecosystem": [0, 14], "ect": 239, "ed": [4, 80, 96, 115, 124, 215, 239, 241], "edg": [72, 81, 82, 117, 210, 221, 240, 259, 296], "edit": [5, 9, 11, 12, 115, 124, 128, 214, 215, 217], "editor": [11, 12, 14], "edmond": 206, "edmonds74": 206, "edu": [11, 67, 72, 79, 80, 89, 91, 93, 115, 124, 128, 144, 210, 215, 220, 230, 234, 237, 241, 265], "educ": [55, 89, 124], "ee": [18, 206, 216], "eea": 214, "eeci": 124, "eez": 214, "ef": 259, "effect": [2, 4, 7, 12, 14, 18, 22, 27, 43, 54, 59, 79, 81, 88, 105, 113, 115, 124, 136, 163, 191, 200, 207, 211, 214, 218, 220, 237, 289, 299, 302], "effici": [15, 30, 39, 41, 48, 53, 61, 67, 69, 72, 79, 84, 88, 91, 92, 93, 104, 105, 120, 124, 128, 129, 144, 152, 153, 206, 209, 210, 211, 212, 214, 217, 218, 219, 220, 233, 234, 239, 253, 260, 286, 292, 293, 297], "effort": [11, 129, 212, 214], "eg": [22, 88, 198, 240], "egg": 262, "eggsham": 262, "egypt": 128, "egyptian": 128, "egyptian_fract": 128, "ei": [51, 55, 96, 113, 216, 221, 231, 234, 237, 247], "eick": [79, 86], "eig": [22, 30, 124], "eigen": 167, "eigenbra": [169, 182, 188], "eigenket": [169, 182, 188], "eigenspac": 124, "eigenst": [169, 181, 186, 188, 189], "eigenv": [22, 30, 124, 185, 291, 293, 302], "eigenvalu": [22, 124, 185, 188, 291, 302], "eigenvec": 22, "eigenvect": [22, 30, 124, 185, 293], "eigenvector": [22, 124, 185, 186, 206], "eight": [39, 57, 221], "eighth": 132, "eigval": 30, "eigvec": [22, 30], "eijk": 96, "einstein": [191, 247], "eisenstein": 214, "either": [2, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 22, 26, 28, 30, 36, 41, 42, 43, 48, 51, 52, 53, 54, 56, 61, 65, 67, 68, 72, 80, 87, 88, 89, 92, 93, 94, 96, 103, 105, 111, 113, 115, 116, 118, 124, 128, 134, 144, 148, 149, 152, 153, 154, 156, 158, 159, 175, 181, 188, 191, 193, 195, 205, 207, 209, 210, 211, 212, 214, 216, 217, 221, 223, 228, 229, 230, 231, 234, 237, 238, 239, 240, 241, 242, 245, 246, 253, 259, 260, 265, 274, 289, 292, 293], "ej": 0, "eject": [212, 217], "ektf": 128, "elabor": [4, 33, 44, 272], "elast": [134, 136, 137], "elastic_modulu": 136, "elastic_tendon_muscl": 134, "elbow": [208, 299], "electr": [18, 33, 131, 162, 164, 272, 274], "electric_potenti": [33, 272], "electromagnet": [33, 162, 195, 247, 274], "electron": [96, 146, 230], "eleg": [71, 218, 220], "elegantli": 51, "elem": [69, 79, 208], "elem_pol": [46, 144], "elem_zero": [46, 144], "element": [5, 13, 14, 15, 16, 18, 19, 30, 34, 36, 38, 41, 46, 51, 61, 65, 68, 69, 71, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 104, 111, 113, 115, 117, 118, 119, 120, 123, 124, 127, 128, 129, 134, 136, 137, 144, 145, 155, 160, 163, 177, 188, 196, 203, 204, 207, 208, 209, 210, 212, 214, 217, 219, 220, 221, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 246, 253, 255, 256, 259, 260, 261, 268, 287, 292, 293, 296, 297, 299], "element_": 229, "element_from_alg_num": 216, "element_from_anp": 216, "element_from_poli": 216, "element_from_r": 216, "element_kind": [88, 123, 229], "element_list": 210, "element_ord": 117, "elementari": [4, 11, 12, 28, 41, 42, 43, 79, 88, 89, 92, 93, 95, 96, 110, 113, 115, 124, 128, 184, 187, 212, 217, 218, 259, 260, 269, 277], "elementary_col_op": 124, "elementary_row_op": 124, "elementaryfunct": 94, "elementof": 221, "elements_doubl": 210, "elements_k": 211, "elements_sympi": 211, "elementwis": [120, 124, 210, 242], "elemsdict": 210, "eleventh": 132, "elgam": 89, "elgamal_private_kei": 89, "elgamal_public_kei": 89, "elif": [41, 42, 43, 94], "elimin": [21, 37, 39, 53, 69, 84, 88, 118, 119, 124, 210, 212, 219, 220, 222, 224, 233, 237, 239, 240, 247, 254, 293, 304], "eliminate_gen": 79, "eliminate_impl": 118, "ellips": [4, 99, 100, 104, 163, 207, 221, 283, 296], "ellipsi": [252, 260], "ellipt": [98, 128, 208], "elliptic": [96, 221], "elliptic_": [96, 98, 221], "elliptic_f": [96, 221], "elliptic_integr": 96, "elliptic_k": [96, 221], "elliptic_pi": [96, 221], "ellipticcurv": 51, "elliptice2": 96, "ellipticf": 96, "ellipticintegr": 96, "elliptick": [96, 221], "ellipticpi": [96, 221], "ellipticpi3": 96, "ellis": 98, "els": [3, 7, 11, 12, 13, 14, 15, 41, 42, 43, 50, 69, 78, 80, 84, 88, 89, 96, 98, 102, 104, 105, 113, 115, 118, 124, 128, 144, 191, 200, 207, 210, 212, 216, 217, 221, 222, 229, 233, 237, 239, 240, 245, 247, 252, 259, 262, 265, 268, 286, 292, 299], "elsewher": [15, 41, 93, 117, 210, 252], "elt": [210, 216], "em": 217, "email": [7, 221], "eman": 101, "embed": [4, 5, 67, 80, 88, 116, 216], "embryon": 68, "emerg": [160, 209], "emg": 241, "emit": [3, 12, 118, 221, 250, 257], "emphas": [48, 87], "emphasi": [5, 211], "empir": 18, "emploi": [68, 87, 92, 115, 128, 217, 220, 237, 241, 287], "empti": [13, 15, 16, 17, 18, 27, 41, 48, 51, 52, 56, 63, 67, 68, 69, 70, 79, 83, 87, 88, 100, 103, 104, 105, 118, 124, 128, 131, 134, 153, 154, 186, 199, 212, 216, 217, 221, 227, 228, 229, 231, 237, 239, 240, 252, 254, 259, 262, 292], "empty_product": 87, "empty_set": 229, "empty_sum": 87, "emptyprint": 221, "emptysequ": [221, 227], "emptyset": [13, 41, 52, 67, 68, 118, 221, 229, 240, 265, 298], "emufphzlrfaxyusdjkzldkrnshgnfivj": 89, "emul": [13, 233, 240, 242, 260], "en": [4, 5, 8, 12, 34, 41, 43, 61, 63, 64, 65, 67, 68, 69, 71, 76, 77, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 98, 100, 104, 105, 106, 115, 116, 117, 118, 120, 124, 128, 142, 144, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 200, 202, 203, 210, 217, 218, 224, 228, 229, 230, 237, 240, 241, 254, 259, 260, 265, 267, 271, 273, 275, 293], "enabl": [2, 5, 9, 15, 22, 43, 59, 88, 115, 116, 128, 137, 191, 200, 205, 221, 237, 241, 252, 257, 260, 293, 296, 297, 302], "enable_automatic_int_sympif": 116, "enable_automatic_symbol": 116, "enable_eager_execut": 260, "encapsul": [197, 214, 240, 254], "enciph": 89, "encipher_affin": 89, "encipher_atbash": 89, "encipher_bifid": 89, "encipher_bifid5": 89, "encipher_bifid6": 89, "encipher_elgam": 89, "encipher_gm": 89, "encipher_hil": 89, "encipher_kid_rsa": 89, "encipher_railf": 89, "encipher_rot13": 89, "encipher_rsa": 89, "encipher_shift": 89, "encipher_substitut": 89, "encipher_vigener": 89, "encircl": 113, "enclos": [4, 98, 99, 104, 127, 145, 221, 231, 260], "encloses_point": [98, 99, 104], "encod": [3, 13, 72, 80, 86, 89, 118, 221, 252, 256, 259], "encode_mors": 89, "encompass": 211, "encount": [5, 16, 39, 48, 88, 115, 124, 153, 183, 209, 214, 217, 239, 240, 254, 265, 293], "encourag": [4, 13, 25, 26, 68, 216], "encryp": 89, "encrypt": 89, "encyclopedia": [34, 100, 203], "encyclopediaofmath": 96, "end": [0, 2, 4, 7, 11, 12, 13, 14, 16, 18, 25, 26, 27, 32, 33, 36, 39, 41, 42, 43, 46, 49, 53, 55, 61, 67, 68, 69, 78, 79, 84, 86, 87, 88, 89, 93, 94, 96, 98, 100, 104, 113, 116, 118, 120, 124, 128, 130, 136, 137, 140, 148, 156, 158, 159, 196, 200, 205, 206, 210, 214, 221, 224, 227, 229, 230, 234, 237, 238, 239, 240, 241, 242, 243, 252, 254, 255, 257, 259, 262, 272, 287, 291, 293, 297, 299, 302, 306, 309], "end_point": 304, "end_point_aux": 304, "end_point_forc": 304, "endian": 72, "endif": [69, 254], "endnumb": 237, "endomorph": [111, 216], "endomorphism_r": 216, "endomorphismr": 216, "endow": [209, 217], "endpoint": [18, 33, 87, 88, 92, 101, 148, 229, 272, 304], "energi": [13, 22, 23, 33, 47, 146, 149, 153, 155, 167, 192, 196, 247, 272, 282, 303, 311], "enforc": [18, 80, 299, 302], "eng": 80, "engag": 71, "engin": [16, 18, 29, 30, 34, 131, 132, 134, 135, 138, 140, 203, 237, 296, 299], "english": [4, 11, 89], "engr": 115, "enhanc": [18, 88, 214, 241, 287, 299], "enlarg": 99, "enough": [3, 4, 11, 14, 22, 30, 50, 52, 79, 88, 92, 115, 124, 127, 128, 144, 212, 214, 221, 237, 287, 289], "enricogiampieri": 259, "ensembl": 185, "enspac": [237, 240], "ensur": [3, 11, 12, 16, 18, 43, 48, 50, 51, 52, 53, 56, 59, 88, 89, 92, 119, 124, 131, 134, 152, 156, 216, 217, 221, 252, 257, 260, 299, 304], "ent": 128, "entail": 115, "enter": [9, 25, 37, 80, 88, 89, 93, 101, 128, 130, 136, 140, 153, 158, 221, 231, 239, 252, 292, 296, 302], "entertain": 290, "enthought": 59, "entir": [2, 3, 12, 14, 24, 28, 41, 79, 88, 89, 92, 93, 96, 102, 104, 113, 127, 150, 158, 200, 208, 210, 216, 229, 246, 255, 257, 291, 297, 304], "entireti": 32, "entiti": [22, 28, 33, 88, 98, 101, 102, 104, 105, 113, 240, 274, 283, 293], "entity1": 100, "entity2": 100, "entri": [0, 22, 28, 53, 65, 70, 78, 80, 86, 89, 100, 113, 117, 119, 120, 127, 131, 153, 155, 163, 210, 214, 216, 217, 231, 241, 260, 302], "entropi": [89, 241], "entropy_": 241, "entropypost": 241, "enum": [71, 216, 258, 284], "enum_al": 256, "enum_larg": 256, "enum_rang": 256, "enum_smal": 256, "enumer": [41, 58, 72, 77, 80, 83, 91, 95, 113, 118, 128, 134, 216, 217, 231, 256, 259, 277], "enumerate_st": 186, "env": 130, "envelop": 237, "environ": [2, 6, 8, 10, 11, 12, 13, 15, 88, 116, 205, 221, 241, 252, 262, 289, 291, 296], "envis": 39, "eom": [27, 304, 306, 307], "eom_method": [24, 158, 304], "ep": [69, 79, 87, 212, 216, 217], "epath": 233, "epathtool": 233, "eppstein": 128, "eps_dim": 247, "epsilon": [13, 16, 87, 89, 96, 113, 115, 162, 221, 247], "eq": [4, 12, 14, 15, 16, 37, 41, 43, 50, 51, 55, 57, 65, 67, 69, 88, 93, 94, 96, 98, 101, 105, 113, 118, 194, 207, 208, 212, 217, 219, 221, 223, 227, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 253, 254, 260, 265, 289, 291, 298], "eq1": [55, 98, 237, 239, 240], "eq2": [55, 98, 118, 237, 240], "eq3": 240, "eq4": 240, "eq_x": 233, "eqn": [52, 55, 67, 240], "eqs_coeff": 219, "eqs_mat": 237, "eqs_one_soln_set": 55, "eqs_r": 219, "eqs_rh": 219, "eqs_to_matrix": 219, "equ": 239, "equal": [4, 12, 13, 14, 15, 17, 18, 25, 26, 36, 37, 41, 42, 43, 48, 55, 57, 61, 65, 68, 69, 70, 77, 78, 79, 80, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 101, 102, 103, 104, 105, 107, 113, 118, 120, 124, 128, 132, 134, 136, 140, 144, 145, 148, 149, 153, 155, 156, 158, 175, 176, 191, 195, 196, 200, 204, 208, 209, 210, 211, 212, 214, 216, 217, 219, 221, 227, 229, 231, 234, 237, 238, 239, 240, 241, 247, 252, 253, 254, 259, 262, 265, 270, 275, 287, 290, 298, 299, 302, 304], "equal_valu": 88, "equat": [5, 13, 14, 15, 16, 18, 21, 22, 23, 24, 29, 30, 31, 34, 35, 36, 37, 39, 44, 46, 50, 67, 69, 84, 87, 88, 90, 94, 96, 98, 101, 102, 106, 110, 111, 112, 113, 115, 116, 124, 128, 131, 132, 133, 134, 136, 140, 144, 146, 148, 149, 151, 152, 153, 154, 156, 158, 160, 164, 204, 205, 206, 207, 208, 210, 212, 214, 215, 216, 219, 220, 221, 227, 231, 233, 236, 237, 238, 246, 265, 270, 271, 275, 287, 288, 291, 300, 302, 303, 304, 305, 306, 307, 309, 311], "equidimension": 237, "equidist": 88, "equidistantli": 287, "equilater": 104, "equilibrium": [18, 27, 137, 140, 148, 299, 302], "equilibrium_length": 148, "equispac": 217, "equiv": [79, 89, 93, 128, 216, 221, 231, 234], "equival": [3, 12, 13, 14, 15, 16, 22, 23, 36, 37, 41, 42, 43, 46, 53, 55, 61, 65, 69, 70, 78, 79, 84, 88, 89, 92, 94, 96, 113, 115, 124, 128, 130, 141, 142, 144, 152, 174, 185, 188, 191, 194, 195, 200, 205, 207, 208, 209, 210, 211, 212, 216, 217, 221, 228, 229, 233, 234, 237, 239, 240, 242, 243, 246, 247, 256, 260, 262], "equivalent_dim": 194, "eqworld": 237, "eqyptian": 234, "eratosthen": 128, "erdelyi": [96, 115], "erdo": 256, "erf": [4, 96, 113, 115, 221, 231, 241], "erf2": [4, 96, 221], "erf2inv": [4, 96, 221], "erfc": [4, 96, 113, 221, 241], "erfcinv": [4, 96, 221], "erfi": [4, 96, 113, 221], "erfinv": [4, 96, 221, 241], "eric": [115, 215], "erik": 265, "erlang": 241, "erlang_distribut": 241, "erlangdistribut": 241, "erlend": 82, "erron": 92, "error": [2, 3, 4, 5, 8, 11, 12, 13, 14, 22, 36, 37, 41, 42, 50, 51, 52, 53, 54, 55, 57, 60, 67, 69, 77, 80, 87, 88, 89, 94, 98, 103, 113, 115, 124, 127, 128, 130, 153, 156, 158, 206, 209, 210, 211, 212, 214, 218, 221, 223, 229, 237, 238, 239, 240, 241, 252, 253, 254, 257, 259, 262, 265, 286], "error_funct": 96, "error_term": 128, "error_when_incomplet": 124, "ert": 0, "escap": [88, 130, 207, 221, 262], "especi": [3, 4, 12, 14, 21, 22, 28, 30, 36, 43, 57, 87, 88, 124, 185, 217, 233, 237, 239, 252, 286, 287], "espinosa": 96, "esqu": 30, "essenc": 269, "essenti": [5, 14, 18, 33, 36, 72, 83, 88, 92, 94, 95, 96, 113, 155, 203, 208, 209, 212, 216, 228, 231, 266, 269, 272, 273, 274, 280, 282, 300, 302], "establish": [9, 18, 39, 84, 113, 148, 152, 156, 158, 231, 307], "estim": [57, 67, 87, 88, 92, 113, 287], "et": [115, 131, 132, 134, 170, 214, 217, 218, 230, 233], "eta": [16, 96, 113, 216, 221, 237, 238, 241], "etc": [7, 11, 12, 13, 18, 22, 33, 35, 36, 39, 41, 42, 64, 67, 69, 84, 88, 89, 93, 94, 106, 115, 117, 118, 122, 128, 130, 134, 162, 171, 175, 188, 191, 202, 207, 208, 209, 210, 211, 214, 216, 221, 222, 229, 230, 231, 233, 237, 240, 241, 245, 253, 254, 259, 270, 274], "etiquett": 7, "euclid": [88, 214, 215], "euclidean": [90, 101, 103, 148, 156, 200, 212, 214, 217], "euclidean_algorithm": 88, "euclideanspac": 61, "eucliden": 89, "euclidtool": 214, "euler": [4, 36, 61, 67, 68, 87, 88, 89, 92, 93, 96, 104, 110, 116, 128, 152, 188, 200, 205, 206, 217, 221, 237, 241, 265, 267], "euler_angl": [265, 267], "euler_equ": 67, "euler_maclaurin": [87, 92], "euler_numb": 93, "euler_poli": [93, 217], "euler_pseudoprim": 128, "eulergamma": [4, 88, 92, 93, 96], "eulerian": 96, "eulerlin": 104, "eulernumb": 93, "eulervm": 221, "eulerzigzagnumb": 93, "eurocam": 115, "eurocast": 215, "european": 208, "eval": [4, 13, 14, 41, 63, 64, 69, 88, 94, 96, 132, 177, 191, 212, 217, 221, 254, 286], "eval_approx": 217, "eval_color_func": 207, "eval_control": 175, "eval_diffeq": 299, "eval_eom": 18, "eval_expr": 130, "eval_forc": 18, "eval_frequ": 144, "eval_holo_fsolv": 299, "eval_holonom": 299, "eval_integr": 87, "eval_levicivita": 96, "eval_poli": 210, "eval_poly_mul": 210, "eval_r": [217, 299], "eval_rh": [18, 299], "eval_zeta_funct": 87, "evalf": [2, 4, 14, 15, 16, 22, 30, 41, 48, 54, 57, 69, 87, 92, 93, 94, 96, 107, 110, 111, 124, 130, 173, 212, 217, 221, 228, 229, 233, 241, 253, 260, 287, 288, 302], "evalf_r": 217, "evalfmixin": 88, "evalu": [2, 4, 15, 18, 21, 22, 23, 27, 28, 39, 41, 42, 49, 55, 57, 61, 62, 63, 64, 67, 69, 88, 90, 93, 94, 96, 99, 103, 104, 113, 115, 118, 120, 124, 128, 129, 130, 131, 132, 134, 144, 150, 166, 168, 170, 172, 174, 177, 180, 188, 191, 206, 207, 210, 211, 212, 214, 215, 217, 221, 222, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 253, 254, 255, 260, 272, 277, 286, 287, 288, 289, 291, 293, 300], "evaluate_delta": 191, "evaluate_integr": 241, "evaluate_pauli_product": 166, "evaluationfail": 214, "evalul": 88, "even": [3, 4, 5, 9, 11, 12, 14, 15, 16, 18, 22, 23, 38, 41, 43, 48, 51, 54, 55, 56, 57, 62, 63, 64, 65, 66, 69, 70, 71, 76, 79, 80, 87, 88, 89, 92, 93, 94, 96, 100, 104, 113, 115, 118, 124, 127, 128, 130, 135, 145, 151, 176, 187, 194, 196, 200, 206, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 229, 230, 231, 233, 234, 237, 239, 240, 248, 252, 274, 286, 287, 289, 291, 292, 297, 298], "evenhandl": 65, "evenli": 234, "evenpred": 65, "event": [216, 241], "eventu": [11, 79, 96, 115, 130, 207, 208, 228, 254, 259], "ever": [12, 13, 14, 15, 36, 43, 94, 208, 217, 231, 237, 254, 257, 292], "everi": [2, 3, 4, 7, 11, 12, 14, 15, 28, 33, 35, 36, 41, 43, 48, 52, 58, 63, 64, 65, 68, 74, 76, 79, 80, 88, 89, 103, 115, 117, 124, 128, 144, 195, 207, 208, 209, 211, 212, 214, 216, 221, 226, 229, 231, 233, 234, 237, 240, 241, 243, 269, 272, 274, 290, 292, 293, 297], "everyon": [12, 218], "everyth": [3, 5, 12, 14, 16, 27, 43, 69, 88, 90, 96, 115, 121, 146, 187, 188, 207, 221, 292, 296], "everywher": [3, 15, 16, 33, 88, 96, 113, 144, 259, 274], "evid": [113, 153, 231, 243, 310], "evinc": 221, "evolut": 98, "ew": 215, "ewen": 241, "ex": [76, 115, 145, 158, 211, 216, 217, 247, 255], "exact": [3, 11, 12, 13, 15, 16, 18, 30, 41, 43, 46, 54, 65, 87, 88, 89, 92, 98, 103, 110, 113, 115, 124, 132, 136, 156, 185, 210, 211, 212, 214, 217, 228, 233, 237, 239, 252, 262, 289, 291, 296], "exact_differential_equ": 237, "exactli": [3, 4, 5, 11, 12, 13, 14, 15, 16, 28, 43, 48, 55, 57, 65, 72, 79, 88, 91, 92, 124, 130, 206, 217, 231, 233, 237, 240, 242, 256, 259, 260, 287, 289, 291, 296, 297], "exactquotientfail": [211, 212, 214, 217], "examin": [69, 89, 180, 252, 254, 297], "exampl": [0, 1, 2, 3, 5, 7, 12, 13, 14, 15, 16, 18, 22, 23, 24, 25, 26, 28, 30, 32, 33, 35, 37, 38, 39, 41, 42, 47, 49, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 110, 111, 113, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 129, 130, 132, 134, 136, 138, 140, 142, 144, 146, 147, 148, 149, 150, 151, 152, 153, 155, 156, 158, 159, 160, 162, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 183, 185, 186, 188, 189, 190, 191, 192, 193, 197, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 222, 223, 224, 226, 227, 229, 230, 233, 234, 236, 237, 238, 239, 240, 245, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 265, 267, 268, 270, 272, 273, 274, 275, 280, 282, 283, 286, 287, 288, 289, 290, 292, 293, 295, 296, 298, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311], "examples_arg": 252, "examples_kwarg": 252, "exaxmpl": 88, "exc": 214, "exce": [70, 128, 247, 260], "exceed": [14, 16, 216, 302], "exceedingli": 214, "excel": [59, 92, 216, 295], "excent": 104, "except": [2, 3, 4, 11, 13, 14, 15, 16, 39, 41, 42, 43, 53, 57, 67, 69, 79, 80, 88, 89, 92, 93, 94, 96, 113, 115, 128, 149, 195, 197, 206, 208, 210, 211, 212, 216, 217, 218, 219, 221, 230, 233, 234, 237, 238, 240, 245, 250, 252, 254, 255, 258, 259, 269, 272, 284, 286, 289, 292, 310], "exceptional_isomorph": 71, "exceptioninfo": 250, "excerpt": 4, "excess": 15, "exchang": [84, 89, 124, 206, 210, 259], "excircl": 104, "excit": [18, 131, 134, 208, 299, 303], "exclud": [11, 30, 50, 55, 57, 69, 87, 88, 115, 124, 150, 155, 209, 210, 212, 214, 217, 227, 237, 239, 252, 255, 259], "exclude_empti": 252, "exclus": [87, 88, 94, 118, 124, 214, 289], "exec": [69, 88, 116, 260], "execut": [12, 15, 30, 41, 59, 69, 116, 124, 136, 207, 221, 237, 240, 250, 252, 254, 255, 260, 262, 264, 276, 291, 296], "exercis": [43, 79, 256, 290, 297, 301], "exert": 148, "exgaussian": 241, "exhaust": [3, 41, 231, 259, 290], "exhibit": [128, 206, 216, 230], "exict": 131, "exist": [3, 7, 11, 13, 14, 15, 18, 33, 36, 39, 41, 43, 54, 57, 67, 68, 69, 72, 79, 88, 92, 98, 100, 103, 104, 105, 106, 115, 118, 124, 128, 140, 154, 158, 181, 207, 208, 209, 210, 212, 214, 216, 221, 228, 229, 231, 234, 237, 239, 240, 252, 260, 270, 291, 293, 298], "existing_julia_fcn": 221, "existing_octave_fcn": [69, 221], "existing_smtlib_fcn": 221, "exit": [69, 128, 252], "exlud": 239, "exogen": [31, 158], "exotica": 74, "exp": [11, 12, 13, 14, 15, 16, 18, 37, 41, 43, 46, 54, 55, 57, 61, 67, 69, 78, 87, 88, 90, 92, 93, 94, 96, 106, 107, 110, 113, 115, 120, 124, 128, 130, 132, 146, 167, 170, 186, 192, 206, 211, 212, 217, 218, 221, 223, 228, 231, 233, 237, 238, 239, 240, 241, 242, 259, 275, 287, 291, 293, 298], "exp1": [88, 221], "exp2": [69, 221], "exp2_opt": 69, "exp_polar": [88, 94, 96, 231], "exp_r": 223, "expand": [4, 12, 13, 14, 15, 16, 22, 30, 39, 41, 46, 48, 69, 88, 90, 92, 93, 94, 96, 113, 115, 124, 144, 172, 180, 183, 190, 191, 209, 210, 211, 214, 216, 217, 218, 221, 224, 228, 230, 231, 233, 237, 240, 241, 245, 253, 260, 271, 286, 291, 302], "expand_": 43, "expand_complex": [43, 88], "expand_func": [88, 93, 96], "expand_hint": 88, "expand_log": [43, 69, 88, 233], "expand_mul": [88, 113], "expand_multinomi": 88, "expand_opt": 69, "expand_power_bas": [88, 233], "expand_power_exp": 88, "expand_trig": [14, 43, 88, 286], "expanded_expr": 291, "expans": [4, 11, 27, 39, 43, 69, 88, 90, 93, 94, 96, 115, 124, 128, 170, 172, 217, 218, 223, 224, 225, 230, 232, 233, 237, 239, 240, 277, 288, 297], "expansil": [148, 156], "expect": [4, 5, 7, 13, 14, 16, 18, 22, 41, 43, 46, 68, 70, 73, 88, 94, 96, 100, 118, 128, 129, 144, 148, 152, 156, 185, 211, 214, 216, 218, 219, 228, 233, 236, 239, 240, 241, 250, 252, 253, 256, 259, 260, 291, 292, 299, 300], "expectationmatrix": 241, "expectedexcept": 250, "expediti": 12, "expens": [14, 15, 27, 43, 55, 88, 230, 237, 238, 239, 255, 293], "experi": [2, 18, 240, 241, 302], "experienc": [10, 13, 18, 70], "experiment": [2, 3, 233], "expint": [96, 221], "expintegral": [96, 221], "expintegralei": 221, "expj": 237, "explain": [2, 3, 4, 5, 7, 12, 41, 48, 57, 68, 84, 88, 96, 106, 111, 156, 208, 211, 214, 216, 218, 228], "explan": [3, 5, 12, 16, 20, 23, 37, 41, 44, 61, 62, 63, 64, 65, 66, 68, 69, 73, 76, 77, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 94, 96, 100, 110, 111, 113, 115, 124, 128, 131, 132, 134, 144, 147, 148, 149, 150, 152, 153, 155, 156, 158, 159, 160, 162, 165, 168, 170, 172, 174, 186, 191, 206, 207, 208, 210, 212, 214, 216, 217, 219, 223, 224, 226, 227, 228, 229, 231, 233, 234, 237, 239, 241, 242, 243, 246, 247, 252, 255, 257, 259, 260, 294, 300, 305, 310], "explanatori": 302, "explicit": [11, 13, 14, 15, 18, 22, 27, 31, 36, 41, 43, 48, 51, 52, 80, 87, 88, 92, 104, 105, 115, 127, 128, 134, 153, 154, 158, 208, 217, 220, 221, 223, 229, 231, 237, 238, 239, 240, 256, 299, 306], "explicit_formulas_for_small_system": 124, "explicit_kinemat": [153, 307], "explicitli": [3, 12, 13, 14, 15, 22, 28, 41, 43, 69, 79, 80, 88, 89, 91, 94, 96, 101, 105, 120, 124, 129, 144, 158, 207, 209, 210, 211, 212, 214, 217, 221, 233, 237, 239, 257, 289, 293, 296, 298], "explik": 223, "exploit": [113, 253], "explor": [25, 26, 44, 207, 216, 256, 297], "explos": [125, 210], "expm1": [69, 221], "expm1_opt": 69, "expon": [14, 16, 48, 57, 66, 69, 88, 89, 94, 95, 96, 113, 115, 120, 128, 142, 144, 197, 209, 210, 211, 217, 218, 221, 230, 233, 237, 240, 245, 256, 297], "exponent_vector": 78, "exponenti": [13, 16, 41, 55, 61, 69, 79, 84, 88, 89, 93, 115, 118, 124, 128, 130, 177, 193, 218, 233, 237, 240, 241, 288, 289, 293], "exponential_distribut": 241, "exponential_integr": 96, "exponentialdistribut": 241, "exponentially_modified_gaussian_distribut": 241, "export": [60, 221], "expos": [13, 68, 130, 241], "exposit": 228, "expr": [3, 4, 12, 14, 15, 16, 21, 22, 27, 41, 43, 52, 54, 57, 63, 64, 66, 67, 69, 80, 87, 90, 92, 94, 96, 98, 110, 113, 115, 118, 120, 124, 128, 129, 130, 134, 144, 148, 150, 153, 155, 156, 158, 168, 172, 174, 176, 180, 183, 186, 188, 189, 191, 198, 200, 202, 205, 207, 209, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 223, 224, 226, 228, 230, 233, 236, 237, 238, 239, 240, 241, 242, 243, 245, 247, 248, 253, 254, 255, 257, 260, 265, 267, 268, 269, 270, 272, 286, 287, 289, 291, 292, 296, 297, 298], "expr1": [3, 41, 144, 207, 239, 292], "expr2": [3, 41, 144, 207, 292], "expr_1": 144, "expr_2": 144, "expr_3": 144, "expr_4": 144, "expr_class": 221, "expr_free_symbol": [12, 88], "expr_i": 207, "expr_modifi": 16, "expr_to_holonom": [107, 110, 111, 112], "expr_tr": 243, "expr_with_intlimit": [87, 115], "expr_with_limit": [87, 115], "expr_x": 207, "expr_z": 207, "exprcondpair": 94, "expreal": 41, "express": [2, 3, 4, 5, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 42, 43, 49, 50, 53, 55, 57, 61, 62, 63, 64, 65, 66, 67, 80, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 101, 103, 104, 111, 112, 113, 115, 116, 121, 122, 123, 124, 127, 128, 129, 132, 134, 136, 144, 145, 147, 148, 149, 151, 152, 153, 154, 155, 156, 158, 159, 166, 170, 174, 175, 179, 180, 183, 186, 188, 189, 190, 191, 193, 194, 195, 196, 198, 200, 202, 204, 205, 206, 207, 208, 209, 210, 212, 214, 216, 217, 218, 221, 222, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 244, 245, 246, 247, 248, 250, 253, 254, 255, 256, 257, 260, 262, 265, 267, 268, 269, 271, 272, 274, 280, 282, 287, 288, 289, 290, 291, 293, 296, 297, 298, 306], "express_coordin": [269, 270], "expression_complex": 48, "expression_complex_poli": 48, "expression_expand": 48, "expression_str": 14, "expressiondomain": [211, 212], "expressions_dom": 211, "expressions_sympi": 211, "expressli": 269, "exprtool": 217, "exprwithintlimit": [87, 115], "exprwithlimit": [87, 115], "expsboth": 228, "expsf": 228, "expsg": 228, "exquo": [210, 211, 212, 217], "exquo_ground": [212, 217], "exr": 14, "exradii": 104, "exradiu": 104, "exsqrt": 212, "ext": [5, 208, 212], "ext_rank": 247, "extend": [4, 5, 12, 14, 30, 41, 43, 51, 65, 69, 79, 80, 88, 89, 93, 100, 113, 115, 124, 128, 133, 158, 199, 205, 207, 209, 212, 214, 216, 217, 218, 221, 228, 230, 234, 236, 237, 240, 241, 242, 254, 256, 289, 291, 299], "extend_to_no": 128, "extended_euclidean_algorithm": 88, "extended_neg": [41, 88], "extended_nonneg": [41, 88], "extended_nonposit": [41, 88], "extended_nonzero": [41, 88, 221], "extended_posit": [41, 88], "extended_r": [41, 65, 88, 221, 236, 240], "extended_real_number_lin": 41, "extendedrealhandl": 65, "extendedrealpred": 65, "extens": [0, 2, 4, 5, 7, 12, 30, 41, 43, 79, 88, 93, 94, 100, 104, 115, 124, 132, 133, 134, 148, 155, 156, 209, 211, 212, 214, 215, 216, 217, 221, 231, 233, 237, 239, 240, 253, 254, 290, 297, 299], "extension_veloc": [18, 134, 148, 156, 299], "extensionel": [208, 212], "extensor": 299, "extensorpathwai": 299, "extent": 69, "exterior": [90, 104], "exterior_angl": 104, "extern": [2, 23, 59, 88, 116, 130, 140, 142, 151, 205, 211, 212, 222, 229, 233, 241, 252, 253, 302], "extra": [8, 13, 18, 33, 69, 71, 88, 89, 128, 129, 130, 153, 196, 214, 221, 231, 237, 252, 253, 254, 272, 310], "extra_compile_arg": 253, "extra_data": 14, "extra_link_arg": 253, "extra_preambl": 221, "extract": [15, 23, 28, 36, 48, 52, 56, 57, 67, 88, 115, 120, 124, 128, 145, 148, 151, 210, 214, 216, 217, 239, 240, 241, 252, 254, 259, 302], "extract_addit": 88, "extract_branch_factor": 88, "extract_fundamental_discrimin": 216, "extract_leading_ord": 88, "extract_multipl": 88, "extract_slic": 210, "extract_type_ten": 145, "extraglob": 252, "extran": [5, 237], "extraneousfactor": 214, "extrapol": [92, 228], "extrem": [3, 12, 14, 27, 36, 53, 79, 92, 98, 104, 115, 120, 140, 233, 241], "extrins": 61, "ey": [13, 53, 88, 119, 120, 121, 122, 124, 126, 210, 216, 242, 262, 293], "eyz": [51, 234], "ez": [212, 247], "f": [0, 4, 8, 11, 12, 13, 14, 15, 16, 18, 23, 25, 26, 30, 33, 36, 39, 43, 46, 48, 51, 52, 54, 55, 67, 68, 69, 70, 71, 78, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 106, 111, 112, 113, 115, 117, 120, 124, 128, 129, 130, 131, 132, 134, 137, 140, 142, 148, 149, 151, 152, 153, 154, 156, 158, 160, 164, 165, 176, 177, 180, 189, 191, 194, 200, 205, 206, 207, 208, 209, 211, 212, 214, 215, 216, 217, 218, 220, 221, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 252, 253, 254, 255, 256, 259, 260, 262, 271, 272, 275, 286, 287, 292, 296, 297, 298, 299, 304, 307], "f0": 212, "f1": [16, 22, 30, 54, 79, 113, 115, 124, 144, 149, 207, 212, 214, 217, 221, 223, 239, 310], "f16": 69, "f2": [16, 22, 30, 54, 88, 113, 124, 144, 149, 194, 207, 214, 217, 221, 223, 239, 310], "f2py": [2, 69, 129, 253, 254], "f2pycodewrapp": 253, "f3": [207, 221, 310], "f4": [117, 207], "f401": 116, "f5": [13, 207], "f5b": [214, 217], "f6": 207, "f8": 207, "f811": [12, 88], "f821": [88, 255], "f90": 254, "f95": [69, 253, 254], "f_": [18, 25, 26, 27, 39, 88, 93, 96, 115, 214, 220, 221, 231, 237], "f_0": [90, 93, 154, 214, 303], "f_1": [31, 90, 93, 96, 113, 144, 154, 158, 208, 214, 217, 237], "f_2": [31, 93, 113, 144, 154, 158, 214, 231, 237], "f_3": [31, 154, 158, 237], "f_4": [117, 154], "f_5": 214, "f_a": 154, "f_c": [154, 306], "f_code": [69, 254], "f_cython": 253, "f_d": [25, 26, 153, 158, 214], "f_dnh": 153, "f_fortran": 253, "f_h": 25, "f_i": [90, 113, 124, 214, 218], "f_j": [214, 231], "f_k": [25, 87, 153, 214], "f_list": 214, "f_m": [18, 158], "f_m_max": [18, 134, 299], "f_m_max_bicep": 299, "f_m_max_tricep": 299, "f_n": [87, 93, 96, 208, 214, 217, 237], "f_name": [69, 254], "f_q": 231, "f_r": [25, 27, 214], "f_real": [88, 95], "f_real_inherit": [88, 95], "f_result": 254, "f_t": [18, 134], "f_v": [154, 306], "f_x": [33, 240, 272], "f_y": [33, 272], "f_z": [33, 93, 272], "fab": [69, 221], "fabian": 0, "fac": 113, "face": [22, 79, 81, 101, 115, 214, 218, 221, 234, 275, 293], "facil": 69, "facilit": [13, 23, 34, 129, 133, 151, 162, 203, 252, 287], "fact": [4, 12, 13, 15, 27, 41, 42, 43, 52, 64, 65, 88, 93, 96, 106, 113, 128, 140, 148, 196, 208, 209, 210, 211, 214, 216, 218, 220, 231, 233, 237, 240, 252, 260, 274, 286, 289, 290, 291, 292, 297, 302], "factor": [2, 12, 14, 15, 16, 30, 70, 79, 80, 87, 88, 89, 92, 93, 94, 96, 113, 115, 124, 128, 136, 144, 160, 168, 172, 175, 187, 191, 195, 196, 197, 198, 208, 210, 211, 212, 213, 215, 216, 217, 224, 230, 231, 233, 234, 237, 239, 241, 245, 256, 269, 272, 291, 293, 303], "factor_": [13, 88, 93, 128, 217, 234], "factor_index": 79, "factor_list": [212, 217, 297], "factor_list_includ": [212, 217], "factor_term": [88, 217, 230, 233, 310], "factori": [4, 12, 39, 43, 53, 87, 88, 92, 93, 96, 124, 128, 130, 206, 212, 214, 215, 216, 217, 221, 223, 233, 239, 241, 254, 255, 259, 260, 261, 297], "factorial2": [93, 192, 221], "factorial_mo": 241, "factorial_not": 130, "factorialmo": 241, "factorialpow": 221, "factoring_visitor": 256, "factorint": [88, 93, 128, 216, 217, 256], "factoris": [128, 210, 211, 212, 214, 217, 237], "factorisatio": 256, "factorrat": 128, "factortool": [211, 214], "factrul": 41, "fagin": 233, "fail": [2, 3, 4, 5, 8, 11, 13, 14, 41, 42, 43, 48, 69, 79, 80, 84, 87, 88, 92, 94, 112, 113, 115, 116, 124, 125, 128, 130, 181, 186, 205, 207, 210, 211, 212, 214, 216, 217, 221, 228, 231, 237, 239, 241, 250, 252, 259, 260, 293, 302], "failing_express": 88, "failing_numb": 88, "failur": [11, 13, 84, 92, 105, 113, 128, 241, 252, 297], "fair": [100, 241], "fairli": [23, 32, 88, 96, 113, 151, 208, 302], "fall": [18, 70, 87, 88, 93, 116, 144, 205, 216, 221, 234, 238, 241], "fallback": [14, 88, 116, 191, 205, 211, 221, 239], "fallingfactori": [93, 221], "fals": [5, 12, 14, 15, 16, 22, 24, 25, 26, 27, 28, 31, 35, 36, 41, 42, 43, 48, 50, 57, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 74, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 110, 113, 115, 116, 118, 119, 120, 123, 124, 125, 128, 130, 132, 134, 136, 142, 144, 146, 147, 149, 150, 153, 154, 155, 158, 163, 175, 176, 180, 183, 188, 189, 190, 191, 194, 198, 200, 201, 202, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 228, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 246, 247, 250, 252, 253, 254, 255, 259, 260, 262, 265, 268, 289, 292, 293, 296, 302, 304, 309, 310, 311], "falsei": 42, "famili": [69, 72, 106, 115, 209], "familiar": [9, 10, 11, 16, 18, 22, 28, 43, 115, 175, 218, 287, 289, 295], "famou": [70, 96, 115, 128, 234], "fancyset": 229, "far": [12, 14, 16, 68, 88, 102, 115, 206, 208, 211, 221, 231, 260, 286, 287, 289], "farr": 90, "farther": 68, "farthest": [98, 104], "fascin": [23, 151], "fashion": [25, 26, 28, 36, 55, 69, 88, 94, 120, 208, 259, 299, 302], "fast": [2, 14, 41, 55, 69, 88, 122, 124, 128, 153, 154, 163, 212, 213, 214, 215, 216, 217, 218, 224, 228, 237, 239, 256, 259, 260], "fast_walsh": 91, "faster": [2, 11, 13, 14, 21, 27, 41, 48, 53, 54, 69, 73, 88, 96, 124, 128, 129, 150, 153, 154, 210, 211, 212, 214, 216, 217, 218, 222, 224, 228, 233, 234, 237, 238, 240, 253, 256], "fastest": [88, 93, 115, 128, 129, 210, 218], "fastfouriertransform": 91, "fateman": 215, "father": 234, "fauger": [214, 217], "fault": 237, "faux1": 304, "faux2": 304, "favor": 13, "fbra": 191, "fc": 140, "fcall": 69, "fcn": [69, 254], "fcn2": 254, "fcode": [69, 221], "fcodegen": 254, "fcodeprint": [69, 221], "fd": [67, 69, 191], "fd1": 144, "fdict": 115, "fdiff": [4, 11, 43, 69, 88, 94, 95, 96, 132], "fdistribut": 241, "fe": 140, "feasibl": [79, 144], "featur": [0, 2, 3, 5, 7, 11, 12, 13, 16, 17, 18, 19, 22, 23, 30, 34, 43, 58, 59, 88, 90, 92, 221, 237, 241, 250, 254, 257, 273, 285, 290, 291, 295, 297, 299, 301], "feb": 154, "februari": 215, "fed": 144, "feedback": [11, 46, 89, 141, 144, 290, 301], "feedforward": 144, "feel": [11, 30, 31, 41, 59, 233, 237, 239], "feet": 104, "felix": 89, "femtesemest": 136, "fermat": [128, 162], "fermat_pseudoprim": 128, "fermi": [96, 191], "fermi_level": 191, "fermion": [93, 128, 191], "fermionicoper": 191, "fernando": 0, "ferrer": 77, "fetch": 9, "fetch_item": 261, "fetter": 191, "few": [2, 3, 8, 12, 13, 14, 15, 23, 32, 35, 36, 41, 51, 57, 65, 78, 80, 88, 89, 115, 116, 128, 129, 151, 194, 205, 208, 216, 221, 229, 230, 231, 237, 239, 240, 241, 254, 259, 297, 302], "fewer": [27, 103, 104, 156, 241, 287], "fewest": [118, 185], "ff": [87, 89, 93, 206, 209, 210, 211, 216, 217], "ff_dens": 210, "ffgj": 210, "ffield": 271, "fft": [30, 91], "fg": [80, 90, 237, 240], "fgh": 88, "fglm": 217, "fglmtool": 214, "fgp": 237, "fi": [12, 39], "fib": 227, "fiber": [131, 132, 134], "fiber_damping_coeffici": [18, 134], "fiber_force_length_act": 132, "fiber_force_length_pass": 132, "fiber_force_length_passive_invers": 132, "fiber_force_veloc": 132, "fiber_force_velocity_invers": 132, "fiber_length_explicit": 134, "fiber_length_implicit": 134, "fiberforcelengthactivedegroote2016": [18, 132], "fiberforcelengthpassivedegroote2016": [18, 132], "fiberforcelengthpassiveinversedegroote2016": [18, 132], "fiberforcevelocitydegroote2016": [18, 132], "fiberforcevelocityinversedegroote2016": [18, 132, 134], "fibonacci": [88, 92, 93, 128], "fibonacci_numb": 93, "fibonaccinumb": 93, "fiddl": [252, 297], "field": [11, 13, 34, 41, 55, 61, 65, 69, 88, 89, 90, 96, 106, 115, 163, 164, 202, 203, 208, 209, 210, 212, 213, 215, 217, 218, 219, 234, 239, 252, 265, 268, 270, 271, 273, 275, 280, 282, 283, 299], "field_el": 88, "field_gen": 216, "field_isomorph": 216, "fieldfunct": [33, 201], "fifth": [48, 132], "fifth_ord": 48, "fifth_order_solv": 48, "fig": [13, 18, 299], "figsiz": 171, "figur": [5, 11, 13, 22, 35, 36, 88, 89, 98, 99, 101, 103, 104, 115, 137, 186, 206, 207, 210, 218, 221, 275, 297], "file": [0, 2, 3, 4, 5, 7, 8, 9, 12, 15, 16, 22, 30, 45, 69, 124, 130, 180, 207, 221, 228, 231, 233, 250, 252, 253, 254, 260], "filebox": 89, "filenam": [130, 221, 252, 253, 254, 262], "filepath": 253, "filesystem": 8, "fill": [11, 16, 40, 79, 89, 120, 124, 127, 191, 207, 252, 255, 259, 262, 293], "fill_between": 207, "fillded": 262, "filter": [3, 12, 13, 38, 52, 88, 89, 113, 163, 217, 250, 252, 257, 259], "filter_symbol": 259, "filterwarn": [3, 13], "fim1": 39, "final": [3, 4, 5, 11, 12, 13, 18, 23, 25, 28, 35, 36, 41, 43, 46, 55, 68, 80, 87, 88, 94, 96, 113, 115, 118, 124, 128, 134, 137, 142, 151, 152, 153, 171, 183, 186, 188, 189, 191, 193, 194, 196, 200, 208, 210, 211, 214, 216, 223, 229, 230, 231, 233, 234, 237, 239, 240, 247, 259, 260, 290, 291, 292, 302, 309, 311], "final_exp": 142, "finalpdf": 128, "find": [4, 9, 11, 12, 14, 15, 16, 28, 30, 32, 35, 37, 39, 40, 43, 46, 49, 50, 51, 52, 53, 55, 56, 57, 61, 64, 67, 69, 70, 71, 79, 82, 83, 84, 87, 88, 92, 94, 96, 98, 100, 101, 102, 105, 110, 113, 115, 117, 124, 128, 130, 138, 144, 150, 155, 160, 176, 183, 185, 186, 187, 191, 194, 196, 207, 208, 209, 210, 211, 212, 214, 218, 220, 221, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 239, 240, 241, 247, 256, 259, 260, 262, 265, 275, 287, 289, 291, 293, 298, 310], "find_carmichael_numbers_in_rang": [13, 128], "find_dn": 234, "find_dynamicsymbol": [150, 155, 299], "find_execut": 262, "find_first_n_carmichael": [13, 128], "find_linear_recurr": 227, "find_min_poli": 216, "find_transitive_subgroups_of_s6": 71, "findroot": [54, 96, 239], "fine": [11, 12, 13, 14, 39, 43, 51, 88, 92, 116, 205, 210, 211, 221, 233], "finish": [8, 12, 69, 70, 185, 255, 294], "finit": [13, 14, 17, 40, 41, 52, 65, 69, 74, 75, 76, 79, 87, 88, 89, 91, 92, 115, 117, 118, 177, 200, 206, 209, 212, 215, 217, 218, 221, 223, 224, 227, 229, 234, 236, 237, 240, 259, 265, 267, 277, 288, 291, 297], "finite_diff": [67, 88], "finite_diff_weight": [67, 88, 287], "finite_set": [67, 229], "finitediff": 67, "finitedistributionhandmad": 241, "finitedomain": 241, "finiteextens": 208, "finitefield": [211, 212], "finiteformalpowerseri": 223, "finitehandl": 65, "finitepred": 65, "finitepspac": 241, "finiterv": 241, "finiteset": [14, 41, 52, 67, 68, 229, 240, 241, 298], "finset_intersect": 67, "fip1": 39, "fip2": 39, "fire": 3, "first": [2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 22, 23, 24, 27, 28, 31, 35, 36, 39, 41, 42, 43, 45, 48, 52, 55, 56, 59, 61, 68, 69, 70, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 101, 102, 104, 105, 112, 113, 115, 117, 118, 124, 127, 128, 131, 132, 134, 136, 137, 144, 145, 148, 150, 151, 152, 153, 155, 156, 158, 159, 163, 164, 168, 172, 175, 180, 181, 184, 185, 186, 187, 188, 190, 191, 194, 196, 200, 204, 207, 208, 210, 212, 214, 215, 216, 217, 218, 221, 222, 223, 224, 227, 228, 230, 231, 233, 234, 237, 238, 239, 240, 241, 245, 247, 250, 252, 253, 254, 255, 259, 260, 262, 270, 275, 286, 287, 289, 291, 292, 293, 295, 297, 298, 299, 302, 304, 306, 307], "first_index": 120, "first_linear": 237, "first_moment_of_area": 104, "firstexact": 237, "firstli": [3, 13, 14, 41, 43, 159, 231], "firstlinear": 237, "firstnam": 9, "firstorderactivationdegroote2016": [18, 131, 134, 299], "fisher": 241, "fishersz": 241, "fisherz": 241, "fit": [3, 14, 15, 36, 68, 113, 124, 127, 128, 221, 237, 262, 292], "five": [18, 48, 51, 68, 77, 113, 140, 221, 234], "five_lemma": 68, "fivelemma": 68, "fix": [3, 4, 7, 12, 13, 14, 18, 24, 30, 35, 36, 69, 79, 81, 84, 86, 89, 93, 96, 100, 117, 124, 128, 130, 136, 137, 148, 149, 152, 155, 158, 175, 180, 184, 187, 191, 196, 200, 204, 207, 214, 216, 217, 218, 221, 227, 231, 239, 241, 259, 265, 267, 299, 302, 303, 304], "fixed_point": 158, "fixed_row_vector": 241, "fixedbosonicbasi": 191, "fixedfram": 204, "fket": 191, "fl": [18, 25, 26, 30, 132, 153, 215, 302], "fl_": 132, "fl_m": 132, "fl_m_act": [18, 132], "fl_m_act2": 18, "fl_m_act3": 18, "fl_m_act_cal": 18, "fl_m_pa": [18, 132], "fl_m_pas2": 18, "fl_m_pas3": 18, "fl_m_pas_cal": 18, "fl_m_pas_inv": 18, "fl_m_pas_inv2": 18, "fl_m_pas_sym": 18, "fl_t": [18, 132], "fl_t2": 18, "fl_t3": 18, "fl_t_callabl": 18, "fl_t_inv": 18, "fl_t_inv2": 18, "fl_t_sym": 18, "flag": [2, 3, 14, 22, 37, 43, 48, 67, 69, 79, 80, 84, 86, 88, 103, 115, 118, 119, 124, 128, 152, 175, 207, 212, 214, 217, 218, 221, 222, 223, 229, 233, 234, 237, 239, 240, 247, 252, 253, 259, 262, 286, 297], "flag_fram": 152, "flag_joint": 152, "flagerror": 214, "flajolet": 218, "flake8": [11, 12], "flambda": 229, "flank": 89, "flat": [13, 102, 124, 210, 253], "flatmirror": 160, "flatrefract": 160, "flatten": [68, 88, 211, 243, 248, 259, 260, 299], "flavius_josephu": 80, "flavor": 222, "flaw": 13, "flaws_in_coverage_measur": 12, "flex": 299, "flexibl": [14, 22, 30, 35, 80, 88, 158, 207, 211, 240, 287], "flexion": 299, "flexur": 137, "flint": [13, 210, 211, 212], "flip": [148, 176, 185, 241, 302], "float": [2, 12, 15, 18, 30, 41, 43, 50, 69, 79, 88, 94, 96, 103, 105, 115, 116, 124, 128, 130, 131, 132, 134, 142, 144, 164, 205, 207, 210, 211, 212, 214, 217, 221, 233, 239, 241, 252, 260, 262, 286, 289, 299], "float16": 69, "float32": [69, 129, 130, 260], "float64": [14, 54, 69, 129, 241], "float80": [69, 221], "floatbasetyp": 69, "floattyp": 69, "floatx": 221, "floor": [88, 94, 128, 130, 152, 211, 212, 221, 241], "floor1": 221, "floor2": 221, "floor_fram": 152, "floor_joint": 152, "floorfunct": 94, "flow": [41, 216], "floyd": 128, "fma": [69, 221], "fmax": 221, "fmin": 221, "fmpq_mat_charpoli": 210, "fmpq_mat_det": 210, "fmpq_mat_inv": 210, "fmpq_mat_solv": 210, "fmpq_mat_solve_dixon": 210, "fmpz": [211, 212], "fmpz_mat": 210, "fmpz_mat_charpoli": 210, "fmpz_mat_det": 210, "fmpz_mat_inv": 210, "fmpz_mat_solv": 210, "fmt": [210, 212, 216], "fn": [39, 55, 115, 124, 208, 217], "fn_fortran": 69, "fn_numpi": 69, "fname": 254, "fnm1": 39, "fnm2": 39, "focal": [98, 160, 164], "focal_length": 164, "foci": 98, "fock": 191, "fock_spac": 177, "fockspac": 177, "fockstat": 191, "fockstatebosonbra": 191, "fockstatebosonket": 191, "fockstatebra": 191, "fockstatefermionbra": 191, "fockstatefermionket": 191, "fockstateket": 191, "focu": [0, 13, 41, 98, 239, 291], "focus": [14, 15, 54, 214, 234, 236, 237, 239, 240, 298], "focus_dist": 98, "fofc": 148, "fold": [79, 88, 94, 132, 221, 228, 233], "fold_frac_pow": 221, "fold_func_bracket": 221, "fold_short_frac": 221, "folded_cond": 94, "folder": 8, "follow": [2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 37, 39, 41, 42, 43, 46, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 64, 67, 68, 69, 70, 71, 74, 77, 78, 79, 80, 81, 84, 87, 88, 89, 92, 93, 94, 96, 100, 102, 104, 111, 112, 113, 115, 118, 120, 124, 128, 129, 134, 136, 137, 140, 148, 149, 151, 152, 153, 155, 156, 158, 159, 160, 164, 183, 186, 188, 191, 194, 196, 200, 206, 207, 208, 209, 212, 214, 215, 216, 217, 219, 220, 221, 222, 223, 228, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 252, 255, 256, 259, 260, 269, 270, 272, 286, 287, 289, 290, 292, 293, 297, 298, 302], "font": [8, 116, 205, 221], "fontsiz": [116, 205, 221], "foo": [60, 67, 69, 88, 186, 205, 259, 262], "foo_1": 186, "foo_2": 186, "foo_3": 186, "foobasi": 186, "footnot": [42, 196, 292, 293, 296], "for_i": 69, "for_ji": 69, "for_kji": 69, "foral": [79, 87, 90, 196], "forc": [2, 16, 19, 23, 25, 26, 27, 28, 30, 33, 36, 39, 42, 43, 88, 92, 94, 98, 104, 113, 115, 118, 131, 132, 134, 136, 137, 138, 140, 148, 149, 151, 153, 155, 156, 158, 179, 180, 194, 207, 209, 211, 230, 233, 234, 239, 252, 272, 274, 296, 297, 300, 302, 305, 306, 307, 308, 309], "force1": 149, "force_color": 252, "force_magnitud": 299, "force_o": 30, "force_on_child": 299, "force_on_o": 18, "force_on_p": 18, "force_on_par": 299, "force_p": 22, "force_p1": 18, "force_p2": 18, "force_r": 22, "force_vector": 30, "forceactu": [18, 148], "forcelist": [22, 26, 27, 30, 153, 303, 306, 309, 310], "forces_eq": 304, "forcing_ful": [22, 25, 26, 149, 153, 158, 307], "forcing_kin": 153, "forcing_lin": 302, "fore": 65, "forecolor": [116, 205], "foreground": [116, 205], "foremost": 12, "forest": 259, "forg": [2, 8, 9, 130], "forget": [12, 51, 68, 297], "fork": [0, 5, 13, 302], "fork_i": 302, "fork_mc": 302, "forkcg1": 302, "forkcg3": 302, "forkcgnorm": 302, "forkcgpar": 302, "forklength": 302, "forkoffset": 302, "form": [3, 5, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 39, 41, 43, 46, 53, 54, 61, 64, 65, 66, 67, 69, 70, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 101, 104, 108, 110, 111, 113, 115, 117, 120, 122, 124, 128, 130, 131, 132, 134, 136, 137, 138, 140, 141, 144, 148, 149, 151, 152, 153, 154, 156, 158, 168, 171, 172, 173, 175, 185, 186, 189, 191, 193, 196, 199, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 227, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 246, 247, 252, 253, 259, 265, 268, 269, 271, 272, 274, 280, 287, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 311], "form_eom": [13, 24, 149, 158, 304, 307], "form_field": 90, "form_lagranges_equ": [26, 27, 153, 303, 306, 311], "formal": [41, 51, 68, 87, 88, 96, 113, 118, 160, 196, 211, 214, 225, 228, 277], "formalpowerseri": 223, "formalpowerseriescompos": 223, "formalpowerseriesinvers": 223, "formalpowerseriesproduct": 223, "format": [3, 8, 11, 12, 15, 31, 37, 39, 52, 55, 56, 68, 80, 88, 89, 110, 111, 115, 118, 124, 127, 128, 136, 153, 154, 158, 164, 175, 185, 207, 210, 211, 216, 217, 219, 221, 231, 237, 240, 252, 262, 265, 269, 290, 293, 296, 299], "formatstr": 69, "formatt": 68, "former": [14, 22, 38, 69, 88, 93, 214, 216, 217, 234, 259], "formul": [18, 23, 25, 26, 36, 39, 53, 131, 132, 134, 149, 151, 152, 191, 299, 304, 305, 306], "formula": [4, 39, 48, 61, 67, 82, 87, 88, 92, 93, 94, 96, 101, 118, 124, 128, 159, 206, 208, 214, 217, 221, 223, 227, 230, 233, 234, 237, 291, 297], "fornberg": [39, 67], "fort": 89, "forth": [211, 216], "forthcom": 115, "fortran": [2, 14, 15, 21, 30, 39, 43, 67, 129, 130, 206, 254, 296], "fortran77": 254, "fortran90": 254, "fortranreturn": 69, "fortun": [69, 129, 217, 218, 306], "forum": [206, 240], "forward": [18, 23, 35, 67, 69, 124, 144, 151, 184, 233, 252, 302], "forward_diff": 144, "found": [0, 2, 3, 4, 5, 8, 11, 12, 18, 27, 30, 35, 41, 42, 48, 52, 67, 70, 71, 79, 80, 82, 84, 86, 88, 89, 90, 98, 99, 104, 113, 115, 124, 128, 130, 144, 150, 152, 153, 154, 195, 208, 209, 210, 211, 216, 217, 218, 221, 223, 224, 227, 228, 231, 234, 237, 238, 239, 240, 241, 245, 259, 260, 262, 296], "foundat": [80, 215, 216], "four": [5, 18, 28, 53, 69, 71, 80, 88, 92, 96, 118, 120, 128, 132, 134, 140, 145, 156, 164, 200, 207, 208, 210, 214, 217, 221, 229, 234, 237, 239, 241, 242, 265, 267, 270, 299, 301, 305], "four_group": 71, "fourier": [13, 88, 96, 115, 147, 184, 225, 277], "fourier_seri": [88, 224], "fourier_transform": 115, "fourierseri": 224, "fouriertransform": 115, "fourth": [48, 88, 89, 132, 209, 237, 287], "fox": 113, "fp": [69, 70, 88, 217, 223], "fp_group": [70, 79], "fpgroup": [70, 79], "fqyej": 89, "fr": [11, 18, 22, 25, 27, 30, 110, 115, 128, 153, 241, 299, 302, 306, 309, 310], "frac": [15, 18, 28, 33, 35, 36, 39, 41, 43, 46, 48, 49, 53, 55, 67, 87, 88, 89, 90, 93, 94, 96, 113, 115, 124, 128, 130, 131, 132, 134, 144, 194, 205, 206, 210, 212, 214, 217, 221, 223, 224, 228, 231, 234, 237, 238, 240, 241, 242, 259, 272, 274, 287, 291, 292, 296, 297, 303, 306], "frac2": 241, "frac_field": [211, 212], "frac_unifi": 212, "fracel": [212, 221], "fracfield": [211, 212], "fraction": [16, 88, 89, 92, 94, 104, 115, 124, 128, 130, 150, 197, 210, 211, 212, 214, 215, 218, 221, 223, 233, 234, 237, 239, 288, 289], "fractional_part": 94, "fractionalpart": 94, "fractionfield": [211, 212], "fracton": 221, "fragil": [14, 43], "fragment": [4, 89], "frame": [4, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 148, 149, 150, 152, 153, 155, 156, 158, 200, 201, 202, 204, 256, 265, 272, 299, 302, 303, 304, 306, 307, 309, 311], "frame1": 200, "frame2": [200, 202], "frame_a": 22, "frame_b": 22, "frame_i": 302, "frame_mc": 302, "frame_n": 22, "framecg1": 302, "framecg3": 302, "framecgnorm": 302, "framecgpar": 302, "framelength": 302, "framework": [13, 22, 23, 88, 151, 246, 252, 254, 260, 282], "francesco": 0, "franci": 215, "frank": [79, 80, 124, 259], "frechet": 241, "fredrik": 0, "free": [0, 11, 12, 13, 15, 23, 34, 48, 53, 54, 59, 67, 68, 69, 78, 79, 84, 88, 93, 100, 115, 120, 124, 128, 131, 134, 136, 137, 142, 145, 151, 152, 155, 160, 180, 198, 200, 203, 207, 208, 210, 212, 214, 215, 216, 217, 221, 223, 229, 231, 233, 234, 237, 239, 240, 247, 259, 291], "free_arg": 247, "free_dynamicsymbol": 200, "free_group": [70, 78, 79], "free_integ": 128, "free_modul": [208, 212], "free_symbol": [13, 15, 51, 69, 88, 97, 115, 124, 180, 198, 200, 217, 227, 234, 299], "free_symbols_in_domain": 217, "free_to_perm": 78, "free_var_index": 124, "freedom": [136, 149, 152, 153, 158, 241, 299, 301, 304, 305, 306], "freegroup": 70, "freeli": [4, 14, 60, 121, 148, 152, 208], "freemodul": 208, "freemoduleel": 208, "freespac": 160, "freevar": 124, "fregli": [18, 131, 132, 134, 299], "freir": 215, "freq_unit": 142, "frequenc": [89, 115, 142, 144, 165, 167, 175, 192], "frequent": [39, 79, 216, 228, 240], "fresh": 12, "freshli": 59, "fresnel": [164, 221, 231], "fresnel_coeffici": 164, "fresnel_equ": 164, "fresnel_integr": 96, "fresnelc": [96, 221, 231], "fresnelintegr": 96, "fridai": 89, "friend": 36, "friendli": [5, 69, 113, 234, 236, 237, 239, 240, 254, 298], "friendlier": 210, "fro": 124, "frobeniu": [112, 124, 128, 214, 215], "from": [2, 3, 4, 5, 7, 8, 9, 11, 12, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 46, 48, 50, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 183, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 265, 267, 268, 269, 270, 271, 272, 274, 275, 283, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "from_algebraicfield": 212, "from_array_to_matrix": 243, "from_axis_angl": 61, "from_coeff_list": 144, "from_complexfield": 212, "from_ddm": 210, "from_dict": 217, "from_dict_sympi": 210, "from_dod": 210, "from_dod_lik": 210, "from_dok": [124, 210], "from_eul": 61, "from_ex": 212, "from_expr": [69, 217], "from_expressiondomain": 212, "from_expressionrawdomain": 212, "from_ff": 212, "from_ff_gmpi": 212, "from_ff_python": 212, "from_flat_nz": 210, "from_fractionfield": 212, "from_functionprototyp": 69, "from_gaussianinteg": 212, "from_gaussianrationalfield": 212, "from_globalpolynomialr": 212, "from_hyp": [107, 110], "from_index_summ": 120, "from_inertia_scalar": [155, 304], "from_int_list": 216, "from_inversion_vector": 80, "from_list": [210, 212, 217, 218], "from_list_flat": 210, "from_list_sympi": 210, "from_matrix": [46, 61, 144, 210], "from_meijerg": [107, 110], "from_monogenicfiniteextens": 212, "from_newtonian": [13, 24, 158, 304, 307], "from_poli": 217, "from_polynomialr": 212, "from_qq": 212, "from_qq_gmpi": 212, "from_qq_python": 212, "from_rational_express": [46, 144], "from_real": 229, "from_realfield": 212, "from_rep": 210, "from_rg": 77, "from_rotation_matrix": 61, "from_sequ": 80, "from_sympi": [211, 212], "from_sympy_list": 212, "from_tensor": 155, "from_zpk": [46, 144], "from_zz": 212, "from_zz_gmpi": 212, "from_zz_python": 212, "fromit": 88, "front": [79, 88, 160, 190, 212, 214, 217, 221, 233, 297, 302], "frontend": 210, "frontier": [124, 229], "frown": 15, "frstar": [22, 25, 27, 30, 153, 302, 306, 309, 310], "frustrat": 3, "frv": 241, "frv_type": 241, "fsolv": [54, 299], "fsp": 113, "fsu": 115, "ftheta": 90, "fu": [14, 232, 233, 277], "fudg": 3, "fulfil": [113, 206], "full": [3, 4, 5, 11, 12, 13, 16, 18, 25, 26, 37, 41, 43, 51, 65, 67, 69, 79, 80, 88, 92, 96, 100, 101, 115, 120, 124, 130, 158, 200, 210, 211, 214, 215, 217, 221, 223, 233, 234, 260, 291, 297, 299], "full_cyclic_form": 80, "full_impl": 41, "full_pb": 113, "full_prec": [87, 221], "fullform": 130, "fulli": [3, 4, 11, 13, 22, 30, 35, 41, 79, 88, 105, 115, 118, 130, 136, 137, 149, 152, 191, 210, 211, 212, 218, 228, 241, 247, 299], "fullrank": [65, 69], "fullrankhandl": 65, "fullrankpred": 65, "fulltext": 91, "fully_qualified_modul": 221, "fully_symmetr": 247, "fun": [221, 238, 290], "func": [3, 4, 12, 14, 15, 40, 43, 63, 67, 69, 88, 90, 93, 96, 107, 109, 128, 130, 155, 180, 200, 210, 214, 217, 221, 222, 233, 237, 238, 239, 250, 255, 257, 259, 260, 262, 264], "func_field_modgcd": 214, "func_m_1": 69, "func_nam": [3, 69, 94, 124, 262], "funcminusoneoptim": 69, "funcnam": [12, 253], "function": [1, 2, 3, 5, 7, 11, 15, 18, 22, 23, 25, 26, 30, 32, 34, 36, 37, 38, 39, 41, 42, 44, 46, 49, 51, 53, 56, 58, 62, 63, 64, 66, 67, 68, 70, 71, 74, 79, 80, 83, 84, 86, 89, 90, 91, 92, 93, 97, 98, 99, 100, 105, 108, 109, 112, 114, 115, 116, 117, 120, 122, 127, 129, 131, 132, 133, 134, 136, 139, 140, 141, 142, 144, 145, 146, 148, 149, 150, 151, 152, 157, 158, 163, 164, 165, 166, 170, 175, 176, 177, 180, 185, 186, 187, 188, 189, 190, 191, 194, 195, 200, 203, 204, 205, 206, 208, 210, 213, 214, 215, 216, 218, 219, 222, 223, 224, 225, 226, 227, 228, 229, 230, 233, 235, 236, 239, 240, 241, 243, 245, 246, 247, 250, 251, 252, 253, 254, 255, 256, 257, 259, 260, 262, 263, 264, 265, 266, 270, 271, 273, 274, 275, 276, 277, 280, 282, 283, 286, 287, 288, 289, 290, 291, 292, 293, 295, 298, 299, 301, 303, 304, 305, 306, 307, 308], "function1": 118, "function2": 118, "function_arg": [69, 252], "function_exponenti": 130, "function_kwarg": 252, "function_nam": [7, 69, 253], "function_prototyp": 254, "function_rang": 67, "function_that_emits_a_warn": 12, "function_vari": 115, "functioncal": 69, "functionclass": [88, 221, 260], "functiondefinit": [69, 130], "functionmatrix": 120, "functionprototyp": 69, "functiontyp": 124, "functor": 68, "fundament": [41, 43, 67, 70, 78, 106, 113, 115, 195, 196, 211, 216, 234, 237, 241, 293], "fundamental_matrix": 241, "funtion_nam": 253, "further": [0, 2, 11, 14, 18, 23, 28, 35, 41, 43, 48, 64, 68, 88, 89, 94, 96, 100, 113, 115, 119, 120, 124, 130, 136, 141, 142, 149, 152, 153, 163, 206, 207, 208, 210, 214, 216, 217, 230, 231, 233, 237, 241, 247, 290, 291], "furthermor": [3, 13, 14, 43, 65, 88, 89, 118, 216, 230, 289, 291, 292], "furthest": [67, 89], "fuse": 69, "fused_multipli": 43, "futur": [3, 11, 12, 13, 14, 23, 27, 34, 41, 42, 69, 70, 88, 113, 115, 124, 130, 152, 158, 191, 195, 207, 209, 210, 220, 221, 233, 237, 246, 252, 255, 257, 260, 292, 298, 302], "fuzzi": [14, 15, 41, 43, 44], "fuzzy_": 43, "fuzzy_and": [41, 42, 43], "fuzzy_not": [42, 43], "fuzzy_or": [41, 42], "fv": [18, 132, 212], "fv_m": [18, 132], "fv_m2": 18, "fv_m3": 18, "fv_m_callabl": 18, "fv_m_inv": 18, "fv_m_inv2": 18, "fv_m_pas2": 18, "fv_m_sym": 18, "fwht": 91, "fwrap": 253, "fx": [88, 90, 207, 237, 238], "fxx": 88, "fxy": 234, "fxz": 234, "fy": [90, 207, 238], "fz": 207, "fzx": [51, 234], "g": [2, 3, 5, 8, 9, 11, 12, 13, 14, 16, 18, 22, 27, 28, 30, 31, 33, 41, 42, 43, 46, 54, 55, 57, 67, 68, 69, 70, 73, 76, 78, 79, 80, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 100, 104, 105, 106, 111, 114, 115, 117, 118, 124, 128, 130, 131, 133, 134, 136, 140, 144, 145, 148, 149, 152, 154, 155, 156, 158, 171, 175, 180, 186, 188, 189, 191, 194, 196, 197, 200, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 252, 253, 254, 255, 257, 259, 260, 262, 274, 277, 287, 292, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "g1": [46, 69, 73, 78, 79, 113, 124, 144], "g171": 89, "g18": 71, "g2": [46, 69, 73, 78, 79, 113, 117, 124, 144], "g3": [46, 79, 144], "g36": 71, "g36m": 71, "g36p": 71, "g4": [46, 144], "g72": 71, "g_": [71, 79, 86, 87, 96, 113, 124, 234], "g_0": [79, 234], "g_1": [79, 214, 217, 228, 234, 237], "g_2": [79, 117, 214, 228, 237], "g_frame": 152, "g_i": [79, 214, 228], "g_k": 79, "g_n": [87, 93, 217], "g_name": 216, "g_t": 79, "g_x": 214, "gain": [7, 16, 25, 26, 30, 46, 89, 144], "galoi": [75, 211, 212, 214, 217, 277], "galois_group": [212, 216, 217], "galoisgroup": [212, 216, 217], "galoistool": [128, 214], "galton": 241, "game": 231, "gamma": [4, 5, 12, 16, 30, 36, 43, 87, 88, 90, 92, 93, 113, 115, 147, 188, 206, 221, 231, 233, 237, 241, 297], "gamma2": 96, "gamma3": 96, "gamma_": [96, 145, 147], "gamma_0": 147, "gamma_1": [69, 147], "gamma_2": [69, 147], "gamma_3": 147, "gamma_5": 147, "gamma_distribut": 241, "gamma_distribution_and_the_use_of_the_distribution_in_the_bayesian_analysi": 241, "gamma_funct": [4, 96], "gamma_i": 214, "gamma_matric": [145, 147], "gamma_p": 96, "gamma_process": 241, "gamma_trac": 145, "gammabetaerf": [4, 93, 96], "gammadistribut": 241, "gammafunct": [4, 96], "gammainvers": 241, "gammaln": 221, "gammamatrix": 145, "gammamatrixhead": 145, "gammaprocess": 241, "gammasimp": [87, 88, 233], "gap": [22, 40, 79, 128, 218], "garbag": 252, "gate": [118, 171, 176, 178, 184, 185, 187, 282], "gate_idx": [171, 175], "gate_simp": 175, "gate_sort": 175, "gate_spac": 175, "gateinputcount": 118, "gathen": [214, 215], "gathen92": [214, 215], "gathen99": [214, 215], "gather": [237, 299], "gaunt": 206, "gauss": [4, 53, 96, 115, 124, 160, 209, 210, 216, 219, 239, 240], "gauss_chebyshev_t": 115, "gauss_chebyshev_u": 115, "gauss_conj": 160, "gauss_gen_laguerr": 115, "gauss_hermit": 115, "gauss_jacobi": 115, "gauss_jordan_solv": [119, 124], "gauss_laguerr": 115, "gauss_legendr": 115, "gauss_lobatto": 115, "gaussian": [41, 96, 115, 124, 128, 161, 195, 214, 217, 234, 239, 241, 282, 293], "gaussian_beam": 160, "gaussian_conj": 160, "gaussian_elimin": 124, "gaussian_prim": 128, "gaussian_quadratur": 115, "gaussian_reduc": 234, "gaussiandomain": 212, "gaussianel": 212, "gaussianinteg": [211, 212], "gaussianinvers": 241, "gaussianr": [211, 212], "gaussianrationalfield": [211, 212], "gaussopt": 160, "gave": [16, 88, 259], "gb": [11, 79, 140], "gbt": 144, "gcc": [2, 254], "gcd": [87, 88, 89, 124, 128, 187, 210, 211, 212, 215, 216, 217, 221, 233, 234], "gcd_list": 217, "gcd_term": [88, 217], "gcdex": [212, 217], "gcomm": 247, "gd": 241, "ge": [5, 41, 88, 93, 94, 96, 113, 124, 128, 130, 206, 209, 214, 217, 221, 231, 239, 259], "gear": 208, "gedd": [115, 215], "geddes92": [214, 215], "gede": 154, "gedg": 221, "gegenbau": [217, 221], "gegenbauer_poli": [96, 217], "gegenbauer_polynomi": 96, "gegenbauer_rul": 115, "gegenbauerc": 221, "gegenbauerc3": 96, "gegenbauerpolynomi": 96, "gen": [78, 79, 84, 85, 86, 88, 124, 128, 208, 211, 212, 214, 216, 217, 218, 219, 227, 233, 236, 239], "gen0": 70, "gen1": 70, "gen_": 70, "gen_count": 79, "gen_hermite_rul": 115, "gen_laguerre_rul": 115, "gen_mat": 241, "gen_spe": [200, 204], "gender": 5, "gener": [3, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 35, 37, 39, 41, 42, 43, 45, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 63, 65, 66, 67, 68, 70, 71, 72, 73, 76, 77, 79, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 102, 104, 106, 111, 113, 115, 116, 117, 118, 120, 124, 128, 129, 130, 131, 133, 134, 138, 144, 148, 149, 151, 152, 153, 154, 156, 158, 159, 163, 174, 175, 176, 177, 180, 185, 186, 189, 190, 191, 196, 198, 200, 201, 204, 205, 206, 207, 208, 209, 210, 212, 214, 217, 218, 219, 220, 221, 222, 223, 227, 230, 231, 233, 234, 236, 237, 238, 239, 241, 246, 247, 253, 254, 256, 257, 258, 259, 260, 265, 269, 270, 272, 273, 274, 280, 287, 289, 290, 291, 292, 293, 297, 298, 299, 301, 302, 303, 304, 306, 307, 309, 311], "general_sum_of_even_pow": 234, "general_sum_of_squar": 234, "generalis": [41, 93, 96, 113, 144, 208], "generalizations_of_fibonacci_numb": [88, 93], "generalized_hypergeometric_funct": 96, "generalized_laguerre_polynomi": 96, "generalized_multivariate_log": 241, "generalizedmultivariateloggamma": 241, "generalizedmultivariateloggammaomega": 241, "generalpythagorean": 234, "generalsumofevenpow": 234, "generalsumofsquar": 234, "generate_bel": [80, 259], "generate_derang": [93, 259], "generate_dimino": [76, 79], "generate_grai": 72, "generate_involut": 259, "generate_logo": 45, "generate_oriented_forest": 259, "generate_schreier_sim": [76, 79], "generator_matrix": 241, "generator_product": 79, "generators_and_rel": 76, "generatorserror": 214, "generatorsneed": 214, "generatortyp": 259, "genform": [237, 238], "genfrac": [93, 128], "genocchi": [93, 96, 217], "genocchi_numb": 93, "genocchi_poli": [93, 217], "genocchinumb": 93, "gens1": 84, "gens2": 84, "gens2a": 84, "gens_a": 84, "gens_f": 84, "gens_h": 79, "gens_i": 84, "gens_k": 79, "gensol": 237, "geodes": [18, 156, 159], "geodesi": 215, "geodesic_end_vector": 159, "geodesic_length": 159, "geodet": [159, 215], "geomalgorithm": 105, "geomet": [93, 208], "geometr": [18, 36, 43, 90, 97, 98, 99, 100, 101, 102, 103, 104, 105, 124, 160, 208, 215, 241, 293], "geometri": [4, 19, 23, 97, 98, 99, 101, 102, 103, 104, 105, 115, 151, 156, 164, 213, 268, 275, 276, 282, 283, 291, 299], "geometric_conj": 160, "geometric_conj_ab": 160, "geometric_conj_af": 160, "geometric_conj_bf": 160, "geometric_distribut": 241, "geometricdistribut": 241, "geometricent": 103, "geometricrai": 160, "geometryent": [97, 98, 99, 101, 103, 104, 105], "geometryerror": [98, 101, 104, 105], "geometryresult": 100, "georg": [70, 208, 210, 237, 259], "geq": [88, 89, 96, 124, 217, 234, 241, 297], "geq0": 241, "gerardo": 206, "gerhard": 215, "german": 89, "get": [1, 3, 4, 5, 8, 11, 12, 13, 14, 17, 22, 25, 26, 27, 28, 30, 36, 38, 39, 41, 42, 43, 52, 54, 55, 56, 59, 60, 63, 64, 67, 68, 69, 71, 72, 77, 78, 80, 81, 83, 84, 87, 88, 89, 90, 92, 93, 94, 96, 101, 111, 113, 115, 117, 120, 124, 128, 130, 134, 136, 142, 144, 147, 153, 163, 164, 171, 175, 180, 185, 186, 187, 188, 193, 195, 196, 207, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 223, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 247, 248, 253, 259, 260, 261, 265, 269, 286, 289, 291, 292, 293, 296, 297, 298, 306], "get_adjacency_dist": 80, "get_adjacency_matrix": 80, "get_basi": 186, "get_bodi": 158, "get_class": 263, "get_color_arrai": 207, "get_comm": 247, "get_contraction_structur": [245, 246], "get_data": [13, 207], "get_default_datatyp": 254, "get_diag_block": [120, 124], "get_dimensional_depend": [193, 194], "get_domain": 217, "get_exact": 212, "get_field": [211, 212], "get_free_indic": [247, 248], "get_gen_sol_from_part_sol": 237, "get_indic": [245, 246, 247, 248], "get_interfac": 254, "get_joint": 158, "get_label": 207, "get_matrix": [13, 247], "get_mesh": 207, "get_mod_func": 263, "get_modulu": 217, "get_motion_param": 204, "get_num_denom": 216, "get_numpy_arrai": 69, "get_parabola_eqn": 135, "get_period": [96, 113], "get_perm_group": [71, 216], "get_permut": 191, "get_point": [13, 207], "get_positional_dist": 80, "get_precedence_dist": 80, "get_precedence_matrix": 80, "get_prototyp": 254, "get_r": [210, 212], "get_seg": 207, "get_subno": 191, "get_subset_from_bitstr": 72, "get_symmetric_group_sg": [84, 247], "get_sympy_dir": 252, "get_target_matrix": 175, "get_transvers": 84, "get_units_non_prefix": 199, "getitem": 210, "getn": 88, "geto": 88, "getsourc": 260, "getstat": 88, "getter": [13, 22, 30, 88], "gf": [13, 80, 89, 140, 208, 210, 211, 214, 216], "gf_": 214, "gf_add": 214, "gf_add_ground": 214, "gf_add_mul": 214, "gf_berlekamp": 214, "gf_cofactor": 214, "gf_compos": 214, "gf_compose_mod": 214, "gf_crt": [128, 214], "gf_crt1": [128, 214], "gf_crt2": [128, 214], "gf_csolv": [128, 214], "gf_degre": 214, "gf_diff": 214, "gf_div": 214, "gf_eval": 214, "gf_expand": 214, "gf_exquo": 214, "gf_factor": 214, "gf_factor_method": 214, "gf_factor_sqf": 214, "gf_from_dict": 214, "gf_from_int_poli": 214, "gf_gcd": 214, "gf_gcdex": 214, "gf_int": 214, "gf_irreduc": 214, "gf_irreducible_p": 214, "gf_lc": 214, "gf_lcm": 214, "gf_lshift": 214, "gf_monic": 214, "gf_mul": 214, "gf_mul_ground": 214, "gf_multi_ev": 214, "gf_neg": 214, "gf_normal": 214, "gf_pow": 214, "gf_pow_mod": 214, "gf_qbasi": 214, "gf_qmatrix": 214, "gf_quo": 214, "gf_quo_ground": 214, "gf_random": 214, "gf_rem": 214, "gf_rshift": 214, "gf_shoup": 214, "gf_sqf": 214, "gf_sqf_list": 214, "gf_sqf_p": 214, "gf_sqf_part": 214, "gf_sqr": 214, "gf_strip": 214, "gf_sub": 214, "gf_sub_ground": 214, "gf_sub_mul": 214, "gf_tc": 214, "gf_to_dict": 214, "gf_to_int_poli": 214, "gf_trace_map": 214, "gf_trunc": 214, "gf_valu": 214, "gf_zassenhau": 214, "gff": 217, "gff_list": [212, 217], "gfvar": 227, "gfzhang": 144, "gh": [79, 209, 240, 247], "ghcomm": 247, "gianni": [214, 217, 239], "giant": [128, 240], "gib": 217, "gibb": 224, "gibbs_phenomenon": 224, "gigabyt": 291, "gimp": 221, "giovan": 89, "giovini": [214, 215], "giovini91": 215, "git": [2, 7, 10, 11, 12], "gitconfig": 9, "github": [0, 2, 3, 5, 7, 8, 10, 11, 13, 52, 56, 59, 67, 88, 92, 104, 115, 124, 195, 229, 240, 293], "gitignor": 11, "gitlab": 22, "gitter": [59, 293], "give": [2, 3, 4, 7, 11, 13, 14, 16, 18, 22, 30, 33, 35, 36, 37, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 61, 62, 64, 69, 70, 77, 79, 80, 81, 82, 87, 88, 89, 90, 93, 94, 96, 98, 100, 101, 103, 104, 112, 113, 115, 116, 118, 120, 124, 127, 128, 129, 131, 132, 134, 136, 140, 144, 152, 170, 185, 186, 188, 189, 193, 194, 196, 197, 199, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 223, 224, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 252, 253, 254, 259, 269, 274, 289, 290, 292, 297, 298], "given": [2, 3, 5, 8, 12, 13, 15, 16, 18, 22, 28, 33, 36, 37, 39, 41, 43, 46, 48, 50, 53, 55, 61, 63, 64, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 110, 111, 112, 113, 115, 117, 118, 120, 124, 127, 128, 130, 134, 136, 138, 140, 142, 144, 145, 149, 150, 152, 153, 155, 158, 164, 181, 186, 188, 195, 196, 197, 199, 200, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 246, 247, 250, 252, 254, 256, 259, 260, 262, 265, 268, 270, 272, 274, 286, 292, 295, 297, 298, 299, 306], "given_condit": 241, "givens_rot": 124, "gj": [124, 210], "gj_dens": 210, "gl": 89, "glob": [16, 252], "global": [3, 4, 9, 12, 13, 14, 62, 63, 64, 67, 69, 70, 88, 100, 113, 130, 148, 156, 175, 181, 200, 202, 207, 208, 212, 214, 221, 234, 237, 238, 241, 252, 254, 255, 260, 268], "global_assumpt": [62, 63, 64], "global_dict": 130, "global_paramet": 94, "global_var": [69, 254], "globalpolynomialr": 211, "gloss": 228, "glossari": [16, 17], "glu": 196, "glue": 124, "gm": [89, 194], "gm_private_kei": 89, "gm_public_kei": 89, "gmail": [11, 206], "gmp": 2, "gmpy": [12, 88, 92, 211, 212, 296], "gmpy2": [2, 211, 212], "gmpyfinitefield": [211, 212], "gmpyinteg": 212, "gmpyrationalfield": 212, "gmvlg": 241, "gmvlgo": 241, "gn": 73, "gnu": 74, "go": [3, 4, 5, 7, 9, 11, 12, 14, 22, 28, 30, 31, 43, 59, 68, 69, 79, 89, 93, 94, 113, 153, 185, 196, 204, 207, 216, 217, 228, 231, 237, 289, 291, 292, 295, 297, 302], "goal": [13, 15, 21, 31, 32, 68, 216, 218, 252, 253, 255, 290, 291], "goe": [6, 7, 10, 11, 12, 14, 43, 58, 124, 140, 228, 231, 240, 289, 292], "gold": 89, "gold_bug": 89, "goldbuggonavybeatarmyy": 89, "golden": [88, 92, 128], "golden_ratio": 88, "goldenratio": [88, 92, 222, 233], "goldstein": 237, "goldwass": 89, "golomb": [89, 128], "golub": 124, "golumb": 128, "gompertz": 241, "gompertz_distribut": 241, "gon": 76, "gonavybeatarmi": 89, "gonavybeatarmyyesyoucan": 89, "gone": 12, "goo": 89, "good": [3, 5, 7, 12, 14, 15, 27, 30, 41, 43, 51, 57, 69, 88, 89, 92, 100, 113, 124, 128, 208, 211, 212, 221, 228, 230, 231, 233, 237, 259, 286, 290, 293, 302], "googl": [7, 206, 207, 240], "gordan": [178, 188, 206, 282], "gordon": [113, 170, 231], "gosper": 87, "gosper_norm": 87, "gosper_sum": 87, "gosper_term": 87, "got": [124, 208, 211, 214, 217, 220, 252, 253, 259, 260, 289, 291, 292], "gotcha": [12, 14, 15, 17, 23, 36, 88, 260, 290, 298], "gothic_re_im": 221, "goto": 69, "goui": 160, "gov": [4, 94, 96], "govern": [128, 131, 134], "gp": [217, 237], "gpa": 136, "gpu": [2, 30, 129], "gr": 79, "gracefulli": [130, 221, 245], "grad_field": [201, 268], "grade": [89, 116, 205, 217], "gradedlexord": 217, "gradient": [201, 206, 207, 265, 268, 274], "gradient_field": 272, "gradual": [18, 218], "grafarend": 215, "graham": [80, 93, 94, 128], "graham_scan": 105, "grai": [75, 83, 116, 160, 205, 207, 277], "gram": [124, 195, 196, 198], "grammar": [22, 130, 233], "grammar_fil": 130, "gramschmidt": 124, "grand": 67, "granger": [0, 177], "grantham": 128, "granvil": [93, 128], "graph": [2, 4, 15, 80, 96, 117, 124, 129, 210, 221, 240, 259, 292, 296], "graphic": [5, 55, 142], "graphviz": [5, 8, 292, 296], "grav_eq": 194, "gravc": 299, "gravd": 299, "gravit": [18, 33, 194, 274, 299, 302, 303, 309], "gravitational_const": [194, 198], "graviti": [13, 18, 22, 30, 33, 158, 274, 299, 303, 304, 306, 307, 309, 311], "gray_to_bin": 72, "graycod": 72, "graycode_subset": 72, "grayscal": 207, "great": [43, 160, 218, 221, 234, 260], "greater": [5, 48, 65, 80, 88, 93, 94, 96, 113, 117, 128, 144, 158, 212, 214, 217, 220, 228, 233, 237, 239, 241, 256, 259, 272, 287], "greaterthan": [88, 221], "greaterthanobject": 88, "greatest": [88, 93, 98, 128, 209, 211, 212, 214, 215, 217, 220], "greatli": 222, "greedi": [128, 214, 230, 233], "greedy_algorithm_for_egyptian_fract": 128, "greek": [5, 15, 60, 88, 128, 130, 208, 221], "greek_lett": 221, "green": [11, 12, 24, 79, 207], "greet": 118, "greuel": 215, "greuel2008": [208, 215], "grevlex": [88, 116, 205, 209, 214, 217, 220, 221], "grid": [39, 67, 68, 142, 207], "gridpoint": 67, "grigoryan": 238, "grlex": [88, 116, 205, 212, 217, 220, 221], "gro": 79, "groebner": [215, 216, 217, 220, 233, 239, 240], "groebnerbasi": [57, 209, 217, 220], "groebnertool": 214, "groot": [18, 131, 132, 134, 299], "ground": [12, 13, 107, 152, 208, 210, 211, 212, 214, 216, 217, 239, 296, 302, 308, 309, 310, 311], "ground_new": 212, "ground_root": 217, "ground_typ": 255, "group": [5, 7, 68, 75, 80, 81, 84, 85, 86, 88, 91, 93, 117, 118, 128, 132, 170, 179, 180, 191, 206, 207, 208, 212, 217, 233, 237, 239, 240, 247, 259, 277], "group_construct": 73, "group_nam": 117, "group_numb": 74, "group_ord": 117, "groupprop": [76, 79], "groups_count": 74, "grouptheori": 79, "grover": [178, 282], "grover_iter": 176, "grow": [14, 84, 88, 113, 124, 128, 211, 214], "growth": [77, 128, 210, 214, 287], "gruntz": [88, 223], "gr\u00f6bner": 213, "gscholar": 241, "gsl": [21, 254], "gsoc": 240, "gt": [65, 69, 88, 221, 241, 259], "gtkmathview": 221, "guarante": [12, 14, 38, 41, 48, 54, 69, 79, 80, 88, 100, 113, 115, 124, 158, 210, 211, 214, 216, 217, 237, 239, 240, 257, 262, 293, 297], "guard": 254, "guess": [13, 37, 68, 89, 92, 113, 116, 205, 214, 217, 231, 234, 292, 299], "gui": [9, 116, 205], "guid": [2, 6, 7, 8, 9, 11, 14, 15, 17, 20, 22, 27, 43, 53, 59, 68, 88, 95, 221, 234, 236, 237, 239, 240, 247, 290, 294, 295, 298, 300], "guidanc": 49, "guidelin": [3, 11, 14, 57, 237], "guiver": 215, "gumbel": 241, "gumbel_distribut": 241, "gumbel_max": 241, "gumbel_min": 241, "gumbeldistribut": 241, "gupta": [0, 240], "guzman": 11, "gx": 98, "gy": 237, "gymbal": 61, "gyz": 234, "gz": 79, "h": [0, 14, 16, 28, 39, 67, 68, 69, 70, 71, 72, 74, 79, 84, 87, 88, 89, 93, 96, 110, 113, 115, 119, 124, 125, 130, 144, 149, 152, 155, 160, 163, 175, 177, 180, 185, 189, 196, 206, 207, 208, 209, 210, 212, 214, 215, 216, 217, 220, 221, 229, 233, 237, 239, 240, 241, 242, 247, 254, 275, 287, 296, 303], "h0": 96, "h1": [46, 68, 155], "h2": [46, 155], "h3": 46, "h5": 81, "h_": [68, 79, 84, 93, 96, 115], "h_0": [79, 84], "h_1": [79, 84, 240], "h_2": [79, 240], "h_i": [69, 84], "h_n": [84, 96, 115, 217, 240], "h_name": [69, 254], "ha": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 22, 23, 28, 30, 32, 33, 34, 35, 36, 39, 41, 42, 43, 48, 49, 50, 52, 53, 54, 55, 56, 57, 65, 67, 68, 69, 70, 71, 72, 74, 77, 78, 79, 80, 82, 84, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 100, 101, 103, 104, 105, 111, 113, 115, 117, 118, 120, 123, 124, 125, 127, 128, 129, 130, 131, 133, 134, 136, 137, 140, 144, 145, 149, 151, 152, 153, 158, 164, 165, 175, 176, 185, 188, 193, 196, 200, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 226, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 269, 270, 272, 274, 275, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 306], "haaheim": 237, "hack": [237, 250], "hackman": 128, "had": [13, 14, 18, 22, 27, 43, 52, 53, 80, 88, 89, 124, 128, 216, 217, 218, 221, 229, 231, 237, 239, 240, 255, 260, 286, 289, 292, 293], "hadamard": [120, 124, 175, 176, 187, 221], "hadamard_product": 120, "hadamard_transform": 91, "hadamardg": 175, "hadamardpow": [120, 221], "hadamardproduct": [120, 221], "hadn": 43, "hal": 110, "half": [16, 43, 46, 69, 88, 89, 93, 94, 96, 98, 104, 115, 117, 124, 128, 130, 136, 158, 160, 163, 188, 206, 212, 214, 216, 217, 229, 230, 231, 233, 241, 252, 259], "half_gcdex": [212, 217], "half_per": 212, "half_precis": 69, "half_wave_retard": 163, "hall": [70, 78, 241], "hallei": 69, "halt": 79, "halv": 216, "hamberg": 82, "hamburg": 259, "hamilton": [61, 72, 124], "hamiltonian": [72, 182], "hand": [4, 12, 13, 14, 18, 22, 27, 28, 31, 33, 36, 39, 41, 43, 50, 55, 68, 69, 71, 74, 80, 81, 88, 94, 96, 115, 118, 124, 128, 136, 140, 153, 158, 159, 163, 180, 183, 195, 200, 206, 208, 211, 212, 214, 216, 219, 231, 240, 252, 254, 256, 260, 272, 274, 291, 299], "handbook": [4, 70, 78, 79, 86, 96, 128], "handi": [9, 87, 88, 124, 221, 292], "handl": [5, 7, 11, 12, 14, 18, 21, 22, 27, 39, 41, 42, 43, 67, 69, 76, 80, 88, 94, 115, 116, 118, 122, 128, 129, 130, 136, 145, 171, 174, 180, 181, 186, 195, 210, 211, 217, 218, 227, 233, 237, 239, 242, 245, 253, 259, 260, 262, 292, 297], "handle_first": 115, "handle_nan": 69, "handler": [43, 62, 63, 64, 65, 66, 88, 95, 124], "handwritten": [116, 205], "hang": [12, 55, 124, 237, 238, 303, 306, 310], "hankel": [96, 115], "hankel1": [96, 221], "hankel2": [96, 221], "hankel_transform": 115, "hankelh1": [96, 221], "hankelh2": [96, 221], "hankeltransform": 115, "happen": [3, 4, 7, 11, 12, 13, 14, 15, 39, 41, 42, 43, 52, 61, 69, 80, 87, 88, 92, 100, 103, 112, 152, 186, 190, 196, 208, 214, 216, 217, 220, 229, 233, 237, 241, 260, 270, 289, 296, 297], "happi": 43, "happili": [115, 245], "hard": [3, 11, 12, 13, 14, 15, 22, 41, 80, 89, 124, 128, 191, 211, 221, 228, 237, 240, 289, 291], "harder": [4, 12, 13, 14, 41, 88, 113, 211, 252], "hardest": 89, "hardi": 128, "hardwar": [43, 69], "harm": 3, "harmless": [221, 293], "harmon": [88, 93, 128, 146, 170, 206, 221, 282], "harmonic_numb": 93, "harmonicnumb": [93, 221], "harmonicnumber2": 93, "harsh": [0, 240], "hartre": 146, "has_assoc_field": 212, "has_assoc_r": 212, "has_dup": 259, "has_empty_sequ": [87, 115], "has_finite_limit": [87, 115], "has_fre": 88, "has_integer_pow": 193, "has_only_gen": 217, "has_q_annihil": 191, "has_q_creat": 191, "has_reversed_limit": [87, 115], "has_varieti": 259, "has_xfre": 88, "hasattr": [13, 233, 255], "hash": [12, 14, 88, 212, 214, 222, 233, 237, 252, 254], "hashabl": [14, 15, 85, 88, 113, 259], "hasn": 27, "hat": [24, 32, 33, 35, 36, 124, 152, 200, 205, 269, 270, 272, 274, 275, 299], "hate": 221, "hav91": 70, "hava": 70, "have": [0, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 21, 22, 23, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 50, 51, 53, 54, 55, 57, 59, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 78, 79, 80, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 99, 103, 104, 106, 111, 112, 113, 115, 117, 118, 119, 120, 123, 124, 127, 128, 129, 130, 131, 132, 134, 136, 137, 142, 144, 145, 147, 149, 151, 153, 154, 155, 158, 175, 177, 180, 184, 186, 188, 189, 190, 191, 193, 194, 196, 199, 200, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 221, 223, 224, 226, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 243, 245, 247, 248, 250, 251, 252, 254, 255, 256, 259, 260, 262, 265, 267, 269, 270, 271, 272, 275, 286, 287, 289, 290, 291, 292, 293, 296, 297, 298, 299, 301, 302, 304, 307, 310], "haven": 16, "hbar": [69, 167, 173, 186, 192, 196, 198, 206], "hd": 89, "he": [5, 93, 113, 214], "he_n": [96, 217], "head": [4, 38, 68, 88, 239, 241, 247, 262, 292], "header": [3, 12, 69, 253, 254], "headquart": 89, "heat": 196, "heavi": [2, 12, 241, 292], "heavili": [3, 228, 238], "heavisid": [4, 11, 96, 113, 115, 221], "heavisidediracdelta": 96, "heavisidestepfunct": 96, "heavisidetheta": 221, "hebrew": 89, "hedetniemi": 259, "heidelberg": 214, "height": [13, 68, 69, 104, 120, 160, 207, 208, 221, 228, 275, 303], "heiko": 74, "heinz": 82, "held": [27, 67, 89, 245, 297], "heldo": 89, "helen": 89, "helium": 146, "hellman": [89, 128], "hello": [89, 259], "helloworld": 89, "help": [3, 4, 5, 7, 9, 11, 12, 14, 17, 18, 22, 30, 36, 41, 52, 60, 69, 78, 88, 96, 113, 115, 124, 128, 129, 130, 136, 142, 166, 176, 207, 216, 218, 221, 230, 231, 234, 237, 238, 241, 252, 253, 254, 260, 282, 290, 293], "helper": [12, 13, 51, 67, 69, 79, 83, 86, 88, 113, 115, 116, 117, 176, 178, 187, 218, 228, 231, 234, 237, 238, 240, 253, 282], "hemispher": 275, "henc": [11, 33, 67, 69, 78, 79, 88, 90, 94, 96, 100, 113, 116, 118, 128, 140, 207, 208, 209, 214, 221, 231, 234, 238, 240, 252, 256, 270, 271, 272, 292, 297], "henri": 215, "hensel": 214, "hep": 145, "her": 240, "herbert": 87, "here": [3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 18, 21, 22, 25, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 58, 59, 63, 64, 69, 70, 72, 74, 77, 78, 79, 80, 86, 87, 88, 89, 90, 92, 93, 94, 96, 104, 105, 106, 110, 111, 113, 115, 118, 124, 127, 128, 129, 130, 134, 136, 140, 144, 148, 153, 181, 186, 191, 205, 207, 208, 210, 211, 212, 214, 216, 217, 218, 221, 222, 228, 230, 231, 233, 234, 237, 239, 240, 241, 245, 246, 253, 254, 256, 257, 259, 260, 270, 272, 274, 285, 286, 287, 289, 291, 292, 293, 295, 296, 297, 299, 301, 302, 303, 309, 310, 311], "hermetian": 174, "hermit": [115, 124, 125, 210, 216, 217, 221, 241], "hermite_distribut": 241, "hermite_normal_form": [125, 210, 216], "hermite_poli": [96, 217], "hermite_polynomi": 96, "hermite_prob": 96, "hermite_prob_poli": [96, 217], "hermite_quadratur": 115, "hermite_rul": 115, "hermiteh": [96, 221], "hermitepolynomi": 96, "hermitian": [41, 53, 65, 88, 119, 124, 174, 180, 191, 221], "hermitian_adjoint": 174, "hermitian_matrix": 41, "hermitian_transpos": 174, "hermitianhandl": 65, "hermitianoper": [65, 180], "hermitianpred": 65, "heroic": [217, 239], "herrlich": 68, "hertz": 142, "hessenberg": 124, "hessenbergdecomposit": 124, "hessian": 124, "hessian_matrix": 124, "heurisch": [11, 13, 115], "heurist": [14, 15, 41, 55, 80, 113, 115, 124, 214, 215, 228, 230, 233, 239, 240, 252, 287, 297], "heuristicgcdfail": 214, "hex": 128, "hfst": 89, "hg": 79, "hg2sfuei7t": 89, "hgh": 79, "hi": [234, 239], "hidden": [12, 15, 32], "hide": [89, 221], "hierarch": 88, "hierarchi": [13, 133, 221, 241], "high": [4, 5, 7, 11, 12, 16, 30, 39, 41, 47, 48, 52, 69, 88, 92, 93, 116, 128, 205, 210, 211, 214, 216, 217, 219, 221, 234, 239, 282, 293], "higher": [14, 16, 39, 48, 67, 69, 88, 90, 92, 96, 99, 124, 130, 204, 206, 208, 210, 211, 214, 217, 223, 224, 228, 230, 233, 237, 239, 242, 260, 287], "highest": [16, 21, 69, 82, 117, 208, 217, 224, 234, 237], "highest_root": 117, "highli": [5, 88, 92, 141, 211, 217, 226, 254], "highlight": [11, 14], "hilbert": [178, 180, 186, 282], "hilbert_spac": [177, 180, 189], "hilbertspac": 177, "hill": [18, 29, 34, 89, 96, 115, 153, 200, 203, 265, 300], "hill_ciph": 89, "hillgart": 265, "hinder": 237, "hing": [24, 136, 137], "hint": [4, 12, 14, 30, 43, 68, 72, 79, 88, 91, 94, 115, 124, 128, 132, 144, 168, 172, 188, 190, 191, 200, 217, 228, 231, 239, 297], "hint_integr": 237, "hintnam": [237, 238], "hir": 88, "hire": [18, 46, 55, 124, 136, 137, 140, 142, 207, 224, 299], "histogram": 256, "histor": [13, 15, 37, 43, 89, 210, 237, 241], "histori": [11, 30], "hit": [88, 292], "hjeb": 89, "hk": [144, 234], "hline": 221, "hnf": [125, 210, 216], "hnf_modulu": 216, "ho05": [70, 78], "hobj": 221, "hoc": 113, "hoeij": 215, "hoeij02": 215, "hoeij04": [214, 215], "hoffmann": 265, "hol_coneq": [26, 153, 306], "hold": [14, 15, 16, 28, 43, 64, 68, 79, 84, 88, 89, 90, 94, 96, 110, 113, 124, 127, 130, 144, 146, 152, 154, 155, 187, 217, 231, 233, 237, 241, 254, 297], "holder": 88, "hole": 191, "holomorph": [88, 95, 113], "holonom": [13, 25, 26, 109, 112, 153, 158, 276, 283, 299, 301, 302, 304, 305, 306], "holonomic_constraint": 158, "holonomic_funct": 106, "holonomicfunct": [107, 110, 111], "holonomicsequ": 110, "holt": [70, 78, 79, 86], "holzer": 234, "hom": 68, "home": [12, 136, 216, 234], "homebrew": 8, "homeier": 206, "homeier96": 206, "homogen": [51, 61, 111, 115, 124, 144, 212, 214, 217, 234, 237, 238, 241], "homogeneous_differential_equ": 237, "homogeneous_ord": [212, 217, 234, 237], "homogeneouscoeffbest": 237, "homogeneouscoeffsubsdepdivindep": 237, "homogeneouscoeffsubsindepdivdep": 237, "homogeneousgeneralquadrat": 234, "homogeneousternaryquadrat": 234, "homogeneousternaryquadraticnorm": 234, "homomoprh": 208, "homomorph": 79, "homomorphismfail": 214, "homonym": 13, "hongguang": [232, 277], "hood": [2, 11, 15], "hook": [43, 129, 130, 221], "hookrightarrow": 88, "hope": [14, 21, 39, 79, 208], "hopefulli": [16, 40, 113], "horel": 89, "horizont": [13, 43, 57, 68, 98, 101, 103, 124, 138, 140, 158, 163, 207, 210, 221], "horizontal_direct": 68, "horner": [30, 88, 210, 214, 217], "horner_schem": 217, "horowitz": 115, "host": [2, 5], "hostedtoolcach": 252, "hostnam": 254, "household": 124, "how": [2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 25, 26, 28, 30, 35, 37, 38, 39, 40, 41, 42, 43, 48, 49, 68, 69, 71, 79, 80, 87, 88, 94, 95, 96, 100, 111, 115, 118, 120, 124, 128, 130, 136, 148, 152, 153, 156, 162, 163, 179, 183, 186, 187, 188, 193, 194, 200, 207, 208, 211, 212, 214, 216, 220, 221, 224, 228, 229, 231, 233, 234, 237, 238, 239, 241, 247, 252, 253, 254, 255, 257, 259, 260, 262, 270, 287, 289, 291, 292, 293, 294, 296, 297, 299, 301, 305, 309], "howev": [0, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 22, 27, 31, 36, 37, 39, 41, 42, 43, 48, 51, 52, 55, 62, 64, 69, 71, 79, 80, 84, 87, 88, 89, 90, 93, 94, 96, 98, 113, 115, 118, 124, 128, 129, 130, 131, 134, 136, 140, 144, 148, 152, 153, 155, 156, 158, 159, 191, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 228, 229, 230, 231, 233, 237, 238, 239, 240, 252, 253, 260, 269, 270, 274, 286, 289, 291, 293, 297, 298], "hp": 89, "hpobwzcfbubsnz": 89, "hradiu": 98, "hrzqe": 89, "hsin": 215, "hstack": [124, 210, 299], "ht": 115, "hta": 302, "htangl": 302, "htm": [80, 96, 115, 234], "html": [2, 4, 5, 8, 11, 12, 65, 69, 72, 80, 81, 82, 88, 89, 91, 93, 94, 96, 98, 104, 105, 115, 116, 124, 128, 142, 215, 221, 224, 226, 229, 230, 234, 237, 241, 253, 255, 257, 259, 260, 293], "htmldoc": 8, "http": [0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 34, 41, 43, 59, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 79, 80, 81, 82, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 100, 104, 105, 106, 110, 113, 115, 116, 117, 118, 120, 124, 128, 136, 142, 144, 146, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 200, 202, 203, 205, 206, 210, 212, 215, 217, 220, 221, 224, 226, 228, 229, 230, 233, 234, 237, 240, 241, 253, 254, 255, 257, 259, 260, 262, 265, 267, 271, 273, 275, 293, 296, 303], "hu": [128, 210], "hubbard": 154, "huge": [115, 128, 217, 257], "hull": 105, "hulpk": 79, "human": [4, 11, 37, 113, 193, 217, 221, 299, 300], "humphrei": 117, "hundr": [129, 260, 291], "hurdl": 22, "hurt": 12, "hurwitz": [93, 96], "hurwitz_zeta_funct": 96, "hw": [167, 192], "hwp": 163, "hxz": 234, "hy": 98, "hybrid": 211, "hydrogen": [69, 282], "hyper": [15, 88, 93, 96, 107, 110, 221, 223, 231, 233, 239, 241, 297], "hyper_algorithm": 223, "hyper_r": 223, "hyperbol": [96, 130, 131, 218, 240, 293, 297], "hyperbolic_funct": 94, "hyperbolicfunct": 94, "hyperegeometr": 233, "hyperexpand": [88, 96, 110, 113, 231, 233], "hyperfocal_dist": 164, "hypergeometr": [92, 93, 106, 112, 113, 215, 232, 233, 237, 239, 241, 277, 297], "hypergeometric_distribut": 241, "hypergeometricdistribut": 241, "hypergeometricfunct": 96, "hypergeometricpfq": 221, "hyperlink": 4, "hyperplan": 117, "hypersimilar": 233, "hypersimp": [87, 233], "hypot": [69, 221], "hypotenus": [69, 104, 159], "hypothesi": 2, "hypothet": 256, "hz": 142, "i": [0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 171, 172, 174, 175, 177, 179, 180, 181, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 264, 265, 267, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 290, 292, 293, 295, 296, 297, 298, 299, 301, 302, 303, 304, 306, 307, 308, 309, 310, 311], "i0": [145, 163, 247], "i1": [22, 30, 136, 145, 247], "i12": 30, "i2": [22, 30, 145, 247], "i23": 30, "i3": [22, 30, 124, 145, 247], "i31": 30, "i4": [145, 247], "i5": 145, "iT": 113, "i_": [96, 113, 231, 241, 242], "i_0": 241, "i_1": [78, 191, 217, 242], "i_2": [78, 191, 217], "i_a": 242, "i_b": 242, "i_b_bo": 22, "i_b_o": 22, "i_block": 303, "i_c_d": 22, "i_k": 241, "i_n": [216, 217, 242], "i_p_o": 22, "i_p_q": 22, "i_pendulum": 303, "i_r": 78, "i_xi": [98, 104], "i_xx": [98, 104], "i_yi": [98, 104], "ia": [127, 299], "iamit": 240, "ib": 94, "ibin": [118, 259], "ibm": [11, 233], "ibzz": 307, "ic": [55, 128, 237, 299], "icomp": 247, "icomp1": 247, "icomp2": 247, "icosahedr": 81, "id": [68, 84, 94, 243, 299], "id_a": 68, "id_b": 68, "idea": [3, 7, 11, 12, 14, 15, 22, 41, 42, 43, 73, 79, 86, 88, 89, 100, 106, 113, 115, 128, 145, 191, 195, 196, 208, 210, 211, 230, 233, 234, 237, 240, 254, 260, 297], "ideal": [12, 22, 23, 35, 41, 69, 125, 151, 155, 200, 210, 212, 214, 215, 216, 217, 218, 233, 240, 265], "idempot": 69, "ident": [3, 14, 15, 16, 18, 28, 43, 45, 65, 68, 70, 78, 79, 80, 86, 88, 89, 93, 94, 104, 111, 117, 120, 124, 145, 147, 152, 153, 175, 177, 180, 196, 208, 209, 210, 214, 215, 216, 217, 221, 230, 233, 237, 240, 245, 247, 252, 259, 260, 262, 270, 289, 293, 297], "identif": [113, 240], "identifi": [4, 12, 13, 14, 25, 41, 42, 67, 81, 88, 91, 92, 115, 124, 134, 140, 158, 179, 180, 208, 211, 212, 222, 230, 233, 237, 238, 240, 241, 260], "identity_hom": 208, "identityfunct": 94, "identityg": 175, "identitymatrix": 221, "identitymorph": 68, "identityoper": 180, "ideologi": [69, 240], "idiff": [88, 105], "idiom": [15, 289, 290], "idl": 69, "idx": [67, 69, 221, 245, 246, 253], "ie": [80, 234], "ieee": [88, 89], "ieilehfstsfxe": 89, "ieilh": 89, "ieilhhfstsfqy": 89, "ifascii_nougli": 221, "ifels": 221, "iff": [35, 36, 43, 65, 74, 80, 89, 118, 124, 208, 216, 231, 234, 252], "ifft": 91, "ifndef": [69, 254], "ifork11": 302, "ifork22": 302, "ifork31": 302, "ifork33": 302, "ifort": 2, "ifp": 67, "iframe11": 302, "iframe22": 302, "iframe31": 302, "iframe33": 302, "ifwht": 91, "igcd": [88, 128, 209], "igcd_lehm": 88, "igcdex": 88, "ignor": [11, 12, 13, 14, 16, 37, 43, 69, 79, 88, 89, 93, 94, 98, 103, 113, 118, 124, 128, 144, 149, 150, 156, 188, 191, 200, 207, 217, 221, 222, 233, 234, 239, 240, 253, 297, 302], "ignore_exception_detail": 252, "ignore_warn": [3, 149, 250, 255, 257, 260], "igusa": 241, "ii": [41, 94, 113, 115, 217, 221, 229, 237, 240, 243], "iii": [115, 221, 237], "iin": 117, "ij": [65, 124, 191, 196, 206, 241, 243], "ijk": [69, 246], "ijklm": 243, "ijr22d": 89, "ijth": 117, "il": 241, "ilcm": [88, 128], "ild_deflection_jump": 136, "ild_moment": 136, "ild_react": 136, "ild_rotation_jump": 136, "ild_shear": 136, "ild_vari": 136, "ilex": 208, "ill": [48, 130, 194], "illinoi": 67, "illumin": 4, "illustr": [69, 124, 149, 196, 211, 224, 228, 305, 306], "im": [43, 66, 88, 94, 113, 121, 208, 221, 222, 229, 237, 293], "imag": [2, 8, 24, 30, 35, 36, 45, 79, 152, 160, 164, 208, 214, 221, 229, 240, 270, 306, 308], "imagemagick": 8, "imageset": [229, 240, 298], "imaginari": [3, 4, 16, 30, 41, 43, 48, 52, 54, 61, 65, 66, 88, 92, 94, 96, 124, 211, 212, 217, 221, 222, 229, 233, 240], "imaginary_numb": [41, 65, 88], "imaginary_unit": [88, 221], "imaginaryhandl": 65, "imaginarypred": 65, "imaginaryunit": [12, 88, 221], "imath": 231, "imbu": 90, "immateri": 89, "immedi": [3, 12, 14, 41, 53, 71, 79, 88, 113, 118, 158, 191, 208, 211, 242, 253, 260], "immut": [13, 14, 15, 36, 88, 119, 122, 126, 212, 237, 242, 280, 286, 293], "immutabledensematrix": [90, 119, 120, 121, 124, 241], "immutabledensendimarrai": [14, 242], "immutablematrix": [119, 120, 124, 144, 158, 200, 241, 265, 268, 293], "immutablesparsendimarrai": 242, "impact": 13, "implement": [2, 4, 5, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 28, 32, 34, 35, 36, 38, 42, 43, 52, 54, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 73, 74, 78, 79, 80, 85, 88, 89, 91, 93, 94, 96, 99, 101, 108, 109, 111, 112, 115, 118, 119, 124, 128, 129, 130, 131, 132, 134, 148, 151, 156, 160, 162, 163, 166, 175, 176, 184, 185, 187, 195, 201, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 220, 222, 225, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 245, 246, 256, 259, 260, 273, 276, 280, 287, 291, 297, 299], "implemented_funct": [14, 129, 253, 260], "impli": [5, 14, 15, 16, 18, 41, 61, 65, 69, 79, 118, 140, 191, 207, 212, 214, 221, 229, 231, 237, 239, 242, 245, 246, 259, 272], "implic": [14, 88, 118, 214], "implicit": [14, 31, 41, 55, 69, 86, 88, 130, 134, 153, 154, 158, 207, 237, 239, 243, 246, 253, 254, 265, 268, 275, 289], "implicit_appl": 130, "implicit_circl": 275, "implicit_multipl": 130, "implicit_multiplication_appl": 130, "implicitli": [14, 15, 41, 42, 43, 80, 88, 115, 208, 211, 239], "implicitregion": [265, 268, 275], "implicitseri": 207, "implieddoloop": 69, "import": [2, 3, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 46, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 183, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 265, 267, 268, 269, 270, 271, 272, 275, 286, 287, 289, 291, 292, 293, 295, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "import_modul": [2, 12], "importantli": [14, 41, 43, 218, 256], "importerror": 2, "importlib": 13, "impos": [3, 18, 137], "imposs": [3, 4, 12, 13, 14, 15, 43, 55, 88, 211, 230, 237, 238, 250, 287, 289, 297], "impract": [237, 287], "imprecis": 13, "impress": 16, "improp": [96, 115], "improperli": 88, "improv": [2, 3, 7, 11, 12, 13, 14, 18, 23, 42, 43, 88, 113, 158, 207, 211, 214, 215, 217, 218, 220, 222, 237, 240, 246, 287, 293], "impuls": [46, 144], "impulse_respons": 46, "impulse_response_numerical_data": 142, "impulse_response_plot": 142, "imul_num": 212, "in_terms_of_gener": 208, "inabl": 238, "inaccur": 212, "inappropri": 90, "inc": [34, 203, 215], "incent": 104, "inch": 207, "incid": [160, 164], "incircl": 104, "inclin": [138, 208], "includ": [2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 27, 30, 33, 36, 41, 43, 45, 48, 51, 52, 56, 59, 64, 65, 67, 68, 69, 80, 84, 87, 88, 89, 90, 92, 93, 94, 96, 100, 106, 113, 115, 118, 120, 122, 123, 124, 128, 129, 130, 131, 134, 136, 146, 151, 158, 171, 175, 180, 185, 188, 189, 199, 209, 210, 212, 213, 214, 216, 217, 220, 221, 222, 227, 228, 229, 231, 233, 236, 237, 238, 239, 241, 244, 247, 250, 252, 254, 255, 256, 257, 259, 265, 267, 269, 274, 276, 287, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307], "include_dir": 253, "include_numer": 22, "include_pydi": 22, "include_self": 216, "includepr": [212, 214, 217], "inclus": [5, 13, 87, 138, 140, 184, 208, 227, 228, 229, 240], "inclusion_hom": 208, "incom": [216, 241], "incommensur": 67, "incompat": 50, "incomplet": [2, 4, 5, 88, 93, 96, 130, 209, 211, 217, 221, 223, 239, 240], "incomplete_gamma_funct": 96, "inconclus": 239, "incongru": 231, "inconsist": [35, 41, 43, 62, 64, 87, 196, 200, 204, 233, 237, 239, 240], "inconsistentassumpt": 41, "inconveni": 221, "incorpor": [0, 2, 19, 39, 133, 209, 233, 301], "incorrect": [3, 5, 11, 12, 13, 42, 43, 54, 79, 88, 98, 128, 136, 142, 204, 210, 212, 237, 240, 253, 256, 257], "incorrectli": [4, 11, 13, 14, 43, 97, 98, 124, 209], "increas": [16, 18, 21, 32, 35, 36, 53, 67, 68, 80, 86, 87, 88, 91, 92, 96, 124, 128, 129, 158, 175, 200, 202, 211, 214, 216, 217, 223, 226, 230, 237, 241, 257, 259], "increment": [69, 79, 80, 81, 87, 104, 128, 241], "incur": [69, 129], "ind": [84, 223, 247], "inde": [3, 12, 14, 39, 43, 76, 79, 87, 113, 128, 208, 231, 237, 248, 252, 291], "indefinit": [12, 15, 61, 94, 112, 113, 115, 124, 130, 212, 214, 215, 217, 226, 287], "indent": [4, 16, 262], "indent_cod": 221, "indep": 237, "indep_div_dep": 237, "independ": [15, 16, 22, 25, 27, 33, 43, 53, 65, 67, 69, 79, 87, 88, 90, 96, 105, 113, 115, 117, 124, 144, 153, 154, 158, 189, 196, 207, 209, 211, 216, 217, 223, 224, 231, 233, 234, 237, 238, 239, 240, 241, 247, 252, 253, 272, 291, 292, 299, 302, 304, 306], "indetermin": [41, 42, 88, 124, 214, 226, 239], "indeterminate_form": 88, "index": [2, 8, 11, 12, 13, 16, 22, 30, 31, 43, 48, 55, 56, 57, 61, 69, 77, 79, 80, 84, 87, 88, 89, 90, 93, 94, 96, 99, 104, 113, 115, 118, 120, 124, 127, 128, 130, 132, 144, 158, 160, 162, 164, 165, 175, 184, 186, 188, 191, 196, 200, 207, 208, 210, 212, 216, 217, 218, 221, 226, 227, 231, 239, 241, 242, 244, 245, 247, 248, 253, 280], "index_group": 191, "index_method": 245, "index_order_new": [242, 243], "index_order_old": [242, 243], "index_typ": 247, "index_vector": 61, "indexconformanceexcept": 245, "indexedbas": [67, 69, 87, 88, 221, 239, 245, 246, 253], "indexerror": [80, 124, 217], "indexing_maxterm": 118, "indexing_minterm": 118, "indic": [3, 4, 11, 12, 16, 32, 38, 41, 52, 55, 56, 67, 68, 69, 70, 72, 77, 79, 80, 81, 83, 84, 86, 87, 88, 91, 92, 93, 96, 98, 103, 104, 113, 115, 118, 120, 124, 127, 128, 145, 158, 175, 186, 188, 189, 191, 196, 200, 206, 210, 211, 212, 216, 217, 218, 221, 228, 229, 230, 233, 234, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 259, 293, 306], "indices_contain_equal_inform": [96, 191], "indici": [110, 111, 112, 237], "indirect": [12, 88, 90, 96, 128, 191, 237], "indirectli": [14, 41], "individu": [11, 12, 13, 28, 41, 43, 46, 50, 53, 88, 94, 99, 104, 105, 117, 120, 124, 144, 163, 181, 185, 206, 229, 237, 239, 252, 293], "induc": [88, 124, 216, 230, 259], "induct": 208, "ineffici": [51, 88, 124, 211], "inequ": [14, 15, 41, 42, 43, 49, 88, 207, 214, 229, 231, 235, 277], "inequival": 113, "inert": [216, 237], "inerti": [25, 26, 28, 30, 149, 153, 155, 158, 299, 302, 303, 306, 309], "inertia": [13, 21, 22, 23, 30, 32, 35, 36, 136, 137, 147, 149, 151, 158, 200, 216, 282, 300, 302, 303, 304, 307, 309, 310, 311], "inertia_dyad": 200, "inertia_of_point_mass": [13, 155], "inertia_tupl": [149, 155], "inexact": [14, 16, 57, 88, 210, 212], "inexpens": 14, "inexpress": 217, "inextens": 18, "inf": [69, 80, 88, 124, 212, 214, 217, 229, 237, 241], "infal": 289, "infanc": 100, "infeas": [214, 217], "infeasiblelperror": 239, "infer": [41, 63, 64, 80, 88, 115, 211, 220, 221, 226, 231, 237, 253], "infimum": 229, "infin": [15, 41, 50, 65, 87, 88, 93, 94, 96, 101, 113, 115, 124, 164, 212, 214, 217, 221, 226, 227, 228, 229, 233, 236, 237, 241], "infinit": [41, 43, 50, 51, 65, 87, 88, 89, 92, 93, 94, 101, 102, 115, 124, 128, 144, 159, 177, 196, 208, 216, 221, 222, 223, 226, 227, 228, 229, 233, 234, 236, 239, 246, 259, 287, 297, 298, 308], "infinite_product": 87, "infinitehandl": 65, "infinitepred": 65, "infinitesim": [33, 237, 272], "infix": 88, "inflect": 206, "influenc": [12, 18, 70, 136, 159, 208, 209, 299], "info": [5, 9, 11, 16, 144, 221, 237, 238], "inform": [2, 3, 4, 5, 7, 9, 11, 14, 15, 16, 22, 23, 24, 25, 27, 28, 30, 31, 36, 38, 41, 42, 45, 48, 57, 58, 64, 65, 68, 69, 70, 74, 79, 80, 86, 88, 89, 93, 96, 100, 113, 115, 117, 120, 124, 128, 129, 130, 137, 149, 150, 151, 152, 153, 155, 158, 186, 191, 196, 200, 205, 207, 210, 211, 216, 217, 221, 222, 228, 231, 233, 234, 239, 240, 241, 245, 246, 247, 252, 253, 254, 255, 256, 265, 270, 272, 297, 299, 302], "informatik": 259, "informatiqu": 218, "infrastructur": [221, 238], "infti": [4, 14, 15, 41, 65, 87, 88, 89, 93, 94, 96, 113, 115, 130, 208, 217, 224, 228, 231, 237, 240, 241, 287, 291, 297], "inftyright": 240, "infunct": 88, "inher": [22, 260, 289], "inherit": [13, 62, 88, 95, 118, 120, 121, 131, 134, 148, 152, 156, 159, 180, 189, 206, 221, 241, 246, 254, 255], "inhomogen": [234, 237, 239], "inhomogeneousgeneralquadrat": 234, "inhomogeneousternaryquadrat": 234, "init": 239, "init_cond": 90, "init_ipython_sess": 116, "init_print": [13, 14, 48, 53, 59, 69, 80, 92, 115, 116, 124, 137, 205, 208, 209, 220, 287, 291, 293, 296, 297, 298], "init_python_sess": 116, "init_sess": [2, 116, 296], "init_subgroup": 79, "init_vprint": [28, 31, 35, 36, 149, 155, 157, 200, 202, 204, 205, 303], "initcond": [107, 109, 110], "initi": [5, 15, 18, 22, 25, 26, 27, 30, 31, 36, 41, 46, 54, 63, 79, 83, 88, 89, 90, 93, 96, 104, 106, 107, 110, 111, 112, 113, 115, 116, 128, 130, 137, 138, 140, 142, 144, 149, 153, 155, 158, 163, 171, 180, 201, 202, 205, 206, 214, 216, 217, 221, 227, 231, 233, 237, 239, 240, 246, 254, 261, 262, 265, 267, 268, 269, 270, 299, 302, 304, 306, 307, 311], "initial_condit": [22, 30], "initial_exp": 142, "initializing_quadratic_siev": 128, "initialor": 55, "inject": [14, 79, 88, 208, 212, 217, 293], "inlin": [4, 12, 116, 205, 221, 254, 299], "inlist": 200, "inner": [41, 55, 87, 113, 124, 130, 174, 177, 178, 183, 185, 186, 189, 191, 200, 204, 210, 216, 223, 265, 282], "inner_endomorph": 216, "inner_product": 179, "innerendomorph": 216, "innermost": 88, "innerproduct": [174, 179, 180, 186, 188, 191], "inout": 69, "inoutargu": [69, 254], "inp_vec": [27, 306], "inplac": 212, "input": [4, 5, 11, 12, 15, 16, 18, 21, 22, 27, 30, 31, 43, 46, 52, 55, 61, 67, 70, 84, 88, 89, 91, 92, 93, 94, 102, 115, 117, 118, 124, 128, 130, 131, 132, 134, 138, 140, 141, 142, 144, 152, 154, 158, 164, 187, 200, 202, 204, 210, 211, 212, 214, 217, 218, 219, 220, 221, 222, 229, 233, 234, 237, 239, 241, 243, 253, 254, 256, 257, 259, 260, 262, 286, 292, 293, 297, 299, 302, 306], "input_var": [131, 134], "inputargu": [69, 254], "inputoutput": 254, "inquiri": 88, "inradiu": 104, "inria": [110, 115], "insconsist": 88, "inscrib": 104, "insensit": [30, 69, 124, 221, 252, 254], "insert": [18, 68, 70, 124, 130, 134, 136, 186, 191, 221, 241, 262, 299], "insertion_angl": 299, "insertion_dist": 299, "insertion_segment_length": 299, "insid": [5, 12, 13, 14, 15, 16, 21, 27, 36, 43, 79, 80, 85, 88, 98, 99, 104, 136, 150, 190, 191, 195, 196, 205, 217, 221, 229, 231, 234, 239, 240, 241, 243, 245, 256, 260, 292, 293, 306], "insidepoli": 104, "insight": [50, 290, 301], "inspect": [12, 13, 18, 41, 124, 132, 134, 216, 227, 258, 260, 284], "inspir": [238, 293, 303], "instal": [2, 5, 12, 15, 16, 45, 92, 129, 210, 211, 212, 221, 253, 260, 290, 296], "instanc": [1, 3, 4, 5, 12, 13, 14, 15, 18, 22, 31, 33, 38, 41, 42, 43, 62, 63, 64, 66, 68, 69, 71, 79, 81, 83, 88, 90, 92, 93, 94, 96, 101, 104, 105, 106, 111, 112, 115, 116, 120, 123, 124, 128, 130, 131, 132, 134, 136, 145, 148, 149, 153, 156, 158, 159, 164, 171, 175, 181, 185, 186, 188, 190, 191, 200, 202, 205, 207, 210, 211, 212, 216, 217, 218, 219, 221, 229, 231, 233, 237, 239, 240, 241, 245, 246, 247, 252, 253, 254, 256, 259, 260, 265, 267, 268, 269, 270, 272, 274, 286, 287, 292, 297, 298, 304, 307], "instantan": [18, 272], "instanti": [18, 61, 68, 69, 80, 88, 96, 101, 103, 104, 120, 130, 131, 132, 134, 148, 153, 156, 159, 181, 189, 200, 208, 210, 212, 216, 241, 265, 269], "instantia": 207, "instead": [2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 22, 27, 30, 32, 33, 35, 36, 37, 41, 42, 43, 50, 52, 53, 55, 56, 57, 60, 61, 62, 64, 68, 69, 79, 81, 84, 88, 90, 91, 92, 93, 96, 115, 116, 118, 120, 121, 124, 128, 131, 134, 142, 145, 147, 148, 158, 189, 193, 200, 205, 207, 208, 210, 211, 212, 214, 216, 217, 219, 221, 223, 231, 233, 237, 239, 240, 241, 245, 246, 247, 250, 255, 256, 257, 259, 260, 272, 275, 286, 287, 289, 291, 292, 293, 297, 298, 302, 306], "institut": 218, "instruct": [2, 4, 5, 7, 8, 9, 11, 13, 16, 39, 44, 58, 69, 221, 239, 253, 254, 305], "insuffici": [37, 124], "int": [2, 4, 5, 12, 13, 14, 15, 16, 41, 42, 43, 61, 67, 69, 74, 80, 88, 89, 90, 93, 94, 96, 97, 104, 113, 115, 116, 118, 124, 125, 128, 130, 132, 134, 142, 144, 152, 171, 175, 176, 185, 200, 202, 204, 205, 206, 207, 211, 212, 216, 217, 218, 221, 223, 224, 226, 234, 237, 238, 241, 253, 257, 259, 260, 262, 289, 291, 292, 296, 297], "int1": [63, 64], "int16": 69, "int2": [63, 64], "int32": 69, "int64": [14, 69, 241], "int8": 69, "int_": [96, 112, 113, 115, 217, 224, 287, 291], "int_0": [14, 96, 113, 115, 287, 297], "int_1": [96, 113, 130], "int_a": 115, "int_fram": 13, "int_l": [96, 113, 231], "int_to_integ": 116, "int_x": 96, "intact": [3, 13, 69, 253], "intbasetyp": 69, "intc": [69, 130], "intcurve_diffequ": 90, "intcurve_seri": 90, "integ": [2, 4, 5, 12, 14, 15, 16, 41, 43, 50, 51, 52, 62, 63, 64, 65, 67, 69, 70, 74, 77, 79, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93, 96, 98, 101, 112, 113, 115, 116, 117, 118, 120, 124, 125, 128, 130, 134, 136, 138, 144, 146, 152, 180, 185, 187, 188, 189, 191, 193, 200, 202, 205, 206, 207, 208, 209, 210, 212, 214, 215, 216, 217, 218, 220, 221, 223, 226, 227, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 245, 246, 247, 253, 254, 256, 259, 262, 287, 289, 292, 296, 297], "integer_as_sum_of_three_squar": 234, "integer_el": 65, "integer_log": 88, "integer_nthroot": [88, 94, 128], "integer_to_term": 118, "integerelementshandl": 65, "integerelementspred": 65, "integerhandl": 65, "integerpartit": [77, 259], "integerpred": 65, "integers_onli": 207, "integr": [2, 11, 12, 14, 15, 16, 18, 22, 23, 30, 32, 33, 38, 49, 59, 61, 67, 80, 87, 88, 90, 93, 94, 106, 107, 108, 111, 117, 123, 124, 127, 128, 130, 144, 146, 151, 153, 158, 177, 186, 189, 192, 195, 201, 206, 208, 211, 212, 214, 215, 217, 218, 221, 223, 224, 231, 237, 238, 241, 254, 262, 265, 268, 269, 272, 273, 277, 280, 288, 291, 296, 299], "integral_basi": [212, 216], "integral_step": 115, "integraltransform": 115, "integraltransformerror": 115, "integrand": [12, 92, 96, 112, 113, 115, 130, 231, 287], "integrate_result": 186, "integration_techniqu": 115, "integration_vari": 287, "integstp": 22, "intellig": [215, 233, 237, 297], "intelligenc": 74, "intend": [2, 3, 4, 7, 9, 11, 12, 13, 14, 18, 37, 41, 88, 89, 99, 108, 113, 128, 130, 133, 150, 155, 186, 210, 211, 212, 216, 219, 221, 234, 237, 238, 250, 255, 262, 286, 299], "intens": [153, 154, 160, 163], "intent": [12, 14, 41, 69, 87, 88, 130, 210, 254], "intent_in": 69, "intent_out": 69, "intention": 88, "intenum": 134, "interact": [0, 11, 14, 15, 30, 36, 37, 52, 60, 88, 102, 115, 121, 124, 156, 188, 205, 211, 212, 233, 241, 257, 263, 276, 284, 289, 291, 292, 296, 297], "interactive_travers": 13, "interactiveconsol": [116, 205], "interchang": [15, 84, 87, 113, 133, 237], "interconnect": [18, 141, 144, 149], "interest": [7, 11, 14, 16, 18, 36, 37, 43, 48, 51, 57, 84, 88, 90, 93, 94, 104, 113, 115, 124, 128, 130, 156, 191, 196, 208, 212, 216, 217, 218, 220, 228, 231, 233, 234, 239, 240, 253, 254, 270, 287, 290, 292, 293, 294, 297, 302], "interf": 240, "interfac": [2, 5, 7, 9, 11, 12, 15, 18, 23, 34, 36, 52, 67, 88, 116, 131, 133, 152, 160, 186, 205, 210, 211, 214, 219, 240, 253, 254], "interfer": [41, 221], "interfram": [152, 204], "interior": [104, 217, 229], "interior_angl": 104, "intermedi": [15, 18, 22, 24, 35, 69, 70, 111, 124, 152, 175, 185, 193, 194, 200, 204, 240, 254, 294, 302, 307, 309], "intern": [3, 13, 14, 15, 16, 27, 28, 41, 42, 50, 67, 69, 70, 79, 88, 91, 92, 93, 96, 104, 105, 108, 119, 124, 128, 130, 134, 137, 140, 142, 164, 185, 186, 196, 208, 210, 212, 213, 215, 217, 219, 221, 231, 233, 236, 237, 238, 239, 240, 241, 245, 247, 250, 254, 256, 259, 283, 292, 296, 302], "internal_forc": 140, "interpol": [30, 67, 93, 97, 214, 217], "interpolating_poli": [96, 217], "interpolating_splin": 96, "interpret": [16, 21, 42, 55, 57, 69, 79, 87, 88, 93, 94, 96, 101, 104, 115, 120, 124, 128, 130, 196, 207, 209, 216, 217, 221, 228, 234, 239, 240, 241, 246, 252, 253, 256, 262, 293], "interrog": 56, "interrupt": 252, "intersect": [4, 41, 52, 67, 68, 79, 98, 99, 101, 102, 103, 104, 105, 124, 156, 164, 208, 217, 221, 227, 228, 229, 240], "intersecting_product": 91, "intersection_": 229, "interspers": 208, "interv": [48, 50, 52, 55, 65, 67, 79, 88, 92, 94, 96, 97, 98, 101, 104, 113, 115, 118, 128, 177, 186, 210, 212, 214, 216, 217, 224, 227, 229, 236, 240, 241, 287, 298], "interval_": 229, "interval_list": 207, "intfunc": [94, 128, 217], "intgrl": 92, "intim": 208, "intiuit": 124, "intm": 123, "intp": 69, "intpoli": 115, "intqubit": [176, 185], "intqubitbra": 185, "intransit": 79, "intrins": [61, 69], "intrinsic_imped": 162, "introduc": [13, 14, 18, 22, 26, 36, 42, 51, 84, 87, 88, 96, 113, 124, 129, 131, 134, 137, 191, 196, 212, 213, 217, 218, 221, 228, 231, 234, 241, 257, 283, 290, 293, 295, 297, 299, 301, 302, 304, 309, 310, 311], "introduct": [5, 6, 13, 17, 19, 23, 34, 40, 79, 80, 93, 96, 210, 212, 214, 215, 217, 221, 234, 237, 240, 273, 280, 290, 296], "introductori": [16, 30, 39, 58, 59, 211, 212, 217], "introspect": 30, "intstep": 115, "intt": 91, "inttyp": 69, "intuit": [18, 28, 88, 196, 237], "inv": [30, 39, 53, 80, 119, 124, 149, 153, 158, 180, 210, 237, 302, 309, 310], "inv_can_transf_matrix": 193, "inv_den": [124, 210], "inv_method": [149, 153, 158], "inv_perm": 80, "inv_trig_styl": 221, "invalid": [5, 11, 12, 14, 16, 57, 88, 89, 130, 211, 214, 229, 302], "invari": [5, 13, 43, 79, 84, 141, 144, 206, 210, 212, 214, 216, 217, 231, 237], "invent": [89, 216, 239, 291], "inver": 218, "invers": [4, 12, 18, 53, 55, 61, 79, 80, 88, 89, 90, 96, 115, 120, 124, 128, 130, 132, 149, 153, 158, 180, 184, 185, 188, 193, 196, 208, 209, 210, 212, 214, 217, 218, 221, 223, 231, 233, 237, 239, 240, 241, 259, 293, 297], "inverse_adj": [124, 293], "inverse_block": 124, "inverse_ch": 124, "inverse_cosine_transform": 115, "inverse_fourier_transform": 115, "inverse_funct": 96, "inverse_g": [124, 293], "inverse_gaussian_distribut": 241, "inverse_hankel_transform": 115, "inverse_laplace_transform": [46, 115], "inverse_ldl": 124, "inverse_lu": [124, 293], "inverse_mellin_transform": 115, "inverse_mobius_transform": 91, "inverse_qr": 124, "inverse_sine_transform": 115, "inverse_trigonometric_funct": 94, "inversecosinetransform": 115, "inverseerf": [96, 221], "inverseerf2": 96, "inverseerfc": [96, 221], "inversefouriertransform": 115, "inversegaussiandistribut": 241, "inversehankeltransform": 115, "inverselaplacetransform": 115, "inversemellintransform": 115, "inversesinetransform": 115, "inversetrigonometricfunct": 43, "inversion_vector": 80, "invert": [18, 39, 53, 57, 65, 88, 89, 120, 124, 144, 193, 209, 210, 211, 212, 216, 217, 237, 239, 240, 247, 293, 306], "invert_complex": 240, "invert_r": 240, "invertible_matrix": 65, "invertiblehandl": 65, "invertiblepred": 65, "investig": [11, 80, 113, 206, 208, 231, 259, 289], "invok": [228, 252, 253], "invol": 131, "involut": 259, "involv": [11, 12, 13, 14, 16, 22, 32, 35, 36, 39, 41, 48, 50, 52, 64, 66, 79, 87, 88, 89, 93, 100, 101, 113, 115, 128, 133, 144, 149, 153, 159, 170, 180, 186, 188, 198, 208, 209, 212, 214, 216, 217, 218, 222, 223, 228, 229, 230, 231, 233, 234, 237, 239, 242, 260, 297, 299], "io": [2, 5, 116, 221, 260], "ion": [18, 131, 234], "iosi": 89, "iota": [16, 221], "ip": [116, 179, 185, 205], "ip_doit": 183, "ipl": 124, "ipmnet": 237, "ipo": 247, "ipos1": 247, "ipos2": 247, "iproduct": 259, "ipython": [2, 4, 15, 16, 30, 59, 116, 205, 260, 264, 295, 296], "iqft": 184, "iren": [4, 96], "irrat": [41, 48, 65, 67, 88, 128, 211, 217, 221, 229, 291], "irrational_numb": [41, 65, 88], "irrationalhandl": 65, "irrationalpred": 65, "irreduc": [14, 48, 209, 210, 212, 214, 216, 217, 220, 241, 247, 297], "irreducibili": 217, "irregular": [120, 124], "irrelev": 93, "irrespect": [115, 234, 237, 262], "irrot": [33, 272], "irwin": 241, "is2pow": 128, "is_": [15, 43, 88], "is_2dlin": 207, "is_abelian": 79, "is_abelian_numb": 74, "is_above_fermi": [96, 191], "is_absolutely_converg": 87, "is_abund": 128, "is_add": [88, 240], "is_algebra": [41, 88, 212], "is_algebraic_expr": 88, "is_alias": 88, "is_alt_sym": [79, 86], "is_altern": 79, "is_amic": 128, "is_anf": 118, "is_anti_symmetr": 124, "is_below_fermi": [96, 191], "is_biprop": 144, "is_canon_bp": 247, "is_capit": 15, "is_carmichael": [13, 128], "is_clos": 229, "is_cnf": 118, "is_collinear": [100, 103], "is_commut": [41, 115, 180, 189, 259], "is_compar": [41, 88], "is_compat": 216, "is_compat_col": 216, "is_complex": [41, 88], "is_concycl": 103, "is_conserv": [33, 201, 268, 272], "is_consist": [193, 199], "is_const": 88, "is_converg": 87, "is_convex": [67, 104], "is_coplanar": 102, "is_cycl": 79, "is_cyclic_numb": 74, "is_cyclotom": [212, 217], "is_decreas": 67, "is_defici": 128, "is_deriv": [13, 88], "is_diagon": [124, 210], "is_diagonaliz": 124, "is_dihedr": 79, "is_dimensionless": 193, "is_disjoint": 229, "is_dnf": 118, "is_echelon": [124, 293], "is_elementari": 79, "is_empti": [13, 41, 80], "is_equilater": 104, "is_euler_jacobi_pseudoprim": 128, "is_euler_pseudoprim": 128, "is_even": [43, 76, 79, 80], "is_exact": 212, "is_extended_neg": 41, "is_extended_nonneg": 41, "is_extended_nonposit": 41, "is_extended_posit": [41, 42], "is_extended_r": 41, "is_extra_strong_lucas_prp": 128, "is_fermat_pseudoprim": 128, "is_field": [211, 212], "is_finit": [41, 88], "is_finite_set": 41, "is_float": 88, "is_full_modul": 208, "is_funct": 69, "is_gaussian_prim": 128, "is_groebn": 214, "is_ground": [212, 217], "is_group": [76, 79], "is_hermitian": 124, "is_homogen": [212, 217], "is_hypergeometr": 87, "is_ident": [78, 80, 88], "is_increas": 67, "is_indefinit": 124, "is_inert": 216, "is_infinit": 41, "is_inject": 208, "is_int": 216, "is_integ": [14, 15, 41, 43, 88, 202, 221, 246], "is_irr": 88, "is_irreduc": [212, 217], "is_isomorph": 208, "is_isoscel": 104, "is_iter": 229, "is_left_unbound": 229, "is_linear": [212, 217], "is_low": [124, 210], "is_lower_hessenberg": 124, "is_lucas_prp": 128, "is_matrix": [69, 221], "is_maxim": 208, "is_meromorph": 88, "is_mersenne_prim": 128, "is_minim": 214, "is_mon": [212, 217], "is_monomi": [212, 217], "is_monoton": 67, "is_mul": 88, "is_multivari": 217, "is_neg": [41, 43, 88, 212], "is_negative_definit": 124, "is_negative_semidefinit": 124, "is_nilpot": [79, 124], "is_nilpotent_numb": 74, "is_nnf": 118, "is_nonneg": [41, 43, 212], "is_nonposit": 212, "is_nonzero": [41, 103], "is_norm": [79, 189], "is_nthpow_residu": 128, "is_numb": [14, 15, 41, 88, 96, 115], "is_odd": 80, "is_on": [212, 217], "is_only_above_fermi": [96, 191], "is_only_below_fermi": [96, 191], "is_only_q_annihil": 191, "is_only_q_cr": 191, "is_open": 229, "is_palindrom": [128, 259], "is_parallel": [101, 102], "is_perfect": [79, 128], "is_perfect_squar": 13, "is_perpendicular": [101, 102, 103, 104], "is_pid": 212, "is_polycycl": 79, "is_polynomi": 88, "is_posit": [12, 14, 15, 41, 42, 43, 88, 202, 212], "is_positive_definit": 124, "is_positive_semidefinit": 124, "is_pow": [16, 69, 88, 94], "is_prefix": 198, "is_prim": [13, 41, 88, 208], "is_primari": 208, "is_primit": [79, 212, 217], "is_primitive_el": 88, "is_primitive_root": [89, 128], "is_princip": 208, "is_prop": 144, "is_proper_subset": 229, "is_proper_superset": 229, "is_pur": 61, "is_q_annihil": 191, "is_q_creat": 191, "is_quad_residu": [93, 128], "is_quadrat": [212, 217], "is_r": 212, "is_rad": 208, "is_rat": [16, 41, 216, 259], "is_rational_funct": 88, "is_real": [12, 14, 15, 41, 43, 48, 52, 88, 90, 94, 95, 124, 202, 217, 221, 246], "is_recurr": 241, "is_reduc": 214, "is_right": 104, "is_right_unbound": 229, "is_sam": 88, "is_scalar_multipl": 103, "is_scalen": 104, "is_sequ": 259, "is_similar": [99, 101, 104, 105], "is_simpl": 96, "is_singleton": 80, "is_singular": [88, 95, 111], "is_solenoid": [33, 201, 268, 272], "is_solv": 79, "is_sqf": [212, 217], "is_squar": [13, 88, 124, 128, 210, 212], "is_squarefre": 214, "is_stabl": [46, 144], "is_strictly_decreas": 67, "is_strictly_increas": 67, "is_strictly_prop": 144, "is_strong_lucas_prp": 128, "is_strongly_diagonally_domin": 124, "is_subdiagram": 68, "is_subgroup": 79, "is_submodul": 208, "is_subset": [38, 229], "is_superset": 229, "is_surject": 208, "is_symbol": [69, 124], "is_symmetr": [79, 124], "is_tang": [98, 100], "is_this_zero": [3, 257], "is_transit": 79, "is_trivi": 79, "is_tru": [62, 64, 65], "is_unit": 212, "is_univari": 217, "is_up": 247, "is_upp": [124, 210], "is_upper_hessenberg": 124, "is_weakly_diagonally_domin": 124, "is_whole_r": 208, "is_zero": [3, 41, 43, 103, 124, 208, 212, 217, 257, 293], "is_zero_dimension": [217, 240], "is_zero_matrix": [41, 124, 210], "is_zero_quaternion": 61, "isc": 215, "isclos": 88, "isdisjoint": 229, "isfinit": 88, "isign": 69, "isinst": [13, 14, 15, 38, 41, 43, 69, 88, 120, 123, 144, 211, 212, 221, 222, 233, 242, 245, 254, 292], "isint": 43, "isn": [7, 11, 13, 14, 21, 22, 43, 55, 115, 156, 240, 291], "isol": [9, 48, 67, 94, 212, 216, 217, 218, 239, 254], "isometr": [18, 132, 134], "isometri": 117, "isomorph": [71, 79, 82, 208, 211, 214, 216], "isomorphismfail": [214, 216], "isotrop": 192, "ispk": 89, "isposit": 42, "isprim": [13, 65, 89, 93, 128], "isprimit": 88, "isqrt": [88, 128], "issac": [70, 115, 215, 239], "issn": 0, "issu": [3, 5, 7, 12, 13, 14, 15, 16, 23, 34, 42, 43, 48, 50, 51, 52, 53, 54, 55, 56, 59, 60, 67, 87, 88, 105, 115, 118, 124, 129, 171, 206, 215, 216, 218, 221, 229, 230, 239, 240, 252, 254, 256, 257, 259, 262, 288, 289, 292, 297], "issubset": 229, "issuperset": 229, "ist": [215, 230], "istruehandl": 65, "istruepred": 65, "isuru": 0, "isympi": [1, 2, 15, 16, 116], "iszero": 293, "iszerofunc": [124, 293], "it5": 124, "ital": [5, 221], "italic": 5, "ite": 221, "item": [4, 5, 15, 16, 28, 37, 48, 55, 69, 77, 78, 80, 88, 93, 99, 105, 124, 128, 148, 153, 155, 156, 207, 210, 211, 214, 217, 221, 229, 237, 238, 241, 252, 253, 256, 259, 260, 297], "iter": [15, 27, 31, 48, 51, 52, 53, 57, 67, 69, 77, 79, 80, 83, 84, 88, 89, 90, 91, 93, 96, 104, 118, 124, 128, 149, 150, 152, 153, 154, 155, 158, 176, 191, 204, 207, 208, 209, 210, 212, 214, 217, 221, 222, 223, 224, 227, 233, 234, 237, 239, 240, 241, 242, 245, 253, 254, 255, 256, 258, 260, 265, 270, 284], "iter_item": [124, 210], "iter_q_annihil": 191, "iter_q_cr": 191, "iter_valu": [124, 210], "iterat": 210, "iterate_binari": 83, "iterate_graycod": 83, "itercoeff": 212, "itermax": 69, "itermonom": 212, "itermonomi": 217, "iterterm": 212, "itertool": [83, 259], "itex": 221, "ith": [80, 117, 128, 210, 212, 218, 240, 241], "itii": 89, "its": [0, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 36, 37, 39, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 57, 61, 63, 64, 65, 68, 69, 70, 72, 76, 78, 79, 80, 87, 88, 89, 90, 93, 94, 96, 98, 100, 104, 106, 113, 115, 116, 118, 120, 124, 128, 130, 131, 132, 133, 134, 136, 137, 138, 140, 144, 148, 149, 151, 152, 153, 155, 156, 158, 159, 164, 170, 176, 177, 179, 180, 185, 186, 189, 191, 195, 196, 198, 200, 201, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 227, 228, 229, 233, 236, 237, 239, 240, 241, 243, 245, 246, 247, 252, 255, 256, 259, 260, 265, 268, 269, 270, 272, 275, 291, 292, 293, 296, 297, 299, 301, 302, 306], "itself": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 18, 22, 28, 33, 35, 43, 65, 77, 79, 80, 86, 88, 90, 93, 94, 101, 105, 110, 124, 128, 133, 153, 158, 181, 188, 207, 208, 210, 211, 212, 214, 216, 217, 221, 229, 230, 233, 240, 245, 246, 247, 254, 256, 259, 274, 291], "iv": [96, 218], "ivan": 214, "ivanov": 0, "iverson": 43, "iwf11": 302, "iwf22": 302, "iwr11": 302, "iwr22": 302, "ixi": [155, 200], "ixx": [149, 155, 200], "ixz": 200, "iy_": 96, "iyi": [155, 200], "iyz": [155, 200], "iz": 96, "izx": 155, "izz": [155, 200], "i\u2080": 163, "j": [0, 5, 12, 13, 14, 16, 18, 29, 30, 32, 33, 46, 61, 65, 67, 69, 70, 74, 78, 79, 80, 84, 86, 87, 89, 90, 93, 96, 110, 113, 115, 117, 120, 124, 128, 131, 132, 134, 145, 149, 158, 163, 170, 171, 188, 191, 196, 206, 208, 210, 212, 214, 215, 216, 217, 218, 220, 221, 223, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 245, 246, 247, 248, 253, 259, 265, 267, 268, 269, 270, 271, 272, 274, 275, 299], "j1": [152, 170, 188, 304, 307], "j12": [170, 188], "j13": 170, "j2": [152, 170, 188, 304, 307], "j23": 170, "j24": 170, "j2op": 188, "j3": [170, 188, 304, 307], "j34": 170, "j4": 170, "j_": [93, 96, 113, 115, 188, 223, 231, 291], "j_0": 171, "j_1": [93, 170, 171, 188, 206, 223, 242], "j_2": [93, 170, 171, 188, 206, 223], "j_3": [170, 188, 206], "j_4": [188, 206], "j_5": 206, "j_6": 206, "j_7": 206, "j_8": 206, "j_9": 206, "j_m": 242, "j_n": [96, 188], "j_y": 206, "j_z": 206, "ja": 127, "jacobi": [93, 115, 128, 146, 217, 221], "jacobi_norm": 96, "jacobi_poli": [96, 217], "jacobi_polynomi": 96, "jacobi_rul": 115, "jacobi_symbol": [13, 89, 93, 128], "jacobian": [27, 90, 124, 239], "jacobian_determin": 90, "jacobian_matrix": 90, "jacobip": [96, 221], "jacobipolynomi": 96, "jakob": 217, "jame": [89, 214], "jan": [0, 89], "jane": 70, "januari": 128, "jason": [0, 221], "java": 16, "javascript": 296, "javascriptcodeprint": 221, "jax": [2, 129, 260], "jburkardt": 115, "jc": 136, "jcoupl": 188, "jcoupling_list": 188, "jean": 115, "jeffrei": [124, 233], "jen": 206, "jensen": [11, 69], "jerom": 259, "jeromekelleh": 259, "jewett": 128, "jguzm022": 11, "ji": [124, 243], "jim": 29, "jit": [2, 230], "jj": 188, "jk": 0, "jku": [110, 237, 265], "jl": [215, 254], "jlname": 254, "jm": 188, "jmig5776": 11, "jn": [94, 96, 188, 217, 221, 291], "jn_zero": 96, "jnanjeky": 11, "jnp": 129, "joannah": 11, "joaquim": 11, "job": [12, 39, 43, 80, 171, 218, 221], "jochen": 11, "joe": 11, "joeb": 11, "joel": 237, "jogi": 11, "johan": 11, "johan_bluecreek": 11, "johansson": 0, "john": [70, 74, 79, 96, 215, 217, 234, 237], "johndcook": 93, "johnson": [80, 124], "joi": 68, "join": [9, 14, 16, 50, 80, 88, 89, 101, 124, 136, 137, 156, 221, 233, 237, 239, 242, 259], "joint": [23, 140, 148, 149, 151, 158, 282, 299, 304, 307], "joint1": 304, "joint2": 304, "joint3": 304, "joint_axi": [13, 24, 148, 152, 158, 304, 307], "joint_distribut": 241, "joint_point": 152, "joint_rv_typ": 241, "jointdistributionhandmad": 241, "jointli": 41, "jointrv": 241, "jointsmethod": 149, "jon": 128, "jone": [128, 163], "jones_2_stok": 163, "jones_calculu": 163, "jones_vector": 163, "jordan": [53, 113, 124, 210, 219, 237, 239, 240], "jordan_block": 124, "jordan_cel": 124, "jordan_form": 124, "jordan_matrix": [124, 237], "jordan_normal_form": 237, "joseph": [145, 215], "josephu": 80, "josephus_problem": 80, "josi": 89, "joul": 196, "journal": [0, 4, 7, 61, 87, 93, 145, 215, 233, 256, 259, 303], "joyofcat": 68, "jpr2718": 234, "jr": 96, "js_function_str": 221, "jsc": 215, "jscode": [69, 221], "jstor": 241, "jth": [117, 210, 240], "judgement": 5, "judgment": 12, "juli": [89, 234], "julia": 254, "julia_cod": [69, 221], "juliacodegen": 254, "juliacodeprint": 221, "juliu": 89, "jump": [136, 241, 297], "june": [89, 124], "jupyt": [2, 7, 11, 15, 43, 260], "jurjen": 221, "just": [1, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 28, 30, 32, 33, 35, 41, 42, 43, 50, 52, 55, 59, 65, 68, 69, 79, 86, 88, 89, 90, 94, 111, 113, 115, 116, 117, 118, 124, 128, 129, 132, 146, 148, 149, 171, 176, 181, 191, 196, 205, 207, 208, 210, 211, 212, 214, 216, 220, 221, 228, 229, 230, 231, 233, 237, 240, 242, 250, 252, 254, 255, 257, 271, 272, 274, 286, 287, 289, 290, 291, 292, 293, 297, 298, 301, 306, 310], "just_gen": 216, "justifi": 214, "juxtaposit": [28, 32, 269], "jx": 188, "jxbra": 188, "jxbracoupl": 188, "jxket": 188, "jxketcoupl": 188, "jy": 188, "jybra": 188, "jybracoupl": 188, "jyket": 188, "jyketcoupl": 188, "jyr2000": 206, "jz": 188, "jzbra": 188, "jzbracoupl": 188, "jzket": 188, "jzketcoupl": 188, "jzop": 188, "k": [0, 5, 12, 13, 14, 16, 18, 25, 27, 30, 32, 33, 37, 41, 43, 46, 51, 61, 67, 68, 69, 70, 72, 74, 78, 79, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 96, 106, 113, 115, 118, 120, 124, 128, 130, 144, 148, 149, 153, 158, 165, 179, 180, 183, 187, 189, 191, 206, 208, 210, 211, 214, 215, 216, 217, 218, 221, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 237, 239, 241, 242, 243, 245, 246, 247, 248, 252, 256, 259, 265, 267, 268, 269, 270, 271, 272, 274, 275, 296, 297, 299, 307], "k0": [189, 212, 214, 241], "k1": [30, 128, 189, 211, 212, 214, 303], "k2": [30, 128, 211, 303], "k3": [30, 211], "k3d": 13, "k4": 30, "k_": [25, 26, 96, 113, 153], "k_0": 214, "k_1": [89, 128, 214, 231, 303], "k_2": [89, 303], "k_3": 89, "k_arrai": 78, "k_b": 55, "k_d": [25, 153], "k_dnh": 153, "k_f": 55, "k_i": [128, 214, 231], "k_j": 231, "k_kqdot": 153, "k_ku": 153, "k_m": 128, "k_n": [89, 96, 214], "k_sym": 93, "k_u": 231, "k_val": 55, "k_y": 117, "ka": 0, "kahan": 145, "kahane_simplifi": 145, "kalkbrenn": 239, "kaltofen": [214, 215], "kaltofen98": 215, "kane": [18, 21, 22, 23, 24, 29, 30, 32, 149, 151, 158, 200, 265, 282, 299, 305, 308], "kane1983": [29, 36], "kane1985": [25, 29, 32, 310], "kanes_equ": [18, 22, 25, 27, 30, 148, 153, 156, 299, 302, 306, 309, 310], "kanesmethod": [13, 18, 22, 24, 25, 27, 30, 148, 149, 153, 156, 158, 299, 302, 304, 306, 307, 309, 310], "kapitaniaka": 303, "kappa": [16, 206, 221, 241], "kapur": 215, "kapur1994": 215, "karr": 87, "kasiski": 89, "katmat": 68, "kauer": 226, "kb": 55, "kbin": 259, "kconrad": [79, 241], "kd": [25, 153, 302, 309, 310], "kd_eq": [18, 22, 27, 30, 153, 299, 302, 306, 309, 310], "kd_eqs_solv": 153, "kdd": [302, 309, 310], "kde": [24, 27, 149, 152, 158, 306], "kdvi": 221, "ke": 30, "keep": [3, 4, 11, 12, 14, 16, 24, 28, 32, 38, 43, 84, 88, 89, 92, 93, 96, 113, 124, 132, 153, 175, 191, 207, 210, 211, 212, 217, 228, 229, 231, 233, 237, 239, 242, 247, 274, 287, 292, 299, 304], "keep_domain": 210, "keep_only_fully_contract": 191, "kei": [11, 13, 14, 15, 16, 22, 23, 36, 37, 48, 50, 62, 65, 68, 77, 79, 80, 88, 89, 90, 93, 104, 117, 124, 127, 128, 136, 158, 183, 186, 191, 207, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 221, 233, 237, 238, 239, 241, 245, 256, 259, 260, 262, 293, 294, 297, 305], "kelleh": 259, "kelli": [113, 231], "kempf": 208, "kepler": [194, 265], "kept": [36, 90, 193, 259, 292], "ker": 208, "kern": 88, "kernel": [124, 208, 214, 216, 239], "ket": [130, 174, 179, 180, 181, 183, 185, 186, 189, 191], "ket_not": 189, "ketbas": [179, 180, 186, 189], "key1": 207, "key2": 207, "key2bound": 124, "key2ij": 124, "keyboard": 207, "keyboardinterrupt": 252, "keyfunc": 259, "keyword": [0, 3, 4, 12, 13, 14, 15, 25, 26, 37, 43, 68, 69, 70, 79, 80, 88, 89, 92, 93, 101, 103, 104, 105, 124, 128, 132, 136, 142, 144, 148, 153, 156, 185, 191, 205, 207, 209, 210, 211, 212, 214, 216, 217, 220, 221, 222, 228, 233, 234, 239, 246, 252, 253, 255, 257, 259, 260, 262, 270, 293], "kf": 55, "kfkljjhf5mmmktfrgpl": 89, "kg": [18, 196, 275, 299], "kid": 89, "kid_rsa_private_kei": 89, "kid_rsa_public_kei": 89, "kiev": 215, "kijml": 243, "kill": [208, 212, 252], "killable_index": [96, 191], "killed_modul": 208, "kilo": 197, "kilogram": [162, 194, 196, 198], "kilomet": [195, 197, 198], "kin_explicit_rh": [31, 158], "kind": [4, 5, 13, 15, 22, 26, 33, 40, 41, 42, 43, 68, 69, 90, 93, 96, 108, 115, 122, 136, 140, 153, 195, 209, 211, 212, 217, 222, 223, 229, 237, 238, 241, 259, 272, 274, 280, 287, 297], "kindiff": 30, "kindiffdict": [25, 30, 153, 302, 309, 310], "kinema": 158, "kinemat": [18, 21, 22, 24, 25, 27, 28, 30, 31, 34, 36, 152, 153, 158, 200, 203, 282, 300, 302, 304, 305, 306, 307, 309, 311], "kinet": [23, 55, 149, 153, 155], "kinetic_energi": [28, 30, 149, 155], "kinnei": [18, 131, 132, 134, 299], "kirpichev": 0, "kite": 104, "kk": 124, "kleen": 259, "klein": [71, 80], "km": [21, 25, 27, 30, 124, 128, 153, 197, 302, 306, 309, 310], "kn": [124, 136, 137, 138], "knew": [88, 297], "knife": 217, "knot": 96, "know": [3, 4, 5, 12, 13, 14, 15, 16, 18, 22, 28, 31, 35, 36, 41, 42, 43, 48, 55, 56, 57, 62, 64, 68, 71, 80, 88, 89, 92, 100, 105, 113, 115, 124, 128, 130, 185, 189, 193, 194, 196, 200, 207, 210, 217, 218, 220, 221, 231, 233, 237, 239, 240, 241, 255, 259, 260, 270, 286, 287, 289, 290, 291, 292, 295, 297], "knowabl": 41, "knowledg": [15, 87, 88, 89, 216, 237, 292, 295], "known": [4, 11, 12, 14, 15, 18, 27, 35, 41, 42, 43, 46, 55, 64, 68, 69, 70, 71, 74, 77, 79, 80, 88, 89, 92, 93, 96, 98, 101, 106, 113, 115, 116, 125, 128, 142, 144, 145, 147, 149, 155, 158, 194, 200, 210, 211, 212, 216, 217, 221, 224, 227, 229, 230, 231, 233, 236, 237, 238, 239, 241, 259, 260, 265, 272, 274, 297], "known_const": 221, "known_fcns_src1": 221, "known_fcns_src2": 221, "known_funct": 221, "known_functions_c89": 221, "known_functions_c99": 221, "known_typ": 221, "knuth": [72, 80, 214, 256], "koepf": [215, 223, 233], "koepf98": [215, 217], "kog": 259, "koshi": [93, 128], "kozen": [4, 215], "kozen89": [4, 214, 215], "kreher": 80, "kroneck": [93, 96, 190, 191, 206, 242, 247], "kronecker_delta": [96, 191], "kronecker_symbol": 93, "kroneckerdelta": [96, 120, 191, 221, 233], "kroneckerproduct": 221, "kroneckersimp": 233, "krypto": 89, "ksubset": 83, "kt": [89, 307], "kth": [124, 128], "ku": [13, 25, 221], "kulal": 0, "kumar": [0, 240], "kumaraswami": 241, "kumaraswamy_distribut": 241, "kummer": 216, "kurtosi": 241, "kutta": [15, 110], "kw": 252, "kw_arg": [72, 82, 191, 246, 247], "kwarg": [16, 63, 64, 65, 69, 79, 80, 87, 88, 89, 90, 94, 96, 98, 99, 101, 102, 103, 104, 105, 110, 113, 115, 119, 120, 121, 124, 126, 127, 128, 132, 142, 144, 150, 153, 155, 158, 160, 169, 171, 175, 176, 180, 182, 184, 185, 187, 188, 189, 200, 204, 205, 207, 210, 212, 217, 221, 223, 227, 228, 229, 233, 237, 238, 239, 241, 242, 243, 247, 252, 253, 255, 259, 262, 270, 306], "kwong": 215, "kx": 18, "ky": 46, "l": [4, 13, 16, 18, 22, 26, 27, 28, 29, 30, 31, 35, 36, 67, 68, 69, 70, 77, 79, 80, 87, 89, 93, 96, 99, 100, 101, 102, 103, 105, 106, 111, 113, 115, 117, 119, 120, 124, 128, 131, 132, 134, 136, 137, 144, 146, 148, 149, 152, 153, 154, 155, 156, 158, 159, 160, 163, 189, 192, 193, 194, 196, 206, 208, 210, 212, 214, 215, 221, 223, 224, 230, 231, 234, 237, 239, 241, 245, 246, 247, 248, 252, 254, 259, 275, 297, 299, 303, 304, 306, 307, 309, 310, 311], "l0": 214, "l1": [28, 89, 98, 100, 101, 152, 155, 212, 214, 217, 234, 241, 304], "l1_norm": [212, 217], "l2": [89, 100, 101, 152, 155, 177, 193, 212, 214, 241, 304], "l2_norm_squar": 212, "l3": [101, 214, 304], "l3_convfunc": 67, "l4": [101, 304], "l_": [13, 18, 115, 124, 206], "l_0": [93, 145, 247, 248], "l_1": [89, 93, 145, 206, 231, 247, 259], "l_2": 206, "l_3": 206, "l_a": 299, "l_arm": 299, "l_b": 28, "l_c": 299, "l_d": 299, "l_frame": 152, "l_i": [89, 206, 231], "l_m": [18, 132, 134, 259], "l_m_opt": [18, 132, 134, 299], "l_m_opt_bicep": 299, "l_m_opt_tricep": 299, "l_m_tild": [18, 132], "l_m_tilde_muscl": 134, "l_m_tilde_num": 18, "l_mt": 18, "l_n": [96, 115, 217], "l_p": 28, "l_t": [18, 89, 132], "l_t_slack": [18, 132, 134, 299], "l_t_slack_bicep": 299, "l_t_slack_tricep": 299, "l_t_tild": [18, 132], "l_t_tilde_num": 18, "l_u": 231, "l_v": 231, "la": [30, 79, 196, 299], "labahn": 215, "label": [4, 7, 18, 55, 68, 69, 82, 88, 98, 111, 115, 138, 140, 164, 171, 175, 180, 189, 191, 207, 221, 222, 224, 233, 246, 247, 296], "label_displac": 68, "label_posit": 68, "labeledtre": 82, "labelfunc": 221, "lack": [57, 69, 90, 92, 155, 221, 287], "lag": [27, 306, 311], "lag_eq": [27, 306], "lagrang": [23, 67, 88, 149, 151, 154, 158, 217, 234, 282, 305, 308], "lagranges_equ": 153, "lagrangesmethod": [26, 27, 148, 149, 153, 156, 158, 303, 306, 311], "lagrangian": [23, 26, 27, 67, 153, 155, 303, 306, 311], "laguerr": [115, 217, 221], "laguerre_poli": [96, 217], "laguerre_polynomi": 96, "laguerre_rul": 115, "laguerrel": [96, 221], "laguerrel3": 96, "laguerrepolynomi": 96, "laguna": 89, "lai": 68, "laid": [22, 68, 188], "laigl": 128, "lam": [31, 153, 154], "lam1": 26, "lam_f": [54, 260], "lam_op": 306, "lamar": 237, "lambda": [12, 15, 16, 22, 26, 27, 30, 31, 43, 46, 50, 54, 63, 64, 67, 69, 79, 80, 88, 89, 90, 93, 94, 115, 119, 120, 124, 127, 128, 130, 153, 176, 207, 210, 214, 216, 217, 221, 222, 229, 230, 233, 237, 239, 240, 241, 242, 250, 259, 260, 265, 267, 270, 286, 293, 299], "lambda_": 113, "lambda_c": [26, 113], "lambda_i": [200, 265, 267], "lambda_not": 130, "lambda_x": [200, 265, 267], "lambda_z": [200, 265, 267], "lambdaprint": 260, "lambdarepr": [69, 221, 260], "lambdastr": 260, "lambdifi": [14, 15, 18, 43, 54, 55, 69, 96, 221, 239, 253, 258, 284, 288, 299, 302], "lambert": [57, 94, 115, 218], "lambert_w_funct": 94, "lambertw": [94, 218, 221, 239, 240, 298], "lambidfi": 13, "lamda": [15, 120, 221, 229, 241, 293], "lame": 272, "lamina": 275, "lanczo": 224, "land": 89, "landau": [4, 215, 287], "landscap": 80, "langl": [70, 79, 130, 170, 206], "languag": [2, 5, 14, 15, 16, 21, 22, 30, 39, 43, 69, 94, 124, 130, 221, 226, 241, 253, 254, 289, 291, 293, 295, 297], "laplac": [46, 115, 124, 141, 142, 144, 241], "laplace_correspond": [46, 115], "laplace_distribut": 241, "laplace_initial_cond": [46, 115], "laplace_transform": [46, 115, 144], "laplacedistribut": 241, "laplacetransform": 115, "larg": [2, 3, 4, 7, 11, 12, 16, 18, 21, 27, 30, 32, 41, 48, 53, 79, 80, 88, 89, 98, 113, 115, 127, 128, 135, 154, 171, 196, 206, 210, 211, 212, 214, 217, 220, 221, 222, 228, 231, 233, 239, 241, 246, 253, 260, 262, 268, 286, 291, 297], "larger": [3, 5, 14, 15, 43, 53, 69, 79, 80, 87, 88, 89, 96, 113, 120, 124, 128, 210, 212, 218, 222, 228, 233, 239, 254, 256, 289, 297, 306, 310], "largest": [69, 80, 82, 88, 94, 96, 124, 127, 128, 171, 208, 212, 239, 259], "lark": 2, "larklatexpars": 130, "lasserr": 115, "last": [5, 11, 12, 13, 14, 16, 37, 38, 39, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 68, 69, 70, 78, 79, 80, 84, 87, 88, 89, 92, 98, 115, 118, 119, 120, 121, 124, 126, 127, 128, 130, 144, 158, 163, 195, 196, 206, 207, 208, 209, 210, 211, 212, 214, 217, 220, 221, 228, 229, 234, 237, 239, 240, 241, 242, 243, 247, 250, 252, 253, 254, 255, 257, 259, 260, 262, 287, 289, 292, 293], "last_index": 120, "lastli": [16, 31, 115, 137, 214, 237, 299], "lastnam": 9, "later": [3, 13, 14, 21, 25, 27, 30, 32, 35, 39, 69, 79, 113, 118, 124, 154, 155, 158, 165, 211, 214, 220, 221, 222, 231, 233, 237, 256, 269, 286, 287, 289, 291, 292, 297, 302, 306, 307], "latest": [2, 9, 12, 59, 68, 255, 257, 260], "latex": [0, 2, 4, 8, 12, 15, 32, 36, 43, 57, 59, 96, 116, 200, 205, 207, 212, 221, 291, 292, 299], "latex2sympi": 130, "latex_mod": [116, 205], "latex_print": [116, 205], "latex_repr": [197, 198], "latex_scalar": 265, "latex_set": 221, "latex_vect": 265, "latexmk": 8, "latexnam": 171, "latexparsingerror": 130, "latexprint": 43, "latin": 60, "latter": [13, 14, 38, 43, 69, 79, 88, 93, 96, 113, 128, 136, 208, 212, 216, 221, 231, 234, 247, 254, 259, 260, 289], "lattic": [91, 210, 234], "lattice_": 94, "latu": 98, "latus_rectum": 98, "lauer": 212, "laurent": [96, 212, 218, 237], "law": [15, 18, 23, 36, 68, 151, 194, 209, 241], "layer": [13, 144, 214, 260], "layout": 68, "lazard": [115, 214, 217], "lazi": [88, 120, 217], "lazili": [120, 227, 259], "lazo": 206, "lb": [69, 110, 256], "lbound": 69, "lc": [212, 214, 217, 299], "lceil": [113, 130], "lcim": 67, "lcm": [88, 128, 212, 214, 217, 221], "lcm_list": 217, "ld": [68, 299], "ldescent": 234, "ldl": [119, 124], "ldldecomposit": [119, 124], "ldlsolv": [119, 124], "ldot": [43, 51, 70, 78, 79, 87, 88, 89, 93, 96, 113, 128, 137, 196, 206, 208, 209, 212, 214, 216, 221, 224, 228, 231, 234, 239, 242, 297], "ldu": 120, "ldudecomposit": 120, "le": [41, 70, 84, 88, 96, 113, 124, 128, 130, 214, 221, 231, 239, 241, 299, 311], "lead": [13, 14, 15, 18, 36, 41, 42, 43, 48, 57, 87, 88, 94, 98, 115, 118, 124, 128, 146, 154, 175, 200, 209, 210, 212, 214, 216, 217, 218, 221, 228, 230, 233, 237, 240, 254, 257, 262, 290, 297], "leader": 128, "leading_expon": 78, "leading_expv": 212, "leading_monom": 212, "leading_term": 212, "leadterm": 88, "leadup": 128, "leaf": [15, 211, 221, 230, 292], "lean": [302, 309, 311], "learn": [2, 5, 8, 28, 36, 49, 55, 57, 124, 230, 240, 286, 289, 290, 291, 295], "least": [2, 3, 5, 7, 11, 12, 13, 37, 41, 55, 65, 67, 69, 79, 88, 94, 100, 112, 113, 115, 124, 128, 129, 153, 171, 185, 193, 195, 208, 209, 211, 212, 214, 216, 217, 228, 230, 233, 237, 239, 240, 241, 254, 297], "least_rot": 259, "leav": [11, 14, 15, 23, 41, 43, 54, 56, 69, 88, 115, 124, 128, 132, 151, 154, 175, 191, 210, 228, 256, 286, 292, 297], "lebesgu": 229, "leblond": 196, "lect1023big": 241, "lectur": [30, 215, 241], "lecture4_6up": 241, "led": 0, "leedham": 79, "left": [3, 5, 13, 18, 32, 33, 39, 41, 43, 46, 49, 50, 53, 61, 67, 69, 70, 79, 80, 84, 88, 89, 90, 93, 94, 96, 104, 105, 111, 113, 115, 116, 118, 124, 127, 128, 131, 132, 138, 144, 149, 158, 159, 163, 170, 175, 179, 180, 183, 188, 200, 206, 207, 208, 210, 217, 218, 219, 220, 221, 223, 224, 228, 229, 230, 231, 233, 237, 238, 239, 240, 241, 252, 253, 254, 256, 259, 272, 287, 291, 293, 297, 299], "left_eigenvect": 124, "left_hand_sid": 69, "left_open": 229, "left_support": 138, "leftmost": 191, "leftrightarrow": 84, "leftslash": 221, "leg": [104, 138], "legaci": [88, 115, 124, 241], "legacy_matrix": [13, 115], "legal": 193, "legend": [18, 30, 55, 207, 224], "legendr": [93, 115, 128, 217, 221, 234], "legendre_poli": [96, 217], "legendre_polynomi": 96, "legendre_rul": 115, "legendre_symbol": [13, 93, 128], "legendrep": [96, 221], "legendrep2": 96, "legendrepolynomi": 96, "legibl": 212, "legitim": 214, "legrang": 234, "lehmer": [80, 88], "lehmer_cod": 80, "lemaitr": 206, "lemma": [68, 79, 113, 209], "len": [67, 76, 77, 78, 79, 80, 84, 86, 88, 89, 93, 96, 103, 113, 118, 160, 164, 175, 185, 210, 217, 233, 237, 246, 259, 299, 306], "len1": 79, "len2": 79, "len3": 79, "len_i": [69, 221], "lenght": 136, "length": [4, 13, 21, 28, 36, 61, 69, 72, 78, 79, 80, 82, 86, 88, 89, 91, 93, 94, 96, 97, 101, 103, 104, 105, 118, 124, 127, 128, 132, 134, 136, 137, 138, 140, 148, 153, 156, 158, 159, 160, 164, 188, 193, 194, 195, 196, 200, 204, 216, 217, 221, 227, 231, 233, 237, 239, 241, 252, 253, 259, 261, 262, 265, 267, 275, 299, 303, 304, 306, 307], "lengthen": [3, 18, 134], "lengthi": 79, "lenic": [107, 109], "lens": 160, "lens_formula": 164, "lens_makers_formula": 164, "lenstra": [128, 210], "leq": [79, 87, 89, 93, 96, 113, 124, 128, 206, 214, 216, 227, 228, 234, 241], "lerch": 96, "lerch_transcend": 96, "lerchphi": [96, 221], "less": [4, 5, 11, 14, 15, 22, 39, 48, 51, 53, 61, 65, 69, 70, 71, 79, 80, 87, 88, 89, 92, 93, 94, 96, 102, 103, 104, 124, 128, 142, 144, 148, 158, 191, 210, 211, 212, 214, 216, 217, 230, 231, 233, 234, 237, 239, 240, 241, 252, 254, 302], "lesser": [80, 140, 217], "lessthan": [88, 221], "lester": 89, "let": [11, 12, 18, 22, 30, 35, 39, 41, 42, 43, 46, 67, 69, 79, 84, 88, 89, 98, 106, 111, 113, 117, 120, 124, 125, 128, 130, 132, 148, 149, 159, 196, 200, 208, 209, 210, 214, 216, 217, 218, 221, 228, 231, 233, 234, 237, 239, 240, 247, 250, 253, 257, 260, 270, 271, 275, 286, 289, 291, 292, 297], "lett": [80, 124], "letter": [5, 15, 16, 60, 81, 88, 89, 128, 130, 191, 210, 221, 259, 287, 289], "lev": 212, "level": [3, 4, 5, 7, 12, 13, 14, 15, 16, 21, 30, 32, 36, 41, 42, 50, 52, 69, 79, 86, 88, 94, 96, 115, 118, 124, 128, 131, 134, 186, 191, 196, 202, 207, 210, 211, 212, 219, 221, 230, 234, 240, 241, 245, 253, 254, 259, 292, 293, 295, 306], "levelt": 239, "lever": [299, 300], "lever_resist": 299, "leverag": [55, 69, 129, 221, 287], "levi": [90, 96, 241, 247], "levicivita": [96, 124], "levinson": [29, 153, 200, 265], "levydistribut": 241, "levyleblond77": 196, "lex": [88, 116, 205, 209, 211, 212, 214, 217, 218, 220, 221, 233], "lexic": [77, 171, 259], "lexicograph": [79, 80, 83, 84, 88, 214, 217, 259], "lexicographically_minimal_string_rot": 259, "lexograph": [116, 205], "lexord": [212, 217], "lfloor": [88, 94, 130, 212, 240, 241], "lfortran": [2, 130], "lfsr": 89, "lfsr_autocorrel": 89, "lfsr_connection_polynomi": 89, "lfsr_sequenc": 89, "lgamma": 221, "lh": [13, 37, 50, 55, 69, 78, 88, 131, 134, 219, 221, 237, 239, 240, 271], "li": [93, 96, 104, 115, 128, 155, 159, 191, 221, 275, 299], "liabl": [88, 118], "liao": 215, "liao95": [214, 215], "lib": 265, "liber": [21, 130, 291], "liberato": 206, "liberatodebrito82": 206, "libgtkmathview": 221, "librari": [0, 2, 3, 4, 12, 13, 14, 15, 21, 22, 30, 41, 43, 54, 58, 59, 69, 88, 89, 93, 113, 115, 116, 124, 129, 158, 195, 207, 211, 212, 241, 252, 253, 254, 259, 260, 286, 287, 289, 290, 291], "library_dir": 253, "librsvg": 8, "librsvg2": 8, "libtcc": 254, "licens": [0, 2, 45, 291], "lie": [18, 46, 48, 80, 90, 102, 103, 104, 156, 159, 217, 241, 276, 283, 299], "lie_algebra": 117, "lie_group": 237, "lie_heuristic_abaco1_product": 237, "lie_heuristic_abaco1_simpl": 237, "lie_heuristic_abaco2_similar": 237, "lie_heuristic_abaco2_unique_gener": 237, "lie_heuristic_abaco2_unique_unknown": 237, "lie_heuristic_bivari": 237, "lie_heuristic_chi": 237, "lie_heuristic_function_sum": 237, "lie_heuristic_linear": 237, "liealgebra": [2, 117], "liederiv": 90, "liegroup": 237, "lift": [18, 69, 84, 94, 96, 113, 212, 214, 217], "light": [146, 163, 195, 196, 205, 208], "lighten": 208, "lightli": 3, "lightweight": [69, 216, 291], "like": [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 21, 22, 24, 27, 30, 31, 32, 33, 35, 38, 41, 42, 43, 45, 53, 55, 56, 57, 58, 59, 69, 70, 71, 73, 79, 80, 87, 88, 89, 92, 93, 94, 96, 98, 108, 111, 115, 116, 118, 120, 121, 122, 124, 128, 129, 130, 134, 140, 144, 152, 156, 159, 173, 175, 185, 186, 189, 190, 191, 195, 196, 200, 204, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 219, 220, 221, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 247, 248, 250, 252, 253, 254, 255, 259, 260, 262, 269, 270, 272, 274, 286, 287, 289, 290, 291, 292, 293, 297, 299, 302], "likelihood": 128, "likewis": [4, 41, 68, 136, 304, 306], "likin": [29, 34, 203], "likins1973": [28, 34, 203], "lim": [88, 130, 228, 287], "lim_": [89, 94, 96, 113, 115, 228, 287, 291], "limit": [1, 3, 13, 14, 16, 23, 28, 46, 52, 53, 57, 59, 65, 67, 69, 87, 88, 90, 92, 93, 94, 96, 97, 100, 108, 110, 115, 116, 118, 124, 128, 130, 142, 180, 186, 189, 205, 207, 212, 214, 217, 218, 221, 224, 225, 227, 229, 233, 234, 236, 237, 238, 239, 241, 246, 253, 256, 259, 260, 262, 264, 265, 275, 277, 283, 288, 289, 291, 293, 301], "limit_denomin": 88, "limit_seq": [226, 228], "limitinf": 228, "limiting_distribut": 241, "limits_": [88, 130, 206, 223, 291], "limitseq": 226, "limsup_": 228, "linalg": [53, 54, 69, 299], "lincomb": 216, "line": [3, 4, 9, 11, 12, 13, 14, 15, 16, 18, 22, 33, 35, 39, 41, 59, 68, 69, 71, 79, 80, 84, 89, 98, 99, 100, 102, 103, 104, 105, 110, 113, 115, 116, 117, 124, 128, 134, 136, 138, 140, 142, 145, 148, 155, 156, 159, 171, 200, 205, 206, 207, 221, 224, 231, 233, 237, 241, 242, 250, 252, 253, 254, 257, 260, 262, 272, 275, 283, 289, 299, 302, 310], "line2d": [98, 101, 104], "line2dbaseseri": [13, 207], "line3d": [101, 102, 103], "line3dbaseseri": 207, "line_break": 221, "line_color": [5, 207, 224], "line_integr": 115, "linear": [18, 23, 25, 29, 30, 32, 37, 43, 49, 51, 53, 54, 57, 68, 69, 80, 87, 88, 89, 91, 92, 96, 101, 111, 113, 115, 117, 120, 122, 131, 134, 136, 141, 144, 148, 149, 151, 152, 153, 155, 156, 163, 185, 188, 189, 204, 207, 208, 210, 212, 214, 216, 217, 219, 227, 229, 231, 234, 237, 238, 240, 259, 280, 282, 298, 299, 302, 303, 306, 307], "linear_coeffici": 237, "linear_coefficients_integr": 237, "linear_differential_equ": 237, "linear_eq_to_matrix": [53, 237, 239, 240, 304], "linear_momentum": [28, 30, 149, 155], "linear_ode_to_matrix": 237, "linear_pathwai": [148, 156], "linear_polar": 163, "linear_solv": [153, 154], "linear_stiff": 148, "linearcoeffici": 237, "lineardamp": [148, 303, 307], "linearent": [4, 98, 101, 102, 103, 104], "linearentity2d": 101, "linearentity3d": [101, 102], "linearli": [65, 69, 96, 112, 124, 153, 210, 214, 237, 239, 247], "linearpathwai": [18, 134, 148, 156, 299, 303, 307], "linearspr": [148, 307], "linecollect": [13, 207], "lineover1drangeseri": [142, 207], "linestyl": 13, "link": [3, 4, 5, 7, 11, 15, 16, 23, 24, 49, 53, 69, 89, 98, 104, 115, 145, 148, 152, 253, 256, 257, 295, 304], "link1": 304, "link2": 304, "link3": 304, "link4": 304, "linkag": [301, 305], "linkcod": 5, "linodesolv": 237, "linodesolve_typ": 237, "linprog": [50, 239], "linsolv": [30, 153, 219, 239, 240, 298], "linspac": [14, 18, 22, 30, 55, 69, 111, 129, 299], "linux": [8, 9, 11, 59], "linz": 265, "liouvil": 237, "liouville_integr": 237, "liouvillian": 237, "lip": 241, "list": [0, 2, 3, 4, 5, 9, 11, 12, 14, 17, 18, 24, 25, 26, 30, 31, 36, 41, 51, 52, 53, 54, 55, 56, 57, 59, 61, 64, 67, 68, 69, 70, 71, 72, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 116, 117, 118, 120, 123, 124, 127, 128, 129, 130, 136, 142, 144, 148, 149, 152, 153, 156, 158, 164, 175, 177, 180, 181, 185, 186, 188, 189, 191, 193, 200, 204, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 227, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 286, 290, 291, 293, 296, 297, 298, 299, 301, 302, 306, 309], "list2numpi": 124, "list_can_dim": 193, "list_free_indic": 84, "list_of_poli": 111, "list_of_second_moments_of_area": 98, "list_of_trigonometric_ident": 230, "list_to_frac": 297, "list_visitor": 256, "listcoeff": 212, "listmonom": 212, "listofsolut": 237, "listterm": 212, "liter": [4, 12, 14, 16, 43, 69, 78, 88, 116, 118, 130, 191, 198, 233], "literal_dp": 69, "literal_sp": 69, "literatur": [4, 15, 113, 213, 283], "litter": 88, "littl": [12, 41, 43, 68, 80, 98, 124, 128, 129, 196, 210, 215, 217, 221, 231, 233, 241, 256, 269, 302], "liu": 215, "live": [7, 30, 60, 70, 216, 234], "livehtml": 8, "ll": [8, 18, 35, 36, 68, 86, 124, 132, 134, 148, 156, 250, 299, 306], "ll1": 100, "ll2": 100, "ll3": 100, "ll4": 100, "ll5": 100, "ll6": 100, "lll": 210, "lll_transform": 210, "llvm": 2, "llvm_callabl": 2, "llvmjitcod": 2, "llvmlite": 2, "lm": [26, 27, 214, 217, 303, 306], "lmm": 234, "lmn": 69, "lmodern": 8, "ln": [88, 94, 115, 130, 221, 223, 237, 241, 297], "ln_notat": 221, "lnc": [115, 215, 239], "lo": 239, "load": [8, 13, 19, 23, 31, 69, 88, 116, 136, 137, 138, 140, 148, 149, 151, 153, 156, 158, 171, 205, 282, 299, 303, 307], "load_vector": 136, "loadbas": 158, "loads_posit": 138, "loan": 124, "lobatto": 115, "loc": 136, "local": [2, 11, 12, 45, 60, 62, 63, 64, 88, 90, 113, 130, 202, 208, 214, 239, 252, 299, 309, 311], "local_dict": 130, "local_var": 254, "localhost": 8, "localis": 208, "locat": [5, 11, 12, 13, 24, 27, 28, 31, 33, 71, 80, 88, 102, 124, 128, 136, 137, 140, 152, 155, 156, 158, 159, 204, 216, 217, 221, 233, 241, 255, 263, 265, 269, 271, 274, 299, 303, 306], "locate_new": [265, 268, 269, 270, 271, 272], "locatenew": [13, 27, 28, 30, 31, 33, 35, 149, 155, 201, 204, 302, 303, 304, 306, 309, 310, 311], "location_matrix": 241, "lock": 61, "log": [4, 5, 9, 11, 12, 16, 18, 43, 59, 61, 67, 69, 79, 87, 88, 92, 93, 94, 96, 106, 110, 112, 113, 115, 124, 128, 130, 132, 207, 212, 221, 223, 228, 231, 233, 237, 240, 241, 248, 287, 297, 298], "log1": 9, "log10": [69, 221], "log1p": [69, 221], "log1p_opt": 69, "log2": [69, 96, 221], "log2_opt": 69, "log2const_opt": 69, "log_b": 240, "log_warn": 221, "logarithm": [5, 16, 61, 67, 69, 88, 89, 94, 113, 115, 124, 128, 212, 214, 218, 221, 231, 233, 240, 241, 288], "logarithmic_distribut": 241, "logarithmic_integr": 96, "logarithmically_concave_funct": 67, "logarithmically_convex_funct": 67, "logarithmicdistribut": 241, "logarithmicintegr": 96, "logcombin": [233, 237, 240], "loggamma": [4, 5, 96, 221], "loggammafunct": 96, "logger": 130, "logic": [12, 13, 14, 15, 41, 43, 62, 63, 64, 65, 68, 88, 90, 113, 115, 128, 183, 185, 186, 190, 207, 221, 223, 229, 237, 241, 259, 289, 290, 291, 293], "logint": 221, "logintegr": 221, "logist": 241, "logistic_distribut": 241, "logisticdistribut": 241, "loglogist": 241, "lognorm": 241, "lognormaldistribut": 241, "logo": 44, "logx": [88, 228], "lomax": 241, "lomax_distribut": 241, "london": [215, 234], "long": [0, 4, 5, 11, 12, 14, 28, 48, 57, 69, 80, 87, 88, 89, 91, 101, 113, 115, 116, 118, 124, 128, 130, 135, 136, 137, 205, 217, 218, 221, 230, 231, 239, 241, 253, 260, 262, 268, 289, 292, 302], "long_frac_ratio": 221, "longer": [3, 4, 11, 12, 16, 27, 40, 88, 98, 128, 209, 210, 214, 221, 230, 233, 259, 262, 289, 297, 306], "longest": [159, 259], "longrightarrow": 120, "look": [3, 4, 5, 7, 9, 11, 12, 13, 16, 22, 23, 41, 42, 43, 60, 68, 69, 79, 88, 93, 94, 96, 109, 124, 128, 151, 153, 175, 185, 186, 189, 204, 207, 211, 212, 216, 221, 223, 224, 228, 231, 233, 234, 237, 238, 243, 252, 256, 260, 262, 270, 287, 292, 295, 296, 302], "looking_for": 69, "lookup": [115, 124, 128, 231], "lookup_view": 263, "loop": [14, 46, 48, 51, 55, 68, 69, 128, 144, 200, 207, 210, 218, 221, 237, 256, 259, 260, 292, 304], "looping_end": 68, "looping_start": 68, "loos": [69, 88], "lopen": [67, 88, 229, 236, 241], "lorentz": 247, "lorentzindex": 145, "lorenz": 55, "lose": [14, 16, 208, 210], "loss": [14, 15, 69, 113, 191, 253, 271], "lost": [14, 88], "lot": [7, 11, 13, 14, 22, 30, 79, 88, 106, 113, 115, 124, 207, 210, 217, 220, 224, 234, 240, 252, 297], "loui": 223, "lovasz": 210, "love": 7, "lov\u00e1sz": 210, "low": [16, 41, 42, 69, 88, 89, 96, 128, 153, 211, 214, 219, 221, 233, 253, 254, 259], "low_index_subgroup": 70, "lower": [4, 15, 41, 50, 65, 67, 69, 79, 80, 87, 88, 90, 96, 97, 99, 104, 105, 115, 119, 120, 124, 136, 142, 147, 152, 191, 204, 206, 208, 210, 212, 214, 217, 221, 230, 231, 233, 237, 246, 247, 256, 265, 287, 295, 299], "lower_bob": 152, "lower_bound": [97, 98, 101, 104], "lower_central_seri": 79, "lower_incomplete_gamma_funct": 96, "lower_limit": [142, 287], "lower_polygon": 104, "lower_seg": 104, "lower_triangular": [65, 124], "lower_triangular_solv": [119, 124], "lowercas": [15, 16, 61, 130, 237, 252, 287], "lowergamma": [4, 96, 241], "lowertriangularhandl": 65, "lowertriangularmatrix": 65, "lowertriangularpred": 65, "lowest": [39, 69, 79, 84, 128, 138, 208, 210, 223, 240], "lpart": 256, "lpathwai": 18, "lpmax": 239, "lpmin": 239, "lr": 208, "lrh": 311, "ls1": 85, "ls2": 85, "lseri": 88, "lsoda": 21, "lst": 252, "lt": [88, 217, 221, 262], "ltd": 87, "lti": [46, 141, 142], "ltrim": 217, "lu": [53, 120, 124, 153, 154, 210, 215], "lu_": 124, "lu_solv": [53, 124, 210], "luca": [93, 128, 221, 227], "lucas_numb": 93, "lucas_pseudoprim": 128, "lucasl": 221, "lucasnumb": 93, "lucaspseudoprim": 128, "lucien": 70, "lucki": 230, "lucombin": 124, "ludecomposit": [119, 120, 124, 210, 293], "ludecomposition_simpl": [124, 293], "ludecompositionff": 124, "luke": [4, 96, 113, 231], "luke1969": [113, 231], "lukpank": 11, "luschni": [93, 96, 217], "lusolv": [27, 31, 53, 119, 124, 149, 153, 154, 239, 293, 304], "lvert": 113, "lvovich": 5, "ly": [104, 124, 212], "l\u00e9vy": 196, "m": [0, 8, 9, 11, 12, 13, 16, 18, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 39, 41, 43, 46, 59, 61, 65, 69, 70, 76, 77, 79, 80, 84, 87, 88, 89, 90, 91, 93, 96, 98, 100, 104, 105, 113, 115, 117, 119, 120, 121, 123, 124, 125, 127, 128, 130, 131, 132, 134, 136, 137, 140, 144, 146, 147, 149, 151, 153, 154, 155, 158, 160, 162, 167, 174, 188, 189, 192, 194, 196, 206, 208, 209, 210, 212, 214, 215, 216, 217, 218, 221, 222, 223, 224, 226, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 246, 247, 253, 254, 256, 259, 261, 265, 268, 270, 274, 275, 287, 293, 296, 297, 298, 299, 303, 306, 309, 310, 311], "m0": [136, 206, 247], "m1": [124, 128, 136, 137, 162, 170, 188, 190, 194, 234, 237, 242, 247], "m11": [39, 241], "m12": [39, 241], "m13": 39, "m15": 136, "m172": 89, "m2": [124, 128, 136, 137, 155, 162, 170, 188, 190, 194, 216, 234, 237, 242, 247], "m20": 71, "m21": [39, 241], "m22": [39, 241], "m23": 39, "m3": [124, 170, 234, 242], "m31": 39, "m32": 39, "m33": [39, 128], "m4": 234, "m4nzdu": 206, "m53": 128, "m_": [18, 26, 65, 132, 134, 206, 214, 243], "m_0": [136, 214, 234], "m_1": [93, 144, 170, 188, 206, 234], "m_15": 136, "m_2": [31, 93, 158, 170, 188, 206], "m_3": [31, 158, 170, 206], "m_a": 299, "m_c": 299, "m_d": [26, 158, 299], "m_frac": 210, "m_i": [93, 128, 206, 214], "m_ik": [93, 128], "m_k": 93, "m_lll": 210, "m_m": 158, "m_n": 214, "m_op": 27, "m_pa": 132, "m_primit": 210, "m_sqrt2": 221, "m_sqrt2l": 221, "m_tf": 144, "ma": [80, 87, 299, 307], "ma217": 241, "macaulai": 96, "macdonald": 215, "machin": [2, 4, 7, 8, 9, 222, 233, 237, 286], "machineri": [4, 88, 216, 260], "maclaurin": [87, 92], "maco": 9, "made": [3, 5, 11, 12, 13, 14, 15, 16, 18, 22, 24, 27, 30, 36, 41, 43, 56, 82, 84, 88, 89, 94, 97, 98, 101, 104, 105, 115, 118, 124, 128, 130, 148, 156, 208, 210, 212, 214, 216, 217, 221, 222, 228, 229, 230, 233, 237, 239, 240, 241, 254, 259, 262, 274, 292, 299], "mag": 30, "magazin": 124, "magic": [80, 233, 252, 289], "magnet": [33, 146, 162, 274], "magnif": 164, "magnitud": [18, 30, 33, 36, 46, 61, 69, 87, 88, 92, 96, 129, 136, 137, 138, 140, 142, 148, 155, 156, 189, 198, 200, 207, 265, 272, 274, 299, 306], "mai": [2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 23, 27, 33, 35, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 65, 67, 68, 69, 70, 71, 79, 80, 81, 87, 88, 89, 90, 92, 93, 94, 96, 98, 100, 101, 103, 104, 105, 113, 115, 116, 118, 119, 123, 124, 125, 127, 128, 130, 140, 150, 151, 153, 154, 158, 177, 186, 191, 192, 193, 195, 198, 200, 204, 207, 208, 209, 210, 212, 214, 216, 220, 221, 222, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 247, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 272, 274, 286, 287, 289, 292, 293, 297, 298, 306], "mail": [3, 9, 11, 13, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 221, 290, 301], "mailmap_check": 11, "mailoo": 11, "main": [2, 4, 5, 7, 9, 11, 13, 16, 22, 36, 54, 64, 65, 69, 88, 94, 113, 124, 127, 189, 205, 207, 208, 210, 212, 214, 221, 228, 237, 240, 246, 253, 297, 298, 310], "mainli": [79, 96, 124, 129, 196, 205, 214, 231, 234, 237], "maintain": [7, 14, 15, 16, 88, 89, 128, 137, 221, 229, 230, 237, 240, 256], "mainten": [3, 64], "major": [2, 3, 5, 8, 13, 21, 48, 57, 98, 246, 291, 297], "majorli": 88, "make": [2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16, 18, 22, 25, 27, 28, 30, 32, 35, 37, 39, 41, 42, 43, 45, 48, 53, 54, 56, 60, 63, 64, 65, 67, 69, 70, 78, 79, 87, 88, 89, 90, 91, 92, 93, 94, 96, 100, 104, 115, 116, 118, 124, 127, 128, 129, 130, 134, 136, 137, 138, 140, 153, 158, 171, 188, 193, 205, 207, 210, 211, 212, 214, 216, 217, 218, 220, 221, 224, 229, 230, 231, 233, 237, 238, 239, 240, 245, 247, 250, 252, 253, 254, 255, 257, 259, 260, 269, 274, 275, 289, 290, 291, 292, 293, 297, 302, 304, 309, 310], "make_mod_elt": 216, "make_monic_over_integers_by_scaling_root": 217, "make_perm": 79, "make_routin": [69, 254], "makefil": 8, "man": [115, 215], "man93": [215, 217], "manag": [3, 7, 9, 12, 18, 59, 63, 64, 130, 149, 171, 214, 233, 247, 250, 252, 257, 299], "mandatori": [69, 221, 253], "mangl": 221, "mani": [2, 3, 4, 7, 12, 14, 15, 16, 18, 22, 23, 26, 27, 30, 36, 37, 39, 41, 42, 43, 48, 49, 50, 52, 54, 55, 57, 59, 67, 68, 69, 70, 76, 79, 84, 88, 89, 90, 92, 93, 94, 96, 100, 113, 115, 118, 124, 128, 129, 130, 133, 151, 153, 154, 175, 191, 199, 208, 210, 211, 212, 214, 216, 217, 225, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 245, 254, 259, 286, 287, 289, 290, 291, 292, 296, 297, 298, 301, 302], "manifest": [41, 209], "manifesto": 93, "manifold": [13, 90], "manipul": [2, 15, 22, 23, 28, 35, 38, 39, 41, 48, 51, 53, 55, 68, 69, 70, 79, 88, 94, 96, 113, 128, 129, 151, 189, 210, 211, 212, 215, 220, 221, 223, 230, 233, 244, 259, 276, 282, 283, 286, 287, 288, 289, 290, 291, 293, 296, 297], "manner": [12, 27, 33, 72, 89, 96, 189, 234, 237, 242, 259, 274], "mantissa": 69, "manual": [2, 3, 5, 8, 12, 13, 14, 15, 18, 22, 27, 31, 43, 51, 69, 70, 79, 92, 98, 115, 116, 130, 144, 155, 158, 207, 214, 221, 237, 239, 240, 255, 287, 297, 304], "manualintegr": 115, "manuel": [115, 226], "manufactur": 129, "manuscript": [89, 115], "manwright94": [215, 217], "map": [15, 36, 41, 43, 67, 68, 69, 71, 78, 79, 80, 88, 89, 93, 100, 104, 111, 113, 115, 118, 124, 128, 131, 142, 153, 169, 180, 181, 186, 200, 207, 208, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 228, 233, 234, 237, 238, 239, 240, 241, 245, 246, 253, 256, 259, 260, 262, 265, 306], "mapl": [16, 115, 210, 237, 291], "maple_cod": 221, "maplecodeprint": 221, "maplesoft": 237, "mapsto": [87, 113, 124, 216], "marbl": 241, "march": 88, "marcum": 96, "marcum_q": 96, "marcumq": 96, "margin": [128, 144, 207, 241], "marginal_distribut": 241, "marichev": [113, 231], "mark": [3, 4, 5, 142, 164, 176, 234, 250, 255, 257], "markdown": [3, 11, 15], "marker": [142, 207], "markers": 142, "marko": 87, "markov": 241, "markov_chain": 241, "markup": [3, 11, 221], "mascheroni": [88, 96], "mask": [68, 221], "mass": [13, 18, 21, 22, 23, 24, 25, 26, 30, 31, 33, 35, 46, 105, 135, 146, 147, 149, 152, 153, 155, 158, 167, 192, 194, 195, 196, 252, 274, 299, 302, 303, 304, 306, 307, 309, 311], "mass_cent": 304, "mass_matrix": [25, 26, 31, 149, 153, 158, 299, 302, 309, 310], "mass_matrix_ful": [22, 25, 26, 149, 153, 158, 307], "mass_matrix_kin": 153, "masscent": [13, 24, 28, 30, 149, 152, 155, 158, 299, 304, 307], "masscenter_vel": 149, "massei": 89, "massiv": 303, "massless": 303, "master": [4, 5, 7, 11, 12, 59, 115, 252], "mat": [69, 120, 160, 185, 221], "mat_1": 69, "mat_2": 69, "mat_a": 144, "mat_b": 144, "mat_c": 144, "mat_delim": 221, "mat_str": 221, "mat_symbol_styl": 221, "matadd": [88, 120, 221], "match": [2, 3, 4, 11, 12, 13, 14, 16, 32, 41, 43, 55, 79, 80, 87, 88, 96, 101, 113, 115, 124, 152, 158, 167, 192, 200, 210, 217, 233, 234, 237, 238, 239, 241, 250, 252, 254, 259, 260, 271, 287, 299], "matchdict": 237, "matching_hint": 237, "materi": [0, 45, 136, 162, 295], "mateusz": 0, "math": [2, 4, 8, 12, 14, 22, 23, 33, 43, 57, 61, 65, 68, 70, 79, 88, 93, 96, 98, 115, 124, 128, 129, 140, 151, 207, 210, 212, 214, 215, 220, 221, 237, 238, 241, 253, 254, 260, 270, 271, 272, 273, 274, 286, 287, 291], "math24": 237, "math56a_s08_notes015": 241, "math56as08": 241, "math_macro": 221, "mathbb": [27, 41, 43, 51, 65, 70, 71, 79, 87, 88, 89, 94, 96, 113, 124, 206, 208, 209, 211, 212, 214, 216, 217, 220, 228, 229, 231, 234, 240, 241, 297], "mathbf": [18, 23, 25, 26, 28, 32, 33, 35, 36, 61, 120, 151, 153, 159, 196, 200, 205, 221, 231, 242, 269, 270, 272, 274, 275, 299], "mathc": 241, "mathcal": [28, 93, 94, 113, 144, 188, 206, 217, 229], "mathcin": 69, "mathcircl": 93, "mathemat": [2, 3, 5, 12, 13, 14, 15, 18, 21, 29, 33, 35, 36, 38, 41, 43, 50, 52, 54, 55, 57, 58, 61, 63, 64, 67, 69, 70, 74, 78, 80, 87, 88, 89, 90, 93, 94, 95, 96, 101, 102, 113, 115, 118, 120, 124, 128, 129, 130, 144, 145, 196, 208, 209, 211, 212, 215, 220, 221, 229, 230, 234, 236, 237, 240, 241, 246, 253, 254, 260, 265, 269, 272, 274, 286, 287, 289, 290, 291, 292, 295, 297, 299, 305, 306], "mathematica": [2, 16, 69, 80, 130, 291, 293], "mathematica_cod": [69, 221], "mathematical_express": 5, "mathematical_singular": 67, "mathematician": [234, 240], "mathfrak": 216, "mathieu": 221, "mathieu_funct": 96, "mathieuandspheroidalfunct": 96, "mathieubas": 96, "mathieuc": [96, 221], "mathieucprim": [96, 221], "mathieufunct": 96, "mathieusprim": [96, 221], "mathit": 130, "mathjax": [2, 5, 116, 205, 296], "mathml": 221, "mathml2": 221, "mathml_presentation_repr": 198, "mathml_tag": 221, "mathmlcontentprint": 221, "mathmlpresentationprint": 221, "mathmlprinterbas": 221, "mathrm": [2, 4, 59, 78, 87, 88, 89, 96, 113, 115, 212, 214, 221, 229, 231, 237, 240, 241, 287, 291], "mathtt": 221, "mathwav": 241, "mathwork": [124, 142, 241, 293], "mathworld": [4, 15, 65, 81, 82, 88, 89, 91, 93, 94, 96, 98, 104, 115, 124, 128, 215, 224, 229, 234, 241, 259], "matin_opt": 69, "matinv_opt": 69, "matlab": [21, 30, 69, 254, 293], "matlplotlib": 30, "matmul": [88, 120, 210], "matplotlib": [2, 4, 5, 8, 13, 14, 18, 30, 55, 59, 111, 116, 142, 171, 205, 207, 296, 299], "matplotlibbackend": [13, 207], "matpow": [120, 221], "matric": [2, 4, 15, 22, 27, 30, 36, 40, 41, 65, 69, 88, 89, 115, 123, 125, 127, 130, 144, 152, 153, 154, 160, 163, 164, 166, 174, 175, 185, 190, 200, 206, 210, 216, 221, 222, 229, 231, 233, 234, 237, 239, 240, 242, 254, 255, 282, 288, 290, 291, 306], "matrix": [14, 15, 18, 22, 24, 25, 26, 28, 30, 31, 32, 36, 38, 39, 41, 46, 49, 54, 56, 61, 69, 77, 80, 88, 89, 90, 96, 103, 113, 115, 117, 119, 121, 122, 126, 127, 129, 130, 131, 134, 144, 145, 147, 149, 152, 153, 154, 155, 158, 160, 163, 164, 166, 174, 175, 180, 185, 186, 188, 190, 191, 193, 196, 200, 206, 208, 210, 214, 216, 219, 221, 222, 229, 231, 233, 234, 237, 239, 240, 242, 243, 245, 246, 247, 248, 253, 254, 259, 260, 262, 265, 267, 268, 270, 274, 280, 288, 291, 292, 297, 298, 299, 302, 304, 306, 307, 309, 310, 311], "matrix1": 210, "matrix2numpi": 124, "matrix_differential_equ": 237, "matrix_exp": 237, "matrix_exp_jordan_form": 237, "matrix_exponenti": 237, "matrix_fglm": 214, "matrix_form": 117, "matrix_gamma_distribut": 241, "matrix_multiply_elementwis": 124, "matrix_nod": 69, "matrix_normal_distribut": 241, "matrix_rep": 191, "matrix_tensor_product": 190, "matrix_to_dens": 185, "matrix_to_qubit": 185, "matrix_to_vector": 268, "matrixarithmet": 13, "matrixbas": [4, 13, 53, 119, 120, 123, 124, 153, 154, 210], "matrixcalculu": 13, "matrixcommon": 13, "matrixdeprec": 13, "matrixdetermin": 13, "matrixeigen": 13, "matrixel": [13, 69], "matrixerror": 124, "matrixexpr": [15, 43, 120, 121, 123], "matrixgamma": 241, "matrixi": 124, "matrixkind": [15, 38, 88, 123, 229], "matrixnorm": 241, "matrixoper": 13, "matrixpermut": 120, "matrixproperti": 13, "matrixreduct": 13, "matrixrequir": 13, "matrixset": [120, 229], "matrixshap": 13, "matrixsolv": [69, 221], "matrixspeci": 13, "matrixsubspac": 13, "matrixsymbol": [13, 38, 41, 53, 65, 66, 69, 88, 120, 123, 124, 221, 241, 243], "matt": 177, "matter": [12, 32, 43, 67, 77, 80, 87, 88, 93, 113, 115, 228, 259, 291, 292], "matthew": 0, "matur": [40, 41, 239, 240], "matvec": 253, "max": [13, 18, 69, 79, 80, 88, 94, 96, 98, 124, 128, 130, 134, 136, 206, 207, 214, 216, 217, 221, 228, 230, 231, 260], "max_bending_mo": 136, "max_bmoment": 136, "max_coset": 70, "max_curv": 128, "max_deflect": 136, "max_degre": [115, 217], "max_denomin": 88, "max_div": 79, "max_expon": 69, "max_it": 233, "max_len": 233, "max_norm": [212, 217], "max_ord": 69, "max_shear_forc": 136, "max_stack_s": 70, "max_step": 128, "max_term": 233, "max_tri": [212, 216, 217], "max_wir": 171, "maxdepth": 221, "maxim": [12, 18, 79, 89, 117, 134, 208, 212, 216, 228, 230], "maxima": [2, 52, 130, 240], "maximal_fiber_veloc": [18, 134], "maximal_ord": [212, 216], "maximum": [13, 14, 16, 18, 52, 53, 67, 69, 70, 79, 80, 88, 94, 115, 124, 128, 132, 134, 136, 188, 196, 207, 212, 214, 217, 221, 228, 229, 233, 234, 237, 239, 240, 241, 256, 259, 302], "maxn": [88, 92, 124], "maxprec": 88, "maxsiz": 88, "maxstep": 217, "maxterm": 118, "maxtriesexcept": 216, "maxwel": 241, "maxwell_distribut": 241, "maxwelldistribut": 241, "mayavi": 13, "mayb": [8, 12, 42, 50], "mayor": 163, "mb": [30, 155, 307], "mbox": 68, "mc": [89, 299, 304, 307], "mccluskei": 118, "mccluskey_algorithm": 118, "mcgraw": [29, 34, 96, 115, 153, 200, 203, 265], "mcii": 241, "mcode": 221, "mcodeprint": 221, "mcydwshkogamkzcelyfgayr": 89, "md": [3, 5, 12, 250, 257, 299], "md5": 262, "mdarg": 88, "mdft": 147, "me": [18, 22, 30, 89, 200, 221, 243, 299, 303], "mead": 89, "mean": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 24, 35, 41, 42, 43, 48, 56, 65, 70, 80, 87, 88, 89, 90, 106, 113, 115, 116, 118, 121, 123, 124, 128, 136, 148, 191, 193, 196, 200, 205, 207, 208, 209, 211, 214, 216, 220, 221, 231, 233, 234, 236, 237, 239, 240, 241, 242, 243, 245, 246, 252, 259, 270, 286, 287, 289, 291, 292, 293, 297, 298], "meaning": [41, 62, 64, 68, 89], "meaningfulli": 208, "meaningless": 92, "meant": [4, 5, 12, 13, 16, 22, 30, 41, 43, 69, 88, 96, 101, 115, 128, 207, 212, 229, 233, 238, 243, 270, 292], "meanwhil": 216, "measur": [16, 21, 28, 32, 33, 36, 61, 94, 96, 104, 119, 171, 180, 185, 193, 196, 198, 200, 204, 217, 229, 230, 233, 241, 264, 265, 268, 269, 271, 272, 274, 299], "measure_al": 185, "measure_all_oneshot": 185, "measure_parti": 185, "measure_partial_oneshot": 185, "meat": 69, "mechan": [2, 17, 18, 19, 20, 22, 32, 34, 43, 47, 88, 111, 115, 124, 134, 136, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 173, 177, 180, 186, 188, 189, 190, 193, 200, 203, 206, 282, 299, 301, 302, 303, 304, 306, 307, 309, 310, 311], "mechanicalc": 104, "mechanics_print": [24, 25, 26, 158, 302, 304, 309, 310, 311], "media": [30, 164], "medial": 104, "median": [104, 241], "mediterranean": 208, "medium": [8, 43, 160, 161, 164, 165, 175, 214, 282], "medium1": 164, "medium2": 164, "meet": [41, 89, 228], "meetmeonmondai": 89, "meetmeonmondayat8am": 89, "meijaard": 29, "meijaard2007": [29, 302], "meijer": [96, 106, 114, 115, 277, 287, 297], "meijer_g": 96, "meijerg": [96, 107, 113, 115, 221, 241, 297], "meijerint": [107, 109, 113, 115], "meijerint_definit": 113, "meijerint_indefinit": 113, "meijerint_invers": 113, "mein": 259, "mellin": [96, 115], "mellin_transform": 115, "mellintransform": 115, "member": [0, 4, 13, 41, 48, 68, 77, 79, 89, 111, 134, 138, 140, 208, 229, 246], "member_1": 140, "member_2": 140, "member_3": 140, "member_4": 140, "member_5": 140, "member_length": 140, "membership": [52, 86, 216, 229], "memo": 261, "memoiz": [256, 258, 284], "memoize_properti": 255, "memori": [12, 15, 69, 88, 128, 217, 242, 253, 256], "men": 196, "menez": 128, "mensor": 61, "mental": 15, "mention": [2, 3, 4, 14, 31, 33, 43, 48, 55, 79, 113, 115, 130, 138, 144, 160, 231, 234, 237, 241, 269, 270, 271, 272, 293, 302], "menu": 8, "mere": [63, 64, 69, 71, 92, 186], "merg": [3, 7, 11, 12, 13, 69, 79, 80, 88, 199, 221, 229, 241, 252, 259, 260], "merge_solut": 234, "mermin": 176, "meromorph": [88, 96], "mersenn": 128, "mersenne_prime_expon": 128, "mersenneforum": 128, "mersenneprim": 128, "mesh": 207, "mesh_i": 207, "mesh_u": 207, "mesh_v": 207, "mesh_x": 207, "mesh_z": 207, "mess": [177, 237, 240, 297], "messag": [3, 7, 12, 13, 14, 89, 116, 250, 255, 257, 262], "messi": 231, "met": [88, 140, 234, 240, 255, 297], "meta": [5, 88, 237, 238], "metaclass": 88, "metacycl": 71, "metadata": [3, 11, 68, 255, 257], "metahint": 88, "metaprogram": 88, "meter": [136, 137, 138, 162, 165, 194, 195, 196, 197, 198], "method": [2, 3, 4, 5, 8, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24, 28, 29, 30, 32, 33, 35, 36, 40, 41, 48, 50, 51, 52, 54, 55, 56, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 79, 80, 81, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 100, 101, 102, 104, 107, 110, 112, 113, 115, 117, 119, 120, 124, 128, 129, 130, 131, 132, 134, 136, 137, 138, 139, 140, 141, 144, 145, 148, 149, 151, 152, 154, 155, 156, 158, 159, 165, 168, 170, 172, 180, 181, 186, 188, 191, 193, 195, 198, 199, 200, 202, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 222, 223, 224, 226, 227, 228, 229, 233, 234, 237, 239, 241, 242, 244, 246, 247, 248, 252, 254, 256, 259, 260, 265, 269, 272, 275, 276, 280, 282, 286, 287, 288, 289, 292, 297, 299, 305, 308], "method_nam": 14, "method_of_undetermined_coeffici": 237, "method_ring": 259, "methodologi": [240, 290], "metric": [14, 69, 80, 84, 90, 145, 233, 237, 240, 247], "metric_nam": 247, "metric_symmetri": [13, 247], "metric_to_christoffel_1st": 90, "metric_to_christoffel_2nd": 90, "metric_to_ricci_compon": 90, "metric_to_riemann_compon": 90, "meurer": 0, "mfork": 302, "mframe": 302, "mgamma": 147, "mi": [128, 221], "mib": 9, "micali": 89, "michael": [87, 215, 220], "microsecond": 129, "microsoft": 8, "mid": [43, 70, 89, 92, 130, 137, 229, 234], "middl": [43, 96, 104, 113, 124, 137, 171, 207, 231, 297], "midpoint": [101, 103, 104, 115, 207, 271], "midwai": 89, "might": [3, 4, 9, 11, 12, 13, 14, 15, 16, 21, 22, 30, 35, 37, 41, 42, 43, 50, 54, 67, 69, 88, 92, 94, 101, 110, 113, 120, 124, 128, 130, 136, 171, 200, 207, 210, 211, 212, 217, 218, 221, 222, 229, 230, 231, 233, 234, 239, 240, 241, 253, 254, 257, 259, 262, 286, 289, 291, 292, 294, 297], "miglani": 11, "mignott": [212, 214], "mignotte_sep_bound_squar": 212, "migrat": 3, "miktex": [2, 8], "mile": 198, "mileston": 254, "militari": 89, "miller": 128, "milton": [4, 96], "mimic": [115, 116, 133, 205, 260], "mimo": [46, 141, 144], "mimofeedback": [46, 141, 144], "mimolineartimeinvari": 144, "mimoparallel": [141, 144], "mimoseri": [141, 144], "min": [13, 80, 84, 88, 93, 94, 124, 130, 206, 207, 216, 221, 227, 237, 259], "min_degre": 217, "min_expon": 69, "min_qubit": [171, 175], "min_wir": 171, "min_x": 234, "min_z": 234, "mind": [4, 11, 12, 14, 16, 28, 38, 41, 52, 88, 124, 207, 228, 229, 274, 292], "minim": [4, 41, 43, 67, 79, 80, 84, 87, 88, 89, 113, 115, 118, 124, 128, 149, 160, 210, 211, 212, 214, 217, 220, 230, 233, 234, 239, 259, 306], "minima": [52, 240], "minimal_block": 79, "minimal_polynomi": 216, "minimal_uncollected_subword": 78, "minimum": [3, 13, 21, 32, 52, 67, 69, 79, 80, 82, 84, 88, 89, 92, 94, 124, 153, 175, 207, 209, 214, 239, 240, 241, 255, 287, 302], "minisat": 2, "minisat22": 2, "minlex": 259, "minor": [88, 98, 124, 210, 221, 252], "minor_submatrix": 124, "minpoli": [88, 211, 212, 214, 216], "minpoly_of_el": 88, "minterm": 118, "minu": [33, 69, 87, 88, 210, 214, 221, 272], "minut": [12, 16, 21, 32, 53, 302], "minv": 210, "minv_reduc": 210, "mirror": [4, 96, 115, 164], "mirror_formula": 164, "misappli": 13, "misc": [94, 124, 262], "miscellan": [258, 284], "mise": 241, "mismatch": 124, "miss": [78, 79, 105, 210, 221, 239, 254, 297], "missingunityerror": 216, "mission": [5, 68, 121], "mississippi": [93, 259], "misspel": 13, "mistak": [5, 11, 12, 14, 16, 51, 79, 130, 260], "mistaken": 12, "mistyp": 12, "misunderstand": 41, "mit": 91, "mix": [32, 41, 60, 87, 94, 124, 130, 211, 212, 217, 221, 240, 243, 245, 247, 260], "mixin": [88, 259], "mixtur": [67, 69, 105, 208, 254], "mj": 0, "mk": [193, 196], "ml": 303, "mlatex": 21, "mlg": 303, "mlq_1": 303, "mlq_2": 303, "mly": 303, "mm": [65, 68, 128, 153, 189, 210, 302, 309, 310], "mm_full": 302, "mn": [189, 221, 241], "mnemon": [16, 230, 259], "mnt": 8, "mo": [30, 128, 221], "moa": 74, "mobiu": [13, 91, 93, 128], "mobius_transform": 91, "mobiusrang": 128, "mock": 171, "mod": [12, 13, 89, 93, 94, 118, 125, 128, 187, 208, 210, 211, 212, 214, 216, 217, 221, 223, 231, 234], "mod_invers": [88, 217], "mod_to_list": 212, "modaugmentedassign": 69, "mode": [1, 8, 48, 88, 116, 130, 163, 186, 205, 217, 221, 252, 299], "model": [3, 14, 15, 19, 20, 92, 93, 118, 128, 131, 132, 133, 134, 144, 148, 154, 158, 163, 217, 230, 241, 300, 301, 302, 303, 305, 306, 307, 308], "moder": [7, 115], "modern": [43, 69, 208, 215, 221], "modest": 70, "modgcd_bivari": 214, "modgcd_multivari": 214, "modgcd_univari": 214, "modif": [79, 94, 124, 130, 240, 241, 256], "modifi": [5, 12, 14, 15, 16, 26, 68, 69, 79, 88, 94, 96, 128, 130, 163, 207, 210, 214, 216, 217, 218, 221, 233, 239, 240, 241, 252, 255, 256, 259, 260, 286, 291, 293], "modn": 128, "modop": 221, "modopmodewrong": 221, "modopnestedwrong": 221, "modopsettingswrong": 221, "modul": [2, 3, 4, 5, 7, 11, 12, 14, 15, 16, 18, 19, 21, 22, 25, 26, 28, 30, 33, 34, 36, 38, 41, 46, 51, 59, 60, 61, 62, 63, 64, 67, 68, 69, 70, 71, 78, 80, 88, 89, 91, 93, 94, 96, 100, 104, 108, 111, 114, 115, 116, 118, 120, 121, 122, 124, 129, 130, 131, 133, 134, 136, 138, 139, 140, 142, 143, 145, 151, 160, 161, 163, 165, 166, 178, 181, 194, 195, 196, 197, 203, 207, 212, 213, 215, 218, 219, 221, 225, 228, 231, 235, 239, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 254, 255, 256, 257, 258, 259, 260, 263, 268, 270, 272, 273, 274, 275, 276, 282, 283, 284, 286, 289, 291, 297, 298, 305, 308], "modular": [12, 89, 128, 187, 210, 215, 240], "modular_multiplicative_invers": 88, "modulargcd": 214, "modularinteg": 212, "module_dictionari": 260, "module_quoti": 208, "module_rel": 252, "moduleel": 216, "moduleendomorph": 216, "modulehomomorph": [208, 216], "moduli": [89, 128, 210, 214], "modulo": [13, 88, 89, 93, 125, 128, 187, 208, 210, 211, 212, 214, 216, 217, 218, 220, 221, 224, 233], "modulu": [88, 89, 91, 96, 98, 104, 124, 128, 136, 137, 208, 212, 214, 216, 217, 220, 240], "mol": 206, "mold": 36, "mole": 196, "moll": 96, "momemtum": 188, "moment": [23, 26, 28, 98, 104, 135, 136, 137, 151, 207, 217, 234, 241, 302], "moment_load_vector": 136, "momenta": [23, 170], "momentum": [22, 23, 30, 146, 149, 155, 169, 170, 188, 192, 206, 247], "monad": 256, "monagan": [215, 233], "monagan00": [214, 215], "monagan93": [214, 215], "mondai": 89, "monic": [87, 96, 208, 209, 212, 214, 216, 217, 220], "monitor": 8, "monoalphabet": 89, "monogen": 208, "monogenicfiniteextens": [208, 212], "monoid": 68, "monom": [212, 217], "monomi": [11, 88, 115, 118, 128, 209, 211, 212, 214, 220, 221, 297], "monomial_basi": 212, "monomial_count": 217, "monomial_kei": 217, "monomialord": [212, 217], "monomorph": 216, "monospac": 221, "monoterm": 247, "monoton": [67, 69, 105], "monotonicity_help": 67, "monotorem": 247, "monserrat": 11, "mont": 79, "montgomeri": 214, "month": 0, "monthli": [74, 89, 124], "montreal": 215, "moor": [0, 53, 120, 124], "moot": 88, "moprhism": 68, "mora": [214, 215, 217, 239], "mordel": 234, "more": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 26, 27, 28, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 64, 65, 67, 68, 69, 70, 71, 74, 78, 79, 80, 85, 87, 88, 89, 90, 92, 93, 94, 95, 96, 100, 101, 102, 103, 104, 105, 106, 110, 113, 115, 118, 120, 121, 124, 125, 127, 128, 129, 130, 132, 136, 142, 144, 151, 152, 153, 154, 156, 158, 160, 163, 175, 179, 180, 185, 188, 189, 190, 191, 196, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 230, 231, 233, 234, 237, 238, 239, 240, 241, 252, 254, 255, 256, 259, 260, 262, 265, 269, 273, 280, 282, 286, 287, 289, 290, 292, 293, 295, 296, 297, 298, 299, 301, 302, 306, 308, 310], "moreno": 215, "moreov": [33, 79, 89, 113, 208, 209, 214, 222, 270], "morphism": [68, 208], "morri": 230, "mors": 89, "morse_cod": 89, "mortem": 252, "mose": 237, "most": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 27, 28, 31, 32, 38, 39, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 67, 68, 69, 70, 79, 80, 87, 88, 89, 92, 94, 98, 100, 115, 118, 119, 120, 121, 124, 126, 127, 128, 129, 130, 144, 152, 153, 193, 195, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 228, 229, 231, 234, 237, 238, 239, 240, 241, 250, 253, 254, 255, 256, 257, 259, 260, 262, 268, 270, 286, 289, 291, 292, 293, 295, 296, 297, 310], "mostli": [14, 30, 35, 88, 94, 115, 124, 186, 208, 210, 220, 221, 231, 239, 296], "mota": 237, "motion": [13, 18, 21, 23, 24, 25, 26, 27, 30, 31, 35, 36, 79, 133, 148, 149, 151, 152, 153, 154, 156, 158, 204, 205, 241, 300, 302, 303, 304, 305, 306, 307, 309, 311], "motiongenesi": [22, 30], "motionvari": [22, 30], "motiv": [13, 17, 43, 58, 217], "mous": 207, "move": [11, 12, 14, 18, 23, 35, 36, 43, 79, 80, 88, 89, 102, 104, 136, 148, 151, 152, 156, 158, 179, 204, 233, 242, 251, 272, 299, 300, 302, 304, 306], "movement": 90, "moyal": 241, "moyaldistribut": 241, "mp": [61, 188, 239, 255], "mpc": [211, 212], "mpf": [88, 211, 212], "mpi": 229, "mpmath": [2, 8, 12, 15, 30, 43, 53, 54, 69, 93, 96, 124, 129, 211, 212, 221, 229, 239, 255, 260, 287], "mpmathprint": 221, "mpprint": [21, 25], "mpq": [128, 210, 211], "mprint": [21, 25, 309, 310, 311], "mpz": [211, 212], "mr": 128, "mrow": 221, "mrref": 210, "mrv": [88, 228], "mrv_leadterm": 228, "mrv_max1": 228, "mrv_max3": 228, "msg": [89, 115], "msigma": 147, "msub": [21, 27, 150], "msym": 84, "msymbol": 239, "msys2": 8, "mt": [18, 113], "mu": [16, 96, 113, 128, 145, 147, 162, 221, 241, 247], "mu1": 241, "mu2": 241, "mu_1": 241, "mu_2": 241, "much": [3, 4, 11, 12, 13, 27, 28, 35, 36, 39, 41, 42, 43, 48, 54, 68, 69, 73, 84, 88, 92, 96, 110, 113, 115, 199, 206, 208, 210, 211, 214, 217, 228, 231, 233, 237, 238, 239, 240, 254, 256, 289, 291, 297], "mueller": 163, "mueller_calculu": 163, "mueller_matrix": 163, "mul": [4, 13, 15, 16, 38, 43, 61, 113, 115, 124, 128, 171, 175, 185, 186, 210, 211, 212, 216, 217, 221, 222, 223, 230, 233, 237, 238, 239, 240, 245, 292], "mul_elementwis": 210, "mul_ground": [212, 217], "mul_inv": 80, "mul_symbol": 221, "mul_symbol_mathml_numb": 221, "mul_xin": 218, "mulaugmentedassign": 69, "muller": 0, "mulsimp": 124, "mult": 216, "mult_tab": 216, "multi": [23, 30, 60, 88, 89, 151, 171, 175, 185, 207, 221, 240, 301, 305], "multibodi": [18, 22, 23, 29, 30, 31, 35, 133, 134, 151, 154, 155, 158, 301], "multicharact": 262, "multidimension": [54, 215, 252], "multifactor": 214, "multifactori": 93, "multifram": 36, "multigamma": 96, "multilin": [3, 221], "multilinear": 90, "multimodular": 210, "multinomi": [88, 124, 128, 241], "multinomial_coeffici": 128, "multinomial_coefficients_iter": 128, "multinomial_distribut": 241, "multinomialdistribut": 241, "multipl": [2, 3, 4, 11, 12, 13, 14, 15, 16, 18, 21, 23, 30, 31, 35, 37, 41, 43, 46, 50, 52, 56, 57, 61, 63, 64, 65, 67, 68, 69, 70, 77, 79, 80, 84, 87, 88, 89, 93, 94, 96, 98, 103, 106, 108, 113, 115, 117, 118, 120, 124, 125, 128, 130, 138, 140, 141, 144, 151, 156, 175, 176, 177, 181, 188, 190, 193, 196, 197, 198, 200, 204, 207, 208, 209, 210, 211, 212, 214, 215, 217, 218, 221, 226, 227, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 247, 250, 254, 255, 256, 257, 259, 260, 262, 265, 270, 286, 287, 289, 290, 292, 293, 298, 299, 302], "multipledispatch": [12, 13, 62], "multiplex": 118, "multipli": [13, 16, 26, 27, 32, 53, 61, 65, 69, 79, 88, 99, 103, 110, 117, 124, 128, 136, 148, 153, 154, 168, 177, 191, 196, 197, 208, 209, 210, 212, 214, 216, 217, 221, 223, 230, 231, 234, 237, 242, 259, 269, 289, 292, 306], "multiplicity_in_factori": 128, "multiply_elementwis": [124, 210], "multiply_id": 208, "multiply_transitive_group": 79, "multipow": 89, "multiprecis": [69, 211], "multiprim": 89, "multiset": [93, 113, 256, 259], "multiset_combin": [93, 259], "multiset_derang": 259, "multiset_partit": [77, 93, 113, 256, 259], "multiset_partitions_taocp": 256, "multiset_permut": [93, 259], "multisetpartitiontravers": 256, "multiterm": 247, "multivalu": [88, 94], "multivari": [67, 88, 96, 208, 209, 211, 212, 213, 215, 217, 218, 228, 233, 239, 240, 241, 297], "multivariate_gamma_funct": 96, "multivariate_laplace_distribut": 241, "multivariate_normal_distribut": 241, "multivariatebeta": 241, "multivariateewen": 241, "multivariatelaplac": 241, "multivariatenorm": 241, "multivariatepolynomialerror": [214, 217], "multivariatet": 241, "mun": 221, "mundi": 215, "mupad_ref": 293, "murrai": [79, 210], "muscl": [18, 131, 132, 134, 300], "muscle_activ": 18, "muscle_load": 18, "muscle_pathwai": 18, "musclotendon": 131, "muscular": 133, "musculoskelet": 299, "musculotendon": [19, 131, 132, 133, 282, 299], "musculotendon_dynam": [18, 134], "musculotendonbas": 134, "musculotendondegroote2016": [18, 134, 299], "musculotendonformul": 134, "museum": 89, "must": [2, 3, 4, 11, 12, 13, 15, 16, 18, 22, 23, 25, 26, 27, 28, 30, 32, 36, 41, 42, 55, 61, 62, 63, 64, 69, 79, 80, 82, 84, 86, 87, 88, 89, 90, 93, 94, 96, 98, 101, 104, 107, 110, 111, 113, 115, 118, 119, 120, 124, 127, 128, 130, 134, 136, 137, 138, 140, 142, 144, 145, 148, 151, 152, 153, 154, 156, 159, 171, 186, 188, 191, 200, 206, 207, 208, 209, 210, 212, 214, 216, 217, 221, 222, 229, 230, 231, 233, 234, 237, 239, 240, 241, 245, 246, 252, 253, 254, 255, 256, 257, 259, 260, 289, 291, 292, 296, 297, 302, 304], "mutabl": [15, 16, 70, 88, 119, 120, 121, 136, 212, 221, 222, 233, 242, 293], "mutabledensematrix": [13, 18, 119, 210, 262], "mutabledensendimarrai": 242, "mutablerepmatrix": 13, "mutablesparsematrix": 126, "mutablesparsendimarrai": 242, "mutat": [13, 144, 210, 212, 241], "mute": [69, 253], "mutual": [36, 94, 113], "mwf": 302, "mwr": 302, "mx": [142, 171, 228], "my": [8, 221, 286], "my_dummi": 191, "my_equ": 88, "my_fcn": [69, 221], "my_inequ": 88, "my_iszero": 293, "my_mat_fcn": [69, 221], "my_measur": 233, "my_real_root": 48, "my_root": 48, "my_routin": 69, "my_smt_variable_for_pi": 221, "my_sym": 51, "myclass": 88, "mycoeff": 67, "myfcn": 254, "myfcn_result": 254, "mygamma": 221, "mylatexprint": 221, "mylist": 88, "mylist1": 88, "mylist2": 88, "myop": 259, "myprogram": 69, "myrvold": 80, "mysin": [88, 260, 286], "mysingleton": 88, "myst": 5, "mysub": 69, "mz": 171, "m\u2081": 137, "m\u2082": 137, "n": [0, 4, 5, 9, 12, 15, 16, 18, 22, 25, 26, 27, 28, 30, 31, 32, 35, 36, 39, 41, 43, 48, 51, 52, 60, 65, 67, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 101, 102, 103, 104, 105, 110, 111, 113, 115, 117, 118, 120, 124, 125, 128, 130, 134, 136, 137, 140, 142, 144, 146, 147, 148, 149, 153, 155, 156, 158, 159, 160, 162, 164, 165, 167, 171, 176, 177, 180, 185, 187, 188, 189, 191, 192, 194, 196, 198, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 244, 246, 247, 250, 253, 259, 261, 262, 265, 267, 268, 269, 270, 274, 280, 287, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 308, 309, 310, 311], "n1": [22, 30, 32, 41, 69, 79, 88, 89, 160, 164, 207, 234, 241, 265], "n11": 241, "n12": 241, "n2": [30, 41, 69, 79, 88, 89, 160, 164, 207, 234, 241], "n21": 241, "n22": 241, "n3": [22, 88, 207], "n_": [214, 234], "n_0": [110, 214, 239, 240], "n_1": [214, 239, 241], "n_2": [214, 241], "n_a": 22, "n_adj": 80, "n_alpha_b": 200, "n_b": 22, "n_c": 241, "n_digit": 115, "n_ep": 79, "n_frame": 149, "n_i": [84, 214, 239], "n_k": 214, "n_len": 164, "n_level": 191, "n_m": 239, "n_max": 191, "n_order": 128, "n_particl": 191, "n_point_check": 69, "n_surr": 164, "n_x": 202, "n_y": 303, "n_z": 303, "nabla": [33, 265, 271, 272], "naiv": [14, 38, 79, 85, 88, 113, 124, 128, 196, 210, 231, 239, 240, 247], "nakagami": 241, "nakagami_distribut": 241, "nako": 210, "name": [2, 3, 4, 5, 8, 12, 13, 15, 16, 18, 22, 30, 32, 33, 36, 41, 43, 45, 55, 56, 60, 63, 64, 68, 69, 70, 71, 75, 78, 81, 84, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 113, 115, 116, 117, 120, 124, 128, 130, 131, 133, 134, 136, 140, 148, 149, 152, 155, 158, 162, 171, 186, 193, 196, 197, 198, 199, 200, 202, 204, 207, 208, 209, 211, 212, 214, 216, 218, 221, 227, 231, 233, 234, 237, 238, 240, 241, 246, 247, 250, 252, 253, 254, 255, 260, 262, 263, 265, 269, 272, 277, 286, 289, 292, 293, 297, 299, 302], "name_dict": 130, "name_expr": [69, 254], "name_mangl": 221, "name_of_bodi": 149, "named_group": [73, 76, 78, 79, 85, 86], "namedmorph": 68, "nameerror": [14, 16, 116, 255, 289], "nameless": 247, "namespac": [2, 4, 13, 14, 60, 69, 70, 88, 212, 234, 237, 238, 252, 254, 255, 260], "nan": [65, 66, 69, 88, 94, 96, 150, 153, 154, 233, 241, 287], "nand": [118, 221], "nanjeky": 11, "nanjekyejoannah": 11, "nano": 129, "nanosecond": 129, "napier": 88, "narg": [88, 214], "narr": [4, 290], "nation": 218, "nativ": [9, 14, 15, 88, 144, 212, 217, 252], "native_coeff": 88, "natur": [3, 12, 14, 16, 22, 41, 46, 53, 61, 65, 69, 70, 71, 79, 88, 89, 93, 94, 121, 128, 193, 195, 196, 208, 211, 212, 214, 216, 218, 221, 229, 230, 234, 240, 241, 259, 275, 292, 297, 299], "naturals0": [88, 221, 229, 240, 241], "navi": 89, "navig": [8, 13], "nb": 88, "nb2": 221, "nb_of_point": 207, "nb_of_points_i": 207, "nb_of_points_u": 207, "nb_of_points_v": 207, "nb_of_points_x": 207, "nbit": 69, "nc": 93, "nca": 216, "nck": 297, "ncol": 210, "ncolumn": 207, "ndarrai": [124, 207, 241, 247, 253, 299], "ndf": 163, "ndimarrai": 14, "ndimension": 253, "ne": [15, 37, 41, 88, 89, 93, 94, 101, 113, 124, 128, 130, 209, 211, 214, 231, 237, 241], "near_int": 128, "nearbi": 11, "nearer": 113, "nearest": [67, 216], "nearest_common_ancestor": 216, "nearli": [16, 128, 230], "necess": 214, "necessari": [2, 3, 4, 6, 8, 11, 12, 13, 14, 16, 23, 41, 43, 58, 67, 68, 79, 80, 88, 98, 113, 115, 118, 124, 128, 130, 151, 153, 207, 209, 211, 216, 217, 221, 224, 230, 233, 237, 238, 239, 240, 241, 242, 247, 252, 254, 259, 260, 265, 290, 295, 299, 300, 302], "necessarili": [3, 4, 18, 41, 65, 88, 89, 90, 113, 115, 118, 153, 208, 209, 210, 216, 217, 219, 233, 234, 237, 239, 240], "necessit": 310, "necesssari": 275, "necklac": [5, 259], "ned": 13, "nedbatcheld": 12, "need": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 28, 31, 32, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 63, 64, 67, 68, 69, 73, 79, 80, 84, 86, 87, 88, 89, 90, 93, 94, 96, 99, 103, 104, 111, 112, 113, 115, 116, 118, 124, 128, 129, 130, 134, 136, 137, 140, 144, 148, 153, 155, 158, 159, 160, 171, 175, 183, 189, 194, 200, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 228, 229, 231, 233, 234, 236, 237, 239, 240, 241, 245, 246, 247, 248, 250, 253, 254, 255, 256, 257, 259, 262, 265, 269, 271, 272, 275, 286, 287, 289, 292, 293, 295, 297, 299, 302, 304, 306, 307, 309, 310, 311], "needev": 115, "neg": [4, 13, 15, 16, 18, 41, 42, 46, 52, 65, 66, 69, 70, 83, 87, 88, 93, 94, 96, 98, 100, 101, 104, 113, 115, 117, 118, 124, 127, 128, 136, 137, 140, 141, 142, 144, 148, 152, 156, 191, 200, 206, 209, 210, 212, 214, 216, 217, 218, 221, 227, 229, 230, 231, 233, 234, 237, 239, 240, 241, 260], "neg_feedback": 144, "negat": [42, 43, 65, 88, 94, 118, 144, 200, 210, 212, 214, 217], "negative_binomial_distribut": 241, "negative_multinomial_distribut": 241, "negative_numb": [41, 88], "negativebinomi": 241, "negativebinomialdistribut": 241, "negativehandl": 65, "negativeinfin": [88, 221], "negativemultinomi": 241, "negativeon": [88, 94, 292], "negativepred": 65, "neglect": 69, "neglig": 48, "neighbor": 259, "neighborhood": 229, "neighbourhood": 113, "neither": [41, 42, 65, 88, 165, 186, 207, 210, 217, 228, 229, 230, 237, 247, 260, 265, 274, 297], "nephew": 89, "neq": [15, 36, 43, 88, 94, 96, 113, 115, 124, 128, 196, 206, 214, 217, 237, 239, 297], "nervou": [18, 131], "nessgrh": 113, "nest": [14, 51, 55, 88, 90, 94, 96, 115, 124, 144, 209, 210, 211, 214, 221, 231, 233, 236, 240, 241, 242, 243, 245, 248, 259, 260, 292], "nested_contract": 245, "net": [11, 68, 104, 215, 237, 241, 259], "netwon": 69, "neurolog": 133, "neutral": 5, "never": [9, 10, 11, 12, 14, 15, 41, 43, 55, 88, 94, 115, 130, 193, 217, 218, 221, 229, 239, 241, 250, 269, 289, 290], "nevertheless": 68, "new": [2, 3, 5, 6, 7, 8, 9, 12, 14, 15, 18, 22, 29, 30, 32, 36, 41, 43, 51, 58, 63, 64, 68, 69, 70, 79, 80, 87, 88, 89, 90, 96, 101, 104, 113, 115, 116, 124, 128, 130, 132, 134, 136, 138, 140, 144, 148, 149, 152, 160, 181, 187, 188, 191, 193, 196, 197, 199, 200, 204, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 221, 228, 231, 233, 234, 237, 239, 240, 241, 242, 243, 252, 253, 257, 260, 265, 267, 269, 285, 286, 289, 292, 293, 295, 299, 304, 309, 311], "new_eq": 240, "new_fil": 11, "new_gen": 86, "new_indic": 191, "new_label": [138, 140], "new_matrix": 241, "new_method": [153, 306], "new_msg": 89, "new_nam": 68, "new_support": 138, "new_system": 265, "newa": 230, "newarg": 14, "newchar": 262, "newconst": 237, "newer": [3, 12, 15, 35, 130, 239], "newli": [12, 88, 113, 231], "newlin": [3, 12, 124, 262], "newmatrix": 13, "newnam": 200, "newroot": 117, "newton": [18, 23, 69, 96, 151, 194, 198, 214, 218], "newtonian": [22, 30, 158], "newtonion": 149, "newtons_method": 69, "newtons_method_funct": 69, "newtyp": 88, "newvar": 87, "nexp": 69, "next": [7, 9, 11, 16, 21, 23, 24, 31, 35, 36, 39, 41, 43, 45, 60, 69, 70, 72, 77, 79, 80, 82, 83, 88, 89, 94, 113, 115, 118, 124, 128, 130, 149, 151, 152, 153, 158, 208, 210, 212, 216, 217, 221, 229, 231, 234, 237, 256, 257, 259, 290, 291, 292, 304, 306, 307, 309, 311], "next_binari": 83, "next_grai": 83, "next_lex": [77, 80], "next_lexicograph": 83, "next_nonlex": 80, "next_trotterjohnson": [80, 259], "nextprim": 128, "nf": 214, "nfac": 128, "nfloat": [88, 233], "ngate": 175, "nh": 25, "ni": 96, "nice": [1, 4, 9, 22, 27, 30, 59, 88, 100, 124, 128, 207, 221, 231, 262, 292], "nicefrac": 130, "nicer": [59, 88, 210, 310], "nicest": 14, "nicheck": 22, "nielsen_transform": 79, "niemey": 79, "nigel": 234, "nijenhui": 72, "nilpot": [74, 79, 124], "nilpotent_group": 79, "nilrad": 216, "nine": [104, 221], "nine_point_circl": 104, "ninth": 132, "nist": [4, 94, 96, 196], "nitaj": 234, "niven": 214, "nl": [146, 192], "nlm": 146, "nm": [136, 137, 189, 242, 299], "nmant": 69, "nmax": 128, "nmod": 13, "nmod_mat_charpoli": 210, "nnf": 118, "nnz": 210, "no_attrs_in_subclass": 255, "no_glob": [116, 205], "no_symmetri": 247, "nobr": 55, "nocache_fail": 250, "nocond": [46, 115], "nodal": [167, 192, 208], "node": [13, 15, 67, 82, 88, 115, 130, 140, 150, 167, 192, 200, 206, 211, 221, 228, 240, 245, 256, 260, 292, 296], "node12": 72, "node81": 128, "node_1": 140, "node_2": 140, "node_3": 140, "node_4": 140, "node_label": 140, "node_posit": 140, "nois": 48, "nomin": 12, "non": [2, 3, 12, 14, 15, 16, 18, 21, 25, 26, 30, 33, 36, 41, 43, 48, 54, 55, 57, 60, 65, 67, 70, 78, 81, 87, 88, 89, 93, 94, 95, 96, 97, 98, 101, 102, 103, 115, 117, 118, 119, 120, 124, 125, 127, 128, 131, 134, 148, 153, 155, 175, 180, 190, 191, 193, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 224, 228, 229, 231, 233, 234, 236, 237, 239, 240, 241, 242, 245, 246, 247, 252, 254, 259, 262, 272, 292, 297, 298, 302, 303, 304, 306, 310], "non_trivial_metr": 90, "nonbas": 88, "noncentr": 241, "noncentral_beta_distribut": 241, "noncentral_chi_distribut": 241, "noncentralbetadistribut": 241, "noncommut": [41, 88, 111, 292], "noncommutative_part": 88, "noncomput": 15, "nonconserv": 153, "noncontribut": 305, "noncontributing_forc": 304, "nonconvex": 115, "nondimension": 299, "none": [4, 5, 12, 13, 14, 15, 22, 36, 41, 42, 43, 61, 62, 63, 64, 65, 67, 68, 69, 71, 77, 78, 79, 80, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 109, 110, 111, 113, 115, 116, 118, 120, 124, 125, 128, 129, 130, 131, 134, 136, 140, 144, 148, 149, 150, 152, 153, 154, 155, 158, 160, 162, 164, 165, 171, 176, 181, 186, 188, 191, 193, 197, 198, 199, 200, 202, 204, 205, 206, 207, 208, 210, 212, 214, 216, 217, 219, 221, 222, 223, 224, 226, 227, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 250, 252, 253, 254, 255, 259, 260, 262, 264, 265, 268, 293, 297, 298], "noneg": 18, "nonelementari": 115, "nonelementaryintegr": 115, "nonempti": [79, 259], "nonetheless": [3, 89, 193, 233, 237], "nonetoken": 69, "nonetyp": [42, 69], "nonhol_coneq": [26, 153, 306], "nonholonom": [153, 158, 302], "nonholonomic_constraint": 158, "nonhomogeneous_equation_with_constant_coeffici": 237, "noninteg": [41, 65, 88, 211, 221], "nonintegr": 43, "noninvert": 241, "noninvertiblematrixerror": [53, 120, 293], "nonlex": 80, "nonlinear": [18, 30, 37, 49, 55, 57, 87, 148, 217, 237, 239, 240], "nonlinear_stiff": 148, "nonlinearerror": 240, "nonlinsolv": [30, 239, 240, 298], "nonminim": [27, 301, 305], "nonneg": [12, 13, 14, 18, 30, 41, 43, 65, 88, 89, 90, 93, 96, 120, 209, 211, 217, 234, 239, 241, 297, 299], "nonnegativehandl": 65, "nonnegativepred": 65, "nonparallel": 152, "nonparametr": 207, "nonpivot": 210, "nonposit": [30, 41, 65, 88, 93, 96, 239], "nonpositivehandl": 65, "nonpositivepred": 65, "nonreal": [43, 54, 239], "nonrep": 247, "nonresidu": [93, 128], "nonsens": [12, 87, 96], "nonsquarematrixerror": [124, 237], "nontrivi": [43, 79, 88, 128], "nonvanish": 88, "nonzero": [41, 43, 65, 66, 87, 88, 103, 124, 134, 146, 209, 210, 211, 212, 221, 224, 234, 240], "nonzero_col": 210, "nonzerohandl": 65, "nonzeropred": 65, "noqa": [12, 88, 116, 212, 255], "nor": [65, 67, 88, 118, 159, 165, 207, 210, 217, 221, 228, 230, 237, 247, 265], "norepli": 11, "norm": [61, 124, 189, 200, 212, 214, 216, 217, 234], "normal": [5, 12, 13, 14, 16, 18, 21, 22, 30, 36, 41, 42, 43, 57, 61, 65, 69, 79, 87, 88, 92, 94, 98, 101, 102, 103, 115, 116, 118, 121, 122, 124, 128, 130, 131, 132, 134, 146, 152, 159, 164, 175, 185, 188, 189, 190, 191, 192, 196, 199, 200, 208, 210, 211, 212, 214, 216, 217, 221, 222, 224, 229, 230, 234, 237, 241, 246, 252, 257, 259, 260, 265, 280, 299, 302, 310], "normal_closur": 79, "normal_distribut": 241, "normal_lin": 98, "normal_matrix": 65, "normal_vector": [102, 164], "normaldistribut": [13, 241], "normaldistributionfunct": 241, "normalform": [125, 210], "normalgamma": 241, "normalhandl": 65, "normalis": [88, 223], "normalize_last": 124, "normalize_theta_set": 229, "normalize_whitespac": 252, "normalpred": 65, "normalpspac": 241, "norman": 115, "normilz": 96, "north": 15, "not_empty_in": [67, 240], "not_in_arg": 69, "not_point": 171, "not_rep": 79, "not_supported_funct": 221, "notabl": [14, 64, 69, 91, 96, 113, 129, 211], "notalgebra": 214, "notarrow": 221, "notat": [16, 32, 36, 39, 48, 52, 55, 57, 74, 76, 80, 81, 87, 88, 89, 93, 96, 113, 120, 124, 130, 144, 154, 189, 200, 205, 208, 221, 228, 233, 240, 246, 247, 259, 272, 287], "note": [2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 28, 30, 32, 33, 35, 36, 37, 39, 41, 42, 45, 46, 49, 50, 51, 53, 54, 55, 56, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 78, 79, 80, 81, 84, 86, 87, 89, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 113, 115, 116, 118, 120, 124, 128, 130, 131, 134, 144, 145, 148, 149, 150, 152, 153, 154, 156, 158, 159, 164, 167, 175, 185, 186, 188, 190, 191, 192, 194, 200, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 231, 233, 234, 236, 237, 238, 239, 240, 241, 246, 247, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 270, 272, 274, 286, 287, 288, 290, 291, 292, 293, 297, 299, 302, 306, 307, 309], "notebook": [2, 15, 43, 59, 116, 205, 260, 295, 296], "notequiv": 221, "noth": [12, 13, 48, 68, 79, 88, 115, 153, 175, 191, 208, 212, 220, 221, 233, 237, 239, 250, 252, 260, 262, 289], "notic": [12, 13, 16, 28, 43, 79, 80, 86, 88, 124, 179, 211, 231, 243, 247, 248, 259, 260, 289, 291, 292, 297], "notifi": [4, 130], "notimpl": [98, 216], "notimplementederror": [4, 50, 52, 55, 56, 57, 67, 87, 98, 101, 105, 115, 124, 142, 210, 216, 217, 220, 229, 236, 237, 238, 239, 240], "notimpli": 221, "notin": [78, 113, 229], "notinvert": [208, 214, 217], "notion": [13, 14, 41, 68, 196, 199, 208, 240, 269, 274], "notiter": 259, "notrevers": [214, 217], "novemb": 259, "now": [1, 2, 5, 8, 9, 11, 12, 13, 14, 16, 18, 22, 23, 30, 31, 35, 36, 39, 41, 42, 43, 48, 59, 68, 69, 80, 88, 89, 93, 96, 99, 104, 105, 110, 112, 113, 117, 124, 128, 144, 148, 149, 151, 152, 156, 158, 194, 196, 200, 205, 207, 208, 209, 210, 211, 214, 217, 218, 222, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 247, 252, 253, 260, 270, 271, 289, 291, 292, 297, 298, 299, 304, 307, 310], "np": [14, 18, 22, 43, 55, 93, 111, 128, 207, 253, 260, 299], "npartit": [13, 128], "nqubit": [171, 175, 176, 185], "nr": 43, "nright": 240, "nroot": [217, 239], "nrow": [207, 210], "nsa": 89, "nseri": 88, "nsimplifi": [14, 88, 92, 233], "nsolv": [30, 37, 48, 54, 56, 57, 239], "nt": [93, 259], "nth": [39, 88, 93, 96, 117, 128, 212, 217, 218, 227, 233, 237, 241], "nth_algebra": 237, "nth_algebraic_integr": 237, "nth_linear": 237, "nth_linear_constant_coeff_homogen": 237, "nth_linear_constant_coeff_homogeneous_integr": 237, "nth_linear_constant_coeff_undetermined_coeffici": 237, "nth_linear_constant_coeff_variation_of_paramet": 237, "nth_linear_constant_coeff_variation_of_parameters_integr": 237, "nth_linear_euler_eq_homogen": 237, "nth_linear_euler_eq_homogeneous_integr": 237, "nth_linear_euler_eq_nonhomogeneous_undetermined_coeffici": 237, "nth_linear_euler_eq_nonhomogeneous_variation_of_paramet": 237, "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_integr": 237, "nth_linear_homogeneous_constant_coeff_integr": 237, "nth_order_reduc": 237, "nth_power_roots_poli": 217, "nthalgebra": 237, "ntheori": [65, 79, 88, 89, 93, 214, 217, 234, 259], "nthlinearconstantcoeffhomogen": 237, "nthlinearconstantcoeffundeterminedcoeffici": 237, "nthlinearconstantcoeffvariationofparamet": 237, "nthlineareulereqhomogen": 237, "nthlineareulereqnonhomogeneousundeterminedcoeffici": 237, "nthlineareulereqnonhomogeneousvariationofparamet": 237, "nthorderreduc": 237, "nthroot": 233, "nthroot_mod": 128, "ntop": 124, "ntt": 91, "nu": [5, 16, 93, 96, 115, 128, 192, 209, 221, 233, 241, 247, 291, 303], "nu_1": 209, "nu_2": 209, "nu_i": 209, "nu_n": 209, "nuanc": 14, "null": [16, 88, 124], "nulliti": 210, "nullspac": [124, 210], "nullspace_from_rref": 210, "num": [18, 69, 79, 88, 128, 144, 212, 233, 237, 256, 262, 299], "num_column": [116, 205, 221, 237], "num_digit": [88, 128], "num_input": [46, 144], "num_list": 144, "num_output": [46, 144], "num_qq": 211, "num_zz": 211, "numa": 237, "number": [2, 3, 4, 5, 11, 12, 13, 15, 18, 21, 22, 27, 28, 30, 32, 33, 35, 36, 37, 38, 41, 43, 46, 48, 51, 52, 53, 56, 57, 61, 63, 64, 67, 68, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 93, 94, 96, 98, 101, 102, 103, 104, 105, 107, 115, 116, 117, 118, 120, 123, 124, 125, 127, 129, 130, 133, 134, 137, 140, 142, 144, 145, 146, 148, 153, 154, 158, 164, 167, 170, 171, 174, 175, 176, 177, 179, 180, 185, 186, 187, 188, 189, 191, 192, 193, 196, 199, 200, 204, 205, 206, 207, 209, 210, 212, 213, 214, 215, 217, 218, 221, 223, 227, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 246, 247, 252, 254, 256, 259, 260, 262, 265, 268, 269, 271, 272, 274, 277, 283, 286, 287, 289, 291, 292, 293, 297, 306], "number_cl": 88, "number_field": 216, "number_theori": 93, "numbered_symbol": [222, 233, 237, 259], "numberfield": [212, 216, 217], "numberkind": [15, 38, 88, 123, 229], "numbersymbol": [88, 221], "numbertheoretictransform": 91, "numbertheori": 234, "numberworld": 128, "numer": [2, 4, 12, 13, 15, 16, 18, 22, 23, 27, 28, 31, 32, 36, 37, 39, 41, 49, 50, 51, 52, 53, 56, 61, 65, 67, 69, 87, 88, 93, 96, 100, 104, 111, 124, 128, 130, 131, 132, 133, 134, 140, 141, 142, 144, 149, 151, 153, 154, 163, 170, 173, 188, 207, 210, 211, 212, 214, 215, 216, 217, 220, 221, 230, 231, 233, 237, 239, 240, 246, 252, 253, 259, 260, 277, 286, 288, 289, 293, 297, 299, 302], "numerical_funct": 286, "numerorum": 256, "numexpr": [2, 260], "numi": 237, "numpad": 207, "numpi": [2, 4, 12, 13, 14, 15, 18, 22, 30, 43, 48, 53, 54, 55, 59, 69, 88, 111, 116, 129, 142, 175, 185, 207, 210, 221, 241, 246, 253, 254, 260, 286, 289, 299], "numpydoc": [4, 5], "numpyprint": 69, "numqubit": 176, "numsampl": 241, "numth": 128, "numz": 144, "nuovo": [196, 206], "nutshel": 14, "nvpa": 35, "nvpb": 35, "nwb": 35, "nx": [35, 259, 306, 308], "ny": [35, 200, 212, 306, 308], "nz": [35, 308], "o": [0, 4, 8, 11, 12, 15, 16, 18, 22, 25, 26, 27, 28, 30, 31, 33, 35, 39, 41, 60, 68, 69, 74, 79, 80, 86, 88, 89, 94, 96, 98, 99, 101, 102, 104, 110, 113, 128, 134, 137, 148, 149, 153, 155, 156, 158, 181, 191, 201, 204, 206, 214, 215, 217, 218, 221, 223, 228, 231, 237, 241, 246, 252, 259, 262, 268, 271, 287, 299, 303], "o2": [11, 228], "o____________________________________________________": 137, "o_from": 214, "o_to": 214, "oa": 271, "oabc": 271, "ob": 241, "obei": [4, 96, 206, 221, 231], "obextj": 275, "obj": [4, 14, 41, 88, 212, 217, 221, 255], "object": [2, 3, 4, 5, 7, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 35, 36, 40, 41, 42, 43, 46, 55, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 78, 79, 80, 81, 82, 83, 87, 88, 90, 93, 94, 96, 98, 99, 100, 101, 103, 104, 105, 113, 115, 118, 120, 121, 123, 124, 129, 130, 133, 134, 136, 137, 138, 140, 142, 144, 145, 149, 151, 153, 154, 155, 156, 158, 159, 160, 164, 165, 166, 174, 175, 177, 185, 186, 190, 191, 193, 194, 195, 197, 198, 200, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 221, 223, 224, 227, 228, 229, 230, 233, 237, 238, 239, 240, 241, 242, 243, 244, 245, 247, 248, 252, 253, 254, 255, 256, 259, 260, 263, 268, 269, 270, 275, 276, 280, 286, 287, 289, 291, 292, 293, 296, 297, 306, 311], "oblig": 207, "obscur": [13, 41], "observ": [36, 84, 88, 110, 113, 180, 208, 231, 234, 237, 241, 274, 297], "obsolet": 13, "obstacl": [113, 156], "obstacle_set_pathwai": 156, "obstaclesetpathwai": [18, 156], "obtain": [5, 15, 16, 23, 26, 32, 37, 39, 46, 51, 52, 57, 63, 64, 68, 70, 72, 79, 80, 81, 84, 88, 89, 91, 92, 93, 94, 96, 98, 99, 101, 102, 104, 110, 113, 115, 117, 124, 127, 128, 138, 141, 144, 151, 153, 164, 186, 191, 196, 208, 209, 212, 214, 216, 217, 220, 222, 229, 230, 231, 233, 234, 237, 238, 239, 240, 259, 261, 262, 269, 270], "obtaining_all_solutions_of_a_linear_system": 124, "obtus": 101, "obviou": [41, 42, 43, 53, 71, 79, 87, 208, 211, 220, 234, 291], "obvious": [5, 12, 35, 70, 79, 194, 231], "oc": [221, 271], "occasion": [11, 12, 88], "occup": 191, "occupi": [128, 191, 247], "occur": [4, 13, 14, 15, 16, 18, 21, 27, 32, 35, 79, 80, 88, 92, 96, 105, 113, 124, 130, 152, 200, 216, 224, 233, 238, 239, 242, 243, 252, 259, 292], "occurr": [22, 69, 70, 88, 128, 200, 233, 241], "oct": 128, "octahedr": 81, "octahedron": 115, "octav": [30, 69, 254], "octave_cod": [69, 221], "octavecodegen": 254, "octavecodeprint": 221, "octnam": 254, "octob": 145, "od": [4, 12, 15, 23, 30, 43, 111, 151, 153, 158, 235, 238, 277, 298], "odd": [38, 41, 51, 62, 64, 65, 66, 76, 80, 88, 89, 93, 94, 96, 118, 127, 128, 145, 206, 216, 217, 221, 239], "oddbal": 88, "oddhandl": 65, "oddpred": 65, "ode0106": 237, "ode0123": 237, "ode_": 237, "ode_1st_homogeneous_coeff_best_integr": 237, "ode_1st_power_seri": 237, "ode_2nd_power_series_ordinari": 237, "ode_2nd_power_series_regular": 237, "ode_hintnam": 237, "ode_ord": [237, 238, 239], "ode_problem": 237, "ode_sol_simpl": 237, "odeadvisor": 237, "odel": 124, "odenonlinearerror": 237, "odeordererror": 237, "odesimp": 237, "oei": [74, 93, 96, 128, 217], "oeyag": 89, "of_typ": [211, 212], "ofcours": 269, "off": [14, 24, 88, 98, 113, 124, 127, 129, 175, 208, 217, 221, 237, 252, 265, 291, 302], "off_circl": 102, "offer": [5, 14, 18, 19, 21, 30, 32, 36, 68, 69, 79, 88, 129, 211, 216, 256, 273], "offici": [16, 21, 30, 32, 36, 45, 59, 88, 240, 260, 295], "offset": [68, 69, 88, 93, 96, 148, 246], "offshor": 138, "ofix": 35, "often": [3, 4, 11, 12, 14, 15, 23, 27, 28, 35, 36, 41, 42, 43, 48, 54, 68, 69, 70, 78, 88, 96, 98, 100, 113, 115, 124, 128, 129, 144, 151, 153, 154, 208, 209, 210, 211, 214, 217, 222, 228, 229, 234, 237, 241, 259, 260, 286, 291, 292, 293, 297], "oh": 287, "oil": 7, "ok": [11, 12, 13, 69, 80, 221, 237], "okai": [14, 89], "old": [3, 12, 13, 15, 16, 27, 88, 89, 90, 116, 160, 196, 205, 207, 208, 212, 214, 221, 222, 233, 237, 240, 242, 286], "old_assumpt": 180, "old_frac_field": [211, 212], "old_fractionfield": 211, "old_poly_r": [110, 111, 208, 211, 212], "old_polynomialr": 211, "oldchar": 262, "older": [3, 5, 12, 15, 22, 111, 211, 221, 239], "oldid": 80, "olga": 216, "ollwd": 89, "omega": [16, 28, 31, 35, 69, 70, 79, 93, 113, 124, 128, 144, 149, 155, 158, 165, 167, 192, 200, 204, 205, 206, 221, 228, 241], "omega_": 113, "omicron": [16, 221], "omit": [4, 13, 41, 43, 69, 80, 87, 88, 89, 93, 113, 115, 118, 124, 193, 210, 221, 222, 229, 231, 239, 245, 254, 259, 287], "omposit": 223, "on_circl": 102, "on_morph": 103, "onc": [3, 8, 9, 11, 12, 14, 15, 16, 23, 27, 36, 41, 42, 43, 69, 71, 72, 79, 84, 88, 89, 93, 96, 104, 113, 115, 129, 137, 150, 151, 152, 196, 200, 202, 207, 209, 211, 217, 221, 222, 230, 231, 233, 237, 240, 247, 259, 269, 286, 287, 297, 298, 299], "ond": 0, "one": [2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 28, 30, 32, 33, 35, 36, 37, 39, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 58, 60, 61, 64, 65, 67, 68, 69, 71, 72, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 96, 98, 99, 100, 101, 102, 104, 105, 110, 111, 112, 113, 115, 116, 117, 118, 120, 122, 124, 127, 128, 129, 130, 131, 134, 136, 137, 138, 140, 141, 142, 144, 145, 148, 149, 152, 153, 155, 156, 158, 159, 160, 163, 164, 165, 171, 176, 185, 189, 191, 193, 194, 195, 196, 199, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 247, 248, 252, 253, 254, 256, 259, 260, 262, 265, 270, 272, 274, 285, 286, 287, 289, 291, 292, 293, 295, 296, 297, 299, 306], "one_half": 88, "one_qubit_box": 171, "oneform": 90, "onelin": 9, "onematrix": 221, "onequbitg": 175, "ones": [2, 3, 13, 14, 22, 43, 59, 69, 79, 84, 88, 113, 115, 118, 120, 124, 127, 128, 134, 164, 185, 191, 195, 210, 214, 224, 234, 237, 242, 248, 254, 262, 265, 270, 293, 296], "oneshot": 185, "onli": [3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 24, 25, 27, 28, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 48, 51, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 74, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 104, 105, 106, 111, 113, 115, 116, 117, 118, 123, 124, 125, 128, 129, 130, 131, 134, 140, 142, 144, 149, 150, 152, 153, 155, 156, 159, 164, 166, 185, 186, 190, 191, 193, 196, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 241, 242, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 265, 268, 270, 272, 274, 275, 286, 287, 289, 290, 292, 293, 297, 298, 299, 302, 304, 306, 308, 309, 311], "onlin": [2, 4, 153, 234, 259], "onlinelibrari": 241, "only_alt": 79, "only_doubl": 113, "only_integ": 207, "only_sym": 79, "onset": 164, "onto": [89, 101, 102, 103, 113, 117, 124, 127, 129, 216], "oo": [4, 14, 15, 37, 41, 42, 46, 50, 65, 67, 87, 88, 92, 93, 94, 96, 101, 113, 115, 118, 124, 144, 146, 177, 189, 192, 217, 226, 227, 228, 229, 233, 236, 237, 239, 240, 241, 246, 259, 262, 287, 291], "oohai": 221, "ooo": 259, "oooo": [137, 259], "oop": 289, "op": [14, 35, 69, 88, 124, 180, 191, 204, 230, 259, 260], "op_point": [27, 153, 154, 306], "opaqu": [113, 221], "opathwai": 18, "open": [0, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 22, 30, 52, 53, 54, 56, 59, 67, 88, 90, 94, 115, 118, 135, 144, 221, 229, 236, 240, 241, 291, 293, 304], "openview": 241, "oper": [2, 4, 9, 14, 15, 18, 21, 27, 28, 30, 34, 41, 42, 43, 53, 54, 55, 57, 61, 65, 67, 69, 79, 80, 81, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 106, 108, 111, 113, 118, 120, 128, 130, 132, 144, 145, 153, 154, 163, 167, 168, 172, 174, 175, 176, 177, 182, 183, 186, 188, 189, 190, 191, 200, 202, 203, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 224, 226, 229, 230, 233, 236, 237, 239, 240, 243, 244, 245, 246, 252, 253, 256, 259, 260, 265, 276, 280, 282, 283, 288, 289, 290, 292, 297, 306, 310], "operand": [13, 16, 80, 88, 201, 211, 212, 216, 268], "operar": 88, "operationnotsupport": 214, "operator_": 180, "operator_to_st": 186, "operatornam": [43, 61, 93, 94, 96, 113, 115, 206, 209, 217, 221, 224, 229, 231, 239], "operators_to_st": 181, "operatorset": [169, 181], "opinion": [17, 58], "oplu": [118, 175], "oppenheim": 256, "opportun": [3, 4, 233], "opportunist": 69, "oppos": [69, 148, 260, 287, 299], "opposit": [18, 46, 48, 84, 104, 118, 124, 148, 149, 156, 159, 209, 212, 229, 233, 240, 248, 259, 265, 267, 297, 299, 304], "opqrstuvwxi": 89, "opt": [18, 134, 208, 210, 214, 233, 252, 293], "opt2": 69, "opt_cs": [4, 233], "opt_sub": 233, "optic": [47, 162, 163, 164, 165, 282, 301], "optical_medium": 162, "optim": [4, 15, 18, 21, 30, 54, 69, 72, 79, 92, 118, 128, 131, 132, 134, 171, 175, 210, 217, 221, 222, 230, 233, 241, 253, 299], "optimal_fiber_length": [18, 134], "optimal_pennation_angl": [18, 134], "optimis": [41, 237], "optims_c99": 69, "option": [3, 4, 5, 8, 11, 12, 14, 16, 21, 28, 30, 32, 43, 45, 48, 50, 62, 64, 67, 69, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 98, 101, 102, 104, 105, 107, 115, 116, 120, 124, 125, 128, 129, 130, 136, 142, 144, 148, 149, 150, 152, 153, 154, 155, 158, 164, 175, 180, 181, 183, 186, 188, 193, 195, 200, 205, 207, 208, 209, 210, 211, 212, 216, 217, 218, 220, 221, 222, 223, 224, 226, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 243, 246, 247, 252, 253, 254, 257, 259, 260, 265, 290, 296, 297, 301], "optionerror": 214, "optionflag": 252, "oq": 35, "oracl": 176, "oracleg": 176, "orang": 142, "orb": 79, "orbit": [79, 86, 191, 192, 194], "orbit_rep": 79, "orbit_transvers": 79, "ord": [84, 89, 124], "order": [2, 3, 4, 5, 11, 12, 14, 15, 16, 21, 22, 24, 25, 26, 27, 28, 32, 35, 36, 37, 39, 41, 42, 46, 48, 50, 55, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 101, 104, 105, 107, 110, 113, 115, 116, 117, 118, 124, 125, 128, 129, 130, 131, 134, 136, 137, 138, 144, 145, 148, 152, 153, 158, 164, 168, 172, 175, 185, 186, 187, 188, 189, 190, 191, 195, 196, 200, 202, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 218, 220, 221, 222, 223, 224, 227, 229, 233, 234, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 252, 253, 254, 256, 259, 260, 262, 265, 267, 269, 270, 275, 287, 289, 290, 292, 296, 297, 298, 299, 302], "order_equation_with_variable_coeffici": 237, "order_symbol": 88, "ordered_flag": 259, "ordered_partit": 259, "ordering_of_class": [88, 99], "ordin": [207, 237, 262], "ordinari": [2, 18, 23, 41, 42, 49, 67, 69, 79, 88, 92, 93, 94, 96, 106, 110, 111, 115, 125, 131, 134, 144, 151, 208, 210, 211, 220, 227, 237, 242, 256, 291, 297], "ordinarili": 216, "org": [0, 2, 4, 5, 11, 12, 16, 34, 41, 43, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 98, 100, 104, 105, 106, 115, 116, 117, 118, 120, 124, 128, 142, 144, 146, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 200, 202, 203, 205, 210, 212, 215, 217, 221, 224, 228, 229, 230, 233, 234, 237, 240, 241, 253, 254, 255, 257, 259, 265, 267, 271, 273, 275, 293, 296, 303], "organ": [7, 11, 18, 23, 151], "orient": [13, 22, 24, 28, 30, 33, 35, 36, 61, 100, 104, 124, 152, 156, 200, 204, 214, 259, 265, 266, 273, 274, 280, 299, 302, 306, 309], "orient_axi": [13, 18, 32, 149, 152, 200, 202, 299], "orient_body_fix": 200, "orient_dcm": 200, "orient_new": [265, 267], "orient_new_": 270, "orient_new_axi": [265, 268, 270], "orient_new_bodi": [265, 270], "orient_new_quaternion": [265, 270], "orient_new_spac": [265, 270], "orient_quaternion": 200, "orient_space_fix": 200, "orientnew": [27, 31, 33, 35, 36, 156, 200, 202, 204, 302, 303, 306, 309, 310, 311], "orig": 214, "orig_expr": 186, "orig_ext": 212, "orig_frac": 297, "origin": [9, 11, 12, 15, 16, 18, 27, 30, 33, 39, 41, 51, 59, 61, 79, 80, 81, 84, 87, 88, 89, 92, 93, 94, 96, 97, 99, 101, 103, 113, 115, 124, 128, 131, 132, 134, 142, 144, 145, 152, 159, 183, 186, 196, 201, 207, 208, 210, 212, 216, 217, 220, 221, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 247, 252, 259, 260, 265, 268, 269, 270, 271, 272, 274, 275, 297, 299, 306], "origin_angl": 299, "origin_dist": 299, "origin_segment_length": 299, "origsit": 241, "orlando": 215, "ormv": 89, "orszag": 237, "orthocent": 104, "orthogon": [36, 61, 65, 103, 117, 124, 189, 200, 265, 267], "orthogonal_direct": 103, "orthogonal_matrix": 65, "orthogonalbra": 189, "orthogonalhandl": 65, "orthogonalket": 189, "orthogonalpolynomi": 5, "orthogonalpred": 65, "orthogonalst": 189, "orthonorm": [30, 36, 124, 186, 269], "orthopoli": [96, 217], "osc": [88, 92], "oscar": [12, 206], "oscil": [88, 282, 301, 305], "oscillatori": [88, 92, 226], "osi": 89, "osineq": 16, "ostrogradski": 115, "other": [3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 27, 28, 30, 32, 34, 35, 36, 37, 38, 39, 42, 44, 48, 50, 51, 52, 53, 55, 56, 57, 61, 65, 67, 68, 69, 70, 71, 74, 79, 80, 81, 84, 85, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108, 113, 115, 118, 120, 124, 128, 129, 130, 133, 136, 137, 138, 144, 148, 149, 151, 152, 153, 156, 158, 159, 160, 163, 164, 165, 175, 186, 188, 189, 190, 191, 194, 195, 196, 197, 198, 200, 202, 204, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 223, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 247, 248, 250, 253, 254, 255, 256, 259, 260, 265, 268, 269, 272, 274, 276, 282, 283, 286, 287, 289, 291, 292, 293, 297, 306, 307], "otherfram": [200, 265], "otherpoint": 204, "otherwis": [2, 3, 12, 14, 22, 34, 35, 37, 41, 42, 43, 67, 68, 69, 79, 80, 84, 87, 88, 89, 92, 94, 96, 97, 98, 101, 102, 103, 104, 113, 115, 117, 118, 119, 124, 127, 128, 130, 142, 144, 146, 149, 158, 159, 176, 181, 187, 203, 204, 207, 208, 210, 212, 214, 216, 217, 219, 221, 223, 224, 226, 227, 229, 233, 234, 237, 238, 239, 240, 241, 242, 250, 252, 254, 259, 260, 286, 287, 296], "otim": [32, 242, 243], "our": [5, 11, 13, 14, 18, 32, 35, 36, 39, 43, 59, 69, 88, 96, 113, 124, 128, 134, 153, 158, 196, 207, 208, 210, 212, 216, 217, 218, 221, 228, 231, 234, 237, 240, 252, 286, 289, 290, 292, 297, 299, 301, 304, 307], "out": [5, 11, 12, 13, 16, 18, 22, 28, 30, 41, 42, 43, 51, 68, 69, 79, 80, 88, 89, 90, 93, 96, 104, 113, 115, 120, 124, 128, 130, 136, 144, 145, 168, 172, 183, 186, 188, 190, 191, 208, 209, 210, 211, 212, 216, 217, 218, 219, 221, 222, 228, 231, 233, 237, 242, 243, 252, 254, 259, 260, 289, 291, 292, 296, 297, 302, 306, 309], "out1": 124, "out2": 124, "out_8598435338387848786": [69, 254], "outcom": [118, 194, 241], "outdat": 12, "outer": [28, 30, 32, 36, 55, 115, 130, 149, 155, 174, 179, 180, 200, 202, 204, 223, 229, 245, 265, 268, 269], "outer_product": 180, "outermost": [221, 229, 233, 245], "outerproduct": [174, 180], "outfram": 204, "outlier": 241, "outlin": [0, 2, 3, 11, 14, 41, 43, 86, 115, 208, 237], "outof": 36, "outperform": 69, "output": [2, 4, 5, 11, 12, 13, 14, 16, 17, 18, 22, 27, 30, 31, 32, 33, 36, 39, 41, 43, 46, 52, 55, 57, 68, 69, 88, 89, 96, 112, 115, 116, 118, 120, 124, 128, 129, 130, 141, 144, 153, 158, 163, 164, 175, 187, 191, 200, 204, 205, 211, 214, 217, 221, 222, 231, 233, 234, 236, 237, 239, 241, 246, 252, 253, 254, 256, 259, 260, 265, 289, 291, 292, 293, 296, 297, 298, 310], "output_eqn": 158, "outputargu": [69, 254], "outputbuff": 221, "outputcheck": 252, "outputtexfil": 221, "outright": 240, "outsid": [4, 21, 36, 52, 65, 79, 88, 96, 99, 104, 124, 128, 196, 217, 233, 287, 292], "outweigh": 208, "over": [3, 5, 6, 7, 10, 11, 12, 13, 14, 16, 18, 22, 30, 31, 33, 38, 43, 48, 51, 58, 61, 67, 68, 69, 70, 79, 80, 83, 87, 88, 89, 90, 91, 92, 93, 102, 104, 111, 113, 117, 118, 120, 124, 125, 128, 135, 136, 137, 138, 140, 146, 152, 158, 170, 186, 189, 191, 195, 196, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 221, 224, 226, 228, 233, 234, 236, 237, 239, 240, 241, 242, 243, 245, 246, 255, 259, 260, 265, 268, 272, 275, 291, 295, 297, 299], "over_power_basi": 216, "overal": [88, 198, 207, 239], "overcompens": 89, "overconstrain": 56, "overdetermin": [54, 210, 239, 240], "overflow": [69, 256], "overhang": [136, 137], "overhead": [89, 129, 218], "overlap": [100, 105, 127, 208, 229, 262], "overleaf": 5, "overli": [54, 156], "overlin": [5, 41, 96, 130], "overload": [208, 211, 212, 269, 292, 299], "overrid": [14, 15, 16, 18, 69, 88, 97, 98, 104, 130, 189, 210, 221, 246, 253, 254, 259, 260], "overridden": [199, 208, 223, 297], "overview": [11, 209, 240, 273, 274], "overwrit": [30, 32, 304], "overwritten": 22, "own": [2, 4, 9, 11, 12, 14, 16, 18, 22, 30, 43, 63, 72, 79, 80, 88, 104, 130, 132, 137, 152, 216, 221, 228, 233, 237, 256, 259, 260, 291], "ownership": 210, "oxford": 124, "oyvind": 11, "p": [0, 8, 12, 13, 14, 15, 16, 18, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 39, 41, 42, 43, 46, 48, 49, 51, 61, 63, 64, 65, 69, 70, 71, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 105, 110, 111, 113, 115, 120, 124, 128, 130, 131, 134, 136, 137, 138, 140, 144, 145, 148, 149, 152, 153, 154, 155, 156, 158, 160, 163, 164, 170, 189, 191, 196, 201, 204, 206, 207, 209, 210, 211, 214, 215, 217, 218, 221, 223, 224, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 246, 247, 259, 265, 268, 269, 270, 271, 272, 274, 293, 297, 299, 303, 304, 306], "p0": [84, 98, 136, 216, 237], "p1": [18, 30, 35, 70, 79, 80, 84, 87, 98, 100, 101, 102, 103, 104, 136, 144, 149, 152, 155, 159, 160, 204, 207, 211, 212, 214, 218, 230, 241, 242, 299, 306], "p10": [79, 136], "p11": 100, "p12": [100, 136], "p13": 100, "p1_frame": 152, "p1_pt": 155, "p2": [18, 30, 35, 42, 79, 80, 87, 98, 100, 101, 102, 103, 104, 136, 144, 149, 152, 155, 159, 204, 207, 211, 212, 214, 218, 230, 241, 299], "p20": [79, 136], "p21": 100, "p22": 100, "p23": 100, "p2_pt": 155, "p3": [35, 87, 98, 100, 101, 103, 104, 144, 155, 207, 211, 230, 241, 299], "p3_pt": 155, "p4": [98, 101, 103, 104, 144, 155, 207, 299], "p4_pt": 155, "p5": [101, 103, 104, 136, 207], "p50": 136, "p6": [101, 104, 207], "p64": 212, "p7": [101, 104, 136, 207], "p8": [136, 207], "p9": 207, "p90": 88, "p_": [79, 84, 88, 115, 196, 234, 237, 242], "p_0": [79, 84, 106, 231, 234], "p_1": [35, 79, 84, 89, 93, 106, 128, 231, 234, 299], "p_12": 136, "p_2": [35, 79, 89, 93, 106, 128, 231, 299], "p_3": [35, 89, 299], "p_4": 299, "p_5": 136, "p_a": [210, 214], "p_a_b": 210, "p_dom": 211, "p_domain": 212, "p_expr": [211, 212], "p_frame": 152, "p_i": [79, 84, 93, 128], "p_invers": 237, "p_j": [79, 84], "p_k": [79, 93, 128], "p_m": 96, "p_masscent": 152, "p_mat": 46, "p_n": [89, 93, 96, 115, 217], "p_new": 241, "p_o_p": 22, "p_o_q": 30, "p_p": 79, "p_p_q": 30, "p_p_r": 22, "p_pt": 22, "p_q": 231, "p_r": 106, "p_so_o": 22, "p_val": [18, 51, 299], "p_x": 247, "p_y": 247, "p_z": 247, "pa": [18, 25, 28, 31, 35, 124, 132, 148, 153, 155, 156, 214], "packag": [2, 7, 8, 9, 11, 12, 18, 23, 30, 47, 49, 53, 54, 59, 116, 129, 130, 141, 151, 205, 221, 252, 271, 272, 291, 299], "pad": [16, 69, 89, 90, 91, 103, 128], "padded_kei": 89, "pafnuti": 5, "page": [0, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 27, 30, 36, 41, 42, 48, 49, 51, 52, 56, 58, 69, 70, 71, 87, 93, 113, 128, 129, 152, 153, 196, 207, 210, 211, 212, 215, 221, 231, 234, 257, 274, 297], "page52": 196, "page78": 196, "page_228": 96, "page_888": 115, "pai": 67, "pain": 3, "pair": [4, 14, 16, 18, 22, 28, 39, 48, 51, 68, 69, 79, 80, 88, 89, 94, 100, 105, 112, 124, 128, 132, 148, 156, 159, 181, 183, 185, 186, 191, 206, 208, 210, 211, 212, 214, 216, 217, 222, 227, 228, 230, 231, 233, 234, 237, 240, 241, 254, 259, 269, 286, 293, 306], "pairwis": [5, 65, 68, 88, 93, 105, 124, 128, 234, 239], "pakianathan": 74, "palancz08": 215, "palimpsest": 89, "palindrom": 128, "pal\u00e1ncz": 215, "panagioti": 217, "pankowski": 11, "papadopoulo": 29, "paper": [0, 4, 18, 36, 45, 124, 128, 216, 217, 230, 231, 234, 237, 302, 303], "paperforkcgx": 302, "paperforkcgz": 302, "paperforkl": 302, "paperframecgx": 302, "paperframecgz": 302, "paperradfront": 302, "paperradrear": 302, "paperwb": 302, "paprocki": 0, "parabol": 136, "parabola": 265, "paradigm": 14, "paragraph": [3, 4, 5, 43, 68], "parallel": [18, 35, 36, 61, 98, 101, 102, 104, 115, 141, 144, 147, 156, 159, 210, 214, 271, 275, 299], "parallel_axi": [149, 155], "parallel_lin": 101, "parallel_plan": 102, "parallel_poly_from_expr": 217, "parallelogram": 36, "param": [69, 90, 124, 207, 234], "param_circl": 275, "paramet": [3, 5, 12, 13, 14, 15, 16, 18, 21, 22, 30, 33, 36, 48, 54, 56, 61, 62, 64, 67, 69, 70, 71, 74, 79, 80, 84, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 111, 113, 115, 116, 118, 120, 123, 124, 125, 127, 128, 130, 132, 134, 136, 138, 140, 142, 144, 145, 146, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 166, 167, 168, 170, 171, 172, 174, 175, 176, 179, 180, 181, 183, 185, 186, 188, 189, 190, 191, 192, 193, 195, 200, 201, 202, 204, 205, 206, 207, 209, 210, 212, 214, 216, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 233, 234, 236, 237, 238, 239, 241, 242, 243, 246, 247, 250, 252, 253, 254, 256, 257, 259, 260, 265, 267, 268, 269, 270, 275, 287, 292, 299, 302], "parameter": [18, 51, 90, 97, 98, 101, 104, 234], "parameter_valu": [99, 102], "parametr": [69, 96, 97, 101, 124, 134, 207, 234, 240, 265, 268, 275], "parametric2dlineseri": 207, "parametric3dlineinteractiveseri": 207, "parametric3dlineseri": 207, "parametricintegr": 265, "parametricregion": [265, 268, 275], "parametricsurfaceseri": 207, "parametris": [88, 229], "parametrize_ternary_quadrat": 234, "paraxi": [160, 164], "pare1970": 68, "pareigi": 68, "paren": 221, "parent": [13, 24, 79, 88, 111, 148, 152, 158, 200, 204, 211, 212, 216, 252, 256, 265, 269, 270, 299], "parent_axi": [13, 152, 299], "parent_force_direction_vector": 299, "parent_fram": [13, 24], "parent_interfram": [13, 24, 152, 307], "parent_joint_po": [13, 152], "parent_point": [13, 24, 152, 304, 307], "parent_tangency_point": 299, "parent_vector": 152, "parenthes": [4, 12, 16, 21, 36, 88, 130, 179, 180, 221, 245, 262], "parenthesi": [221, 245], "parenthesize_sup": 221, "pareto": 241, "pareto_distribut": 241, "paretodistribut": 241, "parg": 96, "pariti": [13, 41, 80, 88, 217], "parity_": [41, 88], "park": 89, "pars": [12, 13, 14, 22, 24, 80, 88, 120, 218, 220, 276, 284], "parsabl": 15, "parse_autolev": 22, "parse_c": 2, "parse_expr": [2, 13, 14, 41, 57, 88, 130], "parse_latex": [57, 130], "parse_latex_lark": 130, "parse_mathematica": [2, 13, 130], "parse_maxima": [2, 130], "parser": [2, 23, 30, 120, 252], "part": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 21, 22, 23, 24, 28, 30, 32, 36, 41, 42, 43, 48, 61, 66, 79, 80, 87, 88, 89, 93, 94, 96, 104, 111, 113, 115, 118, 120, 124, 128, 131, 134, 144, 149, 151, 152, 153, 158, 175, 187, 191, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 229, 231, 233, 234, 237, 239, 252, 254, 256, 259, 287, 292, 297, 302, 303, 310], "part1": 152, "part2": 152, "part_sol": 237, "partcompon": 256, "partfrac": [217, 223], "parti": [158, 257], "partial": [8, 15, 30, 33, 67, 79, 86, 87, 88, 90, 92, 93, 94, 128, 130, 185, 200, 204, 210, 212, 215, 218, 221, 223, 230, 233, 237, 238, 242, 248, 265, 272, 287, 297], "partial_list": 217, "partial_veloc": [30, 200, 204], "partialderiv": 248, "particip": 7, "particl": [13, 18, 22, 23, 25, 27, 30, 31, 35, 149, 151, 152, 153, 155, 158, 167, 170, 177, 178, 189, 191, 194, 196, 247, 282, 306, 307], "particle_p": 22, "particle_r": 22, "particular": [3, 4, 11, 12, 13, 15, 16, 23, 41, 42, 49, 51, 65, 70, 79, 88, 89, 92, 96, 99, 113, 115, 118, 120, 124, 128, 136, 140, 151, 175, 186, 209, 210, 211, 212, 214, 216, 217, 227, 229, 231, 233, 234, 237, 239, 240, 252, 254, 256, 293, 295, 297], "particularli": [12, 14, 41, 92, 115, 211, 212, 231, 297, 298], "partit": [5, 27, 29, 75, 79, 93, 128, 234, 241, 256, 277, 306], "partition_": [77, 93], "partitionfunctionp": 128, "partitions_": [13, 128], "pascal": [93, 128], "pass": [2, 3, 4, 11, 12, 14, 15, 16, 18, 22, 28, 30, 31, 37, 38, 41, 42, 43, 50, 51, 54, 55, 57, 60, 61, 64, 67, 68, 69, 79, 80, 88, 89, 90, 92, 94, 95, 96, 98, 101, 102, 104, 115, 116, 118, 120, 124, 125, 128, 130, 132, 134, 136, 142, 144, 148, 149, 153, 156, 158, 159, 163, 180, 181, 185, 186, 188, 189, 205, 207, 208, 210, 211, 212, 214, 216, 217, 219, 221, 222, 228, 229, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 253, 254, 255, 257, 259, 260, 262, 264, 265, 286, 287, 292, 296, 297, 298, 306], "passiv": [132, 134, 188, 299], "past": [11, 12, 16, 94, 128, 220, 221, 296], "pastabl": 262, "pat_matrix": 147, "patashnik": 80, "patch": [13, 90, 221], "path": [4, 8, 12, 13, 18, 33, 35, 79, 104, 110, 130, 144, 156, 159, 207, 230, 233, 237, 240, 252, 253, 256, 257, 259, 262, 263, 272, 299, 303, 310], "pathsep": 262, "pathwai": [19, 134, 148, 151, 159, 282, 299], "pathwaybas": [18, 134, 148, 156, 299], "patrizia": 239, "pattern": [11, 12, 13, 15, 16, 41, 43, 88, 113, 115, 118, 124, 130, 185, 211, 231, 233, 237, 239, 287, 292], "paul": [93, 256], "paulbourk": 104, "pauli": [147, 282], "pauli_matric": [147, 166], "paulialgebra": 166, "paulimatric": 166, "pb": [35, 148, 156, 163], "pc": [152, 156, 218], "pc_group": 78, "pc_present": 78, "pc_resent": 78, "pc_sequenc": [78, 79], "pc_seri": [78, 79], "pcg": 78, "pcgroup": 78, "pd": 156, "pdb": 252, "pde": [235, 237, 277], "pde_1st_linear_constant_coeff": 238, "pde_1st_linear_constant_coeff_homogen": 238, "pde_1st_linear_variable_coeff": 238, "pde_hint": 238, "pde_hintnam": 238, "pde_separ": 238, "pde_separate_add": 238, "pde_separate_mul": 238, "pdf": [2, 5, 7, 18, 46, 55, 58, 67, 68, 79, 89, 91, 93, 110, 115, 124, 128, 136, 137, 140, 142, 144, 207, 210, 212, 215, 220, 221, 224, 230, 233, 234, 237, 241, 259, 265, 299], "pdiv": [212, 217], "pdp": 293, "pdsolv": 238, "pe": 87, "peak": [18, 134, 160], "peak_isometric_forc": [18, 134], "pearc": 233, "pearson": 241, "peculiar": [36, 113], "pedregosa": 0, "peek": [256, 297], "peerj": [0, 7], "pell": 234, "penalti": 21, "pendent": 30, "pendulum": [13, 23, 27, 31, 35, 55, 151, 152, 158, 301, 304, 305, 307], "pendulum_bodi": 303, "pendulum_izz": 13, "pendulum_joint": 152, "pendulum_mass": 13, "pendulum_point": 303, "pennat": [18, 134], "penros": [53, 120, 124], "penrose_pseudoinvers": 124, "pent": 99, "pentagonal_number_theorem": 93, "peopl": [3, 4, 7, 9, 11, 91, 96, 115, 124, 196, 241], "pep": [5, 69, 88, 118], "per": [3, 18, 33, 89, 124, 129, 140, 153, 156, 165, 195, 200, 207, 212, 217, 218, 265, 269, 271, 274], "percent": [124, 240], "percentag": [124, 128], "perfect": [4, 43, 55, 79, 88, 128, 234, 240, 291, 292], "perfect_numb": 128, "perfect_pow": [88, 128], "perfectli": [14, 80, 87, 88, 89, 214, 217, 220], "perfectnumb": 128, "perform": [2, 11, 12, 13, 14, 15, 23, 27, 28, 30, 33, 36, 38, 39, 41, 43, 66, 68, 69, 70, 79, 80, 83, 87, 88, 89, 91, 92, 94, 101, 105, 112, 115, 121, 124, 128, 129, 150, 151, 153, 175, 176, 185, 188, 191, 209, 210, 211, 214, 216, 217, 222, 223, 224, 228, 233, 234, 237, 239, 240, 241, 242, 253, 259, 265, 267, 269, 272, 286, 287, 291, 292, 297, 302, 306], "perhap": [11, 13, 18, 37, 69, 88, 118, 128, 176, 210, 211, 239, 254, 286], "periapsi": 98, "perimet": 104, "period": [3, 4, 11, 13, 27, 52, 67, 88, 89, 94, 113, 128, 144, 165, 187, 194, 216, 221, 224, 227, 236, 240, 241, 259, 303], "period_find": 187, "periodic_argu": 94, "periodic_continued_fract": 128, "perl": 128, "perlikowskia": 303, "perm": [76, 78, 79, 80, 81, 86, 93, 120, 124, 242], "perm1": 243, "perm2": 243, "perm2tensor": 247, "perm_cycl": [13, 80, 221], "perm_group": [73, 78, 79, 80, 85, 86], "perm_mat": [27, 153, 154], "perman": [11, 124], "permanent_": 124, "permeabl": 162, "permiss": [128, 206], "permit": [41, 80, 90, 94, 118, 128, 207, 239], "permitt": 162, "permut": [5, 70, 71, 73, 75, 76, 78, 81, 84, 85, 86, 89, 93, 96, 120, 124, 154, 191, 206, 210, 212, 217, 234, 242, 243, 247, 259, 277, 297], "permutation_oper": 191, "permutationgroup": [71, 73, 76, 78, 79, 80, 85, 86, 216], "permutationinvolut": 259, "permutationmatrix": [120, 124], "permutationoper": 191, "permute_backward": 124, "permute_col": 124, "permute_forward": 124, "permute_row": 124, "permute_sign": [234, 259], "permutebkwd": 124, "permutedim": [120, 242, 243], "permutefwd": 124, "permutlist": 191, "perpendicualar": 102, "perpendicular": [36, 98, 101, 102, 104, 117, 152, 159, 164, 310], "perpendicular_bisector": 101, "perpendicular_lin": [101, 102], "perpendicular_plan": 102, "perpendicular_seg": 101, "perri": 210, "persist": 256, "person": [5, 15], "perspect": [118, 128, 144, 196, 207, 254, 270, 274], "pertain": [34, 201, 203], "pertin": [31, 208, 216], "perus": 11, "peter": [29, 34, 87, 93, 96, 128, 203, 210, 217, 259], "peterson": 154, "petkovsek": [87, 239], "pexquo": [212, 217], "pfd": 217, "pfda": 217, "pfister": 215, "pfix": 35, "pfq": 237, "pgl": 71, "pgl2f5": 71, "pgl_2": 71, "pgroup": [79, 81], "phantom": 214, "phase": [11, 46, 88, 115, 142, 160, 163, 165, 175, 176, 240], "phase_retard": 163, "phase_unit": 142, "phase_unwrap": 142, "phaseg": 175, "phdthesisthieu": 237, "phenomenom": 18, "phenomenon": [67, 196, 214, 224, 292], "phi": [16, 30, 79, 88, 89, 93, 96, 113, 117, 124, 128, 146, 165, 174, 176, 206, 208, 216, 221, 237, 265, 275, 303], "phi1": 165, "phi2": 165, "phi_0": 96, "phi_a": 163, "phi_b": 163, "phia": 163, "phib": 163, "phidd": 221, "phil": 206, "philosoph": 15, "philosophi": [195, 237, 240, 282], "php": [80, 128, 234, 241], "phrase": [5, 11, 15, 89], "phy": [170, 196, 206], "physic": [2, 4, 17, 18, 19, 22, 23, 39, 44, 46, 69, 81, 93, 124, 128, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 204, 205, 206, 215, 241, 256, 259, 272, 291, 297, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311], "physicalconst": 195, "pi": [4, 12, 13, 14, 15, 16, 30, 32, 38, 41, 43, 49, 50, 52, 55, 57, 60, 61, 62, 64, 65, 66, 67, 69, 80, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 107, 113, 115, 124, 128, 146, 152, 159, 160, 162, 163, 164, 165, 167, 175, 186, 188, 189, 192, 194, 200, 206, 207, 209, 211, 212, 217, 221, 224, 228, 229, 230, 231, 233, 236, 237, 239, 240, 241, 259, 265, 268, 275, 286, 291, 297, 299, 302, 304], "pi_": 43, "pi_hex_digit": 128, "piab": 182, "piabbra": 182, "piabhamiltonian": 182, "piabket": 182, "pic": 68, "pick": [27, 41, 89, 93, 185, 187, 297], "pickl": 2, "pictori": 136, "pictur": [78, 221], "piec": [88, 92, 231, 254], "piecewis": [14, 42, 43, 69, 87, 93, 96, 115, 118, 136, 138, 189, 221, 223, 224, 239, 240, 241, 260, 287], "piecewise_exclus": 94, "piecewise_fold": 94, "piecewise_integr": 94, "pietjepuk314": 221, "pii": [215, 230], "pin": [13, 61, 136, 137, 140, 148, 152, 158, 299], "pin_joint": 148, "pinjoint": [13, 24, 148, 152, 158, 304, 307], "pinv": [120, 124], "pinv_solv": [119, 124], "pip": [2, 8, 9, 12, 59, 130], "pipe": 252, "pitch": 302, "pitfal": [14, 17, 36, 43, 211, 289, 294, 297], "pivot": [124, 210, 293, 303], "piziak": 124, "pkdata": 13, "pkg": [116, 205], "pl": 11, "place": [5, 7, 9, 11, 12, 13, 14, 15, 16, 30, 31, 41, 43, 52, 58, 68, 80, 81, 88, 89, 94, 104, 119, 124, 127, 128, 130, 131, 135, 136, 144, 210, 211, 215, 216, 221, 222, 228, 230, 233, 237, 256, 259, 285, 286, 293, 297], "placehold": [88, 260], "plai": [25, 41, 87, 234, 289, 291, 292, 302], "plain": [3, 4, 11, 12, 41, 88, 96, 116, 205, 210, 217, 221], "plaintext": [89, 221], "plan": [14, 21, 67, 212, 296], "planar": [98, 104, 137, 152, 164], "planar_coordin": 152, "planar_spe": 152, "planar_vector": 152, "planarjoint": 152, "planck": [198, 241], "planck_const": 173, "plane": [4, 35, 36, 46, 61, 88, 96, 98, 100, 101, 103, 104, 115, 124, 142, 144, 152, 163, 164, 229, 240, 275, 283, 297, 299, 302], "plane_vector": 152, "planet": [23, 151], "planetmath": 237, "plank": 173, "plant": [46, 144], "plant_mat": 144, "plate": 163, "platform": [4, 36, 88, 138, 191, 237, 253], "platon": 81, "plausibl": 208, "pleas": [0, 3, 4, 5, 7, 12, 13, 14, 21, 22, 23, 27, 28, 32, 36, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 65, 67, 88, 96, 100, 113, 128, 151, 153, 163, 164, 185, 206, 207, 208, 214, 215, 229, 233, 234, 239, 240, 260, 265, 270, 294, 298], "plenti": 13, "plot": [4, 18, 30, 43, 46, 55, 59, 97, 98, 100, 101, 104, 111, 116, 124, 136, 137, 138, 140, 143, 175, 178, 184, 224, 276, 282, 283, 291, 296, 299], "plot3d": [124, 207], "plot3d_parametric_lin": 207, "plot3d_parametric_surfac": 207, "plot_bending_mo": [136, 137], "plot_deflect": [136, 137], "plot_direct": 5, "plot_gat": 175, "plot_ild_mo": 136, "plot_ild_react": 136, "plot_ild_shear": 136, "plot_implicit": 207, "plot_interv": [97, 98, 101, 104], "plot_loading_result": [136, 137], "plot_parametr": 207, "plot_shear_forc": [136, 137], "plot_shear_stress": 136, "plot_slop": [136, 137], "plot_tens": 138, "plot_traj": 299, "plot_typ": 207, "plotgrid": 136, "plotli": 13, "plt": [18, 30, 55, 111, 299], "plu": [30, 69, 87, 124, 130, 171, 214, 217, 221, 231, 259, 260], "plug": [22, 196], "plural": [4, 5], "pm": [41, 48, 49, 51, 61, 87, 113, 115, 128, 209, 220, 228, 234, 237], "pmatrix": [130, 196], "pmf": 241, "pmint": 115, "pmod": [79, 88, 89, 93, 128, 231, 234], "pn": [27, 79, 306], "pn0": 261, "png": [18, 45, 46, 55, 68, 116, 124, 136, 137, 140, 142, 205, 207, 221, 224, 299], "pnot": 35, "po": [28, 30, 79, 113, 118, 124, 155, 156, 159, 212, 239], "pochhamm": [93, 221, 233], "pochhammer_symbol": 93, "pohlig": 128, "pohst": 216, "poin": 90, "poincar\u00e9": 163, "point": [2, 3, 4, 5, 12, 14, 15, 16, 18, 22, 24, 25, 26, 27, 28, 30, 31, 33, 36, 39, 41, 52, 54, 55, 59, 61, 67, 69, 70, 79, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 107, 110, 111, 112, 113, 115, 124, 128, 130, 132, 134, 136, 137, 138, 140, 142, 144, 148, 149, 152, 153, 154, 155, 156, 158, 159, 171, 193, 196, 201, 204, 207, 208, 210, 211, 212, 214, 216, 217, 221, 223, 227, 228, 229, 237, 239, 240, 241, 253, 256, 259, 260, 262, 265, 268, 270, 271, 272, 274, 275, 283, 286, 287, 289, 292, 299, 302, 303, 304, 306, 308, 309, 310, 311], "point1": [52, 201, 268], "point2": [52, 201, 268], "point2d": [97, 98, 99, 100, 101, 103, 104, 105], "point3d": [101, 102, 103, 164], "point_1": 159, "point_2": 159, "point_cflexur": 136, "point_load": 138, "point_o": [22, 155], "point_on_surfac": 159, "point_p": 90, "point_r": 90, "point_to_coord": 90, "pointer": [69, 254, 255], "pointer_const": 69, "pointless": 297, "pointload": [136, 137], "pointwis": [79, 86], "pointwise_stabil": 79, "poisson": 241, "poisson_distribut": 241, "poisson_point_process": 241, "poissondistribut": 241, "poissonprocess": 241, "pol": 90, "polar": [90, 94, 96, 98, 104, 136, 146, 161, 207, 229, 233, 240, 282], "polar_lift": [94, 96, 233], "polar_mo": 136, "polar_moment_of_inertia": [98, 104], "polar_second_moment_of_area": [98, 104], "polarcomplexregion": 229, "polaris": 164, "polarizing_beam_splitt": 163, "pole": [4, 13, 15, 46, 96, 113, 144, 152, 164, 228, 231, 237], "pole_color": 142, "pole_markers": 142, "pole_zero_numerical_data": 142, "pole_zero_plot": [46, 142], "poleerror": 88, "poli": [2, 15, 30, 48, 71, 87, 88, 89, 93, 94, 96, 97, 104, 110, 115, 120, 124, 128, 208, 209, 213, 214, 216, 217, 218, 220, 223, 236, 237, 239, 240, 252, 283], "polici": [6, 13, 255, 257], "polificationfail": 214, "polish": 233, "pollard": [128, 237], "pollard_pm1": 128, "pollard_rho": 128, "pollut": 12, "polnomi": 217, "poly1": 104, "poly2": 104, "poly_from_expr": [216, 217], "poly_lc": 214, "poly_r": [211, 212], "poly_tc": 214, "poly_unifi": 212, "polyalphabet": 89, "polybiu": 89, "polyclass": [211, 212, 217], "polyconfig": [214, 217], "polycycl": [75, 79, 277], "polycyclic_group": [78, 79], "polycyclicgroup": 79, "polycyl": 78, "polyel": [211, 212, 214, 218, 219, 221], "polyerror": [48, 214, 217], "polyfunc": [97, 212, 217], "polygamma": [4, 93, 96, 221], "polygamma2": 96, "polygamma_funct": 96, "polygammafunct": 96, "polygon": [4, 98, 99, 100, 105, 207, 275, 283], "polygonmesh": 104, "polygraph": 89, "polyhedr": 81, "polyhedra": 81, "polyhedralgroup": 81, "polyhedron": [75, 79, 115, 259, 277], "polylog": [96, 221], "polylogarithm": 96, "polymatrix": 13, "polymoni": 180, "polynomi": [4, 5, 14, 15, 30, 32, 39, 41, 49, 51, 57, 65, 79, 87, 88, 89, 92, 93, 106, 107, 109, 111, 115, 118, 120, 124, 128, 137, 144, 208, 210, 215, 219, 223, 228, 230, 231, 233, 234, 236, 237, 240, 252, 276, 283, 288, 293, 298], "polynomial_congru": [128, 214], "polynomialerror": [214, 217], "polynomialr": [208, 212, 219], "polyopt": [214, 218], "polyr": [212, 214, 219], "polyroot": 217, "polysi": 239, "polytool": [88, 210, 214, 217, 240], "polytope_integr": 115, "polyu": 144, "pomer": [128, 256], "pone": 61, "poor": [115, 129], "poorer": 67, "pop": [11, 115, 234], "popen": 221, "popul": [132, 134, 241], "popular": [0, 2, 30, 89, 129, 291], "port": [8, 130, 163, 302], "portabl": [252, 253], "portion": [18, 92, 104, 124, 148, 299], "portug": [84, 247], "pos_from": [13, 18, 22, 24, 30, 35, 148, 152, 155, 156, 158, 159, 204, 299, 302, 304, 306], "pos_vec": 155, "posform": 118, "posifi": [41, 233], "posit": [3, 11, 12, 13, 14, 15, 16, 18, 22, 24, 27, 28, 30, 33, 35, 36, 41, 42, 43, 46, 48, 52, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 77, 79, 80, 81, 83, 84, 87, 88, 89, 90, 92, 93, 94, 96, 98, 100, 101, 104, 113, 115, 117, 118, 119, 124, 125, 127, 128, 132, 136, 137, 138, 140, 144, 146, 148, 149, 152, 155, 156, 159, 160, 163, 165, 169, 186, 189, 191, 201, 202, 204, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 226, 227, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 247, 259, 260, 265, 268, 269, 270, 272, 274, 275, 293, 297, 298, 299, 302, 303, 306, 309, 311], "position2": [201, 268], "position_i": 169, "position_wrt": [265, 269, 270, 271], "position_x": 169, "position_z": 169, "positionbra3d": 169, "positionket3d": 169, "positionstate3d": 169, "positive_definit": 65, "positive_real_numb": 41, "positive_root": 117, "positivedefinitehandl": 65, "positivedefinitematrix": 124, "positivedefinitepred": 65, "positivehandl": 65, "positivepred": 65, "poss": [36, 78, 302], "possess": [28, 149, 247], "possibl": [4, 8, 11, 12, 13, 14, 15, 18, 21, 26, 32, 33, 37, 41, 42, 43, 46, 48, 51, 56, 59, 67, 69, 70, 71, 72, 77, 79, 80, 82, 83, 84, 88, 89, 93, 94, 96, 98, 100, 102, 103, 105, 110, 112, 113, 115, 117, 118, 120, 124, 128, 130, 132, 134, 145, 146, 148, 153, 156, 159, 185, 187, 191, 193, 195, 196, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 227, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 247, 252, 254, 255, 256, 257, 259, 260, 269, 270, 272, 288, 289, 292, 297, 302], "possiblezeroq": 293, "possibli": [14, 41, 69, 80, 86, 88, 113, 115, 128, 194, 210, 212, 214, 228, 229, 239, 254, 259, 287, 293], "post": [7, 13, 41, 48, 50, 51, 52, 53, 54, 55, 56, 57, 69, 82, 88, 221, 222, 233, 252, 292], "postdecr": 69, "postfix": [221, 259], "postincr": 69, "postiv": 96, "postord": 88, "postorder_travers": [13, 88, 292], "postpon": 93, "postprocess": [69, 207, 217, 222, 233], "postprocessor": [222, 233], "postscript": 221, "postul": 128, "potenti": [13, 14, 23, 34, 41, 100, 120, 124, 128, 131, 149, 153, 155, 158, 201, 210, 211, 212, 216, 221, 228, 231, 233, 237, 255, 256, 268, 274, 303, 311], "potential_energi": [13, 28, 149, 153, 155, 158, 311], "pound": 195, "povm": 185, "pow": [4, 13, 15, 16, 61, 66, 69, 88, 89, 94, 113, 124, 128, 190, 210, 211, 212, 217, 221, 223, 230, 233, 239, 240, 292, 296], "pow_cos_sin": 61, "pow_xin": 218, "powdenest": [94, 233], "power": [13, 16, 22, 30, 50, 55, 61, 66, 69, 78, 79, 80, 89, 91, 92, 93, 110, 111, 113, 115, 117, 120, 124, 128, 129, 130, 144, 163, 174, 177, 190, 193, 195, 196, 197, 200, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 220, 221, 222, 225, 228, 230, 233, 234, 237, 239, 240, 241, 245, 254, 259, 277, 286, 287, 288, 289, 290, 292, 293, 296], "power_bas": [88, 124], "power_basis_ancestor": 216, "power_exp": [88, 124], "power_func": 241, "power_represent": 234, "power_set": 229, "powerbasi": 216, "powerbasisel": 216, "powerfunct": 241, "powerrul": 115, "powerset": 229, "powf": 221, "powi": [69, 221], "powl": [69, 221], "powsimp": [16, 88, 94, 230, 233], "pp": [4, 18, 27, 79, 80, 86, 87, 88, 89, 93, 94, 115, 124, 128, 131, 132, 134, 154, 206, 209, 210, 214, 215, 237, 238, 241, 299, 306], "pp1": 100, "pp2": 100, "pp3": 100, "pprint": [12, 14, 15, 16, 18, 43, 46, 52, 67, 68, 90, 96, 115, 124, 128, 144, 163, 206, 221, 222, 229, 233, 237, 238, 240, 241, 259, 296], "pprint_nod": 221, "pq": [241, 271], "pqa": 234, "pquo": [212, 217], "pr": [3, 11, 12, 13, 87, 152, 212, 214, 215, 217, 240], "prabha": 80, "practic": [9, 16, 17, 18, 24, 27, 30, 39, 41, 48, 51, 54, 57, 77, 79, 88, 89, 98, 207, 208, 209, 211, 214, 216, 218, 245, 289, 290], "pre": [15, 61, 68, 69, 88, 206, 207, 222, 230, 233, 239, 240, 252, 270, 274, 292], "preambl": [116, 205, 221], "prebuilt": 241, "prec": [43, 54, 88, 98, 104, 128, 142, 206, 212, 217, 218, 233, 239], "preced": [4, 5, 16, 70, 80, 88, 89, 92, 93, 171, 233, 260], "precedence_float": 221, "precedence_fracel": 221, "precedence_funct": 221, "precedence_integ": 221, "precedence_mul": 221, "precedence_polyel": 221, "precedence_r": 221, "precedence_unevaluatedexpr": 221, "precedence_valu": 221, "precis": [2, 3, 4, 14, 15, 16, 28, 41, 42, 43, 48, 52, 69, 79, 88, 91, 92, 93, 96, 104, 115, 124, 128, 142, 206, 208, 211, 212, 216, 217, 218, 221, 228, 233, 234, 239, 240, 253, 254, 262, 286, 287, 297], "precision_target": 69, "precisionexhaust": [88, 92], "precomput": [41, 93, 128, 260], "predecr": 69, "predefin": [30, 43, 90, 211, 221, 222, 233, 240, 247, 265, 270], "predetermin": [88, 252], "predic": [13, 15, 62, 63, 67, 88, 130, 217, 233, 259, 277], "predicate_": [63, 64], "predict": [41, 191, 233, 259], "prefer": [2, 4, 8, 9, 11, 12, 13, 14, 15, 22, 41, 43, 45, 48, 53, 54, 55, 69, 71, 80, 87, 88, 96, 128, 130, 132, 152, 191, 195, 196, 200, 207, 210, 212, 214, 216, 221, 229, 233, 237, 239, 246, 252, 254, 257, 260, 291, 293], "preferred_index": [96, 191], "prefix": [3, 11, 69, 88, 124, 128, 195, 198, 199, 211, 214, 218, 221, 234, 237, 253, 254, 259, 282], "prefix_express": 221, "prefix_i1_i2_": 124, "preimag": 208, "preincrement": 69, "preliminari": 290, "prem": [212, 217], "premad": 69, "premis": 68, "premises_kei": 68, "premultipli": 217, "preorder_travers": [13, 88, 292], "prep": [128, 237, 238], "prepar": [7, 41, 153, 219], "prepend": [8, 68, 79, 124, 144, 198, 221, 247], "prepopul": 18, "preprint": [128, 215], "preprocess": [41, 115, 219], "preprocessor": [69, 222, 233, 254], "preprocessor_stat": 254, "prerequisit": 8, "presenc": [9, 27, 88, 94, 118, 140, 158, 237, 245, 306], "present": [0, 2, 5, 13, 15, 16, 18, 33, 39, 45, 67, 68, 72, 75, 79, 80, 82, 86, 88, 91, 115, 124, 128, 131, 134, 136, 140, 142, 144, 153, 158, 191, 193, 200, 202, 205, 207, 208, 214, 215, 216, 220, 221, 234, 240, 254, 260, 268, 269, 270, 274, 277, 298, 301, 302], "preserv": [57, 68, 69, 79, 88, 124, 189, 210, 212, 217, 222, 223, 233], "presimplifi": 306, "press": [16, 68, 70, 72, 80, 89, 115, 124, 206, 215, 234, 239, 299], "presum": [41, 113, 211, 231, 254], "pretti": [4, 9, 11, 12, 15, 43, 68, 69, 96, 115, 116, 124, 128, 137, 144, 205, 231, 233, 240, 274, 288, 291, 293, 297, 302], "prettifi": 221, "pretty_ascii_repr": 198, "pretty_atom": 221, "pretty_indic": 191, "pretty_print": [24, 25, 26, 28, 31, 35, 36, 80, 116, 149, 155, 158, 200, 202, 204, 205, 221, 302, 304, 309, 310, 311], "pretty_scalar": 265, "pretty_symbol": 221, "pretty_symbologi": 221, "pretty_try_use_unicod": 221, "pretty_unicode_repr": 198, "pretty_use_unicod": 221, "pretty_vect": 265, "prettyform": 221, "prev": [82, 88, 261], "prev_binari": 83, "prev_grai": 83, "prev_lex": 77, "prev_lexicograph": 83, "prevent": [3, 7, 12, 14, 16, 21, 52, 57, 69, 88, 94, 125, 128, 158, 210, 212, 217, 221, 233, 241, 250, 257, 288], "preview": [2, 11, 68, 255], "preview_diagram": 68, "previou": [3, 4, 12, 13, 14, 27, 35, 36, 43, 72, 77, 78, 79, 80, 83, 88, 93, 94, 115, 118, 124, 127, 130, 149, 193, 214, 227, 234, 238, 242, 259, 290, 292, 297], "previous": [2, 3, 11, 13, 24, 33, 87, 134, 148, 152, 220, 233, 241, 272, 301, 310], "previous_term": [88, 94], "prevprim": [93, 128], "pri": 89, "primal": [128, 208], "primari": [2, 3, 4, 5, 12, 14, 18, 36, 41, 43, 88, 100, 118, 131, 134, 148, 208, 210, 254, 260], "primarili": [2, 14, 15, 41, 69, 88, 94, 128, 136, 190, 217, 219, 253, 256, 262, 269], "prime": [13, 41, 55, 62, 63, 64, 65, 79, 86, 87, 88, 89, 91, 93, 96, 128, 162, 208, 209, 210, 211, 212, 214, 217, 231, 233, 234, 241, 256], "prime_as_sum_of_two_squar": 234, "prime_bound": 128, "prime_decomp": 216, "prime_numb": [41, 88, 128], "prime_number_theorem": 128, "prime_ord": 128, "prime_valu": 216, "primefactor": [93, 128], "primehandl": 65, "primeid": [212, 216], "primenu": [13, 93, 128], "primeomega": [13, 93, 128], "primepi": [13, 15, 43, 93, 128], "primepred": [13, 65], "primerang": [93, 128], "primes_abov": [212, 216], "primetest": [13, 88, 93, 128], "primit": [15, 79, 88, 89, 96, 128, 185, 189, 208, 209, 210, 211, 212, 214, 216, 217, 220, 221, 234, 287], "primitive_el": [88, 211, 212, 216], "primitive_root": [128, 216], "primori": 128, "primtiiv": 216, "princeton": [206, 241], "princip": [68, 89, 94, 96, 113, 115, 124, 125, 146, 164, 208, 209, 210, 211, 212, 214, 216, 217, 218, 302], "principal_branch": [94, 113], "principal_valu": [94, 115], "principl": [2, 89, 124, 128, 162, 206, 208, 209, 214, 230, 239], "print": [1, 3, 4, 5, 7, 11, 12, 14, 15, 16, 22, 29, 34, 36, 39, 41, 42, 46, 48, 51, 52, 54, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 77, 79, 80, 87, 88, 89, 92, 93, 94, 96, 115, 117, 118, 120, 124, 125, 128, 129, 130, 136, 137, 144, 151, 153, 158, 163, 171, 184, 185, 189, 191, 200, 203, 207, 210, 211, 212, 214, 216, 217, 227, 228, 230, 231, 233, 237, 239, 246, 248, 252, 254, 259, 260, 262, 265, 269, 276, 282, 284, 287, 288, 289, 290, 291, 292, 293, 297, 302], "print_builtin": [116, 205], "print_ccod": 221, "print_cycl": 80, "print_debug_output": 130, "print_dim_bas": 193, "print_fcod": 221, "print_funct": 39, "print_gtk": 221, "print_latex": 221, "print_maple_cod": 221, "print_mathml": [221, 296], "print_my_latex": 221, "print_nod": 221, "print_nonzero": [124, 259], "print_python": 221, "print_rcod": 221, "print_report": 71, "print_tre": 221, "printabl": [13, 89], "printer": [11, 12, 13, 14, 15, 18, 43, 80, 88, 96, 116, 124, 129, 205, 243, 246, 253, 254, 260, 288, 292], "printer_exampl": 221, "printer_set": 69, "printmethod": [43, 221], "prior": [3, 12, 13, 59, 204, 217, 233, 293], "prioriti": [21, 22, 36, 53, 69, 111, 260], "prism": 71, "prismat": 152, "prismaticjoint": [13, 24, 149, 152, 158, 307], "privat": [3, 4, 22, 88, 89, 207, 254], "prk": 89, "prng": 124, "prob": [189, 241], "probabilist": [96, 217, 241], "probabilit": 13, "probability_book": 241, "probability_distribut": 241, "probabilitycours": 241, "probabl": [7, 11, 14, 22, 71, 79, 88, 93, 96, 100, 128, 185, 189, 231, 237, 240, 241, 253, 289, 295], "problem": [5, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 32, 35, 36, 39, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 72, 82, 84, 88, 89, 100, 113, 115, 124, 128, 131, 132, 134, 136, 138, 139, 140, 145, 151, 153, 208, 209, 214, 231, 233, 234, 237, 239, 240, 256, 259, 282, 287, 289, 293, 299, 303, 305, 306, 310], "problemat": [13, 14, 43, 211], "proc": [88, 212, 239], "proce": [27, 102, 214, 216, 231, 239], "procedur": [8, 28, 51, 53, 70, 71, 73, 79, 85, 86, 87, 115, 124, 153, 214, 216, 233, 234, 239, 240, 265, 293], "proceed": [29, 68, 70, 113, 115, 215, 231], "process": [4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 22, 24, 25, 27, 30, 41, 66, 69, 79, 80, 86, 88, 89, 94, 96, 104, 113, 115, 124, 128, 131, 144, 153, 154, 207, 208, 214, 221, 222, 229, 233, 237, 239, 243, 252, 256, 297, 300, 302, 310], "process_seri": 207, "prod": [88, 130, 211, 214, 218, 230], "prod_": [87, 93, 96, 113, 128, 196, 231], "produc": [2, 4, 5, 12, 14, 15, 18, 42, 43, 51, 53, 54, 55, 57, 68, 79, 88, 89, 101, 115, 118, 124, 131, 132, 134, 148, 156, 200, 210, 211, 216, 217, 221, 228, 237, 238, 239, 241, 250, 252, 256, 257, 259, 260, 296, 299, 300], "product": [12, 13, 21, 28, 30, 32, 34, 35, 36, 41, 61, 71, 73, 76, 79, 80, 84, 86, 87, 88, 89, 90, 92, 93, 96, 98, 101, 103, 104, 111, 113, 115, 117, 118, 120, 124, 128, 129, 130, 134, 144, 145, 146, 152, 166, 170, 171, 174, 176, 177, 178, 180, 183, 185, 186, 188, 189, 191, 195, 196, 197, 200, 202, 203, 206, 208, 209, 210, 212, 214, 216, 217, 218, 221, 222, 223, 226, 229, 230, 233, 234, 237, 238, 239, 240, 241, 243, 245, 246, 247, 253, 256, 259, 265, 269, 282, 302], "product_and_invers": 80, "product_matrix_left": 61, "product_matrix_right": 61, "product_replacement_algorithm": 79, "productdomain": 241, "productpspac": 241, "productset": [229, 240], "prof": 124, "profession": 9, "profil": [136, 144], "prog": [69, 170], "program": [2, 5, 16, 30, 41, 69, 72, 80, 196, 206, 254, 256, 289, 291, 295, 297], "programm": [128, 221], "programmat": [0, 14, 15, 37, 38, 56, 57, 240, 270], "programminggeek": 259, "progress": [11, 62, 64, 128, 254], "prohibit": [68, 80, 81, 200], "project": [5, 9, 10, 11, 13, 29, 45, 69, 71, 101, 102, 103, 117, 124, 253, 254, 265], "project__test__h": [69, 254], "projection_lin": 102, "projective_linear_group": 71, "promin": 218, "prompt": [4, 8, 12, 15], "prone": [43, 51, 69, 88], "pronoun": 5, "pronounc": 297, "proof": [12, 79, 82, 113, 115, 240], "proofwiki": 234, "prooject": 115, "prop": [79, 216], "prop_even": 79, "propag": [18, 92, 101, 162, 165, 299], "proper": [11, 16, 21, 22, 32, 79, 88, 115, 128, 211, 212, 216, 221, 229, 237, 242, 253, 254, 272, 293], "proper_divisor": 128, "proper_divisor_count": 128, "properli": [3, 11, 12, 15, 22, 25, 43, 68, 88, 94, 100, 113, 124, 154, 168, 172, 175, 189, 209, 211, 221, 237, 240, 250, 254, 260, 293, 298], "properti": [3, 12, 14, 15, 18, 28, 30, 32, 33, 36, 38, 43, 48, 53, 55, 61, 63, 64, 67, 68, 69, 70, 71, 72, 76, 77, 79, 80, 81, 82, 83, 87, 88, 89, 90, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 111, 113, 115, 120, 124, 128, 131, 132, 134, 136, 137, 138, 140, 141, 144, 148, 149, 152, 153, 155, 156, 158, 159, 160, 162, 165, 166, 169, 170, 175, 176, 177, 179, 180, 187, 189, 191, 193, 195, 196, 198, 199, 200, 201, 202, 206, 207, 209, 210, 211, 212, 214, 216, 217, 220, 223, 224, 227, 228, 229, 231, 234, 237, 240, 241, 246, 247, 252, 254, 255, 265, 268, 269, 270, 272, 274, 293, 299], "propfunc": 255, "proport": [79, 89, 148, 228, 260], "propos": [9, 128], "proposit": [62, 64, 118], "proprietari": 30, "proquest": 241, "protect": [89, 221], "proth": 128, "proth_prim": 128, "proth_test": 128, "prototyp": [69, 129, 254], "prove": [53, 88, 113, 115, 124, 208, 228, 237, 271], "proven": [115, 128, 271, 289], "provid": [0, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 17, 18, 21, 23, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 37, 39, 40, 41, 42, 43, 46, 49, 50, 54, 58, 61, 67, 68, 69, 70, 71, 77, 78, 79, 80, 86, 87, 88, 90, 92, 96, 97, 99, 104, 107, 110, 111, 115, 116, 118, 120, 124, 125, 127, 128, 129, 130, 131, 133, 134, 137, 140, 142, 149, 151, 152, 153, 155, 158, 164, 165, 185, 193, 194, 195, 199, 200, 201, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 224, 226, 229, 230, 231, 233, 237, 238, 239, 240, 241, 242, 246, 247, 252, 253, 254, 256, 257, 259, 260, 262, 265, 268, 269, 270, 272, 273, 275, 287, 291, 292, 293, 297, 299, 300, 302, 303, 304, 306, 307], "providean": 234, "prudent": 12, "prudnikov": [113, 231], "prudnikov1990": [113, 231], "prufer": [75, 277], "prufer_rank": 82, "prufer_repr": 82, "prune": 79, "pset": 229, "pseudo": [80, 124, 128, 212, 214, 217], "pseudocod": 79, "pseudoinvers": [53, 124], "pseudoprim": 128, "pseudorandom": [128, 259], "pseudotensor": 96, "psg": 81, "psi": [16, 93, 96, 113, 163, 174, 175, 181, 189, 216, 221, 247], "psi_": [146, 167], "psi_n": [69, 167], "psi_nl": 69, "psi_nlm": 146, "psl2f5": 71, "psl_2": 71, "psm": 128, "pspace": 241, "pspace1": 241, "pspace2": 241, "pstack": 256, "psu": [215, 230], "psum": 217, "psw_primality_test": 128, "pt": [89, 97, 98, 99, 101, 102, 103, 104, 227], "pt1": 102, "pth": 61, "pub": [89, 265], "public": [0, 4, 11, 12, 69, 88, 89, 110, 131, 132, 134, 211, 212, 214, 215, 219, 234, 237, 241, 255, 265], "public_kei": 89, "publicli": 89, "publish": [4, 18, 113, 131, 132, 134, 231], "pug": 89, "puiseux": 218, "puk": 89, "pull": [2, 3, 4, 5, 8, 9, 12, 13, 14, 18, 43, 59, 69, 88, 93, 96, 148, 190, 222, 233, 237, 240, 293, 297, 299], "puppi": 89, "purdu": 265, "pure": [0, 2, 13, 14, 15, 27, 52, 54, 61, 89, 94, 115, 118, 120, 134, 144, 196, 210, 211, 212, 214, 217, 221, 241, 259], "purepoli": [124, 210, 217], "purpos": [4, 5, 9, 12, 13, 14, 15, 18, 22, 28, 30, 36, 40, 41, 43, 55, 68, 69, 79, 85, 88, 89, 115, 124, 128, 149, 196, 207, 211, 214, 218, 220, 221, 228, 237, 240, 246, 256, 258, 260, 269, 270, 287, 297], "purposefulli": 302, "push": [9, 11, 12, 18, 113, 148, 156, 299], "pushforward": 90, "put": [3, 4, 11, 13, 14, 15, 16, 39, 43, 50, 69, 84, 85, 88, 89, 90, 94, 118, 124, 163, 168, 172, 187, 188, 217, 221, 222, 230, 231, 233, 237, 242, 248, 253, 293, 297, 299], "puyoqrstvwx": 89, "pval": 239, "pw": 221, "px": [155, 181, 186, 247], "px_1": 186, "px_2": 186, "pxbra": [169, 181], "pxket": [169, 181, 186], "pxop": [169, 181, 186], "py": [2, 3, 4, 11, 12, 41, 45, 68, 88, 99, 113, 115, 124, 130, 169, 171, 207, 210, 212, 218, 221, 228, 231, 237, 238, 247, 250, 252, 257, 260], "py_mod": 69, "py_str": 69, "pycod": [69, 221], "pycodestyl": 12, "pycosat": 2, "pycqa": 12, "pydi": [22, 30, 200], "pyf": 254, "pyflak": 12, "pyglet": [2, 221], "pyglet_plot": 207, "pygletplot": [2, 207], "pylab": 116, "pymc": [2, 241], "pynam": 254, "pyodid": 250, "pypi": 59, "pyplot": [18, 30, 55, 111, 299], "pysat": 2, "pytest": [2, 3, 11, 12, 13, 249, 255, 257, 260, 284], "pytestreport": 252, "pythag": 51, "pythag_eq": 51, "pythag_v": 51, "pythagora": 159, "pythagorean": [51, 234], "pythogorean": 51, "python": [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 21, 22, 30, 38, 41, 42, 43, 47, 48, 49, 52, 53, 55, 57, 58, 59, 62, 63, 64, 67, 80, 88, 89, 92, 94, 100, 116, 118, 120, 124, 128, 129, 130, 136, 142, 200, 207, 208, 209, 210, 211, 212, 218, 220, 221, 229, 233, 237, 240, 242, 252, 253, 254, 255, 256, 259, 260, 265, 289, 290, 291, 292, 293, 295, 296, 297], "python3": [2, 8, 69, 130, 221], "python_trick": 259, "python_vers": 255, "pythonfinitefield": [211, 212], "pythonhashse": [12, 252], "pythoninteg": 212, "pythonmpq": [211, 212], "pythonr": [212, 219], "pythonrationalfield": 212, "pythontyp": 221, "pythonwarn": 13, "pz": [91, 142, 247], "q": [13, 14, 15, 16, 18, 22, 24, 25, 26, 27, 30, 31, 33, 35, 38, 41, 49, 51, 60, 61, 62, 63, 64, 65, 66, 69, 80, 84, 87, 88, 89, 96, 105, 110, 111, 113, 115, 117, 124, 130, 134, 136, 138, 144, 145, 148, 149, 152, 153, 154, 156, 158, 159, 160, 171, 185, 191, 194, 200, 201, 202, 204, 205, 207, 208, 209, 211, 212, 214, 216, 217, 218, 220, 221, 223, 231, 234, 237, 239, 241, 246, 247, 262, 265, 268, 269, 271, 274, 293, 297, 299, 302, 306, 311], "q0": [152, 200, 237, 265, 267], "q0_": 152, "q0_c1": 152, "q0_c2": 152, "q0_pc": 152, "q1": [21, 22, 25, 26, 27, 31, 32, 35, 36, 61, 124, 136, 152, 200, 202, 204, 205, 211, 265, 267, 299, 302, 303, 304, 306, 307, 309, 310, 311], "q1_": 152, "q1_c1": 152, "q1_c2": 152, "q1_pc": 152, "q1d": [21, 22, 25, 26, 27, 28, 32, 36, 205, 302, 303, 306, 309, 310, 311], "q1dd": 205, "q2": [21, 22, 25, 26, 31, 32, 35, 36, 61, 136, 152, 200, 202, 204, 205, 211, 265, 267, 299, 302, 303, 304, 306, 307, 309, 310, 311], "q2_": 152, "q2_pc": 152, "q2d": [21, 22, 25, 26, 204, 205, 302, 306, 309, 310, 311], "q2dd": 205, "q3": [21, 25, 35, 36, 61, 200, 202, 204, 265, 267, 299, 302, 304, 307, 309, 310, 311], "q3d": [21, 25, 309, 310, 311], "q4": [25, 202, 299, 302], "q4d": [25, 302], "q5": [202, 302], "q5d": 302, "q6": 202, "q_": [13, 88, 152, 205, 234, 237, 299], "q_0": [18, 152, 171, 234], "q_1": [27, 35, 152, 171, 217, 234, 299, 303, 304, 306, 307], "q_2": [27, 35, 152, 299, 303, 304, 306, 307], "q_3": [35, 299, 304, 307], "q_4": 299, "q_annihil": 191, "q_aug": 124, "q_creator": 191, "q_d": 154, "q_dep": [25, 27, 153, 158, 304], "q_depend": [25, 30, 153, 299, 302, 306], "q_domain": 212, "q_expr": 212, "q_i": [27, 115, 154], "q_ind": [22, 25, 27, 30, 153, 154, 158, 302, 304, 306, 309, 310], "q_j": 13, "q_j1": 152, "q_j2": 152, "q_m": 96, "q_n": 217, "q_op": [154, 306], "q_orient": [265, 267], "q_p1": 152, "q_p2": 152, "q_pc": 152, "q_pin": [13, 158], "q_slider": 158, "q_val": [51, 299], "q_x": [35, 104], "q_y": [35, 104], "qa": 30, "qad": 30, "qappli": [175, 176, 178, 180, 185, 282], "qb": [30, 209], "qbd": 30, "qd": [25, 149, 153, 158, 204, 299, 302], "qd_dep": [27, 153], "qd_ind": [27, 153], "qd_op": 154, "qdot": [153, 204, 302], "qdoubledot": 153, "qexpr": 186, "qft": [178, 187, 282], "qg": 214, "qho": 69, "qho_1d": [69, 167], "qiq": 89, "qmonserrat": 11, "qn": 88, "qo": 30, "qp": 35, "qq": [11, 106, 107, 109, 110, 111, 115, 208, 209, 210, 211, 214, 216, 217, 218], "qq_col": 216, "qq_i": [210, 211, 214], "qq_matrix": 216, "qq_python": 212, "qquad": [94, 196, 214], "qr": 124, "qr_solv": 124, "qrdecomposit": [119, 124], "qrgk": 89, "qrgkkthrzqebpr": 89, "qrsolv": [119, 124], "qstate": 176, "qt": 2, "qtconsol": [59, 296], "qtf": 184, "quad": [46, 87, 88, 90, 92, 96, 115, 124], "quadrant": [94, 212, 240], "quadrat": [48, 51, 88, 89, 93, 115, 128, 208, 212, 216, 217, 234, 239, 241], "quadratic_congru": 128, "quadratic_distribut": 241, "quadratic_residu": 128, "quadraticu": 241, "quadratur": [88, 92, 115, 237], "quadrupl": [68, 217], "qualifi": [4, 13], "qualiti": [129, 221], "qualnam": [71, 134], "quantifi": 274, "quantil": 241, "quantit": [69, 193], "quantiti": [13, 14, 16, 18, 21, 28, 32, 33, 35, 36, 80, 88, 93, 96, 100, 105, 137, 148, 153, 170, 193, 195, 199, 216, 233, 241, 269, 274, 282, 299, 310], "quantity_simplifi": 195, "quantiz": [177, 282], "quantum": [13, 47, 146, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 206, 282, 301], "quarter": [152, 159, 163], "quarter_wave_retard": 163, "quartic": [48, 98, 217, 239], "quasi": 191, "quaternion": [36, 200, 204, 265, 267], "quaternionorient": [265, 267, 270], "qubit": [171, 175, 176, 177, 178, 184, 282], "qubit_to_matrix": 185, "qubit_valu": 185, "qubitbra": 185, "quebec": 215, "queri": [14, 15, 41, 42, 43, 62, 65, 66, 67, 69, 88, 100, 217, 233, 241], "query_gt": 241, "question": [3, 4, 5, 7, 11, 12, 21, 32, 39, 41, 79, 87, 90, 98, 105, 113, 115, 118, 128, 193, 196, 208, 211, 216, 231, 240, 259, 262], "quick": [4, 5, 11, 14, 43, 88, 124, 128, 233, 239, 260], "quicker": [79, 128], "quickli": [12, 14, 39, 43, 79, 80, 88, 89, 92, 93, 128, 210, 214, 217, 230, 240, 256], "quickstart": 9, "quiet": 116, "quin": 118, "quintic": [48, 217, 239], "quirk": 42, "quit": [15, 35, 39, 43, 96, 124, 128, 207, 218, 220, 231, 239, 259, 274, 289, 292, 302], "quo": [211, 212, 214, 217], "quo_ground": [212, 217], "quot": [4, 11, 16, 69, 118, 221, 262], "quotat": 5, "quotedstr": 69, "quotient": [87, 88, 91, 94, 128, 208, 209, 211, 214, 217, 231, 233, 237], "quotient_codomain": 208, "quotient_domain": 208, "quotient_hom": 208, "quotient_modul": 208, "quotient_r": [208, 212], "quotientmodul": 208, "quotientmoduleel": 208, "quotientr": [208, 212], "qv": 212, "qwerti": 246, "qwp": 163, "r": [0, 4, 5, 8, 9, 12, 13, 16, 18, 22, 27, 28, 29, 30, 31, 33, 35, 39, 41, 43, 48, 61, 68, 69, 70, 72, 79, 80, 88, 89, 90, 92, 93, 94, 101, 102, 104, 106, 110, 111, 113, 115, 124, 128, 130, 131, 134, 137, 140, 144, 146, 149, 152, 153, 154, 155, 156, 158, 159, 160, 163, 187, 188, 191, 192, 194, 200, 201, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 221, 222, 223, 228, 229, 231, 233, 234, 237, 239, 240, 241, 247, 252, 254, 256, 265, 268, 270, 271, 272, 275, 297, 299, 302, 303, 306, 308, 309, 310, 311], "r0": [48, 88, 136, 217], "r1": [33, 48, 61, 88, 98, 101, 117, 124, 136, 137, 164, 200, 217, 265], "r10": [65, 136], "r100": 87, "r1000": 241, "r1001": 241, "r1002": 241, "r1003": 241, "r1004": 241, "r1005": 241, "r1006": 241, "r1007": 241, "r1008": 241, "r1009": 241, "r101": 87, "r1010": 241, "r1011": 241, "r1012": 241, "r1013": 241, "r1014": 241, "r1015": 241, "r1016": 241, "r1017": 241, "r1018": 241, "r1019": 241, "r102": 87, "r1020": 241, "r1021": 241, "r1022": 241, "r1023": 241, "r1024": 241, "r1025": 241, "r1026": 241, "r1027": 241, "r1028": 241, "r1029": 241, "r103": 87, "r1030": 241, "r1031": 241, "r1032": 241, "r1033": 241, "r1034": 241, "r1035": 241, "r1036": 241, "r1037": 241, "r1038": 241, "r1039": 241, "r104": 87, "r1040": 241, "r1041": 241, "r1042": 241, "r1043": 241, "r1044": 241, "r1045": 241, "r1046": 241, "r1047": 241, "r1048": 241, "r1049": 241, "r105": 87, "r1050": 241, "r1051": 241, "r1052": 253, "r1053": 259, "r1054": 259, "r1055": 259, "r1056": 259, "r1057": 259, "r1058": 259, "r1059": 259, "r106": 87, "r1060": 259, "r1061": 259, "r1062": 259, "r1063": 259, "r1064": 259, "r1065": 259, "r1066": 259, "r1067": 259, "r1068": 259, "r1069": 259, "r107": 87, "r1070": 259, "r1071": 259, "r1072": 259, "r1073": 262, "r1074": 265, "r1075": 265, "r108": 87, "r109": 87, "r11": 65, "r110": 88, "r111": 88, "r112": 88, "r113": 88, "r114": 88, "r115": 88, "r116": 88, "r117": 88, "r118": 88, "r119": 88, "r12": 65, "r120": 88, "r121": 88, "r122": 88, "r123": 88, "r124": 88, "r125": 88, "r126": 88, "r127": 88, "r128": 88, "r129": 88, "r13": [65, 136], "r130": 88, "r131": 88, "r132": 88, "r133": 88, "r134": 88, "r135": 88, "r136": 88, "r137": 88, "r138": 88, "r139": 88, "r14": 65, "r140": 88, "r141": 88, "r142": 88, "r143": 88, "r144": 88, "r145": 88, "r146": 88, "r147": 88, "r148": 88, "r149": 88, "r15": [65, 136], "r150": 88, "r151": 89, "r152": 89, "r153": 89, "r154": 89, "r155": 89, "r156": 89, "r157": 89, "r158": 89, "r159": 89, "r16": 65, "r160": 89, "r161": 89, "r162": 89, "r163": 89, "r164": 89, "r165": 89, "r166": 89, "r167": 89, "r168": 89, "r169": 89, "r17": 65, "r170": 89, "r171": 89, "r174": 89, "r175": 90, "r176": 90, "r177": 90, "r178": 91, "r179": 91, "r18": 65, "r180": 91, "r181": 91, "r182": 91, "r183": 91, "r184": 91, "r185": 91, "r186": 91, "r187": 91, "r188": 91, "r189": 91, "r19": 65, "r190": 91, "r191": 91, "r192": 91, "r193": 91, "r194": 91, "r195": 91, "r196": 91, "r197": 91, "r198": 91, "r199": 91, "r1_x": 33, "r1_y": 33, "r2": [48, 61, 88, 90, 101, 117, 124, 136, 137, 164, 200, 217, 221, 233, 265], "r20": 65, "r200": 91, "r201": 91, "r202": 91, "r203": 91, "r204": 91, "r205": 91, "r206": 91, "r207": 93, "r208": 93, "r209": 93, "r21": 65, "r210": 93, "r211": 93, "r212": 93, "r213": 93, "r214": 93, "r215": 93, "r216": 93, "r217": 93, "r218": 93, "r219": 93, "r22": 65, "r220": 93, "r221": 93, "r222": 93, "r223": 93, "r224": 93, "r225": 93, "r226": 93, "r227": 93, "r228": 93, "r229": 93, "r23": 65, "r230": 93, "r231": 93, "r233": 93, "r234": 93, "r235": 93, "r236": 93, "r237": 93, "r238": 93, "r239": 93, "r24": 65, "r240": 93, "r241": 93, "r242": 93, "r243": 93, "r244": 93, "r245": 93, "r246": 93, "r247": 93, "r248": 93, "r249": 93, "r25": 65, "r250": 93, "r251": 93, "r252": 93, "r253": 93, "r254": 93, "r255": 93, "r256": 93, "r257": 93, "r258": 93, "r259": 93, "r26": 65, "r260": 93, "r261": 93, "r262": 93, "r263": 93, "r264": 93, "r265": 93, "r266": 93, "r267": 93, "r268": 93, "r269": 93, "r27": 65, "r270": 93, "r271": 93, "r272": 93, "r273": 93, "r274": 93, "r275": 93, "r276": 94, "r277": 94, "r278": 94, "r279": 94, "r28": 65, "r280": 94, "r281": 94, "r282": 94, "r283": 94, "r284": 94, "r285": 94, "r286": 94, "r287": 94, "r288": 94, "r289": 94, "r29": 65, "r290": 94, "r291": 94, "r292": 94, "r293": 94, "r294": 94, "r295": 94, "r296": 94, "r297": 94, "r298": 94, "r299": 94, "r2_p": 90, "r2_r": 90, "r3": [48, 61, 117, 136, 137, 233], "r30": 65, "r300": 94, "r301": 94, "r302": 94, "r303": 94, "r304": 94, "r305": 94, "r306": 94, "r307": 94, "r308": 94, "r309": 94, "r31": 67, "r310": 94, "r311": 94, "r312": 94, "r313": 94, "r314": 94, "r315": 94, "r316": 94, "r317": 94, "r318": 94, "r319": 94, "r32": 67, "r320": 94, "r321": 94, "r322": 94, "r323": 94, "r324": 94, "r325": 94, "r326": 94, "r327": 94, "r328": 94, "r329": 94, "r33": 67, "r330": 94, "r331": 94, "r332": 94, "r333": 94, "r334": 94, "r335": 94, "r336": 94, "r337": 94, "r338": 94, "r339": 94, "r34": 67, "r340": 94, "r341": 94, "r342": 96, "r343": 96, "r344": 96, "r345": 96, "r346": 96, "r347": 96, "r348": 96, "r349": 96, "r35": 67, "r350": 96, "r351": 96, "r352": 96, "r353": 96, "r354": 96, "r355": 96, "r356": 96, "r357": 96, "r358": 96, "r359": 96, "r36": 67, "r360": 96, "r361": 96, "r362": 96, "r363": 96, "r364": 96, "r365": 96, "r366": 96, "r367": 96, "r368": 96, "r369": 96, "r37": 67, "r370": 96, "r371": 96, "r372": 96, "r373": 96, "r374": 96, "r375": 96, "r376": 96, "r377": 96, "r378": 96, "r379": 96, "r38": 67, "r380": 96, "r381": 96, "r382": 96, "r383": 96, "r384": 96, "r385": 96, "r386": 96, "r387": 96, "r388": 96, "r389": 96, "r39": 69, "r390": 96, "r391": 96, "r392": 96, "r393": 96, "r394": 96, "r395": 96, "r396": 96, "r397": 96, "r398": 96, "r399": 96, "r4": [48, 117, 136], "r40": 69, "r400": 96, "r401": 96, "r402": 96, "r403": 96, "r404": 96, "r405": 96, "r406": 96, "r407": 96, "r408": 96, "r409": 96, "r41": 71, "r410": 96, "r411": 96, "r412": 96, "r413": 96, "r414": 96, "r415": 96, "r416": 96, "r417": 96, "r418": 96, "r419": 96, "r420": 96, "r421": 96, "r422": 96, "r423": 96, "r424": 96, "r425": 96, "r426": 96, "r427": 96, "r428": 96, "r429": 96, "r43": 71, "r430": 96, "r431": 96, "r432": 96, "r433": 96, "r434": 96, "r435": 96, "r436": 96, "r437": 96, "r438": 96, "r439": 96, "r44": [71, 72], "r440": 96, "r441": 96, "r442": 96, "r443": 96, "r444": 96, "r445": 96, "r446": 96, "r447": 96, "r448": 96, "r449": 96, "r45": 72, "r450": 96, "r451": 96, "r452": 96, "r453": 96, "r454": 96, "r455": 96, "r456": 96, "r457": 96, "r458": 96, "r459": 96, "r46": 72, "r460": 96, "r461": 96, "r462": 96, "r463": 96, "r464": 96, "r465": 96, "r466": 96, "r467": 96, "r468": 96, "r469": 96, "r47": 72, "r470": 96, "r471": 96, "r472": 96, "r473": 96, "r474": 96, "r475": 96, "r476": 96, "r477": 96, "r478": 96, "r479": 96, "r48": 74, "r480": 96, "r481": 96, "r482": 96, "r483": 96, "r484": 96, "r485": 96, "r486": 96, "r487": 96, "r488": 96, "r489": 96, "r49": 74, "r490": 96, "r491": 96, "r492": 96, "r493": 96, "r494": 96, "r495": 96, "r496": 96, "r497": 96, "r498": 96, "r499": 96, "r5": [63, 233], "r50": 74, "r500": 96, "r501": 96, "r502": 96, "r503": 96, "r504": 96, "r505": 96, "r506": 96, "r507": 96, "r508": 96, "r509": 96, "r51": 74, "r510": 96, "r511": 96, "r512": 96, "r513": 96, "r514": 96, "r515": 96, "r516": 96, "r517": 96, "r518": 96, "r519": 96, "r52": 74, "r520": 96, "r521": 96, "r522": 96, "r523": 96, "r524": 96, "r525": 96, "r526": 96, "r527": 96, "r528": 96, "r529": 96, "r53": 74, "r530": 96, "r531": 96, "r532": 96, "r533": 96, "r534": 96, "r535": 96, "r536": 96, "r537": 96, "r538": 96, "r539": 96, "r54": 74, "r540": 96, "r541": 96, "r542": 96, "r543": 96, "r544": 96, "r545": 98, "r546": 98, "r547": 98, "r548": 98, "r549": 98, "r55": 74, "r550": 98, "r551": 98, "r552": 98, "r553": 104, "r554": 104, "r555": 104, "r556": 104, "r557": 104, "r558": 104, "r559": 104, "r560": 104, "r561": 104, "r562": 104, "r563": 105, "r564": 105, "r565": 110, "r566": 110, "r567": 115, "r568": 115, "r569": 115, "r57": 76, "r570": 115, "r571": 115, "r572": 115, "r573": 115, "r574": 115, "r575": 115, "r576": 115, "r577": 115, "r578": 115, "r579": 115, "r58": 76, "r580": 115, "r581": 115, "r582": 115, "r583": 115, "r584": 115, "r585": 115, "r586": 115, "r587": 115, "r588": 115, "r589": 115, "r59": 76, "r590": 115, "r591": 115, "r592": 115, "r593": 115, "r594": 115, "r595": 115, "r596": 116, "r597": 116, "r598": 117, "r599": 117, "r6": 63, "r60": 76, "r600": 118, "r601": 118, "r602": 118, "r603": 118, "r604": 118, "r605": 118, "r606": 118, "r607": 118, "r608": 120, "r609": 124, "r61": 77, "r610": 124, "r611": 124, "r612": 124, "r613": 124, "r614": 124, "r615": 124, "r616": 124, "r617": 124, "r618": 124, "r619": 124, "r62": 79, "r620": 124, "r621": 124, "r622": 124, "r623": 124, "r624": 124, "r625": 124, "r626": 124, "r627": 124, "r628": 124, "r629": 124, "r63": 79, "r630": 124, "r631": 124, "r632": 124, "r633": 124, "r634": 124, "r635": 124, "r636": 124, "r637": 124, "r638": 124, "r639": 124, "r64": 79, "r640": 124, "r641": 124, "r642": 124, "r643": 124, "r644": 124, "r645": 124, "r646": 124, "r647": 125, "r648": 128, "r649": 128, "r65": 79, "r650": 128, "r651": 128, "r652": 128, "r653": 128, "r654": 128, "r655": 128, "r656": 128, "r657": 128, "r658": 128, "r659": 128, "r66": 79, "r660": 128, "r661": 128, "r662": 128, "r663": 128, "r664": 128, "r665": 128, "r666": 128, "r667": 128, "r668": 128, "r669": 128, "r67": 79, "r670": 128, "r671": 128, "r672": 128, "r673": 128, "r674": 128, "r675": 128, "r676": 128, "r677": 128, "r678": 128, "r679": 128, "r68": 79, "r680": 128, "r681": 128, "r682": 128, "r683": 128, "r684": 128, "r685": 128, "r686": 128, "r687": 128, "r688": 128, "r689": 128, "r69": 79, "r690": 128, "r691": 128, "r692": 128, "r693": 128, "r694": 128, "r695": 128, "r696": 128, "r697": 128, "r698": 128, "r699": 128, "r7": 64, "r70": 79, "r700": 128, "r701": 128, "r702": 128, "r703": 128, "r704": 128, "r705": 128, "r706": 128, "r707": 128, "r708": 128, "r709": 128, "r71": 79, "r710": 128, "r711": 128, "r712": 128, "r713": 128, "r714": 128, "r715": 128, "r716": 128, "r717": 128, "r718": 128, "r719": 128, "r720": 131, "r721": 132, "r722": 132, "r723": 132, "r724": 132, "r725": 132, "r726": 132, "r727": 132, "r728": 134, "r729": 136, "r73": 79, "r730": 142, "r731": 142, "r732": 142, "r733": 142, "r734": 144, "r735": 144, "r736": 144, "r737": 147, "r738": 147, "r739": 154, "r740": 160, "r741": 160, "r742": 160, "r743": 162, "r744": 163, "r745": 163, "r746": 163, "r747": 164, "r748": 166, "r749": 168, "r75": 79, "r750": 170, "r751": 170, "r752": 170, "r753": 170, "r754": 172, "r755": 173, "r756": 174, "r757": 174, "r758": 177, "r759": 177, "r76": 79, "r760": 177, "r761": 177, "r762": 177, "r763": 179, "r764": 180, "r765": 180, "r766": 180, "r767": 188, "r768": 188, "r769": 189, "r77": 79, "r770": 189, "r771": 191, "r772": 210, "r773": 210, "r774": 210, "r775": 210, "r776": 210, "r777": 210, "r778": 210, "r779": 210, "r780": 210, "r781": 210, "r782": 210, "r783": 212, "r784": 214, "r785": 214, "r786": 214, "r787": 214, "r788": 214, "r789": 214, "r79": [79, 80], "r790": 214, "r791": 214, "r792": 214, "r793": 214, "r794": 214, "r795": 214, "r796": 214, "r797": 214, "r798": 214, "r799": 214, "r8": 64, "r80": 80, "r800": 214, "r801": 214, "r802": 216, "r803": 216, "r804": 216, "r805": 216, "r806": 216, "r807": 216, "r808": 217, "r809": 217, "r81": 80, "r810": 217, "r811": 217, "r812": 217, "r813": 217, "r814": 217, "r815": 217, "r816": 217, "r817": 217, "r818": 217, "r819": 217, "r82": 80, "r820": 217, "r821": 217, "r822": 217, "r823": 218, "r824": 223, "r825": 223, "r826": 223, "r827": 223, "r828": 223, "r829": 223, "r83": 80, "r830": 224, "r831": 224, "r832": 224, "r833": 226, "r834": 226, "r835": 228, "r836": 228, "r837": 229, "r838": 229, "r839": 229, "r84": 80, "r840": 229, "r841": 229, "r842": 229, "r843": 229, "r844": 229, "r845": 229, "r846": 229, "r847": 229, "r848": 229, "r849": 229, "r85": 80, "r850": 229, "r851": 229, "r852": 230, "r853": 230, "r854": 230, "r855": 233, "r856": 233, "r857": 233, "r858": 234, "r859": 234, "r86": 80, "r860": 234, "r861": 234, "r862": 234, "r863": 234, "r864": 234, "r865": 234, "r866": 234, "r867": 234, "r868": 234, "r869": 234, "r87": 80, "r870": 234, "r871": 234, "r872": 234, "r873": 234, "r874": 234, "r875": 234, "r876": 234, "r877": 234, "r878": 234, "r879": 234, "r88": 80, "r880": 234, "r881": 234, "r882": 234, "r883": 234, "r884": 237, "r885": 237, "r886": 237, "r887": 237, "r888": 237, "r889": 237, "r89": 80, "r890": 239, "r891": 239, "r892": 239, "r893": 239, "r894": 239, "r895": 239, "r896": 241, "r897": 241, "r898": 241, "r899": 241, "r9": 65, "r90": 80, "r900": 241, "r901": 241, "r902": 241, "r903": 241, "r904": 241, "r905": 241, "r906": 241, "r907": 241, "r908": 241, "r909": 241, "r91": 80, "r910": 241, "r911": 241, "r912": 241, "r913": 241, "r914": 241, "r915": 241, "r916": 241, "r917": 241, "r918": 241, "r919": 241, "r92": 81, "r920": 241, "r921": 241, "r922": 241, "r923": 241, "r924": 241, "r925": 241, "r926": 241, "r927": 241, "r928": 241, "r929": 241, "r93": 82, "r930": 241, "r931": 241, "r932": 241, "r933": 241, "r934": 241, "r935": 241, "r936": 241, "r937": 241, "r938": 241, "r939": 241, "r94": 82, "r940": 241, "r941": 241, "r942": 241, "r943": 241, "r944": 241, "r945": 241, "r946": 241, "r947": 241, "r948": 241, "r949": 241, "r95": 86, "r950": 241, "r951": 241, "r952": 241, "r953": 241, "r954": 241, "r955": 241, "r956": 241, "r957": 241, "r958": 241, "r959": 241, "r96": 86, "r960": 241, "r961": 241, "r962": 241, "r963": 241, "r964": 241, "r965": 241, "r966": 241, "r967": 241, "r968": 241, "r969": 241, "r97": 86, "r970": 241, "r971": 241, "r972": 241, "r973": 241, "r974": 241, "r975": 241, "r976": 241, "r977": 241, "r978": 241, "r979": 241, "r98": 87, "r980": 241, "r981": 241, "r982": 241, "r983": 241, "r984": 241, "r985": 241, "r986": 241, "r987": 241, "r988": 241, "r989": 241, "r99": 87, "r990": 241, "r991": 241, "r992": 241, "r993": 241, "r994": 241, "r995": 241, "r996": 241, "r997": 241, "r998": 241, "r999": 241, "r_": [88, 146, 192, 218], "r_0": 136, "r_1": [70, 208, 218], "r_10": 136, "r_13": 136, "r_15": 136, "r_2": 70, "r_20": 136, "r_7": 136, "r_8": 136, "r_a_i": 138, "r_a_x": 138, "r_aug": 124, "r_b": 55, "r_b_x": 138, "r_b_y": 138, "r_f": [55, 217], "r_g": 217, "r_i": [70, 218], "r_j": 231, "r_k": [70, 184], "r_n": 208, "r_nl": [69, 146, 192], "r_node_1_i": 140, "r_node_1_x": 140, "r_node_2_i": 140, "r_pt": 22, "r_val": 18, "r_x": [33, 201], "r_y": [33, 201], "r_z": [33, 201], "ra": 223, "rabin": 128, "racah": 206, "rad": [13, 22, 89, 142, 216, 299], "rad2deg": 299, "rad_ration": 233, "rademach": [128, 241], "rademacher_distribut": 241, "radial": [146, 192, 306], "radian": [22, 61, 94, 97, 98, 99, 101, 102, 103, 124, 136, 142, 164, 165, 200], "radiat": 241, "radic": [12, 16, 48, 88, 89, 124, 208, 216, 217, 233, 239, 240], "radii": 98, "radioeng": 91, "radiu": [96, 98, 102, 104, 156, 159, 160, 164, 207, 240, 241, 275, 299, 303, 309, 311], "radius_of_converg": 96, "radix": 91, "radsimp": [88, 233], "rag": 124, "rai": [4, 98, 100, 101, 102, 104, 105, 160, 164], "rail": [89, 158], "rail_fence_ciph": 89, "rail_fram": 158, "rail_mass": 158, "rail_masscent": 158, "railfenc": 89, "raini": 241, "rais": [3, 11, 12, 13, 14, 16, 33, 36, 37, 41, 42, 43, 62, 64, 67, 69, 74, 77, 80, 88, 89, 90, 92, 94, 97, 98, 101, 103, 104, 105, 113, 115, 120, 124, 125, 127, 128, 130, 142, 144, 159, 165, 177, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 223, 229, 233, 234, 236, 237, 238, 239, 240, 241, 245, 247, 250, 252, 254, 257, 259, 262, 272, 293], "raise_on_deprec": 252, "raise_on_error": 252, "raised_cosine_distribut": 241, "raisedcosin": 241, "rake": 302, "ram": 11, "ramanujan": [92, 93, 128], "ramif": 216, "ramp": [136, 137], "ramp_funct": 142, "ramp_response_numerical_data": 142, "ramp_response_plot": 142, "ran": 12, "randal": 215, "randint": [88, 124, 214], "randmatrix": 124, "random": [2, 4, 13, 71, 72, 77, 79, 80, 86, 89, 98, 101, 102, 122, 124, 128, 175, 187, 207, 212, 214, 216, 217, 221, 251, 252, 255, 259, 289, 293, 297], "random_bitstr": 72, "random_circuit": 175, "random_complex_numb": [13, 88], "random_derang": 259, "random_integer_partit": 77, "random_point": [98, 101, 102], "random_poli": 217, "random_pr": 79, "random_stab": 79, "random_symbol": 241, "randomdomain": 241, "randomindexedsymbol": 241, "randomis": [41, 249, 284], "randomli": [12, 79, 88, 89, 128, 185], "randommatrixsymbol": 241, "randomst": 241, "randomsymbol": 241, "randomvari": 241, "randprim": [74, 128], "randrang": 88, "randtest": 251, "rang": [4, 13, 14, 15, 18, 20, 39, 43, 48, 51, 52, 67, 69, 77, 78, 79, 80, 82, 84, 88, 89, 93, 94, 96, 102, 124, 128, 132, 137, 140, 142, 146, 160, 191, 207, 210, 211, 212, 213, 214, 216, 217, 218, 223, 224, 227, 229, 230, 233, 237, 239, 240, 241, 242, 246, 252, 259, 286, 287, 297, 304], "range1": 207, "range2": 207, "range_i": 207, "range_u": 207, "range_v": 207, "range_x": 207, "rangl": [70, 79, 130, 170, 188, 206], "rank": [65, 69, 70, 72, 77, 79, 80, 82, 83, 84, 103, 117, 124, 125, 200, 202, 208, 210, 212, 214, 216, 242, 246, 247, 293], "rank_binari": 83, "rank_decomposit": 124, "rank_factor": 124, "rank_grai": 83, "rank_lexicograph": 83, "rank_nonlex": 80, "rank_trotterjohnson": 80, "rankcheck": 124, "rankdir": [221, 296], "rao": [18, 131, 132, 134, 299], "raphson": 69, "rapidli": [53, 88, 92, 113, 228], "rare": [4, 12, 14, 43, 88, 237, 241, 250, 289], "rasch": 206, "rasch03": 206, "rat": 128, "rat_clear_denom": 217, "rate": [16, 35, 131, 132, 148, 241, 272, 287, 302], "rather": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 30, 32, 35, 37, 39, 41, 42, 43, 48, 52, 55, 56, 57, 60, 65, 69, 70, 71, 79, 80, 81, 88, 92, 94, 99, 104, 106, 113, 118, 120, 124, 128, 130, 133, 134, 158, 171, 185, 189, 191, 195, 208, 210, 211, 214, 217, 219, 224, 231, 234, 236, 237, 240, 241, 243, 256, 259, 260, 274, 289, 291, 292, 309], "rathnayak": 0, "ratint": 115, "ratint_logpart": 115, "ratint_ratpart": 115, "ratio": [46, 65, 78, 79, 87, 88, 92, 93, 96, 98, 101, 102, 103, 104, 119, 128, 132, 144, 164, 196, 210, 221, 230, 233, 239], "ration": [12, 15, 41, 43, 48, 62, 64, 65, 67, 69, 87, 88, 92, 93, 94, 96, 98, 101, 103, 105, 109, 113, 115, 116, 120, 124, 128, 130, 144, 160, 193, 206, 209, 210, 214, 215, 216, 218, 221, 226, 229, 230, 231, 233, 234, 236, 239, 240, 241, 259, 265, 288, 289, 292, 296], "rational": 12, "rational_algorithm": 223, "rational_convers": 233, "rational_funct": 88, "rational_independ": 223, "rational_laurent_seri": 237, "rational_numb": [41, 65], "rational_parametr": 265, "rationalfield": [211, 212], "rationalhandl": 65, "rationalpred": 65, "rationalriccati": 237, "rationaltool": [115, 217], "ratsimp": [11, 88, 233], "ratsimpmodprim": 233, "raw": [4, 5, 69, 88, 89, 94, 129, 130, 185, 190, 210, 211, 212, 217, 229, 233, 296], "rawlin": 262, "ray2d": [101, 104], "ray3d": [101, 102, 164], "ray_transfer_matrix_analysi": 160, "rayleigh": [160, 241], "rayleigh2waist": 160, "rayleigh_distribut": 241, "rayleighdistribut": 241, "raytransfermatrix": 160, "rb": [28, 55, 155], "rb_frame": 28, "rb_masscent": 28, "rcall": [88, 90], "rceil": [113, 130], "rcirc": 99, "rcode": 221, "rcollect": 233, "rd": [22, 124, 221], "re": [3, 11, 13, 16, 33, 43, 66, 67, 69, 79, 80, 88, 89, 92, 94, 96, 113, 115, 124, 200, 202, 208, 214, 221, 222, 223, 229, 230, 231, 237, 239, 252, 268, 270, 287, 289, 292], "reach": [41, 128, 144, 216, 217, 237], "reachabl": [231, 241], "reaction": [136, 137, 138, 140, 148], "reaction_bodi": 149, "reaction_forc": 136, "reaction_fram": 148, "reaction_load": [136, 137, 138, 140], "reaction_mo": 136, "reaction_point": 149, "read": [3, 4, 5, 9, 11, 12, 13, 14, 30, 35, 36, 43, 57, 80, 94, 113, 128, 137, 207, 210, 211, 212, 218, 221, 234, 247, 248, 256, 260, 290, 296, 297], "readabl": [4, 12, 14, 21, 60, 68, 116, 217, 220, 221, 228, 230], "reader": [4, 5, 11, 12, 18, 28, 43, 68, 70, 208, 221, 256, 290, 295], "readi": [3, 11, 41, 158, 211, 221, 237, 304], "readili": [101, 124], "readlin": 252, "readm": 2, "readthedoc": [5, 116, 260], "reagent": 216, "real": [12, 13, 14, 15, 16, 18, 22, 30, 38, 39, 41, 42, 43, 48, 51, 52, 61, 63, 65, 66, 67, 69, 80, 88, 89, 90, 92, 93, 94, 95, 96, 100, 104, 105, 110, 113, 115, 118, 120, 124, 130, 134, 140, 144, 146, 155, 160, 163, 164, 171, 189, 202, 206, 209, 212, 216, 217, 218, 221, 222, 224, 228, 229, 231, 233, 236, 237, 239, 240, 241, 246, 250, 254, 291, 297, 298, 299], "real_el": 65, "real_field": 61, "real_gaunt": 206, "real_num": 105, "real_numb": [41, 65], "real_root": [94, 217, 239], "realelementshandl": 65, "realelementspred": 65, "realfield": [211, 212], "realgaunt": 206, "realhandl": 65, "realist": 128, "realiz": [16, 71, 73, 79, 90, 93, 118, 128, 208, 209, 214, 241, 306], "realli": [3, 11, 12, 13, 14, 15, 39, 41, 42, 43, 88, 100, 128, 193, 210, 211, 220, 222, 228, 230, 231, 233, 237, 253, 262, 289, 291, 302], "realnormedalgebra": 61, "realnumb": 88, "realpred": 65, "reals_onli": 124, "rear": 302, "rearrang": [18, 25, 26, 52, 145, 153, 175, 237], "reason": [3, 5, 11, 12, 13, 14, 15, 18, 22, 23, 27, 36, 37, 41, 42, 43, 54, 55, 61, 69, 80, 86, 88, 92, 96, 113, 116, 121, 124, 151, 153, 154, 162, 196, 205, 210, 211, 214, 215, 218, 221, 229, 231, 233, 237, 240, 250, 256, 257, 259, 260, 286, 287, 291, 292, 293, 299, 302, 309], "reassembl": 217, "reassign": 22, "rebas": [9, 11], "rebuild": [14, 15, 43, 88, 217, 292], "rebuilt": [15, 292], "recal": [43, 88, 124, 214, 216, 231, 289, 291, 292, 298], "recalcul": [153, 217], "recast": [113, 233, 239, 240], "reccur": 241, "receiv": [57, 71, 88, 89, 128, 149, 186, 216, 246], "recent": [3, 12, 13, 14, 16, 38, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 69, 70, 80, 88, 89, 92, 96, 98, 115, 118, 119, 120, 121, 124, 126, 127, 130, 144, 206, 208, 210, 211, 212, 214, 217, 220, 228, 229, 237, 239, 240, 250, 253, 255, 257, 259, 260, 262, 289, 293], "recherch": 218, "recip": [221, 259], "reciph": 89, "reciproc": [124, 241, 297], "reciprocal_distribut": 241, "reciprocaltrigonometricfunct": 43, "recogn": [13, 14, 16, 48, 53, 55, 88, 89, 93, 103, 128, 136, 145, 209, 212, 220, 229, 230, 239, 246, 289], "recognis": [113, 211, 231, 233], "recommend": [4, 8, 9, 11, 13, 14, 15, 16, 17, 18, 21, 25, 30, 35, 41, 43, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 68, 69, 88, 89, 92, 124, 131, 132, 134, 185, 200, 209, 210, 211, 212, 218, 234, 237, 240, 246, 250, 257, 269, 270, 295, 298, 299], "recomput": [84, 217], "reconnect": 69, "reconstruct": [14, 46, 89, 124, 210, 214, 234, 292], "reconstuct": 214, "record": [11, 71, 82, 88, 216, 221, 252], "recov": [89, 115, 130, 196, 214, 216, 217, 234, 237], "recreat": [14, 88, 152], "recrus": 214, "rectangl": [98, 99, 101, 103, 104, 207, 217], "rectangular": [124, 207, 229, 240, 269], "rectum": 98, "recur": 88, "recurr": [87, 93, 110, 124, 216, 227, 233, 237, 241, 261], "recurrence_memo": 261, "recurs": [15, 16, 38, 41, 43, 67, 88, 93, 113, 115, 118, 124, 128, 132, 207, 214, 217, 218, 221, 222, 226, 228, 233, 239, 240, 245, 250, 252, 256, 257, 259, 288, 297, 302], "recursionerror": 14, "recursiveseq": 227, "red": [12, 207], "red_groebn": 214, "redefin": [12, 14, 25, 27, 43, 80, 88, 158, 209, 260], "redistribut": [0, 217], "reduc": [5, 16, 27, 42, 46, 49, 56, 62, 64, 66, 70, 84, 88, 89, 91, 93, 94, 96, 103, 104, 113, 115, 124, 128, 131, 135, 144, 145, 173, 191, 208, 210, 211, 212, 214, 215, 216, 217, 218, 222, 227, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 243, 259, 260, 293], "reduce_abs_inequ": 236, "reduce_alg_num": 216, "reduce_anp": 216, "reduce_el": [208, 216], "reduce_inequ": [37, 50, 236, 239], "reduce_rational_inequ": 236, "reduce_toti": 13, "reduced_expr": [222, 233], "reduced_mod_p": 216, "reduced_row_echelon_form": 210, "reduced_toti": [89, 93, 128], "reduct": [70, 124, 154, 210, 214, 216, 234], "reduction_formula": 230, "redund": [3, 12, 18, 41, 79, 86, 118, 124, 131, 132, 134, 210, 237, 254, 299], "reev": 80, "reevalu": 289, "reexpress": [200, 270], "ref": [3, 30, 79, 94, 124, 142, 226, 241, 255, 293], "ref_fram": 158, "refactor": [13, 237, 245, 256], "refer": [2, 3, 5, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 25, 28, 30, 31, 32, 33, 35, 39, 42, 43, 44, 48, 50, 51, 52, 53, 54, 56, 57, 59, 63, 64, 65, 67, 69, 72, 74, 76, 77, 79, 80, 81, 82, 86, 89, 91, 93, 94, 96, 98, 103, 104, 105, 110, 116, 117, 118, 123, 125, 129, 131, 132, 134, 136, 142, 144, 145, 147, 148, 149, 152, 153, 154, 155, 156, 158, 160, 162, 164, 168, 170, 172, 173, 174, 177, 179, 180, 188, 189, 191, 200, 201, 202, 204, 210, 211, 213, 221, 223, 224, 226, 229, 233, 236, 237, 238, 239, 241, 247, 256, 259, 260, 262, 265, 269, 270, 274, 282, 283, 289, 293, 294, 297, 298, 300, 302, 305], "referenc": [5, 11, 72, 77, 128, 158, 188, 216, 302], "reference_fram": [150, 155, 200], "reference_quant": 198, "referencefram": [4, 13, 18, 22, 25, 26, 27, 28, 30, 31, 33, 34, 35, 134, 148, 149, 150, 152, 153, 155, 156, 158, 159, 200, 201, 202, 204, 205, 299, 302, 303, 304, 306, 307, 309, 310, 311], "refin": [62, 64, 88, 124, 208, 212, 216, 217, 233, 254, 277], "refine_ab": 66, "refine_arg": 66, "refine_atan2": 66, "refine_im": 66, "refine_matrixel": 66, "refine_pow": 66, "refine_r": 66, "refine_root": [212, 216, 217], "refine_sign": 66, "refinementfail": 214, "reflect": [50, 57, 72, 76, 80, 88, 98, 99, 104, 117, 140, 160, 163, 164, 200], "reflected_port": 163, "reflected_pow": 163, "reflective_filt": 163, "reflex": 101, "reform": 101, "reformat": 187, "refract": [160, 162, 164, 165], "refraction_angl": 164, "refractive_index": 162, "refus": [41, 297], "reg_point": 265, "regard": [31, 43, 70, 89, 96, 116, 191, 208, 209, 223, 239, 240], "regardless": [3, 4, 43, 80, 88, 115, 128, 210, 214, 229, 233, 259, 269, 274, 297], "regex": 13, "regg": 206, "regge58": 206, "regge59": 206, "region": [67, 96, 105, 115, 136, 207, 229, 237, 240, 241, 265, 268, 275], "regist": [13, 62, 63, 64, 89, 187], "register_handl": [13, 62], "register_mani": [13, 63, 64], "registr": 13, "registri": 88, "regress": 11, "regul": 216, "regular": [3, 11, 12, 13, 14, 16, 22, 41, 42, 70, 76, 88, 89, 92, 96, 104, 110, 111, 115, 128, 185, 211, 218, 237, 247, 252, 296, 297], "regular_point": 265, "regularpolygon": [4, 99, 100, 104, 207], "reidel": 223, "reidemeister_present": 70, "reimport": 16, "reindex": 217, "reintroduc": 84, "reinvent": 13, "reject": [41, 42, 128, 234, 262], "rel": [4, 5, 18, 27, 28, 35, 36, 51, 68, 69, 78, 79, 80, 81, 85, 86, 87, 88, 89, 92, 93, 99, 113, 124, 128, 130, 148, 149, 152, 153, 155, 156, 159, 163, 190, 200, 204, 208, 210, 211, 214, 216, 229, 231, 236, 239, 241, 252, 259, 269, 270, 274, 291, 307], "rel_op": [50, 88], "rela": 208, "relat": [2, 3, 4, 5, 11, 12, 14, 15, 17, 18, 23, 24, 30, 34, 35, 42, 62, 64, 65, 67, 70, 72, 78, 79, 86, 90, 93, 94, 104, 110, 113, 115, 124, 128, 130, 131, 132, 133, 134, 138, 140, 147, 151, 153, 156, 160, 165, 173, 175, 195, 200, 204, 206, 207, 208, 210, 214, 216, 217, 218, 220, 221, 225, 227, 228, 231, 233, 234, 236, 237, 239, 240, 241, 259, 297, 306, 309], "relation_dict": 90, "relation_with_other_funct": 96, "relations_sort": 50, "relationship": [16, 18, 24, 32, 33, 36, 37, 41, 69, 88, 93, 95, 115, 128, 134, 158, 175, 200, 211, 239], "relative_ord": [78, 79], "relativist": 146, "relator_bas": 70, "relax": [124, 130], "relb": 208, "releas": [5, 8, 11, 13, 18, 27, 88, 115, 124, 130, 207, 246, 257, 292], "relev": [3, 4, 5, 11, 12, 13, 14, 36, 41, 69, 86, 101, 116, 117, 149, 153, 155, 158, 196, 205, 211, 231, 237, 238, 247, 252, 273, 302], "reli": [2, 12, 13, 69, 124, 129, 141, 214, 220, 221, 228, 233, 240, 255, 260, 293], "reliabl": [67, 88, 237, 257, 287], "reload": 8, "reloc": 128, "rels_h": 79, "rels_k": 79, "reltol": 69, "rem": [211, 212, 214, 217], "rem_z": 217, "remain": [3, 12, 13, 15, 22, 33, 35, 36, 43, 63, 64, 69, 79, 80, 82, 84, 88, 89, 94, 113, 124, 128, 130, 145, 190, 216, 217, 218, 227, 230, 231, 237, 238, 239, 241, 243, 247, 256, 259, 260, 269, 274, 286, 289, 291, 292, 293, 299], "remaind": [16, 87, 88, 89, 128, 209, 211, 212, 215, 217, 237], "remainder_modulus_pair": 128, "remainin": 214, "remark": [214, 220, 231, 237], "remedi": 113, "rememb": [3, 4, 11, 12, 14, 16, 18, 21, 30, 35, 36, 43, 55, 118, 124, 145, 221, 233, 239, 242, 260, 292, 297], "remot": [9, 88], "remov": [3, 11, 12, 13, 14, 27, 41, 50, 61, 62, 63, 79, 82, 86, 88, 92, 94, 96, 103, 104, 113, 118, 124, 128, 131, 136, 138, 140, 149, 152, 153, 175, 191, 212, 214, 217, 219, 220, 221, 233, 234, 237, 239, 240, 242, 243, 253, 254, 255, 257, 259, 260, 286, 297, 309, 311], "remove_handl": [13, 62], "remove_load": [136, 138, 140, 149], "remove_memb": 140, "remove_nod": 140, "remove_redundant_sol": 237, "remove_support": 140, "removeo": [30, 88, 221, 287], "ren": 69, "renam": [3, 69, 115], "render": [2, 4, 5, 8, 11, 12, 69, 88, 116, 205, 207, 221, 260, 296], "render_as_modul": 69, "render_as_source_fil": 69, "renewcommand": 221, "renumb": 237, "reorder": [11, 80, 87, 94, 191, 217, 237, 241, 259], "reorder_limit": 87, "rep": [41, 79, 84, 88, 175, 208, 210, 211, 212, 216, 217, 230, 233, 262], "rep1": [215, 230], "rep_expect": 186, "rep_innerproduct": 186, "repeat": [8, 9, 15, 16, 79, 82, 87, 88, 94, 96, 115, 117, 124, 128, 130, 175, 177, 191, 207, 208, 209, 214, 216, 217, 221, 227, 237, 241, 245, 246, 253, 255, 259, 297], "repeated_decim": 130, "repeatedli": [53, 128, 145, 253], "repetit": [247, 259], "rephras": 287, "repid": 215, "repl": [15, 247], "repl_dict": 88, "replac": [3, 4, 9, 12, 13, 14, 15, 16, 18, 21, 30, 41, 67, 69, 79, 87, 88, 89, 92, 93, 94, 96, 98, 102, 115, 118, 124, 128, 129, 130, 149, 150, 152, 180, 186, 200, 207, 208, 214, 217, 218, 222, 228, 230, 231, 233, 237, 239, 240, 247, 248, 259, 260, 262, 286, 295], "replace_in_add": 69, "replace_non": 186, "replace_with_arrai": [13, 247, 248], "replacement_dict": 247, "replaceoptim": 69, "replic": 302, "repmatrix": 13, "repo": [9, 11, 12, 22], "report": [12, 60, 67, 79, 88, 101, 124, 128, 218, 229, 240, 252, 293, 298], "report_": 252, "report_cdiff": 252, "report_ndiff": 252, "report_only_first_failur": 252, "report_udiff": 252, "reportedli": 89, "repositori": [2, 5, 9, 59], "repr": [13, 14, 69, 115, 185, 211, 216, 221, 252, 296], "repres": [2, 12, 13, 14, 15, 16, 18, 22, 23, 25, 26, 27, 28, 30, 32, 33, 35, 36, 38, 41, 42, 43, 46, 51, 53, 55, 61, 63, 65, 68, 69, 70, 71, 72, 77, 78, 79, 80, 81, 83, 84, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 103, 104, 105, 110, 111, 115, 117, 118, 120, 123, 124, 128, 130, 131, 132, 134, 136, 137, 141, 142, 144, 148, 149, 151, 152, 153, 155, 156, 158, 159, 160, 162, 163, 165, 177, 178, 180, 184, 185, 188, 189, 191, 193, 195, 196, 197, 198, 199, 200, 204, 205, 206, 207, 208, 209, 210, 212, 214, 217, 219, 221, 223, 224, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 245, 246, 247, 254, 256, 259, 260, 265, 268, 272, 274, 282, 287, 289, 291, 292, 297, 298, 299, 302, 303, 304, 306, 307, 310], "represantit": 208, "represent": [13, 14, 15, 21, 23, 27, 32, 33, 35, 43, 48, 52, 61, 68, 69, 70, 71, 79, 82, 88, 89, 94, 96, 100, 108, 110, 112, 113, 115, 117, 118, 119, 120, 124, 127, 128, 141, 142, 147, 149, 151, 158, 160, 175, 180, 185, 186, 188, 189, 191, 193, 205, 207, 208, 210, 212, 214, 216, 217, 218, 219, 220, 221, 223, 231, 233, 234, 237, 240, 241, 246, 247, 260, 262, 265, 268, 275, 283, 287, 289, 292], "reprifi": 221, "reproduc": [2, 12, 14, 48, 217, 252, 297], "reproduct": 12, "reprprint": 221, "request": [2, 3, 4, 5, 8, 9, 12, 13, 22, 41, 48, 59, 67, 88, 92, 104, 113, 128, 191, 207, 214, 217, 245, 253], "requir": [0, 2, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 28, 32, 43, 45, 53, 57, 59, 69, 79, 88, 89, 91, 92, 96, 98, 99, 101, 102, 105, 107, 118, 124, 127, 128, 129, 130, 131, 132, 134, 136, 138, 142, 148, 149, 152, 153, 155, 156, 158, 165, 188, 200, 202, 206, 207, 208, 210, 211, 212, 214, 216, 218, 221, 224, 230, 231, 234, 237, 239, 240, 241, 245, 252, 253, 254, 255, 257, 259, 260, 268, 269, 270, 293, 295, 299, 302, 306], "requisit": 28, "rersiv": 212, "rerun": [8, 11, 12, 217, 252], "res_": 231, "research": [11, 39, 80, 144, 210, 218, 233], "researchg": [215, 241], "reseed": 259, "resembl": [15, 90, 96, 115, 246], "reserv": [15, 22, 41, 247, 254, 293], "reset": [11, 79, 81, 207, 214, 217, 252, 255, 257], "reshap": [22, 30, 69, 124, 242, 248, 259], "resid": 5, "residu": [12, 84, 89, 93, 128, 212, 214, 231], "residue_ntheori": [13, 93, 128, 214, 234], "residue_theorem": 228, "residuos": 89, "resist": [98, 104, 136, 137, 138, 230, 299], "resiz": [79, 80, 120, 124], "resolut": [63, 64, 234], "resolv": [41, 42, 48, 50, 51, 52, 53, 54, 55, 56, 88, 115, 230, 233, 239], "resourc": [4, 5, 8, 13, 43, 124, 215, 237, 253], "resp": [209, 212, 237], "respect": [4, 9, 12, 13, 15, 16, 18, 24, 26, 28, 30, 32, 33, 36, 43, 46, 55, 62, 64, 65, 67, 68, 69, 70, 78, 79, 80, 83, 84, 86, 87, 88, 90, 93, 94, 96, 98, 100, 104, 105, 110, 111, 113, 115, 118, 120, 124, 128, 130, 131, 132, 134, 136, 137, 140, 144, 149, 150, 152, 155, 158, 159, 165, 180, 193, 194, 200, 204, 206, 207, 208, 210, 211, 212, 214, 216, 217, 218, 221, 223, 224, 227, 229, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 252, 254, 265, 267, 268, 269, 270, 271, 272, 273, 274, 287, 297, 299, 306], "respond": [11, 88], "respons": [22, 46, 87, 88, 144, 207, 254], "rest": [3, 13, 14, 18, 22, 23, 113, 116, 118, 121, 137, 146, 151, 196, 208, 211, 241, 259, 289, 290, 297, 299, 306], "restor": [16, 233], "restrict": [12, 15, 41, 43, 50, 69, 77, 88, 89, 96, 124, 136, 137, 191, 195, 208, 211, 216, 218, 236], "restrict_codomain": 208, "restrict_domain": 208, "restructur": 5, "restructuredtext": [4, 5], "result": [2, 4, 8, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 27, 30, 32, 36, 37, 38, 39, 41, 42, 43, 57, 61, 62, 63, 64, 65, 67, 68, 69, 78, 79, 80, 84, 87, 88, 89, 90, 92, 94, 96, 100, 105, 106, 110, 112, 113, 115, 117, 118, 120, 124, 127, 128, 129, 130, 131, 136, 144, 145, 148, 149, 150, 151, 153, 154, 159, 174, 176, 183, 185, 186, 188, 190, 191, 193, 194, 195, 196, 200, 207, 208, 210, 211, 212, 214, 215, 216, 217, 218, 219, 221, 223, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 248, 252, 253, 254, 256, 257, 259, 260, 262, 265, 268, 270, 289, 291, 292, 293, 297, 299, 306], "result_5397460570204848505": [69, 254], "result_dom": 211, "result_sympi": 211, "result_var": [69, 254], "result_vari": 254, "result\u2085\u2081\u2084\u2082\u2083\u2084\u2081\u2086\u2088\u2081\u2083\u2089\u2087\u2087\u2081\u2089\u2084\u2082\u2088": 69, "ret": 124, "retain": [80, 88, 94, 96, 115, 128, 130, 217, 222, 230, 233], "retard": 163, "rethink": 171, "retract": 217, "retri": [13, 115, 128], "retriev": [13, 38, 71, 86, 124, 158, 217, 233, 247], "retriv": 124, "return": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 22, 25, 27, 28, 30, 32, 33, 36, 37, 39, 41, 42, 43, 48, 51, 52, 54, 56, 57, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 117, 118, 119, 120, 124, 125, 127, 128, 130, 131, 132, 133, 134, 136, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 165, 167, 168, 172, 175, 176, 177, 180, 181, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 233, 234, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 265, 268, 270, 272, 286, 287, 292, 293, 296, 297, 298, 299, 302, 306, 310], "return_expr": 130, "return_mpmath": 217, "return_typ": 69, "returnvalu": 254, "reurn": 94, "reus": [12, 16, 43, 69, 191, 291], "rev": 88, "rev1": 307, "rev2": 307, "reveal": [48, 51, 53, 69, 128, 210, 240, 292, 305], "revers": [5, 46, 72, 77, 80, 87, 88, 89, 94, 115, 116, 118, 124, 128, 144, 190, 200, 205, 208, 210, 214, 217, 218, 221, 222, 229, 233, 237, 259, 297], "reverse_ord": 87, "reversedgradedlexord": 217, "reversedsign": 88, "revert": [13, 212, 217], "review": [4, 5, 11, 12, 29], "revis": [11, 239], "revisit": [12, 35, 310], "revolut": 152, "revolv": 140, "rewrit": [12, 87, 88, 90, 93, 94, 96, 113, 115, 118, 136, 144, 188, 212, 217, 228, 229, 230, 233, 237, 238, 239, 240, 241, 277, 291, 293], "rewrite_complex": 115, "rewriterul": 115, "rewritten": [22, 43, 88, 93, 94, 96, 115, 188, 195, 228, 233, 237, 239, 297], "rf": [55, 87, 93, 217], "rfloor": [88, 94, 130, 212, 240, 241], "rfunction_format": 221, "rfunction_str": 221, "rg": 77, "rgs_enum": 77, "rgs_gener": 77, "rgs_rank": 77, "rgs_unrank": 77, "rh": [13, 18, 22, 37, 50, 53, 55, 69, 78, 80, 88, 119, 124, 131, 134, 149, 153, 158, 210, 219, 221, 223, 237, 239, 240, 271, 299, 309, 310, 311], "rho": [16, 90, 113, 124, 128, 185, 221, 241, 247, 275, 304], "rhs_x": 22, "ri": [88, 221], "riccati_equ": 237, "riccati_inverse_norm": 237, "riccati_norm": 237, "riccati_reduc": 237, "riccati_special_minus2": 237, "riccatispeci": 237, "ricci": 90, "rice": 241, "rich": [30, 233], "richard": [0, 128], "richardon": 211, "richardson": [92, 228, 240], "richer": 206, "riemann": [15, 90, 93, 94, 113, 208, 233, 247], "riemann_cycl": 247, "riemann_cyclic_replac": 247, "riemann_sum": 115, "riemann_summation_method": 115, "riemann_xi": 221, "riemannxi": 221, "rieselprim": 128, "right": [3, 4, 5, 8, 11, 12, 13, 16, 18, 22, 27, 30, 31, 32, 33, 36, 39, 43, 46, 49, 50, 53, 55, 61, 67, 69, 70, 79, 80, 84, 88, 89, 91, 93, 94, 96, 104, 105, 113, 115, 118, 124, 127, 128, 130, 131, 132, 136, 137, 138, 140, 144, 153, 158, 159, 163, 170, 175, 177, 179, 180, 185, 188, 191, 200, 206, 207, 208, 210, 216, 217, 218, 219, 221, 223, 224, 228, 229, 231, 237, 238, 240, 241, 252, 254, 256, 259, 272, 287, 291, 293, 297, 299], "right_hand_sid": 158, "right_open": 229, "right_support": 138, "rightarrow": [68, 80, 84, 89, 93, 94, 96, 110, 111, 113, 115, 118, 124, 128, 207, 216, 228, 240, 243, 259, 287], "righthand": 134, "rightmost": [43, 191], "rigibodi": 30, "rigid": [13, 22, 23, 30, 35, 134, 137, 140, 149, 151, 153, 155, 200, 299, 302, 303, 307], "rigid_bodi": 13, "rigid_tendon": 134, "rigid_tendon_muscl": 134, "rigidbodi": [13, 24, 28, 30, 148, 149, 152, 153, 155, 158, 299, 302, 303, 304, 307, 309, 310, 311], "rigidli": 32, "rigor": [3, 36, 96, 254], "rim": 229, "ring": [15, 35, 48, 91, 111, 124, 125, 209, 210, 214, 216, 217, 218, 219, 220, 221, 259], "ring_seri": 218, "ringel": 210, "rioboo": 115, "risc": [110, 237, 265], "risc_1355": 265, "risc_2244": 110, "risc_5387": 237, "risch": [13, 115, 287], "risch_integr": 115, "rise": [87, 93, 96, 206, 233, 237, 241, 269], "riseup": 11, "risingfactori": [87, 93, 96, 221, 223], "risk": 57, "riski": 221, "rivista": 196, "rk": 184, "rk4": 110, "rkgate": 184, "rl1": 230, "rl2": 230, "rm": [8, 69], "rm4": 89, "rmul": [80, 210], "rmul_with_af": 80, "rmultipli": 124, "rn": [88, 90], "rng": 88, "roach": [113, 231], "roach1996": 231, "roach1997": 231, "robert": [0, 128, 210, 241], "robertson": 234, "robot": [23, 151], "robust": [12, 55, 85, 88, 92, 213, 233, 237], "robustli": 48, "roch": 237, "rocklin": 0, "rod": 35, "roken": 262, "role": [41, 94, 219], "roll": [35, 241, 301, 302, 305], "roller": [136, 137, 140], "room": [7, 208], "root": [12, 16, 30, 41, 43, 49, 52, 57, 61, 67, 69, 87, 88, 89, 94, 96, 110, 111, 112, 113, 115, 117, 119, 124, 128, 130, 196, 206, 208, 209, 212, 214, 216, 218, 220, 221, 231, 233, 237, 239, 240, 241, 252, 256, 259, 291, 293, 296, 298], "root1": 117, "root2": 117, "root_index": 212, "root_not": 221, "root_of_un": 94, "root_scalar": 54, "root_spac": 117, "root_system": 117, "rootof": [48, 94, 217], "rootoftool": [94, 124, 217], "rootsum": [115, 217, 223], "rootsystem": 117, "rop": [35, 88], "ropen": [67, 94, 229, 241], "rose": 79, "rosen": 128, "rot": [4, 104, 188], "rot13": 89, "rot90": 124, "rot_axis1": 124, "rot_axis2": 124, "rot_axis3": 124, "rot_ccw_axis1": 124, "rot_ccw_axis2": 124, "rot_ccw_axis3": 124, "rot_given": 124, "rot_ord": [152, 200, 204, 267], "rot_typ": [33, 152, 200, 204], "rotat": [13, 24, 28, 31, 32, 33, 35, 36, 61, 76, 79, 81, 88, 97, 98, 99, 101, 103, 104, 136, 137, 152, 156, 158, 159, 175, 188, 200, 204, 206, 207, 259, 265, 267, 270, 272, 274, 299, 302, 307, 309, 311], "rotate_left": 259, "rotate_point": 61, "rotate_right": 259, "rotated_fram": 152, "rotating_reference_fram": 202, "rotation_axi": 152, "rotation_coordin": 152, "rotation_jump": 136, "rotation_matrix": [265, 267, 270], "rotation_ord": [200, 265, 267], "rotation_spe": 152, "rou": 0, "rough": [23, 196], "roughli": [41, 88, 89, 129, 237, 260], "round": [15, 43, 54, 67, 69, 88, 92, 93, 94, 124, 164, 210, 212, 216, 217, 228, 230, 241], "round_trip": 89, "round_two": 216, "roundfunct": 94, "roundoff": 286, "roundrobin": 259, "routin": [14, 55, 69, 77, 87, 88, 89, 90, 113, 118, 124, 128, 153, 163, 191, 210, 214, 217, 220, 221, 222, 233, 234, 237, 238, 239, 240, 253, 259, 272], "rou\u010dka": 0, "row": [22, 30, 31, 32, 36, 53, 65, 68, 69, 70, 77, 80, 88, 93, 119, 120, 124, 125, 127, 128, 134, 144, 158, 186, 200, 210, 216, 221, 231, 240, 241, 246, 260, 265, 267, 302], "row1": 124, "row2": 124, "row_del": [124, 293], "row_echelon_form": 210, "row_insert": [124, 293], "row_join": [124, 302], "row_matrix": 30, "row_swap": 124, "rowend": 124, "rowmatrix": 30, "rowsep": 124, "rowslic": 210, "rowslist": [124, 210], "rowspac": [124, 210], "rowstart": 124, "royal": 29, "rp": [0, 104, 163], "rpent": 99, "rpm": 8, "rq0": 48, "rq1": 48, "rq2": 48, "rq3": 48, "rr": [68, 88, 106, 210, 211, 217, 218], "rr100": 211, "rref": [124, 210], "rref_den": 210, "rref_matrix": [124, 210], "rref_pivot": [124, 210], "rref_rh": 124, "rrw": 91, "rs_": 218, "rs_asin": 218, "rs_atan": 218, "rs_atanh": 218, "rs_co": 218, "rs_compose_add": 218, "rs_cos_sin": 218, "rs_cosh": 218, "rs_cot": 218, "rs_diff": 218, "rs_exp": 218, "rs_fun": 218, "rs_hadamard_exp": 218, "rs_integr": 218, "rs_is_puiseux": 218, "rs_lambertw": 218, "rs_log": 218, "rs_mul": 218, "rs_newton": 218, "rs_nth_root": 218, "rs_pow": 218, "rs_puiseux": 218, "rs_puiseux2": 218, "rs_series_from_list": 218, "rs_series_invers": 218, "rs_series_revers": 218, "rs_sin": 218, "rs_sinh": 218, "rs_squar": 218, "rs_sub": 218, "rs_swap": 241, "rs_tan": 218, "rs_tanh": 218, "rs_trunc": 218, "rsa": 89, "rsa_": 89, "rsa_private_kei": 89, "rsa_public_kei": 89, "rset": 229, "rsname": 254, "rsolv": 239, "rsolve_hyp": [124, 239], "rsolve_hypergeometr": 223, "rsolve_poli": 239, "rsolve_ratio": 239, "rst": [3, 4, 5, 11, 15, 70, 237, 252], "rsvg": 8, "rtime": 71, "rtol": 69, "ru": 237, "rubik": 79, "rubric": [87, 88], "rudimentari": [2, 43, 214], "ruffini": [48, 57, 124], "ruina": 29, "rule": [3, 5, 11, 12, 13, 14, 22, 33, 36, 39, 41, 43, 69, 79, 80, 87, 88, 96, 111, 113, 115, 118, 124, 136, 153, 159, 172, 175, 196, 200, 206, 210, 212, 218, 220, 221, 222, 227, 231, 233, 237, 247, 259, 260, 272, 289, 292], "run": [3, 4, 5, 8, 14, 15, 16, 30, 39, 41, 43, 45, 70, 79, 80, 82, 88, 89, 113, 124, 129, 130, 153, 158, 191, 205, 207, 208, 221, 231, 233, 237, 238, 239, 249, 250, 253, 255, 256, 259, 260, 284, 296, 302, 304], "run_all_test": 252, "run_in_subprocess_with_hash_random": 252, "rung": [15, 67, 110], "runner": [2, 12, 252], "runtest": [12, 13, 252], "runtim": [2, 15, 69, 88, 154, 260], "runtime_error": 69, "runtimeerror": [16, 67, 69, 229, 240, 259], "runtimeerror_": 69, "runtimewarn": 260, "rusin": 234, "ruskei": [80, 259], "russel": 214, "russian": 5, "rust": 254, "rust_cod": [69, 221], "rustcodegen": 254, "rustcodeprint": 221, "rv": [88, 230, 241, 259], "rvert": 113, "rx": 308, "ry": [30, 308], "ryser": 124, "rz": 308, "r\u2081": 137, "r\u2082": 137, "r\u2083": 137, "s0": [87, 111, 113, 163], "s0020": 80, "s0025": [67, 234], "s0747717183710539": 215, "s0895717706001609": 230, "s1": [41, 71, 79, 87, 101, 104, 111, 144, 201, 208, 217, 224, 234, 259, 268], "s11044": 154, "s1transitivesubgroup": [71, 216], "s2": [41, 71, 79, 80, 87, 101, 104, 144, 201, 208, 217, 224, 228, 234, 259, 268], "s208": 72, "s2transitivesubgroup": [71, 216], "s3": [71, 79, 87, 144, 224, 234], "s3_in_s6": 71, "s3transitivesubgroup": 71, "s4": [71, 80, 144], "s4m": 71, "s4p": 71, "s4transitivesubgroup": [71, 216, 217], "s4xc2": 71, "s5": [71, 79, 144], "s5transitivesubgroup": 71, "s6": 71, "s6transitivesubgroup": [71, 212], "s8": 136, "s_": [22, 78, 84, 214], "s_0": 84, "s_1": [70, 214, 259], "s_2": [70, 214], "s_3": 79, "s_4": 71, "s_5": 71, "s_6": 71, "s_aug": 124, "s_field": 90, "s_hexagon_theorem": 100, "s_i": [70, 84, 115, 117], "s_in": 160, "s_is_j": 117, "s_j": [78, 117, 214], "s_k": 70, "s_n": [71, 87, 217, 259], "s_out": 160, "s_postul": 128, "s_solution_of_systems_of_geodetic_polynomial_equ": 215, "s_transvers": 84, "s_x": [98, 104], "s_y": [98, 104], "sa": [104, 214, 217], "saboo": 0, "saddl": 207, "safe": [88, 128, 211, 217, 239, 245, 287], "safeguard": 226, "safeti": [70, 80, 121], "sage": [51, 88, 128, 206, 291], "sai": [3, 5, 11, 14, 15, 21, 22, 23, 30, 35, 36, 39, 41, 70, 78, 87, 88, 89, 117, 128, 151, 153, 196, 208, 209, 210, 214, 216, 220, 221, 228, 231, 234, 237, 239, 240, 241, 260, 286, 291, 297], "said": [0, 3, 15, 33, 35, 36, 61, 65, 69, 74, 128, 196, 209, 237, 240, 241, 265, 272], "sake": [43, 93, 234], "sakki": 259, "salvi": [215, 218], "sam": 241, "same": [3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 27, 32, 33, 35, 36, 39, 41, 42, 43, 45, 48, 50, 52, 55, 61, 63, 64, 65, 67, 68, 69, 71, 77, 78, 79, 80, 84, 87, 88, 89, 90, 93, 95, 96, 98, 101, 102, 103, 104, 105, 110, 111, 113, 115, 117, 118, 120, 124, 128, 130, 131, 134, 136, 137, 140, 144, 145, 148, 149, 152, 157, 175, 177, 185, 188, 189, 191, 193, 194, 195, 196, 198, 199, 200, 202, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 248, 250, 252, 254, 255, 256, 257, 259, 260, 262, 265, 267, 269, 270, 274, 287, 289, 292, 293, 296, 297, 299, 306, 309, 310], "same_root": 217, "samp": 241, "samp_list": 241, "sampl": [2, 39, 79, 91, 142, 144, 175, 207, 221, 241, 287, 291], "sample_it": [13, 241], "sample_p": 144, "sampling_": 241, "sampling_dens": 241, "sampling_p": 241, "samuel": 128, "samuelson": [124, 210], "sanit": 262, "sartaj": 0, "sat": [2, 63], "satisfi": [2, 5, 12, 13, 14, 27, 41, 51, 52, 56, 64, 65, 67, 70, 76, 79, 84, 88, 89, 93, 96, 98, 111, 113, 117, 118, 124, 128, 154, 175, 180, 208, 209, 212, 214, 216, 217, 221, 227, 228, 229, 234, 237, 238, 239, 240, 241, 247, 292, 297], "satur": 208, "saunder": 124, "savag": 259, "save": [2, 9, 12, 13, 14, 15, 67, 88, 124, 128, 207, 220, 239, 256], "saw": [127, 211, 297], "sawtooth": 224, "saxena": 215, "sb": 0, "sc": [79, 115], "sca": 214, "scalar": [13, 14, 22, 32, 34, 36, 54, 61, 88, 90, 103, 117, 120, 124, 129, 130, 144, 148, 155, 190, 200, 201, 202, 208, 210, 214, 221, 237, 242, 254, 260, 265, 267, 268, 269, 270, 271, 273, 275, 280], "scalar_field": [33, 201, 265, 268, 272], "scalar_map": 265, "scalar_part": 61, "scalar_potenti": [33, 201, 268, 272], "scalar_potential_differ": [33, 201, 268, 272], "scale": [36, 97, 98, 99, 103, 104, 105, 116, 136, 171, 192, 194, 195, 196, 198, 199, 205, 207, 217, 224, 241, 272, 274], "scale_factor": 198, "scale_matrix": 241, "scale_matrix_1": 241, "scale_matrix_2": 241, "scalex": 224, "scan": [88, 210], "scarc": 214, "scc": 210, "scenario": [14, 128, 241], "scene": [22, 233, 289], "schedul": 3, "schemat": [18, 191, 196, 299], "scheme": [3, 8, 41, 80, 87, 92, 206, 207, 214, 217, 246], "schiehlen": 29, "schirm": 29, "schmidt": 124, "school": [89, 230], "schorn": 234, "schost": 218, "schreier": [79, 84, 86], "schreier_sim": [79, 85, 86], "schreier_sims_increment": [79, 86], "schreier_sims_random": [79, 86], "schreier_vector": 79, "schur": 120, "schur_compl": 120, "schwab": 29, "sci": 206, "scienc": [0, 29, 30, 80, 113, 124, 208, 215, 230, 231, 287], "sciencedirect": [215, 230], "scienceworld": 55, "scientif": [0, 15, 30, 59, 88], "scientificamerican": 43, "scientist": 237, "scipi": [2, 7, 14, 15, 18, 21, 30, 48, 50, 53, 96, 185, 221, 241, 260, 286, 295, 299], "scm": 9, "scopatz": 0, "scope": [4, 11, 23, 27, 69, 151, 250, 297], "scott": 79, "scottish": 241, "scratch": [88, 196], "screen": [3, 15, 36, 116, 205, 252, 296], "screenshot": 207, "script": [2, 4, 11, 15, 45, 60, 96, 205, 253], "scroll": [11, 57], "sculptur": 89, "sdm": [210, 214], "sdm_": 214, "sdm_add": 214, "sdm_berk": 210, "sdm_deg": 214, "sdm_ecart": 214, "sdm_from_dict": 214, "sdm_from_vector": 214, "sdm_groebner": 214, "sdm_irref": 210, "sdm_lc": 214, "sdm_lm": 214, "sdm_lt": 214, "sdm_monomial_deg": 214, "sdm_monomial_divid": 214, "sdm_monomial_mul": 214, "sdm_mul_term": 214, "sdm_nf_mora": 214, "sdm_nullspace_from_rref": 210, "sdm_particular_from_rref": 210, "sdm_rref_den": 210, "sdm_spoli": 214, "sdm_to_dict": 214, "sdm_to_vector": 214, "sdm_zero": 214, "se": 18, "seamless": 18, "seamlessli": [18, 174], "sean": 0, "search": [3, 4, 22, 49, 67, 71, 79, 80, 84, 86, 88, 94, 124, 128, 208, 216, 217, 221, 230, 231, 233, 238, 241, 253], "search_funct": 176, "sec": [94, 115, 142, 216, 221, 230, 297], "secant": [94, 217], "sech": [94, 221], "second": [3, 5, 9, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24, 26, 28, 32, 35, 36, 39, 41, 42, 43, 48, 50, 52, 53, 55, 57, 60, 61, 64, 67, 69, 79, 80, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 101, 102, 104, 115, 124, 128, 129, 132, 136, 137, 142, 144, 145, 149, 151, 152, 153, 155, 156, 159, 162, 164, 165, 168, 172, 177, 180, 185, 186, 188, 189, 194, 195, 196, 198, 200, 201, 207, 210, 211, 212, 214, 215, 216, 217, 221, 223, 231, 233, 234, 237, 239, 240, 241, 242, 243, 259, 260, 265, 268, 269, 270, 282, 286, 291, 292, 293, 299, 306, 309, 311], "second_mo": 136, "second_moment_of_area": [98, 104], "second_reference_fram": 200, "second_system": 265, "secondari": 148, "secondarili": [69, 217], "secondhypergeometr": 237, "secondli": [3, 14, 43, 231], "secondlinearairi": 237, "secondlinearbessel": 237, "secondqu": 191, "secret": [43, 89], "secretli": 89, "section": [3, 5, 8, 10, 11, 12, 14, 15, 16, 18, 22, 28, 33, 36, 41, 43, 44, 61, 68, 70, 79, 80, 87, 88, 89, 91, 95, 96, 98, 104, 113, 118, 124, 130, 136, 137, 152, 159, 194, 196, 208, 211, 214, 216, 221, 224, 228, 231, 237, 247, 256, 257, 259, 269, 270, 271, 272, 276, 286, 287, 288, 289, 290, 291, 292, 294, 295, 296, 297, 298, 303], "section_modulu": [98, 104], "secur": [9, 13], "see": [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 25, 27, 35, 38, 39, 41, 42, 43, 44, 45, 62, 63, 64, 65, 67, 68, 69, 71, 74, 76, 79, 80, 81, 84, 87, 89, 90, 93, 94, 95, 96, 100, 104, 105, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 124, 125, 128, 129, 130, 134, 142, 149, 152, 153, 154, 158, 160, 163, 166, 167, 176, 180, 181, 185, 186, 187, 188, 190, 191, 194, 196, 200, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 246, 247, 250, 252, 253, 254, 255, 256, 257, 260, 265, 267, 275, 286, 287, 289, 291, 292, 293, 295, 296, 297, 298, 299, 308, 310], "seed": [12, 77, 79, 88, 89, 98, 101, 102, 124, 128, 214, 241, 252, 259], "seehuhn": 11, "seek": [3, 239], "seem": [12, 14, 22, 37, 41, 43, 112, 113, 196, 208, 210, 233, 237, 297], "seemingli": [87, 240], "seen": [4, 11, 24, 35, 39, 41, 61, 80, 113, 115, 130, 136, 140, 152, 155, 158, 196, 208, 211, 214, 217, 237, 240, 257, 259, 269, 289, 292, 296], "segment": [4, 13, 18, 35, 79, 98, 100, 101, 102, 103, 104, 105, 156, 207, 237, 252, 299], "segment2d": [100, 101, 104, 105], "segment3d": [101, 102], "seldom": 128, "select": [0, 8, 17, 18, 37, 53, 58, 69, 72, 79, 80, 87, 88, 89, 97, 102, 116, 118, 124, 128, 130, 132, 134, 150, 153, 196, 205, 211, 212, 214, 215, 217, 221, 230, 233, 239], "selector": [87, 124, 233, 259], "self": [4, 11, 12, 14, 18, 41, 43, 53, 61, 63, 64, 68, 69, 79, 80, 85, 87, 88, 90, 94, 97, 98, 99, 101, 102, 103, 104, 115, 124, 128, 149, 186, 191, 200, 202, 204, 207, 208, 210, 212, 214, 216, 217, 221, 223, 228, 229, 247, 265, 299, 302], "selfridg": 128, "sell": 291, "semant": [3, 15, 41, 120, 239], "semanticscholar": 128, "semi": [98, 101, 128], "semicircl": 241, "semicolon": 221, "semidefinit": [124, 241], "semidirect": 71, "semilatus_rectum": 98, "semilatusrectum": 98, "semilog": 142, "semisimpl": 117, "semispher": [265, 275], "send": [18, 79, 88, 89, 94, 128, 208, 237, 239], "sender": 89, "sens": [13, 14, 15, 36, 39, 41, 43, 61, 65, 67, 68, 88, 90, 93, 96, 113, 118, 148, 153, 156, 159, 196, 200, 208, 214, 216, 230, 231, 233, 240, 241, 253, 254, 259, 274, 297, 302], "sensibl": [18, 113, 115, 132], "sensit": [30, 88, 130, 144, 207, 214, 233, 252], "sent": [88, 115, 233, 239], "sentenc": [5, 11, 118], "sep": [89, 221, 238, 252], "separ": [3, 4, 11, 12, 13, 15, 16, 27, 28, 31, 39, 42, 43, 45, 50, 56, 68, 76, 88, 89, 94, 96, 113, 115, 124, 145, 148, 152, 156, 158, 164, 188, 191, 200, 207, 209, 210, 212, 214, 217, 218, 221, 230, 233, 234, 237, 238, 240, 245, 250, 252, 256, 260, 262, 265, 289], "separable_integr": [55, 237], "separable_reduc": 237, "separable_reduced_integr": 237, "separablereduc": 237, "separate_integr": 115, "separatevar": [88, 233, 237], "septemb": [80, 256], "seq": [61, 79, 88, 91, 124, 212, 214, 217, 227, 239, 259], "seqadd": 227, "seqbas": 227, "seqformula": 227, "seqmul": 227, "seqper": 227, "sequenc": [5, 16, 30, 61, 67, 69, 72, 75, 78, 79, 80, 84, 86, 87, 88, 89, 91, 93, 96, 98, 101, 102, 103, 104, 105, 112, 118, 120, 124, 127, 128, 131, 134, 144, 164, 190, 191, 210, 212, 215, 221, 223, 225, 228, 230, 231, 233, 234, 237, 238, 240, 247, 250, 253, 254, 259, 261, 262, 277, 299], "sequence_partit": 259, "sequence_partitions_empti": 259, "sequence_term": 87, "sequenti": [68, 72, 89, 94, 265, 267], "serendipit": 230, "seress": 79, "sergei": 0, "sergiu": 0, "seri": [4, 11, 12, 13, 18, 22, 30, 35, 39, 46, 55, 67, 68, 69, 70, 78, 79, 87, 88, 90, 92, 93, 94, 96, 111, 112, 113, 117, 128, 141, 142, 144, 156, 204, 213, 214, 221, 226, 227, 231, 237, 240, 277, 283, 288, 309, 311], "series_approx2": 69, "series_approx3": 69, "series_approx8": 69, "seriesapprox": 69, "seriessolut": 237, "serious": 3, "serv": [5, 12, 13, 15, 39, 43, 63, 64, 69, 71, 85, 88, 95, 111, 216, 237, 238, 262, 290], "servic": 69, "session": [11, 12, 15, 36, 60, 69, 88, 100, 115, 205, 211, 257, 289, 296], "set": [1, 2, 3, 4, 5, 7, 8, 11, 12, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 48, 50, 51, 57, 60, 61, 63, 67, 68, 69, 70, 71, 76, 77, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 101, 103, 105, 106, 107, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 128, 130, 134, 136, 137, 142, 144, 148, 149, 152, 153, 154, 156, 158, 159, 175, 181, 186, 191, 193, 196, 198, 199, 200, 202, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 220, 221, 222, 223, 228, 230, 231, 233, 234, 236, 237, 238, 239, 241, 245, 246, 247, 250, 252, 253, 254, 255, 259, 260, 265, 268, 270, 276, 279, 286, 288, 297, 299, 302, 303, 306, 311], "set_": 13, "set_acc": [30, 35, 204], "set_ang_acc": [30, 200], "set_ang_vel": [22, 27, 28, 30, 31, 35, 149, 155, 200, 202, 204, 299, 302, 309, 310], "set_comm": 247, "set_condit": 13, "set_domain": [212, 217], "set_global_relative_scale_factor": 198, "set_global_set": 221, "set_metr": [13, 247], "set_modulu": 217, "set_norm": 61, "set_po": [18, 22, 35, 134, 148, 155, 156, 159, 204, 299], "set_quantity_dimens": 194, "set_quantity_scale_factor": 194, "set_vel": [13, 18, 22, 25, 26, 27, 28, 30, 31, 35, 134, 148, 149, 153, 155, 159, 204, 299, 302, 303, 304, 306, 307, 309, 310, 311], "set_xlabel": [18, 299], "set_ylabel": [18, 299], "setdelai": 130, "seterr": 88, "setitem": 210, "setkind": [88, 123], "setminu": [96, 113], "setsymbol": 41, "setter": [13, 22, 30], "settl": 299, "setup": [6, 10, 11, 12, 13, 69, 88, 160, 200, 214, 217, 219, 220, 231, 252, 253, 255, 264, 296, 303, 306, 307], "seven": 221, "seventh": 132, "sever": [2, 3, 4, 11, 12, 13, 14, 15, 24, 38, 41, 43, 48, 52, 59, 69, 73, 79, 80, 87, 88, 92, 93, 95, 96, 100, 113, 115, 128, 138, 150, 153, 154, 196, 198, 207, 209, 210, 211, 214, 216, 220, 221, 222, 228, 229, 237, 241, 252, 254, 263, 276, 289, 293, 296, 303], "sexi": [63, 64], "sexy_prim": [63, 64], "sexyprim": [63, 64], "sexyprimepred": [63, 64], "sff": 124, "sffge": 124, "sfield": [212, 271], "sfix": 35, "sfu": [96, 115], "sg": [79, 241, 247], "sgen": 84, "sh": 8, "sha": 262, "sha1": 254, "shade": 136, "shadow": [55, 81], "shakthimaan": 7, "shall": [22, 30, 39, 79, 113, 228, 231, 292], "shallow": [212, 228], "shank": 228, "shankar": 74, "shape": [4, 13, 18, 22, 69, 104, 120, 124, 126, 127, 131, 134, 138, 142, 144, 149, 158, 200, 207, 208, 210, 221, 224, 231, 241, 242, 243, 245, 246, 247, 260, 296, 299], "shapeerror": [53, 120, 124], "share": [3, 7, 41, 43, 89, 128, 212, 216, 221, 241, 254], "sharex": [18, 299], "she": [5, 240], "shea": [215, 217], "shear": [136, 137], "shear_forc": [136, 137], "shear_modulu": 136, "shear_stress": 136, "sheet": [96, 230], "shell": [8, 11, 16, 30, 116, 220], "shi": [96, 113, 221, 231], "shier": 241, "shierd": 241, "shift": [73, 79, 80, 82, 89, 96, 99, 103, 105, 118, 207, 212, 214, 217, 224, 231, 239, 241], "shift_list": [212, 214, 217], "shifted_ellips": 98, "shifted_gompertz_distribut": 241, "shiftedgompertz": 241, "shiftx": 224, "ship": [15, 129], "shivam": 0, "sho": 192, "shor": [178, 282], "short": [3, 5, 11, 12, 16, 21, 32, 36, 60, 70, 78, 80, 84, 88, 89, 90, 91, 94, 121, 128, 159, 177, 196, 208, 215, 242, 252, 262, 292, 296], "short_lif": 16, "shortcut": [9, 36, 68, 88, 119, 221, 229, 233, 297], "shorten": [4, 134, 148], "shorter": [13, 18, 21, 25, 32, 57, 88, 98, 208, 212, 221, 254, 262], "shortest": [35, 98, 101, 104, 156, 159, 227, 233, 234, 237, 259], "shorthand": [14, 15, 16, 41, 43, 88, 118, 185, 216, 229, 250], "shortlog": 11, "should": [2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 25, 27, 28, 30, 31, 35, 36, 38, 41, 42, 43, 45, 48, 55, 57, 60, 62, 64, 67, 68, 69, 70, 79, 80, 81, 82, 84, 87, 88, 89, 91, 92, 94, 96, 98, 99, 100, 101, 102, 103, 105, 110, 111, 112, 113, 115, 116, 117, 118, 120, 124, 128, 130, 132, 134, 136, 142, 144, 148, 153, 154, 158, 159, 160, 171, 174, 175, 179, 181, 183, 185, 186, 189, 191, 193, 194, 196, 197, 200, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 220, 221, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 239, 240, 241, 245, 246, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 269, 286, 287, 289, 290, 293, 302, 306], "shoulder": 299, "shouldn": [88, 218], "shoup": [214, 215], "shoup91": 215, "shoup95": 215, "show": [2, 3, 4, 5, 8, 11, 12, 13, 16, 18, 21, 22, 24, 28, 30, 35, 36, 38, 39, 40, 41, 42, 43, 55, 69, 80, 87, 88, 92, 94, 111, 113, 115, 124, 128, 136, 137, 138, 140, 142, 148, 156, 186, 190, 194, 196, 200, 207, 208, 211, 212, 214, 216, 217, 221, 222, 224, 228, 229, 230, 231, 233, 234, 237, 239, 241, 242, 250, 253, 254, 257, 259, 260, 289, 291, 293, 296, 299, 308], "show_ax": 142, "showcas": 305, "shown": [3, 4, 12, 13, 15, 18, 21, 24, 25, 26, 32, 35, 36, 41, 42, 43, 77, 80, 87, 88, 92, 94, 96, 113, 130, 136, 137, 142, 144, 153, 155, 200, 207, 210, 211, 212, 217, 221, 237, 241, 257, 259, 269, 270, 290, 299, 304, 306, 307], "showpost": 128, "shp": 69, "shrink": [99, 113], "shuffl": [80, 124, 297], "shut": [88, 217], "shutil": 13, "si": [43, 96, 112, 113, 164, 193, 194, 195, 196, 197, 198, 214, 221], "siam": [206, 259], "sibx0afl3q": 240, "side": [12, 14, 16, 18, 27, 31, 32, 39, 41, 50, 52, 55, 69, 79, 80, 88, 100, 104, 115, 124, 128, 134, 136, 144, 153, 158, 159, 179, 180, 196, 200, 206, 208, 214, 216, 219, 221, 238, 240, 241, 245, 252, 254, 275, 287], "siev": [79, 128], "sieve_interv": 128, "sift": [79, 86, 259], "sigma": [16, 80, 111, 113, 124, 221, 224, 241], "sigma3": 166, "sigma_": 241, "sigma_approxim": 224, "sigma_i": [147, 241], "sigma_k": [93, 128], "sigma_not": 87, "sigma_x": 241, "sign": [3, 4, 5, 9, 12, 14, 15, 17, 18, 33, 35, 46, 48, 52, 57, 61, 66, 69, 84, 88, 89, 93, 94, 98, 104, 113, 115, 124, 128, 134, 136, 137, 140, 144, 148, 156, 164, 176, 200, 206, 210, 214, 221, 226, 228, 233, 234, 239, 259, 272, 275, 290, 302], "signal": [18, 30, 46, 96, 118, 128, 131, 142, 144, 214, 292], "signallib": 69, "signatur": [4, 7, 43, 63, 64, 80, 88, 124, 133, 254, 255, 259, 260], "signed_permut": [234, 259], "signedinttyp": 69, "signifi": [79, 88, 136, 217, 241], "signific": [3, 14, 16, 21, 32, 41, 69, 88, 89, 92, 115, 124, 185, 211, 240, 260, 292], "significantli": [13, 18, 21, 25, 53, 69, 92, 212, 223, 253, 256], "signsimp": [88, 233, 310], "signum": 221, "sigsam": 115, "silenc": [3, 17, 250, 257], "silent": [14, 42, 92, 128, 253], "silver": 146, "sim": [79, 84, 86, 113], "similar": [3, 9, 11, 12, 13, 14, 16, 18, 22, 27, 28, 32, 33, 35, 36, 39, 41, 43, 48, 80, 87, 88, 89, 92, 93, 94, 96, 99, 104, 105, 109, 118, 124, 129, 144, 148, 189, 209, 211, 212, 214, 218, 228, 230, 231, 233, 237, 239, 242, 247, 250, 253, 256, 257, 265, 267, 269, 270, 274, 286, 289, 291, 292, 293, 295, 297, 302, 306], "similari": 11, "similarli": [11, 12, 13, 18, 28, 32, 41, 48, 55, 84, 88, 89, 96, 100, 124, 136, 137, 144, 153, 156, 195, 207, 208, 211, 216, 218, 228, 229, 231, 237, 252, 260, 270, 271, 293], "similiar": 156, "simmon": 237, "simon": 241, "simp": [113, 200], "simpfunc": 124, "simpl": [4, 11, 12, 13, 14, 15, 16, 19, 21, 23, 27, 31, 35, 36, 39, 41, 43, 54, 59, 68, 69, 79, 87, 88, 92, 96, 100, 104, 106, 113, 115, 117, 124, 128, 129, 130, 131, 132, 134, 136, 137, 144, 145, 148, 149, 151, 152, 153, 155, 158, 159, 165, 179, 180, 188, 189, 190, 200, 210, 211, 212, 213, 217, 218, 221, 223, 228, 230, 231, 233, 234, 237, 240, 247, 253, 254, 259, 264, 265, 267, 268, 272, 286, 289, 292, 293, 297, 299, 302, 303, 304, 306, 307, 309, 311], "simple_pend": 307, "simple_pend_fram": 307, "simple_root": 117, "simpled": 223, "simpledomain": 212, "simplefilt": 257, "simpler": [12, 15, 36, 42, 43, 48, 61, 88, 92, 96, 112, 113, 210, 214, 230, 231, 233, 237, 239, 240, 297, 309], "simplest": [14, 18, 43, 55, 68, 118, 124, 128, 129, 148, 156, 206, 207, 218, 222, 230, 233, 237, 287, 297], "simplex": 239, "simplfiy_thi": 3, "simpli": [2, 3, 5, 8, 12, 14, 22, 27, 33, 36, 41, 42, 50, 51, 65, 70, 71, 87, 88, 90, 94, 98, 120, 124, 128, 130, 131, 136, 140, 145, 149, 181, 186, 196, 211, 217, 218, 229, 230, 231, 236, 237, 240, 257, 259, 260, 272, 299, 302], "simplic": [18, 43, 231, 237, 299], "simplif": [2, 14, 15, 16, 22, 27, 30, 41, 46, 62, 64, 66, 67, 69, 88, 90, 93, 94, 113, 124, 130, 150, 175, 191, 200, 217, 222, 232, 233, 237, 239, 240, 276, 277, 286, 288, 290, 291], "simplifc": 310, "simplifi": [3, 4, 11, 12, 13, 15, 16, 18, 27, 33, 39, 41, 42, 43, 46, 53, 54, 55, 62, 64, 66, 67, 87, 88, 90, 92, 93, 94, 96, 100, 105, 110, 113, 115, 118, 119, 120, 124, 132, 136, 144, 145, 150, 152, 153, 154, 156, 158, 159, 163, 170, 175, 190, 191, 195, 198, 200, 208, 210, 216, 218, 220, 222, 227, 229, 230, 231, 234, 237, 238, 239, 240, 241, 243, 255, 257, 260, 269, 271, 277, 286, 287, 288, 289, 291, 292, 293, 303, 304, 306, 309, 310, 311], "simplified_pair": 118, "simplify_auxiliary_eq": 310, "simplify_cg": 175, "simplify_gpgp": 145, "simplify_index_permut": 191, "simplify_log": 118, "simplify_thi": [3, 4, 255], "simprot": [22, 30], "simul": [18, 19, 22, 30, 88, 220, 300, 301], "simultan": [16, 88, 94, 101, 124, 128, 133, 207, 230], "sin": [4, 5, 12, 13, 14, 15, 16, 18, 22, 27, 30, 33, 35, 36, 41, 43, 46, 49, 52, 54, 55, 57, 59, 61, 67, 69, 87, 88, 90, 92, 93, 94, 96, 97, 98, 102, 106, 107, 110, 111, 112, 113, 115, 116, 124, 129, 130, 146, 149, 150, 152, 156, 158, 159, 163, 165, 189, 200, 202, 204, 206, 207, 209, 211, 217, 218, 220, 221, 222, 223, 224, 228, 229, 230, 231, 233, 236, 237, 239, 240, 242, 248, 254, 260, 265, 267, 268, 269, 270, 275, 286, 287, 289, 291, 292, 297, 298, 299, 302, 303, 304, 307, 309, 310, 311], "sin_co": 260, "sin_cos_numpi": 260, "sin_cos_sympi": 260, "sin_sol": 229, "sinc": [12, 13, 14, 15, 16, 28, 30, 33, 36, 37, 38, 39, 41, 42, 43, 46, 62, 67, 69, 70, 79, 80, 81, 84, 85, 86, 88, 89, 91, 93, 94, 96, 97, 98, 100, 104, 106, 112, 113, 115, 117, 118, 124, 128, 147, 149, 152, 167, 191, 192, 196, 207, 208, 209, 211, 212, 214, 216, 217, 221, 224, 229, 230, 231, 233, 234, 237, 239, 240, 241, 247, 251, 255, 256, 257, 259, 260, 269, 271, 272, 274, 286, 291, 293, 296, 297, 298], "sinc_funct": 94, "sine": [4, 14, 43, 88, 94, 96, 113, 115, 165, 218, 224, 230, 286], "sine_transform": 115, "sinetransform": 115, "sing": 124, "singh": 0, "singl": [3, 5, 8, 11, 13, 14, 15, 17, 18, 24, 39, 41, 43, 49, 55, 60, 61, 68, 69, 72, 79, 88, 89, 93, 94, 96, 101, 102, 104, 105, 106, 113, 115, 118, 124, 127, 130, 132, 134, 136, 144, 145, 148, 150, 152, 153, 171, 175, 177, 185, 188, 191, 198, 200, 204, 207, 208, 210, 211, 212, 214, 216, 217, 221, 222, 223, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 246, 252, 254, 256, 259, 260, 262, 287, 289, 292, 293, 298, 306], "singlecontinuouspspac": 241, "singledomain": 241, "singlefinitepspac": 241, "singlepspac": 241, "singleton": [15, 80, 118, 240, 292], "singletonregistri": [41, 88], "singli": 128, "singular": [27, 65, 69, 80, 88, 92, 94, 95, 96, 110, 111, 113, 115, 124, 136, 139, 200, 208, 215, 228, 237, 240, 265, 282, 287], "singular_point": 265, "singular_valu": 124, "singular_value_decomposit": 124, "singularhandl": 65, "singularit": [27, 115], "singularity_funct": 96, "singularityfunct": [96, 115, 136], "singularityintegr": 115, "singularmatrix": 65, "singularpred": 65, "sinh": [18, 43, 67, 88, 92, 94, 96, 107, 113, 130, 132, 218, 221, 222, 231, 297], "sinhint": 221, "sinhintegr": 221, "sinint": 221, "sinintegr": 221, "sink": [33, 272], "sinrul": 115, "siq": 128, "siret": 215, "siso": [142, 144], "sisolineartimeinvari": [142, 144], "sit": [36, 144], "site": [5, 128, 255], "situat": [12, 14, 36, 41, 57, 88, 92, 113, 237, 239, 241, 257, 287, 289], "six": [37, 137, 221, 234, 240, 241], "sixteenth": 89, "sixth": 132, "size": [13, 25, 26, 27, 39, 53, 69, 70, 72, 77, 79, 80, 81, 82, 83, 84, 88, 89, 91, 93, 116, 120, 124, 127, 128, 142, 164, 186, 187, 205, 207, 210, 214, 221, 233, 234, 237, 241, 259, 287, 302], "sizeof": 69, "sk": 89, "skelet": [18, 133], "skeleton": 18, "skellam": 241, "skellam_distribut": 241, "skew": [41, 111, 124, 128, 241], "skiena": 80, "skip": [2, 3, 4, 8, 16, 68, 72, 88, 124, 128, 200, 216, 220, 221, 223, 237, 239, 250, 252, 287, 295, 296], "skip_nan": 94, "skip_under_pyodid": 250, "skipp": 12, "skyciv": 104, "slack": [18, 132, 134], "slash": [221, 252], "slate": 252, "slater": [96, 231], "slice": [88, 118, 124, 130, 210, 212, 217, 227, 229, 233, 242, 259, 261], "slide": [136, 152], "slider": [13, 158, 307], "slightli": [12, 14, 54, 60, 61, 69, 84, 128, 130, 207, 208, 210, 212, 214, 217, 221, 231, 233, 302], "slip": [12, 35, 302, 308, 310], "slope": [98, 99, 101, 104, 115, 136, 137, 142, 152], "slot": [84, 175, 242, 246, 247, 292], "slow": [14, 21, 32, 36, 41, 43, 48, 53, 84, 88, 92, 115, 129, 163, 211, 212, 221, 222, 223, 224, 233, 237, 239, 240, 252, 253, 297], "slowdown": [13, 92], "slower": [12, 13, 43, 48, 53, 84, 124, 153, 210, 211, 216, 217, 260, 286], "slowest": [53, 115, 129], "slowli": [92, 228], "slp": 86, "slp_dict": 79, "sm": [18, 22, 30, 128, 208, 299, 303], "small": [18, 30, 39, 51, 69, 70, 71, 79, 80, 88, 92, 93, 115, 118, 124, 128, 144, 188, 206, 207, 210, 212, 214, 215, 216, 233, 234, 239, 259, 286, 289, 291, 306, 310], "smallelementof": 221, "smaller": [15, 25, 69, 79, 80, 88, 89, 93, 96, 104, 115, 120, 128, 209, 210, 211, 214, 217, 224, 230, 231, 234, 239, 259, 286, 297], "smallest": [67, 82, 93, 94, 101, 103, 110, 118, 124, 128, 188, 200, 212, 234, 257, 259], "smallest_angle_between": 101, "smallmatrix": [130, 221, 291], "smart": [27, 150, 228, 234, 237], "smarter": [14, 184, 230], "smith": [0, 13, 125, 210], "smith_normal_form": [13, 125, 210], "smooth": [18, 88, 92, 128, 131, 223], "smoothing_r": 131, "smoothli": 156, "smoothness_p": 128, "smt_builtin_func": 221, "smtlib": 221, "smtlib_cod": 221, "smtlibprint": 221, "sn": [79, 80, 87, 110], "sneak": 12, "snippet": [16, 69], "snr": 69, "so": [0, 2, 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 36, 38, 39, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 74, 76, 77, 79, 80, 82, 84, 86, 88, 89, 92, 93, 94, 96, 98, 100, 101, 102, 104, 110, 111, 112, 113, 115, 116, 117, 118, 120, 124, 125, 128, 130, 131, 134, 136, 137, 144, 148, 151, 152, 153, 156, 158, 164, 175, 177, 185, 187, 188, 189, 191, 193, 195, 196, 200, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 245, 246, 250, 252, 253, 256, 257, 259, 260, 262, 271, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 306], "societi": [29, 234], "socket": 152, "sode0401": 237, "sode0402": 237, "sode0404": 237, "sode0405": 237, "sode0406": 237, "softwar": [2, 5, 115, 215, 291], "soil": 208, "sol": [18, 37, 54, 124, 234, 237, 238, 239, 299], "sol0": 37, "sol1": 237, "sol2": 237, "sol_f": 240, "sol_typ": 153, "sol_uniqu": 124, "sol_vector": 237, "sol_vector_evalu": 237, "sola": 237, "solar": 194, "solar_mass": 194, "solb": 237, "soldner": 96, "soldnersconst": 96, "sole": [13, 14, 48], "solenoid": [201, 268], "solid": [81, 102, 152, 159, 207, 275], "solidspher": 275, "sollist": 237, "soln": 124, "solomon": 89, "solut": [8, 11, 13, 14, 15, 16, 21, 22, 23, 27, 32, 37, 39, 42, 43, 46, 49, 50, 69, 84, 88, 89, 94, 96, 98, 106, 110, 111, 112, 115, 124, 128, 131, 134, 136, 141, 151, 153, 154, 160, 196, 208, 210, 214, 215, 216, 217, 218, 219, 220, 229, 234, 236, 237, 238, 239, 298, 306], "solution2": 53, "solution_dict": [51, 55], "solution_first": 51, "solution_list": [51, 52], "solution_one_soln_set_dict": 55, "solution_outside_2_3": 52, "solution_p4q3": 51, "solution_set": 52, "solution_set_arg": 52, "solutions_list": 55, "solutions_one_soln_set": 55, "solutions_set": 52, "solv": [3, 4, 11, 13, 14, 15, 16, 17, 18, 22, 23, 25, 27, 30, 34, 39, 41, 43, 44, 46, 47, 69, 72, 84, 87, 88, 96, 101, 113, 115, 119, 124, 128, 131, 132, 134, 136, 138, 139, 140, 149, 151, 153, 154, 158, 194, 210, 214, 218, 219, 220, 221, 223, 233, 234, 236, 237, 238, 241, 282, 287, 288, 291, 293, 296, 299, 304, 305, 306, 309, 311], "solvabl": [57, 79, 140, 149, 234, 237, 240, 298], "solve_aux_eq": 237, "solve_congru": [128, 214], "solve_d": 223, "solve_den": 210, "solve_den_charpoli": 210, "solve_den_rref": 210, "solve_expo": 240, "solve_for_func": [237, 238], "solve_for_ild_mo": 136, "solve_for_ild_react": 136, "solve_for_ild_shear": 136, "solve_for_reaction_load": [136, 137], "solve_for_tors": 136, "solve_ivp": [18, 55, 299], "solve_least_squar": 124, "solve_lin_si": [11, 13, 219], "solve_linear": 239, "solve_linear_system": 239, "solve_linear_system_lu": 239, "solve_log": 240, "solve_multipli": [153, 306], "solve_poly_inequ": 236, "solve_poly_system": [209, 217, 239, 240], "solve_rational_inequ": 236, "solve_riccati": 237, "solve_slope_deflect": 136, "solve_triangul": 239, "solve_undetermined_coeff": 239, "solve_univariate_inequ": [50, 236, 240], "solvefun": 238, "solver": [2, 4, 11, 12, 15, 23, 30, 31, 32, 51, 54, 63, 96, 124, 128, 151, 153, 158, 210, 213, 221, 233, 234, 238, 252, 276, 277, 283, 288, 290], "solveset": [3, 30, 43, 54, 57, 153, 219, 235, 236, 239, 277, 298], "solveset_complex": 240, "solveset_r": 240, "solvifi": [236, 240], "some": [2, 3, 4, 7, 8, 9, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24, 25, 27, 31, 32, 33, 35, 36, 39, 41, 42, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 60, 61, 65, 68, 69, 70, 71, 76, 79, 80, 86, 87, 88, 89, 92, 93, 94, 96, 98, 99, 100, 104, 113, 115, 117, 118, 120, 124, 128, 129, 130, 142, 145, 149, 152, 155, 158, 171, 176, 180, 188, 191, 195, 196, 197, 201, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 223, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 265, 267, 268, 270, 272, 276, 286, 287, 289, 291, 292, 293, 295, 296, 297, 299, 302, 304, 306, 307], "some_filenam": 22, "some_funct": 255, "somehow": [11, 12, 15, 43], "someon": [3, 11, 12, 14, 237, 256, 290], "someth": [3, 4, 5, 9, 11, 13, 14, 15, 16, 21, 22, 30, 32, 41, 42, 43, 57, 67, 69, 88, 89, 92, 98, 113, 118, 124, 128, 184, 197, 207, 211, 212, 220, 228, 229, 233, 237, 240, 252, 254, 260, 286, 289, 291, 292, 295], "sometim": [3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 23, 27, 36, 41, 43, 48, 55, 68, 69, 88, 93, 96, 112, 113, 144, 151, 183, 191, 208, 211, 216, 221, 223, 228, 230, 234, 237, 239, 250, 259, 286, 293], "somewhat": [22, 96, 115, 212], "somewher": [3, 4, 5, 12, 14, 15, 69], "soon": [22, 87, 88, 196, 218], "sop": [115, 118], "sopform": 118, "sophist": [43, 129, 239], "sort": [12, 15, 21, 32, 50, 63, 64, 68, 69, 77, 80, 84, 93, 113, 115, 118, 124, 127, 128, 130, 145, 153, 175, 191, 196, 207, 214, 217, 218, 228, 233, 234, 237, 238, 239, 243, 245, 247, 252, 254, 259, 269, 289, 291, 292], "sort_kei": [77, 88, 237], "sorted_compon": 247, "sosmath": 230, "sought": [79, 128, 176, 186, 210, 233, 239, 240], "sound": [221, 297, 303], "sourc": [0, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 22, 30, 33, 43, 53, 54, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 134, 136, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 267, 268, 272, 284, 291], "source_cod": 130, "source_format": [69, 221], "sourceforg": [5, 68], "sp": 35, "space": [4, 12, 16, 33, 36, 43, 67, 68, 69, 88, 89, 90, 97, 98, 99, 101, 103, 104, 117, 124, 130, 135, 136, 144, 146, 152, 153, 154, 155, 160, 162, 165, 175, 178, 180, 186, 188, 200, 204, 206, 207, 208, 216, 240, 241, 252, 256, 265, 267, 269, 270, 271, 272, 274, 275, 282, 289, 292], "space_orient": [265, 267], "spacecraft": 29, "spaceorient": [265, 267, 270], "spack": 59, "spam": [7, 262], "spamham": 262, "spammer": 221, "span": [4, 13, 117, 124, 135, 136, 137, 152, 156, 216, 221, 257, 293], "sparingli": 12, "spars": [5, 15, 120, 122, 124, 185, 210, 216, 217, 218, 241, 242, 280, 292], "sparsematrix": [124, 127, 222, 233], "sparsetool": [124, 127], "sparsiti": 210, "spatial": [148, 155, 165, 200, 221], "speak": [124, 216, 272], "spec": [216, 217], "speci": [55, 87, 88], "special": [2, 4, 11, 15, 17, 30, 33, 41, 43, 53, 57, 60, 61, 71, 80, 88, 89, 91, 92, 93, 95, 103, 106, 113, 115, 124, 175, 180, 208, 211, 214, 215, 216, 221, 230, 231, 233, 234, 236, 237, 238, 239, 241, 252, 253, 254, 257, 259, 260, 269, 272, 274, 277, 287, 288, 292], "specialpoli": 217, "specif": [4, 5, 7, 8, 11, 12, 13, 14, 15, 18, 22, 23, 30, 36, 41, 43, 44, 51, 58, 79, 80, 88, 89, 90, 96, 100, 115, 117, 124, 132, 134, 149, 151, 152, 153, 158, 160, 196, 207, 208, 212, 214, 216, 217, 220, 221, 222, 227, 233, 234, 237, 238, 239, 241, 247, 252, 253, 254, 259, 293, 297, 299], "specifi": [4, 5, 13, 14, 18, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 41, 43, 48, 53, 54, 56, 57, 68, 69, 70, 83, 87, 88, 89, 90, 91, 94, 96, 97, 101, 104, 113, 115, 117, 118, 120, 123, 124, 128, 130, 131, 132, 134, 136, 137, 138, 140, 144, 148, 149, 151, 152, 153, 158, 159, 175, 180, 185, 186, 188, 189, 194, 200, 202, 204, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 223, 224, 227, 228, 229, 231, 233, 237, 238, 239, 240, 241, 242, 246, 247, 248, 252, 253, 254, 259, 260, 265, 267, 268, 271, 274, 287, 293, 299, 302, 304, 306, 307, 309], "spectral": 124, "spectrum": 43, "speed": [2, 4, 11, 13, 18, 22, 24, 25, 26, 30, 31, 32, 36, 64, 69, 79, 88, 89, 92, 124, 128, 129, 146, 149, 152, 153, 154, 158, 162, 165, 195, 200, 204, 206, 218, 221, 222, 228, 233, 237, 253, 256, 259, 292, 293, 299, 302, 304, 306, 307, 309, 310, 311], "speed_con": 25, "speed_idx": [31, 158], "speed_of_light": [195, 198], "speedup": [88, 124, 129, 214, 218, 260], "spell": [4, 13, 15, 237], "spend": 11, "spent": 260, "sph_jn": 96, "sphere": [15, 159, 163, 265, 275], "spheric": [94, 146, 152, 159, 170, 206, 207, 217, 265, 269, 270, 291], "spherical_bessel_fn": [96, 217], "spherical_harmon": 96, "sphericalbess": 221, "sphericalbesselj": 221, "sphericalharmon": 96, "sphericalharmonici": 96, "sphericaljoint": 152, "sphinx": [3, 5, 8, 11, 94, 237, 252, 257], "sphinx_math_dollar": 5, "sphinxext": 5, "spin": [104, 146, 177, 178, 186, 282, 302], "spin_up": 146, "spinor": 145, "spinstat": 188, "split": [10, 43, 69, 88, 89, 92, 113, 115, 130, 214, 216, 219, 220, 221, 239, 241, 247, 252, 259, 263, 292, 297], "split_1": 88, "split_list": 252, "split_super_sub": 221, "split_symbol": 130, "split_symbols_custom": 130, "splitter": 163, "spoli": 214, "sporad": 12, "spot": [31, 124], "spread": [160, 210, 221, 241, 256], "spring": [18, 22, 46, 128, 148, 149, 153, 158, 299, 303, 307], "spring_const": 18, "spring_damp": 18, "spring_damper2": 18, "spring_damper3": 18, "spring_damper_path": 307, "spring_forc": [148, 149], "springdamp": 18, "springer": [89, 115, 128, 214, 215, 237], "spuriou": [48, 214, 239], "sq": [16, 234], "sq2": 88, "sqf": [209, 212, 217, 234], "sqf_list": [209, 212, 214, 217], "sqf_list_includ": [212, 217], "sqf_norm": [212, 214, 217], "sqf_normal": 234, "sqf_part": [212, 214, 217], "sqfr_norm": 214, "sqfreetool": 214, "sqr": [212, 217], "sqrt": [4, 12, 13, 14, 15, 18, 32, 33, 36, 37, 41, 43, 46, 48, 49, 50, 51, 52, 56, 57, 61, 65, 66, 67, 69, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 111, 112, 113, 115, 116, 119, 124, 128, 130, 132, 134, 136, 138, 140, 144, 146, 148, 156, 159, 160, 162, 164, 165, 170, 175, 185, 186, 188, 189, 191, 192, 194, 195, 200, 206, 209, 211, 212, 214, 216, 217, 220, 221, 222, 227, 230, 231, 233, 234, 236, 237, 239, 240, 241, 259, 260, 262, 265, 274, 275, 286, 287, 291, 296, 297, 298, 302], "sqrt2": [208, 211], "sqrt3": 211, "sqrt_mod": [128, 234], "sqrt_mod_it": 128, "sqrtdenest": [11, 12, 233], "sqt": 230, "squar": [12, 16, 25, 26, 41, 48, 51, 52, 57, 61, 65, 69, 79, 88, 89, 93, 94, 104, 105, 113, 115, 119, 124, 127, 128, 130, 131, 134, 136, 144, 146, 177, 193, 200, 206, 210, 212, 214, 215, 216, 217, 218, 221, 229, 233, 234, 237, 240, 241, 291], "square_factor": [128, 234], "square_in_unit_circl": 104, "square_iter": 229, "square_matrix": 65, "square_root": 94, "squareddistribut": 241, "squarefre": [128, 216], "squarefree_cor": 128, "squarehandl": 65, "squarepred": 65, "squeez": [221, 299], "sr": 271, "src": [3, 4, 5, 7, 11, 12, 130, 237, 252, 257], "src2": 130, "src3": 130, "src_code": 130, "sre": 214, "srepr": [211, 292], "sring": [212, 218, 219], "ss": [88, 212], "ss1": 144, "ss2": 144, "sss": 104, "sstr": [87, 205, 221], "sstrrepr": [116, 205, 221], "st": [9, 12, 89, 115, 191], "stab": 79, "stabil": [15, 27, 79, 84, 86, 92, 144, 245], "stabl": [3, 4, 5, 43, 46, 69, 88, 116, 124, 130, 132, 140, 144, 241, 253, 286], "stack": [30, 70, 105, 124, 158, 210, 216, 221, 250, 256, 293], "stackexchang": [5, 79, 98], "stacklevel": [3, 12, 250, 255, 257], "stackoverflow": [7, 11, 128, 259, 262], "stade": 113, "stage": [11, 41, 68, 87, 128, 228, 297], "stai": [43, 216], "stall": 216, "stand": [11, 15, 30, 87, 88, 153, 209, 210, 211, 212, 218], "standalon": [5, 30], "standard": [2, 5, 12, 13, 14, 15, 16, 33, 41, 43, 48, 52, 53, 55, 57, 69, 88, 92, 94, 96, 111, 113, 115, 116, 117, 118, 121, 124, 128, 129, 130, 131, 147, 168, 172, 200, 206, 208, 211, 212, 214, 221, 224, 229, 233, 234, 237, 240, 241, 243, 254, 260, 269, 274, 286, 289, 297], "standard_cartan": 117, "standard_transform": 130, "standardis": [79, 211], "stanford": 72, "star": [221, 239, 259], "starrett": 237, "start": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 22, 25, 26, 35, 36, 43, 54, 58, 59, 68, 69, 71, 72, 77, 78, 79, 80, 84, 87, 88, 89, 90, 96, 118, 120, 124, 127, 128, 129, 132, 134, 136, 137, 140, 186, 187, 190, 194, 207, 211, 214, 216, 217, 221, 224, 227, 229, 230, 231, 234, 237, 239, 240, 241, 242, 245, 252, 253, 259, 261, 262, 271, 285, 286, 289, 291, 299, 302], "start_point": [90, 304], "start_view": 221, "starter": 59, "startnumb": 237, "starts_with_un": 216, "startswith": 299, "stat": [2, 9, 276, 283], "stat317": 241, "state": [11, 12, 15, 18, 31, 39, 41, 55, 79, 86, 88, 96, 128, 131, 132, 134, 136, 144, 146, 149, 153, 154, 158, 163, 167, 168, 170, 171, 172, 174, 175, 176, 180, 183, 185, 186, 187, 188, 190, 191, 210, 217, 221, 230, 231, 233, 241, 256, 282, 293, 299, 302, 306], "state_map": 181, "state_spac": 241, "state_to_oper": 181, "state_var": [131, 134], "statebas": [181, 186, 189], "statement": [0, 4, 13, 22, 41, 42, 43, 59, 68, 69, 88, 96, 113, 118, 120, 170, 221, 241, 250, 254, 259], "statespac": 144, "static": [23, 41, 61, 69, 79, 80, 82, 88, 94, 101, 102, 103, 104, 120, 137, 151, 207, 221, 227, 229, 241, 253, 302], "staticmethod": [13, 252], "stationari": [67, 241, 299], "stationary_distribut": 241, "stationary_point": 67, "statist": [72, 89, 96, 241, 252, 291], "statu": [9, 11, 116], "statweb": 72, "std": [43, 69, 221, 241], "stderr": 69, "stdfactkb": 41, "stdin": [16, 255, 257], "stdlib": [13, 252], "stdout": [69, 71, 252], "steep": 239, "steer": [29, 302], "stefanu": 115, "stegun": [4, 96], "stein": [128, 237], "steinborn": 206, "steinhau": 259, "stem": 246, "step": [3, 8, 9, 18, 23, 25, 30, 31, 36, 43, 44, 46, 58, 67, 69, 79, 83, 84, 87, 88, 89, 96, 112, 113, 115, 124, 128, 129, 151, 153, 158, 193, 204, 206, 207, 210, 211, 212, 214, 216, 217, 221, 222, 223, 226, 229, 230, 231, 233, 234, 237, 239, 241, 246, 253, 259, 260, 287, 300, 305, 309], "step_response_numerical_data": 142, "step_response_plot": [46, 142], "stick": 60, "stieltj": [96, 221], "stieltjes_const": 96, "stieltjesgamma": 221, "stiff": [18, 30, 148, 299, 303], "stiffer": 18, "still": [2, 3, 4, 5, 12, 13, 14, 15, 16, 22, 36, 41, 43, 59, 60, 61, 68, 80, 87, 88, 89, 96, 100, 115, 124, 130, 131, 134, 191, 207, 208, 209, 210, 214, 216, 221, 228, 230, 231, 233, 237, 239, 240, 246, 252, 259, 272, 293], "stiller": 215, "stiller96": 215, "stimul": 18, "stinson": 80, "stirl": [5, 80, 93, 259], "stirling_numbers_of_the_first_kind": 93, "stirling_numbers_of_the_second_kind": 93, "stochast": 13, "stoke": 163, "stokes_paramet": 163, "stokes_vector": 163, "stop": [3, 8, 11, 14, 69, 70, 80, 88, 124, 128, 207, 227, 229, 237, 241], "stopiter": 234, "stopper": 292, "storag": [69, 88, 124, 185, 206, 214], "store": [9, 11, 13, 16, 22, 28, 35, 36, 41, 45, 68, 69, 78, 79, 88, 110, 112, 120, 124, 128, 130, 149, 153, 155, 158, 185, 191, 204, 207, 208, 210, 211, 216, 217, 218, 228, 231, 242, 245, 246, 254, 255, 256, 259, 270, 272, 292, 299], "stori": [12, 196], "stormi": 237, "stqq": 89, "str": [12, 13, 14, 15, 30, 43, 63, 68, 69, 70, 80, 88, 89, 90, 92, 97, 98, 101, 104, 105, 116, 118, 120, 124, 128, 130, 132, 134, 142, 149, 152, 153, 154, 155, 158, 175, 185, 191, 200, 202, 204, 207, 210, 212, 216, 221, 233, 237, 241, 257, 259, 260, 262, 265], "str_expr": 286, "str_printer": [116, 205], "strai": 22, "straight": [35, 104, 110, 142, 148, 156, 159, 237, 306], "straightforward": [5, 12, 14, 18, 43, 79, 89, 124, 231], "strain": 132, "strang": 211, "strategi": [12, 70, 88, 115, 214, 215, 228, 231, 233, 238], "strawberryperl": 8, "stream": [69, 89, 222, 233, 259], "strecker": 68, "strength": 211, "stress": 136, "stretch": [18, 148, 256], "strict": [13, 14, 15, 48, 79, 80, 88, 92, 93, 124, 130, 158, 214, 217, 221, 239, 240, 259, 262, 297], "stricter": 130, "strictgreaterthan": [42, 88, 221], "strictlessthan": [88, 221, 262], "strictli": [15, 16, 38, 40, 41, 65, 67, 88, 96, 124, 128, 144, 212, 214, 233, 239, 260], "stride": [69, 246], "string": [2, 3, 4, 5, 7, 11, 12, 15, 16, 21, 32, 33, 43, 61, 62, 68, 69, 72, 77, 88, 89, 90, 91, 92, 95, 101, 111, 116, 117, 118, 120, 124, 128, 130, 134, 136, 138, 140, 142, 149, 152, 153, 154, 155, 162, 171, 175, 185, 189, 193, 199, 200, 204, 205, 207, 210, 212, 216, 221, 222, 228, 233, 237, 241, 242, 245, 246, 247, 252, 253, 254, 259, 260, 262, 263, 265, 267, 269, 288, 289, 292, 296, 303], "string_input": 14, "string_of_lett": 191, "stringifi": [116, 205], "stringify_expr": 130, "stringpict": 221, "strip": [5, 12, 89, 115, 128, 214, 257, 262], "strip_whitepac": 12, "strip_zero": 212, "strive": 68, "strline": 262, "strong": [79, 84, 85, 86, 128, 129], "strong_gen": [79, 85, 86], "strong_gens_distr": [79, 86], "strong_present": 79, "strong_pseudoprim": 128, "stronger": 293, "strongli": [124, 134, 210, 259], "strongly_connected_compon": [124, 210, 259], "strongly_connected_components_decomposit": 124, "strprinter": [124, 205], "struct": [69, 206], "structr": [148, 156], "structur": [5, 13, 14, 15, 16, 18, 23, 38, 41, 43, 66, 68, 69, 76, 79, 80, 86, 88, 113, 115, 118, 124, 135, 136, 137, 138, 140, 158, 189, 191, 207, 208, 210, 211, 214, 216, 217, 218, 233, 237, 239, 240, 241, 245, 246, 254, 256, 259, 260, 289, 297], "structure_theorem_for_finitely_generated_abelian_group": 76, "structureerror": 216, "struggl": [92, 220], "strzebonski": 217, "stub": 88, "student": [115, 230, 234, 241], "student_t": 241, "studentst": 241, "studentt": 241, "studi": [36, 70, 78, 87, 90, 124, 208, 214, 217, 234, 241], "stuff": [130, 207, 252, 254, 262], "sturm": [212, 217], "sturmian": 217, "sty": 221, "style": [6, 7, 8, 11, 68, 88, 116, 185, 205, 207, 221, 240, 296], "stylis": 221, "stylist": 12, "stzz": 89, "su": 247, "sub": [4, 12, 13, 14, 15, 16, 18, 21, 22, 27, 30, 37, 41, 42, 43, 46, 48, 51, 52, 54, 55, 69, 87, 88, 94, 96, 97, 98, 99, 100, 101, 102, 104, 115, 118, 120, 124, 128, 130, 136, 137, 144, 150, 188, 189, 194, 200, 206, 208, 210, 211, 212, 214, 217, 221, 228, 229, 233, 234, 237, 238, 239, 241, 252, 253, 255, 286, 287, 289, 302, 304, 306, 309, 310], "sub1": [150, 221], "sub2": [150, 221], "sub_dict": [21, 150, 302], "sub_ground": [212, 217], "subalgebra": 117, "subaugmentedassign": 69, "subcategori": [236, 276], "subclass": [13, 14, 15, 18, 41, 43, 63, 64, 69, 88, 95, 99, 101, 115, 118, 130, 131, 134, 148, 156, 158, 159, 160, 166, 175, 179, 180, 181, 186, 188, 189, 195, 207, 208, 210, 211, 212, 216, 217, 221, 241, 252, 253, 254, 257, 260, 265, 269, 292, 299], "subcompon": 221, "subdetermin": 214, "subdiagon": 124, "subdiagram": 68, "subdiagram_from_object": 68, "subdirectori": [8, 12, 45], "subdomain": 214, "subexponenti": 128, "subexpress": [14, 15, 21, 43, 69, 88, 94, 124, 150, 216, 217, 221, 228, 233, 240, 254, 260, 286], "subfactori": [93, 221, 259], "subgraph": 259, "subgroup": [71, 79, 80, 84, 86, 117, 128], "subgroup_search": 79, "subinterv": 115, "subject": [21, 31, 65, 88, 98, 104, 137, 216], "sublist": [67, 84, 89, 115, 188, 287], "submatric": [120, 124, 210, 241], "submatrix": [124, 210, 214, 241], "submiss": 7, "submit": [4, 11], "submodul": [0, 2, 3, 4, 11, 12, 14, 15, 21, 69, 208, 212, 214, 216], "submodule_from_gen": 216, "submodule_from_matrix": 216, "subnorm": [69, 79], "subobject": 221, "suboptim": [18, 231], "subpackag": [2, 276, 301], "subpart": 46, "subplot": [18, 136, 207, 299], "subprocess": [88, 221, 252, 253], "subquadrat": 215, "subquoti": 208, "subquotientmodul": 208, "subresult": [88, 212, 215, 217], "subresultants_qq_zz": 217, "subroutin": [69, 79, 187, 214], "subroutinecal": 69, "subs_dict": 140, "subs_point": 100, "subscheck": 237, "subscript": [51, 53, 80, 88, 130, 212, 221, 231, 234, 259], "subsect": [79, 272], "subsequ": [4, 11, 12, 16, 55, 88, 94, 200, 212, 214, 217, 256, 259, 269, 272], "subset": [5, 11, 12, 39, 41, 43, 48, 67, 68, 72, 75, 79, 80, 86, 93, 94, 100, 111, 113, 115, 117, 128, 154, 208, 210, 214, 216, 221, 229, 259, 277], "subset_from_bitlist": 83, "subset_indic": 83, "subspac": 216, "subsset": 228, "substack": 238, "substanti": [5, 129], "substep": 115, "substitut": [8, 14, 15, 16, 18, 22, 27, 39, 42, 48, 51, 55, 57, 69, 88, 89, 94, 96, 113, 115, 124, 129, 130, 136, 144, 153, 154, 180, 189, 191, 194, 200, 202, 204, 218, 219, 222, 223, 228, 231, 233, 234, 237, 238, 239, 240, 260, 268, 288, 289, 302, 306], "substitute_dummi": 191, "substitute_indic": 13, "substitution_ciph": 89, "substr": 262, "subsum": 96, "subsystem": [8, 221], "subtl": [43, 230], "subtleti": 113, "subtract": [16, 52, 61, 69, 80, 88, 92, 103, 128, 144, 152, 193, 209, 210, 211, 212, 214, 216, 217, 292, 297, 304], "subtre": [88, 221, 256], "subvector": 96, "subwiki": [76, 79], "subword_index": 78, "succ": [228, 241], "succe": [88, 113, 118, 128, 181, 216, 239], "success": [5, 8, 68, 79, 88, 96, 113, 115, 128, 152, 200, 208, 214, 216, 229, 230, 237, 240, 241, 259, 265, 267, 302], "successfulli": 216, "succinct": 88, "succinctli": 88, "sudo": [8, 9], "suetoniu": 89, "suffer": [4, 217], "suffic": [4, 209, 239], "suffici": [3, 4, 11, 18, 41, 68, 69, 79, 80, 84, 88, 124, 196, 212, 224, 228, 234, 237, 241, 256, 297], "suffix": [134, 217, 254], "suffix_express": 221, "sugar": [214, 215, 246], "suggest": [5, 7, 11, 13, 18, 22, 53, 70, 79, 115, 124, 128, 219, 293], "suit": [2, 3, 5, 11, 12, 41, 43, 52, 53, 68, 207, 217, 250, 252], "suitabl": [11, 18, 115, 120, 124, 130, 206, 209, 210, 211, 214, 216, 221, 231, 234, 237, 240, 242, 290], "suku": 115, "sukumar": 115, "sullivan": 259, "sum": [18, 25, 39, 41, 51, 69, 77, 80, 87, 88, 91, 93, 96, 101, 103, 111, 113, 115, 117, 118, 120, 124, 128, 130, 140, 155, 170, 174, 177, 185, 188, 190, 191, 206, 208, 209, 211, 212, 216, 217, 218, 221, 223, 224, 226, 228, 230, 231, 233, 234, 237, 239, 240, 241, 242, 243, 245, 247, 256, 259, 297, 299], "sum_": [69, 87, 88, 89, 93, 96, 113, 115, 120, 124, 128, 206, 217, 218, 223, 224, 231, 237, 241], "sum_0": 231, "sum_approx1": 69, "sum_approx2": 69, "sum_approx3": 69, "sum_domain": 211, "sum_i": [96, 228], "sum_k": 242, "sum_m": 242, "sum_of_four_squar": 234, "sum_of_pow": 234, "sum_of_squar": 234, "sum_of_three_squar": 234, "sumapprox": 69, "sumith": 0, "summand": [77, 216], "summar": [3, 11, 252, 297], "summari": [11, 252, 276, 304], "summat": [69, 87, 88, 92, 93, 96, 191, 215, 217, 221, 224, 233, 241, 242, 245, 246, 247, 253], "sunni": 241, "sup": [212, 217, 221, 229], "super": [69, 96, 212, 221, 265, 267, 299], "super_set": 83, "superclass": [13, 14, 15, 41, 87, 115, 120, 148, 212], "superdiagon": 124, "superfici": 88, "superflu": 113, "supergroup": 79, "superior": [3, 221], "superposit": [165, 176, 187, 208], "superposition_basi": 176, "superscript": [130, 144, 221], "superscriptminu": 221, "superscriptplu": 221, "supersed": [5, 22, 30], "superset": [30, 41, 67, 77, 83, 91, 211, 229, 239], "superset_s": 83, "supplant": 3, "supplement_a_subspac": 216, "supplementari": 0, "suppli": [16, 18, 25, 26, 28, 36, 54, 55, 67, 68, 69, 79, 80, 88, 90, 98, 102, 124, 128, 148, 149, 152, 153, 154, 155, 164, 191, 204, 207, 216, 218, 223, 230, 237, 253, 259, 260, 265, 267, 270, 299, 302, 306, 309], "support": [2, 3, 4, 5, 11, 13, 14, 15, 16, 18, 21, 22, 30, 35, 43, 54, 59, 61, 62, 63, 64, 67, 68, 69, 80, 88, 92, 95, 96, 98, 112, 115, 120, 124, 128, 129, 130, 134, 135, 136, 137, 138, 140, 141, 144, 152, 186, 200, 207, 209, 210, 211, 212, 214, 216, 217, 218, 221, 226, 227, 228, 229, 233, 237, 238, 239, 240, 241, 242, 246, 250, 252, 253, 254, 260, 270, 272, 287, 292, 296], "support_1": 138, "support_2": 138, "suppos": [12, 13, 14, 32, 42, 43, 80, 87, 88, 89, 113, 130, 208, 210, 214, 216, 217, 221, 228, 231, 237, 239, 250, 259, 270, 275, 289, 291, 297], "suppress": [88, 130, 250, 257], "supremum": [94, 229], "surd": 233, "sure": [3, 4, 5, 8, 9, 11, 12, 22, 43, 69, 79, 88, 100, 158, 171, 196, 207, 217, 218, 228, 237, 239, 240, 253, 259, 289, 292, 297], "surfac": [3, 18, 94, 96, 102, 113, 137, 152, 156, 159, 160, 164, 191, 207, 233, 265], "surface_color": 207, "surfacebaseseri": 207, "surfaceover2drangeseri": 207, "surject": 208, "surpris": [15, 41, 240], "surround": [5, 12, 88, 105, 164, 229, 262], "survei": 5, "surviv": 60, "susan": 72, "suspect": [88, 128], "suspend": 303, "suspens": 138, "sussman": 90, "sv": 9, "svg": [8, 35, 36, 45, 116, 205, 270, 306, 308], "sw": 101, "swap": [14, 79, 80, 81, 124, 171, 175, 184, 210, 241, 259], "swap_point": 171, "swapgat": 175, "swig": 253, "swing": 93, "swinnerton": 217, "swinnerton_dyer_poli": 217, "swiss": 217, "switch": [11, 13, 61, 79, 86, 115, 128, 144, 214, 217, 243], "sx": 84, "sy": [11, 22, 30, 59, 69, 90, 221, 252, 271, 289], "sylow": 79, "sylow_subgroup": 79, "sylvest": [128, 214], "sym": [51, 67, 78, 79, 84, 88, 93, 200, 221, 224, 229, 233, 234, 239, 241, 247, 259, 297, 299], "sym2": 247, "sym_expr": 130, "sym_i": 84, "symarrai": 124, "symb": [124, 221], "symb85": 233, "symb_2txt": 221, "symb_nam": 221, "symbol": [0, 2, 4, 5, 7, 11, 12, 15, 17, 18, 21, 22, 23, 28, 30, 32, 33, 35, 36, 37, 39, 44, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 78, 80, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 110, 111, 112, 113, 115, 116, 118, 120, 124, 128, 129, 130, 131, 132, 134, 136, 137, 138, 140, 141, 142, 144, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 163, 164, 165, 166, 168, 170, 171, 173, 175, 177, 179, 180, 183, 186, 188, 189, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 202, 204, 205, 207, 208, 209, 210, 212, 213, 214, 215, 216, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 231, 233, 234, 236, 237, 238, 239, 241, 242, 244, 245, 246, 247, 248, 253, 259, 260, 265, 267, 268, 270, 271, 272, 275, 282, 286, 287, 290, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "symbol_nam": [88, 221], "symbol_t": 221, "symbolc": 41, "symbolic_complex": 48, "symbolic_expand": 48, "symbolicnumericalcomput": 215, "symbolicsystem": [23, 158], "symbolnam": 237, "symbologi": 221, "symbols_seq": 234, "symbols_to_declar": 221, "symfunc": [253, 260], "symmetr": [13, 28, 53, 65, 66, 70, 71, 76, 79, 80, 84, 104, 119, 120, 124, 128, 206, 212, 214, 217, 220, 229, 231, 247, 259], "symmetri": [4, 13, 71, 76, 81, 84, 96, 124, 170, 206, 237, 245, 247, 286, 297], "symmetric_differ": 229, "symmetric_group": 76, "symmetric_matrix": 65, "symmetric_poli": [212, 217], "symmetric_residu": 128, "symmetricdiffer": [221, 229, 240], "symmetricgroup": [76, 78, 79, 85, 86], "symmetrichandl": 65, "symmetricpred": 65, "symp": [88, 212], "sympfiabl": 299, "sympi": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 34, 35, 36, 37, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 266, 267, 270, 271, 273, 274, 275, 276, 280, 283, 285, 287, 289, 290, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311], "sympif": [13, 60, 88], "sympifi": [12, 14, 15, 16, 18, 28, 41, 42, 69, 92, 98, 118, 132, 164, 189, 191, 200, 201, 211, 212, 286, 292], "sympify": [98, 104, 136, 138, 140, 149, 155, 162, 165, 202], "sympifyerror": 88, "symplifi": [231, 233], "symposium": [70, 113, 214, 215, 231], "sympy_benchmark": 2, "sympy_cod": 22, "sympy_debug": [1, 115, 262], "sympy_deprecation_warn": [3, 250, 255, 257], "sympy_eqs_to_r": 219, "sympy_express": [69, 253], "sympy_gamma": 115, "sympy_ground_typ": [210, 211, 212], "sympy_htmldoc": 8, "sympy_integ": 221, "sympy_nam": 286, "sympy_obj": 14, "sympy_pars": [88, 130], "sympy_use_cach": 88, "sympydeprecationwarn": [3, 12, 13, 250, 252, 255, 257], "sympydoctestfind": 252, "sympydoctestrunn": 252, "sympyexpress": 130, "sympyfi": [201, 202, 204, 268, 299], "sympyoutputcheck": 252, "sympytestfil": 252, "sympytestresult": 252, "symsac": 215, "symsystem": 158, "symsystem1": 31, "symsystem2": 31, "symsystem3": 31, "sync": 9, "synonym": [98, 216], "syntact": 246, "syntax": [3, 4, 5, 11, 13, 14, 15, 16, 22, 30, 43, 55, 62, 64, 80, 88, 115, 130, 188, 207, 211, 220, 221, 233, 239, 243, 262, 287, 289, 291, 296, 298], "syntaxerror": [14, 16, 130], "synthesi": 89, "sys1": [46, 144], "sys2": [46, 144], "sys3": 46, "sys4": 46, "sys5": 46, "sys6": 46, "sysod": 237, "syst": 154, "system": [0, 1, 2, 5, 7, 8, 9, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 26, 27, 28, 30, 33, 35, 36, 37, 38, 39, 42, 43, 46, 47, 48, 49, 53, 55, 62, 64, 79, 88, 89, 90, 94, 113, 116, 117, 118, 124, 129, 130, 131, 133, 134, 136, 140, 141, 143, 144, 148, 149, 151, 153, 154, 155, 156, 169, 170, 185, 188, 189, 191, 194, 198, 200, 204, 205, 206, 208, 209, 210, 211, 212, 213, 214, 215, 216, 219, 220, 221, 229, 230, 236, 240, 241, 252, 253, 265, 267, 268, 271, 273, 275, 280, 282, 289, 291, 293, 297, 298, 300, 301, 302, 303, 304, 305, 306, 309, 311], "system2": 268, "system_default_view": 221, "system_info": 237, "systemat": 220, "syzygy_modul": 208, "sz": 186, "szop": 186, "szupket": 186, "t": [0, 3, 4, 5, 7, 8, 11, 12, 13, 15, 16, 18, 21, 22, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 42, 43, 46, 48, 55, 61, 64, 65, 67, 69, 70, 72, 79, 80, 81, 82, 84, 88, 89, 90, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 112, 113, 115, 117, 118, 119, 120, 124, 128, 129, 130, 131, 132, 134, 140, 144, 145, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 163, 165, 171, 175, 187, 189, 191, 193, 194, 196, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 247, 250, 252, 255, 259, 260, 265, 268, 270, 274, 286, 287, 291, 292, 293, 296, 297, 298, 299, 303, 306, 307], "t0": [18, 84, 299], "t1": [84, 104, 105, 128, 149, 155, 234, 241], "t2": [99, 104, 105, 128, 149, 155, 234, 241, 247], "t3": [105, 234], "t4": 234, "t5": 234, "t_": [18, 84, 93, 134], "t_0": [93, 234], "t_1": [79, 93, 234], "t_2": [79, 93, 234], "t_b": 28, "t_c": 84, "t_eval": [18, 55, 299], "t_m": 214, "t_n": [5, 93, 96, 115, 214, 217, 270], "t_p": 28, "t_r": [28, 79, 247], "t_t": 28, "ta": [145, 230], "tab": [8, 13, 16, 30, 84], "tab1": 84, "tabl": [4, 30, 41, 70, 79, 88, 93, 96, 109, 115, 124, 128, 152, 206, 216, 243], "table_of_": 128, "tableau": 13, "tableaux": 247, "tableform": [13, 239, 262], "tackl": [23, 151, 254], "tactic": 241, "tag": [12, 221, 239], "tail": [72, 87, 88, 212, 241], "tail_degre": 212, "tailor": 41, "tait": [152, 200, 265, 267], "take": [2, 3, 5, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 30, 32, 35, 36, 39, 41, 42, 43, 50, 51, 52, 53, 55, 64, 67, 69, 70, 73, 78, 79, 83, 87, 88, 89, 90, 94, 96, 100, 101, 111, 115, 117, 118, 124, 128, 129, 130, 132, 134, 136, 138, 140, 144, 152, 153, 155, 158, 159, 160, 174, 177, 180, 181, 185, 187, 188, 189, 190, 191, 193, 196, 199, 200, 201, 202, 205, 207, 208, 209, 210, 211, 212, 214, 217, 218, 221, 224, 227, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 243, 246, 252, 253, 255, 256, 259, 260, 265, 267, 268, 286, 287, 289, 291, 292, 293, 297, 299, 302], "taken": [3, 12, 14, 15, 21, 27, 30, 69, 70, 71, 76, 79, 86, 87, 88, 93, 94, 96, 105, 124, 128, 131, 132, 144, 146, 149, 188, 194, 200, 204, 206, 207, 211, 216, 217, 221, 224, 228, 230, 231, 240, 241, 246, 254, 259, 265], "takenouchi": 128, "talk": [5, 11, 12, 17, 58, 89, 208, 216, 269], "tamu": 215, "tan": [12, 27, 67, 88, 93, 94, 115, 130, 150, 218, 220, 221, 228, 230, 237, 240, 297, 309, 310, 311], "tandem": 253, "tangent": [18, 94, 98, 100, 104, 115, 131, 218, 237], "tangent_lin": 98, "tanh": [12, 18, 88, 92, 94, 115, 130, 131, 134, 218, 221, 233, 297, 299], "taocp": 259, "tap": 8, "tapestri": 208, "target": [3, 4, 14, 15, 67, 68, 69, 71, 88, 128, 148, 150, 171, 175, 176, 195, 230, 233, 236, 239, 240, 250, 253, 254, 257, 297], "target1": 175, "target2": 175, "target_fram": 148, "target_unit": 198, "tarjan": [241, 259], "task": [23, 24, 30, 44, 49, 58, 94, 151, 211, 216, 287, 294], "tau": [16, 69, 113, 115, 124, 216, 221, 237], "tau0": [124, 240, 241], "tau1": 124, "tau_": 18, "tau_a": [18, 131], "tau_a_muscl": 134, "tau_d": [18, 131], "tau_d_muscl": 134, "taught": [43, 115], "taus_zero": 124, "tausski": 216, "tautologi": 221, "taxicab": 103, "taxicab_dist": 103, "taxonomi": 79, "taylor": [22, 27, 30, 39, 88, 94, 212, 214, 217, 218, 228, 237], "taylor_term": [88, 94], "tb": [145, 230, 252], "tbanilorngnezl": 89, "tbinom": 130, "tc": [145, 212, 217, 230], "tcc": 254, "tchebychev": 5, "td": [88, 221, 296], "te": 164, "teach": [5, 80, 89, 93, 241], "teacher": 43, "teaching_aid": 241, "team": [0, 3, 11], "tear": 292, "technic": [5, 13, 14, 17, 30, 43, 58, 68, 88, 130, 177, 208, 237, 254, 259, 272, 289, 292], "techniqu": [48, 52, 53, 55, 70, 83, 113, 115, 217, 221, 223, 233, 237, 240, 287, 293], "technolog": 230, "techreport": 89, "tediou": [39, 115], "teeter": 208, "telephon": 96, "tell": [4, 5, 11, 41, 42, 48, 52, 55, 69, 80, 89, 92, 96, 124, 130, 158, 196, 211, 216, 220, 228, 231, 237, 253, 289], "temp": [69, 302], "tempa": 302, "tempb": 302, "tempc": 302, "tempdir": [69, 253], "temper": 33, "temperatur": [33, 193, 274], "tempfork": 302, "tempfram": 302, "templat": [11, 13, 259], "tempor": 165, "temporari": [11, 88, 253], "temporarili": 88, "tempt": [12, 14, 41, 43, 88, 128], "temptat": [3, 230, 297], "ten": [69, 129], "tend": [11, 18, 43, 60, 69, 88, 93, 148, 156, 214, 216, 226, 228, 231, 290, 297], "tendenc": 128, "tendon": [132, 134, 299, 300], "tendon_force_explicit": 134, "tendon_force_implicit": 134, "tendon_force_length": 132, "tendon_force_length_invers": 132, "tendon_slack_length": [18, 134], "tendonforcelengthdegroote2016": [18, 132, 134], "tendonforcelengthinversedegroote2016": [18, 132], "tenenbaum": 237, "tens": 5, "tensadd": [221, 247], "tensexpr": [13, 145, 247], "tensil": [138, 140], "tension": [18, 121, 138], "tension_at": 138, "tensmul": [221, 247], "tensor": [28, 32, 69, 75, 90, 124, 145, 155, 170, 176, 177, 178, 188, 191, 200, 221, 242, 243, 245, 246, 253, 260, 269, 270, 276, 277, 280, 282], "tensor_can": [84, 247], "tensor_funct": 96, "tensor_gen": 84, "tensor_head": [13, 145, 247], "tensor_inde_typ": 247, "tensor_index_typ": 247, "tensor_indic": [13, 145, 247], "tensor_product": 177, "tensor_product_simp": 190, "tensorcontract": [242, 243], "tensordiagon": [242, 243], "tensorflow": [2, 260], "tensorflow_cod": 2, "tensorhead": [247, 248], "tensori": [247, 248], "tensorindex": [13, 247], "tensorindextyp": [247, 248], "tensormanag": 247, "tensorpowerhilbertspac": 177, "tensorproduct": [90, 188, 190, 221, 242, 243], "tensorproducthilbertspac": 177, "tensorsymmetri": 247, "tensortyp": 247, "tensorvari": 221, "tenth": 132, "teo": 239, "term": [5, 12, 15, 16, 18, 23, 25, 27, 32, 33, 35, 39, 41, 43, 48, 51, 53, 55, 57, 69, 79, 88, 89, 90, 92, 93, 94, 96, 107, 111, 112, 113, 115, 118, 124, 128, 131, 137, 142, 144, 148, 150, 151, 153, 170, 175, 187, 188, 191, 193, 195, 196, 200, 202, 206, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 223, 224, 226, 227, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 245, 246, 259, 265, 268, 272, 277, 287, 289, 291, 292, 297, 299, 302, 306, 309], "term_to_integ": 118, "termin": [7, 8, 9, 11, 79, 88, 94, 116, 128, 159, 205, 221, 228, 252, 296], "terminal_str": 221, "terminal_width": 221, "terminologi": [15, 49, 247], "termnam": 15, "terms_gcd": [88, 212, 217], "termwis": 217, "ternari": [51, 69, 88, 221, 234], "terrab": 237, "terrel": 0, "terri": 259, "terribl": 79, "test": [3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 36, 40, 42, 43, 50, 51, 64, 65, 67, 68, 69, 75, 79, 80, 87, 88, 89, 93, 95, 98, 103, 113, 120, 124, 128, 158, 171, 180, 184, 185, 186, 194, 211, 212, 214, 216, 218, 229, 231, 234, 237, 238, 239, 240, 250, 253, 254, 255, 256, 257, 259, 260, 262, 276, 277, 284, 289, 291, 292], "test2": 186, "test_": [4, 11, 12, 252], "test_arg": 252, "test_as_leading_term": 12, "test_bas": [11, 252], "test_comb_factori": 12, "test_cos_seri": [11, 12], "test_custom_latex": 130, "test_deprecated_expr_free_symbol": 12, "test_derivative_numer": [13, 88], "test_draw": 68, "test_equ": 252, "test_expr": [12, 88], "test_factor": 216, "test_factorial_rewrit": 12, "test_failing_integr": 12, "test_formula": 231, "test_func": 12, "test_hyperexpand": 231, "test_hypothesi": 12, "test_issue_21177": 12, "test_kwarg": 252, "test_modular": 12, "test_od": 237, "test_optional_depend": 12, "test_pd": 238, "test_pickl": 2, "test_pretti": 12, "test_residu": 12, "test_rewrite1": 228, "test_sin_1_unevalu": 12, "test_sqrtdenest": [11, 12], "test_stacklevel": [12, 250], "test_symbol": 12, "test_tan": 12, "test_trigonometr": [11, 12], "test_upretty_sub_sup": 12, "testbook": 46, "tester": 252, "testmod": 252, "testrunn": 252, "testutil": [79, 85, 86], "tetrahedr": 81, "tetrahedron": [79, 81], "tex": 221, "texliv": [2, 8, 221], "text": [2, 3, 4, 5, 11, 12, 13, 15, 28, 43, 45, 59, 69, 79, 89, 93, 94, 96, 106, 113, 116, 124, 128, 130, 132, 196, 205, 206, 207, 208, 214, 221, 228, 234, 237, 240, 241, 252], "textbackend": 207, "textbook": 46, "textfil": 241, "textplot": 207, "textrm": [18, 35, 36, 131, 229], "texttt": [93, 229], "textual": 221, "textwrap": [191, 262], "tf": [18, 46, 144, 260, 299], "tf1": [46, 142, 144], "tf10": 144, "tf11": 144, "tf12": 144, "tf2": [46, 144], "tf3": 144, "tf4": 144, "tf5": 144, "tf6": 144, "tf7": 144, "tf8": 144, "tf9": 144, "tf_1": 144, "tf_10": 144, "tf_2": 144, "tf_3": 144, "tf_4": 144, "tf_5": 144, "tf_6": 144, "tf_7": 144, "tf_8": 144, "tf_9": 144, "tfinal": 22, "tfm": 144, "tfm1": 144, "tfm2": 144, "tfm3": 144, "tfm_1": 144, "tfm_10": 144, "tfm_11": 144, "tfm_12": 144, "tfm_2": 144, "tfm_3": 144, "tfm_4": 144, "tfm_5": 144, "tfm_6": 144, "tfm_7": 144, "tfm_8": 144, "tfm_9": 144, "tfm_a": 144, "tfm_b": 144, "tfm_c": 144, "tfm_feedback": 46, "tfrac": [96, 130, 237, 241], "tgamma": 221, "tgate": 175, "th": [43, 61, 70, 79, 80, 86, 89, 90, 92, 93, 94, 96, 117, 118, 124, 128, 153, 210, 212, 214, 216, 217, 223, 226, 231, 234, 237, 239, 241, 242, 247], "than": [2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 32, 36, 37, 39, 40, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 60, 61, 65, 69, 70, 71, 73, 79, 80, 81, 87, 88, 89, 92, 93, 94, 96, 97, 102, 103, 104, 106, 110, 113, 115, 117, 118, 120, 124, 125, 127, 128, 129, 130, 134, 140, 142, 144, 148, 153, 158, 165, 171, 185, 188, 189, 191, 206, 209, 210, 211, 212, 214, 217, 218, 219, 221, 224, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 248, 253, 254, 256, 259, 260, 262, 286, 287, 289, 290, 291, 292, 293, 295, 297, 301, 306, 309], "the_68_standard_colors_known_to_dvip": 116, "theano": [2, 13, 30, 296], "theano_cod": 13, "theanoprint": 13, "thei": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 26, 27, 30, 31, 33, 36, 37, 41, 42, 43, 48, 53, 55, 56, 57, 59, 65, 68, 69, 70, 76, 78, 79, 80, 86, 87, 88, 89, 90, 93, 94, 96, 98, 101, 102, 103, 104, 105, 110, 113, 115, 116, 118, 120, 121, 124, 127, 128, 130, 131, 132, 135, 136, 148, 149, 151, 153, 155, 158, 159, 165, 170, 175, 180, 183, 188, 193, 194, 196, 197, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 227, 228, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 247, 250, 252, 254, 256, 259, 260, 262, 265, 272, 274, 287, 289, 290, 291, 292, 293, 297, 299, 302, 310], "them": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 27, 30, 32, 33, 35, 36, 38, 39, 41, 42, 43, 48, 51, 52, 53, 55, 57, 60, 63, 65, 68, 69, 77, 79, 80, 87, 88, 89, 90, 92, 93, 96, 99, 104, 106, 108, 110, 111, 113, 117, 118, 120, 124, 127, 128, 129, 131, 134, 135, 136, 151, 153, 155, 158, 164, 168, 184, 185, 191, 193, 196, 199, 200, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 239, 240, 242, 243, 252, 254, 256, 259, 268, 286, 287, 289, 291, 292, 297, 299, 302, 304, 306], "theme": 291, "themselv": [2, 5, 12, 13, 14, 23, 24, 43, 65, 68, 80, 84, 86, 88, 115, 128, 151, 211, 212, 216, 227, 241, 247, 256, 259, 262, 297], "theor": 170, "theorem": [21, 32, 35, 46, 48, 57, 76, 89, 93, 96, 98, 104, 115, 124, 128, 147, 159, 191, 208, 211, 214, 228, 231, 234, 240, 302], "theoret": [41, 68, 70, 79, 89, 93, 215, 216, 231, 289], "theori": [22, 27, 29, 38, 43, 70, 71, 77, 78, 79, 80, 86, 88, 89, 93, 96, 117, 125, 153, 170, 188, 191, 200, 204, 210, 214, 215, 216, 220, 234, 256, 265, 283, 291], "theorist": 215, "therebi": 68, "therefor": [2, 3, 4, 12, 14, 18, 33, 36, 43, 48, 52, 70, 79, 84, 88, 92, 96, 101, 104, 117, 128, 131, 134, 144, 152, 206, 207, 211, 214, 217, 221, 237, 240, 241, 242, 247, 265, 267, 269, 270, 272, 274], "thereof": [69, 88, 208, 214, 216], "thesi": [79, 88, 228, 265], "thesis_drl": 210, "theta": [14, 16, 18, 31, 36, 61, 88, 90, 94, 96, 113, 116, 124, 130, 146, 158, 163, 200, 206, 212, 216, 221, 224, 229, 240, 241, 265, 267, 270, 272, 275], "theta1": [55, 306], "theta2": 55, "theta_1": 55, "theta_2": 55, "theta_dot": 158, "theta_oper": 14, "theta_pin": 13, "thetaset": 229, "thi": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 168, 170, 171, 172, 174, 175, 177, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 200, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 249, 250, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 265, 267, 268, 269, 270, 271, 272, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 301, 302, 303, 304, 306, 307, 308, 309, 310, 311], "thick": 164, "thieu": 237, "thilina": 0, "thilinaatsympi": 234, "thin": [63, 124, 160, 299, 308], "thing": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 17, 21, 22, 27, 30, 35, 36, 41, 42, 43, 48, 50, 58, 65, 69, 78, 79, 80, 88, 90, 100, 116, 117, 118, 124, 129, 130, 175, 191, 196, 210, 218, 220, 228, 229, 230, 233, 237, 240, 245, 255, 257, 259, 286, 287, 289, 291, 292, 293, 296, 297, 299], "thingi": 69, "think": [4, 11, 12, 13, 15, 41, 42, 43, 52, 59, 67, 79, 196, 214, 256, 260, 289, 297, 302], "thinlen": 160, "third": [2, 3, 35, 37, 48, 61, 69, 79, 80, 88, 96, 98, 102, 124, 132, 144, 152, 158, 188, 194, 195, 209, 217, 231, 237, 240, 241, 243, 257, 259, 287, 292], "thirteen": 18, "thoma": [29, 93, 128], "thorough": [27, 234, 310], "those": [2, 4, 11, 12, 13, 14, 15, 16, 21, 24, 32, 35, 36, 37, 41, 42, 48, 52, 56, 57, 60, 65, 68, 69, 70, 71, 79, 80, 86, 87, 88, 89, 92, 101, 102, 113, 115, 118, 124, 127, 128, 133, 140, 152, 153, 158, 164, 188, 202, 205, 207, 210, 211, 212, 214, 216, 217, 219, 220, 221, 227, 229, 233, 237, 238, 239, 240, 241, 247, 250, 252, 256, 259, 265, 268, 289, 291, 297, 302, 304, 310], "though": [4, 11, 14, 15, 16, 21, 25, 27, 32, 35, 36, 41, 42, 43, 48, 54, 55, 56, 57, 60, 70, 88, 89, 90, 93, 100, 104, 113, 115, 124, 128, 153, 186, 195, 200, 209, 211, 212, 217, 218, 230, 231, 233, 237, 238, 239, 240, 252, 272, 287, 292, 297, 302], "thought": [4, 12, 14, 15, 88, 228, 237, 289, 292], "thousand": [92, 128, 286], "thread": 255, "threaded_factori": 255, "three": [3, 14, 15, 16, 18, 35, 36, 37, 39, 41, 43, 55, 56, 61, 65, 69, 79, 80, 81, 84, 88, 89, 93, 96, 98, 102, 103, 104, 113, 117, 118, 128, 131, 136, 137, 152, 156, 158, 164, 186, 188, 193, 200, 204, 206, 207, 208, 209, 212, 214, 217, 221, 231, 233, 234, 239, 240, 241, 252, 265, 267, 272, 275, 289, 292, 297, 299, 304, 308, 309, 310], "threshold": [69, 128], "through": [0, 3, 4, 7, 8, 13, 14, 15, 16, 18, 22, 23, 28, 41, 43, 48, 52, 53, 55, 57, 59, 67, 69, 79, 80, 82, 87, 88, 89, 92, 93, 96, 98, 99, 100, 101, 102, 104, 113, 117, 118, 124, 128, 131, 136, 137, 138, 142, 148, 149, 151, 153, 156, 159, 162, 163, 200, 208, 214, 216, 221, 227, 231, 233, 237, 239, 240, 241, 242, 253, 259, 265, 267, 272, 275, 287, 288, 289, 290, 295, 299, 301, 302, 305], "throughout": [14, 15, 18, 113, 118, 210, 214, 224, 240, 274, 289], "throw": [22, 69, 124, 130, 210, 216, 234, 240], "throwawai": 60, "thrown": [69, 156, 221], "thu": [2, 3, 11, 13, 15, 16, 18, 23, 27, 39, 50, 52, 53, 55, 65, 73, 79, 80, 88, 89, 90, 94, 96, 111, 113, 115, 121, 124, 127, 128, 145, 151, 153, 154, 158, 196, 200, 209, 214, 216, 218, 222, 228, 231, 233, 254, 259, 260, 270, 271, 289, 292, 297, 298, 306], "thue": 234, "thumb": [5, 14, 118, 259], "ti": [77, 80, 88, 128], "ticket": 59, "tid": 247, "tidi": 124, "tie": [88, 259], "tight": 69, "tight_layout": 299, "tikz": 68, "tild": [18, 88, 94, 132, 134, 242], "till": [22, 88, 136, 137, 237], "tilt": 163, "tim": [128, 259], "time": [2, 3, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 39, 41, 42, 46, 48, 55, 57, 60, 64, 65, 69, 71, 79, 80, 84, 88, 89, 93, 96, 111, 113, 118, 124, 125, 127, 128, 129, 130, 131, 134, 140, 141, 142, 144, 148, 151, 153, 154, 156, 158, 165, 175, 180, 188, 189, 193, 194, 195, 196, 197, 200, 202, 203, 204, 205, 206, 208, 210, 211, 214, 215, 216, 217, 218, 220, 221, 228, 229, 230, 231, 233, 237, 239, 241, 250, 252, 253, 258, 259, 260, 272, 274, 284, 287, 291, 292, 293, 299, 302, 304, 306, 309, 310], "time_bal": 252, "time_deriv": [33, 200, 202], "time_derivatives_in_the_two_fram": 202, "time_markov_chain": 241, "time_period": 165, "timedepbra": 189, "timedepket": 189, "timedepst": 189, "timeit": [69, 218], "timeout": 252, "timestamp": 13, "timeutil": 264, "timevalue1": 204, "timevalue2": 204, "tina": 30, "tini": [69, 88, 212], "tinyurl": 93, "tion_constraint": 30, "tip": [4, 7, 8, 12, 27, 88, 237, 238, 297], "tissu": 18, "titl": [0, 4, 5, 55, 207], "titu": 234, "tlmzebyvzgzinb": 89, "tm": [65, 164], "tmp": 69, "tmpfile": 13, "tmz": 65, "tn": 88, "to_alg_num": [212, 216], "to_algebraic_integ": 88, "to_ancestor": 216, "to_anf": 118, "to_anp": 216, "to_axis_angl": 61, "to_best": 212, "to_cnf": 118, "to_col": 216, "to_ddm": 210, "to_dens": 210, "to_dfm": 210, "to_dfm_or_ddm": 210, "to_dict": 212, "to_dm": 210, "to_dnf": 118, "to_dod": 210, "to_dok": 210, "to_domain": 214, "to_eul": 61, "to_exact": [212, 217], "to_expr": [46, 110, 111, 112, 144], "to_field": [210, 212, 217], "to_fil": [69, 254], "to_flat_nz": 210, "to_hyp": 110, "to_int": 212, "to_int_repr": 118, "to_linear": [27, 153], "to_list": [13, 88, 210, 212], "to_list_flat": 210, "to_load": [18, 148, 156, 299, 303], "to_matrix": [28, 32, 36, 61, 149, 152, 155, 200, 210, 216, 265, 268, 270, 299], "to_meijerg": 110, "to_nnf": 118, "to_number_field": [88, 216], "to_par": 216, "to_primitive_el": 88, "to_pruf": 82, "to_r": [212, 217], "to_rat": 212, "to_root": 88, "to_rotation_matrix": 61, "to_sdm": 210, "to_sequ": 110, "to_si": 90, "to_spars": 210, "to_sympi": [210, 211, 212], "to_sympy_dict": 212, "to_sympy_list": 212, "to_tre": 82, "to_tupl": 212, "todai": [43, 208], "todo": [12, 124, 169, 171, 175, 176, 180, 181, 183, 184, 185, 186, 187, 214, 221, 228, 246], "todod": [124, 210], "todok": [13, 124], "togeth": [13, 15, 23, 36, 39, 69, 79, 88, 92, 117, 124, 128, 132, 136, 144, 148, 151, 177, 188, 196, 208, 212, 214, 216, 217, 220, 221, 233, 237, 239, 241, 252, 253, 259, 291, 297, 299], "toggl": [128, 207], "token": [69, 113, 116, 130], "tol": [69, 88, 212], "told": [8, 11], "toler": [54, 69, 88, 92, 212, 233, 239], "tolist": [124, 242], "tomatrix": 242, "tomfooleri": 252, "tone": 4, "too": [4, 7, 11, 12, 16, 18, 25, 43, 45, 57, 79, 80, 88, 94, 96, 98, 101, 103, 113, 118, 127, 128, 129, 132, 153, 160, 228, 229, 233, 234, 237, 239, 240, 241, 252, 253, 268, 269], "took": [11, 218, 230], "tool": [5, 8, 9, 11, 12, 15, 18, 30, 36, 43, 79, 116, 122, 124, 129, 144, 158, 208, 213, 214, 221, 253, 259, 264, 273, 280], "toolset": 208, "top": [3, 4, 5, 12, 13, 14, 15, 50, 69, 87, 88, 89, 104, 105, 115, 118, 124, 135, 136, 137, 152, 158, 186, 193, 211, 221, 231, 237, 254, 255, 260, 275, 292], "top_fac": 275, "toper": 248, "topic": [7, 17, 20, 23, 28, 34, 35, 36, 44, 58, 69, 206, 208, 210, 211, 216, 240, 289, 294], "topmost": 256, "topolog": [69, 88, 90, 210, 259], "topologi": [113, 229], "topological_sort": [69, 259], "toronto": 128, "torqu": [18, 25, 26, 28, 30, 136, 148, 149, 153, 155, 158, 299, 303, 307], "torque1": 149, "torque_a": 30, "torqueactu": [148, 307], "torsion": [136, 299], "torsional_mo": 136, "toss": 241, "total": [11, 25, 57, 70, 77, 79, 88, 93, 104, 117, 118, 120, 124, 160, 164, 170, 175, 188, 197, 206, 212, 214, 217, 230, 233, 237, 245, 247, 275, 302, 306], "total_degre": [212, 217, 234], "totient": [13, 89, 93, 128], "totientfunct": [93, 128], "totientrang": 128, "totter": 208, "touch": [18, 104, 230, 302], "tough": 237, "tournier": 215, "toward": [37, 69, 88, 96, 148, 208, 228, 240, 299], "tp": [90, 163, 190, 212, 243], "tp1": 90, "tpu": [2, 129], "tr": [13, 70, 79, 221, 230], "tr0": 230, "tr1": 230, "tr10": 230, "tr10i": 230, "tr11": 230, "tr111": 230, "tr12": 230, "tr12i": 230, "tr13": 230, "tr14": 230, "tr15": 230, "tr16": 230, "tr2": 230, "tr22": 230, "tr2i": 230, "tr3": 230, "tr4": 230, "tr5": 230, "tr6": 230, "tr7": 230, "tr8": 230, "tr9": 230, "trace": [30, 84, 120, 124, 145, 214, 221, 241, 242, 243, 245, 259, 293], "traceback": [12, 13, 14, 16, 38, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 69, 70, 80, 88, 89, 92, 98, 115, 118, 119, 120, 121, 124, 126, 127, 130, 144, 206, 208, 210, 211, 212, 214, 217, 220, 228, 229, 237, 239, 240, 250, 252, 253, 255, 257, 259, 260, 262, 289, 293], "track": [7, 9, 11, 13, 16, 24, 32, 36, 79, 88, 92, 96, 158, 175, 210, 228, 247, 287], "tracker": [7, 11, 12, 67, 229, 240, 293], "tractabl": [53, 240], "tradeoff": 293, "tradition": [89, 96], "trafo": 87, "trager": [115, 214, 215], "trager76": [214, 215], "trail": [4, 12, 80, 88, 128, 212, 214, 217, 257, 262], "trailpap": 302, "train": 36, "traint": 30, "trait": 212, "traj": 299, "trajectori": [23, 151, 299], "tran": 89, "trans_prob": 241, "transact": [115, 215], "transcedent": 65, "transcend": 96, "transcendent": [11, 41, 52, 56, 57, 65, 88, 96, 115, 211, 216, 217, 221, 239, 240, 293, 298], "transcendental_numb": [41, 88], "transcendentalpred": 65, "transfer": [8, 46, 141, 142, 144, 160, 240], "transfer_funct": 144, "transferfunct": [46, 141, 142, 144], "transferfunctionmatrix": [46, 141, 144], "transform": [13, 14, 15, 24, 57, 61, 66, 69, 84, 87, 88, 89, 90, 92, 93, 96, 103, 120, 124, 142, 144, 152, 163, 184, 186, 188, 193, 206, 209, 210, 212, 214, 216, 217, 223, 228, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 243, 246, 254, 260, 265, 272, 291, 302], "transform_vari": 115, "transformation_from_par": 265, "transformation_to_dn": 234, "transformation_to_norm": 234, "transformation_to_par": 265, "transformtosympyexpr": 130, "transient": 241, "transit": [30, 71, 79, 214, 241], "transition_prob": 241, "transitionmatrixof": 241, "transitivity_degre": 79, "translat": [2, 13, 24, 28, 35, 69, 79, 88, 97, 99, 103, 105, 129, 130, 144, 147, 149, 152, 153, 158, 207, 221, 237, 239, 253, 254, 260, 262, 270, 309, 311], "translation_coordin": 152, "translation_spe": 152, "transliter": 5, "transmiss": [138, 163, 164], "transmissive_filt": 163, "transmit": [18, 163, 164], "transmitt": 163, "transmitted_port": 163, "transmitted_pow": 163, "transpar": [113, 116, 205], "transport": 90, "transpos": [30, 36, 65, 68, 120, 124, 144, 174, 200, 210, 216, 234, 242, 247, 248, 293], "transposit": [76, 79, 80, 89, 120, 124, 243], "transposition_": 80, "transvers": [79, 84, 86, 138, 164, 165], "transversals_onli": 86, "transverse_magnif": 164, "trapezoid": [115, 124, 241], "trapezoidal_distribut": 241, "traub": [214, 215], "travel": [33, 162, 165, 272, 274], "travers": [14, 48, 104, 128, 130, 150, 217, 230, 246, 256, 292], "travi": 237, "treat": [13, 14, 15, 18, 22, 33, 41, 42, 43, 51, 55, 56, 61, 78, 79, 86, 88, 93, 96, 103, 104, 124, 130, 134, 164, 200, 209, 211, 212, 214, 216, 217, 218, 220, 221, 228, 229, 231, 233, 234, 237, 239, 245, 253, 256, 272, 289, 293], "treatment": [39, 113, 217], "tree": [1, 7, 13, 15, 22, 38, 79, 82, 88, 130, 150, 183, 186, 200, 217, 228, 230, 233, 240, 243, 245, 256, 259, 262, 288], "tree_cs": 233, "tree_repr": 82, "tri": [13, 14, 15, 16, 18, 27, 41, 50, 52, 55, 68, 88, 96, 104, 113, 115, 186, 208, 209, 216, 221, 223, 233, 237, 238, 240, 252, 289, 297, 299, 302], "trial": [88, 128, 214, 226, 230, 237, 241], "triangl": [4, 43, 68, 93, 99, 100, 104, 105, 115, 124, 128, 159, 206, 207, 268, 275], "triangular": [53, 65, 71, 119, 124, 210, 216, 239, 241, 275], "triangular_distribut": 241, "triangular_matrix": 65, "triangulardistribut": 241, "triangularhandl": 65, "triangularpred": 65, "tribonacci": [88, 93], "tribonacci_numb": [88, 93], "tribonacciconst": 88, "tribonaccinumb": 93, "triceps_activ": 299, "triceps_pathwai": 299, "trick": [12, 13, 15, 16, 84, 231, 247], "tricki": [8, 88, 113], "trig": [43, 88, 115, 217, 221, 230, 233, 297], "trig5": 230, "trigamma": [4, 96, 221], "trigamma_funct": 96, "trigammafunct": 96, "trigexpand": 113, "trigger": [3, 12, 43, 80, 130, 191, 250], "trigintegr": 115, "trigonometr": [4, 14, 43, 50, 57, 88, 115, 130, 218, 224, 232, 233, 236, 237, 240, 260, 277, 288, 298], "trigonometri": [18, 115], "trigonometric_and_hyperbolic_solut": 217, "trigonometric_funct": 94, "trigonometric_integr": 96, "trigonometricfunct": 43, "trigonometryangl": 94, "trigsimp": [12, 14, 16, 22, 61, 88, 124, 152, 200, 230, 233, 269, 310], "trigsimp_groebn": 233, "trim": [27, 80], "tripl": [4, 11, 36, 51, 105, 124, 130, 206, 208, 212, 216, 262], "trivari": 115, "trivial": [3, 14, 25, 70, 79, 84, 87, 88, 89, 94, 103, 118, 120, 124, 128, 191, 208, 209, 214, 217, 231, 234, 237, 240, 245], "trmorri": 230, "trobmvenbgbalv": 89, "trotter": 80, "troubl": [43, 96], "troubleshoot": [4, 9, 27], "trpower": 230, "true": [1, 2, 4, 12, 13, 14, 15, 16, 18, 21, 22, 30, 32, 33, 36, 37, 38, 41, 42, 43, 46, 48, 50, 51, 52, 53, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 109, 110, 113, 115, 116, 118, 119, 120, 123, 124, 125, 128, 130, 132, 134, 136, 137, 142, 144, 145, 146, 147, 150, 152, 153, 154, 155, 156, 158, 159, 162, 163, 172, 175, 176, 183, 185, 186, 189, 190, 191, 194, 200, 201, 202, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 250, 252, 253, 254, 255, 257, 259, 260, 262, 265, 268, 269, 270, 271, 272, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 306, 307], "truli": [88, 96, 196], "trunc": [212, 217, 220], "truncat": [39, 80, 88, 124, 128, 137, 196, 207, 218, 220, 223, 224], "truss": 282, "truth": [12, 14, 42, 62, 63, 64, 65, 66, 88, 124, 233], "truth_maintenance_system": 64, "truth_tabl": 118, "truthi": 12, "truthvalu": 118, "try": [4, 5, 11, 12, 13, 14, 15, 16, 41, 42, 43, 48, 50, 51, 54, 55, 57, 80, 87, 88, 92, 96, 98, 103, 113, 115, 118, 120, 124, 127, 128, 130, 158, 181, 183, 190, 191, 207, 211, 212, 216, 221, 226, 228, 229, 230, 231, 233, 234, 237, 239, 259, 260, 262, 286, 289, 292, 297], "try_block_diag": 124, "trysolv": 237, "tschirnhausen": 216, "tsolv": 240, "tube": 152, "tube_fram": 152, "tune": [9, 18, 92, 116, 205, 221, 299], "tupl": [14, 15, 17, 25, 26, 28, 30, 36, 43, 51, 54, 55, 56, 61, 63, 64, 67, 68, 69, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 110, 113, 115, 124, 127, 128, 130, 136, 137, 138, 140, 142, 148, 149, 152, 153, 155, 156, 158, 160, 175, 176, 177, 180, 185, 188, 189, 190, 191, 200, 204, 207, 208, 210, 211, 212, 214, 218, 219, 221, 222, 223, 227, 229, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 252, 253, 254, 255, 259, 260, 262, 265, 269, 287, 292, 293, 296], "tuple_count": 88, "tuplekind": [88, 123, 229], "turn": [5, 13, 15, 18, 25, 33, 41, 57, 69, 88, 94, 96, 103, 113, 121, 152, 208, 216, 217, 218, 221, 228, 229, 231, 233, 234, 237, 252, 259, 274, 289, 291, 310], "turner": 210, "tushar": 215, "tutori": [5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 22, 27, 30, 39, 40, 59, 104, 209, 220, 221, 237, 260, 289, 292, 294, 295, 296, 297, 298, 299], "twave": 165, "tweak": [54, 130, 221, 239], "tweflth": 132, "twelv": 18, "twice": [3, 16, 35, 69, 88, 90, 102, 128, 200, 202, 217, 221, 256, 257, 265, 267, 287], "twin": 128, "twist": 113, "two": [2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 21, 23, 24, 25, 27, 28, 32, 33, 35, 36, 37, 39, 41, 42, 43, 48, 50, 52, 55, 56, 61, 67, 68, 69, 70, 73, 74, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 110, 111, 113, 115, 117, 118, 120, 124, 128, 129, 130, 132, 134, 136, 137, 138, 140, 141, 144, 145, 148, 149, 151, 152, 153, 156, 159, 163, 164, 165, 170, 171, 175, 177, 180, 181, 186, 187, 188, 189, 190, 191, 193, 195, 196, 200, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 246, 256, 259, 260, 265, 268, 270, 271, 272, 274, 286, 287, 290, 292, 293, 297, 299, 304, 310], "two_qubit_box": 171, "twofold": 231, "twoform": 90, "twoform_to_matrix": 90, "twoqubitg": 175, "tx": [113, 295], "txt": [8, 9, 221], "ty": 30, "typ": 247, "type": [4, 7, 9, 11, 13, 14, 15, 16, 17, 18, 21, 22, 24, 30, 36, 38, 41, 42, 43, 46, 49, 51, 52, 57, 63, 64, 67, 71, 79, 80, 84, 87, 88, 89, 90, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106, 113, 115, 116, 117, 118, 119, 120, 124, 128, 129, 130, 131, 133, 134, 136, 137, 140, 142, 144, 148, 152, 153, 156, 159, 163, 177, 185, 186, 187, 189, 195, 200, 204, 205, 207, 208, 210, 211, 212, 215, 216, 217, 218, 219, 221, 222, 223, 229, 230, 231, 233, 234, 236, 237, 239, 245, 246, 247, 250, 252, 253, 254, 259, 260, 262, 269, 272, 275, 287, 289, 291, 292, 293, 296, 297, 298, 300], "type1": 237, "type2": 237, "type3": 237, "type4": 237, "type5": 237, "type6": 237, "type_": 117, "type_a": 117, "type_alias": [69, 221], "type_b": 117, "type_c": 117, "type_d": 117, "type_f": 117, "type_g": 117, "type_map": 221, "type_of_equ": 237, "typea": 117, "typeb": 117, "typec": 117, "typeerror": [12, 13, 14, 16, 42, 43, 52, 55, 62, 63, 64, 80, 88, 98, 103, 118, 119, 121, 126, 144, 165, 211, 212, 228, 229, 253, 260], "typef": 117, "typefunct": [4, 96], "typeg": 117, "typeinfo": 88, "typeset": [87, 221], "typevar": 210, "typic": [2, 3, 12, 13, 14, 15, 18, 28, 36, 43, 84, 94, 113, 128, 133, 144, 149, 155, 207, 209, 214, 217, 218, 231, 253, 254, 270], "typo": [11, 14, 231], "typograph": 130, "tz": 144, "u": [0, 8, 9, 16, 18, 22, 23, 24, 25, 27, 30, 31, 32, 33, 35, 39, 41, 42, 43, 46, 52, 61, 67, 68, 69, 79, 84, 87, 88, 89, 91, 102, 105, 110, 113, 115, 120, 124, 128, 134, 148, 149, 151, 152, 153, 154, 158, 163, 164, 175, 180, 186, 196, 200, 204, 206, 207, 208, 209, 210, 214, 216, 217, 220, 221, 228, 231, 233, 234, 237, 238, 239, 240, 241, 246, 260, 272, 289, 291, 292, 293, 299, 302, 306, 309], "u03b8": 116, "u0_": 152, "u0_c1": 152, "u0_c2": 152, "u0_pc": 152, "u0child": 152, "u1": [22, 25, 27, 30, 35, 79, 128, 152, 200, 202, 204, 205, 237, 299, 302, 304, 306, 307, 309, 310], "u1_": 152, "u1_c1": 152, "u1_pc": 152, "u1d": [22, 25, 302, 306, 309, 310], "u2": [22, 25, 30, 35, 79, 127, 128, 152, 200, 204, 237, 299, 302, 304, 306, 307, 309, 310], "u2_": 152, "u2_pc": 152, "u2d": [22, 25, 302, 306, 309, 310], "u3": [22, 25, 30, 35, 200, 204, 299, 302, 304, 307, 309, 310], "u3d": [302, 309, 310], "u4": [25, 30, 299, 302, 310], "u4d": 302, "u5": [302, 310], "u5d": 302, "u6": [302, 310], "u6d": 302, "u_": [13, 124, 152, 299], "u_0": 214, "u_1": [35, 216, 234, 237, 299, 304, 306, 307], "u_1v_1": 234, "u_2": [35, 216, 234, 237, 299, 304, 306, 307], "u_3": [35, 299, 304, 307], "u_4": 299, "u_arm": 299, "u_aug": 124, "u_aux": [158, 304], "u_auxilia": 30, "u_auxiliari": [25, 30, 153, 310], "u_d": [30, 154], "u_dep": [25, 158, 304], "u_depend": [25, 30, 153, 299, 302, 306], "u_fram": 152, "u_func": 115, "u_i": [27, 35, 154, 214], "u_ind": [22, 25, 27, 30, 153, 154, 158, 302, 304, 306, 309, 310], "u_j": [13, 216], "u_j1": 152, "u_n": [96, 115, 214, 216, 217], "u_op": [154, 306], "u_p1": 152, "u_p2": 152, "u_pc": 152, "u_pin": 158, "u_slid": 158, "u_val": 299, "u_var": 115, "u_x": 35, "ua": 209, "uaux1": 304, "uaux2": 304, "ub": 256, "ubuntu": 221, "ubv": 124, "ucdavi": 115, "uchicago": 241, "uci": 128, "uconn": [79, 241], "ucr": 11, "ud": [25, 153, 299], "ud_op": [154, 306], "udel": 124, "udivisor": [93, 128], "udivisor_count": [93, 128], "udivisor_sigma": [13, 93, 128], "udl": 120, "udldecomposit": 120, "udot": [153, 302], "ueber": 216, "ueqdueodoctcwq": 89, "uexpr": 292, "uf": 214, "ufunc": [14, 69, 129, 253, 260], "ufuncifi": [2, 69, 253], "ufuncifycodewrapp": 253, "ugat": 175, "ugli": 221, "ui": [11, 115, 128, 238], "uiki": 89, "uint16": 69, "uint32": 69, "uint64": 69, "uint8": 69, "ukrain": 215, "ultim": [11, 43, 94, 196, 214], "umontr": [93, 128], "un": [230, 231], "unabl": [69, 101, 105, 130, 134, 239, 265, 286, 287], "unaffect": [88, 240], "unambigu": [37, 221, 237, 262], "unansw": [21, 32], "unappropri": 90, "unavoid": 196, "unbound": [18, 88, 239, 246], "unbound_theta": 207, "unboundedlperror": 239, "unbranch": [96, 113], "unbreak": 89, "uncertainti": [92, 196], "unchang": [3, 13, 15, 43, 79, 80, 88, 115, 124, 144, 195, 210, 217, 221, 227, 230, 233, 240, 286], "unclear": [11, 13, 21, 41], "uncommon": [12, 69], "uncondition": [3, 12], "unconstrain": 239, "uncontract": 248, "uncount": 240, "uncoupl": [170, 188], "undecid": [41, 43, 52, 124, 211, 240, 293], "undecor": 88, "undefin": [12, 14, 15, 36, 43, 52, 55, 63, 64, 67, 88, 94, 95, 96, 115, 120, 130, 149, 159, 216, 227, 228, 231, 260, 287, 298], "undefinedfunct": [88, 202, 221, 253, 260], "undefinedkind": [88, 123, 229], "undefinedpred": [63, 64], "under": [2, 3, 4, 8, 11, 12, 15, 16, 18, 41, 42, 63, 64, 66, 67, 69, 70, 78, 79, 84, 86, 96, 106, 113, 115, 117, 118, 124, 128, 130, 132, 136, 137, 160, 186, 206, 208, 209, 216, 217, 221, 228, 229, 231, 234, 237, 239, 240, 241, 247, 250, 291, 297, 299], "underbrac": [35, 196], "underdetermin": [124, 210, 239, 240], "underevalu": 293, "undergo": [7, 134, 164], "undergon": [36, 240], "underli": [12, 15, 22, 69, 80, 86, 88, 117, 124, 142, 186, 199, 210, 217, 239, 240, 241], "underlin": [4, 5], "underneath": 135, "underscor": [3, 4, 12, 13, 88, 124, 237, 247, 255], "understand": [4, 11, 12, 16, 22, 23, 25, 26, 30, 35, 41, 42, 43, 57, 88, 89, 113, 151, 196, 207, 210, 211, 216, 221, 231, 234, 253, 260, 288, 289, 296, 297], "understood": [80, 128, 196, 208, 212, 217], "undertak": 297, "undertermin": 217, "undertest": 293, "undescript": 11, "undesir": [21, 22, 27, 88, 209, 212, 231], "undetermin": [37, 88, 124, 217, 223, 237, 239], "undetermined_coeffici": 237, "undirect": [117, 259], "undo": [14, 231, 297], "undon": [214, 297], "unequ": [14, 15, 37, 88, 136, 221], "unevalu": [12, 13, 14, 15, 41, 42, 43, 46, 63, 64, 67, 80, 87, 88, 94, 96, 105, 115, 128, 144, 168, 172, 179, 180, 191, 217, 220, 228, 229, 233, 237, 239, 240, 241, 242, 287, 291, 292, 298], "unevaluat": 237, "unevaluatedexpr": [15, 88, 221, 292], "unexpand": [88, 211, 220, 230, 253], "unexpect": [12, 14, 88, 252], "unexpectedeof": 130, "unexplain": 68, "unfactor": 210, "unfair": 241, "unflatten": 259, "unfortun": [90, 92, 129, 220, 234], "unhash": 259, "unhind": 237, "uni": [68, 115, 259], "unicod": [11, 12, 96, 116, 124, 205, 221, 252, 291], "unifi": [31, 88, 210, 212, 214, 216, 217, 229], "unificationfail": [214, 216], "uniform": [99, 158, 207, 239, 241], "uniform_distribution_": 241, "uniform_sum_distribut": 241, "uniformdistribut": 241, "uniformli": [13, 39, 79, 104, 105, 128, 136, 138, 142, 207, 255], "uniformsum": 241, "uniformsumdistribut": 241, "unify_anp": 212, "unify_composit": 212, "unify_dmp": 212, "unimod": 241, "unimport": 5, "unintegr": 55, "uninterest": 214, "union": [51, 60, 65, 67, 69, 77, 79, 86, 118, 208, 216, 221, 227, 228, 229, 236, 240, 259], "union_": 229, "union_find": 79, "uniq": 259, "uniqu": [3, 13, 15, 18, 36, 67, 68, 70, 79, 82, 84, 88, 89, 90, 93, 96, 103, 106, 111, 115, 117, 118, 124, 128, 152, 153, 180, 189, 200, 208, 209, 210, 211, 214, 216, 217, 222, 226, 233, 234, 237, 239, 240, 241, 245, 254, 259, 262, 269, 274, 289, 292], "uniquenss": 89, "unit": [16, 22, 28, 30, 32, 33, 36, 43, 46, 47, 61, 65, 68, 88, 89, 93, 101, 102, 103, 115, 124, 128, 132, 136, 138, 142, 144, 146, 147, 148, 152, 156, 158, 159, 167, 192, 193, 194, 198, 200, 207, 209, 210, 212, 214, 216, 217, 219, 221, 229, 231, 234, 240, 242, 265, 267, 269, 274, 275, 282, 299], "unit_cub": 115, "unit_disk": 229, "unit_system": 198, "unit_triangular": 65, "unitari": [65, 93, 115, 128, 175, 180, 206], "unitary_divisor": 128, "unitary_matrix": 65, "unitarydivisor": 128, "unitarydivisorfunct": [93, 128], "unitaryhandl": 65, "unitaryoper": 180, "unitarypred": 65, "uniti": [18, 43, 94, 96, 113, 186, 216], "unitless": [18, 195], "unitsystem": [195, 199], "unittriangularhandl": 65, "unittriangularpred": 65, "unitvec": 30, "univari": [37, 48, 57, 67, 87, 88, 94, 111, 115, 208, 209, 211, 212, 215, 216, 217, 218, 223, 234, 236, 239, 241], "univariatepolynomialerror": 214, "univers": [3, 15, 69, 206, 212, 215, 221, 229, 234, 239, 240], "universal_set": 229, "universalset": [118, 229], "universitat": 265, "unix": [1, 252, 253], "unknow": 41, "unknown": [13, 14, 15, 38, 41, 42, 43, 46, 53, 55, 56, 61, 74, 88, 89, 136, 137, 176, 210, 219, 236, 237, 238, 239, 240, 259, 298], "unknwon": 46, "unless": [2, 4, 11, 12, 14, 15, 35, 36, 41, 43, 45, 62, 64, 67, 69, 79, 87, 88, 89, 93, 96, 103, 104, 113, 124, 127, 158, 164, 209, 210, 211, 216, 217, 221, 226, 229, 230, 237, 239, 252, 256, 259, 260, 262, 265, 274, 287, 293, 297], "unlik": [2, 4, 12, 14, 15, 16, 22, 35, 41, 42, 48, 55, 66, 88, 89, 93, 115, 124, 128, 130, 210, 214, 221, 234, 237, 240, 256, 257, 289, 291, 292, 293, 296], "unload": 134, "unm": 220, "unmodifi": [210, 233], "unmov": 80, "unnam": 254, "unnecessari": [3, 4, 5, 12, 14, 65, 69, 217, 220, 241, 252, 290], "unnecessarili": 297, "unnecessary_permut": 115, "unneed": 15, "unnorm": [94, 96, 210], "unnot": 14, "unord": [13, 16, 88, 128, 212, 240, 259, 260], "unpack": [13, 88, 124, 259, 260], "unpolar": 163, "unpredict": 256, "unprejud": 88, "unpython": 14, "unrad": [233, 239], "unrank": [72, 77, 79, 80, 82], "unrank_binari": 83, "unrank_grai": 83, "unrank_lex": 80, "unrank_nonlex": 80, "unrank_trotterjohnson": 80, "unread": [217, 257], "unrecogn": [13, 124], "unrecognis": 11, "unrel": [12, 13, 53, 88, 95, 209, 289], "unreli": 211, "unresolv": 41, "unrestrict": [5, 77, 259], "unrol": 246, "unrot": 104, "unsanit": [88, 260, 286], "unsat": 118, "unsatisfi": 118, "unset": [221, 233], "unshift": 214, "unsign": [69, 93, 233], "unsignedinttyp": 69, "unsimplifi": [16, 230], "unsolv": [217, 240], "unsolvablefactorerror": [48, 217, 239], "unsort": [21, 32, 88], "unspecifi": [67, 88, 103, 287], "unsplitt": 130, "unstabl": [46, 140], "unstrain": 132, "unsuccess": [79, 86], "unsuit": [13, 206], "unsupport": [13, 16, 38, 144, 211, 212, 216, 221], "unsur": [3, 4, 12], "unsurmount": 254, "until": [3, 12, 14, 27, 36, 39, 41, 48, 50, 51, 52, 53, 54, 55, 56, 60, 80, 82, 88, 89, 98, 115, 124, 128, 214, 217, 230, 237, 289], "untouch": 88, "untyp": 69, "unus": 13, "unusu": [4, 14, 41, 252, 302], "unwant": [88, 239, 259], "unwelcom": 5, "unwieldi": [12, 37], "unwrap": 159, "up": [2, 3, 7, 8, 9, 11, 12, 13, 14, 15, 18, 21, 27, 28, 30, 31, 39, 41, 42, 43, 55, 59, 64, 67, 69, 71, 79, 80, 82, 88, 89, 90, 92, 93, 94, 96, 97, 104, 105, 109, 113, 115, 116, 118, 124, 128, 129, 136, 146, 148, 155, 156, 158, 171, 186, 188, 204, 206, 207, 208, 210, 211, 212, 216, 218, 221, 222, 223, 228, 230, 231, 233, 234, 237, 238, 239, 240, 253, 254, 255, 256, 257, 260, 288, 289, 292, 293, 295, 299, 302, 309, 311], "upcom": 3, "updat": [3, 11, 13, 16, 55, 59, 88, 138, 158, 171, 181, 184, 185, 187, 206, 210, 214, 217, 221, 234, 247, 257, 306], "upgrad": [3, 60], "upload": [5, 128], "upon": [7, 12, 15, 25, 26, 27, 30, 33, 35, 36, 41, 69, 88, 128, 148, 155, 158, 164, 185, 191, 229, 237, 246, 253, 272, 297, 302], "upper": [4, 65, 87, 89, 92, 96, 97, 104, 105, 119, 120, 124, 127, 128, 136, 142, 152, 184, 191, 206, 210, 212, 214, 216, 217, 221, 231, 239, 246, 265, 299], "upper_bob": 152, "upper_bound": [97, 98, 101, 104], "upper_half_plan": 229, "upper_half_unit_disk": 229, "upper_hessenberg_decomposit": 124, "upper_incomplete_gamma_funct": 96, "upper_limit": [142, 287], "upper_polygon": 104, "upper_seg": 104, "upper_triangular": [65, 124], "upper_triangular_solv": [119, 124], "uppercas": [61, 89, 231], "uppergamma": [4, 93, 96, 221, 241], "uppertriangularhandl": 65, "uppertriangularmatrix": 65, "uppertriangularpred": 65, "upretti": 12, "upright": 302, "upsid": 11, "upsilon": [16, 221], "upstream": 11, "upto": [223, 228, 237], "upward": [136, 210, 216], "ur": 234, "url": [0, 89, 257], "urul": 115, "us": [0, 1, 3, 4, 8, 9, 10, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 45, 46, 47, 49, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 108, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 127, 128, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 163, 164, 166, 168, 170, 171, 172, 175, 177, 179, 180, 181, 184, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 200, 201, 202, 204, 205, 206, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 250, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 265, 268, 269, 271, 272, 274, 275, 277, 282, 283, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309], "usa": [87, 215], "usabl": [3, 14, 55, 211, 212, 221, 240, 291], "usag": [4, 5, 12, 15, 16, 17, 23, 33, 41, 42, 43, 60, 63, 90, 94, 115, 128, 188, 207, 208, 210, 214, 221, 229, 231, 234, 237, 238, 242, 256, 260, 272, 273, 280, 292], "use_add": 255, "use_cach": 217, "use_ecm": 128, "use_imp": 260, "use_latex": [116, 205, 207, 296], "use_lra_theori": 118, "use_model": 118, "use_pm1": [88, 128], "use_renam": 69, "use_rho": [88, 128], "use_symengin": 2, "use_tri": [88, 128], "use_unicod": [12, 14, 43, 53, 67, 68, 69, 92, 96, 115, 116, 124, 137, 144, 163, 205, 206, 208, 209, 220, 221, 222, 240, 241, 287, 291, 293, 296, 297, 298], "use_unicode_sqrt_char": 221, "usecas": 13, "usefulli": 212, "useless": [12, 193, 212, 214], "usepackag": 221, "user": [0, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 21, 22, 23, 26, 28, 31, 35, 38, 40, 41, 43, 68, 69, 70, 79, 80, 87, 88, 89, 90, 96, 100, 113, 117, 120, 124, 130, 131, 133, 136, 137, 140, 142, 144, 148, 151, 156, 159, 179, 180, 189, 195, 196, 200, 204, 208, 211, 214, 216, 218, 219, 220, 221, 222, 230, 233, 239, 240, 241, 250, 253, 254, 256, 257, 260, 265, 269, 270, 275, 286, 289, 290, 292, 293, 294, 301], "user_def_func": 221, "user_funct": [69, 221], "user_guid": 260, "usernam": [9, 11], "userwarn": [12, 200, 250, 257, 293], "usm": 210, "ussr": 215, "usual": [2, 12, 13, 14, 15, 16, 18, 23, 33, 35, 36, 39, 41, 48, 68, 70, 79, 87, 88, 89, 106, 113, 115, 124, 151, 177, 189, 195, 196, 208, 209, 210, 211, 212, 214, 217, 220, 221, 222, 228, 231, 237, 240, 241, 242, 246, 247, 254, 256, 260, 265, 274, 286, 289, 292, 296, 297], "utf": 221, "util": [2, 3, 4, 5, 7, 11, 50, 52, 67, 75, 77, 79, 80, 93, 94, 99, 100, 101, 104, 118, 128, 129, 133, 148, 149, 153, 156, 161, 195, 198, 210, 214, 218, 221, 233, 234, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 277, 282, 283], "utilis": 68, "utm": 128, "uv": [191, 309, 310], "uvar": 115, "uwa": 93, "uwaterloo": 89, "ux": 238, "uxi": 238, "uxt": 238, "v": [0, 8, 9, 18, 27, 28, 30, 31, 32, 33, 35, 36, 37, 46, 48, 52, 57, 61, 69, 78, 84, 87, 88, 89, 90, 91, 92, 96, 102, 113, 115, 117, 124, 128, 131, 132, 134, 137, 148, 149, 150, 152, 155, 159, 163, 164, 176, 191, 196, 200, 202, 204, 207, 214, 215, 216, 217, 221, 231, 233, 234, 237, 239, 241, 252, 259, 265, 268, 269, 270, 271, 272, 274, 299, 302], "v1": [30, 32, 90, 101, 124, 155, 200, 201, 204, 241, 260, 265, 268, 269, 270, 271], "v10": 69, "v18": 69, "v1pt": 30, "v1pt_theori": [30, 35, 204], "v1x": 32, "v1y": 32, "v1z": 32, "v2": [9, 32, 90, 101, 124, 155, 200, 201, 204, 260, 265, 268, 269, 270, 271], "v2pt": [22, 30], "v2pt_theori": [22, 27, 28, 30, 31, 35, 204, 299, 302, 303, 309, 310, 311], "v2x": 32, "v2y": 32, "v2z": 32, "v3": [124, 200, 204, 271], "v4b3": 89, "v5_2": 88, "v6": 69, "v8": 241, "v_": 18, "v_0": 239, "v_1": [90, 216, 234, 239], "v_2": [90, 216, 234], "v_a": 265, "v_arrai": 78, "v_aug": 124, "v_b": 265, "v_field": 90, "v_i": [128, 216, 239], "v_m": [18, 132, 239], "v_m_max": [18, 132, 134], "v_m_tild": [18, 132], "v_m_tilde_num": 18, "v_mt": 18, "v_n": 216, "v_o_n": [22, 30], "v_p_n": 22, "v_r_n": 22, "va": 217, "vacuou": 124, "vajnovszki": 259, "val": [69, 88, 100, 207, 212, 216, 260], "val_dict": 302, "val_inf": 237, "valenc": 248, "valid": [2, 4, 5, 11, 13, 14, 22, 32, 36, 41, 42, 43, 51, 55, 62, 64, 66, 67, 68, 69, 81, 87, 88, 93, 94, 104, 124, 128, 130, 149, 150, 153, 154, 158, 160, 164, 183, 188, 195, 198, 200, 205, 211, 214, 217, 220, 221, 229, 233, 234, 237, 239, 240, 241, 260, 293, 297, 299, 302, 304], "validate_system": [158, 304], "validrelationoper": 88, "valu": [2, 3, 4, 5, 12, 13, 14, 15, 16, 17, 18, 22, 27, 30, 33, 35, 36, 39, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 77, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 116, 118, 119, 121, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 136, 137, 138, 140, 142, 144, 146, 148, 149, 152, 153, 154, 155, 158, 159, 160, 164, 167, 170, 175, 177, 180, 183, 185, 186, 187, 188, 191, 192, 194, 196, 200, 201, 204, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 227, 228, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 252, 254, 255, 259, 260, 261, 262, 268, 270, 272, 275, 287, 289, 292, 299, 302, 304], "valuat": 237, "value1": 207, "value2": 207, "value_const": 69, "valueerror": [12, 14, 33, 38, 41, 54, 55, 62, 64, 67, 69, 70, 74, 80, 88, 89, 97, 98, 101, 103, 104, 115, 120, 124, 127, 128, 136, 142, 144, 159, 165, 204, 206, 208, 210, 214, 216, 229, 234, 237, 239, 240, 259, 262, 272], "van": [124, 128, 215], "vanilla": 41, "vanish": [124, 191, 214, 217, 220, 237, 265], "vanston": 128, "var": [14, 16, 46, 51, 67, 69, 87, 88, 92, 93, 111, 115, 118, 124, 144, 200, 207, 216, 220, 221, 233, 234, 260, 298], "var_in_dcm": 200, "var_nam": 88, "var_start_end": 207, "var_start_end_i": 207, "var_start_end_u": 207, "var_start_end_v": 207, "var_start_end_x": 207, "var_sub1__sup_sub2": 221, "var_t": 234, "varbosonicbasi": 191, "varepsilon": 237, "vari": [18, 21, 28, 36, 39, 67, 69, 88, 102, 104, 131, 134, 136, 142, 148, 153, 156, 189, 228, 239, 259, 272, 303], "variabl": [1, 2, 4, 5, 11, 12, 13, 14, 15, 17, 18, 22, 30, 31, 32, 33, 37, 39, 42, 43, 46, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65, 67, 69, 70, 83, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 105, 107, 113, 115, 116, 118, 124, 130, 131, 134, 136, 137, 140, 142, 144, 148, 154, 158, 165, 180, 185, 189, 191, 194, 200, 202, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 227, 228, 233, 234, 236, 237, 238, 239, 240, 248, 252, 254, 255, 256, 260, 265, 268, 269, 271, 272, 274, 287, 289, 291, 293, 298, 300, 305, 309, 311], "variable_map": 200, "variable_nam": [265, 272], "varianc": 241, "variancematrix": 241, "variant": [214, 237, 240], "variat": [80, 88, 214, 228, 237, 299], "variation_of_paramet": 237, "variationofparamet": 237, "varieti": [28, 45, 57, 69, 70, 80, 88, 129, 137, 208, 215, 217, 241, 259], "varii": 78, "varion": 43, "variou": [2, 4, 5, 14, 15, 18, 28, 39, 43, 48, 51, 67, 69, 71, 72, 79, 87, 88, 93, 108, 113, 115, 118, 124, 134, 138, 155, 170, 174, 175, 186, 188, 208, 209, 212, 213, 214, 216, 222, 228, 231, 234, 237, 238, 240, 254, 297, 299, 300, 301, 305], "varlist": 124, "varnoth": 229, "varphi": [92, 96, 216, 221, 237], "varshalovich": [170, 188], "vast": [2, 57, 115, 213], "vastli": 36, "vat": 0, "vc": 88, "vdiff": 88, "vdot": [120, 124, 196], "ve": [43, 302], "vec": [30, 55, 124, 152, 200, 206, 214, 271, 272, 274], "vec1": 202, "vec2": 202, "vech": 124, "vect": [201, 265, 268], "vectfield": [33, 201, 268, 272], "vector": [4, 13, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 39, 47, 61, 65, 69, 72, 79, 80, 88, 90, 96, 101, 102, 103, 110, 111, 117, 124, 129, 134, 136, 138, 140, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 163, 164, 177, 186, 188, 193, 196, 200, 202, 204, 205, 208, 210, 216, 221, 231, 234, 237, 239, 241, 246, 247, 252, 253, 267, 271, 276, 280, 282, 293, 299, 302, 306, 309, 310, 311], "vector_coplanar": 61, "vector_field": [90, 272], "vector_integr": [268, 275], "vector_nam": 265, "vector_onli": 61, "vector_part": 61, "vectoradd": 269, "vectorfield": 275, "vectori": [33, 204, 269, 274], "vectorinto": 36, "vectormul": 269, "vectors_in_basi": 90, "vectorzero": 269, "vee": [113, 118, 124], "vega": 79, "vehicl": 2, "vel": [18, 22, 24, 30, 35, 148, 152, 204, 272, 302, 304, 306, 310], "vel_p": 27, "vel_vec": 204, "veloc": [2, 21, 24, 27, 28, 30, 32, 33, 36, 124, 132, 134, 148, 149, 152, 153, 155, 156, 158, 165, 193, 195, 196, 200, 204, 272, 274, 299, 302, 303, 304, 306, 309, 310, 311], "velocity_con": 30, "velocity_constraint": [25, 30, 153, 158, 299, 302, 304, 306], "venu": 194, "venus_a": 194, "venv": [8, 9], "verbatim": [5, 221], "verbos": [12, 69, 88, 124, 128, 221, 252, 253, 296], "veri": [1, 2, 3, 4, 11, 12, 13, 14, 15, 16, 18, 21, 22, 30, 35, 36, 37, 38, 41, 43, 48, 69, 84, 88, 89, 92, 93, 98, 100, 106, 110, 113, 115, 118, 124, 128, 132, 135, 144, 156, 163, 196, 208, 210, 211, 214, 216, 217, 218, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 252, 253, 254, 260, 286, 289, 292, 297, 306], "verif": [67, 210, 239], "verifi": [12, 22, 41, 48, 53, 55, 59, 67, 79, 85, 89, 90, 208, 214, 220, 237, 239, 240, 242, 243, 297], "verify_numer": [13, 88], "verion": 88, "verlag": [115, 215], "vers": 43, "versa": [89, 115, 128, 136, 181, 200, 208, 212, 269, 270, 289], "versatil": 113, "version": [2, 3, 4, 5, 7, 8, 9, 11, 12, 14, 17, 18, 22, 41, 42, 43, 45, 57, 58, 59, 62, 68, 69, 79, 80, 86, 88, 89, 93, 94, 96, 115, 118, 119, 121, 124, 126, 128, 147, 149, 152, 175, 189, 193, 200, 206, 207, 208, 210, 211, 212, 214, 216, 217, 221, 224, 233, 239, 241, 251, 252, 254, 255, 256, 257, 259, 260, 263, 265, 271, 292, 293], "versor": 61, "vert": [33, 36, 127, 274], "vertex": [72, 82, 99, 104, 115, 210], "vertic": [13, 68, 72, 81, 82, 98, 99, 101, 103, 104, 105, 115, 117, 124, 135, 136, 137, 138, 140, 158, 163, 171, 206, 207, 210, 216, 221, 229, 259, 275, 307], "vertical_direct": 68, "veryuniqu": 68, "vf": 221, "vfield": [212, 271], "vfree_group": 70, "vg": 214, "vi": 88, "via": [2, 8, 9, 14, 15, 18, 39, 43, 53, 57, 59, 62, 63, 64, 79, 80, 88, 93, 96, 113, 115, 118, 124, 128, 129, 130, 136, 156, 200, 206, 208, 212, 214, 216, 217, 220, 221, 240, 250, 253, 254, 265, 274, 292], "viabl": [8, 89, 287], "vibrat": 303, "vice": [89, 115, 128, 136, 181, 200, 208, 212, 269, 270, 289], "vicki": 96, "video": [7, 295], "viet": 217, "view": [2, 4, 7, 11, 12, 15, 36, 57, 69, 70, 71, 88, 124, 136, 193, 196, 207, 214, 221, 237, 240, 254, 256, 259], "viewcod": 4, "viewcont": 265, "viewdoc": 230, "vieweg": 215, "viewer": [2, 5, 68, 221, 255], "vig": 0, "vigener": 89, "vigenere_ciph": 89, "vigkla": 217, "viktor": 238, "vim": 11, "vincent": [217, 259], "violat": [16, 22, 206, 218, 233], "virtu": [28, 30], "virtual": [3, 8, 14, 36, 59, 88, 104, 290], "viscou": 303, "visibl": [11, 113, 207], "visit": [59, 72, 79, 88, 93, 294], "visit_token": 130, "visitor": 256, "visual": [3, 13, 18, 23, 88, 128, 137, 144, 220, 233, 299], "visualis": 46, "vital": 231, "vlahovski": 230, "vlatex": [32, 36, 157, 200, 205], "vline": 221, "vlist": 124, "vo": 237, "vobj": 221, "void": 254, "vol": [72, 80, 89, 93, 96, 113, 124, 128, 145, 154, 216, 217, 231, 256, 259], "volatil": 69, "volum": [0, 4, 69, 87, 96, 113, 115, 206, 215, 231, 237, 256, 265], "volume_result": 69, "voluntari": 18, "voluntarili": [18, 131], "von": [215, 241], "von_mises_distribut": 241, "vonmis": 241, "vonmisesdistribut": 241, "voss": 11, "vpprint": [32, 36, 157, 205], "vprint": [32, 36, 157, 204, 205], "vr": 234, "vradiu": 98, "vring": 212, "vsin": 88, "vslobodi": 124, "vsort": 88, "vsort0": 88, "vssut": 46, "vstack": [124, 210], "vt": 89, "w": [13, 16, 29, 32, 33, 34, 46, 57, 61, 69, 72, 78, 80, 87, 88, 89, 90, 91, 94, 96, 113, 115, 118, 124, 125, 149, 152, 155, 158, 160, 165, 176, 180, 189, 203, 204, 206, 207, 209, 210, 214, 215, 216, 217, 218, 222, 228, 229, 231, 233, 234, 237, 238, 240, 241, 252, 260, 262, 272, 298, 303, 310], "w1": [35, 165, 233], "w2": [35, 87, 165], "w2e": 87, "w3": [35, 165, 221], "w3j": 170, "w_": [124, 216], "w_0": [160, 234], "w_1": [35, 216], "w_2": [35, 216], "w_3": 35, "w_8": 136, "w_a_n": 22, "w_b_n": [22, 30], "w_frame": 152, "w_i": [115, 160, 217, 237], "w_j": 216, "w_k": 94, "w_o": 160, "w_r": 216, "w_r_n_qd": [309, 310], "w_x": 35, "w_y": 35, "w_z": 35, "wa": [2, 3, 9, 11, 12, 13, 14, 16, 21, 22, 27, 28, 35, 36, 37, 41, 43, 55, 71, 77, 79, 80, 82, 88, 89, 90, 96, 101, 124, 128, 130, 149, 155, 186, 196, 206, 208, 210, 214, 216, 217, 218, 220, 221, 230, 231, 233, 237, 239, 241, 250, 252, 255, 257, 259, 260, 287, 289, 291, 292, 295, 302, 306], "wagstaff": 128, "wai": [2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 21, 22, 23, 27, 32, 33, 35, 38, 39, 40, 41, 42, 43, 48, 50, 52, 55, 60, 68, 70, 71, 72, 77, 79, 80, 81, 84, 88, 90, 93, 96, 104, 108, 112, 113, 115, 117, 120, 124, 127, 128, 130, 132, 133, 136, 140, 148, 151, 153, 155, 158, 171, 185, 188, 189, 194, 196, 199, 200, 202, 204, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 228, 231, 233, 234, 237, 238, 240, 242, 243, 246, 247, 250, 254, 256, 259, 260, 265, 269, 270, 271, 272, 274, 286, 287, 289, 290, 291, 292, 297, 298, 306, 308, 309], "waist": 160, "waist2rayleigh": 160, "waist_approximation_limit": 160, "waist_in": 160, "waist_out": 160, "wait": [12, 36], "wald": 241, "walk": [15, 69, 72, 88, 183, 186, 231], "walker": 237, "wall": [11, 13, 149, 152, 158, 307], "walli": 87, "walter": 29, "wang": [214, 215, 259], "wang78": [214, 215], "wang81": 215, "want": [2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 30, 35, 36, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 55, 57, 59, 65, 67, 69, 70, 71, 72, 80, 88, 89, 95, 100, 102, 104, 107, 113, 115, 120, 124, 125, 128, 129, 131, 134, 142, 144, 147, 154, 174, 184, 185, 188, 191, 194, 196, 202, 204, 207, 209, 210, 211, 214, 216, 217, 218, 220, 221, 222, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 242, 247, 250, 252, 254, 256, 259, 260, 270, 272, 275, 286, 287, 289, 291, 292, 293, 294, 296, 297], "war": 89, "warn": [3, 4, 16, 17, 36, 43, 88, 89, 103, 118, 130, 136, 149, 200, 207, 209, 221, 237, 239, 250, 252, 254, 258, 259, 284, 293], "warningcl": [250, 257], "warns_deprecated_sympi": [3, 12, 250, 255, 257], "warrant": 12, "washington": 128, "wasn": [12, 13], "wast": [88, 125, 210], "watch": 80, "watson": [70, 233], "wave": [146, 161, 162, 163, 224, 282], "wavefunct": [167, 180, 189, 192, 282], "wavelen": 160, "wavelength": [160, 165], "wavenumb": 165, "we": [0, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 16, 18, 21, 22, 23, 24, 25, 26, 27, 30, 32, 33, 35, 36, 39, 41, 42, 43, 45, 48, 49, 50, 51, 53, 55, 56, 57, 62, 63, 64, 67, 68, 69, 70, 71, 72, 74, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 101, 106, 111, 112, 113, 115, 116, 117, 118, 124, 125, 127, 128, 130, 132, 134, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 158, 163, 166, 174, 177, 180, 181, 183, 184, 185, 186, 187, 188, 190, 191, 193, 194, 196, 200, 202, 204, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 228, 229, 231, 233, 234, 236, 237, 238, 239, 241, 243, 245, 247, 252, 253, 254, 256, 257, 259, 260, 265, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311], "weak": [79, 88, 123, 124, 153, 211, 214], "weakli": [124, 259], "web": [5, 7, 8, 11, 30, 34, 72, 80, 89, 93, 96, 100, 105, 115, 128, 203, 210, 215, 233, 234, 241, 259, 293], "webpag": [2, 5], "websit": [5, 7, 295], "wedg": [90, 113], "wedgeproduct": 90, "weibul": 241, "weibull_distribut": 241, "weibulldistribut": 241, "weight": [39, 88, 96, 103, 105, 115, 117, 124, 175, 233, 287], "weisstein": 215, "weisstein09": [214, 215], "welcom": [211, 237, 290, 301], "weld": 152, "weldjoint": 152, "welecka": 191, "well": [3, 4, 5, 7, 11, 13, 14, 15, 16, 18, 21, 22, 27, 28, 32, 35, 37, 39, 41, 43, 59, 65, 67, 68, 69, 70, 71, 72, 74, 80, 87, 88, 93, 94, 96, 115, 121, 124, 140, 145, 152, 158, 181, 190, 193, 194, 206, 207, 208, 210, 211, 212, 214, 216, 221, 228, 229, 230, 231, 233, 237, 239, 240, 252, 253, 269, 270, 274, 289, 291, 292, 297, 302, 306, 307], "welleslei": 87, "wen": 148, "wendi": 80, "went": 35, "were": [3, 5, 11, 12, 13, 14, 15, 16, 21, 27, 32, 33, 36, 37, 41, 43, 68, 71, 80, 82, 88, 89, 94, 105, 113, 124, 128, 129, 130, 132, 158, 208, 210, 212, 214, 215, 216, 217, 220, 221, 222, 230, 233, 239, 259, 260, 262, 289, 291, 292, 296, 297], "werner": 29, "weslei": [72, 80, 128, 215], "wester": [213, 283], "wester1999": 220, "weyl": [111, 117], "weyl_group": 117, "weylelt": 117, "weylgroup": 117, "wf": [146, 302], "wf_cont": 302, "wf_i": 302, "wf_mc": 302, "wfrad": 302, "wgate": 176, "what": [4, 5, 7, 11, 12, 13, 14, 15, 16, 22, 24, 30, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 58, 67, 69, 80, 82, 87, 88, 89, 90, 94, 95, 98, 99, 103, 113, 115, 117, 124, 128, 130, 149, 152, 153, 156, 158, 190, 191, 194, 196, 200, 207, 212, 214, 217, 220, 221, 222, 228, 230, 231, 233, 234, 237, 239, 246, 250, 252, 254, 255, 260, 269, 270, 275, 287, 289, 290, 292, 296, 297, 301, 306], "whatev": [13, 14, 16, 43, 79, 88, 89, 233, 237, 238, 240, 260], "wheel": [13, 302], "when": [0, 2, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 35, 36, 37, 38, 39, 41, 42, 43, 46, 48, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 79, 80, 81, 86, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 104, 105, 112, 115, 116, 118, 119, 124, 128, 129, 130, 131, 132, 134, 136, 138, 140, 142, 144, 145, 148, 151, 152, 155, 156, 158, 159, 164, 165, 170, 175, 176, 180, 183, 185, 193, 194, 195, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 243, 245, 246, 250, 252, 253, 254, 255, 257, 259, 260, 262, 264, 269, 287, 289, 291, 292, 297, 298, 299, 302, 304, 310], "whenc": 231, "whenev": [2, 3, 12, 13, 14, 15, 16, 43, 86, 113, 115, 124, 198, 207, 208, 209, 210, 212, 223, 228, 231, 241, 287, 289, 292], "where": [3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 18, 21, 22, 26, 27, 28, 30, 31, 32, 33, 35, 36, 39, 41, 42, 43, 46, 48, 51, 52, 53, 55, 57, 60, 61, 65, 67, 68, 69, 70, 77, 78, 79, 80, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 101, 103, 104, 105, 106, 110, 111, 112, 113, 115, 117, 118, 119, 120, 124, 128, 130, 131, 134, 136, 138, 140, 141, 144, 148, 149, 152, 153, 154, 155, 158, 159, 165, 175, 180, 186, 188, 190, 191, 192, 193, 194, 200, 204, 206, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 241, 242, 245, 247, 252, 253, 254, 255, 259, 260, 262, 265, 272, 274, 287, 289, 291, 293, 297, 298, 302], "wherea": [14, 15, 39, 41, 48, 53, 65, 69, 89, 98, 104, 113, 118, 144, 196, 208, 211, 214, 217, 221, 239, 240, 259, 297], "wherebi": 89, "wherev": [22, 59, 233, 240, 269], "whet": 291, "whether": [3, 7, 8, 12, 13, 14, 15, 21, 22, 36, 41, 42, 43, 48, 53, 55, 56, 57, 67, 68, 69, 74, 79, 87, 88, 89, 95, 96, 100, 103, 115, 116, 118, 124, 128, 132, 134, 140, 153, 154, 158, 174, 179, 198, 202, 207, 210, 211, 212, 216, 217, 221, 224, 228, 229, 233, 234, 237, 239, 240, 241, 242, 252, 254, 259, 260, 265, 268, 293], "which": [1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 39, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 77, 78, 79, 80, 81, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103, 104, 107, 110, 111, 112, 113, 115, 116, 117, 118, 120, 121, 123, 124, 127, 128, 130, 131, 132, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 162, 164, 165, 177, 180, 186, 187, 188, 189, 191, 195, 196, 197, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 247, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 270, 274, 275, 286, 287, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 302, 303, 304, 307, 310], "while": [3, 4, 7, 11, 12, 13, 14, 15, 16, 22, 27, 33, 41, 43, 45, 49, 50, 55, 57, 68, 69, 70, 79, 80, 81, 84, 87, 88, 89, 90, 92, 93, 94, 98, 102, 104, 112, 118, 124, 128, 129, 130, 132, 136, 138, 140, 148, 149, 152, 153, 154, 156, 158, 175, 195, 196, 200, 208, 210, 216, 219, 221, 237, 239, 240, 252, 254, 256, 259, 274, 286, 292, 293, 306], "white": [116, 136, 205, 241], "whitespac": [5, 12, 88, 257], "whittak": 115, "whittl": 297, "whl": 69, "who": [2, 3, 4, 9, 11, 12, 30, 36, 39, 43, 89, 90, 214, 221, 290, 301], "whole": [4, 12, 13, 41, 88, 90, 96, 115, 137, 146, 207, 208, 210, 216, 217, 221, 224, 229, 231, 237, 240, 259], "whole_submodul": 216, "whose": [5, 13, 15, 25, 33, 36, 41, 43, 48, 68, 70, 72, 77, 80, 87, 88, 89, 94, 98, 102, 104, 105, 111, 115, 118, 124, 128, 148, 155, 163, 186, 196, 201, 202, 209, 210, 212, 216, 217, 228, 229, 233, 237, 238, 239, 241, 247, 252, 256, 259, 260, 265, 268, 270, 272], "wht": 91, "why": [3, 12, 13, 14, 16, 36, 41, 69, 88, 212, 218, 228, 231, 260, 290, 292, 293], "wick": 191, "wide": [9, 30, 41, 116, 124, 138, 205, 210, 211, 217, 221, 241], "widen": 218, "wider": [45, 221], "widget": 221, "width": [13, 68, 69, 116, 205, 207, 217, 221, 252, 303], "wiener": 241, "wiener_process": 241, "wienerprocess": [13, 241], "wigner": [170, 188, 241, 282], "wigner3j": [170, 206], "wigner6j": [170, 206], "wigner9j": [170, 206], "wigner_3j": 206, "wigner_6j": 206, "wigner_9j": 206, "wigner_d": 206, "wigner_d_smal": 206, "wigner_semicircle_distribut": 241, "wignerd": 188, "wignersemicircl": 241, "wignerssemicirclelaw": 241, "wiki": [3, 4, 5, 11, 16, 34, 41, 43, 61, 63, 64, 65, 67, 68, 69, 71, 76, 77, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 98, 100, 104, 105, 106, 115, 116, 117, 118, 120, 124, 128, 142, 144, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 195, 200, 202, 203, 207, 210, 217, 224, 228, 229, 230, 234, 237, 240, 241, 254, 259, 265, 267, 271, 273, 275, 293], "wikibook": [5, 115, 116], "wikidel": 271, "wikidyad": [32, 34, 203], "wikidyadicproduct": [32, 34, 203], "wikipappu": 100, "wikipedia": [4, 15, 34, 41, 43, 61, 63, 64, 65, 67, 68, 69, 71, 76, 77, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 98, 100, 104, 105, 106, 115, 117, 118, 120, 124, 128, 142, 144, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 194, 200, 202, 203, 210, 217, 224, 228, 229, 230, 237, 240, 241, 254, 259, 265, 267, 271, 273, 275, 291, 293, 295], "wild": [16, 88, 233, 259], "wildcard": [88, 233], "wildfunct": 88, "wilei": 241, "wilf": [72, 87, 239], "wilkinson": [48, 124], "william": 210, "win": 60, "window": [1, 9, 11, 135, 262], "wip": 11, "wire": 171, "wire_idx": 171, "wirefram": 207, "wisdom": 90, "wise": [69, 70, 94, 124, 210, 214, 221, 227, 253], "wish": [2, 4, 11, 14, 16, 32, 36, 43, 55, 59, 69, 88, 89, 92, 113, 128, 186, 256, 260, 287, 291, 293, 298], "wishart": 241, "wishart_distribut": 241, "wit": 128, "with_default": [18, 131, 132, 134, 299], "with_pivot": 124, "within": [2, 5, 12, 13, 15, 17, 18, 28, 35, 36, 41, 54, 67, 68, 69, 71, 88, 94, 101, 104, 118, 120, 124, 128, 129, 131, 132, 134, 136, 186, 200, 209, 211, 212, 217, 219, 229, 237, 239, 240, 241, 252, 253, 262, 309], "without": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 22, 26, 27, 32, 35, 41, 43, 45, 46, 59, 63, 65, 66, 69, 87, 88, 89, 90, 92, 96, 113, 115, 116, 120, 123, 124, 144, 145, 148, 152, 156, 191, 195, 196, 200, 201, 207, 210, 211, 214, 217, 221, 223, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 243, 246, 247, 250, 252, 253, 254, 257, 259, 260, 262, 268, 271, 293, 297, 308, 310], "withstand": [136, 137], "wittkopf": 215, "wkshum": 234, "wlog": 231, "wm": 241, "wminu": 124, "wn_m": 124, "wo": 22, "wojciech": 29, "wolfram": [4, 65, 81, 82, 88, 89, 91, 93, 94, 96, 98, 104, 115, 124, 128, 130, 215, 221, 223, 224, 226, 229, 234, 241, 259, 293], "wolphramalpha": 237, "won": [3, 11, 12, 14, 16, 43, 69, 132, 233, 240, 292], "wonder": 293, "wor6d": 89, "word": [3, 5, 9, 12, 15, 22, 28, 43, 65, 84, 87, 88, 89, 94, 96, 118, 144, 153, 208, 211, 216, 233, 234, 237, 239, 254, 265, 270, 289], "word_sep": 89, "wordpress": [113, 234], "work": [0, 2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 28, 30, 36, 38, 39, 41, 42, 43, 48, 54, 59, 62, 64, 67, 68, 69, 71, 79, 80, 81, 88, 89, 92, 96, 113, 115, 117, 118, 120, 124, 125, 128, 130, 136, 149, 159, 171, 175, 180, 184, 185, 186, 187, 190, 193, 202, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 221, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 247, 252, 253, 254, 256, 259, 260, 261, 262, 269, 270, 289, 290, 291, 292, 293, 296, 297, 302], "workaround": [8, 260], "workflow": [6, 7, 8, 9, 10, 12, 14, 30, 54, 55, 211, 254, 260], "workhors": 228, "world": [9, 27, 89, 140, 259, 306], "worri": [14, 16, 88, 292], "wors": [14, 43, 118, 233], "worst": [128, 217, 237], "worth": [3, 41, 43, 153, 200, 270, 272], "worthwhil": 92, "wou": 80, "would": [1, 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 30, 32, 33, 35, 37, 39, 41, 42, 43, 45, 49, 52, 54, 59, 68, 69, 70, 77, 79, 80, 87, 88, 89, 93, 94, 100, 104, 113, 115, 124, 128, 130, 133, 136, 144, 145, 146, 150, 152, 186, 188, 191, 196, 200, 207, 210, 211, 212, 214, 217, 218, 220, 221, 222, 224, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 243, 245, 246, 252, 254, 256, 259, 260, 262, 270, 271, 272, 274, 286, 287, 289, 291, 292, 293, 296, 297, 298, 306], "wouldn": 43, "woven": 208, "wp1": 90, "wpathwai": 18, "wplu": 124, "wr": 302, "wr_cont": 302, "wr_i": 302, "wr_mc": 302, "wrap": [2, 3, 4, 11, 12, 13, 19, 36, 62, 63, 64, 65, 69, 77, 88, 94, 116, 129, 130, 151, 156, 205, 207, 210, 211, 214, 221, 224, 240, 246, 253, 257, 260, 262, 282, 292, 299], "wrap_lin": [116, 205, 221, 237], "wrapper": [2, 13, 15, 27, 43, 63, 65, 69, 80, 88, 96, 124, 202, 205, 207, 210, 211, 214, 221, 228, 237, 240, 241, 253, 257, 259], "wrapping_geometri": 159, "wrapping_pathwai": 156, "wrappingcylind": [18, 156, 159], "wrappinggeometrybas": [156, 159], "wrappingpathwai": [18, 156], "wrappingspher": 159, "wrench": 96, "wright": 215, "write": [3, 6, 7, 9, 10, 13, 14, 15, 18, 30, 35, 36, 39, 41, 42, 44, 48, 60, 69, 77, 88, 89, 95, 96, 113, 115, 120, 171, 209, 210, 212, 214, 216, 221, 230, 231, 234, 237, 240, 246, 252, 253, 254, 260, 290, 291, 292, 297, 301], "writer": 252, "written": [0, 2, 4, 5, 11, 12, 13, 14, 15, 23, 30, 33, 34, 35, 36, 41, 43, 65, 69, 76, 79, 80, 84, 88, 93, 96, 100, 106, 111, 113, 117, 118, 127, 128, 151, 191, 203, 208, 209, 217, 221, 224, 228, 231, 234, 237, 254, 272, 274, 290, 291, 292, 297, 306], "wrong": [3, 5, 11, 12, 13, 14, 79, 88, 89, 96, 98, 124, 200, 237, 255, 289, 293], "wronskian": [124, 237], "wrote": [291, 292], "wrrad": 302, "wrt": [22, 30, 67, 69, 88, 90, 96, 105, 124, 200, 201, 214, 217, 265, 267, 268, 272], "wsl": 8, "wsym": 228, "wu_1": 234, "wurlitz": 2, "wv": 176, "wv_1": 234, "ww2040": 241, "www": [4, 5, 46, 61, 67, 79, 80, 89, 91, 93, 115, 116, 124, 128, 142, 144, 205, 210, 215, 220, 221, 230, 233, 234, 237, 241, 259, 293], "www3": [110, 237, 265], "x": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 77, 79, 80, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 123, 124, 127, 128, 129, 130, 131, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 163, 165, 166, 167, 168, 169, 171, 172, 175, 180, 181, 186, 188, 189, 190, 191, 192, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 252, 253, 254, 255, 257, 259, 260, 262, 265, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 304, 306, 307, 309, 310, 311], "x0": [14, 39, 55, 67, 69, 78, 88, 96, 107, 109, 111, 112, 128, 163, 211, 222, 223, 228, 233, 237, 239, 241, 259, 287, 299], "x01": 88, "x02": 88, "x1": [14, 30, 41, 43, 54, 55, 78, 88, 93, 163, 211, 212, 222, 223, 233, 237, 239, 241, 259], "x11": 88, "x12": [14, 88], "x2": [14, 30, 41, 54, 78, 88, 93, 163, 211, 223, 237, 239, 241], "x3": [14, 78, 88, 93, 211, 237, 239, 241], "x4": [14, 88, 93, 211, 239], "x5": [14, 88, 93, 211], "x50": 88, "x51": 88, "x6": [14, 88, 211], "x64": 252, "x7": [14, 88, 211], "x8": [14, 88, 211], "x86": 69, "x9": [14, 88, 211], "x_": [14, 39, 51, 55, 69, 78, 88, 89, 93, 130, 212, 214, 217, 223, 234, 237, 242], "x_0": [39, 78, 79, 89, 110, 111, 112, 214, 223, 234, 237, 241, 287], "x_1": [14, 43, 70, 78, 79, 89, 93, 110, 124, 186, 209, 212, 214, 217, 223, 234, 240], "x_1x_0": 78, "x_2": [14, 70, 78, 93, 110, 186, 209, 214, 217, 223, 234, 240], "x_2x_0": 78, "x_2x_1": 78, "x_3": [14, 70, 78, 110, 186], "x_3x_0": 78, "x_3x_1": 78, "x_3x_2": 78, "x_4": 14, "x_5": 14, "x_6": 14, "x_7": 14, "x_8": 14, "x_9": 14, "x_arrai": 207, "x_b": 138, "x_dom": 211, "x_domain": 212, "x_i": [39, 43, 78, 96, 115, 124, 209, 212, 214, 217, 218, 221, 240], "x_j": [212, 214, 217], "x_k": [43, 89, 214], "x_ket": 186, "x_list": [67, 287], "x_m": 241, "x_n": [39, 43, 70, 78, 89, 110, 124, 209, 212, 214, 217, 234, 240], "x_op": 186, "x_reduc": 50, "x_u": 214, "x_val": 18, "x_valu": 54, "x_var": 207, "x_y": 14, "x_y_reduc": 50, "xa": [88, 209, 214], "xax": 79, "xb": [88, 262], "xb7": 221, "xbra": [169, 181, 186], "xc": [88, 190, 262], "xd": [30, 36], "xd2": 30, "xd_x": 14, "xdagger": 190, "xden": 210, "xdg": 221, "xdirect": 101, "xdot": 302, "xdvi": 221, "xe": 36, "xelatex": 8, "xetex": 8, "xf": 211, "xf_1": 214, "xfail": [12, 237, 250, 252], "xfield": 212, "xfree_group": 70, "xgate": 175, "xi": [16, 43, 90, 113, 221, 237, 238, 239], "xiuqin": 230, "xj": 208, "xk": [211, 212, 223], "xket": [169, 181, 186], "xl": 88, "xla": [2, 129], "xlabel": [55, 207, 299], "xlim": [88, 207], "xlist": 67, "xm": 241, "xmax": [98, 99, 101, 103, 104, 207], "xmin": [98, 99, 101, 103, 104, 207], "xml": [35, 36, 233, 270, 306, 308], "xn": [39, 43, 212], "xneg": 42, "xnor": 118, "xnum": 210, "xobj": 221, "xop": [169, 181, 186], "xor": [88, 91, 118, 130, 221, 289], "xp": 12, "xpass": [12, 250, 252], "xpath": 233, "xpo": 42, "xr": [211, 219], "xreplac": [14, 15, 18, 88, 124, 200, 304], "xring": 212, "xscale": 207, "xsol": 210, "xsol_uncancel": 210, "xstr": 221, "xsym": 221, "xt": 96, "xthread": 255, "xval": 239, "xvi": [70, 78], "xx": [36, 69, 124, 155, 200, 259], "xxx": [88, 115, 124, 259, 261], "xxxx": 259, "xxxxxx": 259, "xy": [13, 36, 43, 67, 68, 102, 124, 130, 155, 200, 207, 208, 214, 221, 233, 240, 275, 292, 297], "xymatrix": 68, "xypic": 68, "xypic_draw_diagram": 68, "xypicdiagramdraw": 68, "xyx": [200, 265, 267], "xyz": [3, 36, 61, 100, 130, 136, 140, 200, 265, 267, 270], "xz": [36, 200, 207], "xzx": 200, "xzy": 200, "x\u2080": 222, "y": [3, 4, 11, 12, 13, 14, 15, 16, 18, 22, 24, 28, 30, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 111, 113, 115, 116, 117, 118, 119, 120, 124, 128, 129, 130, 136, 137, 138, 140, 142, 144, 149, 150, 152, 155, 156, 158, 159, 168, 169, 172, 175, 180, 186, 188, 189, 191, 192, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 253, 254, 257, 259, 260, 262, 265, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "y0": [55, 88, 107, 109, 111, 237], "y1": [13, 30, 55, 88], "y1d": 30, "y2": [30, 55, 88, 211], "y2d": 30, "y3": [88, 211], "y4": 88, "y_": [55, 69, 96, 113, 146, 206], "y_0": [55, 234, 237], "y_1": [55, 70, 234, 241], "y_2": [55, 70, 234, 241], "y_3": 241, "y_arrai": 207, "y_i": [212, 214, 216, 217, 237], "y_list": [67, 287], "y_n": [96, 234], "y_reduc": 50, "y_var": 207, "yanchukb": 303, "yang": 215, "yann": 128, "yaw": 302, "ybar": 237, "ydirect": 101, "ydot": 55, "ye": [12, 89, 118, 128, 237], "year": [0, 3, 4, 13, 18, 195], "yet": [3, 9, 11, 13, 14, 16, 27, 41, 43, 62, 64, 67, 68, 74, 92, 115, 130, 171, 208, 211, 212, 216, 218, 220, 229, 237, 240, 287], "yf": 211, "yf_1": 214, "ygate": 175, "yi": 41, "yibi": 241, "yield": [48, 50, 51, 52, 53, 55, 56, 67, 69, 79, 88, 89, 93, 96, 112, 113, 128, 136, 144, 150, 185, 206, 209, 214, 216, 217, 222, 223, 228, 229, 230, 233, 234, 239, 256, 259, 293], "yih": 259, "yiu": 215, "yk": [211, 212], "ylabel": [55, 207, 299], "ylim": 207, "ymax": [98, 99, 101, 103, 104, 207], "ymin": [98, 99, 101, 103, 104, 207], "yml": 12, "yn": [96, 221, 227], "ynm": [96, 206], "ynm_c": 96, "yop": 169, "yorgei": 256, "york": [29, 96, 113, 231, 239], "you": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 38, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 63, 64, 65, 67, 69, 70, 71, 79, 80, 87, 88, 89, 90, 92, 94, 95, 96, 100, 102, 104, 106, 107, 112, 113, 115, 116, 118, 120, 121, 124, 125, 128, 129, 130, 131, 132, 134, 144, 146, 147, 152, 153, 154, 155, 158, 180, 185, 186, 189, 191, 195, 200, 202, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 224, 228, 229, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 253, 254, 255, 257, 259, 260, 269, 270, 271, 272, 285, 286, 287, 289, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300], "you_should_include_your_tests_in_coverag": 12, "young": [13, 136, 247], "your": [0, 2, 3, 4, 5, 8, 12, 13, 14, 16, 18, 21, 25, 27, 36, 43, 45, 48, 49, 50, 51, 53, 55, 56, 57, 59, 63, 88, 89, 115, 116, 124, 129, 130, 131, 132, 144, 152, 207, 221, 228, 233, 237, 240, 241, 259, 260, 287, 291, 293, 294, 296, 297], "your_email": 9, "your_hint": 237, "youremail": 9, "yourobject": 14, "yourself": [2, 7, 11, 12, 14, 43, 45, 57, 69, 255, 287, 302], "yp": 55, "ypp": 55, "yr": [211, 219], "yscale": 207, "yu": [113, 206, 231], "yule": 241, "yulesimon": 241, "yum": 9, "yun": [214, 215], "yun76": [214, 215], "yuvalf": 128, "yx": [36, 79, 200], "yxy": [36, 200], "yxz": 200, "yy": [36, 155, 200, 237], "yz": [36, 155, 200, 207], "yzx": [36, 200], "yzy": 200, "z": [4, 13, 14, 15, 16, 18, 22, 24, 27, 28, 30, 31, 32, 33, 35, 36, 37, 41, 43, 51, 54, 55, 56, 61, 65, 66, 69, 70, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 100, 101, 102, 103, 104, 113, 115, 118, 120, 124, 130, 136, 137, 138, 144, 146, 148, 149, 150, 152, 155, 156, 158, 159, 160, 169, 171, 175, 185, 186, 188, 192, 196, 200, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 253, 254, 260, 265, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "z0": [88, 228], "z1": [14, 211, 212, 239], "z1_sympi": 211, "z2": [14, 212], "z3": 212, "z4": 212, "z_": [89, 233], "z_0": [113, 233], "z_1": 113, "z_arrai": 207, "z_eq": 37, "z_k": 216, "z_n": [96, 215], "z_p": 214, "z_r": 160, "z_r_in": 160, "z_r_out": 160, "z_sympi": 211, "z_x": 138, "z_zz": 211, "za": 233, "zaletnyik": 215, "zassenhau": [214, 216], "zc": 211, "zcc09_ijc": 144, "zd_z": 14, "zdirect": 101, "ze": 96, "zeilberg": [87, 239], "zen": 14, "zeng": 230, "zerlegung": 216, "zero": [3, 15, 16, 18, 22, 24, 25, 26, 30, 33, 35, 36, 37, 41, 42, 43, 46, 53, 54, 61, 65, 66, 69, 78, 79, 80, 84, 87, 88, 91, 92, 93, 94, 96, 98, 102, 103, 104, 113, 115, 117, 118, 120, 122, 124, 127, 128, 130, 136, 144, 148, 152, 153, 154, 155, 158, 159, 163, 185, 189, 191, 193, 204, 206, 208, 209, 210, 211, 212, 216, 217, 219, 221, 224, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 242, 257, 259, 260, 269, 271, 272, 292, 298, 299, 302, 303, 307, 310], "zero_color": 142, "zero_markers": 142, "zero_matrix": 41, "zero_monom": 212, "zero_to_the_power_of_zero": 88, "zerodivisionerror": [144, 212, 250, 260], "zerohandl": 65, "zeromatrix": [65, 120, 221], "zeropred": 65, "zeroth": [88, 131, 134, 216], "zeroth_order_activ": 18, "zerothorderactiv": [18, 131], "zeta": [4, 15, 16, 87, 88, 92, 93, 212, 216, 221, 228, 241], "zeta5": 212, "zeta7": 212, "zeta_": 212, "zeta_distribut": 241, "zeta_funct": 96, "zeta_pow": 216, "zfade4": 207, "zg": 79, "zgate": 175, "zhegalkin": 118, "zhegalkin_polynomi": 118, "zhenb": 230, "zhong": 230, "zhou": 124, "zigzag": 93, "ziki": 128, "zimmer": 216, "zip": [51, 67, 78, 89, 118, 128, 217, 227, 234, 237, 239, 256, 259, 299, 304], "zk": 216, "zlabel": 207, "znm": 96, "zo42": 80, "zoo": [15, 37, 41, 65, 88, 93, 94, 96, 115, 228, 230, 233], "zoom": 207, "zop": 169, "zotero": 0, "zout": 214, "zp": 100, "zsc347": 11, "zsol": 37, "zt": [96, 113], "zuckerman": 214, "zur": 215, "zx": [36, 155, 200], "zxy": 200, "zxz": [36, 152, 200, 265, 267], "zy": [36, 200], "zyla": 170, "zyx": 200, "zyz": [61, 200], "zz": [13, 36, 88, 93, 110, 111, 115, 120, 124, 125, 128, 155, 200, 208, 209, 210, 211, 214, 216, 217, 218, 219, 236], "zz_i": [210, 211, 214], "zz_python": 212, "zzx": 36, "\u00b2": 221, "\u00b3": 221, "\u00b9": 221, "\u00bc": 221, "\u00bd": 221, "\u00be": 221, "\u00f8yvind": 11, "\u010dert\u00edk": 0, "\u0142ukasz": 11, "\u0161": 0, "\u03b1": [5, 88, 206, 220], "\u03b1\u1d62": 88, "\u03b2": [69, 206], "\u03b2\u2081\u2082": 12, "\u03b3": [206, 287, 297], "\u03b3\u2081": 69, "\u03b3\u2082": 69, "\u03b4": 163, "\u03b8": [36, 116, 152, 163, 240, 270], "\u03bb": [15, 293], "\u03bd": 291, "\u03c0": [43, 92, 163, 221, 240, 287, 291, 297, 298], "\u03c7": 163, "\u03c8": 163, "\u03c9": 152, "\u1d62": 221, "\u1d63": 221, "\u1d64": 221, "\u1d65": 221, "\u1d66": 221, "\u1d67": 221, "\u1d68": 221, "\u1d69": 221, "\u1d6a": 221, "\u2070": 221, "\u2071": 221, "\u2074": 221, "\u2075": 221, "\u2076": 221, "\u2077": 221, "\u2078": 221, "\u2079": 221, "\u207f": 221, "\u2080": 221, "\u2081": 221, "\u2082": 221, "\u2083": 221, "\u2084": 221, "\u2085": 221, "\u2086": 221, "\u2087": 221, "\u2088": 221, "\u2089": 221, "\u2090": 221, "\u2091": 221, "\u2092": 221, "\u2093": 221, "\u2095": 221, "\u2096": 221, "\u2097": 221, "\u2098": 221, "\u2099": 221, "\u209a": 221, "\u209b": 221, "\u209c": 221, "\u2102": [221, 298], "\u2115": 221, "\u2115\u2080": 221, "\u211a": [208, 221], "\u211d": [221, 298], "\u2124": [220, 221, 240, 298], "\u212f": [11, 69, 163, 206, 221, 287, 291, 293, 297, 298], "\u2146": 221, "\u2148": [163, 206, 220, 221, 240, 298], "\u2153": 221, "\u2154": 221, "\u2155": 221, "\u2156": 221, "\u2157": 221, "\u2158": 221, "\u2159": 221, "\u215a": 221, "\u215b": 221, "\u215c": 221, "\u215d": 221, "\u215e": 221, "\u5f6d\u4e8e\u658c": 11, "\ud835\udc45": 275, "\ud835\udd40": 221, "\ud835\udd4c": 221, "\ud835\udfd8": 221, "\ud835\udfd9": 221}, "titles": ["Citing SymPy", "Debugging", "Dependencies", "Deprecation Policy", "Docstrings Style Guide", "Documentation Style Guide", "Contributing", "Introduction to Contributing", "Building the Documentation", "Setup Development Environment", "Guide for New Contributors", "Development Workflow Process", "Writing Tests", "List of active deprecations", "Best Practices", "Glossary", "Gotchas and Pitfalls", "Explanations", "Introduction to Biomechanical Modeling", "Biomechanics", "Physics", "Potential Issues/Advanced Topics/Future Features in Physics/Mechanics", "Autolev Parser", "Classical Mechanics", "Joints Framework in Physics/Mechanics", "Kane\u2019s Method in Physics/Mechanics", "Lagrange\u2019s Method in Physics/Mechanics", "Linearization in Physics/Mechanics", "Masses, Inertias, Particles and Rigid Bodies in Physics/Mechanics", "References for Physics/Mechanics", "SymPy Mechanics for Autolev Users", "Symbolic Systems in Physics/Mechanics", "Potential Issues/Advanced Topics/Future Features in Physics/Vector Module", "Scalar and Vector Field Functionality", "Vector", "Vector: Kinematics", "Vector & ReferenceFrame", "Solve Output by Type", "Classification of SymPy objects", "Finite Difference Approximations to Derivatives", "SymPy Special Topics", "Assumptions", "Symbolic and fuzzy booleans", "Writing Custom Functions", "How-to Guides", "SymPy Logo", "Control Package Examples", "Physics", "Find the Roots of a Polynomial Algebraically or Numerically", "Solve Equations", "Reduce One or a System of Inequalities for a Single Variable Algebraically", "Solve a Diophantine Equation Algebraically", "Solve an Equation Algebraically", "Solve a Matrix Equation Algebraically", "Solve One or a System of Equations Numerically", "Solve an Ordinary Differential Equation (ODE) Algebraically", "Solve a System of Equations Algebraically", "Solving Guidance", "Welcome to SymPy\u2019s documentation!", "Installation", "abc", "Algebras", "Ask", "Assume", "Assumptions", "Predicates", "Refine", "Calculus", "Category Theory", "Code Generation", "Finitely Presented Groups", "Galois Groups", "Gray Code", "Group constructors", "Number of groups", "Combinatorics", "Named Groups", "Partitions", "Polycyclic Groups", "Permutation Groups", "Permutations", "Polyhedron", "Prufer Sequences", "Subsets", "Tensor Canonicalization", "Test Utilities", "Utilities", "Concrete", "Core", "Cryptography", "Differential Geometry", "Discrete", "Numerical Evaluation", "Combinatorial", "Elementary", "Functions", "Special", "Curves", "Ellipses", "Entities", "Geometry", "Lines", "Plane", "Points", "Polygons", "Utils", "About Holonomic Functions", "Converting other representations to holonomic", "Holonomic", "Internal API", "Operations on holonomic functions", "Representation of holonomic functions in SymPy", "Uses and Current limitations", "Computing Integrals using Meijer G-Functions", "Integrals", "Integrals", "Interactive", "Lie Algebra", "Logic", "Dense Matrices", "Matrix Expressions", "Immutable Matrices", "Matrices", "Matrix Kind", "Matrices (linear algebra)", "Matrix Normal Forms", "Sparse Matrices", "Sparse Tools", "Number Theory", "Numeric Computation", "Parsing", "Activation (Docstrings)", "Curve (Docstrings)", "Biomechanics API Reference", "Musculotendon (Docstrings)", "Arch (Docstrings)", "Beam (Docstrings)", "Solving Beam Bending Problems using Singularity Functions", "Cable (Docstrings)", "Continuum Mechanics", "Truss (Docstrings)", "Control", "Control System Plots", "Control", "Control API", "High Energy Physics", "Hydrogen Wavefunctions", "Matrices", "Actuator (Docstrings)", "Deprecated Classes (Docstrings)", "Expression Manipulation (Docstrings)", "Mechanics API Reference", "Joints Framework (Docstrings)", "Kane\u2019s Method & Lagrange\u2019s Method (Docstrings)", "Linearization (Docstrings)", "Bodies, Inertias, Loads & Other Functions (Docstrings)", "Pathway (Docstrings)", "Printing (Docstrings)", "System (Docstrings)", "Wrapping Geometry (Docstrings)", "Gaussian Optics", "Optics", "Medium", "Polarization", "Utilities", "Waves", "Pauli Algebra", "Quantum Harmonic Oscillator in 1-D", "Anticommutator", "Cartesian Operators and States", "Clebsch-Gordan Coefficients", "Circuit Plot", "Commutator", "Constants", "Dagger", "Gates", "Grover\u2019s Algorithm", "Hilbert Space", "Quantum Mechanics", "Inner Product", "Operator", "Operator/State Helper Functions", "Particle in a Box", "Qapply", "QFT", "Qubit", "Represent", "Shor\u2019s Algorithm", "Spin", "State", "Tensor Product", "Second Quantization", "Quantum Harmonic Oscillator in 3-D", "Dimensions and dimension systems", "More examples", "Unit Systems", "Philosophy behind unit systems", "Unit prefixes", "Physical quantities", "Units and unit systems", "Essential Classes", "Docstrings for basic field functions", "Essential Functions (Docstrings)", "Physics Vector API", "Kinematics (Docstrings)", "Printing (Docstrings)", "Wigner Symbols", "Plotting", "AGCA - Algebraic Geometry and Commutative Algebra Module", "Basic functionality of the module", "Introducing the domainmatrix of the poly module", "Introducing the Domains of the poly module", "Reference docs for the Poly Domains", "Polynomial Manipulation", "Internals of the Polynomial Manipulation Module", "Literature", "Number Fields", "Polynomials Manipulation Module Reference", "Series Manipulation using Polynomials", "Poly solvers", "Examples from Wester\u2019s Article", "Printing", "Term Rewriting", "Formal Power Series", "Fourier Series", "Series", "Limits of Sequences", "Sequences", "Series Expansions", "Sets", "Hongguang Fu\u2019s Trigonometric Simplification", "Hypergeometric Expansion", "Simplify", "Simplify", "Diophantine", "Solvers", "Inequality Solvers", "ODE", "PDE", "Solvers", "Solveset", "Stats", "N-dim array", "N-dim array expressions", "Tensor", "Methods", "Indexed Objects", "Tensor", "Tensor Operators", "Testing", "pytest", "Randomised Testing", "Run Tests", "Autowrap Module", "Codegen", "Decorator", "Enumerative", "Exceptions and Warnings", "Utilities", "Iterables", "Lambdify", "Memoization", "Miscellaneous", "Source Code Inspection", "Timing Utilities", "Essential Classes in sympy.vector (docstrings)", "Vector API", "Orienter classes (docstrings)", "Essential Functions in sympy.vector (docstrings)", "Basic Implementation details", "More about Coordinate Systems", "General examples of usage", "Scalar and Vector Field Functionality", "Vector", "Introduction", "Applications of Vector Integrals", "API Reference", "Basics", "Code Generation", "Logic", "Matrices", "Number Theory", "Physics", "Topics", "Utilities", "Tutorials", "Basic Operations", "Calculus", "SymPy Features", "Gotchas", "Introductory Tutorial", "Introduction", "Advanced Expression Manipulation", "Matrices", "What\u2019s Next", "Preliminaries", "Printing", "Simplification", "Solvers", "Biomechanical Model Example", "Biomechanics Tutorials", "Physics Tutorials", "A bicycle", "Duffing Oscillator with a Pendulum", "A four bar linkage", "Mechanics Tutorials", "Nonminimal Coordinates Pendulum", "Multi Degree of Freedom Holonomic System", "A rolling disc", "A rolling disc, with Kane\u2019s method", "A rolling disc, with Kane\u2019s method and constraint forces", "A rolling disc using Lagrange\u2019s Method"], "titleterms": {"": [25, 26, 27, 58, 153, 176, 187, 220, 230, 239, 240, 270, 275, 294, 303, 306, 309, 310, 311], "1": [4, 13, 22, 27, 46, 55, 113, 137, 167], "10": [8, 13, 137], "11": [13, 137], "12": 13, "13": 13, "14": 13, "2": [4, 22, 27, 46, 55, 113, 137], "2d": 115, "3": [4, 22, 46, 115, 137, 192], "4": [4, 13, 46, 137], "5": [4, 13, 46, 137], "6": [4, 13, 137], "7": [13, 137], "8": [13, 137], "9": [13, 137], "A": [18, 27, 39, 291, 298, 302, 304, 308, 309, 310, 311], "AND": 270, "As": 216, "Be": [14, 48, 50, 51, 52, 53, 54, 55], "For": 115, "If": 55, "Into": [52, 54, 56], "Its": 55, "No": [48, 51, 52, 53, 55], "Not": [3, 48, 50, 51, 52, 54, 55, 56, 57], "Of": 37, "One": [50, 54, 55], "That": [50, 51, 52, 54, 56, 57], "The": [3, 13, 27, 41, 43, 70, 78, 113, 196, 216, 228, 231, 271, 272, 291], "There": 55, "With": [48, 51, 52, 53, 54, 55, 56, 57], "__call__": 13, "__eq__": 14, "_eval_": 43, "_mat": 13, "_smat": 13, "a_and_b": 27, "abc": 60, "about": [106, 240, 270, 298], "abov": 41, "absorbing_probabilit": 13, "abstract": [69, 133, 139, 143, 145, 151, 161, 178, 203, 212], "acceler": [21, 32, 35, 228], "accept": 13, "access": 293, "account": 9, "accuraci": 92, "action": 12, "activ": [13, 18, 131, 299], "actuat": [18, 148, 299], "ad": 3, "add": [11, 13, 43, 88], "addit": [43, 110], "address": 11, "adic": 216, "advanc": [14, 21, 32, 220, 292, 293], "aesara": [129, 221], "agca": 208, "airi": 96, "algebra": [36, 48, 50, 51, 52, 53, 55, 56, 61, 117, 124, 166, 208, 211, 216, 220, 239, 298], "algorithm": [69, 70, 176, 187, 214, 217, 223, 228, 231], "all": [48, 50, 51, 52, 54, 55, 56], "all_root": 48, "also": [4, 88, 259], "altern": [36, 48, 50, 51, 52, 53, 54, 55, 56], "an": [11, 13, 14, 22, 52, 54, 55, 100, 196, 231, 240, 292], "anaconda": 59, "analysi": 194, "analyt": [50, 178], "angular": [28, 35], "ani": [57, 240], "annot": 13, "anticommut": 168, "antlr": 130, "apart": 297, "api": [3, 58, 109, 113, 115, 133, 144, 151, 203, 240, 253, 254, 266, 276], "appel": 217, "appli": [41, 113, 231], "applic": 275, "approxim": [39, 48, 69], "ar": [4, 36, 50, 55, 211, 240], "arbitrari": 55, "arch": [135, 139], "area": 275, "arg": [13, 14, 292], "argand": 113, "argument": [13, 16, 240], "arithmet": 216, "around": 231, "arrai": [13, 242, 243], "art": 207, "articl": 220, "as_real_imag": 43, "ascii": [207, 296], "ask": 62, "askhandl": 13, "assign": 16, "assum": 63, "assumpt": [13, 14, 38, 41, 43, 64, 88], "ast": [22, 69], "attach": 13, "attribut": [13, 14, 70, 78], "author": [11, 206], "auto": 8, "autolev": [22, 30], "automat": [14, 43, 220], "autowrap": [2, 69, 253], "avail": 100, "avoid": [3, 14], "b": [13, 96], "back": 220, "backend": [2, 130, 207], "background": 27, "backward": 3, "bar": 304, "base": [68, 90, 124, 208, 209, 220, 227, 240], "basi": [36, 214, 216], "basic": [12, 14, 88, 92, 124, 201, 209, 211, 217, 229, 269, 276, 277, 286, 293], "beam": [136, 137, 139], "been": 13, "behind": 196, "benchmark": 2, "bend": 137, "bessel": 96, "best": [4, 5, 14, 43], "beta": 96, "between": [16, 41, 198, 211], "bewar": 55, "beyond": 100, "bibliographi": [70, 78], "bicep": 299, "bicycl": 302, "binari": 13, "biomechan": [18, 19, 133, 299, 300], "block": 120, "bode": 142, "bodi": [13, 28, 155, 275], "bool": 42, "boolean": [37, 42, 118], "boundari": 55, "box": 182, "branch": [11, 113], "bug": [48, 50, 51, 52, 53, 54, 55, 56, 57, 115], "build": [2, 8], "c": [69, 221], "cabl": [138, 139], "cach": 88, "calcul": 275, "calculu": [36, 65, 67, 287], "call": [13, 50, 57], "can": [48, 50, 51, 52, 54, 55, 56, 57], "cancel": 297, "cannot": [50, 52, 55, 56], "canonic": 84, "capabl": 130, "capit": 5, "care": 14, "carmichael": 13, "cartesian": 169, "case": [43, 240], "categori": 68, "caveat": [60, 130], "cc": 212, "cfunction": 69, "chang": [3, 11, 13], "chebyshev": 96, "check": [12, 13, 201], "checklist": [3, 11], "choic": 21, "choos": 211, "circuit": 171, "cite": 0, "class": [4, 13, 27, 38, 68, 69, 87, 90, 121, 124, 126, 128, 130, 149, 200, 207, 216, 221, 234, 242, 265, 267], "classic": [23, 214], "classif": 38, "clebsch": 170, "close": [48, 52, 55, 56, 57], "cnode": 69, "co": 11, "code": [2, 3, 5, 7, 9, 11, 12, 13, 14, 21, 36, 69, 72, 221, 263, 276, 278], "codebas": 7, "codegen": [69, 254], "codeprint": 221, "coeffici": [170, 214], "collect": [14, 78, 222, 297], "collector": 78, "color": 207, "column": 293, "columnspac": 293, "combin": [41, 110], "combinator": [13, 75], "combinatori": 93, "combsimp": 297, "commit": 11, "common": [21, 32, 65, 220, 221, 222], "commut": [172, 208], "compar": 14, "comparison": 13, "compat": [13, 243], "complet": [22, 43, 48], "complex": [48, 54, 94, 211], "composit": 110, "compound": [227, 229, 241], "compress": 70, "comput": [78, 113, 129, 178, 220, 291], "concept": 209, "conclus": 299, "concret": 87, "condit": [13, 55, 113, 229], "conditionset": 13, "conduct": 7, "configur": [9, 214], "confluenc": 231, "conserv": [33, 272], "consid": [48, 50, 51, 52, 53, 54, 55, 56], "consist": [12, 57], "constant": [55, 173, 196], "constraint": 310, "construct": [70, 78, 243], "constructor": [73, 217, 293], "contain": 88, "content": [64, 75, 95, 108, 114, 213, 225, 235, 244], "continu": [241, 297], "continuum": 139, "contract": 242, "contribut": [6, 7, 11, 58, 218], "contributor": 10, "control": [46, 141, 142, 143, 144, 207], "conv_": 13, "converg": 113, "convers": 198, "convert": [107, 110, 211, 286], "convolut": 91, "coordin": [13, 21, 27, 207, 269, 270, 272, 274, 306], "coordsys3d": 270, "copi": 55, "copyright": 206, "core": [13, 88, 120], "coset": 70, "cosett": 70, "cover": 91, "coverag": 12, "coxet": 70, "creat": [9, 11, 13, 16, 43, 54, 124], "credit": 206, "crootof": 48, "cross": 4, "cryptographi": 89, "curl": [33, 272], "current": 112, "curv": [18, 97, 132], "curvilinear": 272, "custom": [14, 18, 43, 207, 221], "cutil": 69, "cxxnode": 69, "cyclotom": 220, "d": [167, 192], "dagger": 174, "damp": 18, "data": 13, "de": [239, 240], "deal": 240, "debian": 8, "debug": [1, 12], "decompos": 50, "decomposit": [216, 217, 220], "decor": 255, "decrement": 231, "defin": [14, 43, 55, 299, 303], "definit": [41, 43, 106], "degre": 307, "del": [271, 272], "delet": [11, 293], "delta": 96, "denest": 14, "denomin": 57, "dens": [119, 211, 212, 214], "densematrix": 13, "depend": [2, 8, 12, 27, 211, 270], "deprec": [3, 12, 13, 149], "depth": [78, 100], "deriv": [36, 39, 55, 242, 272, 287], "descript": [11, 299], "detail": [253, 254, 269], "detect": 222, "determin": 293, "deutil": 239, "develop": [2, 7, 9, 11, 88], "diagon": [242, 293], "diagram": 68, "dictionari": [16, 37, 48, 56], "differ": [30, 39, 41, 67, 211, 270, 287], "differenti": [21, 43, 55, 90, 110, 239, 240, 298, 299], "differentiate_finit": 13, "diffgeom": 13, "dim": [242, 243], "dimens": [100, 193, 196], "dimension": 194, "diophantin": [51, 234, 239, 240], "dirac": 96, "direct": [39, 272], "directli": [27, 270], "disc": [308, 309, 310, 311], "discontinu": 96, "discret": [91, 241], "discretemarkovchain": 13, "dispers": 217, "distribut": [13, 214, 241], "diverg": [33, 272, 275], "divid": 43, "divis": 209, "dixonresult": 13, "dmp": [13, 211], "do": [57, 240], "doc": [8, 212], "docker": 8, "docstr": [4, 131, 132, 134, 135, 136, 138, 140, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 201, 202, 204, 205, 265, 267, 268], "doctest": 12, "document": [2, 3, 4, 5, 7, 8, 11, 58], "doe": [3, 16, 240], "doit": 43, "domain": [52, 209, 211, 212, 217, 220, 240], "domainmatrix": 210, "don": 14, "dot": 296, "dotprint": 221, "doubl": 16, "draw": 68, "duf": 303, "dummi": 12, "dummy_fmt": 13, "dup": 211, "dyadic": [28, 32, 269, 270], "dynam": [18, 22], "dynamicsymbol": 32, "easi": 43, "ecm": 128, "eigenvalu": 293, "eigenvector": 293, "elast": 18, "element": [27, 53, 211, 216], "elementari": [94, 208, 227, 229], "ellips": 98, "ellipt": 96, "email": [9, 11], "emploi": 240, "empti": 37, "encod": 217, "end": 231, "energi": [28, 145], "ensur": [54, 57, 240], "entiti": [99, 100, 207], "entri": [3, 11, 124], "enum": 256, "enumer": [70, 93], "environ": [7, 9], "eq": [13, 52], "equal": [16, 51, 52, 289], "equat": [25, 26, 27, 32, 48, 49, 51, 52, 53, 54, 55, 56, 57, 194, 209, 234, 239, 240, 298, 299], "equival": [30, 118], "error": [92, 96], "essenti": [200, 202, 265, 268], "euclidean": 209, "eval": 43, "evalf": [43, 88, 129, 286], "evalu": [13, 14, 16, 30, 43, 48, 92, 110, 292, 299], "ex": 212, "exact": [14, 48, 57], "exampl": [4, 11, 27, 31, 36, 43, 46, 48, 50, 51, 54, 56, 60, 88, 100, 112, 115, 128, 135, 137, 145, 163, 194, 195, 196, 220, 221, 228, 231, 241, 242, 243, 246, 271, 291, 297, 299], "except": [12, 124, 130, 214, 257], "exercis": 295, "exist": [12, 113], "expand": [43, 220, 222, 297], "expand_func": 297, "expand_log": 297, "expand_power_bas": 297, "expand_power_exp": 297, "expand_trig": 297, "expans": [110, 228, 231, 287], "expect": 12, "experiment": 130, "explan": [4, 17, 58], "explicit": 243, "explicitli": [52, 55], "expon": [78, 220], "exponenti": [94, 96, 297], "expr": [13, 88], "expr_free_symbol": 13, "express": [12, 13, 14, 16, 48, 51, 52, 54, 69, 100, 107, 110, 118, 120, 130, 150, 211, 220, 243, 270, 286, 292], "exprtool": 88, "extend": 231, "extens": [208, 220], "extern": 12, "extra": [14, 217], "extract": [50, 51, 53, 55], "facil": 70, "factor": [48, 209, 214, 220, 297], "factori": 209, "fail": 12, "failur": 12, "fallback": 13, "fals": 13, "familiar": 7, "fast": 91, "featur": [21, 32, 130, 288], "fedora": 8, "fiber": 18, "field": [33, 201, 211, 214, 216, 220, 272, 274], "file": 11, "fill": 13, "final": 289, "find": [48, 54, 216, 217], "find_execut": 13, "finit": [39, 67, 70, 208, 211, 214, 216, 220, 231, 241, 287], "first": [3, 13, 18], "fix": [11, 22], "flag": 13, "float": [14, 16, 92], "flux": 275, "fma": 43, "fnode": 69, "forc": [18, 299, 303, 304, 310], "fork": 9, "form": [27, 48, 52, 55, 56, 57, 118, 125, 243], "formal": [217, 223], "format": [4, 5, 13, 57], "formula": [113, 231], "fortran": [69, 221], "found": 54, "four": 304, "fourier": [91, 224], "fraction": [217, 220, 297], "frame": [13, 36], "framework": [24, 152], "free": [70, 209], "freedom": 307, "fresnel": 96, "from": [13, 14, 16, 51, 52, 53, 57, 220, 243], "from_": 13, "fu": 230, "fulli": 43, "fun_ev": 13, "func": [38, 292], "function": [4, 12, 13, 14, 16, 21, 28, 33, 43, 48, 50, 52, 54, 55, 57, 69, 78, 87, 88, 94, 95, 96, 106, 107, 110, 111, 113, 118, 124, 128, 130, 137, 155, 178, 181, 201, 202, 207, 209, 211, 212, 217, 220, 221, 231, 234, 237, 238, 242, 268, 272, 296, 297], "further": [27, 289], "fuse": 43, "futil": 69, "futur": [21, 22, 32, 100], "fuzzi": 42, "g": [107, 110, 113, 231], "galoi": [71, 216], "gamma": [96, 145], "gammasimp": 297, "gate": 175, "gaussian": [160, 211, 212, 220], "gcd": [209, 214, 220], "gegenbau": 96, "gener": [2, 4, 5, 69, 78, 80, 211, 216, 240, 271, 276, 278], "geometr": 207, "geometri": [18, 90, 100, 159, 208], "get": [2, 7, 9, 16, 48], "get_epsilon": 13, "get_kronecker_delta": 13, "get_seg": 13, "get_upper_degre": 13, "gf": 212, "git": [9, 59], "github": [9, 12], "given": [54, 56], "glossari": 15, "good": 11, "gordan": 170, "gotcha": [16, 22, 41, 289], "gradient": [33, 272], "grai": 72, "groebner": [209, 214], "group": [70, 71, 73, 74, 76, 78, 79, 196, 216], "grover": 176, "gruntz": 228, "gr\u00f6bner": 220, "gtk": 221, "guid": [4, 5, 10, 12, 19, 23, 34, 44, 58, 133, 151, 203, 273], "guidanc": [48, 50, 51, 52, 53, 54, 55, 56, 57], "guidelin": [4, 5], "ha": 27, "hadamard": 91, "hadamardproduct": 13, "handl": [92, 240], "handler": [13, 14, 41], "hard": 2, "hardcod": 14, "harmon": [96, 167, 192], "have": [13, 52, 56, 220], "head": 5, "help": 16, "helper": [181, 221], "hermit": 96, "heurist": 237, "hexagon": 100, "high": 145, "hilbert": 177, "hint": [55, 237, 238], "holonom": [106, 107, 108, 110, 111, 307], "homomorph": [208, 216], "hongguang": 230, "how": [3, 36, 44, 58, 113, 240], "hydrogen": 146, "hyperbol": 94, "hyperexpand": 297, "hypergeometr": [87, 96, 107, 110, 223, 231], "hypothesi": 12, "i": [3, 12, 16, 27, 54, 55, 113, 129, 210, 221, 240, 291], "ideal": 208, "identifi": 7, "immut": [16, 121], "immutablematrix": 121, "immutablesparsematrix": 126, "implement": [33, 41, 113, 221, 231, 253, 254, 269, 272], "implic": 41, "implicitli": [48, 55], "import": 4, "improv": [22, 64], "impuls": 142, "includ": [50, 55, 57], "incompat": 3, "increas": 54, "increment": 231, "indefinit": 13, "independ": 55, "index": [10, 70, 78, 243, 246], "indic": 231, "inequ": [50, 236, 239, 240], "inertia": [28, 155, 299], "infer": 118, "infinit": [14, 52, 240], "inform": [237, 238], "initi": 55, "inner": 179, "input": [14, 41, 240], "insert": 293, "inspect": 263, "instal": [8, 9, 58, 59, 130, 295], "integ": [13, 94, 211], "integr": [13, 21, 55, 92, 96, 110, 112, 113, 114, 115, 209, 216, 275, 287], "interact": [2, 116, 207], "interest": [50, 291], "interfac": [21, 32, 207, 241], "intermedi": 13, "intern": [109, 113, 115, 211, 214, 216, 234], "interpret": 41, "interrog": 52, "intersect": [91, 100], "interv": [54, 207], "intfunc": 88, "introduc": [210, 211], "introduct": [7, 16, 18, 22, 30, 33, 35, 39, 61, 68, 69, 70, 78, 90, 100, 118, 133, 196, 207, 208, 209, 216, 220, 274, 291], "introductori": [285, 290], "intuit": 228, "invari": [14, 292], "invers": [16, 43, 94, 113], "is_": 41, "is_emptyset": 13, "issu": [11, 21, 22, 27, 32, 293], "iter": [13, 229, 259], "jacobi": 96, "javascript": 221, "join": 7, "joint": [13, 24, 152, 241], "jointsmethod": 13, "julia": 221, "junk": 11, "k": 212, "kane": [25, 27, 153, 306, 309, 310], "kei": [9, 30, 43, 292], "keyword": 16, "kind": [38, 88, 123], "kinemat": [35, 204, 299, 303], "kinematic_equ": 204, "kinet": 28, "known": 240, "kwarg": 27, "lagrang": [26, 27, 153, 303, 306, 311], "lagrangian": 28, "laguerr": 96, "lambda": 13, "lambdaprint": 221, "lambdifi": [2, 13, 129, 260, 286], "laplac": 113, "laplace_transform": 13, "lark": 130, "last": 3, "latex": [5, 130, 296], "latexprint": 221, "lcm": 209, "lead": 78, "legendr": 96, "length": 18, "level": 214, "lib": 221, "lie": [117, 237], "like": 13, "limit": [22, 41, 50, 51, 112, 226, 228, 287], "line": 101, "linear": [21, 27, 28, 56, 110, 124, 154, 196, 220, 239], "link": 30, "linkag": 304, "list": [7, 13, 16, 37, 48, 50], "literatur": [196, 215, 220], "live": 8, "load": [18, 28, 155], "local": 8, "locat": 270, "logarithm": [96, 297], "logcombin": 297, "logic": [2, 42, 118, 276, 279], "logo": 45, "long": 3, "longer": 13, "lookup": 113, "loos": 231, "low": 70, "lti": 144, "mac": 8, "mail": 7, "mailmap": 11, "main": 216, "make": [11, 52, 57], "managedproperti": 13, "manipul": [14, 118, 124, 150, 213, 214, 217, 218, 240, 292], "map": 11, "mapl": 221, "mark": 12, "markdown": 5, "marker": 13, "mass": [28, 275], "matadd": 13, "math": [5, 69], "mathemat": [4, 16, 30, 48], "mathematica": [13, 221], "mathieu": 96, "mathml": 296, "mathmlprint": 221, "mathrm": [130, 296], "matlab": 221, "matmul": 13, "matric": [13, 39, 53, 119, 120, 121, 122, 124, 126, 145, 147, 243, 276, 280, 293], "matrix": [13, 27, 53, 65, 120, 123, 124, 125, 241, 293], "max_degre": 13, "mdft": 13, "mechan": [13, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 41, 133, 139, 151, 178, 241, 305], "mechanics_print": 157, "median": 100, "medium": 162, "meijer": [107, 110, 113, 231], "mellin": 113, "memoiz": 261, "messag": 11, "metaclass": 13, "method": [13, 25, 26, 27, 39, 43, 53, 59, 153, 221, 238, 240, 245, 270, 293, 303, 306, 309, 310, 311], "metric": 13, "might": 57, "minim": [78, 216], "misc": [13, 64], "miscellan": [43, 94, 100, 262], "mistak": 221, "mix": 13, "mixin": 13, "mlatex": 157, "mod": 88, "mode": 207, "model": [18, 299], "modifi": 11, "modul": [13, 32, 208, 209, 210, 211, 214, 216, 217, 234, 237, 238, 240, 253], "modular": [13, 214], "modularinteg": 13, "momenta": 28, "momentum": 28, "monomi": 217, "more": [194, 195, 228, 270, 291], "motion": 299, "move": [13, 231], "mpmath": 59, "mpprint": 157, "mpq": 212, "mprint": 157, "much": 14, "mul": 88, "multi": 307, "multidimension": 88, "multipl": [36, 48, 55, 110, 216], "multipli": 43, "multivari": [214, 220], "multivariate_result": 13, "muscl": 299, "musculotendon": [18, 134], "must": 53, "mutabl": 13, "m\u00f6biu": 91, "n": [13, 242, 243], "name": [9, 11, 14, 76], "nan": 27, "narr": 5, "necessarili": 52, "need": 196, "new": [10, 11, 13, 270], "new_method": 27, "next": 294, "nocond": 13, "node": 69, "non": 13, "noncontribut": 304, "nonlinear": 56, "nonminim": 306, "normal": [125, 220], "notat": 231, "note": [3, 27, 43, 88, 100, 228, 230, 289, 298], "nroot": 48, "ntheori": [13, 128], "nullspac": 293, "number": [14, 16, 65, 74, 88, 91, 92, 113, 128, 211, 216, 220, 276, 281], "numer": [14, 21, 30, 43, 48, 54, 55, 57, 92, 110, 115, 129, 287], "numpi": 124, "numsampl": 13, "object": [13, 14, 38, 246], "octav": 221, "od": [55, 237, 239, 240], "old": [41, 211], "onli": [2, 50, 55, 240], "onlin": 22, "oo": 27, "oper": [13, 16, 33, 36, 110, 124, 169, 178, 180, 181, 201, 231, 242, 248, 269, 271, 272, 286, 293], "optic": [160, 161], "optim": 239, "option": [2, 9, 52, 55, 56, 57, 214], "order": [13, 18, 51, 65, 217, 228, 231], "ordinari": [55, 239, 240], "orient": [267, 270], "orient_new": 270, "orthogon": [96, 217, 272], "oscil": [167, 192, 303], "other": [33, 41, 43, 59, 107, 155, 270], "our": 7, "output": [21, 37, 240], "over": [115, 220, 229], "overview": [70, 78, 113], "overwrit": 14, "p": [212, 216], "packag": 46, "pair": 55, "paper": 7, "pappu": 100, "paramet": [4, 51, 231, 240], "pars": [2, 57, 130], "parser": [13, 22, 130], "partial": [217, 220, 239, 240], "particl": [28, 182], "partit": [77, 259], "pass": 13, "passiv": 18, "past": 55, "pathwai": [18, 156], "pauli": 166, "pde": [238, 239, 240], "pdf": 8, "pendulum": [303, 306], "per": 50, "perform": 64, "perhap": 48, "perimet": 275, "period": 50, "permut": [13, 79, 80], "perus": 7, "philosophi": 196, "physic": [13, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 47, 145, 198, 203, 276, 282, 285, 301], "pick": 11, "piecewis": 94, "pitfal": 16, "pkgdata": 13, "place": 3, "plan": 240, "plane": [102, 113], "plot": [2, 13, 142, 171, 207], "plotgrid": 207, "point": [13, 21, 32, 35, 43, 92, 103, 269], "polar": [113, 163], "pole": 142, "poli": [13, 210, 211, 212, 219], "polici": [3, 12], "polycycl": 78, "polycyclicgroup": 78, "polygon": [104, 115], "polyhedra": 115, "polyhedron": 81, "polynomi": [13, 48, 96, 110, 209, 211, 212, 213, 214, 216, 217, 218, 220, 239, 297], "polynomialr": 211, "polyr": 211, "polytop": 115, "possibl": [3, 52, 293], "potenti": [21, 27, 28, 32, 33, 272], "powdenest": 297, "power": [88, 223, 229, 291, 297], "powsimp": 297, "practic": [4, 5, 14, 43], "preced": 221, "precis": 54, "predefin": 69, "predic": [41, 64, 65], "prefer": [5, 57], "prefix": 197, "preliminari": 295, "present": [70, 78], "pretti": [13, 221, 296], "pretty_symbologi": 13, "prettyform": 13, "prettyprint": 221, "prevent": 292, "preview": 221, "prime": 216, "print": [2, 13, 21, 32, 43, 69, 116, 157, 205, 221, 296], "print_cycl": 13, "printer": [2, 69, 221, 296], "privat": 13, "problem": [137, 216, 271], "process": [11, 241], "product": [91, 179, 190, 242, 271], "productset": 13, "program": 239, "programmat": [51, 52], "properti": [13, 41, 208], "prufer": 82, "public": 3, "pull": [7, 11], "punctuat": 5, "purpos": 3, "put": 52, "pyglet": 207, "pytest": 250, "python": [14, 16, 69], "pythoncodeprint": 221, "pythonprint": 221, "pyutil": 69, "q": 128, "qappli": 183, "qft": 184, "qq": 212, "qq_i": 212, "quadrilater": 271, "qualiti": [11, 12], "quantiti": [194, 196, 198, 270], "quantiz": 191, "quantum": [167, 178, 192], "quaternion": 61, "qubit": 185, "queri": 64, "question": 59, "quick": [286, 287, 289, 292, 293], "quotient": 212, "ramp": 142, "random": [12, 88, 241], "randomindexedsymbol": 13, "randomis": 251, "randtest": 13, "ration": [14, 16, 211, 212, 217, 220, 223, 237, 297], "rawmatrix": 13, "rcodeprint": 221, "read": [7, 289], "real": [54, 211], "real_root": 48, "rebuild": 8, "recommend": [2, 5], "rectangl": 13, "recurr": 239, "recurs": [14, 227, 292], "reduc": [50, 220], "reduct": [50, 231], "redund": 13, "refer": [4, 18, 29, 34, 36, 41, 46, 58, 61, 68, 71, 87, 88, 90, 100, 106, 113, 115, 120, 121, 124, 126, 128, 130, 133, 151, 163, 166, 196, 203, 206, 207, 208, 212, 214, 216, 217, 218, 228, 230, 231, 234, 240, 253, 254, 273, 276, 299, 303], "referenc": 4, "referencefram": [32, 36], "refin": 66, "regress": 12, "reidemeist": 70, "relat": [13, 16, 33, 36, 37, 41, 50, 88, 96, 118, 272], "releas": 3, "reloc": 13, "remaind": 214, "remind": 43, "renam": 13, "rep": 13, "report": [48, 50, 51, 52, 53, 54, 55, 56, 57], "repres": [48, 52, 57, 113, 186, 211, 216], "represent": [36, 107, 111, 196, 211], "request": [7, 11], "requir": [3, 8], "residu": 228, "respons": [142, 221], "restrict": 52, "result": [48, 50, 51, 52, 53, 54, 55, 56, 220], "return": [50, 55, 240], "reveal": 304, "review": 7, "rewrit": [13, 43, 69, 222, 297], "riccati": 237, "riemann": 96, "rigid": [18, 28], "ring": [208, 211, 212], "roll": [308, 309, 310, 311], "root": [48, 54, 217], "rotat": 124, "rough": 30, "routin": 254, "row": 293, "rr": 212, "rref": 293, "rs_seri": 218, "rule": [230, 271], "run": [2, 11, 12, 59, 252], "runtim": 130, "rust": 221, "sage": 2, "same": 53, "sampl": [4, 13], "satisfi": 50, "scalar": [33, 272, 274], "schreier": 70, "scipi": [54, 55], "search": 240, "second": 191, "section": 4, "see": [4, 88, 259, 271], "select": 55, "sentenc": 4, "separ": 14, "sequenc": [82, 110, 214, 217, 226, 227], "seri": [110, 207, 218, 223, 224, 225, 228, 287], "server": 8, "session": 116, "set": [9, 13, 36, 38, 52, 55, 56, 65, 100, 229, 240, 296], "set_potential_energi": 13, "setkind": 229, "setup": [7, 9], "sever": 53, "shape": 293, "shor": 187, "should": [3, 129], "sign": [16, 289], "silenc": 13, "simpl": [18, 220], "simplif": [43, 92, 118, 230, 297], "simplifi": [14, 57, 69, 214, 232, 233, 297], "simul": 299, "singl": [4, 16, 37, 50], "singleton": [88, 227, 229], "singular": [67, 137], "skip": 12, "slow": [12, 27], "smt": 221, "so": 129, "softwar": 7, "solenoid": [33, 272], "solut": [48, 51, 52, 53, 54, 55, 56, 57, 178, 240, 271], "solv": [32, 37, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 137, 209, 216, 239, 240, 298], "solver": [13, 55, 219, 235, 236, 237, 239, 240, 298], "solveset": [52, 240], "some": [13, 30, 55, 240], "someth": [7, 12], "sort": [14, 88], "sourc": [2, 263], "space": [177, 196, 231], "spars": [126, 127, 211, 212, 214], "sparsematrix": [13, 126], "special": [12, 16, 40, 69, 96, 217, 229, 297], "specif": [55, 69], "specifi": [51, 55, 207], "speed": [21, 27, 48, 52, 53, 56, 57], "spell": 5, "spheric": 96, "sphinx": 4, "spin": 188, "spline": 96, "sqrt": 16, "squar": [53, 209], "srepr": [221, 296], "ssh": 9, "standard": 70, "stat": [13, 241], "state": [169, 178, 181, 189], "static": 13, "statist": 2, "step": [142, 240], "stochast": 241, "stochasticprocess": 13, "stoke": 275, "store": 14, "str": 296, "string": [13, 14, 41, 57, 286], "stringpict": 13, "strprinter": 221, "structur": [25, 26, 196, 234], "style": [4, 5, 12], "sub": 129, "subexpress": 222, "subfield": 216, "subgroup": 70, "submodul": [13, 100], "subresult": 214, "subset": [83, 91], "substitut": [21, 32, 52, 54, 286], "subword": 78, "sum": 92, "summari": 4, "support": 220, "surfac": 275, "switch": 22, "symbol": [13, 14, 16, 27, 31, 41, 42, 43, 50, 51, 53, 88, 107, 206, 211, 217, 220, 240, 289, 291], "symbolicsystem": 31, "symengin": 2, "sympi": [0, 7, 9, 13, 14, 16, 30, 33, 38, 39, 40, 45, 50, 52, 56, 58, 59, 69, 111, 130, 211, 265, 268, 269, 272, 286, 288, 291], "sympifi": [13, 88], "syntax": 69, "system": [24, 31, 41, 50, 54, 56, 142, 158, 193, 195, 196, 199, 237, 239, 269, 270, 272, 274, 299, 307], "syzygi": 208, "t": 14, "tabl": [113, 118, 231], "technic": 3, "tendon": 18, "tensor": [13, 84, 96, 190, 244, 247, 248], "tensorhead": 13, "tensorindextyp": 13, "tensorsymmetri": 13, "tensortyp": 13, "term": [87, 220, 222, 228], "test": [2, 11, 12, 13, 85, 118, 220, 249, 251, 252, 293], "theanocod": 13, "theorem": [100, 113, 275], "theoret": 91, "theori": [65, 68, 128, 276, 281], "thi": [113, 240], "third": 271, "three": [42, 100], "through": 292, "time": 264, "tip": [43, 286, 287, 289, 292, 293], "titl": 11, "to_int": 13, "todd": 70, "todo": 115, "tone": 5, "too": 14, "tool": [69, 127], "topic": [21, 32, 40, 276, 283], "trace": 13, "tradeoff": 48, "transform": [91, 113, 115, 130, 270], "transolv": 240, "travers": [13, 88], "tree": [69, 211, 221, 292], "tricep": 299, "trig": 16, "trigonometr": [94, 96, 230, 297], "trigsimp": 297, "true": 27, "truss": [139, 140], "truth": [100, 118], "try": 3, "tupl": [13, 16, 37, 50, 217], "tutori": [58, 234, 285, 290, 300, 301, 305], "two": 289, "type": [5, 12, 37, 50, 69, 96, 201, 240, 241], "ubuntu": 8, "ufuncifi": 129, "unchang": 12, "uncollect": 78, "understand": 292, "undocu": 214, "unevalu": 55, "unicod": [13, 296], "unifi": 211, "unit": [195, 196, 197, 199], "univari": [214, 220], "up": [52, 53, 56, 57, 296], "updat": 12, "us": [2, 5, 7, 13, 27, 28, 36, 39, 48, 50, 51, 52, 53, 54, 55, 56, 57, 69, 91, 112, 113, 129, 137, 207, 218, 240, 270, 311], "usag": [14, 22, 31, 100, 211, 271], "user": [11, 30, 234, 237, 238], "usual": 53, "util": [13, 69, 85, 86, 105, 124, 164, 216, 239, 258, 264, 276, 284], "v": [14, 16, 42, 211], "valid": 113, "valu": [37, 42, 57], "valuat": 216, "variabl": [16, 50, 55, 57, 207, 241, 270, 299, 303], "variat": 259, "variou": [13, 220], "vector": [23, 32, 33, 34, 35, 36, 53, 78, 151, 201, 203, 214, 265, 266, 268, 269, 270, 272, 273, 274, 275], "veloc": [18, 35], "verifi": [51, 275], "versin": 43, "version": 13, "view": 8, "virtual": 9, "visual": [30, 100], "volum": 275, "walk": 292, "walsh": 91, "warn": [12, 13, 257], "wave": 165, "wavefunct": 146, "we": 240, "weight": 67, "welcom": 58, "wester": 220, "what": [3, 27, 210, 211, 240, 291, 294], "when": [3, 57, 113], "where": 240, "which": [50, 52, 56, 129, 221], "why": [240, 291], "wigner": 206, "window": [8, 207], "within": 16, "without": [48, 55], "word": [70, 78], "work": [7, 51, 53, 55, 100, 220], "workflow": 11, "wrap": [18, 159], "write": [4, 5, 11, 12, 43], "wrong": 240, "x": 212, "xstr": 13, "you": 57, "your": [7, 9, 11, 52], "zero": [51, 52, 57, 142, 214, 220, 293], "zeroth": 18, "zeta": 96, "zoo": 27, "zz": 212, "zz_i": 212}}) \ No newline at end of file +Search.setIndex({"alltitles": {"(Optional) Configure Git Settings": [[9, "optional-configure-git-settings"]], "1. Completing Dynamics Online": [[22, "completing-dynamics-online"]], "1. Single-Sentence Summary": [[4, "single-sentence-summary"]], "1. Symbolic linearization with A_and_B=True is slow": [[27, "symbolic-linearization-with-a-and-b-true-is-slow"]], "1. Using the Linearizer class directly:": [[27, "using-the-linearizer-class-directly"], [27, "id2"]], "2. Explanation Section": [[4, "explanation-section"]], "2. Fixing Issues": [[22, "fixing-issues"]], "2. The linearized form has nan, zoo, or oo as matrix elements": [[27, "the-linearized-form-has-nan-zoo-or-oo-as-matrix-elements"]], "2. Using the linearize class method:": [[27, "using-the-linearize-class-method"], [27, "id3"]], "3. Examples Section": [[4, "examples-section"]], "3. Switching to an AST": [[22, "switching-to-an-ast"]], "4. Parameters Section": [[4, "parameters-section"]], "5. See Also Section": [[4, "see-also-section"]], "6. References Section": [[4, "references-section"]], "A Direct Method Using SymPy Matrices": [[39, "a-direct-method-using-sympy-matrices"]], "A More Interesting Example": [[291, "a-more-interesting-example"]], "A Note about Equations": [[298, "a-note-about-equations"]], "A Note on Dependent Coordinates and Speeds": [[27, null]], "A Simple Musculotendon Model": [[18, "a-simple-musculotendon-model"]], "A bicycle": [[302, null]], "A four bar linkage": [[304, null]], "A rolling disc": [[308, null]], "A rolling disc using Lagrange\u2019s Method": [[311, null]], "A rolling disc, with Kane\u2019s method": [[309, null]], "A rolling disc, with Kane\u2019s method and constraint forces": [[310, null]], "AGCA - Algebraic Geometry and Commutative Algebra Module": [[208, null]], "ANTLR Backend": [[130, "antlr-backend"]], "ANTLR \\mathrm{\\LaTeX} Parser Caveats": [[130, "antlr-mathrm-latex-parser-caveats"]], "API Reference": [[58, "api-reference"], [253, "module-sympy.utilities.autowrap"], [254, "module-sympy.utilities.codegen"], [276, null]], "API reference": [[115, "api-reference"], [115, "id39"]], "ASCII Pretty Printer": [[296, "ascii-pretty-printer"]], "AST Type Tree": [[69, "ast-type-tree"]], "About Holonomic Functions": [[106, null]], "Abstract": [[133, null], [139, null], [143, null], [145, null], [151, null], [161, null], [178, null], [203, null]], "Abstract Domains": [[212, "abstract-domains"]], "Acceleration of Points": [[21, "acceleration-of-points"], [32, "acceleration-of-points"]], "Accessing Rows and Columns": [[293, "accessing-rows-and-columns"]], "Accuracy and error handling": [[92, "accuracy-and-error-handling"]], "Activation (Docstrings)": [[131, null]], "Activation Dynamics": [[18, "activation-dynamics"]], "Actuator (Docstrings)": [[148, null]], "Actuators": [[18, "actuators"]], "Add Tests": [[11, "add-tests"]], "Add your name and email address to the .mailmap file.": [[11, "add-your-name-and-email-address-to-the-mailmap-file"]], "Adding the deprecation to the code": [[3, "adding-the-deprecation-to-the-code"]], "Addition and Multiplication": [[110, "addition-and-multiplication"]], "Additional Tips": [[43, "additional-tips"]], "Advanced Expression Manipulation": [[292, null]], "Advanced Functionality": [[21, "advanced-functionality"]], "Advanced Interfaces": [[21, "advanced-interfaces"], [32, "advanced-interfaces"]], "Advanced Methods": [[293, "advanced-methods"]], "Advanced Usage": [[14, "advanced-usage"]], "Advanced factoring over finite fields": [[220, "advanced-factoring-over-finite-fields"]], "Aesara": [[129, "aesara"]], "Aesara Code printing": [[221, "module-sympy.printing.aesaracode"]], "Airy Functions": [[96, "airy-functions"]], "Algebraic Solution With Root Multiplicities": [[48, "algebraic-solution-with-root-multiplicities"]], "Algebraic Solution Without Root Multiplicities": [[48, "algebraic-solution-without-root-multiplicities"]], "Algebraic equations": [[239, "algebraic-equations"]], "Algebraic number fields": [[211, "algebraic-number-fields"], [216, "algebraic-number-fields"]], "Algebraically dependent generators": [[211, "algebraically-dependent-generators"]], "Algebras": [[61, null]], "Algorithms (sympy.codegen.algorithms)": [[69, "module-sympy.codegen.algorithms"]], "Alternative Representation": [[36, "alternative-representation"]], "Alternatives to Consider": [[48, "alternatives-to-consider"], [50, "alternatives-to-consider"], [51, "alternatives-to-consider"], [53, "alternatives-to-consider"], [54, "alternatives-to-consider"], [55, "alternatives-to-consider"], [56, "alternatives-to-consider"]], "Alternatives to consider": [[52, "alternatives-to-consider"]], "An example": [[196, "an-example"], [231, "an-example"]], "An in-depth example: Pappus\u2019 Hexagon Theorem": [[100, "an-in-depth-example-pappus-hexagon-theorem"]], "Anaconda": [[59, "anaconda"]], "Analytic Solutions": [[178, "analytic-solutions"]], "Angular Acceleration": [[35, "angular-acceleration"]], "Angular Momentum": [[28, "angular-momentum"]], "Angular Velocity": [[35, "angular-velocity"]], "Anticommutator": [[168, null]], "Appell sequences": [[217, "appell-sequences"]], "Applications of Vector Integrals": [[275, null]], "Applying assumptions to string inputs": [[41, "applying-assumptions-to-string-inputs"]], "Applying the Integral Theorems": [[113, "applying-the-integral-theorems"]], "Applying the Operators": [[231, "applying-the-operators"]], "Approximate Numeric Solution With Root Multiplicities": [[48, "approximate-numeric-solution-with-root-multiplicities"]], "Arch": [[135, "module-sympy.physics.continuum_mechanics.Arch"], [139, "arch"]], "Arch (Docstrings)": [[135, null]], "Args Invariants": [[14, "args-invariants"]], "Arithmetic with module elements": [[216, "arithmetic-with-module-elements"]], "As elements of finitely-generated modules": [[216, "as-elements-of-finitely-generated-modules"]], "As number field elements": [[216, "as-number-field-elements"]], "Ask": [[62, null]], "Assume": [[63, null]], "Assumptions": [[41, null], [43, "assumptions"], [64, null]], "Assumptions predicates for the (old) assumptions": [[41, "id28"]], "Attributes of Collector": [[78, "attributes-of-collector"]], "Attributes of CosetTable": [[70, "attributes-of-cosettable"]], "Attributes of PolycyclicGroup": [[78, "attributes-of-polycyclicgroup"]], "Authors": [[206, "authors"]], "Auto-Rebuild with the Live Server": [[8, "auto-rebuild-with-the-live-server"]], "Autolev Parser": [[22, null]], "Autowrap": [[2, "autowrap"], [69, "autowrap"]], "Autowrap Module": [[253, null]], "Available Entities": [[100, "available-entities"]], "Avoid Manipulating Expressions as Strings": [[14, "avoid-manipulating-expressions-as-strings"]], "Avoid Storing Extra Attributes on an Object": [[14, "avoid-storing-extra-attributes-on-an-object"]], "Avoid String Inputs": [[14, "avoid-string-inputs"]], "Avoid Too Much Automatic Evaluation": [[14, "avoid-too-much-automatic-evaluation"]], "Avoid simplify()": [[14, "avoid-simplify"]], "Avoiding Infinite Recursion from Assumptions Handlers": [[14, "avoiding-infinite-recursion-from-assumptions-handlers"]], "B-Splines": [[96, "b-splines"]], "Backends": [[207, "backends"]], "Background": [[27, "background"]], "Base Class Reference": [[68, "module-sympy.categories"], [90, "base-class-reference"]], "Base Rings": [[208, "base-rings"]], "Basic Implementation details": [[269, null]], "Basic Manipulation": [[124, "basic-manipulation"]], "Basic Methods": [[293, "basic-methods"]], "Basic Operations": [[286, null], [293, "basic-operations"]], "Basic Sets": [[229, "module-sympy.sets.sets"]], "Basic Usage": [[14, "basic-usage"]], "Basic concepts": [[209, "basic-concepts"]], "Basic functionality": [[209, "basic-functionality"]], "Basic functionality of the module": [[209, null]], "Basic polynomial manipulation functions": [[217, "basic-polynomial-manipulation-functions"]], "Basic usage of domains": [[211, "basic-usage-of-domains"]], "Basics": [[92, "basics"], [276, "basics"], [277, null]], "Basics for Writing Tests": [[12, "basics-for-writing-tests"]], "Be Careful Comparing and Sorting Symbolic Objects": [[14, "be-careful-comparing-and-sorting-symbolic-objects"]], "Beam": [[137, "beam"], [139, "beam"]], "Beam (Docstrings)": [[136, null]], "Bessel Type Functions": [[96, "module-sympy.functions.special.bessel"]], "Best Practices": [[14, null]], "Best Practices for Writing Docstrings": [[4, "best-practices-for-writing-docstrings"]], "Best Practices for Writing Documentation": [[5, "best-practices-for-writing-documentation"]], "Best Practices for eval()": [[43, "best-practices-for-eval"]], "Beware Copying and Pasting Results": [[55, "beware-copying-and-pasting-results"]], "Bibliography": [[70, "bibliography"], [78, "bibliography"]], "Biceps": [[299, "biceps"]], "Biomechanical Model Example": [[299, null]], "Biomechanics": [[19, null]], "Biomechanics API Reference": [[133, null]], "Biomechanics Tutorials": [[300, null]], "Block Matrices": [[120, "block-matrices"]], "Bode Plot": [[142, "bode-plot"]], "Bodies": [[155, "bodies"]], "Bodies, Inertias, Loads & Other Functions (Docstrings)": [[155, null]], "Boolean functions": [[118, "boolean-functions"]], "Boolean or Relational": [[37, "boolean-or-relational"]], "Branch names": [[11, "branch-names"]], "Build the Docs": [[8, "build-the-docs"]], "Building the Documentation": [[2, "building-the-documentation"], [8, null]], "C code printers": [[221, "module-sympy.printing.c"]], "C specific AST nodes (sympy.codegen.cnodes)": [[69, "module-sympy.codegen.cnodes"]], "C utilities (sympy.codegen.cutils)": [[69, "module-sympy.codegen.cutils"]], "C++ code printers": [[221, "module-sympy.printing.cxx"]], "C++ specific AST nodes (sympy.codegen.cxxnodes)": [[69, "module-sympy.codegen.cxxnodes"]], "CC": [[212, "cc"]], "Cable": [[138, "module-sympy.physics.continuum_mechanics.cable"], [139, "cable"]], "Cable (Docstrings)": [[138, null]], "Calculation of Flux": [[275, "calculation-of-flux"]], "Calculation of Perimeter, Surface Area, and Volume": [[275, "calculation-of-perimeter-surface-area-and-volume"]], "Calculation of mass of a body": [[275, "calculation-of-mass-of-a-body"]], "Calculus": [[65, "calculus"], [67, null], [287, null]], "Calling sympy.stats.StochasticProcess.distribution with RandomIndexedSymbol": [[13, "calling-sympy-stats-stochasticprocess-distribution-with-randomindexedsymbol"]], "Capitalization": [[5, "capitalization"]], "Cartesian Operators and States": [[169, null]], "Category Theory": [[68, null]], "Caveats": [[60, "caveats"]], "Change in joint attachment point argument": [[13, "change-in-joint-attachment-point-argument"]], "Chebyshev Polynomials": [[96, "chebyshev-polynomials"]], "Checking the type of vector field": [[201, "checking-the-type-of-vector-field"]], "Checklist": [[3, "checklist"]], "Checklist for Contributions": [[11, "checklist-for-contributions"]], "Choice of Coordinates and Speeds": [[21, "choice-of-coordinates-and-speeds"]], "Choosing a domain": [[211, "choosing-a-domain"]], "Choosing a domain for a Poly": [[211, "choosing-a-domain-for-a-poly"]], "Choosing generators": [[211, "choosing-generators"]], "Circuit Plot": [[171, null]], "Citing SymPy": [[0, null]], "Class Reference": [[216, "class-reference"]], "Classes": [[242, "classes"]], "Classes and functions for rewriting expressions (sympy.codegen.rewriting)": [[69, "module-sympy.codegen.rewriting"]], "Classes for abstract syntax trees (sympy.codegen.ast)": [[69, "module-sympy.codegen.ast"]], "Classical Mechanics": [[23, null]], "Classical remainder sequence": [[214, "classical-remainder-sequence"]], "Classification of SymPy objects": [[38, null]], "Clebsch-Gordan Coefficients": [[170, null]], "Co-Author": [[11, "co-author"]], "Code": [[5, "code"]], "Code Generation": [[2, "code-generation"], [69, null], [276, "code-generation"], [278, null]], "Code Output": [[21, "code-output"]], "Code Printers": [[2, "code-printers"]], "Code Quality": [[11, "code-quality"]], "Code Quality Checks": [[12, "code-quality-checks"]], "Code printers (sympy.printing)": [[69, "code-printers-sympy-printing"]], "CodePrinter": [[221, "module-sympy.printing.codeprinter"]], "Codegen": [[254, null]], "Codegen (sympy.utilities.codegen)": [[69, "codegen-sympy-utilities-codegen"]], "Columnspace": [[293, "columnspace"]], "Combinatorial": [[93, null]], "Combinatorics": [[75, null]], "Combining predicates with or": [[41, "combining-predicates-with-or"]], "Commit the changes": [[11, "commit-the-changes"]], "Common": [[65, "common"]], "Common Issues": [[21, "common-issues"], [32, "common-issues"]], "Common Subexpression Detection and Collection": [[222, "common-subexpression-detection-and-collection"]], "Common mistakes": [[221, "common-mistakes"]], "Commutator": [[172, null]], "Compatibility with matrices": [[243, "compatibility-with-matrices"]], "Complete Examples": [[43, "complete-examples"]], "Complex Functions": [[94, "complex-functions"]], "Complex Roots": [[48, "complex-roots"]], "Composition with polynomials": [[110, "composition-with-polynomials"]], "Compound Distribution": [[241, "compound-distribution"]], "Compound Sequences": [[227, "compound-sequences"]], "Compound Sets": [[229, "compound-sets"]], "Compression and Standardization": [[70, "compression-and-standardization"]], "Computation of Collected Word": [[78, "computation-of-collected-word"]], "Computation of Exponent Vector": [[78, "computation-of-exponent-vector"]], "Computation of Leading Exponent": [[78, "computation-of-leading-exponent"]], "Computation of Minimal Uncollected Subword": [[78, "computation-of-minimal-uncollected-subword"]], "Computation of Polycyclic Presentation": [[78, "computation-of-polycyclic-presentation"]], "Computation of Subword Index": [[78, "computation-of-subword-index"]], "Computing Integrals using Meijer G-Functions": [[113, null]], "Computing reduced Gr\u00f6bner bases": [[220, "computing-reduced-grobner-bases"]], "Computing with automatic field extensions": [[220, "computing-with-automatic-field-extensions"]], "Conclusion": [[299, "conclusion"]], "Concrete": [[87, null]], "Concrete Class Reference": [[87, "concrete-class-reference"]], "Concrete Functions Reference": [[87, "concrete-functions-reference"]], "Condition Sets": [[229, "module-sympy.sets.conditionset"]], "Conditions of Convergence for Integral (1)": [[113, "conditions-of-convergence-for-integral-1"]], "Conditions of Convergence for Integral (2)": [[113, "conditions-of-convergence-for-integral-2"]], "Configuration": [[214, "module-sympy.polys.polyconfig"]], "Configure Your Name and Email in Git": [[9, "configure-your-name-and-email-in-git"]], "Conservative and Solenoidal fields": [[33, "conservative-and-solenoidal-fields"], [272, "conservative-and-solenoidal-fields"]], "Consistency Checks": [[12, "consistency-checks"]], "Constants": [[173, null], [196, "constants"]], "Constructing a presentation for a subgroup": [[70, "constructing-a-presentation-for-a-subgroup"]], "Constructing array expressions from index-explicit forms": [[243, "constructing-array-expressions-from-index-explicit-forms"]], "Construction of a Free Group": [[70, "construction-of-a-free-group"]], "Construction of words": [[70, "construction-of-words"]], "Contents": [[64, "contents"], [75, "contents"], [95, "contents"], [108, "contents"], [114, "contents"], [213, "contents"], [225, "contents"], [235, "contents"], [244, "contents"]], "Continuous Types": [[241, "continuous-types"]], "Continuum Mechanics": [[139, null]], "Contribute": [[218, "contribute"]], "Contributing": [[6, null], [58, "contributing"]], "Control": [[141, null], [143, null]], "Control API": [[144, null]], "Control Package Examples": [[46, null]], "Control System Plots": [[142, null]], "Conversion between quantities": [[198, "module-sympy.physics.units.util"]], "Convert to a linear combination of Meijer G-functions": [[110, "convert-to-a-linear-combination-of-meijer-g-functions"]], "Convert to a linear combination of hypergeometric functions": [[110, "convert-to-a-linear-combination-of-hypergeometric-functions"]], "Convert to expressions": [[110, "convert-to-expressions"]], "Convert to holonomic sequence": [[110, "convert-to-holonomic-sequence"]], "Converting Meijer G-functions": [[107, "converting-meijer-g-functions"]], "Converting Strings to SymPy Expressions": [[286, "converting-strings-to-sympy-expressions"]], "Converting elements between different domains": [[211, "converting-elements-between-different-domains"]], "Converting hypergeometric functions": [[107, "converting-hypergeometric-functions"]], "Converting other representations to holonomic": [[107, null]], "Converting symbolic expressions": [[107, "converting-symbolic-expressions"]], "Convolution": [[91, "convolution"]], "Convolution using Fast Fourier Transform": [[91, "convolution-using-fast-fourier-transform"]], "Convolution using Fast Walsh Hadamard Transform": [[91, "convolution-using-fast-walsh-hadamard-transform"]], "Convolution using Number Theoretic Transform": [[91, "convolution-using-number-theoretic-transform"]], "Convolutions": [[91, "module-sympy.discrete.convolutions"]], "Coordinate Modes": [[207, "coordinate-modes"]], "Coordinate Systems": [[274, "coordinate-systems"]], "Coordinate Systems and Vectors": [[269, "coordinate-systems-and-vectors"]], "Coordinate Variables": [[270, "coordinate-variables"]], "Core": [[88, null]], "Core operators no longer accept non-Expr args": [[13, "core-operators-no-longer-accept-non-expr-args"]], "Coset Enumeration: The Todd-Coxeter Algorithm": [[70, "coset-enumeration-the-todd-coxeter-algorithm"]], "CosetTable": [[70, "cosettable"]], "Covering Product": [[91, "covering-product"]], "Create a Function That Can Be Solved With SciPy": [[54, "create-a-function-that-can-be-solved-with-scipy"]], "Create a GitHub Account": [[9, "create-a-github-account"]], "Create a new branch": [[11, "create-a-new-branch"]], "Creating Matrices": [[124, "creating-matrices"]], "Creating a Custom Function": [[43, "creating-a-custom-function"]], "Creating an indefinite Integral with an Eq argument": [[13, "creating-an-indefinite-integral-with-an-eq-argument"]], "Credits and Copyright": [[206, "credits-and-copyright"]], "Cross-Referencing": [[4, "cross-referencing"]], "Cryptography": [[89, null]], "Curl": [[33, "curl"], [272, "curl"]], "Curve (Docstrings)": [[132, null]], "Curves": [[97, null]], "Custom": [[18, "custom"]], "Custom SymPy Objects": [[14, "custom-sympy-objects"]], "DMP representation": [[211, "dmp-representation"]], "DUP representation": [[211, "dup-representation"]], "Dagger": [[174, null]], "Debian/Ubuntu": [[8, "debian-ubuntu"]], "Debugging": [[1, null]], "Debugging Test Failures on GitHub Actions": [[12, "debugging-test-failures-on-github-actions"]], "Decorator": [[255, null]], "Define Forces": [[299, "define-forces"], [303, "define-forces"]], "Define Inertia": [[299, "define-inertia"]], "Define Kinematics": [[299, "define-kinematics"], [303, "define-kinematics"]], "Define Variables": [[299, "define-variables"], [303, "define-variables"]], "Defining Automatic Evaluation with eval()": [[43, "defining-automatic-evaluation-with-eval"]], "Defining Derivatives": [[55, "defining-derivatives"]], "Defining Symbols": [[14, "defining-symbols"]], "Definition": [[43, "definition"], [43, "id2"], [43, "id4"], [106, "definition"]], "Deleting and Inserting Rows and Columns": [[293, "deleting-and-inserting-rows-and-columns"]], "Deleting junk files": [[11, "deleting-junk-files"]], "Dense Matrices": [[119, null]], "Dense polynomials": [[212, "dense-polynomials"]], "Dependencies": [[2, null]], "Deprecate Eq.rewrite(Add)": [[13, "deprecate-eq-rewrite-add"]], "Deprecate markers, annotations, fill, rectangles of the Plot class": [[13, "deprecate-markers-annotations-fill-rectangles-of-the-plot-class"]], "Deprecate the DMP.rep attribute.": [[13, "deprecate-the-dmp-rep-attribute"]], "Deprecate the pkgdata module": [[13, "deprecate-the-pkgdata-module"]], "Deprecated Classes (Docstrings)": [[149, null]], "Deprecated matrix mixin classes": [[13, "deprecated-matrix-mixin-classes"]], "Deprecated mechanics Body class": [[13, "deprecated-mechanics-body-class"]], "Deprecated mechanics JointsMethod": [[13, "deprecated-mechanics-jointsmethod"]], "Deprecation Policy": [[3, null]], "Depth of Polycyclic generator": [[78, "depth-of-polycyclic-generator"]], "Derivatives": [[287, "derivatives"]], "Derivatives by array": [[242, "derivatives-by-array"]], "Derivatives of Vectors": [[36, "derivatives-of-vectors"]], "Derivatives with Multiple Frames": [[36, "derivatives-with-multiple-frames"]], "Determinant": [[293, "determinant"]], "Deutils (Utilities for solving ODE\u2019s and PDE\u2019s)": [[239, "deutils-utilities-for-solving-ode-s-and-pde-s"]], "Developers Notes": [[88, "developers-notes"]], "Development Dependencies": [[2, "development-dependencies"]], "Development Workflow Process": [[11, null]], "Diagonal operator": [[242, "diagonal-operator"]], "Diagram Drawing": [[68, "module-sympy.categories.diagram_drawing"]], "Dictionaries": [[16, "dictionaries"]], "Dictionary (roots)": [[48, "dictionary-roots"]], "Differential Geometry": [[90, null]], "Differentiating": [[21, "differentiating"]], "Differentiation": [[43, "differentiation"]], "Dimensional analysis": [[194, "dimensional-analysis"]], "Dimensions": [[196, "dimensions"]], "Dimensions and dimension systems": [[193, null]], "Diophantine": [[234, null]], "Diophantine Equation Can be Expressed as Expression That Equals Zero": [[51, "diophantine-equation-can-be-expressed-as-expression-that-equals-zero"]], "Diophantine Equations (DEs)": [[239, "diophantine-equations-des"], [240, "diophantine-equations-des"]], "Diophantine equations": [[234, "diophantine-equations"]], "Dirac Delta and Related Discontinuous Functions": [[96, "dirac-delta-and-related-discontinuous-functions"]], "Directional Derivative": [[272, "directional-derivative"]], "Discrete": [[91, null]], "Discrete Types": [[241, "discrete-types"]], "Dispersion of Polynomials": [[217, "dispersion-of-polynomials"]], "Divergence": [[33, "divergence"], [272, "divergence"]], "Divisibility": [[209, "divisibility"]], "Divisibility of polynomials": [[209, "divisibility-of-polynomials"]], "Division": [[209, "division"]], "Do Not Simplify Solutions": [[57, "do-not-simplify-solutions"]], "Docker": [[8, "docker"], [8, "id2"], [8, "id3"]], "Docstrings Style Guide": [[4, null]], "Docstrings for Classes that are Mathematical Functions": [[4, "docstrings-for-classes-that-are-mathematical-functions"]], "Docstrings for basic field functions": [[201, null]], "Doctests": [[12, "doctests"]], "Documentation": [[7, "documentation"], [11, "documentation"]], "Documentation Style Guide": [[5, null]], "Documentation using Markdown": [[5, "documentation-using-markdown"]], "Documenting a deprecation": [[3, "documenting-a-deprecation"]], "Domain constructors": [[217, "domain-constructors"]], "Domain elements vs sympy expressions": [[211, "domain-elements-vs-sympy-expressions"]], "Domains": [[212, "domains"]], "Don\u2019t Denest Collections": [[14, "don-t-denest-collections"]], "Don\u2019t Hardcode Symbol Names in Python Functions": [[14, "don-t-hardcode-symbol-names-in-python-functions"]], "Don\u2019t Overwrite __eq__": [[14, "don-t-overwrite-eq"]], "Dot": [[296, "dot"]], "Double Equals Signs": [[16, "double-equals-signs"]], "Duffing Oscillator with a Pendulum": [[303, null]], "Dyadic": [[32, "dyadic"]], "Dyadics": [[269, "dyadics"]], "ECM function": [[128, "ecm-function"]], "EX": [[212, "ex"]], "Easy Cases: Fully Symbolic or Fully Evaluated": [[43, "easy-cases-fully-symbolic-or-fully-evaluated"]], "Eigenvalues, Eigenvectors, and Diagonalization": [[293, "eigenvalues-eigenvectors-and-diagonalization"]], "Elastic Tendon Dynamics": [[18, "elastic-tendon-dynamics"]], "Elementary": [[94, null]], "Elementary Sequences": [[227, "elementary-sequences"]], "Elementary Sets": [[229, "elementary-sets"]], "Ellipses": [[98, null]], "Elliptic integrals": [[96, "module-sympy.functions.special.elliptic_integrals"]], "Empty List": [[37, "empty-list"]], "Ensure Consistent Formatting From solve()": [[57, "ensure-consistent-formatting-from-solve"]], "Ensure the Root Found is in a Given Interval": [[54, "ensure-the-root-found-is-in-a-given-interval"]], "Entities": [[99, null]], "Enumeration": [[93, "enumeration"]], "Enumerative": [[256, null]], "Equals Signs (=)": [[16, "equals-signs"]], "Equals signs": [[289, "equals-signs"]], "Equation with quantities": [[194, "equation-with-quantities"]], "Equations Which Have a Closed-Form Solution, and SymPy Cannot Solve": [[52, "equations-which-have-a-closed-form-solution-and-sympy-cannot-solve"], [56, "equations-which-have-a-closed-form-solution-and-sympy-cannot-solve"]], "Equations With No Closed-Form Solution": [[48, "equations-with-no-closed-form-solution"], [52, "equations-with-no-closed-form-solution"], [55, "equations-with-no-closed-form-solution"]], "Equations With No Solution": [[51, "equations-with-no-solution"], [53, "equations-with-no-solution"], [55, "equations-with-no-solution"]], "Equations With no Closed-Form Solution": [[57, "equations-with-no-closed-form-solution"]], "Equations With no Solution": [[54, "equations-with-no-solution"]], "Equations of Motion": [[299, "equations-of-motion"]], "Error Functions and Fresnel Integrals": [[96, "module-sympy.functions.special.error_functions"]], "Essential Classes": [[200, null]], "Essential Classes in sympy.vector (docstrings)": [[265, null]], "Essential Functions (Docstrings)": [[202, null]], "Essential Functions in sympy.vector (docstrings)": [[268, null]], "Euclidean domains": [[209, "euclidean-domains"]], "Evaluate the System Differential Equations": [[299, "evaluate-the-system-differential-equations"]], "Evaluating Expressions with Floats and Rationals": [[16, "evaluating-expressions-with-floats-and-rationals"]], "Exact Numeric Solution With Root Multiplicities": [[48, "exact-numeric-solution-with-root-multiplicities"]], "Exact Rational Numbers vs. Floats": [[14, "exact-rational-numbers-vs-floats"]], "Example": [[135, "example"]], "Example 1": [[46, "example-1"], [137, "example-1"]], "Example 10": [[137, "example-10"]], "Example 11": [[137, "example-11"]], "Example 2": [[46, "example-2"], [137, "example-2"]], "Example 3": [[46, "example-3"], [137, "example-3"]], "Example 4": [[46, "example-4"], [137, "example-4"]], "Example 5": [[46, "example-5"], [137, "example-5"]], "Example 6": [[137, "example-6"]], "Example 7": [[137, "example-7"]], "Example 8": [[137, "example-8"]], "Example 9": [[137, "example-9"]], "Example Usage": [[100, "example-usage"]], "Example of Custom Printer": [[221, "example-of-custom-printer"]], "Example of Custom Printing Method": [[221, "example-of-custom-printing-method"]], "Example of Finding the Roots of a Polynomial Algebraically": [[48, "example-of-finding-the-roots-of-a-polynomial-algebraically"]], "Example of Numerically Solving an Equation": [[54, "example-of-numerically-solving-an-equation"]], "Example of Solving a Diophantine Equation": [[51, "example-of-solving-a-diophantine-equation"]], "Example of a good commit message": [[11, "example-of-a-good-commit-message"]], "Example: Continued Fractions": [[297, "example-continued-fractions"]], "Examples": [[36, "examples"], [36, "id1"], [43, "examples"], [43, "id3"], [43, "id5"], [50, "examples"], [60, "examples"], [88, "examples"], [88, "id52"], [112, "examples"], [115, "examples"], [115, "id38"], [128, "examples"], [128, "id83"], [137, "examples"], [145, "examples"], [163, "examples"], [195, "examples"], [220, "examples"], [228, "examples"], [228, "id3"], [241, "examples"], [242, "examples"], [243, "examples"], [246, "examples"]], "Examples from Wester\u2019s Article": [[220, null]], "Examples of Solving a System of Equations Algebraically": [[56, "examples-of-solving-a-system-of-equations-algebraically"]], "Exceptions": [[214, "exceptions"]], "Exceptions and Warnings": [[257, null]], "Exercises": [[295, "exercises"]], "Expanding": [[222, "expanding"]], "Expanding expressions and factoring back": [[220, "expanding-expressions-and-factoring-back"]], "Experimental \\mathrm{\\LaTeX} Parsing": [[130, "experimental-mathrm-latex-parsing"]], "Explanations": [[17, null], [58, "explanations"]], "Explicitly Represent Infinite Sets of Possible Solutions": [[52, "explicitly-represent-infinite-sets-of-possible-solutions"]], "Exponential": [[94, "exponential"]], "Exponential, Logarithmic and Trigonometric Integrals": [[96, "exponential-logarithmic-and-trigonometric-integrals"]], "Exponentials and logarithms": [[297, "exponentials-and-logarithms"]], "Expression (factor)": [[48, "expression-factor"]], "Expression Manipulation (Docstrings)": [[150, null]], "Expression domain": [[211, "expression-domain"]], "Expression of quantities in different coordinate systems": [[270, "expression-of-quantities-in-different-coordinate-systems"]], "Extending The Hypergeometric Tables": [[231, "extending-the-hypergeometric-tables"]], "Extra polynomial manipulation functions": [[217, "extra-polynomial-manipulation-functions"]], "Extract Elements From the Solution": [[53, "extract-elements-from-the-solution"]], "Extract Expressions From the Result": [[51, "extract-expressions-from-the-result"]], "Extract a List of Decomposed Relations": [[50, "extract-a-list-of-decomposed-relations"]], "Extract a Tuple of Relations": [[50, "extract-a-tuple-of-relations"]], "Extract the Result for Multiple Function-Solution Pairs": [[55, "extract-the-result-for-multiple-function-solution-pairs"]], "Extract the Result for One Solution and Function": [[55, "extract-the-result-for-one-solution-and-function"]], "Factor the Equation": [[48, "factor-the-equation"]], "Factorial domains": [[209, "factorial-domains"]], "Factoring in terms of cyclotomic polynomials": [[220, "factoring-in-terms-of-cyclotomic-polynomials"]], "Factoring polynomials into linear factors": [[220, "factoring-polynomials-into-linear-factors"]], "Factorization": [[209, "factorization"]], "Fast Fourier Transform": [[91, "fast-fourier-transform"]], "Fast Walsh Hadamard Transform": [[91, "fast-walsh-hadamard-transform"]], "Fedora": [[8, "fedora"]], "Fiber Active Force-Length": [[18, "fiber-active-force-length"]], "Fiber Damping": [[18, "fiber-damping"]], "Fiber Force-Velocity": [[18, "fiber-force-velocity"]], "Fiber Passive Force-Length": [[18, "fiber-passive-force-length"]], "Field operation functions": [[201, "field-operation-functions"]], "Field operator in orthogonal curvilinear coordinate system": [[272, "field-operator-in-orthogonal-curvilinear-coordinate-system"]], "Field operators and other related functions": [[33, "field-operators-and-other-related-functions"]], "Field operators and related functions": [[272, "field-operators-and-related-functions"]], "Fields": [[33, "fields"], [274, "fields"]], "Find Complex Roots of a Real Function": [[54, "find-complex-roots-of-a-real-function"]], "Find the Roots of a Polynomial": [[48, "find-the-roots-of-a-polynomial"]], "Find the Roots of a Polynomial Algebraically or Numerically": [[48, null]], "Finding Minimal Polynomials": [[216, "finding-minimal-polynomials"]], "Finite Difference Approximations to Derivatives": [[39, null]], "Finite Extensions": [[208, "finite-extensions"]], "Finite Types": [[241, "finite-types"]], "Finite difference weights": [[67, "finite-difference-weights"]], "Finite differences": [[287, "finite-differences"]], "Finite fields": [[211, "finite-fields"]], "Finitely Presented Groups": [[70, null]], "Finitely-generated modules": [[216, "module-sympy.polys.numberfields.modules"]], "First-Order": [[18, "first-order"]], "Floating-point numbers": [[92, "floating-point-numbers"]], "For 2D Polygons": [[115, "for-2d-polygons"]], "For 3-Polytopes/Polyhedra": [[115, "for-3-polytopes-polyhedra"]], "Fork SymPy": [[9, "fork-sympy"]], "Formal Power Series": [[223, null]], "Formal manipulation of roots of polynomials": [[217, "formal-manipulation-of-roots-of-polynomials"]], "Formatting": [[4, "formatting"]], "Formatting Preferences": [[5, "formatting-preferences"]], "Forming logical expressions": [[118, "forming-logical-expressions"]], "Fortran Printing": [[221, "fortran-printing"]], "Fortran specific AST nodes (sympy.codegen.fnodes)": [[69, "module-sympy.codegen.fnodes"]], "Fortran utilities (sympy.codegen.futils)": [[69, "module-sympy.codegen.futils"]], "Fourier Series": [[224, null]], "Free Groups and Words": [[70, "free-groups-and-words"]], "Functions": [[16, "functions"], [95, null], [242, "functions"]], "Functions to Find the Roots of a Polynomial": [[48, "functions-to-find-the-roots-of-a-polynomial"]], "Further Examples": [[27, "further-examples"]], "Further Reading": [[289, "further-reading"]], "Fused Multiply-Add (FMA)": [[43, "fused-multiply-add-fma"]], "Future Features": [[21, "future-features"]], "Future Improvements": [[22, "future-improvements"]], "Future Work": [[100, "future-work"]], "GCD and LCM": [[209, "gcd-and-lcm"]], "GF(p)": [[212, "gf-p"]], "Galois Groups": [[71, null], [216, "galois-groups"]], "Gamma matrices": [[145, "module-sympy.physics.hep.gamma_matrices"]], "Gamma, Beta and Related Functions": [[96, "module-sympy.functions.special.gamma_functions"]], "Gates": [[175, null]], "Gaussian Optics": [[160, null]], "Gaussian domains": [[212, "gaussian-domains"]], "Gaussian integers and Gaussian rationals": [[211, "gaussian-integers-and-gaussian-rationals"]], "Gegenbauer Polynomials": [[96, "gegenbauer-polynomials"]], "General Guidelines": [[4, "general-guidelines"], [5, "general-guidelines"]], "General examples of usage": [[271, null]], "Generators": [[80, "module-sympy.combinatorics.generators"]], "Geometry": [[100, null]], "Geometry Visualization": [[100, "geometry-visualization"]], "Get All Roots, Perhaps Implicitly": [[48, "get-all-roots-perhaps-implicitly"]], "Get familiar using the software": [[7, "get-familiar-using-the-software"]], "Get the SymPy Code": [[9, "get-the-sympy-code"]], "Getting help from within SymPy": [[16, "getting-help-from-within-sympy"]], "Getting the Source Code": [[2, "getting-the-source-code"]], "Git": [[59, "git"]], "Glossary": [[15, null]], "Gotcha: symbols with different assumptions": [[41, "gotcha-symbols-with-different-assumptions"]], "Gotchas": [[22, "gotchas"], [289, null]], "Gotchas and Pitfalls": [[16, null]], "Gradient": [[33, "gradient"], [272, "gradient"]], "Gray Code": [[72, null]], "Groebner bases": [[209, "groebner-bases"]], "Groebner basis algorithms": [[214, "groebner-basis-algorithms"]], "Group constructors": [[73, null]], "Group structure": [[196, "group-structure"]], "Grover\u2019s Algorithm": [[176, null]], "Gtk": [[221, "module-sympy.printing.gtk"]], "Guidance": [[48, "guidance"], [50, "guidance"], [51, "guidance"], [52, "guidance"], [53, "guidance"], [54, "guidance"], [55, "guidance"], [56, "guidance"]], "Guide for New Contributors": [[10, null]], "Guide to Biomechanics": [[19, "guide-to-biomechanics"], [133, "guide-to-biomechanics"]], "Guide to Classical Mechanics": [[23, "guide-to-classical-mechanics"]], "Guide to Mechanics": [[151, "guide-to-mechanics"]], "Guide to Vector": [[34, "guide-to-vector"], [203, "guide-to-vector"], [273, "guide-to-vector"]], "Hard Dependencies": [[2, "hard-dependencies"]], "Headings": [[5, "headings"]], "Hermite Polynomials": [[96, "hermite-polynomials"]], "High Energy Physics": [[145, null]], "Hilbert Space": [[177, null]], "Hint Functions": [[237, "hint-functions"]], "Hint Methods": [[238, "hint-methods"]], "Holonomic": [[108, null]], "Hongguang Fu\u2019s Trigonometric Simplification": [[230, null]], "How Vectors are Coded": [[36, "how-vectors-are-coded"]], "How are symbolic parameters handled in solveset?": [[240, "how-are-symbolic-parameters-handled-in-solveset"]], "How do we deal with cases where only some of the solutions are known?": [[240, "how-do-we-deal-with-cases-where-only-some-of-the-solutions-are-known"]], "How do we manipulate and return an infinite solution?": [[240, "how-do-we-manipulate-and-return-an-infinite-solution"]], "How does solveset ensure that it is not returning any wrong solution?": [[240, "how-does-solveset-ensure-that-it-is-not-returning-any-wrong-solution"]], "How long should deprecations last?": [[3, "how-long-should-deprecations-last"]], "How to compute the integral": [[113, "how-to-compute-the-integral"]], "How to deprecate code": [[3, "how-to-deprecate-code"]], "How-to Guides": [[44, null], [58, "how-to-guides"]], "Hydrogen Wavefunctions": [[146, null]], "Hyperbolic": [[94, "hyperbolic"]], "Hyperbolic Functions": [[94, "hyperbolic-functions"]], "Hyperbolic Inverses": [[94, "hyperbolic-inverses"]], "Hypergeometric Algorithm": [[223, "hypergeometric-algorithm"]], "Hypergeometric Expansion": [[231, null]], "Hypergeometric Function Expansion Algorithm": [[231, "hypergeometric-function-expansion-algorithm"]], "Hypergeometric Functions": [[96, "hypergeometric-functions"]], "Hypergeometric terms": [[87, "hypergeometric-terms"]], "Hypothesis Testing": [[12, "hypothesis-testing"]], "Identify something to work on": [[7, "identify-something-to-work-on"]], "If There are Multiple Solution Sets": [[55, "if-there-are-multiple-solution-sets"]], "If There is One Solution Set": [[55, "if-there-is-one-solution-set"]], "Immutability of Expressions": [[16, "immutability-of-expressions"]], "Immutable Matrices": [[121, null]], "ImmutableMatrix Class Reference": [[121, "module-sympy.matrices.immutable"]], "ImmutableSparseMatrix Class Reference": [[126, "immutablesparsematrix-class-reference"]], "Implementation - Helper Classes/Functions": [[221, "module-sympy.printing.conventions"]], "Implementation Details": [[254, "implementation-details"]], "Implementation details": [[253, "implementation-details"]], "Implementation in sympy.vector": [[272, "implementation-in-sympy-vector"]], "Implementation of fields in sympy.physics.vector": [[33, "implementation-of-fields-in-sympy-physics-vector"]], "Implemented G-Function Formulae": [[113, "implemented-g-function-formulae"]], "Implemented Hypergeometric Formulae": [[231, "implemented-hypergeometric-formulae"]], "Implementing assumptions handlers": [[41, "implementing-assumptions-handlers"]], "Implications": [[41, "implications"]], "Importing Docstrings into the Sphinx Documentation": [[4, "importing-docstrings-into-the-sphinx-documentation"]], "Impulse-Response Plot": [[142, "impulse-response-plot"]], "Include Solutions Making Any Denominator Zero": [[57, "include-solutions-making-any-denominator-zero"]], "Include the Variable to Be Reduced for in the Function Call": [[50, "include-the-variable-to-be-reduced-for-in-the-function-call"]], "Include the Variable to be Solved for in the Function Call": [[57, "include-the-variable-to-be-solved-for-in-the-function-call"]], "Increase Precision of the Solution": [[54, "increase-precision-of-the-solution"]], "Incrementing and decrementing indices": [[231, "incrementing-and-decrementing-indices"]], "Index": [[10, "index"]], "Indexed Objects": [[246, null]], "Inequalities": [[239, "inequalities"], [240, "inequalities"]], "Inequalities Which Can Be Reduced Analytically, and SymPy Cannot Reduce": [[50, "inequalities-which-can-be-reduced-analytically-and-sympy-cannot-reduce"]], "Inequality Solvers": [[236, null]], "Inertia": [[28, "inertia"]], "Inertia (Dyadics)": [[28, "inertia-dyadics"]], "Inertias": [[155, "inertias"]], "Inference": [[118, "module-sympy.logic.inference"]], "Information on the ode module": [[237, "module-sympy.solvers.ode.ode"]], "Information on the pde module": [[238, "module-sympy.solvers.pde"]], "Inner Product": [[179, null]], "Input API of solveset": [[240, "input-api-of-solveset"]], "Install Git": [[9, "install-git"]], "Installation": [[58, "installation"], [59, null], [295, "installation"]], "Integer Functions": [[94, "integer-functions"]], "Integral Basis": [[216, "integral-basis"]], "Integral Transforms": [[115, "module-sympy.integrals.transforms"]], "Integral domains": [[209, "integral-domains"]], "Integrals": [[114, null], [115, null], [287, "integrals"]], "Integration": [[112, "integration"]], "Integration and Differentiation": [[110, "integration-and-differentiation"]], "Integration over Polytopes": [[115, "module-sympy.integrals.intpoly"]], "Interactive": [[116, null]], "Interactive Use": [[2, "interactive-use"]], "Interface": [[241, "interface"]], "Internal API": [[109, null]], "Internal API Reference": [[113, "module-sympy.integrals.meijerint"]], "Internal Classes": [[234, "internal-classes"]], "Internal Functions": [[234, "internal-functions"]], "Internals": [[115, "internals"], [216, "internals"]], "Internals of a Poly": [[211, "internals-of-a-poly"]], "Internals of the Polynomial Manipulation Module": [[214, null]], "Interpretation of the predicates": [[41, "interpretation-of-the-predicates"]], "Intersecting Product": [[91, "intersecting-product"]], "Intersection of medians": [[100, "intersection-of-medians"]], "Introducing the Domains of the poly module": [[211, null]], "Introducing the domainmatrix of the poly module": [[210, null]], "Introduction": [[16, "introduction"], [22, "introduction"], [30, "introduction"], [33, "introduction"], [39, "introduction"], [61, "introduction"], [68, "introduction"], [69, "introduction"], [70, "introduction"], [78, "introduction"], [90, "introduction"], [100, "introduction"], [118, "introduction"], [133, "introduction"], [196, "introduction"], [207, "introduction"], [208, "introduction"], [209, "introduction"], [216, "introduction"], [220, "introduction"], [274, null], [291, null]], "Introduction to Biomechanical Modeling": [[18, null]], "Introduction to Contributing": [[7, null]], "Introduction to Kinematics": [[35, "introduction-to-kinematics"]], "Introductory Tutorial": [[285, "introductory-tutorial"], [290, null]], "Inverse Trig Functions": [[16, "inverse-trig-functions"]], "Iterables": [[259, null]], "Iteration over sets": [[229, "iteration-over-sets"]], "Jacobi Polynomials": [[96, "jacobi-polynomials"]], "Javascript Code printing": [[221, "module-sympy.printing.jscode"]], "Join our mailing list": [[7, "join-our-mailing-list"]], "Joint (Docstrings)": [[152, "module-sympy.physics.mechanics.joint"]], "Joint Types": [[241, "joint-types"]], "Joints Framework (Docstrings)": [[152, null]], "Joints Framework in Physics/Mechanics": [[24, null]], "Joints in Physics/Mechanics": [[24, "joints-in-physics-mechanics"]], "Julia code printing": [[221, "module-sympy.printing.julia"]], "K(x)": [[212, "id11"]], "K[x]": [[212, "k-x"]], "Kane\u2019s Method": [[306, "kane-s-method"]], "Kane\u2019s Method & Lagrange\u2019s Method (Docstrings)": [[153, null]], "Kane\u2019s Method in Physics/Mechanics": [[25, null], [25, "id2"]], "Key Invariant": [[292, null]], "Key Point": [[43, null]], "Keyword Arguments": [[16, "keyword-arguments"]], "Kinematics (Docstrings)": [[204, null]], "Kinematics in physics.vector": [[35, "kinematics-in-physics-vector"]], "Kinetic Energy": [[28, "kinetic-energy"]], "LaTeX Recommendations": [[5, "latex-recommendations"]], "Lagrange\u2019s Method": [[303, "lagrange-s-method"], [306, "lagrange-s-method"]], "Lagrange\u2019s Method in Physics/Mechanics": [[26, null], [26, "id1"]], "Lagrangian": [[28, "lagrangian"]], "Laguerre Polynomials": [[96, "laguerre-polynomials"]], "LambdaPrinter": [[221, "module-sympy.printing.lambdarepr"]], "Lambdify": [[129, "lambdify"], [260, null]], "Lark Backend": [[130, "lark-backend"]], "Lark \\mathrm{\\LaTeX} Parser Capabilities": [[130, "lark-mathrm-latex-parser-capabilities"]], "Lark \\mathrm{\\LaTeX} Parser Classes": [[130, "lark-mathrm-latex-parser-classes"]], "Lark \\mathrm{\\LaTeX} Parser Features": [[130, "lark-mathrm-latex-parser-features"]], "Lark \\mathrm{\\LaTeX} Parser Functions": [[130, "lark-mathrm-latex-parser-functions"]], "LatexPrinter": [[221, "module-sympy.printing.latex"]], "Legendre Polynomials": [[96, "legendre-polynomials"]], "Level Zero": [[214, "level-zero"]], "Lie Algebra": [[117, null]], "Lie heuristics": [[237, "lie-heuristics"]], "Limitations": [[41, "limitations"], [51, "limitations"], [112, "limitations"]], "Limitations and Issues": [[22, "limitations-and-issues"]], "Limitations of Inequality Reduction Using SymPy": [[50, "limitations-of-inequality-reduction-using-sympy"]], "Limitations on Types of Inequalities That SymPy Can Solve": [[50, "limitations-on-types-of-inequalities-that-sympy-can-solve"]], "Limits": [[228, "limits"], [287, "limits"]], "Limits of Sequences": [[226, null]], "Linear Momentum": [[28, "linear-momentum"]], "Linear Programming (Optimization)": [[239, "module-sympy.solvers.simplex"]], "Linear algebra": [[124, "linear-algebra"]], "Linear space representation": [[196, "linear-space-representation"]], "Linearization": [[21, "linearization"]], "Linearization (Docstrings)": [[154, null]], "Linearization in Physics/Mechanics": [[27, null]], "Linearizing Kane\u2019s Equations": [[27, "linearizing-kane-s-equations"]], "Linearizing Lagrange\u2019s Equations": [[27, "linearizing-lagrange-s-equations"]], "Lines": [[101, null]], "Links": [[30, "links"]], "List (all_roots, real_roots, nroots)": [[48, "list-all-roots-real-roots-nroots"]], "List Of Values": [[37, "list-of-values"]], "List of Dictionaries": [[37, "list-of-dictionaries"]], "List of Tuples": [[37, "list-of-tuples"]], "List of active deprecations": [[13, null]], "List of dictionaries (solve)": [[48, "list-of-dictionaries-solve"]], "Lists": [[16, "lists"]], "Literature": [[196, "literature"], [215, null], [220, "literature"]], "Loads": [[18, "loads"], [28, "loads"], [155, "loads"]], "Local Installation": [[8, "local-installation"], [8, "id4"]], "Locating new systems": [[270, "locating-new-systems"]], "Logic": [[2, "logic"], [118, null], [276, "logic"], [279, null]], "Loose Ends": [[231, "loose-ends"]], "Low Index Subgroups": [[70, "low-index-subgroups"]], "MPQ": [[212, "mpq"]], "Mac": [[8, "mac"]], "Make Your Equation Into an Expression That Equals Zero": [[52, "make-your-equation-into-an-expression-that-equals-zero"]], "Make a Pull Request": [[11, "make-a-pull-request"]], "Manipulating expressions": [[118, "manipulating-expressions"]], "Manipulation of dense, multivariate polynomials": [[214, "manipulation-of-dense-multivariate-polynomials"]], "Manipulation of dense, univariate polynomials with finite field coefficients": [[214, "manipulation-of-dense-univariate-polynomials-with-finite-field-coefficients"]], "Manipulation of rational functions": [[217, "manipulation-of-rational-functions"]], "Manipulation of sparse, distributed polynomials and vectors": [[214, "manipulation-of-sparse-distributed-polynomials-and-vectors"]], "Maple code printing": [[221, "module-sympy.printing.maple"]], "Mapping user names to AUTHORS file entry": [[11, "mapping-user-names-to-authors-file-entry"]], "Marking Tests as Expected to Fail": [[12, "marking-tests-as-expected-to-fail"]], "Marking Tests as Slow": [[12, "marking-tests-as-slow"]], "Mass": [[28, "mass"]], "Masses, Inertias, Particles and Rigid Bodies in Physics/Mechanics": [[28, null]], "Math": [[5, "math"]], "MathML": [[296, "mathml"]], "MathMLPrinter": [[221, "module-sympy.printing.mathml"]], "Mathematica code printing": [[221, "module-sympy.printing.mathematica"]], "Mathematical Equivalents": [[30, "mathematical-equivalents"]], "Mathematical Exactness, Completeness of List of Roots, and Speed": [[48, "mathematical-exactness-completeness-of-list-of-roots-and-speed"]], "Mathematical Operators": [[16, "mathematical-operators"]], "Mathieu Functions": [[96, "module-sympy.functions.special.mathieu_functions"]], "Matrices": [[122, null], [147, null], [276, "matrices"], [280, null], [293, null]], "Matrices (linear algebra)": [[124, null]], "Matrix": [[65, "matrix"]], "Matrix Base Classes": [[124, "matrix-base-classes"]], "Matrix Constructors": [[293, "matrix-constructors"]], "Matrix Distributions": [[241, "matrix-distributions"]], "Matrix Exceptions": [[124, "matrix-exceptions"]], "Matrix Expressions": [[120, null]], "Matrix Expressions Core Reference": [[120, "matrix-expressions-core-reference"]], "Matrix Functions": [[124, "matrix-functions"]], "Matrix Kind": [[123, null]], "Matrix Normal Forms": [[125, null]], "Matrix Usually Must Be Square": [[53, "matrix-usually-must-be-square"]], "Mechanics": [[23, "mechanics"], [133, "mechanics"], [151, "mechanics"], [241, "module-sympy.stats.rv"]], "Mechanics API Reference": [[151, null]], "Mechanics Tutorials": [[305, null]], "Mechanism of the assumptions system": [[41, "mechanism-of-the-assumptions-system"]], "Medium": [[162, null]], "Meijer G-Functions of Finite Confluence": [[231, "meijer-g-functions-of-finite-confluence"]], "Memoization": [[261, null]], "Methods": [[245, null]], "Methods for Solving Matrix Equations": [[53, "methods-for-solving-matrix-equations"]], "Misc": [[64, "misc"]], "Miscellaneous": [[94, "miscellaneous"], [262, null]], "Miscellaneous Notes": [[100, "miscellaneous-notes"]], "Miscellaneous _eval_* methods": [[43, "miscellaneous-eval-methods"]], "Mixing Poly and non-polynomial expressions in binary operations": [[13, "mixing-poly-and-non-polynomial-expressions-in-binary-operations"]], "Model Description": [[299, "model-description"]], "Modify code": [[11, "modify-code"]], "Modular GCD": [[214, "modular-gcd"]], "Module Homomorphisms": [[216, "module-homomorphisms"]], "Module Homomorphisms and Syzygies": [[208, "module-homomorphisms-and-syzygies"]], "Module structure": [[234, "module-structure"]], "Modules sympy.tensor.array.expressions.conv_* renamed to sympy.tensor.array.expressions.from_*": [[13, "modules-sympy-tensor-array-expressions-conv-renamed-to-sympy-tensor-array-expressions-from"]], "Modules, Ideals and their Elementary Properties": [[208, "modules-ideals-and-their-elementary-properties"]], "Monomials encoded as tuples": [[217, "monomials-encoded-as-tuples"]], "More": [[195, "more"]], "More Intuitive Series Expansion": [[228, "more-intuitive-series-expansion"]], "More about Coordinate Systems": [[270, null]], "More examples": [[194, null]], "Moved mechanics functions": [[13, "moved-mechanics-functions"]], "Moving Around in the Parameter Space": [[231, "moving-around-in-the-parameter-space"]], "Multi Degree of Freedom Holonomic System": [[307, null]], "Multiplication": [[216, "multiplication"]], "Multivariate GCD and factorization": [[220, "multivariate-gcd-and-factorization"]], "Multivariate factoring over algebraic numbers": [[220, "multivariate-factoring-over-algebraic-numbers"]], "Muscle Activation Differential Equations": [[299, "muscle-activation-differential-equations"]], "Musculotendon (Docstrings)": [[134, null]], "Musculotendon Curves": [[18, "musculotendon-curves"]], "Musculotendon Dynamics": [[18, "musculotendon-dynamics"]], "Mutable attributes in sympy.diffgeom": [[13, "mutable-attributes-in-sympy-diffgeom"]], "M\u00f6bius Transform": [[91, "mobius-transform"]], "N-dim array": [[242, null]], "N-dim array expressions": [[243, null]], "Named Groups": [[76, null]], "Narrative Documentation Guidelines": [[5, "narrative-documentation-guidelines"]], "New Joint coordinate format": [[13, "new-joint-coordinate-format"]], "New Joint intermediate frames": [[13, "new-joint-intermediate-frames"]], "New Mathematica code parser": [[13, "new-mathematica-code-parser"]], "Non-Expr objects in a Matrix": [[13, "non-expr-objects-in-a-matrix"]], "Non-tuple iterable for the first argument to Lambda": [[13, "non-tuple-iterable-for-the-first-argument-to-lambda"]], "Nonminimal Coordinates Pendulum": [[306, null]], "Normalizing simple rational functions": [[220, "normalizing-simple-rational-functions"]], "Not All Equations Can Be Solved": [[48, "not-all-equations-can-be-solved"], [51, "not-all-equations-can-be-solved"], [52, "not-all-equations-can-be-solved"], [55, "not-all-equations-can-be-solved"]], "Not All Results Are Returned for Periodic Functions": [[50, "not-all-results-are-returned-for-periodic-functions"]], "Not All Systems of Equations Can be Solved": [[56, "not-all-systems-of-equations-can-be-solved"]], "Not All Systems of Inequalities Can Be Reduced": [[50, "not-all-systems-of-inequalities-can-be-reduced"]], "Not Public API": [[3, null]], "Not all Equations Can be Solved": [[54, "not-all-equations-can-be-solved"]], "Notation": [[231, "notation"]], "Note": [[43, null]], "Notes": [[88, "notes"], [228, "notes"], [230, "notes"]], "Ntheory Class Reference": [[128, "ntheory-class-reference"]], "Ntheory Functions Reference": [[128, "ntheory-functions-reference"]], "Nullspace": [[293, "nullspace"]], "Number Fields": [[216, null]], "Number Theoretic Transform": [[91, "number-theoretic-transform"]], "Number Theory": [[65, "number-theory"], [128, null], [276, "number-theory"], [281, null]], "Number of groups": [[74, null]], "Numeric Computation": [[129, null]], "Numeric Integrals": [[115, "numeric-integrals"]], "Numeric Integration": [[287, "numeric-integration"]], "Numeric Solutions": [[57, "numeric-solutions"]], "Numerical Evaluation": [[92, null]], "Numerical Evaluation and Visualization": [[30, "numerical-evaluation-and-visualization"]], "Numerical Evaluation with evalf()": [[43, "numerical-evaluation-with-evalf"]], "Numerical evaluation": [[110, "numerical-evaluation"]], "Numerical simplification": [[92, "numerical-simplification"]], "Numerically Evaluate CRootOf Roots": [[48, "numerically-evaluate-crootof-roots"]], "Numerically Integrating Code": [[21, "numerically-integrating-code"]], "Numerically Solve an ODE in SciPy": [[55, "numerically-solve-an-ode-in-scipy"]], "Numpy Utility Functions": [[124, "numpy-utility-functions"]], "ODE": [[237, null]], "Octave (and Matlab) Code printing": [[221, "module-sympy.printing.octave"]], "Old (dense) polynomial rings": [[211, "old-dense-polynomial-rings"]], "Operations on entries": [[124, "operations-on-entries"]], "Operations on holonomic functions": [[110, null]], "Operator": [[180, null]], "Operator/State Helper Functions": [[181, null]], "Optics": [[161, null]], "Option 1: Define a Function Without Including Its Independent Variable": [[55, "option-1-define-a-function-without-including-its-independent-variable"]], "Option 2: Define a Function of an Independent Variable": [[55, "option-2-define-a-function-of-an-independent-variable"]], "Optional Dependencies": [[2, "optional-dependencies"]], "Optional SymEngine Backend": [[2, "optional-symengine-backend"]], "Options": [[214, "module-sympy.polys.polyoptions"]], "Options That Can Speed up solve()": [[52, "options-that-can-speed-up-solve"], [56, "options-that-can-speed-up-solve"], [57, "options-that-can-speed-up-solve"]], "Options to Define an ODE": [[55, "options-to-define-an-ode"]], "Order": [[65, "order"]], "Order Terms": [[228, "order-terms"]], "Ordered comparisons like a < b with modular integers": [[13, "ordered-comparisons-like-a-b-with-modular-integers"]], "Orderings of monomials": [[217, "orderings-of-monomials"]], "Ordinary Differential Equation Solving Hints": [[55, "ordinary-differential-equation-solving-hints"]], "Ordinary Differential equations (ODEs)": [[239, "ordinary-differential-equations-odes"], [240, "ordinary-differential-equations-odes"]], "Orienter classes (docstrings)": [[267, null]], "Orienting AND Locating new systems": [[270, "orienting-and-locating-new-systems"]], "Orienting new systems": [[270, "orienting-new-systems"]], "Orthogonal Polynomials": [[96, "module-sympy.functions.special.polynomials"]], "Orthogonal polynomials": [[217, "orthogonal-polynomials"]], "Other Functions": [[155, "other-functions"]], "Other Methods": [[43, "other-methods"], [59, "other-methods"]], "Other expression-dependent methods": [[270, "other-expression-dependent-methods"]], "Other is_* properties": [[41, "other-is-properties"]], "Overview": [[113, "overview"]], "Overview of Facilities": [[70, "overview-of-facilities"]], "Overview of functionalities": [[78, "overview-of-functionalities"]], "PDE": [[238, null]], "PDF Documentation": [[8, "pdf-documentation"]], "Parse a String Representing the Equation": [[57, "parse-a-string-representing-the-equation"]], "Parsing": [[2, "parsing"], [130, null]], "Parsing Functions Reference": [[130, "parsing-functions-reference"]], "Parsing Transformations Reference": [[130, "parsing-transformations-reference"]], "Partial Differential Equations (PDEs)": [[239, "partial-differential-equations-pdes"], [240, "partial-differential-equations-pdes"]], "Partial fraction decomposition": [[217, "partial-fraction-decomposition"], [220, "partial-fraction-decomposition"]], "Particle": [[28, "particle"]], "Particle in a Box": [[182, null]], "Partitions": [[77, null]], "Passing the arguments to lambdify as a set": [[13, "passing-the-arguments-to-lambdify-as-a-set"]], "Pathway (Docstrings)": [[156, null]], "Pathways": [[18, "pathways"]], "Pauli Algebra": [[166, null]], "Performance improvements": [[64, "performance-improvements"]], "Permutation Groups": [[79, null]], "Permutations": [[80, null]], "Peruse the documentation": [[7, "peruse-the-documentation"]], "Philosophy behind unit systems": [[196, null]], "Physical Equivalents": [[30, "physical-equivalents"]], "Physical quantities": [[198, null]], "Physics": [[20, null], [47, null], [276, "physics"], [282, null]], "Physics Tutorial": [[285, "physics-tutorial"]], "Physics Tutorials": [[301, null]], "Physics Vector API": [[203, null]], "Pick an issue to fix": [[11, "pick-an-issue-to-fix"]], "Piecewise": [[94, "piecewise"]], "Plane": [[102, null]], "Plot Class": [[207, "plot-class"]], "Plot Window Controls": [[207, "plot-window-controls"]], "PlotGrid Class": [[207, "plotgrid-class"]], "Plotting": [[2, "plotting"], [207, null]], "Plotting Function Reference": [[207, "plotting-function-reference"]], "Plotting Geometric Entities": [[207, "plotting-geometric-entities"]], "Plotting with ASCII art": [[207, "plotting-with-ascii-art"]], "Point Velocity & Acceleration": [[35, "point-velocity-acceleration"]], "Points": [[103, null], [269, "points"]], "Polar Numbers and Branched Functions": [[113, "polar-numbers-and-branched-functions"]], "Polarization": [[163, null]], "Pole-Zero Plot": [[142, "pole-zero-plot"]], "Poly solvers": [[219, null]], "PolyRing vs PolynomialRing": [[211, "polyring-vs-polynomialring"]], "Polycyclic Groups": [[78, null]], "Polygons": [[104, null]], "Polyhedron": [[81, null]], "Polynomial Manipulation": [[213, null]], "Polynomial factorization algorithms": [[214, "polynomial-factorization-algorithms"]], "Polynomial ring domains": [[211, "polynomial-ring-domains"]], "Polynomial/Rational Function Simplification": [[297, "polynomial-rational-function-simplification"]], "Polynomials": [[209, "polynomials"]], "Polynomials Manipulation Module Reference": [[217, null]], "Possible Issues": [[293, "possible-issues"]], "Potential Energy": [[28, "potential-energy"]], "Potential Issues": [[27, "potential-issues"]], "Potential Issues/Advanced Topics/Future Features in Physics/Mechanics": [[21, null]], "Potential Issues/Advanced Topics/Future Features in Physics/Vector Module": [[32, null]], "Power sets": [[229, "module-sympy.sets.powerset"]], "Powers": [[297, "powers"]], "Precedence": [[221, "module-sympy.printing.precedence"]], "Predefined types": [[69, "predefined-types"]], "Predicate": [[64, "predicate"]], "Predicates": [[41, "predicates"], [65, null]], "Preliminaries": [[295, null]], "Pretty-Printing Implementation Helpers": [[221, "module-sympy.printing.pretty.pretty_symbology"]], "PrettyPrinter Class": [[221, "prettyprinter-class"]], "Prevent expression evaluation": [[292, "prevent-expression-evaluation"]], "Preview": [[221, "preview"]], "Prime Decomposition": [[216, "prime-decomposition"]], "Printer Class": [[221, "module-sympy.printing.printer"]], "Printers": [[296, "printers"]], "Printing": [[2, "printing"], [21, "printing"], [32, "printing"], [43, "printing"], [116, "module-sympy.interactive.printing"], [221, null], [296, null]], "Printing (Docstrings)": [[157, null], [205, null]], "Printing Functions": [[296, "printing-functions"]], "ProductSet(iterable)": [[13, "productset-iterable"]], "Products and contractions": [[242, "products-and-contractions"]], "Programmatically Extract Parameter Symbols": [[51, "programmatically-extract-parameter-symbols"]], "Prufer Sequences": [[82, null]], "Public API": [[3, null]], "Put Your Equation Into Eq Form": [[52, "put-your-equation-into-eq-form"]], "Pyglet Plotting": [[207, "module-sympy.plotting.pygletplot"]], "Python numbers vs. SymPy Numbers": [[16, "python-numbers-vs-sympy-numbers"]], "Python utilities (sympy.codegen.pyutils)": [[69, "module-sympy.codegen.pyutils"]], "PythonCodePrinter": [[221, "module-sympy.printing.pycode"]], "PythonPrinter": [[221, "module-sympy.printing.python"]], "QFT": [[184, null]], "QQ": [[212, "qq"]], "QQ": [[212, "qq-a"]], "QQ_I": [[212, "qq-i"]], "QS function": [[128, "qs-function"]], "Qapply": [[183, null]], "Quadrilateral problem": [[271, "quadrilateral-problem"]], "Quantities": [[196, "quantities"]], "Quantum Computation": [[178, "quantum-computation"]], "Quantum Functions": [[178, "quantum-functions"]], "Quantum Harmonic Oscillator in 1-D": [[167, null]], "Quantum Harmonic Oscillator in 3-D": [[192, null]], "Quantum Mechanics": [[178, null]], "Quaternion Reference": [[61, "module-sympy.algebras"]], "Qubit": [[185, null]], "Querying": [[64, "querying"]], "Questions": [[59, "questions"]], "Quick Tip": [[286, null], [287, null], [289, null], [292, null], [293, null]], "Quotient ring": [[212, "quotient-ring"]], "RCodePrinter": [[221, "module-sympy.printing.rcode"]], "RR": [[212, "rr"]], "RREF": [[293, "rref"]], "Ramp-Response Plot": [[142, "ramp-response-plot"]], "Random": [[88, "module-sympy.core.random"]], "Random Tests": [[12, "random-tests"]], "Random Variable Types": [[241, "random-variable-types"]], "Randomised Testing": [[251, null]], "Rational Algorithm": [[223, "rational-algorithm"]], "Rational Riccati Solver": [[237, "rational-riccati-solver"]], "Rational function fields": [[211, "rational-function-fields"]], "Read the paper": [[7, "read-the-paper"]], "Real and complex fields": [[211, "real-and-complex-fields"]], "Recommended Optional Dependencies": [[2, "recommended-optional-dependencies"]], "Recurrence Equations": [[239, "module-sympy.solvers.recurr"]], "Recursing through an Expression Tree": [[292, "recursing-through-an-expression-tree"]], "Recursive Sequences": [[227, "recursive-sequences"]], "Reduce One or a System of Inequalities for a Single Variable Algebraically": [[50, null]], "Reduce a System of Inequalities Algebraically": [[50, "reduce-a-system-of-inequalities-algebraically"]], "Reducing One Inequality for a Single Variable Algebraically": [[50, "reducing-one-inequality-for-a-single-variable-algebraically"]], "Reducing a System of Inequalities for a Single Variable Algebraically": [[50, "reducing-a-system-of-inequalities-for-a-single-variable-algebraically"]], "Reduction of Order": [[231, "reduction-of-order"]], "Redundant static methods in carmichael": [[13, "redundant-static-methods-in-carmichael"]], "Reference": [[124, "reference"], [208, "reference"], [214, "reference"], [218, "reference"], [228, "reference"], [228, "id2"], [228, "id4"], [228, "id7"], [228, "id8"]], "Reference docs for the Poly Domains": [[212, null]], "ReferenceFrame": [[32, "referenceframe"]], "References": [[18, "references"], [46, "references"], [71, "references"], [88, "references"], [100, "references"], [106, "references"], [115, "references"], [163, "references"], [166, "references"], [206, "references"], [230, "references"], [231, "references"], [234, "references"], [240, "references"], [299, "references"], [303, "references"]], "References for Physics/Mechanics": [[29, null]], "References for Physics/Vector": [[34, "references-for-physics-vector"], [203, "references-for-physics-vector"]], "References for Vector": [[273, "references-for-vector"]], "References for the above definitions": [[41, "references-for-the-above-definitions"]], "Refine": [[66, null]], "Regression Tests": [[12, "regression-tests"]], "Reidemeister Schreier algorithm": [[70, "reidemeister-schreier-algorithm"]], "Relating Sets of Basis Vectors": [[36, "relating-sets-of-basis-vectors"]], "Relations between different symbols": [[41, "relations-between-different-symbols"]], "Release notes entry": [[3, "release-notes-entry"]], "Relocate symbolic functions from ntheory to functions": [[13, "relocate-symbolic-functions-from-ntheory-to-functions"]], "Reminder": [[43, null]], "Report a Bug": [[48, "report-a-bug"], [50, "report-a-bug"], [51, "report-a-bug"], [52, "report-a-bug"], [53, "report-a-bug"], [54, "report-a-bug"], [55, "report-a-bug"], [56, "report-a-bug"], [57, "report-a-bug"]], "Represent": [[186, null]], "Representation of holonomic functions in SymPy": [[111, null]], "Representing Branched Functions on the Argand Plane": [[113, "representing-branched-functions-on-the-argand-plane"]], "Representing Roots": [[48, "representing-roots"]], "Representing algebraic numbers": [[216, "representing-algebraic-numbers"]], "Representing expressions symbolically": [[211, "representing-expressions-symbolically"]], "Required dependencies": [[8, "required-dependencies"]], "Residues": [[228, "residues"]], "Restrict the Domain of Solutions": [[52, "restrict-the-domain-of-solutions"]], "Return Unevaluated Integrals": [[55, "return-unevaluated-integrals"]], "Revealing noncontributing forces": [[304, "revealing-noncontributing-forces"]], "Review pull requests": [[7, "review-pull-requests"]], "Review the Code of Conduct": [[7, "review-the-code-of-conduct"]], "Rewriting and Simplification": [[43, "rewriting-and-simplification"]], "Riemann Zeta and Related Functions": [[96, "module-sympy.functions.special.zeta_functions"]], "Rigid Body": [[28, "rigid-body"]], "Rigid Tendon Dynamics": [[18, "rigid-tendon-dynamics"]], "Rotation matrices": [[124, "rotation-matrices"]], "Rough Autolev-SymPy Equivalents": [[30, "rough-autolev-sympy-equivalents"]], "Routine": [[254, "routine"]], "Rules": [[230, "rules"]], "Run SymPy": [[59, "run-sympy"]], "Run Tests": [[252, null]], "Run the Tests": [[11, "run-the-tests"]], "Running Tests": [[12, "running-tests"]], "Running the Benchmarks": [[2, "running-the-benchmarks"]], "Running the Tests": [[2, "running-the-tests"]], "Runtime Installation": [[130, "runtime-installation"]], "Rust code printing": [[221, "module-sympy.printing.rust"]], "SMT-Lib printing": [[221, "module-sympy.printing.smtlib"]], "Sage": [[2, "sage"]], "Sample Docstring": [[4, "sample-docstring"]], "Scalar and Vector Field Functionality": [[33, null], [272, null]], "Scalar and vector fields": [[272, "scalar-and-vector-fields"]], "Scalar potential functions": [[33, "scalar-potential-functions"], [272, "scalar-potential-functions"]], "Search based solver and step-by-step solution": [[240, "search-based-solver-and-step-by-step-solution"]], "Second Quantization": [[191, null]], "Sections": [[4, "sections"]], "See": [[271, "see"]], "See Also": [[88, "see-also"], [259, "see-also"]], "Select a Specific Solver": [[55, "select-a-specific-solver"]], "Separate Symbolic and Numeric Code": [[14, "separate-symbolic-and-numeric-code"]], "Sequences": [[227, null]], "Sequences Base": [[227, "sequences-base"]], "Series": [[225, null]], "Series Acceleration": [[228, "series-acceleration"]], "Series Classes": [[207, "series-classes"]], "Series Expansion": [[287, "series-expansion"]], "Series Expansions": [[228, null]], "Series Manipulation using Polynomials": [[218, null]], "Series expansion": [[110, "series-expansion"]], "Session": [[116, "module-sympy.interactive.session"]], "SetKind": [[229, "setkind"]], "Sets": [[65, "sets"], [229, null]], "Setting up Pretty Printing": [[296, "setting-up-pretty-printing"]], "Setup Development Environment": [[9, null]], "Setup GitHub": [[9, "setup-github"]], "Setup SSH Keys": [[9, "setup-ssh-keys"]], "Setup your development environment": [[7, "setup-your-development-environment"]], "Shape": [[293, "shape"]], "Shor\u2019s Algorithm": [[187, null]], "Silencing SymPy Deprecation Warnings": [[13, "silencing-sympy-deprecation-warnings"]], "Simple univariate polynomial factorization": [[220, "simple-univariate-polynomial-factorization"]], "Simplification": [[297, null]], "Simplification and equivalence-testing": [[118, "simplification-and-equivalence-testing"]], "Simplified remainder sequences": [[214, "simplified-remainder-sequences"]], "Simplify": [[232, null], [233, null]], "Simulate the Muscle-actuated Motion": [[299, "simulate-the-muscle-actuated-motion"]], "Single Dictionary": [[37, "single-dictionary"]], "Single Equals Sign": [[16, "single-equals-sign"]], "Singleton Sequences": [[227, "singleton-sequences"]], "Singleton Sets": [[229, "singleton-sets"]], "Singularities": [[67, "singularities"]], "Skipping Tests": [[12, "skipping-tests"]], "So Which Should I Use?": [[129, "so-which-should-i-use"]], "Solution": [[271, "solution"], [271, "id2"]], "Solve Equations": [[49, null]], "Solve Into a Solution Given as a Dictionary": [[56, "solve-into-a-solution-given-as-a-dictionary"]], "Solve One or a System of Equations Numerically": [[54, null]], "Solve Output by Type": [[37, null]], "Solve Results in a Set": [[56, "solve-results-in-a-set"]], "Solve a Diophantine Equation Algebraically": [[51, null]], "Solve a Matrix Equation": [[53, "solve-a-matrix-equation"]], "Solve a Matrix Equation Algebraically": [[53, null]], "Solve a System of Equations Algebraically": [[56, null]], "Solve a System of Equations Numerically": [[54, "solve-a-system-of-equations-numerically"]], "Solve a System of Linear Equations Algebraically": [[56, "solve-a-system-of-linear-equations-algebraically"]], "Solve a System of Nonlinear Equations Algebraically": [[56, "solve-a-system-of-nonlinear-equations-algebraically"]], "Solve an Equation Algebraically": [[52, null], [52, "id1"]], "Solve an Ordinary Differential Equation (ODE)": [[55, "solve-an-ordinary-differential-equation-ode"]], "Solve an Ordinary Differential Equation (ODE) Algebraically": [[55, null]], "Solve and Use Results in a Dictionary": [[56, "solve-and-use-results-in-a-dictionary"]], "Solvers": [[235, null], [239, null], [298, null]], "Solveset": [[240, null]], "Solveset Module Reference": [[240, "solveset-module-reference"]], "Solving Beam Bending Problems using Singularity Functions": [[137, null]], "Solving Differential Equations": [[298, "solving-differential-equations"]], "Solving Equations": [[209, "solving-equations"]], "Solving Equations Algebraically": [[298, "solving-equations-algebraically"]], "Solving Functions": [[52, "solving-functions"]], "Solving Guidance": [[57, null]], "Solving Several Matrix Equations With the Same Matrix": [[53, "solving-several-matrix-equations-with-the-same-matrix"]], "Solving Vector Equations": [[32, "solving-vector-equations"]], "Solving the Main Problems": [[216, "solving-the-main-problems"]], "Some Key Differences": [[30, "some-key-differences"]], "Some ODEs Cannot Be Solved Explicitly, Only Implicitly": [[55, "some-odes-cannot-be-solved-explicitly-only-implicitly"]], "Some traversal functions have been moved": [[13, "some-traversal-functions-have-been-moved"]], "Sorting": [[88, "sorting"]], "Source Code Inspection": [[263, null]], "Sparse Matrices": [[126, null]], "Sparse Tools": [[127, null]], "Sparse polynomial representation": [[211, "sparse-polynomial-representation"]], "Sparse polynomials": [[212, "sparse-polynomials"]], "Sparse rational functions": [[212, "sparse-rational-functions"]], "SparseMatrix Class Reference": [[126, "sparsematrix-class-reference"]], "Special": [[96, null]], "Special C math functions (sympy.codegen.cfunctions)": [[69, "module-sympy.codegen.cfunctions"]], "Special Functions": [[297, "special-functions"]], "Special Sets": [[229, "module-sympy.sets.fancysets"]], "Special Symbols": [[16, "special-symbols"]], "Special Types of Tests": [[12, "special-types-of-tests"]], "Special polynomials": [[217, "special-polynomials"]], "Specify Initial Conditions or Boundary Conditions": [[55, "specify-initial-conditions-or-boundary-conditions"], [55, "id1"]], "Specify the Order of Symbols in the Result": [[51, "specify-the-order-of-symbols-in-the-result"]], "Specifying Intervals for Variables": [[207, "specifying-intervals-for-variables"]], "Speed up Solving Matrix Equations": [[53, "speed-up-solving-matrix-equations"]], "Spelling and Punctuation": [[5, "spelling-and-punctuation"]], "Spherical Harmonics": [[96, "spherical-harmonics"]], "Spin": [[188, null]], "Sqrt is not a Function": [[16, "sqrt-is-not-a-function"]], "Square-free factorization": [[209, "square-free-factorization"]], "State": [[189, null]], "States and Operators": [[178, "states-and-operators"]], "Statistics": [[2, "statistics"]], "Stats": [[241, null]], "Step-Response Plot": [[142, "step-response-plot"]], "Stochastic Processes": [[241, "stochastic-processes"]], "StrPrinter": [[221, "module-sympy.printing.str"]], "Structure of Equations": [[25, "structure-of-equations"], [26, "structure-of-equations"]], "Style Preferences": [[5, "style-preferences"]], "Subgroups of Finite Index": [[70, "subgroups-of-finite-index"]], "Submodules": [[100, "submodules"]], "Subresultant sequence": [[214, "subresultant-sequence"]], "Subs/evalf": [[129, "subs-evalf"]], "Subset Convolution": [[91, "subset-convolution"]], "Subsets": [[83, null]], "Substitute Solutions From solve() Into an Expression": [[52, "substitute-solutions-from-solve-into-an-expression"]], "Substitute the Result Into an Expression": [[54, "substitute-the-result-into-an-expression"]], "Substitution": [[21, "substitution"], [32, "substitution"], [286, "substitution"]], "Sums and integrals": [[92, "sums-and-integrals"]], "Support for symbols in exponents": [[220, "support-for-symbols-in-exponents"]], "SymPy Can Reduce for Only One Symbol of Interest Per Inequality": [[50, "sympy-can-reduce-for-only-one-symbol-of-interest-per-inequality"]], "SymPy Codebase": [[7, "sympy-codebase"]], "SymPy Expression Reference": [[130, "module-sympy.parsing.sym_expr"]], "SymPy Features": [[288, null]], "SymPy Logo": [[45, null]], "SymPy Mechanics for Autolev Users": [[30, null]], "SymPy Special Topics": [[40, null]], "SymPy operations on Vectors": [[269, "sympy-operations-on-vectors"]], "Symbolic Boolean vs three valued bool": [[42, "symbolic-boolean-vs-three-valued-bool"]], "Symbolic Expressions": [[16, "symbolic-expressions"]], "Symbolic Systems in Physics/Mechanics": [[31, null]], "Symbolic and fuzzy booleans": [[42, null]], "Symbolic root-finding algorithms": [[217, "symbolic-root-finding-algorithms"]], "SymbolicSystem Example Usage": [[31, "symbolicsystem-example-usage"]], "Symbols": [[16, "symbols"], [289, "symbols"]], "System (Docstrings)": [[158, null]], "System in Physics/Mechanics": [[24, "system-in-physics-mechanics"]], "System of ODEs": [[237, "system-of-odes"]], "Systems of Equations With no Closed-Form Solution": [[56, "systems-of-equations-with-no-closed-form-solution"]], "Systems of Equations With no Solution": [[56, "systems-of-equations-with-no-solution"]], "Systems of Inequalities That Cannot Be Reduced Analytically": [[50, "systems-of-inequalities-that-cannot-be-reduced-analytically"]], "Systems of Inequalities Which Cannot Be Satisfied": [[50, "systems-of-inequalities-which-cannot-be-satisfied"]], "Systems of Polynomial Equations": [[239, "systems-of-polynomial-equations"]], "TODO and Bugs": [[115, "todo-and-bugs"]], "Table Lookups and Inverse Mellin Transforms": [[113, "table-lookups-and-inverse-mellin-transforms"]], "Tendon Force-Length": [[18, "tendon-force-length"]], "Tensor": [[244, null], [247, null]], "Tensor Canonicalization": [[84, null]], "Tensor Functions": [[96, "tensor-functions"]], "Tensor Operators": [[248, null]], "Tensor Product": [[190, null]], "Tensor.fun_eval and Tensor.__call__": [[13, "tensor-fun-eval-and-tensor-call"]], "TensorIndexType.data and related methods": [[13, "tensorindextype-data-and-related-methods"]], "TensorType": [[13, "tensortype"]], "Term Rewriting": [[222, null]], "Test Coverage": [[12, "test-coverage"]], "Test Deprecated Functionality": [[12, "test-deprecated-functionality"]], "Test Utilities": [[85, null]], "Testing": [[249, null]], "Testing Exceptions": [[12, "testing-exceptions"]], "Testing Expressions with Dummy": [[12, "testing-expressions-with-dummy"]], "Testing Policies": [[12, "testing-policies"]], "Testing Warnings": [[12, "testing-warnings"]], "Testing if polynomials have common zeros": [[220, "testing-if-polynomials-have-common-zeros"]], "Testing that Something is Unchanged": [[12, "testing-that-something-is-unchanged"]], "Testing-Only Dependencies": [[2, "testing-only-dependencies"]], "Tests Style Guide": [[12, "tests-style-guide"]], "The (old) assumptions system": [[41, "the-old-assumptions-system"]], "The Construction of Collector": [[78, "the-construction-of-collector"]], "The Construction of Finitely Presented Groups": [[70, "the-construction-of-finitely-presented-groups"]], "The Construction of Polycyclic Groups": [[78, "the-construction-of-polycyclic-groups"]], "The Del operator": [[272, "the-del-operator"]], "The Fully Evaluated Case": [[43, "the-fully-evaluated-case"]], "The Fully Symbolic Case": [[43, "the-fully-symbolic-case"]], "The G-Function Integration Theorems": [[113, "the-g-function-integration-theorems"]], "The Gruntz Algorithm": [[228, "the-gruntz-algorithm"]], "The Inverse Laplace Transform of a G-function": [[113, "the-inverse-laplace-transform-of-a-g-function"]], "The ManagedProperties metaclass": [[13, "the-managedproperties-metaclass"]], "The ModularInteger.to_int() method": [[13, "the-modularinteger-to-int-method"]], "The Power of Symbolic Computation": [[291, "the-power-of-symbolic-computation"]], "The Problem": [[271, "the-problem"], [271, "id1"]], "The Subfield Problem": [[216, "the-subfield-problem"]], "The check argument to HadamardProduct, MatAdd and MatMul": [[13, "the-check-argument-to-hadamardproduct-matadd-and-matmul"]], "The dummy_fmt argument to TensorIndexType": [[13, "the-dummy-fmt-argument-to-tensorindextype"]], "The evaluate flag to differentiate_finite": [[13, "the-evaluate-flag-to-differentiate-finite"]], "The get_kronecker_delta() and get_epsilon() methods of TensorIndexType": [[13, "the-get-kronecker-delta-and-get-epsilon-methods-of-tensorindextype"]], "The get_segments attribute of plotting objects": [[13, "the-get-segments-attribute-of-plotting-objects"]], "The is_EmptySet attribute of sets": [[13, "the-is-emptyset-attribute-of-sets"]], "The max_degree and get_upper_degree properties of sympy.polys.multivariate_resultants.DixonResultant": [[13, "the-max-degree-and-get-upper-degree-properties-of-sympy-polys-multivariate-resultants-dixonresultant"]], "The mdft function in sympy.physics.matrices": [[13, "the-mdft-function-in-sympy-physics-matrices"]], "The metric argument to TensorIndexType": [[13, "the-metric-argument-to-tensorindextype"]], "The need for a reference": [[196, "the-need-for-a-reference"]], "The print_cyclic flag of sympy.combinatorics.Permutation": [[13, "the-print-cyclic-flag-of-sympy-combinatorics-permutation"]], "The private SparseMatrix._smat and DenseMatrix._mat attributes": [[13, "the-private-sparsematrix-smat-and-densematrix-mat-attributes"]], "The purpose of deprecation": [[3, "the-purpose-of-deprecation"]], "The set_potential_energy method in sympy.physics.mechanics": [[13, "the-set-potential-energy-method-in-sympy-physics-mechanics"]], "The string fallback in sympify()": [[13, "the-string-fallback-in-sympify"]], "The sympy.core.compatibility submodule": [[13, "the-sympy-core-compatibility-submodule"]], "The tensorhead() function": [[13, "the-tensorhead-function"]], "The tensorsymmetry() function": [[13, "the-tensorsymmetry-function"]], "The unicode argument and attribute to sympy.printing.pretty.stringpict.prettyForm and the sympy.printing.pretty.pretty_symbology.xstr function": [[13, "the-unicode-argument-and-attribute-to-sympy-printing-pretty-stringpict-prettyform-and-the-sympy-printing-pretty-pretty-symbology-xstr-function"]], "Third product rule for Del operator": [[271, "third-product-rule-for-del-operator"]], "Three Dimensions and Beyond": [[100, "three-dimensions-and-beyond"]], "Three-valued logic with fuzzy bools": [[42, "three-valued-logic-with-fuzzy-bools"]], "Three-valued logic with symbolic Booleans": [[42, "three-valued-logic-with-symbolic-booleans"]], "Timing Utilities": [[264, null]], "Tone Preferences": [[5, "tone-preferences"]], "Tools for simplifying expressions using approximations (sympy.codegen.approximations)": [[69, "module-sympy.codegen.approximations"]], "Topics": [[276, "topics"], [283, null]], "Tradeoffs": [[48, "tradeoffs"]], "Transforming new system": [[270, "transforming-new-system"]], "Transforms": [[91, "module-sympy.discrete.transforms"]], "Traversal": [[88, "module-sympy.core.traversal"]], "Tree Printing": [[221, "module-sympy.printing.tree"]], "Tree representation": [[211, "tree-representation"]], "Triceps": [[299, "triceps"]], "Trigonometric": [[94, "trigonometric"]], "Trigonometric Functions": [[94, "trigonometric-functions"]], "Trigonometric Inverses": [[94, "trigonometric-inverses"]], "Trigonometric Simplification": [[297, "trigonometric-simplification"]], "Truss": [[139, "truss"]], "Truss (Docstrings)": [[140, null]], "Truth Setting Expressions": [[100, "truth-setting-expressions"]], "Truth tables and related functions": [[118, "truth-tables-and-related-functions"]], "Try to avoid backwards incompatible changes in the first place": [[3, "try-to-avoid-backwards-incompatible-changes-in-the-first-place"]], "Tuples": [[16, "tuples"]], "Tutorial": [[234, "tutorial"]], "Tutorials": [[58, "tutorials"], [285, null]], "Two Final Notes: ^ and /": [[289, "two-final-notes-and"]], "Types of Documentation": [[5, "types-of-documentation"]], "Understanding Expression Trees": [[292, "understanding-expression-trees"]], "Undocumented": [[214, "undocumented"]], "Unicode Pretty Printer": [[296, "unicode-pretty-printer"]], "Unifying domains": [[211, "unifying-domains"]], "Unit Systems": [[195, null]], "Unit prefixes": [[197, null]], "Units": [[196, "units"]], "Units and unit systems": [[199, null]], "Univariate GCD, resultant and factorization": [[220, "univariate-gcd-resultant-and-factorization"]], "Univariate factoring over Gaussian numbers": [[220, "univariate-factoring-over-gaussian-numbers"]], "Univariate factoring over various domains": [[220, "univariate-factoring-over-various-domains"]], "Updating Existing Tests": [[12, "updating-existing-tests"]], "Usage": [[22, "usage"]], "Use Exact Values": [[57, "use-exact-values"]], "Use a Solution Given as a Dictionary": [[56, "use-a-solution-given-as-a-dictionary"]], "Use the Result": [[50, "use-the-result"]], "Use the Solution Result": [[48, "use-the-solution-result"], [51, "use-the-solution-result"], [52, "use-the-solution-result"], [53, "use-the-solution-result"], [54, "use-the-solution-result"], [55, "use-the-solution-result"]], "Use the Solution as a Vector": [[53, "use-the-solution-as-a-vector"]], "User Functions": [[234, "user-functions"], [237, "user-functions"], [238, "user-functions"]], "Uses and Current limitations": [[112, null]], "Using Custom Color Functions": [[207, "using-custom-color-functions"]], "Using Orienter(s) and the orient_new method": [[270, "using-orienter-s-and-the-orient-new-method"]], "Using Vectors and Reference Frames": [[36, "using-vectors-and-reference-frames"]], "Using a method of CoordSys3D directly": [[270, "using-a-method-of-coordsys3d-directly"]], "Using a set for the condition in ConditionSet": [[13, "using-a-set-for-the-condition-in-conditionset"]], "Using energy functions in Mechanics": [[28, "using-energy-functions-in-mechanics"]], "Using integrate with Poly": [[13, "using-integrate-with-poly"]], "Using momenta functions in Mechanics": [[28, "using-momenta-functions-in-mechanics"]], "Using the Interactive Interface": [[207, "using-the-interactive-interface"]], "Using the nodes": [[69, "using-the-nodes"]], "Utilities": [[86, null], [164, null], [216, "utilities"], [258, null], [276, "utilities"], [284, null]], "Utils": [[105, null]], "Variables": [[16, "variables"]], "Variables Assignment does not Create a Relation Between Expressions": [[16, "variables-assignment-does-not-create-a-relation-between-expressions"]], "Various sympy.utilities submodules have moved": [[13, "various-sympy-utilities-submodules-have-moved"]], "Vector": [[23, "vector"], [34, null], [36, "vector"], [151, "vector"], [273, null]], "Vector & ReferenceFrame": [[36, null]], "Vector API": [[266, null]], "Vector Algebra": [[36, "vector-algebra"]], "Vector Algebra, in physics.vector": [[36, "vector-algebra-in-physics-vector"]], "Vector Calculus": [[36, "vector-calculus"]], "Vector Calculus, in physics.vector": [[36, "vector-calculus-in-physics-vector"]], "Vector Operations": [[36, "vector-operations"]], "Vector: Kinematics": [[35, null]], "Vectors and Dyadics": [[270, "vectors-and-dyadics"]], "Vectors and Scalars": [[33, "vectors-and-scalars"], [274, "vectors-and-scalars"]], "Verify a Solution": [[51, "verify-a-solution"]], "Verifying Divergence Theorem": [[275, "verifying-divergence-theorem"]], "Verifying Stoke\u2019s Theorem": [[275, "verifying-stoke-s-theorem"]], "Versine": [[43, "versine"]], "Version 1.10": [[13, "version-1-10"]], "Version 1.11": [[13, "version-1-11"]], "Version 1.12": [[13, "version-1-12"]], "Version 1.13": [[13, "version-1-13"]], "Version 1.14": [[13, "version-1-14"]], "Version 1.4": [[13, "version-1-4"]], "Version 1.5": [[13, "version-1-5"]], "Version 1.6": [[13, "version-1-6"]], "Version 1.7": [[13, "version-1-7"]], "Version 1.7.1": [[13, "version-1-7-1"]], "Version 1.8": [[13, "version-1-8"]], "Version 1.9": [[13, "version-1-9"]], "View the Docs": [[8, "view-the-docs"]], "Virtual Environment Setup": [[9, "virtual-environment-setup"]], "Walking the Tree": [[292, "walking-the-tree"]], "Waves": [[165, null]], "Welcome to SymPy\u2019s documentation!": [[58, null]], "What are the domains?": [[211, "what-are-the-domains"]], "What are the general methods employed by solveset to solve an equation?": [[240, "what-are-the-general-methods-employed-by-solveset-to-solve-an-equation"]], "What is Symbolic Computation?": [[291, "what-is-symbolic-computation"]], "What is a deprecation?": [[3, "what-is-a-deprecation"]], "What is domainmatrix?": [[210, "what-is-domainmatrix"]], "What is the plan for solve and solveset?": [[240, "what-is-the-plan-for-solve-and-solveset"]], "What is this domain argument about?": [[240, "what-is-this-domain-argument-about"]], "What\u2019s Next": [[294, null]], "What\u2019s with the new_method kwarg?": [[27, null]], "What\u2019s wrong with solve():": [[240, "what-s-wrong-with-solve"]], "When You Might Prefer a Numeric Solution": [[57, "when-you-might-prefer-a-numeric-solution"]], "When does a change require deprecation?": [[3, "when-does-a-change-require-deprecation"]], "When it is not technically possible to deprecate": [[3, "when-it-is-not-technically-possible-to-deprecate"]], "When the integral exists": [[113, "when-the-integral-exists"]], "When this computation is valid": [[113, "when-this-computation-is-valid"]], "Which Method is Responsible for Printing?": [[221, "which-method-is-responsible-for-printing"]], "Why Solveset?": [[240, "why-solveset"]], "Why SymPy?": [[291, "why-sympy"]], "Why do we use Sets as an output type?": [[240, "why-do-we-use-sets-as-an-output-type"]], "Wigner Symbols": [[206, null]], "Windows 10": [[8, "windows-10"]], "Work With Arbitrary Constants": [[55, "work-with-arbitrary-constants"]], "Work With Parameters": [[51, "work-with-parameters"]], "Work With Symbolic Matrices": [[53, "work-with-symbolic-matrices"]], "Working with expressions as polynomials": [[220, "working-with-expressions-as-polynomials"]], "Wrapping Geometries": [[18, "wrapping-geometries"]], "Wrapping Geometry (Docstrings)": [[159, null]], "Writing Custom Functions": [[43, null]], "Writing Tests": [[12, null]], "Writing Tests with External Dependencies": [[12, "writing-tests-with-external-dependencies"]], "Writing commit messages": [[11, "writing-commit-messages"]], "Writing pull request title and description": [[11, "writing-pull-request-title-and-description"]], "ZZ": [[212, "zz"]], "ZZ_I": [[212, "zz-i"]], "Zero Testing": [[293, "zero-testing"]], "Zeroth-Order": [[18, "zeroth-order"]], "\\mathrm{\\LaTeX}": [[296, "mathrm-latex"]], "\\mathrm{\\LaTeX} Parsing Exceptions Reference": [[130, "mathrm-latex-parsing-exceptions-reference"]], "\\mathrm{\\LaTeX} Parsing Functions Reference": [[130, "mathrm-latex-parsing-functions-reference"]], "abc": [[60, null]], "add": [[88, "module-sympy.core.add"]], "apart": [[297, "apart"]], "args": [[292, "args"]], "as_real_imag()": [[43, "as-real-imag"]], "assumptions": [[88, "module-sympy.core.assumptions"]], "basic": [[88, "module-sympy.core.basic"]], "cache": [[88, "module-sympy.core.cache"]], "cancel": [[297, "cancel"]], "class": [[38, "class"]], "collect": [[297, "collect"]], "combsimp": [[297, "combsimp"]], "containers": [[88, "module-sympy.core.containers"]], "divides": [[43, "divides"]], "doit()": [[43, "doit"]], "dotprint": [[221, "dotprint"]], "dynamicsymbols": [[32, "dynamicsymbols"]], "evalf": [[88, "module-sympy.core.evalf"], [286, "evalf"]], "expand": [[297, "expand"]], "expand()": [[43, "expand"]], "expand_func": [[297, "expand-func"]], "expand_log": [[297, "expand-log"]], "expand_power_exp / expand_power_base": [[297, "expand-power-exp-expand-power-base"]], "expand_trig": [[297, "expand-trig"]], "expr": [[88, "module-sympy.core.expr"]], "expr_free_symbols": [[13, "expr-free-symbols"]], "exprtools": [[88, "module-sympy.core.exprtools"]], "factor": [[297, "factor"]], "func": [[38, "func"], [292, "func"]], "function": [[88, "module-sympy.core.function"]], "gammasimp": [[297, "gammasimp"]], "help()": [[16, "help"]], "hyperexpand": [[297, "hyperexpand"]], "intfunc": [[88, "module-sympy.core.intfunc"]], "inverse()": [[43, "inverse"]], "kind": [[38, "kind"], [88, "module-sympy.core.kind"]], "kinematic_equations": [[204, "module-sympy.physics.vector.functions"]], "lambdify": [[2, "lambdify"], [286, "lambdify"]], "laplace_transform of a Matrix with noconds=False": [[13, "laplace-transform-of-a-matrix-with-noconds-false"]], "logcombine": [[297, "logcombine"]], "lti": [[144, "module-sympy.physics.control.lti"]], "mechanics_printing": [[157, "mechanics-printing"]], "mlatex": [[157, "mlatex"]], "mod": [[88, "module-sympy.core.mod"]], "mpmath": [[59, "mpmath"]], "mpprint": [[157, "mpprint"]], "mprint": [[157, "mprint"]], "mul": [[88, "module-sympy.core.mul"]], "multidimensional": [[88, "module-sympy.core.multidimensional"]], "nroots": [[48, "nroots"]], "numbers": [[88, "module-sympy.core.numbers"]], "p-adic Valuation": [[216, "p-adic-valuation"]], "partitions": [[259, "partitions"]], "powdenest": [[297, "powdenest"]], "power": [[88, "module-sympy.core.power"]], "powsimp": [[297, "powsimp"]], "pytest": [[250, null]], "real_roots": [[48, "real-roots"]], "relational": [[88, "module-sympy.core.relational"]], "rewrite": [[297, "rewrite"]], "rewrite()": [[43, "rewrite"]], "roots": [[48, "roots"]], "rs_series": [[218, "rs-series"]], "sets and assumptions": [[38, "sets-and-assumptions"]], "simplify": [[297, "simplify"]], "singleton": [[88, "module-sympy.core.singleton"]], "solveset() Solution Sets Cannot Necessarily Be Interrogated Programmatically": [[52, "solveset-solution-sets-cannot-necessarily-be-interrogated-programmatically"]], "srepr": [[221, "module-sympy.printing.repr"], [296, "srepr"]], "str": [[296, "str"]], "symbol": [[88, "module-sympy.core.symbol"]], "sympify": [[88, "module-sympy.core.sympify"]], "sympy.assumptions.handlers.AskHandler and related methods": [[13, "sympy-assumptions-handlers-askhandler-and-related-methods"]], "sympy.core.trace": [[13, "sympy-core-trace"]], "sympy.polys.solvers.RawMatrix": [[13, "sympy-polys-solvers-rawmatrix"]], "sympy.printing.theanocode": [[13, "sympy-printing-theanocode"]], "sympy.stats.DiscreteMarkovChain.absorbing_probabilites()": [[13, "sympy-stats-discretemarkovchain-absorbing-probabilites"]], "sympy.stats.sample(numsamples=n)": [[13, "sympy-stats-sample-numsamples-n"]], "sympy.testing.randtest": [[13, "sympy-testing-randtest"]], "sympy.utilities.misc.find_executable()": [[13, "sympy-utilities-misc-find-executable"]], "transolve": [[240, "transolve"]], "trigsimp": [[297, "trigsimp"]], "uFuncify": [[129, "ufuncify"]], "variations": [[259, "variations"]]}, "docnames": ["citing", "contributing/debug", "contributing/dependencies", "contributing/deprecations", "contributing/docstring", "contributing/documentation-style-guide", "contributing/index", "contributing/introduction-to-contributing", "contributing/new-contributors-guide/build-docs", "contributing/new-contributors-guide/dev-setup", "contributing/new-contributors-guide/index", "contributing/new-contributors-guide/workflow-process", "contributing/new-contributors-guide/writing-tests", "explanation/active-deprecations", "explanation/best-practices", "explanation/glossary", "explanation/gotchas", "explanation/index", "explanation/modules/physics/biomechanics/biomechanics", "explanation/modules/physics/biomechanics/index", "explanation/modules/physics/index", "explanation/modules/physics/mechanics/advanced", "explanation/modules/physics/mechanics/autolev_parser", "explanation/modules/physics/mechanics/index", "explanation/modules/physics/mechanics/joints", "explanation/modules/physics/mechanics/kane", "explanation/modules/physics/mechanics/lagrange", "explanation/modules/physics/mechanics/linearize", "explanation/modules/physics/mechanics/masses", "explanation/modules/physics/mechanics/reference", "explanation/modules/physics/mechanics/sympy_mechanics_for_autolev_users", "explanation/modules/physics/mechanics/symsystem", "explanation/modules/physics/vector/advanced", "explanation/modules/physics/vector/fields", "explanation/modules/physics/vector/index", "explanation/modules/physics/vector/kinematics/kinematics", "explanation/modules/physics/vector/vectors/vectors", "explanation/solve_output", "explanation/special_topics/classification", "explanation/special_topics/finite_diff_derivatives", "explanation/special_topics/index", "guides/assumptions", "guides/booleans", "guides/custom-functions", "guides/index", "guides/logo", "guides/physics/control_problems", "guides/physics/index", "guides/solving/find-roots-polynomial", "guides/solving/index", "guides/solving/reduce-inequalities-algebraically", "guides/solving/solve-diophantine-equation", "guides/solving/solve-equation-algebraically", "guides/solving/solve-matrix-equation", "guides/solving/solve-numerically", "guides/solving/solve-ode", "guides/solving/solve-system-of-equations-algebraically", "guides/solving/solving-guidance", "index", "install", "modules/abc", "modules/algebras", "modules/assumptions/ask", "modules/assumptions/assume", "modules/assumptions/index", "modules/assumptions/predicates", "modules/assumptions/refine", "modules/calculus/index", "modules/categories", "modules/codegen", "modules/combinatorics/fp_groups", "modules/combinatorics/galois", "modules/combinatorics/graycode", "modules/combinatorics/group_constructs", "modules/combinatorics/group_numbers", "modules/combinatorics/index", "modules/combinatorics/named_groups", "modules/combinatorics/partitions", "modules/combinatorics/pc_groups", "modules/combinatorics/perm_groups", "modules/combinatorics/permutations", "modules/combinatorics/polyhedron", "modules/combinatorics/prufer", "modules/combinatorics/subsets", "modules/combinatorics/tensor_can", "modules/combinatorics/testutil", "modules/combinatorics/util", "modules/concrete", "modules/core", "modules/crypto", "modules/diffgeom", "modules/discrete", "modules/evalf", "modules/functions/combinatorial", "modules/functions/elementary", "modules/functions/index", "modules/functions/special", "modules/geometry/curves", "modules/geometry/ellipses", "modules/geometry/entities", "modules/geometry/index", "modules/geometry/lines", "modules/geometry/plane", "modules/geometry/points", "modules/geometry/polygons", "modules/geometry/utils", "modules/holonomic/about", "modules/holonomic/convert", "modules/holonomic/index", "modules/holonomic/internal", "modules/holonomic/operations", "modules/holonomic/represent", "modules/holonomic/uses", "modules/integrals/g-functions", "modules/integrals/index", "modules/integrals/integrals", "modules/interactive", "modules/liealgebras/index", "modules/logic", "modules/matrices/dense", "modules/matrices/expressions", "modules/matrices/immutablematrices", "modules/matrices/index", "modules/matrices/kind", "modules/matrices/matrices", "modules/matrices/normalforms", "modules/matrices/sparse", "modules/matrices/sparsetools", "modules/ntheory", "modules/numeric-computation", "modules/parsing", "modules/physics/biomechanics/api/activation", "modules/physics/biomechanics/api/curve", "modules/physics/biomechanics/api/index", "modules/physics/biomechanics/api/musculotendon", "modules/physics/continuum_mechanics/arches", "modules/physics/continuum_mechanics/beam", "modules/physics/continuum_mechanics/beam_problems", "modules/physics/continuum_mechanics/cable", "modules/physics/continuum_mechanics/index", "modules/physics/continuum_mechanics/truss", "modules/physics/control/control", "modules/physics/control/control_plots", "modules/physics/control/index", "modules/physics/control/lti", "modules/physics/hep/index", "modules/physics/hydrogen", "modules/physics/matrices", "modules/physics/mechanics/api/actuator", "modules/physics/mechanics/api/deprecated_classes", "modules/physics/mechanics/api/expr_manip", "modules/physics/mechanics/api/index", "modules/physics/mechanics/api/joint", "modules/physics/mechanics/api/kane_lagrange", "modules/physics/mechanics/api/linearize", "modules/physics/mechanics/api/part_bod", "modules/physics/mechanics/api/pathway", "modules/physics/mechanics/api/printing", "modules/physics/mechanics/api/system", "modules/physics/mechanics/api/wrapping_geometry", "modules/physics/optics/gaussopt", "modules/physics/optics/index", "modules/physics/optics/medium", "modules/physics/optics/polarization", "modules/physics/optics/utils", "modules/physics/optics/waves", "modules/physics/paulialgebra", "modules/physics/qho_1d", "modules/physics/quantum/anticommutator", "modules/physics/quantum/cartesian", "modules/physics/quantum/cg", "modules/physics/quantum/circuitplot", "modules/physics/quantum/commutator", "modules/physics/quantum/constants", "modules/physics/quantum/dagger", "modules/physics/quantum/gate", "modules/physics/quantum/grover", "modules/physics/quantum/hilbert", "modules/physics/quantum/index", "modules/physics/quantum/innerproduct", "modules/physics/quantum/operator", "modules/physics/quantum/operatorset", "modules/physics/quantum/piab", "modules/physics/quantum/qapply", "modules/physics/quantum/qft", "modules/physics/quantum/qubit", "modules/physics/quantum/represent", "modules/physics/quantum/shor", "modules/physics/quantum/spin", "modules/physics/quantum/state", "modules/physics/quantum/tensorproduct", "modules/physics/secondquant", "modules/physics/sho", "modules/physics/units/dimensions", "modules/physics/units/examples", "modules/physics/units/index", "modules/physics/units/philosophy", "modules/physics/units/prefixes", "modules/physics/units/quantities", "modules/physics/units/unitsystem", "modules/physics/vector/api/classes", "modules/physics/vector/api/fieldfunctions", "modules/physics/vector/api/functions", "modules/physics/vector/api/index", "modules/physics/vector/api/kinematics", "modules/physics/vector/api/printing", "modules/physics/wigner", "modules/plotting", "modules/polys/agca", "modules/polys/basics", "modules/polys/domainmatrix", "modules/polys/domainsintro", "modules/polys/domainsref", "modules/polys/index", "modules/polys/internals", "modules/polys/literature", "modules/polys/numberfields", "modules/polys/reference", "modules/polys/ringseries", "modules/polys/solvers", "modules/polys/wester", "modules/printing", "modules/rewriting", "modules/series/formal", "modules/series/fourier", "modules/series/index", "modules/series/limitseq", "modules/series/sequences", "modules/series/series", "modules/sets", "modules/simplify/fu", "modules/simplify/hyperexpand", "modules/simplify/index", "modules/simplify/simplify", "modules/solvers/diophantine", "modules/solvers/index", "modules/solvers/inequalities", "modules/solvers/ode", "modules/solvers/pde", "modules/solvers/solvers", "modules/solvers/solveset", "modules/stats", "modules/tensor/array", "modules/tensor/array_expressions", "modules/tensor/index", "modules/tensor/index_methods", "modules/tensor/indexed", "modules/tensor/tensor", "modules/tensor/toperators", "modules/testing/index", "modules/testing/pytest", "modules/testing/randtest", "modules/testing/runtests", "modules/utilities/autowrap", "modules/utilities/codegen", "modules/utilities/decorator", "modules/utilities/enumerative", "modules/utilities/exceptions", "modules/utilities/index", "modules/utilities/iterables", "modules/utilities/lambdify", "modules/utilities/memoization", "modules/utilities/misc", "modules/utilities/source", "modules/utilities/timeutils", "modules/vector/api/classes", "modules/vector/api/index", "modules/vector/api/orienterclasses", "modules/vector/api/vectorfunctions", "modules/vector/basics", "modules/vector/coordsys", "modules/vector/examples", "modules/vector/fields", "modules/vector/index", "modules/vector/intro", "modules/vector/vector_integration", "reference/index", "reference/public/basics/index", "reference/public/codegeneration/index", "reference/public/logic/index", "reference/public/matrices/index", "reference/public/numbertheory/index", "reference/public/physics/index", "reference/public/topics/index", "reference/public/utilities/index", "tutorials/index", "tutorials/intro-tutorial/basic_operations", "tutorials/intro-tutorial/calculus", "tutorials/intro-tutorial/features", "tutorials/intro-tutorial/gotchas", "tutorials/intro-tutorial/index", "tutorials/intro-tutorial/intro", "tutorials/intro-tutorial/manipulation", "tutorials/intro-tutorial/matrices", "tutorials/intro-tutorial/next", "tutorials/intro-tutorial/preliminaries", "tutorials/intro-tutorial/printing", "tutorials/intro-tutorial/simplification", "tutorials/intro-tutorial/solvers", "tutorials/physics/biomechanics/biomechanical-model-example", "tutorials/physics/biomechanics/index", "tutorials/physics/index", "tutorials/physics/mechanics/bicycle_example", "tutorials/physics/mechanics/duffing-example", "tutorials/physics/mechanics/four_bar_linkage_example", "tutorials/physics/mechanics/index", "tutorials/physics/mechanics/lin_pend_nonmin_example", "tutorials/physics/mechanics/multi_degree_freedom_holonomic_system", "tutorials/physics/mechanics/rollingdisc_example", "tutorials/physics/mechanics/rollingdisc_example_kane", "tutorials/physics/mechanics/rollingdisc_example_kane_constraints", "tutorials/physics/mechanics/rollingdisc_example_lagrange"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1}, "filenames": ["citing.md", "contributing/debug.rst", "contributing/dependencies.md", "contributing/deprecations.md", "contributing/docstring.rst", "contributing/documentation-style-guide.rst", "contributing/index.md", "contributing/introduction-to-contributing.md", "contributing/new-contributors-guide/build-docs.rst", "contributing/new-contributors-guide/dev-setup.md", "contributing/new-contributors-guide/index.md", "contributing/new-contributors-guide/workflow-process.md", "contributing/new-contributors-guide/writing-tests.md", "explanation/active-deprecations.md", "explanation/best-practices.md", "explanation/glossary.md", "explanation/gotchas.rst", "explanation/index.rst", "explanation/modules/physics/biomechanics/biomechanics.rst", "explanation/modules/physics/biomechanics/index.rst", "explanation/modules/physics/index.rst", "explanation/modules/physics/mechanics/advanced.rst", "explanation/modules/physics/mechanics/autolev_parser.rst", "explanation/modules/physics/mechanics/index.rst", "explanation/modules/physics/mechanics/joints.rst", "explanation/modules/physics/mechanics/kane.rst", "explanation/modules/physics/mechanics/lagrange.rst", "explanation/modules/physics/mechanics/linearize.rst", "explanation/modules/physics/mechanics/masses.rst", "explanation/modules/physics/mechanics/reference.rst", "explanation/modules/physics/mechanics/sympy_mechanics_for_autolev_users.rst", "explanation/modules/physics/mechanics/symsystem.rst", "explanation/modules/physics/vector/advanced.rst", "explanation/modules/physics/vector/fields.rst", "explanation/modules/physics/vector/index.rst", "explanation/modules/physics/vector/kinematics/kinematics.rst", "explanation/modules/physics/vector/vectors/vectors.rst", "explanation/solve_output.rst", "explanation/special_topics/classification.rst", "explanation/special_topics/finite_diff_derivatives.rst", "explanation/special_topics/index.rst", "guides/assumptions.rst", "guides/booleans.rst", "guides/custom-functions.md", "guides/index.rst", "guides/logo.rst", "guides/physics/control_problems.rst", "guides/physics/index.rst", "guides/solving/find-roots-polynomial.md", "guides/solving/index.md", "guides/solving/reduce-inequalities-algebraically.md", "guides/solving/solve-diophantine-equation.md", "guides/solving/solve-equation-algebraically.md", "guides/solving/solve-matrix-equation.md", "guides/solving/solve-numerically.md", "guides/solving/solve-ode.md", "guides/solving/solve-system-of-equations-algebraically.md", "guides/solving/solving-guidance.md", "index.rst", "install.md", "modules/abc.rst", "modules/algebras.rst", "modules/assumptions/ask.rst", "modules/assumptions/assume.rst", "modules/assumptions/index.rst", "modules/assumptions/predicates.rst", "modules/assumptions/refine.rst", "modules/calculus/index.rst", "modules/categories.rst", "modules/codegen.rst", "modules/combinatorics/fp_groups.rst", "modules/combinatorics/galois.rst", "modules/combinatorics/graycode.rst", "modules/combinatorics/group_constructs.rst", "modules/combinatorics/group_numbers.rst", "modules/combinatorics/index.rst", "modules/combinatorics/named_groups.rst", "modules/combinatorics/partitions.rst", "modules/combinatorics/pc_groups.rst", "modules/combinatorics/perm_groups.rst", "modules/combinatorics/permutations.rst", "modules/combinatorics/polyhedron.rst", "modules/combinatorics/prufer.rst", "modules/combinatorics/subsets.rst", "modules/combinatorics/tensor_can.rst", "modules/combinatorics/testutil.rst", "modules/combinatorics/util.rst", "modules/concrete.rst", "modules/core.rst", "modules/crypto.rst", "modules/diffgeom.rst", "modules/discrete.rst", "modules/evalf.rst", "modules/functions/combinatorial.rst", "modules/functions/elementary.rst", "modules/functions/index.rst", "modules/functions/special.rst", "modules/geometry/curves.rst", "modules/geometry/ellipses.rst", "modules/geometry/entities.rst", "modules/geometry/index.rst", "modules/geometry/lines.rst", "modules/geometry/plane.rst", "modules/geometry/points.rst", "modules/geometry/polygons.rst", "modules/geometry/utils.rst", "modules/holonomic/about.rst", "modules/holonomic/convert.rst", "modules/holonomic/index.rst", "modules/holonomic/internal.rst", "modules/holonomic/operations.rst", "modules/holonomic/represent.rst", "modules/holonomic/uses.rst", "modules/integrals/g-functions.rst", "modules/integrals/index.rst", "modules/integrals/integrals.rst", "modules/interactive.rst", "modules/liealgebras/index.rst", "modules/logic.rst", "modules/matrices/dense.rst", "modules/matrices/expressions.rst", "modules/matrices/immutablematrices.rst", "modules/matrices/index.rst", "modules/matrices/kind.rst", "modules/matrices/matrices.rst", "modules/matrices/normalforms.rst", "modules/matrices/sparse.rst", "modules/matrices/sparsetools.rst", "modules/ntheory.rst", "modules/numeric-computation.rst", "modules/parsing.rst", "modules/physics/biomechanics/api/activation.rst", "modules/physics/biomechanics/api/curve.rst", "modules/physics/biomechanics/api/index.rst", "modules/physics/biomechanics/api/musculotendon.rst", "modules/physics/continuum_mechanics/arches.rst", "modules/physics/continuum_mechanics/beam.rst", "modules/physics/continuum_mechanics/beam_problems.rst", "modules/physics/continuum_mechanics/cable.rst", "modules/physics/continuum_mechanics/index.rst", "modules/physics/continuum_mechanics/truss.rst", "modules/physics/control/control.rst", "modules/physics/control/control_plots.rst", "modules/physics/control/index.rst", "modules/physics/control/lti.rst", "modules/physics/hep/index.rst", "modules/physics/hydrogen.rst", "modules/physics/matrices.rst", "modules/physics/mechanics/api/actuator.rst", "modules/physics/mechanics/api/deprecated_classes.rst", "modules/physics/mechanics/api/expr_manip.rst", "modules/physics/mechanics/api/index.rst", "modules/physics/mechanics/api/joint.rst", "modules/physics/mechanics/api/kane_lagrange.rst", "modules/physics/mechanics/api/linearize.rst", "modules/physics/mechanics/api/part_bod.rst", "modules/physics/mechanics/api/pathway.rst", "modules/physics/mechanics/api/printing.rst", "modules/physics/mechanics/api/system.rst", "modules/physics/mechanics/api/wrapping_geometry.rst", "modules/physics/optics/gaussopt.rst", "modules/physics/optics/index.rst", "modules/physics/optics/medium.rst", "modules/physics/optics/polarization.rst", "modules/physics/optics/utils.rst", "modules/physics/optics/waves.rst", "modules/physics/paulialgebra.rst", "modules/physics/qho_1d.rst", "modules/physics/quantum/anticommutator.rst", "modules/physics/quantum/cartesian.rst", "modules/physics/quantum/cg.rst", "modules/physics/quantum/circuitplot.rst", "modules/physics/quantum/commutator.rst", "modules/physics/quantum/constants.rst", "modules/physics/quantum/dagger.rst", "modules/physics/quantum/gate.rst", "modules/physics/quantum/grover.rst", "modules/physics/quantum/hilbert.rst", "modules/physics/quantum/index.rst", "modules/physics/quantum/innerproduct.rst", "modules/physics/quantum/operator.rst", "modules/physics/quantum/operatorset.rst", "modules/physics/quantum/piab.rst", "modules/physics/quantum/qapply.rst", "modules/physics/quantum/qft.rst", "modules/physics/quantum/qubit.rst", "modules/physics/quantum/represent.rst", "modules/physics/quantum/shor.rst", "modules/physics/quantum/spin.rst", "modules/physics/quantum/state.rst", "modules/physics/quantum/tensorproduct.rst", "modules/physics/secondquant.rst", "modules/physics/sho.rst", "modules/physics/units/dimensions.rst", "modules/physics/units/examples.rst", "modules/physics/units/index.rst", "modules/physics/units/philosophy.rst", "modules/physics/units/prefixes.rst", "modules/physics/units/quantities.rst", "modules/physics/units/unitsystem.rst", "modules/physics/vector/api/classes.rst", "modules/physics/vector/api/fieldfunctions.rst", "modules/physics/vector/api/functions.rst", "modules/physics/vector/api/index.rst", "modules/physics/vector/api/kinematics.rst", "modules/physics/vector/api/printing.rst", "modules/physics/wigner.rst", "modules/plotting.rst", "modules/polys/agca.rst", "modules/polys/basics.rst", "modules/polys/domainmatrix.rst", "modules/polys/domainsintro.rst", "modules/polys/domainsref.rst", "modules/polys/index.rst", "modules/polys/internals.rst", "modules/polys/literature.rst", "modules/polys/numberfields.rst", "modules/polys/reference.rst", "modules/polys/ringseries.rst", "modules/polys/solvers.rst", "modules/polys/wester.rst", "modules/printing.rst", "modules/rewriting.rst", "modules/series/formal.rst", "modules/series/fourier.rst", "modules/series/index.rst", "modules/series/limitseq.rst", "modules/series/sequences.rst", "modules/series/series.rst", "modules/sets.rst", "modules/simplify/fu.rst", "modules/simplify/hyperexpand.rst", "modules/simplify/index.rst", "modules/simplify/simplify.rst", "modules/solvers/diophantine.rst", "modules/solvers/index.rst", "modules/solvers/inequalities.rst", "modules/solvers/ode.rst", "modules/solvers/pde.rst", "modules/solvers/solvers.rst", "modules/solvers/solveset.rst", "modules/stats.rst", "modules/tensor/array.rst", "modules/tensor/array_expressions.rst", "modules/tensor/index.rst", "modules/tensor/index_methods.rst", "modules/tensor/indexed.rst", "modules/tensor/tensor.rst", "modules/tensor/toperators.rst", "modules/testing/index.rst", "modules/testing/pytest.rst", "modules/testing/randtest.rst", "modules/testing/runtests.rst", "modules/utilities/autowrap.rst", "modules/utilities/codegen.rst", "modules/utilities/decorator.rst", "modules/utilities/enumerative.rst", "modules/utilities/exceptions.rst", "modules/utilities/index.rst", "modules/utilities/iterables.rst", "modules/utilities/lambdify.rst", "modules/utilities/memoization.rst", "modules/utilities/misc.rst", "modules/utilities/source.rst", "modules/utilities/timeutils.rst", "modules/vector/api/classes.rst", "modules/vector/api/index.rst", "modules/vector/api/orienterclasses.rst", "modules/vector/api/vectorfunctions.rst", "modules/vector/basics.rst", "modules/vector/coordsys.rst", "modules/vector/examples.rst", "modules/vector/fields.rst", "modules/vector/index.rst", "modules/vector/intro.rst", "modules/vector/vector_integration.rst", "reference/index.rst", "reference/public/basics/index.rst", "reference/public/codegeneration/index.rst", "reference/public/logic/index.rst", "reference/public/matrices/index.rst", "reference/public/numbertheory/index.rst", "reference/public/physics/index.rst", "reference/public/topics/index.rst", "reference/public/utilities/index.rst", "tutorials/index.rst", "tutorials/intro-tutorial/basic_operations.rst", "tutorials/intro-tutorial/calculus.rst", "tutorials/intro-tutorial/features.rst", "tutorials/intro-tutorial/gotchas.rst", "tutorials/intro-tutorial/index.rst", "tutorials/intro-tutorial/intro.rst", "tutorials/intro-tutorial/manipulation.rst", "tutorials/intro-tutorial/matrices.rst", "tutorials/intro-tutorial/next.rst", "tutorials/intro-tutorial/preliminaries.rst", "tutorials/intro-tutorial/printing.rst", "tutorials/intro-tutorial/simplification.rst", "tutorials/intro-tutorial/solvers.rst", "tutorials/physics/biomechanics/biomechanical-model-example.rst", "tutorials/physics/biomechanics/index.rst", "tutorials/physics/index.rst", "tutorials/physics/mechanics/bicycle_example.rst", "tutorials/physics/mechanics/duffing-example.rst", "tutorials/physics/mechanics/four_bar_linkage_example.rst", "tutorials/physics/mechanics/index.rst", "tutorials/physics/mechanics/lin_pend_nonmin_example.rst", "tutorials/physics/mechanics/multi_degree_freedom_holonomic_system.rst", "tutorials/physics/mechanics/rollingdisc_example.rst", "tutorials/physics/mechanics/rollingdisc_example_kane.rst", "tutorials/physics/mechanics/rollingdisc_example_kane_constraints.rst", "tutorials/physics/mechanics/rollingdisc_example_lagrange.rst"], "indexentries": {"__abs__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__abs__", false]], "__add__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__add__", false]], "__add__() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.__add__", false]], "__add__() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.__add__", false]], "__cacheit() (in module sympy.core.cache)": [[88, "sympy.core.cache.__cacheit", false]], "__call__() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.__call__", false]], "__contains__() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.__contains__", false]], "__getitem__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__getitem__", false]], "__init__() (sympy.physics.mechanics.linearize.linearizer method)": [[154, "sympy.physics.mechanics.linearize.Linearizer.__init__", false]], "__init__() (sympy.polys.numberfields.modules.endomorphismring method)": [[216, "sympy.polys.numberfields.modules.EndomorphismRing.__init__", false]], "__init__() (sympy.polys.numberfields.modules.innerendomorphism method)": [[216, "sympy.polys.numberfields.modules.InnerEndomorphism.__init__", false]], "__init__() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.__init__", false]], "__init__() (sympy.polys.numberfields.modules.moduleendomorphism method)": [[216, "sympy.polys.numberfields.modules.ModuleEndomorphism.__init__", false]], "__init__() (sympy.polys.numberfields.modules.modulehomomorphism method)": [[216, "sympy.polys.numberfields.modules.ModuleHomomorphism.__init__", false]], "__init__() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.__init__", false]], "__init__() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.__init__", false]], "__init__() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.__init__", false]], "__init__() (sympy.polys.numberfields.utilities.algintpowers method)": [[216, "sympy.polys.numberfields.utilities.AlgIntPowers.__init__", false]], "__init__() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.__init__", false]], "__init__() (sympy.vector.orienters.axisorienter method)": [[267, "sympy.vector.orienters.AxisOrienter.__init__", false]], "__init__() (sympy.vector.orienters.bodyorienter method)": [[267, "sympy.vector.orienters.BodyOrienter.__init__", false]], "__init__() (sympy.vector.orienters.quaternionorienter method)": [[267, "sympy.vector.orienters.QuaternionOrienter.__init__", false]], "__init__() (sympy.vector.orienters.spaceorienter method)": [[267, "sympy.vector.orienters.SpaceOrienter.__init__", false]], "__len__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__len__", false]], "__mod__() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.__mod__", false]], "__mul__() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.__mul__", false]], "__mul__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__mul__", false]], "__mul__() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.__mul__", false]], "__mul__() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.__mul__", false]], "__new__() (sympy.combinatorics.perm_groups.permutationgroup static method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.__new__", false]], "__new__() (sympy.core.numbers.algebraicnumber static method)": [[88, "sympy.core.numbers.AlgebraicNumber.__new__", false]], "__pow__() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.__pow__", false]], "__weakref__ (sympy.combinatorics.perm_groups.permutationgroup attribute)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.__weakref__", false]], "__weakref__ (sympy.matrices.kind.matrixkind attribute)": [[123, "sympy.matrices.kind.MatrixKind.__weakref__", false]], "__weakref__ (sympy.matrices.matrixbase.matrixbase attribute)": [[124, "sympy.matrices.matrixbase.MatrixBase.__weakref__", false]], "_af_parity() (in module sympy.combinatorics.permutations)": [[80, "sympy.combinatorics.permutations._af_parity", false]], "_all_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._all_roots", false]], "_base_ordering() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._base_ordering", false]], "_check_antecedents() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._check_antecedents", false]], "_check_antecedents_1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._check_antecedents_1", false]], "_check_antecedents_inversion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._check_antecedents_inversion", false]], "_check_cycles_alt_sym() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._check_cycles_alt_sym", false]], "_cmp_perm_lists() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._cmp_perm_lists", false]], "_coeffexpvalueerror": [[113, "sympy.integrals.meijerint._CoeffExpValueError", false]], "_complexes_index() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._complexes_index", false]], "_complexes_sorted() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._complexes_sorted", false]], "_condsimp() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._condsimp", false]], "_convert_poly_rat_alg() (in module sympy.holonomic.holonomic)": [[109, "sympy.holonomic.holonomic._convert_poly_rat_alg", false]], "_coset_representative() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._coset_representative", false]], "_count_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._count_roots", false]], "_create_lookup_table() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._create_lookup_table", false]], "_create_table() (in module sympy.holonomic.holonomic)": [[109, "sympy.holonomic.holonomic._create_table", false]], "_csrtodok() (in module sympy.matrices.sparsetools)": [[127, "sympy.matrices.sparsetools._csrtodok", false]], "_default_settings (sympy.printing.smtlib.smtlibprinter attribute)": [[221, "sympy.printing.smtlib.SMTLibPrinter._default_settings", false]], "_diff_wrt (sympy.core.function.derivative property)": [[88, "sympy.core.function.Derivative._diff_wrt", false]], "_distinct_primes_lemma() (sympy.combinatorics.perm_groups.permutationgroup class method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._distinct_primes_lemma", false]], "_distribute_gens_by_base() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._distribute_gens_by_base", false]], "_doktocsr() (in module sympy.matrices.sparsetools)": [[127, "sympy.matrices.sparsetools._doktocsr", false]], "_dummy() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._dummy", false]], "_dummy_() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._dummy_", false]], "_ensure_complexes_init() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._ensure_complexes_init", false]], "_ensure_reals_init() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._ensure_reals_init", false]], "_eval_*": [[15, "term-_eval_", true]], "_eval_cond() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._eval_cond", false]], "_eval_evalf() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._eval_evalf", false]], "_eval_integral() (sympy.functions.elementary.piecewise.piecewise method)": [[94, "sympy.functions.elementary.piecewise.Piecewise._eval_integral", false]], "_eval_is_alt_sym_monte_carlo() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._eval_is_alt_sym_monte_carlo", false]], "_eval_is_alt_sym_naive() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._eval_is_alt_sym_naive", false]], "_eval_is_imaginary() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._eval_is_imaginary", false]], "_eval_is_real() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._eval_is_real", false]], "_exponents() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._exponents", false]], "_find_splitting_points() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._find_splitting_points", false]], "_flip_g() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._flip_g", false]], "_fourier_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms._fourier_transform", false]], "_functions() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._functions", false]], "_get_coeff_exp() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._get_coeff_exp", false]], "_get_complexes() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_complexes", false]], "_get_complexes_sqf() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_complexes_sqf", false]], "_get_interval() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_interval", false]], "_get_reals() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_reals", false]], "_get_reals_sqf() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_reals_sqf", false]], "_get_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._get_roots", false]], "_guess_expansion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._guess_expansion", false]], "_handle_integral() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._handle_Integral", false]], "_handle_precomputed_bsgs() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._handle_precomputed_bsgs", false]], "_indexed_root() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._indexed_root", false]], "_inflate_fox_h() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._inflate_fox_h", false]], "_inflate_g() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._inflate_g", false]], "_int0oo() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._int0oo", false]], "_int0oo_1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._int0oo_1", false]], "_int_inversion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._int_inversion", false]], "_is_analytic() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._is_analytic", false]], "_is_exponential() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._is_exponential", false]], "_is_logarithmic() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._is_logarithmic", false]], "_linear_2eq_order1_type6() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._linear_2eq_order1_type6", false]], "_linear_2eq_order1_type7() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._linear_2eq_order1_type7", false]], "_meijerint_definite_2() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._meijerint_definite_2", false]], "_meijerint_definite_3() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._meijerint_definite_3", false]], "_meijerint_definite_4() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._meijerint_definite_4", false]], "_meijerint_indefinite_1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._meijerint_indefinite_1", false]], "_modgcd_multivariate_p() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd._modgcd_multivariate_p", false]], "_mul_args() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._mul_args", false]], "_mul_as_two_parts() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._mul_as_two_parts", false]], "_my_principal_branch() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._my_principal_branch", false]], "_mytype() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._mytype", false]], "_naive_list_centralizer() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._naive_list_centralizer", false]], "_new() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._new", false]], "_nonlinear_2eq_order1_type1() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type1", false]], "_nonlinear_2eq_order1_type2() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type2", false]], "_nonlinear_2eq_order1_type3() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type3", false]], "_nonlinear_2eq_order1_type4() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type4", false]], "_nonlinear_2eq_order1_type5() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_2eq_order1_type5", false]], "_nonlinear_3eq_order1_type1() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type1", false]], "_nonlinear_3eq_order1_type2() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type2", false]], "_nonlinear_3eq_order1_type3() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type3", false]], "_nonlinear_3eq_order1_type4() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type4", false]], "_nonlinear_3eq_order1_type5() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode._nonlinear_3eq_order1_type5", false]], "_orbits_transversals_from_bsgs() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._orbits_transversals_from_bsgs", false]], "_p_elements_group() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._p_elements_group", false]], "_postprocess_root() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._postprocess_root", false]], "_preprocess_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._preprocess_roots", false]], "_print() (sympy.printing.printer.printer method)": [[221, "sympy.printing.printer.Printer._print", false]], "_randint() (in module sympy.core.random)": [[88, "sympy.core.random._randint", false]], "_random_pr_init() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._random_pr_init", false]], "_randrange() (in module sympy.core.random)": [[88, "sympy.core.random._randrange", false]], "_real_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._real_roots", false]], "_reals_index() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._reals_index", false]], "_reals_sorted() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._reals_sorted", false]], "_refine_complexes() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._refine_complexes", false]], "_remove_gens() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._remove_gens", false]], "_reset() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._reset", false]], "_rewrite1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite1", false]], "_rewrite2() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite2", false]], "_rewrite_inversion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite_inversion", false]], "_rewrite_saxena() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite_saxena", false]], "_rewrite_saxena_1() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite_saxena_1", false]], "_rewrite_single() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._rewrite_single", false]], "_roots_trivial() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._roots_trivial", false]], "_set_interval() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf._set_interval", false]], "_solve_exponential() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._solve_exponential", false]], "_solve_lin_sys() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers._solve_lin_sys", false]], "_solve_lin_sys_component() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers._solve_lin_sys_component", false]], "_solve_logarithm() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._solve_logarithm", false]], "_sort_variable_count() (sympy.core.function.derivative class method)": [[88, "sympy.core.function.Derivative._sort_variable_count", false]], "_split_mul() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint._split_mul", false]], "_strip() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._strip", false]], "_strong_gens_from_distr() (in module sympy.combinatorics.util)": [[86, "sympy.combinatorics.util._strong_gens_from_distr", false]], "_sylow_alt_sym() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._sylow_alt_sym", false]], "_tan1() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series._tan1", false]], "_tensormanager (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor._TensorManager", false]], "_transolve() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset._transolve", false]], "_union_find_merge() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._union_find_merge", false]], "_union_find_rep() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._union_find_rep", false]], "_verify() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup._verify", false]], "_verify_bsgs() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._verify_bsgs", false]], "_verify_centralizer() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._verify_centralizer", false]], "_verify_normal_closure() (in module sympy.combinatorics.testutil)": [[85, "sympy.combinatorics.testutil._verify_normal_closure", false]], "a (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.a", false]], "a (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.a", false]], "a (sympy.physics.optics.gaussopt.raytransfermatrix property)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix.A", false]], "a (sympy.physics.quantum.shor.cmod property)": [[187, "sympy.physics.quantum.shor.CMod.a", false]], "a1pt_theory() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.a1pt_theory", false]], "a2idx() (in module sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.a2idx", false]], "a2pt_theory() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.a2pt_theory", false]], "a4_in_s6() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.A4_in_S6", false]], "a4xc2() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.A4xC2", false]], "a_interval (sympy.sets.fancysets.complexregion property)": [[229, "sympy.sets.fancysets.ComplexRegion.a_interval", false]], "abbrev (sympy.physics.units.quantities.quantity property)": [[198, "sympy.physics.units.quantities.Quantity.abbrev", false]], "abelian_invariants() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.abelian_invariants", false]], "abeliangroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.AbelianGroup", false]], "above() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.above", false]], "abs (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.Abs", false]], "abs() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.abs", false]], "abs() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.abs", false]], "abs() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.abs", false]], "absorbing_probabilities() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.absorbing_probabilities", false]], "abundance() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.abundance", false]], "acc() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.acc", false]], "accepted_latex_functions (in module sympy.printing.latex)": [[221, "sympy.printing.latex.accepted_latex_functions", false]], "acos (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.acos", false]], "acosh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.acosh", false]], "acot (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.acot", false]], "acoth (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.acoth", false]], "acsc (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.acsc", false]], "acsch (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.acsch", false]], "activation (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.activation", false]], "activation (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.activation", false]], "activation_dynamics (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.activation_dynamics", false]], "activation_time_constant (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.activation_time_constant", false]], "activationbase (class in sympy.physics.biomechanics.activation)": [[131, "sympy.physics.biomechanics.activation.ActivationBase", false]], "actuatorbase (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.ActuatorBase", false]], "actuators (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.actuators", false]], "add (class in sympy.core.add)": [[88, "sympy.core.add.Add", false]], "add() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.add", false]], "add() (sympy.assumptions.assume.assumptionscontext method)": [[63, "sympy.assumptions.assume.AssumptionsContext.add", false]], "add() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.add", false]], "add() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.add", false]], "add() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.add", false]], "add() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.add", false]], "add() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.add", false]], "add() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.add", false]], "add() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.add", false]], "add() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.add", false]], "add() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.add", false]], "add() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.add", false]], "add() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.add", false]], "add_actuators() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_actuators", false]], "add_as_roots() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.add_as_roots", false]], "add_auxiliary_speeds() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_auxiliary_speeds", false]], "add_bodies() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_bodies", false]], "add_coordinates() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_coordinates", false]], "add_gens() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.add_gens", false]], "add_ground() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.add_ground", false]], "add_ground() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.add_ground", false]], "add_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.add_ground", false]], "add_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.add_ground", false]], "add_holonomic_constraints() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_holonomic_constraints", false]], "add_joints() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_joints", false]], "add_kdes() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_kdes", false]], "add_loads() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_loads", false]], "add_member() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.add_member", false]], "add_node() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.add_node", false]], "add_nonholonomic_constraints() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_nonholonomic_constraints", false]], "add_simple_roots() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.add_simple_roots", false]], "add_speeds() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.add_speeds", false]], "adj_det() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.adj_det", false]], "adj_poly_det() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.adj_poly_det", false]], "adjoint() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.adjoint", false]], "adjugate() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.adjugate", false]], "adjugate() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.adjugate", false]], "aesara_code() (in module sympy.printing.aesaracode)": [[221, "sympy.printing.aesaracode.aesara_code", false]], "aesara_function() (in module sympy.printing.aesaracode)": [[221, "sympy.printing.aesaracode.aesara_function", false]], "aesaraprinter (class in sympy.printing.aesaracode)": [[221, "sympy.printing.aesaracode.AesaraPrinter", false]], "affine_rank() (sympy.geometry.point.point static method)": [[103, "sympy.geometry.point.Point.affine_rank", false]], "airyai (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.airyai", false]], "airyaiprime (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.airyaiprime", false]], "airybase (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.AiryBase", false]], "airybi (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.airybi", false]], "airybiprime (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.airybiprime", false]], "alg_con (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.alg_con", false]], "alg_field_from_poly() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.alg_field_from_poly", false]], "algebraic": [[88, "term-algebraic", true]], "algebraic_field() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.algebraic_field", false]], "algebraic_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.algebraic_field", false]], "algebraic_field() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.algebraic_field", false]], "algebraic_field() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.algebraic_field", false]], "algebraicfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.AlgebraicField", false]], "algebraichandler (sympy.assumptions.predicates.sets.algebraicpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.AlgebraicPredicate.AlgebraicHandler", false]], "algebraicnumber (class in sympy.core.numbers)": [[88, "sympy.core.numbers.AlgebraicNumber", false]], "algebraicpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.AlgebraicPredicate", false]], "algintpowers (class in sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.AlgIntPowers", false]], "alignof() (in module sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.alignof", false]], "all_coeffs() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.all_coeffs", false]], "all_coeffs() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.all_coeffs", false]], "all_monoms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.all_monoms", false]], "all_monoms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.all_monoms", false]], "all_roots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.all_roots", false]], "all_roots() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.all_roots", false]], "all_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.all_roots", false]], "all_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.all_roots", false]], "all_terms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.all_terms", false]], "all_terms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.all_terms", false]], "allhints (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.allhints", false]], "allocated() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.allocated", false]], "almosteq() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.almosteq", false]], "almosteq() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.almosteq", false]], "almosteq() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.almosteq", false]], "almosteq() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.almosteq", false]], "almostlinear (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.AlmostLinear", false]], "alpha_opt (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.alpha_opt", false]], "alternating() (sympy.combinatorics.generators method)": [[80, "sympy.combinatorics.generators.alternating", false]], "alternatinggroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.AlternatingGroup", false]], "altitudes (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.altitudes", false]], "ambient_dimension (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.ambient_dimension", false]], "ambient_dimension (sympy.geometry.entity.geometryentity property)": [[99, "sympy.geometry.entity.GeometryEntity.ambient_dimension", false]], "ambient_dimension (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.ambient_dimension", false]], "ambient_dimension (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.ambient_dimension", false]], "amplitude (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.amplitude", false]], "an (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.an", false]], "analytic_func() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.analytic_func", false]], "ancestors() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.ancestors", false]], "and (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.And", false]], "andre (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.andre", false]], "andre_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.andre_poly", false]], "anf_coeffs() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.anf_coeffs", false]], "anfform() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.ANFform", false]], "ang_acc_in() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.ang_acc_in", false]], "ang_vel_in() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.ang_vel_in", false]], "ang_vel_in() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.ang_vel_in", false]], "angle (sympy.physics.optics.gaussopt.geometricray property)": [[160, "sympy.physics.optics.gaussopt.GeometricRay.angle", false]], "angle() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.angle", false]], "angle_between() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.angle_between", false]], "angle_between() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.angle_between", false]], "angle_between() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.angle_between", false]], "angles (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.angles", false]], "angles (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.angles", false]], "angular_deflection() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.angular_deflection", false]], "angular_momentum() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.angular_momentum", false]], "angular_momentum() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.angular_momentum", false]], "angular_momentum() (sympy.physics.mechanics.particle.particle method)": [[155, "sympy.physics.mechanics.particle.Particle.angular_momentum", false]], "angular_momentum() (sympy.physics.mechanics.rigidbody.rigidbody method)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.angular_momentum", false]], "angular_velocity (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.angular_velocity", false]], "annihilateboson (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.AnnihilateBoson", false]], "annihilatefermion (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.AnnihilateFermion", false]], "annotated() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.annotated", false]], "annotations (sympy.plotting.plot.plot property)": [[207, "sympy.plotting.plot.Plot.annotations", false]], "anp (class in sympy.polys.polyclasses)": [[212, "sympy.polys.polyclasses.ANP", false]], "anticommutator (class in sympy.physics.quantum.anticommutator)": [[168, "sympy.physics.quantum.anticommutator.AntiCommutator", false]], "antiderivative": [[15, "term-Antiderivative", true]], "antidivisor_count() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.antidivisor_count", false]], "antidivisors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.antidivisors", false]], "antihermitian": [[88, "term-antihermitian", true]], "antihermitianpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.AntihermitianPredicate", false]], "antisymmetrictensor (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.AntiSymmetricTensor", false]], "aother (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.aother", false]], "ap (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.ap", false]], "ap (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.ap", false]], "apart() (in module sympy.polys.partfrac)": [[217, "sympy.polys.partfrac.apart", false]], "apart() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.apart", false]], "apart_list() (in module sympy.polys.partfrac)": [[217, "sympy.polys.partfrac.apart_list", false]], "apoapsis (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.apoapsis", false]], "apothem (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.apothem", false]], "appellf1 (class in sympy.functions.special.hyper)": [[96, "sympy.functions.special.hyper.appellf1", false]], "append() (sympy.plotting.plot.plot method)": [[207, "sympy.plotting.plot.Plot.append", false]], "applied_loads (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.applied_loads", false]], "appliedpredicate (class in sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.AppliedPredicate", false]], "apply() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.apply", false]], "apply() (sympy.printing.pretty.stringpict.prettyform static method)": [[221, "sympy.printing.pretty.stringpict.prettyForm.apply", false]], "apply() (sympy.simplify.epathtools.epath method)": [[233, "sympy.simplify.epathtools.EPath.apply", false]], "apply_finite_diff() (in module sympy.calculus.finite_diff)": [[67, "sympy.calculus.finite_diff.apply_finite_diff", false]], "apply_force() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.apply_force", false]], "apply_grover() (in module sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.apply_grover", false]], "apply_length() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.apply_length", false]], "apply_load() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.apply_load", false]], "apply_load() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.apply_load", false]], "apply_load() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.apply_load", false]], "apply_load() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.apply_load", false]], "apply_moment_load() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.apply_moment_load", false]], "apply_operator() (sympy.physics.secondquant.annihilateboson method)": [[191, "sympy.physics.secondquant.AnnihilateBoson.apply_operator", false]], "apply_operator() (sympy.physics.secondquant.annihilatefermion method)": [[191, "sympy.physics.secondquant.AnnihilateFermion.apply_operator", false]], "apply_operator() (sympy.physics.secondquant.createboson method)": [[191, "sympy.physics.secondquant.CreateBoson.apply_operator", false]], "apply_operator() (sympy.physics.secondquant.createfermion method)": [[191, "sympy.physics.secondquant.CreateFermion.apply_operator", false]], "apply_operators() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.apply_operators", false]], "apply_rotation_hinge() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.apply_rotation_hinge", false]], "apply_sliding_hinge() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.apply_sliding_hinge", false]], "apply_support() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.apply_support", false]], "apply_support() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.apply_support", false]], "apply_torque() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.apply_torque", false]], "apply_uniform_gravity() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.apply_uniform_gravity", false]], "applyfunc() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.applyfunc", false]], "applyfunc() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.applyfunc", false]], "applyfunc() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.applyfunc", false]], "applyfunc() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.applyfunc", false]], "approximation() (sympy.core.numbers.numbersymbol method)": [[88, "sympy.core.numbers.NumberSymbol.approximation", false]], "arbitrary_point() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.arbitrary_point", false]], "arbitrary_point() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.arbitrary_point", false]], "arbitrary_point() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.arbitrary_point", false]], "arbitrary_point() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.arbitrary_point", false]], "arbitrary_point() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.arbitrary_point", false]], "arc_coplanar() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.arc_coplanar", false]], "arcsin() (in module sympy.stats)": [[241, "sympy.stats.Arcsin", false]], "are_collinear() (sympy.geometry.point.point3d static method)": [[103, "sympy.geometry.point.Point3D.are_collinear", false]], "are_concurrent() (sympy.geometry.line.linearentity static method)": [[101, "sympy.geometry.line.LinearEntity.are_concurrent", false]], "are_concurrent() (sympy.geometry.plane.plane static method)": [[102, "sympy.geometry.plane.Plane.are_concurrent", false]], "are_coplanar() (sympy.geometry.point.point class method)": [[103, "sympy.geometry.point.Point.are_coplanar", false]], "are_similar() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.are_similar", false]], "area (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.area", false]], "area (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.area", false]], "area (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.area", false]], "area (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.area", false]], "area (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.area", false]], "arg (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.arg", false]], "arg (sympy.assumptions.assume.appliedpredicate property)": [[63, "sympy.assumptions.assume.AppliedPredicate.arg", false]], "args": [[15, "term-args", true]], "args (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.args", false]], "args (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.args", false]], "args_cnc() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.args_cnc", false]], "argument (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.Argument", false]], "argument (sympy.functions.special.bessel.besselbase property)": [[96, "sympy.functions.special.bessel.BesselBase.argument", false]], "argument (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.argument", false]], "argument (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.argument", false]], "arguments (sympy.assumptions.assume.appliedpredicate property)": [[63, "sympy.assumptions.assume.AppliedPredicate.arguments", false]], "array() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.array", false]], "array_form (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.array_form", false]], "array_form (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.array_form", false]], "arrayconstructor (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.ArrayConstructor", false]], "arraycontraction (class in sympy.tensor.array.expressions)": [[243, "sympy.tensor.array.expressions.ArrayContraction", false]], "arraydiagonal (class in sympy.tensor.array.expressions)": [[243, "sympy.tensor.array.expressions.ArrayDiagonal", false]], "arraytensorproduct (class in sympy.tensor.array.expressions)": [[243, "sympy.tensor.array.expressions.ArrayTensorProduct", false]], "arrowstringdescription (class in sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.ArrowStringDescription", false]], "as_algebraicfield() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.as_AlgebraicField", false]], "as_base_exp() (sympy.core.function.function method)": [[88, "sympy.core.function.Function.as_base_exp", false]], "as_base_exp() (sympy.core.power.pow method)": [[88, "sympy.core.power.Pow.as_base_exp", false]], "as_base_exp() (sympy.functions.elementary.exponential.log method)": [[94, "sympy.functions.elementary.exponential.log.as_base_exp", false]], "as_coeff_add() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_coeff_Add", false], [88, "sympy.core.add.Add.as_coeff_add", false]], "as_coeff_add() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coeff_Add", false], [88, "sympy.core.expr.Expr.as_coeff_add", false]], "as_coeff_add() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.as_coeff_Add", false]], "as_coeff_add() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.as_coeff_Add", false]], "as_coeff_exponent() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coeff_exponent", false]], "as_coeff_mul() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coeff_Mul", false], [88, "sympy.core.expr.Expr.as_coeff_mul", false]], "as_coeff_mul() (sympy.core.mul.mul method)": [[88, "sympy.core.mul.Mul.as_coeff_Mul", false]], "as_coeff_mul() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.as_coeff_Mul", false]], "as_coeff_mul() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.as_coeff_Mul", false]], "as_coeff_mul() (sympy.matrices.expressions.matrixexpr method)": [[120, "sympy.matrices.expressions.MatrixExpr.as_coeff_Mul", false]], "as_coefficient() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coefficient", false]], "as_coefficients_dict() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_coefficients_dict", false]], "as_content_primitive() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_content_primitive", false]], "as_content_primitive() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.as_content_primitive", false]], "as_content_primitive() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_content_primitive", false]], "as_content_primitive() (sympy.core.mul.mul method)": [[88, "sympy.core.mul.Mul.as_content_primitive", false]], "as_content_primitive() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.as_content_primitive", false]], "as_content_primitive() (sympy.core.power.pow method)": [[88, "sympy.core.power.Pow.as_content_primitive", false]], "as_declaration() (sympy.codegen.ast.variable method)": [[69, "sympy.codegen.ast.Variable.as_Declaration", false]], "as_dict() (sympy.combinatorics.partitions.integerpartition method)": [[77, "sympy.combinatorics.partitions.IntegerPartition.as_dict", false]], "as_dict() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.as_dict", false]], "as_dummy() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.as_dummy", false]], "as_explicit() (sympy.matrices.expressions.matrixexpr method)": [[120, "sympy.matrices.expressions.MatrixExpr.as_explicit", false]], "as_expr() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_expr", false]], "as_expr() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.as_expr", false]], "as_expr() (sympy.polys.monomials.monomial method)": [[217, "sympy.polys.monomials.Monomial.as_expr", false]], "as_expr() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.as_expr", false]], "as_expr() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.as_expr", false]], "as_expr_set_pairs() (sympy.functions.elementary.piecewise.piecewise method)": [[94, "sympy.functions.elementary.piecewise.Piecewise.as_expr_set_pairs", false]], "as_ferrers() (sympy.combinatorics.partitions.integerpartition method)": [[77, "sympy.combinatorics.partitions.IntegerPartition.as_ferrers", false]], "as_finite_difference() (sympy.core.function.derivative method)": [[88, "sympy.core.function.Derivative.as_finite_difference", false]], "as_immutable() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.as_immutable", false]], "as_independent() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_independent", false]], "as_int() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.as_int", false]], "as_leading_term() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_leading_term", false]], "as_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.as_list", false]], "as_mutable() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.as_mutable", false]], "as_mutable() (sympy.matrices.expressions.matrixexpr method)": [[120, "sympy.matrices.expressions.MatrixExpr.as_mutable", false]], "as_numer_denom() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_numer_denom", false]], "as_numer_denom() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_numer_denom", false]], "as_ordered_factors() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_ordered_factors", false]], "as_ordered_factors() (sympy.core.mul.mul method)": [[88, "sympy.core.mul.Mul.as_ordered_factors", false]], "as_ordered_terms() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_ordered_terms", false]], "as_poly() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_poly", false]], "as_poly() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.as_poly", false]], "as_poly() (sympy.core.relational.equality method)": [[88, "sympy.core.relational.Equality.as_poly", false]], "as_poly() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.as_poly", false]], "as_powers_dict() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_powers_dict", false]], "as_real_imag() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_real_imag", false]], "as_real_imag() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.complexes.im method)": [[94, "sympy.functions.elementary.complexes.im.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.complexes.re method)": [[94, "sympy.functions.elementary.complexes.re.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.exponential.exp method)": [[94, "sympy.functions.elementary.exponential.exp.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.exponential.log method)": [[94, "sympy.functions.elementary.exponential.log.as_real_imag", false]], "as_real_imag() (sympy.functions.elementary.hyperbolic.sinh method)": [[94, "sympy.functions.elementary.hyperbolic.sinh.as_real_imag", false]], "as_real_imag() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.as_real_imag", false]], "as_relational() (sympy.sets.fancysets.range method)": [[229, "sympy.sets.fancysets.Range.as_relational", false]], "as_relational() (sympy.sets.sets.complement method)": [[229, "sympy.sets.sets.Complement.as_relational", false]], "as_relational() (sympy.sets.sets.finiteset method)": [[229, "sympy.sets.sets.FiniteSet.as_relational", false]], "as_relational() (sympy.sets.sets.intersection method)": [[229, "sympy.sets.sets.Intersection.as_relational", false]], "as_relational() (sympy.sets.sets.interval method)": [[229, "sympy.sets.sets.Interval.as_relational", false]], "as_relational() (sympy.sets.sets.symmetricdifference method)": [[229, "sympy.sets.sets.SymmetricDifference.as_relational", false]], "as_relational() (sympy.sets.sets.union method)": [[229, "sympy.sets.sets.Union.as_relational", false]], "as_set() (sympy.logic.boolalg.boolean method)": [[118, "sympy.logic.boolalg.Boolean.as_set", false]], "as_set() (sympy.logic.boolalg.booleanfalse method)": [[118, "sympy.logic.boolalg.BooleanFalse.as_set", false]], "as_set() (sympy.logic.boolalg.booleantrue method)": [[118, "sympy.logic.boolalg.BooleanTrue.as_set", false]], "as_submodule() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.as_submodule", false]], "as_sum() (sympy.integrals.integrals.integral method)": [[115, "sympy.integrals.integrals.Integral.as_sum", false]], "as_terms() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.as_terms", false]], "as_two_terms() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.as_two_terms", false]], "as_two_terms() (sympy.core.mul.mul method)": [[88, "sympy.core.mul.Mul.as_two_terms", false]], "ascents() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.ascents", false]], "asec (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.asec", false]], "asech (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.asech", false]], "aseries() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.aseries", false]], "asin (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.asin", false]], "asinh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.asinh", false]], "ask() (in module sympy.assumptions.ask)": [[62, "sympy.assumptions.ask.ask", false]], "assemble_partfrac_list() (in module sympy.polys.partfrac)": [[217, "sympy.polys.partfrac.assemble_partfrac_list", false]], "assignment (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Assignment", false]], "assignmentbase (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.AssignmentBase", false]], "assignmenterror": [[221, "sympy.printing.codeprinter.AssignmentError", false]], "assoc_laguerre (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.assoc_laguerre", false]], "assoc_legendre (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.assoc_legendre", false]], "assoc_recurrence_memo() (in module sympy.utilities.memoization)": [[261, "sympy.utilities.memoization.assoc_recurrence_memo", false]], "assuming() (in module sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.assuming", false]], "assumptionkeys (class in sympy.assumptions.ask)": [[62, "sympy.assumptions.ask.AssumptionKeys", false]], "assumptions": [[15, "term-Assumptions", true]], "assumptions0 (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.assumptions0", false]], "assumptionscontext (class in sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.AssumptionsContext", false]], "at_pin_joint() (sympy.physics.mechanics.actuator.torqueactuator class method)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.at_pin_joint", false]], "atan (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.atan", false]], "atan2 (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.atan2", false]], "atanh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.atanh", false]], "atom": [[15, "term-Atom", true]], "atom (class in sympy.core.basic)": [[88, "sympy.core.basic.Atom", false]], "atomicexpr (class in sympy.core.expr)": [[88, "sympy.core.expr.AtomicExpr", false]], "atoms() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.atoms", false]], "atoms() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.atoms", false]], "atoms() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.atoms", false]], "atoms_table (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.atoms_table", false]], "attachments (sympy.physics.mechanics.pathway.obstaclesetpathway property)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway.attachments", false]], "attachments (sympy.physics.mechanics.pathway.pathwaybase property)": [[156, "sympy.physics.mechanics.pathway.PathwayBase.attachments", false]], "attempted (sympy.testing.runtests.sympytestresults attribute)": [[252, "sympy.testing.runtests.SymPyTestResults.attempted", false]], "attr_params() (sympy.codegen.ast.node method)": [[69, "sympy.codegen.ast.Node.attr_params", false]], "attribute (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Attribute", false]], "aug_assign() (in module sympy.codegen.ast)": [[69, "sympy.codegen.ast.aug_assign", false]], "augmentedassignment (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.AugmentedAssignment", false]], "auto_number() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.auto_number", false]], "auto_symbol() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.auto_symbol", false]], "automatic simplification": [[15, "term-Automatic-Simplification", true]], "autowrap() (in module sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.autowrap", false]], "auxiliary_circle() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.auxiliary_circle", false]], "auxiliary_eqs (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.auxiliary_eqs", false]], "axial_force() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.axial_force", false]], "axial_stress() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.axial_stress", false]], "axis (sympy.physics.mechanics.actuator.torqueactuator property)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.axis", false]], "axis (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.axis", false]], "axis() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.axis", false]], "axisorienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.AxisOrienter", false]], "az() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.AZ", false]], "b (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.B", false]], "b (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.b", false]], "b (sympy.physics.optics.gaussopt.raytransfermatrix property)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix.B", false]], "b_interval (sympy.sets.fancysets.complexregion property)": [[229, "sympy.sets.fancysets.ComplexRegion.b_interval", false]], "backward_diff() (in module sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.backward_diff", false]], "banded() (in module sympy.matrices.sparsetools)": [[127, "sympy.matrices.sparsetools.banded", false]], "base (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.base", false]], "base (sympy.functions.elementary.exponential.exp property)": [[94, "sympy.functions.elementary.exponential.exp.base", false]], "base (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.base", false]], "base_oneform() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_oneform", false]], "base_oneforms() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_oneforms", false]], "base_scalar() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_scalar", false]], "base_scalars() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_scalars", false]], "base_solution_linear() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.base_solution_linear", false]], "base_vector() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_vector", false]], "base_vectors() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.base_vectors", false]], "basecovarderivativeop (class in sympy.diffgeom)": [[90, "sympy.diffgeom.BaseCovarDerivativeOp", false]], "basepolynomialerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.BasePolynomialError", false]], "basescalarfield (class in sympy.diffgeom)": [[90, "sympy.diffgeom.BaseScalarField", false]], "baseseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.BaseSeries", false]], "baseswap() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.baseswap", false]], "basevectorfield (class in sympy.diffgeom)": [[90, "sympy.diffgeom.BaseVectorField", false]], "basic": [[15, "term-Basic", true]], "basic (class in sympy.core.basic)": [[88, "sympy.core.basic.Basic", false]], "basic_orbits (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.basic_orbits", false]], "basic_root() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.basic_root", false]], "basic_root() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.basic_root", false]], "basic_root() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.basic_root", false]], "basic_root() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.basic_root", false]], "basic_root() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.basic_root", false]], "basic_root() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.basic_root", false]], "basic_stabilizers (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.basic_stabilizers", false]], "basic_transversals (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.basic_transversals", false]], "basis() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.basis", false]], "basis() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.basis", false]], "basis() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.basis", false]], "basis() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.basis", false]], "basis() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.basis", false]], "basis() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.basis", false]], "basis() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.basis", false]], "basis() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.basis", false]], "basis_element_pullbacks() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.basis_element_pullbacks", false]], "basis_elements() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.basis_elements", false]], "bbra (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.BBra", false]], "bd (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.Bd", false]], "beam (class in sympy.physics.continuum_mechanics.beam)": [[136, "sympy.physics.continuum_mechanics.beam.Beam", false]], "beam3d (class in sympy.physics.continuum_mechanics.beam)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D", false]], "beamparameter (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.BeamParameter", false]], "bell (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.bell", false]], "below() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.below", false]], "bending_moment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.bending_moment", false]], "bending_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.bending_moment", false]], "benini() (in module sympy.stats)": [[241, "sympy.stats.Benini", false]], "berkowitz_det() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.berkowitz_det", false]], "berkowitz_eigenvals() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.berkowitz_eigenvals", false]], "berkowitz_minors() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.berkowitz_minors", false]], "bernoulli (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.bernoulli", false]], "bernoulli (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.Bernoulli", false]], "bernoulli() (in module sympy.stats)": [[241, "sympy.stats.Bernoulli", false]], "bernoulli_c_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.bernoulli_c_poly", false]], "bernoulli_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.bernoulli_poly", false]], "bernoulliprocess (class in sympy.stats)": [[241, "sympy.stats.BernoulliProcess", false]], "besselbase (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.BesselBase", false]], "besseli (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.besseli", false]], "besselj (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.besselj", false]], "besselk (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.besselk", false]], "besselsimp() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.besselsimp", false]], "bessely (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.bessely", false]], "beta (class in sympy.functions.special.beta_functions)": [[96, "sympy.functions.special.beta_functions.beta", false]], "beta (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.beta", false]], "beta() (in module sympy.stats)": [[241, "sympy.stats.Beta", false]], "betabinomial() (in module sympy.stats)": [[241, "sympy.stats.BetaBinomial", false]], "betanoncentral() (in module sympy.stats)": [[241, "sympy.stats.BetaNoncentral", false]], "betaprime() (in module sympy.stats)": [[241, "sympy.stats.BetaPrime", false]], "bidiagonal_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.bidiagonal_decomposition", false]], "bidiagonalize() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.bidiagonalize", false]], "bifid5_square() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.bifid5_square", false]], "bifid6_square() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.bifid6_square", false]], "bilinear() (in module sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.bilinear", false]], "bin_to_gray() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.bin_to_gray", false]], "binary_function() (in module sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.binary_function", false]], "binary_partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.binary_partitions", false]], "binaryquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.BinaryQuadratic", false]], "bind_c() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.bind_C", false]], "binomial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.binomial", false]], "binomial() (in module sympy.stats)": [[241, "sympy.stats.Binomial", false]], "binomial_coefficients() (in module sympy.ntheory.multinomial)": [[128, "sympy.ntheory.multinomial.binomial_coefficients", false]], "binomial_coefficients_list() (in module sympy.ntheory.multinomial)": [[128, "sympy.ntheory.multinomial.binomial_coefficients_list", false]], "binomial_mod() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.binomial_mod", false]], "bisectors() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.bisectors", false]], "bisectors() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.bisectors", false]], "bisectors() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.bisectors", false]], "bitlist_from_subset() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.bitlist_from_subset", false]], "bket (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.BKet", false]], "block_collapse() (in module sympy.matrices.expressions.blockmatrix)": [[120, "sympy.matrices.expressions.blockmatrix.block_collapse", false]], "blockdiagmatrix (class in sympy.matrices.expressions.blockmatrix)": [[120, "sympy.matrices.expressions.blockmatrix.BlockDiagMatrix", false]], "blockmatrix (class in sympy.matrices.expressions.blockmatrix)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix", false]], "bm (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.bm", false]], "bode_magnitude_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_magnitude_numerical_data", false]], "bode_magnitude_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_magnitude_plot", false]], "bode_phase_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_phase_numerical_data", false]], "bode_phase_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_phase_plot", false]], "bode_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.bode_plot", false]], "bodies (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.bodies", false]], "bodies (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.bodies", false]], "bodies (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.bodies", false]], "body (class in sympy.physics.mechanics.body)": [[149, "sympy.physics.mechanics.body.Body", false]], "bodyorienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.BodyOrienter", false]], "bool_map() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.bool_map", false]], "bool_maxterm() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.bool_maxterm", false]], "bool_minterm() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.bool_minterm", false]], "bool_monomial() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.bool_monomial", false]], "boolean": [[15, "term-Boolean", true]], "boolean (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Boolean", false]], "booleanfalse (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.BooleanFalse", false]], "booleankind (in module sympy.core.kind)": [[88, "sympy.core.kind.BooleanKind", false]], "booleantrue (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.BooleanTrue", false]], "bosonicbasis (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.BosonicBasis", false]], "bother (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.bother", false]], "bottom_up() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.bottom_up", false]], "bound symbols": [[15, "term-Bound-symbols", true]], "bound_symbols (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.bound_symbols", false]], "bound_symbols (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.bound_symbols", false]], "bound_symbols (sympy.core.function.subs property)": [[88, "sympy.core.function.Subs.bound_symbols", false]], "boundary (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.boundary", false]], "boundary_conditions (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.boundary_conditions", false]], "boundary_conditions (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.boundary_conditions", false]], "boundedpareto() (in module sympy.stats)": [[241, "sympy.stats.BoundedPareto", false]], "bounds (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.bounds", false]], "bounds (sympy.geometry.entity.geometryentity property)": [[99, "sympy.geometry.entity.GeometryEntity.bounds", false]], "bounds (sympy.geometry.line.linearentity2d property)": [[101, "sympy.geometry.line.LinearEntity2D.bounds", false]], "bounds (sympy.geometry.point.point2d property)": [[103, "sympy.geometry.point.Point2D.bounds", false]], "bounds (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.bounds", false]], "bq (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.bq", false]], "bq (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.bq", false]], "bra (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.Bra", false]], "bra (sympy.physics.quantum.operator.outerproduct property)": [[180, "sympy.physics.quantum.operator.OuterProduct.bra", false]], "bra (sympy.physics.secondquant.innerproduct property)": [[191, "sympy.physics.secondquant.InnerProduct.bra", false]], "brabase (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.BraBase", false]], "bracelets() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.bracelets", false]], "breaktoken (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.BreakToken", false]], "brewster_angle() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.brewster_angle", false]], "bsgs_direct_product() (in module sympy.combinatorics.tensor_can)": [[84, "sympy.combinatorics.tensor_can.bsgs_direct_product", false]], "bspline_basis() (in module sympy.functions.special.bsplines)": [[96, "sympy.functions.special.bsplines.bspline_basis", false]], "bspline_basis_set() (in module sympy.functions.special.bsplines)": [[96, "sympy.functions.special.bsplines.bspline_basis_set", false]], "build_expression_tree() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.build_expression_tree", false]], "build_options() (in module sympy.polys.polyoptions)": [[214, "sympy.polys.polyoptions.build_options", false]], "c (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.C", false]], "c (sympy.physics.optics.gaussopt.raytransfermatrix property)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix.C", false]], "c89codeprinter (class in sympy.printing.c)": [[221, "sympy.printing.c.C89CodePrinter", false]], "c99codeprinter (class in sympy.printing.c)": [[221, "sympy.printing.c.C99CodePrinter", false]], "cable (class in sympy.physics.continuum_mechanics.cable)": [[138, "sympy.physics.continuum_mechanics.cable.Cable", false]], "calculate_series() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.calculate_series", false]], "can_transf_matrix (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.can_transf_matrix", false]], "canberra_distance() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.canberra_distance", false]], "cancel() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.cancel", false]], "cancel() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.cancel", false]], "cancel() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.cancel", false]], "cancel() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.cancel", false]], "cancel() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.cancel", false]], "cancel() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.cancel", false]], "cancel_denom() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.cancel_denom", false]], "cancel_denom_elementwise() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.cancel_denom_elementwise", false]], "canon_bp() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.canon_bp", false]], "canon_bp() (sympy.tensor.tensor.tensadd method)": [[247, "sympy.tensor.tensor.TensAdd.canon_bp", false]], "canon_bp() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.canon_bp", false]], "canonical (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.canonical", false]], "canonical form": [[15, "term-Canonical-Form", true]], "canonical_form() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.canonical_form", false]], "canonical_odes() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.canonical_odes", false]], "canonical_variables (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.canonical_variables", false]], "canonicalize": [[15, "term-Canonicalize", true]], "canonicalize() (in module sympy.combinatorics.tensor_can)": [[84, "sympy.combinatorics.tensor_can.canonicalize", false]], "capture() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.capture", false]], "cardinality (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.cardinality", false]], "cardinality (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.cardinality", false]], "cartan_matrix() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.cartan_matrix", false]], "cartan_matrix() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.cartan_matrix", false]], "cartanmatrix() (in module sympy.liealgebras.cartan_matrix)": [[117, "sympy.liealgebras.cartan_matrix.CartanMatrix", false]], "cartantype_generator (class in sympy.liealgebras.cartan_type)": [[117, "sympy.liealgebras.cartan_type.CartanType_generator", false]], "cartesiancomplexregion (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.CartesianComplexRegion", false]], "casoratian() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.casoratian", false]], "cast_check() (sympy.codegen.ast.type method)": [[69, "sympy.codegen.ast.Type.cast_check", false]], "cast_nocheck (sympy.codegen.ast.floatbasetype attribute)": [[69, "sympy.codegen.ast.FloatBaseType.cast_nocheck", false]], "cast_nocheck() (sympy.codegen.ast.floattype method)": [[69, "sympy.codegen.ast.FloatType.cast_nocheck", false]], "catalan (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Catalan", false]], "catalan (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.catalan", false]], "category (class in sympy.categories)": [[68, "sympy.categories.Category", false]], "cauchy() (in module sympy.stats)": [[241, "sympy.stats.Cauchy", false]], "cauchy_lower_bound() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.cauchy_lower_bound", false]], "cauchy_upper_bound() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.cauchy_upper_bound", false]], "cbrt (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.Cbrt", false]], "cbrt() (in module sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.cbrt", false]], "ccode() (in module sympy.printing.c)": [[221, "sympy.printing.c.ccode", false]], "ccodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.CCodeGen", false]], "ceiling (class in sympy.functions.elementary.integers)": [[94, "sympy.functions.elementary.integers.ceiling", false]], "center (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.center", false]], "center (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.center", false]], "center() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.center", false]], "center_of_mass() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.center_of_mass", false]], "central_inertia (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.central_inertia", false]], "central_inertia (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.central_inertia", false]], "centralizer() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.centralizer", false]], "centralmoment (class in sympy.stats)": [[241, "sympy.stats.CentralMoment", false]], "centroid (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.centroid", false]], "centroid (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.centroid", false]], "centroid() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.centroid", false]], "cg (class in sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.CG", false]], "cg_simp() (in module sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.cg_simp", false]], "cgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.CGate", false]], "cgates (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.CGateS", false]], "change_index() (sympy.concrete.expr_with_intlimits.exprwithintlimits method)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.change_index", false]], "change_member_label() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.change_member_label", false]], "change_node_label() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.change_node_label", false]], "change_support() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.change_support", false]], "characteristic() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.characteristic", false]], "characteristic() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.characteristic", false]], "characteristiccurvecollection (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.CharacteristicCurveCollection", false]], "characteristiccurvefunction (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.CharacteristicCurveFunction", false]], "charpoly() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.charpoly", false]], "charpoly() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.charpoly", false]], "charpoly() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.charpoly", false]], "charpoly() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly", false]], "charpoly() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.charpoly", false]], "charpoly_base() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly_base", false]], "charpoly_berk() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly_berk", false]], "charpoly_factor_blocks() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly_factor_blocks", false]], "charpoly_factor_list() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly_factor_list", false]], "chebyshevt (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.chebyshevt", false]], "chebyshevt_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.chebyshevt_poly", false]], "chebyshevt_root (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.chebyshevt_root", false]], "chebyshevu (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.chebyshevu", false]], "chebyshevu_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.chebyshevu_poly", false]], "chebyshevu_root (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.chebyshevu_root", false]], "check_and_join() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.check_and_join", false]], "check_output() (sympy.testing.runtests.sympyoutputchecker method)": [[252, "sympy.testing.runtests.SymPyOutputChecker.check_output", false]], "checkinfsol() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.checkinfsol", false]], "checkodesol() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.checkodesol", false]], "checkpdesol() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.checkpdesol", false]], "checksol() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.checksol", false]], "chi (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Chi", false]], "chi() (in module sympy.stats)": [[241, "sympy.stats.Chi", false]], "child (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.child", false]], "child_axis (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.child_axis", false]], "child_point (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.child_point", false]], "chinoncentral() (in module sympy.stats)": [[241, "sympy.stats.ChiNoncentral", false]], "chisquared() (in module sympy.stats)": [[241, "sympy.stats.ChiSquared", false]], "cholesky() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.cholesky", false]], "cholesky() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cholesky", false]], "cholesky_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cholesky_solve", false]], "choose_domain() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.choose_domain", false]], "ci (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Ci", false]], "circle (class in sympy.geometry.ellipse)": [[98, "sympy.geometry.ellipse.Circle", false]], "circuit_plot() (in module sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.circuit_plot", false]], "circuitplot (class in sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot", false]], "circumcenter (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.circumcenter", false]], "circumcenter (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.circumcenter", false]], "circumcircle (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.circumcircle", false]], "circumcircle (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.circumcircle", false]], "circumference (sympy.geometry.ellipse.circle property)": [[98, "sympy.geometry.ellipse.Circle.circumference", false]], "circumference (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.circumference", false]], "circumradius (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.circumradius", false]], "circumradius (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.circumradius", false]], "class_key() (sympy.core.basic.basic class method)": [[88, "sympy.core.basic.Basic.class_key", false]], "classify_diop() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.classify_diop", false]], "classify_ode() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.classify_ode", false]], "classify_pde() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.classify_pde", false]], "clear() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.clear", false]], "clear_cache() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.clear_cache", false]], "clear_denoms() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.clear_denoms", false]], "clear_denoms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.clear_denoms", false]], "clear_denoms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.clear_denoms", false]], "clear_denoms_rowwise() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.clear_denoms_rowwise", false]], "clear_loads() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.clear_loads", false]], "clebsch_gordan() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.clebsch_gordan", false]], "clone() (sympy.polys.polyoptions.options method)": [[214, "sympy.polys.polyoptions.Options.clone", false]], "closing_angle() (sympy.geometry.line.ray2d method)": [[101, "sympy.geometry.line.Ray2D.closing_angle", false]], "closure (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.closure", false]], "cmod (class in sympy.physics.quantum.shor)": [[187, "sympy.physics.quantum.shor.CMod", false]], "cmoment() (in module sympy.stats)": [[241, "sympy.stats.cmoment", false]], "cmplx (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.cmplx", false]], "cnot (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.CNOT", false]], "cnotgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.CNotGate", false]], "code generation": [[15, "term-Code-Generation", true]], "codeblock (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.CodeBlock", false]], "codegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.CodeGen", false]], "codegen() (in module sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.codegen", false]], "codeprinter (class in sympy.printing.codeprinter)": [[221, "sympy.printing.codeprinter.CodePrinter", false]], "codewrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.CodeWrapper", false]], "codomain (sympy.categories.compositemorphism property)": [[68, "sympy.categories.CompositeMorphism.codomain", false]], "codomain (sympy.categories.morphism property)": [[68, "sympy.categories.Morphism.codomain", false]], "coeff() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.coeff", false]], "coeff() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.coeff", false]], "coeff() (sympy.series.sequences.seqbase method)": [[227, "sympy.series.sequences.SeqBase.coeff", false]], "coeff_bell() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.coeff_bell", false]], "coeff_monomial() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.coeff_monomial", false]], "coeff_mul() (sympy.series.sequences.emptysequence method)": [[227, "sympy.series.sequences.EmptySequence.coeff_mul", false]], "coeff_mul() (sympy.series.sequences.seqbase method)": [[227, "sympy.series.sequences.SeqBase.coeff_mul", false]], "coeff_mul() (sympy.series.sequences.seqformula method)": [[227, "sympy.series.sequences.SeqFormula.coeff_mul", false]], "coeff_mul() (sympy.series.sequences.seqper method)": [[227, "sympy.series.sequences.SeqPer.coeff_mul", false]], "coeff_search() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.coeff_search", false]], "coeff_wrt() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.coeff_wrt", false]], "coefficients (sympy.geometry.line.line2d property)": [[101, "sympy.geometry.line.Line2D.coefficients", false]], "coeffs() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.coeffs", false]], "coeffs() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.coeffs", false]], "coeffs() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.coeffs", false]], "coeffs() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.coeffs", false]], "coercionfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.CoercionFailed", false]], "cofactor() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cofactor", false]], "cofactor_matrix() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cofactor_matrix", false]], "cofactors() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.cofactors", false]], "cofactors() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.cofactors", false]], "cofactors() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.cofactors", false]], "cofactors() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.cofactors", false]], "cofactors() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.cofactors", false]], "coherent_state() (in module sympy.physics.qho_1d)": [[167, "sympy.physics.qho_1d.coherent_state", false]], "coin() (in module sympy.stats)": [[241, "sympy.stats.Coin", false]], "col() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.col", false]], "col_del() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.col_del", false]], "col_insert() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.col_insert", false]], "col_join() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.col_join", false]], "collect() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.collect", false]], "collect() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.collect", false]], "collect_const() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.collect_const", false]], "collect_sqrt() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.collect_sqrt", false]], "column() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.column", false]], "columnspace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.columnspace", false]], "columnspace() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.columnspace", false]], "comb_explicit_rhs (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.comb_explicit_rhs", false]], "comb_implicit_mat (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.comb_implicit_mat", false]], "comb_implicit_rhs (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.comb_implicit_rhs", false]], "combsimp() (in module sympy.simplify.combsimp)": [[233, "sympy.simplify.combsimp.combsimp", false]], "combsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.combsimp", false]], "comm_i2symbol() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.comm_i2symbol", false]], "comm_symbols2i() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.comm_symbols2i", false]], "commaoperator (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.CommaOperator", false]], "comment (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Comment", false]], "common_prefix() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.common_prefix", false]], "common_suffix() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.common_suffix", false]], "communication_classes() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.communication_classes", false]], "commutative": [[88, "term-commutative", true]], "commutative_diagrams (sympy.categories.category property)": [[68, "sympy.categories.Category.commutative_diagrams", false]], "commutativepredicate (class in sympy.assumptions.predicates.common)": [[65, "sympy.assumptions.predicates.common.CommutativePredicate", false]], "commutator (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Commutator", false]], "commutator (class in sympy.physics.quantum.commutator)": [[172, "sympy.physics.quantum.commutator.Commutator", false]], "commutator (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.Commutator", false]], "commutator() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.commutator", false]], "commutator() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.commutator", false]], "commutes_with() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.commutes_with", false]], "commutes_with() (sympy.tensor.tensor.tensorhead method)": [[247, "sympy.tensor.tensor.TensorHead.commutes_with", false]], "companion() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.companion", false]], "companionmatrix (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.CompanionMatrix", false]], "compare() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.compare", false]], "compare() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.compare", false]], "complement (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Complement", false]], "complement() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.complement", false]], "complex": [[88, "term-complex", true]], "complexelementspredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.ComplexElementsPredicate", false]], "complexes (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Complexes", false]], "complexfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.ComplexField", false]], "complexinfinity (class in sympy.core.numbers)": [[88, "sympy.core.numbers.ComplexInfinity", false]], "complexpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.ComplexPredicate", false]], "complexregion (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.ComplexRegion", false]], "complexrootof (class in sympy.polys.rootoftools)": [[217, "sympy.polys.rootoftools.ComplexRootOf", false]], "complexspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.ComplexSpace", false]], "complextype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.ComplexType", false]], "components (sympy.categories.compositemorphism property)": [[68, "sympy.categories.CompositeMorphism.components", false]], "components (sympy.vector.dyadic.dyadic property)": [[265, "sympy.vector.dyadic.Dyadic.components", false]], "components (sympy.vector.vector.vector property)": [[265, "sympy.vector.vector.Vector.components", false]], "components() (in module sympy.integrals.heurisch)": [[115, "sympy.integrals.heurisch.components", false]], "compose() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.compose", false]], "compose() (sympy.categories.morphism method)": [[68, "sympy.categories.Morphism.compose", false]], "compose() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.compose", false]], "compose() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.compose", false]], "compose() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.compose", false]], "compose() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.compose", false]], "composite": [[88, "term-composite", true]], "composite() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.composite", false]], "compositedomain (class in sympy.polys.domains.compositedomain)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain", false]], "compositemorphism (class in sympy.categories)": [[68, "sympy.categories.CompositeMorphism", false]], "compositepi() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.compositepi", false]], "compositepredicate (class in sympy.assumptions.predicates.ntheory)": [[65, "sympy.assumptions.predicates.ntheory.CompositePredicate", false]], "composition() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.composition", false]], "composition_series() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.composition_series", false]], "compounddistribution (class in sympy.stats.compound_rv)": [[241, "sympy.stats.compound_rv.CompoundDistribution", false]], "computationfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.ComputationFailed", false]], "compute_explicit_form() (sympy.physics.mechanics.system.symbolicsystem method)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.compute_explicit_form", false]], "compute_fps() (in module sympy.series.formal)": [[223, "sympy.series.formal.compute_fps", false]], "compute_leading_term() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.compute_leading_term", false]], "compute_m_ybar() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.compute_m_ybar", false]], "conclusions (sympy.categories.diagram property)": [[68, "sympy.categories.Diagram.conclusions", false]], "cond (sympy.functions.elementary.piecewise.exprcondpair property)": [[94, "sympy.functions.elementary.piecewise.ExprCondPair.cond", false]], "condition_number() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.condition_number", false]], "conditionaldomain (class in sympy.stats.rv)": [[241, "sympy.stats.rv.ConditionalDomain", false]], "conditionset (class in sympy.sets.conditionset)": [[229, "sympy.sets.conditionset.ConditionSet", false]], "conjugacy_class() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.conjugacy_class", false]], "conjugacy_classes() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.conjugacy_classes", false]], "conjugate (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.conjugate", false]], "conjugate (sympy.combinatorics.partitions.integerpartition property)": [[77, "sympy.combinatorics.partitions.IntegerPartition.conjugate", false]], "conjugate() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.conjugate", false]], "conjugate() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.conjugate", false]], "conjugate_gauss_beams() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.conjugate_gauss_beams", false]], "connected_components() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.connected_components", false]], "connected_components() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.connected_components", false]], "connected_components_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.connected_components_decomposition", false]], "conserve_mpmath_dps() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.conserve_mpmath_dps", false]], "const() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.const", false]], "constant_renumber() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.constant_renumber", false]], "constant_symbols() (sympy.physics.mechanics.system.symbolicsystem method)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.constant_symbols", false]], "constants (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.constants", false]], "constants (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.constants", false]], "constants (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.constants", false]], "constants (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.constants", false]], "constantsimp() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.constantsimp", false]], "construct_c() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.construct_c", false]], "construct_d() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.construct_d", false]], "construct_domain() (in module sympy.polys.constructor)": [[217, "sympy.polys.constructor.construct_domain", false]], "contains (class in sympy.sets.conditionset)": [[229, "sympy.sets.conditionset.Contains", false]], "contains() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.contains", false]], "contains() (sympy.geometry.line.line method)": [[101, "sympy.geometry.line.Line.contains", false]], "contains() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.contains", false]], "contains() (sympy.geometry.line.ray method)": [[101, "sympy.geometry.line.Ray.contains", false]], "contains() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.contains", false]], "contains() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.contains", false]], "contains() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.contains", false]], "contains() (sympy.polys.polytools.groebnerbasis method)": [[217, "sympy.polys.polytools.GroebnerBasis.contains", false]], "contains() (sympy.series.order.order method)": [[228, "sympy.series.order.Order.contains", false]], "contains() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.contains", false]], "content() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.content", false]], "content() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.content", false]], "content() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.content", false]], "content() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.content", false]], "content() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.content", false]], "continued_fraction() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction", false]], "continued_fraction_convergents() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction_convergents", false]], "continued_fraction_iterator() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction_iterator", false]], "continued_fraction_periodic() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction_periodic", false]], "continued_fraction_reduce() (in module sympy.ntheory.continued_fraction)": [[128, "sympy.ntheory.continued_fraction.continued_fraction_reduce", false]], "continuetoken (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.ContinueToken", false]], "continuous_domain() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.continuous_domain", false]], "continuousdomain (class in sympy.stats.crv)": [[241, "sympy.stats.crv.ContinuousDomain", false]], "continuousmarkovchain (class in sympy.stats)": [[241, "sympy.stats.ContinuousMarkovChain", false]], "continuouspspace (class in sympy.stats.crv)": [[241, "sympy.stats.crv.ContinuousPSpace", false]], "continuousrv() (in module sympy.stats)": [[241, "sympy.stats.ContinuousRV", false]], "contract_metric() (sympy.tensor.tensor.tensadd method)": [[247, "sympy.tensor.tensor.TensAdd.contract_metric", false]], "contract_metric() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.contract_metric", false]], "contraction() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.contraction", false]], "control_line() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.control_line", false]], "control_point() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.control_point", false]], "controls (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.controls", false]], "controls (sympy.physics.quantum.gate.cnotgate property)": [[175, "sympy.physics.quantum.gate.CNotGate.controls", false]], "convergence_statement (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.convergence_statement", false]], "convert() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.convert", false]], "convert() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.convert", false]], "convert() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.convert", false]], "convert() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.convert", false]], "convert() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.convert", false]], "convert() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.convert", false]], "convert() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.convert", false]], "convert_from() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.convert_from", false]], "convert_to() (in module sympy.physics.units.util)": [[198, "sympy.physics.units.util.convert_to", false]], "convert_to() (sympy.physics.units.quantities.quantity method)": [[198, "sympy.physics.units.quantities.Quantity.convert_to", false]], "convert_to() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.convert_to", false]], "convert_to() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.convert_to", false]], "convert_to() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.convert_to", false]], "convert_to_c() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.convert_to_c", false]], "convert_to_expr() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.convert_to_expr", false]], "convert_to_fortran() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.convert_to_fortran", false]], "convert_to_native_paths() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.convert_to_native_paths", false]], "convert_to_python() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.convert_to_python", false]], "convert_xor() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.convert_xor", false]], "convex_hull() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.convex_hull", false]], "convolution() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution", false]], "convolution_fft() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution_fft", false]], "convolution_fwht() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution_fwht", false]], "convolution_ntt() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution_ntt", false]], "convolution_subset() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.convolution_subset", false]], "coord_function() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.coord_function", false]], "coord_functions() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.coord_functions", false]], "coord_tuple_transform_to() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.coord_tuple_transform_to", false]], "coordinates (sympy.geometry.point.point2d property)": [[103, "sympy.geometry.point.Point2D.coordinates", false]], "coordinates (sympy.geometry.point.point3d property)": [[103, "sympy.geometry.point.Point3D.coordinates", false]], "coordinates (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.coordinates", false]], "coordinates (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.coordinates", false]], "coordinatesym (class in sympy.physics.vector.frame)": [[200, "sympy.physics.vector.frame.CoordinateSym", false]], "coordinatesymbol (class in sympy.diffgeom)": [[90, "sympy.diffgeom.CoordinateSymbol", false]], "coords() (sympy.diffgeom.point method)": [[90, "sympy.diffgeom.Point.coords", false]], "coordsys3d (class in sympy.vector.coordsysrect)": [[265, "sympy.vector.coordsysrect.CoordSys3D", false]], "coordsystem (class in sympy.diffgeom)": [[90, "sympy.diffgeom.CoordSystem", false]], "copy() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.copy", false]], "copy() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.copy", false]], "copy() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.copy", false]], "copy() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.copy", false]], "copy() (sympy.series.gruntz.subsset method)": [[228, "sympy.series.gruntz.SubsSet.copy", false]], "core": [[15, "term-Core", true]], "core() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.core", false]], "cornacchia() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.cornacchia", false]], "corners (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.corners", false]], "correlation() (in module sympy.stats)": [[241, "sympy.stats.correlation", false]], "cos (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.cos", false]], "coset_factor() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_factor", false]], "coset_rank() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_rank", false]], "coset_table() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_table", false]], "coset_transversal() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_transversal", false]], "coset_unrank() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.coset_unrank", false]], "cosh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.cosh", false]], "cosine_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.cosine_transform", false]], "cosinetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.CosineTransform", false]], "coskewness() (in module sympy.stats)": [[241, "sympy.stats.coskewness", false]], "cot (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.cot", false]], "coth (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.coth", false]], "could_extract_minus_sign() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.could_extract_minus_sign", false]], "count() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.count", false]], "count_complex_roots() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.count_complex_roots", false]], "count_digits() (in module sympy.ntheory.digits)": [[128, "sympy.ntheory.digits.count_digits", false]], "count_ops() (in module sympy.core.function)": [[88, "sympy.core.function.count_ops", false]], "count_ops() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.count_ops", false]], "count_partitions() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.count_partitions", false]], "count_real_roots() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.count_real_roots", false]], "count_roots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.count_roots", false]], "count_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.count_roots", false]], "couple() (in module sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.couple", false]], "covarderivativeop (class in sympy.diffgeom)": [[90, "sympy.diffgeom.CovarDerivativeOp", false]], "covariance (class in sympy.stats)": [[241, "sympy.stats.Covariance", false]], "covariance() (in module sympy.stats)": [[241, "sympy.stats.covariance", false]], "covering_product() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.covering_product", false]], "coxeter_diagram() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.coxeter_diagram", false]], "cramer_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cramer_solve", false]], "create_expand_pow_optimization() (in module sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.create_expand_pow_optimization", false]], "create_new() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.create_new", false]], "createboson (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.CreateBoson", false]], "createcgate() (in module sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.CreateCGate", false]], "createfermion (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.CreateFermion", false]], "critical_angle() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.critical_angle", false]], "cross() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.cross", false]], "cross() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.cross", false]], "cross() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.cross", false]], "cross() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.cross", false]], "cross() (sympy.vector.deloperator.del method)": [[265, "sympy.vector.deloperator.Del.cross", false]], "cross() (sympy.vector.dyadic.dyadic method)": [[265, "sympy.vector.dyadic.Dyadic.cross", false]], "cross() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.cross", false]], "cross_section (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.cross_section", false]], "crosscovariancematrix (class in sympy.stats)": [[241, "sympy.stats.CrossCovarianceMatrix", false]], "crt() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.crt", false]], "crt1() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.crt1", false]], "crt2() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.crt2", false]], "csc (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.csc", false]], "csch (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.csch", false]], "cse() (in module sympy.simplify.cse_main)": [[233, "sympy.simplify.cse_main.cse", false]], "cse() (sympy.codegen.ast.codeblock method)": [[69, "sympy.codegen.ast.CodeBlock.cse", false]], "cubicthue (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.CubicThue", false]], "curl() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.curl", false]], "curl() (in module sympy.vector)": [[268, "sympy.vector.curl", false]], "current (sympy.combinatorics.graycode.graycode property)": [[72, "sympy.combinatorics.graycode.GrayCode.current", false]], "curve (class in sympy.geometry.curve)": [[97, "sympy.geometry.curve.Curve", false]], "curvedmirror (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.CurvedMirror", false]], "curvedrefraction (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.CurvedRefraction", false]], "curves() (sympy.physics.biomechanics.musculotendon.musculotendonbase method)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.curves", false]], "cut_section() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.cut_section", false]], "cxx11codeprinter (class in sympy.printing.cxx)": [[221, "sympy.printing.cxx.CXX11CodePrinter", false]], "cxx98codeprinter (class in sympy.printing.cxx)": [[221, "sympy.printing.cxx.CXX98CodePrinter", false]], "cxxcode() (in module sympy.printing.codeprinter)": [[221, "sympy.printing.codeprinter.cxxcode", false]], "cycle (class in sympy.combinatorics.permutations)": [[80, "sympy.combinatorics.permutations.Cycle", false]], "cycle_length() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.cycle_length", false]], "cycle_list() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.cycle_list", false]], "cycle_structure (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.cycle_structure", false]], "cycles (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.cycles", false]], "cyclic() (sympy.combinatorics.generators method)": [[80, "sympy.combinatorics.generators.cyclic", false]], "cyclic_form (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.cyclic_form", false]], "cyclic_form (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.cyclic_form", false]], "cyclicgroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.CyclicGroup", false]], "cyclotomic_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.cyclotomic_field", false]], "cyclotomic_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.cyclotomic_poly", false]], "cylindricaljoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint", false]], "cythoncodewrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.CythonCodeWrapper", false]], "d (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.D", false]], "d (sympy.physics.optics.gaussopt.raytransfermatrix property)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix.D", false]], "d() (sympy.physics.quantum.spin.rotation class method)": [[188, "sympy.physics.quantum.spin.Rotation.D", false], [188, "sympy.physics.quantum.spin.Rotation.d", false]], "dagger (class in sympy.physics.quantum.dagger)": [[174, "sympy.physics.quantum.dagger.Dagger", false]], "dagger (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.Dagger", false]], "dagum() (in module sympy.stats)": [[241, "sympy.stats.Dagum", false]], "damping (sympy.physics.mechanics.actuator.lineardamper property)": [[148, "sympy.physics.mechanics.actuator.LinearDamper.damping", false]], "datatype (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.DataType", false]], "davis() (in module sympy.stats)": [[241, "sympy.stats.Davis", false]], "dc_gain() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.dc_gain", false]], "dcm() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.dcm", false]], "dcm() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.dcm", false]], "ddm (class in sympy.polys.matrices.ddm)": [[210, "sympy.polys.matrices.ddm.DDM", false]], "ddm_berk() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_berk", false]], "ddm_iadd() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_iadd", false]], "ddm_idet() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_idet", false]], "ddm_iinv() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_iinv", false]], "ddm_ilu() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_ilu", false]], "ddm_ilu_solve() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_ilu_solve", false]], "ddm_ilu_split() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_ilu_split", false]], "ddm_imatmul() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_imatmul", false]], "ddm_imul() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_imul", false]], "ddm_ineg() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_ineg", false]], "ddm_irmul() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_irmul", false]], "ddm_irref() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_irref", false]], "ddm_irref_den() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_irref_den", false]], "ddm_isub() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_isub", false]], "ddm_transpose() (in module sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.ddm_transpose", false]], "deactivation_time_constant (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.deactivation_time_constant", false]], "debug() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.debug", false]], "debug_decorator() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.debug_decorator", false]], "debugf() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.debugf", false]], "decimal_dig (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.decimal_dig", false]], "decipher_affine() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_affine", false]], "decipher_atbash() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_atbash", false]], "decipher_bifid() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_bifid", false]], "decipher_bifid5() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_bifid5", false]], "decipher_bifid6() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_bifid6", false]], "decipher_elgamal() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_elgamal", false]], "decipher_gm() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_gm", false]], "decipher_hill() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_hill", false]], "decipher_kid_rsa() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_kid_rsa", false]], "decipher_railfence() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_railfence", false]], "decipher_rot13() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_rot13", false]], "decipher_rsa() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_rsa", false]], "decipher_shift() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_shift", false]], "decipher_vigenere() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decipher_vigenere", false]], "declaration (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Declaration", false]], "decode_morse() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.decode_morse", false]], "decompose() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.decompose", false]], "decompose() (sympy.physics.quantum.gate.cgate method)": [[175, "sympy.physics.quantum.gate.CGate.decompose", false]], "decompose() (sympy.physics.quantum.gate.swapgate method)": [[175, "sympy.physics.quantum.gate.SwapGate.decompose", false]], "decompose() (sympy.physics.quantum.qft.iqft method)": [[184, "sympy.physics.quantum.qft.IQFT.decompose", false]], "decompose() (sympy.physics.quantum.qft.qft method)": [[184, "sympy.physics.quantum.qft.QFT.decompose", false]], "decompose() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.decompose", false]], "decompose() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.decompose", false]], "decompose() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.decompose", false]], "deduced() (sympy.codegen.ast.variable class method)": [[69, "sympy.codegen.ast.Variable.deduced", false]], "default_sort_key() (in module sympy.core.sorting)": [[88, "sympy.core.sorting.default_sort_key", false]], "deflate() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.deflate", false]], "deflate() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.deflate", false]], "deflection() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.deflection", false]], "deflection() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.deflection", false]], "deflection_jumps (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.deflection_jumps", false]], "degree (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.degree", false]], "degree() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.degree", false]], "degree() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.degree", false]], "degree() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.degree", false]], "degree() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.degree", false]], "degree_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.degree_list", false]], "degree_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.degree_list", false]], "degree_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.degree_list", false]], "degrees() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.degrees", false]], "del (class in sympy.vector.deloperator)": [[265, "sympy.vector.deloperator.Del", false]], "delete_doubles() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.delete_doubles", false]], "delta (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.delta", false]], "deltaintegrate() (in module sympy.integrals.deltafunctions)": [[115, "sympy.integrals.deltafunctions.deltaintegrate", false]], "den (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.den", false]], "den (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.den", false]], "denom() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.denom", false]], "denom() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.denom", false]], "denom() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.denom", false]], "denom() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.denom", false]], "denom() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.denom", false]], "denom() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.denom", false]], "denom() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.denom", false]], "denom() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.denom", false]], "denom() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.denom", false]], "densematrix (class in sympy.matrices.dense)": [[119, "sympy.matrices.dense.DenseMatrix", false]], "density() (in module sympy.stats)": [[241, "sympy.stats.density", false]], "deprecated() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.deprecated", false]], "depth() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.depth", false]], "derivative (class in sympy.core.function)": [[88, "sympy.core.function.Derivative", false]], "derive_by_array() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.derive_by_array", false]], "derived_series() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.derived_series", false]], "derived_subgroup() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.derived_subgroup", false]], "descent() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.descent", false]], "descents() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.descents", false]], "det() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.det", false]], "det() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.det", false]], "det() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.det", false]], "det() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.det", false]], "det() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.det", false]], "det_lu_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.det_LU_decomposition", false]], "deviation() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.deviation", false]], "dfm (class in sympy.polys.matrices._dfm)": [[210, "sympy.polys.matrices._dfm.DFM", false]], "dh_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.dh_private_key", false]], "dh_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.dh_public_key", false]], "dh_shared_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.dh_shared_key", false]], "diag() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.diag", false]], "diag() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diag", false]], "diag() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.diag", false]], "diag() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.diag", false]], "diag() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.diag", false]], "diagonal() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diagonal", false]], "diagonal() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.diagonal", false]], "diagonal() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.diagonal", false]], "diagonal() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.diagonal", false]], "diagonal() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.diagonal", false]], "diagonal_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diagonal_solve", false]], "diagonalize() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diagonalize", false]], "diagonalpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.DiagonalPredicate", false]], "diagram (class in sympy.categories)": [[68, "sympy.categories.Diagram", false]], "diagramgrid (class in sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.DiagramGrid", false]], "dict (class in sympy.core.containers)": [[88, "sympy.core.containers.Dict", false]], "dict_merge() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.dict_merge", false]], "die() (in module sympy.stats)": [[241, "sympy.stats.Die", false]], "diepspace (class in sympy.stats.frv_types)": [[241, "sympy.stats.frv_types.DiePSpace", false]], "diff() (in module sympy.core.function)": [[88, "sympy.core.function.diff", false]], "diff() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.diff", false]], "diff() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.diff", false]], "diff() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.diff", false]], "diff() (sympy.polys.fields.fracelement method)": [[212, "sympy.polys.fields.FracElement.diff", false]], "diff() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.diff", false]], "diff() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.diff", false]], "diff() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.diff", false]], "difference_delta() (in module sympy.series.limitseq)": [[226, "sympy.series.limitseq.difference_delta", false]], "differential (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Differential", false]], "differentialoperator (class in sympy.holonomic.holonomic)": [[111, "sympy.holonomic.holonomic.DifferentialOperator", false]], "differentialoperator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.DifferentialOperator", false]], "differentialoperatoralgebra (class in sympy.holonomic.holonomic)": [[111, "sympy.holonomic.holonomic.DifferentialOperatorAlgebra", false]], "differentialoperators() (in module sympy.holonomic.holonomic)": [[111, "sympy.holonomic.holonomic.DifferentialOperators", false]], "differentiate_finite() (in module sympy.calculus.finite_diff)": [[67, "sympy.calculus.finite_diff.differentiate_finite", false]], "dig (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.dig", false]], "digamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.digamma", false]], "digit_2txt (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.digit_2txt", false]], "digits() (in module sympy.ntheory.digits)": [[128, "sympy.ntheory.digits.digits", false]], "digits() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.digits", false]], "dihedral() (sympy.combinatorics.generators method)": [[80, "sympy.combinatorics.generators.dihedral", false]], "dihedralgroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.DihedralGroup", false]], "dim (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.dim", false]], "dim (sympy.physics.units.unitsystem.unitsystem property)": [[199, "sympy.physics.units.unitsystem.UnitSystem.dim", false]], "dim_can_vector() (sympy.physics.units.dimensions.dimensionsystem method)": [[193, "sympy.physics.units.dimensions.DimensionSystem.dim_can_vector", false]], "dim_handling() (in module sympy.printing.aesaracode)": [[221, "sympy.printing.aesaracode.dim_handling", false]], "dim_vector() (sympy.physics.units.dimensions.dimensionsystem method)": [[193, "sympy.physics.units.dimensions.DimensionSystem.dim_vector", false]], "dimension (class in sympy.physics.units.dimensions)": [[193, "sympy.physics.units.dimensions.Dimension", false]], "dimension (sympy.physics.quantum.hilbert.hilbertspace property)": [[177, "sympy.physics.quantum.hilbert.HilbertSpace.dimension", false]], "dimension() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.dimension", false]], "dimension() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.dimension", false]], "dimension() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.dimension", false]], "dimension() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.dimension", false]], "dimension() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.dimension", false]], "dimension() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.dimension", false]], "dimension() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.dimension", false]], "dimension() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.dimension", false]], "dimensionsystem (class in sympy.physics.units.dimensions)": [[193, "sympy.physics.units.dimensions.DimensionSystem", false]], "diop_bf_dn() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_bf_DN", false]], "diop_dn() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_DN", false]], "diop_general_pythagorean() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_general_pythagorean", false]], "diop_general_sum_of_even_powers() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_general_sum_of_even_powers", false]], "diop_general_sum_of_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_general_sum_of_squares", false]], "diop_linear() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_linear", false]], "diop_quadratic() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_quadratic", false]], "diop_solve() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_solve", false]], "diop_ternary_quadratic() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_ternary_quadratic", false]], "diop_ternary_quadratic_normal() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diop_ternary_quadratic_normal", false]], "diophantine() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.diophantine", false]], "diophantineequationtype (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.DiophantineEquationType", false]], "diophantinesolutionset (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.DiophantineSolutionSet", false]], "diracdelta (class in sympy.functions.special.delta_functions)": [[96, "sympy.functions.special.delta_functions.DiracDelta", false]], "direct_product() (sympy.tensor.tensor.tensorsymmetry class method)": [[247, "sympy.tensor.tensor.TensorSymmetry.direct_product", false]], "direction (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.direction", false]], "direction_cosine (sympy.geometry.line.linearentity3d property)": [[101, "sympy.geometry.line.LinearEntity3D.direction_cosine", false]], "direction_cosine() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.direction_cosine", false]], "direction_ratio (sympy.geometry.line.linearentity3d property)": [[101, "sympy.geometry.line.LinearEntity3D.direction_ratio", false]], "direction_ratio() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.direction_ratio", false]], "director_circle() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.director_circle", false]], "directproduct() (in module sympy.combinatorics.group_constructs)": [[73, "sympy.combinatorics.group_constructs.DirectProduct", false]], "directsumhilbertspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.DirectSumHilbertSpace", false]], "dirichlet_eta (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.dirichlet_eta", false]], "discard_before() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.discard_before", false]], "discrete_log() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.discrete_log", false]], "discretemarkovchain (class in sympy.stats)": [[241, "sympy.stats.DiscreteMarkovChain", false]], "discreteuniform() (in module sympy.stats)": [[241, "sympy.stats.DiscreteUniform", false]], "discriminant() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.discriminant", false]], "discriminant() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.discriminant", false]], "discriminant() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.discriminant", false]], "discriminant() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.discriminant", false]], "disjointunion (class in sympy.sets.sets)": [[229, "sympy.sets.sets.DisjointUnion", false]], "dispersion() (in module sympy.polys.dispersion)": [[217, "sympy.polys.dispersion.dispersion", false]], "dispersion() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.dispersion", false]], "dispersionset() (in module sympy.polys.dispersion)": [[217, "sympy.polys.dispersion.dispersionset", false]], "dispersionset() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.dispersionset", false]], "distance() (sympy.geometry.line.line method)": [[101, "sympy.geometry.line.Line.distance", false]], "distance() (sympy.geometry.line.line3d method)": [[101, "sympy.geometry.line.Line3D.distance", false]], "distance() (sympy.geometry.line.ray method)": [[101, "sympy.geometry.line.Ray.distance", false]], "distance() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.distance", false]], "distance() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.distance", false]], "distance() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.distance", false]], "distance() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.distance", false]], "distribute_and_over_or() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.distribute_and_over_or", false]], "distribute_or_over_and() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.distribute_or_over_and", false]], "distribute_xor_over_and() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.distribute_xor_over_and", false]], "div() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.div", false]], "div() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.div", false]], "div() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.div", false]], "div() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.div", false]], "div() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.div", false]], "div() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.div", false]], "div() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.div", false]], "div() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.div", false]], "div() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.div", false]], "divergence (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.divergence", false]], "divergence() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.divergence", false]], "divergence() (in module sympy.vector)": [[268, "sympy.vector.divergence", false]], "divisible() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.divisible", false]], "divisor_count() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.divisor_count", false]], "divisor_sigma (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.divisor_sigma", false]], "divisor_sigma() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.divisor_sigma", false]], "divisors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.divisors", false]], "dm() (in module sympy.polys.matrices.domainmatrix)": [[210, "sympy.polys.matrices.domainmatrix.DM", false]], "dmf (class in sympy.polys.polyclasses)": [[212, "sympy.polys.polyclasses.DMF", false]], "dmp (class in sympy.polys.polyclasses)": [[212, "sympy.polys.polyclasses.DMP", false]], "dmp_abs() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_abs", false]], "dmp_add() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_add", false]], "dmp_add_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_add_ground", false]], "dmp_add_mul() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_add_mul", false]], "dmp_add_term() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_add_term", false]], "dmp_apply_pairs() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_apply_pairs", false]], "dmp_cancel() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_cancel", false]], "dmp_clear_denoms() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_clear_denoms", false]], "dmp_compose() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_compose", false]], "dmp_content() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_content", false]], "dmp_convert() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_convert", false]], "dmp_copy() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_copy", false]], "dmp_deflate() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_deflate", false]], "dmp_degree() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_degree", false]], "dmp_degree_in() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_degree_in", false]], "dmp_degree_list() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_degree_list", false]], "dmp_diff() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_diff", false]], "dmp_diff_eval_in() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_diff_eval_in", false]], "dmp_diff_in() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_diff_in", false]], "dmp_discriminant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_discriminant", false]], "dmp_div() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_div", false]], "dmp_eject() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_eject", false]], "dmp_euclidean_prs() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_euclidean_prs", false]], "dmp_eval() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_eval", false]], "dmp_eval_in() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_eval_in", false]], "dmp_eval_tail() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_eval_tail", false]], "dmp_exclude() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_exclude", false]], "dmp_expand() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_expand", false]], "dmp_exquo() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_exquo", false]], "dmp_exquo_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_exquo_ground", false]], "dmp_ext_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_ext_factor", false]], "dmp_factor_list() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_factor_list", false]], "dmp_factor_list_include() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_factor_list_include", false]], "dmp_ff_div() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_ff_div", false]], "dmp_ff_prs_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_ff_prs_gcd", false]], "dmp_from_dict() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_from_dict", false]], "dmp_from_sympy() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_from_sympy", false]], "dmp_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_gcd", false]], "dmp_gcdex() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_gcdex", false]], "dmp_gf_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_gf_factor", false]], "dmp_gf_sqf_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_gf_sqf_list", false]], "dmp_gf_sqf_part() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_gf_sqf_part", false]], "dmp_gff_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_gff_list", false]], "dmp_ground() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground", false]], "dmp_ground_content() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_content", false]], "dmp_ground_extract() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_extract", false]], "dmp_ground_lc() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground_LC", false]], "dmp_ground_monic() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_monic", false]], "dmp_ground_nth() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground_nth", false]], "dmp_ground_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground_p", false]], "dmp_ground_primitive() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_primitive", false]], "dmp_ground_tc() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_ground_TC", false]], "dmp_ground_trunc() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_ground_trunc", false]], "dmp_grounds() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_grounds", false]], "dmp_half_gcdex() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_half_gcdex", false]], "dmp_include() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_include", false]], "dmp_inflate() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_inflate", false]], "dmp_inject() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_inject", false]], "dmp_inner_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_inner_gcd", false]], "dmp_inner_subresultants() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_inner_subresultants", false]], "dmp_integrate() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_integrate", false]], "dmp_integrate_in() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_integrate_in", false]], "dmp_invert() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_invert", false]], "dmp_irreducible_p() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_irreducible_p", false]], "dmp_l1_norm() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_l1_norm", false]], "dmp_lc() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_LC", false]], "dmp_lcm() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_lcm", false]], "dmp_lift() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_lift", false]], "dmp_list_terms() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_list_terms", false]], "dmp_max_norm() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_max_norm", false]], "dmp_mul() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_mul", false]], "dmp_mul_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_mul_ground", false]], "dmp_mul_term() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_mul_term", false]], "dmp_multi_deflate() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_multi_deflate", false]], "dmp_neg() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_neg", false]], "dmp_negative_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_negative_p", false]], "dmp_nest() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_nest", false]], "dmp_norm() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_norm", false]], "dmp_normal() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_normal", false]], "dmp_nth() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_nth", false]], "dmp_one() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_one", false]], "dmp_one_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_one_p", false]], "dmp_pdiv() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_pdiv", false]], "dmp_permute() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_permute", false]], "dmp_pexquo() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_pexquo", false]], "dmp_positive_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_positive_p", false]], "dmp_pow() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_pow", false]], "dmp_pquo() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_pquo", false]], "dmp_prem() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_prem", false]], "dmp_primitive() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_primitive", false]], "dmp_primitive_prs() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_primitive_prs", false]], "dmp_prs_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_prs_resultant", false]], "dmp_qq_collins_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_qq_collins_resultant", false]], "dmp_qq_heu_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_qq_heu_gcd", false]], "dmp_qq_i_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_qq_i_factor", false]], "dmp_quo() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_quo", false]], "dmp_quo_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_quo_ground", false]], "dmp_raise() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_raise", false]], "dmp_rem() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_rem", false]], "dmp_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_resultant", false]], "dmp_revert() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_revert", false]], "dmp_rr_div() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_rr_div", false]], "dmp_rr_prs_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_rr_prs_gcd", false]], "dmp_slice() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_slice", false]], "dmp_sqf_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_list", false]], "dmp_sqf_list_include() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_list_include", false]], "dmp_sqf_norm() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_norm", false]], "dmp_sqf_p() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_p", false]], "dmp_sqf_part() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dmp_sqf_part", false]], "dmp_sqr() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sqr", false]], "dmp_strip() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_strip", false]], "dmp_sub() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sub", false]], "dmp_sub_ground() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sub_ground", false]], "dmp_sub_mul() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sub_mul", false]], "dmp_sub_term() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dmp_sub_term", false]], "dmp_subresultants() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_subresultants", false]], "dmp_swap() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_swap", false]], "dmp_tc() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_TC", false]], "dmp_terms_gcd() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_terms_gcd", false]], "dmp_to_dict() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_to_dict", false]], "dmp_to_tuple() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_to_tuple", false]], "dmp_trial_division() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_trial_division", false]], "dmp_true_lt() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_true_LT", false]], "dmp_trunc() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dmp_trunc", false]], "dmp_validate() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_validate", false]], "dmp_zero() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_zero", false]], "dmp_zero_p() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_zero_p", false]], "dmp_zeros() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dmp_zeros", false]], "dmp_zz_collins_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_zz_collins_resultant", false]], "dmp_zz_diophantine() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_diophantine", false]], "dmp_zz_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_factor", false]], "dmp_zz_heu_gcd() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_zz_heu_gcd", false]], "dmp_zz_i_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_i_factor", false]], "dmp_zz_mignotte_bound() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_mignotte_bound", false]], "dmp_zz_modular_resultant() (in module sympy.polys.euclidtools)": [[214, "sympy.polys.euclidtools.dmp_zz_modular_resultant", false]], "dmp_zz_wang() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang", false]], "dmp_zz_wang_hensel_lifting() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang_hensel_lifting", false]], "dmp_zz_wang_lead_coeffs() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang_lead_coeffs", false]], "dmp_zz_wang_non_divisors() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang_non_divisors", false]], "dmp_zz_wang_test_points() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dmp_zz_wang_test_points", false]], "do (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Do", false]], "do_subs() (sympy.series.gruntz.subsset method)": [[228, "sympy.series.gruntz.SubsSet.do_subs", false]], "doctest() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.doctest", false]], "doctest_depends_on() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.doctest_depends_on", false]], "doit() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.doit", false]], "doit() (sympy.functions.elementary.piecewise.piecewise method)": [[94, "sympy.functions.elementary.piecewise.Piecewise.doit", false]], "doit() (sympy.integrals.integrals.integral method)": [[115, "sympy.integrals.integrals.Integral.doit", false]], "doit() (sympy.integrals.transforms.integraltransform method)": [[115, "sympy.integrals.transforms.IntegralTransform.doit", false]], "doit() (sympy.integrals.transforms.inverselaplacetransform method)": [[115, "sympy.integrals.transforms.InverseLaplaceTransform.doit", false]], "doit() (sympy.integrals.transforms.laplacetransform method)": [[115, "sympy.integrals.transforms.LaplaceTransform.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcelengthactivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.doit", false]], "doit() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.doit", false]], "doit() (sympy.physics.control.lti.feedback method)": [[144, "sympy.physics.control.lti.Feedback.doit", false]], "doit() (sympy.physics.control.lti.mimofeedback method)": [[144, "sympy.physics.control.lti.MIMOFeedback.doit", false]], "doit() (sympy.physics.control.lti.mimoparallel method)": [[144, "sympy.physics.control.lti.MIMOParallel.doit", false]], "doit() (sympy.physics.control.lti.mimoseries method)": [[144, "sympy.physics.control.lti.MIMOSeries.doit", false]], "doit() (sympy.physics.control.lti.parallel method)": [[144, "sympy.physics.control.lti.Parallel.doit", false]], "doit() (sympy.physics.control.lti.series method)": [[144, "sympy.physics.control.lti.Series.doit", false]], "doit() (sympy.physics.quantum.anticommutator.anticommutator method)": [[168, "sympy.physics.quantum.anticommutator.AntiCommutator.doit", false]], "doit() (sympy.physics.quantum.commutator.commutator method)": [[172, "sympy.physics.quantum.commutator.Commutator.doit", false]], "doit() (sympy.physics.secondquant.commutator method)": [[191, "sympy.physics.secondquant.Commutator.doit", false]], "doit() (sympy.physics.secondquant.no method)": [[191, "sympy.physics.secondquant.NO.doit", false]], "doit() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.doit", false]], "doit() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.doit", false]], "doit() (sympy.series.limits.limit method)": [[228, "sympy.series.limits.Limit.doit", false]], "doit_numerically() (sympy.core.function.derivative method)": [[88, "sympy.core.function.Derivative.doit_numerically", false]], "domain (class in sympy.polys.domains.domain)": [[212, "sympy.polys.domains.domain.Domain", false]], "domain (sympy.categories.compositemorphism property)": [[68, "sympy.categories.CompositeMorphism.domain", false]], "domain (sympy.categories.morphism property)": [[68, "sympy.categories.Morphism.domain", false]], "domain (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.domain", false]], "domain_check() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.domain_check", false]], "domainelement (class in sympy.polys.domains.domainelement)": [[212, "sympy.polys.domains.domainelement.DomainElement", false]], "domainerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.DomainError", false]], "domainmatrix (class in sympy.polys.matrices.domainmatrix)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix", false]], "dominant() (in module sympy.series.limitseq)": [[226, "sympy.series.limitseq.dominant", false]], "doprint() (sympy.printing.aesaracode.aesaraprinter method)": [[221, "sympy.printing.aesaracode.AesaraPrinter.doprint", false]], "doprint() (sympy.printing.codeprinter.codeprinter method)": [[221, "sympy.printing.codeprinter.CodePrinter.doprint", false]], "doprint() (sympy.printing.mathml.mathmlprinterbase method)": [[221, "sympy.printing.mathml.MathMLPrinterBase.doprint", false]], "doprint() (sympy.printing.printer.printer method)": [[221, "sympy.printing.printer.Printer.doprint", false]], "dot() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.dot", false]], "dot() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.dot", false]], "dot() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.dot", false]], "dot() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.dot", false]], "dot() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.dot", false]], "dot() (sympy.vector.deloperator.del method)": [[265, "sympy.vector.deloperator.Del.dot", false]], "dot() (sympy.vector.dyadic.dyadic method)": [[265, "sympy.vector.dyadic.Dyadic.dot", false]], "dot() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.dot", false]], "dot_rot_grad_ynm() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.dot_rot_grad_Ynm", false]], "dotprint() (in module sympy.printing.dot)": [[221, "sympy.printing.dot.dotprint", false]], "double_coset_can_rep() (in module sympy.combinatorics.tensor_can)": [[84, "sympy.combinatorics.tensor_can.double_coset_can_rep", false]], "draw() (sympy.categories.diagram_drawing.xypicdiagramdrawer method)": [[68, "sympy.categories.diagram_drawing.XypicDiagramDrawer.draw", false]], "draw() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.draw", false]], "draw() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.draw", false]], "draw() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.draw", false]], "drop() (sympy.polys.domains.compositedomain.compositedomain method)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.drop", false]], "drop() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.drop", false]], "drop() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.drop", false]], "drop_to_ground() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.drop_to_ground", false]], "dsign (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.dsign", false]], "dsolve() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.dsolve", false]], "dsolve_system() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.dsolve_system", false]], "dt() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.dt", false]], "dt() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.dt", false]], "dtype (sympy.polys.agca.extensions.monogenicfiniteextension attribute)": [[208, "sympy.polys.agca.extensions.MonogenicFiniteExtension.dtype", false]], "dtype (sympy.polys.agca.modules.freemodule attribute)": [[208, "sympy.polys.agca.modules.FreeModule.dtype", false]], "dtype (sympy.polys.agca.modules.quotientmodule attribute)": [[208, "sympy.polys.agca.modules.QuotientModule.dtype", false]], "dtype (sympy.polys.domains.algebraicfield attribute)": [[212, "sympy.polys.domains.AlgebraicField.dtype", false]], "dtype (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.dtype", false]], "dtype (sympy.polys.domains.expressiondomain attribute)": [[212, "sympy.polys.domains.ExpressionDomain.dtype", false]], "dtype (sympy.polys.domains.gaussiandomains.gaussianintegerring attribute)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.dtype", false]], "dtype (sympy.polys.domains.gaussiandomains.gaussianrationalfield attribute)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.dtype", false]], "dual (sympy.physics.quantum.state.statebase property)": [[189, "sympy.physics.quantum.state.StateBase.dual", false]], "dual() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.dual", false]], "dual_class() (sympy.physics.quantum.state.statebase class method)": [[189, "sympy.physics.quantum.state.StateBase.dual_class", false]], "duffingspring (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.DuffingSpring", false]], "dummy": [[15, "term-Dummy", true]], "dummy (class in sympy.core.symbol)": [[88, "sympy.core.symbol.Dummy", false]], "dummy_eq() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.dummy_eq", false]], "dummywrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.DummyWrapper", false]], "dump_c() (sympy.utilities.autowrap.ufuncifycodewrapper method)": [[253, "sympy.utilities.autowrap.UfuncifyCodeWrapper.dump_c", false]], "dump_c() (sympy.utilities.codegen.ccodegen method)": [[254, "sympy.utilities.codegen.CCodeGen.dump_c", false]], "dump_code() (sympy.utilities.codegen.codegen method)": [[254, "sympy.utilities.codegen.CodeGen.dump_code", false]], "dump_f95() (sympy.utilities.codegen.fcodegen method)": [[254, "sympy.utilities.codegen.FCodeGen.dump_f95", false]], "dump_h() (sympy.utilities.codegen.ccodegen method)": [[254, "sympy.utilities.codegen.CCodeGen.dump_h", false]], "dump_h() (sympy.utilities.codegen.fcodegen method)": [[254, "sympy.utilities.codegen.FCodeGen.dump_h", false]], "dump_jl() (sympy.utilities.codegen.juliacodegen method)": [[254, "sympy.utilities.codegen.JuliaCodeGen.dump_jl", false]], "dump_m() (sympy.utilities.codegen.octavecodegen method)": [[254, "sympy.utilities.codegen.OctaveCodeGen.dump_m", false]], "dump_pyx() (sympy.utilities.autowrap.cythoncodewrapper method)": [[253, "sympy.utilities.autowrap.CythonCodeWrapper.dump_pyx", false]], "dump_rs() (sympy.utilities.codegen.rustcodegen method)": [[254, "sympy.utilities.codegen.RustCodeGen.dump_rs", false]], "dup_content() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_content", false]], "dup_cyclotomic_p() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_cyclotomic_p", false]], "dup_decompose() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_decompose", false]], "dup_ext_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_ext_factor", false]], "dup_extract() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_extract", false]], "dup_factor_list() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_factor_list", false]], "dup_factor_list_include() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_factor_list_include", false]], "dup_gf_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_gf_factor", false]], "dup_gf_sqf_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_gf_sqf_list", false]], "dup_gf_sqf_part() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_gf_sqf_part", false]], "dup_gff_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_gff_list", false]], "dup_irreducible_p() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_irreducible_p", false]], "dup_lshift() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dup_lshift", false]], "dup_mirror() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_mirror", false]], "dup_monic() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_monic", false]], "dup_primitive() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_primitive", false]], "dup_qq_i_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_qq_i_factor", false]], "dup_random() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dup_random", false]], "dup_real_imag() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_real_imag", false]], "dup_reverse() (in module sympy.polys.densebasic)": [[214, "sympy.polys.densebasic.dup_reverse", false]], "dup_rshift() (in module sympy.polys.densearith)": [[214, "sympy.polys.densearith.dup_rshift", false]], "dup_scale() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_scale", false]], "dup_shift() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_shift", false]], "dup_sign_variations() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_sign_variations", false]], "dup_sqf_list() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_list", false]], "dup_sqf_list_include() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_list_include", false]], "dup_sqf_norm() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_norm", false]], "dup_sqf_p() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_p", false]], "dup_sqf_part() (in module sympy.polys.sqfreetools)": [[214, "sympy.polys.sqfreetools.dup_sqf_part", false]], "dup_transform() (in module sympy.polys.densetools)": [[214, "sympy.polys.densetools.dup_transform", false]], "dup_trial_division() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_trial_division", false]], "dup_zz_cyclotomic_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_cyclotomic_factor", false]], "dup_zz_cyclotomic_poly() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_cyclotomic_poly", false]], "dup_zz_diophantine() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_diophantine", false]], "dup_zz_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_factor", false]], "dup_zz_factor_sqf() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_factor_sqf", false]], "dup_zz_hensel_lift() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_hensel_lift", false]], "dup_zz_hensel_step() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_hensel_step", false]], "dup_zz_i_factor() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_i_factor", false]], "dup_zz_irreducible_p() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_irreducible_p", false]], "dup_zz_mignotte_bound() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_mignotte_bound", false]], "dup_zz_zassenhaus() (in module sympy.polys.factortools)": [[214, "sympy.polys.factortools.dup_zz_zassenhaus", false]], "dyadic (class in sympy.physics.vector.dyadic)": [[200, "sympy.physics.vector.dyadic.Dyadic", false]], "dyadic (class in sympy.vector.dyadic)": [[265, "sympy.vector.dyadic.Dyadic", false]], "dyn_implicit_mat (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.dyn_implicit_mat", false]], "dyn_implicit_rhs (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.dyn_implicit_rhs", false]], "dynamic_symbols() (sympy.physics.mechanics.system.symbolicsystem method)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.dynamic_symbols", false]], "dynamicsymbols() (in module sympy.physics.vector)": [[202, "sympy.physics.vector.dynamicsymbols", false]], "dynkin_diagram() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.dynkin_diagram", false]], "dynkindiagram() (in module sympy.liealgebras.dynkin_diagram)": [[117, "sympy.liealgebras.dynkin_diagram.DynkinDiagram", false]], "e (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.e", false]], "e (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.e", false]], "e() (in module sympy.stats)": [[241, "sympy.stats.E", false]], "e1() (in module sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.E1", false]], "e_n() (in module sympy.physics.qho_1d)": [[167, "sympy.physics.qho_1d.E_n", false]], "e_nl() (in module sympy.physics.hydrogen)": [[146, "sympy.physics.hydrogen.E_nl", false]], "e_nl() (in module sympy.physics.sho)": [[192, "sympy.physics.sho.E_nl", false]], "e_nl_dirac() (in module sympy.physics.hydrogen)": [[146, "sympy.physics.hydrogen.E_nl_dirac", false]], "ec() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.EC", false]], "eccentricity (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.eccentricity", false]], "echelon_form() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.echelon_form", false]], "ecm() (in module sympy.ntheory.ecm)": [[128, "sympy.ntheory.ecm.ecm", false]], "edges (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.edges", false]], "edges() (sympy.combinatorics.prufer.prufer static method)": [[82, "sympy.combinatorics.prufer.Prufer.edges", false]], "egyptian_fraction() (in module sympy.ntheory.egyptian_fraction)": [[128, "sympy.ntheory.egyptian_fraction.egyptian_fraction", false]], "ei (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Ei", false]], "eigenvals() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.eigenvals", false]], "eigenvects() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.eigenvects", false]], "eijk() (in module sympy.functions.special.tensor_functions)": [[96, "sympy.functions.special.tensor_functions.Eijk", false]], "eject() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.eject", false]], "eject() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.eject", false]], "elastic_modulus (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.elastic_modulus", false]], "elem_poles() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.elem_poles", false]], "elem_zeros() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.elem_zeros", false]], "element (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Element", false]], "element_from_alg_num() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.element_from_alg_num", false]], "element_from_anp() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.element_from_ANP", false]], "element_from_poly() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.element_from_poly", false]], "element_from_rational() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.element_from_rational", false]], "element_order() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.element_order", false]], "elementary_col_op() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.elementary_col_op", false]], "elementary_row_op() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.elementary_row_op", false]], "elements (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.elements", false]], "elgamal_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.elgamal_private_key", false]], "elgamal_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.elgamal_public_key", false]], "eliminate_implications() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.eliminate_implications", false]], "ellipse (class in sympy.geometry.ellipse)": [[98, "sympy.geometry.ellipse.Ellipse", false]], "elliptic_e (class in sympy.functions.special.elliptic_integrals)": [[96, "sympy.functions.special.elliptic_integrals.elliptic_e", false]], "elliptic_f (class in sympy.functions.special.elliptic_integrals)": [[96, "sympy.functions.special.elliptic_integrals.elliptic_f", false]], "elliptic_k (class in sympy.functions.special.elliptic_integrals)": [[96, "sympy.functions.special.elliptic_integrals.elliptic_k", false]], "elliptic_pi (class in sympy.functions.special.elliptic_integrals)": [[96, "sympy.functions.special.elliptic_integrals.elliptic_pi", false]], "em() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.EM", false]], "emptyprinter() (sympy.printing.repr.reprprinter method)": [[221, "sympy.printing.repr.ReprPrinter.emptyPrinter", false]], "emptysequence (class in sympy.series.sequences)": [[227, "sympy.series.sequences.EmptySequence", false]], "emptyset (class in sympy.sets.sets)": [[229, "sympy.sets.sets.EmptySet", false]], "enable_automatic_int_sympification() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.enable_automatic_int_sympification", false]], "enable_automatic_symbols() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.enable_automatic_symbols", false]], "encipher_affine() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_affine", false]], "encipher_atbash() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_atbash", false]], "encipher_bifid() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_bifid", false]], "encipher_bifid5() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_bifid5", false]], "encipher_bifid6() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_bifid6", false]], "encipher_elgamal() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_elgamal", false]], "encipher_gm() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_gm", false]], "encipher_hill() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_hill", false]], "encipher_kid_rsa() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_kid_rsa", false]], "encipher_railfence() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_railfence", false]], "encipher_rot13() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_rot13", false]], "encipher_rsa() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_rsa", false]], "encipher_shift() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_shift", false]], "encipher_substitution() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_substitution", false]], "encipher_vigenere() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encipher_vigenere", false]], "encloses() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.encloses", false]], "encloses_point() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.encloses_point", false]], "encloses_point() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.encloses_point", false]], "encloses_point() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.encloses_point", false]], "encode_morse() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.encode_morse", false]], "end (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.end", false]], "endomorphism_ring() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.endomorphism_ring", false]], "endomorphismring (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.EndomorphismRing", false]], "entropy() (in module sympy.stats)": [[241, "sympy.stats.entropy", false]], "enum_all() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.enum_all", false]], "enum_large() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.enum_large", false]], "enum_range() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.enum_range", false]], "enum_small() (sympy.utilities.enumerative.multisetpartitiontraverser method)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser.enum_small", false]], "enumerate_states() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.enumerate_states", false]], "eom_method (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.eom_method", false]], "epath (class in sympy.simplify.epathtools)": [[233, "sympy.simplify.epathtools.EPath", false]], "epath() (in module sympy.simplify.epathtools)": [[233, "sympy.simplify.epathtools.epath", false]], "eps (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.eps", false]], "eq (in module sympy.core.relational)": [[88, "sympy.core.relational.Eq", false]], "eq() (sympy.polys.agca.modules.quotientmoduleelement method)": [[208, "sympy.polys.agca.modules.QuotientModuleElement.eq", false]], "eqs_to_matrix() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers.eqs_to_matrix", false]], "equal_valued() (in module sympy.core.numbers)": [[88, "sympy.core.numbers.equal_valued", false]], "equality (class in sympy.core.relational)": [[88, "sympy.core.relational.Equality", false]], "equals() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.equals", false]], "equals() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.equals", false]], "equals() (sympy.core.relational.relational method)": [[88, "sympy.core.relational.Relational.equals", false]], "equals() (sympy.geometry.line.line method)": [[101, "sympy.geometry.line.Line.equals", false]], "equals() (sympy.geometry.line.ray method)": [[101, "sympy.geometry.line.Ray.equals", false]], "equals() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.equals", false]], "equals() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.equals", false]], "equals() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.equals", false]], "equals() (sympy.logic.boolalg.boolean method)": [[118, "sympy.logic.boolalg.Boolean.equals", false]], "equals() (sympy.matrices.expressions.matrixexpr method)": [[120, "sympy.matrices.expressions.MatrixExpr.equals", false]], "equation": [[15, "term-Equation", true]], "equation() (sympy.geometry.ellipse.circle method)": [[98, "sympy.geometry.ellipse.Circle.equation", false]], "equation() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.equation", false]], "equation() (sympy.geometry.line.line2d method)": [[101, "sympy.geometry.line.Line2D.equation", false]], "equation() (sympy.geometry.line.line3d method)": [[101, "sympy.geometry.line.Line3D.equation", false]], "equation() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.equation", false]], "equilibrium_length (sympy.physics.mechanics.actuator.linearspring property)": [[148, "sympy.physics.mechanics.actuator.LinearSpring.equilibrium_length", false]], "equiv() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.equiv", false]], "equivalent (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Equivalent", false]], "equivalent() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.equivalent", false]], "erf (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erf", false]], "erf2 (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erf2", false]], "erf2inv (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erf2inv", false]], "erfc (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erfc", false]], "erfcinv (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erfcinv", false]], "erfi (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erfi", false]], "erfinv (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.erfinv", false]], "erlang() (in module sympy.stats)": [[241, "sympy.stats.Erlang", false]], "et() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.ET", false]], "eta (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.eta", false]], "euler (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.euler", false]], "euler_equations() (in module sympy.calculus.euler)": [[67, "sympy.calculus.euler.euler_equations", false]], "euler_maclaurin() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.euler_maclaurin", false]], "euler_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.euler_poly", false]], "eulergamma (class in sympy.core.numbers)": [[88, "sympy.core.numbers.EulerGamma", false]], "eulerline (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.eulerline", false]], "eval() (sympy.assumptions.assume.predicate method)": [[63, "sympy.assumptions.assume.Predicate.eval", false]], "eval() (sympy.functions.elementary.piecewise.piecewise class method)": [[94, "sympy.functions.elementary.piecewise.Piecewise.eval", false]], "eval() (sympy.functions.special.delta_functions.diracdelta class method)": [[96, "sympy.functions.special.delta_functions.DiracDelta.eval", false]], "eval() (sympy.functions.special.delta_functions.heaviside class method)": [[96, "sympy.functions.special.delta_functions.Heaviside.eval", false]], "eval() (sympy.functions.special.singularity_functions.singularityfunction class method)": [[96, "sympy.functions.special.singularity_functions.SingularityFunction.eval", false]], "eval() (sympy.functions.special.tensor_functions.kroneckerdelta class method)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcelengthactivedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.eval", false]], "eval() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.eval", false]], "eval() (sympy.physics.quantum.hilbert.directsumhilbertspace class method)": [[177, "sympy.physics.quantum.hilbert.DirectSumHilbertSpace.eval", false]], "eval() (sympy.physics.quantum.hilbert.tensorproducthilbertspace class method)": [[177, "sympy.physics.quantum.hilbert.TensorProductHilbertSpace.eval", false]], "eval() (sympy.physics.secondquant.commutator class method)": [[191, "sympy.physics.secondquant.Commutator.eval", false]], "eval() (sympy.physics.secondquant.dagger class method)": [[191, "sympy.physics.secondquant.Dagger.eval", false]], "eval() (sympy.physics.secondquant.kroneckerdelta class method)": [[191, "sympy.physics.secondquant.KroneckerDelta.eval", false]], "eval() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.eval", false]], "eval() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.eval", false]], "eval_approx() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.eval_approx", false]], "eval_color_func() (sympy.plotting.series.baseseries method)": [[207, "sympy.plotting.series.BaseSeries.eval_color_func", false]], "eval_controls() (sympy.physics.quantum.gate.cgate method)": [[175, "sympy.physics.quantum.gate.CGate.eval_controls", false]], "eval_expr() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.eval_expr", false]], "eval_frequency() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.eval_frequency", false]], "eval_frequency() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.eval_frequency", false]], "eval_levicivita() (in module sympy.functions.special.tensor_functions)": [[96, "sympy.functions.special.tensor_functions.eval_levicivita", false]], "eval_poly() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.eval_poly", false]], "eval_poly_mul() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.eval_poly_mul", false]], "eval_rational() (sympy.polys.rootoftools.complexrootof method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.eval_rational", false]], "eval_zeta_function() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.eval_zeta_function", false]], "evalf": [[15, "term-evalf", true]], "evalf() (sympy.core.evalf.evalfmixin method)": [[88, "sympy.core.evalf.EvalfMixin.evalf", false]], "evalf() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.evalf", false]], "evalf() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.evalf", false]], "evalf() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.evalf", false]], "evalfmixin (class in sympy.core.evalf)": [[88, "sympy.core.evalf.EvalfMixin", false]], "evaluate": [[15, "term-Evaluate", true]], "evaluate_deltas() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.evaluate_deltas", false]], "evaluate_pauli_product() (in module sympy.physics.paulialgebra)": [[166, "sympy.physics.paulialgebra.evaluate_pauli_product", false]], "evaluationfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.EvaluationFailed", false]], "even": [[88, "term-even", true]], "evenpredicate (class in sympy.assumptions.predicates.ntheory)": [[65, "sympy.assumptions.predicates.ntheory.EvenPredicate", false]], "evolute() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.evolute", false]], "exactquotientfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.ExactQuotientFailed", false]], "excenters (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.excenters", false]], "excitation (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.excitation", false]], "excitation (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.excitation", false]], "exclude() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.exclude", false]], "exclude() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.exclude", false]], "exclusive (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Exclusive", false]], "exgaussian() (in module sympy.stats)": [[241, "sympy.stats.ExGaussian", false]], "exp (class in sympy.functions.elementary.exponential)": [[94, "sympy.functions.elementary.exponential.exp", false]], "exp() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.exp", false]], "exp() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.exp", false]], "exp1 (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Exp1", false]], "exp2 (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.exp2", false]], "exp_polar (class in sympy.functions.elementary.exponential)": [[94, "sympy.functions.elementary.exponential.exp_polar", false]], "exp_re() (in module sympy.series.formal)": [[223, "sympy.series.formal.exp_re", false]], "expand() (in module sympy.core.function)": [[88, "sympy.core.function.expand", false]], "expand() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.expand", false]], "expand() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.expand", false]], "expand() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.expand", false]], "expand() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.expand", false]], "expand_complex() (in module sympy.core.function)": [[88, "sympy.core.function.expand_complex", false]], "expand_func() (in module sympy.core.function)": [[88, "sympy.core.function.expand_func", false]], "expand_log() (in module sympy.core.function)": [[88, "sympy.core.function.expand_log", false]], "expand_mul() (in module sympy.core.function)": [[88, "sympy.core.function.expand_mul", false]], "expand_multinomial() (in module sympy.core.function)": [[88, "sympy.core.function.expand_multinomial", false]], "expand_power_base() (in module sympy.core.function)": [[88, "sympy.core.function.expand_power_base", false]], "expand_power_exp() (in module sympy.core.function)": [[88, "sympy.core.function.expand_power_exp", false]], "expand_trig() (in module sympy.core.function)": [[88, "sympy.core.function.expand_trig", false]], "expectation (class in sympy.stats)": [[241, "sympy.stats.Expectation", false]], "expectation() (sympy.stats.bernoulliprocess method)": [[241, "sympy.stats.BernoulliProcess.expectation", false]], "expectationmatrix (class in sympy.stats)": [[241, "sympy.stats.ExpectationMatrix", false]], "expint (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.expint", false]], "expm1 (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.expm1", false]], "exponential() (in module sympy.stats)": [[241, "sympy.stats.Exponential", false]], "expr": [[15, "term-Expr", true]], "expr (class in sympy.core.expr)": [[88, "sympy.core.expr.Expr", false]], "expr (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.expr", false]], "expr (sympy.core.function.subs property)": [[88, "sympy.core.function.Subs.expr", false]], "expr (sympy.functions.elementary.piecewise.exprcondpair property)": [[94, "sympy.functions.elementary.piecewise.ExprCondPair.expr", false]], "expr (sympy.physics.quantum.operator.differentialoperator property)": [[180, "sympy.physics.quantum.operator.DifferentialOperator.expr", false]], "expr (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.expr", false]], "expr (sympy.plotting.series.baseseries property)": [[207, "sympy.plotting.series.BaseSeries.expr", false]], "expr_free_symbols (sympy.core.expr.expr property)": [[88, "sympy.core.expr.Expr.expr_free_symbols", false]], "expr_to_holonomic() (in module sympy.holonomic.holonomic)": [[107, "sympy.holonomic.holonomic.expr_to_holonomic", false]], "exprcondpair (class in sympy.functions.elementary.piecewise)": [[94, "sympy.functions.elementary.piecewise.ExprCondPair", false]], "express() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.express", false]], "express() (in module sympy.vector)": [[268, "sympy.vector.express", false]], "express() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.express", false]], "express() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.express", false]], "expression": [[15, "term-Expression", true]], "expression tree": [[15, "term-Expression-Tree", true]], "expressiondomain (class in sympy.polys.domains)": [[212, "sympy.polys.domains.ExpressionDomain", false]], "expressiondomain.expression (class in sympy.polys.domains)": [[212, "sympy.polys.domains.ExpressionDomain.Expression", false]], "expressiondomain.expression (class in sympy.polys.domains.expressiondomain)": [[212, "sympy.polys.domains.expressiondomain.ExpressionDomain.Expression", false]], "exprwithintlimits (class in sympy.concrete.expr_with_intlimits)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits", false]], "exprwithlimits (class in sympy.concrete.expr_with_limits)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits", false]], "exquo() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.exquo", false]], "exquo() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.exquo", false]], "exquo() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.exquo", false]], "exquo() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.exquo", false]], "exquo() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.exquo", false]], "exquo() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.exquo", false]], "exquo() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.exquo", false]], "exquo() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.exquo", false]], "exquo() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.exquo", false]], "exquo_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.exquo_ground", false]], "exquo_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.exquo_ground", false]], "exradii (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.exradii", false]], "exsqrt() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.exsqrt", false]], "exsqrt() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.exsqrt", false]], "exsqrt() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.exsqrt", false]], "exsqrt() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.exsqrt", false]], "exsqrt() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.exsqrt", false]], "exsqrt() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.exsqrt", false]], "ext (sympy.polys.domains.algebraicfield attribute)": [[212, "sympy.polys.domains.AlgebraicField.ext", false]], "extend() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.extend", false]], "extend() (sympy.physics.units.unitsystem.unitsystem method)": [[199, "sympy.physics.units.unitsystem.UnitSystem.extend", false]], "extend() (sympy.plotting.plot.plot method)": [[207, "sympy.plotting.plot.Plot.extend", false]], "extend_to_no() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.extend_to_no", false]], "extended_negative": [[88, "term-extended_negative", true]], "extended_nonnegative": [[88, "term-extended_nonnegative", true]], "extended_nonpositive": [[88, "term-extended_nonpositive", true]], "extended_nonzero": [[88, "term-extended_nonzero", true]], "extended_positive": [[88, "term-extended_positive", true]], "extended_real": [[88, "term-extended_real", true]], "extendedrealpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.ExtendedRealPredicate", false]], "extension_velocity (sympy.physics.mechanics.pathway.linearpathway property)": [[156, "sympy.physics.mechanics.pathway.LinearPathway.extension_velocity", false]], "extension_velocity (sympy.physics.mechanics.pathway.obstaclesetpathway property)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway.extension_velocity", false]], "extension_velocity (sympy.physics.mechanics.pathway.pathwaybase property)": [[156, "sympy.physics.mechanics.pathway.PathwayBase.extension_velocity", false]], "extension_velocity (sympy.physics.mechanics.pathway.wrappingpathway property)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway.extension_velocity", false]], "extensionelement (class in sympy.polys.agca.extensions)": [[208, "sympy.polys.agca.extensions.ExtensionElement", false]], "extent (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Extent", false]], "exterior_angle (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.exterior_angle", false]], "extract() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.extract", false]], "extract() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.extract", false]], "extract_additively() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.extract_additively", false]], "extract_branch_factor() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.extract_branch_factor", false]], "extract_fundamental_discriminant() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.extract_fundamental_discriminant", false]], "extract_leading_order() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.extract_leading_order", false]], "extract_multiplicatively() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.extract_multiplicatively", false]], "extract_slice() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.extract_slice", false]], "extract_type_tens() (in module sympy.physics.hep.gamma_matrices)": [[145, "sympy.physics.hep.gamma_matrices.extract_type_tens", false]], "extraneousfactors (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.ExtraneousFactors", false]], "eye() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.eye", false]], "eye() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.eye", false]], "eye() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.eye", false]], "eye() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.eye", false]], "eye() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.eye", false]], "f (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.F", false]], "f (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.F", false]], "f (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.F", false]], "f (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.F", false]], "f (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.F", false]], "f2pycodewrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.F2PyCodeWrapper", false]], "f_m_max (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.F_M_max", false]], "faces (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.faces", false]], "factor() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.factor", false]], "factor() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.factor", false]], "factor_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.factor_list", false]], "factor_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.factor_list", false]], "factor_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.factor_list", false]], "factor_list_include() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.factor_list_include", false]], "factor_list_include() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.factor_list_include", false]], "factor_terms() (in module sympy.core.exprtools)": [[88, "sympy.core.exprtools.factor_terms", false]], "factorable (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.Factorable", false]], "factorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.factorial", false]], "factorial() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.factorial", false]], "factorial() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.factorial", false]], "factorial() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.factorial", false]], "factorial() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.factorial", false]], "factorial() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.factorial", false]], "factorial2 (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.factorial2", false]], "factorial_moment() (in module sympy.stats)": [[241, "sympy.stats.factorial_moment", false]], "factorial_notation() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.factorial_notation", false]], "factoring_visitor() (in module sympy.utilities.enumerative)": [[256, "sympy.utilities.enumerative.factoring_visitor", false]], "factorint() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.factorint", false]], "factorrat() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.factorrat", false]], "factors() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.factors", false]], "failed (sympy.testing.runtests.sympytestresults attribute)": [[252, "sympy.testing.runtests.SymPyTestResults.failed", false]], "fallingfactorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.FallingFactorial", false]], "fbra (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FBra", false]], "fcode() (in module sympy.printing.fortran)": [[221, "sympy.printing.fortran.fcode", false]], "fcodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.FCodeGen", false]], "fcodeprinter (class in sympy.printing.fortran)": [[221, "sympy.printing.fortran.FCodePrinter", false]], "fd (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.Fd", false]], "fdiff() (sympy.codegen.cfunctions.cbrt method)": [[69, "sympy.codegen.cfunctions.Cbrt.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.exp2 method)": [[69, "sympy.codegen.cfunctions.exp2.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.expm1 method)": [[69, "sympy.codegen.cfunctions.expm1.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.fma method)": [[69, "sympy.codegen.cfunctions.fma.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.hypot method)": [[69, "sympy.codegen.cfunctions.hypot.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.log10 method)": [[69, "sympy.codegen.cfunctions.log10.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.log1p method)": [[69, "sympy.codegen.cfunctions.log1p.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.log2 method)": [[69, "sympy.codegen.cfunctions.log2.fdiff", false]], "fdiff() (sympy.codegen.cfunctions.sqrt method)": [[69, "sympy.codegen.cfunctions.Sqrt.fdiff", false]], "fdiff() (sympy.core.function.function method)": [[88, "sympy.core.function.Function.fdiff", false]], "fdiff() (sympy.functions.elementary.complexes.abs method)": [[94, "sympy.functions.elementary.complexes.Abs.fdiff", false]], "fdiff() (sympy.functions.elementary.exponential.exp method)": [[94, "sympy.functions.elementary.exponential.exp.fdiff", false]], "fdiff() (sympy.functions.elementary.exponential.lambertw method)": [[94, "sympy.functions.elementary.exponential.LambertW.fdiff", false]], "fdiff() (sympy.functions.elementary.exponential.log method)": [[94, "sympy.functions.elementary.exponential.log.fdiff", false]], "fdiff() (sympy.functions.elementary.hyperbolic.csch method)": [[94, "sympy.functions.elementary.hyperbolic.csch.fdiff", false]], "fdiff() (sympy.functions.elementary.hyperbolic.sinh method)": [[94, "sympy.functions.elementary.hyperbolic.sinh.fdiff", false]], "fdiff() (sympy.functions.special.delta_functions.diracdelta method)": [[96, "sympy.functions.special.delta_functions.DiracDelta.fdiff", false]], "fdiff() (sympy.functions.special.delta_functions.heaviside method)": [[96, "sympy.functions.special.delta_functions.Heaviside.fdiff", false]], "fdiff() (sympy.functions.special.singularity_functions.singularityfunction method)": [[96, "sympy.functions.special.singularity_functions.SingularityFunction.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcelengthactivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.fdiff", false]], "fdiff() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.fdiff", false]], "fdistribution() (in module sympy.stats)": [[241, "sympy.stats.FDistribution", false]], "feedback (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.Feedback", false]], "fft() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.fft", false]], "fglm() (sympy.polys.polytools.groebnerbasis method)": [[217, "sympy.polys.polytools.GroebnerBasis.fglm", false]], "fiber_damping_coefficient (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.fiber_damping_coefficient", false]], "fiberforcelengthactivedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016", false]], "fiberforcelengthpassivedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016", false]], "fiberforcelengthpassiveinversedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016", false]], "fiberforcevelocitydegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016", false]], "fiberforcevelocityinversedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016", false]], "fibonacci (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.fibonacci", false]], "field (class in sympy.polys.domains.field)": [[212, "sympy.polys.domains.field.Field", false]], "field() (in module sympy.polys.fields)": [[212, "sympy.polys.fields.field", false]], "field_element() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.field_element", false]], "field_isomorphism() (in module sympy.polys.numberfields.subfield)": [[216, "sympy.polys.numberfields.subfield.field_isomorphism", false]], "fill (sympy.plotting.plot.plot property)": [[207, "sympy.plotting.plot.Plot.fill", false]], "filldedent() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.filldedent", false]], "filter_symbols() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.filter_symbols", false]], "find() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.find", false]], "find_carmichael_numbers_in_range() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.find_carmichael_numbers_in_range", false]], "find_dn() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.find_DN", false]], "find_dynamicsymbols() (in module sympy.physics.mechanics)": [[150, "sympy.physics.mechanics.find_dynamicsymbols", false]], "find_dynamicsymbols() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.find_dynamicsymbols", false]], "find_executable() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.find_executable", false]], "find_first_n_carmichaels() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.find_first_n_carmichaels", false]], "find_linear_recurrence() (sympy.series.sequences.seqbase method)": [[227, "sympy.series.sequences.SeqBase.find_linear_recurrence", false]], "find_min_poly() (in module sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.find_min_poly", false]], "find_transitive_subgroups_of_s6() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.find_transitive_subgroups_of_S6", false]], "finite": [[88, "term-finite", true]], "finite_diff_weights() (in module sympy.calculus.finite_diff)": [[67, "sympy.calculus.finite_diff.finite_diff_weights", false]], "finitedomain (class in sympy.stats.frv)": [[241, "sympy.stats.frv.FiniteDomain", false]], "finitefield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.FiniteField", false]], "finiteformalpowerseries (class in sympy.series.formal)": [[223, "sympy.series.formal.FiniteFormalPowerSeries", false]], "finitepredicate (class in sympy.assumptions.predicates.calculus)": [[65, "sympy.assumptions.predicates.calculus.FinitePredicate", false]], "finitepspace (class in sympy.stats.frv)": [[241, "sympy.stats.frv.FinitePSpace", false]], "finiterv() (in module sympy.stats)": [[241, "sympy.stats.FiniteRV", false]], "finiteset (class in sympy.sets.sets)": [[229, "sympy.sets.sets.FiniteSet", false]], "first_moment_of_area() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.first_moment_of_area", false]], "firstexact (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.FirstExact", false]], "firstlinear (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.FirstLinear", false]], "firstorderactivationdegroote2016 (class in sympy.physics.biomechanics.activation)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016", false]], "fisherz() (in module sympy.stats)": [[241, "sympy.stats.FisherZ", false]], "fixed_point (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.fixed_point", false]], "fixed_row_vector() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.fixed_row_vector", false]], "fixedbosonicbasis (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FixedBosonicBasis", false]], "fket (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FKet", false]], "flagerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.FlagError", false]], "flat() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.flat", false]], "flatmirror (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.FlatMirror", false]], "flatrefraction (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.FlatRefraction", false]], "flatten() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.flatten", false]], "flatten() (sympy.categories.compositemorphism method)": [[68, "sympy.categories.CompositeMorphism.flatten", false]], "flatten() (sympy.core.add.add class method)": [[88, "sympy.core.add.Add.flatten", false]], "flatten() (sympy.core.mul.mul class method)": [[88, "sympy.core.mul.Mul.flatten", false]], "float (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Float", false]], "floatbasetype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FloatBaseType", false]], "floattype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FloatType", false]], "floor (class in sympy.functions.elementary.integers)": [[94, "sympy.functions.elementary.integers.floor", false]], "fma (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.fma", false]], "foci (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.foci", false]], "fockspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.FockSpace", false]], "fockstate (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockState", false]], "fockstatebosonbra (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateBosonBra", false]], "fockstatebosonket (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateBosonKet", false]], "fockstatebra (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateBra", false]], "fockstatefermionbra (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateFermionBra", false]], "fockstatefermionket (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateFermionKet", false]], "fockstateket (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.FockStateKet", false]], "focus_distance (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.focus_distance", false]], "for (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.For", false]], "force (class in sympy.physics.mechanics.loads)": [[155, "sympy.physics.mechanics.loads.Force", false]], "force (sympy.physics.mechanics.actuator.duffingspring property)": [[148, "sympy.physics.mechanics.actuator.DuffingSpring.force", false]], "force (sympy.physics.mechanics.actuator.forceactuator property)": [[148, "sympy.physics.mechanics.actuator.ForceActuator.force", false]], "force (sympy.physics.mechanics.actuator.lineardamper property)": [[148, "sympy.physics.mechanics.actuator.LinearDamper.force", false]], "force (sympy.physics.mechanics.actuator.linearspring property)": [[148, "sympy.physics.mechanics.actuator.LinearSpring.force", false]], "forceactuator (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.ForceActuator", false]], "forcing (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.forcing", false]], "forcing (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.forcing", false]], "forcing (sympy.physics.mechanics.lagrange.lagrangesmethod property)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.forcing", false]], "forcing (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.forcing", false]], "forcing_full (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.forcing_full", false]], "forcing_full (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.forcing_full", false]], "forcing_full (sympy.physics.mechanics.lagrange.lagrangesmethod property)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.forcing_full", false]], "forcing_full (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.forcing_full", false]], "forcing_kin (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.forcing_kin", false]], "form_eoms() (sympy.physics.mechanics.jointsmethod.jointsmethod method)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.form_eoms", false]], "form_eoms() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.form_eoms", false]], "form_lagranges_equations() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.form_lagranges_equations", false]], "formalpowerseries (class in sympy.series.formal)": [[223, "sympy.series.formal.FormalPowerSeries", false]], "formalpowerseriescompose (class in sympy.series.formal)": [[223, "sympy.series.formal.FormalPowerSeriesCompose", false]], "formalpowerseriesinverse (class in sympy.series.formal)": [[223, "sympy.series.formal.FormalPowerSeriesInverse", false]], "formalpowerseriesproduct (class in sympy.series.formal)": [[223, "sympy.series.formal.FormalPowerSeriesProduct", false]], "fortranreturn (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.FortranReturn", false]], "forward_diff() (in module sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.forward_diff", false]], "four_group() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.four_group", false]], "fourier_series() (in module sympy.series.fourier)": [[224, "sympy.series.fourier.fourier_series", false]], "fourier_series() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.fourier_series", false]], "fourier_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.fourier_transform", false]], "fourierseries (class in sympy.series.fourier)": [[224, "sympy.series.fourier.FourierSeries", false]], "fouriertransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.FourierTransform", false]], "fps() (in module sympy.series.formal)": [[223, "sympy.series.formal.fps", false]], "fps() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.fps", false]], "frac (class in sympy.functions.elementary.integers)": [[94, "sympy.functions.elementary.integers.frac", false]], "frac (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.frac", false]], "frac_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.frac_field", false]], "frac_unify() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.frac_unify", false]], "fracelement (class in sympy.polys.fields)": [[212, "sympy.polys.fields.FracElement", false]], "fracfield (class in sympy.polys.fields)": [[212, "sympy.polys.fields.FracField", false]], "fraction() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.fraction", false]], "fractionfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.FractionField", false]], "frame (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.frame", false]], "frame (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.frame", false]], "frame (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.frame", false]], "frechet() (in module sympy.stats)": [[241, "sympy.stats.Frechet", false]], "free symbols": [[15, "term-Free-symbols", true]], "free_dynamicsymbols() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.free_dynamicsymbols", false]], "free_module() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.free_module", false]], "free_symbols (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.free_symbols", false]], "free_symbols (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.free_symbols", false]], "free_symbols (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.free_symbols", false]], "free_symbols (sympy.integrals.integrals.integral property)": [[115, "sympy.integrals.integrals.Integral.free_symbols", false]], "free_symbols (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.free_symbols", false]], "free_symbols (sympy.physics.quantum.operator.differentialoperator property)": [[180, "sympy.physics.quantum.operator.DifferentialOperator.free_symbols", false]], "free_symbols (sympy.physics.units.quantities.quantity property)": [[198, "sympy.physics.units.quantities.Quantity.free_symbols", false]], "free_symbols (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.free_symbols", false]], "free_symbols (sympy.polys.polytools.purepoly property)": [[217, "sympy.polys.polytools.PurePoly.free_symbols", false]], "free_symbols (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.free_symbols", false]], "free_symbols() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.free_symbols", false]], "free_symbols_in_domain (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.free_symbols_in_domain", false]], "freemodule (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.FreeModule", false]], "freemoduleelement (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.FreeModuleElement", false]], "freespace (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.FreeSpace", false]], "frequency (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.frequency", false]], "fresnel_coefficients() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.fresnel_coefficients", false]], "fresnelc (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.fresnelc", false]], "fresnelintegral (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.FresnelIntegral", false]], "fresnels (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.fresnels", false]], "from_algebraicfield() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_AlgebraicField", false]], "from_algebraicfield() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_AlgebraicField", false]], "from_axis_angle() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.from_axis_angle", false]], "from_coeff_lists() (sympy.physics.control.lti.transferfunction class method)": [[144, "sympy.physics.control.lti.TransferFunction.from_coeff_lists", false]], "from_complexfield() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ComplexField", false]], "from_complexfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ComplexField", false]], "from_complexfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_ComplexField", false]], "from_complexfield() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.from_ComplexField", false]], "from_complexfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_ComplexField", false]], "from_ddm() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_ddm", false]], "from_ddm() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_ddm", false]], "from_dict() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.from_dict", false]], "from_dict_sympy() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_dict_sympy", false]], "from_dod() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_dod", false]], "from_dod() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_dod", false]], "from_dod() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_dod", false]], "from_dod() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_dod", false]], "from_dod_like() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_dod_like", false]], "from_dok() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.from_dok", false]], "from_dok() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_dok", false]], "from_dok() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_dok", false]], "from_dok() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_dok", false]], "from_dok() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_dok", false]], "from_euler() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.from_euler", false]], "from_ex() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_EX", false]], "from_expr() (sympy.codegen.ast.type class method)": [[69, "sympy.codegen.ast.Type.from_expr", false]], "from_expr() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.from_expr", false]], "from_expressiondomain() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ExpressionDomain", false]], "from_expressiondomain() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ExpressionDomain", false]], "from_expressionrawdomain() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ExpressionRawDomain", false]], "from_ff() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_FF", false]], "from_ff() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_FF", false]], "from_ff() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_FF", false]], "from_ff_gmpy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_FF_gmpy", false]], "from_ff_gmpy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_FF_gmpy", false]], "from_ff_gmpy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_FF_gmpy", false]], "from_ff_gmpy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_FF_gmpy", false]], "from_ff_python() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_FF_python", false]], "from_ff_python() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_FF_python", false]], "from_ff_python() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_FF_python", false]], "from_ff_python() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_FF_python", false]], "from_flat_nz() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_flat_nz", false]], "from_flat_nz() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_flat_nz", false]], "from_flat_nz() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_flat_nz", false]], "from_flat_nz() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_flat_nz", false]], "from_fractionfield() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_FractionField", false]], "from_fractionfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_FractionField", false]], "from_fractionfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_FractionField", false]], "from_fractionfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_FractionField", false]], "from_gaussianintegerring() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.from_GaussianIntegerRing", false]], "from_gaussianintegerring() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_GaussianIntegerRing", false]], "from_gaussianrationalfield() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_GaussianRationalField", false]], "from_gaussianrationalfield() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_GaussianRationalField", false]], "from_globalpolynomialring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_GlobalPolynomialRing", false]], "from_globalpolynomialring() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_GlobalPolynomialRing", false]], "from_hyper() (in module sympy.holonomic.holonomic)": [[107, "sympy.holonomic.holonomic.from_hyper", false]], "from_index_summation() (sympy.matrices.expressions.matrixexpr static method)": [[120, "sympy.matrices.expressions.MatrixExpr.from_index_summation", false]], "from_inertia_scalars() (sympy.physics.mechanics.inertia.inertia class method)": [[155, "sympy.physics.mechanics.inertia.Inertia.from_inertia_scalars", false]], "from_int_list() (sympy.polys.numberfields.modules.moduleelement class method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.from_int_list", false]], "from_inversion_vector() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.from_inversion_vector", false]], "from_list() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_list", false]], "from_list() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_list", false]], "from_list() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_list", false]], "from_list() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_list", false]], "from_list() (sympy.polys.polyclasses.dmp class method)": [[212, "sympy.polys.polyclasses.DMP.from_list", false]], "from_list() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.from_list", false]], "from_list_flat() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.from_list_flat", false]], "from_list_flat() (sympy.polys.matrices.ddm.ddm class method)": [[210, "sympy.polys.matrices.ddm.DDM.from_list_flat", false]], "from_list_flat() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_list_flat", false]], "from_list_flat() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.from_list_flat", false]], "from_list_sympy() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_list_sympy", false]], "from_matrix() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.from_Matrix", false]], "from_matrix() (sympy.physics.control.lti.transferfunctionmatrix class method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.from_Matrix", false]], "from_matrix() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_Matrix", false]], "from_meijerg() (in module sympy.holonomic.holonomic)": [[107, "sympy.holonomic.holonomic.from_meijerg", false]], "from_monogenicfiniteextension() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_MonogenicFiniteExtension", false]], "from_newtonian() (sympy.physics.mechanics.system.system class method)": [[158, "sympy.physics.mechanics.system.System.from_newtonian", false]], "from_poly() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.from_poly", false]], "from_polynomialring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_PolynomialRing", false]], "from_polynomialring() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_PolynomialRing", false]], "from_polynomialring() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_PolynomialRing", false]], "from_polynomialring() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_PolynomialRing", false]], "from_qq() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_QQ", false]], "from_qq() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_QQ", false]], "from_qq() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_QQ", false]], "from_qq() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_QQ", false]], "from_qq() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_QQ", false]], "from_qq() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_QQ", false]], "from_qq() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_QQ", false]], "from_qq() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_QQ", false]], "from_qq() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_QQ", false]], "from_qq_gmpy() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_QQ_gmpy", false]], "from_qq_gmpy() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_QQ_gmpy", false]], "from_qq_python() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_QQ_python", false]], "from_qq_python() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_QQ_python", false]], "from_rational_expression() (sympy.physics.control.lti.transferfunction class method)": [[144, "sympy.physics.control.lti.TransferFunction.from_rational_expression", false]], "from_real() (sympy.sets.fancysets.complexregion class method)": [[229, "sympy.sets.fancysets.ComplexRegion.from_real", false]], "from_realfield() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_RealField", false]], "from_realfield() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_RealField", false]], "from_realfield() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_RealField", false]], "from_realfield() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_RealField", false]], "from_realfield() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_RealField", false]], "from_realfield() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_RealField", false]], "from_realfield() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_RealField", false]], "from_realfield() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_RealField", false]], "from_realfield() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_RealField", false]], "from_realfield() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_RealField", false]], "from_rep() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.from_rep", false]], "from_rgs() (sympy.combinatorics.partitions.partition class method)": [[77, "sympy.combinatorics.partitions.Partition.from_rgs", false]], "from_rotation_matrix() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.from_rotation_matrix", false]], "from_sequence() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.from_sequence", false]], "from_sympy() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_sympy", false]], "from_sympy() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.from_sympy", false]], "from_sympy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_sympy", false]], "from_sympy() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_sympy", false]], "from_sympy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_sympy", false]], "from_sympy() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_sympy", false]], "from_sympy() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_sympy", false]], "from_sympy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_sympy", false]], "from_sympy() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_sympy", false]], "from_sympy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_sympy", false]], "from_sympy() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_sympy", false]], "from_sympy() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_sympy", false]], "from_sympy() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.from_sympy", false]], "from_sympy_list() (sympy.polys.polyclasses.dmp class method)": [[212, "sympy.polys.polyclasses.DMP.from_sympy_list", false]], "from_zpk() (sympy.physics.control.lti.transferfunction class method)": [[144, "sympy.physics.control.lti.TransferFunction.from_zpk", false]], "from_zz() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_ZZ", false]], "from_zz() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ZZ", false]], "from_zz() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_ZZ", false]], "from_zz() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_ZZ", false]], "from_zz() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_ZZ", false]], "from_zz() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_ZZ", false]], "from_zz() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_ZZ", false]], "from_zz() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_ZZ", false]], "from_zz_gmpy() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_ZZ_gmpy", false]], "from_zz_gmpy() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_ZZ_gmpy", false]], "from_zz_python() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.from_ZZ_python", false]], "from_zz_python() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.from_ZZ_python", false]], "fromiter() (sympy.core.basic.basic class method)": [[88, "sympy.core.basic.Basic.fromiter", false]], "fu() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.fu", false]], "full_cyclic_form (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.full_cyclic_form", false]], "fullrankpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.FullRankPredicate", false]], "fully_symmetric() (sympy.tensor.tensor.tensorsymmetry class method)": [[247, "sympy.tensor.tensor.TensorSymmetry.fully_symmetric", false]], "func": [[15, "term-func", true]], "func (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.func", false]], "func (sympy.physics.vector.dyadic.dyadic property)": [[200, "sympy.physics.vector.dyadic.Dyadic.func", false]], "func (sympy.physics.vector.vector.vector property)": [[200, "sympy.physics.vector.vector.Vector.func", false]], "func_field_modgcd() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd.func_field_modgcd", false]], "func_name() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.func_name", false]], "funcminusoneoptim (class in sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.FuncMinusOneOptim", false]], "function": [[15, "term-Function", true]], "function (class in sympy.core.function)": [[88, "sympy.core.function.Function", false]], "function (class)": [[15, "term-Function-class", true]], "function (sympy.assumptions.assume.appliedpredicate property)": [[63, "sympy.assumptions.assume.AppliedPredicate.function", false]], "function (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.function", false]], "function (sympy.integrals.transforms.integraltransform property)": [[115, "sympy.integrals.transforms.IntegralTransform.function", false]], "function (sympy.physics.quantum.operator.differentialoperator property)": [[180, "sympy.physics.quantum.operator.DifferentialOperator.function", false]], "function (sympy.series.formal.formalpowerseriescompose property)": [[223, "sympy.series.formal.FormalPowerSeriesCompose.function", false]], "function (sympy.series.formal.formalpowerseriesinverse property)": [[223, "sympy.series.formal.FormalPowerSeriesInverse.function", false]], "function (sympy.series.formal.formalpowerseriesproduct property)": [[223, "sympy.series.formal.FormalPowerSeriesProduct.function", false]], "function_exponentiation() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.function_exponentiation", false]], "function_range() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.function_range", false]], "function_variable (sympy.integrals.transforms.integraltransform property)": [[115, "sympy.integrals.transforms.IntegralTransform.function_variable", false]], "functioncall (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FunctionCall", false]], "functionclass (class in sympy.core.function)": [[88, "sympy.core.function.FunctionClass", false]], "functiondefinition (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FunctionDefinition", false]], "functionmatrix (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.FunctionMatrix", false]], "functionprototype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.FunctionPrototype", false]], "functions (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.functions", false]], "fundamental_matrix() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.fundamental_matrix", false]], "fwht() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.fwht", false]], "g() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.G", false], [221, "sympy.printing.pretty.pretty_symbology.g", false]], "g18() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.G18", false]], "g36m() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.G36m", false]], "g36p() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.G36p", false]], "g72() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.G72", false]], "galois_group() (in module sympy.polys.numberfields.galoisgroups)": [[216, "sympy.polys.numberfields.galoisgroups.galois_group", false]], "galois_group() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.galois_group", false]], "galois_group() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.galois_group", false]], "gamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.gamma", false]], "gamma() (in module sympy.stats)": [[241, "sympy.stats.Gamma", false]], "gamma_trace() (in module sympy.physics.hep.gamma_matrices)": [[145, "sympy.physics.hep.gamma_matrices.gamma_trace", false]], "gammainverse() (in module sympy.stats)": [[241, "sympy.stats.GammaInverse", false]], "gammaprocess (class in sympy.stats)": [[241, "sympy.stats.GammaProcess", false]], "gammasimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.gammasimp", false]], "gate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.Gate", false]], "gate (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.gate", false]], "gate (sympy.physics.quantum.gate.cnotgate property)": [[175, "sympy.physics.quantum.gate.CNotGate.gate", false]], "gate_simp() (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.gate_simp", false]], "gate_sort() (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.gate_sort", false]], "gateinputcount() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.gateinputcount", false]], "gaunt() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.gaunt", false]], "gauss_chebyshev_t() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_chebyshev_t", false]], "gauss_chebyshev_u() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_chebyshev_u", false]], "gauss_gen_laguerre() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_gen_laguerre", false]], "gauss_hermite() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_hermite", false]], "gauss_jacobi() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_jacobi", false]], "gauss_jordan_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.gauss_jordan_solve", false]], "gauss_laguerre() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_laguerre", false]], "gauss_legendre() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_legendre", false]], "gauss_lobatto() (in module sympy.integrals.quadrature)": [[115, "sympy.integrals.quadrature.gauss_lobatto", false]], "gaussian_conj() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.gaussian_conj", false]], "gaussian_reduce() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.gaussian_reduce", false]], "gaussiandomain (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain", false]], "gaussianelement (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianElement", false]], "gaussianinteger (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianInteger", false]], "gaussianintegerring (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing", false]], "gaussianrational (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRational", false]], "gaussianrationalfield (class in sympy.polys.domains.gaussiandomains)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField", false]], "gbt() (in module sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.gbt", false]], "gcd() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gcd", false]], "gcd() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.gcd", false]], "gcd() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.gcd", false]], "gcd() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.gcd", false]], "gcd() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.gcd", false]], "gcd() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.gcd", false]], "gcd() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.gcd", false]], "gcd() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.gcd", false]], "gcd() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.gcd", false]], "gcd() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.gcd", false]], "gcd() (sympy.polys.monomials.monomial method)": [[217, "sympy.polys.monomials.Monomial.gcd", false]], "gcd() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.gcd", false]], "gcd() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.gcd", false]], "gcd_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gcd_list", false]], "gcd_terms() (in module sympy.core.exprtools)": [[88, "sympy.core.exprtools.gcd_terms", false]], "gcdex() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gcdex", false]], "gcdex() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.gcdex", false]], "gcdex() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.gcdex", false]], "gcdex() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.gcdex", false]], "gcdex() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.gcdex", false]], "gcdex() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.gcdex", false]], "gcdex() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.gcdex", false]], "ge (in module sympy.core.relational)": [[88, "sympy.core.relational.Ge", false]], "gegenbauer (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.gegenbauer", false]], "gegenbauer_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.gegenbauer_poly", false]], "gen (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.gen", false]], "gen (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.gen", false]], "generalizedmultivariateloggamma() (in module sympy.stats)": [[241, "sympy.stats.GeneralizedMultivariateLogGamma", false]], "generalizedmultivariateloggammaomega() (in module sympy.stats)": [[241, "sympy.stats.GeneralizedMultivariateLogGammaOmega", false]], "generalpythagorean (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.GeneralPythagorean", false]], "generalsumofevenpowers (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.GeneralSumOfEvenPowers", false]], "generalsumofsquares (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.GeneralSumOfSquares", false]], "generate() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generate", false]], "generate_bell() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.generate_bell", false]], "generate_derangements() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.generate_derangements", false]], "generate_dimino() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generate_dimino", false]], "generate_gray() (sympy.combinatorics.graycode.graycode method)": [[72, "sympy.combinatorics.graycode.GrayCode.generate_gray", false]], "generate_involutions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.generate_involutions", false]], "generate_oriented_forest() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.generate_oriented_forest", false]], "generate_schreier_sims() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generate_schreier_sims", false]], "generator (sympy.polys.numberfields.modules.powerbasiselement property)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.generator", false]], "generator_product() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generator_product", false]], "generators (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.generators", false]], "generators() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.generators", false]], "generatorserror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.GeneratorsError", false]], "generatorsneeded (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.GeneratorsNeeded", false]], "genocchi (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.genocchi", false]], "genocchi_poly() (in module sympy.polys.appellseqs)": [[217, "sympy.polys.appellseqs.genocchi_poly", false]], "geodesic_end_vectors() (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.geodesic_end_vectors", false]], "geodesic_end_vectors() (sympy.physics.mechanics.wrapping_geometry.wrappinggeometrybase method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase.geodesic_end_vectors", false]], "geodesic_end_vectors() (sympy.physics.mechanics.wrapping_geometry.wrappingsphere method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.geodesic_end_vectors", false]], "geodesic_length() (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.geodesic_length", false]], "geodesic_length() (sympy.physics.mechanics.wrapping_geometry.wrappinggeometrybase method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase.geodesic_length", false]], "geodesic_length() (sympy.physics.mechanics.wrapping_geometry.wrappingsphere method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.geodesic_length", false]], "geometric() (in module sympy.stats)": [[241, "sympy.stats.Geometric", false]], "geometric_conj_ab() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.geometric_conj_ab", false]], "geometric_conj_af() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.geometric_conj_af", false]], "geometric_conj_bf() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.geometric_conj_bf", false]], "geometricray (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.GeometricRay", false]], "geometry (sympy.physics.mechanics.pathway.wrappingpathway property)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway.geometry", false]], "geometryentity (class in sympy.geometry.entity)": [[99, "sympy.geometry.entity.GeometryEntity", false]], "get() (sympy.core.containers.dict method)": [[88, "sympy.core.containers.Dict.get", false]], "get_adjacency_distance() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_adjacency_distance", false]], "get_adjacency_matrix() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_adjacency_matrix", false]], "get_basis() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.get_basis", false]], "get_body() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.get_body", false]], "get_class() (in module sympy.utilities.source)": [[263, "sympy.utilities.source.get_class", false]], "get_comm() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.get_comm", false]], "get_contraction_structure() (in module sympy.tensor.index_methods)": [[245, "sympy.tensor.index_methods.get_contraction_structure", false]], "get_data() (sympy.plotting.series.baseseries method)": [[207, "sympy.plotting.series.BaseSeries.get_data", false]], "get_data() (sympy.plotting.series.implicitseries method)": [[207, "sympy.plotting.series.ImplicitSeries.get_data", false]], "get_data() (sympy.plotting.series.line2dbaseseries method)": [[207, "sympy.plotting.series.Line2DBaseSeries.get_data", false]], "get_data() (sympy.plotting.series.parametricsurfaceseries method)": [[207, "sympy.plotting.series.ParametricSurfaceSeries.get_data", false]], "get_data() (sympy.plotting.series.surfaceover2drangeseries method)": [[207, "sympy.plotting.series.SurfaceOver2DRangeSeries.get_data", false]], "get_default_datatype() (in module sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.get_default_datatype", false]], "get_diag_blocks() (sympy.matrices.expressions.blockmatrix.blockdiagmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockDiagMatrix.get_diag_blocks", false]], "get_diag_blocks() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.get_diag_blocks", false]], "get_domain() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.get_domain", false]], "get_exact() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.get_exact", false]], "get_exact() (sympy.polys.domains.compositedomain.compositedomain method)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.get_exact", false]], "get_exact() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.get_exact", false]], "get_exact() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.get_exact", false]], "get_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.get_field", false]], "get_field() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.get_field", false]], "get_field() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.get_field", false]], "get_field() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.get_field", false]], "get_field() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.get_field", false]], "get_field() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.get_field", false]], "get_field() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.get_field", false]], "get_field() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.get_field", false]], "get_free_indices() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.get_free_indices", false]], "get_gen_sol_from_part_sol() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.get_gen_sol_from_part_sol", false]], "get_indices() (in module sympy.tensor.index_methods)": [[245, "sympy.tensor.index_methods.get_indices", false]], "get_indices() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.get_indices", false]], "get_interface() (sympy.utilities.codegen.fcodegen method)": [[254, "sympy.utilities.codegen.FCodeGen.get_interface", false]], "get_joint() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.get_joint", false]], "get_label() (sympy.plotting.series.baseseries method)": [[207, "sympy.plotting.series.BaseSeries.get_label", false]], "get_label() (sympy.plotting.series.implicitseries method)": [[207, "sympy.plotting.series.ImplicitSeries.get_label", false]], "get_matrix() (sympy.tensor.tensor.tensexpr method)": [[247, "sympy.tensor.tensor.TensExpr.get_matrix", false]], "get_meshes() (sympy.plotting.series.parametricsurfaceseries method)": [[207, "sympy.plotting.series.ParametricSurfaceSeries.get_meshes", false]], "get_meshes() (sympy.plotting.series.surfaceover2drangeseries method)": [[207, "sympy.plotting.series.SurfaceOver2DRangeSeries.get_meshes", false]], "get_mod_func() (in module sympy.utilities.source)": [[263, "sympy.utilities.source.get_mod_func", false]], "get_modulus() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.get_modulus", false]], "get_motion_params() (in module sympy.physics.vector.functions)": [[204, "sympy.physics.vector.functions.get_motion_params", false]], "get_num_denom() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.get_num_denom", false]], "get_period() (sympy.functions.special.hyper.meijerg method)": [[96, "sympy.functions.special.hyper.meijerg.get_period", false]], "get_permuted() (sympy.physics.secondquant.permutationoperator method)": [[191, "sympy.physics.secondquant.PermutationOperator.get_permuted", false]], "get_points() (sympy.plotting.series.lineover1drangeseries method)": [[207, "sympy.plotting.series.LineOver1DRangeSeries.get_points", false]], "get_positional_distance() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_positional_distance", false]], "get_precedence_distance() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_precedence_distance", false]], "get_precedence_matrix() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.get_precedence_matrix", false]], "get_prototype() (sympy.utilities.codegen.ccodegen method)": [[254, "sympy.utilities.codegen.CCodeGen.get_prototype", false]], "get_prototype() (sympy.utilities.codegen.rustcodegen method)": [[254, "sympy.utilities.codegen.RustCodeGen.get_prototype", false]], "get_ring() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.get_ring", false]], "get_ring() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.get_ring", false]], "get_ring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.get_ring", false]], "get_ring() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.get_ring", false]], "get_ring() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.get_ring", false]], "get_ring() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.get_ring", false]], "get_ring() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.get_ring", false]], "get_ring() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.get_ring", false]], "get_ring() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.get_ring", false]], "get_ring() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.get_ring", false]], "get_ring() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.get_ring", false]], "get_ring() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.get_ring", false]], "get_segments() (sympy.plotting.plot.matplotlibbackend static method)": [[207, "sympy.plotting.plot.MatplotlibBackend.get_segments", false]], "get_subno() (sympy.physics.secondquant.no method)": [[191, "sympy.physics.secondquant.NO.get_subNO", false]], "get_subset_from_bitstring() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.get_subset_from_bitstring", false]], "get_symmetric_group_sgs() (in module sympy.combinatorics.tensor_can)": [[84, "sympy.combinatorics.tensor_can.get_symmetric_group_sgs", false]], "get_sympy_dir() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.get_sympy_dir", false]], "get_target_matrix() (sympy.physics.quantum.gate.gate method)": [[175, "sympy.physics.quantum.gate.Gate.get_target_matrix", false]], "get_target_matrix() (sympy.physics.quantum.gate.ugate method)": [[175, "sympy.physics.quantum.gate.UGate.get_target_matrix", false]], "get_units_non_prefixed() (sympy.physics.units.unitsystem.unitsystem method)": [[199, "sympy.physics.units.unitsystem.UnitSystem.get_units_non_prefixed", false]], "getitem() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.getitem", false]], "getn() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.getn", false]], "geto() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.getO", false]], "gf_add() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_add", false]], "gf_add_ground() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_add_ground", false]], "gf_add_mul() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_add_mul", false]], "gf_berlekamp() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_berlekamp", false]], "gf_cofactors() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_cofactors", false]], "gf_compose() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_compose", false]], "gf_compose_mod() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_compose_mod", false]], "gf_crt() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_crt", false]], "gf_crt1() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_crt1", false]], "gf_crt2() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_crt2", false]], "gf_csolve() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_csolve", false]], "gf_degree() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_degree", false]], "gf_diff() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_diff", false]], "gf_div() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_div", false]], "gf_eval() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_eval", false]], "gf_expand() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_expand", false]], "gf_exquo() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_exquo", false]], "gf_factor() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_factor", false]], "gf_factor_sqf() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_factor_sqf", false]], "gf_from_dict() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_from_dict", false]], "gf_from_int_poly() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_from_int_poly", false]], "gf_gcd() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_gcd", false]], "gf_gcdex() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_gcdex", false]], "gf_int() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_int", false]], "gf_irreducible() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_irreducible", false]], "gf_irreducible_p() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_irreducible_p", false]], "gf_lc() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_LC", false]], "gf_lcm() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_lcm", false]], "gf_lshift() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_lshift", false]], "gf_monic() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_monic", false]], "gf_mul() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_mul", false]], "gf_mul_ground() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_mul_ground", false]], "gf_multi_eval() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_multi_eval", false]], "gf_neg() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_neg", false]], "gf_normal() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_normal", false]], "gf_pow() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_pow", false]], "gf_pow_mod() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_pow_mod", false]], "gf_qbasis() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_Qbasis", false]], "gf_qmatrix() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_Qmatrix", false]], "gf_quo() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_quo", false]], "gf_quo_ground() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_quo_ground", false]], "gf_random() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_random", false]], "gf_rem() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_rem", false]], "gf_rshift() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_rshift", false]], "gf_shoup() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_shoup", false]], "gf_sqf_list() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sqf_list", false]], "gf_sqf_p() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sqf_p", false]], "gf_sqf_part() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sqf_part", false]], "gf_sqr() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sqr", false]], "gf_strip() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_strip", false]], "gf_sub() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sub", false]], "gf_sub_ground() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sub_ground", false]], "gf_sub_mul() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_sub_mul", false]], "gf_tc() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_TC", false]], "gf_to_dict() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_to_dict", false]], "gf_to_int_poly() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_to_int_poly", false]], "gf_trace_map() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_trace_map", false]], "gf_trunc() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_trunc", false]], "gf_value() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_value", false]], "gf_zassenhaus() (in module sympy.polys.galoistools)": [[214, "sympy.polys.galoistools.gf_zassenhaus", false]], "gff() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gff", false]], "gff_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.gff_list", false]], "gff_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.gff_list", false]], "gff_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.gff_list", false]], "given() (in module sympy.stats)": [[241, "sympy.stats.given", false]], "gm_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.gm_private_key", false]], "gm_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.gm_public_key", false]], "gmpyfinitefield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.GMPYFiniteField", false]], "gmpyintegerring (class in sympy.polys.domains)": [[212, "sympy.polys.domains.GMPYIntegerRing", false]], "gmpyrationalfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.GMPYRationalField", false]], "goldenratio (class in sympy.core.numbers)": [[88, "sympy.core.numbers.GoldenRatio", false]], "gompertz() (in module sympy.stats)": [[241, "sympy.stats.Gompertz", false]], "gosper_normal() (in module sympy.concrete.gosper)": [[87, "sympy.concrete.gosper.gosper_normal", false]], "gosper_sum() (in module sympy.concrete.gosper)": [[87, "sympy.concrete.gosper.gosper_sum", false]], "gosper_term() (in module sympy.concrete.gosper)": [[87, "sympy.concrete.gosper.gosper_term", false]], "goto (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.goto", false]], "goto (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.GoTo", false]], "gouy (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.gouy", false]], "gradedlexorder (class in sympy.polys.orderings)": [[217, "sympy.polys.orderings.GradedLexOrder", false]], "gradient() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.gradient", false]], "gradient() (in module sympy.vector)": [[268, "sympy.vector.gradient", false]], "gradient() (sympy.vector.deloperator.del method)": [[265, "sympy.vector.deloperator.Del.gradient", false]], "gramschmidt() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.GramSchmidt", false]], "gray_to_bin() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.gray_to_bin", false]], "graycode (class in sympy.combinatorics.graycode)": [[72, "sympy.combinatorics.graycode.GrayCode", false]], "graycode_subsets() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.graycode_subsets", false]], "greaterthan (class in sympy.core.relational)": [[88, "sympy.core.relational.GreaterThan", false]], "greek_letters (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.greek_letters", false]], "groebner() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.groebner", false]], "groebner() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.groebner", false]], "groebnerbasis (class in sympy.polys.polytools)": [[217, "sympy.polys.polytools.GroebnerBasis", false]], "ground_new() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.ground_new", false]], "ground_roots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.ground_roots", false]], "ground_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.ground_roots", false]], "group() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.group", false]], "group_name() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.group_name", false]], "group_order() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.group_order", false]], "groups_count() (in module sympy.combinatorics.group_numbers)": [[74, "sympy.combinatorics.group_numbers.groups_count", false]], "grover_iteration() (in module sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.grover_iteration", false]], "gruntz() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.gruntz", false]], "gt (in module sympy.core.relational)": [[88, "sympy.core.relational.Gt", false]], "gumbel() (in module sympy.stats)": [[241, "sympy.stats.Gumbel", false]], "h (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.H", false]], "h (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.H", false]], "hadamard_product() (in module sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.hadamard_product", false]], "hadamardgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.HadamardGate", false]], "hadamardpower (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.HadamardPower", false]], "hadamardproduct (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.HadamardProduct", false]], "half (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Half", false]], "half_gcdex() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.half_gcdex", false]], "half_gcdex() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.half_gcdex", false]], "half_gcdex() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.half_gcdex", false]], "half_gcdex() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.half_gcdex", false]], "half_per() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.half_per", false]], "half_wave_retarder() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.half_wave_retarder", false]], "handler (sympy.assumptions.assume.predicate attribute)": [[63, "sympy.assumptions.assume.Predicate.handler", false]], "handler (sympy.assumptions.predicates.calculus.finitepredicate attribute)": [[65, "sympy.assumptions.predicates.calculus.FinitePredicate.handler", false]], "handler (sympy.assumptions.predicates.calculus.infinitepredicate attribute)": [[65, "sympy.assumptions.predicates.calculus.InfinitePredicate.handler", false]], "handler (sympy.assumptions.predicates.common.commutativepredicate attribute)": [[65, "sympy.assumptions.predicates.common.CommutativePredicate.handler", false]], "handler (sympy.assumptions.predicates.common.istruepredicate attribute)": [[65, "sympy.assumptions.predicates.common.IsTruePredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.complexelementspredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.ComplexElementsPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.diagonalpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.DiagonalPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.fullrankpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.FullRankPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.integerelementspredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.IntegerElementsPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.invertiblepredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.InvertiblePredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.lowertriangularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.LowerTriangularPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.normalpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.NormalPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.orthogonalpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.OrthogonalPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.positivedefinitepredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.PositiveDefinitePredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.realelementspredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.RealElementsPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.singularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.SingularPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.squarepredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.SquarePredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.symmetricpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.SymmetricPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.triangularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.TriangularPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.unitarypredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.UnitaryPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.unittriangularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.UnitTriangularPredicate.handler", false]], "handler (sympy.assumptions.predicates.matrices.uppertriangularpredicate attribute)": [[65, "sympy.assumptions.predicates.matrices.UpperTriangularPredicate.handler", false]], "handler (sympy.assumptions.predicates.ntheory.compositepredicate attribute)": [[65, "sympy.assumptions.predicates.ntheory.CompositePredicate.handler", false]], "handler (sympy.assumptions.predicates.ntheory.evenpredicate attribute)": [[65, "sympy.assumptions.predicates.ntheory.EvenPredicate.handler", false]], "handler (sympy.assumptions.predicates.ntheory.oddpredicate attribute)": [[65, "sympy.assumptions.predicates.ntheory.OddPredicate.handler", false]], "handler (sympy.assumptions.predicates.ntheory.primepredicate attribute)": [[65, "sympy.assumptions.predicates.ntheory.PrimePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.negativepredicate attribute)": [[65, "sympy.assumptions.predicates.order.NegativePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.nonnegativepredicate attribute)": [[65, "sympy.assumptions.predicates.order.NonNegativePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.nonpositivepredicate attribute)": [[65, "sympy.assumptions.predicates.order.NonPositivePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.nonzeropredicate attribute)": [[65, "sympy.assumptions.predicates.order.NonZeroPredicate.handler", false]], "handler (sympy.assumptions.predicates.order.positivepredicate attribute)": [[65, "sympy.assumptions.predicates.order.PositivePredicate.handler", false]], "handler (sympy.assumptions.predicates.order.zeropredicate attribute)": [[65, "sympy.assumptions.predicates.order.ZeroPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.algebraicpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.AlgebraicPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.antihermitianpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.AntihermitianPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.complexpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.ComplexPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.extendedrealpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.ExtendedRealPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.hermitianpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.HermitianPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.imaginarypredicate attribute)": [[65, "sympy.assumptions.predicates.sets.ImaginaryPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.integerpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.IntegerPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.irrationalpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.IrrationalPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.rationalpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.RationalPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.realpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.RealPredicate.handler", false]], "handler (sympy.assumptions.predicates.sets.transcendentalpredicate attribute)": [[65, "sympy.assumptions.predicates.sets.TranscendentalPredicate.handler", false]], "hankel1 (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.hankel1", false]], "hankel2 (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.hankel2", false]], "hankel_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.hankel_transform", false]], "hankeltransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.HankelTransform", false]], "harmonic (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.harmonic", false]], "has() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.has", false]], "has() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.has", false]], "has_assoc_field (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.has_assoc_Field", false]], "has_assoc_ring (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.has_assoc_Ring", false]], "has_dups() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.has_dups", false]], "has_empty_sequence (sympy.concrete.expr_with_intlimits.exprwithintlimits property)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.has_empty_sequence", false]], "has_finite_limits (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.has_finite_limits", false]], "has_free() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.has_free", false]], "has_integer_powers() (sympy.physics.units.dimensions.dimension method)": [[193, "sympy.physics.units.dimensions.Dimension.has_integer_powers", false]], "has_only_gens() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.has_only_gens", false]], "has_q_annihilators (sympy.physics.secondquant.no property)": [[191, "sympy.physics.secondquant.NO.has_q_annihilators", false]], "has_q_creators (sympy.physics.secondquant.no property)": [[191, "sympy.physics.secondquant.NO.has_q_creators", false]], "has_reversed_limits (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.has_reversed_limits", false]], "has_variety() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.has_variety", false]], "has_xfree() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.has_xfree", false]], "hat() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.hat", false]], "hbar (class in sympy.physics.quantum.constants)": [[173, "sympy.physics.quantum.constants.HBar", false]], "heaviside (class in sympy.functions.special.delta_functions)": [[96, "sympy.functions.special.delta_functions.Heaviside", false]], "height (sympy.categories.diagram_drawing.diagramgrid property)": [[68, "sympy.categories.diagram_drawing.DiagramGrid.height", false]], "height (sympy.physics.optics.gaussopt.geometricray property)": [[160, "sympy.physics.optics.gaussopt.GeometricRay.height", false]], "height() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.height", false]], "height() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.height", false]], "hermite (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.hermite", false]], "hermite() (in module sympy.stats)": [[241, "sympy.stats.Hermite", false]], "hermite_normal_form() (in module sympy.matrices.normalforms)": [[125, "sympy.matrices.normalforms.hermite_normal_form", false]], "hermite_normal_form() (in module sympy.polys.matrices.normalforms)": [[210, "sympy.polys.matrices.normalforms.hermite_normal_form", false]], "hermite_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.hermite_poly", false]], "hermite_prob (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.hermite_prob", false]], "hermite_prob_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.hermite_prob_poly", false]], "hermitian": [[88, "term-hermitian", true]], "hermitianoperator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.HermitianOperator", false]], "hermitianpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.HermitianPredicate", false]], "hessian() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.hessian", false]], "heurisch() (in module sympy.integrals.heurisch)": [[115, "sympy.integrals.heurisch.heurisch", false]], "heuristicgcdfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.HeuristicGCDFailed", false]], "highest_root() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.highest_root", false]], "hilbertspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.HilbertSpace", false]], "hobj() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.hobj", false]], "holonomic_constraints (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.holonomic_constraints", false]], "holonomicfunction (class in sympy.holonomic.holonomic)": [[111, "sympy.holonomic.holonomic.HolonomicFunction", false]], "holzer() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.holzer", false]], "hom() (sympy.categories.diagram method)": [[68, "sympy.categories.Diagram.hom", false]], "homogeneous_order() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.homogeneous_order", false]], "homogeneous_order() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.homogeneous_order", false]], "homogeneous_order() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.homogeneous_order", false]], "homogeneouscoeffbest (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.HomogeneousCoeffBest", false]], "homogeneouscoeffsubsdepdivindep (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep", false]], "homogeneouscoeffsubsindepdivdep (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep", false]], "homogeneousgeneralquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.HomogeneousGeneralQuadratic", false]], "homogeneousternaryquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.HomogeneousTernaryQuadratic", false]], "homogeneousternaryquadraticnormal (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.HomogeneousTernaryQuadraticNormal", false]], "homogenize() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.homogenize", false]], "homogenize() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.homogenize", false]], "homomorphism() (in module sympy.polys.agca.homomorphisms)": [[208, "sympy.polys.agca.homomorphisms.homomorphism", false]], "homomorphismfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.HomomorphismFailed", false]], "horner() (in module sympy.polys.polyfuncs)": [[217, "sympy.polys.polyfuncs.horner", false]], "hradius (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.hradius", false]], "hstack() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.hstack", false]], "hstack() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.hstack", false]], "hstack() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.hstack", false]], "hstack() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.hstack", false]], "hstack() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.hstack", false]], "hyper (class in sympy.functions.special.hyper)": [[96, "sympy.functions.special.hyper.hyper", false]], "hyper_algorithm() (in module sympy.series.formal)": [[223, "sympy.series.formal.hyper_algorithm", false]], "hyper_re() (in module sympy.series.formal)": [[223, "sympy.series.formal.hyper_re", false]], "hyperbolicfunction (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.HyperbolicFunction", false]], "hyperexpand() (in module sympy.simplify.hyperexpand)": [[233, "sympy.simplify.hyperexpand.hyperexpand", false]], "hyperfocal_distance() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.hyperfocal_distance", false]], "hypergeometric() (in module sympy.stats)": [[241, "sympy.stats.Hypergeometric", false]], "hypersimilar() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.hypersimilar", false]], "hypersimp() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.hypersimp", false]], "hypot (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.hypot", false]], "ibin() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.ibin", false]], "ideal (class in sympy.polys.agca.ideals)": [[208, "sympy.polys.agca.ideals.Ideal", false]], "ideal() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.ideal", false]], "identity (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.Identity", false]], "identity (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.identity", false]], "identity_hom() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.identity_hom", false]], "identity_hom() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.identity_hom", false]], "identity_hom() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.identity_hom", false]], "identity_hom() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.identity_hom", false]], "identityfunction (class in sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.IdentityFunction", false]], "identitygate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.IdentityGate", false]], "identitymorphism (class in sympy.categories)": [[68, "sympy.categories.IdentityMorphism", false]], "identityoperator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.IdentityOperator", false]], "idiff() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.idiff", false]], "idx (class in sympy.tensor.indexed)": [[246, "sympy.tensor.indexed.Idx", false]], "ifft() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.ifft", false]], "ifwht() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.ifwht", false]], "igcd() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.igcd", false]], "igcd_lehmer() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.igcd_lehmer", false]], "igcdex() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.igcdex", false]], "ignore_warnings() (in module sympy.utilities.exceptions)": [[257, "sympy.utilities.exceptions.ignore_warnings", false]], "ilcm() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.ilcm", false]], "ild_deflection_jumps (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_deflection_jumps", false]], "ild_moment (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_moment", false]], "ild_reactions (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_reactions", false]], "ild_rotation_jumps (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_rotation_jumps", false]], "ild_shear (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.ild_shear", false]], "im (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.im", false]], "image() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.image", false]], "imageset (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.ImageSet", false]], "imageset() (in module sympy.sets.sets)": [[229, "sympy.sets.sets.imageset", false]], "imaginary": [[88, "term-imaginary", true]], "imaginarypredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.ImaginaryPredicate", false]], "imaginaryunit (class in sympy.core.numbers)": [[88, "sympy.core.numbers.ImaginaryUnit", false]], "immutable": [[15, "term-Immutable", true]], "immutabledensematrix (class in sympy.matrices.immutable)": [[121, "sympy.matrices.immutable.ImmutableDenseMatrix", false]], "immutabledensendimarray (class in sympy.tensor.array)": [[242, "sympy.tensor.array.ImmutableDenseNDimArray", false]], "immutablematrix (in module sympy.matrices.immutable)": [[121, "sympy.matrices.immutable.ImmutableMatrix", false]], "immutablesparsematrix (class in sympy.matrices.immutable)": [[126, "sympy.matrices.immutable.ImmutableSparseMatrix", false]], "immutablesparsendimarray (class in sympy.tensor.array)": [[242, "sympy.tensor.array.ImmutableSparseNDimArray", false]], "implemented_function() (in module sympy.utilities.lambdify)": [[260, "sympy.utilities.lambdify.implemented_function", false]], "implicit_application() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.implicit_application", false]], "implicit_multiplication() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.implicit_multiplication", false]], "implicit_multiplication_application() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.implicit_multiplication_application", false]], "implicitregion (class in sympy.vector.implicitregion)": [[265, "sympy.vector.implicitregion.ImplicitRegion", false]], "implicitseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.ImplicitSeries", false]], "implieddoloop (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.ImpliedDoLoop", false]], "implies (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Implies", false]], "impulse_response_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.impulse_response_numerical_data", false]], "impulse_response_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.impulse_response_plot", false]], "imul_num() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.imul_num", false]], "in_terms_of_generators() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.in_terms_of_generators", false]], "incenter (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.incenter", false]], "incircle (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.incircle", false]], "incircle (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.incircle", false]], "inclusion_hom() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.inclusion_hom", false]], "indent_code() (sympy.printing.c.c89codeprinter method)": [[221, "sympy.printing.c.C89CodePrinter.indent_code", false]], "indent_code() (sympy.printing.fortran.fcodeprinter method)": [[221, "sympy.printing.fortran.FCodePrinter.indent_code", false]], "indent_code() (sympy.printing.jscode.javascriptcodeprinter method)": [[221, "sympy.printing.jscode.JavascriptCodePrinter.indent_code", false]], "indent_code() (sympy.printing.julia.juliacodeprinter method)": [[221, "sympy.printing.julia.JuliaCodePrinter.indent_code", false]], "indent_code() (sympy.printing.octave.octavecodeprinter method)": [[221, "sympy.printing.octave.OctaveCodePrinter.indent_code", false]], "indent_code() (sympy.printing.rcode.rcodeprinter method)": [[221, "sympy.printing.rcode.RCodePrinter.indent_code", false]], "indent_code() (sympy.printing.rust.rustcodeprinter method)": [[221, "sympy.printing.rust.RustCodePrinter.indent_code", false]], "index() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.index", false]], "index() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.index", false]], "index() (sympy.concrete.expr_with_intlimits.exprwithintlimits method)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index", false]], "index() (sympy.core.containers.tuple method)": [[88, "sympy.core.containers.Tuple.index", false]], "index() (sympy.physics.secondquant.fixedbosonicbasis method)": [[191, "sympy.physics.secondquant.FixedBosonicBasis.index", false]], "index() (sympy.physics.secondquant.varbosonicbasis method)": [[191, "sympy.physics.secondquant.VarBosonicBasis.index", false]], "index() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.index", false]], "index_vector() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.index_vector", false]], "indexed (class in sympy.tensor.indexed)": [[246, "sympy.tensor.indexed.Indexed", false]], "indexedbase (class in sympy.tensor.indexed)": [[246, "sympy.tensor.indexed.IndexedBase", false]], "indices (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.indices", false]], "indices_contain_equal_information (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.indices_contain_equal_information", false]], "indices_contain_equal_information (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.indices_contain_equal_information", false]], "inertia (class in sympy.physics.mechanics.inertia)": [[155, "sympy.physics.mechanics.inertia.Inertia", false]], "inertia (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.inertia", false]], "inertia (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.inertia", false]], "inertia() (in module sympy.physics.mechanics.inertia)": [[155, "sympy.physics.mechanics.inertia.inertia", false]], "inertia_of_point_mass() (in module sympy.physics.mechanics.inertia)": [[155, "sympy.physics.mechanics.inertia.inertia_of_point_mass", false]], "inf (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.inf", false]], "infinite": [[88, "term-infinite", true]], "infinite (sympy.series.formal.formalpowerseries property)": [[223, "sympy.series.formal.FormalPowerSeries.infinite", false]], "infinitepredicate (class in sympy.assumptions.predicates.calculus)": [[65, "sympy.assumptions.predicates.calculus.InfinitePredicate", false]], "infinitesimals() (in module sympy.solvers.ode)": [[237, "sympy.solvers.ode.infinitesimals", false]], "infinity (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Infinity", false]], "inhomogeneousgeneralquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.InhomogeneousGeneralQuadratic", false]], "inhomogeneousternaryquadratic (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.InhomogeneousTernaryQuadratic", false]], "init_ipython_session() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.init_ipython_session", false]], "init_printing() (in module sympy.interactive.printing)": [[116, "sympy.interactive.printing.init_printing", false]], "init_python_session() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.init_python_session", false]], "init_session() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.init_session", false]], "init_vprinting() (in module sympy.physics.vector.printing)": [[205, "sympy.physics.vector.printing.init_vprinting", false]], "initial (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.initial", false]], "inject() (sympy.polys.domains.compositedomain.compositedomain method)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.inject", false]], "inject() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.inject", false]], "inject() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.inject", false]], "inject() (sympy.polys.domains.simpledomain.simpledomain method)": [[212, "sympy.polys.domains.simpledomain.SimpleDomain.inject", false]], "inject() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.inject", false]], "inject() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.inject", false]], "inner_endomorphism() (sympy.polys.numberfields.modules.endomorphismring method)": [[216, "sympy.polys.numberfields.modules.EndomorphismRing.inner_endomorphism", false]], "innerendomorphism (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.InnerEndomorphism", false]], "innerproduct (class in sympy.physics.quantum.innerproduct)": [[179, "sympy.physics.quantum.innerproduct.InnerProduct", false]], "innerproduct (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.InnerProduct", false]], "input_vars (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.input_vars", false]], "input_vars (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.input_vars", false]], "input_vars (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.input_vars", false]], "input_vars (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.input_vars", false]], "inradius (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.inradius", false]], "inradius (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.inradius", false]], "int_to_integer() (in module sympy.interactive.session)": [[116, "sympy.interactive.session.int_to_Integer", false]], "intbasetype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.IntBaseType", false]], "intcurve_diffequ() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.intcurve_diffequ", false]], "intcurve_series() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.intcurve_series", false]], "integer": [[88, "term-integer", true]], "integer (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Integer", false]], "integer_log() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.integer_log", false]], "integer_nthroot() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.integer_nthroot", false]], "integer_to_term() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.integer_to_term", false]], "integerelementspredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.IntegerElementsPredicate", false]], "integerpartition (class in sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.IntegerPartition", false]], "integerpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.IntegerPredicate", false]], "integerring (class in sympy.polys.domains)": [[212, "sympy.polys.domains.IntegerRing", false]], "integers (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Integers", false]], "integral (class in sympy.integrals.integrals)": [[115, "sympy.integrals.integrals.Integral", false]], "integral.is_commutative (in module sympy.integrals.integrals)": [[115, "sympy.integrals.integrals.Integral.is_commutative", false]], "integral_basis() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.integral_basis", false]], "integral_steps() (in module sympy.integrals.manualintegrate)": [[115, "sympy.integrals.manualintegrate.integral_steps", false]], "integraltransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.IntegralTransform", false]], "integraltransformerror": [[115, "sympy.integrals.transforms.IntegralTransformError", false]], "integrand() (sympy.functions.special.hyper.meijerg method)": [[96, "sympy.functions.special.hyper.meijerg.integrand", false]], "integrate() (in module sympy.integrals.integrals)": [[115, "sympy.integrals.integrals.integrate", false]], "integrate() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.integrate", false]], "integrate() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.integrate", false]], "integrate() (sympy.core.relational.equality method)": [[88, "sympy.core.relational.Equality.integrate", false]], "integrate() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.integrate", false]], "integrate() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.integrate", false]], "integrate() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.integrate", false]], "integrate() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.integrate", false]], "integrate() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.integrate", false]], "integrate_result() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.integrate_result", false]], "interactive": [[15, "term-Interactive", true]], "interior (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.interior", false]], "interior_angle (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.interior_angle", false]], "internal_forces (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.internal_forces", false]], "interpolate() (in module sympy.polys.polyfuncs)": [[217, "sympy.polys.polyfuncs.interpolate", false]], "interpolating_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.interpolating_poly", false]], "interpolating_spline() (in module sympy.functions.special.bsplines)": [[96, "sympy.functions.special.bsplines.interpolating_spline", false]], "intersect() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.intersect", false]], "intersect() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.intersect", false]], "intersect() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.intersect", false]], "intersecting_product() (in module sympy.discrete.convolutions)": [[91, "sympy.discrete.convolutions.intersecting_product", false]], "intersection (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Intersection", false]], "intersection() (in module sympy.geometry.util)": [[105, "sympy.geometry.util.intersection", false]], "intersection() (sympy.geometry.ellipse.circle method)": [[98, "sympy.geometry.ellipse.Circle.intersection", false]], "intersection() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.intersection", false]], "intersection() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.intersection", false]], "intersection() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.intersection", false]], "intersection() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.intersection", false]], "intersection() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.intersection", false]], "intersection() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.intersection", false]], "intersection() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.intersection", false]], "intersection() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.intersection", false]], "interval (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Interval", false]], "interval (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.interval", false]], "interval (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.interval", false]], "intervals() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.intervals", false]], "intervals() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.intervals", false]], "intervals() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.intervals", false]], "intqubit (class in sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.IntQubit", false]], "intqubitbra (class in sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.IntQubitBra", false]], "intt() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.intt", false]], "inv() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inv", false]], "inv() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.inv", false]], "inv() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.inv", false]], "inv() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.inv", false]], "inv() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.inv", false]], "inv_can_transf_matrix (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.inv_can_transf_matrix", false]], "inv_den() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.inv_den", false]], "inverse (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.Inverse", false]], "inverse() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.inverse", false]], "inverse() (sympy.functions.elementary.exponential.log method)": [[94, "sympy.functions.elementary.exponential.log.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.acosh method)": [[94, "sympy.functions.elementary.hyperbolic.acosh.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.acoth method)": [[94, "sympy.functions.elementary.hyperbolic.acoth.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.acsch method)": [[94, "sympy.functions.elementary.hyperbolic.acsch.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.asech method)": [[94, "sympy.functions.elementary.hyperbolic.asech.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.asinh method)": [[94, "sympy.functions.elementary.hyperbolic.asinh.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.atanh method)": [[94, "sympy.functions.elementary.hyperbolic.atanh.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.coth method)": [[94, "sympy.functions.elementary.hyperbolic.coth.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.sinh method)": [[94, "sympy.functions.elementary.hyperbolic.sinh.inverse", false]], "inverse() (sympy.functions.elementary.hyperbolic.tanh method)": [[94, "sympy.functions.elementary.hyperbolic.tanh.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.acos method)": [[94, "sympy.functions.elementary.trigonometric.acos.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.acot method)": [[94, "sympy.functions.elementary.trigonometric.acot.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.acsc method)": [[94, "sympy.functions.elementary.trigonometric.acsc.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.asec method)": [[94, "sympy.functions.elementary.trigonometric.asec.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.asin method)": [[94, "sympy.functions.elementary.trigonometric.asin.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.atan method)": [[94, "sympy.functions.elementary.trigonometric.atan.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.cot method)": [[94, "sympy.functions.elementary.trigonometric.cot.inverse", false]], "inverse() (sympy.functions.elementary.trigonometric.tan method)": [[94, "sympy.functions.elementary.trigonometric.tan.inverse", false]], "inverse() (sympy.functions.special.error_functions.erf method)": [[96, "sympy.functions.special.error_functions.erf.inverse", false]], "inverse() (sympy.functions.special.error_functions.erfc method)": [[96, "sympy.functions.special.error_functions.erfc.inverse", false]], "inverse() (sympy.functions.special.error_functions.erfcinv method)": [[96, "sympy.functions.special.error_functions.erfcinv.inverse", false]], "inverse() (sympy.functions.special.error_functions.erfinv method)": [[96, "sympy.functions.special.error_functions.erfinv.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.inverse", false]], "inverse() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.inverse", false]], "inverse() (sympy.polys.agca.extensions.extensionelement method)": [[208, "sympy.polys.agca.extensions.ExtensionElement.inverse", false]], "inverse() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.inverse", false]], "inverse_adj() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_ADJ", false]], "inverse_block() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_BLOCK", false]], "inverse_ch() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_CH", false]], "inverse_cosine_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_cosine_transform", false]], "inverse_fourier_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_fourier_transform", false]], "inverse_ge() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_GE", false]], "inverse_hankel_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_hankel_transform", false]], "inverse_laplace_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_laplace_transform", false]], "inverse_ldl() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_LDL", false]], "inverse_lu() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_LU", false]], "inverse_mellin_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_mellin_transform", false]], "inverse_mobius_transform() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.inverse_mobius_transform", false]], "inverse_qr() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.inverse_QR", false]], "inverse_sine_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.inverse_sine_transform", false]], "inversecosinetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseCosineTransform", false]], "inversefouriertransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseFourierTransform", false]], "inversehankeltransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseHankelTransform", false]], "inverselaplacetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseLaplaceTransform", false]], "inversemellintransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseMellinTransform", false]], "inversesinetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.InverseSineTransform", false]], "inversion_vector() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.inversion_vector", false]], "inversions() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.inversions", false]], "invert() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.invert", false]], "invert() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.invert", false]], "invert() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.invert", false]], "invert() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.invert", false]], "invert() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.invert", false]], "invert() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.invert", false]], "invert() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.invert", false]], "invert_complex() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.invert_complex", false]], "invert_real() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.invert_real", false]], "invertiblepredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.InvertiblePredicate", false]], "iproduct() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.iproduct", false]], "iqft (class in sympy.physics.quantum.qft)": [[184, "sympy.physics.quantum.qft.IQFT", false]], "irrational": [[88, "term-irrational", true]], "irrationalpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.IrrationalPredicate", false]], "irregular() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.irregular", false]], "is_*": [[15, "term-is_", true]], "is_abelian (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_abelian", false]], "is_abelian_number() (in module sympy.combinatorics.group_numbers)": [[74, "sympy.combinatorics.group_numbers.is_abelian_number", false]], "is_above_fermi (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.is_above_fermi", false]], "is_above_fermi (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.is_above_fermi", false]], "is_absolutely_convergent() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.is_absolutely_convergent", false]], "is_abundant() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_abundant", false]], "is_algebraic_expr() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_algebraic_expr", false]], "is_aliased (sympy.core.numbers.algebraicnumber property)": [[88, "sympy.core.numbers.AlgebraicNumber.is_aliased", false]], "is_alt_sym() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym", false]], "is_alternating (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_alternating", false]], "is_amicable() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_amicable", false]], "is_anf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.is_anf", false]], "is_anti_symmetric() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_anti_symmetric", false]], "is_below_fermi (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.is_below_fermi", false]], "is_below_fermi (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.is_below_fermi", false]], "is_biproper (sympy.physics.control.lti.parallel property)": [[144, "sympy.physics.control.lti.Parallel.is_biproper", false]], "is_biproper (sympy.physics.control.lti.series property)": [[144, "sympy.physics.control.lti.Series.is_biproper", false]], "is_biproper (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.is_biproper", false]], "is_carmichael() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_carmichael", false]], "is_closed (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.is_closed", false]], "is_cnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.is_cnf", false]], "is_collinear() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.is_collinear", false]], "is_commutative (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.is_commutative", false]], "is_comparable (sympy.core.basic.basic property)": [[88, "sympy.core.basic.Basic.is_comparable", false]], "is_compat() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.is_compat", false]], "is_compat_col() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.is_compat_col", false]], "is_concyclic() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.is_concyclic", false]], "is_conservative() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.is_conservative", false]], "is_conservative() (in module sympy.vector)": [[268, "sympy.vector.is_conservative", false]], "is_consistent (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.is_consistent", false]], "is_consistent (sympy.physics.units.unitsystem.unitsystem property)": [[199, "sympy.physics.units.unitsystem.UnitSystem.is_consistent", false]], "is_constant() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_constant", false]], "is_convergent() (sympy.concrete.products.product method)": [[87, "sympy.concrete.products.Product.is_convergent", false]], "is_convergent() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.is_convergent", false]], "is_convex() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.is_convex", false]], "is_convex() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.is_convex", false]], "is_coplanar() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.is_coplanar", false]], "is_cyclic (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_cyclic", false]], "is_cyclic_number() (in module sympy.combinatorics.group_numbers)": [[74, "sympy.combinatorics.group_numbers.is_cyclic_number", false]], "is_cyclotomic (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_cyclotomic", false]], "is_cyclotomic (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_cyclotomic", false]], "is_decreasing() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_decreasing", false]], "is_deficient() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_deficient", false]], "is_diagonal (sympy.polys.matrices.domainmatrix.domainmatrix property)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.is_diagonal", false]], "is_diagonal() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_diagonal", false]], "is_diagonal() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.is_diagonal", false]], "is_diagonal() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.is_diagonal", false]], "is_diagonal() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.is_diagonal", false]], "is_diagonalizable() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_diagonalizable", false]], "is_dihedral (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_dihedral", false]], "is_dimensionless() (sympy.physics.units.dimensions.dimensionsystem method)": [[193, "sympy.physics.units.dimensions.DimensionSystem.is_dimensionless", false]], "is_disjoint() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_disjoint", false]], "is_dnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.is_dnf", false]], "is_echelon (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_echelon", false]], "is_elementary() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_elementary", false]], "is_empty (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_Empty", false]], "is_equilateral() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_equilateral", false]], "is_euler_jacobi_pseudoprime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_euler_jacobi_pseudoprime", false]], "is_euler_pseudoprime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_euler_pseudoprime", false]], "is_even (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_even", false]], "is_exact (sympy.polys.domains.compositedomain.compositedomain property)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.is_Exact", false]], "is_extra_strong_lucas_prp() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_extra_strong_lucas_prp", false]], "is_fermat_pseudoprime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_fermat_pseudoprime", false]], "is_field (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.is_Field", false]], "is_full_module() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.is_full_module", false]], "is_full_module() (sympy.polys.agca.modules.subquotientmodule method)": [[208, "sympy.polys.agca.modules.SubQuotientModule.is_full_module", false]], "is_gaussian_prime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_gaussian_prime", false]], "is_groebner() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.is_groebner", false]], "is_ground (sympy.polys.polyclasses.anp property)": [[212, "sympy.polys.polyclasses.ANP.is_ground", false]], "is_ground (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_ground", false]], "is_ground (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_ground", false]], "is_hermitian (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_hermitian", false]], "is_homogeneous (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_homogeneous", false]], "is_homogeneous (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_homogeneous", false]], "is_identity (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_Identity", false]], "is_identity (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.is_identity", false]], "is_increasing() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_increasing", false]], "is_indefinite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_indefinite", false]], "is_inert (sympy.polys.numberfields.primes.primeideal property)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.is_inert", false]], "is_injective() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.is_injective", false]], "is_int() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.is_int", false]], "is_irreducible (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_irreducible", false]], "is_irreducible (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_irreducible", false]], "is_isomorphism() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.is_isomorphism", false]], "is_isosceles() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_isosceles", false]], "is_iterable (sympy.sets.sets.productset property)": [[229, "sympy.sets.sets.ProductSet.is_iterable", false]], "is_left_unbounded (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.is_left_unbounded", false]], "is_linear (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_linear", false]], "is_linear (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_linear", false]], "is_lower (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_lower", false]], "is_lower (sympy.polys.matrices.domainmatrix.domainmatrix property)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.is_lower", false]], "is_lower() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.is_lower", false]], "is_lower() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.is_lower", false]], "is_lower() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.is_lower", false]], "is_lower_hessenberg (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_lower_hessenberg", false]], "is_lucas_prp() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_lucas_prp", false]], "is_maximal() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_maximal", false]], "is_meromorphic() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_meromorphic", false]], "is_mersenne_prime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_mersenne_prime", false]], "is_minimal() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.is_minimal", false]], "is_monic (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_monic", false]], "is_monic (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_monic", false]], "is_monomial (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_monomial", false]], "is_monomial (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_monomial", false]], "is_monotonic() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_monotonic", false]], "is_multivariate (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_multivariate", false]], "is_negative() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.is_negative", false]], "is_negative() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_negative", false]], "is_negative() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_negative", false]], "is_negative() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.is_negative", false]], "is_negative() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_negative", false]], "is_negative() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.is_negative", false]], "is_negative() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.is_negative", false]], "is_negative() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_negative", false]], "is_negative_definite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_negative_definite", false]], "is_negative_semidefinite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_negative_semidefinite", false]], "is_nilpotent (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_nilpotent", false]], "is_nilpotent() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_nilpotent", false]], "is_nilpotent_number() (in module sympy.combinatorics.group_numbers)": [[74, "sympy.combinatorics.group_numbers.is_nilpotent_number", false]], "is_nnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.is_nnf", false]], "is_nonnegative() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.is_nonnegative", false]], "is_nonnegative() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_nonnegative", false]], "is_nonpositive() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.is_nonpositive", false]], "is_nonpositive() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_nonpositive", false]], "is_nonzero (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.is_nonzero", false]], "is_normal() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_normal", false]], "is_normalized (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.is_normalized", false]], "is_nthpow_residue() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.is_nthpow_residue", false]], "is_number (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.is_number", false]], "is_number (sympy.core.expr.expr property)": [[88, "sympy.core.expr.Expr.is_number", false]], "is_number (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.is_number", false]], "is_odd (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_odd", false]], "is_one (sympy.polys.polyclasses.anp property)": [[212, "sympy.polys.polyclasses.ANP.is_one", false]], "is_one (sympy.polys.polyclasses.dmf property)": [[212, "sympy.polys.polyclasses.DMF.is_one", false]], "is_one (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_one", false]], "is_one (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_one", false]], "is_one() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_one", false]], "is_only_above_fermi (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.is_only_above_fermi", false]], "is_only_above_fermi (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.is_only_above_fermi", false]], "is_only_below_fermi (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.is_only_below_fermi", false]], "is_only_below_fermi (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.is_only_below_fermi", false]], "is_only_q_annihilator (sympy.physics.secondquant.annihilatefermion property)": [[191, "sympy.physics.secondquant.AnnihilateFermion.is_only_q_annihilator", false]], "is_only_q_annihilator (sympy.physics.secondquant.createfermion property)": [[191, "sympy.physics.secondquant.CreateFermion.is_only_q_annihilator", false]], "is_only_q_creator (sympy.physics.secondquant.annihilatefermion property)": [[191, "sympy.physics.secondquant.AnnihilateFermion.is_only_q_creator", false]], "is_only_q_creator (sympy.physics.secondquant.createfermion property)": [[191, "sympy.physics.secondquant.CreateFermion.is_only_q_creator", false]], "is_open (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.is_open", false]], "is_palindromic() (in module sympy.ntheory.digits)": [[128, "sympy.ntheory.digits.is_palindromic", false]], "is_palindromic() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.is_palindromic", false]], "is_parallel() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.is_parallel", false]], "is_parallel() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.is_parallel", false]], "is_perfect (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_perfect", false]], "is_perfect() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.is_perfect", false]], "is_perpendicular() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.is_perpendicular", false]], "is_perpendicular() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.is_perpendicular", false]], "is_pid (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.is_PID", false]], "is_polycyclic (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_polycyclic", false]], "is_polynomial() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_polynomial", false]], "is_positive() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.is_positive", false]], "is_positive() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_positive", false]], "is_positive() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_positive", false]], "is_positive() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.is_positive", false]], "is_positive() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_positive", false]], "is_positive() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.is_positive", false]], "is_positive() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.is_positive", false]], "is_positive() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_positive", false]], "is_positive_definite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_positive_definite", false]], "is_positive_semidefinite (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_positive_semidefinite", false]], "is_prefixed (sympy.physics.units.quantities.quantity property)": [[198, "sympy.physics.units.quantities.Quantity.is_prefixed", false]], "is_primary() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_primary", false]], "is_prime() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_prime", false]], "is_primitive (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_primitive", false]], "is_primitive (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_primitive", false]], "is_primitive() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_primitive", false]], "is_primitive_element (sympy.core.numbers.algebraicnumber property)": [[88, "sympy.core.numbers.AlgebraicNumber.is_primitive_element", false]], "is_primitive_root() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.is_primitive_root", false]], "is_principal() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_principal", false]], "is_proper (sympy.physics.control.lti.parallel property)": [[144, "sympy.physics.control.lti.Parallel.is_proper", false]], "is_proper (sympy.physics.control.lti.series property)": [[144, "sympy.physics.control.lti.Series.is_proper", false]], "is_proper (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.is_proper", false]], "is_proper_subset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_proper_subset", false]], "is_proper_superset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_proper_superset", false]], "is_pure() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.is_pure", false]], "is_q_annihilator (sympy.physics.secondquant.annihilatefermion property)": [[191, "sympy.physics.secondquant.AnnihilateFermion.is_q_annihilator", false]], "is_q_annihilator (sympy.physics.secondquant.createfermion property)": [[191, "sympy.physics.secondquant.CreateFermion.is_q_annihilator", false]], "is_q_creator (sympy.physics.secondquant.annihilatefermion property)": [[191, "sympy.physics.secondquant.AnnihilateFermion.is_q_creator", false]], "is_q_creator (sympy.physics.secondquant.createfermion property)": [[191, "sympy.physics.secondquant.CreateFermion.is_q_creator", false]], "is_quad_residue() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.is_quad_residue", false]], "is_quadratic (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_quadratic", false]], "is_quadratic (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_quadratic", false]], "is_radical() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_radical", false]], "is_rat() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.is_rat", false]], "is_rational (sympy.polys.numberfields.modules.powerbasiselement property)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.is_rational", false]], "is_rational_function() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.is_rational_function", false]], "is_reduced() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.is_reduced", false]], "is_right() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_right", false]], "is_right_unbounded (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.is_right_unbounded", false]], "is_ring (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.is_Ring", false]], "is_same() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.is_same", false]], "is_scalar_multiple() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.is_scalar_multiple", false]], "is_scalene() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_scalene", false]], "is_sequence() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.is_sequence", false]], "is_similar() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.is_similar", false]], "is_similar() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.is_similar", false]], "is_similar() (sympy.geometry.polygon.triangle method)": [[104, "sympy.geometry.polygon.Triangle.is_similar", false]], "is_simple() (sympy.functions.special.delta_functions.diracdelta method)": [[96, "sympy.functions.special.delta_functions.DiracDelta.is_simple", false]], "is_singleton (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.is_Singleton", false]], "is_singular() (sympy.core.function.function class method)": [[88, "sympy.core.function.Function.is_singular", false]], "is_singular() (sympy.holonomic.holonomic.differentialoperator method)": [[111, "sympy.holonomic.holonomic.DifferentialOperator.is_singular", false]], "is_solenoidal() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.is_solenoidal", false]], "is_solenoidal() (in module sympy.vector)": [[268, "sympy.vector.is_solenoidal", false]], "is_solvable (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_solvable", false]], "is_sqf (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_sqf", false]], "is_sqf (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_sqf", false]], "is_square (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_square", false]], "is_square (sympy.polys.matrices.domainmatrix.domainmatrix property)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.is_square", false]], "is_square() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_square", false]], "is_square() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.is_square", false]], "is_square() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_square", false]], "is_square() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.is_square", false]], "is_square() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.is_square", false]], "is_square() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.is_square", false]], "is_square() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.is_square", false]], "is_stable() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.is_stable", false]], "is_strictly_decreasing() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_strictly_decreasing", false]], "is_strictly_increasing() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.is_strictly_increasing", false]], "is_strictly_proper (sympy.physics.control.lti.parallel property)": [[144, "sympy.physics.control.lti.Parallel.is_strictly_proper", false]], "is_strictly_proper (sympy.physics.control.lti.series property)": [[144, "sympy.physics.control.lti.Series.is_strictly_proper", false]], "is_strictly_proper (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.is_strictly_proper", false]], "is_strong_lucas_prp() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.is_strong_lucas_prp", false]], "is_strongly_diagonally_dominant (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_strongly_diagonally_dominant", false]], "is_subdiagram() (sympy.categories.diagram method)": [[68, "sympy.categories.Diagram.is_subdiagram", false]], "is_subgroup() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_subgroup", false]], "is_submodule() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.is_submodule", false]], "is_submodule() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.is_submodule", false]], "is_submodule() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.is_submodule", false]], "is_submodule() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.is_submodule", false]], "is_subset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_subset", false]], "is_superset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.is_superset", false]], "is_surjective() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.is_surjective", false]], "is_symbolic() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_symbolic", false]], "is_symmetric (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_symmetric", false]], "is_symmetric() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_symmetric", false]], "is_tangent() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.is_tangent", false]], "is_transitive() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_transitive", false]], "is_trivial (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.is_trivial", false]], "is_unit() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.is_unit", false]], "is_unit() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.is_unit", false]], "is_univariate (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_univariate", false]], "is_upper (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_upper", false]], "is_upper (sympy.polys.matrices.domainmatrix.domainmatrix property)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.is_upper", false]], "is_upper() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.is_upper", false]], "is_upper() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.is_upper", false]], "is_upper() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.is_upper", false]], "is_upper_hessenberg (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_upper_hessenberg", false]], "is_weakly_diagonally_dominant (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_weakly_diagonally_dominant", false]], "is_whole_ring() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_whole_ring", false]], "is_zero (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.is_zero", false]], "is_zero (sympy.polys.polyclasses.anp property)": [[212, "sympy.polys.polyclasses.ANP.is_zero", false]], "is_zero (sympy.polys.polyclasses.dmf property)": [[212, "sympy.polys.polyclasses.DMF.is_zero", false]], "is_zero (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.is_zero", false]], "is_zero (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.is_zero", false]], "is_zero() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.is_zero", false]], "is_zero() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.is_zero", false]], "is_zero() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.is_zero", false]], "is_zero() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.is_zero", false]], "is_zero() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.is_zero", false]], "is_zero() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.is_zero", false]], "is_zero() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.is_zero", false]], "is_zero_dimensional (sympy.polys.polytools.groebnerbasis property)": [[217, "sympy.polys.polytools.GroebnerBasis.is_zero_dimensional", false]], "is_zero_dimensional() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.is_zero_dimensional", false]], "is_zero_matrix (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.is_zero_matrix", false]], "is_zero_matrix() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.is_zero_matrix", false]], "is_zero_matrix() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.is_zero_matrix", false]], "is_zero_matrix() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.is_zero_matrix", false]], "is_zero_quaternion() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.is_zero_quaternion", false]], "isdisjoint() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.isdisjoint", false]], "isign (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.isign", false]], "isolate() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.isolate", false]], "isomorphismfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.IsomorphismFailed", false]], "isprime() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.isprime", false]], "isqrt() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.isqrt", false]], "issubset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.issubset", false]], "issuperset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.issuperset", false]], "istruepredicate (class in sympy.assumptions.predicates.common)": [[65, "sympy.assumptions.predicates.common.IsTruePredicate", false]], "isympy": [[15, "term-isympy", true]], "ite (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.ITE", false]], "items() (sympy.core.containers.dict method)": [[88, "sympy.core.containers.Dict.items", false]], "iter_items() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.iter_items", false]], "iter_items() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.iter_items", false]], "iter_items() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.iter_items", false]], "iter_items() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.iter_items", false]], "iter_items() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.iter_items", false]], "iter_q_annihilators() (sympy.physics.secondquant.no method)": [[191, "sympy.physics.secondquant.NO.iter_q_annihilators", false]], "iter_q_creators() (sympy.physics.secondquant.no method)": [[191, "sympy.physics.secondquant.NO.iter_q_creators", false]], "iter_values() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.iter_values", false]], "iter_values() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.iter_values", false]], "iter_values() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.iter_values", false]], "iter_values() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.iter_values", false]], "iter_values() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.iter_values", false]], "iterable() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.iterable", false]], "iterate_binary() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.iterate_binary", false]], "iterate_graycode() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.iterate_graycode", false]], "itercoeffs() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.itercoeffs", false]], "itermonomials() (in module sympy.polys.monomials)": [[217, "sympy.polys.monomials.itermonomials", false]], "itermonoms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.itermonoms", false]], "iterterms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.iterterms", false]], "j2op (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.J2Op", false]], "jacobi (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.jacobi", false]], "jacobi_normalized() (in module sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.jacobi_normalized", false]], "jacobi_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.jacobi_poly", false]], "jacobi_symbol (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.jacobi_symbol", false]], "jacobi_symbol() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.jacobi_symbol", false]], "jacobian() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.jacobian", false]], "jacobian() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.jacobian", false]], "jacobian_determinant() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.jacobian_determinant", false]], "jacobian_matrix() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.jacobian_matrix", false]], "javascriptcodeprinter (class in sympy.printing.jscode)": [[221, "sympy.printing.jscode.JavascriptCodePrinter", false]], "jn (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.jn", false]], "jn_zeros() (in module sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.jn_zeros", false]], "join() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.join", false]], "joint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.Joint", false]], "joint_axis (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.joint_axis", false]], "joint_axis (sympy.physics.mechanics.joint.pinjoint property)": [[152, "sympy.physics.mechanics.joint.PinJoint.joint_axis", false]], "joint_axis (sympy.physics.mechanics.joint.prismaticjoint property)": [[152, "sympy.physics.mechanics.joint.PrismaticJoint.joint_axis", false]], "jointrv() (in module sympy.stats)": [[241, "sympy.stats.JointRV", false]], "joints (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.joints", false]], "jointsmethod (class in sympy.physics.mechanics.jointsmethod)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod", false]], "jones_2_stokes() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.jones_2_stokes", false]], "jones_vector() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.jones_vector", false]], "jordan_block() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.jordan_block", false]], "jordan_cell() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.jordan_cell", false]], "jordan_form() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.jordan_form", false]], "josephus() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.josephus", false]], "jscode() (in module sympy.printing.jscode)": [[221, "sympy.printing.jscode.jscode", false]], "julia_code() (in module sympy.printing.julia)": [[221, "sympy.printing.julia.julia_code", false]], "juliacodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.JuliaCodeGen", false]], "juliacodeprinter (class in sympy.printing.julia)": [[221, "sympy.printing.julia.JuliaCodePrinter", false]], "jxbra (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JxBra", false]], "jxbracoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JxBraCoupled", false]], "jxket (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JxKet", false]], "jxketcoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JxKetCoupled", false]], "jybra (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JyBra", false]], "jybracoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JyBraCoupled", false]], "jyket (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JyKet", false]], "jyketcoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JyKetCoupled", false]], "jzbra (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzBra", false]], "jzbracoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzBraCoupled", false]], "jzket (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzKet", false]], "jzketcoupled (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzKetCoupled", false]], "jzop (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.JzOp", false]], "kahane_simplify() (in module sympy.physics.hep.gamma_matrices)": [[145, "sympy.physics.hep.gamma_matrices.kahane_simplify", false]], "kanes_equations() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.kanes_equations", false]], "kanesmethod (class in sympy.physics.mechanics.kane)": [[153, "sympy.physics.mechanics.kane.KanesMethod", false]], "kbins() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.kbins", false]], "kdes (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.kdes", false]], "kdes (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.kdes", false]], "kdes (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.kdes", false]], "kernel() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.kernel", false]], "kernel() (sympy.polys.numberfields.modules.modulehomomorphism method)": [[216, "sympy.polys.numberfields.modules.ModuleHomomorphism.kernel", false]], "ket (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.Ket", false]], "ket (sympy.physics.quantum.operator.outerproduct property)": [[180, "sympy.physics.quantum.operator.OuterProduct.ket", false]], "ket (sympy.physics.secondquant.innerproduct property)": [[191, "sympy.physics.secondquant.InnerProduct.ket", false]], "ketbase (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.KetBase", false]], "key2bounds() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.key2bounds", false]], "key2ij() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.key2ij", false]], "keys() (sympy.core.containers.dict method)": [[88, "sympy.core.containers.Dict.keys", false]], "kid_rsa_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.kid_rsa_private_key", false]], "kid_rsa_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.kid_rsa_public_key", false]], "killable_index (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.killable_index", false]], "killable_index (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.killable_index", false]], "kin_explicit_rhs (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.kin_explicit_rhs", false]], "kind": [[15, "term-Kind", true]], "kind (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.kind", false]], "kind (class in sympy.core.kind)": [[88, "sympy.core.kind.Kind", false]], "kind (sympy.core.containers.tuple property)": [[88, "sympy.core.containers.Tuple.kind", false]], "kind (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.kind", false]], "kindiffdict() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.kindiffdict", false]], "kinematic_equations() (in module sympy.physics.vector.functions)": [[204, "sympy.physics.vector.functions.kinematic_equations", false]], "kinetic_energy() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.kinetic_energy", false]], "kinetic_energy() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.kinetic_energy", false]], "kinetic_energy() (sympy.physics.mechanics.particle.particle method)": [[155, "sympy.physics.mechanics.particle.Particle.kinetic_energy", false]], "kinetic_energy() (sympy.physics.mechanics.rigidbody.rigidbody method)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.kinetic_energy", false]], "known_fcns_src1 (in module sympy.printing.julia)": [[221, "sympy.printing.julia.known_fcns_src1", false]], "known_fcns_src1 (in module sympy.printing.octave)": [[221, "sympy.printing.octave.known_fcns_src1", false]], "known_fcns_src2 (in module sympy.printing.julia)": [[221, "sympy.printing.julia.known_fcns_src2", false]], "known_fcns_src2 (in module sympy.printing.octave)": [[221, "sympy.printing.octave.known_fcns_src2", false]], "known_functions (in module sympy.printing.jscode)": [[221, "sympy.printing.jscode.known_functions", false]], "known_functions (in module sympy.printing.mathematica)": [[221, "sympy.printing.mathematica.known_functions", false]], "known_functions (in module sympy.printing.rcode)": [[221, "sympy.printing.rcode.known_functions", false]], "known_functions (in module sympy.printing.rust)": [[221, "sympy.printing.rust.known_functions", false]], "known_functions_c89 (in module sympy.printing.c)": [[221, "sympy.printing.c.known_functions_C89", false]], "known_functions_c99 (in module sympy.printing.c)": [[221, "sympy.printing.c.known_functions_C99", false]], "kronecker_symbol (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.kronecker_symbol", false]], "kroneckerdelta (class in sympy.functions.special.tensor_functions)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta", false]], "kroneckerdelta (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.KroneckerDelta", false]], "kroneckersimp() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.kroneckersimp", false]], "ksubsets() (sympy.combinatorics.subsets method)": [[83, "sympy.combinatorics.subsets.ksubsets", false]], "kumaraswamy() (in module sympy.stats)": [[241, "sympy.stats.Kumaraswamy", false]], "kurtosis() (in module sympy.stats)": [[241, "sympy.stats.kurtosis", false]], "kwargs() (sympy.codegen.ast.token method)": [[69, "sympy.codegen.ast.Token.kwargs", false]], "l1_norm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.l1_norm", false]], "l1_norm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.l1_norm", false]], "l2 (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.L2", false]], "l2_norm_squared() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.l2_norm_squared", false]], "l_m_opt (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.l_M_opt", false]], "l_t_slack (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.l_T_slack", false]], "label (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.Label", false]], "label (sympy.physics.quantum.state.timedepstate property)": [[189, "sympy.physics.quantum.state.TimeDepState.label", false]], "label (sympy.tensor.indexed.idx property)": [[246, "sympy.tensor.indexed.Idx.label", false]], "label (sympy.tensor.indexed.indexedbase property)": [[246, "sympy.tensor.indexed.IndexedBase.label", false]], "labeller() (in module sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.labeller", false]], "lagrangesmethod (class in sympy.physics.mechanics.lagrange)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod", false]], "lagrangian() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.Lagrangian", false]], "laguerre (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.laguerre", false]], "laguerre_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.laguerre_poly", false]], "lambda (class in sympy.core.function)": [[88, "sympy.core.function.Lambda", false]], "lambda_notation() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.lambda_notation", false]], "lambdaprinter (class in sympy.printing.lambdarepr)": [[221, "sympy.printing.lambdarepr.LambdaPrinter", false]], "lambdarepr() (in module sympy.printing.lambdarepr)": [[221, "sympy.printing.lambdarepr.lambdarepr", false]], "lambdastr() (in module sympy.utilities.lambdify)": [[260, "sympy.utilities.lambdify.lambdastr", false]], "lambdify()": [[15, "term-lambdify", true]], "lambdify() (in module sympy.utilities.lambdify)": [[260, "sympy.utilities.lambdify.lambdify", false]], "lambertw (class in sympy.functions.elementary.exponential)": [[94, "sympy.functions.elementary.exponential.LambertW", false]], "lamda": [[15, "term-lamda", true]], "laplace() (in module sympy.stats)": [[241, "sympy.stats.Laplace", false]], "laplace_correspondence() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.laplace_correspondence", false]], "laplace_initial_conds() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.laplace_initial_conds", false]], "laplace_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.laplace_transform", false]], "laplacetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.LaplaceTransform", false]], "larklatexparser (class in sympy.parsing.latex.lark)": [[130, "sympy.parsing.latex.lark.LarkLaTeXParser", false]], "latex() (in module sympy.printing.latex)": [[221, "sympy.printing.latex.latex", false]], "latexparsingerror (class in sympy.parsing.latex)": [[130, "sympy.parsing.latex.LaTeXParsingError", false]], "latexprinter (class in sympy.printing.latex)": [[221, "sympy.printing.latex.LatexPrinter", false]], "lbound() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.lbound", false]], "lc() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.LC", false]], "lc() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.LC", false]], "lc() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.LC", false]], "lc() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.LC", false]], "lcim() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.lcim", false]], "lcm() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.lcm", false]], "lcm() (sympy.core.numbers.number method)": [[88, "sympy.core.numbers.Number.lcm", false]], "lcm() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.lcm", false]], "lcm() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.lcm", false]], "lcm() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.lcm", false]], "lcm() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.lcm", false]], "lcm() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.lcm", false]], "lcm() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.lcm", false]], "lcm() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.lcm", false]], "lcm() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.lcm", false]], "lcm() (sympy.polys.monomials.monomial method)": [[217, "sympy.polys.monomials.Monomial.lcm", false]], "lcm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.lcm", false]], "lcm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.lcm", false]], "lcm_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.lcm_list", false]], "ldescent() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.ldescent", false]], "ldldecomposition() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.LDLdecomposition", false]], "ldldecomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LDLdecomposition", false]], "ldlsolve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LDLsolve", false]], "ldudecomposition() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition", false]], "le (in module sympy.core.relational)": [[88, "sympy.core.relational.Le", false]], "leading_expv() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.leading_expv", false]], "leading_monom() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.leading_monom", false]], "leading_term() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.leading_term", false]], "leadterm() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.leadterm", false]], "least_rotation() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.least_rotation", false]], "left() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.left", false]], "left_eigenvects() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.left_eigenvects", false]], "left_open (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.left_open", false]], "left_support (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.left_support", false]], "leftslash() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.leftslash", false]], "legendre (class in sympy.functions.special.polynomials)": [[96, "sympy.functions.special.polynomials.legendre", false]], "legendre_poly() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.legendre_poly", false]], "legendre_symbol (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.legendre_symbol", false]], "legendre_symbol() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.legendre_symbol", false]], "length (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.length", false]], "length (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.length", false]], "length (sympy.geometry.line.segment property)": [[101, "sympy.geometry.line.Segment.length", false]], "length (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.length", false]], "length (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.length", false]], "length (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.length", false]], "length (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.length", false]], "length (sympy.physics.mechanics.pathway.linearpathway property)": [[156, "sympy.physics.mechanics.pathway.LinearPathway.length", false]], "length (sympy.physics.mechanics.pathway.obstaclesetpathway property)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway.length", false]], "length (sympy.physics.mechanics.pathway.pathwaybase property)": [[156, "sympy.physics.mechanics.pathway.PathwayBase.length", false]], "length (sympy.physics.mechanics.pathway.wrappingpathway property)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway.length", false]], "length (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.length", false]], "length() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.length", false]], "length() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.length", false]], "lens_formula() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.lens_formula", false]], "lens_makers_formula() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.lens_makers_formula", false]], "lerchphi (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.lerchphi", false]], "lessthan (class in sympy.core.relational)": [[88, "sympy.core.relational.LessThan", false]], "levicivita (class in sympy.functions.special.tensor_functions)": [[96, "sympy.functions.special.tensor_functions.LeviCivita", false]], "levy() (in module sympy.stats)": [[241, "sympy.stats.Levy", false]], "lexorder (class in sympy.polys.orderings)": [[217, "sympy.polys.orderings.LexOrder", false]], "lfsr_autocorrelation() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.lfsr_autocorrelation", false]], "lfsr_connection_polynomial() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.lfsr_connection_polynomial", false]], "lfsr_sequence() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.lfsr_sequence", false]], "lhs (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.lhs", false]], "li (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Li", false], [96, "sympy.functions.special.error_functions.li", false]], "lie_algebra() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.lie_algebra", false]], "lie_algebra() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.lie_algebra", false]], "lie_algebra() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.lie_algebra", false]], "lie_algebra() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.lie_algebra", false]], "lie_heuristic_abaco1_product() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco1_product", false]], "lie_heuristic_abaco1_simple() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco1_simple", false]], "lie_heuristic_abaco2_similar() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco2_similar", false]], "lie_heuristic_abaco2_unique_general() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco2_unique_general", false]], "lie_heuristic_abaco2_unique_unknown() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_abaco2_unique_unknown", false]], "lie_heuristic_bivariate() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_bivariate", false]], "lie_heuristic_chi() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_chi", false]], "lie_heuristic_function_sum() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_function_sum", false]], "lie_heuristic_linear() (in module sympy.solvers.ode.lie_group)": [[237, "sympy.solvers.ode.lie_group.lie_heuristic_linear", false]], "liederivative (class in sympy.diffgeom)": [[90, "sympy.diffgeom.LieDerivative", false]], "liegroup (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.LieGroup", false]], "lift() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.lift", false]], "lift() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.lift", false]], "limit (class in sympy.series.limits)": [[228, "sympy.series.limits.Limit", false]], "limit() (in module sympy.series.limits)": [[228, "sympy.series.limits.limit", false]], "limit() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.limit", false]], "limit() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.limit", false]], "limit_denominator() (sympy.core.numbers.rational method)": [[88, "sympy.core.numbers.Rational.limit_denominator", false]], "limit_seq() (in module sympy.series.limitseq)": [[226, "sympy.series.limitseq.limit_seq", false]], "limitinf() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.limitinf", false]], "limiting_distribution (sympy.stats.discretemarkovchain property)": [[241, "sympy.stats.DiscreteMarkovChain.limiting_distribution", false]], "limits (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.limits", false]], "limits (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.limits", false]], "limits (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.limits", false]], "line (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Line", false]], "line2d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Line2D", false]], "line2dbaseseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.Line2DBaseSeries", false]], "line3d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Line3D", false]], "line3dbaseseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.Line3DBaseSeries", false]], "line_integrate() (in module sympy.integrals.integrals)": [[115, "sympy.integrals.integrals.line_integrate", false]], "linear (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.Linear", false]], "linear_eq_to_matrix() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.linear_eq_to_matrix", false]], "linear_momentum() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.linear_momentum", false]], "linear_momentum() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.linear_momentum", false]], "linear_momentum() (sympy.physics.mechanics.particle.particle method)": [[155, "sympy.physics.mechanics.particle.Particle.linear_momentum", false]], "linear_momentum() (sympy.physics.mechanics.rigidbody.rigidbody method)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.linear_momentum", false]], "linear_ode_to_matrix() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.linear_ode_to_matrix", false]], "linear_polarizer() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.linear_polarizer", false]], "linearcoefficients (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.LinearCoefficients", false]], "lineardamper (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.LinearDamper", false]], "linearentity (class in sympy.geometry.line)": [[101, "sympy.geometry.line.LinearEntity", false]], "linearentity2d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.LinearEntity2D", false]], "linearentity3d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.LinearEntity3D", false]], "linearize() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.linearize", false]], "linearize() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.linearize", false]], "linearize() (sympy.physics.mechanics.linearize.linearizer method)": [[154, "sympy.physics.mechanics.linearize.Linearizer.linearize", false]], "linearizer (class in sympy.physics.mechanics.linearize)": [[154, "sympy.physics.mechanics.linearize.Linearizer", false]], "linearpathway (class in sympy.physics.mechanics.pathway)": [[156, "sympy.physics.mechanics.pathway.LinearPathway", false]], "linearspring (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.LinearSpring", false]], "lineover1drangeseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.LineOver1DRangeSeries", false]], "linodesolve() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.linodesolve", false]], "linodesolve_type() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.linodesolve_type", false]], "linprog() (in module sympy.solvers.simplex)": [[239, "sympy.solvers.simplex.linprog", false]], "linsolve() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.linsolve", false]], "liouville (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.Liouville", false]], "list() (sympy.combinatorics.permutations.cycle method)": [[80, "sympy.combinatorics.permutations.Cycle.list", false]], "list() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.list", false]], "list2numpy() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.list2numpy", false]], "list_can_dims (sympy.physics.units.dimensions.dimensionsystem property)": [[193, "sympy.physics.units.dimensions.DimensionSystem.list_can_dims", false]], "list_visitor() (in module sympy.utilities.enumerative)": [[256, "sympy.utilities.enumerative.list_visitor", false]], "listcoeffs() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.listcoeffs", false]], "listmonoms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.listmonoms", false]], "listterms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.listterms", false]], "literal_dp (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.literal_dp", false]], "literal_sp (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.literal_sp", false]], "lll() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.lll", false]], "lll() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.lll", false]], "lll() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.lll", false]], "lll_transform() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.lll_transform", false]], "lll_transform() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.lll_transform", false]], "lll_transform() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.lll_transform", false]], "lm() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.LM", false]], "lm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.LM", false]], "load (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.load", false]], "load_vector (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.load_vector", false]], "loads (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.loads", false]], "loads (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.loads", false]], "loads (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.loads", false]], "loads (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.loads", false]], "loads (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.loads", false]], "loads_position (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.loads_position", false]], "locate_new() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.locate_new", false]], "locatenew() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.locatenew", false]], "log (class in sympy.functions.elementary.exponential)": [[94, "sympy.functions.elementary.exponential.log", false]], "log() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.log", false]], "log() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.log", false]], "log() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.log", false]], "log() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.log", false]], "log10 (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.log10", false]], "log1p (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.log1p", false]], "log2 (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.log2", false]], "logarithmic() (in module sympy.stats)": [[241, "sympy.stats.Logarithmic", false]], "logcombine() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.logcombine", false]], "loggamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.loggamma", false]], "logistic() (in module sympy.stats)": [[241, "sympy.stats.Logistic", false]], "loglogistic() (in module sympy.stats)": [[241, "sympy.stats.LogLogistic", false]], "lognormal() (in module sympy.stats)": [[241, "sympy.stats.LogNormal", false]], "lomax() (in module sympy.stats)": [[241, "sympy.stats.Lomax", false]], "lopen() (sympy.sets.sets.interval class method)": [[229, "sympy.sets.sets.Interval.Lopen", false]], "lower (sympy.physics.secondquant.antisymmetrictensor property)": [[191, "sympy.physics.secondquant.AntiSymmetricTensor.lower", false]], "lower (sympy.tensor.indexed.idx property)": [[246, "sympy.tensor.indexed.Idx.lower", false]], "lower_central_series() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.lower_central_series", false]], "lower_triangular() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.lower_triangular", false]], "lower_triangular_solve() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.lower_triangular_solve", false]], "lower_triangular_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.lower_triangular_solve", false]], "lowergamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.lowergamma", false]], "lowertriangularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.LowerTriangularPredicate", false]], "lpmax() (in module sympy.solvers.simplex)": [[239, "sympy.solvers.simplex.lpmax", false]], "lpmin() (in module sympy.solvers.simplex)": [[239, "sympy.solvers.simplex.lpmin", false]], "lseries() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.lseries", false]], "lt (in module sympy.core.relational)": [[88, "sympy.core.relational.Lt", false]], "lt() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.LT", false]], "lt() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.LT", false]], "ltrim() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.ltrim", false]], "lu() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.lu", false]], "lu() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.lu", false]], "lu() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.lu", false]], "lu() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.lu", false]], "lu_solve() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.lu_solve", false]], "lu_solve() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.lu_solve", false]], "lu_solve() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.lu_solve", false]], "lu_solve() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.lu_solve", false]], "lucas (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.lucas", false]], "ludecomposition() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition", false]], "ludecomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LUdecomposition", false]], "ludecomposition_simple() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LUdecomposition_Simple", false]], "ludecompositionff() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LUdecompositionFF", false]], "lusolve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.LUsolve", false]], "m (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.M", false]], "m (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.M", false]], "m (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.M", false]], "m (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.M", false]], "m20() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.M20", false]], "magnitude() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.magnitude", false]], "magnitude() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.magnitude", false]], "major (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.major", false]], "make_mod_elt() (in module sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.make_mod_elt", false]], "make_monic_over_integers_by_scaling_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.make_monic_over_integers_by_scaling_roots", false]], "make_perm() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.make_perm", false]], "make_routine() (in module sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.make_routine", false]], "manifold (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Manifold", false]], "manualintegrate() (in module sympy.integrals.manualintegrate)": [[115, "sympy.integrals.manualintegrate.manualintegrate", false]], "map() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.map", false]], "maple_code() (in module sympy.printing.maple)": [[221, "sympy.printing.maple.maple_code", false]], "maplecodeprinter (class in sympy.printing.maple)": [[221, "sympy.printing.maple.MapleCodePrinter", false]], "marcumq (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.marcumq", false]], "marginal_distribution() (in module sympy.stats)": [[241, "sympy.stats.marginal_distribution", false]], "markers (sympy.plotting.plot.plot property)": [[207, "sympy.plotting.plot.Plot.markers", false]], "mass (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.mass", false]], "mass (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.mass", false]], "mass (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.mass", false]], "mass_matrix (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.mass_matrix", false]], "mass_matrix (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.mass_matrix", false]], "mass_matrix (sympy.physics.mechanics.lagrange.lagrangesmethod property)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.mass_matrix", false]], "mass_matrix (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.mass_matrix", false]], "mass_matrix_full (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.mass_matrix_full", false]], "mass_matrix_full (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.mass_matrix_full", false]], "mass_matrix_full (sympy.physics.mechanics.lagrange.lagrangesmethod property)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.mass_matrix_full", false]], "mass_matrix_full (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.mass_matrix_full", false]], "mass_matrix_kin (sympy.physics.mechanics.kane.kanesmethod property)": [[153, "sympy.physics.mechanics.kane.KanesMethod.mass_matrix_kin", false]], "masscenter (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.masscenter", false]], "masscenter (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.masscenter", false]], "masscenter (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.masscenter", false]], "masscenter_vel() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.masscenter_vel", false]], "matadd (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatAdd", false]], "match() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.match", false]], "match() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.match", false]], "matches() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.matches", false]], "matches() (sympy.solvers.diophantine.diophantine.diophantineequationtype method)": [[234, "sympy.solvers.diophantine.diophantine.DiophantineEquationType.matches", false]], "mathematica_code() (in module sympy.printing.mathematica)": [[221, "sympy.printing.mathematica.mathematica_code", false]], "mathieubase (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.MathieuBase", false]], "mathieuc (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.mathieuc", false]], "mathieucprime (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.mathieucprime", false]], "mathieus (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.mathieus", false]], "mathieusprime (class in sympy.functions.special.mathieu_functions)": [[96, "sympy.functions.special.mathieu_functions.mathieusprime", false]], "mathml() (in module sympy.printing.mathml)": [[221, "sympy.printing.mathml.mathml", false]], "mathml_tag() (sympy.printing.mathml.mathmlcontentprinter method)": [[221, "sympy.printing.mathml.MathMLContentPrinter.mathml_tag", false]], "mathml_tag() (sympy.printing.mathml.mathmlpresentationprinter method)": [[221, "sympy.printing.mathml.MathMLPresentationPrinter.mathml_tag", false]], "mathmlcontentprinter (class in sympy.printing.mathml)": [[221, "sympy.printing.mathml.MathMLContentPrinter", false]], "mathmlpresentationprinter (class in sympy.printing.mathml)": [[221, "sympy.printing.mathml.MathMLPresentationPrinter", false]], "mathmlprinterbase (class in sympy.printing.mathml)": [[221, "sympy.printing.mathml.MathMLPrinterBase", false]], "matmul (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatMul", false]], "matmul() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.matmul", false]], "matmul() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.matmul", false]], "matmul() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.matmul", false]], "matmul() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.matmul", false]], "matplotlibbackend (class in sympy.plotting.plot)": [[207, "sympy.plotting.plot.MatplotlibBackend", false]], "matpow (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatPow", false]], "matrix": [[15, "term-Matrix", true]], "matrix (in module sympy.matrices.dense)": [[119, "sympy.matrices.dense.Matrix", false]], "matrix() (sympy.polys.numberfields.modules.modulehomomorphism method)": [[216, "sympy.polys.numberfields.modules.ModuleHomomorphism.matrix", false]], "matrix2numpy() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.matrix2numpy", false]], "matrix_exp() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.matrix_exp", false]], "matrix_exp_jordan_form() (in module sympy.solvers.ode.systems)": [[237, "sympy.solvers.ode.systems.matrix_exp_jordan_form", false]], "matrix_fglm() (in module sympy.polys.fglmtools)": [[214, "sympy.polys.fglmtools.matrix_fglm", false]], "matrix_form() (sympy.liealgebras.weyl_group.weylgroup method)": [[117, "sympy.liealgebras.weyl_group.WeylGroup.matrix_form", false]], "matrix_multiply_elementwise() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.matrix_multiply_elementwise", false]], "matrix_rep() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.matrix_rep", false]], "matrix_to_density() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.matrix_to_density", false]], "matrix_to_qubit() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.matrix_to_qubit", false]], "matrix_to_vector() (in module sympy.vector)": [[268, "sympy.vector.matrix_to_vector", false]], "matrixbase (class in sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.MatrixBase", false]], "matrixerror (class in sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.MatrixError", false]], "matrixexpr (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatrixExpr", false]], "matrixgamma() (in module sympy.stats)": [[241, "sympy.stats.MatrixGamma", false]], "matrixkind (class in sympy.matrices.kind)": [[123, "sympy.matrices.kind.MatrixKind", false]], "matrixnormal() (in module sympy.stats)": [[241, "sympy.stats.MatrixNormal", false]], "matrixpermute (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatrixPermute", false]], "matrixset (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatrixSet", false]], "matrixsolve (class in sympy.codegen.matrix_nodes)": [[69, "sympy.codegen.matrix_nodes.MatrixSolve", false]], "matrixsymbol (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.MatrixSymbol", false]], "max (class in sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.Max", false]], "max (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.max", false]], "max() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.max", false]], "max_bending_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.max_bending_moment", false]], "max_bmoment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.max_bmoment", false]], "max_bmoment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.max_bmoment", false]], "max_deflection() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.max_deflection", false]], "max_deflection() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.max_deflection", false]], "max_div (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.max_div", false]], "max_exponent (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.max_exponent", false]], "max_norm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.max_norm", false]], "max_norm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.max_norm", false]], "max_shear_force() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.max_shear_force", false]], "max_shear_force() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.max_shear_force", false]], "maximal_fiber_velocity (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.maximal_fiber_velocity", false]], "maximal_order() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.maximal_order", false]], "maximum() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.maximum", false]], "maxwell() (in module sympy.stats)": [[241, "sympy.stats.Maxwell", false]], "mcodeprinter (class in sympy.printing.mathematica)": [[221, "sympy.printing.mathematica.MCodePrinter", false]], "mdft() (in module sympy.physics.matrices)": [[147, "sympy.physics.matrices.mdft", false]], "measure (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.measure", false]], "measure_all() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.measure_all", false]], "measure_all_oneshot() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.measure_all_oneshot", false]], "measure_partial() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.measure_partial", false]], "measure_partial_oneshot() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.measure_partial_oneshot", false]], "medial (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.medial", false]], "median() (in module sympy.stats)": [[241, "sympy.stats.median", false]], "medians (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.medians", false]], "medium (class in sympy.physics.optics.medium)": [[162, "sympy.physics.optics.medium.Medium", false]], "meets() (sympy.series.gruntz.subsset method)": [[228, "sympy.series.gruntz.SubsSet.meets", false]], "meijerg (class in sympy.functions.special.hyper)": [[96, "sympy.functions.special.hyper.meijerg", false]], "meijerint_definite() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint.meijerint_definite", false]], "meijerint_indefinite() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint.meijerint_indefinite", false]], "meijerint_inversion() (in module sympy.integrals.meijerint)": [[113, "sympy.integrals.meijerint.meijerint_inversion", false]], "mellin_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.mellin_transform", false]], "mellintransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.MellinTransform", false]], "member_lengths (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.member_lengths", false]], "members (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.members", false]], "memoize_property() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.memoize_property", false]], "mensor() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.mensor", false]], "merge (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.merge", false]], "merge_solution() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.merge_solution", false]], "mersenne_prime_exponent() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.mersenne_prime_exponent", false]], "method (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.method", false]], "metric_to_christoffel_1st() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.metric_to_Christoffel_1st", false]], "metric_to_christoffel_2nd() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.metric_to_Christoffel_2nd", false]], "metric_to_ricci_components() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.metric_to_Ricci_components", false]], "metric_to_riemann_components() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.metric_to_Riemann_components", false]], "mgamma() (in module sympy.physics.matrices)": [[147, "sympy.physics.matrices.mgamma", false]], "midpoint (sympy.geometry.line.segment property)": [[101, "sympy.geometry.line.Segment.midpoint", false]], "midpoint() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.midpoint", false]], "mignotte_sep_bound_squared() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.mignotte_sep_bound_squared", false]], "mimofeedback (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.MIMOFeedback", false]], "mimoparallel (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.MIMOParallel", false]], "mimoseries (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.MIMOSeries", false]], "min (class in sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.Min", false]], "min() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.min", false]], "min_exponent (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.min_exponent", false]], "min_qubits (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.min_qubits", false]], "min_qubits (sympy.physics.quantum.gate.cnotgate property)": [[175, "sympy.physics.quantum.gate.CNotGate.min_qubits", false]], "min_qubits (sympy.physics.quantum.gate.gate property)": [[175, "sympy.physics.quantum.gate.Gate.min_qubits", false]], "minimal_block() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.minimal_block", false]], "minimal_blocks() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.minimal_blocks", false]], "minimal_polynomial() (in module sympy.polys.numberfields.minpoly)": [[216, "sympy.polys.numberfields.minpoly.minimal_polynomial", false]], "minimum() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.minimum", false]], "minlex() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.minlex", false]], "minor (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.minor", false]], "minor() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.minor", false]], "minor_submatrix() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.minor_submatrix", false]], "minpoly() (in module sympy.polys.numberfields.minpoly)": [[216, "sympy.polys.numberfields.minpoly.minpoly", false]], "minpoly_of_element() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.minpoly_of_element", false]], "mirror_formula() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.mirror_formula", false]], "mobius (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.mobius", false]], "mobius() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.mobius", false]], "mobius_transform() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.mobius_transform", false]], "mobiusrange() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.mobiusrange", false]], "mod (class in sympy.core.mod)": [[88, "sympy.core.mod.Mod", false]], "mod (sympy.polys.domains.algebraicfield attribute)": [[212, "sympy.polys.domains.AlgebraicField.mod", false]], "mod_inverse() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.mod_inverse", false]], "mod_inverse() (in module sympy.core.numbers)": [[88, "sympy.core.numbers.mod_inverse", false]], "mod_to_list() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.mod_to_list", false]], "modgcd_bivariate() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd.modgcd_bivariate", false]], "modgcd_multivariate() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd.modgcd_multivariate", false]], "modgcd_univariate() (in module sympy.polys.modulargcd)": [[214, "sympy.polys.modulargcd.modgcd_univariate", false]], "module": [[16, "module-sympy.simplify.simplify", false], [58, "module-sympy", false], [60, "module-sympy.abc", false], [61, "module-sympy.algebras", false], [62, "module-sympy.assumptions.ask", false], [63, "module-sympy.assumptions.assume", false], [64, "module-sympy.assumptions", false], [65, "module-sympy.assumptions.predicates", false], [66, "module-sympy.assumptions.refine", false], [67, "module-sympy.calculus", false], [67, "module-sympy.calculus.euler", false], [67, "module-sympy.calculus.finite_diff", false], [67, "module-sympy.calculus.singularities", false], [67, "module-sympy.calculus.util", false], [68, "module-sympy.categories", false], [68, "module-sympy.categories.diagram_drawing", false], [69, "module-sympy.codegen.algorithms", false], [69, "module-sympy.codegen.approximations", false], [69, "module-sympy.codegen.ast", false], [69, "module-sympy.codegen.cfunctions", false], [69, "module-sympy.codegen.cnodes", false], [69, "module-sympy.codegen.cutils", false], [69, "module-sympy.codegen.cxxnodes", false], [69, "module-sympy.codegen.fnodes", false], [69, "module-sympy.codegen.futils", false], [69, "module-sympy.codegen.matrix_nodes", false], [69, "module-sympy.codegen.pyutils", false], [69, "module-sympy.codegen.rewriting", false], [71, "module-sympy.combinatorics.galois", false], [72, "module-sympy.combinatorics.graycode", false], [73, "module-sympy.combinatorics.group_constructs", false], [74, "module-sympy.combinatorics.group_numbers", false], [76, "module-sympy.combinatorics.named_groups", false], [77, "module-sympy.combinatorics.partitions", false], [79, "module-sympy.combinatorics.perm_groups", false], [80, "module-sympy.combinatorics.generators", false], [80, "module-sympy.combinatorics.permutations", false], [81, "module-sympy.combinatorics.polyhedron", false], [82, "module-sympy.combinatorics.prufer", false], [83, "module-sympy.combinatorics.subsets", false], [84, "module-sympy.combinatorics.tensor_can", false], [85, "module-sympy.combinatorics.testutil", false], [86, "module-sympy.combinatorics.util", false], [88, "module-sympy.core.add", false], [88, "module-sympy.core.assumptions", false], [88, "module-sympy.core.basic", false], [88, "module-sympy.core.cache", false], [88, "module-sympy.core.containers", false], [88, "module-sympy.core.evalf", false], [88, "module-sympy.core.expr", false], [88, "module-sympy.core.exprtools", false], [88, "module-sympy.core.function", false], [88, "module-sympy.core.intfunc", false], [88, "module-sympy.core.kind", false], [88, "module-sympy.core.mod", false], [88, "module-sympy.core.mul", false], [88, "module-sympy.core.multidimensional", false], [88, "module-sympy.core.numbers", false], [88, "module-sympy.core.power", false], [88, "module-sympy.core.random", false], [88, "module-sympy.core.relational", false], [88, "module-sympy.core.singleton", false], [88, "module-sympy.core.symbol", false], [88, "module-sympy.core.sympify", false], [88, "module-sympy.core.traversal", false], [89, "module-sympy.crypto.crypto", false], [90, "module-sympy.diffgeom", false], [91, "module-sympy.discrete", false], [91, "module-sympy.discrete.convolutions", false], [91, "module-sympy.discrete.transforms", false], [95, "module-sympy.functions", false], [96, "module-sympy.functions.special.bessel", false], [96, "module-sympy.functions.special.beta_functions", false], [96, "module-sympy.functions.special.elliptic_integrals", false], [96, "module-sympy.functions.special.error_functions", false], [96, "module-sympy.functions.special.gamma_functions", false], [96, "module-sympy.functions.special.mathieu_functions", false], [96, "module-sympy.functions.special.polynomials", false], [96, "module-sympy.functions.special.singularity_functions", false], [96, "module-sympy.functions.special.zeta_functions", false], [97, "module-sympy.geometry.curve", false], [98, "module-sympy.geometry.ellipse", false], [99, "module-sympy.geometry.entity", false], [101, "module-sympy.geometry.line", false], [102, "module-sympy.geometry.plane", false], [103, "module-sympy.geometry.point", false], [104, "module-sympy.geometry.polygon", false], [105, "module-sympy.geometry.util", false], [108, "module-sympy.holonomic", false], [113, "module-sympy.integrals.meijerint", false], [113, "module-sympy.integrals.meijerint_doc", false], [115, "module-sympy.integrals", false], [115, "module-sympy.integrals.intpoly", false], [115, "module-sympy.integrals.transforms", false], [116, "module-sympy.interactive", false], [116, "module-sympy.interactive.printing", false], [116, "module-sympy.interactive.session", false], [117, "module-sympy.liealgebras", false], [118, "module-sympy.logic", false], [118, "module-sympy.logic.inference", false], [120, "module-sympy.matrices.expressions", false], [120, "module-sympy.matrices.expressions.blockmatrix", false], [121, "module-sympy.matrices.immutable", false], [122, "module-sympy.matrices", false], [123, "module-sympy.matrices.kind", false], [124, "module-sympy.matrices.matrixbase", false], [126, "module-sympy.matrices.sparse", false], [127, "module-sympy.matrices.sparsetools", false], [128, "module-sympy.ntheory.bbp_pi", false], [128, "module-sympy.ntheory.continued_fraction", false], [128, "module-sympy.ntheory.digits", false], [128, "module-sympy.ntheory.ecm", false], [128, "module-sympy.ntheory.egyptian_fraction", false], [128, "module-sympy.ntheory.factor_", false], [128, "module-sympy.ntheory.generate", false], [128, "module-sympy.ntheory.modular", false], [128, "module-sympy.ntheory.multinomial", false], [128, "module-sympy.ntheory.partitions_", false], [128, "module-sympy.ntheory.primetest", false], [128, "module-sympy.ntheory.qs", false], [128, "module-sympy.ntheory.residue_ntheory", false], [130, "module-sympy.parsing", false], [130, "module-sympy.parsing.sym_expr", false], [131, "module-sympy.physics.biomechanics.activation", false], [132, "module-sympy.physics.biomechanics.curve", false], [133, "module-sympy.physics.biomechanics", false], [134, "module-sympy.physics.biomechanics.musculotendon", false], [135, "module-sympy.physics.continuum_mechanics.Arch", false], [136, "module-sympy.physics.continuum_mechanics.beam", false], [138, "module-sympy.physics.continuum_mechanics.cable", false], [140, "module-sympy.physics.continuum_mechanics.truss", false], [143, "module-sympy.physics.control", false], [144, "module-sympy.physics.control.lti", false], [145, "module-sympy.physics.hep.gamma_matrices", false], [146, "module-sympy.physics.hydrogen", false], [147, "module-sympy.physics.matrices", false], [148, "module-sympy.physics.mechanics.actuator", false], [151, "module-sympy.physics.mechanics", false], [152, "module-sympy.physics.mechanics.joint", false], [153, "module-sympy.physics.mechanics.kane", false], [153, "module-sympy.physics.mechanics.lagrange", false], [154, "module-sympy.physics.mechanics.linearize", false], [156, "module-sympy.physics.mechanics.pathway", false], [159, "module-sympy.physics.mechanics.wrapping_geometry", false], [160, "module-sympy.physics.optics.gaussopt", false], [162, "module-sympy.physics.optics.medium", false], [163, "module-sympy.physics.optics.polarization", false], [164, "module-sympy.physics.optics.utils", false], [165, "module-sympy.physics.optics.waves", false], [166, "module-sympy.physics.paulialgebra", false], [167, "module-sympy.physics.qho_1d", false], [168, "module-sympy.physics.quantum.anticommutator", false], [169, "module-sympy.physics.quantum.cartesian", false], [170, "module-sympy.physics.quantum.cg", false], [171, "module-sympy.physics.quantum.circuitplot", false], [172, "module-sympy.physics.quantum.commutator", false], [173, "module-sympy.physics.quantum.constants", false], [174, "module-sympy.physics.quantum.dagger", false], [175, "module-sympy.physics.quantum.gate", false], [176, "module-sympy.physics.quantum.grover", false], [177, "module-sympy.physics.quantum.hilbert", false], [179, "module-sympy.physics.quantum.innerproduct", false], [180, "module-sympy.physics.quantum.operator", false], [181, "module-sympy.physics.quantum.operatorset", false], [182, "module-sympy.physics.quantum.piab", false], [183, "module-sympy.physics.quantum.qapply", false], [184, "module-sympy.physics.quantum.qft", false], [185, "module-sympy.physics.quantum.qubit", false], [186, "module-sympy.physics.quantum.represent", false], [187, "module-sympy.physics.quantum.shor", false], [188, "module-sympy.physics.quantum.spin", false], [189, "module-sympy.physics.quantum.state", false], [190, "module-sympy.physics.quantum.tensorproduct", false], [191, "module-sympy.physics.secondquant", false], [192, "module-sympy.physics.sho", false], [193, "module-sympy.physics.units.dimensions", false], [197, "module-sympy.physics.units.prefixes", false], [198, "module-sympy.physics.units.quantities", false], [198, "module-sympy.physics.units.util", false], [199, "module-sympy.physics.units.unitsystem", false], [203, "module-sympy.physics.vector", false], [204, "module-sympy.physics.vector.functions", false], [204, "module-sympy.physics.vector.point", false], [206, "module-sympy.physics.wigner", false], [207, "module-sympy.plotting.plot", false], [207, "module-sympy.plotting.pygletplot", false], [210, "module-sympy.polys.matrices._dfm", false], [210, "module-sympy.polys.matrices._typing", false], [210, "module-sympy.polys.matrices.ddm", false], [210, "module-sympy.polys.matrices.dense", false], [210, "module-sympy.polys.matrices.domainmatrix", false], [210, "module-sympy.polys.matrices.sdm", false], [214, "module-sympy.polys.polyconfig", false], [214, "module-sympy.polys.polyoptions", false], [216, "module-sympy.polys.numberfields.modules", false], [216, "module-sympy.polys.numberfields.subfield", false], [217, "module-sympy.polys", false], [219, "module-sympy.polys.solvers", false], [221, "module-sympy.printing.aesaracode", false], [221, "module-sympy.printing.c", false], [221, "module-sympy.printing.codeprinter", false], [221, "module-sympy.printing.conventions", false], [221, "module-sympy.printing.cxx", false], [221, "module-sympy.printing.fortran", false], [221, "module-sympy.printing.gtk", false], [221, "module-sympy.printing.jscode", false], [221, "module-sympy.printing.julia", false], [221, "module-sympy.printing.lambdarepr", false], [221, "module-sympy.printing.latex", false], [221, "module-sympy.printing.maple", false], [221, "module-sympy.printing.mathematica", false], [221, "module-sympy.printing.mathml", false], [221, "module-sympy.printing.octave", false], [221, "module-sympy.printing.precedence", false], [221, "module-sympy.printing.pretty", false], [221, "module-sympy.printing.pretty.pretty", false], [221, "module-sympy.printing.pretty.pretty_symbology", false], [221, "module-sympy.printing.pretty.stringpict", false], [221, "module-sympy.printing.preview", false], [221, "module-sympy.printing.printer", false], [221, "module-sympy.printing.pycode", false], [221, "module-sympy.printing.python", false], [221, "module-sympy.printing.rcode", false], [221, "module-sympy.printing.repr", false], [221, "module-sympy.printing.rust", false], [221, "module-sympy.printing.smtlib", false], [221, "module-sympy.printing.str", false], [221, "module-sympy.printing.tree", false], [229, "module-sympy.sets.conditionset", false], [229, "module-sympy.sets.fancysets", false], [229, "module-sympy.sets.powerset", false], [229, "module-sympy.sets.sets", false], [230, "module-sympy.simplify.fu", false], [231, "module-sympy.simplify.hyperexpand_doc", false], [233, "module-sympy.simplify.combsimp", false], [233, "module-sympy.simplify.cse_main", false], [233, "module-sympy.simplify.epathtools", false], [233, "module-sympy.simplify.hyperexpand", false], [233, "module-sympy.simplify.powsimp", false], [233, "module-sympy.simplify.radsimp", false], [233, "module-sympy.simplify.ratsimp", false], [233, "module-sympy.simplify.sqrtdenest", false], [233, "module-sympy.simplify.trigsimp", false], [236, "module-sympy.solvers.inequalities", false], [237, "module-sympy.solvers.ode", false], [237, "module-sympy.solvers.ode.ode", false], [238, "module-sympy.solvers.pde", false], [239, "module-sympy.solvers", false], [239, "module-sympy.solvers.recurr", false], [239, "module-sympy.solvers.simplex", false], [240, "module-sympy.solvers.solveset", false], [241, "module-sympy.stats", false], [241, "module-sympy.stats.crv", false], [241, "module-sympy.stats.crv_types", false], [241, "module-sympy.stats.frv", false], [241, "module-sympy.stats.frv_types", false], [241, "module-sympy.stats.rv", false], [242, "module-sympy.tensor.array", false], [243, "module-sympy.tensor.array.expressions", false], [244, "module-sympy.tensor", false], [245, "module-sympy.tensor.index_methods", false], [246, "module-sympy.tensor.indexed", false], [247, "module-sympy.tensor.tensor", false], [248, "module-sympy.tensor.toperators", false], [249, "module-sympy.testing", false], [250, "module-sympy.testing.pytest", false], [251, "module-sympy.testing.randtest", false], [252, "module-sympy.testing.runtests", false], [253, "module-sympy.utilities.autowrap", false], [254, "module-sympy.utilities.codegen", false], [255, "module-sympy.utilities.decorator", false], [256, "module-sympy.utilities.enumerative", false], [257, "module-sympy.utilities.exceptions", false], [258, "module-sympy.utilities", false], [259, "module-sympy.utilities.iterables", false], [260, "module-sympy.utilities.lambdify", false], [261, "module-sympy.utilities.memoization", false], [262, "module-sympy.utilities.misc", false], [263, "module-sympy.utilities.source", false], [264, "module-sympy.utilities.timeutils", false], [273, "module-sympy.vector", false], [282, "module-sympy.physics", false]], "module (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Module", false]], "module (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.Module", false]], "module (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.Module", false]], "module_quotient() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.module_quotient", false]], "moduleelement (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.ModuleElement", false]], "moduleendomorphism (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.ModuleEndomorphism", false]], "modulehomomorphism (class in sympy.polys.agca.homomorphisms)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism", false]], "modulehomomorphism (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.ModuleHomomorphism", false]], "moment (class in sympy.stats)": [[241, "sympy.stats.Moment", false]], "moment() (in module sympy.stats)": [[241, "sympy.stats.moment", false]], "moment_load_vector (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.moment_load_vector", false]], "momentum (sympy.physics.quantum.cartesian.pxbra property)": [[169, "sympy.physics.quantum.cartesian.PxBra.momentum", false]], "momentum (sympy.physics.quantum.cartesian.pxket property)": [[169, "sympy.physics.quantum.cartesian.PxKet.momentum", false]], "monic() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.monic", false]], "monic() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.monic", false]], "monic() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.monic", false]], "monic() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.monic", false]], "monogenicfiniteextension (class in sympy.polys.agca.extensions)": [[208, "sympy.polys.agca.extensions.MonogenicFiniteExtension", false]], "monomial (class in sympy.polys.monomials)": [[217, "sympy.polys.monomials.Monomial", false]], "monomial_basis() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.monomial_basis", false]], "monomial_count() (in module sympy.polys.monomials)": [[217, "sympy.polys.monomials.monomial_count", false]], "monomialorder (class in sympy.polys.orderings)": [[217, "sympy.polys.orderings.MonomialOrder", false]], "monoms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.monoms", false]], "monoms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.monoms", false]], "monoms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.monoms", false]], "monotonicity_helper() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.monotonicity_helper", false]], "morphism (class in sympy.categories)": [[68, "sympy.categories.Morphism", false]], "morphisms (sympy.categories.diagram_drawing.diagramgrid property)": [[68, "sympy.categories.diagram_drawing.DiagramGrid.morphisms", false]], "moyal() (in module sympy.stats)": [[241, "sympy.stats.Moyal", false]], "mpmath": [[15, "term-mpmath", true]], "mpmathprinter (class in sympy.printing.pycode)": [[221, "sympy.printing.pycode.MpmathPrinter", false]], "mr() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.mr", false]], "mrv() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.mrv", false]], "mrv_leadterm() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.mrv_leadterm", false]], "mrv_max1() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.mrv_max1", false]], "mrv_max3() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.mrv_max3", false]], "msigma() (in module sympy.physics.matrices)": [[147, "sympy.physics.matrices.msigma", false]], "msubs() (in module sympy.physics.mechanics)": [[150, "sympy.physics.mechanics.msubs", false]], "mueller_matrix() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.mueller_matrix", false]], "mul (class in sympy.core.mul)": [[88, "sympy.core.mul.Mul", false]], "mul() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.mul", false]], "mul() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.mul", false]], "mul() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.mul", false]], "mul() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.mul", false]], "mul() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.mul", false]], "mul() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.mul", false]], "mul() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.mul", false]], "mul() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.mul", false]], "mul() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.mul", false]], "mul() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.mul", false]], "mul_elementwise() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.mul_elementwise", false]], "mul_ground() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.mul_ground", false]], "mul_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.mul_ground", false]], "mul_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.mul_ground", false]], "mul_inv() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.mul_inv", false]], "mul_xin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.mul_xin", false]], "mult_tab() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.mult_tab", false]], "multifactorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.MultiFactorial", false]], "multigamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.multigamma", false]], "multinomial() (in module sympy.stats)": [[241, "sympy.stats.Multinomial", false]], "multinomial_coefficients() (in module sympy.ntheory.multinomial)": [[128, "sympy.ntheory.multinomial.multinomial_coefficients", false]], "multinomial_coefficients_iterator() (in module sympy.ntheory.multinomial)": [[128, "sympy.ntheory.multinomial.multinomial_coefficients_iterator", false]], "multiplicity() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.multiplicity", false]], "multiplicity() (sympy.vector.implicitregion.implicitregion method)": [[265, "sympy.vector.implicitregion.ImplicitRegion.multiplicity", false]], "multiply() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.multiply", false]], "multiply_elementwise() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.multiply_elementwise", false]], "multiply_ideal() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.multiply_ideal", false]], "multiply_ideal() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.multiply_ideal", false]], "multiply_ideal() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.multiply_ideal", false]], "multiset() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset", false]], "multiset_combinations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset_combinations", false]], "multiset_derangements() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset_derangements", false]], "multiset_partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset_partitions", false]], "multiset_partitions_taocp() (in module sympy.utilities.enumerative)": [[256, "sympy.utilities.enumerative.multiset_partitions_taocp", false]], "multiset_permutations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.multiset_permutations", false]], "multisetpartitiontraverser (class in sympy.utilities.enumerative)": [[256, "sympy.utilities.enumerative.MultisetPartitionTraverser", false]], "multivariatebeta() (in module sympy.stats)": [[241, "sympy.stats.MultivariateBeta", false]], "multivariateewens() (in module sympy.stats)": [[241, "sympy.stats.MultivariateEwens", false]], "multivariatelaplace() (in module sympy.stats)": [[241, "sympy.stats.MultivariateLaplace", false]], "multivariatenormal() (in module sympy.stats)": [[241, "sympy.stats.MultivariateNormal", false]], "multivariatepolynomialerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.MultivariatePolynomialError", false]], "multivariatet() (in module sympy.stats)": [[241, "sympy.stats.MultivariateT", false]], "musculotendon_dynamics (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.musculotendon_dynamics", false]], "musculotendonbase (class in sympy.physics.biomechanics.musculotendon)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase", false]], "musculotendondegroote2016 (class in sympy.physics.biomechanics.musculotendon)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonDeGroote2016", false]], "musculotendonformulation (class in sympy.physics.biomechanics.musculotendon)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonFormulation", false]], "mutabledensematrix (class in sympy.matrices.dense)": [[119, "sympy.matrices.dense.MutableDenseMatrix", false]], "mutabledensendimarray (class in sympy.tensor.array)": [[242, "sympy.tensor.array.MutableDenseNDimArray", false]], "mutablesparsematrix (class in sympy.matrices.sparse)": [[126, "sympy.matrices.sparse.MutableSparseMatrix", false]], "mutablesparsendimarray (class in sympy.tensor.array)": [[242, "sympy.tensor.array.MutableSparseNDimArray", false]], "mx (class in sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.Mx", false]], "mz (class in sympy.physics.quantum.circuitplot)": [[171, "sympy.physics.quantum.circuitplot.Mz", false]], "n (sympy.combinatorics.graycode.graycode property)": [[72, "sympy.combinatorics.graycode.GrayCode.n", false]], "n (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.n", false]], "n (sympy.physics.quantum.shor.cmod property)": [[187, "sympy.physics.quantum.shor.CMod.N", false]], "n (sympy.plotting.series.baseseries property)": [[207, "sympy.plotting.series.BaseSeries.n", false]], "n (sympy.polys.numberfields.modules.module property)": [[216, "sympy.polys.numberfields.modules.Module.n", false]], "n (sympy.polys.numberfields.modules.moduleelement property)": [[216, "sympy.polys.numberfields.modules.ModuleElement.n", false]], "n (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.n", false]], "n() (in module sympy.core.evalf)": [[88, "sympy.core.evalf.N", false]], "n() (sympy.core.evalf.evalfmixin method)": [[88, "sympy.core.evalf.EvalfMixin.n", false]], "n() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.n", false]], "n() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.n", false]], "n_order() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.n_order", false]], "nakagami() (in module sympy.stats)": [[241, "sympy.stats.Nakagami", false]], "name (sympy.categories.category property)": [[68, "sympy.categories.Category.name", false]], "name (sympy.categories.namedmorphism property)": [[68, "sympy.categories.NamedMorphism.name", false]], "name (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.name", false]], "name (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.name", false]], "name (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.name", false]], "name (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.name", false]], "namedmorphism (class in sympy.categories)": [[68, "sympy.categories.NamedMorphism", false]], "nan (class in sympy.core.numbers)": [[88, "sympy.core.numbers.NaN", false]], "nand (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Nand", false]], "nargs (sympy.core.function.functionclass property)": [[88, "sympy.core.function.FunctionClass.nargs", false]], "native_coeffs() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.native_coeffs", false]], "naturals (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Naturals", false]], "naturals0 (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Naturals0", false]], "nc() (in module sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.nC", false]], "ne (in module sympy.core.relational)": [[88, "sympy.core.relational.Ne", false]], "nearest_common_ancestor() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.nearest_common_ancestor", false]], "necklaces() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.necklaces", false]], "neg() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.neg", false]], "neg() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.neg", false]], "neg() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.neg", false]], "neg() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.neg", false]], "neg() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.neg", false]], "neg() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.neg", false]], "neg() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.neg", false]], "neg() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.neg", false]], "negated (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.negated", false]], "negative": [[88, "term-negative", true]], "negativebinomial() (in module sympy.stats)": [[241, "sympy.stats.NegativeBinomial", false]], "negativeinfinity (class in sympy.core.numbers)": [[88, "sympy.core.numbers.NegativeInfinity", false]], "negativemultinomial() (in module sympy.stats)": [[241, "sympy.stats.NegativeMultinomial", false]], "negativeone (class in sympy.core.numbers)": [[88, "sympy.core.numbers.NegativeOne", false]], "negativepredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.NegativePredicate", false]], "new() (sympy.polys.domains.gaussiandomains.gaussianelement class method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianElement.new", false]], "new() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.new", false]], "new() (sympy.polys.polytools.poly class method)": [[217, "sympy.polys.polytools.Poly.new", false]], "new() (sympy.polys.rootoftools.rootsum class method)": [[217, "sympy.polys.rootoftools.RootSum.new", false]], "newtons_method() (in module sympy.codegen.algorithms)": [[69, "sympy.codegen.algorithms.newtons_method", false]], "newtons_method_function() (in module sympy.codegen.algorithms)": [[69, "sympy.codegen.algorithms.newtons_method_function", false]], "next() (sympy.combinatorics.graycode.graycode method)": [[72, "sympy.combinatorics.graycode.GrayCode.next", false]], "next() (sympy.combinatorics.prufer.prufer method)": [[82, "sympy.combinatorics.prufer.Prufer.next", false]], "next() (sympy.printing.pretty.stringpict.stringpict static method)": [[221, "sympy.printing.pretty.stringpict.stringPict.next", false]], "next_binary() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.next_binary", false]], "next_gray() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.next_gray", false]], "next_lex() (sympy.combinatorics.partitions.integerpartition method)": [[77, "sympy.combinatorics.partitions.IntegerPartition.next_lex", false]], "next_lex() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.next_lex", false]], "next_lexicographic() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.next_lexicographic", false]], "next_nonlex() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.next_nonlex", false]], "next_trotterjohnson() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.next_trotterjohnson", false]], "nextprime() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.nextprime", false]], "nfloat() (in module sympy.core.function)": [[88, "sympy.core.function.nfloat", false]], "nine_point_circle (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.nine_point_circle", false]], "nnz() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.nnz", false]], "nnz() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.nnz", false]], "nnz() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.nnz", false]], "nnz() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.nnz", false]], "no (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.NO", false]], "no_attrs_in_subclass (class in sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.no_attrs_in_subclass", false]], "no_symmetry() (sympy.tensor.tensor.tensorsymmetry class method)": [[247, "sympy.tensor.tensor.TensorSymmetry.no_symmetry", false]], "nocache_fail() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.nocache_fail", false]], "node (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Node", false]], "node_labels (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.node_labels", false]], "node_positions (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.node_positions", false]], "nodes (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.nodes", false]], "nodes (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.nodes", false]], "nonelementaryintegral (class in sympy.integrals.risch)": [[115, "sympy.integrals.risch.NonElementaryIntegral", false]], "nonetoken (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.NoneToken", false]], "nonholonomic_constraints (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.nonholonomic_constraints", false]], "nonlinsolve() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.nonlinsolve", false]], "nonnegative": [[88, "term-nonnegative", true]], "nonnegativepredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.NonNegativePredicate", false]], "nonpositive": [[88, "term-nonpositive", true]], "nonpositivepredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.NonPositivePredicate", false]], "nonsquarematrixerror (class in sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.NonSquareMatrixError", false]], "nonzero": [[88, "term-nonzero", true]], "nonzeropredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.NonZeroPredicate", false]], "nor (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Nor", false]], "norm (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.norm", false]], "norm() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.norm", false]], "norm() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.norm", false]], "norm() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.norm", false]], "norm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.norm", false]], "norm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.norm", false]], "normal() (in module sympy.stats)": [[241, "sympy.stats.Normal", false]], "normal() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.normal", false]], "normal_closure() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.normal_closure", false]], "normal_lines() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.normal_lines", false]], "normal_vector (sympy.geometry.plane.plane property)": [[102, "sympy.geometry.plane.Plane.normal_vector", false]], "normalgamma() (in module sympy.stats)": [[241, "sympy.stats.NormalGamma", false]], "normalize() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.normalize", false]], "normalize() (sympy.physics.quantum.state.wavefunction method)": [[189, "sympy.physics.quantum.state.Wavefunction.normalize", false]], "normalize() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.normalize", false]], "normalize() (sympy.polys.domains.gaussiandomains.gaussianintegerring method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianIntegerRing.normalize", false]], "normalize() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.normalize", false]], "normalize_theta_set() (in module sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.normalize_theta_set", false]], "normalized() (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.normalized", false]], "normalized() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.normalized", false]], "normalpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.NormalPredicate", false]], "normalpspace (class in sympy.stats.crv_types)": [[241, "sympy.stats.crv_types.NormalPSpace", false]], "not (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Not", false]], "not_empty_in() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.not_empty_in", false]], "not_point() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.not_point", false]], "notalgebraic (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.NotAlgebraic", false]], "notinvertible (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.NotInvertible", false]], "notiterable (class in sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.NotIterable", false]], "notreversible (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.NotReversible", false]], "np() (in module sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.nP", false]], "npartitions() (in module sympy.ntheory.partitions_)": [[128, "sympy.ntheory.partitions_.npartitions", false]], "nqubits (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.nqubits", false]], "nqubits (sympy.physics.quantum.gate.gate property)": [[175, "sympy.physics.quantum.gate.Gate.nqubits", false]], "nroots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.nroots", false]], "nroots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.nroots", false]], "nseries() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.nseries", false]], "nsimplify() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.nsimplify", false]], "nsimplify() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.nsimplify", false]], "nsolve() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.nsolve", false]], "nt() (in module sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.nT", false]], "nth() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.nth", false]], "nth() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.nth", false]], "nth_power_roots_poly() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.nth_power_roots_poly", false]], "nth_power_roots_poly() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.nth_power_roots_poly", false]], "nthalgebraic (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthAlgebraic", false]], "nthlinearconstantcoeffhomogeneous (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearConstantCoeffHomogeneous", false]], "nthlinearconstantcoeffundeterminedcoefficients (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearConstantCoeffUndeterminedCoefficients", false]], "nthlinearconstantcoeffvariationofparameters (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearConstantCoeffVariationOfParameters", false]], "nthlineareulereqhomogeneous (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearEulerEqHomogeneous", false]], "nthlineareulereqnonhomogeneousundeterminedcoefficients (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearEulerEqNonhomogeneousUndeterminedCoefficients", false]], "nthlineareulereqnonhomogeneousvariationofparameters (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthLinearEulerEqNonhomogeneousVariationOfParameters", false]], "nthorderreducible (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.NthOrderReducible", false]], "nthroot() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.nthroot", false]], "nthroot_mod() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.nthroot_mod", false]], "ntt() (in module sympy.discrete.transforms)": [[91, "sympy.discrete.transforms.ntt", false]], "nu (sympy.functions.special.hyper.meijerg property)": [[96, "sympy.functions.special.hyper.meijerg.nu", false]], "nullspace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.nullspace", false]], "nullspace() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.nullspace", false]], "nullspace() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.nullspace", false]], "nullspace() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace", false]], "nullspace() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.nullspace", false]], "nullspace_from_rref() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.nullspace_from_rref", false]], "nullspace_from_rref() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.nullspace_from_rref", false]], "nullspace_from_rref() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace_from_rref", false]], "nullspace_from_rref() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.nullspace_from_rref", false]], "num (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.num", false]], "num (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.num", false]], "num_digits() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.num_digits", false]], "num_inputs (sympy.physics.control.lti.mimoparallel property)": [[144, "sympy.physics.control.lti.MIMOParallel.num_inputs", false]], "num_inputs (sympy.physics.control.lti.mimoseries property)": [[144, "sympy.physics.control.lti.MIMOSeries.num_inputs", false]], "num_inputs (sympy.physics.control.lti.transferfunctionmatrix property)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.num_inputs", false]], "num_outputs (sympy.physics.control.lti.mimoparallel property)": [[144, "sympy.physics.control.lti.MIMOParallel.num_outputs", false]], "num_outputs (sympy.physics.control.lti.mimoseries property)": [[144, "sympy.physics.control.lti.MIMOSeries.num_outputs", false]], "num_outputs (sympy.physics.control.lti.transferfunctionmatrix property)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.num_outputs", false]], "number": [[15, "term-Number", true]], "number (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Number", false]], "number_field (sympy.polys.numberfields.modules.module property)": [[216, "sympy.polys.numberfields.modules.Module.number_field", false]], "numbered_symbols() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.numbered_symbols", false]], "numberkind (in module sympy.core.kind)": [[88, "sympy.core.kind.NumberKind", false]], "numbersymbol (class in sympy.core.numbers)": [[88, "sympy.core.numbers.NumberSymbol", false]], "numer() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.numer", false]], "numer() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.numer", false]], "numer() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.numer", false]], "numer() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.numer", false]], "numer() (sympy.polys.domains.gaussiandomains.gaussianrationalfield method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianRationalField.numer", false]], "numer() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.numer", false]], "numer() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.numer", false]], "numer() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.numer", false]], "numer() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.numer", false]], "numerator() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.numerator", false]], "numeric": [[15, "term-Numeric", true]], "object (class in sympy.categories)": [[68, "sympy.categories.Object", false]], "objects (sympy.categories.category property)": [[68, "sympy.categories.Category.objects", false]], "objects (sympy.categories.diagram property)": [[68, "sympy.categories.Diagram.objects", false]], "obstaclesetpathway (class in sympy.physics.mechanics.pathway)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway", false]], "octave_code() (in module sympy.printing.octave)": [[221, "sympy.printing.octave.octave_code", false]], "octavecodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.OctaveCodeGen", false]], "octavecodeprinter (class in sympy.printing.octave)": [[221, "sympy.printing.octave.OctaveCodePrinter", false]], "odd": [[88, "term-odd", true]], "oddpredicate (class in sympy.assumptions.predicates.ntheory)": [[65, "sympy.assumptions.predicates.ntheory.OddPredicate", false]], "ode_1st_power_series() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.ode_1st_power_series", false]], "ode_2nd_power_series_ordinary() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.ode_2nd_power_series_ordinary", false]], "ode_2nd_power_series_regular() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.ode_2nd_power_series_regular", false]], "ode_order() (in module sympy.solvers.deutils)": [[239, "sympy.solvers.deutils.ode_order", false]], "ode_sol_simplicity() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.ode_sol_simplicity", false]], "odesimp() (in module sympy.solvers.ode.ode)": [[237, "sympy.solvers.ode.ode.odesimp", false]], "of_type() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.of_type", false]], "offset (sympy.tensor.indexed.indexedbase property)": [[246, "sympy.tensor.indexed.IndexedBase.offset", false]], "old_frac_field() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.old_frac_field", false]], "old_poly_ring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.old_poly_ring", false]], "one (class in sympy.core.numbers)": [[88, "sympy.core.numbers.One", false]], "one (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.one", false]], "one (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.one", false]], "one() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.one", false]], "one_qubit_box() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.one_qubit_box", false]], "onequbitgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.OneQubitGate", false]], "ones() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.ones", false]], "ones() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.ones", false]], "ones() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.ones", false]], "ones() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.ones", false]], "oo": [[15, "term-oo", true]], "open() (sympy.sets.sets.interval class method)": [[229, "sympy.sets.sets.Interval.open", false]], "operationnotsupported (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.OperationNotSupported", false]], "operator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.Operator", false]], "operators (sympy.physics.quantum.state.statebase property)": [[189, "sympy.physics.quantum.state.StateBase.operators", false]], "operators_to_state() (in module sympy.physics.quantum.operatorset)": [[181, "sympy.physics.quantum.operatorset.operators_to_state", false]], "opt_cse() (in module sympy.simplify.cse_main)": [[233, "sympy.simplify.cse_main.opt_cse", false]], "optimal_fiber_length (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.optimal_fiber_length", false]], "optimal_pennation_angle (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.optimal_pennation_angle", false]], "optimization (class in sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.Optimization", false]], "optimize() (in module sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.optimize", false]], "optionerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.OptionError", false]], "options (class in sympy.polys.polyoptions)": [[214, "sympy.polys.polyoptions.Options", false]], "or (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Or", false]], "oraclegate (class in sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.OracleGate", false]], "orbit() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.orbit", false]], "orbit_rep() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.orbit_rep", false]], "orbit_transversal() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.orbit_transversal", false]], "orbits() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.orbits", false]], "order (class in sympy.series.order)": [[228, "sympy.series.order.Order", false]], "order (sympy.functions.special.bessel.besselbase property)": [[96, "sympy.functions.special.bessel.BesselBase.order", false]], "order (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.order", false]], "order (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.order", false]], "order (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.order", false]], "order() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.order", false]], "order() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.order", false]], "ordered() (in module sympy.core.sorting)": [[88, "sympy.core.sorting.ordered", false]], "ordered_partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.ordered_partitions", false]], "ordinal() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.ordinal", false]], "orient() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient", false]], "orient_axis() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_axis", false]], "orient_body_fixed() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_body_fixed", false]], "orient_dcm() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_dcm", false]], "orient_new() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new", false]], "orient_new_axis() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new_axis", false]], "orient_new_body() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new_body", false]], "orient_new_quaternion() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new_quaternion", false]], "orient_new_space() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.orient_new_space", false]], "orient_quaternion() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_quaternion", false]], "orient_space_fixed() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orient_space_fixed", false]], "orienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.Orienter", false]], "orientnew() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.orientnew", false]], "orig_ext (sympy.polys.domains.algebraicfield attribute)": [[212, "sympy.polys.domains.AlgebraicField.orig_ext", false]], "origin (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.origin", false]], "orthocenter (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.orthocenter", false]], "orthogonal() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.orthogonal", false]], "orthogonal_direction (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.orthogonal_direction", false]], "orthogonalbra (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.OrthogonalBra", false]], "orthogonalize() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.orthogonalize", false]], "orthogonalket (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.OrthogonalKet", false]], "orthogonalpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.OrthogonalPredicate", false]], "orthogonalstate (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.OrthogonalState", false]], "outer() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.outer", false]], "outer() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.outer", false]], "outer() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.outer", false]], "outerproduct (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.OuterProduct", false]], "outputargument (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.OutputArgument", false]], "over_power_basis() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.over_power_basis", false]], "p (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.p", false]], "p (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.p", false]], "p (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.p", false]], "p (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.p", false]], "p() (in module sympy.stats)": [[241, "sympy.stats.P", false]], "p1 (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.p1", false]], "p1 (sympy.geometry.plane.plane property)": [[102, "sympy.geometry.plane.Plane.p1", false]], "p2 (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.p2", false]], "padded_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.padded_key", false]], "parallel (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.Parallel", false]], "parallel() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.parallel", false]], "parallel_axis() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.parallel_axis", false]], "parallel_axis() (sympy.physics.mechanics.particle.particle method)": [[155, "sympy.physics.mechanics.particle.Particle.parallel_axis", false]], "parallel_axis() (sympy.physics.mechanics.rigidbody.rigidbody method)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.parallel_axis", false]], "parallel_line() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.parallel_line", false]], "parallel_plane() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.parallel_plane", false]], "parallel_poly_from_expr() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.parallel_poly_from_expr", false]], "parameter (sympy.geometry.curve.curve property)": [[97, "sympy.geometry.curve.Curve.parameter", false]], "parameter_value() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.parameter_value", false]], "parameter_value() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.parameter_value", false]], "parametric2dlineseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.Parametric2DLineSeries", false]], "parametric3dlineseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.Parametric3DLineSeries", false]], "parametricintegral (class in sympy.vector.integrals)": [[265, "sympy.vector.integrals.ParametricIntegral", false]], "parametricregion (class in sympy.vector.parametricregion)": [[265, "sympy.vector.parametricregion.ParametricRegion", false]], "parametricsurfaceseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.ParametricSurfaceSeries", false]], "parametrize_ternary_quadratic() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.parametrize_ternary_quadratic", false]], "params (sympy.plotting.series.baseseries property)": [[207, "sympy.plotting.series.BaseSeries.params", false]], "parens() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.parens", false]], "parent (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.parent", false]], "parent (sympy.polys.numberfields.modules.module property)": [[216, "sympy.polys.numberfields.modules.Module.parent", false]], "parent() (sympy.polys.domains.domainelement.domainelement method)": [[212, "sympy.polys.domains.domainelement.DomainElement.parent", false]], "parent() (sympy.polys.domains.gaussiandomains.gaussianelement method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianElement.parent", false]], "parent_axis (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.parent_axis", false]], "parent_point (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.parent_point", false]], "parenthesize_super() (sympy.printing.latex.latexprinter method)": [[221, "sympy.printing.latex.LatexPrinter.parenthesize_super", false]], "pareto() (in module sympy.stats)": [[241, "sympy.stats.Pareto", false]], "pargs (sympy.functions.special.delta_functions.heaviside property)": [[96, "sympy.functions.special.delta_functions.Heaviside.pargs", false]], "parity() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.parity", false]], "parse_expr() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.parse_expr", false]], "parse_latex() (in module sympy.parsing.latex)": [[130, "sympy.parsing.latex.parse_latex", false]], "parse_latex_lark() (in module sympy.parsing.latex)": [[130, "sympy.parsing.latex.parse_latex_lark", false]], "parse_mathematica() (in module sympy.parsing.mathematica)": [[130, "sympy.parsing.mathematica.parse_mathematica", false]], "parse_maxima() (in module sympy.parsing.maxima)": [[130, "sympy.parsing.maxima.parse_maxima", false]], "partial_velocity() (in module sympy.physics.vector.functions)": [[204, "sympy.physics.vector.functions.partial_velocity", false]], "partial_velocity() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.partial_velocity", false]], "partial_velocity() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.partial_velocity", false]], "partialderivative (class in sympy.tensor.toperators)": [[248, "sympy.tensor.toperators.PartialDerivative", false]], "particle (class in sympy.physics.mechanics.particle)": [[155, "sympy.physics.mechanics.particle.Particle", false]], "particular() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.particular", false]], "partition (class in sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.Partition", false]], "partition (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.partition", false]], "partition (sympy.combinatorics.partitions.partition property)": [[77, "sympy.combinatorics.partitions.Partition.partition", false]], "partition() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.partition", false]], "partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.partitions", false]], "pat_matrix() (in module sympy.physics.matrices)": [[147, "sympy.physics.matrices.pat_matrix", false]], "patch (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Patch", false]], "pathway (sympy.physics.mechanics.actuator.forceactuator property)": [[148, "sympy.physics.mechanics.actuator.ForceActuator.pathway", false]], "pathwaybase (class in sympy.physics.mechanics.pathway)": [[156, "sympy.physics.mechanics.pathway.PathwayBase", false]], "pde_1st_linear_constant_coeff() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_1st_linear_constant_coeff", false]], "pde_1st_linear_constant_coeff_homogeneous() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_1st_linear_constant_coeff_homogeneous", false]], "pde_1st_linear_variable_coeff() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_1st_linear_variable_coeff", false]], "pde_separate() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_separate", false]], "pde_separate_add() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_separate_add", false]], "pde_separate_mul() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pde_separate_mul", false]], "pdiv() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.pdiv", false]], "pdiv() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.pdiv", false]], "pdiv() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.pdiv", false]], "pdiv() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.pdiv", false]], "pdsolve() (in module sympy.solvers.pde)": [[238, "sympy.solvers.pde.pdsolve", false]], "peak_isometric_force (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.peak_isometric_force", false]], "pep 335": [[88, "index-0", false], [88, "index-1", false], [88, "index-2", false], [88, "index-3", false]], "per() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.per", false]], "per() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.per", false]], "per() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.per", false]], "perfect_power() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.perfect_power", false]], "periapsis (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.periapsis", false]], "perimeter (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.perimeter", false]], "period_find() (in module sympy.physics.quantum.shor)": [[187, "sympy.physics.quantum.shor.period_find", false]], "periodic_argument (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.periodic_argument", false]], "periodicity() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.periodicity", false]], "perm2tensor() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.perm2tensor", false]], "permutation (class in sympy.combinatorics.permutations)": [[80, "sympy.combinatorics.permutations.Permutation", false]], "permutationgroup (class in sympy.combinatorics.perm_groups)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup", false]], "permutationmatrix (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.PermutationMatrix", false]], "permutationoperator (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.PermutationOperator", false]], "permute() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permute", false]], "permute() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.permute", false]], "permute_cols() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permute_cols", false]], "permute_rows() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permute_rows", false]], "permute_signs() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.permute_signs", false]], "permutebkwd() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permuteBkwd", false]], "permutedims (class in sympy.tensor.array.expressions)": [[243, "sympy.tensor.array.expressions.PermuteDims", false]], "permutedims() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.permutedims", false]], "permutefwd() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.permuteFwd", false]], "perpendicular_bisector() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.perpendicular_bisector", false]], "perpendicular_line() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.perpendicular_line", false]], "perpendicular_line() (sympy.geometry.line.linearentity2d method)": [[101, "sympy.geometry.line.LinearEntity2D.perpendicular_line", false]], "perpendicular_line() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.perpendicular_line", false]], "perpendicular_plane() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.perpendicular_plane", false]], "perpendicular_segment() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.perpendicular_segment", false]], "pexquo() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.pexquo", false]], "pexquo() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.pexquo", false]], "pexquo() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.pexquo", false]], "pexquo() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.pexquo", false]], "pgl2f5() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.PGL2F5", false]], "pgroup (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.pgroup", false]], "phase (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.Phase", false]], "phase (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.phase", false]], "phase_retarder() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.phase_retarder", false]], "phasegate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.PhaseGate", false]], "pi (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Pi", false]], "pi_hex_digits() (in module sympy.ntheory.bbp_pi)": [[128, "sympy.ntheory.bbp_pi.pi_hex_digits", false]], "piabbra (class in sympy.physics.quantum.piab)": [[182, "sympy.physics.quantum.piab.PIABBra", false]], "piabhamiltonian (class in sympy.physics.quantum.piab)": [[182, "sympy.physics.quantum.piab.PIABHamiltonian", false]], "piabket (class in sympy.physics.quantum.piab)": [[182, "sympy.physics.quantum.piab.PIABKet", false]], "piecewise (class in sympy.functions.elementary.piecewise)": [[94, "sympy.functions.elementary.piecewise.Piecewise", false]], "piecewise_exclusive() (in module sympy.functions.elementary.piecewise)": [[94, "sympy.functions.elementary.piecewise.piecewise_exclusive", false]], "piecewise_fold() (in module sympy.functions.elementary.piecewise)": [[94, "sympy.functions.elementary.piecewise.piecewise_fold", false]], "piecewise_integrate() (sympy.functions.elementary.piecewise.piecewise method)": [[94, "sympy.functions.elementary.piecewise.Piecewise.piecewise_integrate", false]], "pinjoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.PinJoint", false]], "pinv() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.pinv", false]], "pinv_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.pinv_solve", false]], "planar_coordinates (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.planar_coordinates", false]], "planar_speeds (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.planar_speeds", false]], "planar_vectors (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.planar_vectors", false]], "planarjoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.PlanarJoint", false]], "plane (class in sympy.geometry.plane)": [[102, "sympy.geometry.plane.Plane", false]], "plot (class in sympy.plotting.plot)": [[207, "sympy.plotting.plot.Plot", false]], "plot() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot", false]], "plot3d() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot3d", false]], "plot3d_parametric_line() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot3d_parametric_line", false]], "plot3d_parametric_surface() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot3d_parametric_surface", false]], "plot_bending_moment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_bending_moment", false]], "plot_bending_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_bending_moment", false]], "plot_deflection() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_deflection", false]], "plot_deflection() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_deflection", false]], "plot_gate() (sympy.physics.quantum.gate.cgate method)": [[175, "sympy.physics.quantum.gate.CGate.plot_gate", false]], "plot_ild_moment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_ild_moment", false]], "plot_ild_reactions() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_ild_reactions", false]], "plot_ild_shear() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_ild_shear", false]], "plot_implicit() (in module sympy.plotting.plot_implicit)": [[207, "sympy.plotting.plot_implicit.plot_implicit", false]], "plot_interval() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.plot_interval", false]], "plot_interval() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.plot_interval", false]], "plot_interval() (sympy.geometry.line.line method)": [[101, "sympy.geometry.line.Line.plot_interval", false]], "plot_interval() (sympy.geometry.line.ray method)": [[101, "sympy.geometry.line.Ray.plot_interval", false]], "plot_interval() (sympy.geometry.line.segment method)": [[101, "sympy.geometry.line.Segment.plot_interval", false]], "plot_interval() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.plot_interval", false]], "plot_loading_results() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_loading_results", false]], "plot_loading_results() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_loading_results", false]], "plot_parametric() (in module sympy.plotting.plot)": [[207, "sympy.plotting.plot.plot_parametric", false]], "plot_shear_force() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_shear_force", false]], "plot_shear_force() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_shear_force", false]], "plot_shear_stress() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_shear_stress", false]], "plot_shear_stress() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_shear_stress", false]], "plot_slope() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.plot_slope", false]], "plot_slope() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.plot_slope", false]], "plot_tension() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.plot_tension", false]], "plotgrid (class in sympy.plotting.plot)": [[207, "sympy.plotting.plot.PlotGrid", false]], "point (class in sympy.diffgeom)": [[90, "sympy.diffgeom.Point", false]], "point (class in sympy.geometry.point)": [[103, "sympy.geometry.point.Point", false]], "point (class in sympy.physics.vector.point)": [[204, "sympy.physics.vector.point.Point", false]], "point (sympy.core.function.subs property)": [[88, "sympy.core.function.Subs.point", false]], "point (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.point", false]], "point (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.point", false]], "point (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.point", false]], "point (sympy.physics.mechanics.wrapping_geometry.wrappinggeometrybase property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase.point", false]], "point (sympy.physics.mechanics.wrapping_geometry.wrappingsphere property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.point", false]], "point() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.point", false]], "point2d (class in sympy.geometry.point)": [[103, "sympy.geometry.point.Point2D", false]], "point3d (class in sympy.geometry.point)": [[103, "sympy.geometry.point.Point3D", false]], "point_cflexure() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.point_cflexure", false]], "point_on_surface() (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.point_on_surface", false]], "point_on_surface() (sympy.physics.mechanics.wrapping_geometry.wrappinggeometrybase method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase.point_on_surface", false]], "point_on_surface() (sympy.physics.mechanics.wrapping_geometry.wrappingsphere method)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.point_on_surface", false]], "point_to_coords() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.point_to_coords", false]], "pointer (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Pointer", false]], "points (sympy.geometry.line.linearentity property)": [[101, "sympy.geometry.line.LinearEntity.points", false]], "pointwise_stabilizer() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.pointwise_stabilizer", false]], "poisson() (in module sympy.stats)": [[241, "sympy.stats.Poisson", false]], "poissonprocess (class in sympy.stats)": [[241, "sympy.stats.PoissonProcess", false]], "polar_lift (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.polar_lift", false]], "polar_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.polar_moment", false]], "polar_second_moment_of_area() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.polar_second_moment_of_area", false]], "polar_second_moment_of_area() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.polar_second_moment_of_area", false]], "polarcomplexregion (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.PolarComplexRegion", false]], "polarizing_beam_splitter() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.polarizing_beam_splitter", false]], "pole_zero_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.pole_zero_numerical_data", false]], "pole_zero_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.pole_zero_plot", false]], "poleerror (class in sympy.core.function)": [[88, "sympy.core.function.PoleError", false]], "poles() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.poles", false]], "polificationfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.PolificationFailed", false]], "pollard_pm1() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.pollard_pm1", false]], "pollard_rho() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.pollard_rho", false]], "poly (class in sympy.polys.polytools)": [[217, "sympy.polys.polytools.Poly", false]], "poly() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.poly", false]], "poly() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.poly", false]], "poly_from_expr() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.poly_from_expr", false]], "poly_ring() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.poly_ring", false]], "poly_unify() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.poly_unify", false]], "polycyclic_group() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.polycyclic_group", false]], "polyelement (class in sympy.polys.rings)": [[212, "sympy.polys.rings.PolyElement", false]], "polygamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.polygamma", false]], "polygon (class in sympy.geometry.polygon)": [[104, "sympy.geometry.polygon.Polygon", false]], "polyhedron (class in sympy.combinatorics.polyhedron)": [[81, "sympy.combinatorics.polyhedron.Polyhedron", false]], "polylog (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.polylog", false]], "polynomial() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.polynomial", false]], "polynomial_congruence() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.polynomial_congruence", false]], "polynomialerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.PolynomialError", false]], "polynomialring (class in sympy.polys.domains)": [[212, "sympy.polys.domains.PolynomialRing", false]], "polyring (class in sympy.polys.rings)": [[212, "sympy.polys.rings.PolyRing", false]], "polys": [[15, "term-Polys", true]], "polytope_integrate() (in module sympy.integrals.intpoly)": [[115, "sympy.integrals.intpoly.polytope_integrate", false]], "pos() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.pos", false]], "pos_from() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.pos_from", false]], "posform() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.POSform", false]], "posify() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.posify", false]], "position (sympy.physics.quantum.cartesian.xbra property)": [[169, "sympy.physics.quantum.cartesian.XBra.position", false]], "position (sympy.physics.quantum.cartesian.xket property)": [[169, "sympy.physics.quantum.cartesian.XKet.position", false]], "position_wrt() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.position_wrt", false]], "position_x (sympy.physics.quantum.cartesian.positionstate3d property)": [[169, "sympy.physics.quantum.cartesian.PositionState3D.position_x", false]], "position_y (sympy.physics.quantum.cartesian.positionstate3d property)": [[169, "sympy.physics.quantum.cartesian.PositionState3D.position_y", false]], "position_z (sympy.physics.quantum.cartesian.positionstate3d property)": [[169, "sympy.physics.quantum.cartesian.PositionState3D.position_z", false]], "positionbra3d (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PositionBra3D", false]], "positionket3d (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PositionKet3D", false]], "positionstate3d (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PositionState3D", false]], "positive": [[88, "term-positive", true]], "positive_roots() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.positive_roots", false]], "positive_roots() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.positive_roots", false]], "positivedefinitepredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.PositiveDefinitePredicate", false]], "positivepredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.PositivePredicate", false]], "postdecrement (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.PostDecrement", false]], "postfixes() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.postfixes", false]], "postincrement (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.PostIncrement", false]], "postorder_traversal() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.postorder_traversal", false]], "potential_energy (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.potential_energy", false]], "potential_energy (sympy.physics.mechanics.particle.particle property)": [[155, "sympy.physics.mechanics.particle.Particle.potential_energy", false]], "potential_energy (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.potential_energy", false]], "potential_energy() (in module sympy.physics.mechanics.functions)": [[155, "sympy.physics.mechanics.functions.potential_energy", false]], "pow (class in sympy.core.power)": [[88, "sympy.core.power.Pow", false]], "pow() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.pow", false]], "pow() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.pow", false]], "pow() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.pow", false]], "pow() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.pow", false]], "pow() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.pow", false]], "pow() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.pow", false]], "pow() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.pow", false]], "pow() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.pow", false]], "pow_cos_sin() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.pow_cos_sin", false]], "pow_xin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.pow_xin", false]], "powdenest() (in module sympy.simplify.powsimp)": [[233, "sympy.simplify.powsimp.powdenest", false]], "power_basis_ancestor() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.power_basis_ancestor", false]], "power_representation() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.power_representation", false]], "powerbasis (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.PowerBasis", false]], "powerbasiselement (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement", false]], "powerfunction() (in module sympy.stats)": [[241, "sympy.stats.PowerFunction", false]], "powerset (class in sympy.sets.powerset)": [[229, "sympy.sets.powerset.PowerSet", false]], "powerset() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.powerset", false]], "powsimp() (in module sympy.simplify.powsimp)": [[233, "sympy.simplify.powsimp.powsimp", false]], "powsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.powsimp", false]], "pprint_nodes() (in module sympy.printing.tree)": [[221, "sympy.printing.tree.pprint_nodes", false]], "pqa() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.PQa", false]], "pquo() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.pquo", false]], "pquo() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.pquo", false]], "pquo() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.pquo", false]], "pquo() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.pquo", false]], "precedence (in module sympy.printing.precedence)": [[221, "sympy.printing.precedence.PRECEDENCE", false]], "precedence() (in module sympy.printing.precedence)": [[221, "sympy.printing.precedence.precedence", false]], "precedence_functions (in module sympy.printing.precedence)": [[221, "sympy.printing.precedence.PRECEDENCE_FUNCTIONS", false]], "precedence_values (in module sympy.printing.precedence)": [[221, "sympy.printing.precedence.PRECEDENCE_VALUES", false]], "precisionexhausted (class in sympy.core.evalf)": [[88, "sympy.core.evalf.PrecisionExhausted", false]], "predecrement (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.PreDecrement", false]], "predicate (class in sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.Predicate", false]], "preferred_index (sympy.functions.special.tensor_functions.kroneckerdelta property)": [[96, "sympy.functions.special.tensor_functions.KroneckerDelta.preferred_index", false]], "preferred_index (sympy.physics.secondquant.kroneckerdelta property)": [[191, "sympy.physics.secondquant.KroneckerDelta.preferred_index", false]], "prefix (class in sympy.physics.units.prefixes)": [[197, "sympy.physics.units.prefixes.Prefix", false]], "prefixes() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.prefixes", false]], "preincrement (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.PreIncrement", false]], "prem() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.prem", false]], "prem() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.prem", false]], "prem() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.prem", false]], "prem() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.prem", false]], "premises (sympy.categories.diagram property)": [[68, "sympy.categories.Diagram.premises", false]], "preorder_traversal() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.preorder_traversal", false]], "presentation() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.presentation", false]], "pretty() (in module sympy.printing.pretty.pretty)": [[221, "sympy.printing.pretty.pretty.pretty", false]], "pretty_atom() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.pretty_atom", false]], "pretty_print() (in module sympy.printing.pretty.pretty)": [[221, "sympy.printing.pretty.pretty.pretty_print", false]], "pretty_symbol() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.pretty_symbol", false]], "pretty_try_use_unicode() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode", false]], "pretty_use_unicode() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.pretty_use_unicode", false]], "prettyform (class in sympy.printing.pretty.stringpict)": [[221, "sympy.printing.pretty.stringpict.prettyForm", false]], "prettyprinter (class in sympy.printing.pretty.pretty)": [[221, "sympy.printing.pretty.pretty.PrettyPrinter", false]], "prev() (sympy.combinatorics.prufer.prufer method)": [[82, "sympy.combinatorics.prufer.Prufer.prev", false]], "prev_binary() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.prev_binary", false]], "prev_gray() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.prev_gray", false]], "prev_lex() (sympy.combinatorics.partitions.integerpartition method)": [[77, "sympy.combinatorics.partitions.IntegerPartition.prev_lex", false]], "prev_lexicographic() (sympy.combinatorics.subsets.subset method)": [[83, "sympy.combinatorics.subsets.Subset.prev_lexicographic", false]], "preview() (in module sympy.printing.preview)": [[221, "sympy.printing.preview.preview", false]], "preview_diagram() (in module sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.preview_diagram", false]], "prevprime() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.prevprime", false]], "prime": [[88, "term-prime", true]], "prime() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.prime", false]], "prime_as_sum_of_two_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.prime_as_sum_of_two_squares", false]], "prime_decomp() (in module sympy.polys.numberfields.primes)": [[216, "sympy.polys.numberfields.primes.prime_decomp", false]], "prime_valuation() (in module sympy.polys.numberfields.primes)": [[216, "sympy.polys.numberfields.primes.prime_valuation", false]], "primefactors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.primefactors", false]], "primeideal (class in sympy.polys.numberfields.primes)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal", false]], "primenu (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.primenu", false]], "primenu() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.primenu", false]], "primeomega (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.primeomega", false]], "primeomega() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.primeomega", false]], "primepi (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.primepi", false]], "primepi() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.primepi", false]], "primepredicate (class in sympy.assumptions.predicates.ntheory)": [[65, "sympy.assumptions.predicates.ntheory.PrimePredicate", false]], "primerange() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.primerange", false]], "primerange() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.primerange", false]], "primes_above() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.primes_above", false]], "primitive() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.primitive", false]], "primitive() (sympy.core.add.add method)": [[88, "sympy.core.add.Add.primitive", false]], "primitive() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.primitive", false]], "primitive() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.primitive", false]], "primitive() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.primitive", false]], "primitive() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.primitive", false]], "primitive() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.primitive", false]], "primitive_element() (in module sympy.polys.numberfields.subfield)": [[216, "sympy.polys.numberfields.subfield.primitive_element", false]], "primitive_element() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.primitive_element", false]], "primitive_root() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.primitive_root", false]], "primorial() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.primorial", false]], "principal_branch (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.principal_branch", false]], "principal_value() (sympy.integrals.integrals.integral method)": [[115, "sympy.integrals.integrals.Integral.principal_value", false]], "print (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Print", false]], "print_ccode() (in module sympy.printing.c)": [[221, "sympy.printing.c.print_ccode", false]], "print_dim_base() (sympy.physics.units.dimensions.dimensionsystem method)": [[193, "sympy.physics.units.dimensions.DimensionSystem.print_dim_base", false]], "print_fcode() (in module sympy.printing.fortran)": [[221, "sympy.printing.fortran.print_fcode", false]], "print_gtk() (in module sympy.printing.gtk)": [[221, "sympy.printing.gtk.print_gtk", false]], "print_latex() (in module sympy.printing.latex)": [[221, "sympy.printing.latex.print_latex", false]], "print_maple_code() (in module sympy.printing.maple)": [[221, "sympy.printing.maple.print_maple_code", false]], "print_mathml() (in module sympy.printing.mathml)": [[221, "sympy.printing.mathml.print_mathml", false]], "print_node() (in module sympy.printing.tree)": [[221, "sympy.printing.tree.print_node", false]], "print_nonzero() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.print_nonzero", false]], "print_rcode() (in module sympy.printing.rcode)": [[221, "sympy.printing.rcode.print_rcode", false]], "print_tree() (in module sympy.printing.tree)": [[221, "sympy.printing.tree.print_tree", false]], "printer (class in sympy.printing.printer)": [[221, "sympy.printing.printer.Printer", false]], "printing": [[15, "term-Printing", true]], "printmethod (sympy.printing.aesaracode.aesaraprinter attribute)": [[221, "sympy.printing.aesaracode.AesaraPrinter.printmethod", false]], "printmethod (sympy.printing.c.c89codeprinter attribute)": [[221, "sympy.printing.c.C89CodePrinter.printmethod", false]], "printmethod (sympy.printing.c.c99codeprinter attribute)": [[221, "sympy.printing.c.C99CodePrinter.printmethod", false]], "printmethod (sympy.printing.codeprinter.codeprinter attribute)": [[221, "sympy.printing.codeprinter.CodePrinter.printmethod", false]], "printmethod (sympy.printing.cxx.cxx11codeprinter attribute)": [[221, "sympy.printing.cxx.CXX11CodePrinter.printmethod", false]], "printmethod (sympy.printing.cxx.cxx98codeprinter attribute)": [[221, "sympy.printing.cxx.CXX98CodePrinter.printmethod", false]], "printmethod (sympy.printing.fortran.fcodeprinter attribute)": [[221, "sympy.printing.fortran.FCodePrinter.printmethod", false]], "printmethod (sympy.printing.jscode.javascriptcodeprinter attribute)": [[221, "sympy.printing.jscode.JavascriptCodePrinter.printmethod", false]], "printmethod (sympy.printing.julia.juliacodeprinter attribute)": [[221, "sympy.printing.julia.JuliaCodePrinter.printmethod", false]], "printmethod (sympy.printing.lambdarepr.lambdaprinter attribute)": [[221, "sympy.printing.lambdarepr.LambdaPrinter.printmethod", false]], "printmethod (sympy.printing.latex.latexprinter attribute)": [[221, "sympy.printing.latex.LatexPrinter.printmethod", false]], "printmethod (sympy.printing.maple.maplecodeprinter attribute)": [[221, "sympy.printing.maple.MapleCodePrinter.printmethod", false]], "printmethod (sympy.printing.mathematica.mcodeprinter attribute)": [[221, "sympy.printing.mathematica.MCodePrinter.printmethod", false]], "printmethod (sympy.printing.mathml.mathmlcontentprinter attribute)": [[221, "sympy.printing.mathml.MathMLContentPrinter.printmethod", false]], "printmethod (sympy.printing.mathml.mathmlpresentationprinter attribute)": [[221, "sympy.printing.mathml.MathMLPresentationPrinter.printmethod", false]], "printmethod (sympy.printing.octave.octavecodeprinter attribute)": [[221, "sympy.printing.octave.OctaveCodePrinter.printmethod", false]], "printmethod (sympy.printing.pretty.pretty.prettyprinter attribute)": [[221, "sympy.printing.pretty.pretty.PrettyPrinter.printmethod", false]], "printmethod (sympy.printing.printer.printer attribute)": [[221, "sympy.printing.printer.Printer.printmethod", false]], "printmethod (sympy.printing.rcode.rcodeprinter attribute)": [[221, "sympy.printing.rcode.RCodePrinter.printmethod", false]], "printmethod (sympy.printing.repr.reprprinter attribute)": [[221, "sympy.printing.repr.ReprPrinter.printmethod", false]], "printmethod (sympy.printing.rust.rustcodeprinter attribute)": [[221, "sympy.printing.rust.RustCodePrinter.printmethod", false]], "printmethod (sympy.printing.smtlib.smtlibprinter attribute)": [[221, "sympy.printing.smtlib.SMTLibPrinter.printmethod", false]], "printmethod (sympy.printing.str.strprinter attribute)": [[221, "sympy.printing.str.StrPrinter.printmethod", false]], "prismaticjoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.PrismaticJoint", false]], "prob() (sympy.physics.quantum.state.wavefunction method)": [[189, "sympy.physics.quantum.state.Wavefunction.prob", false]], "probability (class in sympy.stats)": [[241, "sympy.stats.Probability", false]], "probability() (sympy.stats.bernoulliprocess method)": [[241, "sympy.stats.BernoulliProcess.probability", false]], "process_series() (sympy.plotting.plot.matplotlibbackend method)": [[207, "sympy.plotting.plot.MatplotlibBackend.process_series", false]], "prod() (in module sympy.core.mul)": [[88, "sympy.core.mul.prod", false]], "product (class in sympy.concrete.products)": [[87, "sympy.concrete.products.Product", false]], "product() (in module sympy.concrete.products)": [[87, "sympy.concrete.products.product", false]], "product() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.product", false]], "product() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.product", false]], "product_matrix_left (sympy.algebras.quaternion property)": [[61, "sympy.algebras.Quaternion.product_matrix_left", false]], "product_matrix_right (sympy.algebras.quaternion property)": [[61, "sympy.algebras.Quaternion.product_matrix_right", false]], "productdomain (class in sympy.stats.rv)": [[241, "sympy.stats.rv.ProductDomain", false]], "productpspace (class in sympy.stats.rv)": [[241, "sympy.stats.rv.ProductPSpace", false]], "productset (class in sympy.sets.sets)": [[229, "sympy.sets.sets.ProductSet", false]], "program (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Program", false]], "project() (sympy.geometry.point.point static method)": [[103, "sympy.geometry.point.Point.project", false]], "project() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.project", false]], "projection() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.projection", false]], "projection() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.projection", false]], "projection() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.projection", false]], "projection_line() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.projection_line", false]], "proper_divisor_count() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.proper_divisor_count", false]], "proper_divisors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.proper_divisors", false]], "proth_test() (in module sympy.ntheory.primetest)": [[128, "sympy.ntheory.primetest.proth_test", false]], "prufer (class in sympy.combinatorics.prufer)": [[82, "sympy.combinatorics.prufer.Prufer", false]], "prufer_rank() (sympy.combinatorics.prufer.prufer method)": [[82, "sympy.combinatorics.prufer.Prufer.prufer_rank", false]], "prufer_repr (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.prufer_repr", false]], "psets (sympy.sets.fancysets.complexregion property)": [[229, "sympy.sets.fancysets.ComplexRegion.psets", false]], "psi_n() (in module sympy.physics.qho_1d)": [[167, "sympy.physics.qho_1d.psi_n", false]], "psi_nlm() (in module sympy.physics.hydrogen)": [[146, "sympy.physics.hydrogen.Psi_nlm", false]], "psl2f5() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.PSL2F5", false]], "pspace (class in sympy.stats.rv)": [[241, "sympy.stats.rv.PSpace", false]], "pspace() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.pspace", false]], "public() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.public", false]], "purepoly (class in sympy.polys.polytools)": [[217, "sympy.polys.polytools.PurePoly", false]], "pxbra (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PxBra", false]], "pxket (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PxKet", false]], "pxop (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.PxOp", false]], "pycode() (in module sympy.printing.pycode)": [[221, "sympy.printing.pycode.pycode", false]], "pytestreporter (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.PyTestReporter", false]], "python enhancement proposals": [[88, "index-0", false], [88, "index-1", false], [88, "index-2", false], [88, "index-3", false]], "pythonfinitefield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.PythonFiniteField", false]], "pythonintegerring (class in sympy.polys.domains)": [[212, "sympy.polys.domains.PythonIntegerRing", false]], "pythonmpq (class in sympy.external.pythonmpq)": [[212, "sympy.external.pythonmpq.PythonMPQ", false]], "pythonrationalfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.PythonRationalField", false]], "q (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.q", false]], "q (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.q", false]], "q (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.q", false]], "q_dep (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.q_dep", false]], "q_ind (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.q_ind", false]], "qapply() (in module sympy.physics.quantum.qapply)": [[183, "sympy.physics.quantum.qapply.qapply", false]], "qft (class in sympy.physics.quantum.qft)": [[184, "sympy.physics.quantum.qft.QFT", false]], "qq_col (sympy.polys.numberfields.modules.moduleelement property)": [[216, "sympy.polys.numberfields.modules.ModuleElement.QQ_col", false]], "qq_matrix (sympy.polys.numberfields.modules.submodule property)": [[216, "sympy.polys.numberfields.modules.Submodule.QQ_matrix", false]], "qrdecomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.QRdecomposition", false]], "qrsolve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.QRsolve", false]], "qs() (in module sympy.ntheory.qs)": [[128, "sympy.ntheory.qs.qs", false]], "quadrant() (sympy.polys.domains.gaussiandomains.gaussianelement method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianElement.quadrant", false]], "quadratic_congruence() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.quadratic_congruence", false]], "quadratic_residues() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.quadratic_residues", false]], "quadraticu() (in module sympy.stats)": [[241, "sympy.stats.QuadraticU", false]], "quantile() (in module sympy.stats)": [[241, "sympy.stats.quantile", false]], "quantity (class in sympy.physics.units.quantities)": [[198, "sympy.physics.units.quantities.Quantity", false]], "quarter_wave_retarder() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.quarter_wave_retarder", false]], "quaternion (class in sympy.algebras)": [[61, "sympy.algebras.Quaternion", false]], "quaternionorienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.QuaternionOrienter", false]], "qubit (class in sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.Qubit", false]], "qubit_to_matrix() (in module sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.qubit_to_matrix", false]], "qubitbra (class in sympy.physics.quantum.qubit)": [[185, "sympy.physics.quantum.qubit.QubitBra", false]], "quo() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.quo", false]], "quo() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.quo", false]], "quo() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.quo", false]], "quo() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.quo", false]], "quo() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.quo", false]], "quo() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.quo", false]], "quo() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.quo", false]], "quo() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.quo", false]], "quo() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.quo", false]], "quo_ground() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.quo_ground", false]], "quo_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.quo_ground", false]], "quo_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.quo_ground", false]], "quotedstring (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.QuotedString", false]], "quotient() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.quotient", false]], "quotient_codomain() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.quotient_codomain", false]], "quotient_domain() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.quotient_domain", false]], "quotient_hom() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.quotient_hom", false]], "quotient_hom() (sympy.polys.agca.modules.subquotientmodule method)": [[208, "sympy.polys.agca.modules.SubQuotientModule.quotient_hom", false]], "quotient_module() (sympy.polys.agca.modules.freemodule method)": [[208, "sympy.polys.agca.modules.FreeModule.quotient_module", false]], "quotient_module() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.quotient_module", false]], "quotient_module() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.quotient_module", false]], "quotient_ring() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.quotient_ring", false]], "quotientmodule (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.QuotientModule", false]], "quotientmoduleelement (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.QuotientModuleElement", false]], "quotientring (class in sympy.polys.domains.quotientring)": [[212, "sympy.polys.domains.quotientring.QuotientRing", false]], "r (class in sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.R", false]], "r (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.r", false]], "r (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.r", false]], "r (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.r", false]], "r (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.r", false]], "r_nl() (in module sympy.physics.hydrogen)": [[146, "sympy.physics.hydrogen.R_nl", false]], "r_nl() (in module sympy.physics.sho)": [[192, "sympy.physics.sho.R_nl", false]], "racah() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.racah", false]], "rad_rationalize() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.rad_rationalize", false]], "rademacher() (in module sympy.stats)": [[241, "sympy.stats.Rademacher", false]], "radical() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.radical", false]], "radius (sympy.geometry.ellipse.circle property)": [[98, "sympy.geometry.ellipse.Circle.radius", false]], "radius (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.radius", false]], "radius (sympy.physics.mechanics.wrapping_geometry.wrappingcylinder property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder.radius", false]], "radius (sympy.physics.mechanics.wrapping_geometry.wrappingsphere property)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere.radius", false]], "radius (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.radius", false]], "radius_of_convergence (sympy.functions.special.hyper.hyper property)": [[96, "sympy.functions.special.hyper.hyper.radius_of_convergence", false]], "radsimp() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.radsimp", false]], "radsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.radsimp", false]], "raise (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Raise", false]], "raise_on_deprecated() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.raise_on_deprecated", false]], "raisedcosine() (in module sympy.stats)": [[241, "sympy.stats.RaisedCosine", false]], "raises() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.raises", false]], "ramp_response_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.ramp_response_numerical_data", false]], "ramp_response_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.ramp_response_plot", false]], "randmatrix() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.randMatrix", false]], "random() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.random", false]], "random() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.random", false]], "random_bitstring() (sympy.combinatorics.graycode method)": [[72, "sympy.combinatorics.graycode.random_bitstring", false]], "random_circuit() (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.random_circuit", false]], "random_complex_number() (in module sympy.core.random)": [[88, "sympy.core.random.random_complex_number", false]], "random_derangement() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.random_derangement", false]], "random_integer_partition() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.random_integer_partition", false]], "random_point() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.random_point", false]], "random_point() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.random_point", false]], "random_point() (sympy.geometry.plane.plane method)": [[102, "sympy.geometry.plane.Plane.random_point", false]], "random_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.random_poly", false]], "random_pr() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.random_pr", false]], "random_stab() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.random_stab", false]], "random_symbols() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.random_symbols", false]], "randomdomain (class in sympy.stats.rv)": [[241, "sympy.stats.rv.RandomDomain", false]], "randomsymbol (class in sympy.stats.rv)": [[241, "sympy.stats.rv.RandomSymbol", false]], "randprime() (in module sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.randprime", false]], "range (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Range", false]], "ranges (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.ranges", false]], "rank (sympy.combinatorics.graycode.graycode property)": [[72, "sympy.combinatorics.graycode.GrayCode.rank", false]], "rank (sympy.combinatorics.partitions.partition property)": [[77, "sympy.combinatorics.partitions.Partition.rank", false]], "rank (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.rank", false]], "rank (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.rank", false]], "rank() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.rank", false]], "rank() (sympy.liealgebras.cartan_type.standard_cartan method)": [[117, "sympy.liealgebras.cartan_type.Standard_Cartan.rank", false]], "rank() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rank", false]], "rank_binary (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.rank_binary", false]], "rank_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rank_decomposition", false]], "rank_gray (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.rank_gray", false]], "rank_lexicographic (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.rank_lexicographic", false]], "rank_nonlex() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.rank_nonlex", false]], "rank_trotterjohnson() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.rank_trotterjohnson", false]], "rat_clear_denoms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.rat_clear_denoms", false]], "ratint() (in module sympy.integrals.rationaltools)": [[115, "sympy.integrals.rationaltools.ratint", false]], "ratint_logpart() (in module sympy.integrals.rationaltools)": [[115, "sympy.integrals.rationaltools.ratint_logpart", false]], "ratint_ratpart() (in module sympy.integrals.rationaltools)": [[115, "sympy.integrals.rationaltools.ratint_ratpart", false]], "rational": [[88, "term-rational", true]], "rational (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Rational", false]], "rational_algorithm() (in module sympy.series.formal)": [[223, "sympy.series.formal.rational_algorithm", false]], "rational_independent() (in module sympy.series.formal)": [[223, "sympy.series.formal.rational_independent", false]], "rational_laurent_series() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.rational_laurent_series", false]], "rational_parametrization() (sympy.vector.implicitregion.implicitregion method)": [[265, "sympy.vector.implicitregion.ImplicitRegion.rational_parametrization", false]], "rationalfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.RationalField", false]], "rationalize() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.rationalize", false]], "rationalpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.RationalPredicate", false]], "rationalriccati (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.RationalRiccati", false]], "rationals (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Rationals", false]], "ratsimp() (in module sympy.simplify.ratsimp)": [[233, "sympy.simplify.ratsimp.ratsimp", false]], "ratsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.ratsimp", false]], "ratsimpmodprime() (in module sympy.simplify.ratsimp)": [[233, "sympy.simplify.ratsimp.ratsimpmodprime", false]], "rawlines() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.rawlines", false]], "ray (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Ray", false]], "ray2d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Ray2D", false]], "ray3d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Ray3D", false]], "rayleigh() (in module sympy.stats)": [[241, "sympy.stats.Rayleigh", false]], "rayleigh2waist() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.rayleigh2waist", false]], "raytransfermatrix (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.RayTransferMatrix", false]], "rcall() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.rcall", false]], "rcode() (in module sympy.printing.rcode)": [[221, "sympy.printing.rcode.rcode", false]], "rcodeprinter (class in sympy.printing.rcode)": [[221, "sympy.printing.rcode.RCodePrinter", false]], "rcollect() (in module sympy.simplify.radsimp)": [[233, "sympy.simplify.radsimp.rcollect", false]], "re (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.re", false]], "reaction_frame (sympy.physics.mechanics.actuator.torqueactuator property)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.reaction_frame", false]], "reaction_loads (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.reaction_loads", false]], "reaction_loads (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.reaction_loads", false]], "reaction_loads (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.reaction_loads", false]], "real": [[88, "term-real", true]], "real_gaunt() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.real_gaunt", false]], "real_root() (in module sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.real_root", false]], "real_roots() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.real_roots", false]], "real_roots() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.real_roots", false]], "real_roots() (sympy.polys.rootoftools.complexrootof class method)": [[217, "sympy.polys.rootoftools.ComplexRootOf.real_roots", false]], "realelementspredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.RealElementsPredicate", false]], "realfield (class in sympy.polys.domains)": [[212, "sympy.polys.domains.RealField", false]], "realnumber (in module sympy.core.numbers)": [[88, "sympy.core.numbers.RealNumber", false]], "realpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.RealPredicate", false]], "reals (class in sympy.sets.fancysets)": [[229, "sympy.sets.fancysets.Reals", false]], "reciprocal() (in module sympy.stats)": [[241, "sympy.stats.Reciprocal", false]], "reconstruct() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.reconstruct", false]], "rectangles (sympy.plotting.plot.plot property)": [[207, "sympy.plotting.plot.Plot.rectangles", false]], "recurrence (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.recurrence", false]], "recurrence_memo() (in module sympy.utilities.memoization)": [[261, "sympy.utilities.memoization.recurrence_memo", false]], "recursiveseq (class in sympy.series.sequences)": [[227, "sympy.series.sequences.RecursiveSeq", false]], "red_groebner() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.red_groebner", false]], "reduce() (sympy.polys.polytools.groebnerbasis method)": [[217, "sympy.polys.polytools.GroebnerBasis.reduce", false]], "reduce() (sympy.series.sequences.seqadd static method)": [[227, "sympy.series.sequences.SeqAdd.reduce", false]], "reduce() (sympy.series.sequences.seqmul static method)": [[227, "sympy.series.sequences.SeqMul.reduce", false]], "reduce() (sympy.sets.sets.complement static method)": [[229, "sympy.sets.sets.Complement.reduce", false]], "reduce_abs_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.reduce_abs_inequalities", false]], "reduce_abs_inequality() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.reduce_abs_inequality", false]], "reduce_alg_num() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.reduce_alg_num", false]], "reduce_anp() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.reduce_ANP", false]], "reduce_element() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.reduce_element", false]], "reduce_element() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.reduce_element", false]], "reduce_element() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.reduce_element", false]], "reduce_element() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.reduce_element", false]], "reduce_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.reduce_inequalities", false]], "reduce_rational_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.reduce_rational_inequalities", false]], "reduced() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.reduced", false]], "reduced() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.reduced", false]], "reduced() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.reduced", false]], "reduced_mod_p() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.reduced_mod_p", false]], "reduced_totient (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.reduced_totient", false]], "reduced_totient() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.reduced_totient", false]], "referenceframe (class in sympy.physics.vector.frame)": [[200, "sympy.physics.vector.frame.ReferenceFrame", false]], "refine() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine", false]], "refine() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.refine", false]], "refine() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.refine", false]], "refine_abs() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_abs", false]], "refine_arg() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_arg", false]], "refine_atan2() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_atan2", false]], "refine_im() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_im", false]], "refine_matrixelement() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_matrixelement", false]], "refine_pow() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_Pow", false]], "refine_re() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_re", false]], "refine_root() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.refine_root", false]], "refine_root() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.refine_root", false]], "refine_root() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.refine_root", false]], "refine_sign() (in module sympy.assumptions.refine)": [[66, "sympy.assumptions.refine.refine_sign", false]], "refinementfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.RefinementFailed", false]], "reflect() (sympy.geometry.ellipse.circle method)": [[98, "sympy.geometry.ellipse.Circle.reflect", false]], "reflect() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.reflect", false]], "reflect() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.reflect", false]], "reflect() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.reflect", false]], "reflective_filter() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.reflective_filter", false]], "refraction_angle() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.refraction_angle", false]], "refractive_index (sympy.physics.optics.medium.medium property)": [[162, "sympy.physics.optics.medium.Medium.refractive_index", false]], "register() (sympy.assumptions.assume.predicate class method)": [[63, "sympy.assumptions.assume.Predicate.register", false]], "register_handler() (in module sympy.assumptions.ask)": [[62, "sympy.assumptions.ask.register_handler", false]], "register_many() (sympy.assumptions.assume.predicate class method)": [[63, "sympy.assumptions.assume.Predicate.register_many", false]], "regular_point() (sympy.vector.implicitregion.implicitregion method)": [[265, "sympy.vector.implicitregion.ImplicitRegion.regular_point", false]], "regularpolygon (class in sympy.geometry.polygon)": [[104, "sympy.geometry.polygon.RegularPolygon", false]], "rel (in module sympy.core.relational)": [[88, "sympy.core.relational.Rel", false]], "relational": [[15, "term-Relational", true]], "relational (class in sympy.core.relational)": [[88, "sympy.core.relational.Relational", false]], "rem() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.rem", false]], "rem() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.rem", false]], "rem() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.rem", false]], "rem() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.rem", false]], "rem() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.rem", false]], "rem() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.rem", false]], "rem() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.rem", false]], "rem() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.rem", false]], "remove_handler() (in module sympy.assumptions.ask)": [[62, "sympy.assumptions.ask.remove_handler", false]], "remove_load() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.remove_load", false]], "remove_load() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.remove_load", false]], "remove_load() (sympy.physics.mechanics.body.body method)": [[149, "sympy.physics.mechanics.body.Body.remove_load", false]], "remove_loads() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.remove_loads", false]], "remove_member() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.remove_member", false]], "remove_node() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.remove_node", false]], "remove_redundant_sols() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.remove_redundant_sols", false]], "remove_support() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.remove_support", false]], "removeo() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.removeO", false]], "render() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.render", false]], "render_as_module() (in module sympy.codegen.futils)": [[69, "sympy.codegen.futils.render_as_module", false]], "render_as_module() (in module sympy.codegen.pyutils)": [[69, "sympy.codegen.pyutils.render_as_module", false]], "render_as_source_file() (in module sympy.codegen.cutils)": [[69, "sympy.codegen.cutils.render_as_source_file", false]], "reorder() (sympy.concrete.expr_with_intlimits.exprwithintlimits method)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder", false]], "reorder() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.reorder", false]], "reorder_limit() (sympy.concrete.expr_with_intlimits.exprwithintlimits method)": [[87, "sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder_limit", false]], "rep (sympy.polys.polyclasses.dmp property)": [[212, "sympy.polys.polyclasses.DMP.rep", false]], "rep_expectation() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.rep_expectation", false]], "rep_innerproduct() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.rep_innerproduct", false]], "repeated_decimals() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.repeated_decimals", false]], "replace() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.replace", false]], "replace() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.replace", false]], "replace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.replace", false]], "replace() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.replace", false]], "replace_in_add() (sympy.codegen.rewriting.funcminusoneoptim method)": [[69, "sympy.codegen.rewriting.FuncMinusOneOptim.replace_in_Add", false]], "replace_with_arrays() (sympy.tensor.tensor.tensexpr method)": [[247, "sympy.tensor.tensor.TensExpr.replace_with_arrays", false]], "replaceoptim (class in sympy.codegen.rewriting)": [[69, "sympy.codegen.rewriting.ReplaceOptim", false]], "reporter (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.Reporter", false]], "repr() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.repr", false]], "represent() (in module sympy.physics.quantum.represent)": [[186, "sympy.physics.quantum.represent.represent", false]], "represent() (sympy.polys.numberfields.modules.endomorphismring method)": [[216, "sympy.polys.numberfields.modules.EndomorphismRing.represent", false]], "represent() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.represent", false]], "represent() (sympy.polys.numberfields.modules.powerbasis method)": [[216, "sympy.polys.numberfields.modules.PowerBasis.represent", false]], "represent() (sympy.polys.numberfields.modules.submodule method)": [[216, "sympy.polys.numberfields.modules.Submodule.represent", false]], "reprify() (sympy.printing.repr.reprprinter method)": [[221, "sympy.printing.repr.ReprPrinter.reprify", false]], "reprprinter (class in sympy.printing.repr)": [[221, "sympy.printing.repr.ReprPrinter", false]], "reset() (sympy.combinatorics.polyhedron.polyhedron method)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.reset", false]], "reshape() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.reshape", false]], "reshape() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.reshape", false]], "reshape() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.reshape", false]], "residue() (in module sympy.series.residues)": [[228, "sympy.series.residues.residue", false]], "resize() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.resize", false]], "restrict_codomain() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.restrict_codomain", false]], "restrict_domain() (sympy.polys.agca.homomorphisms.modulehomomorphism method)": [[208, "sympy.polys.agca.homomorphisms.ModuleHomomorphism.restrict_domain", false]], "result (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.Result", false]], "result_variables (sympy.utilities.codegen.routine property)": [[254, "sympy.utilities.codegen.Routine.result_variables", false]], "resultant() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.resultant", false]], "resultant() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.resultant", false]], "resultant() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.resultant", false]], "retract() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.retract", false]], "return (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Return", false]], "return_expr() (sympy.parsing.sym_expr.sympyexpression method)": [[130, "sympy.parsing.sym_expr.SymPyExpression.return_expr", false]], "reverse_order() (sympy.concrete.products.product method)": [[87, "sympy.concrete.products.Product.reverse_order", false]], "reverse_order() (sympy.concrete.summations.sum method)": [[87, "sympy.concrete.summations.Sum.reverse_order", false]], "reversed (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.reversed", false]], "reversed (sympy.sets.fancysets.range property)": [[229, "sympy.sets.fancysets.Range.reversed", false]], "reversedgradedlexorder (class in sympy.polys.orderings)": [[217, "sympy.polys.orderings.ReversedGradedLexOrder", false]], "reversedsign (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.reversedsign", false]], "revert() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.revert", false]], "revert() (sympy.polys.domains.field.field method)": [[212, "sympy.polys.domains.field.Field.revert", false]], "revert() (sympy.polys.domains.ring.ring method)": [[212, "sympy.polys.domains.ring.Ring.revert", false]], "revert() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.revert", false]], "revert() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.revert", false]], "rewrite() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.rewrite", false]], "rewrite() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.rewrite", false]], "rgs (sympy.combinatorics.partitions.partition property)": [[77, "sympy.combinatorics.partitions.Partition.RGS", false]], "rgs_enum() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.RGS_enum", false]], "rgs_generalized() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.RGS_generalized", false]], "rgs_rank() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.RGS_rank", false]], "rgs_unrank() (in module sympy.combinatorics.partitions)": [[77, "sympy.combinatorics.partitions.RGS_unrank", false]], "rhs (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.rhs", false]], "rhs() (sympy.physics.biomechanics.activation.activationbase method)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.rhs", false]], "rhs() (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 method)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.rhs", false]], "rhs() (sympy.physics.biomechanics.activation.zerothorderactivation method)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.rhs", false]], "rhs() (sympy.physics.biomechanics.musculotendon.musculotendonbase method)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.rhs", false]], "rhs() (sympy.physics.mechanics.jointsmethod.jointsmethod method)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.rhs", false]], "rhs() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.rhs", false]], "rhs() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.rhs", false]], "rhs() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.rhs", false]], "riccati_inverse_normal() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.riccati_inverse_normal", false]], "riccati_normal() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.riccati_normal", false]], "riccati_reduced() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.riccati_reduced", false]], "riccatispecial (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.RiccatiSpecial", false]], "richardson() (in module sympy.series.acceleration)": [[228, "sympy.series.acceleration.richardson", false]], "riemann() (sympy.tensor.tensor.tensorsymmetry class method)": [[247, "sympy.tensor.tensor.TensorSymmetry.riemann", false]], "riemann_cyclic() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.riemann_cyclic", false]], "riemann_cyclic_replace() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.riemann_cyclic_replace", false]], "right() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.right", false]], "right_open (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.right_open", false]], "right_support (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.right_support", false]], "rigidbody (class in sympy.physics.mechanics.rigidbody)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody", false]], "ring (class in sympy.polys.domains.ring)": [[212, "sympy.polys.domains.ring.Ring", false]], "ring() (in module sympy.polys.rings)": [[212, "sympy.polys.rings.ring", false]], "ringelement (class in sympy.polys.matrices._typing)": [[210, "sympy.polys.matrices._typing.RingElement", false]], "risch_integrate() (in module sympy.integrals.risch)": [[115, "sympy.integrals.risch.risch_integrate", false]], "risingfactorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.RisingFactorial", false]], "rk (in module sympy.physics.quantum.qft)": [[184, "sympy.physics.quantum.qft.Rk", false]], "rkgate (class in sympy.physics.quantum.qft)": [[184, "sympy.physics.quantum.qft.RkGate", false]], "rmul() (sympy.combinatorics.permutations.permutation static method)": [[80, "sympy.combinatorics.permutations.Permutation.rmul", false]], "rmul() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.rmul", false]], "rmul_with_af() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.rmul_with_af", false]], "rmultiply() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rmultiply", false]], "root (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.root", false]], "root() (in module sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.root", false]], "root() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.root", false]], "root() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.root", false]], "root_space() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.root_space", false]], "rootof (class in sympy.polys.rootoftools)": [[217, "sympy.polys.rootoftools.RootOf", false]], "rootof() (in module sympy.polys.rootoftools)": [[217, "sympy.polys.rootoftools.rootof", false]], "roots() (in module sympy.polys.polyroots)": [[217, "sympy.polys.polyroots.roots", false]], "roots() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.roots", false]], "roots() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.roots", false]], "roots() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.roots", false]], "roots() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.roots", false]], "roots() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.roots", false]], "roots() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.roots", false]], "roots() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.roots", false]], "rootsum (class in sympy.polys.rootoftools)": [[217, "sympy.polys.rootoftools.RootSum", false]], "rootsystem (class in sympy.liealgebras.root_system)": [[117, "sympy.liealgebras.root_system.RootSystem", false]], "ropen() (sympy.sets.sets.interval class method)": [[229, "sympy.sets.sets.Interval.Ropen", false]], "rot90() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rot90", false]], "rot_axis1() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_axis1", false]], "rot_axis2() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_axis2", false]], "rot_axis3() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_axis3", false]], "rot_ccw_axis1() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_ccw_axis1", false]], "rot_ccw_axis2() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_ccw_axis2", false]], "rot_ccw_axis3() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_ccw_axis3", false]], "rot_givens() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.rot_givens", false]], "rotate() (sympy.combinatorics.polyhedron.polyhedron method)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.rotate", false]], "rotate() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.rotate", false]], "rotate() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.rotate", false]], "rotate() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.rotate", false]], "rotate() (sympy.geometry.point.point2d method)": [[103, "sympy.geometry.point.Point2D.rotate", false]], "rotate() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.rotate", false]], "rotate_left() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.rotate_left", false]], "rotate_point() (sympy.algebras.quaternion static method)": [[61, "sympy.algebras.Quaternion.rotate_point", false]], "rotate_right() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.rotate_right", false]], "rotation (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.Rotation", false]], "rotation (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.rotation", false]], "rotation_axis (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.rotation_axis", false]], "rotation_coordinate (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.rotation_coordinate", false]], "rotation_coordinate (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.rotation_coordinate", false]], "rotation_jumps (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.rotation_jumps", false]], "rotation_matrix() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.rotation_matrix", false]], "rotation_matrix() (sympy.vector.orienters.axisorienter method)": [[267, "sympy.vector.orienters.AxisOrienter.rotation_matrix", false]], "rotation_matrix() (sympy.vector.orienters.orienter method)": [[267, "sympy.vector.orienters.Orienter.rotation_matrix", false]], "rotation_speed (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.rotation_speed", false]], "rotation_speed (sympy.physics.mechanics.joint.planarjoint property)": [[152, "sympy.physics.mechanics.joint.PlanarJoint.rotation_speed", false]], "rotations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.rotations", false]], "round() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.round", false]], "round_two() (in module sympy.polys.numberfields.basis)": [[216, "sympy.polys.numberfields.basis.round_two", false]], "roundfunction (class in sympy.functions.elementary.integers)": [[94, "sympy.functions.elementary.integers.RoundFunction", false]], "roundrobin() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.roundrobin", false]], "routine (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.Routine", false]], "routine() (sympy.utilities.codegen.codegen method)": [[254, "sympy.utilities.codegen.CodeGen.routine", false]], "routine() (sympy.utilities.codegen.juliacodegen method)": [[254, "sympy.utilities.codegen.JuliaCodeGen.routine", false]], "routine() (sympy.utilities.codegen.octavecodegen method)": [[254, "sympy.utilities.codegen.OctaveCodeGen.routine", false]], "routine() (sympy.utilities.codegen.rustcodegen method)": [[254, "sympy.utilities.codegen.RustCodeGen.routine", false]], "row() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.row", false]], "row_del() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.row_del", false]], "row_insert() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.row_insert", false]], "row_join() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.row_join", false]], "rowspace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rowspace", false]], "rowspace() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.rowspace", false]], "rref() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rref", false]], "rref() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.rref", false]], "rref() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.rref", false]], "rref() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.rref", false]], "rref_den() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.rref_den", false]], "rref_den() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den", false]], "rref_den() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.rref_den", false]], "rref_rhs() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.rref_rhs", false]], "rs_asin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_asin", false]], "rs_atan() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_atan", false]], "rs_atanh() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_atanh", false]], "rs_compose_add() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_compose_add", false]], "rs_cos() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_cos", false]], "rs_cos_sin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_cos_sin", false]], "rs_cosh() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_cosh", false]], "rs_cot() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_cot", false]], "rs_diff() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_diff", false]], "rs_exp() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_exp", false]], "rs_fun() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_fun", false]], "rs_hadamard_exp() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_hadamard_exp", false]], "rs_integrate() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_integrate", false]], "rs_is_puiseux() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_is_puiseux", false]], "rs_lambertw() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_LambertW", false]], "rs_log() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_log", false]], "rs_mul() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_mul", false]], "rs_newton() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_newton", false]], "rs_nth_root() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_nth_root", false]], "rs_pow() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_pow", false]], "rs_puiseux() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_puiseux", false]], "rs_puiseux2() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_puiseux2", false]], "rs_series_from_list() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_series_from_list", false]], "rs_series_inversion() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_series_inversion", false]], "rs_series_reversion() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_series_reversion", false]], "rs_sin() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_sin", false]], "rs_sinh() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_sinh", false]], "rs_square() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_square", false]], "rs_subs() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_subs", false]], "rs_swap() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.rs_swap", false]], "rs_tan() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_tan", false]], "rs_tanh() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_tanh", false]], "rs_trunc() (in module sympy.polys.ring_series)": [[218, "sympy.polys.ring_series.rs_trunc", false]], "rsa_private_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.rsa_private_key", false]], "rsa_public_key() (in module sympy.crypto.crypto)": [[89, "sympy.crypto.crypto.rsa_public_key", false]], "rsolve() (in module sympy.solvers.recurr)": [[239, "sympy.solvers.recurr.rsolve", false]], "rsolve_hyper() (in module sympy.solvers.recurr)": [[239, "sympy.solvers.recurr.rsolve_hyper", false]], "rsolve_hypergeometric() (in module sympy.series.formal)": [[223, "sympy.series.formal.rsolve_hypergeometric", false]], "rsolve_poly() (in module sympy.solvers.recurr)": [[239, "sympy.solvers.recurr.rsolve_poly", false]], "rsolve_ratio() (in module sympy.solvers.recurr)": [[239, "sympy.solvers.recurr.rsolve_ratio", false]], "run() (sympy.testing.runtests.sympydoctestrunner method)": [[252, "sympy.testing.runtests.SymPyDocTestRunner.run", false]], "run_all_tests() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.run_all_tests", false]], "run_in_subprocess_with_hash_randomization() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.run_in_subprocess_with_hash_randomization", false]], "runs() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.runs", false]], "runs() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.runs", false]], "runtimeerror_ (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.RuntimeError_", false]], "rust_code() (in module sympy.printing.rust)": [[221, "sympy.printing.rust.rust_code", false]], "rustcodegen (class in sympy.utilities.codegen)": [[254, "sympy.utilities.codegen.RustCodeGen", false]], "rustcodeprinter (class in sympy.printing.rust)": [[221, "sympy.printing.rust.RustCodePrinter", false]], "s": [[15, "term-S", true]], "s (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.S", false]], "s1transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S1TransitiveSubgroups", false]], "s2transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S2TransitiveSubgroups", false]], "s3_in_s6() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S3_in_S6", false]], "s3transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S3TransitiveSubgroups", false]], "s4m() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S4m", false]], "s4p() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S4p", false]], "s4transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S4TransitiveSubgroups", false]], "s4xc2() (in module sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S4xC2", false]], "s5transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S5TransitiveSubgroups", false]], "s6transitivesubgroups (class in sympy.combinatorics.galois)": [[71, "sympy.combinatorics.galois.S6TransitiveSubgroups", false]], "same_root() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.same_root", false]], "sample() (in module sympy.stats)": [[241, "sympy.stats.sample", false]], "sample() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.sample", false]], "sample_iter() (in module sympy.stats)": [[241, "sympy.stats.sample_iter", false]], "sampling_density() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.sampling_density", false]], "sampling_e() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.sampling_E", false]], "sampling_p() (in module sympy.stats.rv)": [[241, "sympy.stats.rv.sampling_P", false]], "satisfiable() (in module sympy.logic.inference)": [[118, "sympy.logic.inference.satisfiable", false]], "saturate() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.saturate", false]], "scalar_map() (sympy.vector.coordsysrect.coordsys3d method)": [[265, "sympy.vector.coordsysrect.CoordSys3D.scalar_map", false]], "scalar_part() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.scalar_part", false]], "scalar_potential() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.scalar_potential", false]], "scalar_potential() (in module sympy.vector)": [[268, "sympy.vector.scalar_potential", false]], "scalar_potential_difference() (in module sympy.physics.vector.fieldfunctions)": [[201, "sympy.physics.vector.fieldfunctions.scalar_potential_difference", false]], "scalar_potential_difference() (in module sympy.vector)": [[268, "sympy.vector.scalar_potential_difference", false]], "scale() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.scale", false]], "scale() (sympy.geometry.ellipse.circle method)": [[98, "sympy.geometry.ellipse.Circle.scale", false]], "scale() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.scale", false]], "scale() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.scale", false]], "scale() (sympy.geometry.point.point2d method)": [[103, "sympy.geometry.point.Point2D.scale", false]], "scale() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.scale", false]], "scale() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.scale", false]], "scale() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.scale", false]], "scale_factor (sympy.physics.units.quantities.quantity property)": [[198, "sympy.physics.units.quantities.Quantity.scale_factor", false]], "scalex() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.scalex", false]], "scc() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.scc", false]], "scc() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.scc", false]], "scc() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.scc", false]], "scc() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.scc", false]], "schreier_sims() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims", false]], "schreier_sims_incremental() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_incremental", false]], "schreier_sims_random() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random", false]], "schreier_vector() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.schreier_vector", false]], "schur() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.schur", false]], "scope (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Scope", false]], "sdm (class in sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.SDM", false]], "sdm_add() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_add", false]], "sdm_berk() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_berk", false]], "sdm_deg() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_deg", false]], "sdm_ecart() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_ecart", false]], "sdm_from_dict() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_from_dict", false]], "sdm_from_vector() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_from_vector", false]], "sdm_groebner() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_groebner", false]], "sdm_irref() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_irref", false]], "sdm_lc() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_LC", false]], "sdm_lm() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_LM", false]], "sdm_lt() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_LT", false]], "sdm_monomial_deg() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_monomial_deg", false]], "sdm_monomial_divides() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_monomial_divides", false]], "sdm_monomial_mul() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_monomial_mul", false]], "sdm_mul_term() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_mul_term", false]], "sdm_nf_mora() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_nf_mora", false]], "sdm_nullspace_from_rref() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_nullspace_from_rref", false]], "sdm_particular_from_rref() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_particular_from_rref", false]], "sdm_rref_den() (in module sympy.polys.matrices.sdm)": [[210, "sympy.polys.matrices.sdm.sdm_rref_den", false]], "sdm_spoly() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_spoly", false]], "sdm_to_dict() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_to_dict", false]], "sdm_to_vector() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_to_vector", false]], "sdm_zero() (in module sympy.polys.distributedmodules)": [[214, "sympy.polys.distributedmodules.sdm_zero", false]], "search() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.search", false]], "search_function (sympy.physics.quantum.grover.oraclegate property)": [[176, "sympy.physics.quantum.grover.OracleGate.search_function", false]], "sec (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.sec", false]], "sech (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.sech", false]], "second_moment (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.second_moment", false]], "second_moment (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.second_moment", false]], "second_moment_of_area() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.second_moment_of_area", false]], "second_moment_of_area() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.second_moment_of_area", false]], "secondhypergeometric (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.SecondHypergeometric", false]], "secondlinearairy (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.SecondLinearAiry", false]], "secondlinearbessel (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.SecondLinearBessel", false]], "section_modulus() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.section_modulus", false]], "section_modulus() (sympy.geometry.polygon.polygon method)": [[104, "sympy.geometry.polygon.Polygon.section_modulus", false]], "segment (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Segment", false]], "segment2d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Segment2D", false]], "segment3d (class in sympy.geometry.line)": [[101, "sympy.geometry.line.Segment3D", false]], "select() (sympy.simplify.epathtools.epath method)": [[233, "sympy.simplify.epathtools.EPath.select", false]], "selections (sympy.combinatorics.graycode.graycode property)": [[72, "sympy.combinatorics.graycode.GrayCode.selections", false]], "semilatus_rectum (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.semilatus_rectum", false]], "sensitivity (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.sensitivity", false]], "sensitivity (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.sensitivity", false]], "separable (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.Separable", false]], "separablereduced (class in sympy.solvers.ode.single)": [[237, "sympy.solvers.ode.single.SeparableReduced", false]], "separate() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.separate", false]], "separate() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.separate", false]], "separate() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.separate", false]], "separatevars() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.separatevars", false]], "seqadd (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqAdd", false]], "seqbase (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqBase", false]], "seqformula (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqFormula", false]], "seqmul (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqMul", false]], "seqper (class in sympy.series.sequences)": [[227, "sympy.series.sequences.SeqPer", false]], "sequence() (in module sympy.series.sequences)": [[227, "sympy.series.sequences.sequence", false]], "sequence_partitions() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.sequence_partitions", false]], "sequence_partitions_empty() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.sequence_partitions_empty", false]], "series (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.Series", false]], "series() (in module sympy.series.series)": [[228, "sympy.series.series.series", false]], "series() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.series", false]], "series() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.series", false]], "series() (sympy.liealgebras.cartan_type.standard_cartan method)": [[117, "sympy.liealgebras.cartan_type.Standard_Cartan.series", false]], "seriesapprox (class in sympy.codegen.approximations)": [[69, "sympy.codegen.approximations.SeriesApprox", false]], "set (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Set", false]], "set_acc() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.set_acc", false]], "set_ang_acc() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.set_ang_acc", false]], "set_ang_vel() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.set_ang_vel", false]], "set_comm() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.set_comm", false]], "set_comms() (sympy.tensor.tensor._tensormanager method)": [[247, "sympy.tensor.tensor._TensorManager.set_comms", false]], "set_domain() (sympy.polys.domains.compositedomain.compositedomain method)": [[212, "sympy.polys.domains.compositedomain.CompositeDomain.set_domain", false]], "set_domain() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.set_domain", false]], "set_global_relative_scale_factor() (sympy.physics.units.quantities.quantity method)": [[198, "sympy.physics.units.quantities.Quantity.set_global_relative_scale_factor", false]], "set_global_settings() (sympy.printing.printer.printer class method)": [[221, "sympy.printing.printer.Printer.set_global_settings", false]], "set_modulus() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.set_modulus", false]], "set_norm() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.set_norm", false]], "set_pos() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.set_pos", false]], "set_vel() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.set_vel", false]], "seterr() (in module sympy.core.numbers)": [[88, "sympy.core.numbers.seterr", false]], "setitem() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.setitem", false]], "setkind (class in sympy.sets.conditionset)": [[229, "sympy.sets.conditionset.SetKind", false]], "sets (sympy.sets.fancysets.complexregion property)": [[229, "sympy.sets.fancysets.ComplexRegion.sets", false]], "setup() (in module sympy.polys.polyconfig)": [[214, "sympy.polys.polyconfig.setup", false]], "sfield() (in module sympy.polys.fields)": [[212, "sympy.polys.fields.sfield", false]], "shanks() (in module sympy.series.acceleration)": [[228, "sympy.series.acceleration.shanks", false]], "shape (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.shape", false]], "shape (sympy.physics.control.lti.mimoparallel property)": [[144, "sympy.physics.control.lti.MIMOParallel.shape", false]], "shape (sympy.physics.control.lti.mimoseries property)": [[144, "sympy.physics.control.lti.MIMOSeries.shape", false]], "shape (sympy.physics.control.lti.transferfunctionmatrix property)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.shape", false]], "shape (sympy.tensor.indexed.indexed property)": [[246, "sympy.tensor.indexed.Indexed.shape", false]], "shape (sympy.tensor.indexed.indexedbase property)": [[246, "sympy.tensor.indexed.IndexedBase.shape", false]], "shape() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.shape", false]], "shapeerror (class in sympy.matrices.matrixbase)": [[124, "sympy.matrices.matrixbase.ShapeError", false]], "shear_force() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.shear_force", false]], "shear_force() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.shear_force", false]], "shear_modulus (sympy.physics.continuum_mechanics.beam.beam3d property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.shear_modulus", false]], "shear_stress() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.shear_stress", false]], "shear_stress() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.shear_stress", false]], "shi (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Shi", false]], "shift() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.shift", false]], "shift() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.shift", false]], "shift() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.shift", false]], "shift_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.shift_list", false]], "shift_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.shift_list", false]], "shiftedgompertz() (in module sympy.stats)": [[241, "sympy.stats.ShiftedGompertz", false]], "shiftx() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.shiftx", false]], "shor() (in module sympy.physics.quantum.shor)": [[187, "sympy.physics.quantum.shor.shor", false]], "si (class in sympy.functions.special.error_functions)": [[96, "sympy.functions.special.error_functions.Si", false]], "sides (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.sides", false]], "sieve (class in sympy.ntheory.generate)": [[128, "sympy.ntheory.generate.Sieve", false]], "sift() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.sift", false]], "sigma_approximation() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.sigma_approximation", false]], "sign (class in sympy.functions.elementary.complexes)": [[94, "sympy.functions.elementary.complexes.sign", false]], "sign (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.sign", false]], "sign (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.sign", false]], "sign() (in module sympy.series.gruntz)": [[228, "sympy.series.gruntz.sign", false]], "signature (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.signature", false]], "signature() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.signature", false]], "signed_permutations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.signed_permutations", false]], "signedinttype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.SignedIntType", false]], "simple_root() (sympy.liealgebras.type_a.typea method)": [[117, "sympy.liealgebras.type_a.TypeA.simple_root", false]], "simple_root() (sympy.liealgebras.type_b.typeb method)": [[117, "sympy.liealgebras.type_b.TypeB.simple_root", false]], "simple_root() (sympy.liealgebras.type_c.typec method)": [[117, "sympy.liealgebras.type_c.TypeC.simple_root", false]], "simple_root() (sympy.liealgebras.type_d.typed method)": [[117, "sympy.liealgebras.type_d.TypeD.simple_root", false]], "simple_root() (sympy.liealgebras.type_e.typee method)": [[117, "sympy.liealgebras.type_e.TypeE.simple_root", false]], "simple_root() (sympy.liealgebras.type_f.typef method)": [[117, "sympy.liealgebras.type_f.TypeF.simple_root", false]], "simple_root() (sympy.liealgebras.type_g.typeg method)": [[117, "sympy.liealgebras.type_g.TypeG.simple_root", false]], "simple_roots() (sympy.liealgebras.root_system.rootsystem method)": [[117, "sympy.liealgebras.root_system.RootSystem.simple_roots", false]], "simplede() (in module sympy.series.formal)": [[223, "sympy.series.formal.simpleDE", false]], "simpledomain (class in sympy.polys.domains.simpledomain)": [[212, "sympy.polys.domains.simpledomain.SimpleDomain", false]], "simplification": [[15, "term-Simplification", true]], "simplify() (in module sympy.simplify.simplify)": [[233, "sympy.simplify.simplify.simplify", false]], "simplify() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.simplify", false]], "simplify() (sympy.matrices.dense.mutabledensematrix method)": [[119, "sympy.matrices.dense.MutableDenseMatrix.simplify", false]], "simplify() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.simplify", false]], "simplify() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.simplify", false]], "simplify() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.simplify", false]], "simplify_gpgp() (in module sympy.physics.hep.gamma_matrices)": [[145, "sympy.physics.hep.gamma_matrices.simplify_gpgp", false]], "simplify_index_permutations() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.simplify_index_permutations", false]], "simplify_logic() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.simplify_logic", false]], "sin (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.sin", false]], "sinc (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.sinc", false]], "sine_transform() (in module sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.sine_transform", false]], "sinetransform (class in sympy.integrals.transforms)": [[115, "sympy.integrals.transforms.SineTransform", false]], "singledomain (class in sympy.stats.rv)": [[241, "sympy.stats.rv.SingleDomain", false]], "singlepspace (class in sympy.stats.rv)": [[241, "sympy.stats.rv.SinglePSpace", false]], "singleton (class in sympy.core.singleton)": [[88, "sympy.core.singleton.Singleton", false]], "singletonregistry (class in sympy.core.singleton)": [[88, "sympy.core.singleton.SingletonRegistry", false]], "singular_points() (sympy.vector.implicitregion.implicitregion method)": [[265, "sympy.vector.implicitregion.ImplicitRegion.singular_points", false]], "singular_value_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.singular_value_decomposition", false]], "singular_values() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.singular_values", false]], "singularities() (in module sympy.calculus.singularities)": [[67, "sympy.calculus.singularities.singularities", false]], "singularityfunction (class in sympy.functions.special.singularity_functions)": [[96, "sympy.functions.special.singularity_functions.SingularityFunction", false]], "singularityintegrate() (in module sympy.integrals.singularityfunctions)": [[115, "sympy.integrals.singularityfunctions.singularityintegrate", false]], "singularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.SingularPredicate", false]], "sinh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.sinh", false]], "size (sympy.combinatorics.permutations.permutation property)": [[80, "sympy.combinatorics.permutations.Permutation.size", false]], "size (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.size", false]], "size (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.size", false]], "size (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.size", false]], "size() (in module sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.size", false]], "sizeof() (in module sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.sizeof", false]], "skellam() (in module sympy.stats)": [[241, "sympy.stats.Skellam", false]], "skewness() (in module sympy.stats)": [[241, "sympy.stats.skewness", false]], "skip() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.SKIP", false]], "skip() (sympy.combinatorics.graycode.graycode method)": [[72, "sympy.combinatorics.graycode.GrayCode.skip", false]], "skip_under_pyodide() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.skip_under_pyodide", false]], "slice() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.slice", false]], "slice() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.slice", false]], "slope (sympy.geometry.line.linearentity2d property)": [[101, "sympy.geometry.line.LinearEntity2D.slope", false]], "slope() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.slope", false]], "slope() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.slope", false]], "smallest_angle_between() (sympy.geometry.line.linearentity method)": [[101, "sympy.geometry.line.LinearEntity.smallest_angle_between", false]], "smith_normal_form() (in module sympy.matrices.normalforms)": [[125, "sympy.matrices.normalforms.smith_normal_form", false]], "smith_normal_form() (in module sympy.polys.matrices.normalforms)": [[210, "sympy.polys.matrices.normalforms.smith_normal_form", false]], "smoothing_rate (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.smoothing_rate", false]], "smoothness() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.smoothness", false]], "smoothness_p() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.smoothness_p", false]], "smtlib_code() (in module sympy.printing.smtlib)": [[221, "sympy.printing.smtlib.smtlib_code", false]], "smtlibprinter (class in sympy.printing.smtlib)": [[221, "sympy.printing.smtlib.SMTLibPrinter", false]], "solve": [[15, "term-Solve", true]], "solve() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve", false]], "solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.solve", false]], "solve() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.solve", false]], "solve() (sympy.physics.continuum_mechanics.truss.truss method)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.solve", false]], "solve_aux_eq() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.solve_aux_eq", false]], "solve_congruence() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.solve_congruence", false]], "solve_de() (in module sympy.series.formal)": [[223, "sympy.series.formal.solve_de", false]], "solve_den() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.solve_den", false]], "solve_den_charpoly() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.solve_den_charpoly", false]], "solve_den_rref() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.solve_den_rref", false]], "solve_for_ild_moment() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.solve_for_ild_moment", false]], "solve_for_ild_reactions() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.solve_for_ild_reactions", false]], "solve_for_ild_shear() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.solve_for_ild_shear", false]], "solve_for_reaction_loads() (sympy.physics.continuum_mechanics.beam.beam method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.solve_for_reaction_loads", false]], "solve_for_reaction_loads() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.solve_for_reaction_loads", false]], "solve_for_torsion() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.solve_for_torsion", false]], "solve_least_squares() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.solve_least_squares", false]], "solve_lin_sys() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers.solve_lin_sys", false]], "solve_linear() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve_linear", false]], "solve_linear_system() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve_linear_system", false]], "solve_linear_system_lu() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve_linear_system_LU", false]], "solve_multipliers() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.solve_multipliers", false]], "solve_poly_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.solve_poly_inequalities", false]], "solve_poly_inequality() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.solve_poly_inequality", false]], "solve_poly_system() (in module sympy.solvers.polysys)": [[239, "sympy.solvers.polysys.solve_poly_system", false]], "solve_rational_inequalities() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.solve_rational_inequalities", false]], "solve_riccati() (in module sympy.solvers.ode.riccati)": [[237, "sympy.solvers.ode.riccati.solve_riccati", false]], "solve_triangulated() (in module sympy.solvers.polysys)": [[239, "sympy.solvers.polysys.solve_triangulated", false]], "solve_undetermined_coeffs() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.solve_undetermined_coeffs", false]], "solve_univariate_inequality() (in module sympy.solvers.inequalities)": [[236, "sympy.solvers.inequalities.solve_univariate_inequality", false]], "solvers": [[15, "term-Solvers", true]], "solveset() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.solveset", false]], "solveset_complex() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.solveset_complex", false]], "solveset_real() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.solveset_real", false]], "solvify() (in module sympy.solvers.solveset)": [[240, "sympy.solvers.solveset.solvify", false]], "sopform() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.SOPform", false]], "sort_key() (sympy.combinatorics.partitions.partition method)": [[77, "sympy.combinatorics.partitions.Partition.sort_key", false]], "sort_key() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.sort_key", false]], "sorted_components() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.sorted_components", false]], "source (sympy.geometry.line.ray property)": [[101, "sympy.geometry.line.Ray.source", false]], "spaceorienter (class in sympy.vector.orienters)": [[267, "sympy.vector.orienters.SpaceOrienter", false]], "spaces (sympy.physics.quantum.hilbert.directsumhilbertspace property)": [[177, "sympy.physics.quantum.hilbert.DirectSumHilbertSpace.spaces", false]], "spaces (sympy.physics.quantum.hilbert.tensorproducthilbertspace property)": [[177, "sympy.physics.quantum.hilbert.TensorProductHilbertSpace.spaces", false]], "sparsematrix (in module sympy.matrices.sparse)": [[126, "sympy.matrices.sparse.SparseMatrix", false]], "speed (sympy.physics.optics.medium.medium property)": [[162, "sympy.physics.optics.medium.Medium.speed", false]], "speed (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.speed", false]], "speeds (sympy.physics.mechanics.joint.joint property)": [[152, "sympy.physics.mechanics.joint.Joint.speeds", false]], "speeds (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.speeds", false]], "spherical_bessel_fn() (in module sympy.polys.orthopolys)": [[217, "sympy.polys.orthopolys.spherical_bessel_fn", false]], "sphericaljoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.SphericalJoint", false]], "spin() (sympy.geometry.polygon.regularpolygon method)": [[104, "sympy.geometry.polygon.RegularPolygon.spin", false]], "split() (sympy.tensor.tensor.tensmul method)": [[247, "sympy.tensor.tensor.TensMul.split", false]], "split_list() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.split_list", false]], "split_super_sub() (in module sympy.printing.conventions)": [[221, "sympy.printing.conventions.split_super_sub", false]], "split_symbols() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.split_symbols", false]], "split_symbols_custom() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.split_symbols_custom", false]], "spoly() (in module sympy.polys.groebnertools)": [[214, "sympy.polys.groebnertools.spoly", false]], "sqf() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sqf", false]], "sqf_list() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sqf_list", false]], "sqf_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqf_list", false]], "sqf_list() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqf_list", false]], "sqf_list_include() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqf_list_include", false]], "sqf_list_include() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqf_list_include", false]], "sqf_norm() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sqf_norm", false]], "sqf_norm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqf_norm", false]], "sqf_norm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqf_norm", false]], "sqf_normal() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sqf_normal", false]], "sqf_part() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sqf_part", false]], "sqf_part() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqf_part", false]], "sqf_part() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqf_part", false]], "sqr() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sqr", false]], "sqr() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sqr", false]], "sqrt (class in sympy.codegen.cfunctions)": [[69, "sympy.codegen.cfunctions.Sqrt", false]], "sqrt() (in module sympy.functions.elementary.miscellaneous)": [[94, "sympy.functions.elementary.miscellaneous.sqrt", false]], "sqrt() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.sqrt", false]], "sqrt() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.sqrt", false]], "sqrt() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.sqrt", false]], "sqrt_mod() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.sqrt_mod", false]], "sqrt_mod_iter() (in module sympy.ntheory.residue_ntheory)": [[128, "sympy.ntheory.residue_ntheory.sqrt_mod_iter", false]], "sqrtdenest() (in module sympy.simplify.sqrtdenest)": [[233, "sympy.simplify.sqrtdenest.sqrtdenest", false]], "square() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.square", false]], "square_factor() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.square_factor", false]], "squarepredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.SquarePredicate", false]], "srepr() (in module sympy.printing.repr)": [[221, "sympy.printing.repr.srepr", false]], "sring() (in module sympy.polys.rings)": [[212, "sympy.polys.rings.sring", false]], "sstr() (in module sympy.printing.str)": [[221, "sympy.printing.str.sstr", false]], "sstrrepr() (in module sympy.printing.str)": [[221, "sympy.printing.str.sstrrepr", false]], "stabilizer() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.stabilizer", false]], "stack() (sympy.printing.pretty.stringpict.stringpict static method)": [[221, "sympy.printing.pretty.stringpict.stringPict.stack", false]], "standard_cartan (class in sympy.liealgebras.cartan_type)": [[117, "sympy.liealgebras.cartan_type.Standard_Cartan", false]], "standard_transformations (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.standard_transformations", false]], "start (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.start", false]], "start (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.start", false]], "start (sympy.sets.sets.interval property)": [[229, "sympy.sets.sets.Interval.start", false]], "starts_with_unity() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.starts_with_unity", false]], "state (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.State", false]], "state() (sympy.physics.secondquant.fixedbosonicbasis method)": [[191, "sympy.physics.secondquant.FixedBosonicBasis.state", false]], "state() (sympy.physics.secondquant.varbosonicbasis method)": [[191, "sympy.physics.secondquant.VarBosonicBasis.state", false]], "state_to_operators() (in module sympy.physics.quantum.operatorset)": [[181, "sympy.physics.quantum.operatorset.state_to_operators", false]], "state_vars (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.state_vars", false]], "state_vars (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.state_vars", false]], "state_vars (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.state_vars", false]], "state_vars (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.state_vars", false]], "statebase (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.StateBase", false]], "states (sympy.physics.mechanics.system.symbolicsystem property)": [[158, "sympy.physics.mechanics.system.SymbolicSystem.states", false]], "stationary_distribution() (sympy.stats.discretemarkovchain method)": [[241, "sympy.stats.DiscreteMarkovChain.stationary_distribution", false]], "stationary_points() (in module sympy.calculus.util)": [[67, "sympy.calculus.util.stationary_points", false]], "std() (in module sympy.stats)": [[241, "sympy.stats.std", false]], "step_response_numerical_data() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.step_response_numerical_data", false]], "step_response_plot() (sympy.physics.control.control_plots method)": [[142, "sympy.physics.control.control_plots.step_response_plot", false]], "stieltjes (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.stieltjes", false]], "stiffness (sympy.physics.mechanics.actuator.linearspring property)": [[148, "sympy.physics.mechanics.actuator.LinearSpring.stiffness", false]], "stirling() (in module sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.stirling", false]], "stokes_vector() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.stokes_vector", false]], "stop (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.stop", false]], "stop (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.stop", false]], "stream (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Stream", false]], "strict (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.strict", false]], "strictgreaterthan (class in sympy.core.relational)": [[88, "sympy.core.relational.StrictGreaterThan", false]], "strictlessthan (class in sympy.core.relational)": [[88, "sympy.core.relational.StrictLessThan", false]], "strides (sympy.tensor.indexed.indexedbase property)": [[246, "sympy.tensor.indexed.IndexedBase.strides", false]], "string (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.String", false]], "stringify_expr() (in module sympy.parsing.sympy_parser)": [[130, "sympy.parsing.sympy_parser.stringify_expr", false]], "stringpict (class in sympy.printing.pretty.stringpict)": [[221, "sympy.printing.pretty.stringpict.stringPict", false]], "strip_zero() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.strip_zero", false]], "strlines() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.strlines", false]], "strong_gens (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.strong_gens", false]], "strong_presentation() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.strong_presentation", false]], "strongly_connected_components() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.strongly_connected_components", false]], "strongly_connected_components() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.strongly_connected_components", false]], "strongly_connected_components_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.strongly_connected_components_decomposition", false]], "strprinter (class in sympy.printing.str)": [[221, "sympy.printing.str.StrPrinter", false]], "struct (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.struct", false]], "structural equality": [[15, "term-Structural-Equality", true]], "studentt() (in module sympy.stats)": [[241, "sympy.stats.StudentT", false]], "sturm() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.sturm", false]], "sturm() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sturm", false]], "sturm() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sturm", false]], "sub (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.sub", false]], "sub() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.sub", false]], "sub() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.sub", false]], "sub() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.sub", false]], "sub() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.sub", false]], "sub() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.sub", false]], "sub() (sympy.polys.polyclasses.dmf method)": [[212, "sympy.polys.polyclasses.DMF.sub", false]], "sub() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sub", false]], "sub() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sub", false]], "sub_ground() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.sub_ground", false]], "sub_ground() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.sub_ground", false]], "sub_ground() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.sub_ground", false]], "subdiagram_from_objects() (sympy.categories.diagram method)": [[68, "sympy.categories.Diagram.subdiagram_from_objects", false]], "subexpression": [[15, "term-Subexpression", true]], "subfactorial (class in sympy.functions.combinatorial.factorials)": [[93, "sympy.functions.combinatorial.factorials.subfactorial", false]], "subgroup() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.subgroup", false]], "subgroup_search() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.subgroup_search", false]], "submodule (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.SubModule", false]], "submodule (class in sympy.polys.numberfields.modules)": [[216, "sympy.polys.numberfields.modules.Submodule", false]], "submodule() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.submodule", false]], "submodule() (sympy.polys.agca.modules.quotientmodule method)": [[208, "sympy.polys.agca.modules.QuotientModule.submodule", false]], "submodule() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.submodule", false]], "submodule_from_gens() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.submodule_from_gens", false]], "submodule_from_matrix() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.submodule_from_matrix", false]], "subquotientmodule (class in sympy.polys.agca.modules)": [[208, "sympy.polys.agca.modules.SubQuotientModule", false]], "subresultants() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.subresultants", false]], "subresultants() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.subresultants", false]], "subresultants() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.subresultants", false]], "subresultants() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.subresultants", false]], "subroutine (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.Subroutine", false]], "subroutinecall (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.SubroutineCall", false]], "subs (class in sympy.core.function)": [[88, "sympy.core.function.Subs", false]], "subs() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.subs", false]], "subs() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.subs", false]], "subs() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.subs", false]], "subs() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.subs", false]], "subset (class in sympy.combinatorics.subsets)": [[83, "sympy.combinatorics.subsets.Subset", false]], "subset (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.subset", false]], "subset() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.subset", false]], "subset() (sympy.polys.agca.modules.module method)": [[208, "sympy.polys.agca.modules.Module.subset", false]], "subset_from_bitlist() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.subset_from_bitlist", false]], "subset_indices() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.subset_indices", false]], "subsets() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.subsets", false]], "subsset (class in sympy.series.gruntz)": [[228, "sympy.series.gruntz.SubsSet", false]], "substitute_dummies() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.substitute_dummies", false]], "substitution": [[15, "term-Substitution", true]], "sum (class in sympy.concrete.summations)": [[87, "sympy.concrete.summations.Sum", false]], "sum_of_four_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sum_of_four_squares", false]], "sum_of_powers() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sum_of_powers", false]], "sum_of_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sum_of_squares", false]], "sum_of_three_squares() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.sum_of_three_squares", false]], "sumapprox (class in sympy.codegen.approximations)": [[69, "sympy.codegen.approximations.SumApprox", false]], "summation() (in module sympy.concrete.summations)": [[87, "sympy.concrete.summations.summation", false]], "sup (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.sup", false]], "sup (sympy.sets.sets.set property)": [[229, "sympy.sets.sets.Set.sup", false]], "superposition_basis() (in module sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.superposition_basis", false]], "superset (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.superset", false]], "superset_size (sympy.combinatorics.subsets.subset property)": [[83, "sympy.combinatorics.subsets.Subset.superset_size", false]], "supplement_a_subspace() (in module sympy.polys.numberfields.utilities)": [[216, "sympy.polys.numberfields.utilities.supplement_a_subspace", false]], "support() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.support", false]], "supports (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.supports", false]], "supports (sympy.physics.continuum_mechanics.truss.truss property)": [[140, "sympy.physics.continuum_mechanics.truss.Truss.supports", false]], "surfacebaseseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.SurfaceBaseSeries", false]], "surfaceover2drangeseries (class in sympy.plotting.series)": [[207, "sympy.plotting.series.SurfaceOver2DRangeSeries", false]], "swap (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.SWAP", false]], "swap_point() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.swap_point", false]], "swapgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.SwapGate", false]], "swinnerton_dyer_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.swinnerton_dyer_poly", false]], "sylow_subgroup() (sympy.combinatorics.perm_groups.permutationgroup method)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.sylow_subgroup", false]], "symarray() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.symarray", false]], "symb_2txt (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.symb_2txt", false]], "symbol": [[15, "term-Symbol", true]], "symbol (class in sympy.core.symbol)": [[88, "sympy.core.symbol.Symbol", false]], "symbol (sympy.physics.secondquant.antisymmetrictensor property)": [[191, "sympy.physics.secondquant.AntiSymmetricTensor.symbol", false]], "symbolic": [[15, "term-Symbolic", true]], "symbolicsystem (class in sympy.physics.mechanics.system)": [[158, "sympy.physics.mechanics.system.SymbolicSystem", false]], "symbols() (in module sympy.core.symbol)": [[88, "sympy.core.symbol.symbols", false]], "symmetric() (sympy.combinatorics.generators method)": [[80, "sympy.combinatorics.generators.symmetric", false]], "symmetric_difference() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.symmetric_difference", false]], "symmetric_poly() (in module sympy.polys.specialpolys)": [[217, "sympy.polys.specialpolys.symmetric_poly", false]], "symmetric_poly() (sympy.polys.rings.polyring method)": [[212, "sympy.polys.rings.PolyRing.symmetric_poly", false]], "symmetric_residue() (in module sympy.ntheory.modular)": [[128, "sympy.ntheory.modular.symmetric_residue", false]], "symmetricdifference (class in sympy.sets.sets)": [[229, "sympy.sets.sets.SymmetricDifference", false]], "symmetricgroup() (in module sympy.combinatorics.named_groups)": [[76, "sympy.combinatorics.named_groups.SymmetricGroup", false]], "symmetricpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.SymmetricPredicate", false]], "symmetrize() (in module sympy.polys.polyfuncs)": [[217, "sympy.polys.polyfuncs.symmetrize", false]], "symmetrize() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.symmetrize", false]], "sympify()": [[15, "term-sympify", true]], "sympify() (in module sympy.core.sympify)": [[88, "sympy.core.sympify.sympify", false]], "sympy": [[58, "module-sympy", false]], "sympy.abc": [[60, "module-sympy.abc", false]], "sympy.algebras": [[61, "module-sympy.algebras", false]], "sympy.assumptions": [[64, "module-sympy.assumptions", false]], "sympy.assumptions.ask": [[62, "module-sympy.assumptions.ask", false]], "sympy.assumptions.assume": [[63, "module-sympy.assumptions.assume", false]], "sympy.assumptions.predicates": [[65, "module-sympy.assumptions.predicates", false]], "sympy.assumptions.refine": [[66, "module-sympy.assumptions.refine", false]], "sympy.calculus": [[67, "module-sympy.calculus", false]], "sympy.calculus.euler": [[67, "module-sympy.calculus.euler", false]], "sympy.calculus.finite_diff": [[67, "module-sympy.calculus.finite_diff", false]], "sympy.calculus.singularities": [[67, "module-sympy.calculus.singularities", false]], "sympy.calculus.util": [[67, "module-sympy.calculus.util", false]], "sympy.categories": [[68, "module-sympy.categories", false]], "sympy.categories.diagram_drawing": [[68, "module-sympy.categories.diagram_drawing", false]], "sympy.codegen.algorithms": [[69, "module-sympy.codegen.algorithms", false]], "sympy.codegen.approximations": [[69, "module-sympy.codegen.approximations", false]], "sympy.codegen.ast": [[69, "module-sympy.codegen.ast", false]], "sympy.codegen.cfunctions": [[69, "module-sympy.codegen.cfunctions", false]], "sympy.codegen.cnodes": [[69, "module-sympy.codegen.cnodes", false]], "sympy.codegen.cutils": [[69, "module-sympy.codegen.cutils", false]], "sympy.codegen.cxxnodes": [[69, "module-sympy.codegen.cxxnodes", false]], "sympy.codegen.fnodes": [[69, "module-sympy.codegen.fnodes", false]], "sympy.codegen.futils": [[69, "module-sympy.codegen.futils", false]], "sympy.codegen.matrix_nodes": [[69, "module-sympy.codegen.matrix_nodes", false]], "sympy.codegen.pyutils": [[69, "module-sympy.codegen.pyutils", false]], "sympy.codegen.rewriting": [[69, "module-sympy.codegen.rewriting", false]], "sympy.combinatorics.galois": [[71, "module-sympy.combinatorics.galois", false]], "sympy.combinatorics.generators": [[80, "module-sympy.combinatorics.generators", false]], "sympy.combinatorics.graycode": [[72, "module-sympy.combinatorics.graycode", false]], "sympy.combinatorics.group_constructs": [[73, "module-sympy.combinatorics.group_constructs", false]], "sympy.combinatorics.group_numbers": [[74, "module-sympy.combinatorics.group_numbers", false]], "sympy.combinatorics.named_groups": [[76, "module-sympy.combinatorics.named_groups", false]], "sympy.combinatorics.partitions": [[77, "module-sympy.combinatorics.partitions", false]], "sympy.combinatorics.perm_groups": [[79, "module-sympy.combinatorics.perm_groups", false]], "sympy.combinatorics.permutations": [[80, "module-sympy.combinatorics.permutations", false]], "sympy.combinatorics.polyhedron": [[81, "module-sympy.combinatorics.polyhedron", false]], "sympy.combinatorics.prufer": [[82, "module-sympy.combinatorics.prufer", false]], "sympy.combinatorics.subsets": [[83, "module-sympy.combinatorics.subsets", false]], "sympy.combinatorics.tensor_can": [[84, "module-sympy.combinatorics.tensor_can", false]], "sympy.combinatorics.testutil": [[85, "module-sympy.combinatorics.testutil", false]], "sympy.combinatorics.util": [[86, "module-sympy.combinatorics.util", false]], "sympy.core.add": [[88, "module-sympy.core.add", false]], "sympy.core.assumptions": [[88, "module-sympy.core.assumptions", false]], "sympy.core.basic": [[88, "module-sympy.core.basic", false]], "sympy.core.cache": [[88, "module-sympy.core.cache", false]], "sympy.core.containers": [[88, "module-sympy.core.containers", false]], "sympy.core.evalf": [[88, "module-sympy.core.evalf", false]], "sympy.core.expr": [[88, "module-sympy.core.expr", false]], "sympy.core.exprtools": [[88, "module-sympy.core.exprtools", false]], "sympy.core.function": [[88, "module-sympy.core.function", false]], "sympy.core.intfunc": [[88, "module-sympy.core.intfunc", false]], "sympy.core.kind": [[88, "module-sympy.core.kind", false]], "sympy.core.mod": [[88, "module-sympy.core.mod", false]], "sympy.core.mul": [[88, "module-sympy.core.mul", false]], "sympy.core.multidimensional": [[88, "module-sympy.core.multidimensional", false]], "sympy.core.numbers": [[88, "module-sympy.core.numbers", false]], "sympy.core.power": [[88, "module-sympy.core.power", false]], "sympy.core.random": [[88, "module-sympy.core.random", false]], "sympy.core.relational": [[88, "module-sympy.core.relational", false]], "sympy.core.singleton": [[88, "module-sympy.core.singleton", false]], "sympy.core.symbol": [[88, "module-sympy.core.symbol", false]], "sympy.core.sympify": [[88, "module-sympy.core.sympify", false]], "sympy.core.traversal": [[88, "module-sympy.core.traversal", false]], "sympy.crypto.crypto": [[89, "module-sympy.crypto.crypto", false]], "sympy.diffgeom": [[90, "module-sympy.diffgeom", false]], "sympy.discrete": [[91, "module-sympy.discrete", false]], "sympy.discrete.convolutions": [[91, "module-sympy.discrete.convolutions", false]], "sympy.discrete.transforms": [[91, "module-sympy.discrete.transforms", false]], "sympy.functions": [[95, "module-sympy.functions", false]], "sympy.functions.special.bessel": [[96, "module-sympy.functions.special.bessel", false]], "sympy.functions.special.beta_functions": [[96, "module-sympy.functions.special.beta_functions", false]], "sympy.functions.special.elliptic_integrals": [[96, "module-sympy.functions.special.elliptic_integrals", false]], "sympy.functions.special.error_functions": [[96, "module-sympy.functions.special.error_functions", false]], "sympy.functions.special.gamma_functions": [[96, "module-sympy.functions.special.gamma_functions", false]], "sympy.functions.special.mathieu_functions": [[96, "module-sympy.functions.special.mathieu_functions", false]], "sympy.functions.special.polynomials": [[96, "module-sympy.functions.special.polynomials", false]], "sympy.functions.special.singularity_functions": [[96, "module-sympy.functions.special.singularity_functions", false]], "sympy.functions.special.zeta_functions": [[96, "module-sympy.functions.special.zeta_functions", false]], "sympy.geometry.curve": [[97, "module-sympy.geometry.curve", false]], "sympy.geometry.ellipse": [[98, "module-sympy.geometry.ellipse", false]], "sympy.geometry.entity": [[99, "module-sympy.geometry.entity", false]], "sympy.geometry.line": [[101, "module-sympy.geometry.line", false]], "sympy.geometry.plane": [[102, "module-sympy.geometry.plane", false]], "sympy.geometry.point": [[103, "module-sympy.geometry.point", false]], "sympy.geometry.polygon": [[104, "module-sympy.geometry.polygon", false]], "sympy.geometry.util": [[105, "module-sympy.geometry.util", false]], "sympy.holonomic": [[108, "module-sympy.holonomic", false]], "sympy.integrals": [[115, "module-sympy.integrals", false]], "sympy.integrals.intpoly": [[115, "module-sympy.integrals.intpoly", false]], "sympy.integrals.meijerint": [[113, "module-sympy.integrals.meijerint", false]], "sympy.integrals.meijerint_doc": [[113, "module-sympy.integrals.meijerint_doc", false]], "sympy.integrals.transforms": [[115, "module-sympy.integrals.transforms", false]], "sympy.interactive": [[116, "module-sympy.interactive", false]], "sympy.interactive.printing": [[116, "module-sympy.interactive.printing", false]], "sympy.interactive.session": [[116, "module-sympy.interactive.session", false]], "sympy.liealgebras": [[117, "module-sympy.liealgebras", false]], "sympy.logic": [[118, "module-sympy.logic", false]], "sympy.logic.inference": [[118, "module-sympy.logic.inference", false]], "sympy.matrices": [[122, "module-sympy.matrices", false]], "sympy.matrices.expressions": [[120, "module-sympy.matrices.expressions", false]], "sympy.matrices.expressions.blockmatrix": [[120, "module-sympy.matrices.expressions.blockmatrix", false]], "sympy.matrices.immutable": [[121, "module-sympy.matrices.immutable", false]], "sympy.matrices.kind": [[123, "module-sympy.matrices.kind", false]], "sympy.matrices.matrixbase": [[124, "module-sympy.matrices.matrixbase", false]], "sympy.matrices.sparse": [[126, "module-sympy.matrices.sparse", false]], "sympy.matrices.sparsetools": [[127, "module-sympy.matrices.sparsetools", false]], "sympy.ntheory.bbp_pi": [[128, "module-sympy.ntheory.bbp_pi", false]], "sympy.ntheory.continued_fraction": [[128, "module-sympy.ntheory.continued_fraction", false]], "sympy.ntheory.digits": [[128, "module-sympy.ntheory.digits", false]], "sympy.ntheory.ecm": [[128, "module-sympy.ntheory.ecm", false]], "sympy.ntheory.egyptian_fraction": [[128, "module-sympy.ntheory.egyptian_fraction", false]], "sympy.ntheory.factor_": [[128, "module-sympy.ntheory.factor_", false]], "sympy.ntheory.generate": [[128, "module-sympy.ntheory.generate", false]], "sympy.ntheory.modular": [[128, "module-sympy.ntheory.modular", false]], "sympy.ntheory.multinomial": [[128, "module-sympy.ntheory.multinomial", false]], "sympy.ntheory.partitions_": [[128, "module-sympy.ntheory.partitions_", false]], "sympy.ntheory.primetest": [[128, "module-sympy.ntheory.primetest", false]], "sympy.ntheory.qs": [[128, "module-sympy.ntheory.qs", false]], "sympy.ntheory.residue_ntheory": [[128, "module-sympy.ntheory.residue_ntheory", false]], "sympy.parsing": [[130, "module-sympy.parsing", false]], "sympy.parsing.sym_expr": [[130, "module-sympy.parsing.sym_expr", false]], "sympy.physics": [[282, "module-sympy.physics", false]], "sympy.physics.biomechanics": [[133, "module-sympy.physics.biomechanics", false]], "sympy.physics.biomechanics.activation": [[131, "module-sympy.physics.biomechanics.activation", false]], "sympy.physics.biomechanics.curve": [[132, "module-sympy.physics.biomechanics.curve", false]], "sympy.physics.biomechanics.musculotendon": [[134, "module-sympy.physics.biomechanics.musculotendon", false]], "sympy.physics.continuum_mechanics.arch": [[135, "module-sympy.physics.continuum_mechanics.Arch", false]], "sympy.physics.continuum_mechanics.beam": [[136, "module-sympy.physics.continuum_mechanics.beam", false]], "sympy.physics.continuum_mechanics.cable": [[138, "module-sympy.physics.continuum_mechanics.cable", false]], "sympy.physics.continuum_mechanics.truss": [[140, "module-sympy.physics.continuum_mechanics.truss", false]], "sympy.physics.control": [[143, "module-sympy.physics.control", false]], "sympy.physics.control.lti": [[144, "module-sympy.physics.control.lti", false]], "sympy.physics.hep.gamma_matrices": [[145, "module-sympy.physics.hep.gamma_matrices", false]], "sympy.physics.hydrogen": [[146, "module-sympy.physics.hydrogen", false]], "sympy.physics.matrices": [[147, "module-sympy.physics.matrices", false]], "sympy.physics.mechanics": [[151, "module-sympy.physics.mechanics", false]], "sympy.physics.mechanics.actuator": [[148, "module-sympy.physics.mechanics.actuator", false]], "sympy.physics.mechanics.joint": [[152, "module-sympy.physics.mechanics.joint", false]], "sympy.physics.mechanics.kane": [[153, "module-sympy.physics.mechanics.kane", false]], "sympy.physics.mechanics.lagrange": [[153, "module-sympy.physics.mechanics.lagrange", false]], "sympy.physics.mechanics.linearize": [[154, "module-sympy.physics.mechanics.linearize", false]], "sympy.physics.mechanics.pathway": [[156, "module-sympy.physics.mechanics.pathway", false]], "sympy.physics.mechanics.wrapping_geometry": [[159, "module-sympy.physics.mechanics.wrapping_geometry", false]], "sympy.physics.optics.gaussopt": [[160, "module-sympy.physics.optics.gaussopt", false]], "sympy.physics.optics.medium": [[162, "module-sympy.physics.optics.medium", false]], "sympy.physics.optics.polarization": [[163, "module-sympy.physics.optics.polarization", false]], "sympy.physics.optics.utils": [[164, "module-sympy.physics.optics.utils", false]], "sympy.physics.optics.waves": [[165, "module-sympy.physics.optics.waves", false]], "sympy.physics.paulialgebra": [[166, "module-sympy.physics.paulialgebra", false]], "sympy.physics.qho_1d": [[167, "module-sympy.physics.qho_1d", false]], "sympy.physics.quantum.anticommutator": [[168, "module-sympy.physics.quantum.anticommutator", false]], "sympy.physics.quantum.cartesian": [[169, "module-sympy.physics.quantum.cartesian", false]], "sympy.physics.quantum.cg": [[170, "module-sympy.physics.quantum.cg", false]], "sympy.physics.quantum.circuitplot": [[171, "module-sympy.physics.quantum.circuitplot", false]], "sympy.physics.quantum.commutator": [[172, "module-sympy.physics.quantum.commutator", false]], "sympy.physics.quantum.constants": [[173, "module-sympy.physics.quantum.constants", false]], "sympy.physics.quantum.dagger": [[174, "module-sympy.physics.quantum.dagger", false]], "sympy.physics.quantum.gate": [[175, "module-sympy.physics.quantum.gate", false]], "sympy.physics.quantum.grover": [[176, "module-sympy.physics.quantum.grover", false]], "sympy.physics.quantum.hilbert": [[177, "module-sympy.physics.quantum.hilbert", false]], "sympy.physics.quantum.innerproduct": [[179, "module-sympy.physics.quantum.innerproduct", false]], "sympy.physics.quantum.operator": [[180, "module-sympy.physics.quantum.operator", false]], "sympy.physics.quantum.operatorset": [[181, "module-sympy.physics.quantum.operatorset", false]], "sympy.physics.quantum.piab": [[182, "module-sympy.physics.quantum.piab", false]], "sympy.physics.quantum.qapply": [[183, "module-sympy.physics.quantum.qapply", false]], "sympy.physics.quantum.qft": [[184, "module-sympy.physics.quantum.qft", false]], "sympy.physics.quantum.qubit": [[185, "module-sympy.physics.quantum.qubit", false]], "sympy.physics.quantum.represent": [[186, "module-sympy.physics.quantum.represent", false]], "sympy.physics.quantum.shor": [[187, "module-sympy.physics.quantum.shor", false]], "sympy.physics.quantum.spin": [[188, "module-sympy.physics.quantum.spin", false]], "sympy.physics.quantum.state": [[189, "module-sympy.physics.quantum.state", false]], "sympy.physics.quantum.tensorproduct": [[190, "module-sympy.physics.quantum.tensorproduct", false]], "sympy.physics.secondquant": [[191, "module-sympy.physics.secondquant", false]], "sympy.physics.sho": [[192, "module-sympy.physics.sho", false]], "sympy.physics.units.dimensions": [[193, "module-sympy.physics.units.dimensions", false]], "sympy.physics.units.prefixes": [[197, "module-sympy.physics.units.prefixes", false]], "sympy.physics.units.quantities": [[198, "module-sympy.physics.units.quantities", false]], "sympy.physics.units.unitsystem": [[199, "module-sympy.physics.units.unitsystem", false]], "sympy.physics.units.util": [[198, "module-sympy.physics.units.util", false]], "sympy.physics.vector": [[203, "module-sympy.physics.vector", false]], "sympy.physics.vector.functions": [[204, "module-sympy.physics.vector.functions", false]], "sympy.physics.vector.point": [[204, "module-sympy.physics.vector.point", false]], "sympy.physics.wigner": [[206, "module-sympy.physics.wigner", false]], "sympy.plotting.plot": [[207, "module-sympy.plotting.plot", false]], "sympy.plotting.pygletplot": [[207, "module-sympy.plotting.pygletplot", false]], "sympy.polys": [[217, "module-sympy.polys", false]], "sympy.polys.matrices._dfm": [[210, "module-sympy.polys.matrices._dfm", false]], "sympy.polys.matrices._typing": [[210, "module-sympy.polys.matrices._typing", false]], "sympy.polys.matrices.ddm": [[210, "module-sympy.polys.matrices.ddm", false]], "sympy.polys.matrices.dense": [[210, "module-sympy.polys.matrices.dense", false]], "sympy.polys.matrices.domainmatrix": [[210, "module-sympy.polys.matrices.domainmatrix", false]], "sympy.polys.matrices.sdm": [[210, "module-sympy.polys.matrices.sdm", false]], "sympy.polys.numberfields.modules": [[216, "module-sympy.polys.numberfields.modules", false]], "sympy.polys.numberfields.subfield": [[216, "module-sympy.polys.numberfields.subfield", false]], "sympy.polys.polyconfig": [[214, "module-sympy.polys.polyconfig", false]], "sympy.polys.polyoptions": [[214, "module-sympy.polys.polyoptions", false]], "sympy.polys.solvers": [[219, "module-sympy.polys.solvers", false]], "sympy.printing.aesaracode": [[221, "module-sympy.printing.aesaracode", false]], "sympy.printing.c": [[221, "module-sympy.printing.c", false]], "sympy.printing.codeprinter": [[221, "module-sympy.printing.codeprinter", false]], "sympy.printing.conventions": [[221, "module-sympy.printing.conventions", false]], "sympy.printing.cxx": [[221, "module-sympy.printing.cxx", false]], "sympy.printing.fortran": [[221, "module-sympy.printing.fortran", false]], "sympy.printing.gtk": [[221, "module-sympy.printing.gtk", false]], "sympy.printing.jscode": [[221, "module-sympy.printing.jscode", false]], "sympy.printing.julia": [[221, "module-sympy.printing.julia", false]], "sympy.printing.lambdarepr": [[221, "module-sympy.printing.lambdarepr", false]], "sympy.printing.latex": [[221, "module-sympy.printing.latex", false]], "sympy.printing.maple": [[221, "module-sympy.printing.maple", false]], "sympy.printing.mathematica": [[221, "module-sympy.printing.mathematica", false]], "sympy.printing.mathml": [[221, "module-sympy.printing.mathml", false]], "sympy.printing.octave": [[221, "module-sympy.printing.octave", false]], "sympy.printing.precedence": [[221, "module-sympy.printing.precedence", false]], "sympy.printing.pretty": [[221, "module-sympy.printing.pretty", false]], "sympy.printing.pretty.pretty": [[221, "module-sympy.printing.pretty.pretty", false]], "sympy.printing.pretty.pretty_symbology": [[221, "module-sympy.printing.pretty.pretty_symbology", false]], "sympy.printing.pretty.stringpict": [[221, "module-sympy.printing.pretty.stringpict", false]], "sympy.printing.preview": [[221, "module-sympy.printing.preview", false]], "sympy.printing.printer": [[221, "module-sympy.printing.printer", false]], "sympy.printing.pycode": [[221, "module-sympy.printing.pycode", false]], "sympy.printing.python": [[221, "module-sympy.printing.python", false]], "sympy.printing.rcode": [[221, "module-sympy.printing.rcode", false]], "sympy.printing.repr": [[221, "module-sympy.printing.repr", false]], "sympy.printing.rust": [[221, "module-sympy.printing.rust", false]], "sympy.printing.smtlib": [[221, "module-sympy.printing.smtlib", false]], "sympy.printing.str": [[221, "module-sympy.printing.str", false]], "sympy.printing.tree": [[221, "module-sympy.printing.tree", false]], "sympy.sets.conditionset": [[229, "module-sympy.sets.conditionset", false]], "sympy.sets.fancysets": [[229, "module-sympy.sets.fancysets", false]], "sympy.sets.powerset": [[229, "module-sympy.sets.powerset", false]], "sympy.sets.sets": [[229, "module-sympy.sets.sets", false]], "sympy.simplify.combsimp": [[233, "module-sympy.simplify.combsimp", false]], "sympy.simplify.cse_main": [[233, "module-sympy.simplify.cse_main", false]], "sympy.simplify.epathtools": [[233, "module-sympy.simplify.epathtools", false]], "sympy.simplify.fu": [[230, "module-sympy.simplify.fu", false]], "sympy.simplify.hyperexpand": [[233, "module-sympy.simplify.hyperexpand", false]], "sympy.simplify.hyperexpand_doc": [[231, "module-sympy.simplify.hyperexpand_doc", false]], "sympy.simplify.powsimp": [[233, "module-sympy.simplify.powsimp", false]], "sympy.simplify.radsimp": [[233, "module-sympy.simplify.radsimp", false]], "sympy.simplify.ratsimp": [[233, "module-sympy.simplify.ratsimp", false]], "sympy.simplify.simplify": [[16, "module-sympy.simplify.simplify", false]], "sympy.simplify.sqrtdenest": [[233, "module-sympy.simplify.sqrtdenest", false]], "sympy.simplify.trigsimp": [[233, "module-sympy.simplify.trigsimp", false]], "sympy.solvers": [[239, "module-sympy.solvers", false]], "sympy.solvers.inequalities": [[236, "module-sympy.solvers.inequalities", false]], "sympy.solvers.ode": [[237, "module-sympy.solvers.ode", false]], "sympy.solvers.ode.ode": [[237, "module-sympy.solvers.ode.ode", false]], "sympy.solvers.pde": [[238, "module-sympy.solvers.pde", false]], "sympy.solvers.recurr": [[239, "module-sympy.solvers.recurr", false]], "sympy.solvers.simplex": [[239, "module-sympy.solvers.simplex", false]], "sympy.solvers.solveset": [[240, "module-sympy.solvers.solveset", false]], "sympy.stats": [[241, "module-sympy.stats", false]], "sympy.stats.crv": [[241, "module-sympy.stats.crv", false]], "sympy.stats.crv_types": [[241, "module-sympy.stats.crv_types", false]], "sympy.stats.die() (in module sympy.stats.crv_types)": [[241, "sympy.stats.crv_types.sympy.stats.Die", false]], "sympy.stats.frv": [[241, "module-sympy.stats.frv", false]], "sympy.stats.frv_types": [[241, "module-sympy.stats.frv_types", false]], "sympy.stats.normal() (in module sympy.stats.crv_types)": [[241, "sympy.stats.crv_types.sympy.stats.Normal", false]], "sympy.stats.rv": [[241, "module-sympy.stats.rv", false]], "sympy.tensor": [[244, "module-sympy.tensor", false]], "sympy.tensor.array": [[242, "module-sympy.tensor.array", false]], "sympy.tensor.array.expressions": [[243, "module-sympy.tensor.array.expressions", false]], "sympy.tensor.index_methods": [[245, "module-sympy.tensor.index_methods", false]], "sympy.tensor.indexed": [[246, "module-sympy.tensor.indexed", false]], "sympy.tensor.tensor": [[247, "module-sympy.tensor.tensor", false]], "sympy.tensor.toperators": [[248, "module-sympy.tensor.toperators", false]], "sympy.testing": [[249, "module-sympy.testing", false]], "sympy.testing.pytest": [[250, "module-sympy.testing.pytest", false]], "sympy.testing.randtest": [[251, "module-sympy.testing.randtest", false]], "sympy.testing.runtests": [[252, "module-sympy.testing.runtests", false]], "sympy.utilities": [[258, "module-sympy.utilities", false]], "sympy.utilities.autowrap": [[253, "module-sympy.utilities.autowrap", false]], "sympy.utilities.codegen": [[254, "module-sympy.utilities.codegen", false]], "sympy.utilities.decorator": [[255, "module-sympy.utilities.decorator", false]], "sympy.utilities.enumerative": [[256, "module-sympy.utilities.enumerative", false]], "sympy.utilities.exceptions": [[257, "module-sympy.utilities.exceptions", false]], "sympy.utilities.iterables": [[259, "module-sympy.utilities.iterables", false]], "sympy.utilities.lambdify": [[260, "module-sympy.utilities.lambdify", false]], "sympy.utilities.memoization": [[261, "module-sympy.utilities.memoization", false]], "sympy.utilities.misc": [[262, "module-sympy.utilities.misc", false]], "sympy.utilities.source": [[263, "module-sympy.utilities.source", false]], "sympy.utilities.timeutils": [[264, "module-sympy.utilities.timeutils", false]], "sympy.vector": [[273, "module-sympy.vector", false]], "sympy_deprecation_warning() (in module sympy.utilities.exceptions)": [[257, "sympy.utilities.exceptions.sympy_deprecation_warning", false]], "sympy_eqs_to_ring() (in module sympy.polys.solvers)": [[219, "sympy.polys.solvers.sympy_eqs_to_ring", false]], "sympydeprecationwarning": [[257, "sympy.utilities.exceptions.SymPyDeprecationWarning", false]], "sympydoctestfinder (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.SymPyDocTestFinder", false]], "sympydoctestrunner (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.SymPyDocTestRunner", false]], "sympyexpression (class in sympy.parsing.sym_expr)": [[130, "sympy.parsing.sym_expr.SymPyExpression", false]], "sympyoutputchecker (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.SymPyOutputChecker", false]], "sympytestfile() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.sympytestfile", false]], "sympytestresults (class in sympy.testing.runtests)": [[252, "sympy.testing.runtests.SymPyTestResults", false]], "sys1 (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.sys1", false]], "sys1 (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.sys1", false]], "sys2 (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.sys2", false]], "sys2 (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.sys2", false]], "system (class in sympy.physics.mechanics.system)": [[158, "sympy.physics.mechanics.system.System", false]], "syzygy_module() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.syzygy_module", false]], "t (class in sympy.polys.matrices.dense)": [[210, "sympy.polys.matrices.dense.T", false]], "t (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.T", false]], "t (sympy.matrices.expressions.matrixexpr property)": [[120, "sympy.matrices.expressions.MatrixExpr.T", false]], "t (sympy.matrices.matrixbase.matrixbase property)": [[124, "sympy.matrices.matrixbase.MatrixBase.T", false]], "t (sympy.physics.quantum.shor.cmod property)": [[187, "sympy.physics.quantum.shor.CMod.t", false]], "t (sympy.polys.numberfields.modules.powerbasiselement property)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.T", false]], "table() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.table", false]], "tail_degree() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.tail_degree", false]], "tail_degrees() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.tail_degrees", false]], "take() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.take", false]], "tan (class in sympy.functions.elementary.trigonometric)": [[94, "sympy.functions.elementary.trigonometric.tan", false]], "tangent_lines() (sympy.geometry.ellipse.ellipse method)": [[98, "sympy.geometry.ellipse.Ellipse.tangent_lines", false]], "tanh (class in sympy.functions.elementary.hyperbolic)": [[94, "sympy.functions.elementary.hyperbolic.tanh", false]], "target_frame (sympy.physics.mechanics.actuator.torqueactuator property)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.target_frame", false]], "targets (sympy.physics.quantum.gate.cgate property)": [[175, "sympy.physics.quantum.gate.CGate.targets", false]], "targets (sympy.physics.quantum.gate.cnotgate property)": [[175, "sympy.physics.quantum.gate.CNotGate.targets", false]], "targets (sympy.physics.quantum.gate.gate property)": [[175, "sympy.physics.quantum.gate.Gate.targets", false]], "targets (sympy.physics.quantum.gate.ugate property)": [[175, "sympy.physics.quantum.gate.UGate.targets", false]], "targets (sympy.physics.quantum.grover.oraclegate property)": [[176, "sympy.physics.quantum.grover.OracleGate.targets", false]], "tau_a (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.tau_a", false]], "tau_d (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.tau_d", false]], "taxicab_distance() (sympy.geometry.point.point method)": [[103, "sympy.geometry.point.Point.taxicab_distance", false]], "taylor_term() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.taylor_term", false]], "taylor_term() (sympy.functions.elementary.exponential.exp static method)": [[94, "sympy.functions.elementary.exponential.exp.taylor_term", false]], "taylor_term() (sympy.functions.elementary.exponential.log static method)": [[94, "sympy.functions.elementary.exponential.log.taylor_term", false]], "taylor_term() (sympy.functions.elementary.hyperbolic.csch static method)": [[94, "sympy.functions.elementary.hyperbolic.csch.taylor_term", false]], "taylor_term() (sympy.functions.elementary.hyperbolic.sinh static method)": [[94, "sympy.functions.elementary.hyperbolic.sinh.taylor_term", false]], "tc() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.TC", false]], "tc() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.TC", false]], "tc() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.TC", false]], "tendon_slack_length (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.tendon_slack_length", false]], "tendonforcelengthdegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016", false]], "tendonforcelengthinversedegroote2016 (class in sympy.physics.biomechanics.curve)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016", false]], "tensadd (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensAdd", false]], "tensexpr (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensExpr", false]], "tension (sympy.physics.continuum_mechanics.cable.cable property)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.tension", false]], "tension_at() (sympy.physics.continuum_mechanics.cable.cable method)": [[138, "sympy.physics.continuum_mechanics.cable.Cable.tension_at", false]], "tensmul (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensMul", false]], "tensor_heads() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.tensor_heads", false]], "tensor_product_simp() (in module sympy.physics.quantum.tensorproduct)": [[190, "sympy.physics.quantum.tensorproduct.tensor_product_simp", false]], "tensorcontraction() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.tensorcontraction", false]], "tensordiagonal() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.tensordiagonal", false]], "tensorhead (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorHead", false]], "tensorindex (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorIndex", false]], "tensorindextype (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorIndexType", false]], "tensorpowerhilbertspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.TensorPowerHilbertSpace", false]], "tensorproduct (class in sympy.diffgeom)": [[90, "sympy.diffgeom.TensorProduct", false]], "tensorproduct (class in sympy.physics.quantum.tensorproduct)": [[190, "sympy.physics.quantum.tensorproduct.TensorProduct", false]], "tensorproduct() (in module sympy.tensor.array)": [[242, "sympy.tensor.array.tensorproduct", false]], "tensorproducthilbertspace (class in sympy.physics.quantum.hilbert)": [[177, "sympy.physics.quantum.hilbert.TensorProductHilbertSpace", false]], "tensorsymmetry (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorSymmetry", false]], "tensorsymmetry() (in module sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.tensorsymmetry", false]], "tensortype (class in sympy.tensor.tensor)": [[247, "sympy.tensor.tensor.TensorType", false]], "term_to_integer() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.term_to_integer", false]], "terminal_width() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.terminal_width", false]], "terms() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.terms", false]], "terms() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.terms", false]], "terms() (sympy.polys.rings.polyelement method)": [[212, "sympy.polys.rings.PolyElement.terms", false]], "terms_gcd() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.terms_gcd", false]], "terms_gcd() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.terms_gcd", false]], "terms_gcd() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.terms_gcd", false]], "termwise() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.termwise", false]], "test() (in module sympy.testing.runtests)": [[252, "sympy.testing.runtests.test", false]], "test_derivative_numerically() (in module sympy.core.random)": [[88, "sympy.core.random.test_derivative_numerically", false]], "test_factor() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.test_factor", false]], "textbackend (class in sympy.plotting.plot)": [[207, "sympy.plotting.plot.TextBackend", false]], "textplot() (in module sympy.plotting.textplot)": [[207, "sympy.plotting.textplot.textplot", false]], "tgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.TGate", false]], "thinlens (class in sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.ThinLens", false]], "threaded() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.threaded", false]], "threaded_factory() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.threaded_factory", false]], "three-valued logic": [[15, "term-Three-valued-logic", true]], "time (sympy.physics.quantum.state.timedepstate property)": [[189, "sympy.physics.quantum.state.TimeDepState.time", false]], "time_derivative() (in module sympy.physics.vector.functions)": [[202, "sympy.physics.vector.functions.time_derivative", false]], "time_period (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.time_period", false]], "timed() (in module sympy.utilities.timeutils)": [[264, "sympy.utilities.timeutils.timed", false]], "timedepbra (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.TimeDepBra", false]], "timedepket (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.TimeDepKet", false]], "timedepstate (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.TimeDepState", false]], "tiny (sympy.codegen.ast.floattype property)": [[69, "sympy.codegen.ast.FloatType.tiny", false]], "to_alg_num() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.to_alg_num", false]], "to_alg_num() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.to_alg_num", false]], "to_algebraic_integer() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.to_algebraic_integer", false]], "to_ancestor() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.to_ancestor", false]], "to_anf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_anf", false]], "to_anp() (sympy.polys.numberfields.modules.powerbasiselement method)": [[216, "sympy.polys.numberfields.modules.PowerBasisElement.to_ANP", false]], "to_axis_angle() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.to_axis_angle", false]], "to_best() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_best", false]], "to_cnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_cnf", false]], "to_ddm() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_ddm", false]], "to_ddm() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_ddm", false]], "to_ddm() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_ddm", false]], "to_ddm() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_ddm", false]], "to_dense() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dense", false]], "to_dfm() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_dfm", false]], "to_dfm() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_dfm", false]], "to_dfm() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dfm", false]], "to_dfm() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_dfm", false]], "to_dfm_or_ddm() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_dfm_or_ddm", false]], "to_dfm_or_ddm() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_dfm_or_ddm", false]], "to_dfm_or_ddm() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dfm_or_ddm", false]], "to_dfm_or_ddm() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_dfm_or_ddm", false]], "to_dict() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_dict", false]], "to_dict() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_dict", false]], "to_dnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_dnf", false]], "to_dod() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_dod", false]], "to_dod() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_dod", false]], "to_dod() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dod", false]], "to_dod() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_dod", false]], "to_dok() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_dok", false]], "to_dok() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_dok", false]], "to_dok() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_dok", false]], "to_dok() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_dok", false]], "to_euler() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.to_euler", false]], "to_exact() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_exact", false]], "to_exact() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.to_exact", false]], "to_expr() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.to_expr", false]], "to_expr() (sympy.physics.control.lti.feedback method)": [[144, "sympy.physics.control.lti.Feedback.to_expr", false]], "to_expr() (sympy.physics.control.lti.parallel method)": [[144, "sympy.physics.control.lti.Parallel.to_expr", false]], "to_expr() (sympy.physics.control.lti.series method)": [[144, "sympy.physics.control.lti.Series.to_expr", false]], "to_expr() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.to_expr", false]], "to_field() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_field", false]], "to_field() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_field", false]], "to_field() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.to_field", false]], "to_flat_nz() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_flat_nz", false]], "to_flat_nz() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_flat_nz", false]], "to_flat_nz() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_flat_nz", false]], "to_flat_nz() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_flat_nz", false]], "to_hyper() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.to_hyper", false]], "to_int() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.to_int", false]], "to_int_repr() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_int_repr", false]], "to_linearizer() (sympy.physics.mechanics.kane.kanesmethod method)": [[153, "sympy.physics.mechanics.kane.KanesMethod.to_linearizer", false]], "to_linearizer() (sympy.physics.mechanics.lagrange.lagrangesmethod method)": [[153, "sympy.physics.mechanics.lagrange.LagrangesMethod.to_linearizer", false]], "to_list() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_list", false]], "to_list() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_list", false]], "to_list() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_list", false]], "to_list() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_list", false]], "to_list() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_list", false]], "to_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_list", false]], "to_list_flat() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_list_flat", false]], "to_list_flat() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_list_flat", false]], "to_list_flat() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_list_flat", false]], "to_list_flat() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_list_flat", false]], "to_loads() (sympy.physics.mechanics.actuator.actuatorbase method)": [[148, "sympy.physics.mechanics.actuator.ActuatorBase.to_loads", false]], "to_loads() (sympy.physics.mechanics.actuator.forceactuator method)": [[148, "sympy.physics.mechanics.actuator.ForceActuator.to_loads", false]], "to_loads() (sympy.physics.mechanics.actuator.torqueactuator method)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.to_loads", false]], "to_loads() (sympy.physics.mechanics.pathway.linearpathway method)": [[156, "sympy.physics.mechanics.pathway.LinearPathway.to_loads", false]], "to_loads() (sympy.physics.mechanics.pathway.obstaclesetpathway method)": [[156, "sympy.physics.mechanics.pathway.ObstacleSetPathway.to_loads", false]], "to_loads() (sympy.physics.mechanics.pathway.pathwaybase method)": [[156, "sympy.physics.mechanics.pathway.PathwayBase.to_loads", false]], "to_loads() (sympy.physics.mechanics.pathway.wrappingpathway method)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway.to_loads", false]], "to_matrix() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.to_Matrix", false]], "to_matrix() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.to_matrix", false]], "to_matrix() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.to_matrix", false]], "to_matrix() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_Matrix", false]], "to_matrix() (sympy.vector.dyadic.dyadic method)": [[265, "sympy.vector.dyadic.Dyadic.to_matrix", false]], "to_matrix() (sympy.vector.vector.vector method)": [[265, "sympy.vector.vector.Vector.to_matrix", false]], "to_meijerg() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.to_meijerg", false]], "to_nnf() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.to_nnf", false]], "to_number_field() (in module sympy.polys.numberfields.subfield)": [[216, "sympy.polys.numberfields.subfield.to_number_field", false]], "to_parent() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.to_parent", false]], "to_primitive_element() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.to_primitive_element", false]], "to_prufer() (sympy.combinatorics.prufer.prufer static method)": [[82, "sympy.combinatorics.prufer.Prufer.to_prufer", false]], "to_rational() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.to_rational", false]], "to_ring() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_ring", false]], "to_ring() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.to_ring", false]], "to_root() (sympy.core.numbers.algebraicnumber method)": [[88, "sympy.core.numbers.AlgebraicNumber.to_root", false]], "to_rotation_matrix() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.to_rotation_matrix", false]], "to_sdm() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.to_sdm", false]], "to_sdm() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.to_sdm", false]], "to_sdm() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_sdm", false]], "to_sdm() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.to_sdm", false]], "to_sequence() (sympy.holonomic.holonomic.holonomicfunction method)": [[110, "sympy.holonomic.holonomic.HolonomicFunction.to_sequence", false]], "to_sparse() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.to_sparse", false]], "to_sympy() (sympy.polys.domains.algebraicfield method)": [[212, "sympy.polys.domains.AlgebraicField.to_sympy", false]], "to_sympy() (sympy.polys.domains.complexfield method)": [[212, "sympy.polys.domains.ComplexField.to_sympy", false]], "to_sympy() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.to_sympy", false]], "to_sympy() (sympy.polys.domains.expressiondomain method)": [[212, "sympy.polys.domains.ExpressionDomain.to_sympy", false]], "to_sympy() (sympy.polys.domains.finitefield method)": [[212, "sympy.polys.domains.FiniteField.to_sympy", false]], "to_sympy() (sympy.polys.domains.fractionfield method)": [[212, "sympy.polys.domains.FractionField.to_sympy", false]], "to_sympy() (sympy.polys.domains.gaussiandomains.gaussiandomain method)": [[212, "sympy.polys.domains.gaussiandomains.GaussianDomain.to_sympy", false]], "to_sympy() (sympy.polys.domains.gmpyintegerring method)": [[212, "sympy.polys.domains.GMPYIntegerRing.to_sympy", false]], "to_sympy() (sympy.polys.domains.gmpyrationalfield method)": [[212, "sympy.polys.domains.GMPYRationalField.to_sympy", false]], "to_sympy() (sympy.polys.domains.integerring method)": [[212, "sympy.polys.domains.IntegerRing.to_sympy", false]], "to_sympy() (sympy.polys.domains.polynomialring method)": [[212, "sympy.polys.domains.PolynomialRing.to_sympy", false]], "to_sympy() (sympy.polys.domains.rationalfield method)": [[212, "sympy.polys.domains.RationalField.to_sympy", false]], "to_sympy() (sympy.polys.domains.realfield method)": [[212, "sympy.polys.domains.RealField.to_sympy", false]], "to_sympy_dict() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_sympy_dict", false]], "to_sympy_dict() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_sympy_dict", false]], "to_sympy_list() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_sympy_list", false]], "to_sympy_list() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_sympy_list", false]], "to_tree() (sympy.combinatorics.prufer.prufer static method)": [[82, "sympy.combinatorics.prufer.Prufer.to_tree", false]], "to_tuple() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.to_tuple", false]], "to_tuple() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.to_tuple", false]], "todod() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.todod", false]], "todok() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.todok", false]], "together() (in module sympy.polys.rationaltools)": [[217, "sympy.polys.rationaltools.together", false]], "together() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.together", false]], "token (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Token", false]], "tolist() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.tolist", false]], "topological_sort() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.topological_sort", false]], "topological_sort() (sympy.codegen.ast.codeblock class method)": [[69, "sympy.codegen.ast.CodeBlock.topological_sort", false]], "torque (class in sympy.physics.mechanics.loads)": [[155, "sympy.physics.mechanics.loads.Torque", false]], "torque (sympy.physics.mechanics.actuator.torqueactuator property)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator.torque", false]], "torqueactuator (class in sympy.physics.mechanics.actuator)": [[148, "sympy.physics.mechanics.actuator.TorqueActuator", false]], "torsional_moment() (sympy.physics.continuum_mechanics.beam.beam3d method)": [[136, "sympy.physics.continuum_mechanics.beam.Beam3D.torsional_moment", false]], "total_degree() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.total_degree", false]], "total_degree() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.total_degree", false]], "totient (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.totient", false]], "totient() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.totient", false]], "totientrange() (sympy.ntheory.generate.sieve method)": [[128, "sympy.ntheory.generate.Sieve.totientrange", false]], "tp (sympy.polys.domains.domain.domain property)": [[212, "sympy.polys.domains.domain.Domain.tp", false]], "tr0() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR0", false]], "tr1() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR1", false]], "tr10() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR10", false]], "tr10i() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR10i", false]], "tr11() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR11", false]], "tr111() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR111", false]], "tr12() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR12", false]], "tr12i() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR12i", false]], "tr13() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR13", false]], "tr14() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR14", false]], "tr15() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR15", false]], "tr16() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR16", false]], "tr2() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR2", false]], "tr22() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR22", false]], "tr2i() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR2i", false]], "tr3() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR3", false]], "tr4() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR4", false]], "tr5() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR5", false]], "tr6() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR6", false]], "tr7() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR7", false]], "tr8() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR8", false]], "tr9() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TR9", false]], "trace (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.Trace", false]], "trace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.trace", false]], "trailing() (in module sympy.core.intfunc)": [[88, "sympy.core.intfunc.trailing", false]], "transcendental": [[88, "term-transcendental", true]], "transcendentalpredicate (class in sympy.assumptions.predicates.sets)": [[65, "sympy.assumptions.predicates.sets.TranscendentalPredicate", false]], "transferfunction (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.TransferFunction", false]], "transferfunctionmatrix (class in sympy.physics.control.lti)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix", false]], "transform() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.transform", false]], "transform() (sympy.geometry.point.point2d method)": [[103, "sympy.geometry.point.Point2D.transform", false]], "transform() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.transform", false]], "transform() (sympy.integrals.integrals.integral method)": [[115, "sympy.integrals.integrals.Integral.transform", false]], "transform() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.transform", false]], "transform() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.transform", false]], "transform_variable (sympy.integrals.transforms.integraltransform property)": [[115, "sympy.integrals.transforms.IntegralTransform.transform_variable", false]], "transformation() (sympy.diffgeom.coordsystem method)": [[90, "sympy.diffgeom.CoordSystem.transformation", false]], "transformation_to_dn() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.transformation_to_DN", false]], "transformation_to_normal() (in module sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.transformation_to_normal", false]], "transformtosympyexpr (class in sympy.parsing.latex.lark)": [[130, "sympy.parsing.latex.lark.TransformToSymPyExpr", false]], "transition_probabilities (sympy.stats.discretemarkovchain property)": [[241, "sympy.stats.DiscreteMarkovChain.transition_probabilities", false]], "transitivity_degree (sympy.combinatorics.perm_groups.permutationgroup property)": [[79, "sympy.combinatorics.perm_groups.PermutationGroup.transitivity_degree", false]], "translate() (in module sympy.utilities.misc)": [[262, "sympy.utilities.misc.translate", false]], "translate() (sympy.geometry.curve.curve method)": [[97, "sympy.geometry.curve.Curve.translate", false]], "translate() (sympy.geometry.entity.geometryentity method)": [[99, "sympy.geometry.entity.GeometryEntity.translate", false]], "translate() (sympy.geometry.point.point2d method)": [[103, "sympy.geometry.point.Point2D.translate", false]], "translate() (sympy.geometry.point.point3d method)": [[103, "sympy.geometry.point.Point3D.translate", false]], "translation_coordinate (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.translation_coordinate", false]], "translation_speed (sympy.physics.mechanics.joint.cylindricaljoint property)": [[152, "sympy.physics.mechanics.joint.CylindricalJoint.translation_speed", false]], "transmissive_filter() (in module sympy.physics.optics.polarization)": [[163, "sympy.physics.optics.polarization.transmissive_filter", false]], "transpose (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.Transpose", false]], "transpose() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.transpose", false]], "transpose() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.transpose", false]], "transpose() (sympy.physics.control.lti.transferfunctionmatrix method)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.transpose", false]], "transpose() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.transpose", false]], "transpose() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.transpose", false]], "transpose() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.transpose", false]], "transpositions() (sympy.combinatorics.permutations.permutation method)": [[80, "sympy.combinatorics.permutations.Permutation.transpositions", false]], "transverse_magnification() (in module sympy.physics.optics.utils)": [[164, "sympy.physics.optics.utils.transverse_magnification", false]], "trapezoidal() (in module sympy.stats)": [[241, "sympy.stats.Trapezoidal", false]], "tree() (in module sympy.printing.tree)": [[221, "sympy.printing.tree.tree", false]], "tree_cse() (in module sympy.simplify.cse_main)": [[233, "sympy.simplify.cse_main.tree_cse", false]], "tree_repr (sympy.combinatorics.prufer.prufer property)": [[82, "sympy.combinatorics.prufer.Prufer.tree_repr", false]], "triangle (class in sympy.geometry.polygon)": [[104, "sympy.geometry.polygon.Triangle", false]], "triangular() (in module sympy.stats)": [[241, "sympy.stats.Triangular", false]], "triangularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.TriangularPredicate", false]], "tribonacci (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.tribonacci", false]], "tribonacciconstant (class in sympy.core.numbers)": [[88, "sympy.core.numbers.TribonacciConstant", false]], "trigamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.trigamma", false]], "trigintegrate() (in module sympy.integrals.trigonometry)": [[115, "sympy.integrals.trigonometry.trigintegrate", false]], "trigsimp() (in module sympy.simplify.trigsimp)": [[233, "sympy.simplify.trigsimp.trigsimp", false]], "trigsimp() (sympy.core.expr.expr method)": [[88, "sympy.core.expr.Expr.trigsimp", false]], "trmorrie() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TRmorrie", false]], "trpower() (in module sympy.simplify.fu)": [[230, "sympy.simplify.fu.TRpower", false]], "trunc() (in module sympy.polys.polytools)": [[217, "sympy.polys.polytools.trunc", false]], "trunc() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.trunc", false]], "trunc() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.trunc", false]], "truncate() (sympy.series.formal.formalpowerseries method)": [[223, "sympy.series.formal.FormalPowerSeries.truncate", false]], "truncate() (sympy.series.fourier.fourierseries method)": [[224, "sympy.series.fourier.FourierSeries.truncate", false]], "truss (class in sympy.physics.continuum_mechanics.truss)": [[140, "sympy.physics.continuum_mechanics.truss.Truss", false]], "truth_table() (in module sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.truth_table", false]], "tuple (class in sympy.core.containers)": [[88, "sympy.core.containers.Tuple", false]], "tuple_count() (sympy.core.containers.tuple method)": [[88, "sympy.core.containers.Tuple.tuple_count", false]], "tuplekind (class in sympy.core.containers)": [[88, "sympy.core.containers.TupleKind", false]], "twave (class in sympy.physics.optics.waves)": [[165, "sympy.physics.optics.waves.TWave", false]], "two_qubit_box() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.two_qubit_box", false]], "twoform_to_matrix() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.twoform_to_matrix", false]], "twoqubitgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.TwoQubitGate", false]], "type (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Type", false]], "typea (class in sympy.liealgebras.type_a)": [[117, "sympy.liealgebras.type_a.TypeA", false]], "typeb (class in sympy.liealgebras.type_b)": [[117, "sympy.liealgebras.type_b.TypeB", false]], "typec (class in sympy.liealgebras.type_c)": [[117, "sympy.liealgebras.type_c.TypeC", false]], "typed (class in sympy.liealgebras.type_d)": [[117, "sympy.liealgebras.type_d.TypeD", false]], "typee (class in sympy.liealgebras.type_e)": [[117, "sympy.liealgebras.type_e.TypeE", false]], "typef (class in sympy.liealgebras.type_f)": [[117, "sympy.liealgebras.type_f.TypeF", false]], "typeg (class in sympy.liealgebras.type_g)": [[117, "sympy.liealgebras.type_g.TypeG", false]], "u (sympy.physics.mechanics.jointsmethod.jointsmethod property)": [[149, "sympy.physics.mechanics.jointsmethod.JointsMethod.u", false]], "u (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.u", false]], "u (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.u", false]], "u() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.U", false]], "u_aux (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.u_aux", false]], "u_dep (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.u_dep", false]], "u_ind (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.u_ind", false]], "udivisor_count() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.udivisor_count", false]], "udivisor_sigma (class in sympy.functions.combinatorial.numbers)": [[93, "sympy.functions.combinatorial.numbers.udivisor_sigma", false]], "udivisor_sigma() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.udivisor_sigma", false]], "udivisors() (in module sympy.ntheory.factor_)": [[128, "sympy.ntheory.factor_.udivisors", false]], "udldecomposition() (sympy.matrices.expressions.blockmatrix.blockmatrix method)": [[120, "sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition", false]], "ufuncify() (in module sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.ufuncify", false]], "ufuncifycodewrapper (class in sympy.utilities.autowrap)": [[253, "sympy.utilities.autowrap.UfuncifyCodeWrapper", false]], "ugate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.UGate", false]], "uncouple() (in module sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.uncouple", false]], "undefined function": [[15, "term-Undefined-Function", true]], "undefinedkind (in module sympy.core.kind)": [[88, "sympy.core.kind.UndefinedKind", false]], "undefinedpredicate (class in sympy.assumptions.assume)": [[63, "sympy.assumptions.assume.UndefinedPredicate", false]], "unequality (class in sympy.core.relational)": [[88, "sympy.core.relational.Unequality", false]], "unevaluated": [[15, "term-Unevaluated", true]], "unevaluatedexpr (class in sympy.core.expr)": [[88, "sympy.core.expr.UnevaluatedExpr", false]], "unflatten() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.unflatten", false]], "unificationfailed (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.UnificationFailed", false]], "uniform() (in module sympy.stats)": [[241, "sympy.stats.Uniform", false]], "uniformsum() (in module sympy.stats)": [[241, "sympy.stats.UniformSum", false]], "unify() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.unify", false]], "unify() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.unify", false]], "unify() (sympy.polys.numberfields.modules.moduleelement method)": [[216, "sympy.polys.numberfields.modules.ModuleElement.unify", false]], "unify() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.unify", false]], "unify() (sympy.polys.polytools.poly method)": [[217, "sympy.polys.polytools.Poly.unify", false]], "unify_anp() (sympy.polys.polyclasses.anp method)": [[212, "sympy.polys.polyclasses.ANP.unify_ANP", false]], "unify_composite() (sympy.polys.domains.domain.domain method)": [[212, "sympy.polys.domains.domain.Domain.unify_composite", false]], "unify_dmp() (sympy.polys.polyclasses.dmp method)": [[212, "sympy.polys.polyclasses.DMP.unify_DMP", false]], "union (class in sympy.codegen.cnodes)": [[69, "sympy.codegen.cnodes.union", false]], "union (class in sympy.sets.sets)": [[229, "sympy.sets.sets.Union", false]], "union() (sympy.polys.agca.ideals.ideal method)": [[208, "sympy.polys.agca.ideals.Ideal.union", false]], "union() (sympy.polys.agca.modules.submodule method)": [[208, "sympy.polys.agca.modules.SubModule.union", false]], "union() (sympy.series.gruntz.subsset method)": [[228, "sympy.series.gruntz.SubsSet.union", false]], "union() (sympy.sets.sets.set method)": [[229, "sympy.sets.sets.Set.union", false]], "uniq() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.uniq", false]], "unit (sympy.geometry.point.point property)": [[103, "sympy.geometry.point.Point.unit", false]], "unit (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.unit", false]], "unitaryoperator (class in sympy.physics.quantum.operator)": [[180, "sympy.physics.quantum.operator.UnitaryOperator", false]], "unitarypredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.UnitaryPredicate", false]], "unitsystem (class in sympy.physics.units.unitsystem)": [[199, "sympy.physics.units.unitsystem.UnitSystem", false]], "unittriangularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.UnitTriangularPredicate", false]], "univariate (class in sympy.solvers.diophantine.diophantine)": [[234, "sympy.solvers.diophantine.diophantine.Univariate", false]], "univariatepolynomialerror (class in sympy.polys.polyerrors)": [[214, "sympy.polys.polyerrors.UnivariatePolynomialError", false]], "universalset (class in sympy.sets.sets)": [[229, "sympy.sets.sets.UniversalSet", false]], "unrad() (in module sympy.solvers.solvers)": [[239, "sympy.solvers.solvers.unrad", false]], "unrank() (sympy.combinatorics.graycode.graycode class method)": [[72, "sympy.combinatorics.graycode.GrayCode.unrank", false]], "unrank() (sympy.combinatorics.prufer.prufer class method)": [[82, "sympy.combinatorics.prufer.Prufer.unrank", false]], "unrank_binary() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.unrank_binary", false]], "unrank_gray() (sympy.combinatorics.subsets.subset class method)": [[83, "sympy.combinatorics.subsets.Subset.unrank_gray", false]], "unrank_lex() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.unrank_lex", false]], "unrank_nonlex() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.unrank_nonlex", false]], "unrank_trotterjohnson() (sympy.combinatorics.permutations.permutation class method)": [[80, "sympy.combinatorics.permutations.Permutation.unrank_trotterjohnson", false]], "unsignedinttype (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.UnsignedIntType", false]], "update() (sympy.physics.quantum.circuitplot.circuitplot method)": [[171, "sympy.physics.quantum.circuitplot.CircuitPlot.update", false]], "upper (sympy.physics.secondquant.antisymmetrictensor property)": [[191, "sympy.physics.secondquant.AntiSymmetricTensor.upper", false]], "upper (sympy.tensor.indexed.idx property)": [[246, "sympy.tensor.indexed.Idx.upper", false]], "upper_hessenberg_decomposition() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.upper_hessenberg_decomposition", false]], "upper_triangular() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.upper_triangular", false]], "upper_triangular_solve() (sympy.matrices.dense.densematrix method)": [[119, "sympy.matrices.dense.DenseMatrix.upper_triangular_solve", false]], "upper_triangular_solve() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.upper_triangular_solve", false]], "uppergamma (class in sympy.functions.special.gamma_functions)": [[96, "sympy.functions.special.gamma_functions.uppergamma", false]], "uppertriangularpredicate (class in sympy.assumptions.predicates.matrices)": [[65, "sympy.assumptions.predicates.matrices.UpperTriangularPredicate", false]], "use (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.use", false]], "use() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.use", false]], "use_rename (class in sympy.codegen.fnodes)": [[69, "sympy.codegen.fnodes.use_rename", false]], "using (class in sympy.codegen.cxxnodes)": [[69, "sympy.codegen.cxxnodes.using", false]], "v1pt_theory() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.v1pt_theory", false]], "v2pt_theory() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.v2pt_theory", false]], "v_m_max (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.v_M_max", false]], "validate_system() (sympy.physics.mechanics.system.system method)": [[158, "sympy.physics.mechanics.system.System.validate_system", false]], "valuation() (sympy.polys.numberfields.primes.primeideal method)": [[216, "sympy.polys.numberfields.primes.PrimeIdeal.valuation", false]], "values() (sympy.core.containers.dict method)": [[88, "sympy.core.containers.Dict.values", false]], "values() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.values", false]], "var (sympy.physics.control.lti.feedback property)": [[144, "sympy.physics.control.lti.Feedback.var", false]], "var (sympy.physics.control.lti.mimofeedback property)": [[144, "sympy.physics.control.lti.MIMOFeedback.var", false]], "var (sympy.physics.control.lti.mimoparallel property)": [[144, "sympy.physics.control.lti.MIMOParallel.var", false]], "var (sympy.physics.control.lti.mimoseries property)": [[144, "sympy.physics.control.lti.MIMOSeries.var", false]], "var (sympy.physics.control.lti.parallel property)": [[144, "sympy.physics.control.lti.Parallel.var", false]], "var (sympy.physics.control.lti.series property)": [[144, "sympy.physics.control.lti.Series.var", false]], "var (sympy.physics.control.lti.transferfunction property)": [[144, "sympy.physics.control.lti.TransferFunction.var", false]], "var (sympy.physics.control.lti.transferfunctionmatrix property)": [[144, "sympy.physics.control.lti.TransferFunctionMatrix.var", false]], "var() (in module sympy.core.symbol)": [[88, "sympy.core.symbol.var", false]], "varbosonicbasis (class in sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.VarBosonicBasis", false]], "variable (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.Variable", false]], "variable (sympy.physics.continuum_mechanics.beam.beam property)": [[136, "sympy.physics.continuum_mechanics.beam.Beam.variable", false]], "variable_map() (sympy.physics.vector.frame.referenceframe method)": [[200, "sympy.physics.vector.frame.ReferenceFrame.variable_map", false]], "variables (sympy.concrete.expr_with_limits.exprwithlimits property)": [[115, "sympy.concrete.expr_with_limits.ExprWithLimits.variables", false]], "variables (sympy.core.function.lambda property)": [[88, "sympy.core.function.Lambda.variables", false]], "variables (sympy.core.function.subs property)": [[88, "sympy.core.function.Subs.variables", false]], "variables (sympy.physics.quantum.operator.differentialoperator property)": [[180, "sympy.physics.quantum.operator.DifferentialOperator.variables", false]], "variables (sympy.physics.quantum.state.wavefunction property)": [[189, "sympy.physics.quantum.state.Wavefunction.variables", false]], "variables (sympy.series.sequences.seqbase property)": [[227, "sympy.series.sequences.SeqBase.variables", false]], "variables (sympy.utilities.codegen.routine property)": [[254, "sympy.utilities.codegen.Routine.variables", false]], "variance (class in sympy.stats)": [[241, "sympy.stats.Variance", false]], "variance() (in module sympy.stats)": [[241, "sympy.stats.variance", false]], "variancematrix (class in sympy.stats)": [[241, "sympy.stats.VarianceMatrix", false]], "variations() (in module sympy.utilities.iterables)": [[259, "sympy.utilities.iterables.variations", false]], "vec() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.vec", false]], "vech() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.vech", false]], "vector (class in sympy.physics.vector.vector)": [[200, "sympy.physics.vector.vector.Vector", false]], "vector (class in sympy.vector.vector)": [[265, "sympy.vector.vector.Vector", false]], "vector_coplanar() (sympy.algebras.quaternion class method)": [[61, "sympy.algebras.Quaternion.vector_coplanar", false]], "vector_integrate() (in module sympy.vector.integrals)": [[268, "sympy.vector.integrals.vector_integrate", false]], "vector_part() (sympy.algebras.quaternion method)": [[61, "sympy.algebras.Quaternion.vector_part", false]], "vectorize (class in sympy.core.multidimensional)": [[88, "sympy.core.multidimensional.vectorize", false]], "vectors_in_basis() (in module sympy.diffgeom)": [[90, "sympy.diffgeom.vectors_in_basis", false]], "vee() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.vee", false]], "vel() (sympy.physics.vector.point.point method)": [[204, "sympy.physics.vector.point.Point.vel", false]], "velocity_constraints (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.velocity_constraints", false]], "verify_numerically() (in module sympy.core.random)": [[88, "sympy.core.random.verify_numerically", false]], "vertices (sympy.combinatorics.polyhedron.polyhedron property)": [[81, "sympy.combinatorics.polyhedron.Polyhedron.vertices", false]], "vertices (sympy.geometry.polygon.polygon property)": [[104, "sympy.geometry.polygon.Polygon.vertices", false]], "vertices (sympy.geometry.polygon.regularpolygon property)": [[104, "sympy.geometry.polygon.RegularPolygon.vertices", false]], "vertices (sympy.geometry.polygon.triangle property)": [[104, "sympy.geometry.polygon.Triangle.vertices", false]], "vf() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.VF", false]], "vfield() (in module sympy.polys.fields)": [[212, "sympy.polys.fields.vfield", false]], "viete() (in module sympy.polys.polyfuncs)": [[217, "sympy.polys.polyfuncs.viete", false]], "vlatex() (in module sympy.physics.vector.printing)": [[205, "sympy.physics.vector.printing.vlatex", false]], "vobj() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.vobj", false]], "vonmises() (in module sympy.stats)": [[241, "sympy.stats.VonMises", false]], "vpprint() (in module sympy.physics.vector.printing)": [[205, "sympy.physics.vector.printing.vpprint", false]], "vprint() (in module sympy.physics.vector.printing)": [[205, "sympy.physics.vector.printing.vprint", false]], "vradius (sympy.geometry.ellipse.circle property)": [[98, "sympy.geometry.ellipse.Circle.vradius", false]], "vradius (sympy.geometry.ellipse.ellipse property)": [[98, "sympy.geometry.ellipse.Ellipse.vradius", false]], "vring() (in module sympy.polys.rings)": [[212, "sympy.polys.rings.vring", false]], "vstack() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.vstack", false]], "vstack() (sympy.polys.matrices._dfm.dfm method)": [[210, "sympy.polys.matrices._dfm.DFM.vstack", false]], "vstack() (sympy.polys.matrices.ddm.ddm method)": [[210, "sympy.polys.matrices.ddm.DDM.vstack", false]], "vstack() (sympy.polys.matrices.domainmatrix.domainmatrix method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.vstack", false]], "vstack() (sympy.polys.matrices.sdm.sdm method)": [[210, "sympy.polys.matrices.sdm.SDM.vstack", false]], "w (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.w", false]], "w_0 (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.w_0", false]], "waist2rayleigh() (in module sympy.physics.optics.gaussopt)": [[160, "sympy.physics.optics.gaussopt.waist2rayleigh", false]], "waist_approximation_limit (sympy.physics.optics.gaussopt.beamparameter property)": [[160, "sympy.physics.optics.gaussopt.BeamParameter.waist_approximation_limit", false]], "wald() (in module sympy.stats)": [[241, "sympy.stats.Wald", false]], "walk() (in module sympy.core.traversal)": [[88, "sympy.core.traversal.walk", false]], "warns() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.warns", false]], "warns_deprecated_sympy() (in module sympy.testing.pytest)": [[250, "sympy.testing.pytest.warns_deprecated_sympy", false]], "wavefunction (class in sympy.physics.quantum.state)": [[189, "sympy.physics.quantum.state.Wavefunction", false]], "wavelength (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.wavelength", false]], "wavenumber (sympy.physics.optics.waves.twave property)": [[165, "sympy.physics.optics.waves.TWave.wavenumber", false]], "weak (sympy.core.relational.relational property)": [[88, "sympy.core.relational.Relational.weak", false]], "wedgeproduct (class in sympy.diffgeom)": [[90, "sympy.diffgeom.WedgeProduct", false]], "weibull() (in module sympy.stats)": [[241, "sympy.stats.Weibull", false]], "weldjoint (class in sympy.physics.mechanics.joint)": [[152, "sympy.physics.mechanics.joint.WeldJoint", false]], "weylgroup (class in sympy.liealgebras.weyl_group)": [[117, "sympy.liealgebras.weyl_group.WeylGroup", false]], "wgate (class in sympy.physics.quantum.grover)": [[176, "sympy.physics.quantum.grover.WGate", false]], "where() (in module sympy.stats)": [[241, "sympy.stats.where", false]], "while (class in sympy.codegen.ast)": [[69, "sympy.codegen.ast.While", false]], "whole_submodule() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.whole_submodule", false]], "wicks() (in module sympy.physics.secondquant)": [[191, "sympy.physics.secondquant.wicks", false]], "width (sympy.categories.diagram_drawing.diagramgrid property)": [[68, "sympy.categories.diagram_drawing.DiagramGrid.width", false]], "width() (sympy.printing.pretty.stringpict.stringpict method)": [[221, "sympy.printing.pretty.stringpict.stringPict.width", false]], "wienerprocess (class in sympy.stats)": [[241, "sympy.stats.WienerProcess", false]], "wigner3j (class in sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.Wigner3j", false]], "wigner6j (class in sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.Wigner6j", false]], "wigner9j (class in sympy.physics.quantum.cg)": [[170, "sympy.physics.quantum.cg.Wigner9j", false]], "wigner_3j() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_3j", false]], "wigner_6j() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_6j", false]], "wigner_9j() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_9j", false]], "wigner_d() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_d", false]], "wigner_d_small() (in module sympy.physics.wigner)": [[206, "sympy.physics.wigner.wigner_d_small", false]], "wignerd (class in sympy.physics.quantum.spin)": [[188, "sympy.physics.quantum.spin.WignerD", false]], "wignersemicircle() (in module sympy.stats)": [[241, "sympy.stats.WignerSemicircle", false]], "wild (class in sympy.core.symbol)": [[88, "sympy.core.symbol.Wild", false]], "wildfunction (class in sympy.core.function)": [[88, "sympy.core.function.WildFunction", false]], "wilkinson() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.wilkinson", false]], "wishart() (in module sympy.stats)": [[241, "sympy.stats.Wishart", false]], "with_defaults() (sympy.physics.biomechanics.activation.activationbase class method)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 class method)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.activation.zerothorderactivation class method)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcelengthactivedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcelengthpassivedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcelengthpassiveinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcevelocitydegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.fiberforcevelocityinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.tendonforcelengthdegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.curve.tendonforcelengthinversedegroote2016 class method)": [[132, "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016.with_defaults", false]], "with_defaults() (sympy.physics.biomechanics.musculotendon.musculotendonbase class method)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.with_defaults", false]], "wrappingcylinder (class in sympy.physics.mechanics.wrapping_geometry)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder", false]], "wrappinggeometrybase (class in sympy.physics.mechanics.wrapping_geometry)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase", false]], "wrappingpathway (class in sympy.physics.mechanics.pathway)": [[156, "sympy.physics.mechanics.pathway.WrappingPathway", false]], "wrappingsphere (class in sympy.physics.mechanics.wrapping_geometry)": [[159, "sympy.physics.mechanics.wrapping_geometry.WrappingSphere", false]], "write() (sympy.testing.runtests.pytestreporter method)": [[252, "sympy.testing.runtests.PyTestReporter.write", false]], "write() (sympy.utilities.codegen.codegen method)": [[254, "sympy.utilities.codegen.CodeGen.write", false]], "wronskian() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.wronskian", false]], "x (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.X", false]], "x (sympy.geometry.point.point2d property)": [[103, "sympy.geometry.point.Point2D.x", false]], "x (sympy.geometry.point.point3d property)": [[103, "sympy.geometry.point.Point3D.x", false]], "x (sympy.physics.biomechanics.activation.activationbase property)": [[131, "sympy.physics.biomechanics.activation.ActivationBase.x", false]], "x (sympy.physics.biomechanics.activation.firstorderactivationdegroote2016 property)": [[131, "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016.x", false]], "x (sympy.physics.biomechanics.activation.zerothorderactivation property)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation.x", false]], "x (sympy.physics.biomechanics.musculotendon.musculotendonbase property)": [[134, "sympy.physics.biomechanics.musculotendon.MusculotendonBase.x", false]], "x (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.x", false]], "x (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.x", false]], "x (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.x", false]], "x (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.x", false]], "xbra (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.XBra", false]], "xdirection (sympy.geometry.line.ray2d property)": [[101, "sympy.geometry.line.Ray2D.xdirection", false]], "xdirection (sympy.geometry.line.ray3d property)": [[101, "sympy.geometry.line.Ray3D.xdirection", false]], "xfield() (in module sympy.polys.fields)": [[212, "sympy.polys.fields.xfield", false]], "xgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.XGate", false]], "xket (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.XKet", false]], "xnor (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Xnor", false]], "xobj() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.xobj", false]], "xop (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.XOp", false]], "xor (class in sympy.logic.boolalg)": [[118, "sympy.logic.boolalg.Xor", false]], "xreplace() (sympy.core.basic.basic method)": [[88, "sympy.core.basic.Basic.xreplace", false]], "xreplace() (sympy.matrices.matrixbase.matrixbase method)": [[124, "sympy.matrices.matrixbase.MatrixBase.xreplace", false]], "xreplace() (sympy.physics.vector.dyadic.dyadic method)": [[200, "sympy.physics.vector.dyadic.Dyadic.xreplace", false]], "xreplace() (sympy.physics.vector.vector.vector method)": [[200, "sympy.physics.vector.vector.Vector.xreplace", false]], "xring() (in module sympy.polys.rings)": [[212, "sympy.polys.rings.xring", false]], "xstr() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.xstr", false]], "xsym() (in module sympy.printing.pretty.pretty_symbology)": [[221, "sympy.printing.pretty.pretty_symbology.xsym", false]], "xthreaded() (in module sympy.utilities.decorator)": [[255, "sympy.utilities.decorator.xthreaded", false]], "xx (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.xx", false]], "xy (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.xy", false]], "xypic_draw_diagram() (in module sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.xypic_draw_diagram", false]], "xypicdiagramdrawer (class in sympy.categories.diagram_drawing)": [[68, "sympy.categories.diagram_drawing.XypicDiagramDrawer", false]], "xz (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.xz", false]], "y (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.Y", false]], "y (sympy.geometry.point.point2d property)": [[103, "sympy.geometry.point.Point2D.y", false]], "y (sympy.geometry.point.point3d property)": [[103, "sympy.geometry.point.Point3D.y", false]], "y (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.y", false]], "y (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.y", false]], "y (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.y", false]], "y (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.y", false]], "y (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.y", false]], "ydirection (sympy.geometry.line.ray2d property)": [[101, "sympy.geometry.line.Ray2D.ydirection", false]], "ydirection (sympy.geometry.line.ray3d property)": [[101, "sympy.geometry.line.Ray3D.ydirection", false]], "ygate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.YGate", false]], "yn (class in sympy.functions.special.bessel)": [[96, "sympy.functions.special.bessel.yn", false]], "yn (sympy.series.sequences.recursiveseq property)": [[227, "sympy.series.sequences.RecursiveSeq.yn", false]], "ynm (class in sympy.functions.special.spherical_harmonics)": [[96, "sympy.functions.special.spherical_harmonics.Ynm", false]], "ynm_c() (in module sympy.functions.special.spherical_harmonics)": [[96, "sympy.functions.special.spherical_harmonics.Ynm_c", false]], "yop (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.YOp", false]], "yulesimon() (in module sympy.stats)": [[241, "sympy.stats.YuleSimon", false]], "yx (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.yx", false]], "yy (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.yy", false]], "yz (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.yz", false]], "z (in module sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.Z", false]], "z (sympy.geometry.point.point3d property)": [[103, "sympy.geometry.point.Point3D.z", false]], "z (sympy.physics.mechanics.body.body property)": [[149, "sympy.physics.mechanics.body.Body.z", false]], "z (sympy.physics.mechanics.rigidbody.rigidbody property)": [[155, "sympy.physics.mechanics.rigidbody.RigidBody.z", false]], "z (sympy.physics.mechanics.system.system property)": [[158, "sympy.physics.mechanics.system.System.z", false]], "z (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.z", false]], "zdirection (sympy.geometry.line.ray3d property)": [[101, "sympy.geometry.line.Ray3D.zdirection", false]], "zero": [[88, "term-zero", true]], "zero (class in sympy.core.numbers)": [[88, "sympy.core.numbers.Zero", false]], "zero (sympy.polys.domains.domain.domain attribute)": [[212, "sympy.polys.domains.domain.Domain.zero", false]], "zero (sympy.polys.polytools.poly property)": [[217, "sympy.polys.polytools.Poly.zero", false]], "zero() (sympy.polys.numberfields.modules.module method)": [[216, "sympy.polys.numberfields.modules.Module.zero", false]], "zeromatrix (class in sympy.matrices.expressions)": [[120, "sympy.matrices.expressions.ZeroMatrix", false]], "zeropredicate (class in sympy.assumptions.predicates.order)": [[65, "sympy.assumptions.predicates.order.ZeroPredicate", false]], "zeros() (in module sympy.matrices.dense)": [[124, "sympy.matrices.dense.zeros", false]], "zeros() (sympy.matrices.matrixbase.matrixbase class method)": [[124, "sympy.matrices.matrixbase.MatrixBase.zeros", false]], "zeros() (sympy.physics.control.lti.transferfunction method)": [[144, "sympy.physics.control.lti.TransferFunction.zeros", false]], "zeros() (sympy.polys.matrices._dfm.dfm class method)": [[210, "sympy.polys.matrices._dfm.DFM.zeros", false]], "zeros() (sympy.polys.matrices.domainmatrix.domainmatrix class method)": [[210, "sympy.polys.matrices.domainmatrix.DomainMatrix.zeros", false]], "zeros() (sympy.polys.matrices.sdm.sdm class method)": [[210, "sympy.polys.matrices.sdm.SDM.zeros", false]], "zerothorderactivation (class in sympy.physics.biomechanics.activation)": [[131, "sympy.physics.biomechanics.activation.ZerothOrderActivation", false]], "zeta (class in sympy.functions.special.zeta_functions)": [[96, "sympy.functions.special.zeta_functions.zeta", false]], "zeta() (in module sympy.stats)": [[241, "sympy.stats.Zeta", false]], "zgate (class in sympy.physics.quantum.gate)": [[175, "sympy.physics.quantum.gate.ZGate", false]], "znm (class in sympy.functions.special.spherical_harmonics)": [[96, "sympy.functions.special.spherical_harmonics.Znm", false]], "zoo": [[15, "term-zoo", true]], "zop (class in sympy.physics.quantum.cartesian)": [[169, "sympy.physics.quantum.cartesian.ZOp", false]], "zx (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.zx", false]], "zy (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.zy", false]], "zz (sympy.physics.vector.frame.referenceframe property)": [[200, "sympy.physics.vector.frame.ReferenceFrame.zz", false]]}, "objects": {"": [[58, 0, 0, "-", "sympy"]], "sympy": [[60, 0, 0, "-", "abc"], [61, 0, 0, "-", "algebras"], [64, 0, 0, "-", "assumptions"], [67, 0, 0, "-", "calculus"], [68, 0, 0, "-", "categories"], [90, 0, 0, "-", "diffgeom"], [91, 0, 0, "-", "discrete"], [95, 0, 0, "-", "functions"], [108, 0, 0, "-", "holonomic"], [115, 0, 0, "-", "integrals"], [116, 0, 0, "-", "interactive"], [117, 0, 0, "-", "liealgebras"], [118, 0, 0, "-", "logic"], [122, 0, 0, "-", "matrices"], [130, 0, 0, "-", "parsing"], [282, 0, 0, "-", "physics"], [217, 0, 0, "-", "polys"], [239, 0, 0, "-", "solvers"], [241, 0, 0, "-", "stats"], [244, 0, 0, "-", "tensor"], [249, 0, 0, "-", "testing"], [258, 0, 0, "-", "utilities"], [273, 0, 0, "-", "vector"]], "sympy.algebras": [[61, 1, 1, "", "Quaternion"]], "sympy.algebras.Quaternion": [[61, 2, 1, "", "add"], [61, 2, 1, "", "angle"], [61, 2, 1, "", "arc_coplanar"], [61, 2, 1, "", "axis"], [61, 2, 1, "", "exp"], [61, 2, 1, "", "from_Matrix"], [61, 2, 1, "", "from_axis_angle"], [61, 2, 1, "", "from_euler"], [61, 2, 1, "", "from_rotation_matrix"], [61, 2, 1, "", "index_vector"], [61, 2, 1, "", "integrate"], [61, 2, 1, "", "inverse"], [61, 2, 1, "", "is_pure"], [61, 2, 1, "", "is_zero_quaternion"], [61, 2, 1, "", "log"], [61, 2, 1, "", "mensor"], [61, 2, 1, "", "mul"], [61, 2, 1, "", "norm"], [61, 2, 1, "", "normalize"], [61, 2, 1, "", "orthogonal"], [61, 2, 1, "", "parallel"], [61, 2, 1, "", "pow"], [61, 2, 1, "", "pow_cos_sin"], [61, 3, 1, "", "product_matrix_left"], [61, 3, 1, "", "product_matrix_right"], [61, 2, 1, "", "rotate_point"], [61, 2, 1, "", "scalar_part"], [61, 2, 1, "", "set_norm"], [61, 2, 1, "", "to_Matrix"], [61, 2, 1, "", "to_axis_angle"], [61, 2, 1, "", "to_euler"], [61, 2, 1, "", "to_rotation_matrix"], [61, 2, 1, "", "vector_coplanar"], [61, 2, 1, "", "vector_part"]], "sympy.assumptions": [[62, 0, 0, "-", "ask"], [63, 0, 0, "-", "assume"], [65, 0, 0, "-", "predicates"], [66, 0, 0, "-", "refine"]], "sympy.assumptions.ask": [[62, 1, 1, "", "AssumptionKeys"], [62, 4, 1, "", "ask"], [62, 4, 1, "", "register_handler"], [62, 4, 1, "", "remove_handler"]], "sympy.assumptions.assume": [[63, 1, 1, "", "AppliedPredicate"], [63, 1, 1, "", "AssumptionsContext"], [63, 1, 1, "", "Predicate"], [63, 1, 1, "", "UndefinedPredicate"], [63, 4, 1, "", "assuming"]], "sympy.assumptions.assume.AppliedPredicate": [[63, 3, 1, "", "arg"], [63, 3, 1, "", "arguments"], [63, 3, 1, "", "function"]], "sympy.assumptions.assume.AssumptionsContext": [[63, 2, 1, "", "add"]], "sympy.assumptions.assume.Predicate": [[63, 2, 1, "", "eval"], [63, 5, 1, "", "handler"], [63, 2, 1, "", "register"], [63, 2, 1, "", "register_many"]], "sympy.assumptions.predicates.calculus": [[65, 1, 1, "", "FinitePredicate"], [65, 1, 1, "", "InfinitePredicate"]], "sympy.assumptions.predicates.calculus.FinitePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.calculus.InfinitePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.common": [[65, 1, 1, "", "CommutativePredicate"], [65, 1, 1, "", "IsTruePredicate"]], "sympy.assumptions.predicates.common.CommutativePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.common.IsTruePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices": [[65, 1, 1, "", "ComplexElementsPredicate"], [65, 1, 1, "", "DiagonalPredicate"], [65, 1, 1, "", "FullRankPredicate"], [65, 1, 1, "", "IntegerElementsPredicate"], [65, 1, 1, "", "InvertiblePredicate"], [65, 1, 1, "", "LowerTriangularPredicate"], [65, 1, 1, "", "NormalPredicate"], [65, 1, 1, "", "OrthogonalPredicate"], [65, 1, 1, "", "PositiveDefinitePredicate"], [65, 1, 1, "", "RealElementsPredicate"], [65, 1, 1, "", "SingularPredicate"], [65, 1, 1, "", "SquarePredicate"], [65, 1, 1, "", "SymmetricPredicate"], [65, 1, 1, "", "TriangularPredicate"], [65, 1, 1, "", "UnitTriangularPredicate"], [65, 1, 1, "", "UnitaryPredicate"], [65, 1, 1, "", "UpperTriangularPredicate"]], "sympy.assumptions.predicates.matrices.ComplexElementsPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.DiagonalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.FullRankPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.IntegerElementsPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.InvertiblePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.LowerTriangularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.NormalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.OrthogonalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.PositiveDefinitePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.RealElementsPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.SingularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.SquarePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.SymmetricPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.TriangularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.UnitTriangularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.UnitaryPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.matrices.UpperTriangularPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.ntheory": [[65, 1, 1, "", "CompositePredicate"], [65, 1, 1, "", "EvenPredicate"], [65, 1, 1, "", "OddPredicate"], [65, 1, 1, "", "PrimePredicate"]], "sympy.assumptions.predicates.ntheory.CompositePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.ntheory.EvenPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.ntheory.OddPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.ntheory.PrimePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order": [[65, 1, 1, "", "NegativePredicate"], [65, 1, 1, "", "NonNegativePredicate"], [65, 1, 1, "", "NonPositivePredicate"], [65, 1, 1, "", "NonZeroPredicate"], [65, 1, 1, "", "PositivePredicate"], [65, 1, 1, "", "ZeroPredicate"]], "sympy.assumptions.predicates.order.NegativePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.NonNegativePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.NonPositivePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.NonZeroPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.PositivePredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.order.ZeroPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets": [[65, 1, 1, "", "AlgebraicPredicate"], [65, 1, 1, "", "AntihermitianPredicate"], [65, 1, 1, "", "ComplexPredicate"], [65, 1, 1, "", "ExtendedRealPredicate"], [65, 1, 1, "", "HermitianPredicate"], [65, 1, 1, "", "ImaginaryPredicate"], [65, 1, 1, "", "IntegerPredicate"], [65, 1, 1, "", "IrrationalPredicate"], [65, 1, 1, "", "RationalPredicate"], [65, 1, 1, "", "RealPredicate"], [65, 1, 1, "", "TranscendentalPredicate"]], "sympy.assumptions.predicates.sets.AlgebraicPredicate": [[65, 5, 1, "", "AlgebraicHandler"], [65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.AntihermitianPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.ComplexPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.ExtendedRealPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.HermitianPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.ImaginaryPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.IntegerPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.IrrationalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.RationalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.RealPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.predicates.sets.TranscendentalPredicate": [[65, 5, 1, "", "handler"]], "sympy.assumptions.refine": [[66, 4, 1, "", "refine"], [66, 4, 1, "", "refine_Pow"], [66, 4, 1, "", "refine_abs"], [66, 4, 1, "", "refine_arg"], [66, 4, 1, "", "refine_atan2"], [66, 4, 1, "", "refine_im"], [66, 4, 1, "", "refine_matrixelement"], [66, 4, 1, "", "refine_re"], [66, 4, 1, "", "refine_sign"]], "sympy.calculus": [[67, 0, 0, "-", "euler"], [67, 0, 0, "-", "finite_diff"], [67, 0, 0, "-", "singularities"], [67, 0, 0, "-", "util"]], "sympy.calculus.euler": [[67, 4, 1, "", "euler_equations"]], "sympy.calculus.finite_diff": [[67, 4, 1, "", "apply_finite_diff"], [67, 4, 1, "", "differentiate_finite"], [67, 4, 1, "", "finite_diff_weights"]], "sympy.calculus.singularities": [[67, 4, 1, "", "is_decreasing"], [67, 4, 1, "", "is_increasing"], [67, 4, 1, "", "is_monotonic"], [67, 4, 1, "", "is_strictly_decreasing"], [67, 4, 1, "", "is_strictly_increasing"], [67, 4, 1, "", "monotonicity_helper"], [67, 4, 1, "", "singularities"]], "sympy.calculus.util": [[67, 4, 1, "", "continuous_domain"], [67, 4, 1, "", "function_range"], [67, 4, 1, "", "is_convex"], [67, 4, 1, "", "lcim"], [67, 4, 1, "", "maximum"], [67, 4, 1, "", "minimum"], [67, 4, 1, "", "not_empty_in"], [67, 4, 1, "", "periodicity"], [67, 4, 1, "", "stationary_points"]], "sympy.categories": [[68, 1, 1, "", "Category"], [68, 1, 1, "", "CompositeMorphism"], [68, 1, 1, "", "Diagram"], [68, 1, 1, "", "IdentityMorphism"], [68, 1, 1, "", "Morphism"], [68, 1, 1, "", "NamedMorphism"], [68, 1, 1, "", "Object"], [68, 0, 0, "-", "diagram_drawing"]], "sympy.categories.Category": [[68, 3, 1, "", "commutative_diagrams"], [68, 3, 1, "", "name"], [68, 3, 1, "", "objects"]], "sympy.categories.CompositeMorphism": [[68, 3, 1, "", "codomain"], [68, 3, 1, "", "components"], [68, 3, 1, "", "domain"], [68, 2, 1, "", "flatten"]], "sympy.categories.Diagram": [[68, 3, 1, "", "conclusions"], [68, 2, 1, "", "hom"], [68, 2, 1, "", "is_subdiagram"], [68, 3, 1, "", "objects"], [68, 3, 1, "", "premises"], [68, 2, 1, "", "subdiagram_from_objects"]], "sympy.categories.Morphism": [[68, 3, 1, "", "codomain"], [68, 2, 1, "", "compose"], [68, 3, 1, "", "domain"]], "sympy.categories.NamedMorphism": [[68, 3, 1, "", "name"]], "sympy.categories.diagram_drawing": [[68, 1, 1, "", "ArrowStringDescription"], [68, 1, 1, "", "DiagramGrid"], [68, 1, 1, "", "XypicDiagramDrawer"], [68, 4, 1, "", "preview_diagram"], [68, 4, 1, "", "xypic_draw_diagram"]], "sympy.categories.diagram_drawing.DiagramGrid": [[68, 3, 1, "", "height"], [68, 3, 1, "", "morphisms"], [68, 3, 1, "", "width"]], "sympy.categories.diagram_drawing.XypicDiagramDrawer": [[68, 2, 1, "", "draw"]], "sympy.codegen": [[69, 0, 0, "-", "algorithms"], [69, 0, 0, "-", "approximations"], [69, 0, 0, "-", "ast"], [69, 0, 0, "-", "cfunctions"], [69, 0, 0, "-", "cnodes"], [69, 0, 0, "-", "cutils"], [69, 0, 0, "-", "cxxnodes"], [69, 0, 0, "-", "fnodes"], [69, 0, 0, "-", "futils"], [69, 0, 0, "-", "matrix_nodes"], [69, 0, 0, "-", "pyutils"], [69, 0, 0, "-", "rewriting"]], "sympy.codegen.algorithms": [[69, 4, 1, "", "newtons_method"], [69, 4, 1, "", "newtons_method_function"]], "sympy.codegen.approximations": [[69, 1, 1, "", "SeriesApprox"], [69, 1, 1, "", "SumApprox"]], "sympy.codegen.ast": [[69, 1, 1, "", "Assignment"], [69, 1, 1, "", "AssignmentBase"], [69, 1, 1, "", "Attribute"], [69, 1, 1, "", "AugmentedAssignment"], [69, 1, 1, "", "BreakToken"], [69, 1, 1, "", "CodeBlock"], [69, 1, 1, "", "Comment"], [69, 1, 1, "", "ComplexType"], [69, 1, 1, "", "ContinueToken"], [69, 1, 1, "", "Declaration"], [69, 1, 1, "", "Element"], [69, 1, 1, "", "FloatBaseType"], [69, 1, 1, "", "FloatType"], [69, 1, 1, "", "For"], [69, 1, 1, "", "FunctionCall"], [69, 1, 1, "", "FunctionDefinition"], [69, 1, 1, "", "FunctionPrototype"], [69, 1, 1, "", "IntBaseType"], [69, 1, 1, "", "Node"], [69, 1, 1, "", "NoneToken"], [69, 1, 1, "", "Pointer"], [69, 1, 1, "", "Print"], [69, 1, 1, "", "QuotedString"], [69, 1, 1, "", "Raise"], [69, 1, 1, "", "Return"], [69, 1, 1, "", "RuntimeError_"], [69, 1, 1, "", "Scope"], [69, 1, 1, "", "SignedIntType"], [69, 1, 1, "", "Stream"], [69, 1, 1, "", "String"], [69, 1, 1, "", "Token"], [69, 1, 1, "", "Type"], [69, 1, 1, "", "UnsignedIntType"], [69, 1, 1, "", "Variable"], [69, 1, 1, "", "While"], [69, 4, 1, "", "aug_assign"]], "sympy.codegen.ast.CodeBlock": [[69, 2, 1, "", "cse"], [69, 2, 1, "", "topological_sort"]], "sympy.codegen.ast.FloatBaseType": [[69, 5, 1, "", "cast_nocheck"]], "sympy.codegen.ast.FloatType": [[69, 2, 1, "", "cast_nocheck"], [69, 3, 1, "", "decimal_dig"], [69, 3, 1, "", "dig"], [69, 3, 1, "", "eps"], [69, 3, 1, "", "max"], [69, 3, 1, "", "max_exponent"], [69, 3, 1, "", "min_exponent"], [69, 3, 1, "", "tiny"]], "sympy.codegen.ast.Node": [[69, 2, 1, "", "attr_params"]], "sympy.codegen.ast.Token": [[69, 2, 1, "", "kwargs"]], "sympy.codegen.ast.Type": [[69, 2, 1, "", "cast_check"], [69, 2, 1, "", "from_expr"]], "sympy.codegen.ast.Variable": [[69, 2, 1, "", "as_Declaration"], [69, 2, 1, "", "deduced"]], "sympy.codegen.cfunctions": [[69, 1, 1, "", "Cbrt"], [69, 1, 1, "", "Sqrt"], [69, 1, 1, "", "exp2"], [69, 1, 1, "", "expm1"], [69, 1, 1, "", "fma"], [69, 1, 1, "", "hypot"], [69, 1, 1, "", "log10"], [69, 1, 1, "", "log1p"], [69, 1, 1, "", "log2"]], "sympy.codegen.cfunctions.Cbrt": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.Sqrt": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.exp2": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.expm1": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.fma": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.hypot": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.log10": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.log1p": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cfunctions.log2": [[69, 2, 1, "", "fdiff"]], "sympy.codegen.cnodes": [[69, 1, 1, "", "CommaOperator"], [69, 1, 1, "", "Label"], [69, 1, 1, "", "PostDecrement"], [69, 1, 1, "", "PostIncrement"], [69, 1, 1, "", "PreDecrement"], [69, 1, 1, "", "PreIncrement"], [69, 4, 1, "", "alignof"], [69, 1, 1, "", "goto"], [69, 4, 1, "", "sizeof"], [69, 1, 1, "", "struct"], [69, 1, 1, "", "union"]], "sympy.codegen.cutils": [[69, 4, 1, "", "render_as_source_file"]], "sympy.codegen.cxxnodes": [[69, 1, 1, "", "using"]], "sympy.codegen.fnodes": [[69, 1, 1, "", "ArrayConstructor"], [69, 1, 1, "", "Do"], [69, 1, 1, "", "Extent"], [69, 1, 1, "", "FortranReturn"], [69, 1, 1, "", "GoTo"], [69, 1, 1, "", "ImpliedDoLoop"], [69, 1, 1, "", "Module"], [69, 1, 1, "", "Program"], [69, 1, 1, "", "Subroutine"], [69, 1, 1, "", "SubroutineCall"], [69, 4, 1, "", "allocated"], [69, 4, 1, "", "array"], [69, 4, 1, "", "bind_C"], [69, 1, 1, "", "cmplx"], [69, 4, 1, "", "dimension"], [69, 1, 1, "", "dsign"], [69, 1, 1, "", "isign"], [69, 1, 1, "", "kind"], [69, 4, 1, "", "lbound"], [69, 1, 1, "", "literal_dp"], [69, 1, 1, "", "literal_sp"], [69, 1, 1, "", "merge"], [69, 4, 1, "", "reshape"], [69, 4, 1, "", "shape"], [69, 4, 1, "", "size"], [69, 1, 1, "", "use"], [69, 1, 1, "", "use_rename"]], "sympy.codegen.futils": [[69, 4, 1, "", "render_as_module"]], "sympy.codegen.matrix_nodes": [[69, 1, 1, "", "MatrixSolve"]], "sympy.codegen.pyutils": [[69, 4, 1, "", "render_as_module"]], "sympy.codegen.rewriting": [[69, 1, 1, "", "FuncMinusOneOptim"], [69, 1, 1, "", "Optimization"], [69, 1, 1, "", "ReplaceOptim"], [69, 4, 1, "", "create_expand_pow_optimization"], [69, 4, 1, "", "optimize"]], "sympy.codegen.rewriting.FuncMinusOneOptim": [[69, 2, 1, "", "replace_in_Add"]], "sympy.combinatorics": [[71, 0, 0, "-", "galois"], [80, 0, 0, "-", "generators"], [72, 0, 0, "-", "graycode"], [73, 0, 0, "-", "group_constructs"], [74, 0, 0, "-", "group_numbers"], [76, 0, 0, "-", "named_groups"], [77, 0, 0, "-", "partitions"], [79, 0, 0, "-", "perm_groups"], [80, 0, 0, "-", "permutations"], [81, 0, 0, "-", "polyhedron"], [82, 0, 0, "-", "prufer"], [83, 0, 0, "-", "subsets"], [84, 0, 0, "-", "tensor_can"], [85, 0, 0, "-", "testutil"], [86, 0, 0, "-", "util"]], "sympy.combinatorics.galois": [[71, 4, 1, "", "A4_in_S6"], [71, 4, 1, "", "A4xC2"], [71, 4, 1, "", "G18"], [71, 4, 1, "", "G36m"], [71, 4, 1, "", "G36p"], [71, 4, 1, "", "G72"], [71, 4, 1, "", "M20"], [71, 4, 1, "", "PGL2F5"], [71, 4, 1, "", "PSL2F5"], [71, 1, 1, "", "S1TransitiveSubgroups"], [71, 1, 1, "", "S2TransitiveSubgroups"], [71, 1, 1, "", "S3TransitiveSubgroups"], [71, 4, 1, "", "S3_in_S6"], [71, 1, 1, "", "S4TransitiveSubgroups"], [71, 4, 1, "", "S4m"], [71, 4, 1, "", "S4p"], [71, 4, 1, "", "S4xC2"], [71, 1, 1, "", "S5TransitiveSubgroups"], [71, 1, 1, "", "S6TransitiveSubgroups"], [71, 4, 1, "", "find_transitive_subgroups_of_S6"], [71, 4, 1, "", "four_group"]], "sympy.combinatorics.generators": [[80, 2, 1, "", "alternating"], [80, 2, 1, "", "cyclic"], [80, 2, 1, "", "dihedral"], [80, 2, 1, "", "symmetric"]], "sympy.combinatorics.graycode": [[72, 1, 1, "", "GrayCode"], [72, 2, 1, "", "bin_to_gray"], [72, 2, 1, "", "get_subset_from_bitstring"], [72, 2, 1, "", "gray_to_bin"], [72, 2, 1, "", "graycode_subsets"], [72, 2, 1, "", "random_bitstring"]], "sympy.combinatorics.graycode.GrayCode": [[72, 3, 1, "", "current"], [72, 2, 1, "", "generate_gray"], [72, 3, 1, "", "n"], [72, 2, 1, "", "next"], [72, 3, 1, "", "rank"], [72, 3, 1, "", "selections"], [72, 2, 1, "", "skip"], [72, 2, 1, "", "unrank"]], "sympy.combinatorics.group_constructs": [[73, 4, 1, "", "DirectProduct"]], "sympy.combinatorics.group_numbers": [[74, 4, 1, "", "groups_count"], [74, 4, 1, "", "is_abelian_number"], [74, 4, 1, "", "is_cyclic_number"], [74, 4, 1, "", "is_nilpotent_number"]], "sympy.combinatorics.named_groups": [[76, 4, 1, "", "AbelianGroup"], [76, 4, 1, "", "AlternatingGroup"], [76, 4, 1, "", "CyclicGroup"], [76, 4, 1, "", "DihedralGroup"], [76, 4, 1, "", "SymmetricGroup"]], "sympy.combinatorics.partitions": [[77, 1, 1, "", "IntegerPartition"], [77, 1, 1, "", "Partition"], [77, 4, 1, "", "RGS_enum"], [77, 4, 1, "", "RGS_generalized"], [77, 4, 1, "", "RGS_rank"], [77, 4, 1, "", "RGS_unrank"], [77, 4, 1, "", "random_integer_partition"]], "sympy.combinatorics.partitions.IntegerPartition": [[77, 2, 1, "", "as_dict"], [77, 2, 1, "", "as_ferrers"], [77, 3, 1, "", "conjugate"], [77, 2, 1, "", "next_lex"], [77, 2, 1, "", "prev_lex"]], "sympy.combinatorics.partitions.Partition": [[77, 3, 1, "", "RGS"], [77, 2, 1, "", "from_rgs"], [77, 3, 1, "", "partition"], [77, 3, 1, "", "rank"], [77, 2, 1, "", "sort_key"]], "sympy.combinatorics.perm_groups": [[79, 1, 1, "", "PermutationGroup"]], "sympy.combinatorics.perm_groups.PermutationGroup": [[79, 2, 1, "", "__contains__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "__new__"], [79, 5, 1, "", "__weakref__"], [79, 2, 1, "", "_coset_representative"], [79, 2, 1, "", "_distinct_primes_lemma"], [79, 2, 1, "", "_eval_is_alt_sym_monte_carlo"], [79, 2, 1, "", "_eval_is_alt_sym_naive"], [79, 2, 1, "", "_p_elements_group"], [79, 2, 1, "", "_random_pr_init"], [79, 2, 1, "", "_sylow_alt_sym"], [79, 2, 1, "", "_union_find_merge"], [79, 2, 1, "", "_union_find_rep"], [79, 2, 1, "", "_verify"], [79, 2, 1, "", "abelian_invariants"], [79, 3, 1, "", "base"], [79, 2, 1, "", "baseswap"], [79, 3, 1, "", "basic_orbits"], [79, 3, 1, "", "basic_stabilizers"], [79, 3, 1, "", "basic_transversals"], [79, 2, 1, "", "center"], [79, 2, 1, "", "centralizer"], [79, 2, 1, "", "commutator"], [79, 2, 1, "", "composition_series"], [79, 2, 1, "", "conjugacy_class"], [79, 2, 1, "", "conjugacy_classes"], [79, 2, 1, "", "contains"], [79, 2, 1, "", "coset_factor"], [79, 2, 1, "", "coset_rank"], [79, 2, 1, "", "coset_table"], [79, 2, 1, "", "coset_transversal"], [79, 2, 1, "", "coset_unrank"], [79, 3, 1, "", "degree"], [79, 2, 1, "", "derived_series"], [79, 2, 1, "", "derived_subgroup"], [79, 3, 1, "", "elements"], [79, 2, 1, "", "equals"], [79, 2, 1, "", "generate"], [79, 2, 1, "", "generate_dimino"], [79, 2, 1, "", "generate_schreier_sims"], [79, 2, 1, "", "generator_product"], [79, 3, 1, "", "generators"], [79, 3, 1, "", "identity"], [79, 2, 1, "", "index"], [79, 3, 1, "", "is_abelian"], [79, 2, 1, "", "is_alt_sym"], [79, 3, 1, "", "is_alternating"], [79, 3, 1, "", "is_cyclic"], [79, 3, 1, "", "is_dihedral"], [79, 2, 1, "", "is_elementary"], [79, 3, 1, "", "is_nilpotent"], [79, 2, 1, "", "is_normal"], [79, 3, 1, "", "is_perfect"], [79, 3, 1, "", "is_polycyclic"], [79, 2, 1, "", "is_primitive"], [79, 3, 1, "", "is_solvable"], [79, 2, 1, "", "is_subgroup"], [79, 3, 1, "", "is_symmetric"], [79, 2, 1, "", "is_transitive"], [79, 3, 1, "", "is_trivial"], [79, 2, 1, "", "lower_central_series"], [79, 2, 1, "", "make_perm"], [79, 3, 1, "", "max_div"], [79, 2, 1, "", "minimal_block"], [79, 2, 1, "", "minimal_blocks"], [79, 2, 1, "", "normal_closure"], [79, 2, 1, "", "orbit"], [79, 2, 1, "", "orbit_rep"], [79, 2, 1, "", "orbit_transversal"], [79, 2, 1, "", "orbits"], [79, 2, 1, "", "order"], [79, 2, 1, "", "pointwise_stabilizer"], [79, 2, 1, "", "polycyclic_group"], [79, 2, 1, "", "presentation"], [79, 2, 1, "", "random"], [79, 2, 1, "", "random_pr"], [79, 2, 1, "", "random_stab"], [79, 2, 1, "", "schreier_sims"], [79, 2, 1, "", "schreier_sims_incremental"], [79, 2, 1, "", "schreier_sims_random"], [79, 2, 1, "", "schreier_vector"], [79, 2, 1, "", "stabilizer"], [79, 3, 1, "", "strong_gens"], [79, 2, 1, "", "strong_presentation"], [79, 2, 1, "", "subgroup"], [79, 2, 1, "", "subgroup_search"], [79, 2, 1, "", "sylow_subgroup"], [79, 3, 1, "", "transitivity_degree"]], "sympy.combinatorics.permutations": [[80, 1, 1, "", "Cycle"], [80, 1, 1, "", "Permutation"], [80, 4, 1, "", "_af_parity"]], "sympy.combinatorics.permutations.Cycle": [[80, 2, 1, "", "list"]], "sympy.combinatorics.permutations.Permutation": [[80, 2, 1, "", "apply"], [80, 3, 1, "", "array_form"], [80, 2, 1, "", "ascents"], [80, 2, 1, "", "atoms"], [80, 3, 1, "", "cardinality"], [80, 2, 1, "", "commutator"], [80, 2, 1, "", "commutes_with"], [80, 3, 1, "", "cycle_structure"], [80, 3, 1, "", "cycles"], [80, 3, 1, "", "cyclic_form"], [80, 2, 1, "", "descents"], [80, 2, 1, "", "from_inversion_vector"], [80, 2, 1, "", "from_sequence"], [80, 3, 1, "", "full_cyclic_form"], [80, 2, 1, "", "get_adjacency_distance"], [80, 2, 1, "", "get_adjacency_matrix"], [80, 2, 1, "", "get_positional_distance"], [80, 2, 1, "", "get_precedence_distance"], [80, 2, 1, "", "get_precedence_matrix"], [80, 2, 1, "", "index"], [80, 2, 1, "", "inversion_vector"], [80, 2, 1, "", "inversions"], [80, 3, 1, "", "is_Empty"], [80, 3, 1, "", "is_Identity"], [80, 3, 1, "", "is_Singleton"], [80, 3, 1, "", "is_even"], [80, 3, 1, "", "is_odd"], [80, 2, 1, "", "josephus"], [80, 2, 1, "", "length"], [80, 2, 1, "", "list"], [80, 2, 1, "", "max"], [80, 2, 1, "", "min"], [80, 2, 1, "", "mul_inv"], [80, 2, 1, "", "next_lex"], [80, 2, 1, "", "next_nonlex"], [80, 2, 1, "", "next_trotterjohnson"], [80, 2, 1, "", "order"], [80, 2, 1, "", "parity"], [80, 2, 1, "", "random"], [80, 2, 1, "", "rank"], [80, 2, 1, "", "rank_nonlex"], [80, 2, 1, "", "rank_trotterjohnson"], [80, 2, 1, "", "resize"], [80, 2, 1, "", "rmul"], [80, 2, 1, "", "rmul_with_af"], [80, 2, 1, "", "runs"], [80, 2, 1, "", "signature"], [80, 3, 1, "", "size"], [80, 2, 1, "", "support"], [80, 2, 1, "", "transpositions"], [80, 2, 1, "", "unrank_lex"], [80, 2, 1, "", "unrank_nonlex"], [80, 2, 1, "", "unrank_trotterjohnson"]], "sympy.combinatorics.polyhedron": [[81, 1, 1, "", "Polyhedron"]], "sympy.combinatorics.polyhedron.Polyhedron": [[81, 3, 1, "", "array_form"], [81, 3, 1, "", "corners"], [81, 3, 1, "", "cyclic_form"], [81, 3, 1, "", "edges"], [81, 3, 1, "", "faces"], [81, 3, 1, "", "pgroup"], [81, 2, 1, "", "reset"], [81, 2, 1, "", "rotate"], [81, 3, 1, "", "size"], [81, 3, 1, "", "vertices"]], "sympy.combinatorics.prufer": [[82, 1, 1, "", "Prufer"]], "sympy.combinatorics.prufer.Prufer": [[82, 2, 1, "", "edges"], [82, 2, 1, "", "next"], [82, 3, 1, "", "nodes"], [82, 2, 1, "", "prev"], [82, 2, 1, "", "prufer_rank"], [82, 3, 1, "", "prufer_repr"], [82, 3, 1, "", "rank"], [82, 3, 1, "", "size"], [82, 2, 1, "", "to_prufer"], [82, 2, 1, "", "to_tree"], [82, 3, 1, "", "tree_repr"], [82, 2, 1, "", "unrank"]], "sympy.combinatorics.subsets": [[83, 1, 1, "", "Subset"], [83, 2, 1, "", "ksubsets"]], "sympy.combinatorics.subsets.Subset": [[83, 2, 1, "", "bitlist_from_subset"], [83, 3, 1, "", "cardinality"], [83, 2, 1, "", "iterate_binary"], [83, 2, 1, "", "iterate_graycode"], [83, 2, 1, "", "next_binary"], [83, 2, 1, "", "next_gray"], [83, 2, 1, "", "next_lexicographic"], [83, 2, 1, "", "prev_binary"], [83, 2, 1, "", "prev_gray"], [83, 2, 1, "", "prev_lexicographic"], [83, 3, 1, "", "rank_binary"], [83, 3, 1, "", "rank_gray"], [83, 3, 1, "", "rank_lexicographic"], [83, 3, 1, "", "size"], [83, 3, 1, "", "subset"], [83, 2, 1, "", "subset_from_bitlist"], [83, 2, 1, "", "subset_indices"], [83, 3, 1, "", "superset"], [83, 3, 1, "", "superset_size"], [83, 2, 1, "", "unrank_binary"], [83, 2, 1, "", "unrank_gray"]], "sympy.combinatorics.tensor_can": [[84, 4, 1, "", "bsgs_direct_product"], [84, 4, 1, "", "canonicalize"], [84, 4, 1, "", "double_coset_can_rep"], [84, 4, 1, "", "get_symmetric_group_sgs"]], "sympy.combinatorics.testutil": [[85, 4, 1, "", "_cmp_perm_lists"], [85, 4, 1, "", "_naive_list_centralizer"], [85, 4, 1, "", "_verify_bsgs"], [85, 4, 1, "", "_verify_centralizer"], [85, 4, 1, "", "_verify_normal_closure"]], "sympy.combinatorics.util": [[86, 4, 1, "", "_base_ordering"], [86, 4, 1, "", "_check_cycles_alt_sym"], [86, 4, 1, "", "_distribute_gens_by_base"], [86, 4, 1, "", "_handle_precomputed_bsgs"], [86, 4, 1, "", "_orbits_transversals_from_bsgs"], [86, 4, 1, "", "_remove_gens"], [86, 4, 1, "", "_strip"], [86, 4, 1, "", "_strong_gens_from_distr"]], "sympy.concrete.expr_with_intlimits": [[87, 1, 1, "", "ExprWithIntLimits"]], "sympy.concrete.expr_with_intlimits.ExprWithIntLimits": [[87, 2, 1, "", "change_index"], [87, 3, 1, "", "has_empty_sequence"], [87, 2, 1, "", "index"], [87, 2, 1, "", "reorder"], [87, 2, 1, "", "reorder_limit"]], "sympy.concrete.expr_with_limits": [[115, 1, 1, "", "ExprWithLimits"]], "sympy.concrete.expr_with_limits.ExprWithLimits": [[115, 3, 1, "", "bound_symbols"], [115, 3, 1, "", "free_symbols"], [115, 3, 1, "", "function"], [115, 3, 1, "", "has_finite_limits"], [115, 3, 1, "", "has_reversed_limits"], [115, 3, 1, "", "is_number"], [115, 3, 1, "", "limits"], [115, 3, 1, "", "variables"]], "sympy.concrete.gosper": [[87, 4, 1, "", "gosper_normal"], [87, 4, 1, "", "gosper_sum"], [87, 4, 1, "", "gosper_term"]], "sympy.concrete.products": [[87, 1, 1, "", "Product"], [87, 4, 1, "", "product"]], "sympy.concrete.products.Product": [[87, 2, 1, "", "is_convergent"], [87, 2, 1, "", "reverse_order"]], "sympy.concrete.summations": [[87, 1, 1, "", "Sum"], [87, 4, 1, "", "summation"]], "sympy.concrete.summations.Sum": [[87, 2, 1, "", "euler_maclaurin"], [87, 2, 1, "", "eval_zeta_function"], [87, 2, 1, "", "is_absolutely_convergent"], [87, 2, 1, "", "is_convergent"], [87, 2, 1, "", "reverse_order"]], "sympy.core": [[88, 0, 0, "-", "add"], [88, 0, 0, "-", "assumptions"], [88, 0, 0, "-", "basic"], [88, 0, 0, "-", "cache"], [88, 0, 0, "-", "containers"], [88, 0, 0, "-", "evalf"], [88, 0, 0, "-", "expr"], [88, 0, 0, "-", "exprtools"], [88, 0, 0, "-", "function"], [88, 0, 0, "-", "intfunc"], [88, 0, 0, "-", "kind"], [88, 0, 0, "-", "mod"], [88, 0, 0, "-", "mul"], [88, 0, 0, "-", "multidimensional"], [88, 0, 0, "-", "numbers"], [88, 0, 0, "-", "power"], [88, 0, 0, "-", "random"], [88, 0, 0, "-", "relational"], [88, 0, 0, "-", "singleton"], [88, 0, 0, "-", "symbol"], [88, 0, 0, "-", "sympify"], [88, 0, 0, "-", "traversal"]], "sympy.core.add": [[88, 1, 1, "", "Add"]], "sympy.core.add.Add": [[88, 2, 1, "", "as_coeff_Add"], [88, 2, 1, "", "as_coeff_add"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "as_numer_denom"], [88, 2, 1, "", "as_real_imag"], [88, 2, 1, "", "as_two_terms"], [88, 2, 1, "", "extract_leading_order"], [88, 2, 1, "", "flatten"], [88, 2, 1, "", "primitive"]], "sympy.core.basic": [[88, 1, 1, "", "Atom"], [88, 1, 1, "", "Basic"]], "sympy.core.basic.Basic": [[88, 3, 1, "", "args"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "as_dummy"], [88, 3, 1, "", "assumptions0"], [88, 2, 1, "", "atoms"], [88, 3, 1, "", "canonical_variables"], [88, 2, 1, "", "class_key"], [88, 2, 1, "", "compare"], [88, 2, 1, "", "count"], [88, 2, 1, "", "count_ops"], [88, 2, 1, "", "doit"], [88, 2, 1, "", "dummy_eq"], [88, 2, 1, "", "find"], [88, 3, 1, "", "free_symbols"], [88, 2, 1, "", "fromiter"], [88, 3, 1, "", "func"], [88, 2, 1, "", "has"], [88, 2, 1, "", "has_free"], [88, 2, 1, "", "has_xfree"], [88, 3, 1, "", "is_comparable"], [88, 2, 1, "", "is_same"], [88, 2, 1, "", "match"], [88, 2, 1, "", "matches"], [88, 2, 1, "", "rcall"], [88, 2, 1, "", "refine"], [88, 2, 1, "", "replace"], [88, 2, 1, "", "rewrite"], [88, 2, 1, "", "simplify"], [88, 2, 1, "", "sort_key"], [88, 2, 1, "", "subs"], [88, 2, 1, "", "xreplace"]], "sympy.core.cache": [[88, 4, 1, "", "__cacheit"]], "sympy.core.containers": [[88, 1, 1, "", "Dict"], [88, 1, 1, "", "Tuple"], [88, 1, 1, "", "TupleKind"]], "sympy.core.containers.Dict": [[88, 2, 1, "", "get"], [88, 2, 1, "", "items"], [88, 2, 1, "", "keys"], [88, 2, 1, "", "values"]], "sympy.core.containers.Tuple": [[88, 2, 1, "", "index"], [88, 3, 1, "", "kind"], [88, 2, 1, "", "tuple_count"]], "sympy.core.evalf": [[88, 1, 1, "", "EvalfMixin"], [88, 4, 1, "", "N"], [88, 1, 1, "", "PrecisionExhausted"]], "sympy.core.evalf.EvalfMixin": [[88, 2, 1, "", "evalf"], [88, 2, 1, "", "n"]], "sympy.core.expr": [[88, 1, 1, "", "AtomicExpr"], [88, 1, 1, "", "Expr"], [88, 1, 1, "", "UnevaluatedExpr"]], "sympy.core.expr.Expr": [[88, 2, 1, "", "apart"], [88, 2, 1, "", "args_cnc"], [88, 2, 1, "", "as_coeff_Add"], [88, 2, 1, "", "as_coeff_Mul"], [88, 2, 1, "", "as_coeff_add"], [88, 2, 1, "", "as_coeff_exponent"], [88, 2, 1, "", "as_coeff_mul"], [88, 2, 1, "", "as_coefficient"], [88, 2, 1, "", "as_coefficients_dict"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "as_expr"], [88, 2, 1, "", "as_independent"], [88, 2, 1, "", "as_leading_term"], [88, 2, 1, "", "as_numer_denom"], [88, 2, 1, "", "as_ordered_factors"], [88, 2, 1, "", "as_ordered_terms"], [88, 2, 1, "", "as_poly"], [88, 2, 1, "", "as_powers_dict"], [88, 2, 1, "", "as_real_imag"], [88, 2, 1, "", "as_terms"], [88, 2, 1, "", "aseries"], [88, 2, 1, "", "cancel"], [88, 2, 1, "", "coeff"], [88, 2, 1, "", "collect"], [88, 2, 1, "", "combsimp"], [88, 2, 1, "", "compute_leading_term"], [88, 2, 1, "", "conjugate"], [88, 2, 1, "", "could_extract_minus_sign"], [88, 2, 1, "", "equals"], [88, 2, 1, "", "expand"], [88, 3, 1, "", "expr_free_symbols"], [88, 2, 1, "", "extract_additively"], [88, 2, 1, "", "extract_branch_factor"], [88, 2, 1, "", "extract_multiplicatively"], [88, 2, 1, "", "factor"], [88, 2, 1, "", "fourier_series"], [88, 2, 1, "", "fps"], [88, 2, 1, "", "gammasimp"], [88, 2, 1, "", "getO"], [88, 2, 1, "", "getn"], [88, 2, 1, "", "integrate"], [88, 2, 1, "", "invert"], [88, 2, 1, "", "is_algebraic_expr"], [88, 2, 1, "", "is_constant"], [88, 2, 1, "", "is_meromorphic"], [88, 3, 1, "", "is_number"], [88, 2, 1, "", "is_polynomial"], [88, 2, 1, "", "is_rational_function"], [88, 2, 1, "", "leadterm"], [88, 2, 1, "", "limit"], [88, 2, 1, "", "lseries"], [88, 2, 1, "", "normal"], [88, 2, 1, "", "nseries"], [88, 2, 1, "", "nsimplify"], [88, 2, 1, "", "powsimp"], [88, 2, 1, "", "primitive"], [88, 2, 1, "", "radsimp"], [88, 2, 1, "", "ratsimp"], [88, 2, 1, "", "removeO"], [88, 2, 1, "", "round"], [88, 2, 1, "", "separate"], [88, 2, 1, "", "series"], [88, 2, 1, "", "taylor_term"], [88, 2, 1, "", "together"], [88, 2, 1, "", "trigsimp"]], "sympy.core.exprtools": [[88, 4, 1, "", "factor_terms"], [88, 4, 1, "", "gcd_terms"]], "sympy.core.function": [[88, 1, 1, "", "Derivative"], [88, 1, 1, "", "Function"], [88, 1, 1, "", "FunctionClass"], [88, 1, 1, "", "Lambda"], [88, 1, 1, "", "PoleError"], [88, 1, 1, "", "Subs"], [88, 1, 1, "", "WildFunction"], [88, 4, 1, "", "count_ops"], [88, 4, 1, "", "diff"], [88, 4, 1, "", "expand"], [88, 4, 1, "", "expand_complex"], [88, 4, 1, "", "expand_func"], [88, 4, 1, "", "expand_log"], [88, 4, 1, "", "expand_mul"], [88, 4, 1, "", "expand_multinomial"], [88, 4, 1, "", "expand_power_base"], [88, 4, 1, "", "expand_power_exp"], [88, 4, 1, "", "expand_trig"], [88, 4, 1, "", "nfloat"]], "sympy.core.function.Derivative": [[88, 3, 1, "", "_diff_wrt"], [88, 2, 1, "", "_sort_variable_count"], [88, 2, 1, "", "as_finite_difference"], [88, 2, 1, "", "doit_numerically"]], "sympy.core.function.Function": [[88, 2, 1, "", "as_base_exp"], [88, 2, 1, "", "fdiff"], [88, 2, 1, "", "is_singular"]], "sympy.core.function.FunctionClass": [[88, 3, 1, "", "nargs"]], "sympy.core.function.Lambda": [[88, 3, 1, "", "bound_symbols"], [88, 3, 1, "", "expr"], [88, 3, 1, "", "is_identity"], [88, 3, 1, "", "signature"], [88, 3, 1, "", "variables"]], "sympy.core.function.Subs": [[88, 3, 1, "", "bound_symbols"], [88, 3, 1, "", "expr"], [88, 3, 1, "", "point"], [88, 3, 1, "", "variables"]], "sympy.core.intfunc": [[88, 4, 1, "", "igcd"], [88, 4, 1, "", "igcd_lehmer"], [88, 4, 1, "", "igcdex"], [88, 4, 1, "", "ilcm"], [88, 4, 1, "", "integer_log"], [88, 4, 1, "", "integer_nthroot"], [88, 4, 1, "", "isqrt"], [88, 4, 1, "", "mod_inverse"], [88, 4, 1, "", "num_digits"], [88, 4, 1, "", "trailing"]], "sympy.core.kind": [[88, 5, 1, "", "BooleanKind"], [88, 1, 1, "", "Kind"], [88, 5, 1, "", "NumberKind"], [88, 5, 1, "", "UndefinedKind"]], "sympy.core.mod": [[88, 1, 1, "", "Mod"]], "sympy.core.mul": [[88, 1, 1, "", "Mul"], [88, 4, 1, "", "prod"]], "sympy.core.mul.Mul": [[88, 2, 1, "", "as_coeff_Mul"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "as_ordered_factors"], [88, 2, 1, "", "as_two_terms"], [88, 2, 1, "", "flatten"]], "sympy.core.multidimensional": [[88, 1, 1, "", "vectorize"]], "sympy.core.numbers": [[88, 1, 1, "", "AlgebraicNumber"], [88, 1, 1, "", "Catalan"], [88, 1, 1, "", "ComplexInfinity"], [88, 1, 1, "", "EulerGamma"], [88, 1, 1, "", "Exp1"], [88, 1, 1, "", "Float"], [88, 1, 1, "", "GoldenRatio"], [88, 1, 1, "", "Half"], [88, 1, 1, "", "ImaginaryUnit"], [88, 1, 1, "", "Infinity"], [88, 1, 1, "", "Integer"], [88, 1, 1, "", "NaN"], [88, 1, 1, "", "NegativeInfinity"], [88, 1, 1, "", "NegativeOne"], [88, 1, 1, "", "Number"], [88, 1, 1, "", "NumberSymbol"], [88, 1, 1, "", "One"], [88, 1, 1, "", "Pi"], [88, 1, 1, "", "Rational"], [88, 5, 1, "", "RealNumber"], [88, 1, 1, "", "TribonacciConstant"], [88, 1, 1, "", "Zero"], [88, 4, 1, "", "equal_valued"], [88, 4, 1, "", "mod_inverse"], [88, 4, 1, "", "seterr"]], "sympy.core.numbers.AlgebraicNumber": [[88, 2, 1, "", "__new__"], [88, 2, 1, "", "as_expr"], [88, 2, 1, "", "as_poly"], [88, 2, 1, "", "coeffs"], [88, 2, 1, "", "field_element"], [88, 3, 1, "", "is_aliased"], [88, 3, 1, "", "is_primitive_element"], [88, 2, 1, "", "minpoly_of_element"], [88, 2, 1, "", "native_coeffs"], [88, 2, 1, "", "primitive_element"], [88, 2, 1, "", "to_algebraic_integer"], [88, 2, 1, "", "to_primitive_element"], [88, 2, 1, "", "to_root"]], "sympy.core.numbers.Number": [[88, 2, 1, "", "as_coeff_Add"], [88, 2, 1, "", "as_coeff_Mul"], [88, 2, 1, "", "cofactors"], [88, 2, 1, "", "gcd"], [88, 2, 1, "", "lcm"]], "sympy.core.numbers.NumberSymbol": [[88, 2, 1, "", "approximation"]], "sympy.core.numbers.Rational": [[88, 2, 1, "", "as_coeff_Add"], [88, 2, 1, "", "as_coeff_Mul"], [88, 2, 1, "", "as_content_primitive"], [88, 2, 1, "", "factors"], [88, 2, 1, "", "limit_denominator"]], "sympy.core.power": [[88, 1, 1, "", "Pow"]], "sympy.core.power.Pow": [[88, 2, 1, "", "as_base_exp"], [88, 2, 1, "", "as_content_primitive"]], "sympy.core.random": [[88, 4, 1, "", "_randint"], [88, 4, 1, "", "_randrange"], [88, 4, 1, "", "random_complex_number"], [88, 4, 1, "", "test_derivative_numerically"], [88, 4, 1, "", "verify_numerically"]], "sympy.core.relational": [[88, 5, 1, "", "Eq"], [88, 1, 1, "", "Equality"], [88, 5, 1, "", "Ge"], [88, 1, 1, "", "GreaterThan"], [88, 5, 1, "", "Gt"], [88, 5, 1, "", "Le"], [88, 1, 1, "", "LessThan"], [88, 5, 1, "", "Lt"], [88, 5, 1, "", "Ne"], [88, 5, 1, "", "Rel"], [88, 1, 1, "", "Relational"], [88, 1, 1, "", "StrictGreaterThan"], [88, 1, 1, "", "StrictLessThan"], [88, 1, 1, "", "Unequality"]], "sympy.core.relational.Equality": [[88, 2, 1, "", "as_poly"], [88, 2, 1, "", "integrate"]], "sympy.core.relational.Relational": [[88, 3, 1, "", "canonical"], [88, 2, 1, "", "equals"], [88, 3, 1, "", "lhs"], [88, 3, 1, "", "negated"], [88, 3, 1, "", "reversed"], [88, 3, 1, "", "reversedsign"], [88, 3, 1, "", "rhs"], [88, 3, 1, "", "strict"], [88, 3, 1, "", "weak"]], "sympy.core.singleton": [[88, 1, 1, "", "Singleton"], [88, 1, 1, "", "SingletonRegistry"]], "sympy.core.sorting": [[88, 4, 1, "", "default_sort_key"], [88, 4, 1, "", "ordered"]], "sympy.core.symbol": [[88, 1, 1, "", "Dummy"], [88, 1, 1, "", "Symbol"], [88, 1, 1, "", "Wild"], [88, 4, 1, "", "symbols"], [88, 4, 1, "", "var"]], "sympy.core.sympify": [[88, 4, 1, "", "sympify"]], "sympy.core.traversal": [[88, 4, 1, "", "bottom_up"], [88, 4, 1, "", "postorder_traversal"], [88, 4, 1, "", "preorder_traversal"], [88, 4, 1, "", "use"], [88, 4, 1, "", "walk"]], "sympy.crypto": [[89, 0, 0, "-", "crypto"]], "sympy.crypto.crypto": [[89, 4, 1, "", "AZ"], [89, 4, 1, "", "bifid5_square"], [89, 4, 1, "", "bifid6_square"], [89, 4, 1, "", "check_and_join"], [89, 4, 1, "", "cycle_list"], [89, 4, 1, "", "decipher_affine"], [89, 4, 1, "", "decipher_atbash"], [89, 4, 1, "", "decipher_bifid"], [89, 4, 1, "", "decipher_bifid5"], [89, 4, 1, "", "decipher_bifid6"], [89, 4, 1, "", "decipher_elgamal"], [89, 4, 1, "", "decipher_gm"], [89, 4, 1, "", "decipher_hill"], [89, 4, 1, "", "decipher_kid_rsa"], [89, 4, 1, "", "decipher_railfence"], [89, 4, 1, "", "decipher_rot13"], [89, 4, 1, "", "decipher_rsa"], [89, 4, 1, "", "decipher_shift"], [89, 4, 1, "", "decipher_vigenere"], [89, 4, 1, "", "decode_morse"], [89, 4, 1, "", "dh_private_key"], [89, 4, 1, "", "dh_public_key"], [89, 4, 1, "", "dh_shared_key"], [89, 4, 1, "", "elgamal_private_key"], [89, 4, 1, "", "elgamal_public_key"], [89, 4, 1, "", "encipher_affine"], [89, 4, 1, "", "encipher_atbash"], [89, 4, 1, "", "encipher_bifid"], [89, 4, 1, "", "encipher_bifid5"], [89, 4, 1, "", "encipher_bifid6"], [89, 4, 1, "", "encipher_elgamal"], [89, 4, 1, "", "encipher_gm"], [89, 4, 1, "", "encipher_hill"], [89, 4, 1, "", "encipher_kid_rsa"], [89, 4, 1, "", "encipher_railfence"], [89, 4, 1, "", "encipher_rot13"], [89, 4, 1, "", "encipher_rsa"], [89, 4, 1, "", "encipher_shift"], [89, 4, 1, "", "encipher_substitution"], [89, 4, 1, "", "encipher_vigenere"], [89, 4, 1, "", "encode_morse"], [89, 4, 1, "", "gm_private_key"], [89, 4, 1, "", "gm_public_key"], [89, 4, 1, "", "kid_rsa_private_key"], [89, 4, 1, "", "kid_rsa_public_key"], [89, 4, 1, "", "lfsr_autocorrelation"], [89, 4, 1, "", "lfsr_connection_polynomial"], [89, 4, 1, "", "lfsr_sequence"], [89, 4, 1, "", "padded_key"], [89, 4, 1, "", "rsa_private_key"], [89, 4, 1, "", "rsa_public_key"]], "sympy.diffgeom": [[90, 1, 1, "", "BaseCovarDerivativeOp"], [90, 1, 1, "", "BaseScalarField"], [90, 1, 1, "", "BaseVectorField"], [90, 1, 1, "", "Commutator"], [90, 1, 1, "", "CoordSystem"], [90, 1, 1, "", "CoordinateSymbol"], [90, 1, 1, "", "CovarDerivativeOp"], [90, 1, 1, "", "Differential"], [90, 1, 1, "", "LieDerivative"], [90, 1, 1, "", "Manifold"], [90, 1, 1, "", "Patch"], [90, 1, 1, "", "Point"], [90, 1, 1, "", "TensorProduct"], [90, 1, 1, "", "WedgeProduct"], [90, 4, 1, "", "intcurve_diffequ"], [90, 4, 1, "", "intcurve_series"], [90, 4, 1, "", "metric_to_Christoffel_1st"], [90, 4, 1, "", "metric_to_Christoffel_2nd"], [90, 4, 1, "", "metric_to_Ricci_components"], [90, 4, 1, "", "metric_to_Riemann_components"], [90, 4, 1, "", "twoform_to_matrix"], [90, 4, 1, "", "vectors_in_basis"]], "sympy.diffgeom.CoordSystem": [[90, 2, 1, "", "base_oneform"], [90, 2, 1, "", "base_oneforms"], [90, 2, 1, "", "base_scalar"], [90, 2, 1, "", "base_scalars"], [90, 2, 1, "", "base_vector"], [90, 2, 1, "", "base_vectors"], [90, 2, 1, "", "coord_function"], [90, 2, 1, "", "coord_functions"], [90, 2, 1, "", "coord_tuple_transform_to"], [90, 2, 1, "", "jacobian"], [90, 2, 1, "", "jacobian_determinant"], [90, 2, 1, "", "jacobian_matrix"], [90, 2, 1, "", "point"], [90, 2, 1, "", "point_to_coords"], [90, 2, 1, "", "transform"], [90, 2, 1, "", "transformation"]], "sympy.diffgeom.Point": [[90, 2, 1, "", "coords"]], "sympy.discrete": [[91, 0, 0, "-", "convolutions"], [91, 0, 0, "-", "transforms"]], "sympy.discrete.convolutions": [[91, 4, 1, "", "convolution"], [91, 4, 1, "", "convolution_fft"], [91, 4, 1, "", "convolution_fwht"], [91, 4, 1, "", "convolution_ntt"], [91, 4, 1, "", "convolution_subset"], [91, 4, 1, "", "covering_product"], [91, 4, 1, "", "intersecting_product"]], "sympy.discrete.transforms": [[91, 4, 1, "", "fft"], [91, 4, 1, "", "fwht"], [91, 4, 1, "", "ifft"], [91, 4, 1, "", "ifwht"], [91, 4, 1, "", "intt"], [91, 4, 1, "", "inverse_mobius_transform"], [91, 4, 1, "", "mobius_transform"], [91, 4, 1, "", "ntt"]], "sympy.external.pythonmpq": [[212, 1, 1, "", "PythonMPQ"]], "sympy.functions.combinatorial.factorials": [[93, 1, 1, "", "FallingFactorial"], [93, 1, 1, "", "MultiFactorial"], [93, 1, 1, "", "RisingFactorial"], [93, 1, 1, "", "binomial"], [93, 1, 1, "", "factorial"], [93, 1, 1, "", "factorial2"], [93, 1, 1, "", "subfactorial"]], "sympy.functions.combinatorial.numbers": [[93, 1, 1, "", "andre"], [93, 1, 1, "", "bell"], [93, 1, 1, "", "bernoulli"], [93, 1, 1, "", "catalan"], [93, 1, 1, "", "divisor_sigma"], [93, 1, 1, "", "euler"], [93, 1, 1, "", "fibonacci"], [93, 1, 1, "", "genocchi"], [93, 1, 1, "", "harmonic"], [93, 1, 1, "", "jacobi_symbol"], [93, 1, 1, "", "kronecker_symbol"], [93, 1, 1, "", "legendre_symbol"], [93, 1, 1, "", "lucas"], [93, 1, 1, "", "mobius"], [93, 4, 1, "", "nC"], [93, 4, 1, "", "nP"], [93, 4, 1, "", "nT"], [93, 1, 1, "", "partition"], [93, 1, 1, "", "primenu"], [93, 1, 1, "", "primeomega"], [93, 1, 1, "", "primepi"], [93, 1, 1, "", "reduced_totient"], [93, 4, 1, "", "stirling"], [93, 1, 1, "", "totient"], [93, 1, 1, "", "tribonacci"], [93, 1, 1, "", "udivisor_sigma"]], "sympy.functions.elementary.complexes": [[94, 1, 1, "", "Abs"], [94, 1, 1, "", "arg"], [94, 1, 1, "", "conjugate"], [94, 1, 1, "", "im"], [94, 1, 1, "", "periodic_argument"], [94, 1, 1, "", "polar_lift"], [94, 1, 1, "", "principal_branch"], [94, 1, 1, "", "re"], [94, 1, 1, "", "sign"]], "sympy.functions.elementary.complexes.Abs": [[94, 2, 1, "", "fdiff"]], "sympy.functions.elementary.complexes.im": [[94, 2, 1, "", "as_real_imag"]], "sympy.functions.elementary.complexes.re": [[94, 2, 1, "", "as_real_imag"]], "sympy.functions.elementary.exponential": [[94, 1, 1, "", "LambertW"], [94, 1, 1, "", "exp"], [94, 1, 1, "", "exp_polar"], [94, 1, 1, "", "log"]], "sympy.functions.elementary.exponential.LambertW": [[94, 2, 1, "", "fdiff"]], "sympy.functions.elementary.exponential.exp": [[94, 2, 1, "", "as_real_imag"], [94, 3, 1, "", "base"], [94, 2, 1, "", "fdiff"], [94, 2, 1, "", "taylor_term"]], "sympy.functions.elementary.exponential.log": [[94, 2, 1, "", "as_base_exp"], [94, 2, 1, "", "as_real_imag"], [94, 2, 1, "", "fdiff"], [94, 2, 1, "", "inverse"], [94, 2, 1, "", "taylor_term"]], "sympy.functions.elementary.hyperbolic": [[94, 1, 1, "", "HyperbolicFunction"], [94, 1, 1, "", "acosh"], [94, 1, 1, "", "acoth"], [94, 1, 1, "", "acsch"], [94, 1, 1, "", "asech"], [94, 1, 1, "", "asinh"], [94, 1, 1, "", "atanh"], [94, 1, 1, "", "cosh"], [94, 1, 1, "", "coth"], [94, 1, 1, "", "csch"], [94, 1, 1, "", "sech"], [94, 1, 1, "", "sinh"], [94, 1, 1, "", "tanh"]], "sympy.functions.elementary.hyperbolic.acosh": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.acoth": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.acsch": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.asech": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.asinh": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.atanh": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.coth": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.hyperbolic.csch": [[94, 2, 1, "", "fdiff"], [94, 2, 1, "", "taylor_term"]], "sympy.functions.elementary.hyperbolic.sinh": [[94, 2, 1, "", "as_real_imag"], [94, 2, 1, "", "fdiff"], [94, 2, 1, "", "inverse"], [94, 2, 1, "", "taylor_term"]], "sympy.functions.elementary.hyperbolic.tanh": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.integers": [[94, 1, 1, "", "RoundFunction"], [94, 1, 1, "", "ceiling"], [94, 1, 1, "", "floor"], [94, 1, 1, "", "frac"]], "sympy.functions.elementary.miscellaneous": [[94, 1, 1, "", "IdentityFunction"], [94, 1, 1, "", "Max"], [94, 1, 1, "", "Min"], [94, 4, 1, "", "cbrt"], [94, 4, 1, "", "real_root"], [94, 4, 1, "", "root"], [94, 4, 1, "", "sqrt"]], "sympy.functions.elementary.piecewise": [[94, 1, 1, "", "ExprCondPair"], [94, 1, 1, "", "Piecewise"], [94, 4, 1, "", "piecewise_exclusive"], [94, 4, 1, "", "piecewise_fold"]], "sympy.functions.elementary.piecewise.ExprCondPair": [[94, 3, 1, "", "cond"], [94, 3, 1, "", "expr"]], "sympy.functions.elementary.piecewise.Piecewise": [[94, 2, 1, "", "_eval_integral"], [94, 2, 1, "", "as_expr_set_pairs"], [94, 2, 1, "", "doit"], [94, 2, 1, "", "eval"], [94, 2, 1, "", "piecewise_integrate"]], "sympy.functions.elementary.trigonometric": [[94, 1, 1, "", "acos"], [94, 1, 1, "", "acot"], [94, 1, 1, "", "acsc"], [94, 1, 1, "", "asec"], [94, 1, 1, "", "asin"], [94, 1, 1, "", "atan"], [94, 1, 1, "", "atan2"], [94, 1, 1, "", "cos"], [94, 1, 1, "", "cot"], [94, 1, 1, "", "csc"], [94, 1, 1, "", "sec"], [94, 1, 1, "", "sin"], [94, 1, 1, "", "sinc"], [94, 1, 1, "", "tan"]], "sympy.functions.elementary.trigonometric.acos": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.acot": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.acsc": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.asec": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.asin": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.atan": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.cot": [[94, 2, 1, "", "inverse"]], "sympy.functions.elementary.trigonometric.tan": [[94, 2, 1, "", "inverse"]], "sympy.functions.special": [[96, 0, 0, "-", "bessel"], [96, 0, 0, "-", "beta_functions"], [96, 0, 0, "-", "elliptic_integrals"], [96, 0, 0, "-", "error_functions"], [96, 0, 0, "-", "gamma_functions"], [96, 0, 0, "-", "mathieu_functions"], [96, 0, 0, "-", "polynomials"], [96, 0, 0, "-", "singularity_functions"], [96, 0, 0, "-", "zeta_functions"]], "sympy.functions.special.bessel": [[96, 1, 1, "", "AiryBase"], [96, 1, 1, "", "BesselBase"], [96, 1, 1, "", "airyai"], [96, 1, 1, "", "airyaiprime"], [96, 1, 1, "", "airybi"], [96, 1, 1, "", "airybiprime"], [96, 1, 1, "", "besseli"], [96, 1, 1, "", "besselj"], [96, 1, 1, "", "besselk"], [96, 1, 1, "", "bessely"], [96, 1, 1, "", "hankel1"], [96, 1, 1, "", "hankel2"], [96, 1, 1, "", "jn"], [96, 4, 1, "", "jn_zeros"], [96, 1, 1, "", "marcumq"], [96, 1, 1, "", "yn"]], "sympy.functions.special.bessel.BesselBase": [[96, 3, 1, "", "argument"], [96, 3, 1, "", "order"]], "sympy.functions.special.beta_functions": [[96, 1, 1, "", "beta"]], "sympy.functions.special.bsplines": [[96, 4, 1, "", "bspline_basis"], [96, 4, 1, "", "bspline_basis_set"], [96, 4, 1, "", "interpolating_spline"]], "sympy.functions.special.delta_functions": [[96, 1, 1, "", "DiracDelta"], [96, 1, 1, "", "Heaviside"]], "sympy.functions.special.delta_functions.DiracDelta": [[96, 2, 1, "", "eval"], [96, 2, 1, "", "fdiff"], [96, 2, 1, "", "is_simple"]], "sympy.functions.special.delta_functions.Heaviside": [[96, 2, 1, "", "eval"], [96, 2, 1, "", "fdiff"], [96, 3, 1, "", "pargs"]], "sympy.functions.special.elliptic_integrals": [[96, 1, 1, "", "elliptic_e"], [96, 1, 1, "", "elliptic_f"], [96, 1, 1, "", "elliptic_k"], [96, 1, 1, "", "elliptic_pi"]], "sympy.functions.special.error_functions": [[96, 1, 1, "", "Chi"], [96, 1, 1, "", "Ci"], [96, 4, 1, "", "E1"], [96, 1, 1, "", "Ei"], [96, 1, 1, "", "FresnelIntegral"], [96, 1, 1, "", "Li"], [96, 1, 1, "", "Shi"], [96, 1, 1, "", "Si"], [96, 1, 1, "", "erf"], [96, 1, 1, "", "erf2"], [96, 1, 1, "", "erf2inv"], [96, 1, 1, "", "erfc"], [96, 1, 1, "", "erfcinv"], [96, 1, 1, "", "erfi"], [96, 1, 1, "", "erfinv"], [96, 1, 1, "", "expint"], [96, 1, 1, "", "fresnelc"], [96, 1, 1, "", "fresnels"], [96, 1, 1, "", "li"]], "sympy.functions.special.error_functions.erf": [[96, 2, 1, "", "inverse"]], "sympy.functions.special.error_functions.erfc": [[96, 2, 1, "", "inverse"]], "sympy.functions.special.error_functions.erfcinv": [[96, 2, 1, "", "inverse"]], "sympy.functions.special.error_functions.erfinv": [[96, 2, 1, "", "inverse"]], "sympy.functions.special.gamma_functions": [[96, 1, 1, "", "digamma"], [96, 1, 1, "", "gamma"], [96, 1, 1, "", "loggamma"], [96, 1, 1, "", "lowergamma"], [96, 1, 1, "", "multigamma"], [96, 1, 1, "", "polygamma"], [96, 1, 1, "", "trigamma"], [96, 1, 1, "", "uppergamma"]], "sympy.functions.special.hyper": [[96, 1, 1, "", "appellf1"], [96, 1, 1, "", "hyper"], [96, 1, 1, "", "meijerg"]], "sympy.functions.special.hyper.hyper": [[96, 3, 1, "", "ap"], [96, 3, 1, "", "argument"], [96, 3, 1, "", "bq"], [96, 3, 1, "", "convergence_statement"], [96, 3, 1, "", "eta"], [96, 3, 1, "", "radius_of_convergence"]], "sympy.functions.special.hyper.meijerg": [[96, 3, 1, "", "an"], [96, 3, 1, "", "aother"], [96, 3, 1, "", "ap"], [96, 3, 1, "", "argument"], [96, 3, 1, "", "bm"], [96, 3, 1, "", "bother"], [96, 3, 1, "", "bq"], [96, 3, 1, "", "delta"], [96, 2, 1, "", "get_period"], [96, 2, 1, "", "integrand"], [96, 3, 1, "", "is_number"], [96, 3, 1, "", "nu"]], "sympy.functions.special.mathieu_functions": [[96, 1, 1, "", "MathieuBase"], [96, 1, 1, "", "mathieuc"], [96, 1, 1, "", "mathieucprime"], [96, 1, 1, "", "mathieus"], [96, 1, 1, "", "mathieusprime"]], "sympy.functions.special.polynomials": [[96, 1, 1, "", "assoc_laguerre"], [96, 1, 1, "", "assoc_legendre"], [96, 1, 1, "", "chebyshevt"], [96, 1, 1, "", "chebyshevt_root"], [96, 1, 1, "", "chebyshevu"], [96, 1, 1, "", "chebyshevu_root"], [96, 1, 1, "", "gegenbauer"], [96, 1, 1, "", "hermite"], [96, 1, 1, "", "hermite_prob"], [96, 1, 1, "", "jacobi"], [96, 4, 1, "", "jacobi_normalized"], [96, 1, 1, "", "laguerre"], [96, 1, 1, "", "legendre"]], "sympy.functions.special.singularity_functions": [[96, 1, 1, "", "SingularityFunction"]], "sympy.functions.special.singularity_functions.SingularityFunction": [[96, 2, 1, "", "eval"], [96, 2, 1, "", "fdiff"]], "sympy.functions.special.spherical_harmonics": [[96, 1, 1, "", "Ynm"], [96, 4, 1, "", "Ynm_c"], [96, 1, 1, "", "Znm"]], "sympy.functions.special.tensor_functions": [[96, 4, 1, "", "Eijk"], [96, 1, 1, "", "KroneckerDelta"], [96, 1, 1, "", "LeviCivita"], [96, 4, 1, "", "eval_levicivita"]], "sympy.functions.special.tensor_functions.KroneckerDelta": [[96, 2, 1, "", "eval"], [96, 3, 1, "", "indices_contain_equal_information"], [96, 3, 1, "", "is_above_fermi"], [96, 3, 1, "", "is_below_fermi"], [96, 3, 1, "", "is_only_above_fermi"], [96, 3, 1, "", "is_only_below_fermi"], [96, 3, 1, "", "killable_index"], [96, 3, 1, "", "preferred_index"]], "sympy.functions.special.zeta_functions": [[96, 1, 1, "", "dirichlet_eta"], [96, 1, 1, "", "lerchphi"], [96, 1, 1, "", "polylog"], [96, 1, 1, "", "stieltjes"], [96, 1, 1, "", "zeta"]], "sympy.geometry": [[97, 0, 0, "-", "curve"], [98, 0, 0, "-", "ellipse"], [99, 0, 0, "-", "entity"], [101, 0, 0, "-", "line"], [102, 0, 0, "-", "plane"], [103, 0, 0, "-", "point"], [104, 0, 0, "-", "polygon"], [105, 0, 0, "-", "util"]], "sympy.geometry.curve": [[97, 1, 1, "", "Curve"]], "sympy.geometry.curve.Curve": [[97, 3, 1, "", "ambient_dimension"], [97, 2, 1, "", "arbitrary_point"], [97, 3, 1, "", "free_symbols"], [97, 3, 1, "", "functions"], [97, 3, 1, "", "length"], [97, 3, 1, "", "limits"], [97, 3, 1, "", "parameter"], [97, 2, 1, "", "plot_interval"], [97, 2, 1, "", "rotate"], [97, 2, 1, "", "scale"], [97, 2, 1, "", "translate"]], "sympy.geometry.ellipse": [[98, 1, 1, "", "Circle"], [98, 1, 1, "", "Ellipse"]], "sympy.geometry.ellipse.Circle": [[98, 3, 1, "", "circumference"], [98, 2, 1, "", "equation"], [98, 2, 1, "", "intersection"], [98, 3, 1, "", "radius"], [98, 2, 1, "", "reflect"], [98, 2, 1, "", "scale"], [98, 3, 1, "", "vradius"]], "sympy.geometry.ellipse.Ellipse": [[98, 3, 1, "", "apoapsis"], [98, 2, 1, "", "arbitrary_point"], [98, 3, 1, "", "area"], [98, 2, 1, "", "auxiliary_circle"], [98, 3, 1, "", "bounds"], [98, 3, 1, "", "center"], [98, 3, 1, "", "circumference"], [98, 2, 1, "", "director_circle"], [98, 3, 1, "", "eccentricity"], [98, 2, 1, "", "encloses_point"], [98, 2, 1, "", "equation"], [98, 2, 1, "", "evolute"], [98, 3, 1, "", "foci"], [98, 3, 1, "", "focus_distance"], [98, 3, 1, "", "hradius"], [98, 2, 1, "", "intersection"], [98, 2, 1, "", "is_tangent"], [98, 3, 1, "", "major"], [98, 3, 1, "", "minor"], [98, 2, 1, "", "normal_lines"], [98, 3, 1, "", "periapsis"], [98, 2, 1, "", "plot_interval"], [98, 2, 1, "", "polar_second_moment_of_area"], [98, 2, 1, "", "random_point"], [98, 2, 1, "", "reflect"], [98, 2, 1, "", "rotate"], [98, 2, 1, "", "scale"], [98, 2, 1, "", "second_moment_of_area"], [98, 2, 1, "", "section_modulus"], [98, 3, 1, "", "semilatus_rectum"], [98, 2, 1, "", "tangent_lines"], [98, 3, 1, "", "vradius"]], "sympy.geometry.entity": [[99, 1, 1, "", "GeometryEntity"]], "sympy.geometry.entity.GeometryEntity": [[99, 3, 1, "", "ambient_dimension"], [99, 3, 1, "", "bounds"], [99, 2, 1, "", "encloses"], [99, 2, 1, "", "intersection"], [99, 2, 1, "", "is_similar"], [99, 2, 1, "", "parameter_value"], [99, 2, 1, "", "reflect"], [99, 2, 1, "", "rotate"], [99, 2, 1, "", "scale"], [99, 2, 1, "", "translate"]], "sympy.geometry.line": [[101, 1, 1, "", "Line"], [101, 1, 1, "", "Line2D"], [101, 1, 1, "", "Line3D"], [101, 1, 1, "", "LinearEntity"], [101, 1, 1, "", "LinearEntity2D"], [101, 1, 1, "", "LinearEntity3D"], [101, 1, 1, "", "Ray"], [101, 1, 1, "", "Ray2D"], [101, 1, 1, "", "Ray3D"], [101, 1, 1, "", "Segment"], [101, 1, 1, "", "Segment2D"], [101, 1, 1, "", "Segment3D"]], "sympy.geometry.line.Line": [[101, 2, 1, "", "contains"], [101, 2, 1, "", "distance"], [101, 2, 1, "", "equals"], [101, 2, 1, "", "plot_interval"]], "sympy.geometry.line.Line2D": [[101, 3, 1, "", "coefficients"], [101, 2, 1, "", "equation"]], "sympy.geometry.line.Line3D": [[101, 2, 1, "", "distance"], [101, 2, 1, "", "equation"]], "sympy.geometry.line.LinearEntity": [[101, 3, 1, "", "ambient_dimension"], [101, 2, 1, "", "angle_between"], [101, 2, 1, "", "arbitrary_point"], [101, 2, 1, "", "are_concurrent"], [101, 2, 1, "", "bisectors"], [101, 2, 1, "", "contains"], [101, 3, 1, "", "direction"], [101, 2, 1, "", "intersection"], [101, 2, 1, "", "is_parallel"], [101, 2, 1, "", "is_perpendicular"], [101, 2, 1, "", "is_similar"], [101, 3, 1, "", "length"], [101, 3, 1, "", "p1"], [101, 3, 1, "", "p2"], [101, 2, 1, "", "parallel_line"], [101, 2, 1, "", "perpendicular_line"], [101, 2, 1, "", "perpendicular_segment"], [101, 3, 1, "", "points"], [101, 2, 1, "", "projection"], [101, 2, 1, "", "random_point"], [101, 2, 1, "", "smallest_angle_between"]], "sympy.geometry.line.LinearEntity2D": [[101, 3, 1, "", "bounds"], [101, 2, 1, "", "perpendicular_line"], [101, 3, 1, "", "slope"]], "sympy.geometry.line.LinearEntity3D": [[101, 3, 1, "", "direction_cosine"], [101, 3, 1, "", "direction_ratio"]], "sympy.geometry.line.Ray": [[101, 2, 1, "", "contains"], [101, 2, 1, "", "distance"], [101, 2, 1, "", "equals"], [101, 2, 1, "", "plot_interval"], [101, 3, 1, "", "source"]], "sympy.geometry.line.Ray2D": [[101, 2, 1, "", "closing_angle"], [101, 3, 1, "", "xdirection"], [101, 3, 1, "", "ydirection"]], "sympy.geometry.line.Ray3D": [[101, 3, 1, "", "xdirection"], [101, 3, 1, "", "ydirection"], [101, 3, 1, "", "zdirection"]], "sympy.geometry.line.Segment": [[101, 2, 1, "", "contains"], [101, 2, 1, "", "distance"], [101, 2, 1, "", "equals"], [101, 3, 1, "", "length"], [101, 3, 1, "", "midpoint"], [101, 2, 1, "", "perpendicular_bisector"], [101, 2, 1, "", "plot_interval"]], "sympy.geometry.plane": [[102, 1, 1, "", "Plane"]], "sympy.geometry.plane.Plane": [[102, 2, 1, "", "angle_between"], [102, 2, 1, "", "arbitrary_point"], [102, 2, 1, "", "are_concurrent"], [102, 2, 1, "", "distance"], [102, 2, 1, "", "equals"], [102, 2, 1, "", "equation"], [102, 2, 1, "", "intersection"], [102, 2, 1, "", "is_coplanar"], [102, 2, 1, "", "is_parallel"], [102, 2, 1, "", "is_perpendicular"], [102, 3, 1, "", "normal_vector"], [102, 3, 1, "", "p1"], [102, 2, 1, "", "parallel_plane"], [102, 2, 1, "", "parameter_value"], [102, 2, 1, "", "perpendicular_line"], [102, 2, 1, "", "perpendicular_plane"], [102, 2, 1, "", "projection"], [102, 2, 1, "", "projection_line"], [102, 2, 1, "", "random_point"]], "sympy.geometry.point": [[103, 1, 1, "", "Point"], [103, 1, 1, "", "Point2D"], [103, 1, 1, "", "Point3D"]], "sympy.geometry.point.Point": [[103, 2, 1, "", "affine_rank"], [103, 3, 1, "", "ambient_dimension"], [103, 2, 1, "", "are_coplanar"], [103, 2, 1, "", "canberra_distance"], [103, 2, 1, "", "distance"], [103, 2, 1, "", "dot"], [103, 2, 1, "", "equals"], [103, 2, 1, "", "intersection"], [103, 2, 1, "", "is_collinear"], [103, 2, 1, "", "is_concyclic"], [103, 3, 1, "", "is_nonzero"], [103, 2, 1, "", "is_scalar_multiple"], [103, 3, 1, "", "is_zero"], [103, 3, 1, "", "length"], [103, 2, 1, "", "midpoint"], [103, 3, 1, "", "origin"], [103, 3, 1, "", "orthogonal_direction"], [103, 2, 1, "", "project"], [103, 2, 1, "", "taxicab_distance"], [103, 3, 1, "", "unit"]], "sympy.geometry.point.Point2D": [[103, 3, 1, "", "bounds"], [103, 3, 1, "", "coordinates"], [103, 2, 1, "", "rotate"], [103, 2, 1, "", "scale"], [103, 2, 1, "", "transform"], [103, 2, 1, "", "translate"], [103, 3, 1, "", "x"], [103, 3, 1, "", "y"]], "sympy.geometry.point.Point3D": [[103, 2, 1, "", "are_collinear"], [103, 3, 1, "", "coordinates"], [103, 2, 1, "", "direction_cosine"], [103, 2, 1, "", "direction_ratio"], [103, 2, 1, "", "intersection"], [103, 2, 1, "", "scale"], [103, 2, 1, "", "transform"], [103, 2, 1, "", "translate"], [103, 3, 1, "", "x"], [103, 3, 1, "", "y"], [103, 3, 1, "", "z"]], "sympy.geometry.polygon": [[104, 1, 1, "", "Polygon"], [104, 1, 1, "", "RegularPolygon"], [104, 1, 1, "", "Triangle"]], "sympy.geometry.polygon.Polygon": [[104, 3, 1, "", "angles"], [104, 2, 1, "", "arbitrary_point"], [104, 3, 1, "", "area"], [104, 2, 1, "", "bisectors"], [104, 3, 1, "", "bounds"], [104, 3, 1, "", "centroid"], [104, 2, 1, "", "cut_section"], [104, 2, 1, "", "distance"], [104, 2, 1, "", "encloses_point"], [104, 2, 1, "", "first_moment_of_area"], [104, 2, 1, "", "intersection"], [104, 2, 1, "", "is_convex"], [104, 3, 1, "", "perimeter"], [104, 2, 1, "", "plot_interval"], [104, 2, 1, "", "polar_second_moment_of_area"], [104, 2, 1, "", "second_moment_of_area"], [104, 2, 1, "", "section_modulus"], [104, 3, 1, "", "sides"], [104, 3, 1, "", "vertices"]], "sympy.geometry.polygon.RegularPolygon": [[104, 3, 1, "", "angles"], [104, 3, 1, "", "apothem"], [104, 3, 1, "", "area"], [104, 3, 1, "", "args"], [104, 3, 1, "", "center"], [104, 3, 1, "", "centroid"], [104, 3, 1, "", "circumcenter"], [104, 3, 1, "", "circumcircle"], [104, 3, 1, "", "circumradius"], [104, 2, 1, "", "encloses_point"], [104, 3, 1, "", "exterior_angle"], [104, 3, 1, "", "incircle"], [104, 3, 1, "", "inradius"], [104, 3, 1, "", "interior_angle"], [104, 3, 1, "", "length"], [104, 3, 1, "", "radius"], [104, 2, 1, "", "reflect"], [104, 2, 1, "", "rotate"], [104, 3, 1, "", "rotation"], [104, 2, 1, "", "scale"], [104, 2, 1, "", "spin"], [104, 3, 1, "", "vertices"]], "sympy.geometry.polygon.Triangle": [[104, 3, 1, "", "altitudes"], [104, 2, 1, "", "bisectors"], [104, 3, 1, "", "circumcenter"], [104, 3, 1, "", "circumcircle"], [104, 3, 1, "", "circumradius"], [104, 3, 1, "", "eulerline"], [104, 3, 1, "", "excenters"], [104, 3, 1, "", "exradii"], [104, 3, 1, "", "incenter"], [104, 3, 1, "", "incircle"], [104, 3, 1, "", "inradius"], [104, 2, 1, "", "is_equilateral"], [104, 2, 1, "", "is_isosceles"], [104, 2, 1, "", "is_right"], [104, 2, 1, "", "is_scalene"], [104, 2, 1, "", "is_similar"], [104, 3, 1, "", "medial"], [104, 3, 1, "", "medians"], [104, 3, 1, "", "nine_point_circle"], [104, 3, 1, "", "orthocenter"], [104, 3, 1, "", "vertices"]], "sympy.geometry.util": [[105, 4, 1, "", "are_similar"], [105, 4, 1, "", "centroid"], [105, 4, 1, "", "convex_hull"], [105, 4, 1, "", "idiff"], [105, 4, 1, "", "intersection"]], "sympy.holonomic.holonomic": [[111, 1, 1, "", "DifferentialOperator"], [111, 1, 1, "", "DifferentialOperatorAlgebra"], [111, 4, 1, "", "DifferentialOperators"], [111, 1, 1, "", "HolonomicFunction"], [109, 4, 1, "", "_convert_poly_rat_alg"], [109, 4, 1, "", "_create_table"], [107, 4, 1, "", "expr_to_holonomic"], [107, 4, 1, "", "from_hyper"], [107, 4, 1, "", "from_meijerg"]], "sympy.holonomic.holonomic.DifferentialOperator": [[111, 2, 1, "", "is_singular"]], "sympy.holonomic.holonomic.HolonomicFunction": [[110, 2, 1, "", "composition"], [110, 2, 1, "", "diff"], [110, 2, 1, "", "evalf"], [110, 2, 1, "", "integrate"], [110, 2, 1, "", "series"], [110, 2, 1, "", "to_expr"], [110, 2, 1, "", "to_hyper"], [110, 2, 1, "", "to_meijerg"], [110, 2, 1, "", "to_sequence"]], "sympy.integrals": [[115, 0, 0, "-", "intpoly"], [113, 0, 0, "-", "meijerint"], [113, 0, 0, "-", "meijerint_doc"], [115, 0, 0, "-", "transforms"]], "sympy.integrals.deltafunctions": [[115, 4, 1, "", "deltaintegrate"]], "sympy.integrals.heurisch": [[115, 4, 1, "", "components"], [115, 4, 1, "", "heurisch"]], "sympy.integrals.integrals": [[115, 1, 1, "", "Integral"], [115, 4, 1, "", "integrate"], [115, 4, 1, "", "line_integrate"]], "sympy.integrals.integrals.Integral": [[115, 2, 1, "", "as_sum"], [115, 2, 1, "", "doit"], [115, 3, 1, "", "free_symbols"], [115, 6, 1, "", "is_commutative"], [115, 2, 1, "", "principal_value"], [115, 2, 1, "", "transform"]], "sympy.integrals.intpoly": [[115, 4, 1, "", "polytope_integrate"]], "sympy.integrals.manualintegrate": [[115, 4, 1, "", "integral_steps"], [115, 4, 1, "", "manualintegrate"]], "sympy.integrals.meijerint": [[113, 7, 1, "", "_CoeffExpValueError"], [113, 4, 1, "", "_check_antecedents"], [113, 4, 1, "", "_check_antecedents_1"], [113, 4, 1, "", "_check_antecedents_inversion"], [113, 4, 1, "", "_condsimp"], [113, 4, 1, "", "_create_lookup_table"], [113, 4, 1, "", "_dummy"], [113, 4, 1, "", "_dummy_"], [113, 4, 1, "", "_eval_cond"], [113, 4, 1, "", "_exponents"], [113, 4, 1, "", "_find_splitting_points"], [113, 4, 1, "", "_flip_g"], [113, 4, 1, "", "_functions"], [113, 4, 1, "", "_get_coeff_exp"], [113, 4, 1, "", "_guess_expansion"], [113, 4, 1, "", "_inflate_fox_h"], [113, 4, 1, "", "_inflate_g"], [113, 4, 1, "", "_int0oo"], [113, 4, 1, "", "_int0oo_1"], [113, 4, 1, "", "_int_inversion"], [113, 4, 1, "", "_is_analytic"], [113, 4, 1, "", "_meijerint_definite_2"], [113, 4, 1, "", "_meijerint_definite_3"], [113, 4, 1, "", "_meijerint_definite_4"], [113, 4, 1, "", "_meijerint_indefinite_1"], [113, 4, 1, "", "_mul_args"], [113, 4, 1, "", "_mul_as_two_parts"], [113, 4, 1, "", "_my_principal_branch"], [113, 4, 1, "", "_mytype"], [113, 4, 1, "", "_rewrite1"], [113, 4, 1, "", "_rewrite2"], [113, 4, 1, "", "_rewrite_inversion"], [113, 4, 1, "", "_rewrite_saxena"], [113, 4, 1, "", "_rewrite_saxena_1"], [113, 4, 1, "", "_rewrite_single"], [113, 4, 1, "", "_split_mul"], [113, 4, 1, "", "meijerint_definite"], [113, 4, 1, "", "meijerint_indefinite"], [113, 4, 1, "", "meijerint_inversion"]], "sympy.integrals.quadrature": [[115, 4, 1, "", "gauss_chebyshev_t"], [115, 4, 1, "", "gauss_chebyshev_u"], [115, 4, 1, "", "gauss_gen_laguerre"], [115, 4, 1, "", "gauss_hermite"], [115, 4, 1, "", "gauss_jacobi"], [115, 4, 1, "", "gauss_laguerre"], [115, 4, 1, "", "gauss_legendre"], [115, 4, 1, "", "gauss_lobatto"]], "sympy.integrals.rationaltools": [[115, 4, 1, "", "ratint"], [115, 4, 1, "", "ratint_logpart"], [115, 4, 1, "", "ratint_ratpart"]], "sympy.integrals.risch": [[115, 1, 1, "", "NonElementaryIntegral"], [115, 4, 1, "", "risch_integrate"]], "sympy.integrals.singularityfunctions": [[115, 4, 1, "", "singularityintegrate"]], "sympy.integrals.transforms": [[115, 1, 1, "", "CosineTransform"], [115, 1, 1, "", "FourierTransform"], [115, 1, 1, "", "HankelTransform"], [115, 1, 1, "", "IntegralTransform"], [115, 7, 1, "", "IntegralTransformError"], [115, 1, 1, "", "InverseCosineTransform"], [115, 1, 1, "", "InverseFourierTransform"], [115, 1, 1, "", "InverseHankelTransform"], [115, 1, 1, "", "InverseLaplaceTransform"], [115, 1, 1, "", "InverseMellinTransform"], [115, 1, 1, "", "InverseSineTransform"], [115, 1, 1, "", "LaplaceTransform"], [115, 1, 1, "", "MellinTransform"], [115, 1, 1, "", "SineTransform"], [115, 4, 1, "", "_fourier_transform"], [115, 4, 1, "", "cosine_transform"], [115, 4, 1, "", "fourier_transform"], [115, 4, 1, "", "hankel_transform"], [115, 4, 1, "", "inverse_cosine_transform"], [115, 4, 1, "", "inverse_fourier_transform"], [115, 4, 1, "", "inverse_hankel_transform"], [115, 4, 1, "", "inverse_laplace_transform"], [115, 4, 1, "", "inverse_mellin_transform"], [115, 4, 1, "", "inverse_sine_transform"], [115, 4, 1, "", "laplace_correspondence"], [115, 4, 1, "", "laplace_initial_conds"], [115, 4, 1, "", "laplace_transform"], [115, 4, 1, "", "mellin_transform"], [115, 4, 1, "", "sine_transform"]], "sympy.integrals.transforms.IntegralTransform": [[115, 2, 1, "", "doit"], [115, 3, 1, "", "function"], [115, 3, 1, "", "function_variable"], [115, 3, 1, "", "transform_variable"]], "sympy.integrals.transforms.InverseLaplaceTransform": [[115, 2, 1, "", "doit"]], "sympy.integrals.transforms.LaplaceTransform": [[115, 2, 1, "", "doit"]], "sympy.integrals.trigonometry": [[115, 4, 1, "", "trigintegrate"]], "sympy.interactive": [[116, 0, 0, "-", "printing"], [116, 0, 0, "-", "session"]], "sympy.interactive.printing": [[116, 4, 1, "", "init_printing"]], "sympy.interactive.session": [[116, 4, 1, "", "enable_automatic_int_sympification"], [116, 4, 1, "", "enable_automatic_symbols"], [116, 4, 1, "", "init_ipython_session"], [116, 4, 1, "", "init_python_session"], [116, 4, 1, "", "init_session"], [116, 4, 1, "", "int_to_Integer"]], "sympy.liealgebras.cartan_matrix": [[117, 4, 1, "", "CartanMatrix"]], "sympy.liealgebras.cartan_type": [[117, 1, 1, "", "CartanType_generator"], [117, 1, 1, "", "Standard_Cartan"]], "sympy.liealgebras.cartan_type.Standard_Cartan": [[117, 2, 1, "", "rank"], [117, 2, 1, "", "series"]], "sympy.liealgebras.dynkin_diagram": [[117, 4, 1, "", "DynkinDiagram"]], "sympy.liealgebras.root_system": [[117, 1, 1, "", "RootSystem"]], "sympy.liealgebras.root_system.RootSystem": [[117, 2, 1, "", "add_as_roots"], [117, 2, 1, "", "add_simple_roots"], [117, 2, 1, "", "all_roots"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dynkin_diagram"], [117, 2, 1, "", "root_space"], [117, 2, 1, "", "simple_roots"]], "sympy.liealgebras.type_a": [[117, 1, 1, "", "TypeA"]], "sympy.liealgebras.type_a.TypeA": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "highest_root"], [117, 2, 1, "", "lie_algebra"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_b": [[117, 1, 1, "", "TypeB"]], "sympy.liealgebras.type_b.TypeB": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "lie_algebra"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_c": [[117, 1, 1, "", "TypeC"]], "sympy.liealgebras.type_c.TypeC": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "lie_algebra"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_d": [[117, 1, 1, "", "TypeD"]], "sympy.liealgebras.type_d.TypeD": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "lie_algebra"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_e": [[117, 1, 1, "", "TypeE"]], "sympy.liealgebras.type_e.TypeE": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_f": [[117, 1, 1, "", "TypeF"]], "sympy.liealgebras.type_f.TypeF": [[117, 2, 1, "", "basic_root"], [117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.type_g": [[117, 1, 1, "", "TypeG"]], "sympy.liealgebras.type_g.TypeG": [[117, 2, 1, "", "basis"], [117, 2, 1, "", "cartan_matrix"], [117, 2, 1, "", "dimension"], [117, 2, 1, "", "positive_roots"], [117, 2, 1, "", "roots"], [117, 2, 1, "", "simple_root"]], "sympy.liealgebras.weyl_group": [[117, 1, 1, "", "WeylGroup"]], "sympy.liealgebras.weyl_group.WeylGroup": [[117, 2, 1, "", "coxeter_diagram"], [117, 2, 1, "", "delete_doubles"], [117, 2, 1, "", "element_order"], [117, 2, 1, "", "generators"], [117, 2, 1, "", "group_name"], [117, 2, 1, "", "group_order"], [117, 2, 1, "", "matrix_form"]], "sympy.logic": [[118, 0, 0, "-", "inference"]], "sympy.logic.boolalg": [[118, 4, 1, "", "ANFform"], [118, 1, 1, "", "And"], [118, 1, 1, "", "Boolean"], [118, 1, 1, "", "BooleanFalse"], [118, 1, 1, "", "BooleanTrue"], [118, 1, 1, "", "Equivalent"], [118, 1, 1, "", "Exclusive"], [118, 1, 1, "", "ITE"], [118, 1, 1, "", "Implies"], [118, 1, 1, "", "Nand"], [118, 1, 1, "", "Nor"], [118, 1, 1, "", "Not"], [118, 1, 1, "", "Or"], [118, 4, 1, "", "POSform"], [118, 4, 1, "", "SOPform"], [118, 1, 1, "", "Xnor"], [118, 1, 1, "", "Xor"], [118, 4, 1, "", "anf_coeffs"], [118, 4, 1, "", "bool_map"], [118, 4, 1, "", "bool_maxterm"], [118, 4, 1, "", "bool_minterm"], [118, 4, 1, "", "bool_monomial"], [118, 4, 1, "", "distribute_and_over_or"], [118, 4, 1, "", "distribute_or_over_and"], [118, 4, 1, "", "distribute_xor_over_and"], [118, 4, 1, "", "eliminate_implications"], [118, 4, 1, "", "gateinputcount"], [118, 4, 1, "", "integer_to_term"], [118, 4, 1, "", "is_anf"], [118, 4, 1, "", "is_cnf"], [118, 4, 1, "", "is_dnf"], [118, 4, 1, "", "is_nnf"], [118, 4, 1, "", "simplify_logic"], [118, 4, 1, "", "term_to_integer"], [118, 4, 1, "", "to_anf"], [118, 4, 1, "", "to_cnf"], [118, 4, 1, "", "to_dnf"], [118, 4, 1, "", "to_int_repr"], [118, 4, 1, "", "to_nnf"], [118, 4, 1, "", "truth_table"]], "sympy.logic.boolalg.Boolean": [[118, 2, 1, "", "as_set"], [118, 2, 1, "", "equals"]], "sympy.logic.boolalg.BooleanFalse": [[118, 2, 1, "", "as_set"]], "sympy.logic.boolalg.BooleanTrue": [[118, 2, 1, "", "as_set"]], "sympy.logic.inference": [[118, 4, 1, "", "satisfiable"]], "sympy.matrices": [[120, 0, 0, "-", "expressions"], [121, 0, 0, "-", "immutable"], [123, 0, 0, "-", "kind"], [124, 0, 0, "-", "matrixbase"], [126, 0, 0, "-", "sparse"], [127, 0, 0, "-", "sparsetools"]], "sympy.matrices.dense": [[119, 1, 1, "", "DenseMatrix"], [124, 4, 1, "", "GramSchmidt"], [119, 5, 1, "", "Matrix"], [119, 1, 1, "", "MutableDenseMatrix"], [124, 4, 1, "", "casoratian"], [124, 4, 1, "", "diag"], [124, 4, 1, "", "eye"], [124, 4, 1, "", "hessian"], [124, 4, 1, "", "jordan_cell"], [124, 4, 1, "", "list2numpy"], [124, 4, 1, "", "matrix2numpy"], [124, 4, 1, "", "matrix_multiply_elementwise"], [124, 4, 1, "", "ones"], [124, 4, 1, "", "randMatrix"], [124, 4, 1, "", "rot_axis1"], [124, 4, 1, "", "rot_axis2"], [124, 4, 1, "", "rot_axis3"], [124, 4, 1, "", "rot_ccw_axis1"], [124, 4, 1, "", "rot_ccw_axis2"], [124, 4, 1, "", "rot_ccw_axis3"], [124, 4, 1, "", "rot_givens"], [124, 4, 1, "", "symarray"], [124, 4, 1, "", "wronskian"], [124, 4, 1, "", "zeros"]], "sympy.matrices.dense.DenseMatrix": [[119, 2, 1, "", "LDLdecomposition"], [119, 2, 1, "", "as_immutable"], [119, 2, 1, "", "as_mutable"], [119, 2, 1, "", "cholesky"], [119, 2, 1, "", "lower_triangular_solve"], [119, 2, 1, "", "upper_triangular_solve"]], "sympy.matrices.dense.MutableDenseMatrix": [[119, 2, 1, "", "simplify"]], "sympy.matrices.expressions": [[120, 1, 1, "", "CompanionMatrix"], [120, 1, 1, "", "FunctionMatrix"], [120, 1, 1, "", "HadamardPower"], [120, 1, 1, "", "HadamardProduct"], [120, 1, 1, "", "Identity"], [120, 1, 1, "", "Inverse"], [120, 1, 1, "", "MatAdd"], [120, 1, 1, "", "MatMul"], [120, 1, 1, "", "MatPow"], [120, 1, 1, "", "MatrixExpr"], [120, 1, 1, "", "MatrixPermute"], [120, 1, 1, "", "MatrixSet"], [120, 1, 1, "", "MatrixSymbol"], [120, 1, 1, "", "PermutationMatrix"], [120, 1, 1, "", "Trace"], [120, 1, 1, "", "Transpose"], [120, 1, 1, "", "ZeroMatrix"], [120, 0, 0, "-", "blockmatrix"], [120, 4, 1, "", "hadamard_product"]], "sympy.matrices.expressions.MatrixExpr": [[120, 3, 1, "", "T"], [120, 2, 1, "", "as_coeff_Mul"], [120, 2, 1, "", "as_explicit"], [120, 2, 1, "", "as_mutable"], [120, 2, 1, "", "equals"], [120, 2, 1, "", "from_index_summation"]], "sympy.matrices.expressions.blockmatrix": [[120, 1, 1, "", "BlockDiagMatrix"], [120, 1, 1, "", "BlockMatrix"], [120, 4, 1, "", "block_collapse"]], "sympy.matrices.expressions.blockmatrix.BlockDiagMatrix": [[120, 2, 1, "", "get_diag_blocks"]], "sympy.matrices.expressions.blockmatrix.BlockMatrix": [[120, 2, 1, "", "LDUdecomposition"], [120, 2, 1, "", "LUdecomposition"], [120, 2, 1, "", "UDLdecomposition"], [120, 2, 1, "", "schur"], [120, 2, 1, "", "transpose"]], "sympy.matrices.immutable": [[121, 1, 1, "", "ImmutableDenseMatrix"], [121, 5, 1, "", "ImmutableMatrix"], [126, 1, 1, "", "ImmutableSparseMatrix"]], "sympy.matrices.kind": [[123, 1, 1, "", "MatrixKind"]], "sympy.matrices.kind.MatrixKind": [[123, 5, 1, "", "__weakref__"]], "sympy.matrices.matrixbase": [[124, 1, 1, "", "MatrixBase"], [124, 1, 1, "", "MatrixError"], [124, 1, 1, "", "NonSquareMatrixError"], [124, 1, 1, "", "ShapeError"], [124, 4, 1, "", "a2idx"]], "sympy.matrices.matrixbase.MatrixBase": [[124, 3, 1, "", "C"], [124, 3, 1, "", "D"], [124, 3, 1, "", "H"], [124, 2, 1, "", "LDLdecomposition"], [124, 2, 1, "", "LDLsolve"], [124, 2, 1, "", "LUdecomposition"], [124, 2, 1, "", "LUdecompositionFF"], [124, 2, 1, "", "LUdecomposition_Simple"], [124, 2, 1, "", "LUsolve"], [124, 2, 1, "", "QRdecomposition"], [124, 2, 1, "", "QRsolve"], [124, 3, 1, "", "T"], [124, 2, 1, "", "__abs__"], [124, 2, 1, "", "__add__"], [124, 2, 1, "", "__getitem__"], [124, 2, 1, "", "__len__"], [124, 2, 1, "", "__mul__"], [124, 2, 1, "", "__pow__"], [124, 5, 1, "", "__weakref__"], [124, 2, 1, "", "add"], [124, 2, 1, "", "adjoint"], [124, 2, 1, "", "adjugate"], [124, 2, 1, "", "analytic_func"], [124, 2, 1, "", "applyfunc"], [124, 2, 1, "", "as_real_imag"], [124, 2, 1, "", "atoms"], [124, 2, 1, "", "berkowitz_det"], [124, 2, 1, "", "berkowitz_eigenvals"], [124, 2, 1, "", "berkowitz_minors"], [124, 2, 1, "", "bidiagonal_decomposition"], [124, 2, 1, "", "bidiagonalize"], [124, 2, 1, "", "charpoly"], [124, 2, 1, "", "cholesky"], [124, 2, 1, "", "cholesky_solve"], [124, 2, 1, "", "cofactor"], [124, 2, 1, "", "cofactor_matrix"], [124, 2, 1, "", "col"], [124, 2, 1, "", "col_del"], [124, 2, 1, "", "col_insert"], [124, 2, 1, "", "col_join"], [124, 2, 1, "", "columnspace"], [124, 2, 1, "", "companion"], [124, 2, 1, "", "condition_number"], [124, 2, 1, "", "conjugate"], [124, 2, 1, "", "connected_components"], [124, 2, 1, "", "connected_components_decomposition"], [124, 2, 1, "", "copy"], [124, 2, 1, "", "cramer_solve"], [124, 2, 1, "", "cross"], [124, 2, 1, "", "det"], [124, 2, 1, "", "det_LU_decomposition"], [124, 2, 1, "", "diag"], [124, 2, 1, "", "diagonal"], [124, 2, 1, "", "diagonal_solve"], [124, 2, 1, "", "diagonalize"], [124, 2, 1, "", "diff"], [124, 2, 1, "", "dot"], [124, 2, 1, "", "dual"], [124, 2, 1, "", "echelon_form"], [124, 2, 1, "", "eigenvals"], [124, 2, 1, "", "eigenvects"], [124, 2, 1, "", "elementary_col_op"], [124, 2, 1, "", "elementary_row_op"], [124, 2, 1, "", "evalf"], [124, 2, 1, "", "exp"], [124, 2, 1, "", "expand"], [124, 2, 1, "", "extract"], [124, 2, 1, "", "eye"], [124, 2, 1, "", "flat"], [124, 3, 1, "", "free_symbols"], [124, 2, 1, "", "from_dok"], [124, 2, 1, "", "gauss_jordan_solve"], [124, 2, 1, "", "get_diag_blocks"], [124, 2, 1, "", "has"], [124, 2, 1, "", "hat"], [124, 2, 1, "", "hstack"], [124, 2, 1, "", "integrate"], [124, 2, 1, "", "inv"], [124, 2, 1, "", "inverse_ADJ"], [124, 2, 1, "", "inverse_BLOCK"], [124, 2, 1, "", "inverse_CH"], [124, 2, 1, "", "inverse_GE"], [124, 2, 1, "", "inverse_LDL"], [124, 2, 1, "", "inverse_LU"], [124, 2, 1, "", "inverse_QR"], [124, 2, 1, "", "irregular"], [124, 2, 1, "", "is_anti_symmetric"], [124, 2, 1, "", "is_diagonal"], [124, 2, 1, "", "is_diagonalizable"], [124, 3, 1, "", "is_echelon"], [124, 3, 1, "", "is_hermitian"], [124, 3, 1, "", "is_indefinite"], [124, 3, 1, "", "is_lower"], [124, 3, 1, "", "is_lower_hessenberg"], [124, 3, 1, "", "is_negative_definite"], [124, 3, 1, "", "is_negative_semidefinite"], [124, 2, 1, "", "is_nilpotent"], [124, 3, 1, "", "is_positive_definite"], [124, 3, 1, "", "is_positive_semidefinite"], [124, 3, 1, "", "is_square"], [124, 3, 1, "", "is_strongly_diagonally_dominant"], [124, 2, 1, "", "is_symbolic"], [124, 2, 1, "", "is_symmetric"], [124, 3, 1, "", "is_upper"], [124, 3, 1, "", "is_upper_hessenberg"], [124, 3, 1, "", "is_weakly_diagonally_dominant"], [124, 3, 1, "", "is_zero_matrix"], [124, 2, 1, "", "iter_items"], [124, 2, 1, "", "iter_values"], [124, 2, 1, "", "jacobian"], [124, 2, 1, "", "jordan_block"], [124, 2, 1, "", "jordan_form"], [124, 2, 1, "", "key2bounds"], [124, 2, 1, "", "key2ij"], [124, 2, 1, "", "left_eigenvects"], [124, 2, 1, "", "limit"], [124, 2, 1, "", "log"], [124, 2, 1, "", "lower_triangular"], [124, 2, 1, "", "lower_triangular_solve"], [124, 2, 1, "", "minor"], [124, 2, 1, "", "minor_submatrix"], [124, 2, 1, "", "multiply"], [124, 2, 1, "", "multiply_elementwise"], [124, 2, 1, "", "n"], [124, 2, 1, "", "norm"], [124, 2, 1, "", "normalized"], [124, 2, 1, "", "nullspace"], [124, 2, 1, "", "ones"], [124, 2, 1, "", "orthogonalize"], [124, 2, 1, "", "per"], [124, 2, 1, "", "permute"], [124, 2, 1, "", "permuteBkwd"], [124, 2, 1, "", "permuteFwd"], [124, 2, 1, "", "permute_cols"], [124, 2, 1, "", "permute_rows"], [124, 2, 1, "", "pinv"], [124, 2, 1, "", "pinv_solve"], [124, 2, 1, "", "pow"], [124, 2, 1, "", "print_nonzero"], [124, 2, 1, "", "project"], [124, 2, 1, "", "rank"], [124, 2, 1, "", "rank_decomposition"], [124, 2, 1, "", "refine"], [124, 2, 1, "", "replace"], [124, 2, 1, "", "reshape"], [124, 2, 1, "", "rmultiply"], [124, 2, 1, "", "rot90"], [124, 2, 1, "", "row"], [124, 2, 1, "", "row_del"], [124, 2, 1, "", "row_insert"], [124, 2, 1, "", "row_join"], [124, 2, 1, "", "rowspace"], [124, 2, 1, "", "rref"], [124, 2, 1, "", "rref_rhs"], [124, 3, 1, "", "shape"], [124, 2, 1, "", "simplify"], [124, 2, 1, "", "singular_value_decomposition"], [124, 2, 1, "", "singular_values"], [124, 2, 1, "", "solve"], [124, 2, 1, "", "solve_least_squares"], [124, 2, 1, "", "strongly_connected_components"], [124, 2, 1, "", "strongly_connected_components_decomposition"], [124, 2, 1, "", "subs"], [124, 2, 1, "", "table"], [124, 2, 1, "", "todod"], [124, 2, 1, "", "todok"], [124, 2, 1, "", "tolist"], [124, 2, 1, "", "trace"], [124, 2, 1, "", "transpose"], [124, 2, 1, "", "upper_hessenberg_decomposition"], [124, 2, 1, "", "upper_triangular"], [124, 2, 1, "", "upper_triangular_solve"], [124, 2, 1, "", "values"], [124, 2, 1, "", "vec"], [124, 2, 1, "", "vech"], [124, 2, 1, "", "vee"], [124, 2, 1, "", "vstack"], [124, 2, 1, "", "wilkinson"], [124, 2, 1, "", "xreplace"], [124, 2, 1, "", "zeros"]], "sympy.matrices.normalforms": [[125, 4, 1, "", "hermite_normal_form"], [125, 4, 1, "", "smith_normal_form"]], "sympy.matrices.sparse": [[126, 1, 1, "", "MutableSparseMatrix"], [126, 5, 1, "", "SparseMatrix"]], "sympy.matrices.sparsetools": [[127, 2, 1, "", "_csrtodok"], [127, 2, 1, "", "_doktocsr"], [127, 2, 1, "", "banded"]], "sympy.ntheory": [[128, 0, 0, "-", "bbp_pi"], [128, 0, 0, "-", "continued_fraction"], [128, 0, 0, "-", "digits"], [128, 0, 0, "-", "ecm"], [128, 0, 0, "-", "egyptian_fraction"], [128, 0, 0, "-", "factor_"], [128, 0, 0, "-", "generate"], [128, 0, 0, "-", "modular"], [128, 0, 0, "-", "multinomial"], [128, 0, 0, "-", "partitions_"], [128, 0, 0, "-", "primetest"], [128, 0, 0, "-", "qs"], [128, 0, 0, "-", "residue_ntheory"]], "sympy.ntheory.bbp_pi": [[128, 4, 1, "", "pi_hex_digits"]], "sympy.ntheory.continued_fraction": [[128, 4, 1, "", "continued_fraction"], [128, 4, 1, "", "continued_fraction_convergents"], [128, 4, 1, "", "continued_fraction_iterator"], [128, 4, 1, "", "continued_fraction_periodic"], [128, 4, 1, "", "continued_fraction_reduce"]], "sympy.ntheory.digits": [[128, 4, 1, "", "count_digits"], [128, 4, 1, "", "digits"], [128, 4, 1, "", "is_palindromic"]], "sympy.ntheory.ecm": [[128, 4, 1, "", "ecm"]], "sympy.ntheory.egyptian_fraction": [[128, 4, 1, "", "egyptian_fraction"]], "sympy.ntheory.factor_": [[128, 4, 1, "", "abundance"], [128, 4, 1, "", "antidivisor_count"], [128, 4, 1, "", "antidivisors"], [128, 4, 1, "", "core"], [128, 4, 1, "", "digits"], [128, 4, 1, "", "divisor_count"], [128, 4, 1, "", "divisor_sigma"], [128, 4, 1, "", "divisors"], [128, 4, 1, "", "factorint"], [128, 4, 1, "", "factorrat"], [128, 4, 1, "", "find_carmichael_numbers_in_range"], [128, 4, 1, "", "find_first_n_carmichaels"], [128, 4, 1, "", "is_abundant"], [128, 4, 1, "", "is_amicable"], [128, 4, 1, "", "is_carmichael"], [128, 4, 1, "", "is_deficient"], [128, 4, 1, "", "is_perfect"], [128, 4, 1, "", "mersenne_prime_exponent"], [128, 4, 1, "", "multiplicity"], [128, 4, 1, "", "perfect_power"], [128, 4, 1, "", "pollard_pm1"], [128, 4, 1, "", "pollard_rho"], [128, 4, 1, "", "primefactors"], [128, 4, 1, "", "primenu"], [128, 4, 1, "", "primeomega"], [128, 4, 1, "", "proper_divisor_count"], [128, 4, 1, "", "proper_divisors"], [128, 4, 1, "", "reduced_totient"], [128, 4, 1, "", "smoothness"], [128, 4, 1, "", "smoothness_p"], [128, 4, 1, "", "totient"], [128, 4, 1, "", "udivisor_count"], [128, 4, 1, "", "udivisor_sigma"], [128, 4, 1, "", "udivisors"]], "sympy.ntheory.generate": [[128, 1, 1, "", "Sieve"], [128, 4, 1, "", "composite"], [128, 4, 1, "", "compositepi"], [128, 4, 1, "", "cycle_length"], [128, 4, 1, "", "nextprime"], [128, 4, 1, "", "prevprime"], [128, 4, 1, "", "prime"], [128, 4, 1, "", "primepi"], [128, 4, 1, "", "primerange"], [128, 4, 1, "", "primorial"], [128, 4, 1, "", "randprime"]], "sympy.ntheory.generate.Sieve": [[128, 2, 1, "", "extend"], [128, 2, 1, "", "extend_to_no"], [128, 2, 1, "", "mobiusrange"], [128, 2, 1, "", "primerange"], [128, 2, 1, "", "search"], [128, 2, 1, "", "totientrange"]], "sympy.ntheory.modular": [[128, 4, 1, "", "crt"], [128, 4, 1, "", "crt1"], [128, 4, 1, "", "crt2"], [128, 4, 1, "", "solve_congruence"], [128, 4, 1, "", "symmetric_residue"]], "sympy.ntheory.multinomial": [[128, 4, 1, "", "binomial_coefficients"], [128, 4, 1, "", "binomial_coefficients_list"], [128, 4, 1, "", "multinomial_coefficients"], [128, 4, 1, "", "multinomial_coefficients_iterator"]], "sympy.ntheory.partitions_": [[128, 4, 1, "", "npartitions"]], "sympy.ntheory.primetest": [[128, 4, 1, "", "is_euler_jacobi_pseudoprime"], [128, 4, 1, "", "is_euler_pseudoprime"], [128, 4, 1, "", "is_extra_strong_lucas_prp"], [128, 4, 1, "", "is_fermat_pseudoprime"], [128, 4, 1, "", "is_gaussian_prime"], [128, 4, 1, "", "is_lucas_prp"], [128, 4, 1, "", "is_mersenne_prime"], [128, 4, 1, "", "is_square"], [128, 4, 1, "", "is_strong_lucas_prp"], [128, 4, 1, "", "isprime"], [128, 4, 1, "", "mr"], [128, 4, 1, "", "proth_test"]], "sympy.ntheory.qs": [[128, 4, 1, "", "qs"]], "sympy.ntheory.residue_ntheory": [[128, 4, 1, "", "binomial_mod"], [128, 4, 1, "", "discrete_log"], [128, 4, 1, "", "is_nthpow_residue"], [128, 4, 1, "", "is_primitive_root"], [128, 4, 1, "", "is_quad_residue"], [128, 4, 1, "", "jacobi_symbol"], [128, 4, 1, "", "legendre_symbol"], [128, 4, 1, "", "mobius"], [128, 4, 1, "", "n_order"], [128, 4, 1, "", "nthroot_mod"], [128, 4, 1, "", "polynomial_congruence"], [128, 4, 1, "", "primitive_root"], [128, 4, 1, "", "quadratic_congruence"], [128, 4, 1, "", "quadratic_residues"], [128, 4, 1, "", "sqrt_mod"], [128, 4, 1, "", "sqrt_mod_iter"]], "sympy.parsing": [[130, 0, 0, "-", "sym_expr"]], "sympy.parsing.latex": [[130, 1, 1, "", "LaTeXParsingError"], [130, 4, 1, "", "parse_latex"], [130, 4, 1, "", "parse_latex_lark"]], "sympy.parsing.latex.lark": [[130, 1, 1, "", "LarkLaTeXParser"], [130, 1, 1, "", "TransformToSymPyExpr"]], "sympy.parsing.mathematica": [[130, 4, 1, "", "parse_mathematica"]], "sympy.parsing.maxima": [[130, 4, 1, "", "parse_maxima"]], "sympy.parsing.sym_expr": [[130, 1, 1, "", "SymPyExpression"]], "sympy.parsing.sym_expr.SymPyExpression": [[130, 2, 1, "", "convert_to_c"], [130, 2, 1, "", "convert_to_expr"], [130, 2, 1, "", "convert_to_fortran"], [130, 2, 1, "", "convert_to_python"], [130, 2, 1, "", "return_expr"]], "sympy.parsing.sympy_parser": [[130, 4, 1, "", "auto_number"], [130, 4, 1, "", "auto_symbol"], [130, 4, 1, "", "convert_xor"], [130, 4, 1, "", "eval_expr"], [130, 4, 1, "", "factorial_notation"], [130, 4, 1, "", "function_exponentiation"], [130, 4, 1, "", "implicit_application"], [130, 4, 1, "", "implicit_multiplication"], [130, 4, 1, "", "implicit_multiplication_application"], [130, 4, 1, "", "lambda_notation"], [130, 4, 1, "", "parse_expr"], [130, 4, 1, "", "rationalize"], [130, 4, 1, "", "repeated_decimals"], [130, 4, 1, "", "split_symbols"], [130, 4, 1, "", "split_symbols_custom"], [130, 6, 1, "", "standard_transformations"], [130, 4, 1, "", "stringify_expr"]], "sympy.physics": [[133, 0, 0, "-", "biomechanics"], [143, 0, 0, "-", "control"], [146, 0, 0, "-", "hydrogen"], [147, 0, 0, "-", "matrices"], [151, 0, 0, "-", "mechanics"], [166, 0, 0, "-", "paulialgebra"], [167, 0, 0, "-", "qho_1d"], [191, 0, 0, "-", "secondquant"], [192, 0, 0, "-", "sho"], [203, 0, 0, "-", "vector"], [206, 0, 0, "-", "wigner"]], "sympy.physics.biomechanics": [[131, 0, 0, "-", "activation"], [132, 0, 0, "-", "curve"], [134, 0, 0, "-", "musculotendon"]], "sympy.physics.biomechanics.activation": [[131, 1, 1, "", "ActivationBase"], [131, 1, 1, "", "FirstOrderActivationDeGroote2016"], [131, 1, 1, "", "ZerothOrderActivation"]], "sympy.physics.biomechanics.activation.ActivationBase": [[131, 3, 1, "", "F"], [131, 3, 1, "", "M"], [131, 3, 1, "", "a"], [131, 3, 1, "", "activation"], [131, 3, 1, "", "constants"], [131, 3, 1, "", "e"], [131, 3, 1, "", "excitation"], [131, 3, 1, "", "input_vars"], [131, 3, 1, "", "order"], [131, 3, 1, "", "p"], [131, 3, 1, "", "r"], [131, 2, 1, "", "rhs"], [131, 3, 1, "", "state_vars"], [131, 2, 1, "", "with_defaults"], [131, 3, 1, "", "x"]], "sympy.physics.biomechanics.activation.FirstOrderActivationDeGroote2016": [[131, 3, 1, "", "F"], [131, 3, 1, "", "M"], [131, 3, 1, "", "activation_time_constant"], [131, 3, 1, "", "b"], [131, 3, 1, "", "constants"], [131, 3, 1, "", "deactivation_time_constant"], [131, 3, 1, "", "input_vars"], [131, 3, 1, "", "order"], [131, 3, 1, "", "p"], [131, 3, 1, "", "r"], [131, 2, 1, "", "rhs"], [131, 3, 1, "", "smoothing_rate"], [131, 3, 1, "", "state_vars"], [131, 3, 1, "", "tau_a"], [131, 3, 1, "", "tau_d"], [131, 2, 1, "", "with_defaults"], [131, 3, 1, "", "x"]], "sympy.physics.biomechanics.activation.ZerothOrderActivation": [[131, 3, 1, "", "F"], [131, 3, 1, "", "M"], [131, 3, 1, "", "constants"], [131, 3, 1, "", "input_vars"], [131, 3, 1, "", "order"], [131, 3, 1, "", "p"], [131, 3, 1, "", "r"], [131, 2, 1, "", "rhs"], [131, 3, 1, "", "state_vars"], [131, 2, 1, "", "with_defaults"], [131, 3, 1, "", "x"]], "sympy.physics.biomechanics.curve": [[132, 1, 1, "", "CharacteristicCurveCollection"], [132, 1, 1, "", "CharacteristicCurveFunction"], [132, 1, 1, "", "FiberForceLengthActiveDeGroote2016"], [132, 1, 1, "", "FiberForceLengthPassiveDeGroote2016"], [132, 1, 1, "", "FiberForceLengthPassiveInverseDeGroote2016"], [132, 1, 1, "", "FiberForceVelocityDeGroote2016"], [132, 1, 1, "", "FiberForceVelocityInverseDeGroote2016"], [132, 1, 1, "", "TendonForceLengthDeGroote2016"], [132, 1, 1, "", "TendonForceLengthInverseDeGroote2016"]], "sympy.physics.biomechanics.curve.FiberForceLengthActiveDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.FiberForceLengthPassiveDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.FiberForceLengthPassiveInverseDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.FiberForceVelocityDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.FiberForceVelocityInverseDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.TendonForceLengthDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.curve.TendonForceLengthInverseDeGroote2016": [[132, 2, 1, "", "doit"], [132, 2, 1, "", "eval"], [132, 2, 1, "", "fdiff"], [132, 2, 1, "", "inverse"], [132, 2, 1, "", "with_defaults"]], "sympy.physics.biomechanics.musculotendon": [[134, 1, 1, "", "MusculotendonBase"], [134, 1, 1, "", "MusculotendonDeGroote2016"], [134, 1, 1, "", "MusculotendonFormulation"]], "sympy.physics.biomechanics.musculotendon.MusculotendonBase": [[134, 3, 1, "", "F"], [134, 3, 1, "", "F_M_max"], [134, 3, 1, "", "M"], [134, 3, 1, "", "a"], [134, 3, 1, "", "activation"], [134, 3, 1, "", "activation_dynamics"], [134, 3, 1, "", "alpha_opt"], [134, 3, 1, "", "beta"], [134, 3, 1, "", "constants"], [134, 2, 1, "", "curves"], [134, 3, 1, "", "e"], [134, 3, 1, "", "excitation"], [134, 3, 1, "", "fiber_damping_coefficient"], [134, 3, 1, "", "input_vars"], [134, 3, 1, "", "l_M_opt"], [134, 3, 1, "", "l_T_slack"], [134, 3, 1, "", "maximal_fiber_velocity"], [134, 3, 1, "", "musculotendon_dynamics"], [134, 3, 1, "", "optimal_fiber_length"], [134, 3, 1, "", "optimal_pennation_angle"], [134, 3, 1, "", "p"], [134, 3, 1, "", "peak_isometric_force"], [134, 3, 1, "", "r"], [134, 2, 1, "", "rhs"], [134, 3, 1, "", "state_vars"], [134, 3, 1, "", "tendon_slack_length"], [134, 3, 1, "", "v_M_max"], [134, 2, 1, "", "with_defaults"], [134, 3, 1, "", "x"]], "sympy.physics.continuum_mechanics": [[135, 0, 0, "-", "Arch"], [136, 0, 0, "-", "beam"], [138, 0, 0, "-", "cable"], [140, 0, 0, "-", "truss"]], "sympy.physics.continuum_mechanics.beam": [[136, 1, 1, "", "Beam"], [136, 1, 1, "", "Beam3D"]], "sympy.physics.continuum_mechanics.beam.Beam": [[136, 3, 1, "", "applied_loads"], [136, 2, 1, "", "apply_load"], [136, 2, 1, "", "apply_rotation_hinge"], [136, 2, 1, "", "apply_sliding_hinge"], [136, 2, 1, "", "apply_support"], [136, 3, 1, "", "area"], [136, 2, 1, "", "bending_moment"], [136, 3, 1, "", "boundary_conditions"], [136, 3, 1, "", "cross_section"], [136, 2, 1, "", "deflection"], [136, 3, 1, "", "deflection_jumps"], [136, 2, 1, "", "draw"], [136, 3, 1, "", "elastic_modulus"], [136, 3, 1, "", "ild_deflection_jumps"], [136, 3, 1, "", "ild_moment"], [136, 3, 1, "", "ild_reactions"], [136, 3, 1, "", "ild_rotation_jumps"], [136, 3, 1, "", "ild_shear"], [136, 2, 1, "", "join"], [136, 3, 1, "", "length"], [136, 3, 1, "", "load"], [136, 2, 1, "", "max_bmoment"], [136, 2, 1, "", "max_deflection"], [136, 2, 1, "", "max_shear_force"], [136, 2, 1, "", "plot_bending_moment"], [136, 2, 1, "", "plot_deflection"], [136, 2, 1, "", "plot_ild_moment"], [136, 2, 1, "", "plot_ild_reactions"], [136, 2, 1, "", "plot_ild_shear"], [136, 2, 1, "", "plot_loading_results"], [136, 2, 1, "", "plot_shear_force"], [136, 2, 1, "", "plot_shear_stress"], [136, 2, 1, "", "plot_slope"], [136, 2, 1, "", "point_cflexure"], [136, 3, 1, "", "reaction_loads"], [136, 2, 1, "", "remove_load"], [136, 3, 1, "", "rotation_jumps"], [136, 3, 1, "", "second_moment"], [136, 2, 1, "", "shear_force"], [136, 2, 1, "", "shear_stress"], [136, 2, 1, "", "slope"], [136, 2, 1, "", "solve_for_ild_moment"], [136, 2, 1, "", "solve_for_ild_reactions"], [136, 2, 1, "", "solve_for_ild_shear"], [136, 2, 1, "", "solve_for_reaction_loads"], [136, 3, 1, "", "variable"]], "sympy.physics.continuum_mechanics.beam.Beam3D": [[136, 2, 1, "", "angular_deflection"], [136, 2, 1, "", "apply_load"], [136, 2, 1, "", "apply_moment_load"], [136, 3, 1, "", "area"], [136, 2, 1, "", "axial_force"], [136, 2, 1, "", "axial_stress"], [136, 2, 1, "", "bending_moment"], [136, 3, 1, "", "boundary_conditions"], [136, 2, 1, "", "deflection"], [136, 3, 1, "", "load_vector"], [136, 2, 1, "", "max_bending_moment"], [136, 2, 1, "", "max_bmoment"], [136, 2, 1, "", "max_deflection"], [136, 2, 1, "", "max_shear_force"], [136, 3, 1, "", "moment_load_vector"], [136, 2, 1, "", "plot_bending_moment"], [136, 2, 1, "", "plot_deflection"], [136, 2, 1, "", "plot_loading_results"], [136, 2, 1, "", "plot_shear_force"], [136, 2, 1, "", "plot_shear_stress"], [136, 2, 1, "", "plot_slope"], [136, 2, 1, "", "polar_moment"], [136, 3, 1, "", "second_moment"], [136, 2, 1, "", "shear_force"], [136, 3, 1, "", "shear_modulus"], [136, 2, 1, "", "shear_stress"], [136, 2, 1, "", "slope"], [136, 2, 1, "", "solve_for_reaction_loads"], [136, 2, 1, "", "solve_for_torsion"], [136, 2, 1, "", "torsional_moment"]], "sympy.physics.continuum_mechanics.cable": [[138, 1, 1, "", "Cable"]], "sympy.physics.continuum_mechanics.cable.Cable": [[138, 2, 1, "", "apply_length"], [138, 2, 1, "", "apply_load"], [138, 2, 1, "", "change_support"], [138, 2, 1, "", "draw"], [138, 3, 1, "", "left_support"], [138, 3, 1, "", "length"], [138, 3, 1, "", "loads"], [138, 3, 1, "", "loads_position"], [138, 2, 1, "", "plot_tension"], [138, 3, 1, "", "reaction_loads"], [138, 2, 1, "", "remove_loads"], [138, 3, 1, "", "right_support"], [138, 2, 1, "", "solve"], [138, 3, 1, "", "supports"], [138, 3, 1, "", "tension"], [138, 2, 1, "", "tension_at"]], "sympy.physics.continuum_mechanics.truss": [[140, 1, 1, "", "Truss"]], "sympy.physics.continuum_mechanics.truss.Truss": [[140, 2, 1, "", "add_member"], [140, 2, 1, "", "add_node"], [140, 2, 1, "", "apply_load"], [140, 2, 1, "", "apply_support"], [140, 2, 1, "", "change_member_label"], [140, 2, 1, "", "change_node_label"], [140, 2, 1, "", "draw"], [140, 3, 1, "", "internal_forces"], [140, 3, 1, "", "loads"], [140, 3, 1, "", "member_lengths"], [140, 3, 1, "", "members"], [140, 3, 1, "", "node_labels"], [140, 3, 1, "", "node_positions"], [140, 3, 1, "", "nodes"], [140, 3, 1, "", "reaction_loads"], [140, 2, 1, "", "remove_load"], [140, 2, 1, "", "remove_member"], [140, 2, 1, "", "remove_node"], [140, 2, 1, "", "remove_support"], [140, 2, 1, "", "solve"], [140, 3, 1, "", "supports"]], "sympy.physics.control": [[144, 0, 0, "-", "lti"]], "sympy.physics.control.control_plots": [[142, 2, 1, "", "bode_magnitude_numerical_data"], [142, 2, 1, "", "bode_magnitude_plot"], [142, 2, 1, "", "bode_phase_numerical_data"], [142, 2, 1, "", "bode_phase_plot"], [142, 2, 1, "", "bode_plot"], [142, 2, 1, "", "impulse_response_numerical_data"], [142, 2, 1, "", "impulse_response_plot"], [142, 2, 1, "", "pole_zero_numerical_data"], [142, 2, 1, "", "pole_zero_plot"], [142, 2, 1, "", "ramp_response_numerical_data"], [142, 2, 1, "", "ramp_response_plot"], [142, 2, 1, "", "step_response_numerical_data"], [142, 2, 1, "", "step_response_plot"]], "sympy.physics.control.lti": [[144, 1, 1, "", "Feedback"], [144, 1, 1, "", "MIMOFeedback"], [144, 1, 1, "", "MIMOParallel"], [144, 1, 1, "", "MIMOSeries"], [144, 1, 1, "", "Parallel"], [144, 1, 1, "", "Series"], [144, 1, 1, "", "TransferFunction"], [144, 1, 1, "", "TransferFunctionMatrix"], [144, 4, 1, "", "backward_diff"], [144, 4, 1, "", "bilinear"], [144, 4, 1, "", "forward_diff"], [144, 4, 1, "", "gbt"]], "sympy.physics.control.lti.Feedback": [[144, 3, 1, "", "den"], [144, 2, 1, "", "doit"], [144, 3, 1, "", "num"], [144, 3, 1, "", "sensitivity"], [144, 3, 1, "", "sign"], [144, 3, 1, "", "sys1"], [144, 3, 1, "", "sys2"], [144, 2, 1, "", "to_expr"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.MIMOFeedback": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "sensitivity"], [144, 3, 1, "", "sign"], [144, 3, 1, "", "sys1"], [144, 3, 1, "", "sys2"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.MIMOParallel": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "num_inputs"], [144, 3, 1, "", "num_outputs"], [144, 3, 1, "", "shape"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.MIMOSeries": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "num_inputs"], [144, 3, 1, "", "num_outputs"], [144, 3, 1, "", "shape"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.Parallel": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "is_biproper"], [144, 3, 1, "", "is_proper"], [144, 3, 1, "", "is_strictly_proper"], [144, 2, 1, "", "to_expr"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.Series": [[144, 2, 1, "", "doit"], [144, 3, 1, "", "is_biproper"], [144, 3, 1, "", "is_proper"], [144, 3, 1, "", "is_strictly_proper"], [144, 2, 1, "", "to_expr"], [144, 3, 1, "", "var"]], "sympy.physics.control.lti.TransferFunction": [[144, 2, 1, "", "dc_gain"], [144, 3, 1, "", "den"], [144, 2, 1, "", "eval_frequency"], [144, 2, 1, "", "expand"], [144, 2, 1, "", "from_coeff_lists"], [144, 2, 1, "", "from_rational_expression"], [144, 2, 1, "", "from_zpk"], [144, 3, 1, "", "is_biproper"], [144, 3, 1, "", "is_proper"], [144, 2, 1, "", "is_stable"], [144, 3, 1, "", "is_strictly_proper"], [144, 3, 1, "", "num"], [144, 2, 1, "", "poles"], [144, 2, 1, "", "to_expr"], [144, 3, 1, "", "var"], [144, 2, 1, "", "zeros"]], "sympy.physics.control.lti.TransferFunctionMatrix": [[144, 2, 1, "", "elem_poles"], [144, 2, 1, "", "elem_zeros"], [144, 2, 1, "", "eval_frequency"], [144, 2, 1, "", "expand"], [144, 2, 1, "", "from_Matrix"], [144, 3, 1, "", "num_inputs"], [144, 3, 1, "", "num_outputs"], [144, 3, 1, "", "shape"], [144, 2, 1, "", "transpose"], [144, 3, 1, "", "var"]], "sympy.physics.hep": [[145, 0, 0, "-", "gamma_matrices"]], "sympy.physics.hep.gamma_matrices": [[145, 4, 1, "", "extract_type_tens"], [145, 4, 1, "", "gamma_trace"], [145, 4, 1, "", "kahane_simplify"], [145, 4, 1, "", "simplify_gpgp"]], "sympy.physics.hydrogen": [[146, 4, 1, "", "E_nl"], [146, 4, 1, "", "E_nl_dirac"], [146, 4, 1, "", "Psi_nlm"], [146, 4, 1, "", "R_nl"]], "sympy.physics.matrices": [[147, 4, 1, "", "mdft"], [147, 4, 1, "", "mgamma"], [147, 4, 1, "", "msigma"], [147, 4, 1, "", "pat_matrix"]], "sympy.physics.mechanics": [[148, 0, 0, "-", "actuator"], [150, 4, 1, "", "find_dynamicsymbols"], [152, 0, 0, "-", "joint"], [153, 0, 0, "-", "kane"], [153, 0, 0, "-", "lagrange"], [154, 0, 0, "-", "linearize"], [150, 4, 1, "", "msubs"], [156, 0, 0, "-", "pathway"], [159, 0, 0, "-", "wrapping_geometry"]], "sympy.physics.mechanics.actuator": [[148, 1, 1, "", "ActuatorBase"], [148, 1, 1, "", "DuffingSpring"], [148, 1, 1, "", "ForceActuator"], [148, 1, 1, "", "LinearDamper"], [148, 1, 1, "", "LinearSpring"], [148, 1, 1, "", "TorqueActuator"]], "sympy.physics.mechanics.actuator.ActuatorBase": [[148, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.actuator.DuffingSpring": [[148, 3, 1, "", "force"]], "sympy.physics.mechanics.actuator.ForceActuator": [[148, 3, 1, "", "force"], [148, 3, 1, "", "pathway"], [148, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.actuator.LinearDamper": [[148, 3, 1, "", "damping"], [148, 3, 1, "", "force"]], "sympy.physics.mechanics.actuator.LinearSpring": [[148, 3, 1, "", "equilibrium_length"], [148, 3, 1, "", "force"], [148, 3, 1, "", "stiffness"]], "sympy.physics.mechanics.actuator.TorqueActuator": [[148, 2, 1, "", "at_pin_joint"], [148, 3, 1, "", "axis"], [148, 3, 1, "", "reaction_frame"], [148, 3, 1, "", "target_frame"], [148, 2, 1, "", "to_loads"], [148, 3, 1, "", "torque"]], "sympy.physics.mechanics.body": [[149, 1, 1, "", "Body"]], "sympy.physics.mechanics.body.Body": [[149, 2, 1, "", "ang_vel_in"], [149, 2, 1, "", "angular_momentum"], [149, 2, 1, "", "apply_force"], [149, 2, 1, "", "apply_torque"], [149, 3, 1, "", "central_inertia"], [149, 2, 1, "", "clear_loads"], [149, 2, 1, "", "dcm"], [149, 3, 1, "", "frame"], [149, 3, 1, "", "inertia"], [149, 2, 1, "", "kinetic_energy"], [149, 2, 1, "", "linear_momentum"], [149, 3, 1, "", "mass"], [149, 3, 1, "", "masscenter"], [149, 2, 1, "", "masscenter_vel"], [149, 3, 1, "", "name"], [149, 2, 1, "", "parallel_axis"], [149, 3, 1, "", "point"], [149, 3, 1, "", "potential_energy"], [149, 2, 1, "", "remove_load"], [149, 3, 1, "", "x"], [149, 3, 1, "", "y"], [149, 3, 1, "", "z"]], "sympy.physics.mechanics.functions": [[155, 4, 1, "", "Lagrangian"], [155, 4, 1, "", "angular_momentum"], [155, 4, 1, "", "center_of_mass"], [155, 4, 1, "", "find_dynamicsymbols"], [155, 4, 1, "", "kinetic_energy"], [155, 4, 1, "", "linear_momentum"], [155, 4, 1, "", "potential_energy"]], "sympy.physics.mechanics.inertia": [[155, 1, 1, "", "Inertia"], [155, 4, 1, "", "inertia"], [155, 4, 1, "", "inertia_of_point_mass"]], "sympy.physics.mechanics.inertia.Inertia": [[155, 2, 1, "", "from_inertia_scalars"]], "sympy.physics.mechanics.joint": [[152, 1, 1, "", "CylindricalJoint"], [152, 1, 1, "", "Joint"], [152, 1, 1, "", "PinJoint"], [152, 1, 1, "", "PlanarJoint"], [152, 1, 1, "", "PrismaticJoint"], [152, 1, 1, "", "SphericalJoint"], [152, 1, 1, "", "WeldJoint"]], "sympy.physics.mechanics.joint.CylindricalJoint": [[152, 3, 1, "", "joint_axis"], [152, 3, 1, "", "rotation_coordinate"], [152, 3, 1, "", "rotation_speed"], [152, 3, 1, "", "translation_coordinate"], [152, 3, 1, "", "translation_speed"]], "sympy.physics.mechanics.joint.Joint": [[152, 3, 1, "", "child"], [152, 3, 1, "", "child_axis"], [152, 3, 1, "", "child_point"], [152, 3, 1, "", "coordinates"], [152, 3, 1, "", "kdes"], [152, 3, 1, "", "name"], [152, 3, 1, "", "parent"], [152, 3, 1, "", "parent_axis"], [152, 3, 1, "", "parent_point"], [152, 3, 1, "", "speeds"]], "sympy.physics.mechanics.joint.PinJoint": [[152, 3, 1, "", "joint_axis"]], "sympy.physics.mechanics.joint.PlanarJoint": [[152, 3, 1, "", "planar_coordinates"], [152, 3, 1, "", "planar_speeds"], [152, 3, 1, "", "planar_vectors"], [152, 3, 1, "", "rotation_axis"], [152, 3, 1, "", "rotation_coordinate"], [152, 3, 1, "", "rotation_speed"]], "sympy.physics.mechanics.joint.PrismaticJoint": [[152, 3, 1, "", "joint_axis"]], "sympy.physics.mechanics.jointsmethod": [[149, 1, 1, "", "JointsMethod"]], "sympy.physics.mechanics.jointsmethod.JointsMethod": [[149, 3, 1, "", "bodies"], [149, 3, 1, "", "forcing"], [149, 3, 1, "", "forcing_full"], [149, 2, 1, "", "form_eoms"], [149, 3, 1, "", "kdes"], [149, 3, 1, "", "loads"], [149, 3, 1, "", "mass_matrix"], [149, 3, 1, "", "mass_matrix_full"], [149, 3, 1, "", "method"], [149, 3, 1, "", "q"], [149, 2, 1, "", "rhs"], [149, 3, 1, "", "u"]], "sympy.physics.mechanics.kane": [[153, 1, 1, "", "KanesMethod"]], "sympy.physics.mechanics.kane.KanesMethod": [[153, 3, 1, "", "auxiliary_eqs"], [153, 3, 1, "", "forcing"], [153, 3, 1, "", "forcing_full"], [153, 3, 1, "", "forcing_kin"], [153, 2, 1, "", "kanes_equations"], [153, 2, 1, "", "kindiffdict"], [153, 2, 1, "", "linearize"], [153, 3, 1, "", "mass_matrix"], [153, 3, 1, "", "mass_matrix_full"], [153, 3, 1, "", "mass_matrix_kin"], [153, 2, 1, "", "rhs"], [153, 2, 1, "", "to_linearizer"]], "sympy.physics.mechanics.lagrange": [[153, 1, 1, "", "LagrangesMethod"]], "sympy.physics.mechanics.lagrange.LagrangesMethod": [[153, 3, 1, "", "forcing"], [153, 3, 1, "", "forcing_full"], [153, 2, 1, "", "form_lagranges_equations"], [153, 2, 1, "", "linearize"], [153, 3, 1, "", "mass_matrix"], [153, 3, 1, "", "mass_matrix_full"], [153, 2, 1, "", "rhs"], [153, 2, 1, "", "solve_multipliers"], [153, 2, 1, "", "to_linearizer"]], "sympy.physics.mechanics.linearize": [[154, 1, 1, "", "Linearizer"]], "sympy.physics.mechanics.linearize.Linearizer": [[154, 2, 1, "", "__init__"], [154, 2, 1, "", "linearize"]], "sympy.physics.mechanics.loads": [[155, 1, 1, "", "Force"], [155, 1, 1, "", "Torque"]], "sympy.physics.mechanics.particle": [[155, 1, 1, "", "Particle"]], "sympy.physics.mechanics.particle.Particle": [[155, 2, 1, "", "angular_momentum"], [155, 2, 1, "", "kinetic_energy"], [155, 2, 1, "", "linear_momentum"], [155, 3, 1, "", "mass"], [155, 3, 1, "", "masscenter"], [155, 3, 1, "", "name"], [155, 2, 1, "", "parallel_axis"], [155, 3, 1, "", "point"], [155, 3, 1, "", "potential_energy"]], "sympy.physics.mechanics.pathway": [[156, 1, 1, "", "LinearPathway"], [156, 1, 1, "", "ObstacleSetPathway"], [156, 1, 1, "", "PathwayBase"], [156, 1, 1, "", "WrappingPathway"]], "sympy.physics.mechanics.pathway.LinearPathway": [[156, 3, 1, "", "extension_velocity"], [156, 3, 1, "", "length"], [156, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.pathway.ObstacleSetPathway": [[156, 3, 1, "", "attachments"], [156, 3, 1, "", "extension_velocity"], [156, 3, 1, "", "length"], [156, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.pathway.PathwayBase": [[156, 3, 1, "", "attachments"], [156, 3, 1, "", "extension_velocity"], [156, 3, 1, "", "length"], [156, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.pathway.WrappingPathway": [[156, 3, 1, "", "extension_velocity"], [156, 3, 1, "", "geometry"], [156, 3, 1, "", "length"], [156, 2, 1, "", "to_loads"]], "sympy.physics.mechanics.rigidbody": [[155, 1, 1, "", "RigidBody"]], "sympy.physics.mechanics.rigidbody.RigidBody": [[155, 2, 1, "", "angular_momentum"], [155, 3, 1, "", "central_inertia"], [155, 3, 1, "", "frame"], [155, 3, 1, "", "inertia"], [155, 2, 1, "", "kinetic_energy"], [155, 2, 1, "", "linear_momentum"], [155, 3, 1, "", "mass"], [155, 3, 1, "", "masscenter"], [155, 3, 1, "", "name"], [155, 2, 1, "", "parallel_axis"], [155, 3, 1, "", "potential_energy"], [155, 3, 1, "", "x"], [155, 3, 1, "", "y"], [155, 3, 1, "", "z"]], "sympy.physics.mechanics.system": [[158, 1, 1, "", "SymbolicSystem"], [158, 1, 1, "", "System"]], "sympy.physics.mechanics.system.SymbolicSystem": [[158, 3, 1, "", "alg_con"], [158, 3, 1, "", "bodies"], [158, 3, 1, "", "comb_explicit_rhs"], [158, 3, 1, "", "comb_implicit_mat"], [158, 3, 1, "", "comb_implicit_rhs"], [158, 2, 1, "", "compute_explicit_form"], [158, 2, 1, "", "constant_symbols"], [158, 3, 1, "", "coordinates"], [158, 3, 1, "", "dyn_implicit_mat"], [158, 3, 1, "", "dyn_implicit_rhs"], [158, 2, 1, "", "dynamic_symbols"], [158, 3, 1, "", "kin_explicit_rhs"], [158, 3, 1, "", "loads"], [158, 3, 1, "", "speeds"], [158, 3, 1, "", "states"]], "sympy.physics.mechanics.system.System": [[158, 3, 1, "", "actuators"], [158, 2, 1, "", "add_actuators"], [158, 2, 1, "", "add_auxiliary_speeds"], [158, 2, 1, "", "add_bodies"], [158, 2, 1, "", "add_coordinates"], [158, 2, 1, "", "add_holonomic_constraints"], [158, 2, 1, "", "add_joints"], [158, 2, 1, "", "add_kdes"], [158, 2, 1, "", "add_loads"], [158, 2, 1, "", "add_nonholonomic_constraints"], [158, 2, 1, "", "add_speeds"], [158, 2, 1, "", "apply_uniform_gravity"], [158, 3, 1, "", "bodies"], [158, 3, 1, "", "eom_method"], [158, 3, 1, "", "fixed_point"], [158, 3, 1, "", "forcing"], [158, 3, 1, "", "forcing_full"], [158, 2, 1, "", "form_eoms"], [158, 3, 1, "", "frame"], [158, 2, 1, "", "from_newtonian"], [158, 2, 1, "", "get_body"], [158, 2, 1, "", "get_joint"], [158, 3, 1, "", "holonomic_constraints"], [158, 3, 1, "", "joints"], [158, 3, 1, "", "kdes"], [158, 3, 1, "", "loads"], [158, 3, 1, "", "mass_matrix"], [158, 3, 1, "", "mass_matrix_full"], [158, 3, 1, "", "nonholonomic_constraints"], [158, 3, 1, "", "q"], [158, 3, 1, "", "q_dep"], [158, 3, 1, "", "q_ind"], [158, 2, 1, "", "rhs"], [158, 3, 1, "", "u"], [158, 3, 1, "", "u_aux"], [158, 3, 1, "", "u_dep"], [158, 3, 1, "", "u_ind"], [158, 2, 1, "", "validate_system"], [158, 3, 1, "", "velocity_constraints"], [158, 3, 1, "", "x"], [158, 3, 1, "", "y"], [158, 3, 1, "", "z"]], "sympy.physics.mechanics.wrapping_geometry": [[159, 1, 1, "", "WrappingCylinder"], [159, 1, 1, "", "WrappingGeometryBase"], [159, 1, 1, "", "WrappingSphere"]], "sympy.physics.mechanics.wrapping_geometry.WrappingCylinder": [[159, 3, 1, "", "axis"], [159, 2, 1, "", "geodesic_end_vectors"], [159, 2, 1, "", "geodesic_length"], [159, 3, 1, "", "point"], [159, 2, 1, "", "point_on_surface"], [159, 3, 1, "", "radius"]], "sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase": [[159, 2, 1, "", "geodesic_end_vectors"], [159, 2, 1, "", "geodesic_length"], [159, 3, 1, "", "point"], [159, 2, 1, "", "point_on_surface"]], "sympy.physics.mechanics.wrapping_geometry.WrappingSphere": [[159, 2, 1, "", "geodesic_end_vectors"], [159, 2, 1, "", "geodesic_length"], [159, 3, 1, "", "point"], [159, 2, 1, "", "point_on_surface"], [159, 3, 1, "", "radius"]], "sympy.physics.optics": [[160, 0, 0, "-", "gaussopt"], [162, 0, 0, "-", "medium"], [163, 0, 0, "-", "polarization"], [164, 0, 0, "-", "utils"], [165, 0, 0, "-", "waves"]], "sympy.physics.optics.gaussopt": [[160, 1, 1, "", "BeamParameter"], [160, 1, 1, "", "CurvedMirror"], [160, 1, 1, "", "CurvedRefraction"], [160, 1, 1, "", "FlatMirror"], [160, 1, 1, "", "FlatRefraction"], [160, 1, 1, "", "FreeSpace"], [160, 1, 1, "", "GeometricRay"], [160, 1, 1, "", "RayTransferMatrix"], [160, 1, 1, "", "ThinLens"], [160, 4, 1, "", "conjugate_gauss_beams"], [160, 4, 1, "", "gaussian_conj"], [160, 4, 1, "", "geometric_conj_ab"], [160, 4, 1, "", "geometric_conj_af"], [160, 4, 1, "", "geometric_conj_bf"], [160, 4, 1, "", "rayleigh2waist"], [160, 4, 1, "", "waist2rayleigh"]], "sympy.physics.optics.gaussopt.BeamParameter": [[160, 3, 1, "", "divergence"], [160, 3, 1, "", "gouy"], [160, 3, 1, "", "q"], [160, 3, 1, "", "radius"], [160, 3, 1, "", "w"], [160, 3, 1, "", "w_0"], [160, 3, 1, "", "waist_approximation_limit"]], "sympy.physics.optics.gaussopt.GeometricRay": [[160, 3, 1, "", "angle"], [160, 3, 1, "", "height"]], "sympy.physics.optics.gaussopt.RayTransferMatrix": [[160, 3, 1, "", "A"], [160, 3, 1, "", "B"], [160, 3, 1, "", "C"], [160, 3, 1, "", "D"]], "sympy.physics.optics.medium": [[162, 1, 1, "", "Medium"]], "sympy.physics.optics.medium.Medium": [[162, 3, 1, "", "refractive_index"], [162, 3, 1, "", "speed"]], "sympy.physics.optics.polarization": [[163, 4, 1, "", "half_wave_retarder"], [163, 4, 1, "", "jones_2_stokes"], [163, 4, 1, "", "jones_vector"], [163, 4, 1, "", "linear_polarizer"], [163, 4, 1, "", "mueller_matrix"], [163, 4, 1, "", "phase_retarder"], [163, 4, 1, "", "polarizing_beam_splitter"], [163, 4, 1, "", "quarter_wave_retarder"], [163, 4, 1, "", "reflective_filter"], [163, 4, 1, "", "stokes_vector"], [163, 4, 1, "", "transmissive_filter"]], "sympy.physics.optics.utils": [[164, 4, 1, "", "brewster_angle"], [164, 4, 1, "", "critical_angle"], [164, 4, 1, "", "deviation"], [164, 4, 1, "", "fresnel_coefficients"], [164, 4, 1, "", "hyperfocal_distance"], [164, 4, 1, "", "lens_formula"], [164, 4, 1, "", "lens_makers_formula"], [164, 4, 1, "", "mirror_formula"], [164, 4, 1, "", "refraction_angle"], [164, 4, 1, "", "transverse_magnification"]], "sympy.physics.optics.waves": [[165, 1, 1, "", "TWave"]], "sympy.physics.optics.waves.TWave": [[165, 3, 1, "", "amplitude"], [165, 3, 1, "", "angular_velocity"], [165, 3, 1, "", "frequency"], [165, 3, 1, "", "n"], [165, 3, 1, "", "phase"], [165, 3, 1, "", "speed"], [165, 3, 1, "", "time_period"], [165, 3, 1, "", "wavelength"], [165, 3, 1, "", "wavenumber"]], "sympy.physics.paulialgebra": [[166, 4, 1, "", "evaluate_pauli_product"]], "sympy.physics.qho_1d": [[167, 4, 1, "", "E_n"], [167, 4, 1, "", "coherent_state"], [167, 4, 1, "", "psi_n"]], "sympy.physics.quantum": [[168, 0, 0, "-", "anticommutator"], [169, 0, 0, "-", "cartesian"], [170, 0, 0, "-", "cg"], [171, 0, 0, "-", "circuitplot"], [172, 0, 0, "-", "commutator"], [173, 0, 0, "-", "constants"], [174, 0, 0, "-", "dagger"], [175, 0, 0, "-", "gate"], [176, 0, 0, "-", "grover"], [177, 0, 0, "-", "hilbert"], [179, 0, 0, "-", "innerproduct"], [180, 0, 0, "-", "operator"], [181, 0, 0, "-", "operatorset"], [182, 0, 0, "-", "piab"], [183, 0, 0, "-", "qapply"], [184, 0, 0, "-", "qft"], [185, 0, 0, "-", "qubit"], [186, 0, 0, "-", "represent"], [187, 0, 0, "-", "shor"], [188, 0, 0, "-", "spin"], [189, 0, 0, "-", "state"], [190, 0, 0, "-", "tensorproduct"]], "sympy.physics.quantum.anticommutator": [[168, 1, 1, "", "AntiCommutator"]], "sympy.physics.quantum.anticommutator.AntiCommutator": [[168, 2, 1, "", "doit"]], "sympy.physics.quantum.cartesian": [[169, 1, 1, "", "PositionBra3D"], [169, 1, 1, "", "PositionKet3D"], [169, 1, 1, "", "PositionState3D"], [169, 1, 1, "", "PxBra"], [169, 1, 1, "", "PxKet"], [169, 1, 1, "", "PxOp"], [169, 1, 1, "", "XBra"], [169, 1, 1, "", "XKet"], [169, 1, 1, "", "XOp"], [169, 1, 1, "", "YOp"], [169, 1, 1, "", "ZOp"]], "sympy.physics.quantum.cartesian.PositionState3D": [[169, 3, 1, "", "position_x"], [169, 3, 1, "", "position_y"], [169, 3, 1, "", "position_z"]], "sympy.physics.quantum.cartesian.PxBra": [[169, 3, 1, "", "momentum"]], "sympy.physics.quantum.cartesian.PxKet": [[169, 3, 1, "", "momentum"]], "sympy.physics.quantum.cartesian.XBra": [[169, 3, 1, "", "position"]], "sympy.physics.quantum.cartesian.XKet": [[169, 3, 1, "", "position"]], "sympy.physics.quantum.cg": [[170, 1, 1, "", "CG"], [170, 1, 1, "", "Wigner3j"], [170, 1, 1, "", "Wigner6j"], [170, 1, 1, "", "Wigner9j"], [170, 4, 1, "", "cg_simp"]], "sympy.physics.quantum.circuitplot": [[171, 1, 1, "", "CircuitPlot"], [171, 4, 1, "", "CreateCGate"], [171, 1, 1, "", "Mx"], [171, 1, 1, "", "Mz"], [171, 4, 1, "", "circuit_plot"], [171, 4, 1, "", "labeller"]], "sympy.physics.quantum.circuitplot.CircuitPlot": [[171, 2, 1, "", "control_line"], [171, 2, 1, "", "control_point"], [171, 2, 1, "", "not_point"], [171, 2, 1, "", "one_qubit_box"], [171, 2, 1, "", "swap_point"], [171, 2, 1, "", "two_qubit_box"], [171, 2, 1, "", "update"]], "sympy.physics.quantum.commutator": [[172, 1, 1, "", "Commutator"]], "sympy.physics.quantum.commutator.Commutator": [[172, 2, 1, "", "doit"]], "sympy.physics.quantum.constants": [[173, 1, 1, "", "HBar"]], "sympy.physics.quantum.dagger": [[174, 1, 1, "", "Dagger"]], "sympy.physics.quantum.gate": [[175, 1, 1, "", "CGate"], [175, 1, 1, "", "CGateS"], [175, 5, 1, "", "CNOT"], [175, 1, 1, "", "CNotGate"], [175, 1, 1, "", "Gate"], [175, 5, 1, "", "H"], [175, 1, 1, "", "HadamardGate"], [175, 1, 1, "", "IdentityGate"], [175, 1, 1, "", "OneQubitGate"], [175, 5, 1, "", "Phase"], [175, 1, 1, "", "PhaseGate"], [175, 5, 1, "", "S"], [175, 5, 1, "", "SWAP"], [175, 1, 1, "", "SwapGate"], [175, 5, 1, "", "T"], [175, 1, 1, "", "TGate"], [175, 1, 1, "", "TwoQubitGate"], [175, 1, 1, "", "UGate"], [175, 5, 1, "", "X"], [175, 1, 1, "", "XGate"], [175, 5, 1, "", "Y"], [175, 1, 1, "", "YGate"], [175, 5, 1, "", "Z"], [175, 1, 1, "", "ZGate"], [175, 4, 1, "", "gate_simp"], [175, 4, 1, "", "gate_sort"], [175, 4, 1, "", "normalized"], [175, 4, 1, "", "random_circuit"]], "sympy.physics.quantum.gate.CGate": [[175, 3, 1, "", "controls"], [175, 2, 1, "", "decompose"], [175, 2, 1, "", "eval_controls"], [175, 3, 1, "", "gate"], [175, 3, 1, "", "min_qubits"], [175, 3, 1, "", "nqubits"], [175, 2, 1, "", "plot_gate"], [175, 3, 1, "", "targets"]], "sympy.physics.quantum.gate.CNotGate": [[175, 3, 1, "", "controls"], [175, 3, 1, "", "gate"], [175, 3, 1, "", "min_qubits"], [175, 3, 1, "", "targets"]], "sympy.physics.quantum.gate.Gate": [[175, 2, 1, "", "get_target_matrix"], [175, 3, 1, "", "min_qubits"], [175, 3, 1, "", "nqubits"], [175, 3, 1, "", "targets"]], "sympy.physics.quantum.gate.SwapGate": [[175, 2, 1, "", "decompose"]], "sympy.physics.quantum.gate.UGate": [[175, 2, 1, "", "get_target_matrix"], [175, 3, 1, "", "targets"]], "sympy.physics.quantum.grover": [[176, 1, 1, "", "OracleGate"], [176, 1, 1, "", "WGate"], [176, 4, 1, "", "apply_grover"], [176, 4, 1, "", "grover_iteration"], [176, 4, 1, "", "superposition_basis"]], "sympy.physics.quantum.grover.OracleGate": [[176, 3, 1, "", "search_function"], [176, 3, 1, "", "targets"]], "sympy.physics.quantum.hilbert": [[177, 1, 1, "", "ComplexSpace"], [177, 1, 1, "", "DirectSumHilbertSpace"], [177, 1, 1, "", "FockSpace"], [177, 1, 1, "", "HilbertSpace"], [177, 1, 1, "", "L2"], [177, 1, 1, "", "TensorPowerHilbertSpace"], [177, 1, 1, "", "TensorProductHilbertSpace"]], "sympy.physics.quantum.hilbert.DirectSumHilbertSpace": [[177, 2, 1, "", "eval"], [177, 3, 1, "", "spaces"]], "sympy.physics.quantum.hilbert.HilbertSpace": [[177, 3, 1, "", "dimension"]], "sympy.physics.quantum.hilbert.TensorProductHilbertSpace": [[177, 2, 1, "", "eval"], [177, 3, 1, "", "spaces"]], "sympy.physics.quantum.innerproduct": [[179, 1, 1, "", "InnerProduct"]], "sympy.physics.quantum.operator": [[180, 1, 1, "", "DifferentialOperator"], [180, 1, 1, "", "HermitianOperator"], [180, 1, 1, "", "IdentityOperator"], [180, 1, 1, "", "Operator"], [180, 1, 1, "", "OuterProduct"], [180, 1, 1, "", "UnitaryOperator"]], "sympy.physics.quantum.operator.DifferentialOperator": [[180, 3, 1, "", "expr"], [180, 3, 1, "", "free_symbols"], [180, 3, 1, "", "function"], [180, 3, 1, "", "variables"]], "sympy.physics.quantum.operator.OuterProduct": [[180, 3, 1, "", "bra"], [180, 3, 1, "", "ket"]], "sympy.physics.quantum.operatorset": [[181, 4, 1, "", "operators_to_state"], [181, 4, 1, "", "state_to_operators"]], "sympy.physics.quantum.piab": [[182, 1, 1, "", "PIABBra"], [182, 1, 1, "", "PIABHamiltonian"], [182, 1, 1, "", "PIABKet"]], "sympy.physics.quantum.qapply": [[183, 4, 1, "", "qapply"]], "sympy.physics.quantum.qft": [[184, 1, 1, "", "IQFT"], [184, 1, 1, "", "QFT"], [184, 5, 1, "", "Rk"], [184, 1, 1, "", "RkGate"]], "sympy.physics.quantum.qft.IQFT": [[184, 2, 1, "", "decompose"]], "sympy.physics.quantum.qft.QFT": [[184, 2, 1, "", "decompose"]], "sympy.physics.quantum.qubit": [[185, 1, 1, "", "IntQubit"], [185, 1, 1, "", "IntQubitBra"], [185, 1, 1, "", "Qubit"], [185, 1, 1, "", "QubitBra"], [185, 4, 1, "", "matrix_to_density"], [185, 4, 1, "", "matrix_to_qubit"], [185, 4, 1, "", "measure_all"], [185, 4, 1, "", "measure_all_oneshot"], [185, 4, 1, "", "measure_partial"], [185, 4, 1, "", "measure_partial_oneshot"], [185, 4, 1, "", "qubit_to_matrix"]], "sympy.physics.quantum.represent": [[186, 4, 1, "", "enumerate_states"], [186, 4, 1, "", "get_basis"], [186, 4, 1, "", "integrate_result"], [186, 4, 1, "", "rep_expectation"], [186, 4, 1, "", "rep_innerproduct"], [186, 4, 1, "", "represent"]], "sympy.physics.quantum.shor": [[187, 1, 1, "", "CMod"], [187, 4, 1, "", "period_find"], [187, 4, 1, "", "shor"]], "sympy.physics.quantum.shor.CMod": [[187, 3, 1, "", "N"], [187, 3, 1, "", "a"], [187, 3, 1, "", "t"]], "sympy.physics.quantum.spin": [[188, 1, 1, "", "J2Op"], [188, 1, 1, "", "JxBra"], [188, 1, 1, "", "JxBraCoupled"], [188, 1, 1, "", "JxKet"], [188, 1, 1, "", "JxKetCoupled"], [188, 1, 1, "", "JyBra"], [188, 1, 1, "", "JyBraCoupled"], [188, 1, 1, "", "JyKet"], [188, 1, 1, "", "JyKetCoupled"], [188, 1, 1, "", "JzBra"], [188, 1, 1, "", "JzBraCoupled"], [188, 1, 1, "", "JzKet"], [188, 1, 1, "", "JzKetCoupled"], [188, 1, 1, "", "JzOp"], [188, 1, 1, "", "Rotation"], [188, 1, 1, "", "WignerD"], [188, 4, 1, "", "couple"], [188, 4, 1, "", "uncouple"]], "sympy.physics.quantum.spin.Rotation": [[188, 2, 1, "", "D"], [188, 2, 1, "", "d"]], "sympy.physics.quantum.state": [[189, 1, 1, "", "Bra"], [189, 1, 1, "", "BraBase"], [189, 1, 1, "", "Ket"], [189, 1, 1, "", "KetBase"], [189, 1, 1, "", "OrthogonalBra"], [189, 1, 1, "", "OrthogonalKet"], [189, 1, 1, "", "OrthogonalState"], [189, 1, 1, "", "State"], [189, 1, 1, "", "StateBase"], [189, 1, 1, "", "TimeDepBra"], [189, 1, 1, "", "TimeDepKet"], [189, 1, 1, "", "TimeDepState"], [189, 1, 1, "", "Wavefunction"]], "sympy.physics.quantum.state.StateBase": [[189, 3, 1, "", "dual"], [189, 2, 1, "", "dual_class"], [189, 3, 1, "", "operators"]], "sympy.physics.quantum.state.TimeDepState": [[189, 3, 1, "", "label"], [189, 3, 1, "", "time"]], "sympy.physics.quantum.state.Wavefunction": [[189, 3, 1, "", "expr"], [189, 3, 1, "", "is_commutative"], [189, 3, 1, "", "is_normalized"], [189, 3, 1, "", "limits"], [189, 3, 1, "", "norm"], [189, 2, 1, "", "normalize"], [189, 2, 1, "", "prob"], [189, 3, 1, "", "variables"]], "sympy.physics.quantum.tensorproduct": [[190, 1, 1, "", "TensorProduct"], [190, 4, 1, "", "tensor_product_simp"]], "sympy.physics.secondquant": [[191, 1, 1, "", "AnnihilateBoson"], [191, 1, 1, "", "AnnihilateFermion"], [191, 1, 1, "", "AntiSymmetricTensor"], [191, 5, 1, "", "B"], [191, 5, 1, "", "BBra"], [191, 5, 1, "", "BKet"], [191, 5, 1, "", "Bd"], [191, 1, 1, "", "BosonicBasis"], [191, 1, 1, "", "Commutator"], [191, 1, 1, "", "CreateBoson"], [191, 1, 1, "", "CreateFermion"], [191, 1, 1, "", "Dagger"], [191, 5, 1, "", "F"], [191, 5, 1, "", "FBra"], [191, 5, 1, "", "FKet"], [191, 5, 1, "", "Fd"], [191, 1, 1, "", "FixedBosonicBasis"], [191, 1, 1, "", "FockState"], [191, 1, 1, "", "FockStateBosonBra"], [191, 1, 1, "", "FockStateBosonKet"], [191, 1, 1, "", "FockStateBra"], [191, 1, 1, "", "FockStateFermionBra"], [191, 1, 1, "", "FockStateFermionKet"], [191, 1, 1, "", "FockStateKet"], [191, 1, 1, "", "InnerProduct"], [191, 1, 1, "", "KroneckerDelta"], [191, 1, 1, "", "NO"], [191, 1, 1, "", "PermutationOperator"], [191, 1, 1, "", "VarBosonicBasis"], [191, 4, 1, "", "apply_operators"], [191, 4, 1, "", "contraction"], [191, 4, 1, "", "evaluate_deltas"], [191, 4, 1, "", "matrix_rep"], [191, 4, 1, "", "simplify_index_permutations"], [191, 4, 1, "", "substitute_dummies"], [191, 4, 1, "", "wicks"]], "sympy.physics.secondquant.AnnihilateBoson": [[191, 2, 1, "", "apply_operator"]], "sympy.physics.secondquant.AnnihilateFermion": [[191, 2, 1, "", "apply_operator"], [191, 3, 1, "", "is_only_q_annihilator"], [191, 3, 1, "", "is_only_q_creator"], [191, 3, 1, "", "is_q_annihilator"], [191, 3, 1, "", "is_q_creator"]], "sympy.physics.secondquant.AntiSymmetricTensor": [[191, 3, 1, "", "lower"], [191, 3, 1, "", "symbol"], [191, 3, 1, "", "upper"]], "sympy.physics.secondquant.Commutator": [[191, 2, 1, "", "doit"], [191, 2, 1, "", "eval"]], "sympy.physics.secondquant.CreateBoson": [[191, 2, 1, "", "apply_operator"]], "sympy.physics.secondquant.CreateFermion": [[191, 2, 1, "", "apply_operator"], [191, 3, 1, "", "is_only_q_annihilator"], [191, 3, 1, "", "is_only_q_creator"], [191, 3, 1, "", "is_q_annihilator"], [191, 3, 1, "", "is_q_creator"]], "sympy.physics.secondquant.Dagger": [[191, 2, 1, "", "eval"]], "sympy.physics.secondquant.FixedBosonicBasis": [[191, 2, 1, "", "index"], [191, 2, 1, "", "state"]], "sympy.physics.secondquant.InnerProduct": [[191, 3, 1, "", "bra"], [191, 3, 1, "", "ket"]], "sympy.physics.secondquant.KroneckerDelta": [[191, 2, 1, "", "eval"], [191, 3, 1, "", "indices_contain_equal_information"], [191, 3, 1, "", "is_above_fermi"], [191, 3, 1, "", "is_below_fermi"], [191, 3, 1, "", "is_only_above_fermi"], [191, 3, 1, "", "is_only_below_fermi"], [191, 3, 1, "", "killable_index"], [191, 3, 1, "", "preferred_index"]], "sympy.physics.secondquant.NO": [[191, 2, 1, "", "doit"], [191, 2, 1, "", "get_subNO"], [191, 3, 1, "", "has_q_annihilators"], [191, 3, 1, "", "has_q_creators"], [191, 2, 1, "", "iter_q_annihilators"], [191, 2, 1, "", "iter_q_creators"]], "sympy.physics.secondquant.PermutationOperator": [[191, 2, 1, "", "get_permuted"]], "sympy.physics.secondquant.VarBosonicBasis": [[191, 2, 1, "", "index"], [191, 2, 1, "", "state"]], "sympy.physics.sho": [[192, 4, 1, "", "E_nl"], [192, 4, 1, "", "R_nl"]], "sympy.physics.units": [[193, 0, 0, "-", "dimensions"], [197, 0, 0, "-", "prefixes"], [198, 0, 0, "-", "quantities"], [199, 0, 0, "-", "unitsystem"], [198, 0, 0, "-", "util"]], "sympy.physics.units.dimensions": [[193, 1, 1, "", "Dimension"], [193, 1, 1, "", "DimensionSystem"]], "sympy.physics.units.dimensions.Dimension": [[193, 2, 1, "", "has_integer_powers"]], "sympy.physics.units.dimensions.DimensionSystem": [[193, 3, 1, "", "can_transf_matrix"], [193, 3, 1, "", "dim"], [193, 2, 1, "", "dim_can_vector"], [193, 2, 1, "", "dim_vector"], [193, 3, 1, "", "inv_can_transf_matrix"], [193, 3, 1, "", "is_consistent"], [193, 2, 1, "", "is_dimensionless"], [193, 3, 1, "", "list_can_dims"], [193, 2, 1, "", "print_dim_base"]], "sympy.physics.units.prefixes": [[197, 1, 1, "", "Prefix"]], "sympy.physics.units.quantities": [[198, 1, 1, "", "Quantity"]], "sympy.physics.units.quantities.Quantity": [[198, 3, 1, "", "abbrev"], [198, 2, 1, "", "convert_to"], [198, 3, 1, "", "free_symbols"], [198, 3, 1, "", "is_prefixed"], [198, 3, 1, "", "scale_factor"], [198, 2, 1, "", "set_global_relative_scale_factor"]], "sympy.physics.units.unitsystem": [[199, 1, 1, "", "UnitSystem"]], "sympy.physics.units.unitsystem.UnitSystem": [[199, 3, 1, "", "dim"], [199, 2, 1, "", "extend"], [199, 2, 1, "", "get_units_non_prefixed"], [199, 3, 1, "", "is_consistent"]], "sympy.physics.units.util": [[198, 4, 1, "", "convert_to"]], "sympy.physics.vector": [[202, 4, 1, "", "dynamicsymbols"], [204, 0, 0, "-", "functions"], [204, 0, 0, "-", "point"]], "sympy.physics.vector.dyadic": [[200, 1, 1, "", "Dyadic"]], "sympy.physics.vector.dyadic.Dyadic": [[200, 2, 1, "", "applyfunc"], [200, 2, 1, "", "cross"], [200, 2, 1, "", "doit"], [200, 2, 1, "", "dot"], [200, 2, 1, "", "dt"], [200, 2, 1, "", "express"], [200, 3, 1, "", "func"], [200, 2, 1, "", "simplify"], [200, 2, 1, "", "subs"], [200, 2, 1, "", "to_matrix"], [200, 2, 1, "", "xreplace"]], "sympy.physics.vector.fieldfunctions": [[201, 4, 1, "", "curl"], [201, 4, 1, "", "divergence"], [201, 4, 1, "", "gradient"], [201, 4, 1, "", "is_conservative"], [201, 4, 1, "", "is_solenoidal"], [201, 4, 1, "", "scalar_potential"], [201, 4, 1, "", "scalar_potential_difference"]], "sympy.physics.vector.frame": [[200, 1, 1, "", "CoordinateSym"], [200, 1, 1, "", "ReferenceFrame"]], "sympy.physics.vector.frame.ReferenceFrame": [[200, 2, 1, "", "ang_acc_in"], [200, 2, 1, "", "ang_vel_in"], [200, 2, 1, "", "dcm"], [200, 2, 1, "", "orient"], [200, 2, 1, "", "orient_axis"], [200, 2, 1, "", "orient_body_fixed"], [200, 2, 1, "", "orient_dcm"], [200, 2, 1, "", "orient_quaternion"], [200, 2, 1, "", "orient_space_fixed"], [200, 2, 1, "", "orientnew"], [200, 2, 1, "", "partial_velocity"], [200, 2, 1, "", "set_ang_acc"], [200, 2, 1, "", "set_ang_vel"], [200, 3, 1, "", "u"], [200, 2, 1, "", "variable_map"], [200, 3, 1, "", "x"], [200, 3, 1, "", "xx"], [200, 3, 1, "", "xy"], [200, 3, 1, "", "xz"], [200, 3, 1, "", "y"], [200, 3, 1, "", "yx"], [200, 3, 1, "", "yy"], [200, 3, 1, "", "yz"], [200, 3, 1, "", "z"], [200, 3, 1, "", "zx"], [200, 3, 1, "", "zy"], [200, 3, 1, "", "zz"]], "sympy.physics.vector.functions": [[202, 4, 1, "", "cross"], [202, 4, 1, "", "dot"], [202, 4, 1, "", "express"], [204, 4, 1, "", "get_motion_params"], [204, 4, 1, "", "kinematic_equations"], [202, 4, 1, "", "outer"], [204, 4, 1, "", "partial_velocity"], [202, 4, 1, "", "time_derivative"]], "sympy.physics.vector.point": [[204, 1, 1, "", "Point"]], "sympy.physics.vector.point.Point": [[204, 2, 1, "", "a1pt_theory"], [204, 2, 1, "", "a2pt_theory"], [204, 2, 1, "", "acc"], [204, 2, 1, "", "locatenew"], [204, 2, 1, "", "partial_velocity"], [204, 2, 1, "", "pos_from"], [204, 2, 1, "", "set_acc"], [204, 2, 1, "", "set_pos"], [204, 2, 1, "", "set_vel"], [204, 2, 1, "", "v1pt_theory"], [204, 2, 1, "", "v2pt_theory"], [204, 2, 1, "", "vel"]], "sympy.physics.vector.printing": [[205, 4, 1, "", "init_vprinting"], [205, 4, 1, "", "vlatex"], [205, 4, 1, "", "vpprint"], [205, 4, 1, "", "vprint"]], "sympy.physics.vector.vector": [[200, 1, 1, "", "Vector"]], "sympy.physics.vector.vector.Vector": [[200, 2, 1, "", "angle_between"], [200, 2, 1, "", "applyfunc"], [200, 2, 1, "", "cross"], [200, 2, 1, "", "diff"], [200, 2, 1, "", "doit"], [200, 2, 1, "", "dot"], [200, 2, 1, "", "dt"], [200, 2, 1, "", "express"], [200, 2, 1, "", "free_dynamicsymbols"], [200, 2, 1, "", "free_symbols"], [200, 3, 1, "", "func"], [200, 2, 1, "", "magnitude"], [200, 2, 1, "", "normalize"], [200, 2, 1, "", "outer"], [200, 2, 1, "", "separate"], [200, 2, 1, "", "simplify"], [200, 2, 1, "", "subs"], [200, 2, 1, "", "to_matrix"], [200, 2, 1, "", "xreplace"]], "sympy.physics.wigner": [[206, 4, 1, "", "clebsch_gordan"], [206, 4, 1, "", "dot_rot_grad_Ynm"], [206, 4, 1, "", "gaunt"], [206, 4, 1, "", "racah"], [206, 4, 1, "", "real_gaunt"], [206, 4, 1, "", "wigner_3j"], [206, 4, 1, "", "wigner_6j"], [206, 4, 1, "", "wigner_9j"], [206, 4, 1, "", "wigner_d"], [206, 4, 1, "", "wigner_d_small"]], "sympy.plotting": [[207, 0, 0, "-", "plot"], [207, 0, 0, "-", "pygletplot"]], "sympy.plotting.plot": [[207, 1, 1, "", "MatplotlibBackend"], [207, 1, 1, "", "Plot"], [207, 1, 1, "", "PlotGrid"], [207, 1, 1, "", "TextBackend"], [207, 4, 1, "", "plot"], [207, 4, 1, "", "plot3d"], [207, 4, 1, "", "plot3d_parametric_line"], [207, 4, 1, "", "plot3d_parametric_surface"], [207, 4, 1, "", "plot_parametric"]], "sympy.plotting.plot.MatplotlibBackend": [[207, 2, 1, "", "get_segments"], [207, 2, 1, "", "process_series"]], "sympy.plotting.plot.Plot": [[207, 3, 1, "", "annotations"], [207, 2, 1, "", "append"], [207, 2, 1, "", "extend"], [207, 3, 1, "", "fill"], [207, 3, 1, "", "markers"], [207, 3, 1, "", "rectangles"]], "sympy.plotting.plot_implicit": [[207, 4, 1, "", "plot_implicit"]], "sympy.plotting.series": [[207, 1, 1, "", "BaseSeries"], [207, 1, 1, "", "ImplicitSeries"], [207, 1, 1, "", "Line2DBaseSeries"], [207, 1, 1, "", "Line3DBaseSeries"], [207, 1, 1, "", "LineOver1DRangeSeries"], [207, 1, 1, "", "Parametric2DLineSeries"], [207, 1, 1, "", "Parametric3DLineSeries"], [207, 1, 1, "", "ParametricSurfaceSeries"], [207, 1, 1, "", "SurfaceBaseSeries"], [207, 1, 1, "", "SurfaceOver2DRangeSeries"]], "sympy.plotting.series.BaseSeries": [[207, 2, 1, "", "eval_color_func"], [207, 3, 1, "", "expr"], [207, 2, 1, "", "get_data"], [207, 2, 1, "", "get_label"], [207, 3, 1, "", "n"], [207, 3, 1, "", "params"]], "sympy.plotting.series.ImplicitSeries": [[207, 2, 1, "", "get_data"], [207, 2, 1, "", "get_label"]], "sympy.plotting.series.Line2DBaseSeries": [[207, 2, 1, "", "get_data"]], "sympy.plotting.series.LineOver1DRangeSeries": [[207, 2, 1, "", "get_points"]], "sympy.plotting.series.ParametricSurfaceSeries": [[207, 2, 1, "", "get_data"], [207, 2, 1, "", "get_meshes"]], "sympy.plotting.series.SurfaceOver2DRangeSeries": [[207, 2, 1, "", "get_data"], [207, 2, 1, "", "get_meshes"]], "sympy.plotting.textplot": [[207, 4, 1, "", "textplot"]], "sympy.polys": [[214, 0, 0, "-", "polyconfig"], [214, 0, 0, "-", "polyoptions"], [219, 0, 0, "-", "solvers"]], "sympy.polys.agca.extensions": [[208, 1, 1, "", "ExtensionElement"], [208, 1, 1, "", "MonogenicFiniteExtension"]], "sympy.polys.agca.extensions.ExtensionElement": [[208, 2, 1, "", "inverse"]], "sympy.polys.agca.extensions.MonogenicFiniteExtension": [[208, 5, 1, "", "dtype"]], "sympy.polys.agca.homomorphisms": [[208, 1, 1, "", "ModuleHomomorphism"], [208, 4, 1, "", "homomorphism"]], "sympy.polys.agca.homomorphisms.ModuleHomomorphism": [[208, 2, 1, "", "image"], [208, 2, 1, "", "is_injective"], [208, 2, 1, "", "is_isomorphism"], [208, 2, 1, "", "is_surjective"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "kernel"], [208, 2, 1, "", "quotient_codomain"], [208, 2, 1, "", "quotient_domain"], [208, 2, 1, "", "restrict_codomain"], [208, 2, 1, "", "restrict_domain"]], "sympy.polys.agca.ideals": [[208, 1, 1, "", "Ideal"]], "sympy.polys.agca.ideals.Ideal": [[208, 2, 1, "", "contains"], [208, 2, 1, "", "depth"], [208, 2, 1, "", "height"], [208, 2, 1, "", "intersect"], [208, 2, 1, "", "is_maximal"], [208, 2, 1, "", "is_primary"], [208, 2, 1, "", "is_prime"], [208, 2, 1, "", "is_principal"], [208, 2, 1, "", "is_radical"], [208, 2, 1, "", "is_whole_ring"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "product"], [208, 2, 1, "", "quotient"], [208, 2, 1, "", "radical"], [208, 2, 1, "", "reduce_element"], [208, 2, 1, "", "saturate"], [208, 2, 1, "", "subset"], [208, 2, 1, "", "union"]], "sympy.polys.agca.modules": [[208, 1, 1, "", "FreeModule"], [208, 1, 1, "", "FreeModuleElement"], [208, 1, 1, "", "Module"], [208, 1, 1, "", "QuotientModule"], [208, 1, 1, "", "QuotientModuleElement"], [208, 1, 1, "", "SubModule"], [208, 1, 1, "", "SubQuotientModule"]], "sympy.polys.agca.modules.FreeModule": [[208, 2, 1, "", "basis"], [208, 2, 1, "", "convert"], [208, 5, 1, "", "dtype"], [208, 2, 1, "", "identity_hom"], [208, 2, 1, "", "is_submodule"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "multiply_ideal"], [208, 2, 1, "", "quotient_module"]], "sympy.polys.agca.modules.Module": [[208, 2, 1, "", "contains"], [208, 2, 1, "", "convert"], [208, 2, 1, "", "identity_hom"], [208, 2, 1, "", "is_submodule"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "multiply_ideal"], [208, 2, 1, "", "quotient_module"], [208, 2, 1, "", "submodule"], [208, 2, 1, "", "subset"]], "sympy.polys.agca.modules.QuotientModule": [[208, 2, 1, "", "convert"], [208, 5, 1, "", "dtype"], [208, 2, 1, "", "identity_hom"], [208, 2, 1, "", "is_submodule"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "quotient_hom"], [208, 2, 1, "", "submodule"]], "sympy.polys.agca.modules.QuotientModuleElement": [[208, 2, 1, "", "eq"]], "sympy.polys.agca.modules.SubModule": [[208, 2, 1, "", "convert"], [208, 2, 1, "", "identity_hom"], [208, 2, 1, "", "in_terms_of_generators"], [208, 2, 1, "", "inclusion_hom"], [208, 2, 1, "", "intersect"], [208, 2, 1, "", "is_full_module"], [208, 2, 1, "", "is_submodule"], [208, 2, 1, "", "is_zero"], [208, 2, 1, "", "module_quotient"], [208, 2, 1, "", "multiply_ideal"], [208, 2, 1, "", "quotient_module"], [208, 2, 1, "", "reduce_element"], [208, 2, 1, "", "submodule"], [208, 2, 1, "", "syzygy_module"], [208, 2, 1, "", "union"]], "sympy.polys.agca.modules.SubQuotientModule": [[208, 2, 1, "", "is_full_module"], [208, 2, 1, "", "quotient_hom"]], "sympy.polys.appellseqs": [[217, 4, 1, "", "andre_poly"], [217, 4, 1, "", "bernoulli_c_poly"], [217, 4, 1, "", "bernoulli_poly"], [217, 4, 1, "", "euler_poly"], [217, 4, 1, "", "genocchi_poly"]], "sympy.polys.constructor": [[217, 4, 1, "", "construct_domain"]], "sympy.polys.densearith": [[214, 4, 1, "", "dmp_abs"], [214, 4, 1, "", "dmp_add"], [214, 4, 1, "", "dmp_add_ground"], [214, 4, 1, "", "dmp_add_mul"], [214, 4, 1, "", "dmp_add_term"], [214, 4, 1, "", "dmp_div"], [214, 4, 1, "", "dmp_expand"], [214, 4, 1, "", "dmp_exquo"], [214, 4, 1, "", "dmp_exquo_ground"], [214, 4, 1, "", "dmp_ff_div"], [214, 4, 1, "", "dmp_l1_norm"], [214, 4, 1, "", "dmp_max_norm"], [214, 4, 1, "", "dmp_mul"], [214, 4, 1, "", "dmp_mul_ground"], [214, 4, 1, "", "dmp_mul_term"], [214, 4, 1, "", "dmp_neg"], [214, 4, 1, "", "dmp_pdiv"], [214, 4, 1, "", "dmp_pexquo"], [214, 4, 1, "", "dmp_pow"], [214, 4, 1, "", "dmp_pquo"], [214, 4, 1, "", "dmp_prem"], [214, 4, 1, "", "dmp_quo"], [214, 4, 1, "", "dmp_quo_ground"], [214, 4, 1, "", "dmp_rem"], [214, 4, 1, "", "dmp_rr_div"], [214, 4, 1, "", "dmp_sqr"], [214, 4, 1, "", "dmp_sub"], [214, 4, 1, "", "dmp_sub_ground"], [214, 4, 1, "", "dmp_sub_mul"], [214, 4, 1, "", "dmp_sub_term"], [214, 4, 1, "", "dup_lshift"], [214, 4, 1, "", "dup_rshift"]], "sympy.polys.densebasic": [[214, 4, 1, "", "dmp_LC"], [214, 4, 1, "", "dmp_TC"], [214, 4, 1, "", "dmp_apply_pairs"], [214, 4, 1, "", "dmp_convert"], [214, 4, 1, "", "dmp_copy"], [214, 4, 1, "", "dmp_deflate"], [214, 4, 1, "", "dmp_degree"], [214, 4, 1, "", "dmp_degree_in"], [214, 4, 1, "", "dmp_degree_list"], [214, 4, 1, "", "dmp_eject"], [214, 4, 1, "", "dmp_exclude"], [214, 4, 1, "", "dmp_from_dict"], [214, 4, 1, "", "dmp_from_sympy"], [214, 4, 1, "", "dmp_ground"], [214, 4, 1, "", "dmp_ground_LC"], [214, 4, 1, "", "dmp_ground_TC"], [214, 4, 1, "", "dmp_ground_nth"], [214, 4, 1, "", "dmp_ground_p"], [214, 4, 1, "", "dmp_grounds"], [214, 4, 1, "", "dmp_include"], [214, 4, 1, "", "dmp_inflate"], [214, 4, 1, "", "dmp_inject"], [214, 4, 1, "", "dmp_list_terms"], [214, 4, 1, "", "dmp_multi_deflate"], [214, 4, 1, "", "dmp_negative_p"], [214, 4, 1, "", "dmp_nest"], [214, 4, 1, "", "dmp_normal"], [214, 4, 1, "", "dmp_nth"], [214, 4, 1, "", "dmp_one"], [214, 4, 1, "", "dmp_one_p"], [214, 4, 1, "", "dmp_permute"], [214, 4, 1, "", "dmp_positive_p"], [214, 4, 1, "", "dmp_raise"], [214, 4, 1, "", "dmp_slice"], [214, 4, 1, "", "dmp_strip"], [214, 4, 1, "", "dmp_swap"], [214, 4, 1, "", "dmp_terms_gcd"], [214, 4, 1, "", "dmp_to_dict"], [214, 4, 1, "", "dmp_to_tuple"], [214, 4, 1, "", "dmp_true_LT"], [214, 4, 1, "", "dmp_validate"], [214, 4, 1, "", "dmp_zero"], [214, 4, 1, "", "dmp_zero_p"], [214, 4, 1, "", "dmp_zeros"], [214, 4, 1, "", "dup_random"], [214, 4, 1, "", "dup_reverse"]], "sympy.polys.densetools": [[214, 4, 1, "", "dmp_clear_denoms"], [214, 4, 1, "", "dmp_compose"], [214, 4, 1, "", "dmp_diff"], [214, 4, 1, "", "dmp_diff_eval_in"], [214, 4, 1, "", "dmp_diff_in"], [214, 4, 1, "", "dmp_eval"], [214, 4, 1, "", "dmp_eval_in"], [214, 4, 1, "", "dmp_eval_tail"], [214, 4, 1, "", "dmp_ground_content"], [214, 4, 1, "", "dmp_ground_extract"], [214, 4, 1, "", "dmp_ground_monic"], [214, 4, 1, "", "dmp_ground_primitive"], [214, 4, 1, "", "dmp_ground_trunc"], [214, 4, 1, "", "dmp_integrate"], [214, 4, 1, "", "dmp_integrate_in"], [214, 4, 1, "", "dmp_lift"], [214, 4, 1, "", "dmp_revert"], [214, 4, 1, "", "dmp_trunc"], [214, 4, 1, "", "dup_content"], [214, 4, 1, "", "dup_decompose"], [214, 4, 1, "", "dup_extract"], [214, 4, 1, "", "dup_mirror"], [214, 4, 1, "", "dup_monic"], [214, 4, 1, "", "dup_primitive"], [214, 4, 1, "", "dup_real_imag"], [214, 4, 1, "", "dup_scale"], [214, 4, 1, "", "dup_shift"], [214, 4, 1, "", "dup_sign_variations"], [214, 4, 1, "", "dup_transform"]], "sympy.polys.dispersion": [[217, 4, 1, "", "dispersion"], [217, 4, 1, "", "dispersionset"]], "sympy.polys.distributedmodules": [[214, 4, 1, "", "sdm_LC"], [214, 4, 1, "", "sdm_LM"], [214, 4, 1, "", "sdm_LT"], [214, 4, 1, "", "sdm_add"], [214, 4, 1, "", "sdm_deg"], [214, 4, 1, "", "sdm_ecart"], [214, 4, 1, "", "sdm_from_dict"], [214, 4, 1, "", "sdm_from_vector"], [214, 4, 1, "", "sdm_groebner"], [214, 4, 1, "", "sdm_monomial_deg"], [214, 4, 1, "", "sdm_monomial_divides"], [214, 4, 1, "", "sdm_monomial_mul"], [214, 4, 1, "", "sdm_mul_term"], [214, 4, 1, "", "sdm_nf_mora"], [214, 4, 1, "", "sdm_spoly"], [214, 4, 1, "", "sdm_to_dict"], [214, 4, 1, "", "sdm_to_vector"], [214, 4, 1, "", "sdm_zero"]], "sympy.polys.domains": [[212, 1, 1, "", "AlgebraicField"], [212, 1, 1, "", "ComplexField"], [212, 1, 1, "", "ExpressionDomain"], [212, 1, 1, "", "FiniteField"], [212, 1, 1, "", "FractionField"], [212, 1, 1, "", "GMPYFiniteField"], [212, 1, 1, "", "GMPYIntegerRing"], [212, 1, 1, "", "GMPYRationalField"], [212, 1, 1, "", "IntegerRing"], [212, 1, 1, "", "PolynomialRing"], [212, 1, 1, "", "PythonFiniteField"], [212, 1, 1, "", "PythonIntegerRing"], [212, 1, 1, "", "PythonRationalField"], [212, 1, 1, "", "RationalField"], [212, 1, 1, "", "RealField"]], "sympy.polys.domains.AlgebraicField": [[212, 2, 1, "", "algebraic_field"], [212, 2, 1, "", "denom"], [212, 2, 1, "", "discriminant"], [212, 5, 1, "", "dtype"], [212, 5, 1, "", "ext"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "galois_group"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "integral_basis"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "maximal_order"], [212, 5, 1, "", "mod"], [212, 2, 1, "", "numer"], [212, 5, 1, "", "orig_ext"], [212, 2, 1, "", "primes_above"], [212, 2, 1, "", "to_alg_num"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.ComplexField": [[212, 2, 1, "", "almosteq"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "get_exact"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.ExpressionDomain": [[212, 1, 1, "", "Expression"], [212, 2, 1, "", "denom"], [212, 5, 1, "", "dtype"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_ExpressionDomain"], [212, 2, 1, "", "from_FractionField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_PolynomialRing"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.FiniteField": [[212, 2, 1, "", "characteristic"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "from_FF"], [212, 2, 1, "", "from_FF_gmpy"], [212, 2, 1, "", "from_FF_python"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "to_int"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.FractionField": [[212, 2, 1, "", "denom"], [212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_FractionField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_PolynomialRing"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.GMPYIntegerRing": [[212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_FF_gmpy"], [212, 2, 1, "", "from_FF_python"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "sqrt"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.GMPYRationalField": [[212, 2, 1, "", "denom"], [212, 2, 1, "", "div"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.IntegerRing": [[212, 2, 1, "", "algebraic_field"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_EX"], [212, 2, 1, "", "from_FF"], [212, 2, 1, "", "from_FF_gmpy"], [212, 2, 1, "", "from_FF_python"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "log"], [212, 2, 1, "", "sqrt"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.PolynomialRing": [[212, 2, 1, "", "factorial"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_FractionField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_GlobalPolynomialRing"], [212, 2, 1, "", "from_PolynomialRing"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "is_unit"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.RationalField": [[212, 2, 1, "", "algebraic_field"], [212, 2, 1, "", "denom"], [212, 2, 1, "", "div"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.RealField": [[212, 2, 1, "", "almosteq"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "get_exact"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "to_rational"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.compositedomain": [[212, 1, 1, "", "CompositeDomain"]], "sympy.polys.domains.compositedomain.CompositeDomain": [[212, 2, 1, "", "drop"], [212, 2, 1, "", "get_exact"], [212, 2, 1, "", "inject"], [212, 3, 1, "", "is_Exact"], [212, 2, 1, "", "set_domain"]], "sympy.polys.domains.domain": [[212, 1, 1, "", "Domain"]], "sympy.polys.domains.domain.Domain": [[212, 2, 1, "", "abs"], [212, 2, 1, "", "add"], [212, 2, 1, "", "alg_field_from_poly"], [212, 2, 1, "", "algebraic_field"], [212, 2, 1, "", "almosteq"], [212, 2, 1, "", "characteristic"], [212, 2, 1, "", "cofactors"], [212, 2, 1, "", "convert"], [212, 2, 1, "", "convert_from"], [212, 2, 1, "", "cyclotomic_field"], [212, 2, 1, "", "denom"], [212, 2, 1, "", "div"], [212, 2, 1, "", "drop"], [212, 5, 1, "", "dtype"], [212, 2, 1, "", "evalf"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "exsqrt"], [212, 2, 1, "", "frac_field"], [212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_ExpressionDomain"], [212, 2, 1, "", "from_ExpressionRawDomain"], [212, 2, 1, "", "from_FF"], [212, 2, 1, "", "from_FF_gmpy"], [212, 2, 1, "", "from_FF_python"], [212, 2, 1, "", "from_FractionField"], [212, 2, 1, "", "from_GlobalPolynomialRing"], [212, 2, 1, "", "from_MonogenicFiniteExtension"], [212, 2, 1, "", "from_PolynomialRing"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_RealField"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "get_exact"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "half_gcdex"], [212, 5, 1, "", "has_assoc_Field"], [212, 5, 1, "", "has_assoc_Ring"], [212, 2, 1, "", "inject"], [212, 2, 1, "", "invert"], [212, 5, 1, "", "is_Field"], [212, 5, 1, "", "is_PID"], [212, 5, 1, "", "is_Ring"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_one"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "is_square"], [212, 2, 1, "", "is_zero"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "log"], [212, 2, 1, "", "map"], [212, 2, 1, "", "mul"], [212, 2, 1, "", "n"], [212, 2, 1, "", "neg"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "of_type"], [212, 2, 1, "", "old_frac_field"], [212, 2, 1, "", "old_poly_ring"], [212, 5, 1, "", "one"], [212, 2, 1, "", "poly_ring"], [212, 2, 1, "", "pos"], [212, 2, 1, "", "pow"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "revert"], [212, 2, 1, "", "sqrt"], [212, 2, 1, "", "sub"], [212, 2, 1, "", "to_sympy"], [212, 3, 1, "", "tp"], [212, 2, 1, "", "unify"], [212, 2, 1, "", "unify_composite"], [212, 5, 1, "", "zero"]], "sympy.polys.domains.domainelement": [[212, 1, 1, "", "DomainElement"]], "sympy.polys.domains.domainelement.DomainElement": [[212, 2, 1, "", "parent"]], "sympy.polys.domains.expressiondomain.ExpressionDomain": [[212, 1, 1, "", "Expression"]], "sympy.polys.domains.field": [[212, 1, 1, "", "Field"]], "sympy.polys.domains.field.Field": [[212, 2, 1, "", "div"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "is_unit"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "revert"]], "sympy.polys.domains.gaussiandomains": [[212, 1, 1, "", "GaussianDomain"], [212, 1, 1, "", "GaussianElement"], [212, 1, 1, "", "GaussianInteger"], [212, 1, 1, "", "GaussianIntegerRing"], [212, 1, 1, "", "GaussianRational"], [212, 1, 1, "", "GaussianRationalField"]], "sympy.polys.domains.gaussiandomains.GaussianDomain": [[212, 2, 1, "", "from_AlgebraicField"], [212, 2, 1, "", "from_QQ"], [212, 2, 1, "", "from_QQ_gmpy"], [212, 2, 1, "", "from_QQ_python"], [212, 2, 1, "", "from_ZZ"], [212, 2, 1, "", "from_ZZ_gmpy"], [212, 2, 1, "", "from_ZZ_python"], [212, 2, 1, "", "from_sympy"], [212, 2, 1, "", "inject"], [212, 2, 1, "", "is_negative"], [212, 2, 1, "", "is_nonnegative"], [212, 2, 1, "", "is_nonpositive"], [212, 2, 1, "", "is_positive"], [212, 2, 1, "", "to_sympy"]], "sympy.polys.domains.gaussiandomains.GaussianElement": [[212, 2, 1, "", "new"], [212, 2, 1, "", "parent"], [212, 2, 1, "", "quadrant"]], "sympy.polys.domains.gaussiandomains.GaussianIntegerRing": [[212, 5, 1, "", "dtype"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "normalize"]], "sympy.polys.domains.gaussiandomains.GaussianRationalField": [[212, 2, 1, "", "as_AlgebraicField"], [212, 2, 1, "", "denom"], [212, 5, 1, "", "dtype"], [212, 2, 1, "", "from_ComplexField"], [212, 2, 1, "", "from_GaussianIntegerRing"], [212, 2, 1, "", "from_GaussianRationalField"], [212, 2, 1, "", "get_field"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "numer"]], "sympy.polys.domains.quotientring": [[212, 1, 1, "", "QuotientRing"]], "sympy.polys.domains.ring": [[212, 1, 1, "", "Ring"]], "sympy.polys.domains.ring.Ring": [[212, 2, 1, "", "denom"], [212, 2, 1, "", "div"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "free_module"], [212, 2, 1, "", "get_ring"], [212, 2, 1, "", "ideal"], [212, 2, 1, "", "invert"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "quotient_ring"], [212, 2, 1, "", "rem"], [212, 2, 1, "", "revert"]], "sympy.polys.domains.simpledomain": [[212, 1, 1, "", "SimpleDomain"]], "sympy.polys.domains.simpledomain.SimpleDomain": [[212, 2, 1, "", "inject"]], "sympy.polys.euclidtools": [[214, 4, 1, "", "dmp_cancel"], [214, 4, 1, "", "dmp_content"], [214, 4, 1, "", "dmp_discriminant"], [214, 4, 1, "", "dmp_euclidean_prs"], [214, 4, 1, "", "dmp_ff_prs_gcd"], [214, 4, 1, "", "dmp_gcd"], [214, 4, 1, "", "dmp_gcdex"], [214, 4, 1, "", "dmp_half_gcdex"], [214, 4, 1, "", "dmp_inner_gcd"], [214, 4, 1, "", "dmp_inner_subresultants"], [214, 4, 1, "", "dmp_invert"], [214, 4, 1, "", "dmp_lcm"], [214, 4, 1, "", "dmp_primitive"], [214, 4, 1, "", "dmp_primitive_prs"], [214, 4, 1, "", "dmp_prs_resultant"], [214, 4, 1, "", "dmp_qq_collins_resultant"], [214, 4, 1, "", "dmp_qq_heu_gcd"], [214, 4, 1, "", "dmp_resultant"], [214, 4, 1, "", "dmp_rr_prs_gcd"], [214, 4, 1, "", "dmp_subresultants"], [214, 4, 1, "", "dmp_zz_collins_resultant"], [214, 4, 1, "", "dmp_zz_heu_gcd"], [214, 4, 1, "", "dmp_zz_modular_resultant"]], "sympy.polys.factortools": [[214, 4, 1, "", "dmp_ext_factor"], [214, 4, 1, "", "dmp_factor_list"], [214, 4, 1, "", "dmp_factor_list_include"], [214, 4, 1, "", "dmp_gf_factor"], [214, 4, 1, "", "dmp_irreducible_p"], [214, 4, 1, "", "dmp_qq_i_factor"], [214, 4, 1, "", "dmp_trial_division"], [214, 4, 1, "", "dmp_zz_diophantine"], [214, 4, 1, "", "dmp_zz_factor"], [214, 4, 1, "", "dmp_zz_i_factor"], [214, 4, 1, "", "dmp_zz_mignotte_bound"], [214, 4, 1, "", "dmp_zz_wang"], [214, 4, 1, "", "dmp_zz_wang_hensel_lifting"], [214, 4, 1, "", "dmp_zz_wang_lead_coeffs"], [214, 4, 1, "", "dmp_zz_wang_non_divisors"], [214, 4, 1, "", "dmp_zz_wang_test_points"], [214, 4, 1, "", "dup_cyclotomic_p"], [214, 4, 1, "", "dup_ext_factor"], [214, 4, 1, "", "dup_factor_list"], [214, 4, 1, "", "dup_factor_list_include"], [214, 4, 1, "", "dup_gf_factor"], [214, 4, 1, "", "dup_irreducible_p"], [214, 4, 1, "", "dup_qq_i_factor"], [214, 4, 1, "", "dup_trial_division"], [214, 4, 1, "", "dup_zz_cyclotomic_factor"], [214, 4, 1, "", "dup_zz_cyclotomic_poly"], [214, 4, 1, "", "dup_zz_diophantine"], [214, 4, 1, "", "dup_zz_factor"], [214, 4, 1, "", "dup_zz_factor_sqf"], [214, 4, 1, "", "dup_zz_hensel_lift"], [214, 4, 1, "", "dup_zz_hensel_step"], [214, 4, 1, "", "dup_zz_i_factor"], [214, 4, 1, "", "dup_zz_irreducible_p"], [214, 4, 1, "", "dup_zz_mignotte_bound"], [214, 4, 1, "", "dup_zz_zassenhaus"]], "sympy.polys.fglmtools": [[214, 4, 1, "", "matrix_fglm"]], "sympy.polys.fields": [[212, 1, 1, "", "FracElement"], [212, 1, 1, "", "FracField"], [212, 4, 1, "", "field"], [212, 4, 1, "", "sfield"], [212, 4, 1, "", "vfield"], [212, 4, 1, "", "xfield"]], "sympy.polys.fields.FracElement": [[212, 2, 1, "", "diff"]], "sympy.polys.galoistools": [[214, 4, 1, "", "gf_LC"], [214, 4, 1, "", "gf_Qbasis"], [214, 4, 1, "", "gf_Qmatrix"], [214, 4, 1, "", "gf_TC"], [214, 4, 1, "", "gf_add"], [214, 4, 1, "", "gf_add_ground"], [214, 4, 1, "", "gf_add_mul"], [214, 4, 1, "", "gf_berlekamp"], [214, 4, 1, "", "gf_cofactors"], [214, 4, 1, "", "gf_compose"], [214, 4, 1, "", "gf_compose_mod"], [214, 4, 1, "", "gf_crt"], [214, 4, 1, "", "gf_crt1"], [214, 4, 1, "", "gf_crt2"], [214, 4, 1, "", "gf_csolve"], [214, 4, 1, "", "gf_degree"], [214, 4, 1, "", "gf_diff"], [214, 4, 1, "", "gf_div"], [214, 4, 1, "", "gf_eval"], [214, 4, 1, "", "gf_expand"], [214, 4, 1, "", "gf_exquo"], [214, 4, 1, "", "gf_factor"], [214, 4, 1, "", "gf_factor_sqf"], [214, 4, 1, "", "gf_from_dict"], [214, 4, 1, "", "gf_from_int_poly"], [214, 4, 1, "", "gf_gcd"], [214, 4, 1, "", "gf_gcdex"], [214, 4, 1, "", "gf_int"], [214, 4, 1, "", "gf_irreducible"], [214, 4, 1, "", "gf_irreducible_p"], [214, 4, 1, "", "gf_lcm"], [214, 4, 1, "", "gf_lshift"], [214, 4, 1, "", "gf_monic"], [214, 4, 1, "", "gf_mul"], [214, 4, 1, "", "gf_mul_ground"], [214, 4, 1, "", "gf_multi_eval"], [214, 4, 1, "", "gf_neg"], [214, 4, 1, "", "gf_normal"], [214, 4, 1, "", "gf_pow"], [214, 4, 1, "", "gf_pow_mod"], [214, 4, 1, "", "gf_quo"], [214, 4, 1, "", "gf_quo_ground"], [214, 4, 1, "", "gf_random"], [214, 4, 1, "", "gf_rem"], [214, 4, 1, "", "gf_rshift"], [214, 4, 1, "", "gf_shoup"], [214, 4, 1, "", "gf_sqf_list"], [214, 4, 1, "", "gf_sqf_p"], [214, 4, 1, "", "gf_sqf_part"], [214, 4, 1, "", "gf_sqr"], [214, 4, 1, "", "gf_strip"], [214, 4, 1, "", "gf_sub"], [214, 4, 1, "", "gf_sub_ground"], [214, 4, 1, "", "gf_sub_mul"], [214, 4, 1, "", "gf_to_dict"], [214, 4, 1, "", "gf_to_int_poly"], [214, 4, 1, "", "gf_trace_map"], [214, 4, 1, "", "gf_trunc"], [214, 4, 1, "", "gf_value"], [214, 4, 1, "", "gf_zassenhaus"]], "sympy.polys.groebnertools": [[214, 4, 1, "", "groebner"], [214, 4, 1, "", "is_groebner"], [214, 4, 1, "", "is_minimal"], [214, 4, 1, "", "is_reduced"], [214, 4, 1, "", "red_groebner"], [214, 4, 1, "", "spoly"]], "sympy.polys.matrices": [[210, 0, 0, "-", "_dfm"], [210, 0, 0, "-", "_typing"], [210, 0, 0, "-", "ddm"], [210, 0, 0, "-", "dense"], [210, 0, 0, "-", "domainmatrix"], [210, 0, 0, "-", "sdm"]], "sympy.polys.matrices._dfm": [[210, 1, 1, "", "DFM"]], "sympy.polys.matrices._dfm.DFM": [[210, 2, 1, "", "add"], [210, 2, 1, "", "applyfunc"], [210, 2, 1, "", "charpoly"], [210, 2, 1, "", "convert_to"], [210, 2, 1, "", "copy"], [210, 2, 1, "", "det"], [210, 2, 1, "", "diag"], [210, 2, 1, "", "diagonal"], [210, 2, 1, "", "extract"], [210, 2, 1, "", "extract_slice"], [210, 2, 1, "", "eye"], [210, 2, 1, "", "from_ddm"], [210, 2, 1, "", "from_dod"], [210, 2, 1, "", "from_dok"], [210, 2, 1, "", "from_flat_nz"], [210, 2, 1, "", "from_list"], [210, 2, 1, "", "from_list_flat"], [210, 2, 1, "", "getitem"], [210, 2, 1, "", "hstack"], [210, 2, 1, "", "inv"], [210, 2, 1, "", "is_diagonal"], [210, 2, 1, "", "is_lower"], [210, 2, 1, "", "is_upper"], [210, 2, 1, "", "is_zero_matrix"], [210, 2, 1, "", "iter_items"], [210, 2, 1, "", "iter_values"], [210, 2, 1, "", "lll"], [210, 2, 1, "", "lll_transform"], [210, 2, 1, "", "lu"], [210, 2, 1, "", "lu_solve"], [210, 2, 1, "", "matmul"], [210, 2, 1, "", "mul"], [210, 2, 1, "", "mul_elementwise"], [210, 2, 1, "", "neg"], [210, 2, 1, "", "nnz"], [210, 2, 1, "", "nullspace"], [210, 2, 1, "", "nullspace_from_rref"], [210, 2, 1, "", "ones"], [210, 2, 1, "", "particular"], [210, 2, 1, "", "rmul"], [210, 2, 1, "", "scc"], [210, 2, 1, "", "setitem"], [210, 2, 1, "", "sub"], [210, 2, 1, "", "to_ddm"], [210, 2, 1, "", "to_dfm"], [210, 2, 1, "", "to_dfm_or_ddm"], [210, 2, 1, "", "to_dod"], [210, 2, 1, "", "to_dok"], [210, 2, 1, "", "to_flat_nz"], [210, 2, 1, "", "to_list"], [210, 2, 1, "", "to_list_flat"], [210, 2, 1, "", "to_sdm"], [210, 2, 1, "", "transpose"], [210, 2, 1, "", "vstack"], [210, 2, 1, "", "zeros"]], "sympy.polys.matrices._typing": [[210, 1, 1, "", "RingElement"]], "sympy.polys.matrices.ddm": [[210, 1, 1, "", "DDM"]], "sympy.polys.matrices.ddm.DDM": [[210, 2, 1, "", "add"], [210, 2, 1, "", "charpoly"], [210, 2, 1, "", "det"], [210, 2, 1, "", "diag"], [210, 2, 1, "", "diagonal"], [210, 2, 1, "", "from_dod"], [210, 2, 1, "", "from_dok"], [210, 2, 1, "", "from_flat_nz"], [210, 2, 1, "", "from_list"], [210, 2, 1, "", "from_list_flat"], [210, 2, 1, "", "hstack"], [210, 2, 1, "", "inv"], [210, 2, 1, "", "is_diagonal"], [210, 2, 1, "", "is_lower"], [210, 2, 1, "", "is_upper"], [210, 2, 1, "", "is_zero_matrix"], [210, 2, 1, "", "iter_items"], [210, 2, 1, "", "iter_values"], [210, 2, 1, "", "lu"], [210, 2, 1, "", "lu_solve"], [210, 2, 1, "", "matmul"], [210, 2, 1, "", "neg"], [210, 2, 1, "", "nnz"], [210, 2, 1, "", "nullspace"], [210, 2, 1, "", "nullspace_from_rref"], [210, 2, 1, "", "rref"], [210, 2, 1, "", "rref_den"], [210, 2, 1, "", "scc"], [210, 2, 1, "", "sub"], [210, 2, 1, "", "to_ddm"], [210, 2, 1, "", "to_dfm"], [210, 2, 1, "", "to_dfm_or_ddm"], [210, 2, 1, "", "to_dod"], [210, 2, 1, "", "to_dok"], [210, 2, 1, "", "to_flat_nz"], [210, 2, 1, "", "to_list"], [210, 2, 1, "", "to_list_flat"], [210, 2, 1, "", "to_sdm"], [210, 2, 1, "", "vstack"]], "sympy.polys.matrices.dense": [[210, 1, 1, "", "R"], [210, 1, 1, "", "T"], [210, 4, 1, "", "ddm_berk"], [210, 4, 1, "", "ddm_iadd"], [210, 4, 1, "", "ddm_idet"], [210, 4, 1, "", "ddm_iinv"], [210, 4, 1, "", "ddm_ilu"], [210, 4, 1, "", "ddm_ilu_solve"], [210, 4, 1, "", "ddm_ilu_split"], [210, 4, 1, "", "ddm_imatmul"], [210, 4, 1, "", "ddm_imul"], [210, 4, 1, "", "ddm_ineg"], [210, 4, 1, "", "ddm_irmul"], [210, 4, 1, "", "ddm_irref"], [210, 4, 1, "", "ddm_irref_den"], [210, 4, 1, "", "ddm_isub"], [210, 4, 1, "", "ddm_transpose"]], "sympy.polys.matrices.domainmatrix": [[210, 4, 1, "", "DM"], [210, 1, 1, "", "DomainMatrix"]], "sympy.polys.matrices.domainmatrix.DomainMatrix": [[210, 2, 1, "", "add"], [210, 2, 1, "", "adj_det"], [210, 2, 1, "", "adj_poly_det"], [210, 2, 1, "", "adjugate"], [210, 2, 1, "", "cancel_denom"], [210, 2, 1, "", "cancel_denom_elementwise"], [210, 2, 1, "", "charpoly"], [210, 2, 1, "", "charpoly_base"], [210, 2, 1, "", "charpoly_berk"], [210, 2, 1, "", "charpoly_factor_blocks"], [210, 2, 1, "", "charpoly_factor_list"], [210, 2, 1, "", "choose_domain"], [210, 2, 1, "", "clear_denoms"], [210, 2, 1, "", "clear_denoms_rowwise"], [210, 2, 1, "", "columnspace"], [210, 2, 1, "", "content"], [210, 2, 1, "", "convert_to"], [210, 2, 1, "", "det"], [210, 2, 1, "", "diag"], [210, 2, 1, "", "diagonal"], [210, 2, 1, "", "eval_poly"], [210, 2, 1, "", "eval_poly_mul"], [210, 2, 1, "", "eye"], [210, 2, 1, "", "from_Matrix"], [210, 2, 1, "", "from_dict_sympy"], [210, 2, 1, "", "from_dod"], [210, 2, 1, "", "from_dod_like"], [210, 2, 1, "", "from_dok"], [210, 2, 1, "", "from_flat_nz"], [210, 2, 1, "", "from_list"], [210, 2, 1, "", "from_list_flat"], [210, 2, 1, "", "from_list_sympy"], [210, 2, 1, "", "from_rep"], [210, 2, 1, "", "hstack"], [210, 2, 1, "", "inv"], [210, 2, 1, "", "inv_den"], [210, 3, 1, "", "is_diagonal"], [210, 3, 1, "", "is_lower"], [210, 3, 1, "", "is_square"], [210, 3, 1, "", "is_upper"], [210, 2, 1, "", "iter_items"], [210, 2, 1, "", "iter_values"], [210, 2, 1, "", "lll"], [210, 2, 1, "", "lll_transform"], [210, 2, 1, "", "lu"], [210, 2, 1, "", "lu_solve"], [210, 2, 1, "", "matmul"], [210, 2, 1, "", "mul"], [210, 2, 1, "", "neg"], [210, 2, 1, "", "nnz"], [210, 2, 1, "", "nullspace"], [210, 2, 1, "", "nullspace_from_rref"], [210, 2, 1, "", "ones"], [210, 2, 1, "", "pow"], [210, 2, 1, "", "primitive"], [210, 2, 1, "", "rowspace"], [210, 2, 1, "", "rref"], [210, 2, 1, "", "rref_den"], [210, 2, 1, "", "scc"], [210, 2, 1, "", "solve_den"], [210, 2, 1, "", "solve_den_charpoly"], [210, 2, 1, "", "solve_den_rref"], [210, 2, 1, "", "sub"], [210, 2, 1, "", "to_Matrix"], [210, 2, 1, "", "to_ddm"], [210, 2, 1, "", "to_dense"], [210, 2, 1, "", "to_dfm"], [210, 2, 1, "", "to_dfm_or_ddm"], [210, 2, 1, "", "to_dod"], [210, 2, 1, "", "to_dok"], [210, 2, 1, "", "to_field"], [210, 2, 1, "", "to_flat_nz"], [210, 2, 1, "", "to_list"], [210, 2, 1, "", "to_list_flat"], [210, 2, 1, "", "to_sdm"], [210, 2, 1, "", "to_sparse"], [210, 2, 1, "", "transpose"], [210, 2, 1, "", "unify"], [210, 2, 1, "", "vstack"], [210, 2, 1, "", "zeros"]], "sympy.polys.matrices.normalforms": [[210, 4, 1, "", "hermite_normal_form"], [210, 4, 1, "", "smith_normal_form"]], "sympy.polys.matrices.sdm": [[210, 1, 1, "", "SDM"], [210, 4, 1, "", "sdm_berk"], [210, 4, 1, "", "sdm_irref"], [210, 4, 1, "", "sdm_nullspace_from_rref"], [210, 4, 1, "", "sdm_particular_from_rref"], [210, 4, 1, "", "sdm_rref_den"]], "sympy.polys.matrices.sdm.SDM": [[210, 2, 1, "", "add"], [210, 2, 1, "", "charpoly"], [210, 2, 1, "", "convert_to"], [210, 2, 1, "", "copy"], [210, 2, 1, "", "det"], [210, 2, 1, "", "diagonal"], [210, 2, 1, "", "eye"], [210, 2, 1, "", "from_ddm"], [210, 2, 1, "", "from_dod"], [210, 2, 1, "", "from_dok"], [210, 2, 1, "", "from_flat_nz"], [210, 2, 1, "", "from_list"], [210, 2, 1, "", "from_list_flat"], [210, 2, 1, "", "hstack"], [210, 2, 1, "", "inv"], [210, 2, 1, "", "is_diagonal"], [210, 2, 1, "", "is_lower"], [210, 2, 1, "", "is_upper"], [210, 2, 1, "", "is_zero_matrix"], [210, 2, 1, "", "iter_items"], [210, 2, 1, "", "iter_values"], [210, 2, 1, "", "lll"], [210, 2, 1, "", "lll_transform"], [210, 2, 1, "", "lu"], [210, 2, 1, "", "lu_solve"], [210, 2, 1, "", "matmul"], [210, 2, 1, "", "mul"], [210, 2, 1, "", "neg"], [210, 2, 1, "", "new"], [210, 2, 1, "", "nnz"], [210, 2, 1, "", "nullspace"], [210, 2, 1, "", "nullspace_from_rref"], [210, 2, 1, "", "rref"], [210, 2, 1, "", "rref_den"], [210, 2, 1, "", "scc"], [210, 2, 1, "", "sub"], [210, 2, 1, "", "to_ddm"], [210, 2, 1, "", "to_dfm"], [210, 2, 1, "", "to_dfm_or_ddm"], [210, 2, 1, "", "to_dod"], [210, 2, 1, "", "to_dok"], [210, 2, 1, "", "to_flat_nz"], [210, 2, 1, "", "to_list"], [210, 2, 1, "", "to_list_flat"], [210, 2, 1, "", "to_sdm"], [210, 2, 1, "", "transpose"], [210, 2, 1, "", "vstack"], [210, 2, 1, "", "zeros"]], "sympy.polys.modulargcd": [[214, 4, 1, "", "_modgcd_multivariate_p"], [214, 4, 1, "", "func_field_modgcd"], [214, 4, 1, "", "modgcd_bivariate"], [214, 4, 1, "", "modgcd_multivariate"], [214, 4, 1, "", "modgcd_univariate"]], "sympy.polys.monomials": [[217, 1, 1, "", "Monomial"], [217, 4, 1, "", "itermonomials"], [217, 4, 1, "", "monomial_count"]], "sympy.polys.monomials.Monomial": [[217, 2, 1, "", "as_expr"], [217, 2, 1, "", "gcd"], [217, 2, 1, "", "lcm"]], "sympy.polys.numberfields": [[216, 0, 0, "-", "modules"], [216, 0, 0, "-", "subfield"]], "sympy.polys.numberfields.basis": [[216, 4, 1, "", "round_two"]], "sympy.polys.numberfields.galoisgroups": [[216, 4, 1, "", "galois_group"]], "sympy.polys.numberfields.minpoly": [[216, 4, 1, "", "minimal_polynomial"], [216, 4, 1, "", "minpoly"]], "sympy.polys.numberfields.modules": [[216, 1, 1, "", "EndomorphismRing"], [216, 1, 1, "", "InnerEndomorphism"], [216, 1, 1, "", "Module"], [216, 1, 1, "", "ModuleElement"], [216, 1, 1, "", "ModuleEndomorphism"], [216, 1, 1, "", "ModuleHomomorphism"], [216, 1, 1, "", "PowerBasis"], [216, 1, 1, "", "PowerBasisElement"], [216, 1, 1, "", "Submodule"], [216, 4, 1, "", "find_min_poly"], [216, 4, 1, "", "make_mod_elt"]], "sympy.polys.numberfields.modules.EndomorphismRing": [[216, 2, 1, "", "__init__"], [216, 2, 1, "", "inner_endomorphism"], [216, 2, 1, "", "represent"]], "sympy.polys.numberfields.modules.InnerEndomorphism": [[216, 2, 1, "", "__init__"]], "sympy.polys.numberfields.modules.Module": [[216, 2, 1, "", "__call__"], [216, 2, 1, "", "ancestors"], [216, 2, 1, "", "basis_elements"], [216, 2, 1, "", "element_from_rational"], [216, 2, 1, "", "endomorphism_ring"], [216, 2, 1, "", "is_compat_col"], [216, 2, 1, "", "mult_tab"], [216, 3, 1, "", "n"], [216, 2, 1, "", "nearest_common_ancestor"], [216, 3, 1, "", "number_field"], [216, 2, 1, "", "one"], [216, 3, 1, "", "parent"], [216, 2, 1, "", "power_basis_ancestor"], [216, 2, 1, "", "represent"], [216, 2, 1, "", "starts_with_unity"], [216, 2, 1, "", "submodule_from_gens"], [216, 2, 1, "", "submodule_from_matrix"], [216, 2, 1, "", "whole_submodule"], [216, 2, 1, "", "zero"]], "sympy.polys.numberfields.modules.ModuleElement": [[216, 3, 1, "", "QQ_col"], [216, 2, 1, "", "__add__"], [216, 2, 1, "", "__init__"], [216, 2, 1, "", "__mod__"], [216, 2, 1, "", "__mul__"], [216, 2, 1, "", "column"], [216, 2, 1, "", "equiv"], [216, 2, 1, "", "from_int_list"], [216, 2, 1, "", "is_compat"], [216, 3, 1, "", "n"], [216, 2, 1, "", "over_power_basis"], [216, 2, 1, "", "reduced"], [216, 2, 1, "", "reduced_mod_p"], [216, 2, 1, "", "to_ancestor"], [216, 2, 1, "", "to_parent"], [216, 2, 1, "", "unify"]], "sympy.polys.numberfields.modules.ModuleEndomorphism": [[216, 2, 1, "", "__init__"]], "sympy.polys.numberfields.modules.ModuleHomomorphism": [[216, 2, 1, "", "__init__"], [216, 2, 1, "", "kernel"], [216, 2, 1, "", "matrix"]], "sympy.polys.numberfields.modules.PowerBasis": [[216, 2, 1, "", "__init__"], [216, 2, 1, "", "element_from_ANP"], [216, 2, 1, "", "element_from_alg_num"], [216, 2, 1, "", "element_from_poly"], [216, 2, 1, "", "represent"]], "sympy.polys.numberfields.modules.PowerBasisElement": [[216, 3, 1, "", "T"], [216, 2, 1, "", "as_expr"], [216, 3, 1, "", "generator"], [216, 3, 1, "", "is_rational"], [216, 2, 1, "", "norm"], [216, 2, 1, "", "numerator"], [216, 2, 1, "", "poly"], [216, 2, 1, "", "to_ANP"], [216, 2, 1, "", "to_alg_num"]], "sympy.polys.numberfields.modules.Submodule": [[216, 3, 1, "", "QQ_matrix"], [216, 2, 1, "", "__init__"], [216, 2, 1, "", "add"], [216, 2, 1, "", "basis_element_pullbacks"], [216, 2, 1, "", "discard_before"], [216, 2, 1, "", "mul"], [216, 2, 1, "", "reduce_element"], [216, 2, 1, "", "reduced"], [216, 2, 1, "", "represent"]], "sympy.polys.numberfields.primes": [[216, 1, 1, "", "PrimeIdeal"], [216, 4, 1, "", "prime_decomp"], [216, 4, 1, "", "prime_valuation"]], "sympy.polys.numberfields.primes.PrimeIdeal": [[216, 2, 1, "", "__add__"], [216, 2, 1, "", "__init__"], [216, 2, 1, "", "__mul__"], [216, 2, 1, "", "as_submodule"], [216, 3, 1, "", "is_inert"], [216, 2, 1, "", "reduce_ANP"], [216, 2, 1, "", "reduce_alg_num"], [216, 2, 1, "", "reduce_element"], [216, 2, 1, "", "repr"], [216, 2, 1, "", "test_factor"], [216, 2, 1, "", "valuation"]], "sympy.polys.numberfields.subfield": [[216, 4, 1, "", "field_isomorphism"], [216, 4, 1, "", "primitive_element"], [216, 4, 1, "", "to_number_field"]], "sympy.polys.numberfields.utilities": [[216, 1, 1, "", "AlgIntPowers"], [216, 4, 1, "", "coeff_search"], [216, 4, 1, "", "extract_fundamental_discriminant"], [216, 4, 1, "", "get_num_denom"], [216, 4, 1, "", "is_int"], [216, 4, 1, "", "is_rat"], [216, 4, 1, "", "isolate"], [216, 4, 1, "", "supplement_a_subspace"]], "sympy.polys.numberfields.utilities.AlgIntPowers": [[216, 2, 1, "", "__init__"]], "sympy.polys.orderings": [[217, 1, 1, "", "GradedLexOrder"], [217, 1, 1, "", "LexOrder"], [217, 1, 1, "", "MonomialOrder"], [217, 1, 1, "", "ReversedGradedLexOrder"]], "sympy.polys.orthopolys": [[217, 4, 1, "", "chebyshevt_poly"], [217, 4, 1, "", "chebyshevu_poly"], [217, 4, 1, "", "gegenbauer_poly"], [217, 4, 1, "", "hermite_poly"], [217, 4, 1, "", "hermite_prob_poly"], [217, 4, 1, "", "jacobi_poly"], [217, 4, 1, "", "laguerre_poly"], [217, 4, 1, "", "legendre_poly"], [217, 4, 1, "", "spherical_bessel_fn"]], "sympy.polys.partfrac": [[217, 4, 1, "", "apart"], [217, 4, 1, "", "apart_list"], [217, 4, 1, "", "assemble_partfrac_list"]], "sympy.polys.polyclasses": [[212, 1, 1, "", "ANP"], [212, 1, 1, "", "DMF"], [212, 1, 1, "", "DMP"]], "sympy.polys.polyclasses.ANP": [[212, 2, 1, "", "LC"], [212, 2, 1, "", "TC"], [212, 2, 1, "", "add_ground"], [212, 2, 1, "", "convert"], [212, 3, 1, "", "is_ground"], [212, 3, 1, "", "is_one"], [212, 3, 1, "", "is_zero"], [212, 2, 1, "", "mod_to_list"], [212, 2, 1, "", "mul_ground"], [212, 2, 1, "", "pow"], [212, 2, 1, "", "quo_ground"], [212, 2, 1, "", "sub_ground"], [212, 2, 1, "", "to_dict"], [212, 2, 1, "", "to_list"], [212, 2, 1, "", "to_sympy_dict"], [212, 2, 1, "", "to_sympy_list"], [212, 2, 1, "", "to_tuple"], [212, 2, 1, "", "unify"], [212, 2, 1, "", "unify_ANP"]], "sympy.polys.polyclasses.DMF": [[212, 2, 1, "", "add"], [212, 2, 1, "", "add_ground"], [212, 2, 1, "", "cancel"], [212, 2, 1, "", "denom"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "frac_unify"], [212, 2, 1, "", "half_per"], [212, 2, 1, "", "invert"], [212, 3, 1, "", "is_one"], [212, 3, 1, "", "is_zero"], [212, 2, 1, "", "mul"], [212, 2, 1, "", "neg"], [212, 2, 1, "", "numer"], [212, 2, 1, "", "per"], [212, 2, 1, "", "poly_unify"], [212, 2, 1, "", "pow"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "sub"]], "sympy.polys.polyclasses.DMP": [[212, 2, 1, "", "LC"], [212, 2, 1, "", "TC"], [212, 2, 1, "", "abs"], [212, 2, 1, "", "add"], [212, 2, 1, "", "add_ground"], [212, 2, 1, "", "all_coeffs"], [212, 2, 1, "", "all_monoms"], [212, 2, 1, "", "all_terms"], [212, 2, 1, "", "cancel"], [212, 2, 1, "", "cauchy_lower_bound"], [212, 2, 1, "", "cauchy_upper_bound"], [212, 2, 1, "", "clear_denoms"], [212, 2, 1, "", "coeffs"], [212, 2, 1, "", "cofactors"], [212, 2, 1, "", "compose"], [212, 2, 1, "", "content"], [212, 2, 1, "", "convert"], [212, 2, 1, "", "count_complex_roots"], [212, 2, 1, "", "count_real_roots"], [212, 2, 1, "", "decompose"], [212, 2, 1, "", "deflate"], [212, 2, 1, "", "degree"], [212, 2, 1, "", "degree_list"], [212, 2, 1, "", "diff"], [212, 2, 1, "", "discriminant"], [212, 2, 1, "", "div"], [212, 2, 1, "", "eject"], [212, 2, 1, "", "eval"], [212, 2, 1, "", "exclude"], [212, 2, 1, "", "exquo"], [212, 2, 1, "", "exquo_ground"], [212, 2, 1, "", "factor_list"], [212, 2, 1, "", "factor_list_include"], [212, 2, 1, "", "from_list"], [212, 2, 1, "", "from_sympy_list"], [212, 2, 1, "", "gcd"], [212, 2, 1, "", "gcdex"], [212, 2, 1, "", "gff_list"], [212, 2, 1, "", "ground_new"], [212, 2, 1, "", "half_gcdex"], [212, 2, 1, "", "homogeneous_order"], [212, 2, 1, "", "homogenize"], [212, 2, 1, "", "inject"], [212, 2, 1, "", "integrate"], [212, 2, 1, "", "intervals"], [212, 2, 1, "", "invert"], [212, 3, 1, "", "is_cyclotomic"], [212, 3, 1, "", "is_ground"], [212, 3, 1, "", "is_homogeneous"], [212, 3, 1, "", "is_irreducible"], [212, 3, 1, "", "is_linear"], [212, 3, 1, "", "is_monic"], [212, 3, 1, "", "is_monomial"], [212, 3, 1, "", "is_one"], [212, 3, 1, "", "is_primitive"], [212, 3, 1, "", "is_quadratic"], [212, 3, 1, "", "is_sqf"], [212, 3, 1, "", "is_zero"], [212, 2, 1, "", "l1_norm"], [212, 2, 1, "", "l2_norm_squared"], [212, 2, 1, "", "lcm"], [212, 2, 1, "", "lift"], [212, 2, 1, "", "max_norm"], [212, 2, 1, "", "mignotte_sep_bound_squared"], [212, 2, 1, "", "monic"], [212, 2, 1, "", "monoms"], [212, 2, 1, "", "mul"], [212, 2, 1, "", "mul_ground"], [212, 2, 1, "", "neg"], [212, 2, 1, "", "norm"], [212, 2, 1, "", "nth"], [212, 2, 1, "", "pdiv"], [212, 2, 1, "", "permute"], [212, 2, 1, "", "pexquo"], [212, 2, 1, "", "pow"], [212, 2, 1, "", "pquo"], [212, 2, 1, "", "prem"], [212, 2, 1, "", "primitive"], [212, 2, 1, "", "quo"], [212, 2, 1, "", "quo_ground"], [212, 2, 1, "", "refine_root"], [212, 2, 1, "", "rem"], [212, 3, 1, "", "rep"], [212, 2, 1, "", "resultant"], [212, 2, 1, "", "revert"], [212, 2, 1, "", "shift"], [212, 2, 1, "", "shift_list"], [212, 2, 1, "", "slice"], [212, 2, 1, "", "sqf_list"], [212, 2, 1, "", "sqf_list_include"], [212, 2, 1, "", "sqf_norm"], [212, 2, 1, "", "sqf_part"], [212, 2, 1, "", "sqr"], [212, 2, 1, "", "sturm"], [212, 2, 1, "", "sub"], [212, 2, 1, "", "sub_ground"], [212, 2, 1, "", "subresultants"], [212, 2, 1, "", "terms"], [212, 2, 1, "", "terms_gcd"], [212, 2, 1, "", "to_best"], [212, 2, 1, "", "to_dict"], [212, 2, 1, "", "to_exact"], [212, 2, 1, "", "to_field"], [212, 2, 1, "", "to_list"], [212, 2, 1, "", "to_ring"], [212, 2, 1, "", "to_sympy_dict"], [212, 2, 1, "", "to_sympy_list"], [212, 2, 1, "", "to_tuple"], [212, 2, 1, "", "total_degree"], [212, 2, 1, "", "transform"], [212, 2, 1, "", "trunc"], [212, 2, 1, "", "unify_DMP"]], "sympy.polys.polyconfig": [[214, 4, 1, "", "setup"]], "sympy.polys.polyerrors": [[214, 1, 1, "", "BasePolynomialError"], [214, 1, 1, "", "CoercionFailed"], [214, 1, 1, "", "ComputationFailed"], [214, 1, 1, "", "DomainError"], [214, 1, 1, "", "EvaluationFailed"], [214, 1, 1, "", "ExactQuotientFailed"], [214, 1, 1, "", "ExtraneousFactors"], [214, 1, 1, "", "FlagError"], [214, 1, 1, "", "GeneratorsError"], [214, 1, 1, "", "GeneratorsNeeded"], [214, 1, 1, "", "HeuristicGCDFailed"], [214, 1, 1, "", "HomomorphismFailed"], [214, 1, 1, "", "IsomorphismFailed"], [214, 1, 1, "", "MultivariatePolynomialError"], [214, 1, 1, "", "NotAlgebraic"], [214, 1, 1, "", "NotInvertible"], [214, 1, 1, "", "NotReversible"], [214, 1, 1, "", "OperationNotSupported"], [214, 1, 1, "", "OptionError"], [214, 1, 1, "", "PolificationFailed"], [214, 1, 1, "", "PolynomialError"], [214, 1, 1, "", "RefinementFailed"], [214, 1, 1, "", "UnificationFailed"], [214, 1, 1, "", "UnivariatePolynomialError"]], "sympy.polys.polyfuncs": [[217, 4, 1, "", "horner"], [217, 4, 1, "", "interpolate"], [217, 4, 1, "", "symmetrize"], [217, 4, 1, "", "viete"]], "sympy.polys.polyoptions": [[214, 1, 1, "", "Options"], [214, 4, 1, "", "build_options"]], "sympy.polys.polyoptions.Options": [[214, 2, 1, "", "clone"]], "sympy.polys.polyroots": [[217, 4, 1, "", "roots"]], "sympy.polys.polytools": [[217, 1, 1, "", "GroebnerBasis"], [217, 4, 1, "", "LC"], [217, 4, 1, "", "LM"], [217, 4, 1, "", "LT"], [217, 1, 1, "", "Poly"], [217, 1, 1, "", "PurePoly"], [217, 4, 1, "", "all_roots"], [217, 4, 1, "", "cancel"], [217, 4, 1, "", "cofactors"], [217, 4, 1, "", "compose"], [217, 4, 1, "", "content"], [217, 4, 1, "", "count_roots"], [217, 4, 1, "", "decompose"], [217, 4, 1, "", "degree"], [217, 4, 1, "", "degree_list"], [217, 4, 1, "", "discriminant"], [217, 4, 1, "", "div"], [217, 4, 1, "", "exquo"], [217, 4, 1, "", "factor"], [217, 4, 1, "", "factor_list"], [217, 4, 1, "", "gcd"], [217, 4, 1, "", "gcd_list"], [217, 4, 1, "", "gcdex"], [217, 4, 1, "", "gff"], [217, 4, 1, "", "gff_list"], [217, 4, 1, "", "groebner"], [217, 4, 1, "", "ground_roots"], [217, 4, 1, "", "half_gcdex"], [217, 4, 1, "", "intervals"], [217, 4, 1, "", "invert"], [217, 4, 1, "", "is_zero_dimensional"], [217, 4, 1, "", "lcm"], [217, 4, 1, "", "lcm_list"], [217, 4, 1, "", "monic"], [217, 4, 1, "", "nroots"], [217, 4, 1, "", "nth_power_roots_poly"], [217, 4, 1, "", "parallel_poly_from_expr"], [217, 4, 1, "", "pdiv"], [217, 4, 1, "", "pexquo"], [217, 4, 1, "", "poly"], [217, 4, 1, "", "poly_from_expr"], [217, 4, 1, "", "pquo"], [217, 4, 1, "", "prem"], [217, 4, 1, "", "primitive"], [217, 4, 1, "", "quo"], [217, 4, 1, "", "real_roots"], [217, 4, 1, "", "reduced"], [217, 4, 1, "", "refine_root"], [217, 4, 1, "", "rem"], [217, 4, 1, "", "resultant"], [217, 4, 1, "", "sqf"], [217, 4, 1, "", "sqf_list"], [217, 4, 1, "", "sqf_norm"], [217, 4, 1, "", "sqf_part"], [217, 4, 1, "", "sturm"], [217, 4, 1, "", "subresultants"], [217, 4, 1, "", "terms_gcd"], [217, 4, 1, "", "trunc"]], "sympy.polys.polytools.GroebnerBasis": [[217, 2, 1, "", "contains"], [217, 2, 1, "", "fglm"], [217, 3, 1, "", "is_zero_dimensional"], [217, 2, 1, "", "reduce"]], "sympy.polys.polytools.Poly": [[217, 2, 1, "", "EC"], [217, 2, 1, "", "EM"], [217, 2, 1, "", "ET"], [217, 2, 1, "", "LC"], [217, 2, 1, "", "LM"], [217, 2, 1, "", "LT"], [217, 2, 1, "", "TC"], [217, 2, 1, "", "abs"], [217, 2, 1, "", "add"], [217, 2, 1, "", "add_ground"], [217, 2, 1, "", "all_coeffs"], [217, 2, 1, "", "all_monoms"], [217, 2, 1, "", "all_roots"], [217, 2, 1, "", "all_terms"], [217, 2, 1, "", "as_dict"], [217, 2, 1, "", "as_expr"], [217, 2, 1, "", "as_list"], [217, 2, 1, "", "as_poly"], [217, 2, 1, "", "cancel"], [217, 2, 1, "", "clear_denoms"], [217, 2, 1, "", "coeff_monomial"], [217, 2, 1, "", "coeffs"], [217, 2, 1, "", "cofactors"], [217, 2, 1, "", "compose"], [217, 2, 1, "", "content"], [217, 2, 1, "", "count_roots"], [217, 2, 1, "", "decompose"], [217, 2, 1, "", "deflate"], [217, 2, 1, "", "degree"], [217, 2, 1, "", "degree_list"], [217, 2, 1, "", "diff"], [217, 2, 1, "", "discriminant"], [217, 2, 1, "", "dispersion"], [217, 2, 1, "", "dispersionset"], [217, 2, 1, "", "div"], [217, 3, 1, "", "domain"], [217, 2, 1, "", "eject"], [217, 2, 1, "", "eval"], [217, 2, 1, "", "exclude"], [217, 2, 1, "", "exquo"], [217, 2, 1, "", "exquo_ground"], [217, 2, 1, "", "factor_list"], [217, 2, 1, "", "factor_list_include"], [217, 3, 1, "", "free_symbols"], [217, 3, 1, "", "free_symbols_in_domain"], [217, 2, 1, "", "from_dict"], [217, 2, 1, "", "from_expr"], [217, 2, 1, "", "from_list"], [217, 2, 1, "", "from_poly"], [217, 2, 1, "", "galois_group"], [217, 2, 1, "", "gcd"], [217, 2, 1, "", "gcdex"], [217, 3, 1, "", "gen"], [217, 2, 1, "", "get_domain"], [217, 2, 1, "", "get_modulus"], [217, 2, 1, "", "gff_list"], [217, 2, 1, "", "ground_roots"], [217, 2, 1, "", "half_gcdex"], [217, 2, 1, "", "has_only_gens"], [217, 2, 1, "", "homogeneous_order"], [217, 2, 1, "", "homogenize"], [217, 2, 1, "", "inject"], [217, 2, 1, "", "integrate"], [217, 2, 1, "", "intervals"], [217, 2, 1, "", "invert"], [217, 3, 1, "", "is_cyclotomic"], [217, 3, 1, "", "is_ground"], [217, 3, 1, "", "is_homogeneous"], [217, 3, 1, "", "is_irreducible"], [217, 3, 1, "", "is_linear"], [217, 3, 1, "", "is_monic"], [217, 3, 1, "", "is_monomial"], [217, 3, 1, "", "is_multivariate"], [217, 3, 1, "", "is_one"], [217, 3, 1, "", "is_primitive"], [217, 3, 1, "", "is_quadratic"], [217, 3, 1, "", "is_sqf"], [217, 3, 1, "", "is_univariate"], [217, 3, 1, "", "is_zero"], [217, 2, 1, "", "l1_norm"], [217, 2, 1, "", "lcm"], [217, 2, 1, "", "length"], [217, 2, 1, "", "lift"], [217, 2, 1, "", "ltrim"], [217, 2, 1, "", "make_monic_over_integers_by_scaling_roots"], [217, 2, 1, "", "match"], [217, 2, 1, "", "max_norm"], [217, 2, 1, "", "monic"], [217, 2, 1, "", "monoms"], [217, 2, 1, "", "mul"], [217, 2, 1, "", "mul_ground"], [217, 2, 1, "", "neg"], [217, 2, 1, "", "new"], [217, 2, 1, "", "norm"], [217, 2, 1, "", "nroots"], [217, 2, 1, "", "nth"], [217, 2, 1, "", "nth_power_roots_poly"], [217, 3, 1, "", "one"], [217, 2, 1, "", "pdiv"], [217, 2, 1, "", "per"], [217, 2, 1, "", "pexquo"], [217, 2, 1, "", "pow"], [217, 2, 1, "", "pquo"], [217, 2, 1, "", "prem"], [217, 2, 1, "", "primitive"], [217, 2, 1, "", "quo"], [217, 2, 1, "", "quo_ground"], [217, 2, 1, "", "rat_clear_denoms"], [217, 2, 1, "", "real_roots"], [217, 2, 1, "", "refine_root"], [217, 2, 1, "", "rem"], [217, 2, 1, "", "reorder"], [217, 2, 1, "", "replace"], [217, 2, 1, "", "resultant"], [217, 2, 1, "", "retract"], [217, 2, 1, "", "revert"], [217, 2, 1, "", "root"], [217, 2, 1, "", "same_root"], [217, 2, 1, "", "set_domain"], [217, 2, 1, "", "set_modulus"], [217, 2, 1, "", "shift"], [217, 2, 1, "", "shift_list"], [217, 2, 1, "", "slice"], [217, 2, 1, "", "sqf_list"], [217, 2, 1, "", "sqf_list_include"], [217, 2, 1, "", "sqf_norm"], [217, 2, 1, "", "sqf_part"], [217, 2, 1, "", "sqr"], [217, 2, 1, "", "sturm"], [217, 2, 1, "", "sub"], [217, 2, 1, "", "sub_ground"], [217, 2, 1, "", "subresultants"], [217, 2, 1, "", "terms"], [217, 2, 1, "", "terms_gcd"], [217, 2, 1, "", "termwise"], [217, 2, 1, "", "to_exact"], [217, 2, 1, "", "to_field"], [217, 2, 1, "", "to_ring"], [217, 2, 1, "", "total_degree"], [217, 2, 1, "", "transform"], [217, 2, 1, "", "trunc"], [217, 2, 1, "", "unify"], [217, 3, 1, "", "unit"], [217, 3, 1, "", "zero"]], "sympy.polys.polytools.PurePoly": [[217, 3, 1, "", "free_symbols"]], "sympy.polys.rationaltools": [[217, 4, 1, "", "together"]], "sympy.polys.ring_series": [[218, 4, 1, "", "_tan1"], [218, 4, 1, "", "mul_xin"], [218, 4, 1, "", "pow_xin"], [218, 4, 1, "", "rs_LambertW"], [218, 4, 1, "", "rs_asin"], [218, 4, 1, "", "rs_atan"], [218, 4, 1, "", "rs_atanh"], [218, 4, 1, "", "rs_compose_add"], [218, 4, 1, "", "rs_cos"], [218, 4, 1, "", "rs_cos_sin"], [218, 4, 1, "", "rs_cosh"], [218, 4, 1, "", "rs_cot"], [218, 4, 1, "", "rs_diff"], [218, 4, 1, "", "rs_exp"], [218, 4, 1, "", "rs_fun"], [218, 4, 1, "", "rs_hadamard_exp"], [218, 4, 1, "", "rs_integrate"], [218, 4, 1, "", "rs_is_puiseux"], [218, 4, 1, "", "rs_log"], [218, 4, 1, "", "rs_mul"], [218, 4, 1, "", "rs_newton"], [218, 4, 1, "", "rs_nth_root"], [218, 4, 1, "", "rs_pow"], [218, 4, 1, "", "rs_puiseux"], [218, 4, 1, "", "rs_puiseux2"], [218, 4, 1, "", "rs_series_from_list"], [218, 4, 1, "", "rs_series_inversion"], [218, 4, 1, "", "rs_series_reversion"], [218, 4, 1, "", "rs_sin"], [218, 4, 1, "", "rs_sinh"], [218, 4, 1, "", "rs_square"], [218, 4, 1, "", "rs_subs"], [218, 4, 1, "", "rs_tan"], [218, 4, 1, "", "rs_tanh"], [218, 4, 1, "", "rs_trunc"]], "sympy.polys.rings": [[212, 1, 1, "", "PolyElement"], [212, 1, 1, "", "PolyRing"], [212, 4, 1, "", "ring"], [212, 4, 1, "", "sring"], [212, 4, 1, "", "vring"], [212, 4, 1, "", "xring"]], "sympy.polys.rings.PolyElement": [[212, 2, 1, "", "almosteq"], [212, 2, 1, "", "cancel"], [212, 2, 1, "", "coeff"], [212, 2, 1, "", "coeff_wrt"], [212, 2, 1, "", "coeffs"], [212, 2, 1, "", "const"], [212, 2, 1, "", "content"], [212, 2, 1, "", "copy"], [212, 2, 1, "", "degree"], [212, 2, 1, "", "degrees"], [212, 2, 1, "", "diff"], [212, 2, 1, "", "div"], [212, 2, 1, "", "imul_num"], [212, 2, 1, "", "itercoeffs"], [212, 2, 1, "", "itermonoms"], [212, 2, 1, "", "iterterms"], [212, 2, 1, "", "leading_expv"], [212, 2, 1, "", "leading_monom"], [212, 2, 1, "", "leading_term"], [212, 2, 1, "", "listcoeffs"], [212, 2, 1, "", "listmonoms"], [212, 2, 1, "", "listterms"], [212, 2, 1, "", "monic"], [212, 2, 1, "", "monoms"], [212, 2, 1, "", "pdiv"], [212, 2, 1, "", "pexquo"], [212, 2, 1, "", "pquo"], [212, 2, 1, "", "prem"], [212, 2, 1, "", "primitive"], [212, 2, 1, "", "square"], [212, 2, 1, "", "strip_zero"], [212, 2, 1, "", "subresultants"], [212, 2, 1, "", "symmetrize"], [212, 2, 1, "", "tail_degree"], [212, 2, 1, "", "tail_degrees"], [212, 2, 1, "", "terms"]], "sympy.polys.rings.PolyRing": [[212, 2, 1, "", "add"], [212, 2, 1, "", "add_gens"], [212, 2, 1, "", "compose"], [212, 2, 1, "", "drop"], [212, 2, 1, "", "drop_to_ground"], [212, 2, 1, "", "index"], [212, 2, 1, "", "monomial_basis"], [212, 2, 1, "", "mul"], [212, 2, 1, "", "symmetric_poly"]], "sympy.polys.rootoftools": [[217, 1, 1, "", "ComplexRootOf"], [217, 1, 1, "", "RootOf"], [217, 1, 1, "", "RootSum"], [217, 4, 1, "", "rootof"]], "sympy.polys.rootoftools.ComplexRootOf": [[217, 2, 1, "", "_all_roots"], [217, 2, 1, "", "_complexes_index"], [217, 2, 1, "", "_complexes_sorted"], [217, 2, 1, "", "_count_roots"], [217, 2, 1, "", "_ensure_complexes_init"], [217, 2, 1, "", "_ensure_reals_init"], [217, 2, 1, "", "_eval_evalf"], [217, 2, 1, "", "_eval_is_imaginary"], [217, 2, 1, "", "_eval_is_real"], [217, 2, 1, "", "_get_complexes"], [217, 2, 1, "", "_get_complexes_sqf"], [217, 2, 1, "", "_get_interval"], [217, 2, 1, "", "_get_reals"], [217, 2, 1, "", "_get_reals_sqf"], [217, 2, 1, "", "_get_roots"], [217, 2, 1, "", "_indexed_root"], [217, 2, 1, "", "_new"], [217, 2, 1, "", "_postprocess_root"], [217, 2, 1, "", "_preprocess_roots"], [217, 2, 1, "", "_real_roots"], [217, 2, 1, "", "_reals_index"], [217, 2, 1, "", "_reals_sorted"], [217, 2, 1, "", "_refine_complexes"], [217, 2, 1, "", "_reset"], [217, 2, 1, "", "_roots_trivial"], [217, 2, 1, "", "_set_interval"], [217, 2, 1, "", "all_roots"], [217, 2, 1, "", "clear_cache"], [217, 2, 1, "", "eval_approx"], [217, 2, 1, "", "eval_rational"], [217, 2, 1, "", "real_roots"]], "sympy.polys.rootoftools.RootSum": [[217, 2, 1, "", "new"]], "sympy.polys.solvers": [[219, 4, 1, "", "_solve_lin_sys"], [219, 4, 1, "", "_solve_lin_sys_component"], [219, 4, 1, "", "eqs_to_matrix"], [219, 4, 1, "", "solve_lin_sys"], [219, 4, 1, "", "sympy_eqs_to_ring"]], "sympy.polys.specialpolys": [[217, 4, 1, "", "cyclotomic_poly"], [217, 4, 1, "", "interpolating_poly"], [217, 4, 1, "", "random_poly"], [217, 4, 1, "", "swinnerton_dyer_poly"], [217, 4, 1, "", "symmetric_poly"]], "sympy.polys.sqfreetools": [[214, 4, 1, "", "dmp_gf_sqf_list"], [214, 4, 1, "", "dmp_gf_sqf_part"], [214, 4, 1, "", "dmp_gff_list"], [214, 4, 1, "", "dmp_norm"], [214, 4, 1, "", "dmp_sqf_list"], [214, 4, 1, "", "dmp_sqf_list_include"], [214, 4, 1, "", "dmp_sqf_norm"], [214, 4, 1, "", "dmp_sqf_p"], [214, 4, 1, "", "dmp_sqf_part"], [214, 4, 1, "", "dup_gf_sqf_list"], [214, 4, 1, "", "dup_gf_sqf_part"], [214, 4, 1, "", "dup_gff_list"], [214, 4, 1, "", "dup_sqf_list"], [214, 4, 1, "", "dup_sqf_list_include"], [214, 4, 1, "", "dup_sqf_norm"], [214, 4, 1, "", "dup_sqf_p"], [214, 4, 1, "", "dup_sqf_part"]], "sympy.printing": [[221, 0, 0, "-", "aesaracode"], [221, 0, 0, "-", "c"], [221, 0, 0, "-", "codeprinter"], [221, 0, 0, "-", "conventions"], [221, 0, 0, "-", "cxx"], [221, 0, 0, "-", "fortran"], [221, 0, 0, "-", "gtk"], [221, 0, 0, "-", "jscode"], [221, 0, 0, "-", "julia"], [221, 0, 0, "-", "lambdarepr"], [221, 0, 0, "-", "latex"], [221, 0, 0, "-", "maple"], [221, 0, 0, "-", "mathematica"], [221, 0, 0, "-", "mathml"], [221, 0, 0, "-", "octave"], [221, 0, 0, "-", "precedence"], [221, 0, 0, "-", "pretty"], [221, 0, 0, "-", "preview"], [221, 0, 0, "-", "printer"], [221, 0, 0, "-", "pycode"], [221, 0, 0, "-", "python"], [221, 0, 0, "-", "rcode"], [221, 0, 0, "-", "repr"], [221, 0, 0, "-", "rust"], [221, 0, 0, "-", "smtlib"], [221, 0, 0, "-", "str"], [221, 0, 0, "-", "tree"]], "sympy.printing.aesaracode": [[221, 1, 1, "", "AesaraPrinter"], [221, 4, 1, "", "aesara_code"], [221, 4, 1, "", "aesara_function"], [221, 4, 1, "", "dim_handling"]], "sympy.printing.aesaracode.AesaraPrinter": [[221, 2, 1, "", "doprint"], [221, 5, 1, "", "printmethod"]], "sympy.printing.c": [[221, 1, 1, "", "C89CodePrinter"], [221, 1, 1, "", "C99CodePrinter"], [221, 4, 1, "", "ccode"], [221, 6, 1, "", "known_functions_C89"], [221, 6, 1, "", "known_functions_C99"], [221, 4, 1, "", "print_ccode"]], "sympy.printing.c.C89CodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.c.C99CodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.codeprinter": [[221, 7, 1, "", "AssignmentError"], [221, 1, 1, "", "CodePrinter"], [221, 4, 1, "", "cxxcode"]], "sympy.printing.codeprinter.CodePrinter": [[221, 2, 1, "", "doprint"], [221, 5, 1, "", "printmethod"]], "sympy.printing.conventions": [[221, 4, 1, "", "split_super_sub"]], "sympy.printing.cxx": [[221, 1, 1, "", "CXX11CodePrinter"], [221, 1, 1, "", "CXX98CodePrinter"]], "sympy.printing.cxx.CXX11CodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.cxx.CXX98CodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.dot": [[221, 4, 1, "", "dotprint"]], "sympy.printing.fortran": [[221, 1, 1, "", "FCodePrinter"], [221, 4, 1, "", "fcode"], [221, 4, 1, "", "print_fcode"]], "sympy.printing.fortran.FCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.gtk": [[221, 4, 1, "", "print_gtk"]], "sympy.printing.jscode": [[221, 1, 1, "", "JavascriptCodePrinter"], [221, 4, 1, "", "jscode"], [221, 6, 1, "", "known_functions"]], "sympy.printing.jscode.JavascriptCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.julia": [[221, 1, 1, "", "JuliaCodePrinter"], [221, 4, 1, "", "julia_code"], [221, 6, 1, "", "known_fcns_src1"], [221, 6, 1, "", "known_fcns_src2"]], "sympy.printing.julia.JuliaCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.lambdarepr": [[221, 1, 1, "", "LambdaPrinter"], [221, 4, 1, "", "lambdarepr"]], "sympy.printing.lambdarepr.LambdaPrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.latex": [[221, 1, 1, "", "LatexPrinter"], [221, 6, 1, "", "accepted_latex_functions"], [221, 4, 1, "", "latex"], [221, 4, 1, "", "print_latex"]], "sympy.printing.latex.LatexPrinter": [[221, 2, 1, "", "parenthesize_super"], [221, 5, 1, "", "printmethod"]], "sympy.printing.maple": [[221, 1, 1, "", "MapleCodePrinter"], [221, 4, 1, "", "maple_code"], [221, 4, 1, "", "print_maple_code"]], "sympy.printing.maple.MapleCodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.mathematica": [[221, 1, 1, "", "MCodePrinter"], [221, 6, 1, "", "known_functions"], [221, 4, 1, "", "mathematica_code"]], "sympy.printing.mathematica.MCodePrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.mathml": [[221, 1, 1, "", "MathMLContentPrinter"], [221, 1, 1, "", "MathMLPresentationPrinter"], [221, 1, 1, "", "MathMLPrinterBase"], [221, 4, 1, "", "mathml"], [221, 4, 1, "", "print_mathml"]], "sympy.printing.mathml.MathMLContentPrinter": [[221, 2, 1, "", "mathml_tag"], [221, 5, 1, "", "printmethod"]], "sympy.printing.mathml.MathMLPresentationPrinter": [[221, 2, 1, "", "mathml_tag"], [221, 5, 1, "", "printmethod"]], "sympy.printing.mathml.MathMLPrinterBase": [[221, 2, 1, "", "doprint"]], "sympy.printing.octave": [[221, 1, 1, "", "OctaveCodePrinter"], [221, 6, 1, "", "known_fcns_src1"], [221, 6, 1, "", "known_fcns_src2"], [221, 4, 1, "", "octave_code"]], "sympy.printing.octave.OctaveCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.precedence": [[221, 6, 1, "", "PRECEDENCE"], [221, 6, 1, "", "PRECEDENCE_FUNCTIONS"], [221, 6, 1, "", "PRECEDENCE_VALUES"], [221, 4, 1, "", "precedence"]], "sympy.printing.pretty": [[221, 0, 0, "-", "pretty"], [221, 0, 0, "-", "pretty_symbology"], [221, 0, 0, "-", "stringpict"]], "sympy.printing.pretty.pretty": [[221, 1, 1, "", "PrettyPrinter"], [221, 4, 1, "", "pretty"], [221, 4, 1, "", "pretty_print"]], "sympy.printing.pretty.pretty.PrettyPrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.pretty.pretty_symbology": [[221, 4, 1, "", "G"], [221, 4, 1, "", "U"], [221, 4, 1, "", "VF"], [221, 4, 1, "", "annotated"], [221, 6, 1, "", "atoms_table"], [221, 6, 1, "", "digit_2txt"], [221, 6, 1, "", "frac"], [221, 4, 1, "", "g"], [221, 6, 1, "", "greek_letters"], [221, 4, 1, "", "hobj"], [221, 4, 1, "", "pretty_atom"], [221, 4, 1, "", "pretty_symbol"], [221, 4, 1, "", "pretty_try_use_unicode"], [221, 4, 1, "", "pretty_use_unicode"], [221, 6, 1, "", "root"], [221, 6, 1, "", "sub"], [221, 6, 1, "", "sup"], [221, 6, 1, "", "symb_2txt"], [221, 4, 1, "", "vobj"], [221, 4, 1, "", "xobj"], [221, 4, 1, "", "xstr"], [221, 4, 1, "", "xsym"]], "sympy.printing.pretty.stringpict": [[221, 1, 1, "", "prettyForm"], [221, 1, 1, "", "stringPict"]], "sympy.printing.pretty.stringpict.prettyForm": [[221, 2, 1, "", "apply"]], "sympy.printing.pretty.stringpict.stringPict": [[221, 2, 1, "", "above"], [221, 2, 1, "", "below"], [221, 2, 1, "", "height"], [221, 2, 1, "", "left"], [221, 2, 1, "", "leftslash"], [221, 2, 1, "", "next"], [221, 2, 1, "", "parens"], [221, 2, 1, "", "render"], [221, 2, 1, "", "right"], [221, 2, 1, "", "root"], [221, 2, 1, "", "stack"], [221, 2, 1, "", "terminal_width"], [221, 2, 1, "", "width"]], "sympy.printing.preview": [[221, 4, 1, "", "preview"]], "sympy.printing.printer": [[221, 1, 1, "", "Printer"]], "sympy.printing.printer.Printer": [[221, 2, 1, "", "_print"], [221, 2, 1, "", "doprint"], [221, 5, 1, "", "printmethod"], [221, 2, 1, "", "set_global_settings"]], "sympy.printing.pycode": [[221, 1, 1, "", "MpmathPrinter"], [221, 4, 1, "", "pycode"]], "sympy.printing.rcode": [[221, 1, 1, "", "RCodePrinter"], [221, 6, 1, "", "known_functions"], [221, 4, 1, "", "print_rcode"], [221, 4, 1, "", "rcode"]], "sympy.printing.rcode.RCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.repr": [[221, 1, 1, "", "ReprPrinter"], [221, 4, 1, "", "srepr"]], "sympy.printing.repr.ReprPrinter": [[221, 2, 1, "", "emptyPrinter"], [221, 5, 1, "", "printmethod"], [221, 2, 1, "", "reprify"]], "sympy.printing.rust": [[221, 1, 1, "", "RustCodePrinter"], [221, 6, 1, "", "known_functions"], [221, 4, 1, "", "rust_code"]], "sympy.printing.rust.RustCodePrinter": [[221, 2, 1, "", "indent_code"], [221, 5, 1, "", "printmethod"]], "sympy.printing.smtlib": [[221, 1, 1, "", "SMTLibPrinter"], [221, 4, 1, "", "smtlib_code"]], "sympy.printing.smtlib.SMTLibPrinter": [[221, 5, 1, "", "_default_settings"], [221, 5, 1, "", "printmethod"]], "sympy.printing.str": [[221, 1, 1, "", "StrPrinter"], [221, 4, 1, "", "sstr"], [221, 4, 1, "", "sstrrepr"]], "sympy.printing.str.StrPrinter": [[221, 5, 1, "", "printmethod"]], "sympy.printing.tree": [[221, 4, 1, "", "pprint_nodes"], [221, 4, 1, "", "print_node"], [221, 4, 1, "", "print_tree"], [221, 4, 1, "", "tree"]], "sympy.series.acceleration": [[228, 4, 1, "", "richardson"], [228, 4, 1, "", "shanks"]], "sympy.series.formal": [[223, 1, 1, "", "FiniteFormalPowerSeries"], [223, 1, 1, "", "FormalPowerSeries"], [223, 1, 1, "", "FormalPowerSeriesCompose"], [223, 1, 1, "", "FormalPowerSeriesInverse"], [223, 1, 1, "", "FormalPowerSeriesProduct"], [223, 4, 1, "", "compute_fps"], [223, 4, 1, "", "exp_re"], [223, 4, 1, "", "fps"], [223, 4, 1, "", "hyper_algorithm"], [223, 4, 1, "", "hyper_re"], [223, 4, 1, "", "rational_algorithm"], [223, 4, 1, "", "rational_independent"], [223, 4, 1, "", "rsolve_hypergeometric"], [223, 4, 1, "", "simpleDE"], [223, 4, 1, "", "solve_de"]], "sympy.series.formal.FormalPowerSeries": [[223, 2, 1, "", "coeff_bell"], [223, 2, 1, "", "compose"], [223, 3, 1, "", "infinite"], [223, 2, 1, "", "integrate"], [223, 2, 1, "", "inverse"], [223, 2, 1, "", "polynomial"], [223, 2, 1, "", "product"], [223, 2, 1, "", "truncate"]], "sympy.series.formal.FormalPowerSeriesCompose": [[223, 3, 1, "", "function"]], "sympy.series.formal.FormalPowerSeriesInverse": [[223, 3, 1, "", "function"]], "sympy.series.formal.FormalPowerSeriesProduct": [[223, 3, 1, "", "function"]], "sympy.series.fourier": [[224, 1, 1, "", "FourierSeries"], [224, 4, 1, "", "fourier_series"]], "sympy.series.fourier.FourierSeries": [[224, 2, 1, "", "scale"], [224, 2, 1, "", "scalex"], [224, 2, 1, "", "shift"], [224, 2, 1, "", "shiftx"], [224, 2, 1, "", "sigma_approximation"], [224, 2, 1, "", "truncate"]], "sympy.series.gruntz": [[228, 1, 1, "", "SubsSet"], [228, 4, 1, "", "build_expression_tree"], [228, 4, 1, "", "calculate_series"], [228, 4, 1, "", "compare"], [228, 4, 1, "", "gruntz"], [228, 4, 1, "", "limitinf"], [228, 4, 1, "", "mrv"], [228, 4, 1, "", "mrv_leadterm"], [228, 4, 1, "", "mrv_max1"], [228, 4, 1, "", "mrv_max3"], [228, 4, 1, "", "rewrite"], [228, 4, 1, "", "sign"]], "sympy.series.gruntz.SubsSet": [[228, 2, 1, "", "copy"], [228, 2, 1, "", "do_subs"], [228, 2, 1, "", "meets"], [228, 2, 1, "", "union"]], "sympy.series.limits": [[228, 1, 1, "", "Limit"], [228, 4, 1, "", "limit"]], "sympy.series.limits.Limit": [[228, 2, 1, "", "doit"]], "sympy.series.limitseq": [[226, 4, 1, "", "difference_delta"], [226, 4, 1, "", "dominant"], [226, 4, 1, "", "limit_seq"]], "sympy.series.order": [[228, 1, 1, "", "Order"]], "sympy.series.order.Order": [[228, 2, 1, "", "contains"]], "sympy.series.residues": [[228, 4, 1, "", "residue"]], "sympy.series.sequences": [[227, 1, 1, "", "EmptySequence"], [227, 1, 1, "", "RecursiveSeq"], [227, 1, 1, "", "SeqAdd"], [227, 1, 1, "", "SeqBase"], [227, 1, 1, "", "SeqFormula"], [227, 1, 1, "", "SeqMul"], [227, 1, 1, "", "SeqPer"], [227, 4, 1, "", "sequence"]], "sympy.series.sequences.EmptySequence": [[227, 2, 1, "", "coeff_mul"]], "sympy.series.sequences.RecursiveSeq": [[227, 3, 1, "", "initial"], [227, 3, 1, "", "interval"], [227, 3, 1, "", "n"], [227, 3, 1, "", "recurrence"], [227, 3, 1, "", "start"], [227, 3, 1, "", "stop"], [227, 3, 1, "", "y"], [227, 3, 1, "", "yn"]], "sympy.series.sequences.SeqAdd": [[227, 2, 1, "", "reduce"]], "sympy.series.sequences.SeqBase": [[227, 2, 1, "", "coeff"], [227, 2, 1, "", "coeff_mul"], [227, 2, 1, "", "find_linear_recurrence"], [227, 3, 1, "", "free_symbols"], [227, 3, 1, "", "gen"], [227, 3, 1, "", "interval"], [227, 3, 1, "", "length"], [227, 3, 1, "", "start"], [227, 3, 1, "", "stop"], [227, 3, 1, "", "variables"]], "sympy.series.sequences.SeqFormula": [[227, 2, 1, "", "coeff_mul"]], "sympy.series.sequences.SeqMul": [[227, 2, 1, "", "reduce"]], "sympy.series.sequences.SeqPer": [[227, 2, 1, "", "coeff_mul"]], "sympy.series.series": [[228, 4, 1, "", "series"]], "sympy.sets": [[229, 0, 0, "-", "conditionset"], [229, 0, 0, "-", "fancysets"], [229, 0, 0, "-", "powerset"], [229, 0, 0, "-", "sets"]], "sympy.sets.conditionset": [[229, 1, 1, "", "ConditionSet"], [229, 1, 1, "", "Contains"], [229, 1, 1, "", "SetKind"]], "sympy.sets.fancysets": [[229, 1, 1, "", "CartesianComplexRegion"], [229, 1, 1, "", "ComplexRegion"], [229, 1, 1, "", "Complexes"], [229, 1, 1, "", "ImageSet"], [229, 1, 1, "", "Integers"], [229, 1, 1, "", "Naturals"], [229, 1, 1, "", "Naturals0"], [229, 1, 1, "", "PolarComplexRegion"], [229, 1, 1, "", "Range"], [229, 1, 1, "", "Rationals"], [229, 1, 1, "", "Reals"], [229, 4, 1, "", "normalize_theta_set"]], "sympy.sets.fancysets.ComplexRegion": [[229, 3, 1, "", "a_interval"], [229, 3, 1, "", "b_interval"], [229, 2, 1, "", "from_real"], [229, 3, 1, "", "psets"], [229, 3, 1, "", "sets"]], "sympy.sets.fancysets.Range": [[229, 2, 1, "", "as_relational"], [229, 3, 1, "", "reversed"]], "sympy.sets.powerset": [[229, 1, 1, "", "PowerSet"]], "sympy.sets.sets": [[229, 1, 1, "", "Complement"], [229, 1, 1, "", "DisjointUnion"], [229, 1, 1, "", "EmptySet"], [229, 1, 1, "", "FiniteSet"], [229, 1, 1, "", "Intersection"], [229, 1, 1, "", "Interval"], [229, 1, 1, "", "ProductSet"], [229, 1, 1, "", "Set"], [229, 1, 1, "", "SymmetricDifference"], [229, 1, 1, "", "Union"], [229, 1, 1, "", "UniversalSet"], [229, 4, 1, "", "imageset"]], "sympy.sets.sets.Complement": [[229, 2, 1, "", "as_relational"], [229, 2, 1, "", "reduce"]], "sympy.sets.sets.FiniteSet": [[229, 2, 1, "", "as_relational"]], "sympy.sets.sets.Intersection": [[229, 2, 1, "", "as_relational"]], "sympy.sets.sets.Interval": [[229, 2, 1, "", "Lopen"], [229, 2, 1, "", "Ropen"], [229, 2, 1, "", "as_relational"], [229, 3, 1, "", "end"], [229, 3, 1, "", "is_left_unbounded"], [229, 3, 1, "", "is_right_unbounded"], [229, 3, 1, "", "left_open"], [229, 2, 1, "", "open"], [229, 3, 1, "", "right_open"], [229, 3, 1, "", "start"]], "sympy.sets.sets.ProductSet": [[229, 3, 1, "", "is_iterable"]], "sympy.sets.sets.Set": [[229, 3, 1, "", "boundary"], [229, 3, 1, "", "closure"], [229, 2, 1, "", "complement"], [229, 2, 1, "", "contains"], [229, 3, 1, "", "inf"], [229, 3, 1, "", "interior"], [229, 2, 1, "", "intersect"], [229, 2, 1, "", "intersection"], [229, 3, 1, "", "is_closed"], [229, 2, 1, "", "is_disjoint"], [229, 3, 1, "", "is_open"], [229, 2, 1, "", "is_proper_subset"], [229, 2, 1, "", "is_proper_superset"], [229, 2, 1, "", "is_subset"], [229, 2, 1, "", "is_superset"], [229, 2, 1, "", "isdisjoint"], [229, 2, 1, "", "issubset"], [229, 2, 1, "", "issuperset"], [229, 3, 1, "", "kind"], [229, 3, 1, "", "measure"], [229, 2, 1, "", "powerset"], [229, 3, 1, "", "sup"], [229, 2, 1, "", "symmetric_difference"], [229, 2, 1, "", "union"]], "sympy.sets.sets.SymmetricDifference": [[229, 2, 1, "", "as_relational"]], "sympy.sets.sets.Union": [[229, 2, 1, "", "as_relational"]], "sympy.simplify": [[233, 0, 0, "-", "combsimp"], [233, 0, 0, "-", "cse_main"], [233, 0, 0, "-", "epathtools"], [230, 0, 0, "-", "fu"], [233, 0, 0, "-", "hyperexpand"], [231, 0, 0, "-", "hyperexpand_doc"], [233, 0, 0, "-", "powsimp"], [233, 0, 0, "-", "radsimp"], [233, 0, 0, "-", "ratsimp"], [16, 0, 0, "-", "simplify"], [233, 0, 0, "-", "sqrtdenest"], [233, 0, 0, "-", "trigsimp"]], "sympy.simplify.combsimp": [[233, 4, 1, "", "combsimp"]], "sympy.simplify.cse_main": [[233, 4, 1, "", "cse"], [233, 4, 1, "", "opt_cse"], [233, 4, 1, "", "tree_cse"]], "sympy.simplify.epathtools": [[233, 1, 1, "", "EPath"], [233, 4, 1, "", "epath"]], "sympy.simplify.epathtools.EPath": [[233, 2, 1, "", "apply"], [233, 2, 1, "", "select"]], "sympy.simplify.fu": [[230, 4, 1, "", "TR0"], [230, 4, 1, "", "TR1"], [230, 4, 1, "", "TR10"], [230, 4, 1, "", "TR10i"], [230, 4, 1, "", "TR11"], [230, 4, 1, "", "TR111"], [230, 4, 1, "", "TR12"], [230, 4, 1, "", "TR12i"], [230, 4, 1, "", "TR13"], [230, 4, 1, "", "TR14"], [230, 4, 1, "", "TR15"], [230, 4, 1, "", "TR16"], [230, 4, 1, "", "TR2"], [230, 4, 1, "", "TR22"], [230, 4, 1, "", "TR2i"], [230, 4, 1, "", "TR3"], [230, 4, 1, "", "TR4"], [230, 4, 1, "", "TR5"], [230, 4, 1, "", "TR6"], [230, 4, 1, "", "TR7"], [230, 4, 1, "", "TR8"], [230, 4, 1, "", "TR9"], [230, 4, 1, "", "TRmorrie"], [230, 4, 1, "", "TRpower"], [230, 4, 1, "", "fu"]], "sympy.simplify.hyperexpand": [[233, 4, 1, "", "hyperexpand"]], "sympy.simplify.powsimp": [[233, 4, 1, "", "powdenest"], [233, 4, 1, "", "powsimp"]], "sympy.simplify.radsimp": [[233, 4, 1, "", "collect"], [233, 4, 1, "", "collect_const"], [233, 4, 1, "", "collect_sqrt"], [233, 4, 1, "", "fraction"], [233, 4, 1, "", "rad_rationalize"], [233, 4, 1, "", "radsimp"], [233, 4, 1, "", "rcollect"]], "sympy.simplify.ratsimp": [[233, 4, 1, "", "ratsimp"], [233, 4, 1, "", "ratsimpmodprime"]], "sympy.simplify.simplify": [[233, 4, 1, "", "besselsimp"], [233, 4, 1, "", "hypersimilar"], [233, 4, 1, "", "hypersimp"], [233, 4, 1, "", "kroneckersimp"], [233, 4, 1, "", "logcombine"], [233, 4, 1, "", "nsimplify"], [233, 4, 1, "", "nthroot"], [233, 4, 1, "", "posify"], [233, 4, 1, "", "separatevars"], [233, 4, 1, "", "simplify"]], "sympy.simplify.sqrtdenest": [[233, 4, 1, "", "sqrtdenest"]], "sympy.simplify.trigsimp": [[233, 4, 1, "", "trigsimp"]], "sympy.solvers": [[236, 0, 0, "-", "inequalities"], [237, 0, 0, "-", "ode"], [238, 0, 0, "-", "pde"], [239, 0, 0, "-", "recurr"], [239, 0, 0, "-", "simplex"], [240, 0, 0, "-", "solveset"]], "sympy.solvers.deutils": [[239, 4, 1, "", "ode_order"]], "sympy.solvers.diophantine.diophantine": [[234, 1, 1, "", "BinaryQuadratic"], [234, 1, 1, "", "CubicThue"], [234, 1, 1, "", "DiophantineEquationType"], [234, 1, 1, "", "DiophantineSolutionSet"], [234, 1, 1, "", "GeneralPythagorean"], [234, 1, 1, "", "GeneralSumOfEvenPowers"], [234, 1, 1, "", "GeneralSumOfSquares"], [234, 1, 1, "", "HomogeneousGeneralQuadratic"], [234, 1, 1, "", "HomogeneousTernaryQuadratic"], [234, 1, 1, "", "HomogeneousTernaryQuadraticNormal"], [234, 1, 1, "", "InhomogeneousGeneralQuadratic"], [234, 1, 1, "", "InhomogeneousTernaryQuadratic"], [234, 1, 1, "", "Linear"], [234, 4, 1, "", "PQa"], [234, 1, 1, "", "Univariate"], [234, 4, 1, "", "base_solution_linear"], [234, 4, 1, "", "classify_diop"], [234, 4, 1, "", "cornacchia"], [234, 4, 1, "", "descent"], [234, 4, 1, "", "diop_DN"], [234, 4, 1, "", "diop_bf_DN"], [234, 4, 1, "", "diop_general_pythagorean"], [234, 4, 1, "", "diop_general_sum_of_even_powers"], [234, 4, 1, "", "diop_general_sum_of_squares"], [234, 4, 1, "", "diop_linear"], [234, 4, 1, "", "diop_quadratic"], [234, 4, 1, "", "diop_solve"], [234, 4, 1, "", "diop_ternary_quadratic"], [234, 4, 1, "", "diop_ternary_quadratic_normal"], [234, 4, 1, "", "diophantine"], [234, 4, 1, "", "divisible"], [234, 4, 1, "", "equivalent"], [234, 4, 1, "", "find_DN"], [234, 4, 1, "", "gaussian_reduce"], [234, 4, 1, "", "holzer"], [234, 4, 1, "", "ldescent"], [234, 4, 1, "", "merge_solution"], [234, 4, 1, "", "parametrize_ternary_quadratic"], [234, 4, 1, "", "partition"], [234, 4, 1, "", "power_representation"], [234, 4, 1, "", "prime_as_sum_of_two_squares"], [234, 4, 1, "", "reconstruct"], [234, 4, 1, "", "sqf_normal"], [234, 4, 1, "", "square_factor"], [234, 4, 1, "", "sum_of_four_squares"], [234, 4, 1, "", "sum_of_powers"], [234, 4, 1, "", "sum_of_squares"], [234, 4, 1, "", "sum_of_three_squares"], [234, 4, 1, "", "transformation_to_DN"], [234, 4, 1, "", "transformation_to_normal"]], "sympy.solvers.diophantine.diophantine.DiophantineEquationType": [[234, 2, 1, "", "matches"]], "sympy.solvers.inequalities": [[236, 4, 1, "", "reduce_abs_inequalities"], [236, 4, 1, "", "reduce_abs_inequality"], [236, 4, 1, "", "reduce_inequalities"], [236, 4, 1, "", "reduce_rational_inequalities"], [236, 4, 1, "", "solve_poly_inequalities"], [236, 4, 1, "", "solve_poly_inequality"], [236, 4, 1, "", "solve_rational_inequalities"], [236, 4, 1, "", "solve_univariate_inequality"]], "sympy.solvers.ode": [[237, 6, 1, "", "allhints"], [237, 4, 1, "", "checkinfsol"], [237, 4, 1, "", "checkodesol"], [237, 4, 1, "", "classify_ode"], [237, 4, 1, "", "constantsimp"], [237, 4, 1, "", "dsolve"], [237, 4, 1, "", "homogeneous_order"], [237, 4, 1, "", "infinitesimals"], [237, 0, 0, "-", "ode"]], "sympy.solvers.ode.lie_group": [[237, 4, 1, "", "lie_heuristic_abaco1_product"], [237, 4, 1, "", "lie_heuristic_abaco1_simple"], [237, 4, 1, "", "lie_heuristic_abaco2_similar"], [237, 4, 1, "", "lie_heuristic_abaco2_unique_general"], [237, 4, 1, "", "lie_heuristic_abaco2_unique_unknown"], [237, 4, 1, "", "lie_heuristic_bivariate"], [237, 4, 1, "", "lie_heuristic_chi"], [237, 4, 1, "", "lie_heuristic_function_sum"], [237, 4, 1, "", "lie_heuristic_linear"]], "sympy.solvers.ode.ode": [[237, 4, 1, "", "_handle_Integral"], [237, 4, 1, "", "_linear_2eq_order1_type6"], [237, 4, 1, "", "_linear_2eq_order1_type7"], [237, 4, 1, "", "_nonlinear_2eq_order1_type1"], [237, 4, 1, "", "_nonlinear_2eq_order1_type2"], [237, 4, 1, "", "_nonlinear_2eq_order1_type3"], [237, 4, 1, "", "_nonlinear_2eq_order1_type4"], [237, 4, 1, "", "_nonlinear_2eq_order1_type5"], [237, 4, 1, "", "_nonlinear_3eq_order1_type1"], [237, 4, 1, "", "_nonlinear_3eq_order1_type2"], [237, 4, 1, "", "_nonlinear_3eq_order1_type3"], [237, 4, 1, "", "_nonlinear_3eq_order1_type4"], [237, 4, 1, "", "_nonlinear_3eq_order1_type5"], [237, 4, 1, "", "constant_renumber"], [237, 4, 1, "", "ode_1st_power_series"], [237, 4, 1, "", "ode_2nd_power_series_ordinary"], [237, 4, 1, "", "ode_2nd_power_series_regular"], [237, 4, 1, "", "ode_sol_simplicity"], [237, 4, 1, "", "odesimp"]], "sympy.solvers.ode.riccati": [[237, 4, 1, "", "compute_m_ybar"], [237, 4, 1, "", "construct_c"], [237, 4, 1, "", "construct_d"], [237, 4, 1, "", "get_gen_sol_from_part_sol"], [237, 4, 1, "", "rational_laurent_series"], [237, 4, 1, "", "remove_redundant_sols"], [237, 4, 1, "", "riccati_inverse_normal"], [237, 4, 1, "", "riccati_normal"], [237, 4, 1, "", "riccati_reduced"], [237, 4, 1, "", "solve_aux_eq"], [237, 4, 1, "", "solve_riccati"]], "sympy.solvers.ode.single": [[237, 1, 1, "", "AlmostLinear"], [237, 1, 1, "", "Bernoulli"], [237, 1, 1, "", "Factorable"], [237, 1, 1, "", "FirstExact"], [237, 1, 1, "", "FirstLinear"], [237, 1, 1, "", "HomogeneousCoeffBest"], [237, 1, 1, "", "HomogeneousCoeffSubsDepDivIndep"], [237, 1, 1, "", "HomogeneousCoeffSubsIndepDivDep"], [237, 1, 1, "", "LieGroup"], [237, 1, 1, "", "LinearCoefficients"], [237, 1, 1, "", "Liouville"], [237, 1, 1, "", "NthAlgebraic"], [237, 1, 1, "", "NthLinearConstantCoeffHomogeneous"], [237, 1, 1, "", "NthLinearConstantCoeffUndeterminedCoefficients"], [237, 1, 1, "", "NthLinearConstantCoeffVariationOfParameters"], [237, 1, 1, "", "NthLinearEulerEqHomogeneous"], [237, 1, 1, "", "NthLinearEulerEqNonhomogeneousUndeterminedCoefficients"], [237, 1, 1, "", "NthLinearEulerEqNonhomogeneousVariationOfParameters"], [237, 1, 1, "", "NthOrderReducible"], [237, 1, 1, "", "RationalRiccati"], [237, 1, 1, "", "RiccatiSpecial"], [237, 1, 1, "", "SecondHypergeometric"], [237, 1, 1, "", "SecondLinearAiry"], [237, 1, 1, "", "SecondLinearBessel"], [237, 1, 1, "", "Separable"], [237, 1, 1, "", "SeparableReduced"]], "sympy.solvers.ode.systems": [[237, 4, 1, "", "canonical_odes"], [237, 4, 1, "", "dsolve_system"], [237, 4, 1, "", "linear_ode_to_matrix"], [237, 4, 1, "", "linodesolve"], [237, 4, 1, "", "linodesolve_type"], [237, 4, 1, "", "matrix_exp"], [237, 4, 1, "", "matrix_exp_jordan_form"]], "sympy.solvers.pde": [[238, 4, 1, "", "checkpdesol"], [238, 4, 1, "", "classify_pde"], [238, 4, 1, "", "pde_1st_linear_constant_coeff"], [238, 4, 1, "", "pde_1st_linear_constant_coeff_homogeneous"], [238, 4, 1, "", "pde_1st_linear_variable_coeff"], [238, 4, 1, "", "pde_separate"], [238, 4, 1, "", "pde_separate_add"], [238, 4, 1, "", "pde_separate_mul"], [238, 4, 1, "", "pdsolve"]], "sympy.solvers.polysys": [[239, 4, 1, "", "solve_poly_system"], [239, 4, 1, "", "solve_triangulated"]], "sympy.solvers.recurr": [[239, 4, 1, "", "rsolve"], [239, 4, 1, "", "rsolve_hyper"], [239, 4, 1, "", "rsolve_poly"], [239, 4, 1, "", "rsolve_ratio"]], "sympy.solvers.simplex": [[239, 4, 1, "", "linprog"], [239, 4, 1, "", "lpmax"], [239, 4, 1, "", "lpmin"]], "sympy.solvers.solvers": [[239, 4, 1, "", "checksol"], [239, 4, 1, "", "nsolve"], [239, 4, 1, "", "solve"], [239, 4, 1, "", "solve_linear"], [239, 4, 1, "", "solve_linear_system"], [239, 4, 1, "", "solve_linear_system_LU"], [239, 4, 1, "", "solve_undetermined_coeffs"], [239, 4, 1, "", "unrad"]], "sympy.solvers.solveset": [[240, 4, 1, "", "_is_exponential"], [240, 4, 1, "", "_is_logarithmic"], [240, 4, 1, "", "_solve_exponential"], [240, 4, 1, "", "_solve_logarithm"], [240, 4, 1, "", "_transolve"], [240, 4, 1, "", "domain_check"], [240, 4, 1, "", "invert_complex"], [240, 4, 1, "", "invert_real"], [240, 4, 1, "", "linear_eq_to_matrix"], [240, 4, 1, "", "linsolve"], [240, 4, 1, "", "nonlinsolve"], [240, 4, 1, "", "solveset"], [240, 4, 1, "", "solveset_complex"], [240, 4, 1, "", "solveset_real"], [240, 4, 1, "", "solvify"]], "sympy.stats": [[241, 4, 1, "", "Arcsin"], [241, 4, 1, "", "Benini"], [241, 4, 1, "", "Bernoulli"], [241, 1, 1, "", "BernoulliProcess"], [241, 4, 1, "", "Beta"], [241, 4, 1, "", "BetaBinomial"], [241, 4, 1, "", "BetaNoncentral"], [241, 4, 1, "", "BetaPrime"], [241, 4, 1, "", "Binomial"], [241, 4, 1, "", "BoundedPareto"], [241, 4, 1, "", "Cauchy"], [241, 1, 1, "", "CentralMoment"], [241, 4, 1, "", "Chi"], [241, 4, 1, "", "ChiNoncentral"], [241, 4, 1, "", "ChiSquared"], [241, 4, 1, "", "Coin"], [241, 1, 1, "", "ContinuousMarkovChain"], [241, 4, 1, "", "ContinuousRV"], [241, 1, 1, "", "Covariance"], [241, 1, 1, "", "CrossCovarianceMatrix"], [241, 4, 1, "", "Dagum"], [241, 4, 1, "", "Davis"], [241, 4, 1, "", "Die"], [241, 1, 1, "", "DiscreteMarkovChain"], [241, 4, 1, "", "DiscreteUniform"], [241, 4, 1, "", "E"], [241, 4, 1, "", "Erlang"], [241, 4, 1, "", "ExGaussian"], [241, 1, 1, "", "Expectation"], [241, 1, 1, "", "ExpectationMatrix"], [241, 4, 1, "", "Exponential"], [241, 4, 1, "", "FDistribution"], [241, 4, 1, "", "FiniteRV"], [241, 4, 1, "", "FisherZ"], [241, 4, 1, "", "Frechet"], [241, 4, 1, "", "Gamma"], [241, 4, 1, "", "GammaInverse"], [241, 1, 1, "", "GammaProcess"], [241, 4, 1, "", "GeneralizedMultivariateLogGamma"], [241, 4, 1, "", "GeneralizedMultivariateLogGammaOmega"], [241, 4, 1, "", "Geometric"], [241, 4, 1, "", "Gompertz"], [241, 4, 1, "", "Gumbel"], [241, 4, 1, "", "Hermite"], [241, 4, 1, "", "Hypergeometric"], [241, 4, 1, "", "JointRV"], [241, 4, 1, "", "Kumaraswamy"], [241, 4, 1, "", "Laplace"], [241, 4, 1, "", "Levy"], [241, 4, 1, "", "LogLogistic"], [241, 4, 1, "", "LogNormal"], [241, 4, 1, "", "Logarithmic"], [241, 4, 1, "", "Logistic"], [241, 4, 1, "", "Lomax"], [241, 4, 1, "", "MatrixGamma"], [241, 4, 1, "", "MatrixNormal"], [241, 4, 1, "", "Maxwell"], [241, 1, 1, "", "Moment"], [241, 4, 1, "", "Moyal"], [241, 4, 1, "", "Multinomial"], [241, 4, 1, "", "MultivariateBeta"], [241, 4, 1, "", "MultivariateEwens"], [241, 4, 1, "", "MultivariateLaplace"], [241, 4, 1, "", "MultivariateNormal"], [241, 4, 1, "", "MultivariateT"], [241, 4, 1, "", "Nakagami"], [241, 4, 1, "", "NegativeBinomial"], [241, 4, 1, "", "NegativeMultinomial"], [241, 4, 1, "", "Normal"], [241, 4, 1, "", "NormalGamma"], [241, 4, 1, "", "P"], [241, 4, 1, "", "Pareto"], [241, 4, 1, "", "Poisson"], [241, 1, 1, "", "PoissonProcess"], [241, 4, 1, "", "PowerFunction"], [241, 1, 1, "", "Probability"], [241, 4, 1, "", "QuadraticU"], [241, 4, 1, "", "Rademacher"], [241, 4, 1, "", "RaisedCosine"], [241, 4, 1, "", "Rayleigh"], [241, 4, 1, "", "Reciprocal"], [241, 4, 1, "", "ShiftedGompertz"], [241, 4, 1, "", "Skellam"], [241, 4, 1, "", "StudentT"], [241, 4, 1, "", "Trapezoidal"], [241, 4, 1, "", "Triangular"], [241, 4, 1, "", "Uniform"], [241, 4, 1, "", "UniformSum"], [241, 1, 1, "", "Variance"], [241, 1, 1, "", "VarianceMatrix"], [241, 4, 1, "", "VonMises"], [241, 4, 1, "", "Wald"], [241, 4, 1, "", "Weibull"], [241, 1, 1, "", "WienerProcess"], [241, 4, 1, "", "WignerSemicircle"], [241, 4, 1, "", "Wishart"], [241, 4, 1, "", "YuleSimon"], [241, 4, 1, "", "Zeta"], [241, 4, 1, "", "cmoment"], [241, 4, 1, "", "correlation"], [241, 4, 1, "", "coskewness"], [241, 4, 1, "", "covariance"], [241, 0, 0, "-", "crv"], [241, 0, 0, "-", "crv_types"], [241, 4, 1, "", "density"], [241, 4, 1, "", "entropy"], [241, 4, 1, "", "factorial_moment"], [241, 0, 0, "-", "frv"], [241, 0, 0, "-", "frv_types"], [241, 4, 1, "", "given"], [241, 4, 1, "", "kurtosis"], [241, 4, 1, "", "marginal_distribution"], [241, 4, 1, "", "median"], [241, 4, 1, "", "moment"], [241, 4, 1, "", "quantile"], [241, 0, 0, "-", "rv"], [241, 4, 1, "", "sample"], [241, 4, 1, "", "sample_iter"], [241, 4, 1, "", "skewness"], [241, 4, 1, "", "std"], [241, 4, 1, "", "variance"], [241, 4, 1, "", "where"]], "sympy.stats.BernoulliProcess": [[241, 2, 1, "", "expectation"], [241, 2, 1, "", "probability"]], "sympy.stats.DiscreteMarkovChain": [[241, 2, 1, "", "absorbing_probabilities"], [241, 2, 1, "", "canonical_form"], [241, 2, 1, "", "communication_classes"], [241, 2, 1, "", "decompose"], [241, 2, 1, "", "fixed_row_vector"], [241, 2, 1, "", "fundamental_matrix"], [241, 3, 1, "", "limiting_distribution"], [241, 2, 1, "", "sample"], [241, 2, 1, "", "stationary_distribution"], [241, 3, 1, "", "transition_probabilities"]], "sympy.stats.compound_rv": [[241, 1, 1, "", "CompoundDistribution"]], "sympy.stats.crv": [[241, 1, 1, "", "ContinuousDomain"], [241, 1, 1, "", "ContinuousPSpace"]], "sympy.stats.crv_types": [[241, 1, 1, "", "NormalPSpace"]], "sympy.stats.crv_types.sympy.stats": [[241, 4, 1, "", "Die"], [241, 4, 1, "", "Normal"]], "sympy.stats.frv": [[241, 1, 1, "", "FiniteDomain"], [241, 1, 1, "", "FinitePSpace"]], "sympy.stats.frv_types": [[241, 1, 1, "", "DiePSpace"]], "sympy.stats.rv": [[241, 1, 1, "", "ConditionalDomain"], [241, 1, 1, "", "PSpace"], [241, 1, 1, "", "ProductDomain"], [241, 1, 1, "", "ProductPSpace"], [241, 1, 1, "", "RandomDomain"], [241, 1, 1, "", "RandomSymbol"], [241, 1, 1, "", "SingleDomain"], [241, 1, 1, "", "SinglePSpace"], [241, 4, 1, "", "pspace"], [241, 4, 1, "", "random_symbols"], [241, 4, 1, "", "rs_swap"], [241, 4, 1, "", "sampling_E"], [241, 4, 1, "", "sampling_P"], [241, 4, 1, "", "sampling_density"]], "sympy.tensor": [[242, 0, 0, "-", "array"], [245, 0, 0, "-", "index_methods"], [246, 0, 0, "-", "indexed"], [247, 0, 0, "-", "tensor"], [248, 0, 0, "-", "toperators"]], "sympy.tensor.array": [[242, 1, 1, "", "ImmutableDenseNDimArray"], [242, 1, 1, "", "ImmutableSparseNDimArray"], [242, 1, 1, "", "MutableDenseNDimArray"], [242, 1, 1, "", "MutableSparseNDimArray"], [242, 4, 1, "", "derive_by_array"], [243, 0, 0, "-", "expressions"], [242, 4, 1, "", "permutedims"], [242, 4, 1, "", "tensorcontraction"], [242, 4, 1, "", "tensordiagonal"], [242, 4, 1, "", "tensorproduct"]], "sympy.tensor.array.expressions": [[243, 1, 1, "", "ArrayContraction"], [243, 1, 1, "", "ArrayDiagonal"], [243, 1, 1, "", "ArrayTensorProduct"], [243, 1, 1, "", "PermuteDims"]], "sympy.tensor.index_methods": [[245, 4, 1, "", "get_contraction_structure"], [245, 4, 1, "", "get_indices"]], "sympy.tensor.indexed": [[246, 1, 1, "", "Idx"], [246, 1, 1, "", "Indexed"], [246, 1, 1, "", "IndexedBase"]], "sympy.tensor.indexed.Idx": [[246, 3, 1, "", "label"], [246, 3, 1, "", "lower"], [246, 3, 1, "", "upper"]], "sympy.tensor.indexed.Indexed": [[246, 3, 1, "", "base"], [246, 3, 1, "", "indices"], [246, 3, 1, "", "ranges"], [246, 3, 1, "", "rank"], [246, 3, 1, "", "shape"]], "sympy.tensor.indexed.IndexedBase": [[246, 3, 1, "", "label"], [246, 3, 1, "", "offset"], [246, 3, 1, "", "shape"], [246, 3, 1, "", "strides"]], "sympy.tensor.tensor": [[247, 1, 1, "", "TensAdd"], [247, 1, 1, "", "TensExpr"], [247, 1, 1, "", "TensMul"], [247, 1, 1, "", "TensorHead"], [247, 1, 1, "", "TensorIndex"], [247, 1, 1, "", "TensorIndexType"], [247, 1, 1, "", "TensorSymmetry"], [247, 1, 1, "", "TensorType"], [247, 1, 1, "", "_TensorManager"], [247, 4, 1, "", "canon_bp"], [247, 4, 1, "", "riemann_cyclic"], [247, 4, 1, "", "riemann_cyclic_replace"], [247, 4, 1, "", "tensor_heads"], [247, 4, 1, "", "tensorsymmetry"]], "sympy.tensor.tensor.TensAdd": [[247, 2, 1, "", "canon_bp"], [247, 2, 1, "", "contract_metric"]], "sympy.tensor.tensor.TensExpr": [[247, 2, 1, "", "get_matrix"], [247, 2, 1, "", "replace_with_arrays"]], "sympy.tensor.tensor.TensMul": [[247, 2, 1, "", "canon_bp"], [247, 2, 1, "", "contract_metric"], [247, 2, 1, "", "get_free_indices"], [247, 2, 1, "", "get_indices"], [247, 2, 1, "", "perm2tensor"], [247, 2, 1, "", "sorted_components"], [247, 2, 1, "", "split"]], "sympy.tensor.tensor.TensorHead": [[247, 2, 1, "", "commutes_with"]], "sympy.tensor.tensor.TensorSymmetry": [[247, 2, 1, "", "direct_product"], [247, 2, 1, "", "fully_symmetric"], [247, 2, 1, "", "no_symmetry"], [247, 2, 1, "", "riemann"]], "sympy.tensor.tensor._TensorManager": [[247, 2, 1, "", "clear"], [247, 2, 1, "", "comm_i2symbol"], [247, 2, 1, "", "comm_symbols2i"], [247, 2, 1, "", "get_comm"], [247, 2, 1, "", "set_comm"], [247, 2, 1, "", "set_comms"]], "sympy.tensor.toperators": [[248, 1, 1, "", "PartialDerivative"]], "sympy.testing": [[250, 0, 0, "-", "pytest"], [251, 0, 0, "-", "randtest"], [252, 0, 0, "-", "runtests"]], "sympy.testing.pytest": [[250, 4, 1, "", "SKIP"], [250, 4, 1, "", "nocache_fail"], [250, 4, 1, "", "raises"], [250, 4, 1, "", "skip_under_pyodide"], [250, 4, 1, "", "warns"], [250, 4, 1, "", "warns_deprecated_sympy"]], "sympy.testing.runtests": [[252, 1, 1, "", "PyTestReporter"], [252, 1, 1, "", "Reporter"], [252, 1, 1, "", "SymPyDocTestFinder"], [252, 1, 1, "", "SymPyDocTestRunner"], [252, 1, 1, "", "SymPyOutputChecker"], [252, 1, 1, "", "SymPyTestResults"], [252, 4, 1, "", "convert_to_native_paths"], [252, 4, 1, "", "doctest"], [252, 4, 1, "", "get_sympy_dir"], [252, 4, 1, "", "raise_on_deprecated"], [252, 4, 1, "", "run_all_tests"], [252, 4, 1, "", "run_in_subprocess_with_hash_randomization"], [252, 4, 1, "", "split_list"], [252, 4, 1, "", "sympytestfile"], [252, 4, 1, "", "test"]], "sympy.testing.runtests.PyTestReporter": [[252, 2, 1, "", "write"]], "sympy.testing.runtests.SymPyDocTestRunner": [[252, 2, 1, "", "run"]], "sympy.testing.runtests.SymPyOutputChecker": [[252, 2, 1, "", "check_output"]], "sympy.testing.runtests.SymPyTestResults": [[252, 5, 1, "", "attempted"], [252, 5, 1, "", "failed"]], "sympy.utilities": [[253, 0, 0, "-", "autowrap"], [254, 0, 0, "-", "codegen"], [255, 0, 0, "-", "decorator"], [256, 0, 0, "-", "enumerative"], [257, 0, 0, "-", "exceptions"], [259, 0, 0, "-", "iterables"], [260, 0, 0, "-", "lambdify"], [261, 0, 0, "-", "memoization"], [262, 0, 0, "-", "misc"], [263, 0, 0, "-", "source"], [264, 0, 0, "-", "timeutils"]], "sympy.utilities.autowrap": [[253, 1, 1, "", "CodeWrapper"], [253, 1, 1, "", "CythonCodeWrapper"], [253, 1, 1, "", "DummyWrapper"], [253, 1, 1, "", "F2PyCodeWrapper"], [253, 1, 1, "", "UfuncifyCodeWrapper"], [253, 4, 1, "", "autowrap"], [253, 4, 1, "", "binary_function"], [253, 4, 1, "", "ufuncify"]], "sympy.utilities.autowrap.CythonCodeWrapper": [[253, 2, 1, "", "dump_pyx"]], "sympy.utilities.autowrap.UfuncifyCodeWrapper": [[253, 2, 1, "", "dump_c"]], "sympy.utilities.codegen": [[254, 1, 1, "", "Argument"], [254, 1, 1, "", "CCodeGen"], [254, 1, 1, "", "CodeGen"], [254, 1, 1, "", "DataType"], [254, 1, 1, "", "FCodeGen"], [254, 1, 1, "", "JuliaCodeGen"], [254, 1, 1, "", "OctaveCodeGen"], [254, 1, 1, "", "OutputArgument"], [254, 1, 1, "", "Result"], [254, 1, 1, "", "Routine"], [254, 1, 1, "", "RustCodeGen"], [254, 4, 1, "", "codegen"], [254, 4, 1, "", "get_default_datatype"], [254, 4, 1, "", "make_routine"]], "sympy.utilities.codegen.CCodeGen": [[254, 2, 1, "", "dump_c"], [254, 2, 1, "", "dump_h"], [254, 2, 1, "", "get_prototype"]], "sympy.utilities.codegen.CodeGen": [[254, 2, 1, "", "dump_code"], [254, 2, 1, "", "routine"], [254, 2, 1, "", "write"]], "sympy.utilities.codegen.FCodeGen": [[254, 2, 1, "", "dump_f95"], [254, 2, 1, "", "dump_h"], [254, 2, 1, "", "get_interface"]], "sympy.utilities.codegen.JuliaCodeGen": [[254, 2, 1, "", "dump_jl"], [254, 2, 1, "", "routine"]], "sympy.utilities.codegen.OctaveCodeGen": [[254, 2, 1, "", "dump_m"], [254, 2, 1, "", "routine"]], "sympy.utilities.codegen.Routine": [[254, 3, 1, "", "result_variables"], [254, 3, 1, "", "variables"]], "sympy.utilities.codegen.RustCodeGen": [[254, 2, 1, "", "dump_rs"], [254, 2, 1, "", "get_prototype"], [254, 2, 1, "", "routine"]], "sympy.utilities.decorator": [[255, 4, 1, "", "conserve_mpmath_dps"], [255, 4, 1, "", "deprecated"], [255, 4, 1, "", "doctest_depends_on"], [255, 4, 1, "", "memoize_property"], [255, 1, 1, "", "no_attrs_in_subclass"], [255, 4, 1, "", "public"], [255, 4, 1, "", "threaded"], [255, 4, 1, "", "threaded_factory"], [255, 4, 1, "", "xthreaded"]], "sympy.utilities.enumerative": [[256, 1, 1, "", "MultisetPartitionTraverser"], [256, 4, 1, "", "factoring_visitor"], [256, 4, 1, "", "list_visitor"], [256, 4, 1, "", "multiset_partitions_taocp"]], "sympy.utilities.enumerative.MultisetPartitionTraverser": [[256, 2, 1, "", "count_partitions"], [256, 2, 1, "", "enum_all"], [256, 2, 1, "", "enum_large"], [256, 2, 1, "", "enum_range"], [256, 2, 1, "", "enum_small"]], "sympy.utilities.exceptions": [[257, 7, 1, "", "SymPyDeprecationWarning"], [257, 4, 1, "", "ignore_warnings"], [257, 4, 1, "", "sympy_deprecation_warning"]], "sympy.utilities.iterables": [[259, 1, 1, "", "NotIterable"], [259, 4, 1, "", "binary_partitions"], [259, 4, 1, "", "bracelets"], [259, 4, 1, "", "capture"], [259, 4, 1, "", "common_prefix"], [259, 4, 1, "", "common_suffix"], [259, 4, 1, "", "connected_components"], [259, 4, 1, "", "dict_merge"], [259, 4, 1, "", "filter_symbols"], [259, 4, 1, "", "flatten"], [259, 4, 1, "", "generate_bell"], [259, 4, 1, "", "generate_derangements"], [259, 4, 1, "", "generate_involutions"], [259, 4, 1, "", "generate_oriented_forest"], [259, 4, 1, "", "group"], [259, 4, 1, "", "has_dups"], [259, 4, 1, "", "has_variety"], [259, 4, 1, "", "ibin"], [259, 4, 1, "", "iproduct"], [259, 4, 1, "", "is_palindromic"], [259, 4, 1, "", "is_sequence"], [259, 4, 1, "", "iterable"], [259, 4, 1, "", "kbins"], [259, 4, 1, "", "least_rotation"], [259, 4, 1, "", "minlex"], [259, 4, 1, "", "multiset"], [259, 4, 1, "", "multiset_combinations"], [259, 4, 1, "", "multiset_derangements"], [259, 4, 1, "", "multiset_partitions"], [259, 4, 1, "", "multiset_permutations"], [259, 4, 1, "", "necklaces"], [259, 4, 1, "", "numbered_symbols"], [259, 4, 1, "", "ordered_partitions"], [259, 4, 1, "", "partitions"], [259, 4, 1, "", "permute_signs"], [259, 4, 1, "", "postfixes"], [259, 4, 1, "", "prefixes"], [259, 4, 1, "", "random_derangement"], [259, 4, 1, "", "reshape"], [259, 4, 1, "", "rotate_left"], [259, 4, 1, "", "rotate_right"], [259, 4, 1, "", "rotations"], [259, 4, 1, "", "roundrobin"], [259, 4, 1, "", "runs"], [259, 4, 1, "", "sequence_partitions"], [259, 4, 1, "", "sequence_partitions_empty"], [259, 4, 1, "", "sift"], [259, 4, 1, "", "signed_permutations"], [259, 4, 1, "", "strongly_connected_components"], [259, 4, 1, "", "subsets"], [259, 4, 1, "", "take"], [259, 4, 1, "", "topological_sort"], [259, 4, 1, "", "unflatten"], [259, 4, 1, "", "uniq"], [259, 4, 1, "", "variations"]], "sympy.utilities.lambdify": [[260, 4, 1, "", "implemented_function"], [260, 4, 1, "", "lambdastr"], [260, 4, 1, "", "lambdify"]], "sympy.utilities.memoization": [[261, 4, 1, "", "assoc_recurrence_memo"], [261, 4, 1, "", "recurrence_memo"]], "sympy.utilities.misc": [[262, 4, 1, "", "as_int"], [262, 4, 1, "", "debug"], [262, 4, 1, "", "debug_decorator"], [262, 4, 1, "", "debugf"], [262, 4, 1, "", "filldedent"], [262, 4, 1, "", "find_executable"], [262, 4, 1, "", "func_name"], [262, 4, 1, "", "ordinal"], [262, 4, 1, "", "rawlines"], [262, 4, 1, "", "replace"], [262, 4, 1, "", "strlines"], [262, 4, 1, "", "translate"]], "sympy.utilities.source": [[263, 4, 1, "", "get_class"], [263, 4, 1, "", "get_mod_func"]], "sympy.utilities.timeutils": [[264, 4, 1, "", "timed"]], "sympy.vector": [[268, 4, 1, "", "curl"], [268, 4, 1, "", "divergence"], [268, 4, 1, "", "express"], [268, 4, 1, "", "gradient"], [268, 4, 1, "", "is_conservative"], [268, 4, 1, "", "is_solenoidal"], [268, 4, 1, "", "matrix_to_vector"], [268, 4, 1, "", "scalar_potential"], [268, 4, 1, "", "scalar_potential_difference"]], "sympy.vector.coordsysrect": [[265, 1, 1, "", "CoordSys3D"]], "sympy.vector.coordsysrect.CoordSys3D": [[265, 2, 1, "", "__init__"], [265, 2, 1, "", "create_new"], [265, 2, 1, "", "locate_new"], [265, 2, 1, "", "orient_new"], [265, 2, 1, "", "orient_new_axis"], [265, 2, 1, "", "orient_new_body"], [265, 2, 1, "", "orient_new_quaternion"], [265, 2, 1, "", "orient_new_space"], [265, 2, 1, "", "position_wrt"], [265, 2, 1, "", "rotation_matrix"], [265, 2, 1, "", "scalar_map"]], "sympy.vector.deloperator": [[265, 1, 1, "", "Del"]], "sympy.vector.deloperator.Del": [[265, 2, 1, "", "cross"], [265, 2, 1, "", "dot"], [265, 2, 1, "", "gradient"]], "sympy.vector.dyadic": [[265, 1, 1, "", "Dyadic"]], "sympy.vector.dyadic.Dyadic": [[265, 3, 1, "", "components"], [265, 2, 1, "", "cross"], [265, 2, 1, "", "dot"], [265, 2, 1, "", "to_matrix"]], "sympy.vector.implicitregion": [[265, 1, 1, "", "ImplicitRegion"]], "sympy.vector.implicitregion.ImplicitRegion": [[265, 2, 1, "", "multiplicity"], [265, 2, 1, "", "rational_parametrization"], [265, 2, 1, "", "regular_point"], [265, 2, 1, "", "singular_points"]], "sympy.vector.integrals": [[265, 1, 1, "", "ParametricIntegral"], [268, 4, 1, "", "vector_integrate"]], "sympy.vector.orienters": [[267, 1, 1, "", "AxisOrienter"], [267, 1, 1, "", "BodyOrienter"], [267, 1, 1, "", "Orienter"], [267, 1, 1, "", "QuaternionOrienter"], [267, 1, 1, "", "SpaceOrienter"]], "sympy.vector.orienters.AxisOrienter": [[267, 2, 1, "", "__init__"], [267, 2, 1, "", "rotation_matrix"]], "sympy.vector.orienters.BodyOrienter": [[267, 2, 1, "", "__init__"]], "sympy.vector.orienters.Orienter": [[267, 2, 1, "", "rotation_matrix"]], "sympy.vector.orienters.QuaternionOrienter": [[267, 2, 1, "", "__init__"]], "sympy.vector.orienters.SpaceOrienter": [[267, 2, 1, "", "__init__"]], "sympy.vector.parametricregion": [[265, 1, 1, "", "ParametricRegion"]], "sympy.vector.vector": [[265, 1, 1, "", "Vector"]], "sympy.vector.vector.Vector": [[265, 3, 1, "", "components"], [265, 2, 1, "", "cross"], [265, 2, 1, "", "dot"], [265, 2, 1, "", "magnitude"], [265, 2, 1, "", "normalize"], [265, 2, 1, "", "outer"], [265, 2, 1, "", "projection"], [265, 2, 1, "", "separate"], [265, 2, 1, "", "to_matrix"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "function", "Python function"], "5": ["py", "attribute", "Python attribute"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:function", "5": "py:attribute", "6": "py:data", "7": "py:exception"}, "terms": {"": [0, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 28, 30, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107, 110, 111, 113, 115, 116, 117, 118, 120, 121, 124, 127, 128, 129, 130, 132, 134, 136, 137, 138, 140, 142, 144, 146, 148, 149, 151, 152, 154, 155, 156, 158, 159, 162, 163, 164, 170, 171, 173, 175, 177, 178, 181, 185, 186, 188, 189, 191, 194, 195, 196, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 221, 222, 223, 224, 227, 228, 229, 231, 232, 233, 234, 236, 237, 238, 241, 247, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 271, 272, 274, 277, 282, 283, 285, 286, 287, 289, 290, 291, 292, 293, 297, 298, 299, 302, 305, 308], "0": [3, 4, 11, 12, 13, 14, 15, 16, 18, 22, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 155, 156, 158, 159, 160, 163, 164, 165, 167, 170, 175, 176, 177, 180, 185, 186, 187, 188, 189, 190, 191, 192, 196, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 255, 256, 257, 259, 260, 261, 265, 267, 268, 269, 270, 271, 272, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 311], "00": [14, 16, 88, 128, 175, 185, 259], "000": [72, 92, 115, 118, 185, 259], "0000": 72, "000000000000": 16, "0000000000000": [134, 164], "00000000000000": [14, 54, 88, 92, 192, 221, 241, 287], "00000000000000e": 88, "00000000260573": 142, "00000000e": 14, "0000000154172579002800188521596734869": 96, "00001": 185, "00002480019791932209313156167176797577821140084216297395518482071448": 206, "0001": [72, 92], "00010": 72, "000100000000000000": 88, "00011001011": 259, "00011010011": 259, "0001111011": [118, 259], "0001953125": 136, "00026102": 115, "000507214304613640": 129, "000507214304614": 129, "0005241": 299, "00053": 160, "00054335718671383": 138, "00070025": 110, "001": [72, 92, 118, 160, 259], "0010": 72, "00100": 88, "00100000000000000": 160, "00101413072159615": 160, "00109772": 299, "0011": [72, 83], "0011276": 299, "00138541666666667": 136, "00141": 80, "00152436": 299, "00210803120913829": 160, "0023152": 115, "003": 92, "0033": 164, "00333333": 299, "004": 215, "00447086247086247": 138, "00453": 115, "004707066000264604": 69, "006": 124, "006046440489058766": 142, "0063339426292673": 96, "006895004219221134484332976156744208248842039317638217822322799675": 206, "00708": 302, "0075": [18, 299], "00756": 302, "00906": 115, "00996712": 299, "01": [22, 80, 88, 92, 185, 215, 233, 259], "010": [72, 118, 259], "0100": 72, "0101": [72, 185], "010389": 115, "010399": 115, "011": [72, 118, 185, 259], "0110": 72, "0111": [72, 185], "01197": 128, "012": 88, "012297": 92, "012345": 80, "01375162659678": 110, "014": 154, "01480": 234, "014895573969924817587": 96, "015": [18, 131], "0150588346410601": 18, "016": 230, "0166133211401": 132, "0170706725844998": 138, "01743115": 299, "0174533": 22, "01747268": 241, "0175000000000000": 87, "0186573603637741": [18, 132], "0189": 91, "0190": 80, "0196": 259, "02": [215, 234, 302], "02005": 164, "020599914256786": 142, "0205999155219505": 142, "020884341620842555705": 93, "0225": [18, 299], "023844582399907256": 142, "025413462339411542": 142, "02671848900111377452242355235388489324562": 96, "0276302": 61, "02841027019385211055596446229489549303819644288109756659334461284756482337867831": 92, "0299": [18, 132], "02_03_40_42": 91, "03": [206, 241, 299], "034": 89, "035581932165858e": 142, "035999037": 146, "035999037000": 146, "0365": 217, "04": [11, 124, 241], "04166666666667e": 136, "042894276802320226": 142, "045": 215, "04516378011749278484458888919": 96, "0458952018652595": 18, "0472": 115, "0484508722725343": 142, "04923615": 299, "05": [18, 34, 79, 110, 142, 203, 206], "050584": 115, "0509758447494279": 57, "0519737844841": 132, "052": 239, "05426074": 129, "05426079": 129, "05433146": 129, "05433151": 129, "05440211": 129, "054525080242173562897": 96, "05457162000000e": 173, "05457162d": 69, "05555555555555555555555555555555555555555555555555555555555555555": 206, "0555556377366884": 146, "0555558020932949": 146, "0555562951740285": 146, "0583518": 128, "05892": 302, "06": [18, 82, 88, 132, 206, 241, 302], "060": [18, 131], "0603": 302, "0633": [18, 132], "0652795784357498247001125598": 96, "06616480200395854": 142, "06743": [93, 96, 217], "06e": 160, "07": 113, "08": [57, 124, 217, 302], "08333333333333e": 136, "08346052231061726610939702133": 96, "083954101": 48, "08395410131771": 48, "083c01": 170, "084489": 115, "087": 215, "0874989834394464": 286, "08895483066e": 142, "09": [88, 142, 206, 215], "0904": 124, "0909": 259, "091999668350375232456": 92, "09326036123": 142, "0935077": 67, "095": 96, "0973": 115, "099419756723640344491": 96, "099609": 88, "0998334166468": 286, "0_": 27, "0_0": 111, "0_1": 111, "0d0": [69, 221], "0e": [14, 69, 88], "0f1": 237, "0i": 61, "0j": [61, 211], "0k": 61, "0l": [69, 221], "0o121": 128, "0o171": 128, "0right": 240, "0th": [67, 80, 89, 96], "0x": [14, 191], "0x10e997790": 12, "0x12": 116, "0x324": 128, "0x3243f6a8885a30": 128, "0xfa": 128, "1": [2, 3, 5, 7, 8, 11, 12, 14, 15, 16, 17, 18, 21, 23, 25, 26, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 138, 140, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 170, 173, 174, 175, 176, 177, 179, 180, 181, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 250, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 265, 268, 269, 270, 272, 275, 282, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 308, 309, 310, 311], "10": [0, 2, 4, 12, 14, 16, 17, 18, 22, 30, 43, 46, 48, 54, 55, 57, 59, 61, 67, 69, 74, 77, 79, 80, 84, 86, 87, 88, 89, 91, 92, 93, 94, 96, 101, 102, 104, 105, 113, 115, 116, 118, 120, 124, 125, 128, 129, 130, 131, 132, 134, 135, 136, 138, 140, 142, 144, 145, 150, 154, 155, 160, 164, 175, 185, 186, 197, 200, 201, 202, 204, 206, 207, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 224, 227, 228, 229, 230, 233, 234, 237, 240, 241, 242, 251, 252, 257, 259, 260, 262, 265, 268, 286, 293, 297, 299, 302, 303], "100": [12, 16, 43, 46, 69, 72, 77, 87, 88, 89, 92, 96, 104, 111, 118, 124, 128, 136, 138, 207, 211, 216, 218, 220, 221, 228, 239, 240, 259, 286], "1000": [16, 30, 69, 72, 88, 89, 92, 120, 128, 195, 196, 197, 198, 206, 220, 221, 230, 260], "10000": [69, 92, 128, 129, 136, 239], "100000": [92, 128, 142], "1000000": [88, 128], "10000000": [92, 217], "1000000000": 92, "100000000000000": [92, 134], "10000000000000000": 14, "100000000000000000000": 88, "100000000000000000000000000000": 92, "100000000000000005551115123126": 92, "10000000001": 128, "1000001": 93, "1001": 72, "1002": 241, "100500": 98, "100644": 11, "1007": [74, 89, 154], "1009": 128, "100x": 13, "101": [72, 96, 118, 128, 144, 185, 234, 259], "1010": [72, 88], "1010203040506070809": 128, "1010381": 128, "1011": 72, "1012": 146, "10120": 293, "101456353": 115, "1016": [80, 124, 215, 259], "102": [79, 124], "1024": [79, 221, 241], "10279": 293, "103": [0, 7, 79], "1031": 89, "103993": 128, "104": 92, "10431": 128, "104348": 128, "104755": 217, "105": [96, 128, 217, 234], "10517083333333": 110, "106": 128, "107": [74, 215], "10713341e": 14, "1072": 124, "1074": 124, "10793": 136, "108": [86, 137], "108208000e3": 194, "108270": 98, "10877": 128, "109": [128, 215, 234], "1090": [67, 128, 217, 234], "1092": 217, "10kn": 136, "10n": 129, "10pt": [116, 205, 221], "10sin": 130, "10th": 128, "11": [4, 17, 18, 22, 32, 41, 63, 64, 69, 74, 79, 82, 84, 86, 88, 89, 91, 93, 96, 100, 101, 102, 104, 105, 113, 115, 118, 119, 124, 128, 130, 132, 144, 175, 185, 206, 207, 209, 210, 212, 214, 215, 216, 217, 218, 220, 221, 228, 230, 234, 237, 239, 240, 241, 242, 253, 259, 269, 302], "110": [72, 118, 237, 239, 253, 259], "1100": 72, "1101": 72, "11010011000": 259, "1101111000": [118, 259], "1103": 92, "110896": 128, "111": [72, 91, 93, 98, 118, 124, 128, 259], "1110": 72, "1111": 72, "1111339": 128, "11163337": 241, "1118": 128, "112": [128, 214, 218], "1121416371": 69, "113": [92, 128, 234], "11337": 115, "1137796": 234, "113820": 128, "114": [79, 93, 128], "1145": [87, 210, 212, 215, 233], "1145768": 233, "1145809": 233, "115": 96, "1159": 128, "11590": 128, "115975": 93, "116": [206, 215], "1169": 230, "117": [79, 96], "1177": 230, "1178": 128, "1179": 215, "11895": 115, "1193": 89, "1197": 215, "11_0_0_intro": 241, "11_2_6_stationary_and_limiting_distribut": 241, "11_4_0_brownian_motion_wiener_process": 241, "12": [4, 12, 14, 16, 17, 18, 32, 43, 46, 48, 61, 67, 68, 69, 74, 76, 77, 79, 80, 81, 84, 86, 87, 88, 89, 91, 93, 94, 96, 98, 101, 102, 104, 113, 115, 118, 124, 125, 128, 132, 136, 137, 138, 142, 144, 146, 152, 188, 200, 206, 209, 210, 211, 214, 216, 217, 218, 220, 221, 227, 229, 230, 234, 236, 237, 241, 242, 252, 253, 256, 259, 268, 293, 296, 297, 299, 302, 303, 304], "120": [12, 39, 87, 88, 93, 94, 110, 128, 136, 137, 218, 220, 221, 223, 237, 287], "1200": 206, "12000": 136, "1202": 303, "121": [88, 93, 128, 144, 200, 239], "1211": 91, "1215": 215, "12166980856813935": 142, "122": [89, 91, 96], "1224": [93, 128], "1225": 124, "12288": 275, "122921448543883967430908091422761898618349713604256384403202282756086473494959648313841": 128, "123": [11, 88, 93, 98, 118, 152, 188, 200, 259, 265, 267], "1231": 215, "1231026625769": 128, "1233": 259, "1234": [11, 128, 234], "12345": [11, 69, 92], "123456": [69, 88, 128], "123456789": 88, "123456789012345646": 69, "123456789012345649": 69, "12345678901234567890": 16, "12345678910111213141516": 128, "123_456": 88, "124": [215, 286], "12438240242516": 132, "12465": 217, "12499999999568202": 142, "12499999999661349": 142, "124a": 238, "125": [88, 92, 115, 128, 212, 227, 234], "12500": 88, "1250000": 162, "12500000000000000000": 88, "125000000000000000000000000000": 92, "125000416028342": 146, "125002080189006": 146, "12524": 13, "125e": 136, "126": [124, 128, 220], "127": [89, 128], "12757857962640e": 54, "127750": 256, "128": [79, 88, 93, 96, 98, 128, 215, 221], "1283": 91, "1294585930293": 234, "1296": 82, "1296959": 96, "1299709": 128, "12e": 88, "12kn": 137, "12mm": 68, "13": [4, 12, 17, 22, 32, 61, 69, 77, 79, 84, 88, 89, 91, 93, 96, 100, 101, 102, 103, 113, 118, 124, 128, 132, 136, 137, 138, 142, 144, 149, 207, 210, 214, 216, 217, 218, 220, 221, 227, 234, 236, 238, 239, 241, 242, 253, 259, 275, 296], "130": 98, "130198866629986772369127970337": 92, "1307": [11, 57], "131": [96, 200], "131072": 217, "13131491": 259, "132": [86, 93, 200], "1336": 92, "134": 124, "135": 128, "1350": 136, "136": [88, 124], "137": [93, 124, 146], "1371": 61, "1373651": 128, "13750": 136, "138": 128, "1381": 89, "1385": [93, 217], "139": 214, "1391": 128, "13y": 234, "14": [4, 17, 22, 46, 48, 69, 77, 79, 83, 84, 86, 88, 89, 93, 94, 96, 113, 124, 125, 128, 129, 136, 142, 206, 207, 210, 212, 214, 215, 216, 217, 218, 220, 221, 230, 233, 234, 237, 239, 241, 242, 287], "140": 128, "1401": 217, "1405": 302, "1407633717262338957430697921446883": 128, "141": 146, "14112001": 286, "1415": 92, "1415085799262523": 142, "14155265358979": 142, "14159": 221, "14159265358979": [92, 96, 239], "141592653589793": [14, 88, 92], "141592653589793238462643383279502884197169399375105820974944592307816406286208": 92, "141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068": 286, "14159265358979323846264338328": 92, "141592653589793238462643d0": 221, "1415926535897932d0": 221, "14159265358979d0": 69, "141592654": 88, "1416": 206, "1417": [128, 234], "142": 215, "14219": 91, "1428": 206, "14285278320312500000": 16, "142857": 16, "142857142857143": 16, "143": [16, 154, 170, 206], "1430": 93, "14358881": 110, "144": [48, 57, 93, 115, 206, 210], "1441": 234, "147": 102, "14751999969868": 57, "1482": 128, "1484": 46, "149": [18, 93, 128, 132], "1495": [18, 132], "149896229": [162, 165, 195], "15": [4, 14, 16, 43, 67, 74, 77, 79, 84, 86, 88, 89, 91, 92, 93, 96, 98, 101, 102, 104, 105, 113, 115, 118, 119, 124, 125, 128, 136, 149, 164, 206, 207, 209, 210, 211, 212, 216, 217, 218, 220, 221, 223, 227, 228, 230, 233, 234, 238, 239, 240, 241, 242, 259, 286, 287, 292, 293, 299], "150": [124, 144, 234], "15033720e": 14, "151": 77, "15141": 293, "1515151515151": 164, "15154262241479": 128, "15174161": 299, "152": [93, 128, 214], "1520": 136, "1521": 93, "153": 220, "15416": 13, "15423094826093": 128, "15494982830181068512": [4, 96], "155": 217, "15502": 91, "1551": 124, "1553": 89, "15555": 91, "15605338197184": 96, "15625": [136, 198], "156675": 93, "157": [115, 128, 137, 215], "1570": 234, "15707": 115, "1577": 89, "158": [124, 137], "15x15": 210, "16": [4, 12, 14, 18, 33, 46, 48, 57, 61, 67, 69, 71, 79, 80, 83, 87, 88, 89, 93, 96, 97, 98, 102, 113, 115, 118, 124, 125, 127, 128, 136, 137, 209, 210, 211, 214, 215, 216, 217, 220, 221, 227, 229, 230, 231, 234, 241, 242, 259, 265, 274, 293, 299], "160": [16, 136, 215], "1600": [136, 137], "16000": 136, "160249952256379": 218, "161": [89, 154], "16109": 128, "162": [18, 132], "1633833": 259, "1644": 46, "165": [217, 241, 259], "1666666666666666666666666666666666666666666666666666666666666667": 206, "166666666666667": 218, "16667": 115, "167": 124, "167303978": 48, "16730397826142": 48, "16840434497100886801e": 54, "16843009": 128, "1684e": 239, "169": 217, "1692": 124, "17": [4, 18, 54, 55, 57, 77, 79, 80, 88, 89, 92, 93, 94, 98, 101, 104, 113, 124, 128, 144, 211, 212, 214, 216, 217, 220, 221, 228, 230, 234, 237, 242, 256, 291], "170": [101, 241], "170748906965121e": 142, "172": 136, "172870711": 96, "1729": 234, "175": [98, 124, 214, 215], "176": 237, "1764": 128, "1768": 93, "17737": 128, "17749": 13, "17805383034794561964694160130": 96, "1785690389": 11, "1786": 128, "1787": 128, "17881": 13, "179143454621291692285822705344": 96, "18": [4, 18, 54, 71, 79, 80, 88, 91, 93, 96, 98, 101, 104, 119, 124, 128, 136, 137, 142, 144, 146, 201, 206, 210, 214, 215, 220, 221, 229, 230, 234, 237, 239, 240, 241, 242, 268], "180": [36, 104, 215], "1800": [61, 89], "18014398509481984": [88, 233], "18056": 13, "181": [57, 217], "181232444469875": 48, "1812324445": 48, "1816": 115, "1827": 265, "1829": 128, "184": [67, 237], "18466446988997098217": 54, "1847": 216, "18482169793536e": 48, "18525034196069722536": 96, "187": [196, 215], "1870": 91, "1875": 136, "18844": 13, "1889": 115, "18891601900395472": 69, "189": 214, "18971": 128, "19": [4, 46, 54, 79, 88, 91, 96, 98, 101, 104, 124, 128, 130, 132, 136, 138, 206, 212, 216, 217, 220, 230, 234, 236, 239, 253, 286], "1901": 89, "1901263495547205e": 142, "19016": 115, "190347": 215, "190413": 215, "19093197": 96, "191": [70, 240], "1914": 124, "192": 117, "1920": 89, "1921": 128, "19287309935246": [54, 239], "192873099352460791205211": 54, "1929": 89, "193": [46, 124, 142], "1931127624": 11, "19351": 91, "1937664": 214, "19404": 91, "1944": 208, "195": 93, "1952": 196, "1953": [96, 216], "1954": 115, "19548": 293, "1955": 29, "1957": 206, "1958": [128, 206], "1959": 206, "1962": 128, "1963": 237, "1965": [4, 96, 124], "1967": [89, 215], "1968": 145, "1969": [4, 89, 96, 113, 215, 231], "197": 93, "1970": [68, 124], "1971": [215, 237], "1972": 128, "1973": [34, 70, 89, 203], "1974": 223, "1976": [212, 215], "1977": 196, "1978": [72, 79, 196, 215], "1979": [105, 196], "198": 124, "1980": [128, 259], "1981": [87, 215], "1982": [115, 206], "1983": [29, 256], "1985": [29, 115, 153, 200, 265], "1988": [67, 170, 188, 214, 215], "19882": 13, "1989": [4, 215, 239], "199": 70, "1990": [80, 113, 231, 265], "1991": [70, 215], "1992": [128, 215, 239, 259], "19923894": 299, "1993": [88, 215], "1994": [80, 214, 215, 217], "1995": [93, 215, 233, 239], "1996": [206, 215, 231, 239, 265], "1997": [87, 113, 128, 215, 231], "1998": [215, 234], "1999": [80, 124, 215, 220, 237], "1_": 88, "1_0": 111, "1_1": 111, "1_2": 14, "1cm": 68, "1d": [18, 167, 169, 182, 200, 246], "1d0": 69, "1e": [14, 69, 88, 92, 124, 142, 160, 217, 239], "1e11": 128, "1e16": 88, "1e20": 88, "1e23": [128, 262], "1e3": 128, "1e5": 69, "1f1": 237, "1g": 69, "1j": [142, 144, 211], "1kn": 136, "1m": 137, "1st": [46, 67, 80, 128, 144, 237, 238, 262, 287], "1st_exact": [4, 12, 237], "1st_exact_integr": 237, "1st_homogeneous_coeff": 237, "1st_homogeneous_coeff_best": 237, "1st_homogeneous_coeff_subs_dep_div_indep": 237, "1st_homogeneous_coeff_subs_dep_div_indep_integr": 237, "1st_homogeneous_coeff_subs_indep_div_dep": 237, "1st_homogeneous_coeff_subs_indep_div_dep_integr": 237, "1st_linear": 237, "1st_linear_constant_coeff_homogen": 238, "1st_linear_constant_coeff_integr": 238, "1st_linear_integr": 237, "1st_power_seri": 237, "1st_rational_riccati": 237, "1u": 129, "1x1": [127, 241], "1x3": 124, "2": [5, 7, 11, 12, 13, 14, 15, 16, 18, 21, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 56, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 127, 128, 130, 131, 132, 134, 135, 136, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 174, 175, 176, 177, 180, 181, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 200, 201, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 250, 252, 253, 254, 255, 256, 259, 260, 261, 262, 265, 267, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "20": [4, 14, 16, 46, 54, 57, 65, 69, 77, 79, 80, 87, 88, 89, 92, 93, 96, 104, 105, 115, 124, 128, 135, 136, 137, 138, 140, 144, 155, 196, 198, 206, 207, 210, 211, 215, 216, 217, 218, 220, 221, 227, 228, 229, 230, 233, 234, 237, 240, 241, 265, 287], "200": [89, 124, 128, 136, 142, 265], "2000": [69, 74, 115, 128, 215], "20000": 128, "20000000": [92, 217], "20000000000000": 16, "2000000000000002": 16, "2000061035": 16, "2001": [80, 128, 215], "2002": [91, 208, 215, 218], "2003": [69, 206, 215, 221, 234], "20033": 88, "2004": [88, 96, 215, 234], "2005": [70, 78, 115, 128, 217], "2006": [89, 230], "2007": [29, 128, 256], "200710": 12, "20071116100808": 89, "20078": 13, "2008": [74, 124, 206, 215, 217, 221], "2009": [93, 96, 128, 206, 217], "2010": [82, 238, 259], "2011": [34, 72, 80, 113, 124, 128, 203, 230], "2012": [88, 215, 303], "2013": [90, 100, 124, 215, 295], "2014": [7, 240, 241], "20140123": 115, "2015": [115, 154, 240], "20150716201437": 128, "2016": [7, 18, 131, 132, 134, 299], "20160": 210, "20160313023044": 259, "20160323033111": 234, "20160323033128": 234, "2017": [0, 7, 206], "20170202003812": [93, 128], "20171008094331": 80, "20180413004012": 128, "2020": [98, 170], "20200118141346": 115, "20200204081320": 241, "20200224064753": 72, "20200307091449": 293, "20200628222206": 241, "20200628222212": 241, "202008": 12, "20201021115213": 234, "20201128173312": 96, "20201230182007": 241, "20205690315959": 96, "20209": 13, "20210507012732": 93, "20210508104430": 241, "20210511015444": 105, "20210806201615": 233, "2022": 206, "20220207032113": 241, "20221029115428": 210, "2026366": 241, "202916782076162456022877024859": 128, "203": [77, 93, 210], "2048": [89, 128, 221], "205": [93, 113, 231], "2057": 91, "206": [212, 217], "20621": 13, "207": 234, "2071025955": 138, "20759": 13, "20780": 13, "2079": 217, "208": [92, 217], "20833333333333e": 136, "208341": 128, "2084": 29, "2093": 115, "2097152": 217, "20conic": 265, "20e9": 137, "20kn": [136, 137], "20on": 265, "20point": 265, "20th": 208, "21": [4, 13, 18, 32, 74, 79, 88, 91, 93, 101, 102, 110, 124, 128, 130, 132, 136, 207, 210, 212, 214, 215, 216, 218, 220, 221, 227, 237, 241, 242, 297], "210": [12, 92, 93, 128, 210, 234], "211": [113, 128, 217, 231, 237], "2111": 130, "2112166839943": 128, "2112723729365330143": 96, "21147": 93, "21177": 12, "212": [89, 115, 215], "21245": 12, "21253": 12, "213": 124, "21306132": 69, "214": 196, "21402": 13, "21427": 13, "21441": 13, "21477639576571": 128, "21494": 13, "21496": 13, "21563": 13, "216": [124, 214], "2161": 234, "21626": 13, "217": [115, 215], "218332": 259, "21875": 115, "219": 215, "21938393439552": 96, "219383934395520": 96, "22": [4, 12, 16, 32, 79, 88, 91, 92, 93, 96, 124, 128, 137, 215, 220, 233, 234, 239, 241], "220": [128, 217], "2204": 214, "2209": 146, "221": 237, "22140257085069": 110, "22169": 115, "222": 91, "22252": 115, "22285": 115, "223": 215, "224": [61, 194, 215], "22464679914735e": 14, "2247": 115, "225": [93, 128, 215], "22553956329232": 110, "225607735_dixon_result": 215, "226": [79, 215], "227": 79, "22740742820168557599192443603787379946077222541710": 96, "22827": 93, "229": 128, "22906851": 11, "22925376": 253, "23": [4, 32, 67, 79, 80, 88, 91, 94, 96, 102, 104, 124, 128, 136, 144, 212, 214, 217, 220, 227, 234, 259], "230": [217, 239], "2307": 124, "231": [128, 200], "232": 96, "233": [128, 215, 237], "2331v2": 259, "234": 128, "234137346_on_a_multivariate_log": 241, "2345": 234, "23456789123456789": 88, "23456789123457": 88, "235": 93, "235625382192159": 164, "236": 128, "236237": 214, "237": [48, 215], "2376": 0, "238": [88, 128], "239": 88, "23903": 88, "24": [4, 11, 12, 51, 53, 54, 61, 67, 76, 80, 81, 88, 91, 93, 96, 102, 110, 115, 124, 128, 136, 137, 142, 144, 188, 198, 206, 212, 214, 216, 217, 218, 220, 223, 228, 234, 237, 241, 256, 259, 261, 275, 287, 293], "240": [136, 215, 223, 268], "2400": 136, "242": 212, "243": [79, 96, 234, 239], "24310": 128, "2434931": 128, "244": [88, 214], "247": [212, 215, 239], "2478": 230, "24780825": 241, "248": 128, "2489": 128, "249": 215, "25": [4, 16, 18, 46, 51, 54, 79, 80, 89, 91, 93, 96, 98, 101, 103, 119, 124, 127, 128, 132, 136, 137, 144, 149, 155, 204, 206, 210, 214, 216, 217, 220, 221, 227, 228, 230, 234, 236, 237, 238, 241, 253], "250": [16, 128, 234], "2500": 136, "25000000000000000000": 16, "2507191691": 128, "251": 214, "2514261_algebraic_and_geometric_reasoning_using_dixon_result": 215, "25146": 198, "25165824": 253, "252": 12, "253": 80, "2531": 80, "25314": 80, "253140": 80, "255": 128, "25547445255474": 138, "256": [52, 69, 79, 128, 217, 221], "25645121643901801": 128, "257": [5, 128, 239], "2580": 128, "25882": 115, "259": 124, "25e": 137, "25x25": 210, "26": [4, 77, 88, 89, 91, 96, 100, 124, 128, 136, 137, 138, 214, 217, 234, 241], "2620": 96, "26390": 92, "264": [124, 239], "265": 217, "26629073187415": 87, "268": 93, "2690882": 124, "27": [4, 11, 52, 69, 70, 79, 83, 93, 98, 124, 128, 136, 137, 144, 146, 214, 217, 239], "270": [138, 140], "2700": [61, 136], "2702765": 93, "2709077133180915240135586837960864768806330782747": 128, "271130": 210, "271133": 210, "2715": 217, "272": [93, 217], "27261": 124, "2730": 93, "274": 93, "27433": 115, "2753": 89, "27720": 93, "278444111699106966687122": 54, "27844411169911": [54, 239], "27852": 115, "27879516692116952268509756941098324140300059345163": 96, "2788": 128, "279": 217, "2794155": 286, "27_number": 128, "27_theorem": 275, "27s_constant": 88, "27s_gcd_algorithm": 88, "27s_law": 230, "27s_method": 69, "27s_rule": 124, "27s_sampling_formula": 241, "27s_strongly_connected_components_algorithm": 259, "27s_theorem": [93, 240], "27s_totient_funct": [93, 128], "27s_z": 241, "27t": 118, "28": [4, 69, 79, 87, 91, 92, 96, 124, 128, 136, 230, 234, 237, 292, 302], "280": 93, "2809": 160, "281": 80, "282": 71, "28318530717959": 43, "28333333333333": 87, "284": [80, 128], "285": 239, "2857142857142857": 14, "286": 128, "28625": 93, "287": 128, "288037795340032417959588909060233922890": [4, 96], "288716": 256, "289": 239, "28902548222223624241": 92, "2899": 115, "28continu": 241, "28cryptosystem": 89, "28graph_theori": 259, "28group_theori": 79, "28information_theori": 241, "28mathemat": [41, 80, 88, 124, 229], "28mathematical_const": 88, "28mathematical_log": [63, 64], "28number": 88, "28number_theori": 77, "28order": 94, "28permutation_group_theori": 79, "28physic": 180, "28set_theori": 229, "28x": 128, "29": [4, 41, 61, 63, 64, 71, 77, 79, 80, 88, 89, 91, 93, 94, 101, 102, 124, 128, 144, 180, 211, 229, 241, 259], "290": [239, 268], "290764986058437": 96, "291": 88, "29128599706266": 92, "2912859970626635404072825905956005414986193682745": 92, "29136443417283": 96, "292": 128, "2922": [18, 131, 132, 134, 299], "29256885": 299, "2936": [18, 131, 132, 134, 299], "2943": 115, "2948": 240, "29541": 115, "29585191": 299, "296": 239, "297": [215, 217], "299792458": [162, 165, 195, 198], "29983226": 299, "29999999999999998890": 88, "2a": [36, 48, 49, 211, 241], "2bb46c0852bf74c9d74d1a12af6d11f69f7e8363": 215, "2c_and_li": 128, "2c_x_": 128, "2d": [2, 101, 102, 104, 136, 137, 138, 140, 169, 200, 207, 221, 234, 246, 291], "2d_1": 241, "2e": [49, 53, 88], "2f": [18, 39, 298], "2f1": 237, "2f_1": 214, "2f_log_x": 128, "2fs0025": 128, "2g": 55, "2h": 39, "2i": 88, "2j": [93, 214, 241], "2j_2": [93, 223], "2j_3": 206, "2k": [41, 88, 93, 113, 128, 234], "2l": 214, "2l_1": 206, "2l_2": 206, "2l_3": 206, "2m": 137, "2n": [26, 80, 87, 93, 96, 115, 124, 140, 145, 206, 224, 231], "2nd": [30, 46, 67, 80, 89, 128, 144, 237, 242, 259], "2nd_hypergeometr": 237, "2nd_hypergeometric_integr": 237, "2nd_linear_airi": 237, "2nd_linear_bessel": 237, "2nd_nonlinear_autonomous_conserv": 237, "2nd_nonlinear_autonomous_conserved_integr": 237, "2nd_power_series_ordinari": 237, "2nd_power_series_regular": 237, "2pq": [49, 51], "2q": 128, "2q_2": 303, "2r": 303, "2t": [46, 93], "2u": 46, "2x": [16, 51, 88, 96, 113, 128, 130, 233, 234, 240, 241, 286, 289, 297], "2x1": 160, "2x2": [120, 127, 160, 210, 237], "2x_": 234, "2xy": [214, 291], "2y": [46, 214, 234, 237, 240, 291], "2z": [49, 56, 96, 240, 241], "3": [0, 3, 5, 7, 11, 12, 13, 14, 16, 18, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 57, 59, 61, 62, 64, 65, 66, 67, 69, 70, 72, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 110, 111, 112, 113, 116, 117, 118, 119, 120, 121, 124, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 155, 158, 160, 162, 164, 168, 170, 171, 172, 176, 180, 185, 186, 188, 190, 191, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 252, 253, 255, 256, 257, 259, 260, 261, 262, 265, 267, 268, 269, 270, 272, 274, 275, 282, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "30": [4, 14, 22, 32, 61, 67, 69, 74, 88, 89, 91, 92, 93, 96, 102, 104, 115, 124, 125, 128, 136, 137, 138, 164, 210, 212, 216, 217, 221, 227, 230, 233, 241, 242, 297], "300": [33, 124, 128, 136, 207, 218, 274], "3000": [104, 136], "300000": 198, "30000000000000000000": 88, "30030": 89, "301": [136, 231, 234, 299], "301369863013699": 124, "30247": 93, "303": [210, 234], "304": [215, 217], "305": 87, "30589": 124, "306": 89, "30625": 124, "307": 88, "30769105034035": 18, "308": 231, "309016994374947": 88, "3096": 241, "31": [11, 32, 76, 88, 91, 92, 104, 128, 132, 206, 217, 234, 299], "311": [88, 128], "312": [89, 200, 239, 265, 267], "3125": [104, 241], "31250": 136, "313": 204, "313552108895239": 57, "31413": 115, "31417": 92, "3144337": 217, "315": 239, "3152519739159347": 14, "317": 12, "3176591": 241, "317843553417859": 164, "318": [18, 132], "3192": 128, "3193": 115, "32": [11, 32, 79, 91, 94, 96, 98, 115, 124, 128, 136, 142, 215, 217, 218, 230, 231, 234, 241, 252], "320": 88, "321": 102, "322248": 87, "322255": 87, "323": [71, 96, 128], "3233": 89, "3239": 128, "324": [48, 128, 210, 215], "3243f6a8885a30": 128, "3248186011": 142, "325": 71, "3251": 124, "32555634906645": 96, "3257": 128, "3267000013": 128, "327": [91, 237], "3275": 217, "32767": 128, "32768": 221, "329": 237, "33": [18, 32, 69, 88, 91, 124, 132, 154, 164, 210, 214, 218, 221, 241], "330": 215, "33062": 128, "331": 110, "33102": 128, "3312": 259, "3321": 259, "33215": 128, "333": [91, 128], "3333": 115, "33333": [92, 115], "333333333333333": [92, 211, 233], "333333333333333314830": 88, "333333333333333333333": 88, "33333333333333333333333333333": 211, "335": 88, "3358": 115, "336": 61, "33768": 210, "33795": 115, "33984": 217, "33998": 115, "34": [16, 69, 80, 93, 101, 124, 128, 149, 173, 215, 220, 227, 233, 234], "3400000000000": 16, "341": [101, 128], "34105": 93, "3416277185114782": 54, "3418463277618": 164, "34211": 241, "342923500": 120, "343415678363698242195300815958": 96, "345": 80, "3456": 234, "346": 92, "34635637913639": 92, "34665576869e": 92, "34747534407696": 94, "34785": 115, "348": 124, "348645229818821": 164, "349745826211722": 48, "34985849706254": 110, "35": [79, 82, 91, 93, 101, 102, 115, 124, 128, 210, 216, 221, 234, 237, 241, 302], "350": [87, 155], "3506": 115, "352": [57, 217], "352471546": 48, "352471546031726": 48, "353": [91, 124], "354": [18, 132], "355": [92, 128, 215], "356": [115, 216, 239], "357947691": 110, "36": [12, 48, 71, 82, 89, 93, 104, 115, 124, 128, 137, 217, 221, 234, 237, 241, 275], "360": [138, 140], "3600": [61, 93], "3602879701896397": 88, "36188804005": 142, "362": 115, "3627": 146, "363": [98, 128, 215], "364": 98, "36465": 138, "3674160": 79, "368": 206, "369": 89, "37": [77, 89, 93, 94, 98, 124, 128, 137, 138, 206, 221, 234], "374": [18, 132], "37439874427164e": 18, "3744312326": [88, 93], "376": 215, "377": 128, "379": [128, 217], "379238": 128, "37933": 241, "38": [93, 104, 124, 128, 221, 234, 236, 241], "381": 128, "38177329": 260, "38177329068": 260, "3827": 128, "384": 91, "387": 91, "38954165": 241, "39": [93, 96, 128, 138, 220], "390740740740741": [18, 132], "391": 240, "3923913114": 12, "39267e": 239, "3927": 115, "393": 234, "39439": 115, "39578": 210, "396": [22, 92], "397": 215, "397042": 128, "39764993382373624267": 93, "399": 233, "3a": [18, 131], "3af6dc1": 11, "3aintegr": 115, "3aissu": 115, "3aopen": 115, "3d": [2, 33, 61, 72, 101, 102, 136, 169, 192, 207, 269, 271, 272, 273, 274], "3e": 69, "3f_1": 214, "3i": 128, "3j": [96, 170, 206], "3j_2": [93, 223], "3kn": 136, "3m": 137, "3rd": [30, 67, 80, 94, 128, 217, 239, 242, 259], "3x": [49, 55, 88, 130, 214, 240, 289], "3x1": 124, "3x3": [39, 53, 103, 124, 210, 270], "3xy": 234, "3xyz": 130, "3y": 234, "3z": 240, "4": [2, 5, 11, 12, 14, 16, 17, 18, 22, 23, 24, 27, 28, 30, 31, 33, 36, 37, 39, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 56, 57, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 110, 111, 113, 115, 117, 118, 119, 120, 121, 124, 125, 127, 128, 130, 132, 134, 136, 138, 140, 142, 144, 145, 146, 150, 151, 160, 163, 167, 170, 175, 185, 186, 188, 189, 190, 191, 192, 194, 200, 201, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 252, 253, 256, 259, 260, 261, 265, 268, 269, 270, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 304, 306, 307, 309, 310, 311], "40": [4, 57, 69, 91, 93, 96, 98, 105, 124, 128, 136, 138, 207, 218, 220, 221, 241, 262, 286], "400": [136, 207, 217], "4000": [136, 137], "40000": 136, "4002723175": 241, "4013": 136, "40207856": 241, "40320": [11, 12], "404": 234, "4067977442463": [18, 132], "409": 241, "4096": 93, "4096000": 70, "41": [91, 98, 124, 128, 212, 234], "41152": 164, "4117304087953": 142, "41211849": 286, "412214747707527": 189, "41230258795639848808323405461146104203453483447240": 96, "413": 89, "4130533677": 138, "414": 259, "4140": 93, "4142": 217, "414213562": 88, "4142135623730951": 57, "4142135623731": [41, 54, 221, 239], "414645": 217, "415": 91, "41577": 115, "41624341514535": 94, "417": [115, 233], "42": [55, 69, 77, 88, 91, 93, 101, 102, 104, 119, 121, 124, 126, 128, 210, 212, 214, 217, 234, 252], "420": [128, 234], "4200": 128, "423": 124, "4250": 136, "42519758": 241, "42525": 93, "42658": 115, "42868": 138, "429": [93, 221], "43": [83, 124, 128, 136, 137, 241, 297], "430": 259, "432": [57, 101, 216], "433": [18, 132], "434607": 57, "43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875": 92, "43608": 115, "438990337475312": 48, "44": [14, 18, 91, 93, 124, 128, 131, 132, 134, 230, 241, 299], "4410317": 128, "4418": 146, "44224957030741": 218, "4423": 128, "4428829381583662470158809900606936986146216893757": 92, "44288293815837": 92, "4429": 92, "4433": 93, "44399": 138, "444": 91, "445": [4, 215], "44542": 234, "44626032": 69, "44721": 115, "4472354033813751e": 142, "448": 61, "44918589": 299, "4493": 115, "45": [12, 36, 68, 88, 93, 104, 124, 128, 140, 217, 218, 234], "450": [11, 124], "4503599627370496": 14, "4504508011325967e": 142, "45136923488338": 96, "45279": 241, "4536": 128, "456": [4, 88, 215], "456457160755703e": 142, "4579": 218, "45896": 115, "4596": 88, "45960141378007": 110, "459697694131860": 43, "46": [124, 128, 136, 196, 220, 239, 241], "463": [29, 70], "4641": 110, "4641991": 128, "46699555e": 14, "46792545969349058": 239, "47": [93, 96, 124, 128, 146, 164, 196, 220], "4701": 241, "4701sum07": 241, "472": 241, "473": 80, "47450": [93, 128], "4753701529": 128, "47577": 142, "47757": 210, "478": 215, "479001599": 128, "48": [91, 98, 137, 234, 239, 241, 287], "48550": 303, "4856615": 259, "4857018": 259, "4862": 93, "4869863": 128, "4877893607115270300540019e": 54, "488253406075340754500223503357": 96, "49": [92, 93, 128, 137, 214, 234], "490": [70, 80], "4915": 88, "49182424008069": 110, "49299": 234, "49315059": 260, "495": [136, 210], "49552913752915": 138, "49793": 138, "49801566811835604271": [4, 96], "499948155": 80, "4a": 256, "4ac": [48, 49, 234], "4adc6a51d8371be5b0e4c7dff287fc70": 241, "4e": [16, 69, 239], "4i": 128, "4m": 137, "4th": [30, 93, 94, 110, 124, 128], "4x": [234, 240, 286], "4x1": [163, 241], "4x4": [53, 61, 103, 127, 163, 210, 241], "4xy": [33, 274], "4y": [51, 214, 240, 286], "4z": [49, 56, 240], "5": [5, 11, 12, 14, 16, 17, 18, 22, 23, 25, 28, 33, 36, 37, 41, 43, 48, 50, 52, 54, 57, 61, 63, 64, 65, 67, 69, 70, 71, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 124, 125, 127, 128, 130, 132, 135, 136, 138, 140, 142, 144, 146, 147, 149, 151, 154, 155, 160, 164, 185, 186, 189, 191, 198, 201, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 252, 253, 259, 260, 261, 265, 268, 270, 272, 274, 275, 286, 287, 289, 292, 293, 297, 299, 302, 303, 304, 309, 310, 311], "50": [55, 70, 79, 91, 92, 93, 96, 104, 124, 128, 136, 137, 164, 195, 214, 215, 217, 221, 230, 239, 287], "500": [70, 92, 155, 299], "5000": [92, 136], "50000": 128, "50000000000000": [88, 92], "500000000000000": 144, "50000000000000000000000000000": 92, "5000000000291665e": 142, "500006656595360": 146, "5020": 5, "50232379629182": 96, "503": 216, "504": [92, 215], "5040": [39, 93, 110, 217, 218], "504067061906928": 92, "50406706190692837199": 92, "505": 215, "50521": [93, 217], "50923695405127": 96, "50u": 129, "51": [67, 124, 128], "51041666666667e": 136, "5109": 115, "511": 93, "5112118495813": 194, "512": [79, 96], "5124": 217, "514": [70, 78, 215], "5140": 252, "5148378120533502e": 142, "515": 96, "5173168": 96, "52": [77, 93, 128, 136, 137, 138, 206, 220, 234, 237, 259, 287], "5236": 115, "525": 104, "5253": 115, "5269": 93, "52818775009509558395695966887": 128, "53": [43, 89, 91, 124, 160, 209, 211], "53087": 115, "530e": 160, "532": 215, "5394769": 128, "54": [88, 124, 214, 220, 259], "5404319552844595": 88, "542": 79, "544": 206, "5459": 128, "55": [79, 91, 93, 124, 206, 207, 217, 234, 299], "55203744279187": 96, "55271367880050e": 67, "555": 91, "55556": 115, "558": 237, "55872552179222e": 48, "55998576005696": 160, "56": [57, 91, 93, 115, 128, 214, 217], "560": 136, "561": [13, 128], "562": 11, "563": 215, "5648024145755525987042919132": 96, "567": 94, "57": [79, 124, 128, 241], "5706": 88, "5718": [67, 128, 234], "5728": 88, "574": 128, "57721566490153286060651209008240243104215933593992": 92, "577215664901533": 92, "5772157": 88, "577377951366403": 164, "5777": 128, "579": 93, "58": [89, 124, 138, 247], "58602": 241, "5880": 93, "588469032184": 239, "59": [124, 237], "591382": 132, "5915587277": 128, "5917": 115, "5919532755215": 43, "5937": 303, "5937424601": 110, "59375e": 136, "5992": 0, "5b7c3e8ee5b40332abdb206c": 293, "5c52": 128, "5e": 46, "5g": 69, "5kn": 136, "5m": [137, 256], "5th": [30, 88, 214, 216], "5x": [128, 234], "5x5": 89, "5y": 234, "6": [11, 12, 14, 16, 17, 18, 28, 32, 36, 37, 39, 46, 48, 56, 57, 61, 63, 64, 67, 69, 70, 71, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 100, 101, 102, 103, 104, 110, 111, 113, 115, 117, 118, 120, 121, 124, 125, 127, 128, 130, 132, 135, 136, 138, 140, 142, 144, 145, 146, 155, 160, 164, 170, 188, 200, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 226, 227, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 252, 253, 256, 259, 260, 261, 265, 268, 270, 275, 287, 293, 297, 298, 299, 302, 304, 309, 310, 311], "60": [61, 74, 79, 81, 87, 88, 93, 96, 115, 124, 128, 136, 137, 210, 220, 221, 234, 237, 259], "6000": 88, "6004799503160655": 233, "600e": 88, "601": 18, "60123853010113e": 92, "609": 93, "609344": 198, "60986636": 299, "60e2": 88, "60n": 89, "60x60": 210, "61": [88, 89, 93, 104, 124, 128, 217, 223], "61051": 110, "6116978": 262, "6125": [124, 128], "617": 128, "61717": 138, "6174190361677": 132, "618": 130, "61803398874989": 88, "6180885085e": 142, "61825902074169104140626429133247528291577794512415": 96, "62": [124, 214], "62349": 115, "625": [104, 275], "625146415202697": 96, "62963087839509e": 198, "63": [88, 91, 124, 138], "630": 217, "631": 74, "63232916": 241, "634": 74, "6349839002": 228, "635": 92, "635564016364870": 94, "636": 89, "639985": [128, 214], "64": [8, 12, 29, 73, 79, 88, 128, 206, 214, 220, 230, 239, 241, 252, 259, 262, 296], "6400": 136, "643": [91, 128], "6435": 93, "643501108793284": 94, "6449340668": 228, "64493406684823": 92, "645": 128, "6460": 128, "64613129282185e": 92, "64705": 241, "648": 241, "64872063859684": 110, "65": [128, 144, 214, 241, 299], "65092319930185633889": 96, "651354770181179": 164, "65215": 115, "6543612251060553497428174e": 54, "6545": 217, "65504": 69, "65536": [217, 220, 221], "65537": [128, 220], "6569866": 286, "657": 230, "658921776708929": 164, "659097795948": 194, "659936": 96, "66": [18, 93, 124, 217, 221], "660539060e": 198, "662": 124, "66317": 128, "6634255": 217, "6659": 240, "666": 91, "666666666666667": [136, 137], "66666666666667": [18, 132], "6666666666667": [18, 299], "668": 61, "67": [124, 214, 215], "670250533855183": 142, "6707": 124, "6711f12": 241, "6720": 217, "676": 234, "67721": 115, "6774": 259, "67884": 142, "67894": 69, "679": 137, "68": [91, 116, 124, 128, 210, 234], "6832579186": 241, "68437": 142, "686": 256, "6868680200532414": [4, 12], "687": 48, "6875": 136, "68812842": 299, "6881721793": 228, "689": [115, 137], "69": [79, 124, 210, 239, 256], "691": 93, "6931396564": 228, "693147180559945": 130, "6931471805599453094172321215": 228, "6931471806": 228, "693147255559946": 92, "69629": 217, "6963328": 241, "6988699669998001": 128, "699": 67, "6j": [170, 206], "6k": 93, "6th": [72, 128], "6x": [88, 214], "6x6": 89, "6z": [49, 56], "7": [4, 11, 12, 14, 16, 17, 18, 25, 26, 30, 41, 43, 46, 48, 51, 55, 61, 63, 64, 67, 69, 72, 74, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 96, 98, 101, 102, 103, 104, 110, 113, 115, 118, 120, 121, 124, 128, 130, 136, 138, 142, 144, 191, 196, 198, 206, 207, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 246, 247, 252, 253, 256, 259, 260, 265, 275, 287, 292, 293, 299, 302, 311], "70": [88, 89, 105, 115, 124, 128, 220, 221, 234, 241, 262], "700000000000000": 241, "701": 194, "7042848373025861": 142, "7048138294": 228, "706": [67, 124], "7060005655815754299976961394452809": 128, "7063": 115, "70710678118654752440084436210484903928483593768847": 287, "707106781186548": [94, 287], "70711": 115, "71": [11, 79, 104, 124, 128, 194], "71109": 115, "712": [46, 115], "712328767123288": 124, "712524808": 88, "71318": 217, "7143": 241, "715": [170, 206, 221], "717": [18, 132], "71827974413517": 110, "718281828": 88, "718281828459045235360287d0": 221, "7182818284590452d0": 221, "718281828459045j": 92, "71828182845905": 110, "7182818285": 228, "718281835": 128, "72": [67, 71, 88, 101, 124, 128, 136, 206, 220, 234], "720": [11, 12, 223, 237, 259], "721": 215, "72463": 115, "729": 214, "73": [79, 87, 88, 101, 128, 237], "730": 115, "730061685774": 239, "73071763923152794095062": 96, "732": 217, "73205080756887729352744634151": 217, "73205080756888": 217, "7357232": 12, "73908513321516": 54, "73908513321516064165531208767387340401341175890076": 239, "739085133215161": [49, 54, 56, 57, 239], "74": [79, 93, 128, 144], "74126166983329d": 69, "744": [212, 214], "74720545502474": 96, "75": [88, 91, 136, 210, 241, 265, 299], "750": 93, "7523": 240, "754": 88, "7560958484519": 138, "7568025": 286, "7598d94": 11, "76": [93, 96, 124, 128, 214, 217], "760939574180767": 96, "761": 93, "7635": 96, "764": 96, "7648844336": 48, "764884433600585": 48, "7649": 88, "765": [57, 217], "7655283165378005676": 96, "766": 69, "767": 91, "77": [9, 77, 93, 96, 124, 128, 220, 221, 254], "771561": 110, "7717": 0, "77245385090552": [57, 287], "7746": 115, "7751": 115, "777": [82, 91], "778": 82, "779": 82, "78": [11, 79, 102, 124, 128, 137, 196, 237, 241], "7845": 115, "7854": 115, "787338754623378": 132, "789": [88, 128], "79": [79, 80, 137], "79115232": 241, "79150773600774": 138, "7936": [93, 217], "797": 89, "79798269973507": 132, "799333555511111": 128, "7_f64": 221, "7abb76ffed50425299b9065129ae87261668a0f7": 240, "7fa63b1": 11, "7o38": 206, "7y": 234, "8": [4, 11, 12, 14, 17, 18, 30, 39, 46, 48, 54, 59, 61, 62, 67, 69, 72, 79, 80, 81, 84, 86, 88, 89, 91, 92, 93, 94, 96, 98, 101, 102, 104, 110, 113, 115, 117, 118, 120, 121, 124, 125, 127, 128, 130, 132, 136, 138, 140, 142, 144, 146, 163, 164, 175, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 224, 227, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 246, 252, 254, 256, 259, 265, 268, 269, 275, 286, 287, 291, 293, 297, 299, 302], "80": [3, 4, 8, 12, 16, 43, 67, 79, 88, 91, 115, 124, 128, 136, 137, 142, 210, 214, 217, 220, 237, 241, 257, 259, 299], "8000": [8, 136], "800205": [212, 215], "803206": 128, "805": 217, "806320": 215, "806338": 215, "806342": 212, "809": 115, "809709509409109": 128, "81": [18, 22, 79, 93, 98, 124, 128, 206, 210, 220, 299, 302, 304], "8100": 241, "814": [18, 132], "816477005968898": 164, "817106179880225": 18, "818": 196, "81879421395609": 96, "82": [79, 115, 124, 241], "82211796209193": 110, "823": 89, "825": 132, "827230": 79, "827273": 79, "82842712474619": 286, "82842712475": 291, "828770759094287e": 142, "83": [79, 220], "831": 128, "83333": 115, "83403519": 241, "83711": 93, "8375": 115, "8392867552141611326": 88, "84": [88, 92, 128], "84092844": 129, "8411998": 129, "84119981": 129, "84147096": 129, "84147098": [129, 260, 286], "8414709848078965": [14, 260], "841470984807896506652502321630": 14, "844291913708725": 142, "846749014511809332450147": 93, "85": [77, 92, 93, 124, 128, 136, 189, 206, 241, 302], "850": 138, "850908514477849": 164, "854500743565858": 142, "85768055": 241, "85819627": 241, "86": [29, 80, 124, 220, 230], "861136": 217, "86113631159405258": 217, "86114": 115, "861246379582118": 142, "86400": 198, "86458333333333e": 136, "865": 217, "865474033102": 69, "865474033111": 69, "865477135298": 69, "86602": 115, "8660254037844386j": 142, "867263818209": 69, "869604401089358618834491d0": 221, "87": [79, 94, 124, 128, 214], "87174": 115, "8724366472624298171": 96, "873": [46, 128], "87636": 217, "877": 93, "88": [88, 124, 128, 299], "884": 234, "886": [18, 132], "88679245283019": 160, "888": 91, "888888877777777": 128, "88889": 115, "89": [79, 86, 115], "891": 128, "8a975c1405bd35c65993abf5a4edb667c1db": 128, "8am": 89, "8kn": 137, "8m": 234, "8xy": 214, "9": [4, 11, 12, 14, 17, 18, 22, 24, 30, 37, 46, 55, 57, 59, 67, 69, 76, 78, 79, 80, 84, 86, 87, 88, 89, 91, 93, 94, 96, 97, 98, 101, 102, 104, 110, 113, 115, 119, 120, 121, 124, 125, 127, 128, 130, 135, 136, 138, 142, 144, 145, 146, 147, 149, 160, 164, 196, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 227, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 252, 256, 259, 265, 268, 291, 293, 298, 299, 302, 304, 307], "90": [21, 22, 31, 67, 79, 86, 96, 124, 130, 136, 140, 221, 223, 233, 241, 254], "900": 61, "90047": 259, "90097": 115, "903": 136, "90300": 136, "906425478894557": 37, "90642547889456": 37, "9071": 128, "90929743": [260, 286], "909449841483": 96, "909672693737": 69, "91": [16, 70, 215, 220, 227, 241], "9121071": 299, "912285": [128, 214], "91403453669861": 138, "914148152112161": 128, "91596559": 88, "9179": 128, "92": [18, 101, 215, 237, 241, 259], "920": 234, "9215": 214, "921_": 88, "92242131492155809316615998938": 96, "926093295503462": 164, "92753330865999": 160, "93": [79, 215], "932": 230, "9330": 93, "93669377311689": [18, 132], "9369318": 234, "93accumulate_oper": 43, "93add": 43, "93berkowitz_algorithm": 210, "93euler_equ": 237, "93gauss_quadratur": 115, "93hadamard_transform": 91, "93jacobi_pseudoprim": 128, "93jacobi_quadratur": 115, "93johnson": 259, "93lagrange_equ": 67, "93laguerre_quadratur": 115, "93lenstra": 210, "93lobatto_rul": 115, "93lov": 210, "93mascheroni_const": 88, "93rabin_primality_test": 128, "93ruffini_theorem": 217, "93schmidt_process": 124, "93simon_distribut": 241, "93trotter_algorithm": 259, "93tukey_fft_algorithm": 91, "93zero_plot": 142, "94": [146, 215], "9405": 214, "9412172": 241, "9424": 128, "943396226415094": [18, 132], "9436": 154, "945": [212, 218], "9487171": 110, "9496": 96, "94991743": 241, "95": [18, 69, 86, 128, 214, 221, 234, 237, 239, 254], "951": 92, "951056516295154": 88, "9537590861": 138, "954": 128, "956": 92, "9562288417661": 92, "95678796130331164628399634646042209010610577945815": 92, "95892427": 286, "96": [124, 241], "9603": 214, "9625": 136, "96593": 115, "967": 115, "96716083": 241, "9696": 240, "97": [79, 88, 89, 128, 214], "971843958291041": 164, "9780470316887": 241, "97851": 115, "98": [29, 79, 89, 217, 237, 304], "9801": 92, "9804659461513846513": 128, "981": 115, "98101184": 69, "982": 29, "983": 115, "983697455232980674869851942390639915940": 93, "9855e": 115, "986": 234, "987": 128, "989": 128, "9891e30": 194, "98935825": 286, "98991349867535": [18, 132], "99": [8, 69, 88, 89, 124, 128, 144, 214, 215], "9900": 93, "99009901": 128, "9904": 115, "991": 128, "991052601328069": 96, "9927": 115, "995": [18, 132], "995322265018952734162069256367": 96, "9955291375291": 138, "9964469100598874": 18, "99862803482534211706798214808651328230664709384460955058223172535940812848111745": 92, "999": [88, 92], "9999": 250, "9999999799999999": 142, "999999984582742099719981147840": 96, "9999999999999999": 14, "99999999999999991611392": 262, "99999999999999999999": 88, "9j": [170, 206], "9th": [93, 128], "9x": 240, "9y": [49, 55], "9z": 240, "A": [0, 2, 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 19, 21, 22, 24, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 110, 111, 113, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 127, 128, 130, 131, 132, 134, 136, 137, 138, 140, 142, 144, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 163, 165, 168, 170, 171, 172, 174, 175, 176, 177, 179, 180, 181, 183, 185, 186, 187, 188, 189, 190, 191, 193, 195, 196, 197, 199, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 259, 260, 265, 267, 269, 270, 271, 272, 274, 275, 282, 288, 290, 292, 293, 297, 299, 301, 305, 306, 307], "AND": [91, 118], "And": [3, 11, 12, 13, 14, 36, 42, 43, 50, 63, 79, 80, 87, 88, 89, 96, 113, 118, 124, 127, 152, 163, 207, 209, 217, 218, 221, 229, 233, 234, 239, 240, 241, 259, 260, 270, 297], "As": [4, 13, 14, 18, 22, 24, 27, 28, 35, 38, 39, 42, 43, 48, 53, 54, 55, 60, 69, 79, 80, 88, 89, 92, 93, 94, 96, 112, 113, 118, 124, 127, 128, 130, 131, 134, 149, 152, 156, 158, 191, 196, 208, 209, 211, 212, 214, 217, 218, 220, 221, 228, 229, 231, 237, 240, 241, 259, 260, 269, 270, 286, 287, 289, 291, 292, 293, 296, 297, 302, 304, 306], "At": [2, 12, 21, 32, 36, 41, 43, 52, 67, 84, 94, 96, 115, 128, 136, 137, 196, 210, 214, 216, 231, 260], "BE": [0, 12], "BY": 234, "Be": [3, 4, 8, 43, 67, 88, 118, 124, 214, 237, 240, 248, 260], "Being": [3, 84, 98, 104, 211], "But": [2, 3, 5, 7, 12, 13, 14, 15, 16, 43, 48, 57, 87, 88, 93, 96, 102, 112, 124, 128, 179, 180, 191, 196, 200, 208, 209, 214, 218, 228, 230, 231, 233, 234, 237, 239, 240, 246, 256, 259, 260, 268, 287, 289, 291, 292, 297], "By": [2, 14, 16, 41, 43, 48, 52, 53, 55, 61, 62, 64, 69, 78, 87, 88, 90, 92, 93, 96, 102, 103, 107, 111, 113, 118, 124, 127, 128, 129, 130, 134, 136, 137, 142, 149, 186, 191, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 228, 230, 233, 234, 237, 239, 240, 241, 245, 247, 248, 252, 255, 259, 260, 272, 286, 291, 292, 297], "For": [1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 38, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96, 100, 102, 103, 106, 109, 111, 112, 113, 117, 118, 124, 128, 129, 130, 132, 134, 136, 137, 138, 140, 144, 146, 149, 150, 151, 152, 153, 154, 158, 160, 174, 175, 180, 184, 186, 188, 189, 190, 191, 193, 195, 196, 197, 200, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 239, 240, 241, 242, 245, 246, 247, 248, 252, 253, 254, 256, 257, 259, 260, 263, 265, 267, 270, 272, 274, 275, 285, 286, 287, 289, 292, 293, 297, 298, 299, 306], "ITE": [94, 118, 221], "If": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 39, 41, 42, 43, 45, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 77, 79, 80, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 116, 117, 118, 120, 124, 125, 127, 128, 129, 130, 131, 132, 134, 136, 142, 144, 145, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 164, 168, 172, 175, 181, 185, 186, 187, 188, 189, 191, 195, 199, 200, 201, 202, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 268, 270, 272, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298], "In": [2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 48, 52, 57, 59, 65, 67, 68, 69, 70, 71, 72, 74, 77, 78, 79, 80, 87, 88, 89, 90, 92, 93, 94, 96, 101, 103, 104, 105, 106, 113, 115, 116, 117, 118, 120, 124, 125, 128, 130, 133, 134, 136, 137, 140, 144, 148, 151, 152, 153, 155, 158, 177, 179, 180, 181, 186, 190, 191, 194, 195, 196, 203, 204, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 247, 250, 252, 254, 256, 257, 259, 260, 265, 269, 270, 272, 274, 286, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 303, 304, 306, 307], "It": [0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 28, 30, 35, 36, 39, 41, 42, 43, 48, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 67, 68, 69, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 100, 104, 105, 111, 113, 115, 117, 118, 124, 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 142, 144, 146, 148, 149, 150, 151, 152, 153, 156, 158, 159, 160, 164, 165, 175, 180, 181, 186, 187, 188, 189, 190, 191, 193, 196, 199, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 252, 253, 254, 255, 256, 257, 260, 265, 268, 269, 270, 272, 274, 275, 286, 287, 289, 290, 291, 292, 293, 295, 296, 297, 302, 310], "Its": [30, 88, 94, 104, 149, 189, 210, 214, 221, 229, 299], "NO": [55, 191], "NOT": [13, 14, 46, 118, 144, 171, 175, 190, 193, 250, 253], "No": [2, 4, 5, 11, 16, 18, 22, 57, 68, 88, 96, 103, 118, 128, 136, 145, 186, 207, 210, 217, 223, 224, 233, 234, 239, 240, 241, 246, 250, 256, 257, 259, 286, 298], "Not": [13, 15, 42, 43, 53, 88, 93, 118, 144, 221, 240, 241, 259, 291, 298], "OF": 256, "ONE": 221, "OR": [15, 67, 91, 118, 214], "Of": [12, 17, 39, 41, 87, 113, 124, 237, 240, 259, 297], "On": [8, 11, 13, 14, 22, 33, 41, 64, 74, 81, 88, 90, 96, 115, 118, 128, 136, 195, 196, 211, 212, 214, 215, 216, 217, 237, 239, 256, 260, 272, 274], "One": [11, 14, 15, 16, 22, 28, 30, 32, 38, 41, 43, 67, 68, 69, 78, 80, 87, 88, 93, 94, 96, 107, 110, 112, 113, 115, 118, 124, 128, 130, 136, 137, 158, 167, 196, 212, 214, 215, 217, 220, 223, 229, 233, 236, 239, 240, 241, 242, 247, 260, 272, 286, 287, 289, 292, 293, 297], "Or": [5, 8, 12, 13, 14, 16, 42, 50, 52, 79, 88, 89, 90, 96, 113, 118, 128, 155, 208, 218, 220, 221, 233, 240, 241, 252, 260, 272, 292, 295], "Ore": 111, "Such": [3, 4, 12, 41, 69, 88, 104, 208, 209, 216, 222, 230, 231, 233, 286, 292, 306], "That": [0, 3, 5, 11, 12, 14, 15, 16, 23, 35, 36, 41, 42, 43, 88, 89, 94, 118, 124, 128, 151, 188, 193, 199, 208, 209, 211, 212, 214, 216, 227, 228, 237, 241, 253, 254, 260, 286, 289, 292, 297], "The": [0, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 124, 125, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 167, 168, 169, 170, 171, 172, 174, 175, 176, 177, 179, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 268, 269, 270, 273, 274, 275, 286, 287, 289, 290, 292, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 306, 307, 308, 309, 310, 311], "Their": [4, 18, 88, 96, 113, 206, 207, 211, 214, 231], "Then": [8, 9, 11, 12, 14, 15, 18, 23, 28, 35, 39, 41, 79, 84, 87, 88, 113, 117, 124, 128, 150, 151, 153, 160, 188, 196, 208, 209, 211, 214, 216, 218, 221, 228, 231, 233, 234, 237, 239, 260, 309, 311], "There": [2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 21, 23, 25, 27, 28, 35, 36, 38, 41, 42, 43, 45, 48, 51, 52, 56, 69, 70, 74, 79, 80, 81, 82, 85, 87, 88, 89, 92, 93, 96, 112, 113, 115, 116, 117, 118, 120, 124, 128, 134, 136, 137, 140, 144, 151, 158, 164, 181, 186, 200, 205, 207, 211, 212, 213, 214, 216, 217, 218, 221, 222, 223, 229, 230, 231, 233, 234, 237, 239, 240, 241, 243, 246, 255, 256, 259, 260, 262, 270, 286, 287, 289, 291, 292, 296, 297, 299], "These": [0, 2, 4, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 27, 30, 33, 35, 36, 37, 39, 41, 42, 43, 57, 58, 60, 68, 69, 79, 87, 88, 89, 90, 96, 113, 115, 118, 124, 128, 130, 131, 132, 133, 134, 137, 144, 148, 152, 153, 154, 156, 158, 159, 181, 186, 187, 195, 200, 201, 208, 209, 210, 211, 212, 214, 217, 221, 231, 234, 237, 238, 240, 241, 243, 248, 252, 253, 254, 259, 272, 287, 290, 293, 296, 297, 299, 300, 302, 305, 306, 310], "To": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 26, 27, 28, 30, 32, 33, 36, 39, 42, 43, 46, 50, 51, 52, 54, 55, 56, 57, 59, 60, 63, 64, 67, 68, 69, 70, 78, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 111, 113, 115, 117, 118, 120, 124, 128, 130, 132, 134, 136, 137, 142, 144, 145, 147, 148, 149, 152, 153, 156, 158, 159, 168, 172, 185, 194, 196, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 228, 229, 231, 234, 237, 238, 239, 240, 241, 242, 245, 246, 250, 252, 253, 256, 257, 259, 260, 265, 267, 269, 270, 272, 274, 275, 286, 287, 289, 290, 292, 293, 296, 297, 298, 299, 304], "WILL": 12, "Will": [69, 124, 216, 221, 252], "With": [3, 13, 16, 18, 24, 26, 27, 36, 42, 46, 59, 69, 71, 87, 88, 92, 113, 128, 158, 164, 188, 191, 207, 208, 209, 210, 211, 212, 219, 220, 221, 228, 233, 242, 259, 291, 292, 299, 303, 304, 306, 307], "_": [3, 4, 5, 13, 14, 16, 18, 25, 28, 30, 32, 35, 37, 39, 43, 46, 63, 64, 68, 76, 77, 79, 80, 81, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103, 104, 113, 115, 118, 119, 120, 121, 124, 126, 128, 130, 144, 170, 191, 196, 205, 206, 210, 212, 214, 216, 217, 220, 221, 222, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 242, 243, 259, 268, 270, 296], "_0": [88, 93, 113, 124, 217, 260, 299], "_1": [96, 124, 152, 159, 200, 206, 231, 260], "_1cm": 68, "_1f_1": 96, "_2": [32, 55, 124, 152, 159, 200, 206, 237], "_2cm": 68, "_2f_1": 297, "_3": [200, 206], "_3mm": 68, "_5": [71, 208], "__": [16, 96, 115, 221, 241, 246], "__1": 96, "___": [87, 92, 115, 116, 124, 209, 233, 241, 246, 259, 296], "____": [87, 92, 115, 163, 209, 222, 241, 259, 298], "_____": [87, 241, 303], "______": 246, "________": [222, 241, 259], "__________": [69, 209], "___________": [92, 137, 237], "____________": 137, "_____________": 137, "_______________": 137, "________________": [137, 237], "_________________": [12, 137], "__________________": 237, "_____________________": 137, "______________________": 137, "_______________________": 137, "________________________": 137, "______________________________": 241, "________________________________": 137, "_____________________________________": 137, "______________________________________________": 137, "_______________________________________________": 137, "____________________________________________________": 137, "_______________________________________________________": 207, "_____________________________________________________________________________________________________": 12, "_____________________o_______________________": 137, "_______________v": 137, "____________o________________________": 137, "_______i_______": 137, "__abs__": [124, 212], "__add__": [124, 212, 216], "__all__": 255, "__bool__": 88, "__builtins__": 16, "__cacheit": 88, "__call__": [69, 80, 88, 216], "__class__": [156, 260], "__cmp__": [168, 172, 191], "__contains__": 79, "__divmod__": 212, "__doc__": [4, 16], "__file__": 16, "__floordiv__": 212, "__future__": [16, 39], "__getitem__": [13, 88, 124, 210, 246], "__globals__": 260, "__index__": 262, "__init__": [3, 4, 18, 43, 88, 153, 154, 216, 265, 267, 292, 299], "__init_subclass__": [13, 41], "__iter__": [13, 80, 88, 233], "__len__": 124, "__main__": [16, 69, 293], "__mod__": [212, 216], "__mul__": [73, 79, 124, 212, 216], "__name__": [16, 221], "__neg__": 212, "__new__": [14, 41, 43, 69, 79, 88, 292], "__package__": 16, "__pos__": 212, "__pow__": [13, 124, 212, 218], "__repr__": [13, 221], "__rmul__": 124, "__setitem__": 207, "__sub__": 212, "__truediv__": [88, 212], "__weakref__": [79, 123, 124], "_a": [84, 96, 191, 217, 299], "_add": [208, 227], "_aesara": 221, "_af_par": 80, "_af_rmul": 84, "_all_": 210, "_all_root": 217, "_amv": 217, "_appli": 208, "_apply_operators_qubit": 175, "_arg": [88, 94], "_array_form": 80, "_as_integr": 115, "_ask": 41, "_assume_rul": 41, "_assumpt": [41, 88], "_assumptions_orig": 88, "_b": [84, 96, 191], "_backend": 13, "_base_ord": 86, "_basic": 252, "_basic_orbit": 79, "_best": 237, "_build": [4, 8, 45], "_c": 191, "_ccode": [43, 221], "_check_anteced": 113, "_check_antecedents_1": 113, "_check_antecedents_invers": 113, "_check_cycles_alt_sym": [79, 86], "_clash": [60, 88], "_clash1": [60, 88], "_clash2": [60, 88], "_cmp_perm_list": 85, "_coeffexpvalueerror": 113, "_collapse_extra": 115, "_complexes_index": 217, "_complexes_sort": 217, "_components_data_full_destroi": 13, "_compos": 208, "_compute_transform": 115, "_condsimp": 113, "_construct_": 69, "_contain": 208, "_contains_elem": 208, "_contains_id": 208, "_convert_poly_rat_alg": [107, 109], "_coset_repres": 79, "_count_root": 217, "_create_lookup_t": [109, 113], "_create_t": [107, 109], "_csrtodok": 127, "_cxxcode": [43, 221], "_d": [191, 299], "_default_set": 221, "_dfm": 210, "_dict": 234, "_diff_wrt": 88, "_distinct_primes_lemma": 79, "_distribute_gens_by_bas": 86, "_doktocsr": 127, "_dummi": 113, "_dummy_": 113, "_dummy_10": 88, "_dummy_fmt": 13, "_ecm_one_factor": 128, "_ensure_complexes_init": 217, "_ensure_reals_init": 217, "_enumerate_st": 186, "_eval_": 15, "_eval_adjoint": 189, "_eval_as_leading_term": 88, "_eval_cond": 113, "_eval_deriv": [15, 43, 88, 96], "_eval_eq": 88, "_eval_evalf": [43, 217], "_eval_expand_": 43, "_eval_expand_bas": 88, "_eval_expand_complex": 88, "_eval_expand_doubl": 88, "_eval_expand_func": 14, "_eval_expand_hint": 88, "_eval_expand_trig": 43, "_eval_i": 41, "_eval_integr": [94, 115], "_eval_is_": 41, "_eval_is_algebra": 41, "_eval_is_alt_sym_monte_carlo": 79, "_eval_is_alt_sym_na": 79, "_eval_is_eq": 88, "_eval_is_finit": 41, "_eval_is_g": 88, "_eval_is_imaginari": 217, "_eval_is_integ": [14, 41], "_eval_is_nonneg": 43, "_eval_is_posit": [14, 43], "_eval_is_r": [41, 43, 217], "_eval_is_zero": [41, 43], "_eval_nseri": 88, "_eval_rewrit": [43, 88], "_eval_rewrite_as_": 88, "_eval_rewrite_as_co": 88, "_expand": 5, "_expon": 113, "_fcode": 221, "_field": 69, "_find_reasonable_pivot": 124, "_find_splitting_point": 113, "_first": [88, 94], "_flint": [210, 211], "_flip_g": 113, "_fourier_transform": 115, "_fun": 218, "_function": 113, "_g": 89, "_gcd_term": 88, "_generate_coordin": 152, "_generate_spe": 152, "_get_coeff_exp": 113, "_get_complex": 217, "_get_complexes_sqf": 217, "_get_interv": 217, "_get_ordered_dummi": 191, "_get_real": 217, "_get_reals_sqf": 217, "_get_root": 217, "_greek": 16, "_guess_expans": 113, "_h": [79, 240], "_handle_integr": 237, "_handle_precomputed_bsg": 86, "_hull": 105, "_i": [12, 115, 191, 196, 218], "_ignor": 217, "_imag": 208, "_img": 208, "_imp_": [253, 260], "_in_terms_of_gener": 208, "_indexed_root": 217, "_inflate_fox_h": 113, "_inflate_g": 113, "_int0oo": 113, "_int0oo_1": 113, "_int_invers": 113, "_integr": [55, 237, 238], "_intersect": 208, "_invers": 89, "_is_analyt": 113, "_is_class": 240, "_is_exponenti": 240, "_is_logarithm": 240, "_is_zero_after_expand_mul": 124, "_iszero": [124, 293], "_iter": 259, "_j": [191, 196, 206, 223], "_javascript": 221, "_julia": 221, "_k": [93, 96, 115, 206, 216, 241], "_k_kqdot": 302, "_ker": 208, "_kernel": 208, "_l": 206, "_lambdacod": 221, "_lambdifygener": 260, "_latex": [43, 221], "_latin": 16, "_linear_2eq_order1_type6": 237, "_linear_2eq_order1_type7": 237, "_list": 128, "_m": [43, 96, 132], "_mapl": 221, "_mathml_cont": 221, "_mathml_present": 221, "_mcode": 221, "_meijerint_definite_2": 113, "_meijerint_definite_3": 113, "_meijerint_definite_4": 113, "_meijerint_indefinite_1": 113, "_minpoly_compos": 216, "_modgcd_multivariate_p": 214, "_module_quoti": 208, "_mpc_": 211, "_mpf_": [88, 211], "_mul": 227, "_mul_arg": 113, "_mul_as_two_part": 113, "_mul_scalar": 208, "_mult_tab": 216, "_my_principal_branch": 113, "_mytyp": 113, "_n": [43, 89, 93, 96, 115, 217, 231, 240], "_naive_list_centr": 85, "_name": 115, "_new": 217, "_nocheck": 103, "_node": 88, "_nonlinear_2eq_order1_type1": 237, "_nonlinear_2eq_order1_type2": 237, "_nonlinear_2eq_order1_type3": 237, "_nonlinear_2eq_order1_type4": 237, "_nonlinear_2eq_order1_type5": 237, "_nonlinear_3eq_order1_type1": 237, "_nonlinear_3eq_order1_type2": 237, "_nonlinear_3eq_order1_type3": 237, "_nonlinear_3eq_order1_type4": 237, "_nonlinear_3eq_order1_type5": 237, "_nth": 218, "_octav": 221, "_only_": 217, "_operators_to_st": 181, "_orbits_transversals_from_bsg": 86, "_order": 78, "_orient_fram": 152, "_p": [89, 191, 212, 214, 216, 228, 231, 239], "_p_0": 191, "_p_1": 191, "_p_elements_group": 79, "_partial_pivot": 210, "_pf_q": [96, 231, 237, 297], "_pg": 217, "_postprocess_root": 217, "_prec": 88, "_preprocess": 238, "_preprocess_root": 217, "_pretti": 221, "_print": [43, 221], "_print_": 221, "_print_atom": 221, "_print_bas": 221, "_print_deriv": 221, "_print_hyp": 221, "_print_meijerg": 221, "_print_numb": 221, "_print_rat": 221, "_process_seri": 207, "_product": 208, "_q": 191, "_quotient": 208, "_quotient_codomain": 208, "_quotient_domain": 208, "_r": [88, 191, 231, 240], "_randint": [13, 88, 214], "_random_gen": 79, "_random_pr_init": 79, "_random_prec": 79, "_random_prec_n": 79, "_randrang": [13, 88, 89], "_rang": 256, "_raw": 219, "_rcode": 221, "_real_root": 217, "_reals_index": 217, "_reals_sort": 217, "_recur": 110, "_refine_complex": 217, "_remove_gen": 86, "_repres": 186, "_represent_foobasi": 186, "_represent_szop": 186, "_represent_zg": 176, "_reset": [128, 217], "_restrict_codomain": 208, "_restrict_domain": 208, "_rewrit": 5, "_rewrite1": [107, 113], "_rewrite2": 113, "_rewrite_invers": 113, "_rewrite_saxena": 113, "_rewrite_saxena_1": 113, "_rewrite_singl": 113, "_root": 218, "_roots_trivi": 217, "_rust_cod": 221, "_sage_": 2, "_seri": [207, 218], "_set": 241, "_set_angular_veloc": 152, "_set_interv": 217, "_set_linear_veloc": 152, "_signsimp": 217, "_simplifi": 124, "_sizedinttyp": 69, "_slope": 98, "_smtlib": 221, "_solve_ab": 240, "_solve_as_poli": 240, "_solve_as_poly_complex": 240, "_solve_as_poly_r": 240, "_solve_as_r": 240, "_solve_class": 240, "_solve_expo": 240, "_solve_exponenti": 240, "_solve_lin_si": 219, "_solve_lin_sys_compon": 219, "_solve_logarithm": 240, "_solve_rad": 240, "_solve_real_trig": 240, "_solve_system": 240, "_solve_using_known_valu": 240, "_some_": 210, "_sort_variable_count": 88, "_sparse_": 222, "_split_mul": 113, "_state_to_oper": 181, "_str": 32, "_strip": [79, 86], "_strong_gens_from_distr": 86, "_succ": 79, "_sylow_alt_sym": 79, "_sympifi": [13, 14, 88, 120, 292], "_sympy_": [13, 14, 88], "_sympyrepr": 221, "_sympystr": 221, "_syzygi": 208, "_t": [18, 22, 30, 32, 96, 115, 191, 200, 204, 231, 241, 299], "_tan": 218, "_tan1": 218, "_tensormanag": 247, "_test": 252, "_token_splitt": 130, "_tr56": 230, "_transolv": 240, "_try_heurisch": 115, "_tsolv": 240, "_tupl": 128, "_type": 210, "_u": [115, 191], "_union": 208, "_union_find_merg": 79, "_union_find_rep": 79, "_v": [36, 191], "_verifi": 79, "_verify_bsg": [79, 85, 86], "_verify_centr": 85, "_verify_normal_closur": 85, "_w": [217, 228], "_w0_0": 124, "_w1_0": 124, "_w2_0": 124, "_x": [24, 32, 35, 36, 41, 43, 124, 205, 212, 214, 218, 233, 237, 253, 299], "_xi_1": 238, "_y": [24, 32, 35, 36, 43, 50, 205, 299], "_z": [24, 32, 35, 36, 43, 115, 241, 299], "a0": [84, 131, 237, 297], "a000001": 74, "a000010": 93, "a000073": 93, "a000085": 96, "a000111": [93, 217], "a000720": 93, "a001221": 93, "a001222": 93, "a002322": 93, "a002997": 128, "a003277": 74, "a008683": 93, "a051532": 74, "a056867": 74, "a066272": 128, "a066272a": 128, "a1": [22, 30, 80, 84, 88, 116, 124, 128, 137, 144, 165, 214, 237, 241, 242, 271, 297], "a10": 105, "a1pt": 30, "a1pt_theori": [30, 204], "a1sz_lattice_basis_reduction_algorithm": 210, "a2": [22, 30, 80, 84, 88, 117, 124, 128, 137, 144, 165, 210, 214, 241, 242, 271, 297], "a217120": 128, "a217255": 128, "a217719": 128, "a2idx": 124, "a2pt": 30, "a2pt_theori": [30, 35, 204], "a3": [30, 80, 84, 88, 117, 124, 271, 297], "a4": [30, 71, 84, 88, 117, 297], "a4_in_s6": 71, "a4xc2": 71, "a5": [84, 88], "a6": 88, "a6_wrong": 88, "a9chet_distribut": 241, "a9vy_distribut": 241, "a_": [32, 51, 84, 88, 89, 96, 113, 117, 120, 124, 144, 145, 223, 231, 234, 237, 239, 241, 242, 243, 299], "a_0": [124, 224, 234, 237, 242, 297], "a_0_0": 124, "a_0_0_0": 124, "a_0_0_1": 124, "a_0_1": 124, "a_0_1_0": 124, "a_0_1_1": 124, "a_0_2": 124, "a_0_2_0": 124, "a_0_2_1": 124, "a_1": [78, 79, 89, 96, 110, 113, 124, 145, 191, 196, 209, 214, 231, 234, 237, 241, 297], "a_1_0": 124, "a_1_0_0": 124, "a_1_0_1": 124, "a_1_1": 124, "a_1_1_0": 124, "a_1_1_1": 124, "a_1_2": 124, "a_1_2_0": 124, "a_1_2_1": 124, "a_1x_1": [51, 234], "a_2": [79, 89, 110, 124, 214, 231, 234, 237, 241, 297], "a_2x_2": [51, 234], "a_3": 124, "a_4": 71, "a_5": 71, "a_6": 71, "a_and_b": [153, 154, 306], "a_b": 30, "a_bicep": 299, "a_eq": 239, "a_first": 18, "a_i": [36, 113, 196, 200, 209, 214, 231], "a_ij": 246, "a_interv": 229, "a_ixi": 149, "a_ixx": 149, "a_iyi": 149, "a_iyz": 149, "a_izx": 149, "a_izz": 149, "a_j": [78, 96, 113, 196, 214, 223, 231], "a_k": [79, 89, 218, 224], "a_kx_k": 218, "a_lin": 27, "a_m": [84, 237], "a_mass": 149, "a_muscl": [18, 134], "a_n": [84, 89, 96, 113, 117, 196, 209, 214, 216, 224, 234, 237, 297], "a_non_commut": 237, "a_nul": 210, "a_nx_n": [51, 234], "a_o_n": 30, "a_op": 27, "a_p": [96, 113, 231, 297], "a_prim": 88, "a_r": [78, 231], "a_real": 246, "a_rref": 210, "a_t": 237, "a_tricep": 299, "a_val": 299, "a_x": [36, 200, 221], "a_z": [36, 138, 200], "aa": [93, 206], "aaa": 259, "aaaabbbbcccc": 93, "aab": [93, 259], "aabbc": 93, "aabc": 93, "aaecc": 239, "aand": [96, 115], "aaron": 0, "aaronmeur": 12, "aau": 136, "ab": [14, 16, 18, 30, 66, 69, 70, 87, 88, 89, 92, 93, 94, 96, 100, 101, 111, 113, 118, 124, 130, 134, 140, 146, 191, 209, 212, 215, 216, 217, 221, 234, 236, 239, 240, 241, 243, 247, 256, 259, 262, 271, 297], "aba": 259, "abb": [256, 259], "abbott": 215, "abbott13": [214, 215], "abbrev": [9, 197, 198, 221], "abbrevi": [198, 209, 221, 240, 242], "abc": [3, 4, 11, 12, 16, 37, 38, 43, 46, 48, 50, 52, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 77, 79, 81, 87, 88, 89, 90, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 111, 112, 113, 115, 116, 118, 120, 123, 124, 127, 128, 129, 142, 144, 146, 162, 164, 166, 167, 172, 189, 191, 192, 208, 210, 212, 214, 216, 217, 218, 221, 222, 223, 224, 226, 227, 228, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 246, 248, 253, 254, 255, 256, 257, 259, 260, 262, 265, 268, 269, 270, 275, 277, 289, 292, 296], "abcbb": 259, "abcd": [77, 81, 191, 243, 259, 262], "abcdef": 289, "abel": [48, 57, 124, 217], "abelian": [74, 76, 79, 117, 196, 208], "abelian_invari": 79, "abeliangroup": [76, 79], "abi": 259, "abid": 7, "abij": 191, "abil": [13, 14, 16, 23, 41, 67, 124, 151, 216, 220, 237, 240, 291, 297], "abji": 191, "abl": [2, 3, 4, 11, 12, 14, 15, 18, 22, 25, 27, 28, 30, 31, 39, 41, 43, 51, 55, 68, 69, 79, 84, 88, 89, 90, 99, 107, 115, 120, 124, 128, 131, 141, 208, 210, 211, 212, 217, 218, 237, 240, 252, 269, 291, 296, 298], "abnorm": 214, "abort": 250, "about": [3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 17, 21, 22, 27, 28, 32, 35, 36, 39, 41, 42, 43, 48, 53, 55, 57, 58, 59, 61, 62, 64, 65, 68, 69, 79, 80, 81, 82, 88, 92, 94, 96, 98, 99, 100, 102, 103, 104, 108, 110, 114, 115, 117, 124, 128, 130, 136, 137, 144, 148, 149, 150, 152, 153, 154, 155, 156, 158, 186, 188, 189, 191, 195, 200, 206, 208, 210, 211, 216, 218, 221, 223, 228, 233, 234, 235, 237, 241, 245, 246, 252, 253, 254, 255, 256, 257, 265, 267, 269, 272, 273, 280, 283, 286, 288, 289, 291, 292, 293, 297, 299, 306], "abov": [2, 3, 4, 5, 8, 11, 12, 13, 14, 16, 18, 21, 22, 23, 24, 26, 27, 28, 31, 33, 35, 36, 37, 39, 42, 43, 45, 46, 48, 50, 54, 55, 57, 67, 68, 69, 70, 72, 78, 79, 80, 84, 87, 88, 92, 93, 96, 98, 101, 104, 105, 113, 115, 118, 124, 129, 130, 137, 144, 151, 152, 153, 155, 156, 158, 186, 188, 191, 200, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 228, 231, 233, 234, 237, 239, 240, 241, 245, 246, 253, 254, 260, 269, 270, 271, 272, 275, 289, 291, 292, 293, 297, 299, 302, 304, 306, 307], "above_fermi": [96, 191], "abracadabra": 259, "abramov": [215, 239], "abramov71": [215, 217], "abramowitz": [4, 96], "abridg": 208, "abs_sqrd": 146, "absarglineseri": 207, "absenc": [71, 84, 118], "absent": [4, 72, 239], "absolt": 18, "absolut": [8, 12, 65, 66, 69, 87, 88, 94, 96, 103, 113, 115, 124, 130, 146, 189, 212, 216, 217, 231, 233, 236, 241, 252, 274, 275, 276], "absolute_converg": 87, "absorb": [13, 15, 113, 237, 241, 287], "absorbing_markov_chain": 241, "absorbing_prob": [13, 241], "absorpt": 237, "abstract": [0, 13, 18, 22, 67, 68, 77, 88, 90, 94, 96, 101, 106, 120, 131, 134, 148, 152, 156, 159, 175, 177, 186, 189, 190, 191, 208, 216, 240, 241, 243, 247, 254, 274], "abund": 128, "abundantnumb": 128, "abus": [88, 247], "ac": [28, 46, 61, 69, 80, 100, 140, 155, 168, 241, 259, 262], "academ": [0, 45, 68, 72, 215], "acb": 259, "acc": [30, 35, 68, 204], "acceler": [3, 27, 28, 30, 33, 129, 153, 155, 158, 194, 200, 204, 210, 256, 274, 299, 302, 309, 311], "acceleration_": 30, "acceleration_constraint": 153, "accept": [4, 11, 12, 14, 15, 22, 43, 50, 57, 68, 69, 79, 88, 94, 101, 102, 115, 118, 120, 124, 127, 130, 144, 185, 195, 200, 205, 207, 216, 217, 220, 221, 222, 229, 231, 233, 239, 253, 260, 265, 267, 270, 293], "accepted_latex_funct": 221, "access": [2, 4, 5, 9, 13, 15, 16, 18, 22, 31, 32, 33, 36, 41, 43, 62, 63, 64, 69, 88, 96, 117, 118, 120, 124, 129, 131, 134, 137, 144, 145, 152, 153, 156, 158, 200, 207, 210, 211, 212, 214, 216, 233, 237, 242, 245, 253, 254, 269, 272, 292, 296, 299], "accid": [11, 12, 14, 89, 260], "accident": [11, 12, 14, 15], "accompani": [11, 12, 68], "accomplish": [27, 30, 50, 115, 272], "accord": [5, 16, 23, 69, 76, 79, 80, 84, 87, 88, 89, 96, 118, 120, 124, 128, 130, 151, 152, 158, 159, 185, 191, 207, 212, 214, 216, 217, 218, 234, 239, 240, 247, 252, 254, 259, 274], "accordingli": [79, 209, 216], "account": [3, 15, 18, 94, 124, 224, 233, 237], "accumul": [79, 252, 256], "accur": [3, 13, 14, 16, 39, 43, 48, 67, 79, 88, 92, 93, 110, 115, 141, 207, 228, 286, 293], "accuraci": [14, 16, 39, 67, 88, 210, 217, 287, 293], "achiev": [13, 15, 22, 30, 32, 43, 88, 92, 96, 120, 128, 220, 228, 231, 233, 240, 243, 255, 270, 304], "acm": [70, 87, 113, 115, 210, 212, 215, 231, 233, 237, 239], "aco": [4, 16, 30, 61, 94, 101, 104, 164, 200, 221, 237, 265, 297, 302], "acosh": [94, 221], "acot": [94, 221], "acoth": [94, 221], "acquaint": 7, "across": [3, 5, 11, 79, 86, 88, 99, 115, 137, 190, 191, 198, 207, 221, 256, 258, 259, 260, 287, 295], "acsc": [94, 221], "acsch": [94, 221], "act": [12, 15, 18, 22, 26, 68, 71, 78, 79, 80, 84, 88, 96, 104, 117, 118, 124, 132, 133, 136, 138, 140, 148, 149, 152, 155, 156, 158, 163, 175, 180, 183, 184, 229, 240, 242, 243, 270, 274, 286, 299, 303, 307], "actf": 18, "actf2": 18, "action": [2, 5, 8, 11, 18, 79, 117, 134, 148, 155, 183, 186, 196, 217, 233, 240], "activ": [3, 8, 9, 17, 19, 132, 133, 134, 207, 250, 255, 257, 282, 300, 302, 304], "activation_dynam": 134, "activation_time_const": 131, "activationbas": [18, 131, 134], "active_deprecations_target": [3, 250, 255, 257], "activepython": 59, "activest": 259, "actual": [2, 3, 4, 5, 8, 9, 11, 12, 14, 15, 16, 21, 22, 25, 26, 27, 39, 41, 42, 43, 46, 68, 69, 70, 77, 79, 86, 88, 89, 96, 100, 113, 115, 117, 120, 124, 128, 132, 134, 144, 148, 156, 159, 205, 207, 208, 210, 211, 216, 221, 229, 231, 233, 234, 237, 240, 248, 252, 253, 256, 257, 259, 260, 291, 302], "actuat": [19, 134, 151, 156, 158, 282, 300], "actuatorbas": [18, 148, 158], "actz": 18, "acycl": 259, "ad": [4, 5, 7, 8, 9, 11, 12, 13, 14, 21, 22, 30, 41, 50, 52, 61, 68, 69, 72, 78, 79, 88, 89, 99, 103, 110, 113, 117, 128, 130, 136, 140, 149, 152, 158, 165, 193, 196, 201, 206, 207, 216, 218, 220, 221, 223, 231, 234, 237, 239, 240, 241, 243, 246, 247, 252, 268, 289, 299, 304], "adam": [206, 217], "adamek": 68, "adapt": [13, 142, 207, 227, 239, 259, 264], "add": [2, 3, 4, 9, 12, 14, 15, 16, 22, 30, 35, 36, 38, 41, 55, 61, 63, 67, 69, 77, 79, 84, 89, 92, 95, 103, 105, 113, 117, 120, 124, 128, 136, 138, 140, 149, 158, 169, 175, 185, 190, 191, 194, 207, 210, 211, 212, 214, 216, 217, 218, 221, 222, 231, 233, 234, 237, 238, 240, 241, 243, 245, 246, 247, 255, 260, 263, 287, 289, 292, 296, 297, 299, 304], "add_actu": [158, 307], "add_as_root": 117, "add_auxiliary_spe": 158, "add_bodi": [158, 307], "add_coordin": 158, "add_formula": 231, "add_gen": 212, "add_ground": [212, 217], "add_handl": 13, "add_holonomic_constraint": [158, 304], "add_joint": [13, 24, 158, 304, 307], "add_kd": 158, "add_load": [158, 304, 307], "add_memb": 140, "add_nod": 140, "add_nonholonomic_constraint": 158, "add_simple_root": 117, "add_spe": 158, "add_typ": 240, "addaugmentedassign": 69, "addb": 231, "addend": 247, "addison": [72, 80, 128, 215], "addit": [0, 2, 3, 5, 9, 12, 13, 14, 15, 16, 18, 21, 27, 31, 32, 35, 36, 37, 39, 59, 61, 69, 78, 79, 80, 87, 88, 94, 96, 100, 106, 108, 112, 113, 115, 116, 118, 120, 124, 128, 130, 131, 132, 134, 141, 142, 144, 149, 153, 177, 189, 190, 193, 205, 206, 207, 208, 209, 210, 211, 214, 216, 217, 221, 227, 230, 231, 233, 234, 237, 238, 239, 240, 241, 252, 253, 254, 256, 257, 259, 260, 262, 269, 289, 291, 292, 293, 296, 297, 299], "addition": [2, 4, 11, 13, 14, 18, 25, 36, 88, 189, 214, 221, 241, 250, 257, 269], "additional_transl": 13, "address": [9, 12, 88, 221, 240], "addrul": 115, "adequ": 221, "adher": [3, 5, 113], "adi": 243, "adic": 215, "adj": [124, 210], "adj_det": 210, "adj_poly_det": 210, "adja": 210, "adjac": [78, 79, 80, 88, 93, 144, 163, 210, 259], "adject": [15, 241], "adjoin": [79, 209], "adjoint": [117, 124, 168, 172, 221], "adjoint_styl": 221, "adjug": [124, 210], "adjust": [12, 18, 158, 224, 228], "admiss": [223, 226], "admit": [96, 237], "adopt": [79, 247], "advanc": [5, 17, 20, 23, 28, 34, 38, 40, 43, 63, 79, 88, 92, 93, 124, 125, 207, 210, 211, 213, 215, 216, 223, 230, 237, 252, 253, 254, 259, 286, 288, 290, 294, 295, 296, 297], "advantag": [9, 13, 37, 41, 43, 48, 64, 67, 69, 88, 89, 93, 115, 118, 124, 128, 141, 195, 210, 211, 218, 229, 234, 237, 240, 256, 289, 291, 293, 297], "advers": 88, "advertis": 5, "advis": [12, 13, 22, 41, 57, 68, 152], "ae": 218, "aegean": 89, "aeq": 239, "aesara": [2, 13, 30, 69], "aesara_cod": [13, 221], "aesara_funct": [69, 129, 221], "aesaracod": [2, 13, 69, 129, 221], "aesaraprint": [13, 221], "aeseara": 2, "aesthet": [5, 15, 207], "af": [30, 76, 79, 85], "affect": [11, 13, 14, 32, 41, 43, 87, 88, 124, 217, 239, 240, 270], "affin": [88, 89, 103, 208], "affine_ciph": 89, "affine_rank": 103, "affirm": 229, "aforement": [33, 234, 272, 302], "after": [3, 4, 5, 8, 9, 11, 12, 13, 14, 16, 24, 25, 27, 30, 32, 33, 36, 59, 61, 63, 64, 68, 70, 76, 79, 80, 84, 86, 87, 88, 89, 90, 94, 103, 105, 110, 115, 124, 128, 130, 136, 144, 158, 160, 164, 176, 188, 196, 210, 214, 216, 217, 218, 219, 221, 222, 227, 234, 237, 238, 239, 240, 242, 252, 255, 260, 262, 265, 268, 272, 286, 287, 289, 293, 297, 304], "afterward": [16, 69, 88, 155, 306], "afunc": 260, "ag": [140, 237], "again": [3, 8, 9, 12, 14, 16, 18, 22, 32, 35, 39, 42, 71, 80, 88, 103, 128, 148, 158, 186, 187, 200, 208, 209, 216, 224, 231, 237, 250, 269, 289, 297, 302], "against": [12, 13, 18, 22, 41, 43, 57, 89, 124, 136, 253, 299], "agca": [213, 283], "agnost": 254, "agre": [12, 88, 89, 96, 103, 113, 231], "agreement": 11, "ahead": [4, 128], "ai": [36, 96, 128, 217, 234, 243, 262, 270, 297, 306], "aid": [69, 302], "aim": [4, 5, 12, 106, 113, 196, 208, 231, 237, 240, 290, 291, 301], "ainv": 210, "airi": [115, 237], "airspe": 2, "airy_funct": 96, "airyai": [96, 221, 237], "airyaiprim": [96, 221], "airybas": 96, "airybi": [96, 221, 237], "airybiprim": [96, 221], "airyfunct": 96, "aitken_html": 234, "ajwa": 215, "ajwa95": 215, "ak": [87, 223], "aka": [13, 120], "akrita": 217, "al": [22, 115, 131, 132, 134, 170, 214, 230, 233], "albeit": [115, 269], "aleaxit": 92, "alembertian": 239, "alexandria": 234, "alf_b_n": 30, "alg": [212, 216, 220], "alg_con": [31, 158], "alg_con_ful": 31, "alg_factor": 214, "alg_field_from_poli": [212, 216], "algebra": [0, 5, 15, 16, 18, 23, 30, 31, 34, 37, 41, 47, 49, 54, 57, 65, 70, 71, 79, 88, 89, 92, 93, 94, 106, 109, 110, 111, 113, 115, 118, 122, 125, 128, 129, 130, 151, 158, 206, 209, 210, 212, 213, 214, 215, 217, 218, 221, 223, 231, 234, 236, 237, 240, 276, 277, 280, 282, 283, 288, 289, 291, 293], "algebraic_express": 88, "algebraic_field": [211, 212, 214, 216], "algebraic_multipl": 293, "algebraic_numb": [41, 65, 88], "algebraiccomput": 88, "algebraicfield": [211, 212, 214, 216], "algebraichandl": 65, "algebraicnumb": [88, 212, 216, 220], "algebraicpred": 65, "algintpow": 216, "algo": [69, 80], "algo2008": 80, "algorithm": [2, 4, 14, 15, 27, 41, 48, 52, 54, 56, 57, 67, 72, 73, 78, 79, 80, 82, 84, 86, 87, 88, 89, 92, 93, 94, 100, 105, 113, 115, 118, 120, 124, 125, 128, 136, 145, 152, 178, 196, 200, 206, 207, 208, 209, 210, 211, 212, 215, 216, 218, 222, 226, 229, 230, 233, 234, 237, 239, 240, 241, 247, 256, 259, 282, 287, 292, 293, 297], "algorithmist": 79, "alia": [9, 69, 81, 88, 98, 104, 119, 121, 124, 126, 131, 134, 175, 184, 191, 208, 210, 211, 212, 216, 220, 229, 252, 262, 297], "alias": [9, 121, 212], "alic": [79, 89], "align": [13, 36, 69, 98, 124, 152, 159, 206, 221, 239, 252, 299], "alignof": 69, "alkiviadi": 217, "all": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 23, 25, 27, 30, 31, 33, 36, 37, 39, 41, 42, 43, 45, 53, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 113, 115, 117, 118, 119, 120, 123, 124, 127, 128, 129, 130, 131, 132, 134, 136, 137, 140, 142, 144, 145, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 165, 170, 171, 175, 185, 187, 188, 189, 191, 193, 194, 195, 196, 198, 199, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 247, 248, 250, 252, 253, 254, 255, 257, 259, 260, 262, 265, 267, 269, 271, 272, 273, 274, 276, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 307], "all_coeff": [211, 212, 217], "all_integr": [55, 237, 238], "all_model": 118, "all_monom": [212, 217], "all_root": [117, 128, 217], "all_term": [212, 217], "allei": 96, "allhint": [237, 238], "alli": 216, "alloc": [69, 94], "allow": [2, 3, 5, 11, 12, 13, 14, 15, 16, 18, 22, 23, 27, 28, 30, 36, 41, 43, 45, 48, 65, 68, 69, 70, 72, 79, 81, 84, 87, 88, 89, 92, 94, 96, 98, 99, 100, 113, 116, 118, 120, 121, 124, 128, 129, 130, 134, 137, 151, 152, 153, 159, 163, 175, 191, 195, 196, 197, 207, 208, 211, 212, 214, 216, 217, 218, 221, 226, 228, 229, 230, 233, 234, 237, 239, 240, 241, 242, 246, 252, 255, 257, 259, 260, 270, 287, 289, 292, 302], "allow_half": 88, "allow_hyp": [96, 233], "allow_unknown_funct": 221, "almost": [12, 14, 53, 113, 121, 130, 193, 208, 212, 217, 218, 237, 241, 255, 256, 259, 291], "almost_linear": 237, "almost_linear_integr": 237, "almosteq": 212, "almostlinear": 237, "alon": [14, 41, 89, 116, 214, 237, 239, 246, 259, 291, 292], "along": [12, 18, 21, 25, 26, 27, 28, 30, 32, 33, 36, 39, 43, 48, 69, 79, 88, 89, 90, 94, 96, 97, 98, 102, 103, 106, 108, 111, 113, 120, 124, 136, 137, 138, 140, 147, 148, 152, 153, 155, 156, 158, 159, 160, 188, 200, 207, 210, 211, 216, 217, 237, 240, 268, 272, 274, 299, 302, 306, 309, 310, 311], "alongsid": [3, 11, 12, 13, 14, 43, 120, 148], "alp": 89, "alpertron": 234, "alpha": [5, 16, 18, 35, 36, 79, 88, 96, 115, 117, 130, 144, 148, 163, 167, 170, 188, 204, 206, 212, 214, 216, 217, 220, 221, 233, 237, 241], "alpha_": [18, 124, 134, 206], "alpha_0": 124, "alpha_1": [93, 124, 128, 216], "alpha_2": [93, 128, 216], "alpha_i": [88, 216], "alpha_k": [93, 128], "alpha_m": 216, "alpha_n": 216, "alpha_opt": [18, 134], "alpha_r": 231, "alphabet": [11, 88, 89, 144, 196, 209, 234, 254], "alphanumer": 237, "alreadi": [2, 3, 7, 9, 10, 11, 12, 13, 14, 16, 18, 22, 27, 33, 35, 36, 41, 43, 45, 51, 52, 55, 57, 59, 61, 79, 80, 88, 89, 97, 98, 101, 102, 104, 113, 115, 124, 125, 128, 140, 145, 149, 158, 160, 186, 188, 191, 207, 210, 211, 214, 216, 220, 224, 230, 231, 233, 237, 240, 241, 247, 270, 272, 287, 289, 290, 291, 295, 296, 297, 298, 304], "also": [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 41, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 77, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 100, 104, 106, 108, 110, 111, 113, 115, 117, 118, 121, 124, 125, 128, 129, 130, 131, 132, 134, 136, 137, 140, 141, 142, 144, 148, 149, 150, 152, 153, 155, 156, 158, 159, 160, 164, 174, 175, 177, 181, 185, 190, 191, 194, 195, 196, 200, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 253, 254, 255, 256, 257, 260, 262, 265, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 304, 306, 307, 310], "alt": [69, 216], "alter": [16, 70, 79, 88, 200, 221, 223, 240], "altern": [2, 3, 4, 8, 13, 14, 15, 16, 18, 22, 25, 27, 35, 42, 43, 59, 69, 76, 79, 80, 87, 88, 92, 93, 94, 95, 96, 120, 124, 125, 129, 130, 131, 134, 148, 200, 206, 207, 209, 210, 211, 214, 216, 217, 221, 226, 228, 230, 239, 240, 242, 243, 259, 289, 291, 293, 304], "alternating_permut": 93, "alternatinggroup": [76, 79, 85], "alternatingpermut": 93, "although": [0, 2, 3, 4, 5, 11, 12, 14, 15, 16, 21, 30, 38, 39, 41, 43, 51, 80, 88, 89, 94, 100, 112, 113, 116, 118, 120, 124, 128, 208, 210, 211, 212, 214, 216, 217, 229, 230, 233, 234, 239, 253, 259, 260, 289, 292, 297, 302], "altitud": 104, "alwai": [3, 4, 5, 11, 12, 13, 14, 15, 16, 22, 31, 33, 35, 41, 42, 43, 53, 59, 61, 68, 79, 80, 87, 88, 89, 90, 92, 94, 96, 98, 100, 103, 104, 112, 113, 115, 118, 124, 127, 128, 138, 140, 144, 145, 156, 158, 159, 191, 193, 196, 197, 208, 209, 210, 211, 212, 214, 216, 217, 221, 222, 223, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 248, 252, 254, 259, 260, 265, 267, 272, 287, 289, 290, 291, 292, 297, 299, 301, 302, 306, 310], "am": [128, 196, 221], "ama": 144, "amalgam": 113, "amat": 302, "ambient": 103, "ambient_dimens": [97, 99, 101, 103], "ambigu": [5, 13, 14, 16, 37, 88, 130, 179, 185, 233, 245, 250], "amd64": 69, "amen": [23, 151], "amend": 79, "amer": 124, "american": [5, 74, 89], "ami": 128, "ami_42_from129to134": 128, "amic": 128, "amicable_numb": 128, "amirgi": 241, "amit": [0, 240], "among": [18, 41, 68, 69, 70, 72, 79, 80, 89, 116, 129, 217, 237, 242, 245, 247, 269], "amongst": [41, 239], "amount": [4, 12, 18, 23, 33, 36, 68, 88, 89, 100, 151, 152, 200, 214, 224, 252, 265, 267], "amper": [162, 195], "amplitud": [142, 165], "amsfont": 221, "amsmath": 221, "amus": 208, "an": [0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 15, 16, 18, 21, 23, 25, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 51, 53, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 140, 142, 144, 145, 146, 148, 149, 151, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 168, 170, 171, 172, 174, 175, 176, 177, 179, 180, 181, 184, 185, 186, 188, 189, 191, 192, 193, 195, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 233, 234, 236, 237, 238, 239, 241, 242, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 269, 270, 272, 273, 274, 275, 286, 287, 288, 289, 290, 291, 293, 296, 297, 298, 299, 302, 304, 306, 307], "anaconda3": 12, "analog": [13, 28, 35, 36, 43, 48, 53, 81, 87, 89, 93, 208, 209, 210, 214, 217, 226, 242, 259], "analogi": [87, 214], "analogu": [42, 65, 87, 102, 211, 212], "analyitc": 113, "analys": [30, 46, 68, 142, 144, 241], "analysi": [27, 28, 31, 39, 69, 70, 79, 88, 89, 94, 141, 208, 217, 231, 234, 241, 287, 300, 302], "analyt": [15, 18, 23, 59, 93, 96, 113, 124, 132, 151, 156, 237, 287], "analytic_func": 124, "analyz": [12, 233, 246], "anatomi": 133, "anc": 216, "ancestor": 216, "andi": [0, 29], "andr": [93, 217], "andre_poli": [93, 217], "andreescu": 234, "andrew": [93, 105, 128], "andrica": 234, "anew": 88, "anf": 118, "anf_coeff": 118, "anfform": 118, "ang": 302, "ang_acc_in": [30, 200], "ang_vel_in": [22, 30, 35, 149, 152, 200, 303, 309, 310], "angelia": 67, "angl": [18, 22, 24, 27, 35, 36, 43, 61, 94, 96, 97, 98, 99, 101, 102, 103, 104, 134, 138, 140, 146, 152, 158, 159, 160, 163, 164, 165, 188, 196, 200, 206, 221, 230, 240, 265, 267, 270, 297, 299, 302, 303, 304, 306, 307], "angle1": [265, 267], "angle2": [265, 267], "angle3": [265, 267], "angle_addit": 61, "angle_between": [101, 102, 104, 200], "angle_of_incid": 164, "angular": [23, 24, 27, 30, 124, 136, 146, 149, 152, 155, 160, 164, 165, 167, 170, 188, 192, 200, 204, 206, 299, 302, 303, 304, 306, 307, 309, 311], "angular_deflect": 136, "angular_momentum": [28, 30, 149, 155], "angular_veloc": 165, "angvel": 30, "ani": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 23, 26, 27, 28, 31, 33, 35, 36, 37, 38, 41, 42, 43, 48, 50, 51, 52, 55, 59, 65, 66, 67, 68, 69, 70, 77, 78, 79, 80, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 99, 100, 103, 104, 105, 113, 115, 116, 118, 121, 123, 124, 125, 128, 130, 131, 132, 134, 136, 137, 140, 144, 146, 148, 149, 151, 152, 153, 154, 155, 156, 158, 160, 164, 177, 180, 185, 186, 189, 191, 193, 196, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 241, 243, 246, 247, 252, 253, 255, 256, 257, 259, 260, 265, 269, 270, 271, 272, 274, 275, 286, 287, 289, 292, 293, 296, 297, 298], "annal": [18, 80, 131, 132, 134, 299], "annihil": [87, 106, 107, 111, 167, 191, 239], "annihilateboson": 191, "annihilatefermion": 191, "annoi": 12, "annot": [55, 128, 207, 221], "annoy": 88, "anoth": [3, 4, 5, 11, 12, 13, 14, 15, 18, 24, 28, 35, 36, 38, 39, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 65, 68, 69, 80, 85, 87, 88, 89, 90, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 113, 115, 120, 124, 128, 134, 136, 137, 148, 149, 153, 155, 156, 159, 180, 195, 196, 198, 200, 204, 207, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 228, 229, 231, 237, 239, 240, 241, 253, 254, 260, 265, 269, 270, 274, 286, 289, 291, 292, 297, 298], "anp": [88, 211, 212, 216, 217], "answer": [3, 7, 12, 14, 41, 43, 48, 79, 88, 92, 110, 113, 115, 118, 124, 128, 196, 214, 218, 230, 231, 233, 239, 241, 256, 262, 291, 293, 297], "anteced": [113, 228], "anthoni": 0, "anti": [11, 15, 61, 65, 84, 94, 115, 124, 163, 168, 247], "anti_symmetr": 124, "anticip": 196, "anticlockwis": [124, 140], "anticommut": [84, 178, 180, 190, 191, 247, 282], "antideriv": [15, 94, 96, 115, 237, 287], "antiderv": 237, "antidivisor": 128, "antidivisor_count": 128, "antihermitian": [41, 65, 88], "antihermitianhandl": 65, "antihermitianpred": 65, "antipattern": [14, 43, 290], "antisym": 84, "antisymmetr": [84, 90, 124, 191, 247], "antisymmetrictensor": 191, "antlr": [2, 22], "antlr4": [2, 130], "anum": 210, "anycod": 13, "anymor": [11, 12, 207], "anyon": [4, 5, 13, 58, 217, 221, 285, 295, 296], "anyth": [3, 4, 5, 12, 13, 14, 16, 22, 43, 67, 69, 88, 89, 99, 103, 124, 165, 175, 218, 221, 227, 229, 233, 237, 239, 253, 259, 262, 289], "anyv": 89, "anywai": [113, 233, 237], "anywher": [3, 4, 13, 41, 69, 88, 96, 102, 191, 262, 291], "ao": [30, 299], "aocp": 256, "aother": 96, "ap": [96, 100, 231], "apart": [14, 33, 43, 61, 79, 84, 88, 92, 94, 115, 130, 148, 156, 209, 210, 212, 214, 217, 220, 223, 234, 240, 247, 270, 272, 292], "apart_list": 217, "aperiod": 67, "apfloat": 91, "aphras": 89, "api": [4, 5, 11, 13, 14, 18, 28, 30, 41, 44, 51, 53, 69, 88, 100, 108, 129, 130, 143, 187, 207, 214, 234, 236, 260, 269, 270, 273, 280, 282, 283, 290, 291, 294], "apoapsi": 98, "apothem": 104, "app": 115, "app1": 241, "appar": [11, 12, 14, 15, 16, 88, 262, 297], "apparatu": 13, "appdata": 8, "appeal": 113, "appear": [4, 5, 11, 12, 14, 15, 16, 22, 37, 55, 68, 69, 72, 77, 79, 88, 89, 93, 94, 97, 98, 101, 104, 107, 111, 113, 115, 124, 128, 130, 156, 175, 191, 193, 196, 207, 209, 211, 214, 216, 217, 221, 230, 233, 237, 238, 239, 241, 245, 247, 252, 259, 260, 265, 270, 306], "appel": [93, 96], "appell_seri": 96, "appellf1": [96, 221], "appellseq": [93, 217], "append": [14, 30, 50, 55, 79, 88, 89, 124, 137, 186, 207, 212, 221, 239, 242, 254, 255, 259, 297, 303], "appetit": 291, "appli": [5, 9, 11, 12, 13, 14, 15, 18, 25, 27, 29, 36, 42, 43, 46, 53, 57, 61, 62, 63, 64, 65, 69, 79, 80, 81, 86, 87, 88, 89, 90, 91, 94, 95, 98, 103, 104, 106, 115, 118, 119, 124, 128, 130, 136, 137, 138, 140, 144, 145, 148, 149, 150, 153, 155, 156, 158, 168, 172, 175, 176, 180, 183, 184, 188, 191, 200, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 227, 228, 229, 230, 233, 237, 238, 239, 240, 241, 242, 245, 252, 255, 259, 265, 267, 270, 293, 296, 297, 299, 302, 304, 307], "applic": [0, 5, 13, 18, 22, 23, 27, 29, 30, 35, 49, 52, 70, 71, 72, 78, 79, 80, 81, 88, 89, 93, 94, 115, 124, 128, 136, 138, 140, 148, 151, 152, 153, 158, 175, 176, 200, 204, 209, 210, 214, 215, 216, 217, 221, 223, 228, 234, 237, 240, 254, 259, 265, 272, 273, 280, 291], "applied_load": 136, "appliedfunct": 130, "appliedpermut": 80, "appliedpred": [38, 62, 63, 64], "appliedundef": 88, "apply_finite_diff": [67, 88, 287], "apply_forc": [13, 149], "apply_grov": 176, "apply_length": 138, "apply_load": [136, 137, 138, 140], "apply_moment_load": 136, "apply_oper": [180, 191], "apply_rotation_hing": 136, "apply_sliding_hing": 136, "apply_support": [136, 140], "apply_torqu": 149, "apply_uniform_grav": [13, 158, 304, 307], "applyfunc": [46, 119, 124, 200, 210, 242, 310], "approach": [8, 14, 23, 39, 48, 51, 52, 53, 55, 56, 57, 68, 87, 88, 115, 144, 151, 210, 211, 214, 215, 216, 218, 229, 238, 239, 241, 253, 256, 259, 287, 293, 306], "appropri": [2, 4, 5, 11, 12, 13, 14, 16, 21, 35, 39, 52, 56, 79, 88, 94, 103, 124, 180, 181, 191, 200, 207, 210, 211, 217, 218, 221, 227, 228, 233, 234, 239, 241, 246, 254, 270, 296, 302], "approx": [39, 49, 54, 88, 115], "approxim": [4, 14, 16, 17, 40, 57, 67, 79, 87, 88, 89, 92, 96, 98, 104, 113, 115, 124, 128, 137, 141, 160, 194, 211, 212, 217, 224, 228, 231, 241, 287, 291], "approximations_for_the_nth_prime_numb": 128, "apr": 100, "april": 87, "apt": [8, 9], "aq": 210, "ar": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 124, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 145, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 163, 164, 165, 166, 168, 170, 172, 175, 177, 179, 180, 181, 183, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 256, 257, 258, 259, 260, 262, 265, 267, 268, 269, 270, 271, 272, 274, 276, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311], "ar_": 218, "ar_i": 218, "ara": 89, "arab": 208, "arang": [43, 253, 286], "arb": 98, "arbitrari": [2, 4, 13, 14, 15, 16, 18, 24, 28, 36, 41, 43, 48, 52, 54, 56, 57, 67, 73, 80, 81, 87, 88, 89, 92, 93, 96, 99, 100, 102, 118, 124, 137, 154, 177, 180, 207, 208, 211, 212, 214, 216, 218, 233, 237, 238, 239, 247, 257, 260, 265, 267, 286, 287, 292, 297, 298], "arbitrarili": [37, 48, 67, 88, 101, 128, 214, 216, 228, 231, 237, 238, 239, 241], "arbitrary_matrix": 124, "arbitrary_point": [97, 98, 99, 100, 101, 102, 104], "arc": [61, 94, 159, 297, 299], "arc_coplanar": 61, "arc_length": 299, "arcco": [16, 94, 159, 221], "arccosh": 221, "arccot": [94, 221], "arccoth": 221, "arccsc": [94, 221], "arccsch": [94, 221], "arch": 282, "architectur": [0, 12, 30, 211, 252], "archiv": [29, 72, 80, 89, 93, 96, 105, 115, 128, 210, 233, 234, 241, 259, 293], "arcsec": [94, 221], "arcsech": [94, 221], "arcsin": [16, 94, 130, 218, 221, 241], "arcsine_distribut": 241, "arcsinh": 221, "arctan": [94, 218, 221], "arctan2": [94, 221], "arctang": 218, "arctanh": [130, 221], "arctanrul": 115, "arcversin": 43, "arduou": [23, 151], "are_collinear": 103, "are_concurr": [101, 102], "are_coplanar": 103, "are_similar": [4, 99, 100, 105], "area": [88, 98, 100, 104, 105, 136, 137, 158], "aren": [3, 11, 12, 13, 14, 15, 22, 43, 69, 88, 220, 240], "arg": [5, 11, 15, 36, 41, 43, 50, 52, 55, 61, 63, 64, 65, 66, 67, 68, 69, 72, 79, 80, 82, 85, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 99, 101, 103, 104, 105, 110, 113, 115, 118, 119, 120, 121, 124, 126, 128, 130, 138, 140, 144, 160, 166, 169, 171, 174, 175, 176, 177, 180, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 200, 205, 207, 210, 212, 214, 216, 217, 218, 221, 223, 224, 227, 228, 229, 230, 233, 237, 239, 240, 241, 242, 243, 246, 247, 252, 253, 254, 255, 259, 260, 262, 265, 267], "arg1": [12, 241], "arg2": [12, 241], "argand": 240, "argindex": [4, 11, 43, 69, 88, 94, 95, 96, 132], "args_cnc": 88, "argu": 128, "argular": 188, "argument": [2, 3, 4, 11, 12, 14, 15, 18, 22, 25, 26, 28, 30, 33, 38, 41, 42, 43, 48, 50, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 79, 80, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 101, 104, 105, 113, 115, 116, 118, 120, 124, 127, 128, 130, 132, 134, 136, 142, 144, 148, 152, 153, 156, 158, 159, 165, 168, 172, 174, 177, 180, 185, 186, 188, 189, 190, 191, 199, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 220, 221, 222, 223, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 241, 243, 245, 246, 252, 253, 254, 255, 256, 257, 259, 260, 262, 269, 270, 272, 286, 287, 292, 293, 297], "argument_sequ": [69, 254], "argument_test": [69, 221], "argument_tupl": 253, "argumentindexerror": [11, 43], "argv": [116, 252], "aris": [36, 41, 42, 88, 93, 113, 115, 188, 210, 211, 216], "arithmet": [2, 12, 14, 69, 88, 89, 92, 124, 128, 180, 187, 206, 207, 208, 210, 211, 212, 214, 215, 219, 222], "arithmetica": 234, "ariti": [5, 207], "arjona": 206, "arm": [299, 300], "armi": 89, "armstrong": 76, "around": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 23, 27, 31, 36, 42, 43, 59, 67, 77, 80, 88, 89, 90, 92, 94, 97, 104, 108, 124, 127, 128, 140, 149, 151, 152, 156, 159, 211, 214, 216, 221, 223, 228, 234, 237, 240, 241, 252, 265, 267, 287, 289, 291, 299], "arr": 69, "arr1": 128, "arr2": 128, "arrai": [14, 18, 30, 43, 49, 53, 54, 55, 69, 79, 80, 84, 85, 89, 96, 115, 120, 124, 128, 129, 130, 142, 154, 188, 207, 210, 212, 217, 221, 240, 241, 244, 246, 247, 248, 253, 254, 256, 260, 280, 293, 299], "arrang": [28, 30, 46, 80, 144, 153, 217, 230, 234, 247], "array_der": [242, 243], "array_express": 242, "array_form": [78, 80, 81, 243], "array_lik": [153, 154, 299], "arrayadd": 243, "arrayconstructor": 69, "arraycontract": [242, 243], "arraydiagon": [242, 243], "arrayexpr": 69, "arraysymbol": 243, "arraytensorproduct": [120, 242, 243], "arref": 210, "arriv": [90, 214, 231, 233, 237, 241, 297], "arrow": [68, 117, 136, 207, 221], "arrow_formatt": 68, "arrow_styl": 68, "arrowfrombar": 221, "arrowstringdescript": 68, "art": [72, 80, 208, 221, 223, 256], "articl": [0, 7, 88, 89, 120, 124, 213, 215, 216, 221, 230, 265, 283, 291], "articul": 216, "artifact": 124, "artifici": [215, 224], "artist": 89, "arxiv": [91, 93, 96, 124, 146, 217, 259, 303], "as_add": [43, 88], "as_algebraicfield": 212, "as_base_exp": [88, 94, 95, 259], "as_coef_add": 88, "as_coef_mul": 88, "as_coeff_add": 88, "as_coeff_expon": 88, "as_coeff_mul": [13, 14, 88, 113, 120], "as_coeffici": [14, 88], "as_coefficients_dict": 88, "as_content_primit": [88, 124, 209, 217], "as_declar": 69, "as_dict": [77, 211, 217], "as_dummi": [88, 115], "as_explicit": [13, 53, 120, 124, 147, 242, 243], "as_expr": [13, 88, 124, 210, 211, 216, 217, 218, 293], "as_expr_set_pair": 94, "as_ferr": 77, "as_finite_differ": [13, 67, 88, 287], "as_immut": 119, "as_independ": [14, 43, 88, 240], "as_int": [185, 262], "as_leading_term": [12, 88, 228], "as_list": [110, 217], "as_mut": [88, 119, 120], "as_numer_denom": [88, 239], "as_ordered_factor": 88, "as_ordered_term": 88, "as_poli": [13, 88, 209, 214, 217], "as_powers_dict": 88, "as_real_imag": [88, 94, 124, 222], "as_rel": 229, "as_set": [50, 118], "as_submodul": 216, "as_sum": 115, "as_term": 88, "as_two_term": [43, 88], "as_unevaluated_bas": 233, "asa": 104, "asarrai": [14, 129], "ascend": [80, 115, 234, 259], "ascent": 80, "ascertain": 159, "ascii": 221, "asec": [94, 221], "asech": [94, 221], "aseri": 88, "ashutosh": 0, "asid": [12, 16, 118, 237, 238, 291], "asin": [16, 94, 96, 102, 218, 221, 231, 233, 237, 241, 297, 299], "asinh": [94, 221], "ask": [2, 4, 7, 9, 11, 15, 16, 22, 38, 41, 42, 63, 64, 65, 66, 88, 100, 113, 196, 208, 227, 233, 240, 259, 277, 289], "askalgebraicpredicatehandl": 65, "askhandl": 62, "askpredicatehandl": [63, 64], "askprimehandl": 13, "asnumpi": 129, "aspect": [5, 7, 11, 12, 14, 41, 124, 133, 211, 299], "aspect_ratio": 207, "aspx": 237, "assembl": [89, 113, 228, 299], "assemble_partfrac_list": 217, "assembli": [140, 302], "assert": [3, 11, 12, 27, 68, 77, 78, 79, 80, 88, 98, 100, 130, 210, 221, 229, 237, 238, 239, 250, 257, 259], "assertionerror": [12, 250], "assess": 39, "assign": [5, 9, 22, 30, 33, 36, 41, 55, 68, 69, 70, 84, 88, 93, 104, 115, 117, 118, 124, 130, 153, 196, 207, 209, 214, 221, 239, 240, 247, 254, 269, 272, 289, 309], "assign_to": [69, 221], "assignmentbas": 69, "assignmenterror": 221, "assist": 237, "assoc_laguerr": [69, 96, 221], "assoc_legendr": [96, 221], "assoc_recurrence_memo": 261, "associ": [5, 9, 11, 15, 18, 28, 30, 32, 35, 36, 41, 51, 68, 70, 86, 88, 89, 95, 96, 110, 111, 113, 117, 131, 134, 148, 155, 158, 159, 181, 189, 200, 207, 209, 210, 211, 212, 214, 216, 221, 229, 231, 234, 247, 261, 299, 307], "associated_legendre_polynomi": 96, "associatedlaguerrepolynomi": 96, "assocop": 88, "assoic": 210, "asssumpt": 221, "assum": [2, 4, 14, 15, 16, 18, 22, 25, 26, 27, 28, 30, 33, 38, 41, 43, 52, 55, 56, 61, 64, 69, 70, 72, 77, 79, 87, 88, 89, 90, 93, 94, 96, 98, 105, 106, 113, 115, 124, 128, 136, 140, 144, 148, 156, 158, 159, 164, 186, 190, 191, 200, 204, 208, 209, 211, 214, 217, 219, 221, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 245, 246, 247, 254, 259, 262, 268, 270, 274, 277, 290, 292, 295, 297, 298, 299, 303, 308], "assump": [63, 64], "assumpt": [4, 12, 15, 16, 18, 21, 30, 40, 42, 44, 51, 52, 53, 62, 63, 65, 66, 68, 69, 79, 80, 82, 87, 90, 92, 94, 95, 115, 118, 124, 125, 136, 144, 195, 198, 202, 210, 220, 221, 229, 230, 233, 234, 237, 239, 240, 246, 254, 259, 276, 277, 297, 299], "assumptionkei": 62, "assumptions0": [41, 88], "assumptionscontext": [62, 63, 64], "assur": [3, 128, 217], "ast": [88, 221], "asterisk": 5, "astr": 68, "astrophys": 194, "asv": 2, "asym2": 247, "asymmetr": [89, 104], "asymmetri": 241, "asymp": 228, "asymptot": [88, 113, 144, 287], "asymptotic_expans": 88, "at_pin_joint": 148, "atan": [31, 61, 66, 90, 92, 94, 99, 104, 112, 115, 160, 218, 221, 223, 306], "atan2": [61, 66, 90, 94, 165, 221, 265], "atan_2": 61, "atanh": [12, 94, 218, 221, 231], "atbash": 89, "atiyah": 215, "atiyah69": [208, 215], "atkinson": 79, "atleast": 237, "atol": 69, "atom": [15, 50, 69, 80, 88, 115, 118, 124, 146, 192, 211, 218, 221, 239, 240, 246], "atom_nam": 221, "atomic_mass_const": 198, "atomicexpr": [13, 88], "atoms_t": 221, "atop": [93, 96, 223, 231], "attach": [18, 24, 36, 41, 80, 82, 113, 129, 134, 136, 148, 152, 153, 156, 253, 255, 260, 299], "attachment_1": 156, "attachment_2": 156, "attack": 89, "attain": [239, 270], "attempt": [12, 21, 37, 39, 42, 43, 48, 51, 55, 57, 69, 79, 84, 86, 88, 92, 93, 100, 113, 115, 124, 128, 150, 186, 210, 211, 212, 216, 221, 223, 230, 233, 234, 237, 239, 240, 241, 252, 289, 297], "attent": [67, 79, 94], "attenu": 163, "attr": [3, 69], "attr_param": 69, "attribut": [4, 15, 18, 28, 31, 32, 33, 36, 38, 41, 43, 63, 64, 68, 69, 79, 80, 88, 96, 97, 98, 101, 102, 103, 104, 120, 124, 130, 131, 133, 134, 137, 144, 149, 152, 153, 154, 155, 156, 158, 180, 185, 189, 196, 200, 207, 208, 211, 212, 216, 221, 229, 233, 234, 246, 247, 253, 255, 259, 260, 269, 292, 303, 309], "attributeerror": [13, 14, 41, 88, 124, 240], "au": 93, "aug": [34, 203, 240], "aug_assign": 69, "augment": [4, 19, 25, 26, 30, 69, 124, 153, 158, 219, 239, 240, 257, 260, 298], "augmentedassign": 69, "august": [237, 256], "augustu": 89, "austin": 295, "authent": 9, "author": [0, 4, 7, 128, 177, 216], "auto": [11, 13, 16, 51, 67, 88, 89, 116, 207, 210, 214, 217, 221, 233, 237, 241], "auto_assert": 221, "auto_declar": 221, "auto_int_to_integ": [2, 116], "auto_kei": 89, "auto_numb": 130, "auto_symbol": [2, 116, 130], "autoclass": 4, "autocomplet": 16, "autocorrel": 89, "autodetect": [237, 238], "autodoc": 5, "autoexpand": [16, 233], "autofunc": 69, "autofunct": [4, 11], "autogener": 171, "autolev": [2, 23, 302], "autom": [69, 94, 129, 230, 253, 291], "automat": [2, 3, 4, 5, 8, 11, 12, 13, 15, 16, 18, 22, 35, 37, 41, 51, 52, 55, 57, 68, 69, 70, 80, 88, 90, 91, 92, 93, 94, 96, 101, 103, 107, 113, 116, 118, 128, 130, 132, 134, 136, 153, 158, 177, 179, 180, 189, 191, 195, 204, 207, 208, 210, 211, 212, 216, 217, 218, 221, 224, 227, 228, 230, 231, 233, 234, 237, 239, 240, 246, 247, 252, 253, 254, 257, 260, 270, 275, 287, 289, 291, 292, 296, 297, 298, 302, 310], "automatiqu": 218, "automorphisms_of_the_symmetric_and_alternating_group": 71, "autonom": 237, "autos": [80, 127], "autoscal": 207, "autosimplif": [88, 230, 233], "autowrap": [129, 246, 254, 258, 284], "auxiliari": [22, 25, 69, 115, 153, 158, 237, 253, 304], "auxiliary_circl": 98, "auxiliary_eq": [153, 304, 310], "avail": [2, 5, 7, 8, 9, 13, 15, 16, 18, 22, 27, 30, 41, 48, 54, 57, 58, 59, 68, 69, 79, 80, 87, 88, 93, 96, 115, 124, 128, 129, 130, 207, 211, 212, 214, 217, 221, 222, 227, 229, 231, 233, 234, 239, 240, 241, 242, 246, 247, 252, 259, 260, 264, 265, 289, 296], "averag": [105, 115, 128, 214, 241], "aversin": 43, "avoid": [5, 11, 12, 13, 15, 27, 35, 36, 42, 43, 48, 51, 61, 69, 70, 88, 89, 94, 113, 115, 118, 124, 127, 130, 185, 209, 210, 211, 214, 217, 221, 222, 229, 233, 237, 239, 241, 245, 254, 257, 260, 289, 290, 306], "avoid_square_root": 61, "aw": 299, "awai": [4, 14, 18, 68, 70, 89, 136, 137, 140, 148, 156, 216, 221, 302], "awang": 215, "awar": [2, 3, 4, 12, 14, 15, 16, 42, 67, 88, 92, 118, 124, 231, 241, 260], "awhil": 158, "ax": [13, 14, 18, 35, 36, 48, 49, 51, 53, 61, 89, 92, 98, 101, 113, 119, 124, 136, 142, 152, 153, 159, 163, 188, 200, 206, 207, 210, 218, 234, 237, 240, 242, 243, 246, 265, 267, 269, 270, 272, 274, 297, 299, 306], "ax2p": 234, "axb": 190, "axc": 190, "axhlin": 13, "axi": [13, 22, 24, 27, 30, 31, 32, 33, 35, 36, 55, 61, 81, 93, 94, 98, 99, 101, 102, 104, 110, 113, 115, 120, 124, 136, 140, 142, 147, 148, 152, 156, 158, 159, 160, 163, 164, 188, 200, 202, 204, 207, 212, 240, 265, 267, 270, 272, 275, 299, 302, 303, 306, 309, 310, 311], "axial": [136, 160], "axial_forc": 136, "axial_stress": 136, "axiom": [79, 208], "axiom_of_power_set": 229, "axis_cent": 207, "axis_orient": [265, 270], "axis_orienter1": 267, "axis_orienter2": 267, "axis_orienter3": 267, "axis_point": 299, "axisorient": [265, 267, 270], "az": [89, 144, 234], "azbz": [36, 270], "azimuth": 146, "a\u2080": 297, "a\u2080\u2080": 53, "a\u2080\u2081": 53, "a\u2080\u2082": 53, "a\u2080\u2083": 53, "a\u2081": [137, 297], "a\u2081\u2080": 53, "a\u2081\u2081": 53, "a\u2081\u2082": 53, "a\u2081\u2083": 53, "a\u2082": [137, 297], "a\u2082\u2080": 53, "a\u2082\u2081": 53, "a\u2082\u2082": 53, "a\u2082\u2083": 53, "a\u2083": 297, "a\u2083\u2080": 53, "a\u2083\u2081": 53, "a\u2083\u2082": 53, "a\u2083\u2083": 53, "a\u2084": 297, "b": [0, 11, 12, 14, 15, 16, 18, 22, 27, 28, 30, 32, 35, 36, 37, 41, 42, 43, 46, 48, 49, 51, 53, 61, 68, 69, 70, 72, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 111, 113, 115, 117, 118, 119, 120, 124, 128, 130, 131, 132, 134, 136, 137, 138, 140, 142, 144, 149, 150, 152, 153, 154, 155, 156, 158, 160, 163, 168, 170, 172, 174, 179, 180, 183, 188, 189, 190, 191, 200, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 221, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 252, 255, 256, 259, 262, 265, 267, 268, 269, 270, 271, 287, 289, 293, 297, 298, 299, 303, 306, 307], "b0": [84, 96, 212, 231, 237], "b1": [22, 30, 79, 84, 96, 128, 136, 137, 144, 149, 200, 212, 221, 231, 234, 237, 271], "b11": 30, "b12": 30, "b1_frame": 149, "b1prime": 231, "b2": [22, 30, 53, 96, 128, 136, 137, 144, 149, 200, 210, 212, 221, 231, 234, 237, 271], "b21": 30, "b22": 30, "b2_frame": 149, "b3": [22, 30, 117, 200, 271], "b4": 117, "b6bius_funct": [93, 128], "b6bius_inversion_formula": 91, "b_": [79, 84, 86, 88, 93, 96, 113, 120, 144, 223, 231, 234, 242, 243], "b_0": [84, 89, 93, 231, 234, 237], "b_1": [79, 86, 96, 110, 113, 208, 231, 234, 237, 297], "b_2": [79, 86, 96, 110, 231, 237], "b_cm": [22, 155], "b_eq": 239, "b_f": [22, 155], "b_frame": [149, 152], "b_i": [79, 84, 86, 113, 208, 231], "b_ij": 246, "b_interv": 229, "b_ixx": 149, "b_j": [84, 86, 96, 113, 231], "b_k": [79, 86, 89, 93, 96, 223, 224], "b_m": [96, 113, 239], "b_mass": 149, "b_masscent": 149, "b_muscl": 134, "b_n": [89, 93, 117, 208, 224], "b_op": 27, "b_q": [96, 113, 231, 297], "b_r": 79, "b_x": [36, 200, 202, 247, 303], "b_y": [36, 200, 202, 247], "b_z": [36, 200, 247], "ba": [93, 259], "baa": 259, "bab": 76, "babbag": 89, "babi": [93, 128, 259], "back": [0, 35, 43, 51, 52, 54, 68, 69, 84, 87, 88, 89, 94, 96, 103, 104, 110, 112, 113, 115, 116, 124, 128, 129, 144, 185, 205, 207, 210, 211, 216, 217, 219, 221, 231, 237, 239, 242, 243, 299], "backcolor": [116, 205], "backend": [13, 24, 69, 116, 129, 142, 158, 205, 218, 253, 260, 304, 307], "background": [23, 35, 96, 116, 205, 295], "backport": 3, "backslash": [4, 88, 221], "backtick": [4, 5, 8], "backtrac": 221, "backtrack": 86, "backward": [2, 39, 67, 88, 124, 144, 158, 221, 259, 297], "backward_diff": 144, "bad": [8, 11, 12, 13, 14, 87, 128, 193, 210, 221], "badli": 79, "baij": 191, "bailli": 128, "baji": 191, "balanc": [29, 89, 208, 241, 252, 299], "ball": 152, "ban275": 124, "banana": 259, "band": [124, 127], "bar": [13, 69, 96, 180, 186, 262, 301, 305], "bar_10": 186, "bar_4": 186, "bar_5": 186, "bare": [16, 89, 153], "barei": 124, "bareiss": [124, 210], "bareiss_algorithm": 210, "barn": 96, "barri": [215, 259], "base": [2, 3, 4, 5, 8, 9, 10, 11, 12, 14, 15, 16, 18, 22, 30, 31, 33, 36, 41, 43, 48, 59, 61, 63, 64, 67, 69, 70, 77, 78, 79, 84, 85, 86, 88, 89, 91, 93, 94, 95, 96, 99, 101, 104, 111, 115, 116, 117, 118, 119, 120, 128, 129, 130, 131, 132, 134, 141, 148, 149, 152, 155, 156, 158, 159, 160, 169, 171, 175, 176, 180, 186, 187, 189, 191, 193, 196, 197, 199, 200, 202, 205, 206, 207, 210, 211, 212, 213, 214, 215, 216, 217, 221, 223, 228, 229, 230, 231, 233, 234, 237, 239, 241, 245, 246, 247, 252, 253, 254, 255, 256, 257, 259, 260, 261, 265, 268, 269, 272, 292, 297, 302], "base1": 84, "base10": 233, "base2": 84, "base2a": 84, "base_a": 84, "base_char": 136, "base_dim": 193, "base_f": 84, "base_i": 84, "base_id": [208, 212], "base_oneform": 90, "base_ord": 86, "base_req": 69, "base_scalar": 90, "base_seq": 261, "base_set": 229, "base_solution_linear": 234, "base_unit": 199, "base_vector": [90, 265], "basebackend": 207, "basecovarderivativeop": 90, "basedyad": [265, 269], "baselin": 221, "basenam": [252, 253, 254], "basepolynomialerror": 214, "basescalar": [270, 272], "basescalarfield": 90, "baseseri": 207, "baseswap": 79, "basevector": [265, 269, 270], "basevectorfield": 90, "basi": [3, 32, 33, 35, 88, 90, 117, 120, 124, 149, 155, 176, 185, 186, 188, 191, 193, 196, 199, 200, 206, 208, 210, 212, 217, 220, 231, 233, 234, 239, 240, 242, 247, 268, 269, 272, 295, 309, 311], "basic": [2, 3, 4, 5, 7, 10, 11, 13, 15, 17, 22, 25, 26, 28, 30, 31, 33, 36, 41, 43, 57, 61, 63, 68, 69, 70, 76, 79, 83, 86, 87, 91, 94, 104, 106, 111, 112, 113, 118, 121, 123, 125, 132, 144, 152, 158, 165, 175, 189, 196, 199, 203, 207, 208, 210, 212, 213, 214, 216, 218, 219, 221, 222, 228, 233, 234, 237, 238, 239, 240, 241, 252, 254, 259, 260, 263, 271, 272, 273, 280, 282, 283, 287, 288, 289, 290, 295, 304], "basic_orbit": [79, 86], "basic_root": 117, "basic_stabil": 79, "basic_transvers": [79, 86], "basis_el": 216, "basis_element_pullback": 216, "basis_st": 176, "batcheld": 13, "bateman": [96, 115], "batista": 89, "batman": 89, "battl": 291, "baz": 69, "bb": [93, 206, 233, 259], "bb1": 233, "bb2": 233, "bbp_pi": 128, "bbra": 191, "bby": 259, "bc": [61, 100, 140, 259, 262, 271], "bc_deflect": [136, 137], "bc_new": 140, "bc_slope": [136, 137], "bcd": 259, "bch": 89, "bd": [61, 140, 191], "bd_new": 140, "be1": 233, "be2": 233, "bead": 259, "beam": [104, 140, 160, 163, 282], "beam3d": 136, "beamparamet": 160, "beams3d": 136, "bear": [5, 41], "beat": 89, "becam": [23, 89, 151], "becaus": [2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 22, 35, 37, 41, 42, 43, 48, 51, 52, 53, 54, 55, 56, 57, 59, 60, 65, 69, 80, 87, 88, 89, 94, 100, 104, 105, 113, 115, 118, 121, 124, 128, 130, 131, 132, 134, 135, 148, 152, 158, 159, 171, 179, 191, 193, 195, 196, 207, 208, 210, 211, 212, 214, 216, 217, 218, 220, 221, 224, 228, 231, 233, 234, 237, 238, 239, 240, 250, 252, 253, 255, 259, 260, 262, 269, 287, 289, 291, 292, 293, 296, 297, 298, 304, 306], "beckerweispfenning93": 214, "becom": [0, 3, 4, 5, 11, 12, 13, 15, 16, 35, 39, 41, 79, 84, 87, 88, 89, 92, 111, 116, 124, 130, 148, 158, 205, 208, 209, 211, 212, 218, 221, 224, 230, 237, 240, 241, 247, 260, 262, 268, 270, 287, 297], "bee": 262, "been": [3, 11, 14, 16, 18, 22, 23, 27, 28, 33, 34, 35, 36, 41, 43, 48, 67, 69, 70, 74, 79, 80, 81, 84, 87, 88, 89, 94, 100, 113, 115, 124, 128, 129, 130, 131, 133, 134, 136, 149, 151, 152, 153, 158, 164, 176, 186, 188, 196, 203, 208, 211, 212, 216, 218, 219, 221, 223, 228, 231, 233, 238, 239, 240, 242, 243, 251, 252, 254, 255, 257, 259, 262, 269, 272, 289, 290, 292, 293, 297, 302], "befor": [3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 30, 32, 36, 41, 42, 43, 55, 57, 59, 69, 79, 80, 82, 84, 88, 89, 90, 96, 116, 124, 128, 130, 136, 137, 154, 158, 160, 191, 205, 209, 210, 211, 216, 217, 221, 222, 228, 229, 233, 234, 237, 239, 240, 241, 248, 252, 255, 259, 260, 269, 290, 291, 292, 297, 299, 302, 304, 306, 309, 310], "beforehand": [153, 158, 254], "begin": [4, 7, 11, 12, 13, 16, 25, 26, 27, 28, 32, 36, 41, 43, 46, 49, 53, 55, 61, 88, 89, 93, 94, 96, 113, 120, 124, 128, 130, 134, 136, 187, 196, 200, 206, 210, 221, 231, 234, 237, 238, 240, 241, 252, 262, 289, 291, 293, 297, 299, 306], "beginn": [234, 236, 237, 239, 240, 298], "behav": [13, 16, 18, 65, 67, 88, 89, 94, 96, 128, 217, 229, 233, 239, 242, 248, 293], "behavior": [2, 3, 12, 13, 14, 15, 16, 21, 23, 27, 43, 79, 88, 93, 96, 115, 130, 147, 151, 186, 208, 209, 216, 217, 221, 222, 226, 228, 230, 233, 250, 253, 255, 259, 260, 289, 299, 301], "behavior1": 3, "behavior2": 3, "behaviour": [13, 41, 113, 118, 149, 211, 214, 218, 224, 227], "behind": [17, 22, 27, 58, 145, 195, 210, 230, 233, 237, 240, 282, 289], "bei": 233, "being": [3, 5, 12, 14, 15, 16, 18, 21, 22, 27, 28, 30, 31, 32, 33, 35, 36, 37, 41, 42, 65, 67, 69, 79, 80, 86, 87, 88, 89, 93, 94, 96, 98, 100, 101, 104, 105, 113, 118, 124, 125, 128, 136, 137, 140, 148, 156, 158, 187, 196, 202, 206, 207, 208, 210, 211, 212, 214, 216, 217, 218, 220, 221, 230, 231, 233, 234, 237, 238, 239, 240, 241, 247, 250, 252, 256, 257, 259, 260, 262, 265, 270, 274, 291, 293, 302], "beings": 4, "belaso": 89, "believ": [125, 128, 210], "belittl": 5, "bell": [18, 93, 175, 223, 259], "bell_numb": 93, "bell_seq": 223, "bellnumb": 93, "bellpolynomi": 93, "belong": [5, 12, 35, 41, 65, 68, 79, 84, 88, 111, 124, 155, 191, 200, 207, 208, 210, 211, 212, 214, 216, 217, 228, 229, 233, 234, 240, 247], "below": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 18, 22, 24, 25, 26, 27, 28, 30, 36, 41, 43, 46, 48, 52, 55, 56, 57, 59, 67, 68, 69, 78, 79, 80, 88, 89, 93, 95, 96, 97, 98, 104, 105, 111, 113, 115, 124, 127, 128, 130, 134, 136, 137, 138, 144, 148, 149, 152, 153, 154, 155, 156, 158, 185, 191, 196, 200, 206, 207, 208, 210, 217, 221, 222, 224, 230, 233, 234, 236, 237, 238, 239, 240, 241, 252, 254, 259, 260, 262, 270, 272, 275, 276, 293, 297, 302, 306, 307, 308], "below_fermi": [96, 191], "ben": 124, "benchmark": [13, 29, 302], "bend": [98, 104, 135, 136, 139, 282], "bender": 237, "bending_mo": [136, 137], "benefici": 12, "benefit": [0, 2, 14, 21, 27, 43, 50, 69, 205, 210], "bengt": [39, 67], "benini": 241, "benini_distribut": 241, "beninidistribut": 241, "beq": 239, "berkelei": 124, "berkowitz": [124, 210], "berkowitz_det": 124, "berkowitz_eigenv": 124, "berkowitz_minor": 124, "berlekamp": 214, "berlin": 214, "bernd": 124, "bernoulli": [93, 96, 217, 221, 237, 239, 241], "bernoulli_c_poli": 217, "bernoulli_differential_equ": 237, "bernoulli_distribut": 241, "bernoulli_integr": 237, "bernoulli_numb": 93, "bernoulli_poli": [93, 217], "bernoulli_polynomi": [93, 217], "bernoulli_process": 241, "bernoullidistribut": 241, "bernoullinumb": 93, "bernoullipolynomi": 93, "bernoulliprocess": 241, "bertrand": 128, "besid": [7, 71, 88, 214, 239], "bess": [4, 96, 221, 233, 237, 241], "bessel": [4, 5, 94, 106, 115, 217, 233, 237, 241, 291], "bessel_funct": [4, 96], "besselbas": [4, 96], "besselj": [4, 96, 110, 221, 233, 237, 291], "besseljzero": 96, "besselk": [4, 96, 221, 241], "besselsimp": 233, "best": [3, 7, 11, 12, 13, 16, 17, 48, 52, 54, 55, 58, 59, 69, 88, 96, 113, 115, 129, 190, 207, 218, 221, 230, 231, 233, 237, 240, 245, 253, 285, 289, 290, 296, 297], "best_hint": 237, "beta": [4, 16, 18, 69, 79, 88, 115, 134, 148, 188, 200, 206, 216, 218, 221, 237, 241], "beta_": 79, "beta_1_2": 12, "beta_distribut": 241, "beta_funct": 96, "beta_prime_distribut": 241, "beta_r": 231, "betabinomi": 241, "betabinomialdistribut": 241, "betadistribut": 241, "betafunct": 96, "betanoncentr": 241, "betaprim": 241, "betaprimedistribut": 241, "better": [2, 3, 4, 8, 11, 12, 13, 14, 15, 16, 22, 41, 42, 43, 61, 68, 69, 80, 88, 92, 96, 115, 118, 144, 171, 199, 207, 210, 211, 212, 214, 224, 228, 229, 230, 231, 237, 238, 239, 240, 241, 253, 259, 260, 291, 297], "betweem": 18, "between": [2, 3, 9, 12, 13, 14, 15, 18, 22, 24, 27, 28, 30, 31, 32, 33, 35, 36, 38, 42, 43, 48, 52, 68, 69, 78, 79, 80, 82, 86, 88, 90, 93, 96, 98, 100, 101, 102, 103, 104, 105, 115, 117, 118, 120, 121, 124, 128, 129, 130, 131, 132, 134, 140, 141, 142, 144, 148, 152, 155, 156, 158, 159, 160, 163, 164, 170, 177, 179, 180, 181, 185, 188, 189, 190, 191, 194, 195, 196, 200, 201, 202, 204, 207, 208, 210, 212, 214, 216, 217, 221, 223, 233, 237, 238, 239, 240, 241, 242, 255, 260, 265, 268, 269, 272, 274, 289, 299, 304, 309, 311], "betweensubtleshadingandtheabsenc": 89, "bewar": [14, 67, 96], "beyer": 259, "beyond": [2, 11, 12, 14, 27, 41, 50, 82, 104, 128, 208, 211, 230, 233, 293], "bf": [30, 140], "bf02985731": 74, "bf0e81e12a2f75711c30f0788daf4e58f72b2a41": 11, "bfb0055738": 89, "bg": 237, "bh": 237, "bi": [36, 61, 88, 94, 96, 115, 228, 237], "bianchi": 247, "bias": 37, "bibtex": 0, "biceps_activ": 299, "biceps_pathwai": 299, "bicycl": [23, 29, 151, 301, 305], "bidiagn": 124, "bidiagon": 124, "bidiagonal_decomposit": 124, "bifid": 89, "bifid5": 89, "bifid5_squar": 89, "bifid6_squar": 89, "bifid_ciph": 89, "big": [13, 14, 16, 30, 39, 41, 72, 88, 90, 128, 171, 206, 220, 221, 228, 243, 262, 287, 289], "big_trig_ident": 16, "bigg": 46, "bigger": [43, 69, 88, 93, 124, 231, 237, 297], "biggest": 14, "bigl": 224, "bigr": 224, "biholomorph": 113, "biject": [80, 82, 89, 124, 208], "bilater": 115, "bilinear": 144, "bin": [1, 2, 4, 8, 9, 11, 12, 116, 221, 252, 259], "bin_prefix": 197, "bin_to_grai": 72, "binari": [11, 12, 16, 42, 43, 51, 65, 69, 72, 83, 88, 89, 115, 118, 128, 129, 185, 197, 208, 211, 217, 234, 253, 256, 259], "binary_cal": 253, "binary_func": [69, 253], "binary_funct": [69, 129, 253], "binary_partit": 259, "binaryquadrat": 234, "bincoeff": [93, 128, 221], "bind": [2, 69, 221, 253], "bind_c": 69, "binet": 92, "binom": [93, 128, 130, 241, 297], "binomi": [87, 88, 92, 93, 96, 128, 130, 217, 221, 226, 233, 237, 241, 259, 297], "binomial_coeffici": [93, 128], "binomial_coefficients_list": 128, "binomial_distribut": 241, "binomial_mod": 128, "binomialdistribut": 241, "binop": 69, "bio": 89, "biolog": [18, 131], "biomechan": [17, 20, 131, 132, 134, 282, 301], "biomed": [18, 131, 132, 134, 299], "biproduct": 208, "bird": 124, "bisect": [54, 128, 217, 239], "bisector": [101, 104], "bit": [8, 12, 18, 39, 43, 68, 69, 72, 88, 89, 91, 118, 124, 128, 185, 196, 208, 210, 211, 217, 231, 234, 240, 252, 259, 269, 270, 296], "bitcount": 88, "bitlist": [72, 83], "bitlist_from_subset": 83, "bitmap": 221, "bitmask": 91, "bitstr": 72, "bitwis": [42, 91, 118], "bitwiseand": 221, "bitwiseor": 221, "bitwisexor": 221, "biu": 241, "bivari": [214, 220, 237, 241], "bixk": 115, "bizarr": 240, "bket": 191, "bl": [25, 30, 153, 302], "blaback": 11, "black": [116, 136, 176, 187, 205, 221, 296], "blacklist": 252, "blais": 89, "blajer": 29, "blajer1994": [27, 29], "blank": [4, 11, 12, 130, 207], "blanklin": 12, "blazingli": 218, "bleicher": 128, "blindli": 231, "blob": 115, "block": [3, 4, 14, 18, 22, 36, 46, 57, 69, 77, 79, 89, 124, 152, 158, 200, 210, 234, 260, 269, 302, 303, 307], "block_": 79, "block_bodi": 303, "block_collaps": 120, "block_fram": 307, "block_point": 303, "blockdiagmatrix": [120, 124], "blockmatrix": [120, 124], "blockwis": 124, "blog": [12, 13, 43, 69, 93, 124, 234, 240], "blogg": 11, "blogpost": 113, "blow": 128, "blowup": [124, 210], "blue": [24, 142, 207, 221], "blurb": [79, 241], "bl\u00e5b\u00e4ck": 11, "bm": [96, 299], "bmatrix": [25, 26, 27, 32, 36, 46, 55, 61, 120, 124, 130, 200, 234, 299, 306], "bmd": 104, "bmod": [89, 217, 221], "bmtwmg": 89, "bn": 224, "bo": 221, "bob": [89, 152, 158, 303], "bob_fram": 158, "bob_mass": 158, "bob_masscent": 158, "bode": 46, "bode_magnitude_numerical_data": 142, "bode_magnitude_plot": [46, 142], "bode_phase_numerical_data": 142, "bode_phase_plot": [46, 142], "bode_plot": 142, "bodi": [11, 16, 18, 21, 22, 23, 24, 25, 30, 31, 35, 36, 69, 113, 130, 147, 148, 149, 151, 152, 153, 158, 194, 200, 204, 265, 267, 282, 299, 302, 303, 304, 306, 307, 309], "body1": 155, "body2": 155, "body3": 155, "body_b": 22, "body_b_f": 22, "body_inertia": 149, "body_orient": [265, 267, 270], "body_orienter1": 267, "body_orienter2": 267, "body_orienter3": 267, "bodybas": 158, "bodyd": [309, 310, 311], "bodyfork": 302, "bodyfram": 302, "bodylist": [309, 310], "bodyorient": [265, 267, 270], "bodywf": 302, "bodywr": 302, "boer": 196, "boil": 12, "bokeh": 13, "bold": 221, "bold_nam": 221, "boldsymbol": 35, "boltzmann": 195, "bonazzi": 0, "bone": 18, "bonn": 70, "book": [7, 9, 22, 24, 28, 29, 68, 79, 89, 94, 153, 176, 215, 220, 221, 290, 304], "books_articl": 241, "bool": [14, 41, 61, 67, 69, 71, 74, 84, 86, 88, 89, 91, 94, 115, 116, 118, 120, 124, 128, 130, 132, 134, 142, 153, 154, 158, 174, 175, 202, 205, 207, 210, 216, 217, 219, 221, 222, 223, 228, 229, 233, 236, 241, 253, 254, 259, 260, 265, 268, 289], "bool1": 118, "bool2": 118, "bool_": 69, "bool_map": 118, "bool_maxterm": 118, "bool_minterm": 118, "bool_monomi": 118, "boolalg": [88, 118], "boolean": [13, 14, 15, 17, 43, 44, 50, 55, 62, 63, 64, 65, 66, 67, 69, 88, 94, 98, 102, 103, 104, 105, 116, 124, 125, 128, 136, 142, 144, 153, 158, 176, 200, 202, 205, 207, 210, 212, 214, 216, 218, 221, 233, 237, 239, 241, 259, 268, 293], "booleanfals": 118, "booleanfunct": 221, "booleankind": [15, 88], "booleantru": 118, "boost": 69, "boost_mp50": 69, "border": [98, 104], "borrow": 256, "bose": 215, "bose03": 215, "boson": 191, "bosonbra": 191, "bosonicbasi": 191, "bostan": 218, "bot": [3, 11], "botanist": 241, "both": [0, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 24, 27, 35, 36, 38, 41, 42, 43, 48, 50, 51, 52, 55, 60, 61, 67, 68, 69, 80, 83, 84, 86, 87, 88, 89, 93, 94, 96, 103, 112, 113, 115, 118, 124, 128, 130, 133, 134, 136, 137, 144, 148, 149, 152, 153, 155, 156, 158, 163, 164, 175, 181, 188, 191, 195, 196, 200, 204, 207, 208, 209, 211, 212, 214, 216, 217, 219, 220, 221, 223, 228, 229, 230, 231, 233, 234, 237, 239, 240, 242, 246, 252, 254, 259, 260, 265, 267, 287, 290, 291, 292, 297, 298, 299, 302, 306, 307], "both_posit": 42, "both_positive_best": 42, "both_positive_bett": 42, "bother": [14, 96, 292], "bottom": [11, 78, 79, 88, 89, 104, 124, 127, 158, 216, 221, 230, 275], "bottom_fac": 275, "bottom_up": [13, 88], "bound": [15, 18, 50, 65, 69, 70, 87, 88, 97, 98, 99, 101, 103, 104, 115, 128, 155, 189, 207, 210, 212, 214, 215, 216, 217, 221, 227, 237, 239, 240, 241, 246, 256, 262, 265], "bound_symbol": [88, 115], "boundari": [71, 99, 101, 134, 136, 137, 204, 218, 229, 237, 241], "boundary_condit": 136, "bounded_pareto_distribut": 241, "boundedpareto": 241, "box": [171, 176, 178, 187, 189, 275, 282], "bp": [36, 237], "bpp": 36, "bpr": 89, "bpsw": 128, "bq": [96, 209, 210, 231], "br": 55, "bra": [130, 174, 179, 180, 181, 183, 185, 186, 189, 191], "brabas": [179, 180, 186, 189], "brace": [4, 22, 93, 221], "bracelet": [5, 259], "bracket": [16, 43, 54, 56, 80, 88, 96, 189, 191, 200, 221], "bradford": 214, "brain": [18, 256], "branch": [12, 42, 67, 88, 93, 94, 95, 96, 218, 231, 240, 292, 297], "branchpoint": 113, "brandei": 241, "brass": 89, "braun": 237, "breach": [113, 231], "breadth": [69, 88, 241], "break": [3, 4, 11, 12, 13, 14, 35, 43, 68, 69, 80, 88, 89, 128, 218, 221, 229, 259], "break_": 69, "breakag": 3, "breaker": 88, "breaktoken": 69, "bremen": 68, "bremner": 210, "brent": [128, 256], "brew": 8, "brewster": 164, "brewster_angl": 164, "brgc": 72, "brian": [0, 177], "bridg": [22, 121, 135, 138, 140, 260], "brief": [11, 69, 240, 252, 274], "briefli": [41, 209, 214], "brien": [74, 79, 86], "bring": [5, 113, 153, 210, 224, 233, 293, 310], "brito": 206, "broad": [88, 292], "broadcast": [69, 129, 221, 246, 253], "broader": 211, "brocard": 128, "broke": 12, "broken": [12, 13, 35, 77, 88, 221, 237, 262], "bronstein": [115, 215, 217, 223, 239], "bronstein93": [215, 217], "brought": [27, 241], "brown": [214, 215, 241], "brown71": [214, 215], "brown78": [214, 215], "brownian": 241, "browntraub71": [214, 215], "brows": [7, 9], "browser": 8, "bruce": 215, "bruce97": 215, "brute": [39, 230, 234], "bryan": [152, 200, 265, 267], "brychkov": [113, 231], "brzeskia": 303, "brzeskia2012": 303, "bsd": [0, 2, 45, 291], "bsg": [79, 84, 86, 247], "bsgs_direct_product": 84, "bspline": 96, "bspline_basi": 96, "bspline_basis_set": 96, "bu_2": 234, "bubbl": 175, "buchberg": [209, 214, 215, 217], "buchberger01": [215, 217], "bug": [3, 4, 7, 11, 12, 14, 41, 43, 59, 67, 89, 214, 229, 237, 240, 289], "build": [4, 5, 6, 10, 11, 12, 14, 30, 36, 38, 63, 64, 69, 88, 90, 96, 118, 185, 196, 200, 208, 213, 216, 217, 218, 228, 241, 269, 286, 289, 292], "build_expression_tre": 228, "build_opt": 214, "built": [0, 2, 4, 5, 8, 14, 15, 16, 22, 30, 38, 62, 64, 70, 88, 94, 115, 124, 209, 212, 221, 222, 226, 237, 240, 241, 247, 256, 259, 260, 291, 292, 296], "builtin": [14, 88, 212, 221, 229, 262, 296], "bulk": [214, 231], "bullet": [5, 11, 12], "bulletin": 115, "bunch": 217, "bundl": 216, "burden": [3, 221], "burtonl": 80, "butler": [84, 247], "button": [9, 12, 207, 253], "bv_2": 234, "bvar": 296, "bw": 299, "bx": [35, 36, 48, 49, 113, 241, 247, 270], "bxc": 190, "bxy": [51, 234], "by_nam": [212, 216, 217], "bypass": [43, 217, 237], "bytesio": 221, "bz": [35, 113, 234, 247], "c": [0, 2, 7, 8, 9, 12, 14, 15, 16, 18, 21, 22, 24, 26, 27, 30, 32, 35, 36, 39, 41, 43, 46, 48, 49, 51, 53, 60, 61, 67, 68, 72, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 111, 113, 115, 117, 118, 120, 124, 128, 129, 130, 136, 137, 138, 140, 144, 146, 148, 149, 150, 152, 153, 155, 160, 164, 170, 171, 172, 175, 177, 180, 185, 188, 190, 191, 196, 200, 204, 206, 207, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 253, 254, 256, 259, 262, 265, 267, 268, 269, 270, 271, 272, 275, 287, 289, 296, 297, 298, 299, 307, 309, 310, 311], "c0": [18, 120, 124, 132, 228, 237, 239], "c1": [4, 12, 18, 39, 55, 89, 98, 105, 120, 124, 132, 144, 152, 177, 191, 229, 234, 237, 239, 271, 298, 303], "c10": [18, 132], "c11": [18, 132], "c2": [18, 55, 71, 89, 98, 105, 120, 124, 132, 144, 152, 177, 191, 229, 237, 241, 268, 271, 298], "c3": [18, 39, 55, 71, 91, 93, 117, 120, 124, 128, 132, 210, 237, 241, 271, 298], "c4": [18, 71, 117, 120, 124, 132, 237], "c5": [18, 39, 132, 237], "c6": [18, 132, 212], "c7": [18, 39, 79, 132], "c77": 128, "c8": [18, 132], "c89": [69, 221, 254], "c89codeprint": 221, "c9": [18, 132], "c99": [69, 221, 254], "c99codeprint": [43, 69, 221], "c_": [18, 36, 39, 49, 55, 89, 111, 113, 132, 209, 237], "c_0": [18, 39, 89, 111, 132], "c_0_fl_m_act_muscl": 134, "c_0_fl_m_pas_muscl": 134, "c_0_fl_t_muscl": 134, "c_0_fv_m_muscl": 134, "c_1": [18, 39, 55, 89, 111, 113, 132, 228, 231, 237, 303], "c_10_fl_m_act_muscl": 134, "c_11_fl_m_act_muscl": 134, "c_1_fl_m_act_muscl": 134, "c_1_fl_m_pas_muscl": 134, "c_1_fl_t_muscl": 134, "c_1_fv_m_muscl": 134, "c_2": [18, 39, 55, 71, 113, 132, 228, 237, 303], "c_2_fl_m_act_muscl": 134, "c_2_fl_t_muscl": 134, "c_2_fv_m_muscl": 134, "c_3": [18, 71, 113, 132, 237], "c_3_fl_m_act_muscl": 134, "c_3_fl_t_muscl": 134, "c_3_fv_m_muscl": 134, "c_4": [18, 71, 113, 132], "c_4_fl_m_act_muscl": 134, "c_5": [18, 113, 132], "c_5_fl_m_act_muscl": 134, "c_6": [18, 113, 132], "c_6_fl_m_act_muscl": 134, "c_7": [18, 113, 132], "c_7_fl_m_act_muscl": 134, "c_8": [18, 113, 132], "c_8_fl_m_act_muscl": 134, "c_9": [18, 113, 132], "c_9_fl_m_act_muscl": 134, "c_code": [69, 254], "c_explicit": 246, "c_frame": 152, "c_g": 79, "c_header": [69, 254], "c_i": [39, 113, 228, 231, 237], "c_inherit": 246, "c_j": [110, 113, 231], "c_k": 89, "c_kn": 128, "c_m": 299, "c_masscent": 152, "c_mat": 46, "c_n": [93, 96, 117, 217, 237], "c_name": [69, 254], "c_o": 299, "c_r": [70, 231], "c_t": 89, "c_u": 113, "c_w": 231, "c_x": 36, "c_xr": 90, "c_xy": 90, "c_y": 36, "c_z": 36, "ca": [5, 18, 59, 89, 93, 96, 115, 128, 131, 220, 221, 259], "cab": 242, "cabl": 282, "cach": [12, 41, 93, 113, 208, 217, 221, 250, 255, 256, 261], "cache_length": 261, "cacheit": 88, "cacr": 89, "cacr2006": 89, "cadabra": 247, "caesar": 89, "caesar_ciph": 89, "caesarsmethod": 89, "caeser": 89, "cafe": 115, "calc_transform": 124, "calcul": [2, 14, 16, 18, 21, 32, 33, 35, 39, 41, 54, 55, 61, 67, 70, 80, 86, 88, 89, 90, 91, 92, 93, 94, 96, 98, 100, 101, 102, 104, 105, 115, 120, 124, 128, 136, 137, 146, 148, 149, 153, 158, 159, 160, 163, 164, 167, 170, 186, 187, 188, 189, 191, 192, 200, 201, 202, 204, 206, 207, 208, 210, 211, 212, 214, 216, 217, 218, 223, 228, 237, 241, 245, 253, 254, 260, 265, 268, 272, 274, 287, 293, 296, 299, 302, 303, 306], "calculate_seri": 228, "calculu": [30, 33, 34, 50, 52, 88, 93, 115, 128, 230, 241, 271, 272, 273, 276, 277, 288, 290, 295], "call": [2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 21, 22, 24, 27, 28, 33, 35, 36, 38, 39, 41, 42, 43, 48, 49, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 77, 78, 79, 80, 86, 88, 89, 91, 92, 93, 95, 96, 98, 103, 104, 106, 111, 113, 115, 117, 118, 119, 120, 121, 124, 126, 127, 128, 130, 132, 133, 134, 136, 137, 144, 148, 152, 156, 181, 183, 186, 191, 195, 196, 200, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 223, 228, 229, 231, 233, 234, 236, 237, 239, 240, 241, 242, 243, 245, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 268, 269, 272, 274, 287, 289, 291, 292, 293, 296, 297, 298, 302, 306], "callabl": [2, 14, 16, 18, 55, 69, 79, 124, 130, 153, 154, 176, 216, 221, 222, 233, 250, 253, 254, 259, 260, 261], "callback": 263, "caller": [43, 210], "calori": 196, "caltech": 115, "caltechauthor": 115, "calulc": 265, "cambridg": [215, 234], "came": [23, 151, 292], "camera": 207, "can": [0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 49, 53, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 76, 77, 78, 79, 80, 81, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 104, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 163, 164, 165, 170, 172, 175, 179, 180, 181, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 198, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 256, 257, 259, 260, 261, 262, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 295, 296, 297, 298, 299, 300, 303, 304, 306, 307, 310], "can_split": 130, "can_transf_matrix": 193, "canada": 215, "canberra": 103, "canberra_dist": 103, "cancel": [12, 14, 39, 43, 46, 69, 88, 92, 96, 104, 113, 115, 124, 128, 144, 145, 148, 210, 211, 212, 214, 217, 220, 233, 239, 291], "cancel_denom": 210, "cancel_denom_elementwis": 210, "candid": [11, 52, 79, 88, 124, 128, 214, 233], "canfield": 256, "cannon": 70, "cannot": [2, 3, 4, 5, 12, 13, 14, 15, 16, 18, 32, 35, 36, 38, 42, 43, 48, 51, 54, 59, 62, 63, 64, 65, 66, 67, 69, 80, 85, 87, 88, 90, 92, 94, 98, 100, 101, 103, 105, 110, 115, 117, 119, 121, 124, 126, 128, 130, 131, 144, 148, 156, 159, 186, 194, 196, 207, 210, 212, 214, 216, 217, 218, 221, 228, 229, 233, 234, 236, 237, 239, 240, 241, 242, 250, 252, 253, 254, 259, 265, 267, 291, 292, 293, 297, 298], "canon": [4, 14, 15, 41, 50, 69, 72, 77, 79, 80, 84, 88, 89, 90, 94, 104, 113, 118, 124, 128, 130, 132, 153, 168, 172, 191, 193, 196, 198, 210, 214, 222, 229, 230, 233, 237, 239, 241, 247, 259, 297], "canon_bp": 247, "canonic": [14, 15, 75, 88, 230, 247, 277], "canonical_eq": 237, "canonical_form": 241, "canonical_fre": 84, "canonical_normal_form": 118, "canonical_od": 237, "canonical_system": 237, "canonical_vari": 88, "canonicalize_na": 84, "canonicalz": 89, "cantilev": [136, 137], "cantor": 214, "canva": 207, "cap": [89, 92, 191, 229, 240], "capabl": [7, 13, 15, 18, 23, 30, 41, 54, 67, 69, 88, 92, 100, 113, 128, 136, 137, 151, 207, 218, 221, 240, 287, 290, 291, 297, 298, 301], "capit": [15, 87, 89, 144, 237], "capital_pi_not": 87, "capitalis": 41, "captur": [2, 13, 88, 149, 259], "car2d": 90, "cardin": [79, 80, 83, 208, 229], "care": [12, 15, 16, 21, 22, 27, 36, 42, 43, 79, 88, 96, 115, 118, 124, 136, 140, 200, 210, 211, 216, 233, 234, 237, 239, 240, 245, 248, 253, 286, 289, 291], "care_term": 118, "carefulli": [12, 42, 88, 132, 214, 223], "carl": [128, 256], "carla": 259, "carlo": 79, "carmichael": [89, 93, 128], "carmichael_funct": [93, 128], "carmichael_numb": 128, "carmichaelfunct": [93, 128], "carri": [68, 69, 88, 183, 189, 196, 208, 211, 214, 216, 218, 219, 260], "cart": [13, 158], "cart_mass": [13, 158], "cart_masscent": 158, "cartan": 117, "cartan_matrix": 117, "cartan_typ": 117, "cartanmatrix": 117, "cartantyp": 117, "cartantype_gener": 117, "cartesian": [31, 33, 90, 136, 138, 140, 164, 178, 181, 186, 207, 208, 229, 240, 259, 269, 270, 272, 273, 282], "cartesian_product": 229, "cartesiancomplexregion": 229, "case": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 26, 28, 30, 35, 36, 39, 41, 42, 46, 48, 51, 52, 53, 54, 55, 56, 57, 61, 67, 68, 69, 70, 71, 73, 76, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 96, 100, 103, 104, 105, 106, 110, 113, 115, 118, 120, 124, 125, 128, 129, 130, 134, 137, 144, 148, 152, 153, 159, 164, 175, 181, 186, 188, 190, 191, 196, 197, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 226, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 242, 245, 247, 250, 252, 254, 255, 257, 259, 260, 261, 262, 265, 268, 269, 287, 291, 292, 293, 296, 297, 298, 299, 302, 304, 306, 307], "cask": 8, "casoratian": 124, "cass": 291, "cast": [69, 120, 134, 289], "cast_check": 69, "cast_nocheck": 69, "casu": 217, "casus_irreducibili": 217, "cat": [32, 68], "catalan": [88, 93, 221], "catalan_numb": 93, "catalannumb": [93, 221], "catastroph": 69, "catch": [38, 88, 237, 252, 293], "catch_warn": 257, "catchal": 297, "categor": [3, 48, 124, 208], "categori": [13, 208, 276, 283], "cauchi": [96, 113, 115, 212, 237, 241], "cauchy_distribut": 241, "cauchy_lower_bound": 212, "cauchy_principal_valu": 115, "cauchy_upper_bound": 212, "cauchydistribut": 241, "cauchyprincipalvalu": 115, "caught": [14, 237], "caus": [3, 5, 12, 13, 15, 18, 22, 27, 35, 43, 55, 59, 88, 89, 92, 94, 124, 131, 148, 156, 221, 230, 237, 238, 239, 256, 257, 293, 299, 310], "caution": [80, 88, 94, 221, 233], "caveat": [88, 217, 289], "caylei": [79, 82, 124], "cb": [209, 259], "cba": [79, 242, 259], "cbead": 77, "cbl": 241, "cbm": [96, 115], "cbrt": [69, 94, 221], "cc": [49, 53, 89, 104, 206, 209, 210, 211, 217, 293], "ccc": [210, 240], "cccc": 240, "ccode": [43, 69, 221, 246, 254], "ccodegen": 254, "ccw": [101, 104], "cd": [4, 8, 9, 45, 140, 210, 240, 243, 259], "cd_dens": 210, "cdf": 241, "cdhw73": 70, "cdir": 88, "cdot": [13, 18, 28, 32, 33, 35, 36, 41, 46, 70, 87, 93, 96, 106, 110, 111, 113, 120, 124, 128, 130, 145, 147, 159, 196, 206, 208, 209, 214, 217, 224, 228, 231, 234, 237, 239, 242, 243, 259, 271, 272, 291, 292, 297], "cdot1": 297, "cdot2": 297, "ce": [18, 49, 53, 140], "cea": 11, "ceca": 241, "ceil": [89, 94, 128, 130, 152, 221], "ceiling_joint": 152, "ceilingfunct": 94, "cell": 68, "celler": 79, "center": [5, 7, 13, 22, 24, 28, 30, 35, 39, 67, 79, 87, 88, 98, 102, 104, 105, 115, 124, 149, 152, 155, 159, 164, 207, 216, 221, 229, 275, 299, 302, 309, 311], "center_": 79, "center_of_mass": [30, 155], "centimet": 198, "centr": [68, 85, 207], "central": [28, 58, 79, 85, 96, 98, 104, 149, 155, 216, 217, 234, 241], "central_inertia": [149, 155, 307], "centralizer_and_norm": 79, "centralmo": 241, "centric": 207, "centripet": 302, "centroid": [98, 104, 105, 136], "centuri": [89, 208], "cep849r": 93, "certain": [2, 5, 12, 14, 15, 27, 43, 57, 59, 66, 68, 69, 71, 79, 86, 88, 92, 96, 104, 113, 115, 128, 130, 158, 200, 201, 208, 211, 214, 216, 221, 222, 228, 231, 233, 234, 237, 239, 240, 241, 243, 254, 255, 260, 265, 268, 274, 297], "certainli": [39, 100, 130, 256], "cexpr": 241, "cf": [128, 214], "cff": [214, 217], "cfg": [12, 214, 217], "cfrac": 297, "cfunction": 43, "cfunction_format": 221, "cfunction_str": [69, 221], "cg": [170, 188, 195, 243], "cg_simp": 170, "cgate": 175, "cgi": 265, "cgs_gauss": 195, "cgt": 79, "cgtnote": 79, "ch": [90, 124, 234], "ch4": 22, "ch5": 22, "ch6": 22, "chain": [35, 41, 43, 69, 79, 84, 88, 96, 105, 129, 216, 241], "challeng": [18, 23, 151], "chan": 237, "chanc": [3, 12, 16, 42, 88, 116, 124, 231, 241, 292], "chang": [0, 4, 5, 7, 8, 9, 12, 14, 15, 16, 18, 22, 32, 33, 35, 36, 41, 59, 68, 69, 70, 79, 80, 84, 87, 88, 89, 92, 93, 94, 96, 102, 103, 113, 115, 118, 124, 128, 130, 131, 132, 136, 138, 140, 144, 148, 152, 155, 165, 176, 186, 196, 197, 206, 207, 208, 209, 210, 212, 214, 217, 218, 221, 228, 229, 230, 231, 233, 236, 237, 239, 240, 241, 242, 252, 259, 260, 270, 272, 286, 289, 292, 296, 299, 302, 309], "change_index": 87, "change_member_label": 140, "change_node_label": 140, "change_support": 138, "chao": 215, "chaotic": 55, "chapman": [70, 78], "chapter": [4, 22, 79, 96, 128, 215], "chapter1": 7, "chapter11": 241, "chapter3": 221, "chapter4": 221, "chapui": 128, "char": 77, "charact": [3, 4, 5, 11, 12, 14, 88, 89, 113, 116, 130, 171, 200, 205, 207, 221, 237, 252, 254, 257, 262, 289, 291, 296], "character": [33, 36, 136, 137, 228, 241, 247, 274, 303], "characteris": 241, "characterist": [0, 18, 35, 90, 106, 124, 132, 134, 210, 212, 214, 215, 237, 239, 293], "characteristiccurvecollect": [132, 134], "characteristiccurvefunct": 132, "charg": [33, 274], "charl": 79, "charles_marsh_continuous_entropi": 241, "charpoli": [124, 210, 293], "charpoly_bas": 210, "charpoly_berk": 210, "charpoly_factor_block": 210, "charpoly_factor_list": 210, "chart": [90, 207], "chat": [7, 59], "cheap": [43, 88, 128], "cheat": 124, "cheb": 237, "chebyshev": [5, 67, 88, 115, 214, 217], "chebyshev1_rul": 115, "chebyshev2_rul": 115, "chebyshev_polynomi": 96, "chebyshev_root": 96, "chebyshevpolynomialofthefirstkind": 96, "chebyshevpolynomialofthesecondkind": 96, "chebyshevt": [5, 96, 221], "chebyshevt_poli": [96, 217], "chebyshevt_root": 96, "chebyshevu": [96, 221], "chebyshevu_poli": [96, 217], "chebyshevu_root": 96, "check": [2, 3, 4, 5, 7, 8, 9, 11, 14, 15, 16, 22, 27, 30, 33, 37, 38, 39, 41, 42, 43, 51, 55, 57, 63, 64, 67, 68, 69, 71, 74, 77, 79, 80, 81, 86, 87, 88, 89, 93, 96, 100, 111, 113, 117, 118, 120, 123, 124, 125, 128, 144, 149, 150, 158, 159, 171, 179, 191, 193, 194, 199, 207, 208, 210, 211, 212, 214, 216, 217, 223, 229, 231, 233, 237, 238, 239, 240, 241, 245, 246, 250, 252, 254, 257, 259, 268, 272, 289, 297, 304], "check_and_join": 89, "check_dupl": 158, "check_output": 252, "check_rank": [125, 210], "check_sqf": 217, "check_symmetri": 124, "checker": 252, "checkinfsol": 237, "checkodesol": [12, 55, 237], "checkout": [9, 11, 68], "checkpdesol": 238, "checksol": 239, "chemic": [55, 131], "chemistri": 196, "chi": [16, 96, 113, 163, 221, 231, 237, 241, 247], "chi_distribut": 241, "chi_squared_distribut": 241, "chidistribut": 241, "child": [13, 15, 24, 134, 148, 152, 158, 200, 211, 256, 299], "child_axi": [13, 152, 299], "child_force_direction_vector": 299, "child_fram": [13, 24], "child_interfram": [13, 24, 152, 158, 307], "child_izz": 24, "child_joint_po": [13, 152], "child_mass": 24, "child_point": [13, 24, 152, 158, 304, 307], "child_tangency_point": 299, "children": [15, 88, 89, 211, 256], "chin": 115, "china": 124, "chines": [89, 128, 214], "chinoncentr": 241, "chisquar": 241, "choco": 8, "chocolatei": 8, "choic": [18, 27, 32, 35, 55, 69, 80, 93, 96, 113, 115, 129, 134, 187, 196, 200, 212, 214, 217, 221, 233, 237, 259, 291], "choleski": [119, 124], "cholesky_solv": [119, 124], "choos": [4, 8, 9, 11, 14, 18, 28, 35, 36, 52, 55, 79, 84, 88, 90, 93, 124, 128, 134, 137, 142, 191, 195, 200, 210, 217, 218, 221, 228, 230, 231, 237, 238, 241, 252, 257, 297, 299, 306], "choose_domain": 210, "chop": [88, 92, 96, 124, 239, 286], "chord": 98, "chose": [8, 89], "chosen": [31, 79, 80, 88, 89, 90, 101, 102, 124, 128, 136, 193, 195, 196, 207, 208, 210, 212, 214, 216, 221, 228, 231, 237, 241, 252, 265], "christoffel": 90, "christoph": [0, 265], "chrome": 8, "chromium": 8, "chula": 80, "ci": [2, 5, 9, 11, 12, 96, 113, 221, 296], "cia": 89, "cimento": [196, 206], "cimrman": 0, "cipher": 89, "ciphertext": 89, "circ": [68, 88, 99, 105, 113, 120], "circ_plot": 175, "circl": [4, 43, 88, 98, 99, 100, 102, 103, 104, 105, 113, 159, 164, 171, 207, 240, 265, 268, 275, 299], "circuit": [88, 175, 178, 282], "circuit_plot": 171, "circuitplot": 171, "circular": [13, 16, 41, 136, 142, 159, 163, 214, 299], "circumcent": 104, "circumcircl": 104, "circumfer": [88, 98, 159], "circumradiu": 104, "circumscrib": 104, "circumst": [216, 291], "citat": 4, "cite": [4, 44], "cites": 215, "citeseerx": [215, 230], "citi": 234, "cits7209": 93, "civil": [89, 136], "civita": [90, 96, 247], "cj": 61, "cl": [14, 16, 18, 41, 43, 55, 69, 79, 88, 115, 124, 134, 191, 204, 212, 216, 237, 246, 255, 259, 271, 287, 296, 298, 299], "claim": [36, 89, 231, 240], "clairaut": 237, "clang": [2, 130], "claredon": 124, "clarifi": 4, "clariti": [5, 13, 79, 204], "clarku": 241, "clash": [15, 60, 88, 124], "class": [3, 5, 7, 11, 12, 14, 15, 16, 18, 22, 23, 24, 28, 30, 31, 40, 41, 42, 43, 46, 48, 52, 53, 57, 58, 61, 62, 63, 64, 65, 70, 71, 72, 77, 78, 79, 80, 81, 82, 83, 84, 88, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 110, 111, 113, 115, 116, 117, 118, 119, 120, 123, 131, 132, 133, 134, 136, 138, 140, 141, 142, 144, 148, 151, 152, 153, 154, 155, 156, 158, 159, 160, 162, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 193, 196, 197, 198, 199, 203, 204, 205, 208, 210, 211, 212, 214, 217, 218, 219, 220, 222, 223, 224, 227, 228, 229, 231, 233, 237, 238, 239, 240, 241, 243, 246, 247, 248, 252, 253, 254, 255, 256, 257, 259, 260, 263, 266, 269, 270, 272, 273, 275, 276, 280, 282, 287, 289, 292, 297, 299, 306], "class_kei": 88, "class_nam": 88, "classic": [17, 20, 36, 47, 55, 67, 94, 96, 124, 177, 193, 200, 208], "classif": [15, 17, 40, 88, 237, 238], "classifi": [38, 124, 211, 237, 238, 240, 241], "classify_diop": 234, "classify_od": [55, 237], "classify_pd": 238, "classify_sysod": 237, "classmethod": [14, 41, 43, 61, 63, 64, 69, 72, 77, 79, 80, 82, 83, 88, 94, 95, 96, 103, 124, 131, 132, 134, 144, 148, 155, 158, 177, 188, 189, 191, 210, 212, 216, 217, 221, 229, 247, 252], "classnam": 4, "claus": [41, 118], "clean": [3, 252], "cleaner": [12, 21, 30, 237], "cleanest": 270, "cleanup": 217, "clear": [4, 7, 11, 12, 13, 35, 36, 41, 63, 78, 88, 113, 117, 149, 207, 210, 212, 214, 217, 231, 239, 240, 247, 252, 256, 274, 289, 305], "clear_cach": 217, "clear_denom": [210, 212, 217], "clear_denoms_rowwis": 210, "clear_glob": 252, "clear_load": 149, "clearer": [12, 13, 134, 269], "clearli": [3, 4, 36, 43, 93, 128, 211, 231, 293], "clebsch": [178, 188, 206, 282], "clebsch_gordan": 206, "clebsh": 170, "clemson": 241, "cleve": 124, "click": [7, 8, 9, 11], "clickabl": 4, "client": [88, 256], "clipboard": 12, "clo": 212, "clock": [94, 230], "clockwis": [100, 115, 124, 136, 137, 138, 140], "clone": [9, 59, 214], "close": [4, 11, 14, 15, 46, 54, 69, 87, 88, 92, 93, 96, 104, 106, 113, 115, 117, 132, 144, 207, 208, 209, 215, 216, 229, 239, 240, 254, 287, 297, 304], "closed": 229, "closer": [12, 54, 148, 156, 240, 292, 302], "closest": [54, 88, 101], "closing_angl": 101, "closur": [79, 85, 111, 171, 212, 216, 229], "closurefailur": 216, "cloudi": 241, "cloudpickl": 2, "clunki": 60, "clutter": 4, "cm": [30, 68, 241, 299], "cmod": 187, "cmoment": 241, "cmplx": [69, 221], "cn": [80, 221, 296], "cname": 254, "cnf": 118, "cnot": 175, "cnotgat": 175, "co": [4, 9, 12, 13, 14, 16, 18, 22, 27, 30, 33, 35, 36, 43, 46, 49, 50, 52, 54, 55, 56, 57, 61, 67, 69, 87, 88, 90, 92, 93, 94, 96, 97, 98, 101, 102, 104, 106, 110, 111, 112, 113, 115, 124, 128, 130, 149, 150, 152, 156, 158, 159, 163, 165, 200, 202, 204, 206, 207, 211, 214, 217, 218, 220, 221, 222, 223, 224, 228, 229, 230, 231, 233, 237, 239, 240, 241, 242, 248, 260, 265, 267, 268, 269, 270, 275, 286, 287, 289, 291, 297, 298, 299, 302, 303, 304, 307, 309, 310, 311], "coalesc": 256, "coc": 164, "code": [4, 8, 10, 15, 18, 22, 23, 24, 30, 31, 32, 35, 39, 41, 42, 43, 51, 54, 55, 56, 57, 59, 60, 70, 75, 79, 82, 83, 88, 89, 90, 96, 100, 113, 115, 116, 124, 128, 129, 130, 131, 134, 149, 151, 152, 185, 191, 205, 206, 207, 208, 209, 210, 211, 214, 220, 231, 233, 237, 239, 240, 241, 243, 246, 249, 250, 252, 253, 254, 257, 258, 259, 260, 269, 277, 284, 289, 291, 294, 296, 302, 305, 310], "code_gen": [253, 254], "code_qu": 11, "code_text": 221, "codebas": [3, 12, 13, 41, 211, 250], "codeblock": [69, 130], "codegen": [2, 43, 129, 221, 253, 258, 284], "codegenast": 69, "codegenerror": 254, "codeprint": 69, "codewrapp": 253, "codifi": 3, "codirect": 200, "codomain": [68, 208, 216], "coef": [22, 30], "coeff": [30, 43, 88, 90, 118, 212, 214, 216, 217, 227, 233, 237, 239, 247, 297], "coeff_bel": 223, "coeff_monomi": [88, 217], "coeff_mul": 227, "coeff_search": 216, "coeff_wrt": 212, "coeffici": [4, 13, 14, 18, 22, 37, 39, 41, 48, 51, 53, 64, 67, 69, 87, 88, 90, 92, 93, 96, 101, 106, 107, 110, 111, 113, 117, 118, 120, 124, 125, 128, 131, 134, 144, 145, 148, 153, 164, 178, 188, 196, 206, 208, 209, 210, 211, 212, 213, 216, 217, 218, 219, 220, 223, 224, 227, 228, 231, 233, 234, 236, 237, 238, 239, 240, 241, 247, 253, 269, 272, 282, 292, 297, 299, 303], "coerc": [27, 88, 214], "coercibl": 212, "coercionfail": [211, 214], "cofactor": [88, 124, 210, 212, 214, 217], "cofactor_matrix": 124, "cogniz": 3, "cohen": [71, 125, 210, 214, 215, 216], "cohen00": 216, "cohen93": [215, 216], "coher": [167, 193, 199], "coherent_st": 167, "coin": [229, 241], "coin_flip": 241, "coincid": [11, 22, 104, 124, 127, 152, 208, 265, 270, 289], "coincis": 208, "coker": 208, "cokernel": 208, "col": [30, 120, 124, 127, 144, 210, 216, 293], "col1": 124, "col2": 124, "col_del": [124, 293], "col_insert": [124, 293], "col_join": [124, 299, 302], "col_matrix": 30, "colin": 80, "collabor": 9, "collaps": [88, 185, 233], "collect": [2, 5, 18, 30, 40, 45, 68, 69, 79, 88, 105, 115, 128, 136, 144, 158, 191, 198, 206, 212, 214, 217, 230, 231, 233, 237, 241, 252, 259, 299, 310], "collect_const": 233, "collect_sqrt": 233, "collected_expr": 297, "collected_word": 78, "collid": [60, 247], "collin": [214, 215], "collinear": [98, 100, 102, 103, 104], "collins67": [214, 215], "collis": [14, 88, 127, 221], "colloc": [18, 131, 132, 134, 299], "colloqui": [15, 49], "colmatrix": 30, "colon": [4, 88], "color": [5, 9, 14, 116, 142, 205, 221, 252, 259, 296], "colost": 79, "colour": 5, "colsep": 124, "colslic": 210, "colslist": [124, 210], "columbia": 241, "column": [18, 32, 53, 61, 65, 68, 69, 70, 116, 118, 120, 124, 125, 127, 131, 134, 144, 153, 158, 186, 193, 200, 205, 206, 210, 216, 221, 237, 239, 240, 246, 265, 302], "columnspac": [124, 210], "com": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 43, 46, 59, 61, 65, 67, 79, 81, 82, 88, 89, 91, 92, 93, 94, 96, 98, 104, 105, 113, 115, 124, 128, 142, 206, 215, 224, 226, 229, 230, 233, 234, 237, 240, 241, 259, 262, 293], "comb_explicit_rh": [31, 158], "comb_implicit_mat": [31, 158], "comb_implicit_rh": [31, 158], "combin": [4, 11, 13, 14, 16, 18, 23, 31, 43, 48, 56, 68, 88, 92, 93, 96, 115, 117, 118, 124, 128, 137, 144, 151, 152, 153, 158, 170, 177, 185, 186, 188, 189, 190, 194, 195, 196, 197, 208, 209, 211, 212, 214, 216, 217, 221, 222, 230, 231, 233, 234, 237, 239, 241, 242, 256, 259, 286, 289, 292], "combinator": [70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 93, 120, 128, 216, 223, 242, 247, 256, 259, 277, 291, 297], "combinatori": [12, 13, 43, 72, 80, 87, 88, 89, 95, 96, 128, 217, 223, 233, 259, 277, 297], "combintor": 13, "combo": 118, "combsimp": [87, 88, 93, 233], "come": [3, 11, 12, 14, 21, 22, 25, 36, 53, 59, 79, 84, 86, 87, 88, 94, 96, 113, 115, 124, 129, 194, 208, 211, 214, 216, 217, 231, 234, 237, 240, 250, 252, 257, 260, 289, 291, 292, 295, 297, 302], "comfort": [128, 129], "comm": [172, 191, 247], "comm_i2symbol": 247, "comm_symbols2i": 247, "comma": [4, 5, 12, 16, 69, 88, 221, 260, 289], "command": [2, 4, 8, 9, 11, 12, 15, 16, 22, 25, 30, 48, 51, 57, 59, 69, 92, 116, 205, 207, 221, 252, 253, 296], "commaoper": 69, "comment": [4, 5, 11, 12, 22, 69, 79, 218, 221, 254, 259, 302], "commerci": [0, 291], "commit": [9, 12], "common": [5, 9, 11, 12, 13, 14, 15, 16, 18, 23, 28, 30, 34, 35, 36, 41, 42, 43, 49, 50, 51, 52, 55, 67, 69, 79, 80, 88, 89, 94, 99, 102, 105, 115, 124, 128, 129, 130, 142, 144, 149, 151, 152, 154, 158, 163, 196, 200, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 219, 223, 229, 230, 231, 233, 234, 237, 239, 240, 241, 253, 254, 257, 259, 260, 272, 274, 286, 288, 289, 291, 292, 293, 294, 295, 296, 297, 298, 304], "common_prefix": 259, "common_suffix": 259, "commonli": [5, 15, 18, 21, 35, 80, 93, 96, 115, 124, 130, 209, 237, 272], "commun": [3, 5, 7, 11, 59, 206, 237, 239, 241, 293], "communication_class": 241, "commut": [15, 36, 41, 61, 65, 68, 79, 80, 84, 88, 90, 111, 115, 124, 168, 175, 178, 179, 180, 190, 191, 196, 202, 209, 210, 212, 213, 214, 215, 217, 221, 228, 229, 231, 237, 247, 282, 283, 292], "commutative_diagram": 68, "commutative_part": 88, "commutative_properti": [41, 88], "commutativehandl": 65, "commutativepred": 65, "commutes_with": [80, 247], "comp": [70, 128, 237], "compa": 248, "compact": [30, 82, 88, 141, 153, 189, 205, 217, 221, 239, 256], "compactif": 88, "companion": [120, 124], "companionmatrix": 120, "compar": [11, 12, 13, 16, 41, 57, 67, 69, 80, 85, 88, 93, 94, 105, 118, 124, 128, 129, 170, 194, 198, 211, 214, 217, 218, 221, 226, 228, 233, 237, 240, 242, 246, 252, 259, 289, 292, 297, 302], "comparison": [22, 69, 87, 88, 118, 124, 208, 216, 220, 239, 252, 259], "compat": [2, 3, 8, 21, 38, 69, 88, 96, 116, 124, 128, 129, 158, 193, 198, 205, 207, 210, 212, 216, 217, 221, 241, 245, 248, 252, 254, 260], "compatibli": 2, "compb": 248, "compil": [2, 21, 30, 69, 116, 129, 205, 221, 233, 246, 252, 253, 254, 276, 291], "compileflag": [16, 252], "complement": [118, 120, 217, 229, 240], "complementari": [4, 96, 144], "complementset": 229, "complet": [2, 3, 4, 9, 11, 12, 13, 14, 15, 16, 18, 21, 23, 30, 36, 41, 52, 55, 64, 69, 88, 89, 90, 92, 94, 95, 96, 104, 113, 115, 124, 128, 130, 151, 153, 154, 177, 180, 181, 210, 214, 216, 217, 218, 222, 228, 233, 234, 237, 240, 241, 252, 254, 262, 291, 292, 297, 299, 306], "complex": [4, 7, 12, 13, 14, 15, 16, 18, 21, 22, 30, 32, 36, 38, 41, 43, 51, 52, 53, 57, 61, 65, 66, 67, 69, 79, 88, 89, 91, 92, 93, 96, 100, 110, 113, 119, 124, 128, 129, 130, 131, 142, 144, 153, 156, 158, 160, 164, 174, 177, 179, 180, 191, 200, 209, 210, 212, 216, 217, 221, 222, 226, 229, 231, 233, 237, 239, 240, 241, 254, 262, 297, 298], "complex128": 69, "complex64": 69, "complex_": 69, "complex_allow": 254, "complex_beam_paramet": 160, "complex_conjug": 94, "complex_el": 65, "complex_numb": [41, 65, 88], "complexbasetyp": 69, "complexel": 212, "complexelementshandl": 65, "complexelementspred": 65, "complexfield": 212, "complexhandl": 65, "complexinfin": [88, 144], "complexpred": 65, "complexregion": [229, 240], "complexrootof": [48, 88, 124, 212, 217, 237], "complexspac": 177, "complextyp": 69, "compliant": 69, "complic": [4, 12, 14, 16, 18, 23, 25, 36, 37, 41, 43, 48, 54, 61, 69, 79, 87, 89, 90, 92, 93, 94, 96, 113, 115, 120, 130, 151, 191, 210, 211, 214, 218, 220, 231, 233, 240, 241, 245, 246, 254, 256, 260, 262, 287, 289, 292, 293], "compon": [18, 19, 23, 24, 28, 32, 33, 34, 35, 36, 48, 68, 69, 84, 88, 90, 103, 115, 120, 124, 132, 133, 134, 144, 145, 151, 152, 155, 158, 163, 188, 193, 200, 203, 206, 207, 208, 209, 210, 217, 219, 241, 243, 246, 247, 256, 259, 265, 268, 271, 272, 299], "component_": 259, "componentwis": [208, 221], "compos": [27, 35, 68, 88, 89, 193, 196, 208, 212, 216, 217, 218, 221, 223, 233, 306], "composit": [41, 65, 68, 77, 79, 80, 88, 89, 106, 108, 115, 128, 136, 212, 214, 217, 220, 233, 240, 255], "composite_numb": [41, 88], "compositedomain": 212, "compositehandl": 65, "compositemorph": 68, "compositepi": 128, "compositepred": 65, "composition_seri": 79, "compound": [88, 189, 307], "compound_pend": 307, "compound_probability_distribut": 241, "compound_rv": 241, "compounddistribut": 241, "comprehens": [13, 41, 46, 52, 53, 55, 215, 229, 241, 286, 300], "compress": [18, 79, 124, 127, 140], "compris": [28, 31, 79, 89, 120, 144, 155, 217, 259], "compulsori": 144, "comput": [0, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 21, 22, 23, 30, 32, 33, 35, 39, 41, 42, 43, 46, 48, 49, 52, 53, 54, 59, 61, 67, 69, 70, 71, 72, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 101, 103, 107, 110, 111, 112, 114, 115, 117, 120, 124, 125, 127, 128, 130, 136, 137, 142, 144, 151, 152, 153, 154, 158, 175, 176, 177, 185, 190, 191, 193, 195, 196, 200, 201, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 223, 224, 226, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 243, 253, 256, 259, 260, 265, 267, 268, 269, 270, 271, 272, 274, 277, 286, 287, 289, 290, 293, 297, 299, 302, 304, 309], "computation": [14, 53, 84, 94, 152, 153, 154], "computationfail": 214, "compute_explicit_form": 158, "compute_fp": 223, "compute_leading_term": 88, "compute_m_ybar": 237, "comtet": 223, "comupt": 237, "concaten": [89, 124, 148, 156, 259], "concav": [67, 160], "concave_funct": 67, "concentr": [18, 55, 137, 241], "concept": [13, 15, 36, 41, 79, 211, 213, 216, 221, 240, 245, 274, 290, 295, 302, 305], "conceptu": [196, 208, 274], "concern": [4, 12, 14, 15, 33, 41, 67, 70, 87, 92, 128, 207, 209, 210, 211, 220, 221, 222, 233, 234, 239, 253, 254, 256, 262], "concis": [4, 30], "conclud": [33, 41, 96, 111, 228, 239, 274, 302], "conclus": [68, 88, 300], "concret": [11, 18, 22, 41, 68, 80, 88, 93, 94, 115, 117, 124, 128, 131, 134, 148, 196, 212, 216, 221, 277], "concur": 218, "concurr": [101, 102, 218], "concycl": 103, "cond": [94, 113, 115, 229], "conda": [2, 8, 9, 59, 130], "condens": [124, 240], "condit": [12, 14, 15, 18, 23, 27, 30, 41, 42, 46, 48, 50, 69, 79, 88, 90, 94, 96, 106, 107, 110, 111, 112, 115, 118, 124, 128, 130, 136, 137, 140, 144, 150, 151, 154, 160, 204, 206, 218, 221, 224, 231, 234, 236, 237, 239, 240, 241, 246, 297, 302], "condition_numb": 124, "condition_set": 241, "conditionaldomain": 241, "conditionset": [229, 240, 241, 298], "conduct": [5, 18, 132], "cone": 275, "confederaci": 89, "confer": [93, 129, 295], "confid": 291, "config": [9, 116], "configur": [2, 3, 11, 12, 13, 18, 23, 25, 27, 46, 80, 118, 144, 149, 151, 153, 221, 299, 304, 306, 309, 311], "configura": 30, "configuration_constraint": [25, 153, 299, 302, 306], "confirm": [3, 12, 13, 79, 128, 237], "conflict": [13, 22, 94, 128, 144, 254], "confluent": [96, 231], "conform": [18, 88, 240, 245, 246, 259], "confus": [3, 5, 12, 13, 14, 15, 36, 41, 51, 88, 93, 118, 164, 209, 217, 240, 286, 287, 289], "confusingli": 96, "cong": 214, "congratul": 294, "congruenc": [79, 88, 128, 231, 234], "congruent": [214, 231, 234], "conic": [98, 234, 265], "conicis": 208, "conj": 221, "conjectur": [128, 214], "conjg": 221, "conjug": [4, 48, 65, 77, 78, 79, 88, 94, 96, 124, 130, 146, 160, 174, 177, 191, 214, 217, 221, 237, 247], "conjugaci": [70, 71, 79], "conjugacy_class": 79, "conjugate_convent": 124, "conjugate_gauss_beam": 160, "conjunct": [94, 118, 128, 207, 231, 252, 297], "conlist_coord": 302, "conlist_spe": 302, "connect": [9, 18, 24, 41, 82, 89, 90, 103, 104, 124, 129, 136, 140, 144, 149, 152, 158, 159, 208, 209, 210, 219, 237, 241, 259, 265, 302, 307], "connect_to": 13, "connected_compon": [124, 259], "connected_components_decomposit": 124, "connector": 137, "consec": 79, "consec_succ": 79, "consecut": [5, 69, 79, 84, 87, 88, 89, 93, 104, 156, 233, 239], "consequ": [12, 13, 43, 65, 88, 134, 209, 211, 289, 297], "consequenti": 133, "conserv": [26, 88, 153, 201, 268, 274, 303], "conservative_field": [33, 272], "conserve_mpmath_dp": 255, "consid": [0, 3, 5, 12, 13, 14, 15, 16, 18, 21, 25, 31, 33, 35, 38, 41, 42, 43, 46, 57, 61, 65, 68, 69, 77, 80, 83, 87, 88, 89, 91, 92, 93, 94, 96, 98, 100, 104, 112, 113, 115, 116, 117, 118, 120, 124, 128, 144, 148, 149, 155, 181, 188, 191, 195, 196, 201, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 224, 228, 233, 234, 237, 238, 239, 240, 241, 252, 254, 259, 268, 270, 272, 274, 275, 289, 293, 297], "consider": [3, 12, 21, 42, 88, 129, 211, 220, 229, 234, 237, 269], "consist": [4, 5, 13, 15, 18, 24, 28, 39, 41, 50, 52, 56, 68, 79, 80, 84, 88, 89, 93, 94, 96, 98, 104, 106, 113, 118, 128, 130, 131, 136, 140, 152, 155, 165, 185, 191, 196, 199, 204, 207, 209, 210, 211, 212, 214, 229, 237, 239, 240, 241, 245, 250, 253, 254, 259, 290, 292, 303, 304], "consol": [2, 3, 16, 88, 116, 205, 207, 296], "const": [212, 221], "constanc": 88, "constant": [12, 13, 14, 15, 18, 22, 30, 31, 33, 46, 48, 50, 51, 53, 56, 67, 69, 87, 88, 92, 94, 96, 112, 113, 115, 131, 132, 134, 136, 137, 144, 148, 158, 159, 168, 172, 178, 194, 195, 197, 198, 199, 201, 204, 207, 209, 212, 214, 216, 217, 218, 221, 223, 228, 231, 233, 234, 237, 238, 239, 240, 241, 252, 254, 259, 260, 268, 272, 275, 282, 287, 293, 298, 299, 302], "constant_problem": 293, "constant_renumb": 237, "constant_symbol": 158, "constantli": 228, "constantrul": 115, "constantsimp": 237, "constanttimesrul": 115, "constitu": [98, 104, 155, 200, 227, 265], "constitut": [3, 5, 15, 115, 128, 221], "constr": 239, "constrain": [26, 30, 153, 154, 239, 299, 304, 306], "constraint": [22, 23, 25, 26, 27, 30, 39, 50, 124, 137, 144, 149, 151, 153, 154, 158, 218, 239, 299, 302, 304, 305, 306, 308], "constraint_solv": 153, "construct": [13, 14, 18, 21, 22, 39, 46, 50, 61, 63, 64, 67, 68, 69, 71, 88, 90, 94, 96, 98, 102, 104, 116, 120, 124, 129, 132, 134, 137, 144, 148, 149, 153, 155, 156, 158, 176, 180, 189, 190, 193, 197, 208, 210, 211, 212, 214, 216, 217, 221, 234, 239, 241, 242, 246, 254, 256, 257, 269, 271, 272, 289, 292, 293, 297, 299, 300, 302], "construct_c": 237, "construct_d": 237, "construct_domain": [210, 211, 212, 217], "constructor": [13, 14, 15, 18, 43, 63, 64, 68, 69, 75, 79, 80, 81, 88, 95, 96, 117, 121, 124, 130, 131, 132, 134, 148, 156, 184, 185, 189, 193, 207, 208, 210, 211, 212, 221, 229, 237, 246, 254, 269, 277, 288, 292, 306], "construtor": 148, "constuct": 18, "consult": 70, "consum": [4, 27, 69, 96, 154], "contact": [35, 104, 245, 302, 308, 309, 310, 311], "contain": [2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 27, 28, 30, 31, 36, 37, 41, 42, 43, 50, 51, 52, 53, 55, 56, 57, 60, 62, 63, 67, 68, 69, 70, 71, 79, 80, 84, 86, 87, 90, 91, 92, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 114, 115, 117, 118, 120, 123, 124, 127, 128, 129, 130, 132, 134, 136, 138, 139, 140, 142, 143, 144, 145, 148, 149, 153, 154, 155, 158, 160, 161, 162, 164, 165, 166, 178, 181, 183, 186, 188, 191, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 221, 222, 223, 228, 229, 231, 233, 234, 235, 237, 238, 239, 240, 241, 245, 246, 247, 249, 250, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 265, 268, 276, 287, 289, 293, 297, 299, 302, 306], "contbound": 214, "content": [3, 6, 14, 17, 20, 69, 88, 89, 122, 209, 210, 212, 214, 217, 220, 221, 240, 249, 254, 257, 258, 277, 278, 279, 280, 281, 282, 283, 284, 288, 290, 301], "context": [3, 4, 5, 11, 12, 13, 14, 22, 37, 41, 43, 54, 62, 63, 64, 88, 90, 96, 118, 148, 149, 196, 211, 212, 214, 216, 229, 250, 252, 257, 265], "contigu": [88, 231, 254], "continu": [3, 4, 5, 12, 13, 39, 42, 43, 46, 67, 69, 78, 80, 82, 88, 93, 94, 96, 113, 116, 124, 128, 141, 142, 144, 186, 189, 205, 212, 214, 217, 234, 236, 237, 245, 288], "continue_": 69, "continued_fract": 128, "continued_fraction_converg": 128, "continued_fraction_iter": 128, "continued_fraction_period": 128, "continued_fraction_reduc": 128, "continuetoken": 69, "continuous_domain": [67, 236], "continuousdistributionhandmad": 241, "continuousdomain": 241, "continuousmarkovchain": 241, "continuouspspac": 241, "continuousrv": 241, "continuum": [47, 59, 282, 301], "continuum_mechan": [135, 136, 137, 138, 140], "contour": [96, 98, 113, 207, 231], "contourf": 207, "contract": [18, 69, 90, 131, 132, 134, 145, 191, 221, 230, 243, 245, 246, 247, 248, 299], "contract_al": 247, "contract_metr": 247, "contractil": [18, 134, 148], "contraction_ax": 242, "contraction_indic": 243, "contradict": [41, 221], "contrarili": 48, "contrast": [12, 14, 15, 43, 87, 88, 211, 217, 231, 237, 291, 306], "contravari": [84, 124, 247, 248], "contribut": [0, 2, 3, 4, 5, 9, 10, 12, 59, 104, 128, 153, 211, 214, 216, 237, 275, 294, 307, 310], "contributor": [2, 5, 6, 7, 8, 11, 13, 43], "control": [2, 7, 9, 13, 14, 16, 18, 27, 30, 37, 41, 43, 47, 68, 70, 88, 89, 92, 113, 118, 124, 131, 132, 134, 148, 171, 175, 186, 187, 191, 210, 217, 218, 222, 229, 234, 240, 259, 282, 286, 299], "control_lin": 171, "control_plot": 142, "control_point": 171, "control_valu": 175, "controller_mat": 144, "conv": 91, "convei": [11, 48], "conveni": [0, 8, 13, 14, 15, 16, 22, 28, 30, 35, 36, 50, 52, 57, 60, 67, 69, 80, 88, 89, 93, 96, 115, 118, 130, 202, 207, 208, 209, 210, 211, 212, 216, 219, 228, 229, 233, 239, 245, 246, 253, 255, 256, 260, 272, 287, 289], "convent": [3, 4, 5, 18, 30, 33, 43, 55, 79, 80, 84, 87, 88, 89, 93, 94, 96, 98, 103, 113, 115, 118, 130, 136, 137, 140, 144, 147, 148, 156, 160, 164, 185, 186, 188, 193, 194, 207, 221, 237, 238, 240, 241, 247, 274, 289, 297, 302], "converg": [13, 14, 69, 87, 92, 96, 115, 128, 160, 217, 224, 228, 231, 287], "convergence_stat": 96, "convergence_test": 87, "convers": [4, 5, 13, 14, 27, 41, 51, 69, 88, 108, 130, 195, 209, 210, 211, 212, 214, 216, 218, 221, 234, 246, 253, 265], "convert": [2, 3, 8, 13, 14, 15, 16, 28, 32, 37, 41, 42, 43, 46, 51, 53, 54, 55, 61, 65, 69, 72, 80, 84, 88, 89, 92, 93, 94, 101, 102, 103, 105, 108, 109, 112, 116, 118, 124, 127, 128, 130, 144, 148, 155, 185, 188, 194, 195, 196, 198, 204, 207, 208, 210, 212, 214, 216, 217, 218, 219, 221, 222, 223, 229, 230, 231, 233, 234, 237, 238, 240, 241, 242, 243, 246, 252, 253, 259, 260, 262, 263, 268, 283, 288, 289, 292, 297], "convert_array_to_matrix": 243, "convert_equals_sign": 130, "convert_from": [211, 212], "convert_indexed_to_arrai": 243, "convert_matrix_to_arrai": 243, "convert_to": [194, 195, 198, 210, 216], "convert_to_c": 130, "convert_to_expr": 130, "convert_to_fortran": 130, "convert_to_native_path": 252, "convert_to_python": 130, "convert_xor": [88, 130], "convex": [67, 104, 105, 115], "convex_funct": 67, "convex_hul": [4, 100, 104, 105], "convolut": [12, 13, 96, 223], "convolution2d": 69, "convolution_fft": 91, "convolution_fwht": 91, "convolution_ntt": 91, "convolution_subset": 91, "convolution_theorem": 91, "conwai": 74, "coolei": 91, "cooper": 88, "coord": [21, 90, 103, 105, 189, 204], "coord_con": 25, "coord_funct": 90, "coord_idx": [31, 158], "coord_index": 90, "coord_si": [90, 268], "coord_stat": 158, "coord_system": 13, "coord_tuple_transform_to": [13, 90], "coordin": [18, 22, 24, 25, 26, 29, 31, 32, 33, 36, 61, 69, 89, 90, 94, 96, 97, 99, 103, 105, 120, 124, 136, 138, 140, 142, 146, 148, 149, 152, 153, 154, 156, 158, 159, 167, 169, 188, 189, 192, 200, 201, 202, 204, 208, 216, 217, 229, 237, 265, 267, 268, 271, 273, 275, 280, 299, 301, 302, 303, 304, 305, 307, 309], "coordinate_deriv": [31, 158], "coordinate_system": 90, "coordinatesym": [200, 202], "coordinatesymbol": 90, "coordsyrect": 265, "coordsys3d": [265, 267, 268, 269, 271, 272, 275], "coordsysrect": 265, "coordsystem": [13, 90], "copi": [0, 9, 11, 12, 13, 16, 41, 45, 70, 80, 81, 88, 104, 124, 128, 129, 210, 212, 214, 216, 220, 221, 228, 239, 252, 259, 262, 296], "coplanar": [36, 61, 102], "coprim": [89, 115, 128, 187, 214, 234], "core": [2, 3, 4, 7, 11, 12, 14, 15, 16, 38, 41, 42, 43, 50, 65, 67, 69, 79, 89, 94, 95, 97, 105, 123, 124, 128, 130, 189, 190, 209, 210, 211, 212, 213, 214, 216, 217, 218, 221, 228, 229, 233, 234, 237, 241, 251, 252, 253, 259, 260, 263, 276, 277, 289, 292], "core_2": 128, "core_t": 128, "corioli": 302, "cornacchia": 234, "corner": [11, 12, 79, 81, 124, 217, 237, 240, 260], "correct": [3, 4, 5, 11, 12, 13, 14, 16, 18, 22, 27, 35, 36, 42, 43, 51, 53, 55, 69, 77, 79, 85, 87, 88, 92, 94, 112, 113, 115, 124, 128, 144, 148, 156, 214, 217, 228, 234, 237, 239, 240, 245, 253, 259, 289, 296, 299], "correctli": [2, 3, 4, 5, 8, 11, 12, 13, 14, 22, 27, 42, 43, 67, 92, 113, 116, 124, 130, 133, 148, 156, 221, 228, 234, 237, 302], "correl": 241, "correspond": [3, 4, 5, 7, 11, 12, 13, 18, 22, 31, 33, 39, 41, 42, 43, 46, 51, 55, 67, 68, 69, 70, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 111, 113, 115, 117, 118, 124, 127, 128, 132, 134, 136, 137, 144, 150, 152, 153, 154, 155, 158, 163, 167, 181, 185, 186, 188, 192, 193, 196, 200, 204, 206, 207, 209, 210, 211, 212, 214, 216, 217, 221, 227, 228, 231, 233, 234, 237, 238, 239, 240, 241, 243, 245, 246, 247, 254, 255, 256, 257, 259, 260, 262, 265, 267, 269, 270, 272, 274, 292, 298, 302, 306], "correspondingli": 68, "cosec": 94, "coset": [79, 84, 216], "coset_enumer": 70, "coset_enumeration_c": 70, "coset_enumeration_r": 70, "coset_factor": 79, "coset_rank": 79, "coset_t": [70, 79], "coset_table_bas": 70, "coset_table_max_limit": 70, "coset_transvers": 79, "coset_unrank": 79, "cosh": [43, 88, 94, 96, 107, 113, 130, 132, 218, 221, 222, 231, 233, 239, 293, 297], "coshint": 221, "coshintegr": 221, "cosin": [18, 36, 43, 88, 94, 96, 103, 115, 149, 152, 200, 217, 218, 224, 230, 241, 265, 297], "cosine_transform": 115, "cosinetransform": 115, "cosint": 221, "cosintegr": 221, "coskew": 241, "cosmet": [12, 221], "cost": [12, 67, 69, 128, 210, 240, 291, 306], "cost_funct": 69, "costli": [113, 210, 217, 293, 306], "cot": [12, 88, 94, 96, 130, 218, 221, 230], "cotang": [94, 218], "coth": [94, 221, 233], "could": [12, 13, 14, 15, 16, 18, 22, 23, 27, 39, 41, 43, 52, 54, 56, 64, 69, 81, 88, 100, 113, 115, 118, 151, 152, 155, 191, 194, 196, 208, 211, 214, 216, 218, 221, 229, 231, 233, 237, 238, 239, 240, 241, 242, 245, 246, 253, 257, 270, 271, 289, 292, 297], "could_extract_minus_sign": 88, "couldn": 115, "count": [3, 5, 15, 74, 80, 87, 88, 89, 93, 98, 118, 124, 127, 128, 186, 217, 229, 230, 233, 240, 241, 247, 256, 259], "count_complex_root": 212, "count_digit": [88, 128], "count_op": [12, 16, 88, 230, 233], "count_partit": 256, "count_real_root": 212, "count_root": 217, "countabl": [196, 240], "counter": [69, 88, 94, 100, 124, 137, 138, 140], "counterclockwis": [97, 98, 99, 103, 124, 136, 137], "counterexampl": [128, 297], "counterpart": [88, 89, 237, 287], "coupl": [18, 27, 55, 88, 124, 130, 158, 170, 185, 188, 206], "coupledspinst": 188, "cours": [12, 28, 33, 39, 41, 45, 71, 72, 79, 87, 96, 113, 115, 124, 125, 128, 210, 211, 215, 216, 228, 230, 231, 272, 297], "cov": 239, "covarderivativeop": 90, "covari": [84, 90, 124, 241, 247, 248], "cover": [12, 19, 20, 21, 22, 32, 35, 39, 94, 128, 130, 247, 254, 287, 289, 300, 301], "coverag": 4, "coverage_doctest": 4, "coverage_report": 12, "covering_product": 91, "covhtml": 12, "cox": [70, 215, 217], "cox97": [215, 217], "coxet": 117, "coxeter_diagram": 117, "cp": [0, 80, 129, 209, 210], "cphase": 175, "cpp_dec_float_50": 69, "cpp_src": 115, "cpu": [11, 30, 69, 129], "cpython": [12, 30], "crack": 128, "cramer": [124, 153, 210, 237], "cramer_solv": [119, 124], "crandal": 128, "crazi": 289, "crc": [70, 78, 80], "creat": [0, 2, 4, 5, 7, 8, 12, 14, 15, 18, 22, 24, 26, 27, 28, 30, 31, 32, 35, 36, 41, 42, 50, 51, 52, 53, 55, 56, 57, 61, 63, 68, 69, 70, 77, 79, 80, 88, 89, 90, 92, 94, 95, 96, 98, 100, 101, 103, 104, 109, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 126, 128, 129, 130, 131, 132, 134, 136, 140, 144, 148, 149, 152, 153, 155, 156, 158, 159, 168, 170, 172, 176, 179, 180, 181, 185, 186, 188, 189, 191, 194, 197, 200, 202, 204, 207, 208, 210, 211, 212, 214, 216, 217, 218, 221, 228, 233, 237, 240, 241, 242, 246, 247, 252, 253, 254, 256, 257, 259, 260, 265, 270, 272, 287, 289, 292, 293, 296, 297, 298, 299, 304, 306, 307, 309, 311], "create_expand_pow_optim": 69, "create_new": [265, 270], "createboson": 191, "createcg": 171, "createfermion": 191, "creation": [13, 16, 18, 23, 24, 25, 26, 27, 35, 36, 43, 88, 90, 124, 133, 149, 151, 155, 165, 175, 179, 180, 181, 191, 221, 241, 246, 254, 260, 309], "creator": 191, "credit": 259, "crell": 216, "cremona": 234, "criteria": [41, 88, 292], "criterion": [29, 69, 79, 209, 214], "critic": [35, 52, 67, 134, 164, 216, 240], "critical_angl": 164, "critical_point": 52, "critiqu": 220, "crmarsh": 241, "crootof": [57, 88, 217, 237, 239], "cross": [3, 5, 11, 12, 15, 30, 32, 35, 36, 88, 98, 104, 124, 136, 137, 149, 152, 155, 159, 171, 200, 202, 234, 240, 265, 269, 271, 272, 299, 310], "cross_sect": 136, "crosscovariancematrix": 241, "crown_i": 135, "crown_x": 135, "crt": [89, 128, 210, 214], "crt1": [128, 214], "crt2": [128, 214], "crucial": [79, 87, 211], "crude": [113, 207, 302], "crv": 241, "crv_type": 241, "cryptanalysi": 89, "crypto": 89, "cryptograph": 89, "cryptographi": [128, 276, 283], "cryptosystem": 89, "csail": 91, "csc": [94, 130, 221, 230], "csch": [94, 221], "cse": [21, 69, 129, 180, 222, 233, 254, 260, 299], "cse_main": [69, 222, 233], "cset": 88, "csr": 127, "csse": 93, "cst": 22, "cstech": 265, "csusm": 234, "ct": [89, 117, 214], "ctan": [116, 205], "ctimesd": 16, "ctmcnote": 241, "ctr1": 230, "ctr2": 230, "ctr3": 230, "ctr4": 230, "ctrl": 8, "cube": [48, 67, 69, 72, 79, 81, 94, 115, 214, 215, 234, 240, 275], "cube_root": 94, "cubefre": 128, "cuberoot": 94, "cubic": [48, 96, 148, 208, 217, 234, 239], "cubic_curv": 265, "cubic_equ": 217, "cubicthu": 234, "cucurezeanu": 234, "cuda": [2, 129], "cuhk": 234, "cultur": 208, "cumbersom": [4, 11, 57], "cup": [41, 217, 229, 240], "cupi": [2, 129], "curl": [201, 265, 268, 275], "curli": [16, 22, 221], "current": [3, 5, 11, 12, 13, 14, 16, 21, 22, 23, 36, 41, 50, 51, 61, 64, 67, 68, 69, 70, 72, 79, 82, 83, 85, 86, 87, 88, 90, 94, 96, 98, 100, 103, 108, 111, 113, 115, 117, 124, 128, 130, 136, 141, 149, 151, 185, 190, 191, 195, 199, 207, 208, 209, 210, 212, 214, 217, 218, 220, 221, 222, 228, 231, 233, 234, 236, 237, 238, 239, 240, 241, 247, 252, 253, 254, 256, 269, 283, 293, 298], "currentfactor": 217, "curri": [0, 177], "curv": [4, 19, 68, 90, 100, 115, 128, 133, 134, 135, 136, 160, 207, 208, 237, 265, 275, 282, 283, 287], "curvatur": [52, 160, 164], "curvedmirror": 160, "curvedrefract": 160, "curvilinear": [207, 269, 270], "curving_amount": 68, "custom": [4, 9, 13, 17, 32, 33, 44, 69, 80, 88, 92, 95, 116, 124, 130, 131, 148, 150, 152, 156, 159, 205, 223, 227, 234, 241, 247, 253, 260, 265, 274, 291, 293, 299], "custom_funct": [69, 221], "custom_sin": 260, "customarili": 209, "cut": [88, 93, 94, 96, 104, 113, 208, 231, 256, 262, 297], "cut_sect": 104, "cvd": 90, "cx": [35, 89, 137], "cxd": 190, "cxx": 221, "cxx11codeprint": [43, 221], "cxx98codeprint": 221, "cxxcode": [43, 69, 221], "cy": [35, 51, 234], "cyan": 207, "cybertest": 233, "cycl": [5, 13, 69, 76, 79, 80, 86, 88, 91, 93, 124, 128, 165, 229, 259], "cycle_detect": 128, "cycle_length": 128, "cycle_list": 89, "cycle_structur": 80, "cyclic": [74, 76, 79, 80, 81, 91, 124, 128, 247, 259], "cyclic_form": [76, 80, 81], "cyclic_ord": 76, "cyclicgroup": [73, 76, 79], "cyclotom": [88, 212, 214, 215, 216, 217], "cyclotomic_field": [212, 216], "cyclotomic_poli": [88, 216, 217], "cyclotomicpolynomi": 215, "cygwin": 8, "cyl": 18, "cylind": [18, 156, 159, 275, 299], "cylindr": [152, 159, 207, 272], "cylindricaljoint": 152, "cython": [2, 30, 69, 129, 253], "cythoncodewrapp": 253, "cz": [35, 51, 91, 144, 234], "czapor": 215, "c\u2081": [291, 298], "c\u2082": [291, 298], "d": [4, 5, 7, 8, 11, 12, 13, 15, 16, 18, 30, 32, 35, 36, 39, 43, 46, 49, 51, 53, 55, 61, 68, 72, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 93, 96, 98, 102, 106, 111, 113, 115, 117, 118, 119, 120, 124, 125, 127, 128, 130, 136, 140, 144, 152, 153, 154, 160, 163, 164, 170, 180, 188, 190, 191, 196, 200, 202, 206, 207, 209, 210, 211, 212, 214, 215, 216, 217, 218, 221, 223, 227, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 247, 259, 262, 265, 267, 268, 269, 270, 274, 282, 293, 298, 299, 303], "d0": 84, "d1": [68, 84, 144, 200, 208, 228, 241, 265], "d2": [84, 144, 200, 208, 228, 241, 259, 265], "d2fdx2": 287, "d2fdxdy": 88, "d3": [84, 228], "d4": [71, 117, 217, 241], "d6": 241, "d_": [84, 231], "d_0": [84, 89], "d_1": [113, 196, 217, 241], "d_1e": 241, "d_1z": 241, "d_2": [196, 217, 241], "d_3": 196, "d_4": 71, "d_6": 71, "d_i": [84, 113, 196], "d_ij": 191, "d_ip": 191, "d_j": [113, 196, 231], "d_m": 299, "d_n": [76, 117, 217], "d_o": 299, "d_qp": 191, "d_v": 113, "d_x": 299, "d_y": 299, "d_z": 299, "da": [18, 131, 237], "dadt": [18, 299], "dae": [31, 158], "dag": 15, "dagger": [168, 172, 178, 180, 183, 185, 190, 191, 221, 282], "dagum": 241, "dagum_distribut": 241, "dai": [194, 198, 237], "damp": [30, 134, 148, 299, 303], "damper": [18, 22, 46, 148, 149, 153, 158, 299, 303, 307], "damper_const": 18, "damping_coeffici": 148, "damping_forc": 148, "danger": [13, 209], "danilevski": 210, "dartmouth": 241, "dash": 68, "dat": [120, 259], "data": [14, 15, 39, 69, 79, 88, 89, 96, 115, 124, 129, 130, 132, 142, 153, 170, 207, 208, 210, 211, 212, 214, 217, 218, 221, 233, 246, 247, 252, 254, 256, 259], "databas": [221, 231], "datatyp": [130, 212, 221, 254], "date": 254, "daunt": 7, "davenport": [115, 214, 215], "davenport88": 215, "davi": 241, "david": [29, 215, 217], "davis_distribut": 241, "davisdistribut": 241, "dbase": 84, "dbinom": 130, "dc": [26, 46, 144], "dc_gain": [46, 144], "dcm": [13, 22, 30, 35, 36, 149, 152, 200, 265, 302], "dd": [206, 226], "ddm": 210, "ddm_": 210, "ddm_berk": 210, "ddm_iadd": 210, "ddm_idet": 210, "ddm_iinv": 210, "ddm_ilu": 210, "ddm_ilu_solv": 210, "ddm_ilu_split": 210, "ddm_imatmul": 210, "ddm_imul": 210, "ddm_ineg": 210, "ddm_irmul": 210, "ddm_irref": 210, "ddm_irref_den": 210, "ddm_isub": 210, "ddm_rref": 210, "ddm_transpos": 210, "ddot": [18, 26, 35, 120, 124, 205, 221, 297, 306], "de": [11, 18, 68, 89, 93, 128, 131, 132, 134, 140, 196, 206, 218, 223, 234, 237, 259, 299], "deactiv": [18, 131, 299], "deactivation_time_const": 131, "dead": 230, "deal": [14, 21, 22, 33, 35, 36, 41, 69, 87, 88, 92, 100, 108, 113, 115, 141, 153, 154, 209, 214, 217, 234, 239, 250, 260, 262, 269, 274, 287, 289, 291, 297], "dealt": [92, 113], "debian": 221, "deboer79": 196, "debug": [6, 69, 88, 115, 130, 180, 252, 253, 262, 302], "debug_decor": 262, "debugf": 262, "decad": 237, "decai": 115, "decent": 295, "decid": [3, 4, 9, 21, 27, 39, 41, 42, 43, 48, 68, 87, 124, 184, 211, 214, 216, 217, 221, 237, 240, 254, 293], "decim": [16, 43, 69, 88, 91, 92, 128, 130, 142, 211, 217, 291], "decimal_dig": 69, "decimal_separ": 221, "deciph": 89, "decipher_affin": 89, "decipher_atbash": 89, "decipher_bifid": 89, "decipher_bifid5": 89, "decipher_bifid6": 89, "decipher_elgam": 89, "decipher_gm": 89, "decipher_hil": 89, "decipher_kid_rsa": 89, "decipher_railf": 89, "decipher_rot13": 89, "decipher_rsa": 89, "decipher_shift": 89, "decipher_vigener": 89, "decis": [17, 58, 88, 94, 115, 230, 239, 254], "decistmt": 116, "decl1": 69, "decl2": 69, "declar": [16, 22, 30, 41, 52, 69, 101, 113, 124, 130, 145, 170, 210, 221, 228, 231, 236, 237, 238, 241, 254, 302], "decod": 89, "decode_mors": 89, "decompos": [57, 79, 80, 86, 88, 90, 94, 99, 124, 128, 175, 184, 185, 187, 212, 217, 220, 241], "decomposit": [4, 48, 53, 79, 86, 119, 120, 124, 210, 212, 214, 215, 223, 297], "decor": [3, 12, 43, 79, 88, 96, 250, 252, 257, 258, 261, 262, 284], "decoupl": 124, "decre": 113, "decreas": [18, 67, 69, 80, 214], "decrement": [69, 256], "decrypt": 89, "dedekind": 208, "dedent": [257, 262], "dedic": [5, 28, 69, 71, 213, 214, 236, 254, 270, 272], "deduc": [43, 69, 113, 118, 231, 291], "deduct": [43, 69], "deduction_stack": 70, "deem": [13, 230], "deep": [14, 16, 43, 88, 94, 118, 124, 132, 217, 228, 233, 241, 292], "deepak": 215, "deeper": [44, 245, 292], "deepest": 245, "def": [3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 39, 41, 42, 43, 63, 64, 68, 88, 93, 100, 118, 124, 128, 130, 186, 211, 217, 221, 230, 233, 240, 255, 257, 259, 260, 261, 286, 289, 292, 293, 297, 299, 310], "default": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 32, 41, 43, 48, 52, 53, 55, 60, 61, 62, 63, 64, 67, 68, 69, 70, 71, 72, 78, 79, 86, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 110, 115, 116, 118, 120, 123, 124, 125, 128, 129, 130, 131, 132, 134, 136, 137, 140, 142, 144, 146, 148, 149, 150, 152, 153, 154, 158, 164, 181, 183, 186, 188, 189, 191, 195, 197, 200, 202, 204, 205, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 246, 247, 252, 253, 254, 256, 257, 259, 260, 262, 265, 286, 287, 291, 293, 296, 297, 304], "default_arrow_formatt": 68, "default_assumpt": 41, "default_curving_amount": 68, "default_curving_step": 68, "default_formatt": 68, "default_sort_kei": [13, 68, 77, 88, 245], "defaultdict": [41, 88, 259], "defeat": [3, 12, 237], "defect": 237, "defective_matrix": 237, "defens": 12, "defer": 124, "defici": [124, 128, 240], "deficientnumb": 128, "defin": [3, 4, 5, 11, 12, 13, 15, 16, 18, 21, 22, 23, 24, 28, 30, 31, 32, 33, 35, 36, 37, 39, 41, 42, 57, 60, 61, 63, 64, 67, 69, 70, 71, 72, 78, 79, 80, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 111, 113, 115, 116, 120, 124, 128, 131, 132, 134, 136, 137, 142, 148, 149, 151, 152, 155, 156, 158, 159, 162, 168, 170, 172, 177, 180, 186, 188, 189, 193, 194, 195, 196, 197, 198, 199, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 224, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 246, 247, 253, 254, 255, 259, 260, 261, 262, 265, 267, 268, 269, 270, 271, 272, 274, 275, 289, 291, 297, 300, 302, 304, 305, 307, 309, 311], "defined_fact": 41, "definit": [4, 13, 14, 15, 16, 18, 28, 35, 36, 42, 61, 65, 69, 70, 79, 80, 85, 87, 88, 90, 91, 93, 94, 96, 101, 104, 111, 113, 115, 119, 120, 124, 128, 130, 152, 158, 193, 196, 199, 200, 208, 209, 212, 217, 218, 221, 228, 241, 242, 253, 254, 255, 259, 260, 265, 269, 270, 271, 272, 287, 297, 300, 302, 309, 310], "definite_matrix": 65, "definiteness_of_a_matrix": 124, "deflat": [212, 217], "deflect": [98, 104, 136, 137], "deflection_jump": 136, "defn": 214, "deform": [113, 137], "deg": [22, 115, 142, 209, 212, 214, 216, 217], "deg2rad": [22, 299], "degbound": 214, "degener": [61, 239, 240], "degre": [22, 31, 32, 36, 39, 48, 70, 71, 79, 86, 87, 93, 96, 104, 115, 124, 136, 138, 140, 142, 144, 149, 152, 153, 158, 163, 208, 209, 212, 214, 216, 217, 220, 221, 224, 227, 230, 231, 233, 234, 237, 239, 241, 265, 299, 301, 304, 305, 306], "degree_list": [212, 217], "degree_offset": 115, "degroote2016": [18, 299], "dejavu": 8, "dejavufont": 8, "del": [196, 256, 265, 273, 297], "delai": [18, 27, 88, 131, 142, 230, 252, 287], "delastel": 89, "delet": [12, 72, 117, 124, 218, 262, 297], "delete_doubl": 117, "deletechar": 262, "deliber": 216, "delic": [115, 208], "delimit": [5, 88, 221], "delin": 3, "delop": [265, 271, 272], "deloper": [265, 273], "delta": [13, 16, 27, 69, 72, 82, 93, 111, 113, 117, 142, 163, 191, 206, 210, 221, 228, 234, 237, 241, 242, 247], "delta_": [96, 188, 196, 206], "delta_fn": 69, "delta_funct": [11, 96, 115], "delta_i": 231, "delta_rang": [96, 191], "deltafunct": [96, 115], "deltaintegr": 115, "demand": [43, 60], "demonstr": [4, 5, 16, 18, 22, 27, 41, 43, 46, 48, 52, 53, 54, 79, 80, 88, 93, 115, 128, 149, 152, 208, 211, 271, 297, 301, 303, 305, 306, 307], "den": [144, 210, 212, 233, 237], "den_list": 144, "den_reduc": 210, "dena": 237, "denest": [13, 88, 217, 233, 239, 259], "deni": 237, "denom": [88, 210, 211, 212, 216, 233], "denomin": [16, 88, 92, 96, 115, 128, 144, 150, 209, 210, 211, 212, 214, 216, 217, 220, 221, 230, 231, 233, 234, 237, 239, 297], "denoms_invert": 210, "denot": [13, 15, 16, 33, 39, 79, 80, 88, 90, 96, 110, 111, 113, 115, 117, 118, 124, 128, 130, 140, 144, 148, 159, 196, 200, 207, 208, 209, 214, 216, 224, 228, 229, 231, 237, 241, 246, 247, 265, 267, 269, 270, 272, 274], "dens": [15, 120, 122, 124, 210, 216, 217, 242, 260, 280, 292], "densearith": 214, "densebas": 214, "densematrix": [119, 124], "densetool": 214, "densiti": [241, 252, 275, 304], "denz": 144, "dep": [88, 237], "depend": [6, 9, 11, 13, 14, 15, 16, 18, 22, 23, 25, 33, 37, 41, 43, 45, 48, 53, 54, 55, 59, 67, 69, 70, 79, 80, 87, 88, 89, 90, 93, 94, 96, 100, 105, 112, 113, 115, 116, 117, 124, 128, 129, 130, 134, 142, 146, 149, 151, 153, 154, 158, 163, 164, 165, 180, 189, 191, 193, 195, 196, 205, 207, 209, 210, 212, 214, 216, 217, 218, 220, 221, 222, 227, 231, 233, 234, 237, 238, 239, 240, 241, 252, 253, 254, 255, 259, 260, 272, 274, 275, 291, 302, 304, 306], "depict": [33, 136, 240, 274], "deploy": 59, "deprec": [4, 6, 17, 27, 50, 62, 80, 88, 115, 118, 124, 128, 147, 151, 152, 153, 207, 217, 221, 241, 247, 250, 251, 255, 257, 260, 282], "deprecat": 3, "deprecated_since_vers": [3, 250, 255, 257], "deprecationwarn": [149, 252, 257], "depth": [4, 5, 14, 16, 17, 58, 79, 88, 207, 208, 221, 302, 303], "der": [78, 79], "derang": [93, 259], "derefer": 221, "dereferenc": 221, "derek": [70, 78], "deriv": [0, 4, 11, 12, 13, 15, 17, 18, 21, 23, 25, 26, 27, 32, 33, 35, 40, 43, 52, 67, 68, 69, 72, 78, 79, 88, 90, 94, 95, 96, 98, 105, 110, 111, 113, 115, 116, 118, 120, 124, 130, 132, 134, 140, 144, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 180, 189, 193, 196, 197, 200, 202, 204, 205, 207, 208, 209, 210, 212, 214, 216, 217, 218, 221, 223, 231, 233, 237, 238, 239, 243, 248, 254, 265, 268, 269, 288, 291, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309], "derivand": 248, "derive_by_arrai": 242, "derived_dim": 193, "derived_seri": [78, 79], "derived_subgroup": 79, "derived_unit": 199, "descend": [88, 208, 216, 254], "descent": [80, 234], "descr": 199, "describ": [3, 4, 5, 7, 11, 13, 14, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33, 35, 36, 41, 42, 43, 48, 55, 61, 68, 70, 78, 79, 80, 82, 83, 86, 87, 88, 89, 93, 96, 98, 103, 104, 113, 115, 124, 127, 128, 134, 144, 148, 149, 151, 152, 153, 154, 155, 156, 158, 170, 191, 196, 200, 208, 210, 211, 214, 216, 222, 228, 231, 233, 234, 237, 240, 241, 245, 254, 259, 260, 265, 267, 272, 287, 304, 306, 307, 309, 311], "descript": [0, 3, 4, 5, 13, 14, 35, 36, 49, 58, 68, 70, 78, 96, 115, 128, 163, 181, 188, 199, 206, 221, 245, 252, 254, 256, 257, 276, 294, 300], "design": [2, 3, 4, 13, 14, 15, 17, 30, 31, 38, 42, 43, 46, 49, 54, 58, 65, 70, 78, 88, 124, 127, 130, 133, 134, 158, 210, 211, 215, 221, 226, 231, 237, 240, 291, 292, 296, 305], "desir": [4, 13, 14, 16, 23, 27, 35, 36, 39, 43, 50, 55, 57, 60, 79, 80, 88, 89, 91, 92, 93, 94, 98, 102, 104, 118, 124, 127, 128, 129, 149, 151, 153, 154, 155, 158, 176, 200, 210, 212, 214, 216, 217, 218, 221, 222, 224, 229, 233, 237, 239, 240, 253, 255, 256, 259, 272, 286], "desktop": 9, "despit": [3, 48, 57, 88, 297], "destin": 254, "destroi": [191, 230], "destruct": 217, "det": [30, 36, 53, 61, 124, 125, 210, 293], "det_lu": 124, "det_lu_decomposit": 124, "det_method": 124, "deta": 210, "detach": 8, "detail": [0, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15, 17, 22, 28, 30, 38, 41, 43, 58, 68, 79, 88, 90, 93, 95, 96, 113, 114, 115, 116, 124, 128, 142, 152, 153, 163, 181, 185, 200, 202, 206, 207, 208, 210, 214, 216, 223, 228, 233, 234, 235, 237, 238, 241, 246, 247, 252, 255, 257, 260, 270, 271, 272, 273, 276, 280, 287, 289, 293, 294, 296, 300, 305], "detect": [2, 8, 60, 67, 120, 124, 128, 130, 207, 211, 221, 237, 238, 240, 242, 259, 296], "determin": [3, 5, 13, 14, 15, 18, 28, 31, 33, 37, 39, 41, 42, 43, 46, 48, 51, 52, 53, 56, 62, 64, 65, 66, 67, 69, 70, 71, 72, 79, 88, 89, 90, 91, 92, 94, 98, 99, 101, 103, 104, 115, 116, 117, 120, 124, 128, 130, 136, 137, 144, 148, 150, 152, 154, 155, 156, 158, 170, 183, 185, 187, 188, 191, 194, 196, 200, 207, 208, 209, 210, 214, 216, 217, 221, 227, 228, 229, 231, 233, 234, 236, 237, 239, 240, 241, 245, 257, 259, 265, 272, 275, 289, 297, 311], "determinisit": 221, "determinist": [41, 79, 115, 128, 214, 215], "deterministic_vari": 128, "detool": 237, "deutil": [237, 238], "dev": [2, 3, 8, 9, 11, 257], "devel": [5, 206], "develop": [0, 3, 4, 5, 6, 10, 15, 18, 19, 30, 39, 41, 43, 67, 70, 86, 130, 138, 195, 207, 208, 211, 214, 239, 240, 291, 294, 299], "deviat": [5, 164, 241], "devis": 39, "df": [39, 90, 237], "dfdx": 287, "dfdxcheck": 39, "dfm": 210, "dfrac": [130, 241], "dft": [13, 91, 147], "dfx": 88, "dg": 90, "dh_private_kei": 89, "dh_public_kei": 89, "dh_shared_kei": 89, "di": [9, 217], "di1": 79, "di2": 79, "di3": 79, "di4": 79, "diag": [30, 120, 124, 127, 210, 247, 293], "diag_block": 120, "diagmat": 30, "diagon": [65, 93, 119, 120, 124, 127, 158, 163, 210, 243], "diagonal_ax": 242, "diagonal_indic": 243, "diagonal_matrix": 65, "diagonal_solv": [119, 124], "diagonalhandl": 65, "diagonaliz": [124, 293], "diagonalpred": 65, "diagram": [23, 46, 69, 77, 117, 136, 138, 148, 151, 156, 171, 246, 270, 292, 304, 306, 307], "diagram_draw": 68, "diagram_format": 68, "diagramgrid": 68, "diamet": [88, 98], "diaz": 215, "dic": 214, "dice": 241, "dict": [13, 14, 16, 37, 41, 48, 51, 52, 56, 57, 69, 71, 80, 88, 89, 90, 104, 105, 118, 124, 128, 130, 132, 153, 154, 171, 183, 186, 197, 199, 200, 207, 210, 211, 212, 214, 216, 217, 218, 219, 221, 233, 234, 237, 238, 239, 240, 241, 245, 252, 253, 259, 265, 298], "dict_iter": 234, "dict_merg": 259, "dictionari": [2, 12, 13, 14, 15, 17, 22, 25, 27, 36, 51, 55, 57, 68, 69, 77, 79, 80, 86, 88, 93, 102, 104, 115, 117, 124, 127, 128, 130, 136, 150, 153, 154, 158, 181, 191, 200, 207, 209, 210, 212, 214, 216, 217, 219, 221, 228, 233, 234, 237, 238, 239, 240, 241, 245, 247, 252, 256, 259, 260, 265, 286, 293, 302, 306, 309], "did": [2, 5, 11, 14, 21, 42, 88, 115, 128, 196, 214, 218, 229, 239, 250, 260, 289, 291, 297, 309], "didn": [12, 27, 115, 124], "die": [13, 216, 241], "die_rol": 241, "diedistribut": 241, "diepspac": 241, "dietrich": 74, "dif": 88, "diff": [4, 9, 11, 12, 13, 14, 15, 18, 21, 30, 33, 36, 39, 43, 46, 52, 55, 67, 69, 88, 93, 94, 95, 96, 105, 110, 115, 120, 124, 132, 150, 155, 189, 200, 202, 205, 207, 212, 217, 220, 221, 231, 237, 238, 239, 242, 243, 248, 269, 272, 287, 291, 298, 299, 304, 306], "diff_oper": 221, "diffeq": 298, "differ": [3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 27, 31, 32, 33, 36, 37, 38, 40, 42, 43, 48, 50, 51, 52, 53, 54, 55, 56, 60, 68, 69, 70, 71, 77, 78, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 96, 99, 101, 103, 104, 108, 110, 112, 113, 115, 116, 117, 118, 120, 124, 128, 129, 130, 134, 136, 142, 144, 149, 153, 155, 158, 163, 164, 176, 177, 185, 186, 189, 191, 193, 195, 196, 200, 201, 204, 205, 207, 208, 209, 210, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 226, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 245, 247, 250, 252, 253, 254, 255, 256, 257, 259, 260, 265, 268, 272, 274, 288, 289, 291, 292, 293, 296, 297, 301, 302, 303, 308], "difference_delta": 226, "differencedelta": 226, "differenti": [4, 5, 12, 13, 15, 18, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 36, 46, 49, 67, 88, 93, 94, 96, 105, 106, 108, 111, 115, 130, 131, 132, 134, 144, 151, 152, 153, 158, 180, 186, 200, 202, 204, 208, 214, 218, 220, 221, 226, 231, 233, 237, 238, 265, 272, 273, 276, 283, 287, 288, 291, 300, 302, 306, 309], "differentialoper": [110, 111, 180], "differentialoperatoralgebra": 111, "differentiate_finit": [67, 88, 287], "differnc": 212, "diffgeom": 90, "diffi": 89, "difficult": [5, 11, 12, 13, 14, 22, 41, 55, 57, 88, 124, 218, 231, 237, 238, 240, 253, 260, 275, 291, 297], "difficulti": [90, 128], "diffus": [18, 131], "dig": [43, 69, 292], "digamma": [4, 93, 96, 221], "digamma_funct": 96, "digammafunct": 96, "digit": [4, 11, 14, 15, 16, 23, 54, 69, 88, 89, 91, 92, 98, 115, 118, 128, 151, 200, 211, 217, 228, 233, 259, 286], "digit_2txt": 221, "digraph": [221, 259, 296], "dihedr": [71, 74, 76, 79, 80], "dihedral2": 79, "dihedral_group": [76, 79], "dihedralgroup": [76, 79, 86], "dilbert": 115, "dim": [69, 90, 103, 124, 129, 193, 199, 221, 244, 247, 280], "dim1": 246, "dim2": 246, "dim_can_vector": 193, "dim_handl": 221, "dim_si": 193, "dim_vector": 193, "dimens": [53, 69, 72, 89, 90, 96, 97, 99, 101, 102, 103, 105, 117, 120, 124, 127, 131, 134, 136, 145, 165, 175, 177, 180, 185, 194, 195, 198, 199, 200, 207, 210, 221, 234, 237, 239, 241, 242, 243, 246, 247, 254, 265, 268, 270, 282, 306], "dimension": [30, 33, 34, 53, 67, 69, 72, 90, 100, 101, 102, 103, 104, 120, 124, 137, 145, 165, 167, 177, 193, 203, 207, 208, 214, 216, 217, 220, 221, 239, 240, 242, 243, 247, 253, 274, 298], "dimension_system": 199, "dimensional_depend": 193, "dimensionless": [18, 195, 196], "dimensions": 193, "dimensionsystem": 193, "diment": 124, "dimino": [70, 79], "dimitar": 230, "dimsys_si": [193, 194], "diop_bf_dn": 234, "diop_dn": 234, "diop_general_pythagorean": 234, "diop_general_sum_of_even_pow": 234, "diop_general_sum_of_squar": 234, "diop_linear": 234, "diop_quadrat": 234, "diop_solv": 234, "diop_ternary_quadrat": 234, "diop_ternary_quadratic_norm": 234, "diophantin": [49, 50, 128, 214, 235, 277], "diophantineequ": 234, "diophantineequationtyp": 234, "diophantinesolutionset": 234, "diophantu": 234, "diplform": 110, "diploma": 265, "diplomat": 89, "dir": [16, 88, 136, 223, 228, 259], "dir_vec": 18, "dirac": [124, 142, 146, 147, 189, 221], "diracdelta": [4, 11, 96, 115, 186, 191, 221], "direct": [3, 4, 5, 13, 14, 15, 18, 21, 30, 33, 35, 36, 40, 55, 61, 63, 64, 68, 73, 76, 79, 84, 87, 88, 90, 92, 94, 97, 101, 102, 103, 104, 118, 124, 131, 132, 134, 136, 137, 138, 140, 148, 149, 152, 155, 156, 158, 159, 177, 200, 208, 210, 211, 214, 218, 228, 231, 239, 247, 250, 259, 265, 270, 271, 274, 299, 302, 304, 306, 310], "direct_product": 247, "direct_sum": 177, "directed_complete_partial_ord": 94, "direction": 36, "direction_cosin": [101, 103], "direction_ratio": [101, 103], "directional_deriv": 272, "directli": [2, 3, 4, 11, 12, 13, 14, 15, 16, 18, 22, 32, 39, 41, 42, 43, 48, 59, 63, 64, 67, 68, 69, 79, 87, 88, 90, 94, 99, 120, 124, 128, 130, 131, 148, 156, 159, 174, 177, 189, 194, 200, 204, 207, 208, 210, 211, 212, 214, 216, 217, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 252, 253, 254, 255, 256, 257, 287, 298], "director": 98, "director_circl": 98, "directori": [2, 4, 5, 7, 8, 11, 12, 59, 64, 69, 130, 237, 252, 253, 262], "directproduct": [73, 76], "directrix": 98, "directsumhilbertspac": 177, "dirichlet": [87, 96, 241], "dirichlet_distribut": 241, "dirichlet_eta": [96, 221], "dirichlet_eta_funct": 96, "dirichletdistribut": 241, "dirichleteta": 221, "disabl": [9, 12, 15, 55, 88, 89, 113, 115, 128, 214, 217, 221, 229, 237, 239, 250, 252, 255, 259, 260], "disable_view": 255, "disadvantag": [14, 88], "disallow": [14, 43, 88, 217, 222, 233, 255], "disambigu": 88, "disc": [35, 136, 301, 305], "discard": [88, 210, 216, 221, 240], "discard_befor": 216, "discern": [62, 64], "disciplin": 208, "disco": 215, "discontinu": [13, 67, 92, 94, 115, 136, 224, 239], "discourag": [15, 41, 88, 233], "discov": [21, 89, 113, 245, 293], "discoveri": [214, 293], "discrat": 207, "discrep": 195, "discret": [13, 67, 69, 70, 78, 80, 88, 89, 96, 128, 144, 191, 196, 207, 223, 226, 237, 239, 240, 277, 286], "discrete_fourier_transform_": 91, "discrete_log": 128, "discrete_uniform_distribut": 241, "discretedistributionhandmad": 241, "discretelogarithm": 128, "discretemarkovchain": 241, "discreterv": 241, "discreteuniform": 241, "discreteuniformdistribut": 241, "discrimin": [128, 212, 214, 216, 217], "discrit": 39, "discuss": [0, 3, 4, 5, 7, 11, 12, 13, 16, 17, 18, 21, 22, 23, 27, 28, 32, 34, 35, 36, 37, 39, 41, 42, 43, 58, 70, 79, 89, 96, 128, 133, 151, 153, 203, 211, 247, 256, 276, 286, 288, 289, 291, 292, 294, 296, 297], "disguis": 113, "disjoint": [65, 68, 77, 80, 217, 229, 259], "disjoint_set": 229, "disjoint_union": 229, "disjointunion": 229, "disjunct": 118, "disk": [69, 89, 229, 240, 260], "dispatch": [12, 15, 63, 64, 65, 88, 89, 186, 221, 240, 256], "dispers": [215, 241], "dispersionset": 217, "displac": [33, 35, 148, 274], "displai": [4, 5, 7, 11, 16, 41, 42, 55, 88, 89, 92, 113, 117, 136, 137, 142, 162, 195, 200, 204, 205, 207, 211, 212, 221, 229, 245, 252], "displayhook": [221, 252], "disregard": 68, "diss": 241, "dissimilar": 239, "dist": 241, "distanc": [18, 21, 33, 43, 68, 72, 80, 98, 101, 102, 103, 104, 136, 137, 147, 148, 152, 156, 159, 160, 164, 194, 204, 274, 306, 307], "distinct": [3, 5, 14, 15, 35, 37, 41, 43, 56, 69, 79, 80, 88, 89, 93, 101, 113, 118, 124, 128, 158, 211, 216, 217, 221, 229, 231, 297], "distinguish": [11, 22, 38, 41, 42, 68, 79, 92, 117, 190, 196, 208], "distract": 4, "distribut": [2, 8, 59, 79, 86, 88, 96, 104, 115, 136, 137, 138, 190, 209, 212, 217, 221, 247], "distribute_and_over_or": 118, "distribute_or_over_and": 118, "distribute_order_term": [88, 233], "distribute_xor_over_and": 118, "distributedmodul": 214, "distributionshandbook": 241, "distutil": 253, "div": [88, 130, 209, 211, 212, 217, 221, 233, 292], "divaugmentedassign": 69, "diverg": [87, 96, 160, 201, 265, 268], "divergence_theorem": 275, "divid": [13, 15, 79, 87, 88, 89, 93, 104, 124, 128, 153, 154, 195, 196, 209, 210, 211, 212, 214, 216, 217, 221, 237, 256, 292], "divide_last": 210, "dividend": [88, 212], "divis": [12, 16, 43, 88, 124, 128, 153, 193, 195, 208, 210, 211, 212, 213, 214, 217, 219, 221, 234, 237, 239, 252, 260, 289, 292], "divisisor": 128, "divisor": [43, 65, 79, 88, 89, 93, 124, 128, 208, 209, 210, 211, 212, 214, 215, 216, 217, 220], "divisor_count": [93, 128], "divisor_funct": [93, 128], "divisor_sigma": [13, 15, 93, 128], "divmod": [209, 211, 212], "dixon": [210, 215], "django": 289, "djoyc": 241, "dk": [61, 136, 216], "dkei": 88, "dl": [36, 87, 210, 212, 215, 233], "dlmf": [4, 94, 96], "dlp": 89, "dm": [93, 124, 128, 210, 216, 299], "dmc": [309, 310, 311], "dmdomainerror": [125, 210], "dmension": 117, "dmf": 212, "dmnc": 124, "dmnoninvertiblematrixerror": 210, "dmnonsquarematrixerror": 210, "dmnotafield": 210, "dmp": [88, 208, 212, 217], "dmp_": [211, 214], "dmp_ab": 214, "dmp_add": 214, "dmp_add_ground": 214, "dmp_add_mul": 214, "dmp_add_term": 214, "dmp_apply_pair": 214, "dmp_cancel": 214, "dmp_clear_denom": 214, "dmp_compos": 214, "dmp_content": 214, "dmp_convert": 214, "dmp_copi": 214, "dmp_deflat": 214, "dmp_degre": 214, "dmp_degree_in": 214, "dmp_degree_list": 214, "dmp_diff": 214, "dmp_diff_eval_in": 214, "dmp_diff_in": 214, "dmp_discrimin": 214, "dmp_div": 214, "dmp_eject": 214, "dmp_euclidean_pr": 214, "dmp_eval": 214, "dmp_eval_in": 214, "dmp_eval_tail": 214, "dmp_exclud": 214, "dmp_expand": 214, "dmp_exquo": 214, "dmp_exquo_ground": 214, "dmp_ext_factor": 214, "dmp_factor_list": 214, "dmp_factor_list_includ": 214, "dmp_ff_div": 214, "dmp_ff_prs_gcd": 214, "dmp_from_dict": 214, "dmp_from_sympi": 214, "dmp_gcd": 214, "dmp_gcdex": 214, "dmp_gf_factor": 214, "dmp_gf_sqf_list": 214, "dmp_gf_sqf_part": 214, "dmp_gff_list": 214, "dmp_ground": 214, "dmp_ground_cont": 214, "dmp_ground_extract": 214, "dmp_ground_lc": 214, "dmp_ground_mon": 214, "dmp_ground_nth": 214, "dmp_ground_p": 214, "dmp_ground_primit": 214, "dmp_ground_tc": 214, "dmp_ground_trunc": 214, "dmp_half_gcdex": 214, "dmp_includ": 214, "dmp_inflat": 214, "dmp_inject": 214, "dmp_inner_gcd": 214, "dmp_inner_subresult": 214, "dmp_integr": 214, "dmp_integrate_in": 214, "dmp_invert": 214, "dmp_irreducible_p": 214, "dmp_l1_norm": 214, "dmp_lc": 214, "dmp_lcm": 214, "dmp_lift": 214, "dmp_list_term": 214, "dmp_max_norm": 214, "dmp_mul": 214, "dmp_mul_ground": 214, "dmp_mul_term": 214, "dmp_multi_defl": 214, "dmp_neg": 214, "dmp_negative_p": 214, "dmp_nest": 214, "dmp_norm": 214, "dmp_normal": 214, "dmp_nth": 214, "dmp_one": 214, "dmp_one_p": 214, "dmp_pdiv": 214, "dmp_permut": 214, "dmp_pexquo": 214, "dmp_positive_p": 214, "dmp_pow": 214, "dmp_pquo": 214, "dmp_prem": 214, "dmp_primit": 214, "dmp_primitive_pr": 214, "dmp_prs_result": 214, "dmp_python": [13, 208, 211, 212], "dmp_qq_collins_result": 214, "dmp_qq_heu_gcd": 214, "dmp_qq_i_factor": 214, "dmp_quo": 214, "dmp_quo_ground": 214, "dmp_rais": 214, "dmp_rem": 214, "dmp_result": 214, "dmp_revert": 214, "dmp_rr_div": 214, "dmp_rr_prs_gcd": 214, "dmp_slice": 214, "dmp_sqf_list": 214, "dmp_sqf_list_includ": 214, "dmp_sqf_norm": 214, "dmp_sqf_p": 214, "dmp_sqf_part": 214, "dmp_sqr": 214, "dmp_strip": 214, "dmp_sub": 214, "dmp_sub_ground": 214, "dmp_sub_mul": 214, "dmp_sub_term": 214, "dmp_subresult": 214, "dmp_swap": 214, "dmp_tc": 214, "dmp_terms_gcd": 214, "dmp_to_dict": 214, "dmp_to_tupl": 214, "dmp_trial_divis": 214, "dmp_true_lt": 214, "dmp_trunc": 214, "dmp_valid": 214, "dmp_zero": 214, "dmp_zero_p": 214, "dmp_zz_collins_result": 214, "dmp_zz_diophantin": 214, "dmp_zz_factor": 214, "dmp_zz_heu_gcd": 214, "dmp_zz_i_factor": 214, "dmp_zz_mignotte_bound": 214, "dmp_zz_modular_result": 214, "dmp_zz_wang": 214, "dmp_zz_wang_hensel_lift": 214, "dmp_zz_wang_lead_coeff": 214, "dmp_zz_wang_non_divisor": 214, "dmp_zz_wang_test_point": 214, "dmrankerror": [210, 216], "dmshapeerror": [125, 210], "dmtc": 259, "dmvalueerror": 210, "dn": [80, 241], "dnf": [8, 118], "dnh": 25, "do": [1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 35, 36, 39, 41, 42, 43, 44, 45, 48, 51, 52, 53, 54, 55, 56, 58, 59, 60, 63, 64, 65, 67, 68, 69, 70, 71, 80, 84, 87, 88, 89, 90, 91, 94, 96, 98, 100, 103, 104, 107, 113, 115, 116, 118, 120, 121, 124, 125, 128, 129, 130, 141, 144, 149, 153, 158, 163, 166, 171, 175, 180, 183, 185, 187, 193, 195, 196, 199, 201, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 243, 246, 247, 250, 252, 253, 255, 257, 259, 260, 262, 268, 270, 271, 272, 274, 286, 287, 289, 290, 291, 292, 293, 295, 297, 299, 304, 306, 307, 310], "do1": 69, "do2": 69, "do_sub": 228, "dobelman": 241, "doc": [2, 3, 4, 5, 7, 9, 11, 12, 16, 45, 58, 69, 79, 87, 88, 104, 116, 193, 211, 213, 234, 237, 252, 253, 255, 257, 259, 265, 270, 283, 296], "docbook": 8, "docbook2x": 8, "dockerfil": 8, "docstr": [3, 5, 6, 7, 11, 12, 13, 16, 18, 28, 43, 50, 68, 69, 81, 88, 110, 113, 115, 124, 128, 133, 139, 143, 145, 151, 161, 178, 184, 185, 187, 203, 217, 224, 227, 228, 230, 233, 237, 238, 239, 240, 246, 247, 252, 255, 260, 262, 266, 273, 276, 280, 282], "docstring_limit": 260, "doctest": [3, 4, 5, 11, 16, 43, 81, 96, 124, 128, 180, 191, 217, 237, 252, 255, 257, 296, 302], "doctest_arg": 252, "doctest_depends_on": [12, 255], "doctest_kwarg": 252, "doctestpars": 252, "doctestrunn": 252, "document": [6, 10, 12, 13, 14, 15, 19, 21, 23, 25, 26, 28, 30, 32, 33, 34, 35, 36, 40, 43, 49, 63, 64, 65, 79, 84, 88, 89, 94, 95, 96, 100, 110, 113, 114, 116, 120, 124, 128, 129, 133, 137, 151, 153, 166, 180, 186, 203, 205, 206, 207, 208, 210, 211, 212, 214, 215, 217, 221, 231, 235, 237, 239, 240, 250, 252, 254, 255, 257, 259, 265, 272, 273, 276, 287, 289, 290, 296, 297], "documentclass": [116, 205, 221], "docutil": 5, "dod": 210, "doe": [2, 4, 5, 7, 9, 11, 12, 13, 14, 15, 18, 21, 22, 24, 28, 35, 36, 38, 41, 42, 43, 48, 49, 55, 56, 57, 58, 59, 60, 63, 64, 67, 68, 69, 70, 79, 80, 84, 86, 87, 88, 89, 90, 92, 94, 96, 98, 99, 102, 104, 113, 115, 118, 124, 127, 128, 130, 146, 150, 153, 154, 158, 171, 175, 181, 185, 187, 190, 207, 209, 210, 211, 212, 214, 216, 217, 218, 221, 228, 229, 230, 231, 233, 234, 236, 237, 239, 242, 246, 247, 250, 252, 254, 256, 259, 260, 262, 265, 267, 270, 286, 287, 289, 292, 293, 296, 297, 298, 302, 309], "doesn": [3, 4, 12, 13, 14, 16, 22, 27, 30, 36, 43, 48, 69, 112, 131, 159, 209, 218, 220, 230, 233, 240, 298, 306], "dof": 304, "doi": [0, 4, 61, 67, 74, 80, 87, 124, 128, 154, 210, 212, 215, 230, 233, 234, 241, 259, 303], "doit": [14, 18, 46, 87, 88, 90, 93, 94, 96, 115, 120, 132, 144, 168, 170, 172, 183, 185, 188, 189, 191, 200, 206, 217, 223, 228, 233, 237, 238, 241, 243, 265, 268, 269, 271, 272, 287, 292], "doit_numer": 88, "dok": [124, 127, 210], "dollar": [5, 12, 291], "dom": [211, 212, 214, 229], "domain": [2, 4, 11, 13, 15, 22, 30, 39, 43, 46, 48, 53, 67, 68, 88, 89, 91, 93, 94, 96, 107, 109, 110, 113, 115, 120, 124, 125, 128, 141, 144, 207, 208, 210, 213, 214, 216, 218, 219, 236, 237, 239, 241, 283, 293, 298], "domain_check": 240, "domain_or_field": 212, "domain_or_r": [208, 212], "domainel": [210, 211, 212, 219], "domainerror": [210, 214, 217], "domainmatrix": [13, 53, 119, 124, 213, 216, 219, 283], "domainscalar": 210, "domin": [113, 124, 226, 228], "dominik": [88, 223], "don": [3, 11, 12, 13, 16, 21, 22, 32, 35, 36, 42, 43, 64, 69, 96, 113, 118, 124, 129, 130, 132, 211, 221, 231, 240, 242, 250, 255, 274, 286, 287, 291, 292, 297], "donal": 217, "donald": [215, 256], "donaldlab": 215, "done": [3, 4, 9, 11, 12, 13, 14, 15, 16, 18, 22, 28, 30, 33, 35, 36, 39, 43, 63, 64, 66, 67, 68, 69, 79, 81, 86, 88, 89, 90, 93, 96, 99, 100, 113, 115, 124, 128, 133, 152, 153, 158, 177, 186, 187, 188, 191, 193, 194, 200, 207, 208, 210, 214, 217, 218, 220, 221, 222, 230, 233, 234, 237, 239, 240, 241, 246, 247, 252, 253, 256, 260, 269, 270, 286, 289, 291, 292, 293, 302, 310], "dont_accept_blanklin": 252, "dont_accept_true_for_1": 252, "dontcar": 118, "door": 135, "doprint": [69, 221], "dorin": 234, "doron": 87, "dot": [18, 25, 26, 27, 30, 32, 35, 36, 79, 80, 84, 86, 89, 101, 103, 110, 124, 144, 149, 153, 155, 158, 175, 200, 202, 205, 206, 208, 209, 214, 217, 221, 240, 241, 259, 265, 269, 271, 272, 299, 302, 304, 306, 309, 310, 311], "dot_rot_grad_ynm": 206, "dotprint": [12, 292, 296], "dotprodsimp": 124, "dotsb": [93, 223], "dotsc": [93, 223], "doubl": [4, 5, 8, 23, 35, 55, 67, 69, 84, 88, 89, 93, 124, 130, 151, 152, 210, 211, 221, 230, 231, 254, 297, 311], "double_coset_can_rep": 84, "double_factori": 93, "double_pendulum": 22, "doubli": 128, "doubt": [11, 22, 118], "dover": 237, "down": [3, 4, 8, 11, 12, 35, 36, 41, 93, 120, 146, 207, 212, 223, 229, 231, 233, 237, 256, 293, 297, 306], "download": [5, 7, 9, 59, 68, 110, 230, 237, 265, 291], "downsid": [11, 293], "downstream": [13, 41], "downward": [136, 137, 138, 140, 216], "doy": 79, "dozen": [3, 15, 43, 297], "dp": [43, 69, 88, 91, 96, 128, 211, 212, 239, 255], "dpi": [116, 205], "dpll": 2, "dq_dict": 306, "dqdt": 18, "dr": [68, 90, 221, 237], "draft": 11, "drag": 207, "dramat": 256, "drastic": 206, "draw": [136, 138, 140, 171, 221, 241], "drawer": 68, "drawn": [68, 79, 117, 207, 211, 219], "dreal": 221, "drep": 210, "drho": 90, "driver": [221, 253], "drop": [8, 11, 94, 115, 129, 212, 214, 309], "drop_to_ground": 212, "dsign": 69, "dsolv": [4, 12, 15, 55, 237, 238, 239, 287, 291, 298], "dsolve_system": 237, "dt": [18, 30, 32, 35, 36, 46, 55, 90, 96, 131, 200, 202, 217, 237, 297, 306], "dt2": 30, "dth": 39, "dtheta": 90, "dtmc": 241, "dtype": [14, 124, 129, 208, 210, 211, 212, 221, 260], "du": 238, "dual": [124, 183, 189], "dual_class": 189, "duart": 237, "dudt": 18, "due": [4, 8, 12, 13, 14, 18, 22, 27, 33, 36, 39, 43, 54, 67, 69, 71, 78, 79, 88, 90, 105, 124, 128, 136, 138, 140, 158, 164, 191, 211, 212, 217, 221, 224, 234, 236, 238, 241, 257, 268, 274, 297, 299, 302], "duf": [148, 301, 305], "duffingspr": [148, 303], "duke": 215, "dum": 247, "dummi": [15, 22, 30, 69, 84, 87, 88, 94, 113, 115, 124, 186, 191, 207, 212, 216, 217, 218, 227, 228, 229, 231, 233, 237, 240, 245, 247, 250, 254, 259, 260], "dummifi": 260, "dummy_eq": [12, 88], "dummy_index": 88, "dummy_nam": [13, 247], "dummy_vari": 87, "dummywrapp": 253, "dump_c": [253, 254], "dump_cod": 254, "dump_f95": 254, "dump_h": 254, "dump_jl": 254, "dump_m": 254, "dump_pyx": 253, "dump_r": 254, "dup": [79, 212], "dup_": [211, 214], "dup__": 214, "dup_cont": 214, "dup_cyclotomic_p": 214, "dup_decompos": 214, "dup_ext_factor": 214, "dup_extract": 214, "dup_factor_list": [211, 214], "dup_factor_list_includ": 214, "dup_flint": [13, 212], "dup_gf_factor": 214, "dup_gf_sqf_list": 214, "dup_gf_sqf_part": 214, "dup_gff_list": 214, "dup_irreducible_p": 214, "dup_lshift": 214, "dup_mirror": 214, "dup_mon": 214, "dup_primit": 214, "dup_qq_i_factor": 214, "dup_random": 214, "dup_real_imag": 214, "dup_revers": 214, "dup_rshift": 214, "dup_scal": 214, "dup_shift": 214, "dup_sign_vari": 214, "dup_sqf_list": 214, "dup_sqf_list_includ": 214, "dup_sqf_norm": 214, "dup_sqf_p": 214, "dup_sqf_part": 214, "dup_transform": 214, "dup_trial_divis": 214, "dup_zz_cyclotomic_factor": 214, "dup_zz_cyclotomic_poli": 214, "dup_zz_diophantin": 214, "dup_zz_factor": 214, "dup_zz_factor_sqf": 214, "dup_zz_hensel_lift": 214, "dup_zz_hensel_step": 214, "dup_zz_i_factor": 214, "dup_zz_irreducible_p": 214, "dup_zz_mignotte_bound": 214, "dup_zz_zassenhau": 214, "duplic": [12, 14, 16, 79, 82, 89, 94, 96, 124, 128, 158, 229, 237, 259, 290], "dure": [3, 12, 13, 16, 30, 31, 35, 60, 69, 88, 89, 124, 128, 130, 131, 134, 149, 153, 216, 221, 230, 239, 240, 257, 259], "dv": 234, "dvi": [116, 205, 221], "dvioption": 221, "dvip": 116, "dvipng": 8, "dx": [5, 13, 14, 15, 36, 39, 43, 51, 67, 69, 84, 88, 90, 92, 96, 105, 107, 110, 111, 112, 113, 115, 124, 130, 136, 147, 153, 180, 217, 218, 224, 234, 237, 238, 242, 287, 291, 296, 298, 299], "dxa": 111, "dxdt": 299, "dxi": 90, "dxy": [51, 234], "dy": [30, 43, 46, 69, 90, 105, 124, 136, 147, 217, 221, 234, 237, 238, 287, 299], "dy2": 30, "dyad": [21, 30, 200, 269], "dyadic": [4, 22, 23, 30, 34, 91, 149, 155, 200, 202, 203, 205, 265, 268, 273, 299, 302, 309, 311], "dyadic_product": [34, 203, 273], "dyadic_tensor": [200, 265], "dyadicadd": 269, "dyadicmul": 269, "dyadicproduct": 273, "dyer": 217, "dyn": 154, "dyn_implicit_mat": [31, 158], "dyn_implicit_rh": [31, 158], "dynam": [19, 21, 23, 25, 26, 27, 28, 29, 30, 31, 32, 35, 36, 128, 131, 133, 134, 141, 142, 144, 150, 151, 153, 154, 155, 156, 158, 159, 200, 202, 204, 256, 257, 265, 299, 301, 302, 303, 305], "dynamic_symbol": 158, "dynamicsymbol": [4, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 124, 134, 148, 149, 150, 152, 153, 155, 156, 158, 159, 200, 202, 204, 205, 299, 302, 303, 304, 306, 307, 309, 310, 311], "dynamicsystem": 142, "dynkin": 117, "dynkin_diagram": 117, "dynkindiagram": 117, "dz": [43, 136, 147, 231, 299], "e": [0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 26, 27, 30, 31, 33, 36, 41, 42, 43, 46, 49, 53, 54, 57, 59, 60, 61, 65, 67, 68, 69, 70, 74, 77, 78, 79, 80, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 117, 118, 124, 128, 130, 131, 133, 134, 136, 137, 140, 144, 145, 148, 149, 152, 153, 155, 156, 158, 159, 160, 163, 170, 171, 175, 180, 181, 183, 186, 188, 190, 191, 196, 197, 200, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 269, 272, 274, 275, 286, 287, 291, 292, 297, 299], "e0": 228, "e1": [22, 96, 98, 105, 211, 216, 228, 237, 240], "e103": 0, "e2": [22, 43, 67, 88, 91, 98, 105, 115, 124, 128, 142, 210, 211, 216, 217, 228, 237, 240, 241, 259], "e2row": 22, "e3": [22, 228, 237], "e4": [22, 228], "e6": 117, "e_": [88, 93, 124], "e_0": 89, "e_1": [78, 124, 208, 214, 217], "e_2": [214, 217], "e_bicep": 299, "e_d": 214, "e_dom": 211, "e_first": 18, "e_i": [90, 208, 231, 247], "e_j": 90, "e_k": 214, "e_muscl": [18, 134], "e_n": [78, 93, 117, 124, 167, 208, 217], "e_nl": [146, 192], "e_nl_dirac": 146, "e_r": 90, "e_rho": 90, "e_theta": 90, "e_tricep": 299, "e_val": 299, "e_x": [90, 247], "e_z": 247, "e_zeroth": 18, "each": [3, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 24, 25, 28, 32, 33, 35, 36, 37, 41, 43, 48, 50, 51, 52, 53, 55, 58, 61, 64, 65, 67, 68, 69, 70, 71, 72, 79, 80, 84, 88, 89, 90, 91, 92, 93, 94, 96, 98, 103, 104, 105, 110, 111, 113, 115, 117, 118, 120, 124, 128, 130, 134, 136, 140, 142, 144, 148, 150, 152, 153, 156, 175, 188, 191, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 219, 221, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 254, 256, 259, 260, 262, 265, 267, 268, 270, 272, 274, 287, 290, 292, 297, 298, 299, 300, 302, 305, 306, 309, 311], "eager": [88, 260], "eagertensor": 260, "earli": [3, 11, 14, 88, 128, 180, 234], "earlier": [13, 21, 130, 218, 222, 231, 233, 260, 270, 272, 292], "earth": [33, 274, 299], "eas": [0, 22, 36, 207, 221, 224], "easi": [3, 7, 11, 12, 14, 15, 18, 23, 35, 45, 76, 80, 88, 96, 113, 115, 129, 151, 208, 211, 216, 221, 228, 231, 234, 237, 240, 245, 246, 247, 286, 287, 289, 290, 291, 292, 293, 296, 306], "easier": [3, 9, 11, 12, 13, 14, 15, 18, 22, 35, 42, 56, 71, 88, 137, 212, 216, 218, 231, 237, 240, 254, 260, 269, 291, 297, 298, 302], "easiest": [5, 9, 11, 13, 15, 16, 88, 208, 211, 234, 260, 270, 286, 292, 297], "easili": [5, 13, 14, 25, 35, 41, 43, 55, 59, 71, 88, 89, 111, 113, 124, 128, 129, 148, 152, 155, 156, 189, 217, 220, 221, 226, 233, 234, 237, 239, 240, 243, 253, 291], "east": 89, "easyfit": 241, "ebnf": 233, "ec": 217, "ecart": 214, "eccentr": [96, 98], "echelon": [124, 210, 240, 293], "echelon_form": [124, 293], "eco": 259, "econ": 241, "econom": [80, 115, 259], "economi": 80, "ecosystem": [0, 14], "ect": 239, "ed": [4, 80, 96, 115, 124, 215, 239, 241], "edg": [72, 81, 82, 117, 210, 221, 240, 259, 296], "edit": [5, 9, 11, 12, 115, 124, 128, 214, 215, 217], "editor": [11, 12, 14], "edmond": 206, "edmonds74": 206, "edu": [11, 67, 72, 79, 80, 89, 91, 93, 115, 124, 128, 144, 210, 215, 220, 230, 234, 237, 241, 265], "educ": [55, 89, 124], "ee": [18, 206, 216], "eea": 214, "eeci": 124, "eez": 214, "ef": 259, "effect": [2, 4, 7, 12, 14, 18, 22, 27, 43, 54, 59, 79, 81, 88, 105, 113, 115, 124, 136, 163, 191, 200, 207, 211, 214, 218, 220, 237, 289, 299, 302], "effici": [15, 30, 39, 41, 48, 53, 61, 67, 69, 72, 79, 84, 88, 91, 92, 93, 104, 105, 120, 124, 128, 129, 144, 152, 153, 206, 209, 210, 211, 212, 214, 217, 218, 219, 220, 233, 234, 239, 253, 260, 286, 292, 293, 297], "effort": [11, 129, 212, 214], "eg": [22, 88, 198, 240], "egg": 262, "eggsham": 262, "egypt": 128, "egyptian": 128, "egyptian_fract": 128, "ei": [51, 55, 96, 113, 216, 221, 231, 234, 237, 247], "eick": [79, 86], "eig": [22, 30, 124], "eigen": 167, "eigenbra": [169, 182, 188], "eigenket": [169, 182, 188], "eigenspac": 124, "eigenst": [169, 181, 186, 188, 189], "eigenv": [22, 30, 124, 185, 291, 293, 302], "eigenvalu": [22, 124, 185, 188, 291, 302], "eigenvec": 22, "eigenvect": [22, 30, 124, 185, 293], "eigenvector": [22, 124, 185, 186, 206], "eight": [39, 57, 221], "eighth": 132, "eigval": 30, "eigvec": [22, 30], "eijk": 96, "einstein": [191, 247], "eisenstein": 214, "either": [2, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 22, 26, 28, 30, 36, 41, 42, 43, 48, 51, 52, 53, 54, 56, 61, 65, 67, 68, 72, 80, 87, 88, 89, 92, 93, 94, 96, 103, 105, 111, 113, 115, 116, 118, 124, 128, 134, 144, 148, 149, 152, 153, 154, 156, 158, 159, 175, 181, 188, 191, 193, 195, 205, 207, 209, 210, 211, 212, 214, 216, 217, 221, 223, 228, 229, 230, 231, 234, 237, 238, 239, 240, 241, 242, 245, 246, 253, 259, 260, 265, 274, 289, 292, 293], "ej": 0, "eject": [212, 217], "ektf": 128, "elabor": [4, 33, 44, 272], "elast": [134, 136, 137], "elastic_modulu": 136, "elastic_tendon_muscl": 134, "elbow": [208, 299], "electr": [18, 33, 131, 162, 164, 272, 274], "electric_potenti": [33, 272], "electromagnet": [33, 162, 195, 247, 274], "electron": [96, 146, 230], "eleg": [71, 218, 220], "elegantli": 51, "elem": [69, 79, 208], "elem_pol": [46, 144], "elem_zero": [46, 144], "element": [5, 13, 14, 15, 16, 18, 19, 30, 34, 36, 38, 41, 46, 51, 61, 65, 68, 69, 71, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 104, 111, 113, 115, 117, 118, 119, 120, 123, 124, 127, 128, 129, 134, 136, 137, 144, 145, 155, 160, 163, 177, 188, 196, 203, 204, 207, 208, 209, 210, 212, 214, 217, 219, 220, 221, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 246, 253, 255, 256, 259, 260, 261, 268, 287, 292, 293, 296, 297, 299], "element_": 229, "element_from_alg_num": 216, "element_from_anp": 216, "element_from_poli": 216, "element_from_r": 216, "element_kind": [88, 123, 229], "element_list": 210, "element_ord": 117, "elementari": [4, 11, 12, 28, 41, 42, 43, 79, 88, 89, 92, 93, 95, 96, 110, 113, 115, 124, 128, 184, 187, 212, 217, 218, 259, 260, 269, 277], "elementary_col_op": 124, "elementary_row_op": 124, "elementaryfunct": 94, "elementof": 221, "elements_doubl": 210, "elements_k": 211, "elements_sympi": 211, "elementwis": [120, 124, 210, 242], "elemsdict": 210, "eleventh": 132, "elgam": 89, "elgamal_private_kei": 89, "elgamal_public_kei": 89, "elif": [41, 42, 43, 94], "elimin": [21, 37, 39, 53, 69, 84, 88, 118, 119, 124, 210, 212, 219, 220, 222, 224, 233, 237, 239, 240, 247, 254, 293, 304], "eliminate_gen": 79, "eliminate_impl": 118, "ellips": [4, 99, 100, 104, 163, 207, 221, 283, 296], "ellipsi": [252, 260], "ellipt": [98, 128, 208], "elliptic": [96, 221], "elliptic_": [96, 98, 221], "elliptic_f": [96, 221], "elliptic_integr": 96, "elliptic_k": [96, 221], "elliptic_pi": [96, 221], "ellipticcurv": 51, "elliptice2": 96, "ellipticf": 96, "ellipticintegr": 96, "elliptick": [96, 221], "ellipticpi": [96, 221], "ellipticpi3": 96, "ellis": 98, "els": [3, 7, 11, 12, 13, 14, 15, 41, 42, 43, 50, 69, 78, 80, 84, 88, 89, 96, 98, 102, 104, 105, 113, 115, 118, 124, 128, 144, 191, 200, 207, 210, 212, 216, 217, 221, 222, 229, 233, 237, 239, 240, 245, 247, 252, 259, 262, 265, 268, 286, 292, 299], "elsewher": [15, 41, 93, 117, 210, 252], "elt": [210, 216], "em": 217, "email": [7, 221], "eman": 101, "embed": [4, 5, 67, 80, 88, 116, 216], "embryon": 68, "emerg": [160, 209], "emg": 241, "emit": [3, 12, 118, 221, 250, 257], "emphas": [48, 87], "emphasi": [5, 211], "empir": 18, "emploi": [68, 87, 92, 115, 128, 217, 220, 237, 241, 287], "empti": [13, 15, 16, 17, 18, 27, 41, 48, 51, 52, 56, 63, 67, 68, 69, 70, 79, 83, 87, 88, 100, 103, 104, 105, 118, 124, 128, 131, 134, 153, 154, 186, 199, 212, 216, 217, 221, 227, 228, 229, 231, 237, 239, 240, 252, 254, 259, 262, 292], "empty_product": 87, "empty_set": 229, "empty_sum": 87, "emptyprint": 221, "emptysequ": [221, 227], "emptyset": [13, 41, 52, 67, 68, 118, 221, 229, 240, 265, 298], "emufphzlrfaxyusdjkzldkrnshgnfivj": 89, "emul": [13, 233, 240, 242, 260], "en": [4, 5, 8, 12, 34, 41, 43, 61, 63, 64, 65, 67, 68, 69, 71, 76, 77, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 98, 100, 104, 105, 106, 115, 116, 117, 118, 120, 124, 128, 142, 144, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 200, 202, 203, 210, 217, 218, 224, 228, 229, 230, 237, 240, 241, 254, 259, 260, 265, 267, 271, 273, 275, 293], "enabl": [2, 5, 9, 15, 22, 43, 59, 88, 115, 116, 128, 137, 191, 200, 205, 221, 237, 241, 252, 257, 260, 293, 296, 297, 302], "enable_automatic_int_sympif": 116, "enable_automatic_symbol": 116, "enable_eager_execut": 260, "encapsul": [197, 214, 240, 254], "enciph": 89, "encipher_affin": 89, "encipher_atbash": 89, "encipher_bifid": 89, "encipher_bifid5": 89, "encipher_bifid6": 89, "encipher_elgam": 89, "encipher_gm": 89, "encipher_hil": 89, "encipher_kid_rsa": 89, "encipher_railf": 89, "encipher_rot13": 89, "encipher_rsa": 89, "encipher_shift": 89, "encipher_substitut": 89, "encipher_vigener": 89, "encircl": 113, "enclos": [4, 98, 99, 104, 127, 145, 221, 231, 260], "encloses_point": [98, 99, 104], "encod": [3, 13, 72, 80, 86, 89, 118, 221, 252, 256, 259], "encode_mors": 89, "encompass": 211, "encount": [5, 16, 39, 48, 88, 115, 124, 153, 183, 209, 214, 217, 239, 240, 254, 265, 293], "encourag": [4, 13, 25, 26, 68, 216], "encryp": 89, "encrypt": 89, "encyclopedia": [34, 100, 203], "encyclopediaofmath": 96, "end": [0, 2, 4, 7, 11, 12, 13, 14, 16, 18, 25, 26, 27, 32, 33, 36, 39, 41, 42, 43, 46, 49, 53, 55, 61, 67, 68, 69, 78, 79, 84, 86, 87, 88, 89, 93, 94, 96, 98, 100, 104, 113, 116, 118, 120, 124, 128, 130, 136, 137, 140, 148, 156, 158, 159, 196, 200, 205, 206, 210, 214, 221, 224, 227, 229, 230, 234, 237, 238, 239, 240, 241, 242, 243, 252, 254, 255, 257, 259, 262, 272, 287, 291, 293, 297, 299, 302, 306, 309], "end_point": 304, "end_point_aux": 304, "end_point_forc": 304, "endian": 72, "endif": [69, 254], "endnumb": 237, "endomorph": [111, 216], "endomorphism_r": 216, "endomorphismr": 216, "endow": [209, 217], "endpoint": [18, 33, 87, 88, 92, 101, 148, 229, 272, 304], "energi": [13, 22, 23, 33, 47, 146, 149, 153, 155, 167, 192, 196, 247, 272, 282, 303, 311], "enforc": [18, 80, 299, 302], "eng": 80, "engag": 71, "engin": [16, 18, 29, 30, 34, 131, 132, 134, 135, 138, 140, 203, 237, 296, 299], "english": [4, 11, 89], "engr": 115, "enhanc": [18, 88, 214, 241, 287, 299], "enlarg": 99, "enough": [3, 4, 11, 14, 22, 30, 50, 52, 79, 88, 92, 115, 124, 127, 128, 144, 212, 214, 221, 237, 287, 289], "enricogiampieri": 259, "ensembl": 185, "enspac": [237, 240], "ensur": [3, 11, 12, 16, 18, 43, 48, 50, 51, 52, 53, 56, 59, 88, 89, 92, 119, 124, 131, 134, 152, 156, 216, 217, 221, 252, 257, 260, 299, 304], "ent": 128, "entail": 115, "enter": [9, 25, 37, 80, 88, 89, 93, 101, 128, 130, 136, 140, 153, 158, 221, 231, 239, 252, 292, 296, 302], "entertain": 290, "enthought": 59, "entir": [2, 3, 12, 14, 24, 28, 41, 79, 88, 89, 92, 93, 96, 102, 104, 113, 127, 150, 158, 200, 208, 210, 216, 229, 246, 255, 257, 291, 297, 304], "entireti": 32, "entiti": [22, 28, 33, 88, 98, 101, 102, 104, 105, 113, 240, 274, 283, 293], "entity1": 100, "entity2": 100, "entri": [0, 22, 28, 53, 65, 70, 78, 80, 86, 89, 100, 113, 117, 119, 120, 127, 131, 153, 155, 163, 210, 214, 216, 217, 231, 241, 260, 302], "entropi": [89, 241], "entropy_": 241, "entropypost": 241, "enum": [71, 216, 258, 284], "enum_al": 256, "enum_larg": 256, "enum_rang": 256, "enum_smal": 256, "enumer": [41, 58, 72, 77, 80, 83, 91, 95, 113, 118, 128, 134, 216, 217, 231, 256, 259, 277], "enumerate_st": 186, "env": 130, "envelop": 237, "environ": [2, 6, 8, 10, 11, 12, 13, 15, 88, 116, 205, 221, 241, 252, 262, 289, 291, 296], "envis": 39, "eom": [27, 304, 306, 307], "eom_method": [24, 158, 304], "ep": [69, 79, 87, 212, 216, 217], "epath": 233, "epathtool": 233, "eppstein": 128, "eps_dim": 247, "epsilon": [13, 16, 87, 89, 96, 113, 115, 162, 221, 247], "eq": [4, 12, 14, 15, 16, 37, 41, 43, 50, 51, 55, 57, 65, 67, 69, 88, 93, 94, 96, 98, 101, 105, 113, 118, 194, 207, 208, 212, 217, 219, 221, 223, 227, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 253, 254, 260, 265, 289, 291, 298], "eq1": [55, 98, 237, 239, 240], "eq2": [55, 98, 118, 237, 240], "eq3": 240, "eq4": 240, "eq_x": 233, "eqn": [52, 55, 67, 240], "eqs_coeff": 219, "eqs_mat": 237, "eqs_one_soln_set": 55, "eqs_r": 219, "eqs_rh": 219, "eqs_to_matrix": 219, "equ": 239, "equal": [4, 12, 13, 14, 15, 17, 18, 25, 26, 36, 37, 41, 42, 43, 48, 55, 57, 61, 65, 68, 69, 70, 77, 78, 79, 80, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 101, 102, 103, 104, 105, 107, 113, 118, 120, 124, 128, 132, 134, 136, 140, 144, 145, 148, 149, 153, 155, 156, 158, 175, 176, 191, 195, 196, 200, 204, 208, 209, 210, 211, 212, 214, 216, 217, 219, 221, 227, 229, 231, 234, 237, 238, 239, 240, 241, 247, 252, 253, 254, 259, 262, 265, 270, 275, 287, 290, 298, 299, 302, 304], "equal_valu": 88, "equat": [5, 13, 14, 15, 16, 18, 21, 22, 23, 24, 29, 30, 31, 34, 35, 36, 37, 39, 44, 46, 50, 67, 69, 84, 87, 88, 90, 94, 96, 98, 101, 102, 106, 110, 111, 112, 113, 115, 116, 124, 128, 131, 132, 133, 134, 136, 140, 144, 146, 148, 149, 151, 152, 153, 154, 156, 158, 160, 164, 204, 205, 206, 207, 208, 210, 212, 214, 215, 216, 219, 220, 221, 227, 231, 233, 236, 237, 238, 246, 265, 270, 271, 275, 287, 288, 291, 300, 302, 303, 304, 305, 306, 307, 309, 311], "equidimension": 237, "equidist": 88, "equidistantli": 287, "equilater": 104, "equilibrium": [18, 27, 137, 140, 148, 299, 302], "equilibrium_length": 148, "equispac": 217, "equiv": [79, 89, 93, 128, 216, 221, 231, 234], "equival": [3, 12, 13, 14, 15, 16, 22, 23, 36, 37, 41, 42, 43, 46, 53, 55, 61, 65, 69, 70, 78, 79, 84, 88, 89, 92, 94, 96, 113, 115, 124, 128, 130, 141, 142, 144, 152, 174, 185, 188, 191, 194, 195, 200, 205, 207, 208, 209, 210, 211, 212, 216, 217, 221, 228, 229, 233, 234, 237, 239, 240, 242, 243, 246, 247, 256, 260, 262], "equivalent_dim": 194, "eqworld": 237, "eqyptian": 234, "eratosthen": 128, "erdelyi": [96, 115], "erdo": 256, "erf": [4, 96, 113, 115, 221, 231, 241], "erf2": [4, 96, 221], "erf2inv": [4, 96, 221], "erfc": [4, 96, 113, 221, 241], "erfcinv": [4, 96, 221], "erfi": [4, 96, 113, 221], "erfinv": [4, 96, 221, 241], "eric": [115, 215], "erik": 265, "erlang": 241, "erlang_distribut": 241, "erlangdistribut": 241, "erlend": 82, "erron": 92, "error": [2, 3, 4, 5, 8, 11, 12, 13, 14, 22, 36, 37, 41, 42, 50, 51, 52, 53, 54, 55, 57, 60, 67, 69, 77, 80, 87, 88, 89, 94, 98, 103, 113, 115, 124, 127, 128, 130, 153, 156, 158, 206, 209, 210, 211, 212, 214, 218, 221, 223, 229, 237, 238, 239, 240, 241, 252, 253, 254, 257, 259, 262, 265, 286], "error_funct": 96, "error_term": 128, "error_when_incomplet": 124, "ert": 0, "escap": [88, 130, 207, 221, 262], "especi": [3, 4, 12, 14, 21, 22, 28, 30, 36, 43, 57, 87, 88, 124, 185, 217, 233, 237, 239, 252, 286, 287], "espinosa": 96, "esqu": 30, "essenc": 269, "essenti": [5, 14, 18, 33, 36, 72, 83, 88, 92, 94, 95, 96, 113, 155, 203, 208, 209, 212, 216, 228, 231, 266, 269, 272, 273, 274, 280, 282, 300, 302], "establish": [9, 18, 39, 84, 113, 148, 152, 156, 158, 231, 307], "estim": [57, 67, 87, 88, 92, 113, 287], "et": [115, 131, 132, 134, 170, 214, 217, 218, 230, 233], "eta": [16, 96, 113, 216, 221, 237, 238, 241], "etc": [7, 11, 12, 13, 18, 22, 33, 35, 36, 39, 41, 42, 64, 67, 69, 84, 88, 89, 93, 94, 106, 115, 117, 118, 122, 128, 130, 134, 162, 171, 175, 188, 191, 202, 207, 208, 209, 210, 211, 214, 216, 221, 222, 229, 230, 231, 233, 237, 240, 241, 245, 253, 254, 259, 270, 274], "etiquett": 7, "euclid": [88, 214, 215], "euclidean": [90, 101, 103, 148, 156, 200, 212, 214, 217], "euclidean_algorithm": 88, "euclideanspac": 61, "eucliden": 89, "euclidtool": 214, "euler": [4, 36, 61, 67, 68, 87, 88, 89, 92, 93, 96, 104, 110, 116, 128, 152, 188, 200, 205, 206, 217, 221, 237, 241, 265, 267], "euler_angl": [265, 267], "euler_equ": 67, "euler_maclaurin": [87, 92], "euler_numb": 93, "euler_poli": [93, 217], "euler_pseudoprim": 128, "eulergamma": [4, 88, 92, 93, 96], "eulerian": 96, "eulerlin": 104, "eulernumb": 93, "eulervm": 221, "eulerzigzagnumb": 93, "eurocam": 115, "eurocast": 215, "european": 208, "eval": [4, 13, 14, 41, 63, 64, 69, 88, 94, 96, 132, 177, 191, 212, 217, 221, 254, 286], "eval_approx": 217, "eval_color_func": 207, "eval_control": 175, "eval_diffeq": 299, "eval_eom": 18, "eval_expr": 130, "eval_forc": 18, "eval_frequ": 144, "eval_holo_fsolv": 299, "eval_holonom": 299, "eval_integr": 87, "eval_levicivita": 96, "eval_poli": 210, "eval_poly_mul": 210, "eval_r": [217, 299], "eval_rh": [18, 299], "eval_zeta_funct": 87, "evalf": [2, 4, 14, 15, 16, 22, 30, 41, 48, 54, 57, 69, 87, 92, 93, 94, 96, 107, 110, 111, 124, 130, 173, 212, 217, 221, 228, 229, 233, 241, 253, 260, 287, 288, 302], "evalf_r": 217, "evalfmixin": 88, "evalu": [2, 4, 15, 18, 21, 22, 23, 27, 28, 39, 41, 42, 49, 55, 57, 61, 62, 63, 64, 67, 69, 88, 90, 93, 94, 96, 99, 103, 104, 113, 115, 118, 120, 124, 128, 129, 130, 131, 132, 134, 144, 150, 166, 168, 170, 172, 174, 177, 180, 188, 191, 206, 207, 210, 211, 212, 214, 215, 217, 221, 222, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 253, 254, 255, 260, 272, 277, 286, 287, 288, 289, 291, 293, 300], "evaluate_delta": 191, "evaluate_integr": 241, "evaluate_pauli_product": 166, "evaluationfail": 214, "evalul": 88, "even": [3, 4, 5, 9, 11, 12, 14, 15, 16, 18, 22, 23, 38, 41, 43, 48, 51, 54, 55, 56, 57, 62, 63, 64, 65, 66, 69, 70, 71, 76, 79, 80, 87, 88, 89, 92, 93, 94, 96, 100, 104, 113, 115, 118, 124, 127, 128, 130, 135, 145, 151, 176, 187, 194, 196, 200, 206, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 229, 230, 231, 233, 234, 237, 239, 240, 248, 252, 274, 286, 287, 289, 291, 292, 297, 298], "evenhandl": 65, "evenli": 234, "evenpred": 65, "event": [216, 241], "eventu": [11, 79, 96, 115, 130, 207, 208, 228, 254, 259], "ever": [12, 13, 14, 15, 36, 43, 94, 208, 217, 231, 237, 254, 257, 292], "everi": [2, 3, 4, 7, 11, 12, 14, 15, 28, 33, 35, 36, 41, 43, 48, 52, 58, 63, 64, 65, 68, 74, 76, 79, 80, 88, 89, 103, 115, 117, 124, 128, 144, 195, 207, 208, 209, 211, 212, 214, 216, 221, 226, 229, 231, 233, 234, 237, 240, 241, 243, 269, 272, 274, 290, 292, 293, 297], "everyon": [12, 218], "everyth": [3, 5, 12, 14, 16, 27, 43, 69, 88, 90, 96, 115, 121, 146, 187, 188, 207, 221, 292, 296], "everywher": [3, 15, 16, 33, 88, 96, 113, 144, 259, 274], "evid": [113, 153, 231, 243, 310], "evinc": 221, "evolut": 98, "ew": 215, "ewen": 241, "ex": [76, 115, 145, 158, 211, 216, 217, 247, 255], "exact": [3, 11, 12, 13, 15, 16, 18, 30, 41, 43, 46, 54, 65, 87, 88, 89, 92, 98, 103, 110, 113, 115, 124, 132, 136, 156, 185, 210, 211, 212, 214, 217, 228, 233, 237, 239, 252, 262, 289, 291, 296], "exact_differential_equ": 237, "exactli": [3, 4, 5, 11, 12, 13, 14, 15, 16, 28, 43, 48, 55, 57, 65, 72, 79, 88, 91, 92, 124, 130, 206, 217, 231, 233, 237, 240, 242, 256, 259, 260, 287, 289, 291, 296, 297], "exactquotientfail": [211, 212, 214, 217], "examin": [69, 89, 180, 252, 254, 297], "exampl": [0, 1, 2, 3, 5, 7, 12, 13, 14, 15, 16, 18, 22, 23, 24, 25, 26, 28, 30, 32, 33, 35, 37, 38, 39, 41, 42, 47, 49, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 110, 111, 113, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 129, 130, 132, 134, 136, 138, 140, 142, 144, 146, 147, 148, 149, 150, 151, 152, 153, 155, 156, 158, 159, 160, 162, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 183, 185, 186, 188, 189, 190, 191, 192, 193, 197, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 222, 223, 224, 226, 227, 229, 230, 233, 234, 236, 237, 238, 239, 240, 245, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 265, 267, 268, 270, 272, 273, 274, 275, 280, 282, 283, 286, 287, 288, 289, 290, 292, 293, 295, 296, 298, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311], "examples_arg": 252, "examples_kwarg": 252, "exaxmpl": 88, "exc": 214, "exce": [70, 128, 247, 260], "exceed": [14, 16, 216, 302], "exceedingli": 214, "excel": [59, 92, 216, 295], "excent": 104, "except": [2, 3, 4, 11, 13, 14, 15, 16, 39, 41, 42, 43, 53, 57, 67, 69, 79, 80, 88, 89, 92, 93, 94, 96, 113, 115, 128, 149, 195, 197, 206, 208, 210, 211, 212, 216, 217, 218, 219, 221, 230, 233, 234, 237, 238, 240, 245, 250, 252, 254, 255, 258, 259, 269, 272, 284, 286, 289, 292, 310], "exceptional_isomorph": 71, "exceptioninfo": 250, "excerpt": 4, "excess": 15, "exchang": [84, 89, 124, 206, 210, 259], "excircl": 104, "excit": [18, 131, 134, 208, 299, 303], "exclud": [11, 30, 50, 55, 57, 69, 87, 88, 115, 124, 150, 155, 209, 210, 212, 214, 217, 227, 237, 239, 252, 255, 259], "exclude_empti": 252, "exclus": [87, 88, 94, 118, 124, 214, 289], "exec": [69, 88, 116, 260], "execut": [12, 15, 30, 41, 59, 69, 116, 124, 136, 207, 221, 237, 240, 250, 252, 254, 255, 260, 262, 264, 276, 291, 296], "exercis": [43, 79, 256, 290, 297, 301], "exert": 148, "exgaussian": 241, "exhaust": [3, 41, 231, 259, 290], "exhibit": [128, 206, 216, 230], "exict": 131, "exist": [3, 7, 11, 13, 14, 15, 18, 33, 36, 39, 41, 43, 54, 57, 67, 68, 69, 72, 79, 88, 92, 98, 100, 103, 104, 105, 106, 115, 118, 124, 128, 140, 154, 158, 181, 207, 208, 209, 210, 212, 214, 216, 221, 228, 229, 231, 234, 237, 239, 240, 252, 260, 270, 291, 293, 298], "existing_julia_fcn": 221, "existing_octave_fcn": [69, 221], "existing_smtlib_fcn": 221, "exit": [69, 128, 252], "exlud": 239, "exogen": [31, 158], "exotica": 74, "exp": [11, 12, 13, 14, 15, 16, 18, 37, 41, 43, 46, 54, 55, 57, 61, 67, 69, 78, 87, 88, 90, 92, 93, 94, 96, 106, 107, 110, 113, 115, 120, 124, 128, 130, 132, 146, 167, 170, 186, 192, 206, 211, 212, 217, 218, 221, 223, 228, 231, 233, 237, 238, 239, 240, 241, 242, 259, 275, 287, 291, 293, 298], "exp1": [88, 221], "exp2": [69, 221], "exp2_opt": 69, "exp_polar": [88, 94, 96, 231], "exp_r": 223, "expand": [4, 12, 13, 14, 15, 16, 22, 30, 39, 41, 46, 48, 69, 88, 90, 92, 93, 94, 96, 113, 115, 124, 144, 172, 180, 183, 190, 191, 209, 210, 211, 214, 216, 217, 218, 221, 224, 228, 230, 231, 233, 237, 240, 241, 245, 253, 260, 271, 286, 291, 302], "expand_": 43, "expand_complex": [43, 88], "expand_func": [88, 93, 96], "expand_hint": 88, "expand_log": [43, 69, 88, 233], "expand_mul": [88, 113], "expand_multinomi": 88, "expand_opt": 69, "expand_power_bas": [88, 233], "expand_power_exp": 88, "expand_trig": [14, 43, 88, 286], "expanded_expr": 291, "expans": [4, 11, 27, 39, 43, 69, 88, 90, 93, 94, 96, 115, 124, 128, 170, 172, 217, 218, 223, 224, 225, 230, 232, 233, 237, 239, 240, 277, 288, 297], "expansil": [148, 156], "expect": [4, 5, 7, 13, 14, 16, 18, 22, 41, 43, 46, 68, 70, 73, 88, 94, 96, 100, 118, 128, 129, 144, 148, 152, 156, 185, 211, 214, 216, 218, 219, 228, 233, 236, 239, 240, 241, 250, 252, 253, 256, 259, 260, 291, 292, 299, 300], "expectationmatrix": 241, "expectedexcept": 250, "expediti": 12, "expens": [14, 15, 27, 43, 55, 88, 230, 237, 238, 239, 255, 293], "experi": [2, 18, 240, 241, 302], "experienc": [10, 13, 18, 70], "experiment": [2, 3, 233], "expint": [96, 221], "expintegral": [96, 221], "expintegralei": 221, "expj": 237, "explain": [2, 3, 4, 5, 7, 12, 41, 48, 57, 68, 84, 88, 96, 106, 111, 156, 208, 211, 214, 216, 218, 228], "explan": [3, 5, 12, 16, 20, 23, 37, 41, 44, 61, 62, 63, 64, 65, 66, 68, 69, 73, 76, 77, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 94, 96, 100, 110, 111, 113, 115, 124, 128, 131, 132, 134, 144, 147, 148, 149, 150, 152, 153, 155, 156, 158, 159, 160, 162, 165, 168, 170, 172, 174, 186, 191, 206, 207, 208, 210, 212, 214, 216, 217, 219, 223, 224, 226, 227, 228, 229, 231, 233, 234, 237, 239, 241, 242, 243, 246, 247, 252, 255, 257, 259, 260, 294, 300, 305, 310], "explanatori": 302, "explicit": [11, 13, 14, 15, 18, 22, 27, 31, 36, 41, 43, 48, 51, 52, 80, 87, 88, 92, 104, 105, 115, 127, 128, 134, 153, 154, 158, 208, 217, 220, 221, 223, 229, 231, 237, 238, 239, 240, 256, 299, 306], "explicit_formulas_for_small_system": 124, "explicit_kinemat": [153, 307], "explicitli": [3, 12, 13, 14, 15, 22, 28, 41, 43, 69, 79, 80, 88, 89, 91, 94, 96, 101, 105, 120, 124, 129, 144, 158, 207, 209, 210, 211, 212, 214, 217, 221, 233, 237, 239, 257, 289, 293, 296, 298], "explik": 223, "exploit": [113, 253], "explor": [25, 26, 44, 207, 216, 256, 297], "explos": [125, 210], "expm1": [69, 221], "expm1_opt": 69, "expon": [14, 16, 48, 57, 66, 69, 88, 89, 94, 95, 96, 113, 115, 120, 128, 142, 144, 197, 209, 210, 211, 217, 218, 221, 230, 233, 237, 240, 245, 256, 297], "exponent_vector": 78, "exponenti": [13, 16, 41, 55, 61, 69, 79, 84, 88, 89, 93, 115, 118, 124, 128, 130, 177, 193, 218, 233, 237, 240, 241, 288, 289, 293], "exponential_distribut": 241, "exponential_integr": 96, "exponentialdistribut": 241, "exponentially_modified_gaussian_distribut": 241, "export": [60, 221], "expos": [13, 68, 130, 241], "exposit": 228, "expr": [3, 4, 12, 14, 15, 16, 21, 22, 27, 41, 43, 52, 54, 57, 63, 64, 66, 67, 69, 80, 87, 90, 92, 94, 96, 98, 110, 113, 115, 118, 120, 124, 128, 129, 130, 134, 144, 148, 150, 153, 155, 156, 158, 168, 172, 174, 176, 180, 183, 186, 188, 189, 191, 198, 200, 202, 205, 207, 209, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 223, 224, 226, 228, 230, 233, 236, 237, 238, 239, 240, 241, 242, 243, 245, 247, 248, 253, 254, 255, 257, 260, 265, 267, 268, 269, 270, 272, 286, 287, 289, 291, 292, 296, 297, 298], "expr1": [3, 41, 144, 207, 239, 292], "expr2": [3, 41, 144, 207, 292], "expr_1": 144, "expr_2": 144, "expr_3": 144, "expr_4": 144, "expr_class": 221, "expr_free_symbol": [12, 88], "expr_i": 207, "expr_modifi": 16, "expr_to_holonom": [107, 110, 111, 112], "expr_tr": 243, "expr_with_intlimit": [87, 115], "expr_with_limit": [87, 115], "expr_x": 207, "expr_z": 207, "exprcondpair": 94, "expreal": 41, "express": [2, 3, 4, 5, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 42, 43, 49, 50, 53, 55, 57, 61, 62, 63, 64, 65, 66, 67, 80, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 101, 103, 104, 111, 112, 113, 115, 116, 121, 122, 123, 124, 127, 128, 129, 132, 134, 136, 144, 145, 147, 148, 149, 151, 152, 153, 154, 155, 156, 158, 159, 166, 170, 174, 175, 179, 180, 183, 186, 188, 189, 190, 191, 193, 194, 195, 196, 198, 200, 202, 204, 205, 206, 207, 208, 209, 210, 212, 214, 216, 217, 218, 221, 222, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 244, 245, 246, 247, 248, 250, 253, 254, 255, 256, 257, 260, 262, 265, 267, 268, 269, 271, 272, 274, 280, 282, 287, 288, 289, 290, 291, 293, 296, 297, 298, 306], "express_coordin": [269, 270], "expression_complex": 48, "expression_complex_poli": 48, "expression_expand": 48, "expression_str": 14, "expressiondomain": [211, 212], "expressions_dom": 211, "expressions_sympi": 211, "expressli": 269, "exprtool": 217, "exprwithintlimit": [87, 115], "exprwithlimit": [87, 115], "expsboth": 228, "expsf": 228, "expsg": 228, "exquo": [210, 211, 212, 217], "exquo_ground": [212, 217], "exr": 14, "exradii": 104, "exradiu": 104, "exsqrt": 212, "ext": [5, 208, 212], "ext_rank": 247, "extend": [4, 5, 12, 14, 30, 41, 43, 51, 65, 69, 79, 80, 88, 89, 93, 100, 113, 115, 124, 128, 133, 158, 199, 205, 207, 209, 212, 214, 216, 217, 218, 221, 228, 230, 234, 236, 237, 240, 241, 242, 254, 256, 289, 291, 299], "extend_to_no": 128, "extended_euclidean_algorithm": 88, "extended_neg": [41, 88], "extended_nonneg": [41, 88], "extended_nonposit": [41, 88], "extended_nonzero": [41, 88, 221], "extended_posit": [41, 88], "extended_r": [41, 65, 88, 221, 236, 240], "extended_real_number_lin": 41, "extendedrealhandl": 65, "extendedrealpred": 65, "extens": [0, 2, 4, 5, 7, 12, 30, 41, 43, 79, 88, 93, 94, 100, 104, 115, 124, 132, 133, 134, 148, 155, 156, 209, 211, 212, 214, 215, 216, 217, 221, 231, 233, 237, 239, 240, 253, 254, 290, 297, 299], "extension_veloc": [18, 134, 148, 156, 299], "extensionel": [208, 212], "extensor": 299, "extensorpathwai": 299, "extent": 69, "exterior": [90, 104], "exterior_angl": 104, "extern": [2, 23, 59, 88, 116, 130, 140, 142, 151, 205, 211, 212, 222, 229, 233, 241, 252, 253, 302], "extra": [8, 13, 18, 33, 69, 71, 88, 89, 128, 129, 130, 153, 196, 214, 221, 231, 237, 252, 253, 254, 272, 310], "extra_compile_arg": 253, "extra_data": 14, "extra_link_arg": 253, "extra_preambl": 221, "extract": [15, 23, 28, 36, 48, 52, 56, 57, 67, 88, 115, 120, 124, 128, 145, 148, 151, 210, 214, 216, 217, 239, 240, 241, 252, 254, 259, 302], "extract_addit": 88, "extract_branch_factor": 88, "extract_fundamental_discrimin": 216, "extract_leading_ord": 88, "extract_multipl": 88, "extract_slic": 210, "extract_type_ten": 145, "extraglob": 252, "extran": [5, 237], "extraneousfactor": 214, "extrapol": [92, 228], "extrem": [3, 12, 14, 27, 36, 53, 79, 92, 98, 104, 115, 120, 140, 233, 241], "extrins": 61, "ey": [13, 53, 88, 119, 120, 121, 122, 124, 126, 210, 216, 242, 262, 293], "eyz": [51, 234], "ez": [212, 247], "f": [0, 4, 8, 11, 12, 13, 14, 15, 16, 18, 23, 25, 26, 30, 33, 36, 39, 43, 46, 48, 51, 52, 54, 55, 67, 68, 69, 70, 71, 78, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 106, 111, 112, 113, 115, 117, 120, 124, 128, 129, 130, 131, 132, 134, 137, 140, 142, 148, 149, 151, 152, 153, 154, 156, 158, 160, 164, 165, 176, 177, 180, 189, 191, 194, 200, 205, 206, 207, 208, 209, 211, 212, 214, 215, 216, 217, 218, 220, 221, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 252, 253, 254, 255, 256, 259, 260, 262, 271, 272, 275, 286, 287, 292, 296, 297, 298, 299, 304, 307], "f0": 212, "f1": [16, 22, 30, 54, 79, 113, 115, 124, 144, 149, 207, 212, 214, 217, 221, 223, 239, 310], "f16": 69, "f2": [16, 22, 30, 54, 88, 113, 124, 144, 149, 194, 207, 214, 217, 221, 223, 239, 310], "f2py": [2, 69, 129, 253, 254], "f2pycodewrapp": 253, "f3": [207, 221, 310], "f4": [117, 207], "f401": 116, "f5": [13, 207], "f5b": [214, 217], "f6": 207, "f8": 207, "f811": [12, 88], "f821": [88, 255], "f90": 254, "f95": [69, 253, 254], "f_": [18, 25, 26, 27, 39, 88, 93, 96, 115, 214, 220, 221, 231, 237], "f_0": [90, 93, 154, 214, 303], "f_1": [31, 90, 93, 96, 113, 144, 154, 158, 208, 214, 217, 237], "f_2": [31, 93, 113, 144, 154, 158, 214, 231, 237], "f_3": [31, 154, 158, 237], "f_4": [117, 154], "f_5": 214, "f_a": 154, "f_c": [154, 306], "f_code": [69, 254], "f_cython": 253, "f_d": [25, 26, 153, 158, 214], "f_dnh": 153, "f_fortran": 253, "f_h": 25, "f_i": [90, 113, 124, 214, 218], "f_j": [214, 231], "f_k": [25, 87, 153, 214], "f_list": 214, "f_m": [18, 158], "f_m_max": [18, 134, 299], "f_m_max_bicep": 299, "f_m_max_tricep": 299, "f_n": [87, 93, 96, 208, 214, 217, 237], "f_name": [69, 254], "f_q": 231, "f_r": [25, 27, 214], "f_real": [88, 95], "f_real_inherit": [88, 95], "f_result": 254, "f_t": [18, 134], "f_v": [154, 306], "f_x": [33, 240, 272], "f_y": [33, 272], "f_z": [33, 93, 272], "fab": [69, 221], "fabian": 0, "fac": 113, "face": [22, 79, 81, 101, 115, 214, 218, 221, 234, 275, 293], "facil": 69, "facilit": [13, 23, 34, 129, 133, 151, 162, 203, 252, 287], "fact": [4, 12, 13, 15, 27, 41, 42, 43, 52, 64, 65, 88, 93, 96, 106, 113, 128, 140, 148, 196, 208, 209, 210, 211, 214, 216, 218, 220, 231, 233, 237, 240, 252, 260, 274, 286, 289, 290, 291, 292, 297, 302], "factor": [2, 12, 14, 15, 16, 30, 70, 79, 80, 87, 88, 89, 92, 93, 94, 96, 113, 115, 124, 128, 136, 144, 160, 168, 172, 175, 187, 191, 195, 196, 197, 198, 208, 210, 211, 212, 213, 215, 216, 217, 224, 230, 231, 233, 234, 237, 239, 241, 245, 256, 269, 272, 291, 293, 303], "factor_": [13, 88, 93, 128, 217, 234], "factor_index": 79, "factor_list": [212, 217, 297], "factor_list_includ": [212, 217], "factor_term": [88, 217, 230, 233, 310], "factori": [4, 12, 39, 43, 53, 87, 88, 92, 93, 96, 124, 128, 130, 206, 212, 214, 215, 216, 217, 221, 223, 233, 239, 241, 254, 255, 259, 260, 261, 297], "factorial2": [93, 192, 221], "factorial_mo": 241, "factorial_not": 130, "factorialmo": 241, "factorialpow": 221, "factoring_visitor": 256, "factorint": [88, 93, 128, 216, 217, 256], "factoris": [128, 210, 211, 212, 214, 217, 237], "factorisatio": 256, "factorrat": 128, "factortool": [211, 214], "factrul": 41, "fagin": 233, "fail": [2, 3, 4, 5, 8, 11, 13, 14, 41, 42, 43, 48, 69, 79, 80, 84, 87, 88, 92, 94, 112, 113, 115, 116, 124, 125, 128, 130, 181, 186, 205, 207, 210, 211, 212, 214, 216, 217, 221, 228, 231, 237, 239, 241, 250, 252, 259, 260, 293, 302], "failing_express": 88, "failing_numb": 88, "failur": [11, 13, 84, 92, 105, 113, 128, 241, 252, 297], "fair": [100, 241], "fairli": [23, 32, 88, 96, 113, 151, 208, 302], "fall": [18, 70, 87, 88, 93, 116, 144, 205, 216, 221, 234, 238, 241], "fallback": [14, 88, 116, 191, 205, 211, 221, 239], "fallingfactori": [93, 221], "fals": [5, 12, 14, 15, 16, 22, 24, 25, 26, 27, 28, 31, 35, 36, 41, 42, 43, 48, 50, 57, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 74, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 110, 113, 115, 116, 118, 119, 120, 123, 124, 125, 128, 130, 132, 134, 136, 142, 144, 146, 147, 149, 150, 153, 154, 155, 158, 163, 175, 176, 180, 183, 188, 189, 190, 191, 194, 198, 200, 201, 202, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 228, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 246, 247, 250, 252, 253, 254, 255, 259, 260, 262, 265, 268, 289, 292, 293, 296, 302, 304, 309, 310, 311], "falsei": 42, "famili": [69, 72, 106, 115, 209], "familiar": [9, 10, 11, 16, 18, 22, 28, 43, 115, 175, 218, 287, 289, 295], "famou": [70, 96, 115, 128, 234], "fancyset": 229, "far": [12, 14, 16, 68, 88, 102, 115, 206, 208, 211, 221, 231, 260, 286, 287, 289], "farr": 90, "farther": 68, "farthest": [98, 104], "fascin": [23, 151], "fashion": [25, 26, 28, 36, 55, 69, 88, 94, 120, 208, 259, 299, 302], "fast": [2, 14, 41, 55, 69, 88, 122, 124, 128, 153, 154, 163, 212, 213, 214, 215, 216, 217, 218, 224, 228, 237, 239, 256, 259, 260], "fast_walsh": 91, "faster": [2, 11, 13, 14, 21, 27, 41, 48, 53, 54, 69, 73, 88, 96, 124, 128, 129, 150, 153, 154, 210, 211, 212, 214, 216, 217, 218, 222, 224, 228, 233, 234, 237, 238, 240, 253, 256], "fastest": [88, 93, 115, 128, 129, 210, 218], "fastfouriertransform": 91, "fateman": 215, "father": 234, "fauger": [214, 217], "fault": 237, "faux1": 304, "faux2": 304, "favor": 13, "fbra": 191, "fc": 140, "fcall": 69, "fcn": [69, 254], "fcn2": 254, "fcode": [69, 221], "fcodegen": 254, "fcodeprint": [69, 221], "fd": [67, 69, 191], "fd1": 144, "fdict": 115, "fdiff": [4, 11, 43, 69, 88, 94, 95, 96, 132], "fdistribut": 241, "fe": 140, "feasibl": [79, 144], "featur": [0, 2, 3, 5, 7, 11, 12, 13, 16, 17, 18, 19, 22, 23, 30, 34, 43, 58, 59, 88, 90, 92, 221, 237, 241, 250, 254, 257, 273, 285, 290, 291, 295, 297, 299, 301], "feb": 154, "februari": 215, "fed": 144, "feedback": [11, 46, 89, 141, 144, 290, 301], "feedforward": 144, "feel": [11, 30, 31, 41, 59, 233, 237, 239], "feet": 104, "felix": 89, "femtesemest": 136, "fermat": [128, 162], "fermat_pseudoprim": 128, "fermi": [96, 191], "fermi_level": 191, "fermion": [93, 128, 191], "fermionicoper": 191, "fernando": 0, "ferrer": 77, "fetch": 9, "fetch_item": 261, "fetter": 191, "few": [2, 3, 8, 12, 13, 14, 15, 23, 32, 35, 36, 41, 51, 57, 65, 78, 80, 88, 89, 115, 116, 128, 129, 151, 194, 205, 208, 216, 221, 229, 230, 231, 237, 239, 240, 241, 254, 259, 297, 302], "fewer": [27, 103, 104, 156, 241, 287], "fewest": [118, 185], "ff": [87, 89, 93, 206, 209, 210, 211, 216, 217], "ff_dens": 210, "ffgj": 210, "ffield": 271, "fft": [30, 91], "fg": [80, 90, 237, 240], "fgh": 88, "fglm": 217, "fglmtool": 214, "fgp": 237, "fi": [12, 39], "fib": 227, "fiber": [131, 132, 134], "fiber_damping_coeffici": [18, 134], "fiber_force_length_act": 132, "fiber_force_length_pass": 132, "fiber_force_length_passive_invers": 132, "fiber_force_veloc": 132, "fiber_force_velocity_invers": 132, "fiber_length_explicit": 134, "fiber_length_implicit": 134, "fiberforcelengthactivedegroote2016": [18, 132], "fiberforcelengthpassivedegroote2016": [18, 132], "fiberforcelengthpassiveinversedegroote2016": [18, 132], "fiberforcevelocitydegroote2016": [18, 132], "fiberforcevelocityinversedegroote2016": [18, 132, 134], "fibonacci": [88, 92, 93, 128], "fibonacci_numb": 93, "fibonaccinumb": 93, "fiddl": [252, 297], "field": [11, 13, 34, 41, 55, 61, 65, 69, 88, 89, 90, 96, 106, 115, 163, 164, 202, 203, 208, 209, 210, 212, 213, 215, 217, 218, 219, 234, 239, 252, 265, 268, 270, 271, 273, 275, 280, 282, 283, 299], "field_el": 88, "field_gen": 216, "field_isomorph": 216, "fieldfunct": [33, 201], "fifth": [48, 132], "fifth_ord": 48, "fifth_order_solv": 48, "fig": [13, 18, 299], "figsiz": 171, "figur": [5, 11, 13, 22, 35, 36, 88, 89, 98, 99, 101, 103, 104, 115, 137, 186, 206, 207, 210, 218, 221, 275, 297], "file": [0, 2, 3, 4, 5, 7, 8, 9, 12, 15, 16, 22, 30, 45, 69, 124, 130, 180, 207, 221, 228, 231, 233, 250, 252, 253, 254, 260], "filebox": 89, "filenam": [130, 221, 252, 253, 254, 262], "filepath": 253, "filesystem": 8, "fill": [11, 16, 40, 79, 89, 120, 124, 127, 191, 207, 252, 255, 259, 262, 293], "fill_between": 207, "fillded": 262, "filter": [3, 12, 13, 38, 52, 88, 89, 113, 163, 217, 250, 252, 257, 259], "filter_symbol": 259, "filterwarn": [3, 13], "fim1": 39, "final": [3, 4, 5, 11, 12, 13, 18, 23, 25, 28, 35, 36, 41, 43, 46, 55, 68, 80, 87, 88, 94, 96, 113, 115, 118, 124, 128, 134, 137, 142, 151, 152, 153, 171, 183, 186, 188, 189, 191, 193, 194, 196, 200, 208, 210, 211, 214, 216, 223, 229, 230, 231, 233, 234, 237, 239, 240, 247, 259, 260, 290, 291, 292, 302, 309, 311], "final_exp": 142, "finalpdf": 128, "find": [4, 9, 11, 12, 14, 15, 16, 28, 30, 32, 35, 37, 39, 40, 43, 46, 49, 50, 51, 52, 53, 55, 56, 57, 61, 64, 67, 69, 70, 71, 79, 82, 83, 84, 87, 88, 92, 94, 96, 98, 100, 101, 102, 105, 110, 113, 115, 117, 124, 128, 130, 138, 144, 150, 155, 160, 176, 183, 185, 186, 187, 191, 194, 196, 207, 208, 209, 210, 211, 212, 214, 218, 220, 221, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 239, 240, 241, 247, 256, 259, 260, 262, 265, 275, 287, 289, 291, 293, 298, 310], "find_carmichael_numbers_in_rang": [13, 128], "find_dn": 234, "find_dynamicsymbol": [150, 155, 299], "find_execut": 262, "find_first_n_carmichael": [13, 128], "find_linear_recurr": 227, "find_min_poli": 216, "find_transitive_subgroups_of_s6": 71, "findroot": [54, 96, 239], "fine": [11, 12, 13, 14, 39, 43, 51, 88, 92, 116, 205, 210, 211, 221, 233], "finish": [8, 12, 69, 70, 185, 255, 294], "finit": [13, 14, 17, 40, 41, 52, 65, 69, 74, 75, 76, 79, 87, 88, 89, 91, 92, 115, 117, 118, 177, 200, 206, 209, 212, 215, 217, 218, 221, 223, 224, 227, 229, 234, 236, 237, 240, 259, 265, 267, 277, 288, 291, 297], "finite_diff": [67, 88], "finite_diff_weight": [67, 88, 287], "finite_set": [67, 229], "finitediff": 67, "finitedistributionhandmad": 241, "finitedomain": 241, "finiteextens": 208, "finitefield": [211, 212], "finiteformalpowerseri": 223, "finitehandl": 65, "finitepred": 65, "finitepspac": 241, "finiterv": 241, "finiteset": [14, 41, 52, 67, 68, 229, 240, 241, 298], "finset_intersect": 67, "fip1": 39, "fip2": 39, "fire": 3, "first": [2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 22, 23, 24, 27, 28, 31, 35, 36, 39, 41, 42, 43, 45, 48, 52, 55, 56, 59, 61, 68, 69, 70, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 101, 102, 104, 105, 112, 113, 115, 117, 118, 124, 127, 128, 131, 132, 134, 136, 137, 144, 145, 148, 150, 151, 152, 153, 155, 156, 158, 159, 163, 164, 168, 172, 175, 180, 181, 184, 185, 186, 187, 188, 190, 191, 194, 196, 200, 204, 207, 208, 210, 212, 214, 215, 216, 217, 218, 221, 222, 223, 224, 227, 228, 230, 231, 233, 234, 237, 238, 239, 240, 241, 245, 247, 250, 252, 253, 254, 255, 259, 260, 262, 270, 275, 286, 287, 289, 291, 292, 293, 295, 297, 298, 299, 302, 304, 306, 307], "first_index": 120, "first_linear": 237, "first_moment_of_area": 104, "firstexact": 237, "firstli": [3, 13, 14, 41, 43, 159, 231], "firstlinear": 237, "firstnam": 9, "firstorderactivationdegroote2016": [18, 131, 134, 299], "fisher": 241, "fishersz": 241, "fisherz": 241, "fit": [3, 14, 15, 36, 68, 113, 124, 127, 128, 221, 237, 262, 292], "five": [18, 48, 51, 68, 77, 113, 140, 221, 234], "five_lemma": 68, "fivelemma": 68, "fix": [3, 4, 7, 12, 13, 14, 18, 24, 30, 35, 36, 69, 79, 81, 84, 86, 89, 93, 96, 100, 117, 124, 128, 130, 136, 137, 148, 149, 152, 155, 158, 175, 180, 184, 187, 191, 196, 200, 204, 207, 214, 216, 217, 218, 221, 227, 231, 239, 241, 259, 265, 267, 299, 302, 303, 304], "fixed_point": 158, "fixed_row_vector": 241, "fixedbosonicbasi": 191, "fixedfram": 204, "fket": 191, "fl": [18, 25, 26, 30, 132, 153, 215, 302], "fl_": 132, "fl_m": 132, "fl_m_act": [18, 132], "fl_m_act2": 18, "fl_m_act3": 18, "fl_m_act_cal": 18, "fl_m_pa": [18, 132], "fl_m_pas2": 18, "fl_m_pas3": 18, "fl_m_pas_cal": 18, "fl_m_pas_inv": 18, "fl_m_pas_inv2": 18, "fl_m_pas_sym": 18, "fl_t": [18, 132], "fl_t2": 18, "fl_t3": 18, "fl_t_callabl": 18, "fl_t_inv": 18, "fl_t_inv2": 18, "fl_t_sym": 18, "flag": [2, 3, 14, 22, 37, 43, 48, 67, 69, 79, 80, 84, 86, 88, 103, 115, 118, 119, 124, 128, 152, 175, 207, 212, 214, 217, 218, 221, 222, 223, 229, 233, 234, 237, 239, 240, 247, 252, 253, 259, 262, 286, 297], "flag_fram": 152, "flag_joint": 152, "flagerror": 214, "flajolet": 218, "flake8": [11, 12], "flambda": 229, "flank": 89, "flat": [13, 102, 124, 210, 253], "flatmirror": 160, "flatrefract": 160, "flatten": [68, 88, 211, 243, 248, 259, 260, 299], "flavius_josephu": 80, "flavor": 222, "flaw": 13, "flaws_in_coverage_measur": 12, "flex": 299, "flexibl": [14, 22, 30, 35, 80, 88, 158, 207, 211, 240, 287], "flexion": 299, "flexur": 137, "flint": [13, 210, 211, 212], "flip": [148, 176, 185, 241, 302], "float": [2, 12, 15, 18, 30, 41, 43, 50, 69, 79, 88, 94, 96, 103, 105, 115, 116, 124, 128, 130, 131, 132, 134, 142, 144, 164, 205, 207, 210, 211, 212, 214, 217, 221, 233, 239, 241, 252, 260, 262, 286, 289, 299], "float16": 69, "float32": [69, 129, 130, 260], "float64": [14, 54, 69, 129, 241], "float80": [69, 221], "floatbasetyp": 69, "floattyp": 69, "floatx": 221, "floor": [88, 94, 128, 130, 152, 211, 212, 221, 241], "floor1": 221, "floor2": 221, "floor_fram": 152, "floor_joint": 152, "floorfunct": 94, "flow": [41, 216], "floyd": 128, "fma": [69, 221], "fmax": 221, "fmin": 221, "fmpq_mat_charpoli": 210, "fmpq_mat_det": 210, "fmpq_mat_inv": 210, "fmpq_mat_solv": 210, "fmpq_mat_solve_dixon": 210, "fmpz": [211, 212], "fmpz_mat": 210, "fmpz_mat_charpoli": 210, "fmpz_mat_det": 210, "fmpz_mat_inv": 210, "fmpz_mat_solv": 210, "fmt": [210, 212, 216], "fn": [39, 55, 115, 124, 208, 217], "fn_fortran": 69, "fn_numpi": 69, "fname": 254, "fnm1": 39, "fnm2": 39, "focal": [98, 160, 164], "focal_length": 164, "foci": 98, "fock": 191, "fock_spac": 177, "fockspac": 177, "fockstat": 191, "fockstatebosonbra": 191, "fockstatebosonket": 191, "fockstatebra": 191, "fockstatefermionbra": 191, "fockstatefermionket": 191, "fockstateket": 191, "focu": [0, 13, 41, 98, 239, 291], "focus": [14, 15, 54, 214, 234, 236, 237, 239, 240, 298], "focus_dist": 98, "fofc": 148, "fold": [79, 88, 94, 132, 221, 228, 233], "fold_frac_pow": 221, "fold_func_bracket": 221, "fold_short_frac": 221, "folded_cond": 94, "folder": 8, "follow": [2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 37, 39, 41, 42, 43, 46, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 64, 67, 68, 69, 70, 71, 74, 77, 78, 79, 80, 81, 84, 87, 88, 89, 92, 93, 94, 96, 100, 102, 104, 111, 112, 113, 115, 118, 120, 124, 128, 129, 134, 136, 137, 140, 148, 149, 151, 152, 153, 155, 156, 158, 159, 160, 164, 183, 186, 188, 191, 194, 196, 200, 206, 207, 208, 209, 212, 214, 215, 216, 217, 219, 220, 221, 222, 223, 228, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 252, 255, 256, 259, 260, 269, 270, 272, 286, 287, 289, 290, 292, 293, 297, 298, 302], "font": [8, 116, 205, 221], "fontsiz": [116, 205, 221], "foo": [60, 67, 69, 88, 186, 205, 259, 262], "foo_1": 186, "foo_2": 186, "foo_3": 186, "foobasi": 186, "footnot": [42, 196, 292, 293, 296], "for_i": 69, "for_ji": 69, "for_kji": 69, "foral": [79, 87, 90, 196], "forc": [2, 16, 19, 23, 25, 26, 27, 28, 30, 33, 36, 39, 42, 43, 88, 92, 94, 98, 104, 113, 115, 118, 131, 132, 134, 136, 137, 138, 140, 148, 149, 151, 153, 155, 156, 158, 179, 180, 194, 207, 209, 211, 230, 233, 234, 239, 252, 272, 274, 296, 297, 300, 302, 305, 306, 307, 308, 309], "force1": 149, "force_color": 252, "force_magnitud": 299, "force_o": 30, "force_on_child": 299, "force_on_o": 18, "force_on_p": 18, "force_on_par": 299, "force_p": 22, "force_p1": 18, "force_p2": 18, "force_r": 22, "force_vector": 30, "forceactu": [18, 148], "forcelist": [22, 26, 27, 30, 153, 303, 306, 309, 310], "forces_eq": 304, "forcing_ful": [22, 25, 26, 149, 153, 158, 307], "forcing_kin": 153, "forcing_lin": 302, "fore": 65, "forecolor": [116, 205], "foreground": [116, 205], "foremost": 12, "forest": 259, "forg": [2, 8, 9, 130], "forget": [12, 51, 68, 297], "fork": [0, 5, 13, 302], "fork_i": 302, "fork_mc": 302, "forkcg1": 302, "forkcg3": 302, "forkcgnorm": 302, "forkcgpar": 302, "forklength": 302, "forkoffset": 302, "form": [3, 5, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 39, 41, 43, 46, 53, 54, 61, 64, 65, 66, 67, 69, 70, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 101, 104, 108, 110, 111, 113, 115, 117, 120, 122, 124, 128, 130, 131, 132, 134, 136, 137, 138, 140, 141, 144, 148, 149, 151, 152, 153, 154, 156, 158, 168, 171, 172, 173, 175, 185, 186, 189, 191, 193, 196, 199, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 227, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 246, 247, 252, 253, 259, 265, 268, 269, 271, 272, 274, 280, 287, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 311], "form_eom": [13, 24, 149, 158, 304, 307], "form_field": 90, "form_lagranges_equ": [26, 27, 153, 303, 306, 311], "formal": [41, 51, 68, 87, 88, 96, 113, 118, 160, 196, 211, 214, 225, 228, 277], "formalpowerseri": 223, "formalpowerseriescompos": 223, "formalpowerseriesinvers": 223, "formalpowerseriesproduct": 223, "format": [3, 8, 11, 12, 15, 31, 37, 39, 52, 55, 56, 68, 80, 88, 89, 110, 111, 115, 118, 124, 127, 128, 136, 153, 154, 158, 164, 175, 185, 207, 210, 211, 216, 217, 219, 221, 231, 237, 240, 252, 262, 265, 269, 290, 293, 296, 299], "formatstr": 69, "formatt": 68, "former": [14, 22, 38, 69, 88, 93, 214, 216, 217, 234, 259], "formul": [18, 23, 25, 26, 36, 39, 53, 131, 132, 134, 149, 151, 152, 191, 299, 304, 305, 306], "formula": [4, 39, 48, 61, 67, 82, 87, 88, 92, 93, 94, 96, 101, 118, 124, 128, 159, 206, 208, 214, 217, 221, 223, 227, 230, 233, 234, 237, 291, 297], "fornberg": [39, 67], "fort": 89, "forth": [211, 216], "forthcom": 115, "fortran": [2, 14, 15, 21, 30, 39, 43, 67, 129, 130, 206, 254, 296], "fortran77": 254, "fortran90": 254, "fortranreturn": 69, "fortun": [69, 129, 217, 218, 306], "forum": [206, 240], "forward": [18, 23, 35, 67, 69, 124, 144, 151, 184, 233, 252, 302], "forward_diff": 144, "found": [0, 2, 3, 4, 5, 8, 11, 12, 18, 27, 30, 35, 41, 42, 48, 52, 67, 70, 71, 79, 80, 82, 84, 86, 88, 89, 90, 98, 99, 104, 113, 115, 124, 128, 130, 144, 150, 152, 153, 154, 195, 208, 209, 210, 211, 216, 217, 218, 221, 223, 224, 227, 228, 231, 234, 237, 238, 239, 240, 241, 245, 259, 260, 262, 296], "foundat": [80, 215, 216], "four": [5, 18, 28, 53, 69, 71, 80, 88, 92, 96, 118, 120, 128, 132, 134, 140, 145, 156, 164, 200, 207, 208, 210, 214, 217, 221, 229, 234, 237, 239, 241, 242, 265, 267, 270, 299, 301, 305], "four_group": 71, "fourier": [13, 88, 96, 115, 147, 184, 225, 277], "fourier_seri": [88, 224], "fourier_transform": 115, "fourierseri": 224, "fouriertransform": 115, "fourth": [48, 88, 89, 132, 209, 237, 287], "fox": 113, "fp": [69, 70, 88, 217, 223], "fp_group": [70, 79], "fpgroup": [70, 79], "fqyej": 89, "fr": [11, 18, 22, 25, 27, 30, 110, 115, 128, 153, 241, 299, 302, 306, 309, 310], "frac": [15, 18, 28, 33, 35, 36, 39, 41, 43, 46, 48, 49, 53, 55, 67, 87, 88, 89, 90, 93, 94, 96, 113, 115, 124, 128, 130, 131, 132, 134, 144, 194, 205, 206, 210, 212, 214, 217, 221, 223, 224, 228, 231, 234, 237, 238, 240, 241, 242, 259, 272, 274, 287, 291, 292, 296, 297, 303, 306], "frac2": 241, "frac_field": [211, 212], "frac_unifi": 212, "fracel": [212, 221], "fracfield": [211, 212], "fraction": [16, 88, 89, 92, 94, 104, 115, 124, 128, 130, 150, 197, 210, 211, 212, 214, 215, 218, 221, 223, 233, 234, 237, 239, 288, 289], "fractional_part": 94, "fractionalpart": 94, "fractionfield": [211, 212], "fracton": 221, "fragil": [14, 43], "fragment": [4, 89], "frame": [4, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 148, 149, 150, 152, 153, 155, 156, 158, 200, 201, 202, 204, 256, 265, 272, 299, 302, 303, 304, 306, 307, 309, 311], "frame1": 200, "frame2": [200, 202], "frame_a": 22, "frame_b": 22, "frame_i": 302, "frame_mc": 302, "frame_n": 22, "framecg1": 302, "framecg3": 302, "framecgnorm": 302, "framecgpar": 302, "framelength": 302, "framework": [13, 22, 23, 88, 151, 246, 252, 254, 260, 282], "francesco": 0, "franci": 215, "frank": [79, 80, 124, 259], "frechet": 241, "fredrik": 0, "free": [0, 11, 12, 13, 15, 23, 34, 48, 53, 54, 59, 67, 68, 69, 78, 79, 84, 88, 93, 100, 115, 120, 124, 128, 131, 134, 136, 137, 142, 145, 151, 152, 155, 160, 180, 198, 200, 203, 207, 208, 210, 212, 214, 215, 216, 217, 221, 223, 229, 231, 233, 234, 237, 239, 240, 247, 259, 291], "free_arg": 247, "free_dynamicsymbol": 200, "free_group": [70, 78, 79], "free_integ": 128, "free_modul": [208, 212], "free_symbol": [13, 15, 51, 69, 88, 97, 115, 124, 180, 198, 200, 217, 227, 234, 299], "free_symbols_in_domain": 217, "free_to_perm": 78, "free_var_index": 124, "freedom": [136, 149, 152, 153, 158, 241, 299, 301, 304, 305, 306], "freegroup": 70, "freeli": [4, 14, 60, 121, 148, 152, 208], "freemodul": 208, "freemoduleel": 208, "freespac": 160, "freevar": 124, "fregli": [18, 131, 132, 134, 299], "freir": 215, "freq_unit": 142, "frequenc": [89, 115, 142, 144, 165, 167, 175, 192], "frequent": [39, 79, 216, 228, 240], "fresh": 12, "freshli": 59, "fresnel": [164, 221, 231], "fresnel_coeffici": 164, "fresnel_equ": 164, "fresnel_integr": 96, "fresnelc": [96, 221, 231], "fresnelintegr": 96, "fridai": 89, "friend": 36, "friendli": [5, 69, 113, 234, 236, 237, 239, 240, 254, 298], "friendlier": 210, "fro": 124, "frobeniu": [112, 124, 128, 214, 215], "from": [2, 3, 4, 5, 7, 8, 9, 11, 12, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 46, 48, 50, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 183, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 265, 267, 268, 269, 270, 271, 272, 274, 275, 283, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "from_algebraicfield": 212, "from_array_to_matrix": 243, "from_axis_angl": 61, "from_coeff_list": 144, "from_complexfield": 212, "from_ddm": 210, "from_dict": 217, "from_dict_sympi": 210, "from_dod": 210, "from_dod_lik": 210, "from_dok": [124, 210], "from_eul": 61, "from_ex": 212, "from_expr": [69, 217], "from_expressiondomain": 212, "from_expressionrawdomain": 212, "from_ff": 212, "from_ff_gmpi": 212, "from_ff_python": 212, "from_flat_nz": 210, "from_fractionfield": 212, "from_functionprototyp": 69, "from_gaussianinteg": 212, "from_gaussianrationalfield": 212, "from_globalpolynomialr": 212, "from_hyp": [107, 110], "from_index_summ": 120, "from_inertia_scalar": [155, 304], "from_int_list": 216, "from_inversion_vector": 80, "from_list": [210, 212, 217, 218], "from_list_flat": 210, "from_list_sympi": 210, "from_matrix": [46, 61, 144, 210], "from_meijerg": [107, 110], "from_monogenicfiniteextens": 212, "from_newtonian": [13, 24, 158, 304, 307], "from_poli": 217, "from_polynomialr": 212, "from_qq": 212, "from_qq_gmpi": 212, "from_qq_python": 212, "from_rational_express": [46, 144], "from_real": 229, "from_realfield": 212, "from_rep": 210, "from_rg": 77, "from_rotation_matrix": 61, "from_sequ": 80, "from_sympi": [211, 212], "from_sympy_list": 212, "from_tensor": 155, "from_zpk": [46, 144], "from_zz": 212, "from_zz_gmpi": 212, "from_zz_python": 212, "fromit": 88, "front": [79, 88, 160, 190, 212, 214, 217, 221, 233, 297, 302], "frontend": 210, "frontier": [124, 229], "frown": 15, "frstar": [22, 25, 27, 30, 153, 302, 306, 309, 310], "frustrat": 3, "frv": 241, "frv_type": 241, "fsolv": [54, 299], "fsp": 113, "fsu": 115, "ftheta": 90, "fu": [14, 232, 233, 277], "fudg": 3, "fulfil": [113, 206], "full": [3, 4, 5, 11, 12, 13, 16, 18, 25, 26, 37, 41, 43, 51, 65, 67, 69, 79, 80, 88, 92, 96, 100, 101, 115, 120, 124, 130, 158, 200, 210, 211, 214, 215, 217, 221, 223, 233, 234, 260, 291, 297, 299], "full_cyclic_form": 80, "full_impl": 41, "full_pb": 113, "full_prec": [87, 221], "fullform": 130, "fulli": [3, 4, 11, 13, 22, 30, 35, 41, 79, 88, 105, 115, 118, 130, 136, 137, 149, 152, 191, 210, 211, 212, 218, 228, 241, 247, 299], "fullrank": [65, 69], "fullrankhandl": 65, "fullrankpred": 65, "fulltext": 91, "fully_qualified_modul": 221, "fully_symmetr": 247, "fun": [221, 238, 290], "func": [3, 4, 12, 14, 15, 40, 43, 63, 67, 69, 88, 90, 93, 96, 107, 109, 128, 130, 155, 180, 200, 210, 214, 217, 221, 222, 233, 237, 238, 239, 250, 255, 257, 259, 260, 262, 264], "func_field_modgcd": 214, "func_m_1": 69, "func_nam": [3, 69, 94, 124, 262], "funcminusoneoptim": 69, "funcnam": [12, 253], "function": [1, 2, 3, 5, 7, 11, 15, 18, 22, 23, 25, 26, 30, 32, 34, 36, 37, 38, 39, 41, 42, 44, 46, 49, 51, 53, 56, 58, 62, 63, 64, 66, 67, 68, 70, 71, 74, 79, 80, 83, 84, 86, 89, 90, 91, 92, 93, 97, 98, 99, 100, 105, 108, 109, 112, 114, 115, 116, 117, 120, 122, 127, 129, 131, 132, 133, 134, 136, 139, 140, 141, 142, 144, 145, 146, 148, 149, 150, 151, 152, 157, 158, 163, 164, 165, 166, 170, 175, 176, 177, 180, 185, 186, 187, 188, 189, 190, 191, 194, 195, 200, 203, 204, 205, 206, 208, 210, 213, 214, 215, 216, 218, 219, 222, 223, 224, 225, 226, 227, 228, 229, 230, 233, 235, 236, 239, 240, 241, 243, 245, 246, 247, 250, 251, 252, 253, 254, 255, 256, 257, 259, 260, 262, 263, 264, 265, 266, 270, 271, 273, 274, 275, 276, 277, 280, 282, 283, 286, 287, 288, 289, 290, 291, 292, 293, 295, 298, 299, 301, 303, 304, 305, 306, 307, 308], "function1": 118, "function2": 118, "function_arg": [69, 252], "function_exponenti": 130, "function_kwarg": 252, "function_nam": [7, 69, 253], "function_prototyp": 254, "function_rang": 67, "function_that_emits_a_warn": 12, "function_vari": 115, "functioncal": 69, "functionclass": [88, 221, 260], "functiondefinit": [69, 130], "functionmatrix": 120, "functionprototyp": 69, "functiontyp": 124, "functor": 68, "fundament": [41, 43, 67, 70, 78, 106, 113, 115, 195, 196, 211, 216, 234, 237, 241, 293], "fundamental_matrix": 241, "funtion_nam": 253, "further": [0, 2, 11, 14, 18, 23, 28, 35, 41, 43, 48, 64, 68, 88, 89, 94, 96, 100, 113, 115, 119, 120, 124, 130, 136, 141, 142, 149, 152, 153, 163, 206, 207, 208, 210, 214, 216, 217, 230, 231, 233, 237, 241, 247, 290, 291], "furthermor": [3, 13, 14, 43, 65, 88, 89, 118, 216, 230, 289, 291, 292], "furthest": [67, 89], "fuse": 69, "fused_multipli": 43, "futur": [3, 11, 12, 13, 14, 23, 27, 34, 41, 42, 69, 70, 88, 113, 115, 124, 130, 152, 158, 191, 195, 207, 209, 210, 220, 221, 233, 237, 246, 252, 255, 257, 260, 292, 298, 302], "fuzzi": [14, 15, 41, 43, 44], "fuzzy_": 43, "fuzzy_and": [41, 42, 43], "fuzzy_not": [42, 43], "fuzzy_or": [41, 42], "fv": [18, 132, 212], "fv_m": [18, 132], "fv_m2": 18, "fv_m3": 18, "fv_m_callabl": 18, "fv_m_inv": 18, "fv_m_inv2": 18, "fv_m_pas2": 18, "fv_m_sym": 18, "fwht": 91, "fwrap": 253, "fx": [88, 90, 207, 237, 238], "fxx": 88, "fxy": 234, "fxz": 234, "fy": [90, 207, 238], "fz": 207, "fzx": [51, 234], "g": [2, 3, 5, 8, 9, 11, 12, 13, 14, 16, 18, 22, 27, 28, 30, 31, 33, 41, 42, 43, 46, 54, 55, 57, 67, 68, 69, 70, 73, 76, 78, 79, 80, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 100, 104, 105, 106, 111, 114, 115, 117, 118, 124, 128, 130, 131, 133, 134, 136, 140, 144, 145, 148, 149, 152, 154, 155, 156, 158, 171, 175, 180, 186, 188, 189, 191, 194, 196, 197, 200, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 252, 253, 254, 255, 257, 259, 260, 262, 274, 277, 287, 292, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "g1": [46, 69, 73, 78, 79, 113, 124, 144], "g171": 89, "g18": 71, "g2": [46, 69, 73, 78, 79, 113, 117, 124, 144], "g3": [46, 79, 144], "g36": 71, "g36m": 71, "g36p": 71, "g4": [46, 144], "g72": 71, "g_": [71, 79, 86, 87, 96, 113, 124, 234], "g_0": [79, 234], "g_1": [79, 214, 217, 228, 234, 237], "g_2": [79, 117, 214, 228, 237], "g_frame": 152, "g_i": [79, 214, 228], "g_k": 79, "g_n": [87, 93, 217], "g_name": 216, "g_t": 79, "g_x": 214, "gain": [7, 16, 25, 26, 30, 46, 89, 144], "galoi": [75, 211, 212, 214, 217, 277], "galois_group": [212, 216, 217], "galoisgroup": [212, 216, 217], "galoistool": [128, 214], "galton": 241, "game": 231, "gamma": [4, 5, 12, 16, 30, 36, 43, 87, 88, 90, 92, 93, 113, 115, 147, 188, 206, 221, 231, 233, 237, 241, 297], "gamma2": 96, "gamma3": 96, "gamma_": [96, 145, 147], "gamma_0": 147, "gamma_1": [69, 147], "gamma_2": [69, 147], "gamma_3": 147, "gamma_5": 147, "gamma_distribut": 241, "gamma_distribution_and_the_use_of_the_distribution_in_the_bayesian_analysi": 241, "gamma_funct": [4, 96], "gamma_i": 214, "gamma_matric": [145, 147], "gamma_p": 96, "gamma_process": 241, "gamma_trac": 145, "gammabetaerf": [4, 93, 96], "gammadistribut": 241, "gammafunct": [4, 96], "gammainvers": 241, "gammaln": 221, "gammamatrix": 145, "gammamatrixhead": 145, "gammaprocess": 241, "gammasimp": [87, 88, 233], "gap": [22, 40, 79, 128, 218], "garbag": 252, "gate": [118, 171, 176, 178, 184, 185, 187, 282], "gate_idx": [171, 175], "gate_simp": 175, "gate_sort": 175, "gate_spac": 175, "gateinputcount": 118, "gathen": [214, 215], "gathen92": [214, 215], "gathen99": [214, 215], "gather": [237, 299], "gaunt": 206, "gauss": [4, 53, 96, 115, 124, 160, 209, 210, 216, 219, 239, 240], "gauss_chebyshev_t": 115, "gauss_chebyshev_u": 115, "gauss_conj": 160, "gauss_gen_laguerr": 115, "gauss_hermit": 115, "gauss_jacobi": 115, "gauss_jordan_solv": [119, 124], "gauss_laguerr": 115, "gauss_legendr": 115, "gauss_lobatto": 115, "gaussian": [41, 96, 115, 124, 128, 161, 195, 214, 217, 234, 239, 241, 282, 293], "gaussian_beam": 160, "gaussian_conj": 160, "gaussian_elimin": 124, "gaussian_prim": 128, "gaussian_quadratur": 115, "gaussian_reduc": 234, "gaussiandomain": 212, "gaussianel": 212, "gaussianinteg": [211, 212], "gaussianinvers": 241, "gaussianr": [211, 212], "gaussianrationalfield": [211, 212], "gaussopt": 160, "gave": [16, 88, 259], "gb": [11, 79, 140], "gbt": 144, "gcc": [2, 254], "gcd": [87, 88, 89, 124, 128, 187, 210, 211, 212, 215, 216, 217, 221, 233, 234], "gcd_list": 217, "gcd_term": [88, 217], "gcdex": [212, 217], "gcomm": 247, "gd": 241, "ge": [5, 41, 88, 93, 94, 96, 113, 124, 128, 130, 206, 209, 214, 217, 221, 231, 239, 259], "gear": 208, "gedd": [115, 215], "geddes92": [214, 215], "gede": 154, "gedg": 221, "gegenbau": [217, 221], "gegenbauer_poli": [96, 217], "gegenbauer_polynomi": 96, "gegenbauer_rul": 115, "gegenbauerc": 221, "gegenbauerc3": 96, "gegenbauerpolynomi": 96, "gen": [78, 79, 84, 85, 86, 88, 124, 128, 208, 211, 212, 214, 216, 217, 218, 219, 227, 233, 236, 239], "gen0": 70, "gen1": 70, "gen_": 70, "gen_count": 79, "gen_hermite_rul": 115, "gen_laguerre_rul": 115, "gen_mat": 241, "gen_spe": [200, 204], "gender": 5, "gener": [3, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 35, 37, 39, 41, 42, 43, 45, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 63, 65, 66, 67, 68, 70, 71, 72, 73, 76, 77, 79, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 102, 104, 106, 111, 113, 115, 116, 117, 118, 120, 124, 128, 129, 130, 131, 133, 134, 138, 144, 148, 149, 151, 152, 153, 154, 156, 158, 159, 163, 174, 175, 176, 177, 180, 185, 186, 189, 190, 191, 196, 198, 200, 201, 204, 205, 206, 207, 208, 209, 210, 212, 214, 217, 218, 219, 220, 221, 222, 223, 227, 230, 231, 233, 234, 236, 237, 238, 239, 241, 246, 247, 253, 254, 256, 257, 258, 259, 260, 265, 269, 270, 272, 273, 274, 280, 287, 289, 290, 291, 292, 293, 297, 298, 299, 301, 302, 303, 304, 306, 307, 309, 311], "general_sum_of_even_pow": 234, "general_sum_of_squar": 234, "generalis": [41, 93, 96, 113, 144, 208], "generalizations_of_fibonacci_numb": [88, 93], "generalized_hypergeometric_funct": 96, "generalized_laguerre_polynomi": 96, "generalized_multivariate_log": 241, "generalizedmultivariateloggamma": 241, "generalizedmultivariateloggammaomega": 241, "generalpythagorean": 234, "generalsumofevenpow": 234, "generalsumofsquar": 234, "generate_bel": [80, 259], "generate_derang": [93, 259], "generate_dimino": [76, 79], "generate_grai": 72, "generate_involut": 259, "generate_logo": 45, "generate_oriented_forest": 259, "generate_schreier_sim": [76, 79], "generator_matrix": 241, "generator_product": 79, "generators_and_rel": 76, "generatorserror": 214, "generatorsneed": 214, "generatortyp": 259, "genform": [237, 238], "genfrac": [93, 128], "genocchi": [93, 96, 217], "genocchi_numb": 93, "genocchi_poli": [93, 217], "genocchinumb": 93, "gens1": 84, "gens2": 84, "gens2a": 84, "gens_a": 84, "gens_f": 84, "gens_h": 79, "gens_i": 84, "gens_k": 79, "gensol": 237, "geodes": [18, 156, 159], "geodesi": 215, "geodesic_end_vector": 159, "geodesic_length": 159, "geodet": [159, 215], "geomalgorithm": 105, "geomet": [93, 208], "geometr": [18, 36, 43, 90, 97, 98, 99, 100, 101, 102, 103, 104, 105, 124, 160, 208, 215, 241, 293], "geometri": [4, 19, 23, 97, 98, 99, 101, 102, 103, 104, 105, 115, 151, 156, 164, 213, 268, 275, 276, 282, 283, 291, 299], "geometric_conj": 160, "geometric_conj_ab": 160, "geometric_conj_af": 160, "geometric_conj_bf": 160, "geometric_distribut": 241, "geometricdistribut": 241, "geometricent": 103, "geometricrai": 160, "geometryent": [97, 98, 99, 101, 103, 104, 105], "geometryerror": [98, 101, 104, 105], "geometryresult": 100, "georg": [70, 208, 210, 237, 259], "geq": [88, 89, 96, 124, 217, 234, 241, 297], "geq0": 241, "gerardo": 206, "gerhard": 215, "german": 89, "get": [1, 3, 4, 5, 8, 11, 12, 13, 14, 17, 22, 25, 26, 27, 28, 30, 36, 38, 39, 41, 42, 43, 52, 54, 55, 56, 59, 60, 63, 64, 67, 68, 69, 71, 72, 77, 78, 80, 81, 83, 84, 87, 88, 89, 90, 92, 93, 94, 96, 101, 111, 113, 115, 117, 120, 124, 128, 130, 134, 136, 142, 144, 147, 153, 163, 164, 171, 175, 180, 185, 186, 187, 188, 193, 195, 196, 207, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 223, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 247, 248, 253, 259, 260, 261, 265, 269, 286, 289, 291, 292, 293, 296, 297, 298, 306], "get_adjacency_dist": 80, "get_adjacency_matrix": 80, "get_basi": 186, "get_bodi": 158, "get_class": 263, "get_color_arrai": 207, "get_comm": 247, "get_contraction_structur": [245, 246], "get_data": [13, 207], "get_default_datatyp": 254, "get_diag_block": [120, 124], "get_dimensional_depend": [193, 194], "get_domain": 217, "get_exact": 212, "get_field": [211, 212], "get_free_indic": [247, 248], "get_gen_sol_from_part_sol": 237, "get_indic": [245, 246, 247, 248], "get_interfac": 254, "get_joint": 158, "get_label": 207, "get_matrix": [13, 247], "get_mesh": 207, "get_mod_func": 263, "get_modulu": 217, "get_motion_param": 204, "get_num_denom": 216, "get_numpy_arrai": 69, "get_parabola_eqn": 135, "get_period": [96, 113], "get_perm_group": [71, 216], "get_permut": 191, "get_point": [13, 207], "get_positional_dist": 80, "get_precedence_dist": 80, "get_precedence_matrix": 80, "get_prototyp": 254, "get_r": [210, 212], "get_seg": 207, "get_subno": 191, "get_subset_from_bitstr": 72, "get_symmetric_group_sg": [84, 247], "get_sympy_dir": 252, "get_target_matrix": 175, "get_transvers": 84, "get_units_non_prefix": 199, "getitem": 210, "getn": 88, "geto": 88, "getsourc": 260, "getstat": 88, "getter": [13, 22, 30, 88], "gf": [13, 80, 89, 140, 208, 210, 211, 214, 216], "gf_": 214, "gf_add": 214, "gf_add_ground": 214, "gf_add_mul": 214, "gf_berlekamp": 214, "gf_cofactor": 214, "gf_compos": 214, "gf_compose_mod": 214, "gf_crt": [128, 214], "gf_crt1": [128, 214], "gf_crt2": [128, 214], "gf_csolv": [128, 214], "gf_degre": 214, "gf_diff": 214, "gf_div": 214, "gf_eval": 214, "gf_expand": 214, "gf_exquo": 214, "gf_factor": 214, "gf_factor_method": 214, "gf_factor_sqf": 214, "gf_from_dict": 214, "gf_from_int_poli": 214, "gf_gcd": 214, "gf_gcdex": 214, "gf_int": 214, "gf_irreduc": 214, "gf_irreducible_p": 214, "gf_lc": 214, "gf_lcm": 214, "gf_lshift": 214, "gf_monic": 214, "gf_mul": 214, "gf_mul_ground": 214, "gf_multi_ev": 214, "gf_neg": 214, "gf_normal": 214, "gf_pow": 214, "gf_pow_mod": 214, "gf_qbasi": 214, "gf_qmatrix": 214, "gf_quo": 214, "gf_quo_ground": 214, "gf_random": 214, "gf_rem": 214, "gf_rshift": 214, "gf_shoup": 214, "gf_sqf": 214, "gf_sqf_list": 214, "gf_sqf_p": 214, "gf_sqf_part": 214, "gf_sqr": 214, "gf_strip": 214, "gf_sub": 214, "gf_sub_ground": 214, "gf_sub_mul": 214, "gf_tc": 214, "gf_to_dict": 214, "gf_to_int_poli": 214, "gf_trace_map": 214, "gf_trunc": 214, "gf_valu": 214, "gf_zassenhau": 214, "gff": 217, "gff_list": [212, 217], "gfvar": 227, "gfzhang": 144, "gh": [79, 209, 240, 247], "ghcomm": 247, "gianni": [214, 217, 239], "giant": [128, 240], "gib": 217, "gibb": 224, "gibbs_phenomenon": 224, "gigabyt": 291, "gimp": 221, "giovan": 89, "giovini": [214, 215], "giovini91": 215, "git": [2, 7, 10, 11, 12], "gitconfig": 9, "github": [0, 2, 3, 5, 7, 8, 10, 11, 13, 52, 56, 59, 67, 88, 92, 104, 115, 124, 195, 229, 240, 293], "gitignor": 11, "gitlab": 22, "gitter": [59, 293], "give": [2, 3, 4, 7, 11, 13, 14, 16, 18, 22, 30, 33, 35, 36, 37, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 61, 62, 64, 69, 70, 77, 79, 80, 81, 82, 87, 88, 89, 90, 93, 94, 96, 98, 100, 101, 103, 104, 112, 113, 115, 116, 118, 120, 124, 127, 128, 129, 131, 132, 134, 136, 140, 144, 152, 170, 185, 186, 188, 189, 193, 194, 196, 197, 199, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 223, 224, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 252, 253, 254, 259, 269, 274, 289, 290, 292, 297, 298], "given": [2, 3, 5, 8, 12, 13, 15, 16, 18, 22, 28, 33, 36, 37, 39, 41, 43, 46, 48, 50, 53, 55, 61, 63, 64, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 110, 111, 112, 113, 115, 117, 118, 120, 124, 127, 128, 130, 134, 136, 138, 140, 142, 144, 145, 149, 150, 152, 153, 155, 158, 164, 181, 186, 188, 195, 196, 197, 199, 200, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 246, 247, 250, 252, 254, 256, 259, 260, 262, 265, 268, 270, 272, 274, 286, 292, 295, 297, 298, 299, 306], "given_condit": 241, "givens_rot": 124, "gj": [124, 210], "gj_dens": 210, "gl": 89, "glob": [16, 252], "global": [3, 4, 9, 12, 13, 14, 62, 63, 64, 67, 69, 70, 88, 100, 113, 130, 148, 156, 175, 181, 200, 202, 207, 208, 212, 214, 221, 234, 237, 238, 241, 252, 254, 255, 260, 268], "global_assumpt": [62, 63, 64], "global_dict": 130, "global_paramet": 94, "global_var": [69, 254], "globalpolynomialr": 211, "gloss": 228, "glossari": [16, 17], "glu": 196, "glue": 124, "gm": [89, 194], "gm_private_kei": 89, "gm_public_kei": 89, "gmail": [11, 206], "gmp": 2, "gmpy": [12, 88, 92, 211, 212, 296], "gmpy2": [2, 211, 212], "gmpyfinitefield": [211, 212], "gmpyinteg": 212, "gmpyrationalfield": 212, "gmvlg": 241, "gmvlgo": 241, "gn": 73, "gnu": 74, "go": [3, 4, 5, 7, 9, 11, 12, 14, 22, 28, 30, 31, 43, 59, 68, 69, 79, 89, 93, 94, 113, 153, 185, 196, 204, 207, 216, 217, 228, 231, 237, 289, 291, 292, 295, 297, 302], "goal": [13, 15, 21, 31, 32, 68, 216, 218, 252, 253, 255, 290, 291], "goe": [6, 7, 10, 11, 12, 14, 43, 58, 124, 140, 228, 231, 240, 289, 292], "gold": 89, "gold_bug": 89, "goldbuggonavybeatarmyy": 89, "golden": [88, 92, 128], "golden_ratio": 88, "goldenratio": [88, 92, 222, 233], "goldstein": 237, "goldwass": 89, "golomb": [89, 128], "golub": 124, "golumb": 128, "gompertz": 241, "gompertz_distribut": 241, "gon": 76, "gonavybeatarmi": 89, "gonavybeatarmyyesyoucan": 89, "gone": 12, "goo": 89, "good": [3, 5, 7, 12, 14, 15, 27, 30, 41, 43, 51, 57, 69, 88, 89, 92, 100, 113, 124, 128, 208, 211, 212, 221, 228, 230, 231, 233, 237, 259, 286, 290, 293, 302], "googl": [7, 206, 207, 240], "gordan": [178, 188, 206, 282], "gordon": [113, 170, 231], "gosper": 87, "gosper_norm": 87, "gosper_sum": 87, "gosper_term": 87, "got": [124, 208, 211, 214, 217, 220, 252, 253, 259, 260, 289, 291, 292], "gotcha": [12, 14, 15, 17, 23, 36, 88, 260, 290, 298], "gothic_re_im": 221, "goto": 69, "goui": 160, "gov": [4, 94, 96], "govern": [128, 131, 134], "gp": [217, 237], "gpa": 136, "gpu": [2, 30, 129], "gr": 79, "gracefulli": [130, 221, 245], "grad_field": [201, 268], "grade": [89, 116, 205, 217], "gradedlexord": 217, "gradient": [201, 206, 207, 265, 268, 274], "gradient_field": 272, "gradual": [18, 218], "grafarend": 215, "graham": [80, 93, 94, 128], "graham_scan": 105, "grai": [75, 83, 116, 160, 205, 207, 277], "gram": [124, 195, 196, 198], "grammar": [22, 130, 233], "grammar_fil": 130, "gramschmidt": 124, "grand": 67, "granger": [0, 177], "grantham": 128, "granvil": [93, 128], "graph": [2, 4, 15, 80, 96, 117, 124, 129, 210, 221, 240, 259, 292, 296], "graphic": [5, 55, 142], "graphviz": [5, 8, 292, 296], "grav_eq": 194, "gravc": 299, "gravd": 299, "gravit": [18, 33, 194, 274, 299, 302, 303, 309], "gravitational_const": [194, 198], "graviti": [13, 18, 22, 30, 33, 158, 274, 299, 303, 304, 306, 307, 309, 311], "gray_to_bin": 72, "graycod": 72, "graycode_subset": 72, "grayscal": 207, "great": [43, 160, 218, 221, 234, 260], "greater": [5, 48, 65, 80, 88, 93, 94, 96, 113, 117, 128, 144, 158, 212, 214, 217, 220, 228, 233, 237, 239, 241, 256, 259, 272, 287], "greaterthan": [88, 221], "greaterthanobject": 88, "greatest": [88, 93, 98, 128, 209, 211, 212, 214, 215, 217, 220], "greatli": 222, "greedi": [128, 214, 230, 233], "greedy_algorithm_for_egyptian_fract": 128, "greek": [5, 15, 60, 88, 128, 130, 208, 221], "greek_lett": 221, "green": [11, 12, 24, 79, 207], "greet": 118, "greuel": 215, "greuel2008": [208, 215], "grevlex": [88, 116, 205, 209, 214, 217, 220, 221], "grid": [39, 67, 68, 142, 207], "gridpoint": 67, "grigoryan": 238, "grlex": [88, 116, 205, 212, 217, 220, 221], "gro": 79, "groebner": [215, 216, 217, 220, 233, 239, 240], "groebnerbasi": [57, 209, 217, 220], "groebnertool": 214, "groot": [18, 131, 132, 134, 299], "ground": [12, 13, 107, 152, 208, 210, 211, 212, 214, 216, 217, 239, 296, 302, 308, 309, 310, 311], "ground_new": 212, "ground_root": 217, "ground_typ": 255, "group": [5, 7, 68, 75, 80, 81, 84, 85, 86, 88, 91, 93, 117, 118, 128, 132, 170, 179, 180, 191, 206, 207, 208, 212, 217, 233, 237, 239, 240, 247, 259, 277], "group_construct": 73, "group_nam": 117, "group_numb": 74, "group_ord": 117, "groupprop": [76, 79], "groups_count": 74, "grouptheori": 79, "grover": [178, 282], "grover_iter": 176, "grow": [14, 84, 88, 113, 124, 128, 211, 214], "growth": [77, 128, 210, 214, 287], "gruntz": [88, 223], "gr\u00f6bner": 213, "gscholar": 241, "gsl": [21, 254], "gsoc": 240, "gt": [65, 69, 88, 221, 241, 259], "gtkmathview": 221, "guarante": [12, 14, 38, 41, 48, 54, 69, 79, 80, 88, 100, 113, 115, 124, 158, 210, 211, 214, 216, 217, 237, 239, 240, 257, 262, 293, 297], "guard": 254, "guess": [13, 37, 68, 89, 92, 113, 116, 205, 214, 217, 231, 234, 292, 299], "gui": [9, 116, 205], "guid": [2, 6, 7, 8, 9, 11, 14, 15, 17, 20, 22, 27, 43, 53, 59, 68, 88, 95, 221, 234, 236, 237, 239, 240, 247, 290, 294, 295, 298, 300], "guidanc": 49, "guidelin": [3, 11, 14, 57, 237], "guiver": 215, "gumbel": 241, "gumbel_distribut": 241, "gumbel_max": 241, "gumbel_min": 241, "gumbeldistribut": 241, "gupta": [0, 240], "guzman": 11, "gx": 98, "gy": 237, "gymbal": 61, "gyz": 234, "gz": 79, "h": [0, 14, 16, 28, 39, 67, 68, 69, 70, 71, 72, 74, 79, 84, 87, 88, 89, 93, 96, 110, 113, 115, 119, 124, 125, 130, 144, 149, 152, 155, 160, 163, 175, 177, 180, 185, 189, 196, 206, 207, 208, 209, 210, 212, 214, 215, 216, 217, 220, 221, 229, 233, 237, 239, 240, 241, 242, 247, 254, 275, 287, 296, 303], "h0": 96, "h1": [46, 68, 155], "h2": [46, 155], "h3": 46, "h5": 81, "h_": [68, 79, 84, 93, 96, 115], "h_0": [79, 84], "h_1": [79, 84, 240], "h_2": [79, 240], "h_i": [69, 84], "h_n": [84, 96, 115, 217, 240], "h_name": [69, 254], "ha": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 22, 23, 28, 30, 32, 33, 34, 35, 36, 39, 41, 42, 43, 48, 49, 50, 52, 53, 54, 55, 56, 57, 65, 67, 68, 69, 70, 71, 72, 74, 77, 78, 79, 80, 82, 84, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 100, 101, 103, 104, 105, 111, 113, 115, 117, 118, 120, 123, 124, 125, 127, 128, 129, 130, 131, 133, 134, 136, 137, 140, 144, 145, 149, 151, 152, 153, 158, 164, 165, 175, 176, 185, 188, 193, 196, 200, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 226, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 269, 270, 272, 274, 275, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 306], "haaheim": 237, "hack": [237, 250], "hackman": 128, "had": [13, 14, 18, 22, 27, 43, 52, 53, 80, 88, 89, 124, 128, 216, 217, 218, 221, 229, 231, 237, 239, 240, 255, 260, 286, 289, 292, 293], "hadamard": [120, 124, 175, 176, 187, 221], "hadamard_product": 120, "hadamard_transform": 91, "hadamardg": 175, "hadamardpow": [120, 221], "hadamardproduct": [120, 221], "hadn": 43, "hal": 110, "half": [16, 43, 46, 69, 88, 89, 93, 94, 96, 98, 104, 115, 117, 124, 128, 130, 136, 158, 160, 163, 188, 206, 212, 214, 216, 217, 229, 230, 231, 233, 241, 252, 259], "half_gcdex": [212, 217], "half_per": 212, "half_precis": 69, "half_wave_retard": 163, "hall": [70, 78, 241], "hallei": 69, "halt": 79, "halv": 216, "hamberg": 82, "hamburg": 259, "hamilton": [61, 72, 124], "hamiltonian": [72, 182], "hand": [4, 12, 13, 14, 18, 22, 27, 28, 31, 33, 36, 39, 41, 43, 50, 55, 68, 69, 71, 74, 80, 81, 88, 94, 96, 115, 118, 124, 128, 136, 140, 153, 158, 159, 163, 180, 183, 195, 200, 206, 208, 211, 212, 214, 216, 219, 231, 240, 252, 254, 256, 260, 272, 274, 291, 299], "handbook": [4, 70, 78, 79, 86, 96, 128], "handi": [9, 87, 88, 124, 221, 292], "handl": [5, 7, 11, 12, 14, 18, 21, 22, 27, 39, 41, 42, 43, 67, 69, 76, 80, 88, 94, 115, 116, 118, 122, 128, 129, 130, 136, 145, 171, 174, 180, 181, 186, 195, 210, 211, 217, 218, 227, 233, 237, 239, 242, 245, 253, 259, 260, 262, 292, 297], "handle_first": 115, "handle_nan": 69, "handler": [43, 62, 63, 64, 65, 66, 88, 95, 124], "handwritten": [116, 205], "hang": [12, 55, 124, 237, 238, 303, 306, 310], "hankel": [96, 115], "hankel1": [96, 221], "hankel2": [96, 221], "hankel_transform": 115, "hankelh1": [96, 221], "hankelh2": [96, 221], "hankeltransform": 115, "happen": [3, 4, 7, 11, 12, 13, 14, 15, 39, 41, 42, 43, 52, 61, 69, 80, 87, 88, 92, 100, 103, 112, 152, 186, 190, 196, 208, 214, 216, 217, 220, 229, 233, 237, 241, 260, 270, 289, 296, 297], "happi": 43, "happili": [115, 245], "hard": [3, 11, 12, 13, 14, 15, 22, 41, 80, 89, 124, 128, 191, 211, 221, 228, 237, 240, 289, 291], "harder": [4, 12, 13, 14, 41, 88, 113, 211, 252], "hardest": 89, "hardi": 128, "hardwar": [43, 69], "harm": 3, "harmless": [221, 293], "harmon": [88, 93, 128, 146, 170, 206, 221, 282], "harmonic_numb": 93, "harmonicnumb": [93, 221], "harmonicnumber2": 93, "harsh": [0, 240], "hartre": 146, "has_assoc_field": 212, "has_assoc_r": 212, "has_dup": 259, "has_empty_sequ": [87, 115], "has_finite_limit": [87, 115], "has_fre": 88, "has_integer_pow": 193, "has_only_gen": 217, "has_q_annihil": 191, "has_q_creat": 191, "has_reversed_limit": [87, 115], "has_varieti": 259, "has_xfre": 88, "hasattr": [13, 233, 255], "hash": [12, 14, 88, 212, 214, 222, 233, 237, 252, 254], "hashabl": [14, 15, 85, 88, 113, 259], "hasn": 27, "hat": [24, 32, 33, 35, 36, 124, 152, 200, 205, 269, 270, 272, 274, 275, 299], "hate": 221, "hav91": 70, "hava": 70, "have": [0, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 21, 22, 23, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 50, 51, 53, 54, 55, 57, 59, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 78, 79, 80, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 99, 103, 104, 106, 111, 112, 113, 115, 117, 118, 119, 120, 123, 124, 127, 128, 129, 130, 131, 132, 134, 136, 137, 142, 144, 145, 147, 149, 151, 153, 154, 155, 158, 175, 177, 180, 184, 186, 188, 189, 190, 191, 193, 194, 196, 199, 200, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 221, 223, 224, 226, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 243, 245, 247, 248, 250, 251, 252, 254, 255, 256, 259, 260, 262, 265, 267, 269, 270, 271, 272, 275, 286, 287, 289, 290, 291, 292, 293, 296, 297, 298, 299, 301, 302, 304, 307, 310], "haven": 16, "hbar": [69, 167, 173, 186, 192, 196, 198, 206], "hd": 89, "he": [5, 93, 113, 214], "he_n": [96, 217], "head": [4, 38, 68, 88, 239, 241, 247, 262, 292], "header": [3, 12, 69, 253, 254], "headquart": 89, "heat": 196, "heavi": [2, 12, 241, 292], "heavili": [3, 228, 238], "heavisid": [4, 11, 96, 113, 115, 221], "heavisidediracdelta": 96, "heavisidestepfunct": 96, "heavisidetheta": 221, "hebrew": 89, "hedetniemi": 259, "heidelberg": 214, "height": [13, 68, 69, 104, 120, 160, 207, 208, 221, 228, 275, 303], "heiko": 74, "heinz": 82, "held": [27, 67, 89, 245, 297], "heldo": 89, "helen": 89, "helium": 146, "hellman": [89, 128], "hello": [89, 259], "helloworld": 89, "help": [3, 4, 5, 7, 9, 11, 12, 14, 17, 18, 22, 30, 36, 41, 52, 60, 69, 78, 88, 96, 113, 115, 124, 128, 129, 130, 136, 142, 166, 176, 207, 216, 218, 221, 230, 231, 234, 237, 238, 241, 252, 253, 254, 260, 282, 290, 293], "helper": [12, 13, 51, 67, 69, 79, 83, 86, 88, 113, 115, 116, 117, 176, 178, 187, 218, 228, 231, 234, 237, 238, 240, 253, 282], "hemispher": 275, "henc": [11, 33, 67, 69, 78, 79, 88, 90, 94, 96, 100, 113, 116, 118, 128, 140, 207, 208, 209, 214, 221, 231, 234, 238, 240, 252, 256, 270, 271, 272, 292, 297], "henri": 215, "hensel": 214, "hep": 145, "her": 240, "herbert": 87, "here": [3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 18, 21, 22, 25, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 58, 59, 63, 64, 69, 70, 72, 74, 77, 78, 79, 80, 86, 87, 88, 89, 90, 92, 93, 94, 96, 104, 105, 106, 110, 111, 113, 115, 118, 124, 127, 128, 129, 130, 134, 136, 140, 144, 148, 153, 181, 186, 191, 205, 207, 208, 210, 211, 212, 214, 216, 217, 218, 221, 222, 228, 230, 231, 233, 234, 237, 239, 240, 241, 245, 246, 253, 254, 256, 257, 259, 260, 270, 272, 274, 285, 286, 287, 289, 291, 292, 293, 295, 296, 297, 299, 301, 302, 303, 309, 310, 311], "hermetian": 174, "hermit": [115, 124, 125, 210, 216, 217, 221, 241], "hermite_distribut": 241, "hermite_normal_form": [125, 210, 216], "hermite_poli": [96, 217], "hermite_polynomi": 96, "hermite_prob": 96, "hermite_prob_poli": [96, 217], "hermite_quadratur": 115, "hermite_rul": 115, "hermiteh": [96, 221], "hermitepolynomi": 96, "hermitian": [41, 53, 65, 88, 119, 124, 174, 180, 191, 221], "hermitian_adjoint": 174, "hermitian_matrix": 41, "hermitian_transpos": 174, "hermitianhandl": 65, "hermitianoper": [65, 180], "hermitianpred": 65, "heroic": [217, 239], "herrlich": 68, "hertz": 142, "hessenberg": 124, "hessenbergdecomposit": 124, "hessian": 124, "hessian_matrix": 124, "heurisch": [11, 13, 115], "heurist": [14, 15, 41, 55, 80, 113, 115, 124, 214, 215, 228, 230, 233, 239, 240, 252, 287, 297], "heuristicgcdfail": 214, "hex": 128, "hfst": 89, "hg": 79, "hg2sfuei7t": 89, "hgh": 79, "hi": [234, 239], "hidden": [12, 15, 32], "hide": [89, 221], "hierarch": 88, "hierarchi": [13, 133, 221, 241], "high": [4, 5, 7, 11, 12, 16, 30, 39, 41, 47, 48, 52, 69, 88, 92, 93, 116, 128, 205, 210, 211, 214, 216, 217, 219, 221, 234, 239, 282, 293], "higher": [14, 16, 39, 48, 67, 69, 88, 90, 92, 96, 99, 124, 130, 204, 206, 208, 210, 211, 214, 217, 223, 224, 228, 230, 233, 237, 239, 242, 260, 287], "highest": [16, 21, 69, 82, 117, 208, 217, 224, 234, 237], "highest_root": 117, "highli": [5, 88, 92, 141, 211, 217, 226, 254], "highlight": [11, 14], "hilbert": [178, 180, 186, 282], "hilbert_spac": [177, 180, 189], "hilbertspac": 177, "hill": [18, 29, 34, 89, 96, 115, 153, 200, 203, 265, 300], "hill_ciph": 89, "hillgart": 265, "hinder": 237, "hing": [24, 136, 137], "hint": [4, 12, 14, 30, 43, 68, 72, 79, 88, 91, 94, 115, 124, 128, 132, 144, 168, 172, 188, 190, 191, 200, 217, 228, 231, 239, 297], "hint_integr": 237, "hintnam": [237, 238], "hir": 88, "hire": [18, 46, 55, 124, 136, 137, 140, 142, 207, 224, 299], "histogram": 256, "histor": [13, 15, 37, 43, 89, 210, 237, 241], "histori": [11, 30], "hit": [88, 292], "hjeb": 89, "hk": [144, 234], "hline": 221, "hnf": [125, 210, 216], "hnf_modulu": 216, "ho05": [70, 78], "hobj": 221, "hoc": 113, "hoeij": 215, "hoeij02": 215, "hoeij04": [214, 215], "hoffmann": 265, "hol_coneq": [26, 153, 306], "hold": [14, 15, 16, 28, 43, 64, 68, 79, 84, 88, 89, 90, 94, 96, 110, 113, 124, 127, 130, 144, 146, 152, 154, 155, 187, 217, 231, 233, 237, 241, 254, 297], "holder": 88, "hole": 191, "holomorph": [88, 95, 113], "holonom": [13, 25, 26, 109, 112, 153, 158, 276, 283, 299, 301, 302, 304, 305, 306], "holonomic_constraint": 158, "holonomic_funct": 106, "holonomicfunct": [107, 110, 111], "holonomicsequ": 110, "holt": [70, 78, 79, 86], "holzer": 234, "hom": 68, "home": [12, 136, 216, 234], "homebrew": 8, "homeier": 206, "homeier96": 206, "homogen": [51, 61, 111, 115, 124, 144, 212, 214, 217, 234, 237, 238, 241], "homogeneous_differential_equ": 237, "homogeneous_ord": [212, 217, 234, 237], "homogeneouscoeffbest": 237, "homogeneouscoeffsubsdepdivindep": 237, "homogeneouscoeffsubsindepdivdep": 237, "homogeneousgeneralquadrat": 234, "homogeneousternaryquadrat": 234, "homogeneousternaryquadraticnorm": 234, "homomoprh": 208, "homomorph": 79, "homomorphismfail": 214, "homonym": 13, "hongguang": [232, 277], "hood": [2, 11, 15], "hook": [43, 129, 130, 221], "hookrightarrow": 88, "hope": [14, 21, 39, 79, 208], "hopefulli": [16, 40, 113], "horel": 89, "horizont": [13, 43, 57, 68, 98, 101, 103, 124, 138, 140, 158, 163, 207, 210, 221], "horizontal_direct": 68, "horner": [30, 88, 210, 214, 217], "horner_schem": 217, "horowitz": 115, "host": [2, 5], "hostedtoolcach": 252, "hostnam": 254, "household": 124, "how": [2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 25, 26, 28, 30, 35, 37, 38, 39, 40, 41, 42, 43, 48, 49, 68, 69, 71, 79, 80, 87, 88, 94, 95, 96, 100, 111, 115, 118, 120, 124, 128, 130, 136, 148, 152, 153, 156, 162, 163, 179, 183, 186, 187, 188, 193, 194, 200, 207, 208, 211, 212, 214, 216, 220, 221, 224, 228, 229, 231, 233, 234, 237, 238, 239, 241, 247, 252, 253, 254, 255, 257, 259, 260, 262, 270, 287, 289, 291, 292, 293, 294, 296, 297, 299, 301, 305, 309], "howev": [0, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 22, 27, 31, 36, 37, 39, 41, 42, 43, 48, 51, 52, 55, 62, 64, 69, 71, 79, 80, 84, 87, 88, 89, 90, 93, 94, 96, 98, 113, 115, 118, 124, 128, 129, 130, 131, 134, 136, 140, 144, 148, 152, 153, 155, 156, 158, 159, 191, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 228, 229, 230, 231, 233, 237, 238, 239, 240, 252, 253, 260, 269, 270, 274, 286, 289, 291, 293, 297, 298], "hp": 89, "hpobwzcfbubsnz": 89, "hradiu": 98, "hrzqe": 89, "hsin": 215, "hstack": [124, 210, 299], "ht": 115, "hta": 302, "htangl": 302, "htm": [80, 96, 115, 234], "html": [2, 4, 5, 8, 11, 12, 65, 69, 72, 80, 81, 82, 88, 89, 91, 93, 94, 96, 98, 104, 105, 115, 116, 124, 128, 142, 215, 221, 224, 226, 229, 230, 234, 237, 241, 253, 255, 257, 259, 260, 293], "htmldoc": 8, "http": [0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 34, 41, 43, 59, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 79, 80, 81, 82, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 100, 104, 105, 106, 110, 113, 115, 116, 117, 118, 120, 124, 128, 136, 142, 144, 146, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 200, 202, 203, 205, 206, 210, 212, 215, 217, 220, 221, 224, 226, 228, 229, 230, 233, 234, 237, 240, 241, 253, 254, 255, 257, 259, 260, 262, 265, 267, 271, 273, 275, 293, 296, 303], "hu": [128, 210], "hubbard": 154, "huge": [115, 128, 217, 257], "hull": 105, "hulpk": 79, "human": [4, 11, 37, 113, 193, 217, 221, 299, 300], "humphrei": 117, "hundr": [129, 260, 291], "hurdl": 22, "hurt": 12, "hurwitz": [93, 96], "hurwitz_zeta_funct": 96, "hw": [167, 192], "hwp": 163, "hxz": 234, "hy": 98, "hybrid": 211, "hydrogen": [69, 282], "hyper": [15, 88, 93, 96, 107, 110, 221, 223, 231, 233, 239, 241, 297], "hyper_algorithm": 223, "hyper_r": 223, "hyperbol": [96, 130, 131, 218, 240, 293, 297], "hyperbolic_funct": 94, "hyperbolicfunct": 94, "hyperegeometr": 233, "hyperexpand": [88, 96, 110, 113, 231, 233], "hyperfocal_dist": 164, "hypergeometr": [92, 93, 106, 112, 113, 215, 232, 233, 237, 239, 241, 277, 297], "hypergeometric_distribut": 241, "hypergeometricdistribut": 241, "hypergeometricfunct": 96, "hypergeometricpfq": 221, "hyperlink": 4, "hyperplan": 117, "hypersimilar": 233, "hypersimp": [87, 233], "hypot": [69, 221], "hypotenus": [69, 104, 159], "hypothesi": 2, "hypothet": 256, "hz": 142, "i": [0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 171, 172, 174, 175, 177, 179, 180, 181, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 264, 265, 267, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 290, 292, 293, 295, 296, 297, 298, 299, 301, 302, 303, 304, 306, 307, 308, 309, 310, 311], "i0": [145, 163, 247], "i1": [22, 30, 136, 145, 247], "i12": 30, "i2": [22, 30, 145, 247], "i23": 30, "i3": [22, 30, 124, 145, 247], "i31": 30, "i4": [145, 247], "i5": 145, "iT": 113, "i_": [96, 113, 231, 241, 242], "i_0": 241, "i_1": [78, 191, 217, 242], "i_2": [78, 191, 217], "i_a": 242, "i_b": 242, "i_b_bo": 22, "i_b_o": 22, "i_block": 303, "i_c_d": 22, "i_k": 241, "i_n": [216, 217, 242], "i_p_o": 22, "i_p_q": 22, "i_pendulum": 303, "i_r": 78, "i_xi": [98, 104], "i_xx": [98, 104], "i_yi": [98, 104], "ia": [127, 299], "iamit": 240, "ib": 94, "ibin": [118, 259], "ibm": [11, 233], "ibzz": 307, "ic": [55, 128, 237, 299], "icomp": 247, "icomp1": 247, "icomp2": 247, "icosahedr": 81, "id": [68, 84, 94, 243, 299], "id_a": 68, "id_b": 68, "idea": [3, 7, 11, 12, 14, 15, 22, 41, 42, 43, 73, 79, 86, 88, 89, 100, 106, 113, 115, 128, 145, 191, 195, 196, 208, 210, 211, 230, 233, 234, 237, 240, 254, 260, 297], "ideal": [12, 22, 23, 35, 41, 69, 125, 151, 155, 200, 210, 212, 214, 215, 216, 217, 218, 233, 240, 265], "idempot": 69, "ident": [3, 14, 15, 16, 18, 28, 43, 45, 65, 68, 70, 78, 79, 80, 86, 88, 89, 93, 94, 104, 111, 117, 120, 124, 145, 147, 152, 153, 175, 177, 180, 196, 208, 209, 210, 214, 215, 216, 217, 221, 230, 233, 237, 240, 245, 247, 252, 259, 260, 262, 270, 289, 293, 297], "identif": [113, 240], "identifi": [4, 12, 13, 14, 25, 41, 42, 67, 81, 88, 91, 92, 115, 124, 134, 140, 158, 179, 180, 208, 211, 212, 222, 230, 233, 237, 238, 240, 241, 260], "identity_hom": 208, "identityfunct": 94, "identityg": 175, "identitymatrix": 221, "identitymorph": 68, "identityoper": 180, "ideologi": [69, 240], "idiff": [88, 105], "idiom": [15, 289, 290], "idl": 69, "idx": [67, 69, 221, 245, 246, 253], "ie": [80, 234], "ieee": [88, 89], "ieilehfstsfxe": 89, "ieilh": 89, "ieilhhfstsfqy": 89, "ifascii_nougli": 221, "ifels": 221, "iff": [35, 36, 43, 65, 74, 80, 89, 118, 124, 208, 216, 231, 234, 252], "ifft": 91, "ifndef": [69, 254], "ifork11": 302, "ifork22": 302, "ifork31": 302, "ifork33": 302, "ifort": 2, "ifp": 67, "iframe11": 302, "iframe22": 302, "iframe31": 302, "iframe33": 302, "ifwht": 91, "igcd": [88, 128, 209], "igcd_lehm": 88, "igcdex": 88, "ignor": [11, 12, 13, 14, 16, 37, 43, 69, 79, 88, 89, 93, 94, 98, 103, 113, 118, 124, 128, 144, 149, 150, 156, 188, 191, 200, 207, 217, 221, 222, 233, 234, 239, 240, 253, 297, 302], "ignore_exception_detail": 252, "ignore_warn": [3, 149, 250, 255, 257, 260], "igusa": 241, "ii": [41, 94, 113, 115, 217, 221, 229, 237, 240, 243], "iii": [115, 221, 237], "iin": 117, "ij": [65, 124, 191, 196, 206, 241, 243], "ijk": [69, 246], "ijklm": 243, "ijr22d": 89, "ijth": 117, "il": 241, "ilcm": [88, 128], "ild_deflection_jump": 136, "ild_moment": 136, "ild_react": 136, "ild_rotation_jump": 136, "ild_shear": 136, "ild_vari": 136, "ilex": 208, "ill": [48, 130, 194], "illinoi": 67, "illumin": 4, "illustr": [69, 124, 149, 196, 211, 224, 228, 305, 306], "im": [43, 66, 88, 94, 113, 121, 208, 221, 222, 229, 237, 293], "imag": [2, 8, 24, 30, 35, 36, 45, 79, 152, 160, 164, 208, 214, 221, 229, 240, 270, 306, 308], "imagemagick": 8, "imageset": [229, 240, 298], "imaginari": [3, 4, 16, 30, 41, 43, 48, 52, 54, 61, 65, 66, 88, 92, 94, 96, 124, 211, 212, 217, 221, 222, 229, 233, 240], "imaginary_numb": [41, 65, 88], "imaginary_unit": [88, 221], "imaginaryhandl": 65, "imaginarypred": 65, "imaginaryunit": [12, 88, 221], "imath": 231, "imbu": 90, "immateri": 89, "immedi": [3, 12, 14, 41, 53, 71, 79, 88, 113, 118, 158, 191, 208, 211, 242, 253, 260], "immut": [13, 14, 15, 36, 88, 119, 122, 126, 212, 237, 242, 280, 286, 293], "immutabledensematrix": [90, 119, 120, 121, 124, 241], "immutabledensendimarrai": [14, 242], "immutablematrix": [119, 120, 124, 144, 158, 200, 241, 265, 268, 293], "immutablesparsendimarrai": 242, "impact": 13, "implement": [2, 4, 5, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 28, 32, 34, 35, 36, 38, 42, 43, 52, 54, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 73, 74, 78, 79, 80, 85, 88, 89, 91, 93, 94, 96, 99, 101, 108, 109, 111, 112, 115, 118, 119, 124, 128, 129, 130, 131, 132, 134, 148, 151, 156, 160, 162, 163, 166, 175, 176, 184, 185, 187, 195, 201, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 220, 222, 225, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 245, 246, 256, 259, 260, 273, 276, 280, 287, 291, 297, 299], "implemented_funct": [14, 129, 253, 260], "impli": [5, 14, 15, 16, 18, 41, 61, 65, 69, 79, 118, 140, 191, 207, 212, 214, 221, 229, 231, 237, 239, 242, 245, 246, 259, 272], "implic": [14, 88, 118, 214], "implicit": [14, 31, 41, 55, 69, 86, 88, 130, 134, 153, 154, 158, 207, 237, 239, 243, 246, 253, 254, 265, 268, 275, 289], "implicit_appl": 130, "implicit_circl": 275, "implicit_multipl": 130, "implicit_multiplication_appl": 130, "implicitli": [14, 15, 41, 42, 43, 80, 88, 115, 208, 211, 239], "implicitregion": [265, 268, 275], "implicitseri": 207, "implieddoloop": 69, "import": [2, 3, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 46, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 183, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 265, 267, 268, 269, 270, 271, 272, 275, 286, 287, 289, 291, 292, 293, 295, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "import_modul": [2, 12], "importantli": [14, 41, 43, 218, 256], "importerror": 2, "importlib": 13, "impos": [3, 18, 137], "imposs": [3, 4, 12, 13, 14, 15, 43, 55, 88, 211, 230, 237, 238, 250, 287, 289, 297], "impract": [237, 287], "imprecis": 13, "impress": 16, "improp": [96, 115], "improperli": 88, "improv": [2, 3, 7, 11, 12, 13, 14, 18, 23, 42, 43, 88, 113, 158, 207, 211, 214, 215, 217, 218, 220, 222, 237, 240, 246, 287, 293], "impuls": [46, 144], "impulse_respons": 46, "impulse_response_numerical_data": 142, "impulse_response_plot": 142, "imul_num": 212, "in_terms_of_gener": 208, "inabl": 238, "inaccur": 212, "inappropri": 90, "inc": [34, 203, 215], "incent": 104, "inch": 207, "incid": [160, 164], "incircl": 104, "inclin": [138, 208], "includ": [2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 27, 30, 33, 36, 41, 43, 45, 48, 51, 52, 56, 59, 64, 65, 67, 68, 69, 80, 84, 87, 88, 89, 90, 92, 93, 94, 96, 100, 106, 113, 115, 118, 120, 122, 123, 124, 128, 129, 130, 131, 134, 136, 146, 151, 158, 171, 175, 180, 185, 188, 189, 199, 209, 210, 212, 213, 214, 216, 217, 220, 221, 222, 227, 228, 229, 231, 233, 236, 237, 238, 239, 241, 244, 247, 250, 252, 254, 255, 256, 257, 259, 265, 267, 269, 274, 276, 287, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307], "include_dir": 253, "include_numer": 22, "include_pydi": 22, "include_self": 216, "includepr": [212, 214, 217], "inclus": [5, 13, 87, 138, 140, 184, 208, 227, 228, 229, 240], "inclusion_hom": 208, "incom": [216, 241], "incommensur": 67, "incompat": 50, "incomplet": [2, 4, 5, 88, 93, 96, 130, 209, 211, 217, 221, 223, 239, 240], "incomplete_gamma_funct": 96, "inconclus": 239, "incongru": 231, "inconsist": [35, 41, 43, 62, 64, 87, 196, 200, 204, 233, 237, 239, 240], "inconsistentassumpt": 41, "inconveni": 221, "incorpor": [0, 2, 19, 39, 133, 209, 233, 301], "incorrect": [3, 5, 11, 12, 13, 42, 43, 54, 79, 88, 98, 128, 136, 142, 204, 210, 212, 237, 240, 253, 256, 257], "incorrectli": [4, 11, 13, 14, 43, 97, 98, 124, 209], "increas": [16, 18, 21, 32, 35, 36, 53, 67, 68, 80, 86, 87, 88, 91, 92, 96, 124, 128, 129, 158, 175, 200, 202, 211, 214, 216, 217, 223, 226, 230, 237, 241, 257, 259], "increment": [69, 79, 80, 81, 87, 104, 128, 241], "incur": [69, 129], "ind": [84, 223, 247], "inde": [3, 12, 14, 39, 43, 76, 79, 87, 113, 128, 208, 231, 237, 248, 252, 291], "indefinit": [12, 15, 61, 94, 112, 113, 115, 124, 130, 212, 214, 215, 217, 226, 287], "indent": [4, 16, 262], "indent_cod": 221, "indep": 237, "indep_div_dep": 237, "independ": [15, 16, 22, 25, 27, 33, 43, 53, 65, 67, 69, 79, 87, 88, 90, 96, 105, 113, 115, 117, 124, 144, 153, 154, 158, 189, 196, 207, 209, 211, 216, 217, 223, 224, 231, 233, 234, 237, 238, 239, 240, 241, 247, 252, 253, 272, 291, 292, 299, 302, 304, 306], "indetermin": [41, 42, 88, 124, 214, 226, 239], "indeterminate_form": 88, "index": [2, 8, 11, 12, 13, 16, 22, 30, 31, 43, 48, 55, 56, 57, 61, 69, 77, 79, 80, 84, 87, 88, 89, 90, 93, 94, 96, 99, 104, 113, 115, 118, 120, 124, 127, 128, 130, 132, 144, 158, 160, 162, 164, 165, 175, 184, 186, 188, 191, 196, 200, 207, 208, 210, 212, 216, 217, 218, 221, 226, 227, 231, 239, 241, 242, 244, 245, 247, 248, 253, 280], "index_group": 191, "index_method": 245, "index_order_new": [242, 243], "index_order_old": [242, 243], "index_typ": 247, "index_vector": 61, "indexconformanceexcept": 245, "indexedbas": [67, 69, 87, 88, 221, 239, 245, 246, 253], "indexerror": [80, 124, 217], "indexing_maxterm": 118, "indexing_minterm": 118, "indic": [3, 4, 11, 12, 16, 32, 38, 41, 52, 55, 56, 67, 68, 69, 70, 72, 77, 79, 80, 81, 83, 84, 86, 87, 88, 91, 92, 93, 96, 98, 103, 104, 113, 115, 118, 120, 124, 127, 128, 145, 158, 175, 186, 188, 189, 191, 196, 200, 206, 210, 211, 212, 216, 217, 218, 221, 228, 229, 230, 233, 234, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 259, 293, 306], "indices_contain_equal_inform": [96, 191], "indici": [110, 111, 112, 237], "indirect": [12, 88, 90, 96, 128, 191, 237], "indirectli": [14, 41], "individu": [11, 12, 13, 28, 41, 43, 46, 50, 53, 88, 94, 99, 104, 105, 117, 120, 124, 144, 163, 181, 185, 206, 229, 237, 239, 252, 293], "induc": [88, 124, 216, 230, 259], "induct": 208, "ineffici": [51, 88, 124, 211], "inequ": [14, 15, 41, 42, 43, 49, 88, 207, 214, 229, 231, 235, 277], "inequival": 113, "inert": [216, 237], "inerti": [25, 26, 28, 30, 149, 153, 155, 158, 299, 302, 303, 306, 309], "inertia": [13, 21, 22, 23, 30, 32, 35, 36, 136, 137, 147, 149, 151, 158, 200, 216, 282, 300, 302, 303, 304, 307, 309, 310, 311], "inertia_dyad": 200, "inertia_of_point_mass": [13, 155], "inertia_tupl": [149, 155], "inexact": [14, 16, 57, 88, 210, 212], "inexpens": 14, "inexpress": 217, "inextens": 18, "inf": [69, 80, 88, 124, 212, 214, 217, 229, 237, 241], "infal": 289, "infanc": 100, "infeas": [214, 217], "infeasiblelperror": 239, "infer": [41, 63, 64, 80, 88, 115, 211, 220, 221, 226, 231, 237, 253], "infimum": 229, "infin": [15, 41, 50, 65, 87, 88, 93, 94, 96, 101, 113, 115, 124, 164, 212, 214, 217, 221, 226, 227, 228, 229, 233, 236, 237, 241], "infinit": [41, 43, 50, 51, 65, 87, 88, 89, 92, 93, 94, 101, 102, 115, 124, 128, 144, 159, 177, 196, 208, 216, 221, 222, 223, 226, 227, 228, 229, 233, 234, 236, 239, 246, 259, 287, 297, 298, 308], "infinite_product": 87, "infinitehandl": 65, "infinitepred": 65, "infinitesim": [33, 237, 272], "infix": 88, "inflect": 206, "influenc": [12, 18, 70, 136, 159, 208, 209, 299], "info": [5, 9, 11, 16, 144, 221, 237, 238], "inform": [2, 3, 4, 5, 7, 9, 11, 14, 15, 16, 22, 23, 24, 25, 27, 28, 30, 31, 36, 38, 41, 42, 45, 48, 57, 58, 64, 65, 68, 69, 70, 74, 79, 80, 86, 88, 89, 93, 96, 100, 113, 115, 117, 120, 124, 128, 129, 130, 137, 149, 150, 151, 152, 153, 155, 158, 186, 191, 196, 200, 205, 207, 210, 211, 216, 217, 221, 222, 228, 231, 233, 234, 239, 240, 241, 245, 246, 247, 252, 253, 254, 255, 256, 265, 270, 272, 297, 299, 302], "informatik": 259, "informatiqu": 218, "infrastructur": [221, 238], "infti": [4, 14, 15, 41, 65, 87, 88, 89, 93, 94, 96, 113, 115, 130, 208, 217, 224, 228, 231, 237, 240, 241, 287, 291, 297], "inftyright": 240, "infunct": 88, "inher": [22, 260, 289], "inherit": [13, 62, 88, 95, 118, 120, 121, 131, 134, 148, 152, 156, 159, 180, 189, 206, 221, 241, 246, 254, 255], "inhomogen": [234, 237, 239], "inhomogeneousgeneralquadrat": 234, "inhomogeneousternaryquadrat": 234, "init": 239, "init_cond": 90, "init_ipython_sess": 116, "init_print": [13, 14, 48, 53, 59, 69, 80, 92, 115, 116, 124, 137, 205, 208, 209, 220, 287, 291, 293, 296, 297, 298], "init_python_sess": 116, "init_sess": [2, 116, 296], "init_subgroup": 79, "init_vprint": [28, 31, 35, 36, 149, 155, 157, 200, 202, 204, 205, 303], "initcond": [107, 109, 110], "initi": [5, 15, 18, 22, 25, 26, 27, 30, 31, 36, 41, 46, 54, 63, 79, 83, 88, 89, 90, 93, 96, 104, 106, 107, 110, 111, 112, 113, 115, 116, 128, 130, 137, 138, 140, 142, 144, 149, 153, 155, 158, 163, 171, 180, 201, 202, 205, 206, 214, 216, 217, 221, 227, 231, 233, 237, 239, 240, 246, 254, 261, 262, 265, 267, 268, 269, 270, 299, 302, 304, 306, 307, 311], "initial_condit": [22, 30], "initial_exp": 142, "initializing_quadratic_siev": 128, "initialor": 55, "inject": [14, 79, 88, 208, 212, 217, 293], "inlin": [4, 12, 116, 205, 221, 254, 299], "inlist": 200, "inner": [41, 55, 87, 113, 124, 130, 174, 177, 178, 183, 185, 186, 189, 191, 200, 204, 210, 216, 223, 265, 282], "inner_endomorph": 216, "inner_product": 179, "innerendomorph": 216, "innermost": 88, "innerproduct": [174, 179, 180, 186, 188, 191], "inout": 69, "inoutargu": [69, 254], "inp_vec": [27, 306], "inplac": 212, "input": [4, 5, 11, 12, 15, 16, 18, 21, 22, 27, 30, 31, 43, 46, 52, 55, 61, 67, 70, 84, 88, 89, 91, 92, 93, 94, 102, 115, 117, 118, 124, 128, 130, 131, 132, 134, 138, 140, 141, 142, 144, 152, 154, 158, 164, 187, 200, 202, 204, 210, 211, 212, 214, 217, 218, 219, 220, 221, 222, 229, 233, 234, 237, 239, 241, 243, 253, 254, 256, 257, 259, 260, 262, 286, 292, 293, 297, 299, 302, 306], "input_var": [131, 134], "inputargu": [69, 254], "inputoutput": 254, "inquiri": 88, "inradiu": 104, "inria": [110, 115], "insconsist": 88, "inscrib": 104, "insensit": [30, 69, 124, 221, 252, 254], "insert": [18, 68, 70, 124, 130, 134, 136, 186, 191, 221, 241, 262, 299], "insertion_angl": 299, "insertion_dist": 299, "insertion_segment_length": 299, "insid": [5, 12, 13, 14, 15, 16, 21, 27, 36, 43, 79, 80, 85, 88, 98, 99, 104, 136, 150, 190, 191, 195, 196, 205, 217, 221, 229, 231, 234, 239, 240, 241, 243, 245, 256, 260, 292, 293, 306], "insidepoli": 104, "insight": [50, 290, 301], "inspect": [12, 13, 18, 41, 124, 132, 134, 216, 227, 258, 260, 284], "inspir": [238, 293, 303], "instal": [2, 5, 12, 15, 16, 45, 92, 129, 210, 211, 212, 221, 253, 260, 290, 296], "instanc": [1, 3, 4, 5, 12, 13, 14, 15, 18, 22, 31, 33, 38, 41, 42, 43, 62, 63, 64, 66, 68, 69, 71, 79, 81, 83, 88, 90, 92, 93, 94, 96, 101, 104, 105, 106, 111, 112, 115, 116, 120, 123, 124, 128, 130, 131, 132, 134, 136, 145, 148, 149, 153, 156, 158, 159, 164, 171, 175, 181, 185, 186, 188, 190, 191, 200, 202, 205, 207, 210, 211, 212, 216, 217, 218, 219, 221, 229, 231, 233, 237, 239, 240, 241, 245, 246, 247, 252, 253, 254, 256, 259, 260, 265, 267, 268, 269, 270, 272, 274, 286, 287, 292, 297, 298, 304, 307], "instantan": [18, 272], "instanti": [18, 61, 68, 69, 80, 88, 96, 101, 103, 104, 120, 130, 131, 132, 134, 148, 153, 156, 159, 181, 189, 200, 208, 210, 212, 216, 241, 265, 269], "instantia": 207, "instead": [2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 16, 18, 22, 27, 30, 32, 33, 35, 36, 37, 41, 42, 43, 50, 52, 53, 55, 56, 57, 60, 61, 62, 64, 68, 69, 79, 81, 84, 88, 90, 91, 92, 93, 96, 115, 116, 118, 120, 121, 124, 128, 131, 134, 142, 145, 147, 148, 158, 189, 193, 200, 205, 207, 208, 210, 211, 212, 214, 216, 217, 219, 221, 223, 231, 233, 237, 239, 240, 241, 245, 246, 247, 250, 255, 256, 257, 259, 260, 272, 275, 286, 287, 289, 291, 292, 293, 297, 298, 302, 306], "institut": 218, "instruct": [2, 4, 5, 7, 8, 9, 11, 13, 16, 39, 44, 58, 69, 221, 239, 253, 254, 305], "insuffici": [37, 124], "int": [2, 4, 5, 12, 13, 14, 15, 16, 41, 42, 43, 61, 67, 69, 74, 80, 88, 89, 90, 93, 94, 96, 97, 104, 113, 115, 116, 118, 124, 125, 128, 130, 132, 134, 142, 144, 152, 171, 175, 176, 185, 200, 202, 204, 205, 206, 207, 211, 212, 216, 217, 218, 221, 223, 224, 226, 234, 237, 238, 241, 253, 257, 259, 260, 262, 289, 291, 292, 296, 297], "int1": [63, 64], "int16": 69, "int2": [63, 64], "int32": 69, "int64": [14, 69, 241], "int8": 69, "int_": [96, 112, 113, 115, 217, 224, 287, 291], "int_0": [14, 96, 113, 115, 287, 297], "int_1": [96, 113, 130], "int_a": 115, "int_fram": 13, "int_l": [96, 113, 231], "int_to_integ": 116, "int_x": 96, "intact": [3, 13, 69, 253], "intbasetyp": 69, "intc": [69, 130], "intcurve_diffequ": 90, "intcurve_seri": 90, "integ": [2, 4, 5, 12, 14, 15, 16, 41, 43, 50, 51, 52, 62, 63, 64, 65, 67, 69, 70, 74, 77, 79, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93, 96, 98, 101, 112, 113, 115, 116, 117, 118, 120, 124, 125, 128, 130, 134, 136, 138, 144, 146, 152, 180, 185, 187, 188, 189, 191, 193, 200, 202, 205, 206, 207, 208, 209, 210, 212, 214, 215, 216, 217, 218, 220, 221, 223, 226, 227, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 245, 246, 247, 253, 254, 256, 259, 262, 287, 289, 292, 296, 297], "integer_as_sum_of_three_squar": 234, "integer_el": 65, "integer_log": 88, "integer_nthroot": [88, 94, 128], "integer_to_term": 118, "integerelementshandl": 65, "integerelementspred": 65, "integerhandl": 65, "integerpartit": [77, 259], "integerpred": 65, "integers_onli": 207, "integr": [2, 11, 12, 14, 15, 16, 18, 22, 23, 30, 32, 33, 38, 49, 59, 61, 67, 80, 87, 88, 90, 93, 94, 106, 107, 108, 111, 117, 123, 124, 127, 128, 130, 144, 146, 151, 153, 158, 177, 186, 189, 192, 195, 201, 206, 208, 211, 212, 214, 215, 217, 218, 221, 223, 224, 231, 237, 238, 241, 254, 262, 265, 268, 269, 272, 273, 277, 280, 288, 291, 296, 299], "integral_basi": [212, 216], "integral_step": 115, "integraltransform": 115, "integraltransformerror": 115, "integrand": [12, 92, 96, 112, 113, 115, 130, 231, 287], "integrate_result": 186, "integration_techniqu": 115, "integration_vari": 287, "integstp": 22, "intellig": [215, 233, 237, 297], "intelligenc": 74, "intend": [2, 3, 4, 7, 9, 11, 12, 13, 14, 18, 37, 41, 88, 89, 99, 108, 113, 128, 130, 133, 150, 155, 186, 210, 211, 212, 216, 219, 221, 234, 237, 238, 250, 255, 262, 286, 299], "intens": [153, 154, 160, 163], "intent": [12, 14, 41, 69, 87, 88, 130, 210, 254], "intent_in": 69, "intent_out": 69, "intention": 88, "intenum": 134, "interact": [0, 11, 14, 15, 30, 36, 37, 52, 60, 88, 102, 115, 121, 124, 156, 188, 205, 211, 212, 233, 241, 257, 263, 276, 284, 289, 291, 292, 296, 297], "interactive_travers": 13, "interactiveconsol": [116, 205], "interchang": [15, 84, 87, 113, 133, 237], "interconnect": [18, 141, 144, 149], "interest": [7, 11, 14, 16, 18, 36, 37, 43, 48, 51, 57, 84, 88, 90, 93, 94, 104, 113, 115, 124, 128, 130, 156, 191, 196, 208, 212, 216, 217, 218, 220, 228, 231, 233, 234, 239, 240, 253, 254, 270, 287, 290, 292, 293, 294, 297, 302], "interf": 240, "interfac": [2, 5, 7, 9, 11, 12, 15, 18, 23, 34, 36, 52, 67, 88, 116, 131, 133, 152, 160, 186, 205, 210, 211, 214, 219, 240, 253, 254], "interfer": [41, 221], "interfram": [152, 204], "interior": [104, 217, 229], "interior_angl": 104, "intermedi": [15, 18, 22, 24, 35, 69, 70, 111, 124, 152, 175, 185, 193, 194, 200, 204, 240, 254, 294, 302, 307, 309], "intern": [3, 13, 14, 15, 16, 27, 28, 41, 42, 50, 67, 69, 70, 79, 88, 91, 92, 93, 96, 104, 105, 108, 119, 124, 128, 130, 134, 137, 140, 142, 164, 185, 186, 196, 208, 210, 212, 213, 215, 217, 219, 221, 231, 233, 236, 237, 238, 239, 240, 241, 245, 247, 250, 254, 256, 259, 283, 292, 296, 302], "internal_forc": 140, "interpol": [30, 67, 93, 97, 214, 217], "interpolating_poli": [96, 217], "interpolating_splin": 96, "interpret": [16, 21, 42, 55, 57, 69, 79, 87, 88, 93, 94, 96, 101, 104, 115, 120, 124, 128, 130, 196, 207, 209, 216, 217, 221, 228, 234, 239, 240, 241, 246, 252, 253, 256, 262, 293], "interrog": 56, "interrupt": 252, "intersect": [4, 41, 52, 67, 68, 79, 98, 99, 101, 102, 103, 104, 105, 124, 156, 164, 208, 217, 221, 227, 228, 229, 240], "intersecting_product": 91, "intersection_": 229, "interspers": 208, "interv": [48, 50, 52, 55, 65, 67, 79, 88, 92, 94, 96, 97, 98, 101, 104, 113, 115, 118, 128, 177, 186, 210, 212, 214, 216, 217, 224, 227, 229, 236, 240, 241, 287, 298], "interval_": 229, "interval_list": 207, "intfunc": [94, 128, 217], "intgrl": 92, "intim": 208, "intiuit": 124, "intm": 123, "intp": 69, "intpoli": 115, "intqubit": [176, 185], "intqubitbra": 185, "intransit": 79, "intrins": [61, 69], "intrinsic_imped": 162, "introduc": [13, 14, 18, 22, 26, 36, 42, 51, 84, 87, 88, 96, 113, 124, 129, 131, 134, 137, 191, 196, 212, 213, 217, 218, 221, 228, 231, 234, 241, 257, 283, 290, 293, 295, 297, 299, 301, 302, 304, 309, 310, 311], "introduct": [5, 6, 13, 17, 19, 23, 34, 40, 79, 80, 93, 96, 210, 212, 214, 215, 217, 221, 234, 237, 240, 273, 280, 290, 296], "introductori": [16, 30, 39, 58, 59, 211, 212, 217], "introspect": 30, "intstep": 115, "intt": 91, "inttyp": 69, "intuit": [18, 28, 88, 196, 237], "inv": [30, 39, 53, 80, 119, 124, 149, 153, 158, 180, 210, 237, 302, 309, 310], "inv_can_transf_matrix": 193, "inv_den": [124, 210], "inv_method": [149, 153, 158], "inv_perm": 80, "inv_trig_styl": 221, "invalid": [5, 11, 12, 14, 16, 57, 88, 89, 130, 211, 214, 229, 302], "invari": [5, 13, 43, 79, 84, 141, 144, 206, 210, 212, 214, 216, 217, 231, 237], "invent": [89, 216, 239, 291], "inver": 218, "invers": [4, 12, 18, 53, 55, 61, 79, 80, 88, 89, 90, 96, 115, 120, 124, 128, 130, 132, 149, 153, 158, 180, 184, 185, 188, 193, 196, 208, 209, 210, 212, 214, 217, 218, 221, 223, 231, 233, 237, 239, 240, 241, 259, 293, 297], "inverse_adj": [124, 293], "inverse_block": 124, "inverse_ch": 124, "inverse_cosine_transform": 115, "inverse_fourier_transform": 115, "inverse_funct": 96, "inverse_g": [124, 293], "inverse_gaussian_distribut": 241, "inverse_hankel_transform": 115, "inverse_laplace_transform": [46, 115], "inverse_ldl": 124, "inverse_lu": [124, 293], "inverse_mellin_transform": 115, "inverse_mobius_transform": 91, "inverse_qr": 124, "inverse_sine_transform": 115, "inverse_trigonometric_funct": 94, "inversecosinetransform": 115, "inverseerf": [96, 221], "inverseerf2": 96, "inverseerfc": [96, 221], "inversefouriertransform": 115, "inversegaussiandistribut": 241, "inversehankeltransform": 115, "inverselaplacetransform": 115, "inversemellintransform": 115, "inversesinetransform": 115, "inversetrigonometricfunct": 43, "inversion_vector": 80, "invert": [18, 39, 53, 57, 65, 88, 89, 120, 124, 144, 193, 209, 210, 211, 212, 216, 217, 237, 239, 240, 247, 293, 306], "invert_complex": 240, "invert_r": 240, "invertible_matrix": 65, "invertiblehandl": 65, "invertiblepred": 65, "investig": [11, 80, 113, 206, 208, 231, 259, 289], "invok": [228, 252, 253], "invol": 131, "involut": 259, "involv": [11, 12, 13, 14, 16, 22, 32, 35, 36, 39, 41, 48, 50, 52, 64, 66, 79, 87, 88, 89, 93, 100, 101, 113, 115, 128, 133, 144, 149, 153, 159, 170, 180, 186, 188, 198, 208, 209, 212, 214, 216, 217, 218, 222, 223, 228, 229, 230, 231, 233, 234, 237, 239, 242, 260, 297, 299], "io": [2, 5, 116, 221, 260], "ion": [18, 131, 234], "iosi": 89, "iota": [16, 221], "ip": [116, 179, 185, 205], "ip_doit": 183, "ipl": 124, "ipmnet": 237, "ipo": 247, "ipos1": 247, "ipos2": 247, "iproduct": 259, "ipython": [2, 4, 15, 16, 30, 59, 116, 205, 260, 264, 295, 296], "iqft": 184, "iren": [4, 96], "irrat": [41, 48, 65, 67, 88, 128, 211, 217, 221, 229, 291], "irrational_numb": [41, 65, 88], "irrationalhandl": 65, "irrationalpred": 65, "irreduc": [14, 48, 209, 210, 212, 214, 216, 217, 220, 241, 247, 297], "irreducibili": 217, "irregular": [120, 124], "irrelev": 93, "irrespect": [115, 234, 237, 262], "irrot": [33, 272], "irwin": 241, "is2pow": 128, "is_": [15, 43, 88], "is_2dlin": 207, "is_abelian": 79, "is_abelian_numb": 74, "is_above_fermi": [96, 191], "is_absolutely_converg": 87, "is_abund": 128, "is_add": [88, 240], "is_algebra": [41, 88, 212], "is_algebraic_expr": 88, "is_alias": 88, "is_alt_sym": [79, 86], "is_altern": 79, "is_amic": 128, "is_anf": 118, "is_anti_symmetr": 124, "is_below_fermi": [96, 191], "is_biprop": 144, "is_canon_bp": 247, "is_capit": 15, "is_carmichael": [13, 128], "is_clos": 229, "is_cnf": 118, "is_collinear": [100, 103], "is_commut": [41, 115, 180, 189, 259], "is_compar": [41, 88], "is_compat": 216, "is_compat_col": 216, "is_complex": [41, 88], "is_concycl": 103, "is_conserv": [33, 201, 268, 272], "is_consist": [193, 199], "is_const": 88, "is_converg": 87, "is_convex": [67, 104], "is_coplanar": 102, "is_cycl": 79, "is_cyclic_numb": 74, "is_cyclotom": [212, 217], "is_decreas": 67, "is_defici": 128, "is_deriv": [13, 88], "is_diagon": [124, 210], "is_diagonaliz": 124, "is_dihedr": 79, "is_dimensionless": 193, "is_disjoint": 229, "is_dnf": 118, "is_echelon": [124, 293], "is_elementari": 79, "is_empti": [13, 41, 80], "is_equilater": 104, "is_euler_jacobi_pseudoprim": 128, "is_euler_pseudoprim": 128, "is_even": [43, 76, 79, 80], "is_exact": 212, "is_extended_neg": 41, "is_extended_nonneg": 41, "is_extended_nonposit": 41, "is_extended_posit": [41, 42], "is_extended_r": 41, "is_extra_strong_lucas_prp": 128, "is_fermat_pseudoprim": 128, "is_field": [211, 212], "is_finit": [41, 88], "is_finite_set": 41, "is_float": 88, "is_full_modul": 208, "is_funct": 69, "is_gaussian_prim": 128, "is_groebn": 214, "is_ground": [212, 217], "is_group": [76, 79], "is_hermitian": 124, "is_homogen": [212, 217], "is_hypergeometr": 87, "is_ident": [78, 80, 88], "is_increas": 67, "is_indefinit": 124, "is_inert": 216, "is_infinit": 41, "is_inject": 208, "is_int": 216, "is_integ": [14, 15, 41, 43, 88, 202, 221, 246], "is_irr": 88, "is_irreduc": [212, 217], "is_isomorph": 208, "is_isoscel": 104, "is_iter": 229, "is_left_unbound": 229, "is_linear": [212, 217], "is_low": [124, 210], "is_lower_hessenberg": 124, "is_lucas_prp": 128, "is_matrix": [69, 221], "is_maxim": 208, "is_meromorph": 88, "is_mersenne_prim": 128, "is_minim": 214, "is_mon": [212, 217], "is_monomi": [212, 217], "is_monoton": 67, "is_mul": 88, "is_multivari": 217, "is_neg": [41, 43, 88, 212], "is_negative_definit": 124, "is_negative_semidefinit": 124, "is_nilpot": [79, 124], "is_nilpotent_numb": 74, "is_nnf": 118, "is_nonneg": [41, 43, 212], "is_nonposit": 212, "is_nonzero": [41, 103], "is_norm": [79, 189], "is_nthpow_residu": 128, "is_numb": [14, 15, 41, 88, 96, 115], "is_odd": 80, "is_on": [212, 217], "is_only_above_fermi": [96, 191], "is_only_below_fermi": [96, 191], "is_only_q_annihil": 191, "is_only_q_cr": 191, "is_open": 229, "is_palindrom": [128, 259], "is_parallel": [101, 102], "is_perfect": [79, 128], "is_perfect_squar": 13, "is_perpendicular": [101, 102, 103, 104], "is_pid": 212, "is_polycycl": 79, "is_polynomi": 88, "is_posit": [12, 14, 15, 41, 42, 43, 88, 202, 212], "is_positive_definit": 124, "is_positive_semidefinit": 124, "is_pow": [16, 69, 88, 94], "is_prefix": 198, "is_prim": [13, 41, 88, 208], "is_primari": 208, "is_primit": [79, 212, 217], "is_primitive_el": 88, "is_primitive_root": [89, 128], "is_princip": 208, "is_prop": 144, "is_proper_subset": 229, "is_proper_superset": 229, "is_pur": 61, "is_q_annihil": 191, "is_q_creat": 191, "is_quad_residu": [93, 128], "is_quadrat": [212, 217], "is_r": 212, "is_rad": 208, "is_rat": [16, 41, 216, 259], "is_rational_funct": 88, "is_real": [12, 14, 15, 41, 43, 48, 52, 88, 90, 94, 95, 124, 202, 217, 221, 246], "is_recurr": 241, "is_reduc": 214, "is_right": 104, "is_right_unbound": 229, "is_sam": 88, "is_scalar_multipl": 103, "is_scalen": 104, "is_sequ": 259, "is_similar": [99, 101, 104, 105], "is_simpl": 96, "is_singleton": 80, "is_singular": [88, 95, 111], "is_solenoid": [33, 201, 268, 272], "is_solv": 79, "is_sqf": [212, 217], "is_squar": [13, 88, 124, 128, 210, 212], "is_squarefre": 214, "is_stabl": [46, 144], "is_strictly_decreas": 67, "is_strictly_increas": 67, "is_strictly_prop": 144, "is_strong_lucas_prp": 128, "is_strongly_diagonally_domin": 124, "is_subdiagram": 68, "is_subgroup": 79, "is_submodul": 208, "is_subset": [38, 229], "is_superset": 229, "is_surject": 208, "is_symbol": [69, 124], "is_symmetr": [79, 124], "is_tang": [98, 100], "is_this_zero": [3, 257], "is_transit": 79, "is_trivi": 79, "is_tru": [62, 64, 65], "is_unit": 212, "is_univari": 217, "is_up": 247, "is_upp": [124, 210], "is_upper_hessenberg": 124, "is_weakly_diagonally_domin": 124, "is_whole_r": 208, "is_zero": [3, 41, 43, 103, 124, 208, 212, 217, 257, 293], "is_zero_dimension": [217, 240], "is_zero_matrix": [41, 124, 210], "is_zero_quaternion": 61, "isc": 215, "isclos": 88, "isdisjoint": 229, "isfinit": 88, "isign": 69, "isinst": [13, 14, 15, 38, 41, 43, 69, 88, 120, 123, 144, 211, 212, 221, 222, 233, 242, 245, 254, 292], "isint": 43, "isn": [7, 11, 13, 14, 21, 22, 43, 55, 115, 156, 240, 291], "isol": [9, 48, 67, 94, 212, 216, 217, 218, 239, 254], "isometr": [18, 132, 134], "isometri": 117, "isomorph": [71, 79, 82, 208, 211, 214, 216], "isomorphismfail": [214, 216], "isotrop": 192, "ispk": 89, "isposit": 42, "isprim": [13, 65, 89, 93, 128], "isprimit": 88, "isqrt": [88, 128], "issac": [70, 115, 215, 239], "issn": 0, "issu": [3, 5, 7, 12, 13, 14, 15, 16, 23, 34, 42, 43, 48, 50, 51, 52, 53, 54, 55, 56, 59, 60, 67, 87, 88, 105, 115, 118, 124, 129, 171, 206, 215, 216, 218, 221, 229, 230, 239, 240, 252, 254, 256, 257, 259, 262, 288, 289, 292, 297], "issubset": 229, "issuperset": 229, "ist": [215, 230], "istruehandl": 65, "istruepred": 65, "isuru": 0, "isympi": [1, 2, 15, 16, 116], "iszero": 293, "iszerofunc": [124, 293], "it5": 124, "ital": [5, 221], "italic": 5, "ite": 221, "item": [4, 5, 15, 16, 28, 37, 48, 55, 69, 77, 78, 80, 88, 93, 99, 105, 124, 128, 148, 153, 155, 156, 207, 210, 211, 214, 217, 221, 229, 237, 238, 241, 252, 253, 256, 259, 260, 297], "iter": [15, 27, 31, 48, 51, 52, 53, 57, 67, 69, 77, 79, 80, 83, 84, 88, 89, 90, 91, 93, 96, 104, 118, 124, 128, 149, 150, 152, 153, 154, 155, 158, 176, 191, 204, 207, 208, 209, 210, 212, 214, 217, 221, 222, 223, 224, 227, 233, 234, 237, 239, 240, 241, 242, 245, 253, 254, 255, 256, 258, 260, 265, 270, 284], "iter_item": [124, 210], "iter_q_annihil": 191, "iter_q_cr": 191, "iter_valu": [124, 210], "iterat": 210, "iterate_binari": 83, "iterate_graycod": 83, "itercoeff": 212, "itermax": 69, "itermonom": 212, "itermonomi": 217, "iterterm": 212, "itertool": [83, 259], "itex": 221, "ith": [80, 117, 128, 210, 212, 218, 240, 241], "itii": 89, "its": [0, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 36, 37, 39, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 57, 61, 63, 64, 65, 68, 69, 70, 72, 76, 78, 79, 80, 87, 88, 89, 90, 93, 94, 96, 98, 100, 104, 106, 113, 115, 116, 118, 120, 124, 128, 130, 131, 132, 133, 134, 136, 137, 138, 140, 144, 148, 149, 151, 152, 153, 155, 156, 158, 159, 164, 170, 176, 177, 179, 180, 185, 186, 189, 191, 195, 196, 198, 200, 201, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 227, 228, 229, 233, 236, 237, 239, 240, 241, 243, 245, 246, 247, 252, 255, 256, 259, 260, 265, 268, 269, 270, 272, 275, 291, 292, 293, 296, 297, 299, 301, 302, 306], "itself": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 18, 22, 28, 33, 35, 43, 65, 77, 79, 80, 86, 88, 90, 93, 94, 101, 105, 110, 124, 128, 133, 153, 158, 181, 188, 207, 208, 210, 211, 212, 214, 216, 217, 221, 229, 230, 233, 240, 245, 246, 247, 254, 256, 259, 274, 291], "iv": [96, 218], "ivan": 214, "ivanov": 0, "iverson": 43, "iwf11": 302, "iwf22": 302, "iwr11": 302, "iwr22": 302, "ixi": [155, 200], "ixx": [149, 155, 200], "ixz": 200, "iy_": 96, "iyi": [155, 200], "iyz": [155, 200], "iz": 96, "izx": 155, "izz": [155, 200], "i\u2080": 163, "j": [0, 5, 12, 13, 14, 16, 18, 29, 30, 32, 33, 46, 61, 65, 67, 69, 70, 74, 78, 79, 80, 84, 86, 87, 89, 90, 93, 96, 110, 113, 115, 117, 120, 124, 128, 131, 132, 134, 145, 149, 158, 163, 170, 171, 188, 191, 196, 206, 208, 210, 212, 214, 215, 216, 217, 218, 220, 221, 223, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 245, 246, 247, 248, 253, 259, 265, 267, 268, 269, 270, 271, 272, 274, 275, 299], "j1": [152, 170, 188, 304, 307], "j12": [170, 188], "j13": 170, "j2": [152, 170, 188, 304, 307], "j23": 170, "j24": 170, "j2op": 188, "j3": [170, 188, 304, 307], "j34": 170, "j4": 170, "j_": [93, 96, 113, 115, 188, 223, 231, 291], "j_0": 171, "j_1": [93, 170, 171, 188, 206, 223, 242], "j_2": [93, 170, 171, 188, 206, 223], "j_3": [170, 188, 206], "j_4": [188, 206], "j_5": 206, "j_6": 206, "j_7": 206, "j_8": 206, "j_9": 206, "j_m": 242, "j_n": [96, 188], "j_y": 206, "j_z": 206, "ja": 127, "jacobi": [93, 115, 128, 146, 217, 221], "jacobi_norm": 96, "jacobi_poli": [96, 217], "jacobi_polynomi": 96, "jacobi_rul": 115, "jacobi_symbol": [13, 89, 93, 128], "jacobian": [27, 90, 124, 239], "jacobian_determin": 90, "jacobian_matrix": 90, "jacobip": [96, 221], "jacobipolynomi": 96, "jakob": 217, "jame": [89, 214], "jan": [0, 89], "jane": 70, "januari": 128, "jason": [0, 221], "java": 16, "javascript": 296, "javascriptcodeprint": 221, "jax": [2, 129, 260], "jburkardt": 115, "jc": 136, "jcoupl": 188, "jcoupling_list": 188, "jean": 115, "jeffrei": [124, 233], "jen": 206, "jensen": [11, 69], "jerom": 259, "jeromekelleh": 259, "jewett": 128, "jguzm022": 11, "ji": [124, 243], "jim": 29, "jit": [2, 230], "jj": 188, "jk": 0, "jku": [110, 237, 265], "jl": [215, 254], "jlname": 254, "jm": 188, "jmig5776": 11, "jn": [94, 96, 188, 217, 221, 291], "jn_zero": 96, "jnanjeky": 11, "jnp": 129, "joannah": 11, "joaquim": 11, "job": [12, 39, 43, 80, 171, 218, 221], "jochen": 11, "joe": 11, "joeb": 11, "joel": 237, "jogi": 11, "johan": 11, "johan_bluecreek": 11, "johansson": 0, "john": [70, 74, 79, 96, 215, 217, 234, 237], "johndcook": 93, "johnson": [80, 124], "joi": 68, "join": [9, 14, 16, 50, 80, 88, 89, 101, 124, 136, 137, 156, 221, 233, 237, 239, 242, 259], "joint": [23, 140, 148, 149, 151, 158, 282, 299, 304, 307], "joint1": 304, "joint2": 304, "joint3": 304, "joint_axi": [13, 24, 148, 152, 158, 304, 307], "joint_distribut": 241, "joint_point": 152, "joint_rv_typ": 241, "jointdistributionhandmad": 241, "jointli": 41, "jointrv": 241, "jointsmethod": 149, "jon": 128, "jone": [128, 163], "jones_2_stok": 163, "jones_calculu": 163, "jones_vector": 163, "jordan": [53, 113, 124, 210, 219, 237, 239, 240], "jordan_block": 124, "jordan_cel": 124, "jordan_form": 124, "jordan_matrix": [124, 237], "jordan_normal_form": 237, "joseph": [145, 215], "josephu": 80, "josephus_problem": 80, "josi": 89, "joul": 196, "journal": [0, 4, 7, 61, 87, 93, 145, 215, 233, 256, 259, 303], "joyofcat": 68, "jpr2718": 234, "jr": 96, "js_function_str": 221, "jsc": 215, "jscode": [69, 221], "jstor": 241, "jth": [117, 210, 240], "judgement": 5, "judgment": 12, "juli": [89, 234], "julia": 254, "julia_cod": [69, 221], "juliacodegen": 254, "juliacodeprint": 221, "juliu": 89, "jump": [136, 241, 297], "june": [89, 124], "jupyt": [2, 7, 11, 15, 43, 260], "jurjen": 221, "just": [1, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 28, 30, 32, 33, 35, 41, 42, 43, 50, 52, 55, 59, 65, 68, 69, 79, 86, 88, 89, 90, 94, 111, 113, 115, 116, 117, 118, 124, 128, 129, 132, 146, 148, 149, 171, 176, 181, 191, 196, 205, 207, 208, 210, 211, 212, 214, 216, 220, 221, 228, 229, 230, 231, 233, 237, 240, 242, 250, 252, 254, 255, 257, 271, 272, 274, 286, 287, 289, 290, 291, 292, 293, 297, 298, 301, 306, 310], "just_gen": 216, "justifi": 214, "juxtaposit": [28, 32, 269], "jx": 188, "jxbra": 188, "jxbracoupl": 188, "jxket": 188, "jxketcoupl": 188, "jy": 188, "jybra": 188, "jybracoupl": 188, "jyket": 188, "jyketcoupl": 188, "jyr2000": 206, "jz": 188, "jzbra": 188, "jzbracoupl": 188, "jzket": 188, "jzketcoupl": 188, "jzop": 188, "k": [0, 5, 12, 13, 14, 16, 18, 25, 27, 30, 32, 33, 37, 41, 43, 46, 51, 61, 67, 68, 69, 70, 72, 74, 78, 79, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 96, 106, 113, 115, 118, 120, 124, 128, 130, 144, 148, 149, 153, 158, 165, 179, 180, 183, 187, 189, 191, 206, 208, 210, 211, 214, 215, 216, 217, 218, 221, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 237, 239, 241, 242, 243, 245, 246, 247, 248, 252, 256, 259, 265, 267, 268, 269, 270, 271, 272, 274, 275, 296, 297, 299, 307], "k0": [189, 212, 214, 241], "k1": [30, 128, 189, 211, 212, 214, 303], "k2": [30, 128, 211, 303], "k3": [30, 211], "k3d": 13, "k4": 30, "k_": [25, 26, 96, 113, 153], "k_0": 214, "k_1": [89, 128, 214, 231, 303], "k_2": [89, 303], "k_3": 89, "k_arrai": 78, "k_b": 55, "k_d": [25, 153], "k_dnh": 153, "k_f": 55, "k_i": [128, 214, 231], "k_j": 231, "k_kqdot": 153, "k_ku": 153, "k_m": 128, "k_n": [89, 96, 214], "k_sym": 93, "k_u": 231, "k_val": 55, "k_y": 117, "ka": 0, "kahan": 145, "kahane_simplifi": 145, "kalkbrenn": 239, "kaltofen": [214, 215], "kaltofen98": 215, "kane": [18, 21, 22, 23, 24, 29, 30, 32, 149, 151, 158, 200, 265, 282, 299, 305, 308], "kane1983": [29, 36], "kane1985": [25, 29, 32, 310], "kanes_equ": [18, 22, 25, 27, 30, 148, 153, 156, 299, 302, 306, 309, 310], "kanesmethod": [13, 18, 22, 24, 25, 27, 30, 148, 149, 153, 156, 158, 299, 302, 304, 306, 307, 309, 310], "kapitaniaka": 303, "kappa": [16, 206, 221, 241], "kapur": 215, "kapur1994": 215, "karr": 87, "kasiski": 89, "katmat": 68, "kauer": 226, "kb": 55, "kbin": 259, "kconrad": [79, 241], "kd": [25, 153, 302, 309, 310], "kd_eq": [18, 22, 27, 30, 153, 299, 302, 306, 309, 310], "kd_eqs_solv": 153, "kdd": [302, 309, 310], "kde": [24, 27, 149, 152, 158, 306], "kdvi": 221, "ke": 30, "keep": [3, 4, 11, 12, 14, 16, 24, 28, 32, 38, 43, 84, 88, 89, 92, 93, 96, 113, 124, 132, 153, 175, 191, 207, 210, 211, 212, 217, 228, 229, 231, 233, 237, 239, 242, 247, 274, 287, 292, 299, 304], "keep_domain": 210, "keep_only_fully_contract": 191, "kei": [11, 13, 14, 15, 16, 22, 23, 36, 37, 48, 50, 62, 65, 68, 77, 79, 80, 88, 89, 90, 93, 104, 117, 124, 127, 128, 136, 158, 183, 186, 191, 207, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 221, 233, 237, 238, 239, 241, 245, 256, 259, 260, 262, 293, 294, 297, 305], "kelleh": 259, "kelli": [113, 231], "kempf": 208, "kepler": [194, 265], "kept": [36, 90, 193, 259, 292], "ker": 208, "kern": 88, "kernel": [124, 208, 214, 216, 239], "ket": [130, 174, 179, 180, 181, 183, 185, 186, 189, 191], "ket_not": 189, "ketbas": [179, 180, 186, 189], "key1": 207, "key2": 207, "key2bound": 124, "key2ij": 124, "keyboard": 207, "keyboardinterrupt": 252, "keyfunc": 259, "keyword": [0, 3, 4, 12, 13, 14, 15, 25, 26, 37, 43, 68, 69, 70, 79, 80, 88, 89, 92, 93, 101, 103, 104, 105, 124, 128, 132, 136, 142, 144, 148, 153, 156, 185, 191, 205, 207, 209, 210, 211, 212, 214, 216, 217, 220, 221, 222, 228, 233, 234, 239, 246, 252, 253, 255, 257, 259, 260, 262, 270, 293], "kf": 55, "kfkljjhf5mmmktfrgpl": 89, "kg": [18, 196, 275, 299], "kid": 89, "kid_rsa_private_kei": 89, "kid_rsa_public_kei": 89, "kiev": 215, "kijml": 243, "kill": [208, 212, 252], "killable_index": [96, 191], "killed_modul": 208, "kilo": 197, "kilogram": [162, 194, 196, 198], "kilomet": [195, 197, 198], "kin_explicit_rh": [31, 158], "kind": [4, 5, 13, 15, 22, 26, 33, 40, 41, 42, 43, 68, 69, 90, 93, 96, 108, 115, 122, 136, 140, 153, 195, 209, 211, 212, 217, 222, 223, 229, 237, 238, 241, 259, 272, 274, 280, 287, 297], "kindiff": 30, "kindiffdict": [25, 30, 153, 302, 309, 310], "kinema": 158, "kinemat": [18, 21, 22, 24, 25, 27, 28, 30, 31, 34, 36, 152, 153, 158, 200, 203, 282, 300, 302, 304, 305, 306, 307, 309, 311], "kinet": [23, 55, 149, 153, 155], "kinetic_energi": [28, 30, 149, 155], "kinnei": [18, 131, 132, 134, 299], "kirpichev": 0, "kite": 104, "kk": 124, "kleen": 259, "klein": [71, 80], "km": [21, 25, 27, 30, 124, 128, 153, 197, 302, 306, 309, 310], "kn": [124, 136, 137, 138], "knew": [88, 297], "knife": 217, "knot": 96, "know": [3, 4, 5, 12, 13, 14, 15, 16, 18, 22, 28, 31, 35, 36, 41, 42, 43, 48, 55, 56, 57, 62, 64, 68, 71, 80, 88, 89, 92, 100, 105, 113, 115, 124, 128, 130, 185, 189, 193, 194, 196, 200, 207, 210, 217, 218, 220, 221, 231, 233, 237, 239, 240, 241, 255, 259, 260, 270, 286, 287, 289, 290, 291, 292, 295, 297], "knowabl": 41, "knowledg": [15, 87, 88, 89, 216, 237, 292, 295], "known": [4, 11, 12, 14, 15, 18, 27, 35, 41, 42, 43, 46, 55, 64, 68, 69, 70, 71, 74, 77, 79, 80, 88, 89, 92, 93, 96, 98, 101, 106, 113, 115, 116, 125, 128, 142, 144, 145, 147, 149, 155, 158, 194, 200, 210, 211, 212, 216, 217, 221, 224, 227, 229, 230, 231, 233, 236, 237, 238, 239, 241, 259, 260, 265, 272, 274, 297], "known_const": 221, "known_fcns_src1": 221, "known_fcns_src2": 221, "known_funct": 221, "known_functions_c89": 221, "known_functions_c99": 221, "known_typ": 221, "knuth": [72, 80, 214, 256], "koepf": [215, 223, 233], "koepf98": [215, 217], "kog": 259, "koshi": [93, 128], "kozen": [4, 215], "kozen89": [4, 214, 215], "kreher": 80, "kroneck": [93, 96, 190, 191, 206, 242, 247], "kronecker_delta": [96, 191], "kronecker_symbol": 93, "kroneckerdelta": [96, 120, 191, 221, 233], "kroneckerproduct": 221, "kroneckersimp": 233, "krypto": 89, "ksubset": 83, "kt": [89, 307], "kth": [124, 128], "ku": [13, 25, 221], "kulal": 0, "kumar": [0, 240], "kumaraswami": 241, "kumaraswamy_distribut": 241, "kummer": 216, "kurtosi": 241, "kutta": [15, 110], "kw": 252, "kw_arg": [72, 82, 191, 246, 247], "kwarg": [16, 63, 64, 65, 69, 79, 80, 87, 88, 89, 90, 94, 96, 98, 99, 101, 102, 103, 104, 105, 110, 113, 115, 119, 120, 121, 124, 126, 127, 128, 132, 142, 144, 150, 153, 155, 158, 160, 169, 171, 175, 176, 180, 182, 184, 185, 187, 188, 189, 200, 204, 205, 207, 210, 212, 217, 221, 223, 227, 228, 229, 233, 237, 238, 239, 241, 242, 243, 247, 252, 253, 255, 259, 262, 270, 306], "kwong": 215, "kx": 18, "ky": 46, "l": [4, 13, 16, 18, 22, 26, 27, 28, 29, 30, 31, 35, 36, 67, 68, 69, 70, 77, 79, 80, 87, 89, 93, 96, 99, 100, 101, 102, 103, 105, 106, 111, 113, 115, 117, 119, 120, 124, 128, 131, 132, 134, 136, 137, 144, 146, 148, 149, 152, 153, 154, 155, 156, 158, 159, 160, 163, 189, 192, 193, 194, 196, 206, 208, 210, 212, 214, 215, 221, 223, 224, 230, 231, 234, 237, 239, 241, 245, 246, 247, 248, 252, 254, 259, 275, 297, 299, 303, 304, 306, 307, 309, 310, 311], "l0": 214, "l1": [28, 89, 98, 100, 101, 152, 155, 212, 214, 217, 234, 241, 304], "l1_norm": [212, 217], "l2": [89, 100, 101, 152, 155, 177, 193, 212, 214, 241, 304], "l2_norm_squar": 212, "l3": [101, 214, 304], "l3_convfunc": 67, "l4": [101, 304], "l_": [13, 18, 115, 124, 206], "l_0": [93, 145, 247, 248], "l_1": [89, 93, 145, 206, 231, 247, 259], "l_2": 206, "l_3": 206, "l_a": 299, "l_arm": 299, "l_b": 28, "l_c": 299, "l_d": 299, "l_frame": 152, "l_i": [89, 206, 231], "l_m": [18, 132, 134, 259], "l_m_opt": [18, 132, 134, 299], "l_m_opt_bicep": 299, "l_m_opt_tricep": 299, "l_m_tild": [18, 132], "l_m_tilde_muscl": 134, "l_m_tilde_num": 18, "l_mt": 18, "l_n": [96, 115, 217], "l_p": 28, "l_t": [18, 89, 132], "l_t_slack": [18, 132, 134, 299], "l_t_slack_bicep": 299, "l_t_slack_tricep": 299, "l_t_tild": [18, 132], "l_t_tilde_num": 18, "l_u": 231, "l_v": 231, "la": [30, 79, 196, 299], "labahn": 215, "label": [4, 7, 18, 55, 68, 69, 82, 88, 98, 111, 115, 138, 140, 164, 171, 175, 180, 189, 191, 207, 221, 222, 224, 233, 246, 247, 296], "label_displac": 68, "label_posit": 68, "labeledtre": 82, "labelfunc": 221, "lack": [57, 69, 90, 92, 155, 221, 287], "lag": [27, 306, 311], "lag_eq": [27, 306], "lagrang": [23, 67, 88, 149, 151, 154, 158, 217, 234, 282, 305, 308], "lagranges_equ": 153, "lagrangesmethod": [26, 27, 148, 149, 153, 156, 158, 303, 306, 311], "lagrangian": [23, 26, 27, 67, 153, 155, 303, 306, 311], "laguerr": [115, 217, 221], "laguerre_poli": [96, 217], "laguerre_polynomi": 96, "laguerre_rul": 115, "laguerrel": [96, 221], "laguerrel3": 96, "laguerrepolynomi": 96, "laguna": 89, "lai": 68, "laid": [22, 68, 188], "laigl": 128, "lam": [31, 153, 154], "lam1": 26, "lam_f": [54, 260], "lam_op": 306, "lamar": 237, "lambda": [12, 15, 16, 22, 26, 27, 30, 31, 43, 46, 50, 54, 63, 64, 67, 69, 79, 80, 88, 89, 90, 93, 94, 115, 119, 120, 124, 127, 128, 130, 153, 176, 207, 210, 214, 216, 217, 221, 222, 229, 230, 233, 237, 239, 240, 241, 242, 250, 259, 260, 265, 267, 270, 286, 293, 299], "lambda_": 113, "lambda_c": [26, 113], "lambda_i": [200, 265, 267], "lambda_not": 130, "lambda_x": [200, 265, 267], "lambda_z": [200, 265, 267], "lambdaprint": 260, "lambdarepr": [69, 221, 260], "lambdastr": 260, "lambdifi": [14, 15, 18, 43, 54, 55, 69, 96, 221, 239, 253, 258, 284, 288, 299, 302], "lambert": [57, 94, 115, 218], "lambert_w_funct": 94, "lambertw": [94, 218, 221, 239, 240, 298], "lambidfi": 13, "lamda": [15, 120, 221, 229, 241, 293], "lame": 272, "lamina": 275, "lanczo": 224, "land": 89, "landau": [4, 215, 287], "landscap": 80, "langl": [70, 79, 130, 170, 206], "languag": [2, 5, 14, 15, 16, 21, 22, 30, 39, 43, 69, 94, 124, 130, 221, 226, 241, 253, 254, 289, 291, 293, 295, 297], "laplac": [46, 115, 124, 141, 142, 144, 241], "laplace_correspond": [46, 115], "laplace_distribut": 241, "laplace_initial_cond": [46, 115], "laplace_transform": [46, 115, 144], "laplacedistribut": 241, "laplacetransform": 115, "larg": [2, 3, 4, 7, 11, 12, 16, 18, 21, 27, 30, 32, 41, 48, 53, 79, 80, 88, 89, 98, 113, 115, 127, 128, 135, 154, 171, 196, 206, 210, 211, 212, 214, 217, 220, 221, 222, 228, 231, 233, 239, 241, 246, 253, 260, 262, 268, 286, 291, 297], "larger": [3, 5, 14, 15, 43, 53, 69, 79, 80, 87, 88, 89, 96, 113, 120, 124, 128, 210, 212, 218, 222, 228, 233, 239, 254, 256, 289, 297, 306, 310], "largest": [69, 80, 82, 88, 94, 96, 124, 127, 128, 171, 208, 212, 239, 259], "lark": 2, "larklatexpars": 130, "lasserr": 115, "last": [5, 11, 12, 13, 14, 16, 37, 38, 39, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 68, 69, 70, 78, 79, 80, 84, 87, 88, 89, 92, 98, 115, 118, 119, 120, 121, 124, 126, 127, 128, 130, 144, 158, 163, 195, 196, 206, 207, 208, 209, 210, 211, 212, 214, 217, 220, 221, 228, 229, 234, 237, 239, 240, 241, 242, 243, 247, 250, 252, 253, 254, 255, 257, 259, 260, 262, 287, 289, 292, 293], "last_index": 120, "lastli": [16, 31, 115, 137, 214, 237, 299], "lastnam": 9, "later": [3, 13, 14, 21, 25, 27, 30, 32, 35, 39, 69, 79, 113, 118, 124, 154, 155, 158, 165, 211, 214, 220, 221, 222, 231, 233, 237, 256, 269, 286, 287, 289, 291, 292, 297, 302, 306, 307], "latest": [2, 9, 12, 59, 68, 255, 257, 260], "latex": [0, 2, 4, 8, 12, 15, 32, 36, 43, 57, 59, 96, 116, 200, 205, 207, 212, 221, 291, 292, 299], "latex2sympi": 130, "latex_mod": [116, 205], "latex_print": [116, 205], "latex_repr": [197, 198], "latex_scalar": 265, "latex_set": 221, "latex_vect": 265, "latexmk": 8, "latexnam": 171, "latexparsingerror": 130, "latexprint": 43, "latin": 60, "latter": [13, 14, 38, 43, 69, 79, 88, 93, 96, 113, 128, 136, 208, 212, 216, 221, 231, 234, 247, 254, 259, 260, 289], "lattic": [91, 210, 234], "lattice_": 94, "latu": 98, "latus_rectum": 98, "lauer": 212, "laurent": [96, 212, 218, 237], "law": [15, 18, 23, 36, 68, 151, 194, 209, 241], "layer": [13, 144, 214, 260], "layout": 68, "lazard": [115, 214, 217], "lazi": [88, 120, 217], "lazili": [120, 227, 259], "lazo": 206, "lb": [69, 110, 256], "lbound": 69, "lc": [212, 214, 217, 299], "lceil": [113, 130], "lcim": 67, "lcm": [88, 128, 212, 214, 217, 221], "lcm_list": 217, "ld": [68, 299], "ldescent": 234, "ldl": [119, 124], "ldldecomposit": [119, 124], "ldlsolv": [119, 124], "ldot": [43, 51, 70, 78, 79, 87, 88, 89, 93, 96, 113, 128, 137, 196, 206, 208, 209, 212, 214, 216, 221, 224, 228, 231, 234, 239, 242, 297], "ldu": 120, "ldudecomposit": 120, "le": [41, 70, 84, 88, 96, 113, 124, 128, 130, 214, 221, 231, 239, 241, 299, 311], "lead": [13, 14, 15, 18, 36, 41, 42, 43, 48, 57, 87, 88, 94, 98, 115, 118, 124, 128, 146, 154, 175, 200, 209, 210, 212, 214, 216, 217, 218, 221, 228, 230, 233, 237, 240, 254, 257, 262, 290, 297], "leader": 128, "leading_expon": 78, "leading_expv": 212, "leading_monom": 212, "leading_term": 212, "leadterm": 88, "leadup": 128, "leaf": [15, 211, 221, 230, 292], "lean": [302, 309, 311], "learn": [2, 5, 8, 28, 36, 49, 55, 57, 124, 230, 240, 286, 289, 290, 291, 295], "least": [2, 3, 5, 7, 11, 12, 13, 37, 41, 55, 65, 67, 69, 79, 88, 94, 100, 112, 113, 115, 124, 128, 129, 153, 171, 185, 193, 195, 208, 209, 211, 212, 214, 216, 217, 228, 230, 233, 237, 239, 240, 241, 254, 297], "least_rot": 259, "leav": [11, 14, 15, 23, 41, 43, 54, 56, 69, 88, 115, 124, 128, 132, 151, 154, 175, 191, 210, 228, 256, 286, 292, 297], "lebesgu": 229, "leblond": 196, "lect1023big": 241, "lectur": [30, 215, 241], "lecture4_6up": 241, "led": 0, "leedham": 79, "left": [3, 5, 13, 18, 32, 33, 39, 41, 43, 46, 49, 50, 53, 61, 67, 69, 70, 79, 80, 84, 88, 89, 90, 93, 94, 96, 104, 105, 111, 113, 115, 116, 118, 124, 127, 128, 131, 132, 138, 144, 149, 158, 159, 163, 170, 175, 179, 180, 183, 188, 200, 206, 207, 208, 210, 217, 218, 219, 220, 221, 223, 224, 228, 229, 230, 231, 233, 237, 238, 239, 240, 241, 252, 253, 254, 256, 259, 272, 287, 291, 293, 297, 299], "left_eigenvect": 124, "left_hand_sid": 69, "left_open": 229, "left_support": 138, "leftmost": 191, "leftrightarrow": 84, "leftslash": 221, "leg": [104, 138], "legaci": [88, 115, 124, 241], "legacy_matrix": [13, 115], "legal": 193, "legend": [18, 30, 55, 207, 224], "legendr": [93, 115, 128, 217, 221, 234], "legendre_poli": [96, 217], "legendre_polynomi": 96, "legendre_rul": 115, "legendre_symbol": [13, 93, 128], "legendrep": [96, 221], "legendrep2": 96, "legendrepolynomi": 96, "legibl": 212, "legitim": 214, "legrang": 234, "lehmer": [80, 88], "lehmer_cod": 80, "lemaitr": 206, "lemma": [68, 79, 113, 209], "len": [67, 76, 77, 78, 79, 80, 84, 86, 88, 89, 93, 96, 103, 113, 118, 160, 164, 175, 185, 210, 217, 233, 237, 246, 259, 299, 306], "len1": 79, "len2": 79, "len3": 79, "len_i": [69, 221], "lenght": 136, "length": [4, 13, 21, 28, 36, 61, 69, 72, 78, 79, 80, 82, 86, 88, 89, 91, 93, 94, 96, 97, 101, 103, 104, 105, 118, 124, 127, 128, 132, 134, 136, 137, 138, 140, 148, 153, 156, 158, 159, 160, 164, 188, 193, 194, 195, 196, 200, 204, 216, 217, 221, 227, 231, 233, 237, 239, 241, 252, 253, 259, 261, 262, 265, 267, 275, 299, 303, 304, 306, 307], "lengthen": [3, 18, 134], "lengthi": 79, "lenic": [107, 109], "lens": 160, "lens_formula": 164, "lens_makers_formula": 164, "lenstra": [128, 210], "leq": [79, 87, 89, 93, 96, 113, 124, 128, 206, 214, 216, 227, 228, 234, 241], "lerch": 96, "lerch_transcend": 96, "lerchphi": [96, 221], "less": [4, 5, 11, 14, 15, 22, 39, 48, 51, 53, 61, 65, 69, 70, 71, 79, 80, 87, 88, 89, 92, 93, 94, 96, 102, 103, 104, 124, 128, 142, 144, 148, 158, 191, 210, 211, 212, 214, 216, 217, 230, 231, 233, 234, 237, 239, 240, 241, 252, 254, 302], "lesser": [80, 140, 217], "lessthan": [88, 221], "lester": 89, "let": [11, 12, 18, 22, 30, 35, 39, 41, 42, 43, 46, 67, 69, 79, 84, 88, 89, 98, 106, 111, 113, 117, 120, 124, 125, 128, 130, 132, 148, 149, 159, 196, 200, 208, 209, 210, 214, 216, 217, 218, 221, 228, 231, 233, 234, 237, 239, 240, 247, 250, 253, 257, 260, 270, 271, 275, 286, 289, 291, 292, 297], "lett": [80, 124], "letter": [5, 15, 16, 60, 81, 88, 89, 128, 130, 191, 210, 221, 259, 287, 289], "lev": 212, "level": [3, 4, 5, 7, 12, 13, 14, 15, 16, 21, 30, 32, 36, 41, 42, 50, 52, 69, 79, 86, 88, 94, 96, 115, 118, 124, 128, 131, 134, 186, 191, 196, 202, 207, 210, 211, 212, 219, 221, 230, 234, 240, 241, 245, 253, 254, 259, 292, 293, 295, 306], "levelt": 239, "lever": [299, 300], "lever_resist": 299, "leverag": [55, 69, 129, 221, 287], "levi": [90, 96, 241, 247], "levicivita": [96, 124], "levinson": [29, 153, 200, 265], "levydistribut": 241, "levyleblond77": 196, "lex": [88, 116, 205, 209, 211, 212, 214, 217, 218, 220, 221, 233], "lexic": [77, 171, 259], "lexicograph": [79, 80, 83, 84, 88, 214, 217, 259], "lexicographically_minimal_string_rot": 259, "lexograph": [116, 205], "lexord": [212, 217], "lfloor": [88, 94, 130, 212, 240, 241], "lfortran": [2, 130], "lfsr": 89, "lfsr_autocorrel": 89, "lfsr_connection_polynomi": 89, "lfsr_sequenc": 89, "lgamma": 221, "lh": [13, 37, 50, 55, 69, 78, 88, 131, 134, 219, 221, 237, 239, 240, 271], "li": [93, 96, 104, 115, 128, 155, 159, 191, 221, 275, 299], "liabl": [88, 118], "liao": 215, "liao95": [214, 215], "lib": 265, "liber": [21, 130, 291], "liberato": 206, "liberatodebrito82": 206, "libgtkmathview": 221, "librari": [0, 2, 3, 4, 12, 13, 14, 15, 21, 22, 30, 41, 43, 54, 58, 59, 69, 88, 89, 93, 113, 115, 116, 124, 129, 158, 195, 207, 211, 212, 241, 252, 253, 254, 259, 260, 286, 287, 289, 290, 291], "library_dir": 253, "librsvg": 8, "librsvg2": 8, "libtcc": 254, "licens": [0, 2, 45, 291], "lie": [18, 46, 48, 80, 90, 102, 103, 104, 156, 159, 217, 241, 276, 283, 299], "lie_algebra": 117, "lie_group": 237, "lie_heuristic_abaco1_product": 237, "lie_heuristic_abaco1_simpl": 237, "lie_heuristic_abaco2_similar": 237, "lie_heuristic_abaco2_unique_gener": 237, "lie_heuristic_abaco2_unique_unknown": 237, "lie_heuristic_bivari": 237, "lie_heuristic_chi": 237, "lie_heuristic_function_sum": 237, "lie_heuristic_linear": 237, "liealgebra": [2, 117], "liederiv": 90, "liegroup": 237, "lift": [18, 69, 84, 94, 96, 113, 212, 214, 217], "light": [146, 163, 195, 196, 205, 208], "lighten": 208, "lightli": 3, "lightweight": [69, 216, 291], "like": [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 21, 22, 24, 27, 30, 31, 32, 33, 35, 38, 41, 42, 43, 45, 53, 55, 56, 57, 58, 59, 69, 70, 71, 73, 79, 80, 87, 88, 89, 92, 93, 94, 96, 98, 108, 111, 115, 116, 118, 120, 121, 122, 124, 128, 129, 130, 134, 140, 144, 152, 156, 159, 173, 175, 185, 186, 189, 190, 191, 195, 196, 200, 204, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 219, 220, 221, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 247, 248, 250, 252, 253, 254, 255, 259, 260, 262, 269, 270, 272, 274, 286, 287, 289, 290, 291, 292, 293, 297, 299, 302], "likelihood": 128, "likewis": [4, 41, 68, 136, 304, 306], "likin": [29, 34, 203], "likins1973": [28, 34, 203], "lim": [88, 130, 228, 287], "lim_": [89, 94, 96, 113, 115, 228, 287, 291], "limit": [1, 3, 13, 14, 16, 23, 28, 46, 52, 53, 57, 59, 65, 67, 69, 87, 88, 90, 92, 93, 94, 96, 97, 100, 108, 110, 115, 116, 118, 124, 128, 130, 142, 180, 186, 189, 205, 207, 212, 214, 217, 218, 221, 224, 225, 227, 229, 233, 234, 236, 237, 238, 239, 241, 246, 253, 256, 259, 260, 262, 264, 265, 275, 277, 283, 288, 289, 291, 293, 301], "limit_denomin": 88, "limit_seq": [226, 228], "limitinf": 228, "limiting_distribut": 241, "limits_": [88, 130, 206, 223, 291], "limitseq": 226, "limsup_": 228, "linalg": [53, 54, 69, 299], "lincomb": 216, "line": [3, 4, 9, 11, 12, 13, 14, 15, 16, 18, 22, 33, 35, 39, 41, 59, 68, 69, 71, 79, 80, 84, 89, 98, 99, 100, 102, 103, 104, 105, 110, 113, 115, 116, 117, 124, 128, 134, 136, 138, 140, 142, 145, 148, 155, 156, 159, 171, 200, 205, 206, 207, 221, 224, 231, 233, 237, 241, 242, 250, 252, 253, 254, 257, 260, 262, 272, 275, 283, 289, 299, 302, 310], "line2d": [98, 101, 104], "line2dbaseseri": [13, 207], "line3d": [101, 102, 103], "line3dbaseseri": 207, "line_break": 221, "line_color": [5, 207, 224], "line_integr": 115, "linear": [18, 23, 25, 29, 30, 32, 37, 43, 49, 51, 53, 54, 57, 68, 69, 80, 87, 88, 89, 91, 92, 96, 101, 111, 113, 115, 117, 120, 122, 131, 134, 136, 141, 144, 148, 149, 151, 152, 153, 155, 156, 163, 185, 188, 189, 204, 207, 208, 210, 212, 214, 216, 217, 219, 227, 229, 231, 234, 237, 238, 240, 259, 280, 282, 298, 299, 302, 303, 306, 307], "linear_coeffici": 237, "linear_coefficients_integr": 237, "linear_differential_equ": 237, "linear_eq_to_matrix": [53, 237, 239, 240, 304], "linear_momentum": [28, 30, 149, 155], "linear_ode_to_matrix": 237, "linear_pathwai": [148, 156], "linear_polar": 163, "linear_solv": [153, 154], "linear_stiff": 148, "linearcoeffici": 237, "lineardamp": [148, 303, 307], "linearent": [4, 98, 101, 102, 103, 104], "linearentity2d": 101, "linearentity3d": [101, 102], "linearli": [65, 69, 96, 112, 124, 153, 210, 214, 237, 239, 247], "linearpathwai": [18, 134, 148, 156, 299, 303, 307], "linearspr": [148, 307], "linecollect": [13, 207], "lineover1drangeseri": [142, 207], "linestyl": 13, "link": [3, 4, 5, 7, 11, 15, 16, 23, 24, 49, 53, 69, 89, 98, 104, 115, 145, 148, 152, 253, 256, 257, 295, 304], "link1": 304, "link2": 304, "link3": 304, "link4": 304, "linkag": [301, 305], "linkcod": 5, "linodesolv": 237, "linodesolve_typ": 237, "linprog": [50, 239], "linsolv": [30, 153, 219, 239, 240, 298], "linspac": [14, 18, 22, 30, 55, 69, 111, 129, 299], "linux": [8, 9, 11, 59], "linz": 265, "liouvil": 237, "liouville_integr": 237, "liouvillian": 237, "lip": 241, "list": [0, 2, 3, 4, 5, 9, 11, 12, 14, 17, 18, 24, 25, 26, 30, 31, 36, 41, 51, 52, 53, 54, 55, 56, 57, 59, 61, 64, 67, 68, 69, 70, 71, 72, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 116, 117, 118, 120, 123, 124, 127, 128, 129, 130, 136, 142, 144, 148, 149, 152, 153, 156, 158, 164, 175, 177, 180, 181, 185, 186, 188, 189, 191, 193, 200, 204, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 227, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 286, 290, 291, 293, 296, 297, 298, 299, 301, 302, 306, 309], "list2numpi": 124, "list_can_dim": 193, "list_free_indic": 84, "list_of_poli": 111, "list_of_second_moments_of_area": 98, "list_of_trigonometric_ident": 230, "list_to_frac": 297, "list_visitor": 256, "listcoeff": 212, "listmonom": 212, "listofsolut": 237, "listterm": 212, "liter": [4, 12, 14, 16, 43, 69, 78, 88, 116, 118, 130, 191, 198, 233], "literal_dp": 69, "literal_sp": 69, "literatur": [4, 15, 113, 213, 283], "litter": 88, "littl": [12, 41, 43, 68, 80, 98, 124, 128, 129, 196, 210, 215, 217, 221, 231, 233, 241, 256, 269, 302], "liu": 215, "live": [7, 30, 60, 70, 216, 234], "livehtml": 8, "ll": [8, 18, 35, 36, 68, 86, 124, 132, 134, 148, 156, 250, 299, 306], "ll1": 100, "ll2": 100, "ll3": 100, "ll4": 100, "ll5": 100, "ll6": 100, "lll": 210, "lll_transform": 210, "llvm": 2, "llvm_callabl": 2, "llvmjitcod": 2, "llvmlite": 2, "lm": [26, 27, 214, 217, 303, 306], "lmm": 234, "lmn": 69, "lmodern": 8, "ln": [88, 94, 115, 130, 221, 223, 237, 241, 297], "ln_notat": 221, "lnc": [115, 215, 239], "lo": 239, "load": [8, 13, 19, 23, 31, 69, 88, 116, 136, 137, 138, 140, 148, 149, 151, 153, 156, 158, 171, 205, 282, 299, 303, 307], "load_vector": 136, "loadbas": 158, "loads_posit": 138, "loan": 124, "lobatto": 115, "loc": 136, "local": [2, 11, 12, 45, 60, 62, 63, 64, 88, 90, 113, 130, 202, 208, 214, 239, 252, 299, 309, 311], "local_dict": 130, "local_var": 254, "localhost": 8, "localis": 208, "locat": [5, 11, 12, 13, 24, 27, 28, 31, 33, 71, 80, 88, 102, 124, 128, 136, 137, 140, 152, 155, 156, 158, 159, 204, 216, 217, 221, 233, 241, 255, 263, 265, 269, 271, 274, 299, 303, 306], "locate_new": [265, 268, 269, 270, 271, 272], "locatenew": [13, 27, 28, 30, 31, 33, 35, 149, 155, 201, 204, 302, 303, 304, 306, 309, 310, 311], "location_matrix": 241, "lock": 61, "log": [4, 5, 9, 11, 12, 16, 18, 43, 59, 61, 67, 69, 79, 87, 88, 92, 93, 94, 96, 106, 110, 112, 113, 115, 124, 128, 130, 132, 207, 212, 221, 223, 228, 231, 233, 237, 240, 241, 248, 287, 297, 298], "log1": 9, "log10": [69, 221], "log1p": [69, 221], "log1p_opt": 69, "log2": [69, 96, 221], "log2_opt": 69, "log2const_opt": 69, "log_b": 240, "log_warn": 221, "logarithm": [5, 16, 61, 67, 69, 88, 89, 94, 113, 115, 124, 128, 212, 214, 218, 221, 231, 233, 240, 241, 288], "logarithmic_distribut": 241, "logarithmic_integr": 96, "logarithmically_concave_funct": 67, "logarithmically_convex_funct": 67, "logarithmicdistribut": 241, "logarithmicintegr": 96, "logcombin": [233, 237, 240], "loggamma": [4, 5, 96, 221], "loggammafunct": 96, "logger": 130, "logic": [12, 13, 14, 15, 41, 43, 62, 63, 64, 65, 68, 88, 90, 113, 115, 128, 183, 185, 186, 190, 207, 221, 223, 229, 237, 241, 259, 289, 290, 291, 293], "logint": 221, "logintegr": 221, "logist": 241, "logistic_distribut": 241, "logisticdistribut": 241, "loglogist": 241, "lognorm": 241, "lognormaldistribut": 241, "logo": 44, "logx": [88, 228], "lomax": 241, "lomax_distribut": 241, "london": [215, 234], "long": [0, 4, 5, 11, 12, 14, 28, 48, 57, 69, 80, 87, 88, 89, 91, 101, 113, 115, 116, 118, 124, 128, 130, 135, 136, 137, 205, 217, 218, 221, 230, 231, 239, 241, 253, 260, 262, 268, 289, 292, 302], "long_frac_ratio": 221, "longer": [3, 4, 11, 12, 16, 27, 40, 88, 98, 128, 209, 210, 214, 221, 230, 233, 259, 262, 289, 297, 306], "longest": [159, 259], "longrightarrow": 120, "look": [3, 4, 5, 7, 9, 11, 12, 13, 16, 22, 23, 41, 42, 43, 60, 68, 69, 79, 88, 93, 94, 96, 109, 124, 128, 151, 153, 175, 185, 186, 189, 204, 207, 211, 212, 216, 221, 223, 224, 228, 231, 233, 234, 237, 238, 243, 252, 256, 260, 262, 270, 287, 292, 295, 296, 302], "looking_for": 69, "lookup": [115, 124, 128, 231], "lookup_view": 263, "loop": [14, 46, 48, 51, 55, 68, 69, 128, 144, 200, 207, 210, 218, 221, 237, 256, 259, 260, 292, 304], "looping_end": 68, "looping_start": 68, "loos": [69, 88], "lopen": [67, 88, 229, 236, 241], "lorentz": 247, "lorentzindex": 145, "lorenz": 55, "lose": [14, 16, 208, 210], "loss": [14, 15, 69, 113, 191, 253, 271], "lost": [14, 88], "lot": [7, 11, 13, 14, 22, 30, 79, 88, 106, 113, 115, 124, 207, 210, 217, 220, 224, 234, 240, 252, 297], "loui": 223, "lovasz": 210, "love": 7, "lov\u00e1sz": 210, "low": [16, 41, 42, 69, 88, 89, 96, 128, 153, 211, 214, 219, 221, 233, 253, 254, 259], "low_index_subgroup": 70, "lower": [4, 15, 41, 50, 65, 67, 69, 79, 80, 87, 88, 90, 96, 97, 99, 104, 105, 115, 119, 120, 124, 136, 142, 147, 152, 191, 204, 206, 208, 210, 212, 214, 217, 221, 230, 231, 233, 237, 246, 247, 256, 265, 287, 295, 299], "lower_bob": 152, "lower_bound": [97, 98, 101, 104], "lower_central_seri": 79, "lower_incomplete_gamma_funct": 96, "lower_limit": [142, 287], "lower_polygon": 104, "lower_seg": 104, "lower_triangular": [65, 124], "lower_triangular_solv": [119, 124], "lowercas": [15, 16, 61, 130, 237, 252, 287], "lowergamma": [4, 96, 241], "lowertriangularhandl": 65, "lowertriangularmatrix": 65, "lowertriangularpred": 65, "lowest": [39, 69, 79, 84, 128, 138, 208, 210, 223, 240], "lpart": 256, "lpathwai": 18, "lpmax": 239, "lpmin": 239, "lr": 208, "lrh": 311, "ls1": 85, "ls2": 85, "lseri": 88, "lsoda": 21, "lst": 252, "lt": [88, 217, 221, 262], "ltd": 87, "lti": [46, 141, 142], "ltrim": 217, "lu": [53, 120, 124, 153, 154, 210, 215], "lu_": 124, "lu_solv": [53, 124, 210], "luca": [93, 128, 221, 227], "lucas_numb": 93, "lucas_pseudoprim": 128, "lucasl": 221, "lucasnumb": 93, "lucaspseudoprim": 128, "lucien": 70, "lucki": 230, "lucombin": 124, "ludecomposit": [119, 120, 124, 210, 293], "ludecomposition_simpl": [124, 293], "ludecompositionff": 124, "luke": [4, 96, 113, 231], "luke1969": [113, 231], "lukpank": 11, "luschni": [93, 96, 217], "lusolv": [27, 31, 53, 119, 124, 149, 153, 154, 239, 293, 304], "lvert": 113, "lvovich": 5, "ly": [104, 124, 212], "l\u00e9vy": 196, "m": [0, 8, 9, 11, 12, 13, 16, 18, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 39, 41, 43, 46, 59, 61, 65, 69, 70, 76, 77, 79, 80, 84, 87, 88, 89, 90, 91, 93, 96, 98, 100, 104, 105, 113, 115, 117, 119, 120, 121, 123, 124, 125, 127, 128, 130, 131, 132, 134, 136, 137, 140, 144, 146, 147, 149, 151, 153, 154, 155, 158, 160, 162, 167, 174, 188, 189, 192, 194, 196, 206, 208, 209, 210, 212, 214, 215, 216, 217, 218, 221, 222, 223, 224, 226, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 246, 247, 253, 254, 256, 259, 261, 265, 268, 270, 274, 275, 287, 293, 296, 297, 298, 299, 303, 306, 309, 310, 311], "m0": [136, 206, 247], "m1": [124, 128, 136, 137, 162, 170, 188, 190, 194, 234, 237, 242, 247], "m11": [39, 241], "m12": [39, 241], "m13": 39, "m15": 136, "m172": 89, "m2": [124, 128, 136, 137, 155, 162, 170, 188, 190, 194, 216, 234, 237, 242, 247], "m20": 71, "m21": [39, 241], "m22": [39, 241], "m23": 39, "m3": [124, 170, 234, 242], "m31": 39, "m32": 39, "m33": [39, 128], "m4": 234, "m4nzdu": 206, "m53": 128, "m_": [18, 26, 65, 132, 134, 206, 214, 243], "m_0": [136, 214, 234], "m_1": [93, 144, 170, 188, 206, 234], "m_15": 136, "m_2": [31, 93, 158, 170, 188, 206], "m_3": [31, 158, 170, 206], "m_a": 299, "m_c": 299, "m_d": [26, 158, 299], "m_frac": 210, "m_i": [93, 128, 206, 214], "m_ik": [93, 128], "m_k": 93, "m_lll": 210, "m_m": 158, "m_n": 214, "m_op": 27, "m_pa": 132, "m_primit": 210, "m_sqrt2": 221, "m_sqrt2l": 221, "m_tf": 144, "ma": [80, 87, 299, 307], "ma217": 241, "macaulai": 96, "macdonald": 215, "machin": [2, 4, 7, 8, 9, 222, 233, 237, 286], "machineri": [4, 88, 216, 260], "maclaurin": [87, 92], "maco": 9, "made": [3, 5, 11, 12, 13, 14, 15, 16, 18, 22, 24, 27, 30, 36, 41, 43, 56, 82, 84, 88, 89, 94, 97, 98, 101, 104, 105, 115, 118, 124, 128, 130, 148, 156, 208, 210, 212, 214, 216, 217, 221, 222, 228, 229, 230, 233, 237, 239, 240, 241, 254, 259, 262, 274, 292, 299], "mag": 30, "magazin": 124, "magic": [80, 233, 252, 289], "magnet": [33, 146, 162, 274], "magnif": 164, "magnitud": [18, 30, 33, 36, 46, 61, 69, 87, 88, 92, 96, 129, 136, 137, 138, 140, 142, 148, 155, 156, 189, 198, 200, 207, 265, 272, 274, 299, 306], "mai": [2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 23, 27, 33, 35, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 65, 67, 68, 69, 70, 71, 79, 80, 81, 87, 88, 89, 90, 92, 93, 94, 96, 98, 100, 101, 103, 104, 105, 113, 115, 116, 118, 119, 123, 124, 125, 127, 128, 130, 140, 150, 151, 153, 154, 158, 177, 186, 191, 192, 193, 195, 198, 200, 204, 207, 208, 209, 210, 212, 214, 216, 220, 221, 222, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 247, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 272, 274, 286, 287, 289, 292, 293, 297, 298, 306], "mail": [3, 9, 11, 13, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 221, 290, 301], "mailmap_check": 11, "mailoo": 11, "main": [2, 4, 5, 7, 9, 11, 13, 16, 22, 36, 54, 64, 65, 69, 88, 94, 113, 124, 127, 189, 205, 207, 208, 210, 212, 214, 221, 228, 237, 240, 246, 253, 297, 298, 310], "mainli": [79, 96, 124, 129, 196, 205, 214, 231, 234, 237], "maintain": [7, 14, 15, 16, 88, 89, 128, 137, 221, 229, 230, 237, 240, 256], "mainten": [3, 64], "major": [2, 3, 5, 8, 13, 21, 48, 57, 98, 246, 291, 297], "majorli": 88, "make": [2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16, 18, 22, 25, 27, 28, 30, 32, 35, 37, 39, 41, 42, 43, 45, 48, 53, 54, 56, 60, 63, 64, 65, 67, 69, 70, 78, 79, 87, 88, 89, 90, 91, 92, 93, 94, 96, 100, 104, 115, 116, 118, 124, 127, 128, 129, 130, 134, 136, 137, 138, 140, 153, 158, 171, 188, 193, 205, 207, 210, 211, 212, 214, 216, 217, 218, 220, 221, 224, 229, 230, 231, 233, 237, 238, 239, 240, 245, 247, 250, 252, 253, 254, 255, 257, 259, 260, 269, 274, 275, 289, 290, 291, 292, 293, 297, 302, 304, 309, 310], "make_mod_elt": 216, "make_monic_over_integers_by_scaling_root": 217, "make_perm": 79, "make_routin": [69, 254], "makefil": 8, "man": [115, 215], "man93": [215, 217], "manag": [3, 7, 9, 12, 18, 59, 63, 64, 130, 149, 171, 214, 233, 247, 250, 252, 257, 299], "mandatori": [69, 221, 253], "mangl": 221, "mani": [2, 3, 4, 7, 12, 14, 15, 16, 18, 22, 23, 26, 27, 30, 36, 37, 39, 41, 42, 43, 48, 49, 50, 52, 54, 55, 57, 59, 67, 68, 69, 70, 76, 79, 84, 88, 89, 90, 92, 93, 94, 96, 100, 113, 115, 118, 124, 128, 129, 130, 133, 151, 153, 154, 175, 191, 199, 208, 210, 211, 212, 214, 216, 217, 225, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 245, 254, 259, 286, 287, 289, 290, 291, 292, 296, 297, 298, 301, 302], "manifest": [41, 209], "manifesto": 93, "manifold": [13, 90], "manipul": [2, 15, 22, 23, 28, 35, 38, 39, 41, 48, 51, 53, 55, 68, 69, 70, 79, 88, 94, 96, 113, 128, 129, 151, 189, 210, 211, 212, 215, 220, 221, 223, 230, 233, 244, 259, 276, 282, 283, 286, 287, 288, 289, 290, 291, 293, 296, 297], "manner": [12, 27, 33, 72, 89, 96, 189, 234, 237, 242, 259, 274], "mantissa": 69, "manual": [2, 3, 5, 8, 12, 13, 14, 15, 18, 22, 27, 31, 43, 51, 69, 70, 79, 92, 98, 115, 116, 130, 144, 155, 158, 207, 214, 221, 237, 239, 240, 255, 287, 297, 304], "manualintegr": 115, "manuel": [115, 226], "manufactur": 129, "manuscript": [89, 115], "manwright94": [215, 217], "map": [15, 36, 41, 43, 67, 68, 69, 71, 78, 79, 80, 88, 89, 93, 100, 104, 111, 113, 115, 118, 124, 128, 131, 142, 153, 169, 180, 181, 186, 200, 207, 208, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 228, 233, 234, 237, 238, 239, 240, 241, 245, 246, 253, 256, 259, 260, 262, 265, 306], "mapl": [16, 115, 210, 237, 291], "maple_cod": 221, "maplecodeprint": 221, "maplesoft": 237, "mapsto": [87, 113, 124, 216], "marbl": 241, "march": 88, "marcum": 96, "marcum_q": 96, "marcumq": 96, "margin": [128, 144, 207, 241], "marginal_distribut": 241, "marichev": [113, 231], "mark": [3, 4, 5, 142, 164, 176, 234, 250, 255, 257], "markdown": [3, 11, 15], "marker": [142, 207], "markers": 142, "marko": 87, "markov": 241, "markov_chain": 241, "markup": [3, 11, 221], "mascheroni": [88, 96], "mask": [68, 221], "mass": [13, 18, 21, 22, 23, 24, 25, 26, 30, 31, 33, 35, 46, 105, 135, 146, 147, 149, 152, 153, 155, 158, 167, 192, 194, 195, 196, 252, 274, 299, 302, 303, 304, 306, 307, 309, 311], "mass_cent": 304, "mass_matrix": [25, 26, 31, 149, 153, 158, 299, 302, 309, 310], "mass_matrix_ful": [22, 25, 26, 149, 153, 158, 307], "mass_matrix_kin": 153, "masscent": [13, 24, 28, 30, 149, 152, 155, 158, 299, 304, 307], "masscenter_vel": 149, "massei": 89, "massiv": 303, "massless": 303, "master": [4, 5, 7, 11, 12, 59, 115, 252], "mat": [69, 120, 160, 185, 221], "mat_1": 69, "mat_2": 69, "mat_a": 144, "mat_b": 144, "mat_c": 144, "mat_delim": 221, "mat_str": 221, "mat_symbol_styl": 221, "matadd": [88, 120, 221], "match": [2, 3, 4, 11, 12, 13, 14, 16, 32, 41, 43, 55, 79, 80, 87, 88, 96, 101, 113, 115, 124, 152, 158, 167, 192, 200, 210, 217, 233, 234, 237, 238, 239, 241, 250, 252, 254, 259, 260, 271, 287, 299], "matchdict": 237, "matching_hint": 237, "materi": [0, 45, 136, 162, 295], "mateusz": 0, "math": [2, 4, 8, 12, 14, 22, 23, 33, 43, 57, 61, 65, 68, 70, 79, 88, 93, 96, 98, 115, 124, 128, 129, 140, 151, 207, 210, 212, 214, 215, 220, 221, 237, 238, 241, 253, 254, 260, 270, 271, 272, 273, 274, 286, 287, 291], "math24": 237, "math56a_s08_notes015": 241, "math56as08": 241, "math_macro": 221, "mathbb": [27, 41, 43, 51, 65, 70, 71, 79, 87, 88, 89, 94, 96, 113, 124, 206, 208, 209, 211, 212, 214, 216, 217, 220, 228, 229, 231, 234, 240, 241, 297], "mathbf": [18, 23, 25, 26, 28, 32, 33, 35, 36, 61, 120, 151, 153, 159, 196, 200, 205, 221, 242, 269, 270, 272, 274, 275, 299], "mathc": 241, "mathcal": [28, 93, 94, 113, 144, 188, 206, 217, 229], "mathcin": 69, "mathcircl": 93, "mathemat": [2, 3, 5, 12, 13, 14, 15, 18, 21, 29, 33, 35, 36, 38, 41, 43, 50, 52, 54, 55, 57, 58, 61, 63, 64, 67, 69, 70, 74, 78, 80, 87, 88, 89, 90, 93, 94, 95, 96, 101, 102, 113, 115, 118, 120, 124, 128, 129, 130, 144, 145, 196, 208, 209, 211, 212, 215, 220, 221, 229, 230, 234, 236, 237, 240, 241, 246, 253, 254, 260, 265, 269, 272, 274, 286, 287, 289, 290, 291, 292, 295, 297, 299, 305, 306], "mathematica": [2, 16, 69, 80, 130, 291, 293], "mathematica_cod": [69, 221], "mathematical_express": 5, "mathematical_singular": 67, "mathematician": [234, 240], "mathfrak": 216, "mathieu": 221, "mathieu_funct": 96, "mathieuandspheroidalfunct": 96, "mathieubas": 96, "mathieuc": [96, 221], "mathieucprim": [96, 221], "mathieufunct": 96, "mathieusprim": [96, 221], "mathit": 130, "mathjax": [2, 5, 116, 205, 296], "mathml": 221, "mathml2": 221, "mathml_presentation_repr": 198, "mathml_tag": 221, "mathmlcontentprint": 221, "mathmlpresentationprint": 221, "mathmlprinterbas": 221, "mathrm": [2, 4, 59, 78, 87, 88, 89, 96, 113, 115, 212, 214, 221, 229, 231, 237, 240, 241, 287, 291], "mathtt": 221, "mathwav": 241, "mathwork": [124, 142, 241, 293], "mathworld": [4, 15, 65, 81, 82, 88, 89, 91, 93, 94, 96, 98, 104, 115, 124, 128, 215, 224, 229, 234, 241, 259], "matin_opt": 69, "matinv_opt": 69, "matlab": [21, 30, 69, 254, 293], "matlplotlib": 30, "matmul": [88, 120, 210], "matplotlib": [2, 4, 5, 8, 13, 14, 18, 30, 55, 59, 111, 116, 142, 171, 205, 207, 296, 299], "matplotlibbackend": [13, 207], "matpow": [120, 221], "matric": [2, 4, 15, 22, 27, 30, 36, 40, 41, 65, 69, 88, 89, 115, 123, 125, 127, 130, 144, 152, 153, 154, 160, 163, 164, 166, 174, 175, 185, 190, 200, 206, 210, 216, 221, 222, 229, 231, 233, 234, 237, 239, 240, 242, 254, 255, 282, 288, 290, 291, 306], "matrix": [14, 15, 18, 22, 24, 25, 26, 28, 30, 31, 32, 36, 38, 39, 41, 46, 49, 54, 56, 61, 69, 77, 80, 88, 89, 90, 96, 103, 113, 115, 117, 119, 121, 122, 126, 127, 129, 130, 131, 134, 144, 145, 147, 149, 152, 153, 154, 155, 158, 160, 163, 164, 166, 174, 175, 180, 185, 186, 188, 190, 191, 193, 196, 200, 206, 208, 210, 214, 216, 219, 221, 222, 229, 231, 233, 234, 237, 239, 240, 242, 243, 245, 246, 247, 248, 253, 254, 259, 260, 262, 265, 267, 268, 270, 274, 280, 288, 291, 292, 297, 298, 299, 302, 304, 306, 307, 309, 310, 311], "matrix1": 210, "matrix2numpi": 124, "matrix_differential_equ": 237, "matrix_exp": 237, "matrix_exp_jordan_form": 237, "matrix_exponenti": 237, "matrix_fglm": 214, "matrix_form": 117, "matrix_gamma_distribut": 241, "matrix_multiply_elementwis": 124, "matrix_nod": 69, "matrix_normal_distribut": 241, "matrix_rep": 191, "matrix_tensor_product": 190, "matrix_to_dens": 185, "matrix_to_qubit": 185, "matrix_to_vector": 268, "matrixarithmet": 13, "matrixbas": [4, 13, 53, 119, 120, 123, 124, 153, 154, 210], "matrixcalculu": 13, "matrixcommon": 13, "matrixdeprec": 13, "matrixdetermin": 13, "matrixeigen": 13, "matrixel": [13, 69], "matrixerror": 124, "matrixexpr": [15, 43, 120, 121, 123], "matrixgamma": 241, "matrixi": 124, "matrixkind": [15, 38, 88, 123, 229], "matrixnorm": 241, "matrixoper": 13, "matrixpermut": 120, "matrixproperti": 13, "matrixreduct": 13, "matrixrequir": 13, "matrixset": [120, 229], "matrixshap": 13, "matrixsolv": [69, 221], "matrixspeci": 13, "matrixsubspac": 13, "matrixsymbol": [13, 38, 41, 53, 65, 66, 69, 88, 120, 123, 124, 221, 241, 243], "matt": 177, "matter": [12, 32, 43, 67, 77, 80, 87, 88, 93, 113, 115, 228, 259, 291, 292], "matthew": 0, "matur": [40, 41, 239, 240], "matvec": 253, "max": [13, 18, 69, 79, 80, 88, 94, 96, 98, 124, 128, 130, 134, 136, 206, 207, 214, 216, 217, 221, 228, 230, 231, 260], "max_bending_mo": 136, "max_bmoment": 136, "max_coset": 70, "max_curv": 128, "max_deflect": 136, "max_degre": [115, 217], "max_denomin": 88, "max_div": 79, "max_expon": 69, "max_it": 233, "max_len": 233, "max_norm": [212, 217], "max_ord": 69, "max_shear_forc": 136, "max_stack_s": 70, "max_step": 128, "max_term": 233, "max_tri": [212, 216, 217], "max_wir": 171, "maxdepth": 221, "maxim": [12, 18, 79, 89, 117, 134, 208, 212, 216, 228, 230], "maxima": [2, 52, 130, 240], "maximal_fiber_veloc": [18, 134], "maximal_ord": [212, 216], "maximum": [13, 14, 16, 18, 52, 53, 67, 69, 70, 79, 80, 88, 94, 115, 124, 128, 132, 134, 136, 188, 196, 207, 212, 214, 217, 221, 228, 229, 233, 234, 237, 239, 240, 241, 256, 259, 302], "maxn": [88, 92, 124], "maxprec": 88, "maxsiz": 88, "maxstep": 217, "maxterm": 118, "maxtriesexcept": 216, "maxwel": 241, "maxwell_distribut": 241, "maxwelldistribut": 241, "mayavi": 13, "mayb": [8, 12, 42, 50], "mayor": 163, "mb": [30, 155, 307], "mbox": 68, "mc": [89, 299, 304, 307], "mccluskei": 118, "mccluskey_algorithm": 118, "mcgraw": [29, 34, 96, 115, 153, 200, 203, 265], "mcii": 241, "mcode": 221, "mcodeprint": 221, "mcydwshkogamkzcelyfgayr": 89, "md": [3, 5, 12, 250, 257, 299], "md5": 262, "mdarg": 88, "mdft": 147, "me": [18, 22, 30, 89, 200, 221, 243, 299, 303], "mead": 89, "mean": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 24, 35, 41, 42, 43, 48, 56, 65, 70, 80, 87, 88, 89, 90, 106, 113, 115, 116, 118, 121, 123, 124, 128, 136, 148, 191, 193, 196, 200, 205, 207, 208, 209, 211, 214, 216, 220, 221, 231, 233, 234, 236, 237, 239, 240, 241, 242, 243, 245, 246, 252, 259, 270, 286, 287, 289, 291, 292, 293, 297, 298], "meaning": [41, 62, 64, 68, 89], "meaningfulli": 208, "meaningless": 92, "meant": [4, 5, 12, 13, 16, 22, 30, 41, 43, 69, 88, 96, 101, 115, 128, 207, 212, 229, 233, 238, 243, 270, 292], "meanwhil": 216, "measur": [16, 21, 28, 32, 33, 36, 61, 94, 96, 104, 119, 171, 180, 185, 193, 196, 198, 200, 204, 217, 229, 230, 233, 241, 264, 265, 268, 269, 271, 272, 274, 299], "measure_al": 185, "measure_all_oneshot": 185, "measure_parti": 185, "measure_partial_oneshot": 185, "meat": 69, "mechan": [2, 17, 18, 19, 20, 22, 32, 34, 43, 47, 88, 111, 115, 124, 134, 136, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 173, 177, 180, 186, 188, 189, 190, 193, 200, 203, 206, 282, 299, 301, 302, 303, 304, 306, 307, 309, 310, 311], "mechanicalc": 104, "mechanics_print": [24, 25, 26, 158, 302, 304, 309, 310, 311], "media": [30, 164], "medial": 104, "median": [104, 241], "mediterranean": 208, "medium": [8, 43, 160, 161, 164, 165, 175, 214, 282], "medium1": 164, "medium2": 164, "meet": [41, 89, 228], "meetmeonmondai": 89, "meetmeonmondayat8am": 89, "meijaard": 29, "meijaard2007": [29, 302], "meijer": [96, 106, 114, 115, 277, 287, 297], "meijer_g": 96, "meijerg": [96, 107, 113, 115, 221, 241, 297], "meijerint": [107, 109, 113, 115], "meijerint_definit": 113, "meijerint_indefinit": 113, "meijerint_invers": 113, "mein": 259, "mellin": [96, 115], "mellin_transform": 115, "mellintransform": 115, "member": [0, 4, 13, 41, 48, 68, 77, 79, 89, 111, 134, 138, 140, 208, 229, 246], "member_1": 140, "member_2": 140, "member_3": 140, "member_4": 140, "member_5": 140, "member_length": 140, "membership": [52, 86, 216, 229], "memo": 261, "memoiz": [256, 258, 284], "memoize_properti": 255, "memori": [12, 15, 69, 88, 128, 217, 242, 253, 256], "men": 196, "menez": 128, "mensor": 61, "mental": 15, "mention": [2, 3, 4, 14, 31, 33, 43, 48, 55, 79, 113, 115, 130, 138, 144, 160, 231, 234, 237, 241, 269, 270, 271, 272, 293, 302], "menu": 8, "mere": [63, 64, 69, 71, 92, 186], "merg": [3, 7, 11, 12, 13, 69, 79, 80, 88, 199, 221, 229, 241, 252, 259, 260], "merge_solut": 234, "mermin": 176, "meromorph": [88, 96], "mersenn": 128, "mersenne_prime_expon": 128, "mersenneforum": 128, "mersenneprim": 128, "mesh": 207, "mesh_i": 207, "mesh_u": 207, "mesh_v": 207, "mesh_x": 207, "mesh_z": 207, "mess": [177, 237, 240, 297], "messag": [3, 7, 12, 13, 14, 89, 116, 250, 255, 257, 262], "messi": 231, "met": [88, 140, 234, 240, 255, 297], "meta": [5, 88, 237, 238], "metaclass": 88, "metacycl": 71, "metadata": [3, 11, 68, 255, 257], "metahint": 88, "metaprogram": 88, "meter": [136, 137, 138, 162, 165, 194, 195, 196, 197, 198], "method": [2, 3, 4, 5, 8, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24, 28, 29, 30, 32, 33, 35, 36, 40, 41, 48, 50, 51, 52, 54, 55, 56, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 79, 80, 81, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 100, 101, 102, 104, 107, 110, 112, 113, 115, 117, 119, 120, 124, 128, 129, 130, 131, 132, 134, 136, 137, 138, 139, 140, 141, 144, 145, 148, 149, 151, 152, 154, 155, 156, 158, 159, 165, 168, 170, 172, 180, 181, 186, 188, 191, 193, 195, 198, 199, 200, 202, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 222, 223, 224, 226, 227, 228, 229, 233, 234, 237, 239, 241, 242, 244, 246, 247, 248, 252, 254, 256, 259, 260, 265, 269, 272, 275, 276, 280, 282, 286, 287, 288, 289, 292, 297, 299, 305, 308], "method_nam": 14, "method_of_undetermined_coeffici": 237, "method_ring": 259, "methodologi": [240, 290], "metric": [14, 69, 80, 84, 90, 145, 233, 237, 240, 247], "metric_nam": 247, "metric_symmetri": [13, 247], "metric_to_christoffel_1st": 90, "metric_to_christoffel_2nd": 90, "metric_to_ricci_compon": 90, "metric_to_riemann_compon": 90, "meurer": 0, "mfork": 302, "mframe": 302, "mgamma": 147, "mi": [128, 221], "mib": 9, "micali": 89, "michael": [87, 215, 220], "microsecond": 129, "microsoft": 8, "mid": [43, 70, 89, 92, 130, 137, 229, 234], "middl": [43, 96, 104, 113, 124, 137, 171, 207, 231, 297], "midpoint": [101, 103, 104, 115, 207, 271], "midwai": 89, "might": [3, 4, 9, 11, 12, 13, 14, 15, 16, 21, 22, 30, 35, 37, 41, 42, 43, 50, 54, 67, 69, 88, 92, 94, 101, 110, 113, 120, 124, 128, 130, 136, 171, 200, 207, 210, 211, 212, 217, 218, 221, 222, 229, 230, 231, 233, 234, 239, 240, 241, 253, 254, 257, 259, 262, 286, 289, 291, 292, 294, 297], "miglani": 11, "mignott": [212, 214], "mignotte_sep_bound_squar": 212, "migrat": 3, "miktex": [2, 8], "mile": 198, "mileston": 254, "militari": 89, "miller": 128, "milton": [4, 96], "mimic": [115, 116, 133, 205, 260], "mimo": [46, 141, 144], "mimofeedback": [46, 141, 144], "mimolineartimeinvari": 144, "mimoparallel": [141, 144], "mimoseri": [141, 144], "min": [13, 80, 84, 88, 93, 94, 124, 130, 206, 207, 216, 221, 227, 237, 259], "min_degre": 217, "min_expon": 69, "min_qubit": [171, 175], "min_wir": 171, "min_x": 234, "min_z": 234, "mind": [4, 11, 12, 14, 16, 28, 38, 41, 52, 88, 124, 207, 228, 229, 274, 292], "minim": [4, 41, 43, 67, 79, 80, 84, 87, 88, 89, 113, 115, 118, 124, 128, 149, 160, 210, 211, 212, 214, 217, 220, 230, 233, 234, 239, 259, 306], "minima": [52, 240], "minimal_block": 79, "minimal_polynomi": 216, "minimal_uncollected_subword": 78, "minimum": [3, 13, 21, 32, 52, 67, 69, 79, 80, 82, 84, 88, 89, 92, 94, 124, 153, 175, 207, 209, 214, 239, 240, 241, 255, 287, 302], "minisat": 2, "minisat22": 2, "minlex": 259, "minor": [88, 98, 124, 210, 221, 252], "minor_submatrix": 124, "minpoli": [88, 211, 212, 214, 216], "minpoly_of_el": 88, "minterm": 118, "minu": [33, 69, 87, 88, 210, 214, 221, 272], "minut": [12, 16, 21, 32, 53, 302], "minv": 210, "minv_reduc": 210, "mirror": [4, 96, 115, 164], "mirror_formula": 164, "misappli": 13, "misc": [94, 124, 262], "miscellan": [258, 284], "mise": 241, "mismatch": 124, "miss": [78, 79, 105, 210, 221, 239, 254, 297], "missingunityerror": 216, "mission": [5, 68, 121], "mississippi": [93, 259], "misspel": 13, "mistak": [5, 11, 12, 14, 16, 51, 79, 130, 260], "mistaken": 12, "mistyp": 12, "misunderstand": 41, "mit": 91, "mix": [32, 41, 60, 87, 94, 124, 130, 211, 212, 217, 221, 240, 243, 245, 247, 260], "mixin": [88, 259], "mixtur": [67, 69, 105, 208, 254], "mj": 0, "mk": [193, 196], "ml": 303, "mlatex": 21, "mlg": 303, "mlq_1": 303, "mlq_2": 303, "mly": 303, "mm": [65, 68, 128, 153, 189, 210, 302, 309, 310], "mm_full": 302, "mn": [189, 221, 241], "mnemon": [16, 230, 259], "mnt": 8, "mo": [30, 128, 221], "moa": 74, "mobiu": [13, 91, 93, 128], "mobius_transform": 91, "mobiusrang": 128, "mock": 171, "mod": [12, 13, 89, 93, 94, 118, 125, 128, 187, 208, 210, 211, 212, 214, 216, 217, 221, 223, 231, 234], "mod_invers": [88, 217], "mod_to_list": 212, "modaugmentedassign": 69, "mode": [1, 8, 48, 88, 116, 130, 163, 186, 205, 217, 221, 252, 299], "model": [3, 14, 15, 19, 20, 92, 93, 118, 128, 131, 132, 133, 134, 144, 148, 154, 158, 163, 217, 230, 241, 300, 301, 302, 303, 305, 306, 307, 308], "moder": [7, 115], "modern": [43, 69, 208, 215, 221], "modest": 70, "modgcd_bivari": 214, "modgcd_multivari": 214, "modgcd_univari": 214, "modif": [79, 94, 124, 130, 240, 241, 256], "modifi": [5, 12, 14, 15, 16, 26, 68, 69, 79, 88, 94, 96, 128, 130, 163, 207, 210, 214, 216, 217, 218, 221, 233, 239, 240, 241, 252, 255, 256, 259, 260, 286, 291, 293], "modn": 128, "modop": 221, "modopmodewrong": 221, "modopnestedwrong": 221, "modopsettingswrong": 221, "modul": [2, 3, 4, 5, 7, 11, 12, 14, 15, 16, 18, 19, 21, 22, 25, 26, 28, 30, 33, 34, 36, 38, 41, 46, 51, 59, 60, 61, 62, 63, 64, 67, 68, 69, 70, 71, 78, 80, 88, 89, 91, 93, 94, 96, 100, 104, 108, 111, 114, 115, 116, 118, 120, 121, 122, 124, 129, 130, 131, 133, 134, 136, 138, 139, 140, 142, 143, 145, 151, 160, 161, 163, 165, 166, 178, 181, 194, 195, 196, 197, 203, 207, 212, 213, 215, 218, 219, 221, 225, 228, 231, 235, 239, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 254, 255, 256, 257, 258, 259, 260, 263, 268, 270, 272, 273, 274, 275, 276, 282, 283, 284, 286, 289, 291, 297, 298, 305, 308], "modular": [12, 89, 128, 187, 210, 215, 240], "modular_multiplicative_invers": 88, "modulargcd": 214, "modularinteg": 212, "module_dictionari": 260, "module_quoti": 208, "module_rel": 252, "moduleel": 216, "moduleendomorph": 216, "modulehomomorph": [208, 216], "moduli": [89, 128, 210, 214], "modulo": [13, 88, 89, 93, 125, 128, 187, 208, 210, 211, 212, 214, 216, 217, 218, 220, 221, 224, 233], "modulu": [88, 89, 91, 96, 98, 104, 124, 128, 136, 137, 208, 212, 214, 216, 217, 220, 240], "mol": 206, "mold": 36, "mole": 196, "moll": 96, "momemtum": 188, "moment": [23, 26, 28, 98, 104, 135, 136, 137, 151, 207, 217, 234, 241, 302], "moment_load_vector": 136, "momenta": [23, 170], "momentum": [22, 23, 30, 146, 149, 155, 169, 170, 188, 192, 206, 247], "monad": 256, "monagan": [215, 233], "monagan00": [214, 215], "monagan93": [214, 215], "mondai": 89, "monic": [87, 96, 208, 209, 212, 214, 216, 217, 220], "monitor": 8, "monoalphabet": 89, "monogen": 208, "monogenicfiniteextens": [208, 212], "monoid": 68, "monom": [212, 217], "monomi": [11, 88, 115, 118, 128, 209, 211, 212, 214, 220, 221, 297], "monomial_basi": 212, "monomial_count": 217, "monomial_kei": 217, "monomialord": [212, 217], "monomorph": 216, "monospac": 221, "monoterm": 247, "monoton": [67, 69, 105], "monotonicity_help": 67, "monotorem": 247, "monserrat": 11, "mont": 79, "montgomeri": 214, "month": 0, "monthli": [74, 89, 124], "montreal": 215, "moor": [0, 53, 120, 124], "moot": 88, "moprhism": 68, "mora": [214, 215, 217, 239], "mordel": 234, "more": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 26, 27, 28, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 64, 65, 67, 68, 69, 70, 71, 74, 78, 79, 80, 85, 87, 88, 89, 90, 92, 93, 94, 95, 96, 100, 101, 102, 103, 104, 105, 106, 110, 113, 115, 118, 120, 121, 124, 125, 127, 128, 129, 130, 132, 136, 142, 144, 151, 152, 153, 154, 156, 158, 160, 163, 175, 179, 180, 185, 188, 189, 190, 191, 196, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 230, 231, 233, 234, 237, 238, 239, 240, 241, 252, 254, 255, 256, 259, 260, 262, 265, 269, 273, 280, 282, 286, 287, 289, 290, 292, 293, 295, 296, 297, 298, 299, 301, 302, 306, 308, 310], "moreno": 215, "moreov": [33, 79, 89, 113, 208, 209, 214, 222, 270], "morphism": [68, 208], "morri": 230, "mors": 89, "morse_cod": 89, "mortem": 252, "mose": 237, "most": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 27, 28, 31, 32, 38, 39, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 67, 68, 69, 70, 79, 80, 87, 88, 89, 92, 94, 98, 100, 115, 118, 119, 120, 121, 124, 126, 127, 128, 129, 130, 144, 152, 153, 193, 195, 200, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 228, 229, 231, 234, 237, 238, 239, 240, 241, 250, 253, 254, 255, 256, 257, 259, 260, 262, 268, 270, 286, 289, 291, 292, 293, 295, 296, 297, 310], "mostli": [14, 30, 35, 88, 94, 115, 124, 186, 208, 210, 220, 221, 231, 239, 296], "mota": 237, "motion": [13, 18, 21, 23, 24, 25, 26, 27, 30, 31, 35, 36, 79, 133, 148, 149, 151, 152, 153, 154, 156, 158, 204, 205, 241, 300, 302, 303, 304, 305, 306, 307, 309, 311], "motiongenesi": [22, 30], "motionvari": [22, 30], "motiv": [13, 17, 43, 58, 217], "mous": 207, "move": [11, 12, 14, 18, 23, 35, 36, 43, 79, 80, 88, 89, 102, 104, 136, 148, 151, 152, 156, 158, 179, 204, 233, 242, 251, 272, 299, 300, 302, 304, 306], "movement": 90, "moyal": 241, "moyaldistribut": 241, "mp": [61, 188, 239, 255], "mpc": [211, 212], "mpf": [88, 211, 212], "mpi": 229, "mpmath": [2, 8, 12, 15, 30, 43, 53, 54, 69, 93, 96, 124, 129, 211, 212, 221, 229, 239, 255, 260, 287], "mpmathprint": 221, "mpprint": [21, 25], "mpq": [128, 210, 211], "mprint": [21, 25, 309, 310, 311], "mpz": [211, 212], "mr": 128, "mrow": 221, "mrref": 210, "mrv": [88, 228], "mrv_leadterm": 228, "mrv_max1": 228, "mrv_max3": 228, "msg": [89, 115], "msigma": 147, "msub": [21, 27, 150], "msym": 84, "msymbol": 239, "msys2": 8, "mt": [18, 113], "mu": [16, 96, 113, 128, 145, 147, 162, 221, 241, 247], "mu1": 241, "mu2": 241, "mu_1": 241, "mu_2": 241, "much": [3, 4, 11, 12, 13, 27, 28, 35, 36, 39, 41, 42, 43, 48, 54, 68, 69, 73, 84, 88, 92, 96, 110, 113, 115, 199, 206, 208, 210, 211, 214, 217, 228, 231, 233, 237, 238, 239, 240, 254, 256, 289, 291, 297], "mueller": 163, "mueller_calculu": 163, "mueller_matrix": 163, "mul": [4, 13, 15, 16, 38, 43, 61, 113, 115, 124, 128, 171, 175, 185, 186, 210, 211, 212, 216, 217, 221, 222, 223, 230, 233, 237, 238, 239, 240, 245, 292], "mul_elementwis": 210, "mul_ground": [212, 217], "mul_inv": 80, "mul_symbol": 221, "mul_symbol_mathml_numb": 221, "mul_xin": 218, "mulaugmentedassign": 69, "muller": 0, "mulsimp": 124, "mult": 216, "mult_tab": 216, "multi": [23, 30, 60, 88, 89, 151, 171, 175, 185, 207, 221, 240, 301, 305], "multibodi": [18, 22, 23, 29, 30, 31, 35, 133, 134, 151, 154, 155, 158, 301], "multicharact": 262, "multidimension": [54, 215, 252], "multifactor": 214, "multifactori": 93, "multifram": 36, "multigamma": 96, "multilin": [3, 221], "multilinear": 90, "multimodular": 210, "multinomi": [88, 124, 128, 241], "multinomial_coeffici": 128, "multinomial_coefficients_iter": 128, "multinomial_distribut": 241, "multinomialdistribut": 241, "multipl": [2, 3, 4, 11, 12, 13, 14, 15, 16, 18, 21, 23, 30, 31, 35, 37, 41, 43, 46, 50, 52, 56, 57, 61, 63, 64, 65, 67, 68, 69, 70, 77, 79, 80, 84, 87, 88, 89, 93, 94, 96, 98, 103, 106, 108, 113, 115, 117, 118, 120, 124, 125, 128, 130, 138, 140, 141, 144, 151, 156, 175, 176, 177, 181, 188, 190, 193, 196, 197, 198, 200, 204, 207, 208, 209, 210, 211, 212, 214, 215, 217, 218, 221, 226, 227, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 247, 250, 254, 255, 256, 257, 259, 260, 262, 265, 270, 286, 287, 289, 290, 292, 293, 298, 299, 302], "multipledispatch": [12, 13, 62], "multiplex": 118, "multipli": [13, 16, 26, 27, 32, 53, 61, 65, 69, 79, 88, 99, 103, 110, 117, 124, 128, 136, 148, 153, 154, 168, 177, 191, 196, 197, 208, 209, 210, 212, 214, 216, 217, 221, 223, 230, 231, 234, 237, 242, 259, 269, 289, 292, 306], "multiplicity_in_factori": 128, "multiply_elementwis": [124, 210], "multiply_id": 208, "multiply_transitive_group": 79, "multipow": 89, "multiprecis": [69, 211], "multiprim": 89, "multiset": [93, 113, 256, 259], "multiset_combin": [93, 259], "multiset_derang": 259, "multiset_partit": [77, 93, 113, 256, 259], "multiset_partitions_taocp": 256, "multiset_permut": [93, 259], "multisetpartitiontravers": 256, "multiterm": 247, "multivalu": [88, 94], "multivari": [67, 88, 96, 208, 209, 211, 212, 213, 215, 217, 218, 228, 233, 239, 240, 241, 297], "multivariate_gamma_funct": 96, "multivariate_laplace_distribut": 241, "multivariate_normal_distribut": 241, "multivariatebeta": 241, "multivariateewen": 241, "multivariatelaplac": 241, "multivariatenorm": 241, "multivariatepolynomialerror": [214, 217], "multivariatet": 241, "mun": 221, "mundi": 215, "mupad_ref": 293, "murrai": [79, 210], "muscl": [18, 131, 132, 134, 300], "muscle_activ": 18, "muscle_load": 18, "muscle_pathwai": 18, "musclotendon": 131, "muscular": 133, "musculoskelet": 299, "musculotendon": [19, 131, 132, 133, 282, 299], "musculotendon_dynam": [18, 134], "musculotendonbas": 134, "musculotendondegroote2016": [18, 134, 299], "musculotendonformul": 134, "museum": 89, "must": [2, 3, 4, 11, 12, 13, 15, 16, 18, 22, 23, 25, 26, 27, 28, 30, 32, 36, 41, 42, 55, 61, 62, 63, 64, 69, 79, 80, 82, 84, 86, 87, 88, 89, 90, 93, 94, 96, 98, 101, 104, 107, 110, 111, 113, 115, 118, 119, 120, 124, 127, 128, 130, 134, 136, 137, 138, 140, 142, 144, 145, 148, 151, 152, 153, 154, 156, 159, 171, 186, 188, 191, 200, 206, 207, 208, 209, 210, 212, 214, 216, 217, 221, 222, 229, 230, 231, 233, 234, 237, 239, 240, 241, 245, 246, 252, 253, 254, 255, 256, 257, 259, 260, 289, 291, 292, 296, 297, 302, 304], "mutabl": [15, 16, 70, 88, 119, 120, 121, 136, 212, 221, 222, 233, 242, 293], "mutabledensematrix": [13, 18, 119, 210, 262], "mutabledensendimarrai": 242, "mutablerepmatrix": 13, "mutablesparsematrix": 126, "mutablesparsendimarrai": 242, "mutat": [13, 144, 210, 212, 241], "mute": [69, 253], "mutual": [36, 94, 113], "mwf": 302, "mwr": 302, "mx": [142, 171, 228], "my": [8, 221, 286], "my_dummi": 191, "my_equ": 88, "my_fcn": [69, 221], "my_inequ": 88, "my_iszero": 293, "my_mat_fcn": [69, 221], "my_measur": 233, "my_real_root": 48, "my_root": 48, "my_routin": 69, "my_smt_variable_for_pi": 221, "my_sym": 51, "myclass": 88, "mycoeff": 67, "myfcn": 254, "myfcn_result": 254, "mygamma": 221, "mylatexprint": 221, "mylist": 88, "mylist1": 88, "mylist2": 88, "myop": 259, "myprogram": 69, "myrvold": 80, "mysin": [88, 260, 286], "mysingleton": 88, "myst": 5, "mysub": 69, "mz": 171, "m\u2081": 137, "m\u2082": 137, "n": [0, 4, 5, 9, 12, 15, 16, 18, 22, 25, 26, 27, 28, 30, 31, 32, 35, 36, 39, 41, 43, 48, 51, 52, 60, 65, 67, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 101, 102, 103, 104, 105, 110, 111, 113, 115, 117, 118, 120, 124, 125, 128, 130, 134, 136, 137, 140, 142, 144, 146, 147, 148, 149, 153, 155, 156, 158, 159, 160, 162, 164, 165, 167, 171, 176, 177, 180, 185, 187, 188, 189, 191, 192, 194, 196, 198, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 244, 246, 247, 250, 253, 259, 261, 262, 265, 267, 268, 269, 270, 274, 280, 287, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 308, 309, 310, 311], "n1": [22, 30, 32, 41, 69, 79, 88, 89, 160, 164, 207, 234, 241, 265], "n11": 241, "n12": 241, "n2": [30, 41, 69, 79, 88, 89, 160, 164, 207, 234, 241], "n21": 241, "n22": 241, "n3": [22, 88, 207], "n_": [214, 234], "n_0": [110, 214, 239, 240], "n_1": [214, 239, 241], "n_2": [214, 241], "n_a": 22, "n_adj": 80, "n_alpha_b": 200, "n_b": 22, "n_c": 241, "n_digit": 115, "n_ep": 79, "n_frame": 149, "n_i": [84, 214, 239], "n_k": 214, "n_len": 164, "n_level": 191, "n_m": 239, "n_max": 191, "n_order": 128, "n_particl": 191, "n_point_check": 69, "n_surr": 164, "n_x": 202, "n_y": 303, "n_z": 303, "nabla": [33, 265, 271, 272], "naiv": [14, 38, 79, 85, 88, 113, 124, 128, 196, 210, 231, 239, 240, 247], "nakagami": 241, "nakagami_distribut": 241, "nako": 210, "name": [2, 3, 4, 5, 8, 12, 13, 15, 16, 18, 22, 30, 32, 33, 36, 41, 43, 45, 55, 56, 60, 63, 64, 68, 69, 70, 71, 75, 78, 81, 84, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 113, 115, 116, 117, 120, 124, 128, 130, 131, 133, 134, 136, 140, 148, 149, 152, 155, 158, 162, 171, 186, 193, 196, 197, 198, 199, 200, 202, 204, 207, 208, 209, 211, 212, 214, 216, 218, 221, 227, 231, 233, 234, 237, 238, 240, 241, 246, 247, 250, 252, 253, 254, 255, 260, 262, 263, 265, 269, 272, 277, 286, 289, 292, 293, 297, 299, 302], "name_dict": 130, "name_expr": [69, 254], "name_mangl": 221, "name_of_bodi": 149, "named_group": [73, 76, 78, 79, 85, 86], "namedmorph": 68, "nameerror": [14, 16, 116, 255, 289], "nameless": 247, "namespac": [2, 4, 13, 14, 60, 69, 70, 88, 212, 234, 237, 238, 252, 254, 255, 260], "nan": [65, 66, 69, 88, 94, 96, 150, 153, 154, 233, 241, 287], "nand": [118, 221], "nanjeky": 11, "nanjekyejoannah": 11, "nano": 129, "nanosecond": 129, "napier": 88, "narg": [88, 214], "narr": [4, 290], "nation": 218, "nativ": [9, 14, 15, 88, 144, 212, 217, 252], "native_coeff": 88, "natur": [3, 12, 14, 16, 22, 41, 46, 53, 61, 65, 69, 70, 71, 79, 88, 89, 93, 94, 121, 128, 193, 195, 196, 208, 211, 212, 214, 216, 218, 221, 229, 230, 234, 240, 241, 259, 275, 292, 297, 299], "naturals0": [88, 221, 229, 240, 241], "navi": 89, "navig": [8, 13], "nb": 88, "nb2": 221, "nb_of_point": 207, "nb_of_points_i": 207, "nb_of_points_u": 207, "nb_of_points_v": 207, "nb_of_points_x": 207, "nbit": 69, "nc": 93, "nca": 216, "nck": 297, "ncol": 210, "ncolumn": 207, "ndarrai": [124, 207, 241, 247, 253, 299], "ndf": 163, "ndimarrai": 14, "ndimension": 253, "ne": [15, 37, 41, 88, 89, 93, 94, 101, 113, 124, 128, 130, 209, 211, 214, 231, 237, 241], "near_int": 128, "nearbi": 11, "nearer": 113, "nearest": [67, 216], "nearest_common_ancestor": 216, "nearli": [16, 128, 230], "necess": 214, "necessari": [2, 3, 4, 6, 8, 11, 12, 13, 14, 16, 23, 41, 43, 58, 67, 68, 79, 80, 88, 98, 113, 115, 118, 124, 128, 130, 151, 153, 207, 209, 211, 216, 217, 221, 224, 230, 233, 237, 238, 239, 240, 241, 242, 247, 252, 254, 259, 260, 265, 290, 295, 299, 300, 302], "necessarili": [3, 4, 18, 41, 65, 88, 89, 90, 113, 115, 118, 153, 208, 209, 210, 216, 217, 219, 233, 234, 237, 239, 240], "necessit": 310, "necesssari": 275, "necklac": [5, 259], "ned": 13, "nedbatcheld": 12, "need": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 28, 31, 32, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 63, 64, 67, 68, 69, 73, 79, 80, 84, 86, 87, 88, 89, 90, 93, 94, 96, 99, 103, 104, 111, 112, 113, 115, 116, 118, 124, 128, 129, 130, 134, 136, 137, 140, 144, 148, 153, 155, 158, 159, 160, 171, 175, 183, 189, 194, 200, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 228, 229, 231, 233, 234, 236, 237, 239, 240, 241, 245, 246, 247, 248, 250, 253, 254, 255, 256, 257, 259, 262, 265, 269, 271, 272, 275, 286, 287, 289, 292, 293, 295, 297, 299, 302, 304, 306, 307, 309, 310, 311], "needev": 115, "neg": [4, 13, 15, 16, 18, 41, 42, 46, 52, 65, 66, 69, 70, 83, 87, 88, 93, 94, 96, 98, 100, 101, 104, 113, 115, 117, 118, 124, 127, 128, 136, 137, 140, 141, 142, 144, 148, 152, 156, 191, 200, 206, 209, 210, 212, 214, 216, 217, 218, 221, 227, 229, 230, 231, 233, 234, 237, 239, 240, 241, 260], "neg_feedback": 144, "negat": [42, 43, 65, 88, 94, 118, 144, 200, 210, 212, 214, 217], "negative_binomial_distribut": 241, "negative_multinomial_distribut": 241, "negative_numb": [41, 88], "negativebinomi": 241, "negativebinomialdistribut": 241, "negativehandl": 65, "negativeinfin": [88, 221], "negativemultinomi": 241, "negativeon": [88, 94, 292], "negativepred": 65, "neglect": 69, "neglig": 48, "neighbor": 259, "neighborhood": 229, "neighbourhood": 113, "neither": [41, 42, 65, 88, 165, 186, 207, 210, 217, 228, 229, 230, 237, 247, 260, 265, 274, 297], "nephew": 89, "neq": [15, 36, 43, 88, 94, 96, 113, 115, 124, 128, 196, 206, 214, 217, 237, 239, 297], "nervou": [18, 131], "nessgrh": 113, "nest": [14, 51, 55, 88, 90, 94, 96, 115, 124, 144, 209, 210, 211, 214, 221, 231, 233, 236, 240, 241, 242, 243, 245, 248, 259, 260, 292], "nested_contract": 245, "net": [11, 68, 104, 215, 237, 241, 259], "netwon": 69, "neurolog": 133, "neutral": 5, "never": [9, 10, 11, 12, 14, 15, 41, 43, 55, 88, 94, 115, 130, 193, 217, 218, 221, 229, 239, 241, 250, 269, 289, 290], "nevertheless": 68, "new": [2, 3, 5, 6, 7, 8, 9, 12, 14, 15, 18, 22, 29, 30, 32, 36, 41, 43, 51, 58, 63, 64, 68, 69, 70, 79, 80, 87, 88, 89, 90, 96, 101, 104, 113, 115, 116, 124, 128, 130, 132, 134, 136, 138, 140, 144, 148, 149, 152, 160, 181, 187, 188, 191, 193, 196, 197, 199, 200, 204, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 221, 228, 231, 233, 234, 237, 239, 240, 241, 242, 243, 252, 253, 257, 260, 265, 267, 269, 285, 286, 289, 292, 293, 295, 299, 304, 309, 311], "new_eq": 240, "new_fil": 11, "new_gen": 86, "new_indic": 191, "new_label": [138, 140], "new_matrix": 241, "new_method": [153, 306], "new_msg": 89, "new_nam": 68, "new_support": 138, "new_system": 265, "newa": 230, "newarg": 14, "newchar": 262, "newconst": 237, "newer": [3, 12, 15, 35, 130, 239], "newli": [12, 88, 113, 231], "newlin": [3, 12, 124, 262], "newmatrix": 13, "newnam": 200, "newroot": 117, "newton": [18, 23, 69, 96, 151, 194, 198, 214, 218], "newtonian": [22, 30, 158], "newtonion": 149, "newtons_method": 69, "newtons_method_funct": 69, "newtyp": 88, "newvar": 87, "nexp": 69, "next": [7, 9, 11, 16, 21, 23, 24, 31, 35, 36, 39, 41, 43, 45, 60, 69, 70, 72, 77, 79, 80, 82, 83, 88, 89, 94, 113, 115, 118, 124, 128, 130, 149, 151, 152, 153, 158, 208, 210, 212, 216, 217, 221, 229, 231, 234, 237, 256, 257, 259, 290, 291, 292, 304, 306, 307, 309, 311], "next_binari": 83, "next_grai": 83, "next_lex": [77, 80], "next_lexicograph": 83, "next_nonlex": 80, "next_trotterjohnson": [80, 259], "nextprim": 128, "nf": 214, "nfac": 128, "nfloat": [88, 233], "ngate": 175, "nh": 25, "ni": 96, "nice": [1, 4, 9, 22, 27, 30, 59, 88, 100, 124, 128, 207, 221, 231, 262, 292], "nicefrac": 130, "nicer": [59, 88, 210, 310], "nicest": 14, "nicheck": 22, "nielsen_transform": 79, "niemey": 79, "nigel": 234, "nijenhui": 72, "nilpot": [74, 79, 124], "nilpotent_group": 79, "nilrad": 216, "nine": [104, 221], "nine_point_circl": 104, "ninth": 132, "nist": [4, 94, 96, 196], "nitaj": 234, "niven": 214, "nl": [146, 192], "nlm": 146, "nm": [136, 137, 189, 242, 299], "nmant": 69, "nmax": 128, "nmod": 13, "nmod_mat_charpoli": 210, "nnf": 118, "nnz": 210, "no_attrs_in_subclass": 255, "no_glob": [116, 205], "no_symmetri": 247, "nobr": 55, "nocache_fail": 250, "nocond": [46, 115], "nodal": [167, 192, 208], "node": [13, 15, 67, 82, 88, 115, 130, 140, 150, 167, 192, 200, 206, 211, 221, 228, 240, 245, 256, 260, 292, 296], "node12": 72, "node81": 128, "node_1": 140, "node_2": 140, "node_3": 140, "node_4": 140, "node_label": 140, "node_posit": 140, "nois": 48, "nomin": 12, "non": [2, 3, 12, 14, 15, 16, 18, 21, 25, 26, 30, 33, 36, 41, 43, 48, 54, 55, 57, 60, 65, 67, 70, 78, 81, 87, 88, 89, 93, 94, 95, 96, 97, 98, 101, 102, 103, 115, 117, 118, 119, 120, 124, 125, 127, 128, 131, 134, 148, 153, 155, 175, 180, 190, 191, 193, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 224, 228, 229, 231, 233, 234, 236, 237, 239, 240, 241, 242, 245, 246, 247, 252, 254, 259, 262, 272, 292, 297, 298, 302, 303, 304, 306, 310], "non_trivial_metr": 90, "nonbas": 88, "noncentr": 241, "noncentral_beta_distribut": 241, "noncentral_chi_distribut": 241, "noncentralbetadistribut": 241, "noncommut": [41, 88, 111, 292], "noncommutative_part": 88, "noncomput": 15, "nonconserv": 153, "noncontribut": 305, "noncontributing_forc": 304, "nonconvex": 115, "nondimension": 299, "none": [4, 5, 12, 13, 14, 15, 22, 36, 41, 42, 43, 61, 62, 63, 64, 65, 67, 68, 69, 71, 77, 78, 79, 80, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 109, 110, 111, 113, 115, 116, 118, 120, 124, 125, 128, 129, 130, 131, 134, 136, 140, 144, 148, 149, 150, 152, 153, 154, 155, 158, 160, 162, 164, 165, 171, 176, 181, 186, 188, 191, 193, 197, 198, 199, 200, 202, 204, 205, 206, 207, 208, 210, 212, 214, 216, 217, 219, 221, 222, 223, 224, 226, 227, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 250, 252, 253, 254, 255, 259, 260, 262, 264, 265, 268, 293, 297, 298], "noneg": 18, "nonelementari": 115, "nonelementaryintegr": 115, "nonempti": [79, 259], "nonetheless": [3, 89, 193, 233, 237], "nonetoken": 69, "nonetyp": [42, 69], "nonhol_coneq": [26, 153, 306], "nonholonom": [153, 158, 302], "nonholonomic_constraint": 158, "nonhomogeneous_equation_with_constant_coeffici": 237, "noninteg": [41, 65, 88, 211, 221], "nonintegr": 43, "noninvert": 241, "noninvertiblematrixerror": [53, 120, 293], "nonlex": 80, "nonlinear": [18, 30, 37, 49, 55, 57, 87, 148, 217, 237, 239, 240], "nonlinear_stiff": 148, "nonlinearerror": 240, "nonlinsolv": [30, 239, 240, 298], "nonminim": [27, 301, 305], "nonneg": [12, 13, 14, 18, 30, 41, 43, 65, 88, 89, 90, 93, 96, 120, 209, 211, 217, 234, 239, 241, 297, 299], "nonnegativehandl": 65, "nonnegativepred": 65, "nonparallel": 152, "nonparametr": 207, "nonpivot": 210, "nonposit": [30, 41, 65, 88, 93, 96, 239], "nonpositivehandl": 65, "nonpositivepred": 65, "nonreal": [43, 54, 239], "nonrep": 247, "nonresidu": [93, 128], "nonsens": [12, 87, 96], "nonsquarematrixerror": [124, 237], "nontrivi": [43, 79, 88, 128], "nonvanish": 88, "nonzero": [41, 43, 65, 66, 87, 88, 103, 124, 134, 146, 209, 210, 211, 212, 221, 224, 234, 240], "nonzero_col": 210, "nonzerohandl": 65, "nonzeropred": 65, "noqa": [12, 88, 116, 212, 255], "nor": [65, 67, 88, 118, 159, 165, 207, 210, 217, 221, 228, 230, 237, 247, 265], "norepli": 11, "norm": [61, 124, 189, 200, 212, 214, 216, 217, 234], "normal": [5, 12, 13, 14, 16, 18, 21, 22, 30, 36, 41, 42, 43, 57, 61, 65, 69, 79, 87, 88, 92, 94, 98, 101, 102, 103, 115, 116, 118, 121, 122, 124, 128, 130, 131, 132, 134, 146, 152, 159, 164, 175, 185, 188, 189, 190, 191, 192, 196, 199, 200, 208, 210, 211, 212, 214, 216, 217, 221, 222, 224, 229, 230, 234, 237, 241, 246, 252, 257, 259, 260, 265, 280, 299, 302, 310], "normal_closur": 79, "normal_distribut": 241, "normal_lin": 98, "normal_matrix": 65, "normal_vector": [102, 164], "normaldistribut": [13, 241], "normaldistributionfunct": 241, "normalform": [125, 210], "normalgamma": 241, "normalhandl": 65, "normalis": [88, 223], "normalize_last": 124, "normalize_theta_set": 229, "normalize_whitespac": 252, "normalpred": 65, "normalpspac": 241, "norman": 115, "normilz": 96, "north": 15, "not_empty_in": [67, 240], "not_in_arg": 69, "not_point": 171, "not_rep": 79, "not_supported_funct": 221, "notabl": [14, 64, 69, 91, 96, 113, 129, 211], "notalgebra": 214, "notarrow": 221, "notat": [16, 32, 36, 39, 48, 52, 55, 57, 74, 76, 80, 81, 87, 88, 89, 93, 96, 113, 120, 124, 130, 144, 154, 189, 200, 205, 208, 221, 228, 233, 240, 246, 247, 259, 272, 287], "note": [2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 28, 30, 32, 33, 35, 36, 37, 39, 41, 42, 45, 46, 49, 50, 51, 53, 54, 55, 56, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 78, 79, 80, 81, 84, 86, 87, 89, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 113, 115, 116, 118, 120, 124, 128, 130, 131, 134, 144, 145, 148, 149, 150, 152, 153, 154, 156, 158, 159, 164, 167, 175, 185, 186, 188, 190, 191, 192, 194, 200, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 231, 233, 234, 236, 237, 238, 239, 240, 241, 246, 247, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 270, 272, 274, 286, 287, 288, 290, 291, 292, 293, 297, 299, 302, 306, 307, 309], "notebook": [2, 15, 43, 59, 116, 205, 260, 295, 296], "notequiv": 221, "noth": [12, 13, 48, 68, 79, 88, 115, 153, 175, 191, 208, 212, 220, 221, 233, 237, 239, 250, 252, 260, 262, 289], "notic": [12, 13, 16, 28, 43, 79, 80, 86, 88, 124, 179, 211, 231, 243, 247, 248, 259, 260, 289, 291, 292, 297], "notifi": [4, 130], "notimpl": [98, 216], "notimplementederror": [4, 50, 52, 55, 56, 57, 67, 87, 98, 101, 105, 115, 124, 142, 210, 216, 217, 220, 229, 236, 237, 238, 239, 240], "notimpli": 221, "notin": [78, 113, 229], "notinvert": [208, 214, 217], "notion": [13, 14, 41, 68, 196, 199, 208, 240, 269, 274], "notiter": 259, "notrevers": [214, 217], "novemb": 259, "now": [1, 2, 5, 8, 9, 11, 12, 13, 14, 16, 18, 22, 23, 30, 31, 35, 36, 39, 41, 42, 43, 48, 59, 68, 69, 80, 88, 89, 93, 96, 99, 104, 105, 110, 112, 113, 117, 124, 128, 144, 148, 149, 151, 152, 156, 158, 194, 196, 200, 205, 207, 208, 209, 210, 211, 214, 217, 218, 222, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 247, 252, 253, 260, 270, 271, 289, 291, 292, 297, 298, 299, 304, 307, 310], "np": [14, 18, 22, 43, 55, 93, 111, 128, 207, 253, 260, 299], "npartit": [13, 128], "nqubit": [171, 175, 176, 185], "nr": 43, "nright": 240, "nroot": [217, 239], "nrow": [207, 210], "nsa": 89, "nseri": 88, "nsimplifi": [14, 88, 92, 233], "nsolv": [30, 37, 48, 54, 56, 57, 239], "nt": [93, 259], "nth": [39, 88, 93, 96, 117, 128, 212, 217, 218, 227, 233, 237, 241], "nth_algebra": 237, "nth_algebraic_integr": 237, "nth_linear": 237, "nth_linear_constant_coeff_homogen": 237, "nth_linear_constant_coeff_homogeneous_integr": 237, "nth_linear_constant_coeff_undetermined_coeffici": 237, "nth_linear_constant_coeff_variation_of_paramet": 237, "nth_linear_constant_coeff_variation_of_parameters_integr": 237, "nth_linear_euler_eq_homogen": 237, "nth_linear_euler_eq_homogeneous_integr": 237, "nth_linear_euler_eq_nonhomogeneous_undetermined_coeffici": 237, "nth_linear_euler_eq_nonhomogeneous_variation_of_paramet": 237, "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_integr": 237, "nth_linear_homogeneous_constant_coeff_integr": 237, "nth_order_reduc": 237, "nth_power_roots_poli": 217, "nthalgebra": 237, "ntheori": [65, 79, 88, 89, 93, 214, 217, 234, 259], "nthlinearconstantcoeffhomogen": 237, "nthlinearconstantcoeffundeterminedcoeffici": 237, "nthlinearconstantcoeffvariationofparamet": 237, "nthlineareulereqhomogen": 237, "nthlineareulereqnonhomogeneousundeterminedcoeffici": 237, "nthlineareulereqnonhomogeneousvariationofparamet": 237, "nthorderreduc": 237, "nthroot": 233, "nthroot_mod": 128, "ntop": 124, "ntt": 91, "nu": [5, 16, 93, 96, 115, 128, 192, 209, 221, 233, 241, 247, 291, 303], "nu_1": 209, "nu_2": 209, "nu_i": 209, "nu_n": 209, "nuanc": 14, "null": [16, 88, 124], "nulliti": 210, "nullspac": [124, 210], "nullspace_from_rref": 210, "num": [18, 69, 79, 88, 128, 144, 212, 233, 237, 256, 262, 299], "num_column": [116, 205, 221, 237], "num_digit": [88, 128], "num_input": [46, 144], "num_list": 144, "num_output": [46, 144], "num_qq": 211, "num_zz": 211, "numa": 237, "number": [2, 3, 4, 5, 11, 12, 13, 15, 18, 21, 22, 27, 28, 30, 32, 33, 35, 36, 37, 38, 41, 43, 46, 48, 51, 52, 53, 56, 57, 61, 63, 64, 67, 68, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 93, 94, 96, 98, 101, 102, 103, 104, 105, 107, 115, 116, 117, 118, 120, 123, 124, 125, 127, 129, 130, 133, 134, 137, 140, 142, 144, 145, 146, 148, 153, 154, 158, 164, 167, 170, 171, 174, 175, 176, 177, 179, 180, 185, 186, 187, 188, 189, 191, 192, 193, 196, 199, 200, 204, 205, 206, 207, 209, 210, 212, 213, 214, 215, 217, 218, 221, 223, 227, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 246, 247, 252, 254, 256, 259, 260, 262, 265, 268, 269, 271, 272, 274, 277, 283, 286, 287, 289, 291, 292, 293, 297, 306], "number_cl": 88, "number_field": 216, "number_theori": 93, "numbered_symbol": [222, 233, 237, 259], "numberfield": [212, 216, 217], "numberkind": [15, 38, 88, 123, 229], "numbersymbol": [88, 221], "numbertheoretictransform": 91, "numbertheori": 234, "numberworld": 128, "numer": [2, 4, 12, 13, 15, 16, 18, 22, 23, 27, 28, 31, 32, 36, 37, 39, 41, 49, 50, 51, 52, 53, 56, 61, 65, 67, 69, 87, 88, 93, 96, 100, 104, 111, 124, 128, 130, 131, 132, 133, 134, 140, 141, 142, 144, 149, 151, 153, 154, 163, 170, 173, 188, 207, 210, 211, 212, 214, 215, 216, 217, 220, 221, 230, 231, 233, 237, 239, 240, 246, 252, 253, 259, 260, 277, 286, 288, 289, 293, 297, 299, 302], "numerical_funct": 286, "numerorum": 256, "numexpr": [2, 260], "numi": 237, "numpad": 207, "numpi": [2, 4, 12, 13, 14, 15, 18, 22, 30, 43, 48, 53, 54, 55, 59, 69, 88, 111, 116, 129, 142, 175, 185, 207, 210, 221, 241, 246, 253, 254, 260, 286, 289, 299], "numpydoc": [4, 5], "numpyprint": 69, "numqubit": 176, "numsampl": 241, "numth": 128, "numz": 144, "nuovo": [196, 206], "nutshel": 14, "nvpa": 35, "nvpb": 35, "nwb": 35, "nx": [35, 259, 306, 308], "ny": [35, 200, 212, 306, 308], "nz": [35, 308], "o": [0, 4, 8, 11, 12, 15, 16, 18, 22, 25, 26, 27, 28, 30, 31, 33, 35, 39, 41, 60, 68, 69, 74, 79, 80, 86, 88, 89, 94, 96, 98, 99, 101, 102, 104, 110, 113, 128, 134, 137, 148, 149, 153, 155, 156, 158, 181, 191, 201, 204, 206, 214, 215, 217, 218, 221, 223, 228, 231, 237, 241, 246, 252, 259, 262, 268, 271, 287, 299, 303], "o2": [11, 228], "o____________________________________________________": 137, "o_from": 214, "o_to": 214, "oa": 271, "oabc": 271, "ob": 241, "obei": [4, 96, 206, 221, 231], "obextj": 275, "obj": [4, 14, 41, 88, 212, 217, 221, 255], "object": [2, 3, 4, 5, 7, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 35, 36, 40, 41, 42, 43, 46, 55, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 78, 79, 80, 81, 82, 83, 87, 88, 90, 93, 94, 96, 98, 99, 100, 101, 103, 104, 105, 113, 115, 118, 120, 121, 123, 124, 129, 130, 133, 134, 136, 137, 138, 140, 142, 144, 145, 149, 151, 153, 154, 155, 156, 158, 159, 160, 164, 165, 166, 174, 175, 177, 185, 186, 190, 191, 193, 194, 195, 197, 198, 200, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 221, 223, 224, 227, 228, 229, 230, 233, 237, 238, 239, 240, 241, 242, 243, 244, 245, 247, 248, 252, 253, 254, 255, 256, 259, 260, 263, 268, 269, 270, 275, 276, 280, 286, 287, 289, 291, 292, 293, 296, 297, 306, 311], "oblig": 207, "obscur": [13, 41], "observ": [36, 84, 88, 110, 113, 180, 208, 231, 234, 237, 241, 274, 297], "obsolet": 13, "obstacl": [113, 156], "obstacle_set_pathwai": 156, "obstaclesetpathwai": [18, 156], "obtain": [5, 15, 16, 23, 26, 32, 37, 39, 46, 51, 52, 57, 63, 64, 68, 70, 72, 79, 80, 81, 84, 88, 89, 91, 92, 93, 94, 96, 98, 99, 101, 102, 104, 110, 113, 115, 117, 124, 127, 128, 138, 141, 144, 151, 153, 164, 186, 191, 196, 208, 209, 212, 214, 216, 217, 220, 222, 229, 230, 231, 233, 234, 237, 238, 239, 240, 259, 261, 262, 269, 270], "obtaining_all_solutions_of_a_linear_system": 124, "obtus": 101, "obviou": [41, 42, 43, 53, 71, 79, 87, 208, 211, 220, 234, 291], "obvious": [5, 12, 35, 70, 79, 194, 231], "oc": [221, 271], "occasion": [11, 12, 88], "occup": 191, "occupi": [128, 191, 247], "occur": [4, 13, 14, 15, 16, 18, 21, 27, 32, 35, 79, 80, 88, 92, 96, 105, 113, 124, 130, 152, 200, 216, 224, 233, 238, 239, 242, 243, 252, 259, 292], "occurr": [22, 69, 70, 88, 128, 200, 233, 241], "oct": 128, "octahedr": 81, "octahedron": 115, "octav": [30, 69, 254], "octave_cod": [69, 221], "octavecodegen": 254, "octavecodeprint": 221, "octnam": 254, "octob": 145, "od": [4, 12, 15, 23, 30, 43, 111, 151, 153, 158, 235, 238, 277, 298], "odd": [38, 41, 51, 62, 64, 65, 66, 76, 80, 88, 89, 93, 94, 96, 118, 127, 128, 145, 206, 216, 217, 221, 239], "oddbal": 88, "oddhandl": 65, "oddpred": 65, "ode0106": 237, "ode0123": 237, "ode_": 237, "ode_1st_homogeneous_coeff_best_integr": 237, "ode_1st_power_seri": 237, "ode_2nd_power_series_ordinari": 237, "ode_2nd_power_series_regular": 237, "ode_hintnam": 237, "ode_ord": [237, 238, 239], "ode_problem": 237, "ode_sol_simpl": 237, "odeadvisor": 237, "odel": 124, "odenonlinearerror": 237, "odeordererror": 237, "odesimp": 237, "oei": [74, 93, 96, 128, 217], "oeyag": 89, "of_typ": [211, 212], "ofcours": 269, "off": [14, 24, 88, 98, 113, 124, 127, 129, 175, 208, 217, 221, 237, 252, 265, 291, 302], "off_circl": 102, "offer": [5, 14, 18, 19, 21, 30, 32, 36, 68, 69, 79, 88, 129, 211, 216, 256, 273], "offici": [16, 21, 30, 32, 36, 45, 59, 88, 240, 260, 295], "offset": [68, 69, 88, 93, 96, 148, 246], "offshor": 138, "ofix": 35, "often": [3, 4, 11, 12, 14, 15, 23, 27, 28, 35, 36, 41, 42, 43, 48, 54, 68, 69, 70, 78, 88, 96, 98, 100, 113, 115, 124, 128, 129, 144, 151, 153, 154, 208, 209, 210, 211, 214, 217, 222, 228, 229, 234, 237, 241, 259, 260, 286, 291, 292, 293, 297], "oh": 287, "oil": 7, "ok": [11, 12, 13, 69, 80, 221, 237], "okai": [14, 89], "old": [3, 12, 13, 15, 16, 27, 88, 89, 90, 116, 160, 196, 205, 207, 208, 212, 214, 221, 222, 233, 237, 240, 242, 286], "old_assumpt": 180, "old_frac_field": [211, 212], "old_fractionfield": 211, "old_poly_r": [110, 111, 208, 211, 212], "old_polynomialr": 211, "oldchar": 262, "older": [3, 5, 12, 15, 22, 111, 211, 221, 239], "oldid": 80, "olga": 216, "ollwd": 89, "omega": [16, 28, 31, 35, 69, 70, 79, 93, 113, 124, 128, 144, 149, 155, 158, 165, 167, 192, 200, 204, 205, 206, 221, 228, 241], "omega_": 113, "omicron": [16, 221], "omit": [4, 13, 41, 43, 69, 80, 87, 88, 89, 93, 113, 115, 118, 124, 193, 210, 221, 222, 229, 231, 239, 245, 254, 259, 287], "omposit": 223, "on_circl": 102, "on_morph": 103, "onc": [3, 8, 9, 11, 12, 14, 15, 16, 23, 27, 36, 41, 42, 43, 69, 71, 72, 79, 84, 88, 89, 93, 96, 104, 113, 115, 129, 137, 150, 151, 152, 196, 200, 202, 207, 209, 211, 217, 221, 222, 230, 231, 233, 237, 240, 247, 259, 269, 286, 287, 297, 298, 299], "ond": 0, "one": [2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 28, 30, 32, 33, 35, 36, 37, 39, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 58, 60, 61, 64, 65, 67, 68, 69, 71, 72, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 96, 98, 99, 100, 101, 102, 104, 105, 110, 111, 112, 113, 115, 116, 117, 118, 120, 122, 124, 127, 128, 129, 130, 131, 134, 136, 137, 138, 140, 141, 142, 144, 145, 148, 149, 152, 153, 155, 156, 158, 159, 160, 163, 164, 165, 171, 176, 185, 189, 191, 193, 194, 195, 196, 199, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 247, 248, 252, 253, 254, 256, 259, 260, 262, 265, 270, 272, 274, 285, 286, 287, 289, 291, 292, 293, 295, 296, 297, 299, 306], "one_half": 88, "one_qubit_box": 171, "oneform": 90, "onelin": 9, "onematrix": 221, "onequbitg": 175, "ones": [2, 3, 13, 14, 22, 43, 59, 69, 79, 84, 88, 113, 115, 118, 120, 124, 127, 128, 134, 164, 185, 191, 195, 210, 214, 224, 234, 237, 242, 248, 254, 262, 265, 270, 293, 296], "oneshot": 185, "onli": [3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 24, 25, 27, 28, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 48, 51, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 74, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 104, 105, 106, 111, 113, 115, 116, 117, 118, 123, 124, 125, 128, 129, 130, 131, 134, 140, 142, 144, 149, 150, 152, 153, 155, 156, 159, 164, 166, 185, 186, 190, 191, 193, 196, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 241, 242, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 265, 268, 270, 272, 274, 275, 286, 287, 289, 290, 292, 293, 297, 298, 299, 302, 304, 306, 308, 309, 311], "onlin": [2, 4, 153, 234, 259], "onlinelibrari": 241, "only_alt": 79, "only_doubl": 113, "only_integ": 207, "only_sym": 79, "onset": 164, "onto": [89, 101, 102, 103, 113, 117, 124, 127, 129, 216], "oo": [4, 14, 15, 37, 41, 42, 46, 50, 65, 67, 87, 88, 92, 93, 94, 96, 101, 113, 115, 118, 124, 144, 146, 177, 189, 192, 217, 226, 227, 228, 229, 233, 236, 237, 239, 240, 241, 246, 259, 262, 287, 291], "oohai": 221, "ooo": 259, "oooo": [137, 259], "oop": 289, "op": [14, 35, 69, 88, 124, 180, 191, 204, 230, 259, 260], "op_point": [27, 153, 154, 306], "opaqu": [113, 221], "opathwai": 18, "open": [0, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 22, 30, 52, 53, 54, 56, 59, 67, 88, 90, 94, 115, 118, 135, 144, 221, 229, 236, 240, 241, 291, 293, 304], "openview": 241, "oper": [2, 4, 9, 14, 15, 18, 21, 27, 28, 30, 34, 41, 42, 43, 53, 54, 55, 57, 61, 65, 67, 69, 79, 80, 81, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 106, 108, 111, 113, 118, 120, 128, 130, 132, 144, 145, 153, 154, 163, 167, 168, 172, 174, 175, 176, 177, 182, 183, 186, 188, 189, 190, 191, 200, 202, 203, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 224, 226, 229, 230, 233, 236, 237, 239, 240, 243, 244, 245, 246, 252, 253, 256, 259, 260, 265, 276, 280, 282, 283, 288, 289, 290, 292, 297, 306, 310], "operand": [13, 16, 80, 88, 201, 211, 212, 216, 268], "operar": 88, "operationnotsupport": 214, "operator_": 180, "operator_to_st": 186, "operatornam": [43, 61, 93, 94, 96, 113, 115, 206, 209, 217, 221, 224, 229, 231, 239], "operators_to_st": 181, "operatorset": [169, 181], "opinion": [17, 58], "oplu": [118, 175], "oppenheim": 256, "opportun": [3, 4, 233], "opportunist": 69, "oppos": [69, 148, 260, 287, 299], "opposit": [18, 46, 48, 84, 104, 118, 124, 148, 149, 156, 159, 209, 212, 229, 233, 240, 248, 259, 265, 267, 297, 299, 304], "opqrstuvwxi": 89, "opt": [18, 134, 208, 210, 214, 233, 252, 293], "opt2": 69, "opt_cs": [4, 233], "opt_sub": 233, "optic": [47, 162, 163, 164, 165, 282, 301], "optical_medium": 162, "optim": [4, 15, 18, 21, 30, 54, 69, 72, 79, 92, 118, 128, 131, 132, 134, 171, 175, 210, 217, 221, 222, 230, 233, 241, 253, 299], "optimal_fiber_length": [18, 134], "optimal_pennation_angl": [18, 134], "optimis": [41, 237], "optims_c99": 69, "option": [3, 4, 5, 8, 11, 12, 14, 16, 21, 28, 30, 32, 43, 45, 48, 50, 62, 64, 67, 69, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 98, 101, 102, 104, 105, 107, 115, 116, 120, 124, 125, 128, 129, 130, 136, 142, 144, 148, 149, 150, 152, 153, 154, 155, 158, 164, 175, 180, 181, 183, 186, 188, 193, 195, 200, 205, 207, 208, 209, 210, 211, 212, 216, 217, 218, 220, 221, 222, 223, 224, 226, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 243, 246, 247, 252, 253, 254, 257, 259, 260, 265, 290, 296, 297, 301], "optionerror": 214, "optionflag": 252, "oq": 35, "oracl": 176, "oracleg": 176, "orang": 142, "orb": 79, "orbit": [79, 86, 191, 192, 194], "orbit_rep": 79, "orbit_transvers": 79, "ord": [84, 89, 124], "order": [2, 3, 4, 5, 11, 12, 14, 15, 16, 21, 22, 24, 25, 26, 27, 28, 32, 35, 36, 37, 39, 41, 42, 46, 48, 50, 55, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 101, 104, 105, 107, 110, 113, 115, 116, 117, 118, 124, 125, 128, 129, 130, 131, 134, 136, 137, 138, 144, 145, 148, 152, 153, 158, 164, 168, 172, 175, 185, 186, 187, 188, 189, 190, 191, 195, 196, 200, 202, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 218, 220, 221, 222, 223, 224, 227, 229, 233, 234, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 252, 253, 254, 256, 259, 260, 262, 265, 267, 269, 270, 275, 287, 289, 290, 292, 296, 297, 298, 299, 302], "order_equation_with_variable_coeffici": 237, "order_symbol": 88, "ordered_flag": 259, "ordered_partit": 259, "ordering_of_class": [88, 99], "ordin": [207, 237, 262], "ordinari": [2, 18, 23, 41, 42, 49, 67, 69, 79, 88, 92, 93, 94, 96, 106, 110, 111, 115, 125, 131, 134, 144, 151, 208, 210, 211, 220, 227, 237, 242, 256, 291, 297], "ordinarili": 216, "org": [0, 2, 4, 5, 11, 12, 16, 34, 41, 43, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 98, 100, 104, 105, 106, 115, 116, 117, 118, 120, 124, 128, 142, 144, 146, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 200, 202, 203, 205, 210, 212, 215, 217, 221, 224, 228, 229, 230, 233, 234, 237, 240, 241, 253, 254, 255, 257, 259, 265, 267, 271, 273, 275, 293, 296, 303], "organ": [7, 11, 18, 23, 151], "orient": [13, 22, 24, 28, 30, 33, 35, 36, 61, 100, 104, 124, 152, 156, 200, 204, 214, 259, 265, 266, 273, 274, 280, 299, 302, 306, 309], "orient_axi": [13, 18, 32, 149, 152, 200, 202, 299], "orient_body_fix": 200, "orient_dcm": 200, "orient_new": [265, 267], "orient_new_": 270, "orient_new_axi": [265, 268, 270], "orient_new_bodi": [265, 270], "orient_new_quaternion": [265, 270], "orient_new_spac": [265, 270], "orient_quaternion": 200, "orient_space_fix": 200, "orientnew": [27, 31, 33, 35, 36, 156, 200, 202, 204, 302, 303, 306, 309, 310, 311], "orig": 214, "orig_expr": 186, "orig_ext": 212, "orig_frac": 297, "origin": [9, 11, 12, 15, 16, 18, 27, 30, 33, 39, 41, 51, 59, 61, 79, 80, 81, 84, 87, 88, 89, 92, 93, 94, 96, 97, 99, 101, 103, 113, 115, 124, 128, 131, 132, 134, 142, 144, 145, 152, 159, 183, 186, 196, 201, 207, 208, 210, 212, 216, 217, 220, 221, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 247, 252, 259, 260, 265, 268, 269, 270, 271, 272, 274, 275, 297, 299, 306], "origin_angl": 299, "origin_dist": 299, "origin_segment_length": 299, "origsit": 241, "orlando": 215, "ormv": 89, "orszag": 237, "orthocent": 104, "orthogon": [36, 61, 65, 103, 117, 124, 189, 200, 265, 267], "orthogonal_direct": 103, "orthogonal_matrix": 65, "orthogonalbra": 189, "orthogonalhandl": 65, "orthogonalket": 189, "orthogonalpolynomi": 5, "orthogonalpred": 65, "orthogonalst": 189, "orthonorm": [30, 36, 124, 186, 269], "orthopoli": [96, 217], "osc": [88, 92], "oscar": [12, 206], "oscil": [88, 282, 301, 305], "oscillatori": [88, 92, 226], "osi": 89, "osineq": 16, "ostrogradski": 115, "other": [3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 27, 28, 30, 32, 34, 35, 36, 37, 38, 39, 42, 44, 48, 50, 51, 52, 53, 55, 56, 57, 61, 65, 67, 68, 69, 70, 71, 74, 79, 80, 81, 84, 85, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108, 113, 115, 118, 120, 124, 128, 129, 130, 133, 136, 137, 138, 144, 148, 149, 151, 152, 153, 156, 158, 159, 160, 163, 164, 165, 175, 186, 188, 189, 190, 191, 194, 195, 196, 197, 198, 200, 202, 204, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 223, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 247, 248, 250, 253, 254, 255, 256, 259, 260, 265, 268, 269, 272, 274, 276, 282, 283, 286, 287, 289, 291, 292, 293, 297, 306, 307], "otherfram": [200, 265], "otherpoint": 204, "otherwis": [2, 3, 12, 14, 22, 34, 35, 37, 41, 42, 43, 67, 68, 69, 79, 80, 84, 87, 88, 89, 92, 94, 96, 97, 98, 101, 102, 103, 104, 113, 115, 117, 118, 119, 124, 127, 128, 130, 142, 144, 146, 149, 158, 159, 176, 181, 187, 203, 204, 207, 208, 210, 212, 214, 216, 217, 219, 221, 223, 224, 226, 227, 229, 233, 234, 237, 238, 239, 240, 241, 242, 250, 252, 254, 259, 260, 286, 287, 296], "otim": [32, 242, 243], "our": [5, 11, 13, 14, 18, 32, 35, 36, 39, 43, 59, 69, 88, 96, 113, 124, 128, 134, 153, 158, 196, 207, 208, 210, 212, 216, 217, 218, 221, 228, 231, 234, 237, 240, 252, 286, 289, 290, 292, 297, 299, 301, 304, 307], "out": [5, 11, 12, 13, 16, 18, 22, 28, 30, 41, 42, 43, 51, 68, 69, 79, 80, 88, 89, 90, 93, 96, 104, 113, 115, 120, 124, 128, 130, 136, 144, 145, 168, 172, 183, 186, 188, 190, 191, 208, 209, 210, 211, 212, 216, 217, 218, 219, 221, 222, 228, 231, 233, 237, 242, 243, 252, 254, 259, 260, 289, 291, 292, 296, 297, 302, 306, 309], "out1": 124, "out2": 124, "out_8598435338387848786": [69, 254], "outcom": [118, 194, 241], "outdat": 12, "outer": [28, 30, 32, 36, 55, 115, 130, 149, 155, 174, 179, 180, 200, 202, 204, 223, 229, 245, 265, 268, 269], "outer_product": 180, "outermost": [221, 229, 233, 245], "outerproduct": [174, 180], "outfram": 204, "outlier": 241, "outlin": [0, 2, 3, 11, 14, 41, 43, 86, 115, 208, 237], "outof": 36, "outperform": 69, "output": [2, 4, 5, 11, 12, 13, 14, 16, 17, 18, 22, 27, 30, 31, 32, 33, 36, 39, 41, 43, 46, 52, 55, 57, 68, 69, 88, 89, 96, 112, 115, 116, 118, 120, 124, 128, 129, 130, 141, 144, 153, 158, 163, 164, 175, 187, 191, 200, 204, 205, 211, 214, 217, 221, 222, 231, 233, 234, 236, 237, 239, 241, 246, 252, 253, 254, 256, 259, 260, 265, 289, 291, 292, 293, 296, 297, 298, 310], "output_eqn": 158, "outputargu": [69, 254], "outputbuff": 221, "outputcheck": 252, "outputtexfil": 221, "outright": 240, "outsid": [4, 21, 36, 52, 65, 79, 88, 96, 99, 104, 124, 128, 196, 217, 233, 287, 292], "outweigh": 208, "over": [3, 5, 6, 7, 10, 11, 12, 13, 14, 16, 18, 22, 30, 31, 33, 38, 43, 48, 51, 58, 61, 67, 68, 69, 70, 79, 80, 83, 87, 88, 89, 90, 91, 92, 93, 102, 104, 111, 113, 117, 118, 120, 124, 125, 128, 135, 136, 137, 138, 140, 146, 152, 158, 170, 186, 189, 191, 195, 196, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 221, 224, 226, 228, 233, 234, 236, 237, 239, 240, 241, 242, 243, 245, 246, 255, 259, 260, 265, 268, 272, 275, 291, 295, 297, 299], "over_power_basi": 216, "overal": [88, 198, 207, 239], "overcompens": 89, "overconstrain": 56, "overdetermin": [54, 210, 239, 240], "overflow": [69, 256], "overhang": [136, 137], "overhead": [89, 129, 218], "overlap": [100, 105, 127, 208, 229, 262], "overleaf": 5, "overli": [54, 156], "overlin": [5, 41, 96, 130], "overload": [208, 211, 212, 269, 292, 299], "overrid": [14, 15, 16, 18, 69, 88, 97, 98, 104, 130, 189, 210, 221, 246, 253, 254, 259, 260], "overridden": [199, 208, 223, 297], "overview": [11, 209, 240, 273, 274], "overwrit": [30, 32, 304], "overwritten": 22, "own": [2, 4, 9, 11, 12, 14, 16, 18, 22, 30, 43, 63, 72, 79, 80, 88, 104, 130, 132, 137, 152, 216, 221, 228, 233, 237, 256, 259, 260, 291], "ownership": 210, "oxford": 124, "oyvind": 11, "p": [0, 8, 12, 13, 14, 15, 16, 18, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 39, 41, 42, 43, 46, 48, 49, 51, 61, 63, 64, 65, 69, 70, 71, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 105, 110, 111, 113, 115, 120, 124, 128, 130, 131, 134, 136, 137, 138, 140, 144, 145, 148, 149, 152, 153, 154, 155, 156, 158, 160, 163, 164, 170, 189, 191, 196, 201, 204, 206, 207, 209, 210, 211, 214, 215, 217, 218, 221, 223, 224, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 246, 247, 259, 265, 268, 269, 270, 271, 272, 274, 293, 297, 299, 303, 304, 306], "p0": [84, 98, 136, 216, 237], "p1": [18, 30, 35, 70, 79, 80, 84, 87, 98, 100, 101, 102, 103, 104, 136, 144, 149, 152, 155, 159, 160, 204, 207, 211, 212, 214, 218, 230, 241, 242, 299, 306], "p10": [79, 136], "p11": 100, "p12": [100, 136], "p13": 100, "p1_frame": 152, "p1_pt": 155, "p2": [18, 30, 35, 42, 79, 80, 87, 98, 100, 101, 102, 103, 104, 136, 144, 149, 152, 155, 159, 204, 207, 211, 212, 214, 218, 230, 241, 299], "p20": [79, 136], "p21": 100, "p22": 100, "p23": 100, "p2_pt": 155, "p3": [35, 87, 98, 100, 101, 103, 104, 144, 155, 207, 211, 230, 241, 299], "p3_pt": 155, "p4": [98, 101, 103, 104, 144, 155, 207, 299], "p4_pt": 155, "p5": [101, 103, 104, 136, 207], "p50": 136, "p6": [101, 104, 207], "p64": 212, "p7": [101, 104, 136, 207], "p8": [136, 207], "p9": 207, "p90": 88, "p_": [79, 84, 88, 115, 196, 234, 237, 242], "p_0": [79, 84, 106, 231, 234], "p_1": [35, 79, 84, 89, 93, 106, 128, 231, 234, 299], "p_12": 136, "p_2": [35, 79, 89, 93, 106, 128, 231, 299], "p_3": [35, 89, 299], "p_4": 299, "p_5": 136, "p_a": [210, 214], "p_a_b": 210, "p_dom": 211, "p_domain": 212, "p_expr": [211, 212], "p_frame": 152, "p_i": [79, 84, 93, 128], "p_invers": 237, "p_j": [79, 84], "p_k": [79, 93, 128], "p_m": 96, "p_masscent": 152, "p_mat": 46, "p_n": [89, 93, 96, 115, 217], "p_new": 241, "p_o_p": 22, "p_o_q": 30, "p_p": 79, "p_p_q": 30, "p_p_r": 22, "p_pt": 22, "p_q": 231, "p_r": 106, "p_so_o": 22, "p_val": [18, 51, 299], "p_x": 247, "p_y": 247, "p_z": 247, "pa": [18, 25, 28, 31, 35, 124, 132, 148, 153, 155, 156, 214], "packag": [2, 7, 8, 9, 11, 12, 18, 23, 30, 47, 49, 53, 54, 59, 116, 129, 130, 141, 151, 205, 221, 252, 271, 272, 291, 299], "pad": [16, 69, 89, 90, 91, 103, 128], "padded_kei": 89, "pafnuti": 5, "page": [0, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 27, 30, 36, 41, 42, 48, 49, 51, 52, 56, 58, 69, 70, 71, 87, 93, 113, 128, 129, 152, 153, 196, 207, 210, 211, 212, 215, 221, 231, 234, 257, 274, 297], "page52": 196, "page78": 196, "page_228": 96, "page_888": 115, "pai": 67, "pain": 3, "pair": [4, 14, 16, 18, 22, 28, 39, 48, 51, 68, 69, 79, 80, 88, 89, 94, 100, 105, 112, 124, 128, 132, 148, 156, 159, 181, 183, 185, 186, 191, 206, 208, 210, 211, 212, 214, 216, 217, 222, 227, 228, 230, 231, 233, 234, 237, 240, 241, 254, 259, 269, 286, 293, 306], "pairwis": [5, 65, 68, 88, 93, 105, 124, 128, 234, 239], "pakianathan": 74, "palancz08": 215, "palimpsest": 89, "palindrom": 128, "pal\u00e1ncz": 215, "panagioti": 217, "pankowski": 11, "papadopoulo": 29, "paper": [0, 4, 18, 36, 45, 124, 128, 216, 217, 230, 231, 234, 237, 302, 303], "paperforkcgx": 302, "paperforkcgz": 302, "paperforkl": 302, "paperframecgx": 302, "paperframecgz": 302, "paperradfront": 302, "paperradrear": 302, "paperwb": 302, "paprocki": 0, "parabol": 136, "parabola": 265, "paradigm": 14, "paragraph": [3, 4, 5, 43, 68], "parallel": [18, 35, 36, 61, 98, 101, 102, 104, 115, 141, 144, 147, 156, 159, 210, 214, 271, 275, 299], "parallel_axi": [149, 155], "parallel_lin": 101, "parallel_plan": 102, "parallel_poly_from_expr": 217, "parallelogram": 36, "param": [69, 90, 124, 207, 234], "param_circl": 275, "paramet": [3, 5, 12, 13, 14, 15, 16, 18, 21, 22, 30, 33, 36, 48, 54, 56, 61, 62, 64, 67, 69, 70, 71, 74, 79, 80, 84, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 111, 113, 115, 116, 118, 120, 123, 124, 125, 127, 128, 130, 132, 134, 136, 138, 140, 142, 144, 145, 146, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 166, 167, 168, 170, 171, 172, 174, 175, 176, 179, 180, 181, 183, 185, 186, 188, 189, 190, 191, 192, 193, 195, 200, 201, 202, 204, 205, 206, 207, 209, 210, 212, 214, 216, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 233, 234, 236, 237, 238, 239, 241, 242, 243, 246, 247, 250, 252, 253, 254, 256, 257, 259, 260, 265, 267, 268, 269, 270, 275, 287, 292, 299, 302], "parameter": [18, 51, 90, 97, 98, 101, 104, 234], "parameter_valu": [99, 102], "parametr": [69, 96, 97, 101, 124, 134, 207, 234, 240, 265, 268, 275], "parametric2dlineseri": 207, "parametric3dlineinteractiveseri": 207, "parametric3dlineseri": 207, "parametricintegr": 265, "parametricregion": [265, 268, 275], "parametricsurfaceseri": 207, "parametris": [88, 229], "parametrize_ternary_quadrat": 234, "paraxi": [160, 164], "pare1970": 68, "pareigi": 68, "paren": 221, "parent": [13, 24, 79, 88, 111, 148, 152, 158, 200, 204, 211, 212, 216, 252, 256, 265, 269, 270, 299], "parent_axi": [13, 152, 299], "parent_force_direction_vector": 299, "parent_fram": [13, 24], "parent_interfram": [13, 24, 152, 307], "parent_joint_po": [13, 152], "parent_point": [13, 24, 152, 304, 307], "parent_tangency_point": 299, "parent_vector": 152, "parenthes": [4, 12, 16, 21, 36, 88, 130, 179, 180, 221, 245, 262], "parenthesi": [221, 245], "parenthesize_sup": 221, "pareto": 241, "pareto_distribut": 241, "paretodistribut": 241, "parg": 96, "pariti": [13, 41, 80, 88, 217], "parity_": [41, 88], "park": 89, "pars": [12, 13, 14, 22, 24, 80, 88, 120, 218, 220, 276, 284], "parsabl": 15, "parse_autolev": 22, "parse_c": 2, "parse_expr": [2, 13, 14, 41, 57, 88, 130], "parse_latex": [57, 130], "parse_latex_lark": 130, "parse_mathematica": [2, 13, 130], "parse_maxima": [2, 130], "parser": [2, 23, 30, 120, 252], "part": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 21, 22, 23, 24, 28, 30, 32, 36, 41, 42, 43, 48, 61, 66, 79, 80, 87, 88, 89, 93, 94, 96, 104, 111, 113, 115, 118, 120, 124, 128, 131, 134, 144, 149, 151, 152, 153, 158, 175, 187, 191, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 229, 231, 233, 234, 237, 239, 252, 254, 256, 259, 287, 292, 297, 302, 303, 310], "part1": 152, "part2": 152, "part_sol": 237, "partcompon": 256, "partfrac": [217, 223], "parti": [158, 257], "partial": [8, 15, 30, 33, 67, 79, 86, 87, 88, 90, 92, 93, 94, 128, 130, 185, 200, 204, 210, 212, 215, 218, 221, 223, 230, 233, 237, 238, 242, 248, 265, 272, 287, 297], "partial_list": 217, "partial_veloc": [30, 200, 204], "partialderiv": 248, "particip": 7, "particl": [13, 18, 22, 23, 25, 27, 30, 31, 35, 149, 151, 152, 153, 155, 158, 167, 170, 177, 178, 189, 191, 194, 196, 247, 282, 306, 307], "particle_p": 22, "particle_r": 22, "particular": [3, 4, 11, 12, 13, 15, 16, 23, 41, 42, 49, 51, 65, 70, 79, 88, 89, 92, 96, 99, 113, 115, 118, 120, 124, 128, 136, 140, 151, 175, 186, 209, 210, 211, 212, 214, 216, 217, 227, 229, 231, 233, 234, 237, 239, 240, 252, 254, 256, 293, 295, 297], "particularli": [12, 14, 41, 92, 115, 211, 212, 231, 297, 298], "partit": [5, 27, 29, 75, 79, 93, 128, 234, 241, 256, 277, 306], "partition_": [77, 93], "partitionfunctionp": 128, "partitions_": [13, 128], "pascal": [93, 128], "pass": [2, 3, 4, 11, 12, 14, 15, 16, 18, 22, 28, 30, 31, 37, 38, 41, 42, 43, 50, 51, 54, 55, 57, 60, 61, 64, 67, 68, 69, 79, 80, 88, 89, 90, 92, 94, 95, 96, 98, 101, 102, 104, 115, 116, 118, 120, 124, 125, 128, 130, 132, 134, 136, 142, 144, 148, 149, 153, 156, 158, 159, 163, 180, 181, 185, 186, 188, 189, 205, 207, 208, 210, 211, 212, 214, 216, 217, 219, 221, 222, 228, 229, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 253, 254, 255, 257, 259, 260, 262, 264, 265, 286, 287, 292, 296, 297, 298, 306], "passiv": [132, 134, 188, 299], "past": [11, 12, 16, 94, 128, 220, 221, 296], "pastabl": 262, "pat_matrix": 147, "patashnik": 80, "patch": [13, 90, 221], "path": [4, 8, 12, 13, 18, 33, 35, 79, 104, 110, 130, 144, 156, 159, 207, 230, 233, 237, 240, 252, 253, 256, 257, 259, 262, 263, 272, 299, 303, 310], "pathsep": 262, "pathwai": [19, 134, 148, 151, 159, 282, 299], "pathwaybas": [18, 134, 148, 156, 299], "patrizia": 239, "pattern": [11, 12, 13, 15, 16, 41, 43, 88, 113, 115, 118, 124, 130, 185, 211, 231, 233, 237, 239, 287, 292], "paul": [93, 256], "paulbourk": 104, "pauli": [147, 282], "pauli_matric": [147, 166], "paulialgebra": 166, "paulimatric": 166, "pb": [35, 148, 156, 163], "pc": [152, 156, 218], "pc_group": 78, "pc_present": 78, "pc_resent": 78, "pc_sequenc": [78, 79], "pc_seri": [78, 79], "pcg": 78, "pcgroup": 78, "pd": 156, "pdb": 252, "pde": [235, 237, 277], "pde_1st_linear_constant_coeff": 238, "pde_1st_linear_constant_coeff_homogen": 238, "pde_1st_linear_variable_coeff": 238, "pde_hint": 238, "pde_hintnam": 238, "pde_separ": 238, "pde_separate_add": 238, "pde_separate_mul": 238, "pdf": [2, 5, 7, 18, 46, 55, 58, 67, 68, 79, 89, 91, 93, 110, 115, 124, 128, 136, 137, 140, 142, 144, 207, 210, 212, 215, 220, 221, 224, 230, 233, 234, 237, 241, 259, 265, 299], "pdiv": [212, 217], "pdp": 293, "pdsolv": 238, "pe": 87, "peak": [18, 134, 160], "peak_isometric_forc": [18, 134], "pearc": 233, "pearson": 241, "peculiar": [36, 113], "pedregosa": 0, "peek": [256, 297], "peerj": [0, 7], "pell": 234, "penalti": 21, "pendent": 30, "pendulum": [13, 23, 27, 31, 35, 55, 151, 152, 158, 301, 304, 305, 307], "pendulum_bodi": 303, "pendulum_izz": 13, "pendulum_joint": 152, "pendulum_mass": 13, "pendulum_point": 303, "pennat": [18, 134], "penros": [53, 120, 124], "penrose_pseudoinvers": 124, "pent": 99, "pentagonal_number_theorem": 93, "peopl": [3, 4, 7, 9, 11, 91, 96, 115, 124, 196, 241], "pep": [5, 69, 88, 118], "per": [3, 18, 33, 89, 124, 129, 140, 153, 156, 165, 195, 200, 207, 212, 217, 218, 265, 269, 271, 274], "percent": [124, 240], "percentag": [124, 128], "perfect": [4, 43, 55, 79, 88, 128, 234, 240, 291, 292], "perfect_numb": 128, "perfect_pow": [88, 128], "perfectli": [14, 80, 87, 88, 89, 214, 217, 220], "perfectnumb": 128, "perform": [2, 11, 12, 13, 14, 15, 23, 27, 28, 30, 33, 36, 38, 39, 41, 43, 66, 68, 69, 70, 79, 80, 83, 87, 88, 89, 91, 92, 94, 101, 105, 112, 115, 121, 124, 128, 129, 150, 151, 153, 175, 176, 185, 188, 191, 209, 210, 211, 214, 216, 217, 222, 223, 224, 228, 233, 234, 237, 239, 240, 241, 242, 253, 259, 265, 267, 269, 272, 286, 287, 291, 292, 297, 302, 306], "perhap": [11, 13, 18, 37, 69, 88, 118, 128, 176, 210, 211, 239, 254, 286], "periapsi": 98, "perimet": 104, "period": [3, 4, 11, 13, 27, 52, 67, 88, 89, 94, 113, 128, 144, 165, 187, 194, 216, 221, 224, 227, 236, 240, 241, 259, 303], "period_find": 187, "periodic_argu": 94, "periodic_continued_fract": 128, "perl": 128, "perlikowskia": 303, "perm": [76, 78, 79, 80, 81, 86, 93, 120, 124, 242], "perm1": 243, "perm2": 243, "perm2tensor": 247, "perm_cycl": [13, 80, 221], "perm_group": [73, 78, 79, 80, 85, 86], "perm_mat": [27, 153, 154], "perman": [11, 124], "permanent_": 124, "permeabl": 162, "permiss": [128, 206], "permit": [41, 80, 90, 94, 118, 128, 207, 239], "permitt": 162, "permut": [5, 70, 71, 73, 75, 76, 78, 81, 84, 85, 86, 89, 93, 96, 120, 124, 154, 191, 206, 210, 212, 217, 234, 242, 243, 247, 259, 277, 297], "permutation_oper": 191, "permutationgroup": [71, 73, 76, 78, 79, 80, 85, 86, 216], "permutationinvolut": 259, "permutationmatrix": [120, 124], "permutationoper": 191, "permute_backward": 124, "permute_col": 124, "permute_forward": 124, "permute_row": 124, "permute_sign": [234, 259], "permutebkwd": 124, "permutedim": [120, 242, 243], "permutefwd": 124, "permutlist": 191, "perpendicualar": 102, "perpendicular": [36, 98, 101, 102, 104, 117, 152, 159, 164, 310], "perpendicular_bisector": 101, "perpendicular_lin": [101, 102], "perpendicular_plan": 102, "perpendicular_seg": 101, "perri": 210, "persist": 256, "person": [5, 15], "perspect": [118, 128, 144, 196, 207, 254, 270, 274], "pertain": [34, 201, 203], "pertin": [31, 208, 216], "perus": 11, "peter": [29, 34, 87, 93, 96, 128, 203, 210, 217, 259], "peterson": 154, "petkovsek": [87, 239], "pexquo": [212, 217], "pfd": 217, "pfda": 217, "pfister": 215, "pfix": 35, "pfq": 237, "pgl": 71, "pgl2f5": 71, "pgl_2": 71, "pgroup": [79, 81], "phantom": 214, "phase": [11, 46, 88, 115, 142, 160, 163, 165, 175, 176, 240], "phase_retard": 163, "phase_unit": 142, "phase_unwrap": 142, "phaseg": 175, "phdthesisthieu": 237, "phenomenom": 18, "phenomenon": [67, 196, 214, 224, 292], "phi": [16, 30, 79, 88, 89, 93, 96, 113, 117, 124, 128, 146, 165, 174, 176, 206, 208, 216, 221, 237, 265, 275, 303], "phi1": 165, "phi2": 165, "phi_0": 96, "phi_a": 163, "phi_b": 163, "phia": 163, "phib": 163, "phidd": 221, "phil": 206, "philosoph": 15, "philosophi": [195, 237, 240, 282], "php": [80, 128, 234, 241], "phrase": [5, 11, 15, 89], "phy": [170, 196, 206], "physic": [2, 4, 17, 18, 19, 22, 23, 39, 44, 46, 69, 81, 93, 124, 128, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 204, 205, 206, 215, 241, 256, 259, 272, 291, 297, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311], "physicalconst": 195, "pi": [4, 12, 13, 14, 15, 16, 30, 32, 38, 41, 43, 49, 50, 52, 55, 57, 60, 61, 62, 64, 65, 66, 67, 69, 80, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 107, 113, 115, 124, 128, 146, 152, 159, 160, 162, 163, 164, 165, 167, 175, 186, 188, 189, 192, 194, 200, 206, 207, 209, 211, 212, 217, 221, 224, 228, 229, 230, 231, 233, 236, 237, 239, 240, 241, 259, 265, 268, 275, 286, 291, 297, 299, 302, 304], "pi_": 43, "pi_hex_digit": 128, "piab": 182, "piabbra": 182, "piabhamiltonian": 182, "piabket": 182, "pic": 68, "pick": [27, 41, 89, 93, 185, 187, 297], "pickl": 2, "pictori": 136, "pictur": [78, 221], "piec": [88, 92, 231, 254], "piecewis": [14, 42, 43, 69, 87, 93, 96, 115, 118, 136, 138, 189, 221, 223, 224, 239, 240, 241, 260, 287], "piecewise_exclus": 94, "piecewise_fold": 94, "piecewise_integr": 94, "pietjepuk314": 221, "pii": [215, 230], "pin": [13, 61, 136, 137, 140, 148, 152, 158, 299], "pin_joint": 148, "pinjoint": [13, 24, 148, 152, 158, 304, 307], "pinv": [120, 124], "pinv_solv": [119, 124], "pip": [2, 8, 9, 12, 59, 130], "pipe": 252, "pitch": 302, "pitfal": [14, 17, 36, 43, 211, 289, 294, 297], "pivot": [124, 210, 293, 303], "piziak": 124, "pkdata": 13, "pkg": [116, 205], "pl": 11, "place": [5, 7, 9, 11, 12, 13, 14, 15, 16, 30, 31, 41, 43, 52, 58, 68, 80, 81, 88, 89, 94, 104, 119, 124, 127, 128, 130, 131, 135, 136, 144, 210, 211, 215, 216, 221, 222, 228, 230, 233, 237, 256, 259, 285, 286, 293, 297], "placehold": [88, 260], "plai": [25, 41, 87, 234, 289, 291, 292, 302], "plain": [3, 4, 11, 12, 41, 88, 96, 116, 205, 210, 217, 221], "plaintext": [89, 221], "plan": [14, 21, 67, 212, 296], "planar": [98, 104, 137, 152, 164], "planar_coordin": 152, "planar_spe": 152, "planar_vector": 152, "planarjoint": 152, "planck": [198, 241], "planck_const": 173, "plane": [4, 35, 36, 46, 61, 88, 96, 98, 100, 101, 103, 104, 115, 124, 142, 144, 152, 163, 164, 229, 240, 275, 283, 297, 299, 302], "plane_vector": 152, "planet": [23, 151], "planetmath": 237, "plank": 173, "plant": [46, 144], "plant_mat": 144, "plate": 163, "platform": [4, 36, 88, 138, 191, 237, 253], "platon": 81, "plausibl": 208, "pleas": [0, 3, 4, 5, 7, 12, 13, 14, 21, 22, 23, 27, 28, 32, 36, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 65, 67, 88, 96, 100, 113, 128, 151, 153, 163, 164, 185, 206, 207, 208, 214, 215, 229, 233, 234, 239, 240, 260, 265, 270, 294, 298], "plenti": 13, "plot": [4, 18, 30, 43, 46, 55, 59, 97, 98, 100, 101, 104, 111, 116, 124, 136, 137, 138, 140, 143, 175, 178, 184, 224, 276, 282, 283, 291, 296, 299], "plot3d": [124, 207], "plot3d_parametric_lin": 207, "plot3d_parametric_surfac": 207, "plot_bending_mo": [136, 137], "plot_deflect": [136, 137], "plot_direct": 5, "plot_gat": 175, "plot_ild_mo": 136, "plot_ild_react": 136, "plot_ild_shear": 136, "plot_implicit": 207, "plot_interv": [97, 98, 101, 104], "plot_loading_result": [136, 137], "plot_parametr": 207, "plot_shear_forc": [136, 137], "plot_shear_stress": 136, "plot_slop": [136, 137], "plot_tens": 138, "plot_traj": 299, "plot_typ": 207, "plotgrid": 136, "plotli": 13, "plt": [18, 30, 55, 111, 299], "plu": [30, 69, 87, 124, 130, 171, 214, 217, 221, 231, 259, 260], "plug": [22, 196], "plural": [4, 5], "pm": [41, 48, 49, 51, 61, 87, 113, 115, 128, 209, 220, 228, 234, 237], "pmatrix": [130, 196], "pmf": 241, "pmint": 115, "pmod": [79, 88, 89, 93, 128, 231, 234], "pn": [27, 79, 306], "pn0": 261, "png": [18, 45, 46, 55, 68, 116, 124, 136, 137, 140, 142, 205, 207, 221, 224, 299], "pnot": 35, "po": [28, 30, 79, 113, 118, 124, 155, 156, 159, 212, 239], "pochhamm": [93, 221, 233], "pochhammer_symbol": 93, "pohlig": 128, "pohst": 216, "poin": 90, "poincar\u00e9": 163, "point": [2, 3, 4, 5, 12, 14, 15, 16, 18, 22, 24, 25, 26, 27, 28, 30, 31, 33, 36, 39, 41, 52, 54, 55, 59, 61, 67, 69, 70, 79, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 107, 110, 111, 112, 113, 115, 124, 128, 130, 132, 134, 136, 137, 138, 140, 142, 144, 148, 149, 152, 153, 154, 155, 156, 158, 159, 171, 193, 196, 201, 204, 207, 208, 210, 211, 212, 214, 216, 217, 221, 223, 227, 228, 229, 237, 239, 240, 241, 253, 256, 259, 260, 262, 265, 268, 270, 271, 272, 274, 275, 283, 286, 287, 289, 292, 299, 302, 303, 304, 306, 308, 309, 310, 311], "point1": [52, 201, 268], "point2": [52, 201, 268], "point2d": [97, 98, 99, 100, 101, 103, 104, 105], "point3d": [101, 102, 103, 164], "point_1": 159, "point_2": 159, "point_cflexur": 136, "point_load": 138, "point_o": [22, 155], "point_on_surfac": 159, "point_p": 90, "point_r": 90, "point_to_coord": 90, "pointer": [69, 254, 255], "pointer_const": 69, "pointless": 297, "pointload": [136, 137], "pointwis": [79, 86], "pointwise_stabil": 79, "poisson": 241, "poisson_distribut": 241, "poisson_point_process": 241, "poissondistribut": 241, "poissonprocess": 241, "pol": 90, "polar": [90, 94, 96, 98, 104, 136, 146, 161, 207, 229, 233, 240, 282], "polar_lift": [94, 96, 233], "polar_mo": 136, "polar_moment_of_inertia": [98, 104], "polar_second_moment_of_area": [98, 104], "polarcomplexregion": 229, "polaris": 164, "polarizing_beam_splitt": 163, "pole": [4, 13, 15, 46, 96, 113, 144, 152, 164, 228, 231, 237], "pole_color": 142, "pole_markers": 142, "pole_zero_numerical_data": 142, "pole_zero_plot": [46, 142], "poleerror": 88, "poli": [2, 15, 30, 48, 71, 87, 88, 89, 93, 94, 96, 97, 104, 110, 115, 120, 124, 128, 208, 209, 213, 214, 216, 217, 218, 220, 223, 236, 237, 239, 240, 252, 283], "polici": [6, 13, 255, 257], "polificationfail": 214, "polish": 233, "pollard": [128, 237], "pollard_pm1": 128, "pollard_rho": 128, "pollut": 12, "polnomi": 217, "poly1": 104, "poly2": 104, "poly_from_expr": [216, 217], "poly_lc": 214, "poly_r": [211, 212], "poly_tc": 214, "poly_unifi": 212, "polyalphabet": 89, "polybiu": 89, "polyclass": [211, 212, 217], "polyconfig": [214, 217], "polycycl": [75, 79, 277], "polycyclic_group": [78, 79], "polycyclicgroup": 79, "polycyl": 78, "polyel": [211, 212, 214, 218, 219, 221], "polyerror": [48, 214, 217], "polyfunc": [97, 212, 217], "polygamma": [4, 93, 96, 221], "polygamma2": 96, "polygamma_funct": 96, "polygammafunct": 96, "polygon": [4, 98, 99, 100, 105, 207, 275, 283], "polygonmesh": 104, "polygraph": 89, "polyhedr": 81, "polyhedra": 81, "polyhedralgroup": 81, "polyhedron": [75, 79, 115, 259, 277], "polylog": [96, 221], "polylogarithm": 96, "polymatrix": 13, "polymoni": 180, "polynomi": [4, 5, 14, 15, 30, 32, 39, 41, 49, 51, 57, 65, 79, 87, 88, 89, 92, 93, 106, 107, 109, 111, 115, 118, 120, 124, 128, 137, 144, 208, 210, 215, 219, 223, 228, 230, 231, 233, 234, 236, 237, 240, 252, 276, 283, 288, 293, 298], "polynomial_congru": [128, 214], "polynomialerror": [214, 217], "polynomialr": [208, 212, 219], "polyopt": [214, 218], "polyr": [212, 214, 219], "polyroot": 217, "polysi": 239, "polytool": [88, 210, 214, 217, 240], "polytope_integr": 115, "polyu": 144, "pomer": [128, 256], "pone": 61, "poor": [115, 129], "poorer": 67, "pop": [11, 115, 234], "popen": 221, "popul": [132, 134, 241], "popular": [0, 2, 30, 89, 129, 291], "port": [8, 130, 163, 302], "portabl": [252, 253], "portion": [18, 92, 104, 124, 148, 299], "portug": [84, 247], "pos_from": [13, 18, 22, 24, 30, 35, 148, 152, 155, 156, 158, 159, 204, 299, 302, 304, 306], "pos_vec": 155, "posform": 118, "posifi": [41, 233], "posit": [3, 11, 12, 13, 14, 15, 16, 18, 22, 24, 27, 28, 30, 33, 35, 36, 41, 42, 43, 46, 48, 52, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 77, 79, 80, 81, 83, 84, 87, 88, 89, 90, 92, 93, 94, 96, 98, 100, 101, 104, 113, 115, 117, 118, 119, 124, 125, 127, 128, 132, 136, 137, 138, 140, 144, 146, 148, 149, 152, 155, 156, 159, 160, 163, 165, 169, 186, 189, 191, 201, 202, 204, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 226, 227, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 247, 259, 260, 265, 268, 269, 270, 272, 274, 275, 293, 297, 298, 299, 302, 303, 306, 309, 311], "position2": [201, 268], "position_i": 169, "position_wrt": [265, 269, 270, 271], "position_x": 169, "position_z": 169, "positionbra3d": 169, "positionket3d": 169, "positionstate3d": 169, "positive_definit": 65, "positive_real_numb": 41, "positive_root": 117, "positivedefinitehandl": 65, "positivedefinitematrix": 124, "positivedefinitepred": 65, "positivehandl": 65, "positivepred": 65, "poss": [36, 78, 302], "possess": [28, 149, 247], "possibl": [4, 8, 11, 12, 13, 14, 15, 18, 21, 26, 32, 33, 37, 41, 42, 43, 46, 48, 51, 56, 59, 67, 69, 70, 71, 72, 77, 79, 80, 82, 83, 84, 88, 89, 93, 94, 96, 98, 100, 102, 103, 105, 110, 112, 113, 115, 117, 118, 120, 124, 128, 130, 132, 134, 145, 146, 148, 153, 156, 159, 185, 187, 191, 193, 195, 196, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 227, 228, 229, 230, 233, 234, 237, 238, 239, 240, 241, 242, 247, 252, 254, 255, 256, 257, 259, 260, 269, 270, 272, 288, 289, 292, 297, 302], "possiblezeroq": 293, "possibli": [14, 41, 69, 80, 86, 88, 113, 115, 128, 194, 210, 212, 214, 228, 229, 239, 254, 259, 287, 293], "post": [7, 13, 41, 48, 50, 51, 52, 53, 54, 55, 56, 57, 69, 82, 88, 221, 222, 233, 252, 292], "postdecr": 69, "postfix": [221, 259], "postincr": 69, "postiv": 96, "postord": 88, "postorder_travers": [13, 88, 292], "postpon": 93, "postprocess": [69, 207, 217, 222, 233], "postprocessor": [222, 233], "postscript": 221, "postul": 128, "potenti": [13, 14, 23, 34, 41, 100, 120, 124, 128, 131, 149, 153, 155, 158, 201, 210, 211, 212, 216, 221, 228, 231, 233, 237, 255, 256, 268, 274, 303, 311], "potential_energi": [13, 28, 149, 153, 155, 158, 311], "pound": 195, "povm": 185, "pow": [4, 13, 15, 16, 61, 66, 69, 88, 89, 94, 113, 124, 128, 190, 210, 211, 212, 217, 221, 223, 230, 233, 239, 240, 292, 296], "pow_cos_sin": 61, "pow_xin": 218, "powdenest": [94, 233], "power": [13, 16, 22, 30, 50, 55, 61, 66, 69, 78, 79, 80, 89, 91, 92, 93, 110, 111, 113, 115, 117, 120, 124, 128, 129, 130, 144, 163, 174, 177, 190, 193, 195, 196, 197, 200, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 220, 221, 222, 225, 228, 230, 233, 234, 237, 239, 240, 241, 245, 254, 259, 277, 286, 287, 288, 289, 290, 292, 293, 296], "power_bas": [88, 124], "power_basis_ancestor": 216, "power_exp": [88, 124], "power_func": 241, "power_represent": 234, "power_set": 229, "powerbasi": 216, "powerbasisel": 216, "powerfunct": 241, "powerrul": 115, "powerset": 229, "powf": 221, "powi": [69, 221], "powl": [69, 221], "powsimp": [16, 88, 94, 230, 233], "pp": [4, 18, 27, 79, 80, 86, 87, 88, 89, 93, 94, 115, 124, 128, 131, 132, 134, 154, 206, 209, 210, 214, 215, 237, 238, 241, 299, 306], "pp1": 100, "pp2": 100, "pp3": 100, "pprint": [12, 14, 15, 16, 18, 43, 46, 52, 67, 68, 90, 96, 115, 124, 128, 144, 163, 206, 221, 222, 229, 233, 237, 238, 240, 241, 259, 296], "pprint_nod": 221, "pq": [241, 271], "pqa": 234, "pquo": [212, 217], "pr": [3, 11, 12, 13, 87, 152, 212, 214, 215, 217, 240], "prabha": 80, "practic": [9, 16, 17, 18, 24, 27, 30, 39, 41, 48, 51, 54, 57, 77, 79, 88, 89, 98, 207, 208, 209, 211, 214, 216, 218, 245, 289, 290], "pre": [15, 61, 68, 69, 88, 206, 207, 222, 230, 233, 239, 240, 252, 270, 274, 292], "preambl": [116, 205, 221], "prebuilt": 241, "prec": [43, 54, 88, 98, 104, 128, 142, 206, 212, 217, 218, 233, 239], "preced": [4, 5, 16, 70, 80, 88, 89, 92, 93, 171, 233, 260], "precedence_float": 221, "precedence_fracel": 221, "precedence_funct": 221, "precedence_integ": 221, "precedence_mul": 221, "precedence_polyel": 221, "precedence_r": 221, "precedence_unevaluatedexpr": 221, "precedence_valu": 221, "precis": [2, 3, 4, 14, 15, 16, 28, 41, 42, 43, 48, 52, 69, 79, 88, 91, 92, 93, 96, 104, 115, 124, 128, 142, 206, 208, 211, 212, 216, 217, 218, 221, 228, 233, 234, 239, 240, 253, 254, 262, 286, 287, 297], "precision_target": 69, "precisionexhaust": [88, 92], "precomput": [41, 93, 128, 260], "predecr": 69, "predefin": [30, 43, 90, 211, 221, 222, 233, 240, 247, 265, 270], "predetermin": [88, 252], "predic": [13, 15, 62, 63, 67, 88, 130, 217, 233, 259, 277], "predicate_": [63, 64], "predict": [41, 191, 233, 259], "prefer": [2, 4, 8, 9, 11, 12, 13, 14, 15, 22, 41, 43, 45, 48, 53, 54, 55, 69, 71, 80, 87, 88, 96, 128, 130, 132, 152, 191, 195, 196, 200, 207, 210, 212, 214, 216, 221, 229, 233, 237, 239, 246, 252, 254, 257, 260, 291, 293], "preferred_index": [96, 191], "prefix": [3, 11, 69, 88, 124, 128, 195, 198, 199, 211, 214, 218, 221, 234, 237, 253, 254, 259, 282], "prefix_express": 221, "prefix_i1_i2_": 124, "preimag": 208, "preincrement": 69, "preliminari": 290, "prem": [212, 217], "premad": 69, "premis": 68, "premises_kei": 68, "premultipli": 217, "preorder_travers": [13, 88, 292], "prep": [128, 237, 238], "prepar": [7, 41, 153, 219], "prepend": [8, 68, 79, 124, 144, 198, 221, 247], "prepopul": 18, "preprint": [128, 215], "preprocess": [41, 115, 219], "preprocessor": [69, 222, 233, 254], "preprocessor_stat": 254, "prerequisit": 8, "presenc": [9, 27, 88, 94, 118, 140, 158, 237, 245, 306], "present": [0, 2, 5, 13, 15, 16, 18, 33, 39, 45, 67, 68, 72, 75, 79, 80, 82, 86, 88, 91, 115, 124, 128, 131, 134, 136, 140, 142, 144, 153, 158, 191, 193, 200, 202, 205, 207, 208, 214, 215, 216, 220, 221, 234, 240, 254, 260, 268, 269, 270, 274, 277, 298, 301, 302], "preserv": [57, 68, 69, 79, 88, 124, 189, 210, 212, 217, 222, 223, 233], "presimplifi": 306, "press": [16, 68, 70, 72, 80, 89, 115, 124, 206, 215, 234, 239, 299], "presum": [41, 113, 211, 231, 254], "pretti": [4, 9, 11, 12, 15, 43, 68, 69, 96, 115, 116, 124, 128, 137, 144, 205, 231, 233, 240, 274, 288, 291, 293, 297, 302], "prettifi": 221, "pretty_ascii_repr": 198, "pretty_atom": 221, "pretty_indic": 191, "pretty_print": [24, 25, 26, 28, 31, 35, 36, 80, 116, 149, 155, 158, 200, 202, 204, 205, 221, 302, 304, 309, 310, 311], "pretty_scalar": 265, "pretty_symbol": 221, "pretty_symbologi": 221, "pretty_try_use_unicod": 221, "pretty_unicode_repr": 198, "pretty_use_unicod": 221, "pretty_vect": 265, "prettyform": 221, "prev": [82, 88, 261], "prev_binari": 83, "prev_grai": 83, "prev_lex": 77, "prev_lexicograph": 83, "prevent": [3, 7, 12, 14, 16, 21, 52, 57, 69, 88, 94, 125, 128, 158, 210, 212, 217, 221, 233, 241, 250, 257, 288], "preview": [2, 11, 68, 255], "preview_diagram": 68, "previou": [3, 4, 12, 13, 14, 27, 35, 36, 43, 72, 77, 78, 79, 80, 83, 88, 93, 94, 115, 118, 124, 127, 130, 149, 193, 214, 227, 234, 238, 242, 259, 290, 292, 297], "previous": [2, 3, 11, 13, 24, 33, 87, 134, 148, 152, 220, 233, 241, 272, 301, 310], "previous_term": [88, 94], "prevprim": [93, 128], "pri": 89, "primal": [128, 208], "primari": [2, 3, 4, 5, 12, 14, 18, 36, 41, 43, 88, 100, 118, 131, 134, 148, 208, 210, 254, 260], "primarili": [2, 14, 15, 41, 69, 88, 94, 128, 136, 190, 217, 219, 253, 256, 262, 269], "prime": [13, 41, 55, 62, 63, 64, 65, 79, 86, 87, 88, 89, 91, 93, 96, 128, 162, 208, 209, 210, 211, 212, 214, 217, 231, 233, 234, 241, 256], "prime_as_sum_of_two_squar": 234, "prime_bound": 128, "prime_decomp": 216, "prime_numb": [41, 88, 128], "prime_number_theorem": 128, "prime_ord": 128, "prime_valu": 216, "primefactor": [93, 128], "primehandl": 65, "primeid": [212, 216], "primenu": [13, 93, 128], "primeomega": [13, 93, 128], "primepi": [13, 15, 43, 93, 128], "primepred": [13, 65], "primerang": [93, 128], "primes_abov": [212, 216], "primetest": [13, 88, 93, 128], "primit": [15, 79, 88, 89, 96, 128, 185, 189, 208, 209, 210, 211, 212, 214, 216, 217, 220, 221, 234, 287], "primitive_el": [88, 211, 212, 216], "primitive_root": [128, 216], "primori": 128, "primtiiv": 216, "princeton": [206, 241], "princip": [68, 89, 94, 96, 113, 115, 124, 125, 146, 164, 208, 209, 210, 211, 212, 214, 216, 217, 218, 302], "principal_branch": [94, 113], "principal_valu": [94, 115], "principl": [2, 89, 124, 128, 162, 206, 208, 209, 214, 230, 239], "print": [1, 3, 4, 5, 7, 11, 12, 14, 15, 16, 22, 29, 34, 36, 39, 41, 42, 46, 48, 51, 52, 54, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 77, 79, 80, 87, 88, 89, 92, 93, 94, 96, 115, 117, 118, 120, 124, 125, 128, 129, 130, 136, 137, 144, 151, 153, 158, 163, 171, 184, 185, 189, 191, 200, 203, 207, 210, 211, 212, 214, 216, 217, 227, 228, 230, 231, 233, 237, 239, 246, 248, 252, 254, 259, 260, 262, 265, 269, 276, 282, 284, 287, 288, 289, 290, 291, 292, 293, 297, 302], "print_builtin": [116, 205], "print_ccod": 221, "print_cycl": 80, "print_debug_output": 130, "print_dim_bas": 193, "print_fcod": 221, "print_funct": 39, "print_gtk": 221, "print_latex": 221, "print_maple_cod": 221, "print_mathml": [221, 296], "print_my_latex": 221, "print_nod": 221, "print_nonzero": [124, 259], "print_python": 221, "print_rcod": 221, "print_report": 71, "print_tre": 221, "printabl": [13, 89], "printer": [11, 12, 13, 14, 15, 18, 43, 80, 88, 96, 116, 124, 129, 205, 243, 246, 253, 254, 260, 288, 292], "printer_exampl": 221, "printer_set": 69, "printmethod": [43, 221], "prior": [3, 12, 13, 59, 204, 217, 233, 293], "prioriti": [21, 22, 36, 53, 69, 111, 260], "prism": 71, "prismat": 152, "prismaticjoint": [13, 24, 149, 152, 158, 307], "privat": [3, 4, 22, 88, 89, 207, 254], "prk": 89, "prng": 124, "prob": [189, 241], "probabilist": [96, 217, 241], "probabilit": 13, "probability_book": 241, "probability_distribut": 241, "probabilitycours": 241, "probabl": [7, 11, 14, 22, 71, 79, 88, 93, 96, 100, 128, 185, 189, 231, 237, 240, 241, 253, 289, 295], "problem": [5, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 32, 35, 36, 39, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 72, 82, 84, 88, 89, 100, 113, 115, 124, 128, 131, 132, 134, 136, 138, 139, 140, 145, 151, 153, 208, 209, 214, 231, 233, 234, 237, 239, 240, 256, 259, 282, 287, 289, 293, 299, 303, 305, 306, 310], "problemat": [13, 14, 43, 211], "proc": [88, 212, 239], "proce": [27, 102, 214, 216, 231, 239], "procedur": [8, 28, 51, 53, 70, 71, 73, 79, 85, 86, 87, 115, 124, 153, 214, 216, 233, 234, 239, 240, 265, 293], "proceed": [29, 68, 70, 113, 115, 215, 231], "process": [4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 22, 24, 25, 27, 30, 41, 66, 69, 79, 80, 86, 88, 89, 94, 96, 104, 113, 115, 124, 128, 131, 144, 153, 154, 207, 208, 214, 221, 222, 229, 233, 237, 239, 243, 252, 256, 297, 300, 302, 310], "process_seri": 207, "prod": [88, 130, 211, 214, 218, 230], "prod_": [87, 93, 96, 113, 128, 196, 231], "produc": [2, 4, 5, 12, 14, 15, 18, 42, 43, 51, 53, 54, 55, 57, 68, 79, 88, 89, 101, 115, 118, 124, 131, 132, 134, 148, 156, 200, 210, 211, 216, 217, 221, 228, 237, 238, 239, 241, 250, 252, 256, 257, 259, 260, 296, 299, 300], "product": [12, 13, 21, 28, 30, 32, 34, 35, 36, 41, 61, 71, 73, 76, 79, 80, 84, 86, 87, 88, 89, 90, 92, 93, 96, 98, 101, 103, 104, 111, 113, 115, 117, 118, 120, 124, 128, 129, 130, 134, 144, 145, 146, 152, 166, 170, 171, 174, 176, 177, 178, 180, 183, 185, 186, 188, 189, 191, 195, 196, 197, 200, 202, 203, 206, 208, 209, 210, 212, 214, 216, 217, 218, 221, 222, 223, 226, 229, 230, 233, 234, 237, 238, 239, 240, 241, 243, 245, 246, 247, 253, 256, 259, 265, 269, 282, 302], "product_and_invers": 80, "product_matrix_left": 61, "product_matrix_right": 61, "product_replacement_algorithm": 79, "productdomain": 241, "productpspac": 241, "productset": [229, 240], "prof": 124, "profession": 9, "profil": [136, 144], "prog": [69, 170], "program": [2, 5, 16, 30, 41, 69, 72, 80, 196, 206, 254, 256, 289, 291, 295, 297], "programm": [128, 221], "programmat": [0, 14, 15, 37, 38, 56, 57, 240, 270], "programminggeek": 259, "progress": [11, 62, 64, 128, 254], "prohibit": [68, 80, 81, 200], "project": [5, 9, 10, 11, 13, 29, 45, 69, 71, 101, 102, 103, 117, 124, 253, 254, 265], "project__test__h": [69, 254], "projection_lin": 102, "projective_linear_group": 71, "promin": 218, "prompt": [4, 8, 12, 15], "prone": [43, 51, 69, 88], "pronoun": 5, "pronounc": 297, "proof": [12, 79, 82, 113, 115, 240], "proofwiki": 234, "prooject": 115, "prop": [79, 216], "prop_even": 79, "propag": [18, 92, 101, 162, 165, 299], "proper": [11, 16, 21, 22, 32, 79, 88, 115, 128, 211, 212, 216, 221, 229, 237, 242, 253, 254, 272, 293], "proper_divisor": 128, "proper_divisor_count": 128, "properli": [3, 11, 12, 15, 22, 25, 43, 68, 88, 94, 100, 113, 124, 154, 168, 172, 175, 189, 209, 211, 221, 237, 240, 250, 254, 260, 293, 298], "properti": [3, 12, 14, 15, 18, 28, 30, 32, 33, 36, 38, 43, 48, 53, 55, 61, 63, 64, 67, 68, 69, 70, 71, 72, 76, 77, 79, 80, 81, 82, 83, 87, 88, 89, 90, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 111, 113, 115, 120, 124, 128, 131, 132, 134, 136, 137, 138, 140, 141, 144, 148, 149, 152, 153, 155, 156, 158, 159, 160, 162, 165, 166, 169, 170, 175, 176, 177, 179, 180, 187, 189, 191, 193, 195, 196, 198, 199, 200, 201, 202, 206, 207, 209, 210, 211, 212, 214, 216, 217, 220, 223, 224, 227, 228, 229, 231, 234, 237, 240, 241, 246, 247, 252, 254, 255, 265, 268, 269, 270, 272, 274, 293, 299], "propfunc": 255, "proport": [79, 89, 148, 228, 260], "propos": [9, 128], "proposit": [62, 64, 118], "proprietari": 30, "proquest": 241, "protect": [89, 221], "proth": 128, "proth_prim": 128, "proth_test": 128, "prototyp": [69, 129, 254], "prove": [53, 88, 113, 115, 124, 208, 228, 237, 271], "proven": [115, 128, 271, 289], "provid": [0, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 17, 18, 21, 23, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 37, 39, 40, 41, 42, 43, 46, 49, 50, 54, 58, 61, 67, 68, 69, 70, 71, 77, 78, 79, 80, 86, 87, 88, 90, 92, 96, 97, 99, 104, 107, 110, 111, 115, 116, 118, 120, 124, 125, 127, 128, 129, 130, 131, 133, 134, 137, 140, 142, 149, 151, 152, 153, 155, 158, 164, 165, 185, 193, 194, 195, 199, 200, 201, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 224, 226, 229, 230, 231, 233, 237, 238, 239, 240, 241, 242, 246, 247, 252, 253, 254, 256, 257, 259, 260, 262, 265, 268, 269, 270, 272, 273, 275, 287, 291, 292, 293, 297, 299, 300, 302, 303, 304, 306, 307], "providean": 234, "prudent": 12, "prudnikov": [113, 231], "prudnikov1990": [113, 231], "prufer": [75, 277], "prufer_rank": 82, "prufer_repr": 82, "prune": 79, "pset": 229, "pseudo": [80, 124, 128, 212, 214, 217], "pseudocod": 79, "pseudoinvers": [53, 124], "pseudoprim": 128, "pseudorandom": [128, 259], "pseudotensor": 96, "psg": 81, "psi": [16, 93, 96, 113, 163, 174, 175, 181, 189, 216, 221, 247], "psi_": [146, 167], "psi_n": [69, 167], "psi_nl": 69, "psi_nlm": 146, "psl2f5": 71, "psl_2": 71, "psm": 128, "pspace": 241, "pspace1": 241, "pspace2": 241, "pstack": 256, "psu": [215, 230], "psum": 217, "psw_primality_test": 128, "pt": [89, 97, 98, 99, 101, 102, 103, 104, 227], "pt1": 102, "pth": 61, "pub": [89, 265], "public": [0, 4, 11, 12, 69, 88, 89, 110, 131, 132, 134, 211, 212, 214, 215, 219, 234, 237, 241, 255, 265], "public_kei": 89, "publicli": 89, "publish": [4, 18, 113, 131, 132, 134, 231], "pug": 89, "puiseux": 218, "puk": 89, "pull": [2, 3, 4, 5, 8, 9, 12, 13, 14, 18, 43, 59, 69, 88, 93, 96, 148, 190, 222, 233, 237, 240, 293, 297, 299], "puppi": 89, "purdu": 265, "pure": [0, 2, 13, 14, 15, 27, 52, 54, 61, 89, 94, 115, 118, 120, 134, 144, 196, 210, 211, 212, 214, 217, 221, 241, 259], "purepoli": [124, 210, 217], "purpos": [4, 5, 9, 12, 13, 14, 15, 18, 22, 28, 30, 36, 40, 41, 43, 55, 68, 69, 79, 85, 88, 89, 115, 124, 128, 149, 196, 207, 211, 214, 218, 220, 221, 228, 237, 240, 246, 256, 258, 260, 269, 270, 287, 297], "purposefulli": 302, "push": [9, 11, 12, 18, 113, 148, 156, 299], "pushforward": 90, "put": [3, 4, 11, 13, 14, 15, 16, 39, 43, 50, 69, 84, 85, 88, 89, 90, 94, 118, 124, 163, 168, 172, 187, 188, 217, 221, 222, 230, 231, 233, 237, 242, 248, 253, 293, 297, 299], "puyoqrstvwx": 89, "pval": 239, "pw": 221, "px": [155, 181, 186, 247], "px_1": 186, "px_2": 186, "pxbra": [169, 181], "pxket": [169, 181, 186], "pxop": [169, 181, 186], "py": [2, 3, 4, 11, 12, 41, 45, 68, 88, 99, 113, 115, 124, 130, 169, 171, 207, 210, 212, 218, 221, 228, 231, 237, 238, 247, 250, 252, 257, 260], "py_mod": 69, "py_str": 69, "pycod": [69, 221], "pycodestyl": 12, "pycosat": 2, "pycqa": 12, "pydi": [22, 30, 200], "pyf": 254, "pyflak": 12, "pyglet": [2, 221], "pyglet_plot": 207, "pygletplot": [2, 207], "pylab": 116, "pymc": [2, 241], "pynam": 254, "pyodid": 250, "pypi": 59, "pyplot": [18, 30, 55, 111, 299], "pysat": 2, "pytest": [2, 3, 11, 12, 13, 249, 255, 257, 260, 284], "pytestreport": 252, "pythag": 51, "pythag_eq": 51, "pythag_v": 51, "pythagora": 159, "pythagorean": [51, 234], "pythogorean": 51, "python": [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 21, 22, 30, 38, 41, 42, 43, 47, 48, 49, 52, 53, 55, 57, 58, 59, 62, 63, 64, 67, 80, 88, 89, 92, 94, 100, 116, 118, 120, 124, 128, 129, 130, 136, 142, 200, 207, 208, 209, 210, 211, 212, 218, 220, 221, 229, 233, 237, 240, 242, 252, 253, 254, 255, 256, 259, 260, 265, 289, 290, 291, 292, 293, 295, 296, 297], "python3": [2, 8, 69, 130, 221], "python_trick": 259, "python_vers": 255, "pythonfinitefield": [211, 212], "pythonhashse": [12, 252], "pythoninteg": 212, "pythonmpq": [211, 212], "pythonr": [212, 219], "pythonrationalfield": 212, "pythontyp": 221, "pythonwarn": 13, "pz": [91, 142, 247], "q": [13, 14, 15, 16, 18, 22, 24, 25, 26, 27, 30, 31, 33, 35, 38, 41, 49, 51, 60, 61, 62, 63, 64, 65, 66, 69, 80, 84, 87, 88, 89, 96, 105, 110, 111, 113, 115, 117, 124, 130, 134, 136, 138, 144, 145, 148, 149, 152, 153, 154, 156, 158, 159, 160, 171, 185, 191, 194, 200, 201, 202, 204, 205, 207, 208, 209, 211, 212, 214, 216, 217, 218, 220, 221, 223, 231, 234, 237, 239, 241, 246, 247, 262, 265, 268, 269, 271, 274, 293, 297, 299, 302, 306, 311], "q0": [152, 200, 237, 265, 267], "q0_": 152, "q0_c1": 152, "q0_c2": 152, "q0_pc": 152, "q1": [21, 22, 25, 26, 27, 31, 32, 35, 36, 61, 124, 136, 152, 200, 202, 204, 205, 211, 265, 267, 299, 302, 303, 304, 306, 307, 309, 310, 311], "q1_": 152, "q1_c1": 152, "q1_c2": 152, "q1_pc": 152, "q1d": [21, 22, 25, 26, 27, 28, 32, 36, 205, 302, 303, 306, 309, 310, 311], "q1dd": 205, "q2": [21, 22, 25, 26, 31, 32, 35, 36, 61, 136, 152, 200, 202, 204, 205, 211, 265, 267, 299, 302, 303, 304, 306, 307, 309, 310, 311], "q2_": 152, "q2_pc": 152, "q2d": [21, 22, 25, 26, 204, 205, 302, 306, 309, 310, 311], "q2dd": 205, "q3": [21, 25, 35, 36, 61, 200, 202, 204, 265, 267, 299, 302, 304, 307, 309, 310, 311], "q3d": [21, 25, 309, 310, 311], "q4": [25, 202, 299, 302], "q4d": [25, 302], "q5": [202, 302], "q5d": 302, "q6": 202, "q_": [13, 88, 152, 205, 234, 237, 299], "q_0": [18, 152, 171, 234], "q_1": [27, 35, 152, 171, 217, 234, 299, 303, 304, 306, 307], "q_2": [27, 35, 152, 299, 303, 304, 306, 307], "q_3": [35, 299, 304, 307], "q_4": 299, "q_annihil": 191, "q_aug": 124, "q_creator": 191, "q_d": 154, "q_dep": [25, 27, 153, 158, 304], "q_depend": [25, 30, 153, 299, 302, 306], "q_domain": 212, "q_expr": 212, "q_i": [27, 115, 154], "q_ind": [22, 25, 27, 30, 153, 154, 158, 302, 304, 306, 309, 310], "q_j": 13, "q_j1": 152, "q_j2": 152, "q_m": 96, "q_n": 217, "q_op": [154, 306], "q_orient": [265, 267], "q_p1": 152, "q_p2": 152, "q_pc": 152, "q_pin": [13, 158], "q_slider": 158, "q_val": [51, 299], "q_x": [35, 104], "q_y": [35, 104], "qa": 30, "qad": 30, "qappli": [175, 176, 178, 180, 185, 282], "qb": [30, 209], "qbd": 30, "qd": [25, 149, 153, 158, 204, 299, 302], "qd_dep": [27, 153], "qd_ind": [27, 153], "qd_op": 154, "qdot": [153, 204, 302], "qdoubledot": 153, "qexpr": 186, "qft": [178, 187, 282], "qg": 214, "qho": 69, "qho_1d": [69, 167], "qiq": 89, "qmonserrat": 11, "qn": 88, "qo": 30, "qp": 35, "qq": [11, 106, 107, 109, 110, 111, 115, 208, 209, 210, 211, 214, 216, 217, 218], "qq_col": 216, "qq_i": [210, 211, 214], "qq_matrix": 216, "qq_python": 212, "qquad": [94, 196, 214], "qr": 124, "qr_solv": 124, "qrdecomposit": [119, 124], "qrgk": 89, "qrgkkthrzqebpr": 89, "qrsolv": [119, 124], "qstate": 176, "qt": 2, "qtconsol": [59, 296], "qtf": 184, "quad": [46, 87, 88, 90, 92, 96, 115, 124], "quadrant": [94, 212, 240], "quadrat": [48, 51, 88, 89, 93, 115, 128, 208, 212, 216, 217, 234, 239, 241], "quadratic_congru": 128, "quadratic_distribut": 241, "quadratic_residu": 128, "quadraticu": 241, "quadratur": [88, 92, 115, 237], "quadrupl": [68, 217], "qualifi": [4, 13], "qualiti": [129, 221], "qualnam": [71, 134], "quantifi": 274, "quantil": 241, "quantit": [69, 193], "quantiti": [13, 14, 16, 18, 21, 28, 32, 33, 35, 36, 80, 88, 93, 96, 100, 105, 137, 148, 153, 170, 193, 195, 199, 216, 233, 241, 269, 274, 282, 299, 310], "quantity_simplifi": 195, "quantiz": [177, 282], "quantum": [13, 47, 146, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 206, 282, 301], "quarter": [152, 159, 163], "quarter_wave_retard": 163, "quartic": [48, 98, 217, 239], "quasi": 191, "quaternion": [36, 200, 204, 265, 267], "quaternionorient": [265, 267, 270], "qubit": [171, 175, 176, 177, 178, 184, 282], "qubit_to_matrix": 185, "qubit_valu": 185, "qubitbra": 185, "quebec": 215, "queri": [14, 15, 41, 42, 43, 62, 65, 66, 67, 69, 88, 100, 217, 233, 241], "query_gt": 241, "question": [3, 4, 5, 7, 11, 12, 21, 32, 39, 41, 79, 87, 90, 98, 105, 113, 115, 118, 128, 193, 196, 208, 211, 216, 231, 240, 259, 262], "quick": [4, 5, 11, 14, 43, 88, 124, 128, 233, 239, 260], "quicker": [79, 128], "quickli": [12, 14, 39, 43, 79, 80, 88, 89, 92, 93, 128, 210, 214, 217, 230, 240, 256], "quickstart": 9, "quiet": 116, "quin": 118, "quintic": [48, 217, 239], "quirk": 42, "quit": [15, 35, 39, 43, 96, 124, 128, 207, 218, 220, 231, 239, 259, 274, 289, 292, 302], "quo": [211, 212, 214, 217], "quo_ground": [212, 217], "quot": [4, 11, 16, 69, 118, 221, 262], "quotat": 5, "quotedstr": 69, "quotient": [87, 88, 91, 94, 128, 208, 209, 211, 214, 217, 231, 233, 237], "quotient_codomain": 208, "quotient_domain": 208, "quotient_hom": 208, "quotient_modul": 208, "quotient_r": [208, 212], "quotientmodul": 208, "quotientmoduleel": 208, "quotientr": [208, 212], "qv": 212, "qwerti": 246, "qwp": 163, "r": [0, 4, 5, 8, 9, 12, 13, 16, 18, 22, 27, 28, 29, 30, 31, 33, 35, 39, 41, 43, 48, 61, 68, 69, 70, 72, 79, 80, 88, 89, 90, 92, 93, 94, 101, 102, 104, 106, 110, 111, 113, 115, 124, 128, 130, 131, 134, 137, 140, 144, 146, 149, 152, 153, 154, 155, 156, 158, 159, 160, 163, 187, 188, 191, 192, 194, 200, 201, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 221, 222, 223, 228, 229, 231, 233, 234, 237, 239, 240, 241, 247, 252, 254, 256, 265, 268, 270, 271, 272, 275, 297, 299, 302, 303, 306, 308, 309, 310, 311], "r0": [48, 88, 136, 217], "r1": [33, 48, 61, 88, 98, 101, 117, 124, 136, 137, 164, 200, 217, 265], "r10": [65, 136], "r100": 87, "r1000": 241, "r1001": 241, "r1002": 241, "r1003": 241, "r1004": 241, "r1005": 241, "r1006": 241, "r1007": 241, "r1008": 241, "r1009": 241, "r101": 87, "r1010": 241, "r1011": 241, "r1012": 241, "r1013": 241, "r1014": 241, "r1015": 241, "r1016": 241, "r1017": 241, "r1018": 241, "r1019": 241, "r102": 87, "r1020": 241, "r1021": 241, "r1022": 241, "r1023": 241, "r1024": 241, "r1025": 241, "r1026": 241, "r1027": 241, "r1028": 241, "r1029": 241, "r103": 87, "r1030": 241, "r1031": 241, "r1032": 241, "r1033": 241, "r1034": 241, "r1035": 241, "r1036": 241, "r1037": 241, "r1038": 241, "r1039": 241, "r104": 87, "r1040": 241, "r1041": 241, "r1042": 241, "r1043": 241, "r1044": 241, "r1045": 241, "r1046": 241, "r1047": 241, "r1048": 241, "r1049": 241, "r105": 87, "r1050": 241, "r1051": 241, "r1052": 253, "r1053": 259, "r1054": 259, "r1055": 259, "r1056": 259, "r1057": 259, "r1058": 259, "r1059": 259, "r106": 87, "r1060": 259, "r1061": 259, "r1062": 259, "r1063": 259, "r1064": 259, "r1065": 259, "r1066": 259, "r1067": 259, "r1068": 259, "r1069": 259, "r107": 87, "r1070": 259, "r1071": 259, "r1072": 259, "r1073": 262, "r1074": 265, "r1075": 265, "r108": 87, "r109": 87, "r11": 65, "r110": 88, "r111": 88, "r112": 88, "r113": 88, "r114": 88, "r115": 88, "r116": 88, "r117": 88, "r118": 88, "r119": 88, "r12": 65, "r120": 88, "r121": 88, "r122": 88, "r123": 88, "r124": 88, "r125": 88, "r126": 88, "r127": 88, "r128": 88, "r129": 88, "r13": [65, 136], "r130": 88, "r131": 88, "r132": 88, "r133": 88, "r134": 88, "r135": 88, "r136": 88, "r137": 88, "r138": 88, "r139": 88, "r14": 65, "r140": 88, "r141": 88, "r142": 88, "r143": 88, "r144": 88, "r145": 88, "r146": 88, "r147": 88, "r148": 88, "r149": 88, "r15": [65, 136], "r150": 88, "r151": 89, "r152": 89, "r153": 89, "r154": 89, "r155": 89, "r156": 89, "r157": 89, "r158": 89, "r159": 89, "r16": 65, "r160": 89, "r161": 89, "r162": 89, "r163": 89, "r164": 89, "r165": 89, "r166": 89, "r167": 89, "r168": 89, "r169": 89, "r17": 65, "r170": 89, "r171": 89, "r174": 89, "r175": 90, "r176": 90, "r177": 90, "r178": 91, "r179": 91, "r18": 65, "r180": 91, "r181": 91, "r182": 91, "r183": 91, "r184": 91, "r185": 91, "r186": 91, "r187": 91, "r188": 91, "r189": 91, "r19": 65, "r190": 91, "r191": 91, "r192": 91, "r193": 91, "r194": 91, "r195": 91, "r196": 91, "r197": 91, "r198": 91, "r199": 91, "r1_x": 33, "r1_y": 33, "r2": [48, 61, 88, 90, 101, 117, 124, 136, 137, 164, 200, 217, 221, 233, 265], "r20": 65, "r200": 91, "r201": 91, "r202": 91, "r203": 91, "r204": 91, "r205": 91, "r206": 91, "r207": 93, "r208": 93, "r209": 93, "r21": 65, "r210": 93, "r211": 93, "r212": 93, "r213": 93, "r214": 93, "r215": 93, "r216": 93, "r217": 93, "r218": 93, "r219": 93, "r22": 65, "r220": 93, "r221": 93, "r222": 93, "r223": 93, "r224": 93, "r225": 93, "r226": 93, "r227": 93, "r228": 93, "r229": 93, "r23": 65, "r230": 93, "r231": 93, "r233": 93, "r234": 93, "r235": 93, "r236": 93, "r237": 93, "r238": 93, "r239": 93, "r24": 65, "r240": 93, "r241": 93, "r242": 93, "r243": 93, "r244": 93, "r245": 93, "r246": 93, "r247": 93, "r248": 93, "r249": 93, "r25": 65, "r250": 93, "r251": 93, "r252": 93, "r253": 93, "r254": 93, "r255": 93, "r256": 93, "r257": 93, "r258": 93, "r259": 93, "r26": 65, "r260": 93, "r261": 93, "r262": 93, "r263": 93, "r264": 93, "r265": 93, "r266": 93, "r267": 93, "r268": 93, "r269": 93, "r27": 65, "r270": 93, "r271": 93, "r272": 93, "r273": 93, "r274": 93, "r275": 93, "r276": 94, "r277": 94, "r278": 94, "r279": 94, "r28": 65, "r280": 94, "r281": 94, "r282": 94, "r283": 94, "r284": 94, "r285": 94, "r286": 94, "r287": 94, "r288": 94, "r289": 94, "r29": 65, "r290": 94, "r291": 94, "r292": 94, "r293": 94, "r294": 94, "r295": 94, "r296": 94, "r297": 94, "r298": 94, "r299": 94, "r2_p": 90, "r2_r": 90, "r3": [48, 61, 117, 136, 137, 233], "r30": 65, "r300": 94, "r301": 94, "r302": 94, "r303": 94, "r304": 94, "r305": 94, "r306": 94, "r307": 94, "r308": 94, "r309": 94, "r31": 67, "r310": 94, "r311": 94, "r312": 94, "r313": 94, "r314": 94, "r315": 94, "r316": 94, "r317": 94, "r318": 94, "r319": 94, "r32": 67, "r320": 94, "r321": 94, "r322": 94, "r323": 94, "r324": 94, "r325": 94, "r326": 94, "r327": 94, "r328": 94, "r329": 94, "r33": 67, "r330": 94, "r331": 94, "r332": 94, "r333": 94, "r334": 94, "r335": 94, "r336": 94, "r337": 94, "r338": 94, "r339": 94, "r34": 67, "r340": 94, "r341": 94, "r342": 96, "r343": 96, "r344": 96, "r345": 96, "r346": 96, "r347": 96, "r348": 96, "r349": 96, "r35": 67, "r350": 96, "r351": 96, "r352": 96, "r353": 96, "r354": 96, "r355": 96, "r356": 96, "r357": 96, "r358": 96, "r359": 96, "r36": 67, "r360": 96, "r361": 96, "r362": 96, "r363": 96, "r364": 96, "r365": 96, "r366": 96, "r367": 96, "r368": 96, "r369": 96, "r37": 67, "r370": 96, "r371": 96, "r372": 96, "r373": 96, "r374": 96, "r375": 96, "r376": 96, "r377": 96, "r378": 96, "r379": 96, "r38": 67, "r380": 96, "r381": 96, "r382": 96, "r383": 96, "r384": 96, "r385": 96, "r386": 96, "r387": 96, "r388": 96, "r389": 96, "r39": 69, "r390": 96, "r391": 96, "r392": 96, "r393": 96, "r394": 96, "r395": 96, "r396": 96, "r397": 96, "r398": 96, "r399": 96, "r4": [48, 117, 136], "r40": 69, "r400": 96, "r401": 96, "r402": 96, "r403": 96, "r404": 96, "r405": 96, "r406": 96, "r407": 96, "r408": 96, "r409": 96, "r41": 71, "r410": 96, "r411": 96, "r412": 96, "r413": 96, "r414": 96, "r415": 96, "r416": 96, "r417": 96, "r418": 96, "r419": 96, "r420": 96, "r421": 96, "r422": 96, "r423": 96, "r424": 96, "r425": 96, "r426": 96, "r427": 96, "r428": 96, "r429": 96, "r43": 71, "r430": 96, "r431": 96, "r432": 96, "r433": 96, "r434": 96, "r435": 96, "r436": 96, "r437": 96, "r438": 96, "r439": 96, "r44": [71, 72], "r440": 96, "r441": 96, "r442": 96, "r443": 96, "r444": 96, "r445": 96, "r446": 96, "r447": 96, "r448": 96, "r449": 96, "r45": 72, "r450": 96, "r451": 96, "r452": 96, "r453": 96, "r454": 96, "r455": 96, "r456": 96, "r457": 96, "r458": 96, "r459": 96, "r46": 72, "r460": 96, "r461": 96, "r462": 96, "r463": 96, "r464": 96, "r465": 96, "r466": 96, "r467": 96, "r468": 96, "r469": 96, "r47": 72, "r470": 96, "r471": 96, "r472": 96, "r473": 96, "r474": 96, "r475": 96, "r476": 96, "r477": 96, "r478": 96, "r479": 96, "r48": 74, "r480": 96, "r481": 96, "r482": 96, "r483": 96, "r484": 96, "r485": 96, "r486": 96, "r487": 96, "r488": 96, "r489": 96, "r49": 74, "r490": 96, "r491": 96, "r492": 96, "r493": 96, "r494": 96, "r495": 96, "r496": 96, "r497": 96, "r498": 96, "r499": 96, "r5": [63, 233], "r50": 74, "r500": 96, "r501": 96, "r502": 96, "r503": 96, "r504": 96, "r505": 96, "r506": 96, "r507": 96, "r508": 96, "r509": 96, "r51": 74, "r510": 96, "r511": 96, "r512": 96, "r513": 96, "r514": 96, "r515": 96, "r516": 96, "r517": 96, "r518": 96, "r519": 96, "r52": 74, "r520": 96, "r521": 96, "r522": 96, "r523": 96, "r524": 96, "r525": 96, "r526": 96, "r527": 96, "r528": 96, "r529": 96, "r53": 74, "r530": 96, "r531": 96, "r532": 96, "r533": 96, "r534": 96, "r535": 96, "r536": 96, "r537": 96, "r538": 96, "r539": 96, "r54": 74, "r540": 96, "r541": 96, "r542": 96, "r543": 96, "r544": 96, "r545": 98, "r546": 98, "r547": 98, "r548": 98, "r549": 98, "r55": 74, "r550": 98, "r551": 98, "r552": 98, "r553": 104, "r554": 104, "r555": 104, "r556": 104, "r557": 104, "r558": 104, "r559": 104, "r560": 104, "r561": 104, "r562": 104, "r563": 105, "r564": 105, "r565": 110, "r566": 110, "r567": 115, "r568": 115, "r569": 115, "r57": 76, "r570": 115, "r571": 115, "r572": 115, "r573": 115, "r574": 115, "r575": 115, "r576": 115, "r577": 115, "r578": 115, "r579": 115, "r58": 76, "r580": 115, "r581": 115, "r582": 115, "r583": 115, "r584": 115, "r585": 115, "r586": 115, "r587": 115, "r588": 115, "r589": 115, "r59": 76, "r590": 115, "r591": 115, "r592": 115, "r593": 115, "r594": 115, "r595": 115, "r596": 116, "r597": 116, "r598": 117, "r599": 117, "r6": 63, "r60": 76, "r600": 118, "r601": 118, "r602": 118, "r603": 118, "r604": 118, "r605": 118, "r606": 118, "r607": 118, "r608": 120, "r609": 124, "r61": 77, "r610": 124, "r611": 124, "r612": 124, "r613": 124, "r614": 124, "r615": 124, "r616": 124, "r617": 124, "r618": 124, "r619": 124, "r62": 79, "r620": 124, "r621": 124, "r622": 124, "r623": 124, "r624": 124, "r625": 124, "r626": 124, "r627": 124, "r628": 124, "r629": 124, "r63": 79, "r630": 124, "r631": 124, "r632": 124, "r633": 124, "r634": 124, "r635": 124, "r636": 124, "r637": 124, "r638": 124, "r639": 124, "r64": 79, "r640": 124, "r641": 124, "r642": 124, "r643": 124, "r644": 124, "r645": 124, "r646": 124, "r647": 125, "r648": 128, "r649": 128, "r65": 79, "r650": 128, "r651": 128, "r652": 128, "r653": 128, "r654": 128, "r655": 128, "r656": 128, "r657": 128, "r658": 128, "r659": 128, "r66": 79, "r660": 128, "r661": 128, "r662": 128, "r663": 128, "r664": 128, "r665": 128, "r666": 128, "r667": 128, "r668": 128, "r669": 128, "r67": 79, "r670": 128, "r671": 128, "r672": 128, "r673": 128, "r674": 128, "r675": 128, "r676": 128, "r677": 128, "r678": 128, "r679": 128, "r68": 79, "r680": 128, "r681": 128, "r682": 128, "r683": 128, "r684": 128, "r685": 128, "r686": 128, "r687": 128, "r688": 128, "r689": 128, "r69": 79, "r690": 128, "r691": 128, "r692": 128, "r693": 128, "r694": 128, "r695": 128, "r696": 128, "r697": 128, "r698": 128, "r699": 128, "r7": 64, "r70": 79, "r700": 128, "r701": 128, "r702": 128, "r703": 128, "r704": 128, "r705": 128, "r706": 128, "r707": 128, "r708": 128, "r709": 128, "r71": 79, "r710": 128, "r711": 128, "r712": 128, "r713": 128, "r714": 128, "r715": 128, "r716": 128, "r717": 128, "r718": 128, "r719": 128, "r720": 131, "r721": 132, "r722": 132, "r723": 132, "r724": 132, "r725": 132, "r726": 132, "r727": 132, "r728": 134, "r729": 136, "r73": 79, "r730": 142, "r731": 142, "r732": 142, "r733": 142, "r734": 144, "r735": 144, "r736": 144, "r737": 147, "r738": 147, "r739": 154, "r740": 160, "r741": 160, "r742": 160, "r743": 162, "r744": 163, "r745": 163, "r746": 163, "r747": 164, "r748": 166, "r749": 168, "r75": 79, "r750": 170, "r751": 170, "r752": 170, "r753": 170, "r754": 172, "r755": 173, "r756": 174, "r757": 174, "r758": 177, "r759": 177, "r76": 79, "r760": 177, "r761": 177, "r762": 177, "r763": 179, "r764": 180, "r765": 180, "r766": 180, "r767": 188, "r768": 188, "r769": 189, "r77": 79, "r770": 189, "r771": 191, "r772": 210, "r773": 210, "r774": 210, "r775": 210, "r776": 210, "r777": 210, "r778": 210, "r779": 210, "r780": 210, "r781": 210, "r782": 210, "r783": 212, "r784": 214, "r785": 214, "r786": 214, "r787": 214, "r788": 214, "r789": 214, "r79": [79, 80], "r790": 214, "r791": 214, "r792": 214, "r793": 214, "r794": 214, "r795": 214, "r796": 214, "r797": 214, "r798": 214, "r799": 214, "r8": 64, "r80": 80, "r800": 214, "r801": 214, "r802": 216, "r803": 216, "r804": 216, "r805": 216, "r806": 216, "r807": 216, "r808": 217, "r809": 217, "r81": 80, "r810": 217, "r811": 217, "r812": 217, "r813": 217, "r814": 217, "r815": 217, "r816": 217, "r817": 217, "r818": 217, "r819": 217, "r82": 80, "r820": 217, "r821": 217, "r822": 217, "r823": 218, "r824": 223, "r825": 223, "r826": 223, "r827": 223, "r828": 223, "r829": 223, "r83": 80, "r830": 224, "r831": 224, "r832": 224, "r833": 226, "r834": 226, "r835": 228, "r836": 228, "r837": 229, "r838": 229, "r839": 229, "r84": 80, "r840": 229, "r841": 229, "r842": 229, "r843": 229, "r844": 229, "r845": 229, "r846": 229, "r847": 229, "r848": 229, "r849": 229, "r85": 80, "r850": 229, "r851": 229, "r852": 230, "r853": 230, "r854": 230, "r855": 233, "r856": 233, "r857": 233, "r858": 234, "r859": 234, "r86": 80, "r860": 234, "r861": 234, "r862": 234, "r863": 234, "r864": 234, "r865": 234, "r866": 234, "r867": 234, "r868": 234, "r869": 234, "r87": 80, "r870": 234, "r871": 234, "r872": 234, "r873": 234, "r874": 234, "r875": 234, "r876": 234, "r877": 234, "r878": 234, "r879": 234, "r88": 80, "r880": 234, "r881": 234, "r882": 234, "r883": 234, "r884": 237, "r885": 237, "r886": 237, "r887": 237, "r888": 237, "r889": 237, "r89": 80, "r890": 239, "r891": 239, "r892": 239, "r893": 239, "r894": 239, "r895": 239, "r896": 241, "r897": 241, "r898": 241, "r899": 241, "r9": 65, "r90": 80, "r900": 241, "r901": 241, "r902": 241, "r903": 241, "r904": 241, "r905": 241, "r906": 241, "r907": 241, "r908": 241, "r909": 241, "r91": 80, "r910": 241, "r911": 241, "r912": 241, "r913": 241, "r914": 241, "r915": 241, "r916": 241, "r917": 241, "r918": 241, "r919": 241, "r92": 81, "r920": 241, "r921": 241, "r922": 241, "r923": 241, "r924": 241, "r925": 241, "r926": 241, "r927": 241, "r928": 241, "r929": 241, "r93": 82, "r930": 241, "r931": 241, "r932": 241, "r933": 241, "r934": 241, "r935": 241, "r936": 241, "r937": 241, "r938": 241, "r939": 241, "r94": 82, "r940": 241, "r941": 241, "r942": 241, "r943": 241, "r944": 241, "r945": 241, "r946": 241, "r947": 241, "r948": 241, "r949": 241, "r95": 86, "r950": 241, "r951": 241, "r952": 241, "r953": 241, "r954": 241, "r955": 241, "r956": 241, "r957": 241, "r958": 241, "r959": 241, "r96": 86, "r960": 241, "r961": 241, "r962": 241, "r963": 241, "r964": 241, "r965": 241, "r966": 241, "r967": 241, "r968": 241, "r969": 241, "r97": 86, "r970": 241, "r971": 241, "r972": 241, "r973": 241, "r974": 241, "r975": 241, "r976": 241, "r977": 241, "r978": 241, "r979": 241, "r98": 87, "r980": 241, "r981": 241, "r982": 241, "r983": 241, "r984": 241, "r985": 241, "r986": 241, "r987": 241, "r988": 241, "r989": 241, "r99": 87, "r990": 241, "r991": 241, "r992": 241, "r993": 241, "r994": 241, "r995": 241, "r996": 241, "r997": 241, "r998": 241, "r999": 241, "r_": [88, 146, 192, 218], "r_0": 136, "r_1": [70, 208, 218], "r_10": 136, "r_13": 136, "r_15": 136, "r_2": 70, "r_20": 136, "r_7": 136, "r_8": 136, "r_a_i": 138, "r_a_x": 138, "r_aug": 124, "r_b": 55, "r_b_x": 138, "r_b_y": 138, "r_f": [55, 217], "r_g": 217, "r_i": [70, 218], "r_j": 231, "r_k": [70, 184], "r_n": 208, "r_nl": [69, 146, 192], "r_node_1_i": 140, "r_node_1_x": 140, "r_node_2_i": 140, "r_pt": 22, "r_val": 18, "r_x": [33, 201], "r_y": [33, 201], "r_z": [33, 201], "ra": 223, "rabin": 128, "racah": 206, "rad": [13, 22, 89, 142, 216, 299], "rad2deg": 299, "rad_ration": 233, "rademach": [128, 241], "rademacher_distribut": 241, "radial": [146, 192, 306], "radian": [22, 61, 94, 97, 98, 99, 101, 102, 103, 124, 136, 142, 164, 165, 200], "radiat": 241, "radic": [12, 16, 48, 88, 89, 124, 208, 216, 217, 233, 239, 240], "radii": 98, "radioeng": 91, "radiu": [96, 98, 102, 104, 156, 159, 160, 164, 207, 240, 241, 275, 299, 303, 309, 311], "radius_of_converg": 96, "radix": 91, "radsimp": [88, 233], "rag": 124, "rai": [4, 98, 100, 101, 102, 104, 105, 160, 164], "rail": [89, 158], "rail_fence_ciph": 89, "rail_fram": 158, "rail_mass": 158, "rail_masscent": 158, "railfenc": 89, "raini": 241, "rais": [3, 11, 12, 13, 14, 16, 33, 36, 37, 41, 42, 43, 62, 64, 67, 69, 74, 77, 80, 88, 89, 90, 92, 94, 97, 98, 101, 103, 104, 105, 113, 115, 120, 124, 125, 127, 128, 130, 142, 144, 159, 165, 177, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 223, 229, 233, 234, 236, 237, 238, 239, 240, 241, 245, 247, 250, 252, 254, 257, 259, 262, 272, 293], "raise_on_deprec": 252, "raise_on_error": 252, "raised_cosine_distribut": 241, "raisedcosin": 241, "rake": 302, "ram": 11, "ramanujan": [92, 93, 128], "ramif": 216, "ramp": [136, 137], "ramp_funct": 142, "ramp_response_numerical_data": 142, "ramp_response_plot": 142, "ran": 12, "randal": 215, "randint": [88, 124, 214], "randmatrix": 124, "random": [2, 4, 13, 71, 72, 77, 79, 80, 86, 89, 98, 101, 102, 122, 124, 128, 175, 187, 207, 212, 214, 216, 217, 221, 251, 252, 255, 259, 289, 293, 297], "random_bitstr": 72, "random_circuit": 175, "random_complex_numb": [13, 88], "random_derang": 259, "random_integer_partit": 77, "random_point": [98, 101, 102], "random_poli": 217, "random_pr": 79, "random_stab": 79, "random_symbol": 241, "randomdomain": 241, "randomindexedsymbol": 241, "randomis": [41, 249, 284], "randomli": [12, 79, 88, 89, 128, 185], "randommatrixsymbol": 241, "randomst": 241, "randomsymbol": 241, "randomvari": 241, "randprim": [74, 128], "randrang": 88, "randtest": 251, "rang": [4, 13, 14, 15, 18, 20, 39, 43, 48, 51, 52, 67, 69, 77, 78, 79, 80, 82, 84, 88, 89, 93, 94, 96, 102, 124, 128, 132, 137, 140, 142, 146, 160, 191, 207, 210, 211, 212, 213, 214, 216, 217, 218, 223, 224, 227, 229, 230, 233, 237, 239, 240, 241, 242, 246, 252, 259, 286, 287, 297, 304], "range1": 207, "range2": 207, "range_i": 207, "range_u": 207, "range_v": 207, "range_x": 207, "rangl": [70, 79, 130, 170, 188, 206], "rank": [65, 69, 70, 72, 77, 79, 80, 82, 83, 84, 103, 117, 124, 125, 200, 202, 208, 210, 212, 214, 216, 242, 246, 247, 293], "rank_binari": 83, "rank_decomposit": 124, "rank_factor": 124, "rank_grai": 83, "rank_lexicograph": 83, "rank_nonlex": 80, "rank_trotterjohnson": 80, "rankcheck": 124, "rankdir": [221, 296], "rao": [18, 131, 132, 134, 299], "raphson": 69, "rapidli": [53, 88, 92, 113, 228], "rare": [4, 12, 14, 43, 88, 237, 241, 250, 289], "rasch": 206, "rasch03": 206, "rat": 128, "rat_clear_denom": 217, "rate": [16, 35, 131, 132, 148, 241, 272, 287, 302], "rather": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 30, 32, 35, 37, 39, 41, 42, 43, 48, 52, 55, 56, 57, 60, 65, 69, 70, 71, 79, 80, 81, 88, 92, 94, 99, 104, 106, 113, 118, 120, 124, 128, 130, 133, 134, 158, 171, 185, 189, 191, 195, 208, 210, 211, 214, 217, 219, 224, 231, 234, 236, 237, 240, 241, 243, 256, 259, 260, 274, 289, 291, 292, 309], "rathnayak": 0, "ratint": 115, "ratint_logpart": 115, "ratint_ratpart": 115, "ratio": [46, 65, 78, 79, 87, 88, 92, 93, 96, 98, 101, 102, 103, 104, 119, 128, 132, 144, 164, 196, 210, 221, 230, 233, 239], "ration": [12, 15, 41, 43, 48, 62, 64, 65, 67, 69, 87, 88, 92, 93, 94, 96, 98, 101, 103, 105, 109, 113, 115, 116, 120, 124, 128, 130, 144, 160, 193, 206, 209, 210, 214, 215, 216, 218, 221, 226, 229, 230, 231, 233, 234, 236, 239, 240, 241, 259, 265, 288, 289, 292, 296], "rational": 12, "rational_algorithm": 223, "rational_convers": 233, "rational_funct": 88, "rational_independ": 223, "rational_laurent_seri": 237, "rational_numb": [41, 65], "rational_parametr": 265, "rationalfield": [211, 212], "rationalhandl": 65, "rationalpred": 65, "rationalriccati": 237, "rationaltool": [115, 217], "ratsimp": [11, 88, 233], "ratsimpmodprim": 233, "raw": [4, 5, 69, 88, 89, 94, 129, 130, 185, 190, 210, 211, 212, 217, 229, 233, 296], "rawlin": 262, "ray2d": [101, 104], "ray3d": [101, 102, 164], "ray_transfer_matrix_analysi": 160, "rayleigh": [160, 241], "rayleigh2waist": 160, "rayleigh_distribut": 241, "rayleighdistribut": 241, "raytransfermatrix": 160, "rb": [28, 55, 155], "rb_frame": 28, "rb_masscent": 28, "rcall": [88, 90], "rceil": [113, 130], "rcirc": 99, "rcode": 221, "rcollect": 233, "rd": [22, 124, 221], "re": [3, 11, 13, 16, 33, 43, 66, 67, 69, 79, 80, 88, 89, 92, 94, 96, 113, 115, 124, 200, 202, 208, 214, 221, 222, 223, 229, 230, 231, 237, 239, 252, 268, 270, 287, 289, 292], "reach": [41, 128, 144, 216, 217, 237], "reachabl": [231, 241], "reaction": [136, 137, 138, 140, 148], "reaction_bodi": 149, "reaction_forc": 136, "reaction_fram": 148, "reaction_load": [136, 137, 138, 140], "reaction_mo": 136, "reaction_point": 149, "read": [3, 4, 5, 9, 11, 12, 13, 14, 30, 35, 36, 43, 57, 80, 94, 113, 128, 137, 207, 210, 211, 212, 218, 221, 234, 247, 248, 256, 260, 290, 296, 297], "readabl": [4, 12, 14, 21, 60, 68, 116, 217, 220, 221, 228, 230], "reader": [4, 5, 11, 12, 18, 28, 43, 68, 70, 208, 221, 256, 290, 295], "readi": [3, 11, 41, 158, 211, 221, 237, 304], "readili": [101, 124], "readlin": 252, "readm": 2, "readthedoc": [5, 116, 260], "reagent": 216, "real": [12, 13, 14, 15, 16, 18, 22, 30, 38, 39, 41, 42, 43, 48, 51, 52, 61, 63, 65, 66, 67, 69, 80, 88, 89, 90, 92, 93, 94, 95, 96, 100, 104, 105, 110, 113, 115, 118, 120, 124, 130, 134, 140, 144, 146, 155, 160, 163, 164, 171, 189, 202, 206, 209, 212, 216, 217, 218, 221, 222, 224, 228, 229, 231, 233, 236, 237, 239, 240, 241, 246, 250, 254, 291, 297, 298, 299], "real_el": 65, "real_field": 61, "real_gaunt": 206, "real_num": 105, "real_numb": [41, 65], "real_root": [94, 217, 239], "realelementshandl": 65, "realelementspred": 65, "realfield": [211, 212], "realgaunt": 206, "realhandl": 65, "realist": 128, "realiz": [16, 71, 73, 79, 90, 93, 118, 128, 208, 209, 214, 241, 306], "realli": [3, 11, 12, 13, 14, 15, 39, 41, 42, 43, 88, 100, 128, 193, 210, 211, 220, 222, 228, 230, 231, 233, 237, 253, 262, 289, 291, 302], "realnormedalgebra": 61, "realnumb": 88, "realpred": 65, "reals_onli": 124, "rear": 302, "rearrang": [18, 25, 26, 52, 145, 153, 175, 237], "reason": [3, 5, 11, 12, 13, 14, 15, 18, 22, 23, 27, 36, 37, 41, 42, 43, 54, 55, 61, 69, 80, 86, 88, 92, 96, 113, 116, 121, 124, 151, 153, 154, 162, 196, 205, 210, 211, 214, 215, 218, 221, 229, 231, 233, 237, 240, 250, 256, 257, 259, 260, 286, 287, 291, 292, 293, 299, 302, 309], "reassembl": 217, "reassign": 22, "rebas": [9, 11], "rebuild": [14, 15, 43, 88, 217, 292], "rebuilt": [15, 292], "recal": [43, 88, 124, 214, 216, 231, 289, 291, 292, 298], "recalcul": [153, 217], "recast": [113, 233, 239, 240], "reccur": 241, "receiv": [57, 71, 88, 89, 128, 149, 186, 216, 246], "recent": [3, 12, 13, 14, 16, 38, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 69, 70, 80, 88, 89, 92, 96, 98, 115, 118, 119, 120, 121, 124, 126, 127, 130, 144, 206, 208, 210, 211, 212, 214, 217, 220, 228, 229, 237, 239, 240, 250, 253, 255, 257, 259, 260, 262, 289, 293], "recherch": 218, "recip": [221, 259], "reciph": 89, "reciproc": [124, 241, 297], "reciprocal_distribut": 241, "reciprocaltrigonometricfunct": 43, "recogn": [13, 14, 16, 48, 53, 55, 88, 89, 93, 103, 128, 136, 145, 209, 212, 220, 229, 230, 239, 246, 289], "recognis": [113, 211, 231, 233], "recommend": [4, 8, 9, 11, 13, 14, 15, 16, 17, 18, 21, 25, 30, 35, 41, 43, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 68, 69, 88, 89, 92, 124, 131, 132, 134, 185, 200, 209, 210, 211, 212, 218, 234, 237, 240, 246, 250, 257, 269, 270, 295, 298, 299], "recomput": [84, 217], "reconnect": 69, "reconstruct": [14, 46, 89, 124, 210, 214, 234, 292], "reconstuct": 214, "record": [11, 71, 82, 88, 216, 221, 252], "recov": [89, 115, 130, 196, 214, 216, 217, 234, 237], "recreat": [14, 88, 152], "recrus": 214, "rectangl": [98, 99, 101, 103, 104, 207, 217], "rectangular": [124, 207, 229, 240, 269], "rectum": 98, "recur": 88, "recurr": [87, 93, 110, 124, 216, 227, 233, 237, 241, 261], "recurrence_memo": 261, "recurs": [15, 16, 38, 41, 43, 67, 88, 93, 113, 115, 118, 124, 128, 132, 207, 214, 217, 218, 221, 222, 226, 228, 233, 239, 240, 245, 250, 252, 256, 257, 259, 288, 297, 302], "recursionerror": 14, "recursiveseq": 227, "red": [12, 207], "red_groebn": 214, "redefin": [12, 14, 25, 27, 43, 80, 88, 158, 209, 260], "redistribut": [0, 217], "reduc": [5, 16, 27, 42, 46, 49, 56, 62, 64, 66, 70, 84, 88, 89, 91, 93, 94, 96, 103, 104, 113, 115, 124, 128, 131, 135, 144, 145, 173, 191, 208, 210, 211, 212, 214, 215, 216, 217, 218, 222, 227, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 243, 259, 260, 293], "reduce_abs_inequ": 236, "reduce_alg_num": 216, "reduce_anp": 216, "reduce_el": [208, 216], "reduce_inequ": [37, 50, 236, 239], "reduce_rational_inequ": 236, "reduce_toti": 13, "reduced_expr": [222, 233], "reduced_mod_p": 216, "reduced_row_echelon_form": 210, "reduced_toti": [89, 93, 128], "reduct": [70, 124, 154, 210, 214, 216, 234], "reduction_formula": 230, "redund": [3, 12, 18, 41, 79, 86, 118, 124, 131, 132, 134, 210, 237, 254, 299], "reev": 80, "reevalu": 289, "reexpress": [200, 270], "ref": [3, 30, 79, 94, 124, 142, 226, 241, 255, 293], "ref_fram": 158, "refactor": [13, 237, 245, 256], "refer": [2, 3, 5, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 25, 28, 30, 31, 32, 33, 35, 39, 42, 43, 44, 48, 50, 51, 52, 53, 54, 56, 57, 59, 63, 64, 65, 67, 69, 72, 74, 76, 77, 79, 80, 81, 82, 86, 89, 91, 93, 94, 96, 98, 103, 104, 105, 110, 116, 117, 118, 123, 125, 129, 131, 132, 134, 136, 142, 144, 145, 147, 148, 149, 152, 153, 154, 155, 156, 158, 160, 162, 164, 168, 170, 172, 173, 174, 177, 179, 180, 188, 189, 191, 200, 201, 202, 204, 210, 211, 213, 221, 223, 224, 226, 229, 233, 236, 237, 238, 239, 241, 247, 256, 259, 260, 262, 265, 269, 270, 274, 282, 283, 289, 293, 294, 297, 298, 300, 302, 305], "referenc": [5, 11, 72, 77, 128, 158, 188, 216, 302], "reference_fram": [150, 155, 200], "reference_quant": 198, "referencefram": [4, 13, 18, 22, 25, 26, 27, 28, 30, 31, 33, 34, 35, 134, 148, 149, 150, 152, 153, 155, 156, 158, 159, 200, 201, 202, 204, 205, 299, 302, 303, 304, 306, 307, 309, 310, 311], "refin": [62, 64, 88, 124, 208, 212, 216, 217, 233, 254, 277], "refine_ab": 66, "refine_arg": 66, "refine_atan2": 66, "refine_im": 66, "refine_matrixel": 66, "refine_pow": 66, "refine_r": 66, "refine_root": [212, 216, 217], "refine_sign": 66, "refinementfail": 214, "reflect": [50, 57, 72, 76, 80, 88, 98, 99, 104, 117, 140, 160, 163, 164, 200], "reflected_port": 163, "reflected_pow": 163, "reflective_filt": 163, "reflex": 101, "reform": 101, "reformat": 187, "refract": [160, 162, 164, 165], "refraction_angl": 164, "refractive_index": 162, "refus": [41, 297], "reg_point": 265, "regard": [31, 43, 70, 89, 96, 116, 191, 208, 209, 223, 239, 240], "regardless": [3, 4, 43, 80, 88, 115, 128, 210, 214, 229, 233, 259, 269, 274, 297], "regex": 13, "regg": 206, "regge58": 206, "regge59": 206, "region": [67, 96, 105, 115, 136, 207, 229, 237, 240, 241, 265, 268, 275], "regist": [13, 62, 63, 64, 89, 187], "register_handl": [13, 62], "register_mani": [13, 63, 64], "registr": 13, "registri": 88, "regress": 11, "regul": 216, "regular": [3, 11, 12, 13, 14, 16, 22, 41, 42, 70, 76, 88, 89, 92, 96, 104, 110, 111, 115, 128, 185, 211, 218, 237, 247, 252, 296, 297], "regular_point": 265, "regularpolygon": [4, 99, 100, 104, 207], "reidel": 223, "reidemeister_present": 70, "reimport": 16, "reindex": 217, "reintroduc": 84, "reinvent": 13, "reject": [41, 42, 128, 234, 262], "rel": [4, 5, 18, 27, 28, 35, 36, 51, 68, 69, 78, 79, 80, 81, 85, 86, 87, 88, 89, 92, 93, 99, 113, 124, 128, 130, 148, 149, 152, 153, 155, 156, 159, 163, 190, 200, 204, 208, 210, 211, 214, 216, 229, 231, 236, 239, 241, 252, 259, 269, 270, 274, 291, 307], "rel_op": [50, 88], "rela": 208, "relat": [2, 3, 4, 5, 11, 12, 14, 15, 17, 18, 23, 24, 30, 34, 35, 42, 62, 64, 65, 67, 70, 72, 78, 79, 86, 90, 93, 94, 104, 110, 113, 115, 124, 128, 130, 131, 132, 133, 134, 138, 140, 147, 151, 153, 156, 160, 165, 173, 175, 195, 200, 204, 206, 207, 208, 210, 214, 216, 217, 218, 220, 221, 225, 227, 228, 231, 233, 234, 236, 237, 239, 240, 241, 259, 297, 306, 309], "relation_dict": 90, "relation_with_other_funct": 96, "relations_sort": 50, "relationship": [16, 18, 24, 32, 33, 36, 37, 41, 69, 88, 93, 95, 115, 128, 134, 158, 175, 200, 211, 239], "relative_ord": [78, 79], "relativist": 146, "relator_bas": 70, "relax": [124, 130], "relb": 208, "releas": [5, 8, 11, 13, 18, 27, 88, 115, 124, 130, 207, 246, 257, 292], "relev": [3, 4, 5, 11, 12, 13, 14, 36, 41, 69, 86, 101, 116, 117, 149, 153, 155, 158, 196, 205, 211, 231, 237, 238, 247, 252, 273, 302], "reli": [2, 12, 13, 69, 124, 129, 141, 214, 220, 221, 228, 233, 240, 255, 260, 293], "reliabl": [67, 88, 237, 257, 287], "reload": 8, "reloc": 128, "rels_h": 79, "rels_k": 79, "reltol": 69, "rem": [211, 212, 214, 217], "rem_z": 217, "remain": [3, 12, 13, 15, 22, 33, 35, 36, 43, 63, 64, 69, 79, 80, 82, 84, 88, 89, 94, 113, 124, 128, 130, 145, 190, 216, 217, 218, 227, 230, 231, 237, 238, 239, 241, 243, 247, 256, 259, 260, 269, 274, 286, 289, 291, 292, 293, 299], "remaind": [16, 87, 88, 89, 128, 209, 211, 212, 215, 217, 237], "remainder_modulus_pair": 128, "remainin": 214, "remark": [214, 220, 231, 237], "remedi": 113, "rememb": [3, 4, 11, 12, 14, 16, 18, 21, 30, 35, 36, 43, 55, 118, 124, 145, 221, 233, 239, 242, 260, 292, 297], "remot": [9, 88], "remov": [3, 11, 12, 13, 14, 27, 41, 50, 61, 62, 63, 79, 82, 86, 88, 92, 94, 96, 103, 104, 113, 118, 124, 128, 131, 136, 138, 140, 149, 152, 153, 175, 191, 212, 214, 217, 219, 220, 221, 233, 234, 237, 239, 240, 242, 243, 253, 254, 255, 257, 259, 260, 286, 297, 309, 311], "remove_handl": [13, 62], "remove_load": [136, 138, 140, 149], "remove_memb": 140, "remove_nod": 140, "remove_redundant_sol": 237, "remove_support": 140, "removeo": [30, 88, 221, 287], "ren": 69, "renam": [3, 69, 115], "render": [2, 4, 5, 8, 11, 12, 69, 88, 116, 205, 207, 221, 260, 296], "render_as_modul": 69, "render_as_source_fil": 69, "renewcommand": 221, "renumb": 237, "reorder": [11, 80, 87, 94, 191, 217, 237, 241, 259], "reorder_limit": 87, "rep": [41, 79, 84, 88, 175, 208, 210, 211, 212, 216, 217, 230, 233, 262], "rep1": [215, 230], "rep_expect": 186, "rep_innerproduct": 186, "repeat": [8, 9, 15, 16, 79, 82, 87, 88, 94, 96, 115, 117, 124, 128, 130, 175, 177, 191, 207, 208, 209, 214, 216, 217, 221, 227, 237, 241, 245, 246, 253, 255, 259, 297], "repeated_decim": 130, "repeatedli": [53, 128, 145, 253], "repetit": [247, 259], "rephras": 287, "repid": 215, "repl": [15, 247], "repl_dict": 88, "replac": [3, 4, 9, 12, 13, 14, 15, 16, 18, 21, 30, 41, 67, 69, 79, 87, 88, 89, 92, 93, 94, 96, 98, 102, 115, 118, 124, 128, 129, 130, 149, 150, 152, 180, 186, 200, 207, 208, 214, 217, 218, 222, 228, 230, 231, 233, 237, 239, 240, 247, 248, 259, 260, 262, 286, 295], "replace_in_add": 69, "replace_non": 186, "replace_with_arrai": [13, 247, 248], "replacement_dict": 247, "replaceoptim": 69, "replic": 302, "repmatrix": 13, "repo": [9, 11, 12, 22], "report": [12, 60, 67, 79, 88, 101, 124, 128, 218, 229, 240, 252, 293, 298], "report_": 252, "report_cdiff": 252, "report_ndiff": 252, "report_only_first_failur": 252, "report_udiff": 252, "reportedli": 89, "repositori": [2, 5, 9, 59], "repr": [13, 14, 69, 115, 185, 211, 216, 221, 252, 296], "repres": [2, 12, 13, 14, 15, 16, 18, 22, 23, 25, 26, 27, 28, 30, 32, 33, 35, 36, 38, 41, 42, 43, 46, 51, 53, 55, 61, 63, 65, 68, 69, 70, 71, 72, 77, 78, 79, 80, 81, 83, 84, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 103, 104, 105, 110, 111, 115, 117, 118, 120, 123, 124, 128, 130, 131, 132, 134, 136, 137, 141, 142, 144, 148, 149, 151, 152, 153, 155, 156, 158, 159, 160, 162, 163, 165, 177, 178, 180, 184, 185, 188, 189, 191, 193, 195, 196, 197, 198, 199, 200, 204, 205, 206, 207, 208, 209, 210, 212, 214, 217, 219, 221, 223, 224, 227, 228, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 245, 246, 247, 254, 256, 259, 260, 265, 268, 272, 274, 282, 287, 289, 291, 292, 297, 298, 299, 302, 303, 304, 306, 307, 310], "represantit": 208, "represent": [13, 14, 15, 21, 23, 27, 32, 33, 35, 43, 48, 52, 61, 68, 69, 70, 71, 79, 82, 88, 89, 94, 96, 100, 108, 110, 112, 113, 115, 117, 118, 119, 120, 124, 127, 128, 141, 142, 147, 149, 151, 158, 160, 175, 180, 185, 186, 188, 189, 191, 193, 205, 207, 208, 210, 212, 214, 216, 217, 218, 219, 220, 221, 223, 231, 233, 234, 237, 240, 241, 246, 247, 260, 262, 265, 268, 275, 283, 287, 289, 292], "reprifi": 221, "reproduc": [2, 12, 14, 48, 217, 252, 297], "reproduct": 12, "reprprint": 221, "request": [2, 3, 4, 5, 8, 9, 12, 13, 22, 41, 48, 59, 67, 88, 92, 104, 113, 128, 191, 207, 214, 217, 245, 253], "requir": [0, 2, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 28, 32, 43, 45, 53, 57, 59, 69, 79, 88, 89, 91, 92, 96, 98, 99, 101, 102, 105, 107, 118, 124, 127, 128, 129, 130, 131, 132, 134, 136, 138, 142, 148, 149, 152, 153, 155, 156, 158, 165, 188, 200, 202, 206, 207, 208, 210, 211, 212, 214, 216, 218, 221, 224, 230, 231, 234, 237, 239, 240, 241, 245, 252, 253, 254, 255, 257, 259, 260, 268, 269, 270, 293, 295, 299, 302, 306], "requisit": 28, "rersiv": 212, "rerun": [8, 11, 12, 217, 252], "res_": 231, "research": [11, 39, 80, 144, 210, 218, 233], "researchg": [215, 241], "reseed": 259, "resembl": [15, 90, 96, 115, 246], "reserv": [15, 22, 41, 247, 254, 293], "reset": [11, 79, 81, 207, 214, 217, 252, 255, 257], "reshap": [22, 30, 69, 124, 242, 248, 259], "resid": 5, "residu": [12, 84, 89, 93, 128, 212, 214, 231], "residue_ntheori": [13, 93, 128, 214, 234], "residue_theorem": 228, "residuos": 89, "resist": [98, 104, 136, 137, 138, 230, 299], "resiz": [79, 80, 120, 124], "resolut": [63, 64, 234], "resolv": [41, 42, 48, 50, 51, 52, 53, 54, 55, 56, 88, 115, 230, 233, 239], "resourc": [4, 5, 8, 13, 43, 124, 215, 237, 253], "resp": [209, 212, 237], "respect": [4, 9, 12, 13, 15, 16, 18, 24, 26, 28, 30, 32, 33, 36, 43, 46, 55, 62, 64, 65, 67, 68, 69, 70, 78, 79, 80, 83, 84, 86, 87, 88, 90, 93, 94, 96, 98, 100, 104, 105, 110, 111, 113, 115, 118, 120, 124, 128, 130, 131, 132, 134, 136, 137, 140, 144, 149, 150, 152, 155, 158, 159, 165, 180, 193, 194, 200, 204, 206, 207, 208, 210, 211, 212, 214, 216, 217, 218, 221, 223, 224, 227, 229, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 252, 254, 265, 267, 268, 269, 270, 271, 272, 273, 274, 287, 297, 299, 306], "respond": [11, 88], "respons": [22, 46, 87, 88, 144, 207, 254], "rest": [3, 13, 14, 18, 22, 23, 113, 116, 118, 121, 137, 146, 151, 196, 208, 211, 241, 259, 289, 290, 297, 299, 306], "restor": [16, 233], "restrict": [12, 15, 41, 43, 50, 69, 77, 88, 89, 96, 124, 136, 137, 191, 195, 208, 211, 216, 218, 236], "restrict_codomain": 208, "restrict_domain": 208, "restructur": 5, "restructuredtext": [4, 5], "result": [2, 4, 8, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 27, 30, 32, 36, 37, 38, 39, 41, 42, 43, 57, 61, 62, 63, 64, 65, 67, 68, 69, 78, 79, 80, 84, 87, 88, 89, 90, 92, 94, 96, 100, 105, 106, 110, 112, 113, 115, 117, 118, 120, 124, 127, 128, 129, 130, 131, 136, 144, 145, 148, 149, 150, 151, 153, 154, 159, 174, 176, 183, 185, 186, 188, 190, 191, 193, 194, 195, 196, 200, 207, 208, 210, 211, 212, 214, 215, 216, 217, 218, 219, 221, 223, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 248, 252, 253, 254, 256, 257, 259, 260, 262, 265, 268, 270, 289, 291, 292, 293, 297, 299, 306], "result_5397460570204848505": [69, 254], "result_dom": 211, "result_sympi": 211, "result_var": [69, 254], "result_vari": 254, "result\u2085\u2081\u2084\u2082\u2083\u2084\u2081\u2086\u2088\u2081\u2083\u2089\u2087\u2087\u2081\u2089\u2084\u2082\u2088": 69, "ret": 124, "retain": [80, 88, 94, 96, 115, 128, 130, 217, 222, 230, 233], "retard": 163, "rethink": 171, "retract": 217, "retri": [13, 115, 128], "retriev": [13, 38, 71, 86, 124, 158, 217, 233, 247], "retriv": 124, "return": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 22, 25, 27, 28, 30, 32, 33, 36, 37, 39, 41, 42, 43, 48, 51, 52, 54, 56, 57, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 117, 118, 119, 120, 124, 125, 127, 128, 130, 131, 132, 133, 134, 136, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 165, 167, 168, 172, 175, 176, 177, 180, 181, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 233, 234, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 265, 268, 270, 272, 286, 287, 292, 293, 296, 297, 298, 299, 302, 306, 310], "return_expr": 130, "return_mpmath": 217, "return_typ": 69, "returnvalu": 254, "reurn": 94, "reus": [12, 16, 43, 69, 191, 291], "rev": 88, "rev1": 307, "rev2": 307, "reveal": [48, 51, 53, 69, 128, 210, 240, 292, 305], "revers": [5, 46, 72, 77, 80, 87, 88, 89, 94, 115, 116, 118, 124, 128, 144, 190, 200, 205, 208, 210, 214, 217, 218, 221, 222, 229, 233, 237, 259, 297], "reverse_ord": 87, "reversedgradedlexord": 217, "reversedsign": 88, "revert": [13, 212, 217], "review": [4, 5, 11, 12, 29], "revis": [11, 239], "revisit": [12, 35, 310], "revolut": 152, "revolv": 140, "rewrit": [12, 87, 88, 90, 93, 94, 96, 113, 115, 118, 136, 144, 188, 212, 217, 228, 229, 230, 233, 237, 238, 239, 240, 241, 277, 291, 293], "rewrite_complex": 115, "rewriterul": 115, "rewritten": [22, 43, 88, 93, 94, 96, 115, 188, 195, 228, 233, 237, 239, 297], "rf": [55, 87, 93, 217], "rfloor": [88, 94, 130, 212, 240, 241], "rfunction_format": 221, "rfunction_str": 221, "rg": 77, "rgs_enum": 77, "rgs_gener": 77, "rgs_rank": 77, "rgs_unrank": 77, "rh": [13, 18, 22, 37, 50, 53, 55, 69, 78, 80, 88, 119, 124, 131, 134, 149, 153, 158, 210, 219, 221, 223, 237, 239, 240, 271, 299, 309, 310, 311], "rho": [16, 90, 113, 124, 128, 185, 221, 241, 247, 275, 304], "rhs_x": 22, "ri": [88, 221], "riccati_equ": 237, "riccati_inverse_norm": 237, "riccati_norm": 237, "riccati_reduc": 237, "riccati_special_minus2": 237, "riccatispeci": 237, "ricci": 90, "rice": 241, "rich": [30, 233], "richard": [0, 128], "richardon": 211, "richardson": [92, 228, 240], "richer": 206, "riemann": [15, 90, 93, 94, 113, 208, 233, 247], "riemann_cycl": 247, "riemann_cyclic_replac": 247, "riemann_sum": 115, "riemann_summation_method": 115, "riemann_xi": 221, "riemannxi": 221, "rieselprim": 128, "right": [3, 4, 5, 8, 11, 12, 13, 16, 18, 22, 27, 30, 31, 32, 33, 36, 39, 43, 46, 49, 50, 53, 55, 61, 67, 69, 70, 79, 80, 84, 88, 89, 91, 93, 94, 96, 104, 105, 113, 115, 118, 124, 127, 128, 130, 131, 132, 136, 137, 138, 140, 144, 153, 158, 159, 163, 170, 175, 177, 179, 180, 185, 188, 191, 200, 206, 207, 208, 210, 216, 217, 218, 219, 221, 223, 224, 228, 229, 231, 237, 238, 240, 241, 252, 254, 256, 259, 272, 287, 291, 293, 297, 299], "right_hand_sid": 158, "right_open": 229, "right_support": 138, "rightarrow": [68, 80, 84, 89, 93, 94, 96, 110, 111, 113, 115, 118, 124, 128, 207, 216, 228, 240, 243, 259, 287], "righthand": 134, "rightmost": [43, 191], "rigibodi": 30, "rigid": [13, 22, 23, 30, 35, 134, 137, 140, 149, 151, 153, 155, 200, 299, 302, 303, 307], "rigid_bodi": 13, "rigid_tendon": 134, "rigid_tendon_muscl": 134, "rigidbodi": [13, 24, 28, 30, 148, 149, 152, 153, 155, 158, 299, 302, 303, 304, 307, 309, 310, 311], "rigidli": 32, "rigor": [3, 36, 96, 254], "rim": 229, "ring": [15, 35, 48, 91, 111, 124, 125, 209, 210, 214, 216, 217, 218, 219, 220, 221, 259], "ring_seri": 218, "ringel": 210, "rioboo": 115, "risc": [110, 237, 265], "risc_1355": 265, "risc_2244": 110, "risc_5387": 237, "risch": [13, 115, 287], "risch_integr": 115, "rise": [87, 93, 96, 206, 233, 237, 241, 269], "riseup": 11, "risingfactori": [87, 93, 96, 221, 223], "risk": 57, "riski": 221, "rivista": 196, "rk": 184, "rk4": 110, "rkgate": 184, "rl1": 230, "rl2": 230, "rm": [8, 69], "rm4": 89, "rmul": [80, 210], "rmul_with_af": 80, "rmultipli": 124, "rn": [88, 90], "rng": 88, "roach": [113, 231], "roach1996": 231, "roach1997": 231, "robert": [0, 128, 210, 241], "robertson": 234, "robot": [23, 151], "robust": [12, 55, 85, 88, 92, 213, 233, 237], "robustli": 48, "roch": 237, "rocklin": 0, "rod": 35, "roken": 262, "role": [41, 94, 219], "roll": [35, 241, 301, 302, 305], "roller": [136, 137, 140], "room": [7, 208], "root": [12, 16, 30, 41, 43, 49, 52, 57, 61, 67, 69, 87, 88, 89, 94, 96, 110, 111, 112, 113, 115, 117, 119, 124, 128, 130, 196, 206, 208, 209, 212, 214, 216, 218, 220, 221, 231, 233, 237, 239, 240, 241, 252, 256, 259, 291, 293, 296, 298], "root1": 117, "root2": 117, "root_index": 212, "root_not": 221, "root_of_un": 94, "root_scalar": 54, "root_spac": 117, "root_system": 117, "rootof": [48, 94, 217], "rootoftool": [94, 124, 217], "rootsum": [115, 217, 223], "rootsystem": 117, "rop": [35, 88], "ropen": [67, 94, 229, 241], "rose": 79, "rosen": 128, "rot": [4, 104, 188], "rot13": 89, "rot90": 124, "rot_axis1": 124, "rot_axis2": 124, "rot_axis3": 124, "rot_ccw_axis1": 124, "rot_ccw_axis2": 124, "rot_ccw_axis3": 124, "rot_given": 124, "rot_ord": [152, 200, 204, 267], "rot_typ": [33, 152, 200, 204], "rotat": [13, 24, 28, 31, 32, 33, 35, 36, 61, 76, 79, 81, 88, 97, 98, 99, 101, 103, 104, 136, 137, 152, 156, 158, 159, 175, 188, 200, 204, 206, 207, 259, 265, 267, 270, 272, 274, 299, 302, 307, 309, 311], "rotate_left": 259, "rotate_point": 61, "rotate_right": 259, "rotated_fram": 152, "rotating_reference_fram": 202, "rotation_axi": 152, "rotation_coordin": 152, "rotation_jump": 136, "rotation_matrix": [265, 267, 270], "rotation_ord": [200, 265, 267], "rotation_spe": 152, "rou": 0, "rough": [23, 196], "roughli": [41, 88, 89, 129, 237, 260], "round": [15, 43, 54, 67, 69, 88, 92, 93, 94, 124, 164, 210, 212, 216, 217, 228, 230, 241], "round_trip": 89, "round_two": 216, "roundfunct": 94, "roundoff": 286, "roundrobin": 259, "routin": [14, 55, 69, 77, 87, 88, 89, 90, 113, 118, 124, 128, 153, 163, 191, 210, 214, 217, 220, 221, 222, 233, 234, 237, 238, 239, 240, 253, 259, 272], "rou\u010dka": 0, "row": [22, 30, 31, 32, 36, 53, 65, 68, 69, 70, 77, 80, 88, 93, 119, 120, 124, 125, 127, 128, 134, 144, 158, 186, 200, 210, 216, 221, 231, 240, 241, 246, 260, 265, 267, 302], "row1": 124, "row2": 124, "row_del": [124, 293], "row_echelon_form": 210, "row_insert": [124, 293], "row_join": [124, 302], "row_matrix": 30, "row_swap": 124, "rowend": 124, "rowmatrix": 30, "rowsep": 124, "rowslic": 210, "rowslist": [124, 210], "rowspac": [124, 210], "rowstart": 124, "royal": 29, "rp": [0, 104, 163], "rpent": 99, "rpm": 8, "rq0": 48, "rq1": 48, "rq2": 48, "rq3": 48, "rr": [68, 88, 106, 210, 211, 217, 218], "rr100": 211, "rref": [124, 210], "rref_den": 210, "rref_matrix": [124, 210], "rref_pivot": [124, 210], "rref_rh": 124, "rrw": 91, "rs_": 218, "rs_asin": 218, "rs_atan": 218, "rs_atanh": 218, "rs_co": 218, "rs_compose_add": 218, "rs_cos_sin": 218, "rs_cosh": 218, "rs_cot": 218, "rs_diff": 218, "rs_exp": 218, "rs_fun": 218, "rs_hadamard_exp": 218, "rs_integr": 218, "rs_is_puiseux": 218, "rs_lambertw": 218, "rs_log": 218, "rs_mul": 218, "rs_newton": 218, "rs_nth_root": 218, "rs_pow": 218, "rs_puiseux": 218, "rs_puiseux2": 218, "rs_series_from_list": 218, "rs_series_invers": 218, "rs_series_revers": 218, "rs_sin": 218, "rs_sinh": 218, "rs_squar": 218, "rs_sub": 218, "rs_swap": 241, "rs_tan": 218, "rs_tanh": 218, "rs_trunc": 218, "rsa": 89, "rsa_": 89, "rsa_private_kei": 89, "rsa_public_kei": 89, "rset": 229, "rsname": 254, "rsolv": 239, "rsolve_hyp": [124, 239], "rsolve_hypergeometr": 223, "rsolve_poli": 239, "rsolve_ratio": 239, "rst": [3, 4, 5, 11, 15, 70, 237, 252], "rsvg": 8, "rtime": 71, "rtol": 69, "ru": 237, "rubik": 79, "rubric": [87, 88], "rudimentari": [2, 43, 214], "ruffini": [48, 57, 124], "ruina": 29, "rule": [3, 5, 11, 12, 13, 14, 22, 33, 36, 39, 41, 43, 69, 79, 80, 87, 88, 96, 111, 113, 115, 118, 124, 136, 153, 159, 172, 175, 196, 200, 206, 210, 212, 218, 220, 221, 222, 227, 231, 233, 237, 247, 259, 260, 272, 289, 292], "run": [3, 4, 5, 8, 14, 15, 16, 30, 39, 41, 43, 45, 70, 79, 80, 82, 88, 89, 113, 124, 129, 130, 153, 158, 191, 205, 207, 208, 221, 231, 233, 237, 238, 239, 249, 250, 253, 255, 256, 259, 260, 284, 296, 302, 304], "run_all_test": 252, "run_in_subprocess_with_hash_random": 252, "rung": [15, 67, 110], "runner": [2, 12, 252], "runtest": [12, 13, 252], "runtim": [2, 15, 69, 88, 154, 260], "runtime_error": 69, "runtimeerror": [16, 67, 69, 229, 240, 259], "runtimeerror_": 69, "runtimewarn": 260, "rusin": 234, "ruskei": [80, 259], "russel": 214, "russian": 5, "rust": 254, "rust_cod": [69, 221], "rustcodegen": 254, "rustcodeprint": 221, "rv": [88, 230, 241, 259], "rvert": 113, "rx": 308, "ry": [30, 308], "ryser": 124, "rz": 308, "r\u2081": 137, "r\u2082": 137, "r\u2083": 137, "s0": [87, 111, 113, 163], "s0020": 80, "s0025": [67, 234], "s0747717183710539": 215, "s0895717706001609": 230, "s1": [41, 71, 79, 87, 101, 104, 111, 144, 201, 208, 217, 224, 234, 259, 268], "s11044": 154, "s1transitivesubgroup": [71, 216], "s2": [41, 71, 79, 80, 87, 101, 104, 144, 201, 208, 217, 224, 228, 234, 259, 268], "s208": 72, "s2transitivesubgroup": [71, 216], "s3": [71, 79, 87, 144, 224, 234], "s3_in_s6": 71, "s3transitivesubgroup": 71, "s4": [71, 80, 144], "s4m": 71, "s4p": 71, "s4transitivesubgroup": [71, 216, 217], "s4xc2": 71, "s5": [71, 79, 144], "s5transitivesubgroup": 71, "s6": 71, "s6transitivesubgroup": [71, 212], "s8": 136, "s_": [22, 78, 84, 214], "s_0": 84, "s_1": [70, 214, 259], "s_2": [70, 214], "s_3": 79, "s_4": 71, "s_5": 71, "s_6": 71, "s_aug": 124, "s_field": 90, "s_hexagon_theorem": 100, "s_i": [70, 84, 115, 117], "s_in": 160, "s_is_j": 117, "s_j": [78, 117, 214], "s_k": 70, "s_n": [71, 87, 217, 259], "s_out": 160, "s_postul": 128, "s_solution_of_systems_of_geodetic_polynomial_equ": 215, "s_transvers": 84, "s_x": [98, 104], "s_y": [98, 104], "sa": [104, 214, 217], "saboo": 0, "saddl": 207, "safe": [88, 128, 211, 217, 239, 245, 287], "safeguard": 226, "safeti": [70, 80, 121], "sage": [51, 88, 128, 206, 291], "sai": [3, 5, 11, 14, 15, 21, 22, 23, 30, 35, 36, 39, 41, 70, 78, 87, 88, 89, 117, 128, 151, 153, 196, 208, 209, 210, 214, 216, 220, 221, 228, 231, 234, 237, 239, 240, 241, 260, 286, 291, 297], "said": [0, 3, 15, 33, 35, 36, 61, 65, 69, 74, 128, 196, 209, 237, 240, 241, 265, 272], "sake": [43, 93, 234], "sakki": 259, "salvi": [215, 218], "sam": 241, "same": [3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 27, 32, 33, 35, 36, 39, 41, 42, 43, 45, 48, 50, 52, 55, 61, 63, 64, 65, 67, 68, 69, 71, 77, 78, 79, 80, 84, 87, 88, 89, 90, 93, 95, 96, 98, 101, 102, 103, 104, 105, 110, 111, 113, 115, 117, 118, 120, 124, 128, 130, 131, 134, 136, 137, 140, 144, 145, 148, 149, 152, 157, 175, 177, 185, 188, 189, 191, 193, 194, 195, 196, 198, 199, 200, 202, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 248, 250, 252, 254, 255, 256, 257, 259, 260, 262, 265, 267, 269, 270, 274, 287, 289, 292, 293, 296, 297, 299, 306, 309, 310], "same_root": 217, "samp": 241, "samp_list": 241, "sampl": [2, 39, 79, 91, 142, 144, 175, 207, 221, 241, 287, 291], "sample_it": [13, 241], "sample_p": 144, "sampling_": 241, "sampling_dens": 241, "sampling_p": 241, "samuel": 128, "samuelson": [124, 210], "sanit": 262, "sartaj": 0, "sat": [2, 63], "satisfi": [2, 5, 12, 13, 14, 27, 41, 51, 52, 56, 64, 65, 67, 70, 76, 79, 84, 88, 89, 93, 96, 98, 111, 113, 117, 118, 124, 128, 154, 175, 180, 208, 209, 212, 214, 216, 217, 221, 227, 228, 229, 234, 237, 238, 239, 240, 241, 247, 292, 297], "satur": 208, "saunder": 124, "savag": 259, "save": [2, 9, 12, 13, 14, 15, 67, 88, 124, 128, 207, 220, 239, 256], "saw": [127, 211, 297], "sawtooth": 224, "saxena": 215, "sb": 0, "sc": [79, 115], "sca": 214, "scalar": [13, 14, 22, 32, 34, 36, 54, 61, 88, 90, 103, 117, 120, 124, 129, 130, 144, 148, 155, 190, 200, 201, 202, 208, 210, 214, 221, 237, 242, 254, 260, 265, 267, 268, 269, 270, 271, 273, 275, 280], "scalar_field": [33, 201, 265, 268, 272], "scalar_map": 265, "scalar_part": 61, "scalar_potenti": [33, 201, 268, 272], "scalar_potential_differ": [33, 201, 268, 272], "scale": [36, 97, 98, 99, 103, 104, 105, 116, 136, 171, 192, 194, 195, 196, 198, 199, 205, 207, 217, 224, 241, 272, 274], "scale_factor": 198, "scale_matrix": 241, "scale_matrix_1": 241, "scale_matrix_2": 241, "scalex": 224, "scan": [88, 210], "scarc": 214, "scc": 210, "scenario": [14, 128, 241], "scene": [22, 233, 289], "schedul": 3, "schemat": [18, 191, 196, 299], "scheme": [3, 8, 41, 80, 87, 92, 206, 207, 214, 217, 246], "schiehlen": 29, "schirm": 29, "schmidt": 124, "school": [89, 230], "schorn": 234, "schost": 218, "schreier": [79, 84, 86], "schreier_sim": [79, 85, 86], "schreier_sims_increment": [79, 86], "schreier_sims_random": [79, 86], "schreier_vector": 79, "schur": 120, "schur_compl": 120, "schwab": 29, "sci": 206, "scienc": [0, 29, 30, 80, 113, 124, 208, 215, 230, 231, 287], "sciencedirect": [215, 230], "scienceworld": 55, "scientif": [0, 15, 30, 59, 88], "scientificamerican": 43, "scientist": 237, "scipi": [2, 7, 14, 15, 18, 21, 30, 48, 50, 53, 96, 185, 221, 241, 260, 286, 295, 299], "scm": 9, "scopatz": 0, "scope": [4, 11, 23, 27, 69, 151, 250, 297], "scott": 79, "scottish": 241, "scratch": [88, 196], "screen": [3, 15, 36, 116, 205, 252, 296], "screenshot": 207, "script": [2, 4, 11, 15, 45, 60, 96, 205, 253], "scroll": [11, 57], "sculptur": 89, "sdm": [210, 214], "sdm_": 214, "sdm_add": 214, "sdm_berk": 210, "sdm_deg": 214, "sdm_ecart": 214, "sdm_from_dict": 214, "sdm_from_vector": 214, "sdm_groebner": 214, "sdm_irref": 210, "sdm_lc": 214, "sdm_lm": 214, "sdm_lt": 214, "sdm_monomial_deg": 214, "sdm_monomial_divid": 214, "sdm_monomial_mul": 214, "sdm_mul_term": 214, "sdm_nf_mora": 214, "sdm_nullspace_from_rref": 210, "sdm_particular_from_rref": 210, "sdm_rref_den": 210, "sdm_spoli": 214, "sdm_to_dict": 214, "sdm_to_vector": 214, "sdm_zero": 214, "se": 18, "seamless": 18, "seamlessli": [18, 174], "sean": 0, "search": [3, 4, 22, 49, 67, 71, 79, 80, 84, 86, 88, 94, 124, 128, 208, 216, 217, 221, 230, 231, 233, 238, 241, 253], "search_funct": 176, "sec": [94, 115, 142, 216, 221, 230, 297], "secant": [94, 217], "sech": [94, 221], "second": [3, 5, 9, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24, 26, 28, 32, 35, 36, 39, 41, 42, 43, 48, 50, 52, 53, 55, 57, 60, 61, 64, 67, 69, 79, 80, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 101, 102, 104, 115, 124, 128, 129, 132, 136, 137, 142, 144, 145, 149, 151, 152, 153, 155, 156, 159, 162, 164, 165, 168, 172, 177, 180, 185, 186, 188, 189, 194, 195, 196, 198, 200, 201, 207, 210, 211, 212, 214, 215, 216, 217, 221, 223, 231, 233, 234, 237, 239, 240, 241, 242, 243, 259, 260, 265, 268, 269, 270, 282, 286, 291, 292, 293, 299, 306, 309, 311], "second_mo": 136, "second_moment_of_area": [98, 104], "second_reference_fram": 200, "second_system": 265, "secondari": 148, "secondarili": [69, 217], "secondhypergeometr": 237, "secondli": [3, 14, 43, 231], "secondlinearairi": 237, "secondlinearbessel": 237, "secondqu": 191, "secret": [43, 89], "secretli": 89, "section": [3, 5, 8, 10, 11, 12, 14, 15, 16, 18, 22, 28, 33, 36, 41, 43, 44, 61, 68, 70, 79, 80, 87, 88, 89, 91, 95, 96, 98, 104, 113, 118, 124, 130, 136, 137, 152, 159, 194, 196, 208, 211, 214, 216, 221, 224, 228, 231, 237, 247, 256, 257, 259, 269, 270, 271, 272, 276, 286, 287, 288, 289, 290, 291, 292, 294, 295, 296, 297, 298, 303], "section_modulu": [98, 104], "secur": [9, 13], "see": [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 25, 27, 35, 38, 39, 41, 42, 43, 44, 45, 62, 63, 64, 65, 67, 68, 69, 71, 74, 76, 79, 80, 81, 84, 87, 89, 90, 93, 94, 95, 96, 100, 104, 105, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 124, 125, 128, 129, 130, 134, 142, 149, 152, 153, 154, 158, 160, 163, 166, 167, 176, 180, 181, 185, 186, 187, 188, 190, 191, 194, 196, 200, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 246, 247, 250, 252, 253, 254, 255, 256, 257, 260, 265, 267, 275, 286, 287, 289, 291, 292, 293, 295, 296, 297, 298, 299, 308, 310], "seed": [12, 77, 79, 88, 89, 98, 101, 102, 124, 128, 214, 241, 252, 259], "seehuhn": 11, "seek": [3, 239], "seem": [12, 14, 22, 37, 41, 43, 112, 113, 196, 208, 210, 233, 237, 297], "seemingli": [87, 240], "seen": [4, 11, 24, 35, 39, 41, 61, 80, 113, 115, 130, 136, 140, 152, 155, 158, 196, 208, 211, 214, 217, 237, 240, 257, 259, 269, 289, 292, 296], "segment": [4, 13, 18, 35, 79, 98, 100, 101, 102, 103, 104, 105, 156, 207, 237, 252, 299], "segment2d": [100, 101, 104, 105], "segment3d": [101, 102], "seldom": 128, "select": [0, 8, 17, 18, 37, 53, 58, 69, 72, 79, 80, 87, 88, 89, 97, 102, 116, 118, 124, 128, 130, 132, 134, 150, 153, 196, 205, 211, 212, 214, 215, 217, 221, 230, 233, 239], "selector": [87, 124, 233, 259], "self": [4, 11, 12, 14, 18, 41, 43, 53, 61, 63, 64, 68, 69, 79, 80, 85, 87, 88, 90, 94, 97, 98, 99, 101, 102, 103, 104, 115, 124, 128, 149, 186, 191, 200, 202, 204, 207, 208, 210, 212, 214, 216, 217, 221, 223, 228, 229, 247, 265, 299, 302], "selfridg": 128, "sell": 291, "semant": [3, 15, 41, 120, 239], "semanticscholar": 128, "semi": [98, 101, 128], "semicircl": 241, "semicolon": 221, "semidefinit": [124, 241], "semidirect": 71, "semilatus_rectum": 98, "semilatusrectum": 98, "semilog": 142, "semisimpl": 117, "semispher": [265, 275], "send": [18, 79, 88, 89, 94, 128, 208, 237, 239], "sender": 89, "sens": [13, 14, 15, 36, 39, 41, 43, 61, 65, 67, 68, 88, 90, 93, 96, 113, 118, 148, 153, 156, 159, 196, 200, 208, 214, 216, 230, 231, 233, 240, 241, 253, 254, 259, 274, 297, 302], "sensibl": [18, 113, 115, 132], "sensit": [30, 88, 130, 144, 207, 214, 233, 252], "sent": [88, 115, 233, 239], "sentenc": [5, 11, 118], "sep": [89, 221, 238, 252], "separ": [3, 4, 11, 12, 13, 15, 16, 27, 28, 31, 39, 42, 43, 45, 50, 56, 68, 76, 88, 89, 94, 96, 113, 115, 124, 145, 148, 152, 156, 158, 164, 188, 191, 200, 207, 209, 210, 212, 214, 217, 218, 221, 230, 233, 234, 237, 238, 240, 245, 250, 252, 256, 260, 262, 265, 289], "separable_integr": [55, 237], "separable_reduc": 237, "separable_reduced_integr": 237, "separablereduc": 237, "separate_integr": 115, "separatevar": [88, 233, 237], "septemb": [80, 256], "seq": [61, 79, 88, 91, 124, 212, 214, 217, 227, 239, 259], "seqadd": 227, "seqbas": 227, "seqformula": 227, "seqmul": 227, "seqper": 227, "sequenc": [5, 16, 30, 61, 67, 69, 72, 75, 78, 79, 80, 84, 86, 87, 88, 89, 91, 93, 96, 98, 101, 102, 103, 104, 105, 112, 118, 120, 124, 127, 128, 131, 134, 144, 164, 190, 191, 210, 212, 215, 221, 223, 225, 228, 230, 231, 233, 234, 237, 238, 240, 247, 250, 253, 254, 259, 261, 262, 277, 299], "sequence_partit": 259, "sequence_partitions_empti": 259, "sequence_term": 87, "sequenti": [68, 72, 89, 94, 265, 267], "serendipit": 230, "seress": 79, "sergei": 0, "sergiu": 0, "seri": [4, 11, 12, 13, 18, 22, 30, 35, 39, 46, 55, 67, 68, 69, 70, 78, 79, 87, 88, 90, 92, 93, 94, 96, 111, 112, 113, 117, 128, 141, 142, 144, 156, 204, 213, 214, 221, 226, 227, 231, 237, 240, 277, 283, 288, 309, 311], "series_approx2": 69, "series_approx3": 69, "series_approx8": 69, "seriesapprox": 69, "seriessolut": 237, "serious": 3, "serv": [5, 12, 13, 15, 39, 43, 63, 64, 69, 71, 85, 88, 95, 111, 216, 237, 238, 262, 290], "servic": 69, "session": [11, 12, 15, 36, 60, 69, 88, 100, 115, 205, 211, 257, 289, 296], "set": [1, 2, 3, 4, 5, 7, 8, 11, 12, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 48, 50, 51, 57, 60, 61, 63, 67, 68, 69, 70, 71, 76, 77, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 101, 103, 105, 106, 107, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 128, 130, 134, 136, 137, 142, 144, 148, 149, 152, 153, 154, 156, 158, 159, 175, 181, 186, 191, 193, 196, 198, 199, 200, 202, 204, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 220, 221, 222, 223, 228, 230, 231, 233, 234, 236, 237, 238, 239, 241, 245, 246, 247, 250, 252, 253, 254, 255, 259, 260, 265, 268, 270, 276, 279, 286, 288, 297, 299, 302, 303, 306, 311], "set_": 13, "set_acc": [30, 35, 204], "set_ang_acc": [30, 200], "set_ang_vel": [22, 27, 28, 30, 31, 35, 149, 155, 200, 202, 204, 299, 302, 309, 310], "set_comm": 247, "set_condit": 13, "set_domain": [212, 217], "set_global_relative_scale_factor": 198, "set_global_set": 221, "set_metr": [13, 247], "set_modulu": 217, "set_norm": 61, "set_po": [18, 22, 35, 134, 148, 155, 156, 159, 204, 299], "set_quantity_dimens": 194, "set_quantity_scale_factor": 194, "set_vel": [13, 18, 22, 25, 26, 27, 28, 30, 31, 35, 134, 148, 149, 153, 155, 159, 204, 299, 302, 303, 304, 306, 307, 309, 310, 311], "set_xlabel": [18, 299], "set_ylabel": [18, 299], "setdelai": 130, "seterr": 88, "setitem": 210, "setkind": [88, 123], "setminu": [96, 113], "setsymbol": 41, "setter": [13, 22, 30], "settl": 299, "setup": [6, 10, 11, 12, 13, 69, 88, 160, 200, 214, 217, 219, 220, 231, 252, 253, 255, 264, 296, 303, 306, 307], "seven": 221, "seventh": 132, "sever": [2, 3, 4, 11, 12, 13, 14, 15, 24, 38, 41, 43, 48, 52, 59, 69, 73, 79, 80, 87, 88, 92, 93, 95, 96, 100, 113, 115, 128, 138, 150, 153, 154, 196, 198, 207, 209, 210, 211, 214, 216, 220, 221, 222, 228, 229, 237, 241, 252, 254, 263, 276, 289, 293, 296, 303], "sexi": [63, 64], "sexy_prim": [63, 64], "sexyprim": [63, 64], "sexyprimepred": [63, 64], "sff": 124, "sffge": 124, "sfield": [212, 271], "sfix": 35, "sfu": [96, 115], "sg": [79, 241, 247], "sgen": 84, "sh": 8, "sha": 262, "sha1": 254, "shade": 136, "shadow": [55, 81], "shakthimaan": 7, "shall": [22, 30, 39, 79, 113, 228, 231, 292], "shallow": [212, 228], "shank": 228, "shankar": 74, "shape": [4, 13, 18, 22, 69, 104, 120, 124, 126, 127, 131, 134, 138, 142, 144, 149, 158, 200, 207, 208, 210, 221, 224, 231, 241, 242, 243, 245, 246, 247, 260, 296, 299], "shapeerror": [53, 120, 124], "share": [3, 7, 41, 43, 89, 128, 212, 216, 221, 241, 254], "sharex": [18, 299], "she": [5, 240], "shea": [215, 217], "shear": [136, 137], "shear_forc": [136, 137], "shear_modulu": 136, "shear_stress": 136, "sheet": [96, 230], "shell": [8, 11, 16, 30, 116, 220], "shi": [96, 113, 221, 231], "shier": 241, "shierd": 241, "shift": [73, 79, 80, 82, 89, 96, 99, 103, 105, 118, 207, 212, 214, 217, 224, 231, 239, 241], "shift_list": [212, 214, 217], "shifted_ellips": 98, "shifted_gompertz_distribut": 241, "shiftedgompertz": 241, "shiftx": 224, "ship": [15, 129], "shivam": 0, "sho": 192, "shor": [178, 282], "short": [3, 5, 11, 12, 16, 21, 32, 36, 60, 70, 78, 80, 84, 88, 89, 90, 91, 94, 121, 128, 159, 177, 196, 208, 215, 242, 252, 262, 292, 296], "short_lif": 16, "shortcut": [9, 36, 68, 88, 119, 221, 229, 233, 297], "shorten": [4, 134, 148], "shorter": [13, 18, 21, 25, 32, 57, 88, 98, 208, 212, 221, 254, 262], "shortest": [35, 98, 101, 104, 156, 159, 227, 233, 234, 237, 259], "shorthand": [14, 15, 16, 41, 43, 88, 118, 185, 216, 229, 250], "shortlog": 11, "should": [2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 25, 27, 28, 30, 31, 35, 36, 38, 41, 42, 43, 45, 48, 55, 57, 60, 62, 64, 67, 68, 69, 70, 79, 80, 81, 82, 84, 87, 88, 89, 91, 92, 94, 96, 98, 99, 100, 101, 102, 103, 105, 110, 111, 112, 113, 115, 116, 117, 118, 120, 124, 128, 130, 132, 134, 136, 142, 144, 148, 153, 154, 158, 159, 160, 171, 174, 175, 179, 181, 183, 185, 186, 189, 191, 193, 194, 196, 197, 200, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 220, 221, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 239, 240, 241, 245, 246, 250, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 269, 286, 287, 289, 290, 293, 302, 306], "shoulder": 299, "shouldn": [88, 218], "shoup": [214, 215], "shoup91": 215, "shoup95": 215, "show": [2, 3, 4, 5, 8, 11, 12, 13, 16, 18, 21, 22, 24, 28, 30, 35, 36, 38, 39, 40, 41, 42, 43, 55, 69, 80, 87, 88, 92, 94, 111, 113, 115, 124, 128, 136, 137, 138, 140, 142, 148, 156, 186, 190, 194, 196, 200, 207, 208, 211, 212, 214, 216, 217, 221, 222, 224, 228, 229, 230, 231, 233, 234, 237, 239, 241, 242, 250, 253, 254, 257, 259, 260, 289, 291, 293, 296, 299, 308], "show_ax": 142, "showcas": 305, "shown": [3, 4, 12, 13, 15, 18, 21, 24, 25, 26, 32, 35, 36, 41, 42, 43, 77, 80, 87, 88, 92, 94, 96, 113, 130, 136, 137, 142, 144, 153, 155, 200, 207, 210, 211, 212, 217, 221, 237, 241, 257, 259, 269, 270, 290, 299, 304, 306, 307], "showpost": 128, "shp": 69, "shrink": [99, 113], "shuffl": [80, 124, 297], "shut": [88, 217], "shutil": 13, "si": [43, 96, 112, 113, 164, 193, 194, 195, 196, 197, 198, 214, 221], "siam": [206, 259], "sibx0afl3q": 240, "side": [12, 14, 16, 18, 27, 31, 32, 39, 41, 50, 52, 55, 69, 79, 80, 88, 100, 104, 115, 124, 128, 134, 136, 144, 153, 158, 159, 179, 180, 196, 200, 206, 208, 214, 216, 219, 221, 238, 240, 241, 245, 252, 254, 275, 287], "siev": [79, 128], "sieve_interv": 128, "sift": [79, 86, 259], "sigma": [16, 80, 111, 113, 124, 221, 224, 241], "sigma3": 166, "sigma_": 241, "sigma_approxim": 224, "sigma_i": [147, 241], "sigma_k": [93, 128], "sigma_not": 87, "sigma_x": 241, "sign": [3, 4, 5, 9, 12, 14, 15, 17, 18, 33, 35, 46, 48, 52, 57, 61, 66, 69, 84, 88, 89, 93, 94, 98, 104, 113, 115, 124, 128, 134, 136, 137, 140, 144, 148, 156, 164, 176, 200, 206, 210, 214, 221, 226, 228, 233, 234, 239, 259, 272, 275, 290, 302], "signal": [18, 30, 46, 96, 118, 128, 131, 142, 144, 214, 292], "signallib": 69, "signatur": [4, 7, 43, 63, 64, 80, 88, 124, 133, 254, 255, 259, 260], "signed_permut": [234, 259], "signedinttyp": 69, "signifi": [79, 88, 136, 217, 241], "signific": [3, 14, 16, 21, 32, 41, 69, 88, 89, 92, 115, 124, 185, 211, 240, 260, 292], "significantli": [13, 18, 21, 25, 53, 69, 92, 212, 223, 253, 256], "signsimp": [88, 233, 310], "signum": 221, "sigsam": 115, "silenc": [3, 17, 250, 257], "silent": [14, 42, 92, 128, 253], "silver": 146, "sim": [79, 84, 86, 113], "similar": [3, 9, 11, 12, 13, 14, 16, 18, 22, 27, 28, 32, 33, 35, 36, 39, 41, 43, 48, 80, 87, 88, 89, 92, 93, 94, 96, 99, 104, 105, 109, 118, 124, 129, 144, 148, 189, 209, 211, 212, 214, 218, 228, 230, 231, 233, 237, 239, 242, 247, 250, 253, 256, 257, 265, 267, 269, 270, 274, 286, 289, 291, 292, 293, 295, 297, 302, 306], "similari": 11, "similarli": [11, 12, 13, 18, 28, 32, 41, 48, 55, 84, 88, 89, 96, 100, 124, 136, 137, 144, 153, 156, 195, 207, 208, 211, 216, 218, 228, 229, 231, 237, 252, 260, 270, 271, 293], "similiar": 156, "simmon": 237, "simon": 241, "simp": [113, 200], "simpfunc": 124, "simpl": [4, 11, 12, 13, 14, 15, 16, 19, 21, 23, 27, 31, 35, 36, 39, 41, 43, 54, 59, 68, 69, 79, 87, 88, 92, 96, 100, 104, 106, 113, 115, 117, 124, 128, 129, 130, 131, 132, 134, 136, 137, 144, 145, 148, 149, 151, 152, 153, 155, 158, 159, 165, 179, 180, 188, 189, 190, 200, 210, 211, 212, 213, 217, 218, 221, 223, 228, 230, 231, 233, 234, 237, 240, 247, 253, 254, 259, 264, 265, 267, 268, 272, 286, 289, 292, 293, 297, 299, 302, 303, 304, 306, 307, 309, 311], "simple_pend": 307, "simple_pend_fram": 307, "simple_root": 117, "simpled": 223, "simpledomain": 212, "simplefilt": 257, "simpler": [12, 15, 36, 42, 43, 48, 61, 88, 92, 96, 112, 113, 210, 214, 230, 231, 233, 237, 239, 240, 297, 309], "simplest": [14, 18, 43, 55, 68, 118, 124, 128, 129, 148, 156, 206, 207, 218, 222, 230, 233, 237, 287, 297], "simplex": 239, "simplfiy_thi": 3, "simpli": [2, 3, 5, 8, 12, 14, 22, 27, 33, 36, 41, 42, 50, 51, 65, 70, 71, 87, 88, 90, 94, 98, 120, 124, 128, 130, 131, 136, 140, 145, 149, 181, 186, 196, 211, 217, 218, 229, 230, 231, 236, 237, 240, 257, 259, 260, 272, 299, 302], "simplic": [18, 43, 231, 237, 299], "simplif": [2, 14, 15, 16, 22, 27, 30, 41, 46, 62, 64, 66, 67, 69, 88, 90, 93, 94, 113, 124, 130, 150, 175, 191, 200, 217, 222, 232, 233, 237, 239, 240, 276, 277, 286, 288, 290, 291], "simplifc": 310, "simplifi": [3, 4, 11, 12, 13, 15, 16, 18, 27, 33, 39, 41, 42, 43, 46, 53, 54, 55, 62, 64, 66, 67, 87, 88, 90, 92, 93, 94, 96, 100, 105, 110, 113, 115, 118, 119, 120, 124, 132, 136, 144, 145, 150, 152, 153, 154, 156, 158, 159, 163, 170, 175, 190, 191, 195, 198, 200, 208, 210, 216, 218, 220, 222, 227, 229, 230, 231, 234, 237, 238, 239, 240, 241, 243, 255, 257, 260, 269, 271, 277, 286, 287, 288, 289, 291, 292, 293, 303, 304, 306, 309, 310, 311], "simplified_pair": 118, "simplify_auxiliary_eq": 310, "simplify_cg": 175, "simplify_gpgp": 145, "simplify_index_permut": 191, "simplify_log": 118, "simplify_thi": [3, 4, 255], "simprot": [22, 30], "simul": [18, 19, 22, 30, 88, 220, 300, 301], "simultan": [16, 88, 94, 101, 124, 128, 133, 207, 230], "sin": [4, 5, 12, 13, 14, 15, 16, 18, 22, 27, 30, 33, 35, 36, 41, 43, 46, 49, 52, 54, 55, 57, 59, 61, 67, 69, 87, 88, 90, 92, 93, 94, 96, 97, 98, 102, 106, 107, 110, 111, 112, 113, 115, 116, 124, 129, 130, 146, 149, 150, 152, 156, 158, 159, 163, 165, 189, 200, 202, 204, 206, 207, 209, 211, 217, 218, 220, 221, 222, 223, 224, 228, 229, 230, 231, 233, 236, 237, 239, 240, 242, 248, 254, 260, 265, 267, 268, 269, 270, 275, 286, 287, 289, 291, 292, 297, 298, 299, 302, 303, 304, 307, 309, 310, 311], "sin_co": 260, "sin_cos_numpi": 260, "sin_cos_sympi": 260, "sin_sol": 229, "sinc": [12, 13, 14, 15, 16, 28, 30, 33, 36, 37, 38, 39, 41, 42, 43, 46, 62, 67, 69, 70, 79, 80, 81, 84, 85, 86, 88, 89, 91, 93, 94, 96, 97, 98, 100, 104, 106, 112, 113, 115, 117, 118, 124, 128, 147, 149, 152, 167, 191, 192, 196, 207, 208, 209, 211, 212, 214, 216, 217, 221, 224, 229, 230, 231, 233, 234, 237, 239, 240, 241, 247, 251, 255, 256, 257, 259, 260, 269, 271, 272, 274, 286, 291, 293, 296, 297, 298], "sinc_funct": 94, "sine": [4, 14, 43, 88, 94, 96, 113, 115, 165, 218, 224, 230, 286], "sine_transform": 115, "sinetransform": 115, "sing": 124, "singh": 0, "singl": [3, 5, 8, 11, 13, 14, 15, 17, 18, 24, 39, 41, 43, 49, 55, 60, 61, 68, 69, 72, 79, 88, 89, 93, 94, 96, 101, 102, 104, 105, 106, 113, 115, 118, 124, 127, 130, 132, 134, 136, 144, 145, 148, 150, 152, 153, 171, 175, 177, 185, 188, 191, 198, 200, 204, 207, 208, 210, 211, 212, 214, 216, 217, 221, 222, 223, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 246, 252, 254, 256, 259, 260, 262, 287, 289, 292, 293, 298, 306], "singlecontinuouspspac": 241, "singledomain": 241, "singlefinitepspac": 241, "singlepspac": 241, "singleton": [15, 80, 118, 240, 292], "singletonregistri": [41, 88], "singli": 128, "singular": [27, 65, 69, 80, 88, 92, 94, 95, 96, 110, 111, 113, 115, 124, 136, 139, 200, 208, 215, 228, 237, 240, 265, 282, 287], "singular_point": 265, "singular_valu": 124, "singular_value_decomposit": 124, "singularhandl": 65, "singularit": [27, 115], "singularity_funct": 96, "singularityfunct": [96, 115, 136], "singularityintegr": 115, "singularmatrix": 65, "singularpred": 65, "sinh": [18, 43, 67, 88, 92, 94, 96, 107, 113, 130, 132, 218, 221, 222, 231, 297], "sinhint": 221, "sinhintegr": 221, "sinint": 221, "sinintegr": 221, "sink": [33, 272], "sinrul": 115, "siq": 128, "siret": 215, "siso": [142, 144], "sisolineartimeinvari": [142, 144], "sit": [36, 144], "site": [5, 128, 255], "situat": [12, 14, 36, 41, 57, 88, 92, 113, 237, 239, 241, 257, 287, 289], "six": [37, 137, 221, 234, 240, 241], "sixteenth": 89, "sixth": 132, "size": [13, 25, 26, 27, 39, 53, 69, 70, 72, 77, 79, 80, 81, 82, 83, 84, 88, 89, 91, 93, 116, 120, 124, 127, 128, 142, 164, 186, 187, 205, 207, 210, 214, 221, 233, 234, 237, 241, 259, 287, 302], "sizeof": 69, "sk": 89, "skelet": [18, 133], "skeleton": 18, "skellam": 241, "skellam_distribut": 241, "skew": [41, 111, 124, 128, 241], "skiena": 80, "skip": [2, 3, 4, 8, 16, 68, 72, 88, 124, 128, 200, 216, 220, 221, 223, 237, 239, 250, 252, 287, 295, 296], "skip_nan": 94, "skip_under_pyodid": 250, "skipp": 12, "skyciv": 104, "slack": [18, 132, 134], "slash": [221, 252], "slate": 252, "slater": [96, 231], "slice": [88, 118, 124, 130, 210, 212, 217, 227, 229, 233, 242, 259, 261], "slide": [136, 152], "slider": [13, 158, 307], "slightli": [12, 14, 54, 60, 61, 69, 84, 128, 130, 207, 208, 210, 212, 214, 217, 221, 231, 233, 302], "slip": [12, 35, 302, 308, 310], "slope": [98, 99, 101, 104, 115, 136, 137, 142, 152], "slot": [84, 175, 242, 246, 247, 292], "slow": [14, 21, 32, 36, 41, 43, 48, 53, 84, 88, 92, 115, 129, 163, 211, 212, 221, 222, 223, 224, 233, 237, 239, 240, 252, 253, 297], "slowdown": [13, 92], "slower": [12, 13, 43, 48, 53, 84, 124, 153, 210, 211, 216, 217, 260, 286], "slowest": [53, 115, 129], "slowli": [92, 228], "slp": 86, "slp_dict": 79, "sm": [18, 22, 30, 128, 208, 299, 303], "small": [18, 30, 39, 51, 69, 70, 71, 79, 80, 88, 92, 93, 115, 118, 124, 128, 144, 188, 206, 207, 210, 212, 214, 215, 216, 233, 234, 239, 259, 286, 289, 291, 306, 310], "smallelementof": 221, "smaller": [15, 25, 69, 79, 80, 88, 89, 93, 96, 104, 115, 120, 128, 209, 210, 211, 214, 217, 224, 230, 231, 234, 239, 259, 286, 297], "smallest": [67, 82, 93, 94, 101, 103, 110, 118, 124, 128, 188, 200, 212, 234, 257, 259], "smallest_angle_between": 101, "smallmatrix": [130, 221, 291], "smart": [27, 150, 228, 234, 237], "smarter": [14, 184, 230], "smith": [0, 13, 125, 210], "smith_normal_form": [13, 125, 210], "smooth": [18, 88, 92, 128, 131, 223], "smoothing_r": 131, "smoothli": 156, "smoothness_p": 128, "smt_builtin_func": 221, "smtlib": 221, "smtlib_cod": 221, "smtlibprint": 221, "sn": [79, 80, 87, 110], "sneak": 12, "snippet": [16, 69], "snr": 69, "so": [0, 2, 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 36, 38, 39, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 74, 76, 77, 79, 80, 82, 84, 86, 88, 89, 92, 93, 94, 96, 98, 100, 101, 102, 104, 110, 111, 112, 113, 115, 116, 117, 118, 120, 124, 125, 128, 130, 131, 134, 136, 137, 144, 148, 151, 152, 153, 156, 158, 164, 175, 177, 185, 187, 188, 189, 191, 193, 195, 196, 200, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 245, 246, 250, 252, 253, 256, 257, 259, 260, 262, 271, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 306], "societi": [29, 234], "socket": 152, "sode0401": 237, "sode0402": 237, "sode0404": 237, "sode0405": 237, "sode0406": 237, "softwar": [2, 5, 115, 215, 291], "soil": 208, "sol": [18, 37, 54, 124, 234, 237, 238, 239, 299], "sol0": 37, "sol1": 237, "sol2": 237, "sol_f": 240, "sol_typ": 153, "sol_uniqu": 124, "sol_vector": 237, "sol_vector_evalu": 237, "sola": 237, "solar": 194, "solar_mass": 194, "solb": 237, "soldner": 96, "soldnersconst": 96, "sole": [13, 14, 48], "solenoid": [201, 268], "solid": [81, 102, 152, 159, 207, 275], "solidspher": 275, "sollist": 237, "soln": 124, "solomon": 89, "solut": [8, 11, 13, 14, 15, 16, 21, 22, 23, 27, 32, 37, 39, 42, 43, 46, 49, 50, 69, 84, 88, 89, 94, 96, 98, 106, 110, 111, 112, 115, 124, 128, 131, 134, 136, 141, 151, 153, 154, 160, 196, 208, 210, 214, 215, 216, 217, 218, 219, 220, 229, 234, 236, 237, 238, 239, 298, 306], "solution2": 53, "solution_dict": [51, 55], "solution_first": 51, "solution_list": [51, 52], "solution_one_soln_set_dict": 55, "solution_outside_2_3": 52, "solution_p4q3": 51, "solution_set": 52, "solution_set_arg": 52, "solutions_list": 55, "solutions_one_soln_set": 55, "solutions_set": 52, "solv": [3, 4, 11, 13, 14, 15, 16, 17, 18, 22, 23, 25, 27, 30, 34, 39, 41, 43, 44, 46, 47, 69, 72, 84, 87, 88, 96, 101, 113, 115, 119, 124, 128, 131, 132, 134, 136, 138, 139, 140, 149, 151, 153, 154, 158, 194, 210, 214, 218, 219, 220, 221, 223, 233, 234, 236, 237, 238, 241, 282, 287, 288, 291, 293, 296, 299, 304, 305, 306, 309, 311], "solvabl": [57, 79, 140, 149, 234, 237, 240, 298], "solve_aux_eq": 237, "solve_congru": [128, 214], "solve_d": 223, "solve_den": 210, "solve_den_charpoli": 210, "solve_den_rref": 210, "solve_expo": 240, "solve_for_func": [237, 238], "solve_for_ild_mo": 136, "solve_for_ild_react": 136, "solve_for_ild_shear": 136, "solve_for_reaction_load": [136, 137], "solve_for_tors": 136, "solve_ivp": [18, 55, 299], "solve_least_squar": 124, "solve_lin_si": [11, 13, 219], "solve_linear": 239, "solve_linear_system": 239, "solve_linear_system_lu": 239, "solve_log": 240, "solve_multipli": [153, 306], "solve_poly_inequ": 236, "solve_poly_system": [209, 217, 239, 240], "solve_rational_inequ": 236, "solve_riccati": 237, "solve_slope_deflect": 136, "solve_triangul": 239, "solve_undetermined_coeff": 239, "solve_univariate_inequ": [50, 236, 240], "solvefun": 238, "solver": [2, 4, 11, 12, 15, 23, 30, 31, 32, 51, 54, 63, 96, 124, 128, 151, 153, 158, 210, 213, 221, 233, 234, 238, 252, 276, 277, 283, 288, 290], "solveset": [3, 30, 43, 54, 57, 153, 219, 235, 236, 239, 277, 298], "solveset_complex": 240, "solveset_r": 240, "solvifi": [236, 240], "some": [2, 3, 4, 7, 8, 9, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24, 25, 27, 31, 32, 33, 35, 36, 39, 41, 42, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 60, 61, 65, 68, 69, 70, 71, 76, 79, 80, 86, 87, 88, 89, 92, 93, 94, 96, 98, 99, 100, 104, 113, 115, 117, 118, 120, 124, 128, 129, 130, 142, 145, 149, 152, 155, 158, 171, 176, 180, 188, 191, 195, 196, 197, 201, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 223, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 265, 267, 268, 270, 272, 276, 286, 287, 289, 291, 292, 293, 295, 296, 297, 299, 302, 304, 306, 307], "some_filenam": 22, "some_funct": 255, "somehow": [11, 12, 15, 43], "someon": [3, 11, 12, 14, 237, 256, 290], "someth": [3, 4, 5, 9, 11, 13, 14, 15, 16, 21, 22, 30, 32, 41, 42, 43, 57, 67, 69, 88, 89, 92, 98, 113, 118, 124, 128, 184, 197, 207, 211, 212, 220, 228, 229, 233, 237, 240, 252, 254, 260, 286, 289, 291, 292, 295], "sometim": [3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 23, 27, 36, 41, 43, 48, 55, 68, 69, 88, 93, 96, 112, 113, 144, 151, 183, 191, 208, 211, 216, 221, 223, 228, 230, 234, 237, 239, 250, 259, 286, 293], "somewhat": [22, 96, 115, 212], "somewher": [3, 4, 5, 12, 14, 15, 69], "soon": [22, 87, 88, 196, 218], "sop": [115, 118], "sopform": 118, "sophist": [43, 129, 239], "sort": [12, 15, 21, 32, 50, 63, 64, 68, 69, 77, 80, 84, 93, 113, 115, 118, 124, 127, 128, 130, 145, 153, 175, 191, 196, 207, 214, 217, 218, 228, 233, 234, 237, 238, 239, 243, 245, 247, 252, 254, 259, 269, 289, 291, 292], "sort_kei": [77, 88, 237], "sorted_compon": 247, "sosmath": 230, "sought": [79, 128, 176, 186, 210, 233, 239, 240], "sound": [221, 297, 303], "sourc": [0, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 22, 30, 33, 43, 53, 54, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 134, 136, 138, 140, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 250, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 267, 268, 272, 284, 291], "source_cod": 130, "source_format": [69, 221], "sourceforg": [5, 68], "sp": 35, "space": [4, 12, 16, 33, 36, 43, 67, 68, 69, 88, 89, 90, 97, 98, 99, 101, 103, 104, 117, 124, 130, 135, 136, 144, 146, 152, 153, 154, 155, 160, 162, 165, 175, 178, 180, 186, 188, 200, 204, 206, 207, 208, 216, 240, 241, 252, 256, 265, 267, 269, 270, 271, 272, 274, 275, 282, 289, 292], "space_orient": [265, 267], "spacecraft": 29, "spaceorient": [265, 267, 270], "spack": 59, "spam": [7, 262], "spamham": 262, "spammer": 221, "span": [4, 13, 117, 124, 135, 136, 137, 152, 156, 216, 221, 257, 293], "sparingli": 12, "spars": [5, 15, 120, 122, 124, 185, 210, 216, 217, 218, 241, 242, 280, 292], "sparsematrix": [124, 127, 222, 233], "sparsetool": [124, 127], "sparsiti": 210, "spatial": [148, 155, 165, 200, 221], "speak": [124, 216, 272], "spec": [216, 217], "speci": [55, 87, 88], "special": [2, 4, 11, 15, 17, 30, 33, 41, 43, 53, 57, 60, 61, 71, 80, 88, 89, 91, 92, 93, 95, 103, 106, 113, 115, 124, 175, 180, 208, 211, 214, 215, 216, 221, 230, 231, 233, 234, 236, 237, 238, 239, 241, 252, 253, 254, 257, 259, 260, 269, 272, 274, 277, 287, 288, 292], "specialpoli": 217, "specif": [4, 5, 7, 8, 11, 12, 13, 14, 15, 18, 22, 23, 30, 36, 41, 43, 44, 51, 58, 79, 80, 88, 89, 90, 96, 100, 115, 117, 124, 132, 134, 149, 151, 152, 153, 158, 160, 196, 207, 208, 212, 214, 216, 217, 220, 221, 222, 227, 233, 234, 237, 238, 239, 241, 247, 252, 253, 254, 259, 293, 297, 299], "specifi": [4, 5, 13, 14, 18, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 41, 43, 48, 53, 54, 56, 57, 68, 69, 70, 83, 87, 88, 89, 90, 91, 94, 96, 97, 101, 104, 113, 115, 117, 118, 120, 123, 124, 128, 130, 131, 132, 134, 136, 137, 138, 140, 144, 148, 149, 151, 152, 153, 158, 159, 175, 180, 185, 186, 188, 189, 194, 200, 202, 204, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 223, 224, 227, 228, 229, 231, 233, 237, 238, 239, 240, 241, 242, 246, 247, 248, 252, 253, 254, 259, 260, 265, 267, 268, 271, 274, 287, 293, 299, 302, 304, 306, 307, 309], "spectral": 124, "spectrum": 43, "speed": [2, 4, 11, 13, 18, 22, 24, 25, 26, 30, 31, 32, 36, 64, 69, 79, 88, 89, 92, 124, 128, 129, 146, 149, 152, 153, 154, 158, 162, 165, 195, 200, 204, 206, 218, 221, 222, 228, 233, 237, 253, 256, 259, 292, 293, 299, 302, 304, 306, 307, 309, 310, 311], "speed_con": 25, "speed_idx": [31, 158], "speed_of_light": [195, 198], "speedup": [88, 124, 129, 214, 218, 260], "spell": [4, 13, 15, 237], "spend": 11, "spent": 260, "sph_jn": 96, "sphere": [15, 159, 163, 265, 275], "spheric": [94, 146, 152, 159, 170, 206, 207, 217, 265, 269, 270, 291], "spherical_bessel_fn": [96, 217], "spherical_harmon": 96, "sphericalbess": 221, "sphericalbesselj": 221, "sphericalharmon": 96, "sphericalharmonici": 96, "sphericaljoint": 152, "sphinx": [3, 5, 8, 11, 94, 237, 252, 257], "sphinx_math_dollar": 5, "sphinxext": 5, "spin": [104, 146, 177, 178, 186, 282, 302], "spin_up": 146, "spinor": 145, "spinstat": 188, "split": [10, 43, 69, 88, 89, 92, 113, 115, 130, 214, 216, 219, 220, 221, 239, 241, 247, 252, 259, 263, 292, 297], "split_1": 88, "split_list": 252, "split_super_sub": 221, "split_symbol": 130, "split_symbols_custom": 130, "splitter": 163, "spoli": 214, "sporad": 12, "spot": [31, 124], "spread": [160, 210, 221, 241, 256], "spring": [18, 22, 46, 128, 148, 149, 153, 158, 299, 303, 307], "spring_const": 18, "spring_damp": 18, "spring_damper2": 18, "spring_damper3": 18, "spring_damper_path": 307, "spring_forc": [148, 149], "springdamp": 18, "springer": [89, 115, 128, 214, 215, 237], "spuriou": [48, 214, 239], "sq": [16, 234], "sq2": 88, "sqf": [209, 212, 217, 234], "sqf_list": [209, 212, 214, 217], "sqf_list_includ": [212, 217], "sqf_norm": [212, 214, 217], "sqf_normal": 234, "sqf_part": [212, 214, 217], "sqfr_norm": 214, "sqfreetool": 214, "sqr": [212, 217], "sqrt": [4, 12, 13, 14, 15, 18, 32, 33, 36, 37, 41, 43, 46, 48, 49, 50, 51, 52, 56, 57, 61, 65, 66, 67, 69, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 111, 112, 113, 115, 116, 119, 124, 128, 130, 132, 134, 136, 138, 140, 144, 146, 148, 156, 159, 160, 162, 164, 165, 170, 175, 185, 186, 188, 189, 191, 192, 194, 195, 200, 206, 209, 211, 212, 214, 216, 217, 220, 221, 222, 227, 230, 231, 233, 234, 236, 237, 239, 240, 241, 259, 260, 262, 265, 274, 275, 286, 287, 291, 296, 297, 298, 302], "sqrt2": [208, 211], "sqrt3": 211, "sqrt_mod": [128, 234], "sqrt_mod_it": 128, "sqrtdenest": [11, 12, 233], "sqt": 230, "squar": [12, 16, 25, 26, 41, 48, 51, 52, 57, 61, 65, 69, 79, 88, 89, 93, 94, 104, 105, 113, 115, 119, 124, 127, 128, 130, 131, 134, 136, 144, 146, 177, 193, 200, 206, 210, 212, 214, 215, 216, 217, 218, 221, 229, 233, 234, 237, 240, 241, 291], "square_factor": [128, 234], "square_in_unit_circl": 104, "square_iter": 229, "square_matrix": 65, "square_root": 94, "squareddistribut": 241, "squarefre": [128, 216], "squarefree_cor": 128, "squarehandl": 65, "squarepred": 65, "squeez": [221, 299], "sr": 271, "src": [3, 4, 5, 7, 11, 12, 130, 237, 252, 257], "src2": 130, "src3": 130, "src_code": 130, "sre": 214, "srepr": [211, 292], "sring": [212, 218, 219], "ss": [88, 212], "ss1": 144, "ss2": 144, "sss": 104, "sstr": [87, 205, 221], "sstrrepr": [116, 205, 221], "st": [9, 12, 89, 115, 191], "stab": 79, "stabil": [15, 27, 79, 84, 86, 92, 144, 245], "stabl": [3, 4, 5, 43, 46, 69, 88, 116, 124, 130, 132, 140, 144, 241, 253, 286], "stack": [30, 70, 105, 124, 158, 210, 216, 221, 250, 256, 293], "stackexchang": [5, 79, 98], "stacklevel": [3, 12, 250, 255, 257], "stackoverflow": [7, 11, 128, 259, 262], "stade": 113, "stage": [11, 41, 68, 87, 128, 228, 297], "stai": [43, 216], "stall": 216, "stand": [11, 15, 30, 87, 88, 153, 209, 210, 211, 212, 218], "standalon": [5, 30], "standard": [2, 5, 12, 13, 14, 15, 16, 33, 41, 43, 48, 52, 53, 55, 57, 69, 88, 92, 94, 96, 111, 113, 115, 116, 117, 118, 121, 124, 128, 129, 130, 131, 147, 168, 172, 200, 206, 208, 211, 212, 214, 221, 224, 229, 233, 234, 237, 240, 241, 243, 254, 260, 269, 274, 286, 289, 297], "standard_cartan": 117, "standard_transform": 130, "standardis": [79, 211], "stanford": 72, "star": [221, 239, 259], "starrett": 237, "start": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 22, 25, 26, 35, 36, 43, 54, 58, 59, 68, 69, 71, 72, 77, 78, 79, 80, 84, 87, 88, 89, 90, 96, 118, 120, 124, 127, 128, 129, 132, 134, 136, 137, 140, 186, 187, 190, 194, 207, 211, 214, 216, 217, 221, 224, 227, 229, 230, 231, 234, 237, 239, 240, 241, 242, 245, 252, 253, 259, 261, 262, 271, 285, 286, 289, 291, 299, 302], "start_point": [90, 304], "start_view": 221, "starter": 59, "startnumb": 237, "starts_with_un": 216, "startswith": 299, "stat": [2, 9, 276, 283], "stat317": 241, "state": [11, 12, 15, 18, 31, 39, 41, 55, 79, 86, 88, 96, 128, 131, 132, 134, 136, 144, 146, 149, 153, 154, 158, 163, 167, 168, 170, 171, 172, 174, 175, 176, 180, 183, 185, 186, 187, 188, 190, 191, 210, 217, 221, 230, 231, 233, 241, 256, 282, 293, 299, 302, 306], "state_map": 181, "state_spac": 241, "state_to_oper": 181, "state_var": [131, 134], "statebas": [181, 186, 189], "statement": [0, 4, 13, 22, 41, 42, 43, 59, 68, 69, 88, 96, 113, 118, 120, 170, 221, 241, 250, 254, 259], "statespac": 144, "static": [23, 41, 61, 69, 79, 80, 82, 88, 94, 101, 102, 103, 104, 120, 137, 151, 207, 221, 227, 229, 241, 253, 302], "staticmethod": [13, 252], "stationari": [67, 241, 299], "stationary_distribut": 241, "stationary_point": 67, "statist": [72, 89, 96, 241, 252, 291], "statu": [9, 11, 116], "statweb": 72, "std": [43, 69, 221, 241], "stderr": 69, "stdfactkb": 41, "stdin": [16, 255, 257], "stdlib": [13, 252], "stdout": [69, 71, 252], "steep": 239, "steer": [29, 302], "stefanu": 115, "stegun": [4, 96], "stein": [128, 237], "steinborn": 206, "steinhau": 259, "stem": 246, "step": [3, 8, 9, 18, 23, 25, 30, 31, 36, 43, 44, 46, 58, 67, 69, 79, 83, 84, 87, 88, 89, 96, 112, 113, 115, 124, 128, 129, 151, 153, 158, 193, 204, 206, 207, 210, 211, 212, 214, 216, 217, 221, 222, 223, 226, 229, 230, 231, 233, 234, 237, 239, 241, 246, 253, 259, 260, 287, 300, 305, 309], "step_response_numerical_data": 142, "step_response_plot": [46, 142], "stick": 60, "stieltj": [96, 221], "stieltjes_const": 96, "stieltjesgamma": 221, "stiff": [18, 30, 148, 299, 303], "stiffer": 18, "still": [2, 3, 4, 5, 12, 13, 14, 15, 16, 22, 36, 41, 43, 59, 60, 61, 68, 80, 87, 88, 89, 96, 100, 115, 124, 130, 131, 134, 191, 207, 208, 209, 210, 214, 216, 221, 228, 230, 231, 233, 237, 239, 240, 246, 252, 259, 272, 293], "stiller": 215, "stiller96": 215, "stimul": 18, "stinson": 80, "stirl": [5, 80, 93, 259], "stirling_numbers_of_the_first_kind": 93, "stirling_numbers_of_the_second_kind": 93, "stochast": 13, "stoke": 163, "stokes_paramet": 163, "stokes_vector": 163, "stop": [3, 8, 11, 14, 69, 70, 80, 88, 124, 128, 207, 227, 229, 237, 241], "stopiter": 234, "stopper": 292, "storag": [69, 88, 124, 185, 206, 214], "store": [9, 11, 13, 16, 22, 28, 35, 36, 41, 45, 68, 69, 78, 79, 88, 110, 112, 120, 124, 128, 130, 149, 153, 155, 158, 185, 191, 204, 207, 208, 210, 211, 216, 217, 218, 228, 231, 242, 245, 246, 254, 255, 256, 259, 270, 272, 292, 299], "stori": [12, 196], "stormi": 237, "stqq": 89, "str": [12, 13, 14, 15, 30, 43, 63, 68, 69, 70, 80, 88, 89, 90, 92, 97, 98, 101, 104, 105, 116, 118, 120, 124, 128, 130, 132, 134, 142, 149, 152, 153, 154, 155, 158, 175, 185, 191, 200, 202, 204, 207, 210, 212, 216, 221, 233, 237, 241, 257, 259, 260, 262, 265], "str_expr": 286, "str_printer": [116, 205], "strai": 22, "straight": [35, 104, 110, 142, 148, 156, 159, 237, 306], "straightforward": [5, 12, 14, 18, 43, 79, 89, 124, 231], "strain": 132, "strang": 211, "strategi": [12, 70, 88, 115, 214, 215, 228, 231, 233, 238], "strawberryperl": 8, "stream": [69, 89, 222, 233, 259], "strecker": 68, "strength": 211, "stress": 136, "stretch": [18, 148, 256], "strict": [13, 14, 15, 48, 79, 80, 88, 92, 93, 124, 130, 158, 214, 217, 221, 239, 240, 259, 262, 297], "stricter": 130, "strictgreaterthan": [42, 88, 221], "strictlessthan": [88, 221, 262], "strictli": [15, 16, 38, 40, 41, 65, 67, 88, 96, 124, 128, 144, 212, 214, 233, 239, 260], "stride": [69, 246], "string": [2, 3, 4, 5, 7, 11, 12, 15, 16, 21, 32, 33, 43, 61, 62, 68, 69, 72, 77, 88, 89, 90, 91, 92, 95, 101, 111, 116, 117, 118, 120, 124, 128, 130, 134, 136, 138, 140, 142, 149, 152, 153, 154, 155, 162, 171, 175, 185, 189, 193, 199, 200, 204, 205, 207, 210, 212, 216, 221, 222, 228, 233, 237, 241, 242, 245, 246, 247, 252, 253, 254, 259, 260, 262, 263, 265, 267, 269, 288, 289, 292, 296, 303], "string_input": 14, "string_of_lett": 191, "stringifi": [116, 205], "stringify_expr": 130, "stringpict": 221, "strip": [5, 12, 89, 115, 128, 214, 257, 262], "strip_whitepac": 12, "strip_zero": 212, "strive": 68, "strline": 262, "strong": [79, 84, 85, 86, 128, 129], "strong_gen": [79, 85, 86], "strong_gens_distr": [79, 86], "strong_present": 79, "strong_pseudoprim": 128, "stronger": 293, "strongli": [124, 134, 210, 259], "strongly_connected_compon": [124, 210, 259], "strongly_connected_components_decomposit": 124, "strprinter": [124, 205], "struct": [69, 206], "structr": [148, 156], "structur": [5, 13, 14, 15, 16, 18, 23, 38, 41, 43, 66, 68, 69, 76, 79, 80, 86, 88, 113, 115, 118, 124, 135, 136, 137, 138, 140, 158, 189, 191, 207, 208, 210, 211, 214, 216, 217, 218, 233, 237, 239, 240, 241, 245, 246, 254, 256, 259, 260, 289, 297], "structure_theorem_for_finitely_generated_abelian_group": 76, "structureerror": 216, "struggl": [92, 220], "strzebonski": 217, "stub": 88, "student": [115, 230, 234, 241], "student_t": 241, "studentst": 241, "studentt": 241, "studi": [36, 70, 78, 87, 90, 124, 208, 214, 217, 234, 241], "stuff": [130, 207, 252, 254, 262], "sturm": [212, 217], "sturmian": 217, "sty": 221, "style": [6, 7, 8, 11, 68, 88, 116, 185, 205, 207, 221, 240, 296], "stylis": 221, "stylist": 12, "stzz": 89, "su": 247, "sub": [4, 12, 13, 14, 15, 16, 18, 21, 22, 27, 30, 37, 41, 42, 43, 46, 48, 51, 52, 54, 55, 69, 87, 88, 94, 96, 97, 98, 99, 100, 101, 102, 104, 115, 118, 120, 124, 128, 130, 136, 137, 144, 150, 188, 189, 194, 200, 206, 208, 210, 211, 212, 214, 217, 221, 228, 229, 233, 234, 237, 238, 239, 241, 252, 253, 255, 286, 287, 289, 302, 304, 306, 309, 310], "sub1": [150, 221], "sub2": [150, 221], "sub_dict": [21, 150, 302], "sub_ground": [212, 217], "subalgebra": 117, "subaugmentedassign": 69, "subcategori": [236, 276], "subclass": [13, 14, 15, 18, 41, 43, 63, 64, 69, 88, 95, 99, 101, 115, 118, 130, 131, 134, 148, 156, 158, 159, 160, 166, 175, 179, 180, 181, 186, 188, 189, 195, 207, 208, 210, 211, 212, 216, 217, 221, 241, 252, 253, 254, 257, 260, 265, 269, 292, 299], "subcompon": 221, "subdetermin": 214, "subdiagon": 124, "subdiagram": 68, "subdiagram_from_object": 68, "subdirectori": [8, 12, 45], "subdomain": 214, "subexponenti": 128, "subexpress": [14, 15, 21, 43, 69, 88, 94, 124, 150, 216, 217, 221, 228, 233, 240, 254, 260, 286], "subfactori": [93, 221, 259], "subgraph": 259, "subgroup": [71, 79, 80, 84, 86, 117, 128], "subgroup_search": 79, "subinterv": 115, "subject": [21, 31, 65, 88, 98, 104, 137, 216], "sublist": [67, 84, 89, 115, 188, 287], "submatric": [120, 124, 210, 241], "submatrix": [124, 210, 214, 241], "submiss": 7, "submit": [4, 11], "submodul": [0, 2, 3, 4, 11, 12, 14, 15, 21, 69, 208, 212, 214, 216], "submodule_from_gen": 216, "submodule_from_matrix": 216, "subnorm": [69, 79], "subobject": 221, "suboptim": [18, 231], "subpackag": [2, 276, 301], "subpart": 46, "subplot": [18, 136, 207, 299], "subprocess": [88, 221, 252, 253], "subquadrat": 215, "subquoti": 208, "subquotientmodul": 208, "subresult": [88, 212, 215, 217], "subresultants_qq_zz": 217, "subroutin": [69, 79, 187, 214], "subroutinecal": 69, "subs_dict": 140, "subs_point": 100, "subscheck": 237, "subscript": [51, 53, 80, 88, 130, 212, 221, 231, 234, 259], "subsect": [79, 272], "subsequ": [4, 11, 12, 16, 55, 88, 94, 200, 212, 214, 217, 256, 259, 269, 272], "subset": [5, 11, 12, 39, 41, 43, 48, 67, 68, 72, 75, 79, 80, 86, 93, 94, 100, 111, 113, 115, 117, 128, 154, 208, 210, 214, 216, 221, 229, 259, 277], "subset_from_bitlist": 83, "subset_indic": 83, "subspac": 216, "subsset": 228, "substack": 238, "substanti": [5, 129], "substep": 115, "substitut": [8, 14, 15, 16, 18, 22, 27, 39, 42, 48, 51, 55, 57, 69, 88, 89, 94, 96, 113, 115, 124, 129, 130, 136, 144, 153, 154, 180, 189, 191, 194, 200, 202, 204, 218, 219, 222, 223, 228, 231, 233, 234, 237, 238, 239, 240, 260, 268, 288, 289, 302, 306], "substitute_dummi": 191, "substitute_indic": 13, "substitution_ciph": 89, "substr": 262, "subsum": 96, "subsystem": [8, 221], "subtl": [43, 230], "subtleti": 113, "subtract": [16, 52, 61, 69, 80, 88, 92, 103, 128, 144, 152, 193, 209, 210, 211, 212, 214, 216, 217, 292, 297, 304], "subtre": [88, 221, 256], "subvector": 96, "subwiki": [76, 79], "subword_index": 78, "succ": [228, 241], "succe": [88, 113, 118, 128, 181, 216, 239], "success": [5, 8, 68, 79, 88, 96, 113, 115, 128, 152, 200, 208, 214, 216, 229, 230, 237, 240, 241, 259, 265, 267, 302], "successfulli": 216, "succinct": 88, "succinctli": 88, "sudo": [8, 9], "suetoniu": 89, "suffer": [4, 217], "suffic": [4, 209, 239], "suffici": [3, 4, 11, 18, 41, 68, 69, 79, 80, 84, 88, 124, 196, 212, 224, 228, 234, 237, 241, 256, 297], "suffix": [134, 217, 254], "suffix_express": 221, "sugar": [214, 215, 246], "suggest": [5, 7, 11, 13, 18, 22, 53, 70, 79, 115, 124, 128, 219, 293], "suit": [2, 3, 5, 11, 12, 41, 43, 52, 53, 68, 207, 217, 250, 252], "suitabl": [11, 18, 115, 120, 124, 130, 206, 209, 210, 211, 214, 216, 221, 231, 234, 237, 240, 242, 290], "suku": 115, "sukumar": 115, "sullivan": 259, "sum": [18, 25, 39, 41, 51, 69, 77, 80, 87, 88, 91, 93, 96, 101, 103, 111, 113, 115, 117, 118, 120, 124, 128, 130, 140, 155, 170, 174, 177, 185, 188, 190, 191, 206, 208, 209, 211, 212, 216, 217, 218, 221, 223, 224, 226, 228, 230, 231, 233, 234, 237, 239, 240, 241, 242, 243, 245, 247, 256, 259, 297, 299], "sum_": [69, 87, 88, 89, 93, 96, 113, 115, 120, 124, 128, 206, 217, 218, 223, 224, 231, 237, 241], "sum_0": 231, "sum_approx1": 69, "sum_approx2": 69, "sum_approx3": 69, "sum_domain": 211, "sum_i": [96, 228], "sum_k": 242, "sum_m": 242, "sum_of_four_squar": 234, "sum_of_pow": 234, "sum_of_squar": 234, "sum_of_three_squar": 234, "sumapprox": 69, "sumith": 0, "summand": [77, 216], "summar": [3, 11, 252, 297], "summari": [11, 252, 276, 304], "summat": [69, 87, 88, 92, 93, 96, 191, 215, 217, 221, 224, 233, 241, 242, 245, 246, 247, 253], "sunni": 241, "sup": [212, 217, 221, 229], "super": [69, 96, 212, 221, 265, 267, 299], "super_set": 83, "superclass": [13, 14, 15, 41, 87, 115, 120, 148, 212], "superdiagon": 124, "superfici": 88, "superflu": 113, "supergroup": 79, "superior": [3, 221], "superposit": [165, 176, 187, 208], "superposition_basi": 176, "superscript": [130, 144, 221], "superscriptminu": 221, "superscriptplu": 221, "supersed": [5, 22, 30], "superset": [30, 41, 67, 77, 83, 91, 211, 229, 239], "superset_s": 83, "supplant": 3, "supplement_a_subspac": 216, "supplementari": 0, "suppli": [16, 18, 25, 26, 28, 36, 54, 55, 67, 68, 69, 79, 80, 88, 90, 98, 102, 124, 128, 148, 149, 152, 153, 154, 155, 164, 191, 204, 207, 216, 218, 223, 230, 237, 253, 259, 260, 265, 267, 270, 299, 302, 306, 309], "support": [2, 3, 4, 5, 11, 13, 14, 15, 16, 18, 21, 22, 30, 35, 43, 54, 59, 61, 62, 63, 64, 67, 68, 69, 80, 88, 92, 95, 96, 98, 112, 115, 120, 124, 128, 129, 130, 134, 135, 136, 137, 138, 140, 141, 144, 152, 186, 200, 207, 209, 210, 211, 212, 214, 216, 217, 218, 221, 226, 227, 228, 229, 233, 237, 238, 239, 240, 241, 242, 246, 250, 252, 253, 254, 260, 270, 272, 287, 292, 296], "support_1": 138, "support_2": 138, "suppos": [12, 13, 14, 32, 42, 43, 80, 87, 88, 89, 113, 130, 208, 210, 214, 216, 217, 221, 228, 231, 237, 239, 250, 259, 270, 275, 289, 291, 297], "suppress": [88, 130, 250, 257], "supremum": [94, 229], "surd": 233, "sure": [3, 4, 5, 8, 9, 11, 12, 22, 43, 69, 79, 88, 100, 158, 171, 196, 207, 217, 218, 228, 237, 239, 240, 253, 259, 289, 292, 297], "surfac": [3, 18, 94, 96, 102, 113, 137, 152, 156, 159, 160, 164, 191, 207, 233, 265], "surface_color": 207, "surfacebaseseri": 207, "surfaceover2drangeseri": 207, "surject": 208, "surpris": [15, 41, 240], "surround": [5, 12, 88, 105, 164, 229, 262], "survei": 5, "surviv": 60, "susan": 72, "suspect": [88, 128], "suspend": 303, "suspens": 138, "sussman": 90, "sv": 9, "svg": [8, 35, 36, 45, 116, 205, 270, 306, 308], "sw": 101, "swap": [14, 79, 80, 81, 124, 171, 175, 184, 210, 241, 259], "swap_point": 171, "swapgat": 175, "swig": 253, "swing": 93, "swinnerton": 217, "swinnerton_dyer_poli": 217, "swiss": 217, "switch": [11, 13, 61, 79, 86, 115, 128, 144, 214, 217, 243], "sx": 84, "sy": [11, 22, 30, 59, 69, 90, 221, 252, 271, 289], "sylow": 79, "sylow_subgroup": 79, "sylvest": [128, 214], "sym": [51, 67, 78, 79, 84, 88, 93, 200, 221, 224, 229, 233, 234, 239, 241, 247, 259, 297, 299], "sym2": 247, "sym_expr": 130, "sym_i": 84, "symarrai": 124, "symb": [124, 221], "symb85": 233, "symb_2txt": 221, "symb_nam": 221, "symbol": [0, 2, 4, 5, 7, 11, 12, 15, 17, 18, 21, 22, 23, 28, 30, 32, 33, 35, 36, 37, 39, 44, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 78, 80, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 110, 111, 112, 113, 115, 116, 118, 120, 124, 128, 129, 130, 131, 132, 134, 136, 137, 138, 140, 141, 142, 144, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 163, 164, 165, 166, 168, 170, 171, 173, 175, 177, 179, 180, 183, 186, 188, 189, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 202, 204, 205, 207, 208, 209, 210, 212, 213, 214, 215, 216, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 231, 233, 234, 236, 237, 238, 239, 241, 242, 244, 245, 246, 247, 248, 253, 259, 260, 265, 267, 268, 270, 271, 272, 275, 282, 286, 287, 290, 292, 293, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "symbol_nam": [88, 221], "symbol_t": 221, "symbolc": 41, "symbolic_complex": 48, "symbolic_expand": 48, "symbolicnumericalcomput": 215, "symbolicsystem": [23, 158], "symbolnam": 237, "symbologi": 221, "symbols_seq": 234, "symbols_to_declar": 221, "symfunc": [253, 260], "symmetr": [13, 28, 53, 65, 66, 70, 71, 76, 79, 80, 84, 104, 119, 120, 124, 128, 206, 212, 214, 217, 220, 229, 231, 247, 259], "symmetri": [4, 13, 71, 76, 81, 84, 96, 124, 170, 206, 237, 245, 247, 286, 297], "symmetric_differ": 229, "symmetric_group": 76, "symmetric_matrix": 65, "symmetric_poli": [212, 217], "symmetric_residu": 128, "symmetricdiffer": [221, 229, 240], "symmetricgroup": [76, 78, 79, 85, 86], "symmetrichandl": 65, "symmetricpred": 65, "symp": [88, 212], "sympfiabl": 299, "sympi": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 34, 35, 36, 37, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 266, 267, 270, 271, 273, 274, 275, 276, 280, 283, 285, 287, 289, 290, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311], "sympif": [13, 60, 88], "sympifi": [12, 14, 15, 16, 18, 28, 41, 42, 69, 92, 98, 118, 132, 164, 189, 191, 200, 201, 211, 212, 286, 292], "sympify": [98, 104, 136, 138, 140, 149, 155, 162, 165, 202], "sympifyerror": 88, "symplifi": [231, 233], "symposium": [70, 113, 214, 215, 231], "sympy_benchmark": 2, "sympy_cod": 22, "sympy_debug": [1, 115, 262], "sympy_deprecation_warn": [3, 250, 255, 257], "sympy_eqs_to_r": 219, "sympy_express": [69, 253], "sympy_gamma": 115, "sympy_ground_typ": [210, 211, 212], "sympy_htmldoc": 8, "sympy_integ": 221, "sympy_nam": 286, "sympy_obj": 14, "sympy_pars": [88, 130], "sympy_use_cach": 88, "sympydeprecationwarn": [3, 12, 13, 250, 252, 255, 257], "sympydoctestfind": 252, "sympydoctestrunn": 252, "sympyexpress": 130, "sympyfi": [201, 202, 204, 268, 299], "sympyoutputcheck": 252, "sympytestfil": 252, "sympytestresult": 252, "symsac": 215, "symsystem": 158, "symsystem1": 31, "symsystem2": 31, "symsystem3": 31, "sync": 9, "synonym": [98, 216], "syntact": 246, "syntax": [3, 4, 5, 11, 13, 14, 15, 16, 22, 30, 43, 55, 62, 64, 80, 88, 115, 130, 188, 207, 211, 220, 221, 233, 239, 243, 262, 287, 289, 291, 296, 298], "syntaxerror": [14, 16, 130], "synthesi": 89, "sys1": [46, 144], "sys2": [46, 144], "sys3": 46, "sys4": 46, "sys5": 46, "sys6": 46, "sysod": 237, "syst": 154, "system": [0, 1, 2, 5, 7, 8, 9, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 26, 27, 28, 30, 33, 35, 36, 37, 38, 39, 42, 43, 46, 47, 48, 49, 53, 55, 62, 64, 79, 88, 89, 90, 94, 113, 116, 117, 118, 124, 129, 130, 131, 133, 134, 136, 140, 141, 143, 144, 148, 149, 151, 153, 154, 155, 156, 169, 170, 185, 188, 189, 191, 194, 198, 200, 204, 205, 206, 208, 209, 210, 211, 212, 213, 214, 215, 216, 219, 220, 221, 229, 230, 236, 240, 241, 252, 253, 265, 267, 268, 271, 273, 275, 280, 282, 289, 291, 293, 297, 298, 300, 301, 302, 303, 304, 305, 306, 309, 311], "system2": 268, "system_default_view": 221, "system_info": 237, "systemat": 220, "syzygy_modul": 208, "sz": 186, "szop": 186, "szupket": 186, "t": [0, 3, 4, 5, 7, 8, 11, 12, 13, 15, 16, 18, 21, 22, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 42, 43, 46, 48, 55, 61, 64, 65, 67, 69, 70, 72, 79, 80, 81, 82, 84, 88, 89, 90, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 112, 113, 115, 117, 118, 119, 120, 124, 128, 129, 130, 131, 132, 134, 140, 144, 145, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 163, 165, 171, 175, 187, 189, 191, 193, 194, 196, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 220, 221, 224, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 247, 250, 252, 255, 259, 260, 265, 268, 270, 274, 286, 287, 291, 292, 293, 296, 297, 298, 299, 303, 306, 307], "t0": [18, 84, 299], "t1": [84, 104, 105, 128, 149, 155, 234, 241], "t2": [99, 104, 105, 128, 149, 155, 234, 241, 247], "t3": [105, 234], "t4": 234, "t5": 234, "t_": [18, 84, 93, 134], "t_0": [93, 234], "t_1": [79, 93, 234], "t_2": [79, 93, 234], "t_b": 28, "t_c": 84, "t_eval": [18, 55, 299], "t_m": 214, "t_n": [5, 93, 96, 115, 214, 217, 270], "t_p": 28, "t_r": [28, 79, 247], "t_t": 28, "ta": [145, 230], "tab": [8, 13, 16, 30, 84], "tab1": 84, "tabl": [4, 30, 41, 70, 79, 88, 93, 96, 109, 115, 124, 128, 152, 206, 216, 243], "table_of_": 128, "tableau": 13, "tableaux": 247, "tableform": [13, 239, 262], "tackl": [23, 151, 254], "tactic": 241, "tag": [12, 221, 239], "tail": [72, 87, 88, 212, 241], "tail_degre": 212, "tailor": 41, "tait": [152, 200, 265, 267], "take": [2, 3, 5, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 30, 32, 35, 36, 39, 41, 42, 43, 50, 51, 52, 53, 55, 64, 67, 69, 70, 73, 78, 79, 83, 87, 88, 89, 90, 94, 96, 100, 101, 111, 115, 117, 118, 124, 128, 129, 130, 132, 134, 136, 138, 140, 144, 152, 153, 155, 158, 159, 160, 174, 177, 180, 181, 185, 187, 188, 189, 190, 191, 193, 196, 199, 200, 201, 202, 205, 207, 208, 209, 210, 211, 212, 214, 217, 218, 221, 224, 227, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 243, 246, 252, 253, 255, 256, 259, 260, 265, 267, 268, 286, 287, 289, 291, 292, 293, 297, 299, 302], "taken": [3, 12, 14, 15, 21, 27, 30, 69, 70, 71, 76, 79, 86, 87, 88, 93, 94, 96, 105, 124, 128, 131, 132, 144, 146, 149, 188, 194, 200, 204, 206, 207, 211, 216, 217, 221, 224, 228, 230, 231, 240, 241, 246, 254, 259, 265], "takenouchi": 128, "talk": [5, 11, 12, 17, 58, 89, 208, 216, 269], "tamu": 215, "tan": [12, 27, 67, 88, 93, 94, 115, 130, 150, 218, 220, 221, 228, 230, 237, 240, 297, 309, 310, 311], "tandem": 253, "tangent": [18, 94, 98, 100, 104, 115, 131, 218, 237], "tangent_lin": 98, "tanh": [12, 18, 88, 92, 94, 115, 130, 131, 134, 218, 221, 233, 297, 299], "taocp": 259, "tap": 8, "tapestri": 208, "target": [3, 4, 14, 15, 67, 68, 69, 71, 88, 128, 148, 150, 171, 175, 176, 195, 230, 233, 236, 239, 240, 250, 253, 254, 257, 297], "target1": 175, "target2": 175, "target_fram": 148, "target_unit": 198, "tarjan": [241, 259], "task": [23, 24, 30, 44, 49, 58, 94, 151, 211, 216, 287, 294], "tau": [16, 69, 113, 115, 124, 216, 221, 237], "tau0": [124, 240, 241], "tau1": 124, "tau_": 18, "tau_a": [18, 131], "tau_a_muscl": 134, "tau_d": [18, 131], "tau_d_muscl": 134, "taught": [43, 115], "taus_zero": 124, "tausski": 216, "tautologi": 221, "taxicab": 103, "taxicab_dist": 103, "taxonomi": 79, "taylor": [22, 27, 30, 39, 88, 94, 212, 214, 217, 218, 228, 237], "taylor_term": [88, 94], "tb": [145, 230, 252], "tbanilorngnezl": 89, "tbinom": 130, "tc": [145, 212, 217, 230], "tcc": 254, "tchebychev": 5, "td": [88, 221, 296], "te": 164, "teach": [5, 80, 89, 93, 241], "teacher": 43, "teaching_aid": 241, "team": [0, 3, 11], "tear": 292, "technic": [5, 13, 14, 17, 30, 43, 58, 68, 88, 130, 177, 208, 237, 254, 259, 272, 289, 292], "techniqu": [48, 52, 53, 55, 70, 83, 113, 115, 217, 221, 223, 233, 237, 240, 287, 293], "technolog": 230, "techreport": 89, "tediou": [39, 115], "teeter": 208, "telephon": 96, "tell": [4, 5, 11, 41, 42, 48, 52, 55, 69, 80, 89, 92, 96, 124, 130, 158, 196, 211, 216, 220, 228, 231, 237, 253, 289], "temp": [69, 302], "tempa": 302, "tempb": 302, "tempc": 302, "tempdir": [69, 253], "temper": 33, "temperatur": [33, 193, 274], "tempfork": 302, "tempfram": 302, "templat": [11, 13, 259], "tempor": 165, "temporari": [11, 88, 253], "temporarili": 88, "tempt": [12, 14, 41, 43, 88, 128], "temptat": [3, 230, 297], "ten": [69, 129], "tend": [11, 18, 43, 60, 69, 88, 93, 148, 156, 214, 216, 226, 228, 231, 290, 297], "tendenc": 128, "tendon": [132, 134, 299, 300], "tendon_force_explicit": 134, "tendon_force_implicit": 134, "tendon_force_length": 132, "tendon_force_length_invers": 132, "tendon_slack_length": [18, 134], "tendonforcelengthdegroote2016": [18, 132, 134], "tendonforcelengthinversedegroote2016": [18, 132], "tenenbaum": 237, "tens": 5, "tensadd": [221, 247], "tensexpr": [13, 145, 247], "tensil": [138, 140], "tension": [18, 121, 138], "tension_at": 138, "tensmul": [221, 247], "tensor": [28, 32, 69, 75, 90, 124, 145, 155, 170, 176, 177, 178, 188, 191, 200, 221, 242, 243, 245, 246, 253, 260, 269, 270, 276, 277, 280, 282], "tensor_can": [84, 247], "tensor_funct": 96, "tensor_gen": 84, "tensor_head": [13, 145, 247], "tensor_inde_typ": 247, "tensor_index_typ": 247, "tensor_indic": [13, 145, 247], "tensor_product": 177, "tensor_product_simp": 190, "tensorcontract": [242, 243], "tensordiagon": [242, 243], "tensorflow": [2, 260], "tensorflow_cod": 2, "tensorhead": [247, 248], "tensori": [247, 248], "tensorindex": [13, 247], "tensorindextyp": [247, 248], "tensormanag": 247, "tensorpowerhilbertspac": 177, "tensorproduct": [90, 188, 190, 221, 242, 243], "tensorproducthilbertspac": 177, "tensorsymmetri": 247, "tensortyp": 247, "tensorvari": 221, "tenth": 132, "teo": 239, "term": [5, 12, 15, 16, 18, 23, 25, 27, 32, 33, 35, 39, 41, 43, 48, 51, 53, 55, 57, 69, 79, 88, 89, 90, 92, 93, 94, 96, 107, 111, 112, 113, 115, 118, 124, 128, 131, 137, 142, 144, 148, 150, 151, 153, 170, 175, 187, 188, 191, 193, 195, 196, 200, 202, 206, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 223, 224, 226, 227, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 245, 246, 259, 265, 268, 272, 277, 287, 289, 291, 292, 297, 299, 302, 306, 309], "term_to_integ": 118, "termin": [7, 8, 9, 11, 79, 88, 94, 116, 128, 159, 205, 221, 228, 252, 296], "terminal_str": 221, "terminal_width": 221, "terminologi": [15, 49, 247], "termnam": 15, "terms_gcd": [88, 212, 217], "termwis": 217, "ternari": [51, 69, 88, 221, 234], "terrab": 237, "terrel": 0, "terri": 259, "terribl": 79, "test": [3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 36, 40, 42, 43, 50, 51, 64, 65, 67, 68, 69, 75, 79, 80, 87, 88, 89, 93, 95, 98, 103, 113, 120, 124, 128, 158, 171, 180, 184, 185, 186, 194, 211, 212, 214, 216, 218, 229, 231, 234, 237, 238, 239, 240, 250, 253, 254, 255, 256, 257, 259, 260, 262, 276, 277, 284, 289, 291, 292], "test2": 186, "test_": [4, 11, 12, 252], "test_arg": 252, "test_as_leading_term": 12, "test_bas": [11, 252], "test_comb_factori": 12, "test_cos_seri": [11, 12], "test_custom_latex": 130, "test_deprecated_expr_free_symbol": 12, "test_derivative_numer": [13, 88], "test_draw": 68, "test_equ": 252, "test_expr": [12, 88], "test_factor": 216, "test_factorial_rewrit": 12, "test_failing_integr": 12, "test_formula": 231, "test_func": 12, "test_hyperexpand": 231, "test_hypothesi": 12, "test_issue_21177": 12, "test_kwarg": 252, "test_modular": 12, "test_od": 237, "test_optional_depend": 12, "test_pd": 238, "test_pickl": 2, "test_pretti": 12, "test_residu": 12, "test_rewrite1": 228, "test_sin_1_unevalu": 12, "test_sqrtdenest": [11, 12], "test_stacklevel": [12, 250], "test_symbol": 12, "test_tan": 12, "test_trigonometr": [11, 12], "test_upretty_sub_sup": 12, "testbook": 46, "tester": 252, "testmod": 252, "testrunn": 252, "testutil": [79, 85, 86], "tetrahedr": 81, "tetrahedron": [79, 81], "tex": 221, "texliv": [2, 8, 221], "text": [2, 3, 4, 5, 11, 12, 13, 15, 28, 43, 45, 59, 69, 79, 89, 93, 94, 96, 106, 113, 116, 124, 128, 130, 132, 196, 205, 206, 207, 208, 214, 221, 228, 234, 237, 240, 241, 252], "textbackend": 207, "textbook": 46, "textfil": 241, "textplot": 207, "textrm": [18, 35, 36, 131, 229], "texttt": [93, 229], "textual": 221, "textwrap": [191, 262], "tf": [18, 46, 144, 260, 299], "tf1": [46, 142, 144], "tf10": 144, "tf11": 144, "tf12": 144, "tf2": [46, 144], "tf3": 144, "tf4": 144, "tf5": 144, "tf6": 144, "tf7": 144, "tf8": 144, "tf9": 144, "tf_1": 144, "tf_10": 144, "tf_2": 144, "tf_3": 144, "tf_4": 144, "tf_5": 144, "tf_6": 144, "tf_7": 144, "tf_8": 144, "tf_9": 144, "tfinal": 22, "tfm": 144, "tfm1": 144, "tfm2": 144, "tfm3": 144, "tfm_1": 144, "tfm_10": 144, "tfm_11": 144, "tfm_12": 144, "tfm_2": 144, "tfm_3": 144, "tfm_4": 144, "tfm_5": 144, "tfm_6": 144, "tfm_7": 144, "tfm_8": 144, "tfm_9": 144, "tfm_a": 144, "tfm_b": 144, "tfm_c": 144, "tfm_feedback": 46, "tfrac": [96, 130, 237, 241], "tgamma": 221, "tgate": 175, "th": [43, 61, 70, 79, 80, 86, 89, 90, 92, 93, 94, 96, 117, 118, 124, 128, 153, 210, 212, 214, 216, 217, 223, 226, 231, 234, 237, 239, 241, 242, 247], "than": [2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 32, 36, 37, 39, 40, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 60, 61, 65, 69, 70, 71, 73, 79, 80, 81, 87, 88, 89, 92, 93, 94, 96, 97, 102, 103, 104, 106, 110, 113, 115, 117, 118, 120, 124, 125, 127, 128, 129, 130, 134, 140, 142, 144, 148, 153, 158, 165, 171, 185, 188, 189, 191, 206, 209, 210, 211, 212, 214, 217, 218, 219, 221, 224, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 248, 253, 254, 256, 259, 260, 262, 286, 287, 289, 290, 291, 292, 293, 295, 297, 301, 306, 309], "the_68_standard_colors_known_to_dvip": 116, "theano": [2, 13, 30, 296], "theano_cod": 13, "theanoprint": 13, "thei": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 26, 27, 30, 31, 33, 36, 37, 41, 42, 43, 48, 53, 55, 56, 57, 59, 65, 68, 69, 70, 76, 78, 79, 80, 86, 87, 88, 89, 90, 93, 94, 96, 98, 101, 102, 103, 104, 105, 110, 113, 115, 116, 118, 120, 121, 124, 127, 128, 130, 131, 132, 135, 136, 148, 149, 151, 153, 155, 158, 159, 165, 170, 175, 180, 183, 188, 193, 194, 196, 197, 200, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 227, 228, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 247, 250, 252, 254, 256, 259, 260, 262, 265, 272, 274, 287, 289, 290, 291, 292, 293, 297, 299, 302, 310], "them": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 27, 30, 32, 33, 35, 36, 38, 39, 41, 42, 43, 48, 51, 52, 53, 55, 57, 60, 63, 65, 68, 69, 77, 79, 80, 87, 88, 89, 90, 92, 93, 96, 99, 104, 106, 108, 110, 111, 113, 117, 118, 120, 124, 127, 128, 129, 131, 134, 135, 136, 151, 153, 155, 158, 164, 168, 184, 185, 191, 193, 196, 199, 200, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 239, 240, 242, 243, 252, 254, 256, 259, 268, 286, 287, 289, 291, 292, 297, 299, 302, 304, 306], "theme": 291, "themselv": [2, 5, 12, 13, 14, 23, 24, 43, 65, 68, 80, 84, 86, 88, 115, 128, 151, 211, 212, 216, 227, 241, 247, 256, 259, 262, 297], "theor": 170, "theorem": [21, 32, 35, 46, 48, 57, 76, 89, 93, 96, 98, 104, 115, 124, 128, 147, 159, 191, 208, 211, 214, 228, 231, 234, 240, 302], "theoret": [41, 68, 70, 79, 89, 93, 215, 216, 231, 289], "theori": [22, 27, 29, 38, 43, 70, 71, 77, 78, 79, 80, 86, 88, 89, 93, 96, 117, 125, 153, 170, 188, 191, 200, 204, 210, 214, 215, 216, 220, 234, 256, 265, 283, 291], "theorist": 215, "therebi": 68, "therefor": [2, 3, 4, 12, 14, 18, 33, 36, 43, 48, 52, 70, 79, 84, 88, 92, 96, 101, 104, 117, 128, 131, 134, 144, 152, 206, 207, 211, 214, 217, 221, 237, 240, 241, 242, 247, 265, 267, 269, 270, 272, 274], "thereof": [69, 88, 208, 214, 216], "thesi": [79, 88, 228, 265], "thesis_drl": 210, "theta": [14, 16, 18, 31, 36, 61, 88, 90, 94, 96, 113, 116, 124, 130, 146, 158, 163, 200, 206, 212, 216, 221, 224, 229, 240, 241, 265, 267, 270, 272, 275], "theta1": [55, 306], "theta2": 55, "theta_1": 55, "theta_2": 55, "theta_dot": 158, "theta_oper": 14, "theta_pin": 13, "thetaset": 229, "thi": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 168, 170, 171, 172, 174, 175, 177, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 200, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 249, 250, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 265, 267, 268, 269, 270, 271, 272, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 301, 302, 303, 304, 306, 307, 308, 309, 310, 311], "thick": 164, "thieu": 237, "thilina": 0, "thilinaatsympi": 234, "thin": [63, 124, 160, 299, 308], "thing": [2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 17, 21, 22, 27, 30, 35, 36, 41, 42, 43, 48, 50, 58, 65, 69, 78, 79, 80, 88, 90, 100, 116, 117, 118, 124, 129, 130, 175, 191, 196, 210, 218, 220, 228, 229, 230, 233, 237, 240, 245, 255, 257, 259, 286, 287, 289, 291, 292, 293, 296, 297, 299], "thingi": 69, "think": [4, 11, 12, 13, 15, 41, 42, 43, 52, 59, 67, 79, 196, 214, 256, 260, 289, 297, 302], "thinlen": 160, "third": [2, 3, 35, 37, 48, 61, 69, 79, 80, 88, 96, 98, 102, 124, 132, 144, 152, 158, 188, 194, 195, 209, 217, 231, 237, 240, 241, 243, 257, 259, 287, 292], "thirteen": 18, "thoma": [29, 93, 128], "thorough": [27, 234, 310], "those": [2, 4, 11, 12, 13, 14, 15, 16, 21, 24, 32, 35, 36, 37, 41, 42, 48, 52, 56, 57, 60, 65, 68, 69, 70, 71, 79, 80, 86, 87, 88, 89, 92, 101, 102, 113, 115, 118, 124, 127, 128, 133, 140, 152, 153, 158, 164, 188, 202, 205, 207, 210, 211, 212, 214, 216, 217, 219, 220, 221, 227, 229, 233, 237, 238, 239, 240, 241, 247, 250, 252, 256, 259, 265, 268, 289, 291, 297, 302, 304, 310], "though": [4, 11, 14, 15, 16, 21, 25, 27, 32, 35, 36, 41, 42, 43, 48, 54, 55, 56, 57, 60, 70, 88, 89, 90, 93, 100, 104, 113, 115, 124, 128, 153, 186, 195, 200, 209, 211, 212, 217, 218, 230, 231, 233, 237, 238, 239, 240, 252, 272, 287, 292, 297, 302], "thought": [4, 12, 14, 15, 88, 228, 237, 289, 292], "thousand": [92, 128, 286], "thread": 255, "threaded_factori": 255, "three": [3, 14, 15, 16, 18, 35, 36, 37, 39, 41, 43, 55, 56, 61, 65, 69, 79, 80, 81, 84, 88, 89, 93, 96, 98, 102, 103, 104, 113, 117, 118, 128, 131, 136, 137, 152, 156, 158, 164, 186, 188, 193, 200, 204, 206, 207, 208, 209, 212, 214, 217, 221, 231, 233, 234, 239, 240, 241, 252, 265, 267, 272, 275, 289, 292, 297, 299, 304, 308, 309, 310], "threshold": [69, 128], "through": [0, 3, 4, 7, 8, 13, 14, 15, 16, 18, 22, 23, 28, 41, 43, 48, 52, 53, 55, 57, 59, 67, 69, 79, 80, 82, 87, 88, 89, 92, 93, 96, 98, 99, 100, 101, 102, 104, 113, 117, 118, 124, 128, 131, 136, 137, 138, 142, 148, 149, 151, 153, 156, 159, 162, 163, 200, 208, 214, 216, 221, 227, 231, 233, 237, 239, 240, 241, 242, 253, 259, 265, 267, 272, 275, 287, 288, 289, 290, 295, 299, 301, 302, 305], "throughout": [14, 15, 18, 113, 118, 210, 214, 224, 240, 274, 289], "throw": [22, 69, 124, 130, 210, 216, 234, 240], "throwawai": 60, "thrown": [69, 156, 221], "thu": [2, 3, 11, 13, 15, 16, 18, 23, 27, 39, 50, 52, 53, 55, 65, 73, 79, 80, 88, 89, 90, 94, 96, 111, 113, 115, 121, 124, 127, 128, 145, 151, 153, 154, 158, 196, 200, 209, 214, 216, 218, 222, 228, 231, 233, 254, 259, 260, 270, 271, 289, 292, 297, 298, 306], "thue": 234, "thumb": [5, 14, 118, 259], "ti": [77, 80, 88, 128], "ticket": 59, "tid": 247, "tidi": 124, "tie": [88, 259], "tight": 69, "tight_layout": 299, "tikz": 68, "tild": [18, 88, 94, 132, 134, 242], "till": [22, 88, 136, 137, 237], "tilt": 163, "tim": [128, 259], "time": [2, 3, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 39, 41, 42, 46, 48, 55, 57, 60, 64, 65, 69, 71, 79, 80, 84, 88, 89, 93, 96, 111, 113, 118, 124, 125, 127, 128, 129, 130, 131, 134, 140, 141, 142, 144, 148, 151, 153, 154, 156, 158, 165, 175, 180, 188, 189, 193, 194, 195, 196, 197, 200, 202, 203, 204, 205, 206, 208, 210, 211, 214, 215, 216, 217, 218, 220, 221, 228, 229, 230, 231, 233, 237, 239, 241, 250, 252, 253, 258, 259, 260, 272, 274, 284, 287, 291, 292, 293, 299, 302, 304, 306, 309, 310], "time_bal": 252, "time_deriv": [33, 200, 202], "time_derivatives_in_the_two_fram": 202, "time_markov_chain": 241, "time_period": 165, "timedepbra": 189, "timedepket": 189, "timedepst": 189, "timeit": [69, 218], "timeout": 252, "timestamp": 13, "timeutil": 264, "timevalue1": 204, "timevalue2": 204, "tina": 30, "tini": [69, 88, 212], "tinyurl": 93, "tion_constraint": 30, "tip": [4, 7, 8, 12, 27, 88, 237, 238, 297], "tissu": 18, "titl": [0, 4, 5, 55, 207], "titu": 234, "tlmzebyvzgzinb": 89, "tm": [65, 164], "tmp": 69, "tmpfile": 13, "tmz": 65, "tn": 88, "to_alg_num": [212, 216], "to_algebraic_integ": 88, "to_ancestor": 216, "to_anf": 118, "to_anp": 216, "to_axis_angl": 61, "to_best": 212, "to_cnf": 118, "to_col": 216, "to_ddm": 210, "to_dens": 210, "to_dfm": 210, "to_dfm_or_ddm": 210, "to_dict": 212, "to_dm": 210, "to_dnf": 118, "to_dod": 210, "to_dok": 210, "to_domain": 214, "to_eul": 61, "to_exact": [212, 217], "to_expr": [46, 110, 111, 112, 144], "to_field": [210, 212, 217], "to_fil": [69, 254], "to_flat_nz": 210, "to_hyp": 110, "to_int": 212, "to_int_repr": 118, "to_linear": [27, 153], "to_list": [13, 88, 210, 212], "to_list_flat": 210, "to_load": [18, 148, 156, 299, 303], "to_matrix": [28, 32, 36, 61, 149, 152, 155, 200, 210, 216, 265, 268, 270, 299], "to_meijerg": 110, "to_nnf": 118, "to_number_field": [88, 216], "to_par": 216, "to_primitive_el": 88, "to_pruf": 82, "to_r": [212, 217], "to_rat": 212, "to_root": 88, "to_rotation_matrix": 61, "to_sdm": 210, "to_sequ": 110, "to_si": 90, "to_spars": 210, "to_sympi": [210, 211, 212], "to_sympy_dict": 212, "to_sympy_list": 212, "to_tre": 82, "to_tupl": 212, "todai": [43, 208], "todo": [12, 124, 169, 171, 175, 176, 180, 181, 183, 184, 185, 186, 187, 214, 221, 228, 246], "todod": [124, 210], "todok": [13, 124], "togeth": [13, 15, 23, 36, 39, 69, 79, 88, 92, 117, 124, 128, 132, 136, 144, 148, 151, 177, 188, 196, 208, 212, 214, 216, 217, 220, 221, 233, 237, 239, 241, 252, 253, 259, 291, 297, 299], "toggl": [128, 207], "token": [69, 113, 116, 130], "tol": [69, 88, 212], "told": [8, 11], "toler": [54, 69, 88, 92, 212, 233, 239], "tolist": [124, 242], "tomatrix": 242, "tomfooleri": 252, "tone": 4, "too": [4, 7, 11, 12, 16, 18, 25, 43, 45, 57, 79, 80, 88, 94, 96, 98, 101, 103, 113, 118, 127, 128, 129, 132, 153, 160, 228, 229, 233, 234, 237, 239, 240, 241, 252, 253, 268, 269], "took": [11, 218, 230], "tool": [5, 8, 9, 11, 12, 15, 18, 30, 36, 43, 79, 116, 122, 124, 129, 144, 158, 208, 213, 214, 221, 253, 259, 264, 273, 280], "toolset": 208, "top": [3, 4, 5, 12, 13, 14, 15, 50, 69, 87, 88, 89, 104, 105, 115, 118, 124, 135, 136, 137, 152, 158, 186, 193, 211, 221, 231, 237, 254, 255, 260, 275, 292], "top_fac": 275, "toper": 248, "topic": [7, 17, 20, 23, 28, 34, 35, 36, 44, 58, 69, 206, 208, 210, 211, 216, 240, 289, 294], "topmost": 256, "topolog": [69, 88, 90, 210, 259], "topologi": [113, 229], "topological_sort": [69, 259], "toronto": 128, "torqu": [18, 25, 26, 28, 30, 136, 148, 149, 153, 155, 158, 299, 303, 307], "torque1": 149, "torque_a": 30, "torqueactu": [148, 307], "torsion": [136, 299], "torsional_mo": 136, "toss": 241, "total": [11, 25, 57, 70, 77, 79, 88, 93, 104, 117, 118, 120, 124, 160, 164, 170, 175, 188, 197, 206, 212, 214, 217, 230, 233, 237, 245, 247, 275, 302, 306], "total_degre": [212, 217, 234], "totient": [13, 89, 93, 128], "totientfunct": [93, 128], "totientrang": 128, "totter": 208, "touch": [18, 104, 230, 302], "tough": 237, "tournier": 215, "toward": [37, 69, 88, 96, 148, 208, 228, 240, 299], "tp": [90, 163, 190, 212, 243], "tp1": 90, "tpu": [2, 129], "tr": [13, 70, 79, 221, 230], "tr0": 230, "tr1": 230, "tr10": 230, "tr10i": 230, "tr11": 230, "tr111": 230, "tr12": 230, "tr12i": 230, "tr13": 230, "tr14": 230, "tr15": 230, "tr16": 230, "tr2": 230, "tr22": 230, "tr2i": 230, "tr3": 230, "tr4": 230, "tr5": 230, "tr6": 230, "tr7": 230, "tr8": 230, "tr9": 230, "trace": [30, 84, 120, 124, 145, 214, 221, 241, 242, 243, 245, 259, 293], "traceback": [12, 13, 14, 16, 38, 41, 42, 43, 48, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 69, 70, 80, 88, 89, 92, 98, 115, 118, 119, 120, 121, 124, 126, 127, 130, 144, 206, 208, 210, 211, 212, 214, 217, 220, 228, 229, 237, 239, 240, 250, 252, 253, 255, 257, 259, 260, 262, 289, 293], "track": [7, 9, 11, 13, 16, 24, 32, 36, 79, 88, 92, 96, 158, 175, 210, 228, 247, 287], "tracker": [7, 11, 12, 67, 229, 240, 293], "tractabl": [53, 240], "tradeoff": 293, "tradition": [89, 96], "trafo": 87, "trager": [115, 214, 215], "trager76": [214, 215], "trail": [4, 12, 80, 88, 128, 212, 214, 217, 257, 262], "trailpap": 302, "train": 36, "traint": 30, "trait": 212, "traj": 299, "trajectori": [23, 151, 299], "tran": 89, "trans_prob": 241, "transact": [115, 215], "transcedent": 65, "transcend": 96, "transcendent": [11, 41, 52, 56, 57, 65, 88, 96, 115, 211, 216, 217, 221, 239, 240, 293, 298], "transcendental_numb": [41, 88], "transcendentalpred": 65, "transfer": [8, 46, 141, 142, 144, 160, 240], "transfer_funct": 144, "transferfunct": [46, 141, 142, 144], "transferfunctionmatrix": [46, 141, 144], "transform": [13, 14, 15, 24, 57, 61, 66, 69, 84, 87, 88, 89, 90, 92, 93, 96, 103, 120, 124, 142, 144, 152, 163, 184, 186, 188, 193, 206, 209, 210, 212, 214, 216, 217, 223, 228, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 243, 246, 254, 260, 265, 272, 291, 302], "transform_vari": 115, "transformation_from_par": 265, "transformation_to_dn": 234, "transformation_to_norm": 234, "transformation_to_par": 265, "transformtosympyexpr": 130, "transient": 241, "transit": [30, 71, 79, 214, 241], "transition_prob": 241, "transitionmatrixof": 241, "transitivity_degre": 79, "translat": [2, 13, 24, 28, 35, 69, 79, 88, 97, 99, 103, 105, 129, 130, 144, 147, 149, 152, 153, 158, 207, 221, 237, 239, 253, 254, 260, 262, 270, 309, 311], "translation_coordin": 152, "translation_spe": 152, "transliter": 5, "transmiss": [138, 163, 164], "transmissive_filt": 163, "transmit": [18, 163, 164], "transmitt": 163, "transmitted_port": 163, "transmitted_pow": 163, "transpar": [113, 116, 205], "transport": 90, "transpos": [30, 36, 65, 68, 120, 124, 144, 174, 200, 210, 216, 234, 242, 247, 248, 293], "transposit": [76, 79, 80, 89, 120, 124, 243], "transposition_": 80, "transvers": [79, 84, 86, 138, 164, 165], "transversals_onli": 86, "transverse_magnif": 164, "trapezoid": [115, 124, 241], "trapezoidal_distribut": 241, "traub": [214, 215], "travel": [33, 162, 165, 272, 274], "travers": [14, 48, 104, 128, 130, 150, 217, 230, 246, 256, 292], "travi": 237, "treat": [13, 14, 15, 18, 22, 33, 41, 42, 43, 51, 55, 56, 61, 78, 79, 86, 88, 93, 96, 103, 104, 124, 130, 134, 164, 200, 209, 211, 212, 214, 216, 217, 218, 220, 221, 228, 229, 231, 233, 234, 237, 239, 245, 253, 256, 272, 289, 293], "treatment": [39, 113, 217], "tree": [1, 7, 13, 15, 22, 38, 79, 82, 88, 130, 150, 183, 186, 200, 217, 228, 230, 233, 240, 243, 245, 256, 259, 262, 288], "tree_cs": 233, "tree_repr": 82, "tri": [13, 14, 15, 16, 18, 27, 41, 50, 52, 55, 68, 88, 96, 104, 113, 115, 186, 208, 209, 216, 221, 223, 233, 237, 238, 240, 252, 289, 297, 299, 302], "trial": [88, 128, 214, 226, 230, 237, 241], "triangl": [4, 43, 68, 93, 99, 100, 104, 105, 115, 124, 128, 159, 206, 207, 268, 275], "triangular": [53, 65, 71, 119, 124, 210, 216, 239, 241, 275], "triangular_distribut": 241, "triangular_matrix": 65, "triangulardistribut": 241, "triangularhandl": 65, "triangularpred": 65, "tribonacci": [88, 93], "tribonacci_numb": [88, 93], "tribonacciconst": 88, "tribonaccinumb": 93, "triceps_activ": 299, "triceps_pathwai": 299, "trick": [12, 13, 15, 16, 84, 231, 247], "tricki": [8, 88, 113], "trig": [43, 88, 115, 217, 221, 230, 233, 297], "trig5": 230, "trigamma": [4, 96, 221], "trigamma_funct": 96, "trigammafunct": 96, "trigexpand": 113, "trigger": [3, 12, 43, 80, 130, 191, 250], "trigintegr": 115, "trigonometr": [4, 14, 43, 50, 57, 88, 115, 130, 218, 224, 232, 233, 236, 237, 240, 260, 277, 288, 298], "trigonometri": [18, 115], "trigonometric_and_hyperbolic_solut": 217, "trigonometric_funct": 94, "trigonometric_integr": 96, "trigonometricfunct": 43, "trigonometryangl": 94, "trigsimp": [12, 14, 16, 22, 61, 88, 124, 152, 200, 230, 233, 269, 310], "trigsimp_groebn": 233, "trim": [27, 80], "tripl": [4, 11, 36, 51, 105, 124, 130, 206, 208, 212, 216, 262], "trivari": 115, "trivial": [3, 14, 25, 70, 79, 84, 87, 88, 89, 94, 103, 118, 120, 124, 128, 191, 208, 209, 214, 217, 231, 234, 237, 240, 245], "trmorri": 230, "trobmvenbgbalv": 89, "trotter": 80, "troubl": [43, 96], "troubleshoot": [4, 9, 27], "trpower": 230, "true": [1, 2, 4, 12, 13, 14, 15, 16, 18, 21, 22, 30, 32, 33, 36, 37, 38, 41, 42, 43, 46, 48, 50, 51, 52, 53, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 109, 110, 113, 115, 116, 118, 119, 120, 123, 124, 125, 128, 130, 132, 134, 136, 137, 142, 144, 145, 146, 147, 150, 152, 153, 154, 155, 156, 158, 159, 162, 163, 172, 175, 176, 183, 185, 186, 189, 190, 191, 194, 200, 201, 202, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 250, 252, 253, 254, 255, 257, 259, 260, 262, 265, 268, 269, 270, 271, 272, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 306, 307], "truli": [88, 96, 196], "trunc": [212, 217, 220], "truncat": [39, 80, 88, 124, 128, 137, 196, 207, 218, 220, 223, 224], "truss": 282, "truth": [12, 14, 42, 62, 63, 64, 65, 66, 88, 124, 233], "truth_maintenance_system": 64, "truth_tabl": 118, "truthi": 12, "truthvalu": 118, "try": [4, 5, 11, 12, 13, 14, 15, 16, 41, 42, 43, 48, 50, 51, 54, 55, 57, 80, 87, 88, 92, 96, 98, 103, 113, 115, 118, 120, 124, 127, 128, 130, 158, 181, 183, 190, 191, 207, 211, 212, 216, 221, 226, 228, 229, 230, 231, 233, 234, 237, 239, 259, 260, 262, 286, 289, 292, 297], "try_block_diag": 124, "trysolv": 237, "tschirnhausen": 216, "tsolv": 240, "tube": 152, "tube_fram": 152, "tune": [9, 18, 92, 116, 205, 221, 299], "tupl": [14, 15, 17, 25, 26, 28, 30, 36, 43, 51, 54, 55, 56, 61, 63, 64, 67, 68, 69, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 110, 113, 115, 124, 127, 128, 130, 136, 137, 138, 140, 142, 148, 149, 152, 153, 155, 156, 158, 160, 175, 176, 177, 180, 185, 188, 189, 190, 191, 200, 204, 207, 208, 210, 211, 212, 214, 218, 219, 221, 222, 223, 227, 229, 233, 234, 237, 238, 239, 240, 241, 242, 246, 247, 252, 253, 254, 255, 259, 260, 262, 265, 269, 287, 292, 293, 296], "tuple_count": 88, "tuplekind": [88, 123, 229], "turn": [5, 13, 15, 18, 25, 33, 41, 57, 69, 88, 94, 96, 103, 113, 121, 152, 208, 216, 217, 218, 221, 228, 229, 231, 233, 234, 237, 252, 259, 274, 289, 291, 310], "turner": 210, "tushar": 215, "tutori": [5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 22, 27, 30, 39, 40, 59, 104, 209, 220, 221, 237, 260, 289, 292, 294, 295, 296, 297, 298, 299], "twave": 165, "tweak": [54, 130, 221, 239], "tweflth": 132, "twelv": 18, "twice": [3, 16, 35, 69, 88, 90, 102, 128, 200, 202, 217, 221, 256, 257, 265, 267, 287], "twin": 128, "twist": 113, "two": [2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 21, 23, 24, 25, 27, 28, 32, 33, 35, 36, 37, 39, 41, 42, 43, 48, 50, 52, 55, 56, 61, 67, 68, 69, 70, 73, 74, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 110, 111, 113, 115, 117, 118, 120, 124, 128, 129, 130, 132, 134, 136, 137, 138, 140, 141, 144, 145, 148, 149, 151, 152, 153, 156, 159, 163, 164, 165, 170, 171, 175, 177, 180, 181, 186, 187, 188, 189, 190, 191, 193, 195, 196, 200, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 246, 256, 259, 260, 265, 268, 270, 271, 272, 274, 286, 287, 290, 292, 293, 297, 299, 304, 310], "two_qubit_box": 171, "twofold": 231, "twoform": 90, "twoform_to_matrix": 90, "twoqubitg": 175, "tx": [113, 295], "txt": [8, 9, 221], "ty": 30, "typ": 247, "type": [4, 7, 9, 11, 13, 14, 15, 16, 17, 18, 21, 22, 24, 30, 36, 38, 41, 42, 43, 46, 49, 51, 52, 57, 63, 64, 67, 71, 79, 80, 84, 87, 88, 89, 90, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106, 113, 115, 116, 117, 118, 119, 120, 124, 128, 129, 130, 131, 133, 134, 136, 137, 140, 142, 144, 148, 152, 153, 156, 159, 163, 177, 185, 186, 187, 189, 195, 200, 204, 205, 207, 208, 210, 211, 212, 215, 216, 217, 218, 219, 221, 222, 223, 229, 230, 231, 233, 234, 236, 237, 239, 245, 246, 247, 250, 252, 253, 254, 259, 260, 262, 269, 272, 275, 287, 289, 291, 292, 293, 296, 297, 298, 300], "type1": 237, "type2": 237, "type3": 237, "type4": 237, "type5": 237, "type6": 237, "type_": 117, "type_a": 117, "type_alias": [69, 221], "type_b": 117, "type_c": 117, "type_d": 117, "type_f": 117, "type_g": 117, "type_map": 221, "type_of_equ": 237, "typea": 117, "typeb": 117, "typec": 117, "typeerror": [12, 13, 14, 16, 42, 43, 52, 55, 62, 63, 64, 80, 88, 98, 103, 118, 119, 121, 126, 144, 165, 211, 212, 228, 229, 253, 260], "typef": 117, "typefunct": [4, 96], "typeg": 117, "typeinfo": 88, "typeset": [87, 221], "typevar": 210, "typic": [2, 3, 12, 13, 14, 15, 18, 28, 36, 43, 84, 94, 113, 128, 133, 144, 149, 155, 207, 209, 214, 217, 218, 231, 253, 254, 270], "typo": [11, 14, 231], "typograph": 130, "tz": 144, "u": [0, 8, 9, 16, 18, 22, 23, 24, 25, 27, 30, 31, 32, 33, 35, 39, 41, 42, 43, 46, 52, 61, 67, 68, 69, 79, 84, 87, 88, 89, 91, 102, 105, 110, 113, 115, 120, 124, 128, 134, 148, 149, 151, 152, 153, 154, 158, 163, 164, 175, 180, 186, 196, 200, 204, 206, 207, 208, 209, 210, 214, 216, 217, 220, 221, 228, 231, 233, 234, 237, 238, 239, 240, 241, 246, 260, 272, 289, 291, 292, 293, 299, 302, 306, 309], "u03b8": 116, "u0_": 152, "u0_c1": 152, "u0_c2": 152, "u0_pc": 152, "u0child": 152, "u1": [22, 25, 27, 30, 35, 79, 128, 152, 200, 202, 204, 205, 237, 299, 302, 304, 306, 307, 309, 310], "u1_": 152, "u1_c1": 152, "u1_pc": 152, "u1d": [22, 25, 302, 306, 309, 310], "u2": [22, 25, 30, 35, 79, 127, 128, 152, 200, 204, 237, 299, 302, 304, 306, 307, 309, 310], "u2_": 152, "u2_pc": 152, "u2d": [22, 25, 302, 306, 309, 310], "u3": [22, 25, 30, 35, 200, 204, 299, 302, 304, 307, 309, 310], "u3d": [302, 309, 310], "u4": [25, 30, 299, 302, 310], "u4d": 302, "u5": [302, 310], "u5d": 302, "u6": [302, 310], "u6d": 302, "u_": [13, 124, 152, 299], "u_0": 214, "u_1": [35, 216, 234, 237, 299, 304, 306, 307], "u_1v_1": 234, "u_2": [35, 216, 234, 237, 299, 304, 306, 307], "u_3": [35, 299, 304, 307], "u_4": 299, "u_arm": 299, "u_aug": 124, "u_aux": [158, 304], "u_auxilia": 30, "u_auxiliari": [25, 30, 153, 310], "u_d": [30, 154], "u_dep": [25, 158, 304], "u_depend": [25, 30, 153, 299, 302, 306], "u_fram": 152, "u_func": 115, "u_i": [27, 35, 154, 214], "u_ind": [22, 25, 27, 30, 153, 154, 158, 302, 304, 306, 309, 310], "u_j": [13, 216], "u_j1": 152, "u_n": [96, 115, 214, 216, 217], "u_op": [154, 306], "u_p1": 152, "u_p2": 152, "u_pc": 152, "u_pin": 158, "u_slid": 158, "u_val": 299, "u_var": 115, "u_x": 35, "ua": 209, "uaux1": 304, "uaux2": 304, "ub": 256, "ubuntu": 221, "ubv": 124, "ucdavi": 115, "uchicago": 241, "uci": 128, "uconn": [79, 241], "ucr": 11, "ud": [25, 153, 299], "ud_op": [154, 306], "udel": 124, "udivisor": [93, 128], "udivisor_count": [93, 128], "udivisor_sigma": [13, 93, 128], "udl": 120, "udldecomposit": 120, "udot": [153, 302], "ueber": 216, "ueqdueodoctcwq": 89, "uexpr": 292, "uf": 214, "ufunc": [14, 69, 129, 253, 260], "ufuncifi": [2, 69, 253], "ufuncifycodewrapp": 253, "ugat": 175, "ugli": 221, "ui": [11, 115, 128, 238], "uiki": 89, "uint16": 69, "uint32": 69, "uint64": 69, "uint8": 69, "ukrain": 215, "ultim": [11, 43, 94, 196, 214], "umontr": [93, 128], "un": [230, 231], "unabl": [69, 101, 105, 130, 134, 239, 265, 286, 287], "unaffect": [88, 240], "unambigu": [37, 221, 237, 262], "unansw": [21, 32], "unappropri": 90, "unavoid": 196, "unbound": [18, 88, 239, 246], "unbound_theta": 207, "unboundedlperror": 239, "unbranch": [96, 113], "unbreak": 89, "uncertainti": [92, 196], "unchang": [3, 13, 15, 43, 79, 80, 88, 115, 124, 144, 195, 210, 217, 221, 227, 230, 233, 240, 286], "unclear": [11, 13, 21, 41], "uncommon": [12, 69], "uncondition": [3, 12], "unconstrain": 239, "uncontract": 248, "uncount": 240, "uncoupl": [170, 188], "undecid": [41, 43, 52, 124, 211, 240, 293], "undecor": 88, "undefin": [12, 14, 15, 36, 43, 52, 55, 63, 64, 67, 88, 94, 95, 96, 115, 120, 130, 149, 159, 216, 227, 228, 231, 260, 287, 298], "undefinedfunct": [88, 202, 221, 253, 260], "undefinedkind": [88, 123, 229], "undefinedpred": [63, 64], "under": [2, 3, 4, 8, 11, 12, 15, 16, 18, 41, 42, 63, 64, 66, 67, 69, 70, 78, 79, 84, 86, 96, 106, 113, 115, 117, 118, 124, 128, 130, 132, 136, 137, 160, 186, 206, 208, 209, 216, 217, 221, 228, 229, 231, 234, 237, 239, 240, 241, 247, 250, 291, 297, 299], "underbrac": [35, 196], "underdetermin": [124, 210, 239, 240], "underevalu": 293, "undergo": [7, 134, 164], "undergon": [36, 240], "underli": [12, 15, 22, 69, 80, 86, 88, 117, 124, 142, 186, 199, 210, 217, 239, 240, 241], "underlin": [4, 5], "underneath": 135, "underscor": [3, 4, 12, 13, 88, 124, 237, 247, 255], "understand": [4, 11, 12, 16, 22, 23, 25, 26, 30, 35, 41, 42, 43, 57, 88, 89, 113, 151, 196, 207, 210, 211, 216, 221, 231, 234, 253, 260, 288, 289, 296, 297], "understood": [80, 128, 196, 208, 212, 217], "undertak": 297, "undertermin": 217, "undertest": 293, "undescript": 11, "undesir": [21, 22, 27, 88, 209, 212, 231], "undetermin": [37, 88, 124, 217, 223, 237, 239], "undetermined_coeffici": 237, "undirect": [117, 259], "undo": [14, 231, 297], "undon": [214, 297], "unequ": [14, 15, 37, 88, 136, 221], "unevalu": [12, 13, 14, 15, 41, 42, 43, 46, 63, 64, 67, 80, 87, 88, 94, 96, 105, 115, 128, 144, 168, 172, 179, 180, 191, 217, 220, 228, 229, 233, 237, 239, 240, 241, 242, 287, 291, 292, 298], "unevaluat": 237, "unevaluatedexpr": [15, 88, 221, 292], "unexpand": [88, 211, 220, 230, 253], "unexpect": [12, 14, 88, 252], "unexpectedeof": 130, "unexplain": 68, "unfactor": 210, "unfair": 241, "unflatten": 259, "unfortun": [90, 92, 129, 220, 234], "unhash": 259, "unhind": 237, "uni": [68, 115, 259], "unicod": [11, 12, 96, 116, 124, 205, 221, 252, 291], "unifi": [31, 88, 210, 212, 214, 216, 217, 229], "unificationfail": [214, 216], "uniform": [99, 158, 207, 239, 241], "uniform_distribution_": 241, "uniform_sum_distribut": 241, "uniformdistribut": 241, "uniformli": [13, 39, 79, 104, 105, 128, 136, 138, 142, 207, 255], "uniformsum": 241, "uniformsumdistribut": 241, "unify_anp": 212, "unify_composit": 212, "unify_dmp": 212, "unimod": 241, "unimport": 5, "unintegr": 55, "uninterest": 214, "union": [51, 60, 65, 67, 69, 77, 79, 86, 118, 208, 216, 221, 227, 228, 229, 236, 240, 259], "union_": 229, "union_find": 79, "uniq": 259, "uniqu": [3, 13, 15, 18, 36, 67, 68, 70, 79, 82, 84, 88, 89, 90, 93, 96, 103, 106, 111, 115, 117, 118, 124, 128, 152, 153, 180, 189, 200, 208, 209, 210, 211, 214, 216, 217, 222, 226, 233, 234, 237, 239, 240, 241, 245, 254, 259, 262, 269, 274, 289, 292], "uniquenss": 89, "unit": [16, 22, 28, 30, 32, 33, 36, 43, 46, 47, 61, 65, 68, 88, 89, 93, 101, 102, 103, 115, 124, 128, 132, 136, 138, 142, 144, 146, 147, 148, 152, 156, 158, 159, 167, 192, 193, 194, 198, 200, 207, 209, 210, 212, 214, 216, 217, 219, 221, 229, 231, 234, 240, 242, 265, 267, 269, 274, 275, 282, 299], "unit_cub": 115, "unit_disk": 229, "unit_system": 198, "unit_triangular": 65, "unitari": [65, 93, 115, 128, 175, 180, 206], "unitary_divisor": 128, "unitary_matrix": 65, "unitarydivisor": 128, "unitarydivisorfunct": [93, 128], "unitaryhandl": 65, "unitaryoper": 180, "unitarypred": 65, "uniti": [18, 43, 94, 96, 113, 186, 216], "unitless": [18, 195], "unitsystem": [195, 199], "unittriangularhandl": 65, "unittriangularpred": 65, "unitvec": 30, "univari": [37, 48, 57, 67, 87, 88, 94, 111, 115, 208, 209, 211, 212, 215, 216, 217, 218, 223, 234, 236, 239, 241], "univariatepolynomialerror": 214, "univers": [3, 15, 69, 206, 212, 215, 221, 229, 234, 239, 240], "universal_set": 229, "universalset": [118, 229], "universitat": 265, "unix": [1, 252, 253], "unknow": 41, "unknown": [13, 14, 15, 38, 41, 42, 43, 46, 53, 55, 56, 61, 74, 88, 89, 136, 137, 176, 210, 219, 236, 237, 238, 239, 240, 259, 298], "unknwon": 46, "unless": [2, 4, 11, 12, 14, 15, 35, 36, 41, 43, 45, 62, 64, 67, 69, 79, 87, 88, 89, 93, 96, 103, 104, 113, 124, 127, 158, 164, 209, 210, 211, 216, 217, 221, 226, 229, 230, 237, 239, 252, 256, 259, 260, 262, 265, 274, 287, 293, 297], "unlik": [2, 4, 12, 14, 15, 16, 22, 35, 41, 42, 48, 55, 66, 88, 89, 93, 115, 124, 128, 130, 210, 214, 221, 234, 237, 240, 256, 257, 289, 291, 292, 293, 296], "unload": 134, "unm": 220, "unmodifi": [210, 233], "unmov": 80, "unnam": 254, "unnecessari": [3, 4, 5, 12, 14, 65, 69, 217, 220, 241, 252, 290], "unnecessarili": 297, "unnecessary_permut": 115, "unneed": 15, "unnorm": [94, 96, 210], "unnot": 14, "unord": [13, 16, 88, 128, 212, 240, 259, 260], "unpack": [13, 88, 124, 259, 260], "unpolar": 163, "unpredict": 256, "unprejud": 88, "unpython": 14, "unrad": [233, 239], "unrank": [72, 77, 79, 80, 82], "unrank_binari": 83, "unrank_grai": 83, "unrank_lex": 80, "unrank_nonlex": 80, "unrank_trotterjohnson": 80, "unread": [217, 257], "unrecogn": [13, 124], "unrecognis": 11, "unrel": [12, 13, 53, 88, 95, 209, 289], "unreli": 211, "unresolv": 41, "unrestrict": [5, 77, 259], "unrol": 246, "unrot": 104, "unsanit": [88, 260, 286], "unsat": 118, "unsatisfi": 118, "unset": [221, 233], "unshift": 214, "unsign": [69, 93, 233], "unsignedinttyp": 69, "unsimplifi": [16, 230], "unsolv": [217, 240], "unsolvablefactorerror": [48, 217, 239], "unsort": [21, 32, 88], "unspecifi": [67, 88, 103, 287], "unsplitt": 130, "unstabl": [46, 140], "unstrain": 132, "unsuccess": [79, 86], "unsuit": [13, 206], "unsupport": [13, 16, 38, 144, 211, 212, 216, 221], "unsur": [3, 4, 12], "unsurmount": 254, "until": [3, 12, 14, 27, 36, 39, 41, 48, 50, 51, 52, 53, 54, 55, 56, 60, 80, 82, 88, 89, 98, 115, 124, 128, 214, 217, 230, 237, 289], "untouch": 88, "untyp": 69, "unus": 13, "unusu": [4, 14, 41, 252, 302], "unwant": [88, 239, 259], "unwelcom": 5, "unwieldi": [12, 37], "unwrap": 159, "up": [2, 3, 7, 8, 9, 11, 12, 13, 14, 15, 18, 21, 27, 28, 30, 31, 39, 41, 42, 43, 55, 59, 64, 67, 69, 71, 79, 80, 82, 88, 89, 90, 92, 93, 94, 96, 97, 104, 105, 109, 113, 115, 116, 118, 124, 128, 129, 136, 146, 148, 155, 156, 158, 171, 186, 188, 204, 206, 207, 208, 210, 211, 212, 216, 218, 221, 222, 223, 228, 230, 231, 233, 234, 237, 238, 239, 240, 253, 254, 255, 256, 257, 260, 288, 289, 292, 293, 295, 299, 302, 309, 311], "upcom": 3, "updat": [3, 11, 13, 16, 55, 59, 88, 138, 158, 171, 181, 184, 185, 187, 206, 210, 214, 217, 221, 234, 247, 257, 306], "upgrad": [3, 60], "upload": [5, 128], "upon": [7, 12, 15, 25, 26, 27, 30, 33, 35, 36, 41, 69, 88, 128, 148, 155, 158, 164, 185, 191, 229, 237, 246, 253, 272, 297, 302], "upper": [4, 65, 87, 89, 92, 96, 97, 104, 105, 119, 120, 124, 127, 128, 136, 142, 152, 184, 191, 206, 210, 212, 214, 216, 217, 221, 231, 239, 246, 265, 299], "upper_bob": 152, "upper_bound": [97, 98, 101, 104], "upper_half_plan": 229, "upper_half_unit_disk": 229, "upper_hessenberg_decomposit": 124, "upper_incomplete_gamma_funct": 96, "upper_limit": [142, 287], "upper_polygon": 104, "upper_seg": 104, "upper_triangular": [65, 124], "upper_triangular_solv": [119, 124], "uppercas": [61, 89, 231], "uppergamma": [4, 93, 96, 221, 241], "uppertriangularhandl": 65, "uppertriangularmatrix": 65, "uppertriangularpred": 65, "upretti": 12, "upright": 302, "upsid": 11, "upsilon": [16, 221], "upstream": 11, "upto": [223, 228, 237], "upward": [136, 210, 216], "ur": 234, "url": [0, 89, 257], "urul": 115, "us": [0, 1, 3, 4, 8, 9, 10, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 45, 46, 47, 49, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 108, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 127, 128, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 163, 164, 166, 168, 170, 171, 172, 175, 177, 179, 180, 181, 184, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 200, 201, 202, 204, 205, 206, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 219, 220, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 241, 242, 243, 245, 246, 247, 250, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 265, 268, 269, 271, 272, 274, 275, 277, 282, 283, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309], "usa": [87, 215], "usabl": [3, 14, 55, 211, 212, 221, 240, 291], "usag": [4, 5, 12, 15, 16, 17, 23, 33, 41, 42, 43, 60, 63, 90, 94, 115, 128, 188, 207, 208, 210, 214, 221, 229, 231, 234, 237, 238, 242, 256, 260, 272, 273, 280, 292], "use_add": 255, "use_cach": 217, "use_ecm": 128, "use_imp": 260, "use_latex": [116, 205, 207, 296], "use_lra_theori": 118, "use_model": 118, "use_pm1": [88, 128], "use_renam": 69, "use_rho": [88, 128], "use_symengin": 2, "use_tri": [88, 128], "use_unicod": [12, 14, 43, 53, 67, 68, 69, 92, 96, 115, 116, 124, 137, 144, 163, 205, 206, 208, 209, 220, 221, 222, 240, 241, 287, 291, 293, 296, 297, 298], "use_unicode_sqrt_char": 221, "usecas": 13, "usefulli": 212, "useless": [12, 193, 212, 214], "usepackag": 221, "user": [0, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 21, 22, 23, 26, 28, 31, 35, 38, 40, 41, 43, 68, 69, 70, 79, 80, 87, 88, 89, 90, 96, 100, 113, 117, 120, 124, 130, 131, 133, 136, 137, 140, 142, 144, 148, 151, 156, 159, 179, 180, 189, 195, 196, 200, 204, 208, 211, 214, 216, 218, 219, 220, 221, 222, 230, 233, 239, 240, 241, 250, 253, 254, 256, 257, 260, 265, 269, 270, 275, 286, 289, 290, 292, 293, 294, 301], "user_def_func": 221, "user_funct": [69, 221], "user_guid": 260, "usernam": [9, 11], "userwarn": [12, 200, 250, 257, 293], "usm": 210, "ussr": 215, "usual": [2, 12, 13, 14, 15, 16, 18, 23, 33, 35, 36, 39, 41, 48, 68, 70, 79, 87, 88, 89, 106, 113, 115, 124, 151, 177, 189, 195, 196, 208, 209, 210, 211, 212, 214, 217, 220, 221, 222, 228, 231, 237, 240, 241, 242, 246, 247, 254, 256, 260, 265, 274, 286, 289, 292, 296, 297], "utf": 221, "util": [2, 3, 4, 5, 7, 11, 50, 52, 67, 75, 77, 79, 80, 93, 94, 99, 100, 101, 104, 118, 128, 129, 133, 148, 149, 153, 156, 161, 195, 198, 210, 214, 218, 221, 233, 234, 250, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 277, 282, 283], "utilis": 68, "utm": 128, "uv": [191, 309, 310], "uvar": 115, "uwa": 93, "uwaterloo": 89, "ux": 238, "uxi": 238, "uxt": 238, "v": [0, 8, 9, 18, 27, 28, 30, 31, 32, 33, 35, 36, 37, 46, 48, 52, 57, 61, 69, 78, 84, 87, 88, 89, 90, 91, 92, 96, 102, 113, 115, 117, 124, 128, 131, 132, 134, 137, 148, 149, 150, 152, 155, 159, 163, 164, 176, 191, 196, 200, 202, 204, 207, 214, 215, 216, 217, 221, 231, 233, 234, 237, 239, 241, 252, 259, 265, 268, 269, 270, 271, 272, 274, 299, 302], "v1": [30, 32, 90, 101, 124, 155, 200, 201, 204, 241, 260, 265, 268, 269, 270, 271], "v10": 69, "v18": 69, "v1pt": 30, "v1pt_theori": [30, 35, 204], "v1x": 32, "v1y": 32, "v1z": 32, "v2": [9, 32, 90, 101, 124, 155, 200, 201, 204, 260, 265, 268, 269, 270, 271], "v2pt": [22, 30], "v2pt_theori": [22, 27, 28, 30, 31, 35, 204, 299, 302, 303, 309, 310, 311], "v2x": 32, "v2y": 32, "v2z": 32, "v3": [124, 200, 204, 271], "v4b3": 89, "v5_2": 88, "v6": 69, "v8": 241, "v_": 18, "v_0": 239, "v_1": [90, 216, 234, 239], "v_2": [90, 216, 234], "v_a": 265, "v_arrai": 78, "v_aug": 124, "v_b": 265, "v_field": 90, "v_i": [128, 216, 239], "v_m": [18, 132, 239], "v_m_max": [18, 132, 134], "v_m_tild": [18, 132], "v_m_tilde_num": 18, "v_mt": 18, "v_n": 216, "v_o_n": [22, 30], "v_p_n": 22, "v_r_n": 22, "va": 217, "vacuou": 124, "vajnovszki": 259, "val": [69, 88, 100, 207, 212, 216, 260], "val_dict": 302, "val_inf": 237, "valenc": 248, "valid": [2, 4, 5, 11, 13, 14, 22, 32, 36, 41, 42, 43, 51, 55, 62, 64, 66, 67, 68, 69, 81, 87, 88, 93, 94, 104, 124, 128, 130, 149, 150, 153, 154, 158, 160, 164, 183, 188, 195, 198, 200, 205, 211, 214, 217, 220, 221, 229, 233, 234, 237, 239, 240, 241, 260, 293, 297, 299, 302, 304], "validate_system": [158, 304], "validrelationoper": 88, "valu": [2, 3, 4, 5, 12, 13, 14, 15, 16, 17, 18, 22, 27, 30, 33, 35, 36, 39, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 77, 79, 80, 84, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 113, 115, 116, 118, 119, 121, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 136, 137, 138, 140, 142, 144, 146, 148, 149, 152, 153, 154, 155, 158, 159, 160, 164, 167, 170, 175, 177, 180, 183, 185, 186, 187, 188, 191, 192, 194, 196, 200, 201, 204, 206, 207, 209, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 227, 228, 229, 230, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 252, 254, 255, 259, 260, 261, 262, 268, 270, 272, 275, 287, 289, 292, 299, 302, 304], "valuat": 237, "value1": 207, "value2": 207, "value_const": 69, "valueerror": [12, 14, 33, 38, 41, 54, 55, 62, 64, 67, 69, 70, 74, 80, 88, 89, 97, 98, 101, 103, 104, 115, 120, 124, 127, 128, 136, 142, 144, 159, 165, 204, 206, 208, 210, 214, 216, 229, 234, 237, 239, 240, 259, 262, 272], "van": [124, 128, 215], "vanilla": 41, "vanish": [124, 191, 214, 217, 220, 237, 265], "vanston": 128, "var": [14, 16, 46, 51, 67, 69, 87, 88, 92, 93, 111, 115, 118, 124, 144, 200, 207, 216, 220, 221, 233, 234, 260, 298], "var_in_dcm": 200, "var_nam": 88, "var_start_end": 207, "var_start_end_i": 207, "var_start_end_u": 207, "var_start_end_v": 207, "var_start_end_x": 207, "var_sub1__sup_sub2": 221, "var_t": 234, "varbosonicbasi": 191, "varepsilon": 237, "vari": [18, 21, 28, 36, 39, 67, 69, 88, 102, 104, 131, 134, 136, 142, 148, 153, 156, 189, 228, 239, 259, 272, 303], "variabl": [1, 2, 4, 5, 11, 12, 13, 14, 15, 17, 18, 22, 30, 31, 32, 33, 37, 39, 42, 43, 46, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 65, 67, 69, 70, 83, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 105, 107, 113, 115, 116, 118, 124, 130, 131, 134, 136, 137, 140, 142, 144, 148, 154, 158, 165, 180, 185, 189, 191, 194, 200, 202, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 227, 228, 233, 234, 236, 237, 238, 239, 240, 248, 252, 254, 255, 256, 260, 265, 268, 269, 271, 272, 274, 287, 289, 291, 293, 298, 300, 305, 309, 311], "variable_map": 200, "variable_nam": [265, 272], "varianc": 241, "variancematrix": 241, "variant": [214, 237, 240], "variat": [80, 88, 214, 228, 237, 299], "variation_of_paramet": 237, "variationofparamet": 237, "varieti": [28, 45, 57, 69, 70, 80, 88, 129, 137, 208, 215, 217, 241, 259], "varii": 78, "varion": 43, "variou": [2, 4, 5, 14, 15, 18, 28, 39, 43, 48, 51, 67, 69, 71, 72, 79, 87, 88, 93, 108, 113, 115, 118, 124, 134, 138, 155, 170, 174, 175, 186, 188, 208, 209, 212, 213, 214, 216, 222, 228, 231, 234, 237, 238, 240, 254, 297, 299, 300, 301, 305], "varlist": 124, "varnoth": 229, "varphi": [92, 96, 216, 221, 237], "varshalovich": [170, 188], "vast": [2, 57, 115, 213], "vastli": 36, "vat": 0, "vc": 88, "vdiff": 88, "vdot": [120, 124, 196], "ve": [43, 302], "vec": [30, 55, 124, 152, 200, 206, 214, 271, 272, 274], "vec1": 202, "vec2": 202, "vech": 124, "vect": [201, 265, 268], "vectfield": [33, 201, 268, 272], "vector": [4, 13, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 39, 47, 61, 65, 69, 72, 79, 80, 88, 90, 96, 101, 102, 103, 110, 111, 117, 124, 129, 134, 136, 138, 140, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 163, 164, 177, 186, 188, 193, 196, 200, 202, 204, 205, 208, 210, 216, 221, 231, 234, 237, 239, 241, 246, 247, 252, 253, 267, 271, 276, 280, 282, 293, 299, 302, 306, 309, 310, 311], "vector_coplanar": 61, "vector_field": [90, 272], "vector_integr": [268, 275], "vector_nam": 265, "vector_onli": 61, "vector_part": 61, "vectoradd": 269, "vectorfield": 275, "vectori": [33, 204, 269, 274], "vectorinto": 36, "vectormul": 269, "vectors_in_basi": 90, "vectorzero": 269, "vee": [113, 118, 124], "vega": 79, "vehicl": 2, "vel": [18, 22, 24, 30, 35, 148, 152, 204, 272, 302, 304, 306, 310], "vel_p": 27, "vel_vec": 204, "veloc": [2, 21, 24, 27, 28, 30, 32, 33, 36, 124, 132, 134, 148, 149, 152, 153, 155, 156, 158, 165, 193, 195, 196, 200, 204, 272, 274, 299, 302, 303, 304, 306, 309, 310, 311], "velocity_con": 30, "velocity_constraint": [25, 30, 153, 158, 299, 302, 304, 306], "venu": 194, "venus_a": 194, "venv": [8, 9], "verbatim": [5, 221], "verbos": [12, 69, 88, 124, 128, 221, 252, 253, 296], "veri": [1, 2, 3, 4, 11, 12, 13, 14, 15, 16, 18, 21, 22, 30, 35, 36, 37, 38, 41, 43, 48, 69, 84, 88, 89, 92, 93, 98, 100, 106, 110, 113, 115, 118, 124, 128, 132, 135, 144, 156, 163, 196, 208, 210, 211, 214, 216, 217, 218, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 252, 253, 254, 260, 286, 289, 292, 297, 306], "verif": [67, 210, 239], "verifi": [12, 22, 41, 48, 53, 55, 59, 67, 79, 85, 89, 90, 208, 214, 220, 237, 239, 240, 242, 243, 297], "verify_numer": [13, 88], "verion": 88, "verlag": [115, 215], "vers": 43, "versa": [89, 115, 128, 136, 181, 200, 208, 212, 269, 270, 289], "versatil": 113, "version": [2, 3, 4, 5, 7, 8, 9, 11, 12, 14, 17, 18, 22, 41, 42, 43, 45, 57, 58, 59, 62, 68, 69, 79, 80, 86, 88, 89, 93, 94, 96, 115, 118, 119, 121, 124, 126, 128, 147, 149, 152, 175, 189, 193, 200, 206, 207, 208, 210, 211, 212, 214, 216, 217, 221, 224, 233, 239, 241, 251, 252, 254, 255, 256, 257, 259, 260, 263, 265, 271, 292, 293], "versor": 61, "vert": [33, 36, 127, 274], "vertex": [72, 82, 99, 104, 115, 210], "vertic": [13, 68, 72, 81, 82, 98, 99, 101, 103, 104, 105, 115, 117, 124, 135, 136, 137, 138, 140, 158, 163, 171, 206, 207, 210, 216, 221, 229, 259, 275, 307], "vertical_direct": 68, "veryuniqu": 68, "vf": 221, "vfield": [212, 271], "vfree_group": 70, "vg": 214, "vi": 88, "via": [2, 8, 9, 14, 15, 18, 39, 43, 53, 57, 59, 62, 63, 64, 79, 80, 88, 93, 96, 113, 115, 118, 124, 128, 129, 130, 136, 156, 200, 206, 208, 212, 214, 216, 217, 220, 221, 240, 250, 253, 254, 265, 274, 292], "viabl": [8, 89, 287], "vibrat": 303, "vice": [89, 115, 128, 136, 181, 200, 208, 212, 269, 270, 289], "vicki": 96, "video": [7, 295], "viet": 217, "view": [2, 4, 7, 11, 12, 15, 36, 57, 69, 70, 71, 88, 124, 136, 193, 196, 207, 214, 221, 237, 240, 254, 256, 259], "viewcod": 4, "viewcont": 265, "viewdoc": 230, "vieweg": 215, "viewer": [2, 5, 68, 221, 255], "vig": 0, "vigener": 89, "vigenere_ciph": 89, "vigkla": 217, "viktor": 238, "vim": 11, "vincent": [217, 259], "violat": [16, 22, 206, 218, 233], "virtu": [28, 30], "virtual": [3, 8, 14, 36, 59, 88, 104, 290], "viscou": 303, "visibl": [11, 113, 207], "visit": [59, 72, 79, 88, 93, 294], "visit_token": 130, "visitor": 256, "visual": [3, 13, 18, 23, 88, 128, 137, 144, 220, 233, 299], "visualis": 46, "vital": 231, "vlahovski": 230, "vlatex": [32, 36, 157, 200, 205], "vline": 221, "vlist": 124, "vo": 237, "vobj": 221, "void": 254, "vol": [72, 80, 89, 93, 96, 113, 124, 128, 145, 154, 216, 217, 231, 256, 259], "volatil": 69, "volum": [0, 4, 69, 87, 96, 113, 115, 206, 215, 231, 237, 256, 265], "volume_result": 69, "voluntari": 18, "voluntarili": [18, 131], "von": [215, 241], "von_mises_distribut": 241, "vonmis": 241, "vonmisesdistribut": 241, "voss": 11, "vpprint": [32, 36, 157, 205], "vprint": [32, 36, 157, 204, 205], "vr": 234, "vradiu": 98, "vring": 212, "vsin": 88, "vslobodi": 124, "vsort": 88, "vsort0": 88, "vssut": 46, "vstack": [124, 210], "vt": 89, "w": [13, 16, 29, 32, 33, 34, 46, 57, 61, 69, 72, 78, 80, 87, 88, 89, 90, 91, 94, 96, 113, 115, 118, 124, 125, 149, 152, 155, 158, 160, 165, 176, 180, 189, 203, 204, 206, 207, 209, 210, 214, 215, 216, 217, 218, 222, 228, 229, 231, 233, 234, 237, 238, 240, 241, 252, 260, 262, 272, 298, 303, 310], "w1": [35, 165, 233], "w2": [35, 87, 165], "w2e": 87, "w3": [35, 165, 221], "w3j": 170, "w_": [124, 216], "w_0": [160, 234], "w_1": [35, 216], "w_2": [35, 216], "w_3": 35, "w_8": 136, "w_a_n": 22, "w_b_n": [22, 30], "w_frame": 152, "w_i": [115, 160, 217, 237], "w_j": 216, "w_k": 94, "w_o": 160, "w_r": 216, "w_r_n_qd": [309, 310], "w_x": 35, "w_y": 35, "w_z": 35, "wa": [2, 3, 9, 11, 12, 13, 14, 16, 21, 22, 27, 28, 35, 36, 37, 41, 43, 55, 71, 77, 79, 80, 82, 88, 89, 90, 96, 101, 124, 128, 130, 149, 155, 186, 196, 206, 208, 210, 214, 216, 217, 218, 220, 221, 230, 231, 233, 237, 239, 241, 250, 252, 255, 257, 259, 260, 287, 289, 291, 292, 295, 302, 306], "wagstaff": 128, "wai": [2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 21, 22, 23, 27, 32, 33, 35, 38, 39, 40, 41, 42, 43, 48, 50, 52, 55, 60, 68, 70, 71, 72, 77, 79, 80, 81, 84, 88, 90, 93, 96, 104, 108, 112, 113, 115, 117, 120, 124, 127, 128, 130, 132, 133, 136, 140, 148, 151, 153, 155, 158, 171, 185, 188, 189, 194, 196, 199, 200, 202, 204, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 228, 231, 233, 234, 237, 238, 240, 242, 243, 246, 247, 250, 254, 256, 259, 260, 265, 269, 270, 271, 272, 274, 286, 287, 289, 290, 291, 292, 297, 298, 306, 308, 309], "waist": 160, "waist2rayleigh": 160, "waist_approximation_limit": 160, "waist_in": 160, "waist_out": 160, "wait": [12, 36], "wald": 241, "walk": [15, 69, 72, 88, 183, 186, 231], "walker": 237, "wall": [11, 13, 149, 152, 158, 307], "walli": 87, "walter": 29, "wang": [214, 215, 259], "wang78": [214, 215], "wang81": 215, "want": [2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 30, 35, 36, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 55, 57, 59, 65, 67, 69, 70, 71, 72, 80, 88, 89, 95, 100, 102, 104, 107, 113, 115, 120, 124, 125, 128, 129, 131, 134, 142, 144, 147, 154, 174, 184, 185, 188, 191, 194, 196, 202, 204, 207, 209, 210, 211, 214, 216, 217, 218, 220, 221, 222, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 242, 247, 250, 252, 254, 256, 259, 260, 270, 272, 275, 286, 287, 289, 291, 292, 293, 294, 296, 297], "war": 89, "warn": [3, 4, 16, 17, 36, 43, 88, 89, 103, 118, 130, 136, 149, 200, 207, 209, 221, 237, 239, 250, 252, 254, 258, 259, 284, 293], "warningcl": [250, 257], "warns_deprecated_sympi": [3, 12, 250, 255, 257], "warrant": 12, "washington": 128, "wasn": [12, 13], "wast": [88, 125, 210], "watch": 80, "watson": [70, 233], "wave": [146, 161, 162, 163, 224, 282], "wavefunct": [167, 180, 189, 192, 282], "wavelen": 160, "wavelength": [160, 165], "wavenumb": 165, "we": [0, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 16, 18, 21, 22, 23, 24, 25, 26, 27, 30, 32, 33, 35, 36, 39, 41, 42, 43, 45, 48, 49, 50, 51, 53, 55, 56, 57, 62, 63, 64, 67, 68, 69, 70, 71, 72, 74, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 101, 106, 111, 112, 113, 115, 116, 117, 118, 124, 125, 127, 128, 130, 132, 134, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 158, 163, 166, 174, 177, 180, 181, 183, 184, 185, 186, 187, 188, 190, 191, 193, 194, 196, 200, 202, 204, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 228, 229, 231, 233, 234, 236, 237, 238, 239, 241, 243, 245, 247, 252, 253, 254, 256, 257, 259, 260, 265, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311], "weak": [79, 88, 123, 124, 153, 211, 214], "weakli": [124, 259], "web": [5, 7, 8, 11, 30, 34, 72, 80, 89, 93, 96, 100, 105, 115, 128, 203, 210, 215, 233, 234, 241, 259, 293], "webpag": [2, 5], "websit": [5, 7, 295], "wedg": [90, 113], "wedgeproduct": 90, "weibul": 241, "weibull_distribut": 241, "weibulldistribut": 241, "weight": [39, 88, 96, 103, 105, 115, 117, 124, 175, 233, 287], "weisstein": 215, "weisstein09": [214, 215], "welcom": [211, 237, 290, 301], "weld": 152, "weldjoint": 152, "welecka": 191, "well": [3, 4, 5, 7, 11, 13, 14, 15, 16, 18, 21, 22, 27, 28, 32, 35, 37, 39, 41, 43, 59, 65, 67, 68, 69, 70, 71, 72, 74, 80, 87, 88, 93, 94, 96, 115, 121, 124, 140, 145, 152, 158, 181, 190, 193, 194, 206, 207, 208, 210, 211, 212, 214, 216, 221, 228, 229, 230, 231, 233, 237, 239, 240, 252, 253, 269, 270, 274, 289, 291, 292, 297, 302, 306, 307], "welleslei": 87, "wen": 148, "wendi": 80, "went": 35, "were": [3, 5, 11, 12, 13, 14, 15, 16, 21, 27, 32, 33, 36, 37, 41, 43, 68, 71, 80, 82, 88, 89, 94, 105, 113, 124, 128, 129, 130, 132, 158, 208, 210, 212, 214, 215, 216, 217, 220, 221, 222, 230, 233, 239, 259, 260, 262, 289, 291, 292, 296, 297], "werner": 29, "weslei": [72, 80, 128, 215], "wester": [213, 283], "wester1999": 220, "weyl": [111, 117], "weyl_group": 117, "weylelt": 117, "weylgroup": 117, "wf": [146, 302], "wf_cont": 302, "wf_i": 302, "wf_mc": 302, "wfrad": 302, "wgate": 176, "what": [4, 5, 7, 11, 12, 13, 14, 15, 16, 22, 24, 30, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 58, 67, 69, 80, 82, 87, 88, 89, 90, 94, 95, 98, 99, 103, 113, 115, 117, 124, 128, 130, 149, 152, 153, 156, 158, 190, 191, 194, 196, 200, 207, 212, 214, 217, 220, 221, 222, 228, 230, 231, 233, 234, 237, 239, 246, 250, 252, 254, 255, 260, 269, 270, 275, 287, 289, 290, 292, 296, 297, 301, 306], "whatev": [13, 14, 16, 43, 79, 88, 89, 233, 237, 238, 240, 260], "wheel": [13, 302], "when": [0, 2, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 35, 36, 37, 38, 39, 41, 42, 43, 46, 48, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 79, 80, 81, 86, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 104, 105, 112, 115, 116, 118, 119, 124, 128, 129, 130, 131, 132, 134, 136, 138, 140, 142, 144, 145, 148, 151, 152, 155, 156, 158, 159, 164, 165, 170, 175, 176, 180, 183, 185, 193, 194, 195, 205, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 220, 221, 222, 223, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 243, 245, 246, 250, 252, 253, 254, 255, 257, 259, 260, 262, 264, 269, 287, 289, 291, 292, 297, 298, 299, 302, 304, 310], "whenc": 231, "whenev": [2, 3, 12, 13, 14, 15, 16, 43, 86, 113, 115, 124, 198, 207, 208, 209, 210, 212, 223, 228, 231, 241, 287, 289, 292], "where": [3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 18, 21, 22, 26, 27, 28, 30, 31, 32, 33, 35, 36, 39, 41, 42, 43, 46, 48, 51, 52, 53, 55, 57, 60, 61, 65, 67, 68, 69, 70, 77, 78, 79, 80, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 98, 101, 103, 104, 105, 106, 110, 111, 112, 113, 115, 117, 118, 119, 120, 124, 128, 130, 131, 134, 136, 138, 140, 141, 144, 148, 149, 152, 153, 154, 155, 158, 159, 165, 175, 180, 186, 188, 190, 191, 192, 193, 194, 200, 204, 206, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 221, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 237, 238, 239, 241, 242, 245, 247, 252, 253, 254, 255, 259, 260, 262, 265, 272, 274, 287, 289, 291, 293, 297, 298, 302], "wherea": [14, 15, 39, 41, 48, 53, 65, 69, 89, 98, 104, 113, 118, 144, 196, 208, 211, 214, 217, 221, 239, 240, 259, 297], "wherebi": 89, "wherev": [22, 59, 233, 240, 269], "whet": 291, "whether": [3, 7, 8, 12, 13, 14, 15, 21, 22, 36, 41, 42, 43, 48, 53, 55, 56, 57, 67, 68, 69, 74, 79, 87, 88, 89, 95, 96, 100, 103, 115, 116, 118, 124, 128, 132, 134, 140, 153, 154, 158, 174, 179, 198, 202, 207, 210, 211, 212, 216, 217, 221, 224, 228, 229, 233, 234, 237, 239, 240, 241, 242, 252, 254, 259, 260, 265, 268, 293], "which": [1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 39, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 77, 78, 79, 80, 81, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103, 104, 107, 110, 111, 112, 113, 115, 116, 117, 118, 120, 121, 123, 124, 127, 128, 130, 131, 132, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 162, 164, 165, 177, 180, 186, 187, 188, 189, 191, 195, 196, 197, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 219, 220, 222, 223, 224, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 247, 252, 253, 254, 255, 256, 257, 259, 260, 262, 265, 267, 270, 274, 275, 286, 287, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 302, 303, 304, 307, 310], "while": [3, 4, 7, 11, 12, 13, 14, 15, 16, 22, 27, 33, 41, 43, 45, 49, 50, 55, 57, 68, 69, 70, 79, 80, 81, 84, 87, 88, 89, 90, 92, 93, 94, 98, 102, 104, 112, 118, 124, 128, 129, 130, 132, 136, 138, 140, 148, 149, 152, 153, 154, 156, 158, 175, 195, 196, 200, 208, 210, 216, 219, 221, 237, 239, 240, 252, 254, 256, 259, 274, 286, 292, 293, 306], "white": [116, 136, 205, 241], "whitespac": [5, 12, 88, 257], "whittak": 115, "whittl": 297, "whl": 69, "who": [2, 3, 4, 9, 11, 12, 30, 36, 39, 43, 89, 90, 214, 221, 290, 301], "whole": [4, 12, 13, 41, 88, 90, 96, 115, 137, 146, 207, 208, 210, 216, 217, 221, 224, 229, 231, 237, 240, 259], "whole_submodul": 216, "whose": [5, 13, 15, 25, 33, 36, 41, 43, 48, 68, 70, 72, 77, 80, 87, 88, 89, 94, 98, 102, 104, 105, 111, 115, 118, 124, 128, 148, 155, 163, 186, 196, 201, 202, 209, 210, 212, 216, 217, 228, 229, 233, 237, 238, 239, 241, 247, 252, 256, 259, 260, 265, 268, 270, 272], "wht": 91, "why": [3, 12, 13, 14, 16, 36, 41, 69, 88, 212, 218, 228, 231, 260, 290, 292, 293], "wick": 191, "wide": [9, 30, 41, 116, 124, 138, 205, 210, 211, 217, 221, 241], "widen": 218, "wider": [45, 221], "widget": 221, "width": [13, 68, 69, 116, 205, 207, 217, 221, 252, 303], "wiener": 241, "wiener_process": 241, "wienerprocess": [13, 241], "wigner": [170, 188, 241, 282], "wigner3j": [170, 206], "wigner6j": [170, 206], "wigner9j": [170, 206], "wigner_3j": 206, "wigner_6j": 206, "wigner_9j": 206, "wigner_d": 206, "wigner_d_smal": 206, "wigner_semicircle_distribut": 241, "wignerd": 188, "wignersemicircl": 241, "wignerssemicirclelaw": 241, "wiki": [3, 4, 5, 11, 16, 34, 41, 43, 61, 63, 64, 65, 67, 68, 69, 71, 76, 77, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 98, 100, 104, 105, 106, 115, 116, 117, 118, 120, 124, 128, 142, 144, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 195, 200, 202, 203, 207, 210, 217, 224, 228, 229, 230, 234, 237, 240, 241, 254, 259, 265, 267, 271, 273, 275, 293], "wikibook": [5, 115, 116], "wikidel": 271, "wikidyad": [32, 34, 203], "wikidyadicproduct": [32, 34, 203], "wikipappu": 100, "wikipedia": [4, 15, 34, 41, 43, 61, 63, 64, 65, 67, 68, 69, 71, 76, 77, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 98, 100, 104, 105, 106, 115, 117, 118, 120, 124, 128, 142, 144, 147, 160, 162, 163, 164, 166, 167, 168, 172, 173, 174, 177, 179, 180, 189, 191, 194, 200, 202, 203, 210, 217, 224, 228, 229, 230, 237, 240, 241, 254, 259, 265, 267, 271, 273, 275, 291, 293, 295], "wild": [16, 88, 233, 259], "wildcard": [88, 233], "wildfunct": 88, "wilei": 241, "wilf": [72, 87, 239], "wilkinson": [48, 124], "william": 210, "win": 60, "window": [1, 9, 11, 135, 262], "wip": 11, "wire": 171, "wire_idx": 171, "wirefram": 207, "wisdom": 90, "wise": [69, 70, 94, 124, 210, 214, 221, 227, 253], "wish": [2, 4, 11, 14, 16, 32, 36, 43, 55, 59, 69, 88, 89, 92, 113, 128, 186, 256, 260, 287, 291, 293, 298], "wishart": 241, "wishart_distribut": 241, "wit": 128, "with_default": [18, 131, 132, 134, 299], "with_pivot": 124, "within": [2, 5, 12, 13, 15, 17, 18, 28, 35, 36, 41, 54, 67, 68, 69, 71, 88, 94, 101, 104, 118, 120, 124, 128, 129, 131, 132, 134, 136, 186, 200, 209, 211, 212, 217, 219, 229, 237, 239, 240, 241, 252, 253, 262, 309], "without": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 22, 26, 27, 32, 35, 41, 43, 45, 46, 59, 63, 65, 66, 69, 87, 88, 89, 90, 92, 96, 113, 115, 116, 120, 123, 124, 144, 145, 148, 152, 156, 191, 195, 196, 200, 201, 207, 210, 211, 214, 217, 221, 223, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 243, 246, 247, 250, 252, 253, 254, 257, 259, 260, 262, 268, 271, 293, 297, 308, 310], "withstand": [136, 137], "wittkopf": 215, "wkshum": 234, "wlog": 231, "wm": 241, "wminu": 124, "wn_m": 124, "wo": 22, "wojciech": 29, "wolfram": [4, 65, 81, 82, 88, 89, 91, 93, 94, 96, 98, 104, 115, 124, 128, 130, 215, 221, 223, 224, 226, 229, 234, 241, 259, 293], "wolphramalpha": 237, "won": [3, 11, 12, 14, 16, 43, 69, 132, 233, 240, 292], "wonder": 293, "wor6d": 89, "word": [3, 5, 9, 12, 15, 22, 28, 43, 65, 84, 87, 88, 89, 94, 96, 118, 144, 153, 208, 211, 216, 233, 234, 237, 239, 254, 265, 270, 289], "word_sep": 89, "wordpress": [113, 234], "work": [0, 2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 28, 30, 36, 38, 39, 41, 42, 43, 48, 54, 59, 62, 64, 67, 68, 69, 71, 79, 80, 81, 88, 89, 92, 96, 113, 115, 117, 118, 120, 124, 125, 128, 130, 136, 149, 159, 171, 175, 180, 184, 185, 186, 187, 190, 193, 202, 206, 207, 208, 209, 210, 211, 212, 214, 216, 217, 221, 228, 229, 230, 231, 233, 234, 237, 239, 240, 241, 247, 252, 253, 254, 256, 259, 260, 261, 262, 269, 270, 289, 290, 291, 292, 293, 296, 297, 302], "workaround": [8, 260], "workflow": [6, 7, 8, 9, 10, 12, 14, 30, 54, 55, 211, 254, 260], "workhors": 228, "world": [9, 27, 89, 140, 259, 306], "worri": [14, 16, 88, 292], "wors": [14, 43, 118, 233], "worst": [128, 217, 237], "worth": [3, 41, 43, 153, 200, 270, 272], "worthwhil": 92, "wou": 80, "would": [1, 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 27, 30, 32, 33, 35, 37, 39, 41, 42, 43, 45, 49, 52, 54, 59, 68, 69, 70, 77, 79, 80, 87, 88, 89, 93, 94, 100, 104, 113, 115, 124, 128, 130, 133, 136, 144, 145, 146, 150, 152, 186, 188, 191, 196, 200, 207, 210, 211, 212, 214, 217, 218, 220, 221, 222, 224, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 243, 245, 246, 252, 254, 256, 259, 260, 262, 270, 271, 272, 274, 286, 287, 289, 291, 292, 293, 296, 297, 298, 306], "wouldn": 43, "woven": 208, "wp1": 90, "wpathwai": 18, "wplu": 124, "wr": 302, "wr_cont": 302, "wr_i": 302, "wr_mc": 302, "wrap": [2, 3, 4, 11, 12, 13, 19, 36, 62, 63, 64, 65, 69, 77, 88, 94, 116, 129, 130, 151, 156, 205, 207, 210, 211, 214, 221, 224, 240, 246, 253, 257, 260, 262, 282, 292, 299], "wrap_lin": [116, 205, 221, 237], "wrapper": [2, 13, 15, 27, 43, 63, 65, 69, 80, 88, 96, 124, 202, 205, 207, 210, 211, 214, 221, 228, 237, 240, 241, 253, 257, 259], "wrapping_geometri": 159, "wrapping_pathwai": 156, "wrappingcylind": [18, 156, 159], "wrappinggeometrybas": [156, 159], "wrappingpathwai": [18, 156], "wrappingspher": 159, "wrench": 96, "wright": 215, "write": [3, 6, 7, 9, 10, 13, 14, 15, 18, 30, 35, 36, 39, 41, 42, 44, 48, 60, 69, 77, 88, 89, 95, 96, 113, 115, 120, 171, 209, 210, 212, 214, 216, 221, 230, 231, 234, 237, 240, 246, 252, 253, 254, 260, 290, 291, 292, 297, 301], "writer": 252, "written": [0, 2, 4, 5, 11, 12, 13, 14, 15, 23, 30, 33, 34, 35, 36, 41, 43, 65, 69, 76, 79, 80, 84, 88, 93, 96, 100, 106, 111, 113, 117, 118, 127, 128, 151, 191, 203, 208, 209, 217, 221, 224, 228, 231, 234, 237, 254, 272, 274, 290, 291, 292, 297, 306], "wrong": [3, 5, 11, 12, 13, 14, 79, 88, 89, 96, 98, 124, 200, 237, 255, 289, 293], "wronskian": [124, 237], "wrote": [291, 292], "wrrad": 302, "wrt": [22, 30, 67, 69, 88, 90, 96, 105, 124, 200, 201, 214, 217, 265, 267, 268, 272], "wsl": 8, "wsym": 228, "wu_1": 234, "wurlitz": 2, "wv": 176, "wv_1": 234, "ww2040": 241, "www": [4, 5, 46, 61, 67, 79, 80, 89, 91, 93, 115, 116, 124, 128, 142, 144, 205, 210, 215, 220, 221, 230, 233, 234, 237, 241, 259, 293], "www3": [110, 237, 265], "x": [2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 77, 79, 80, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 123, 124, 127, 128, 129, 130, 131, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 163, 165, 166, 167, 168, 169, 171, 172, 175, 180, 181, 186, 188, 189, 190, 191, 192, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 252, 253, 254, 255, 257, 259, 260, 262, 265, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 293, 296, 297, 298, 299, 302, 304, 306, 307, 309, 310, 311], "x0": [14, 39, 55, 67, 69, 78, 88, 96, 107, 109, 111, 112, 128, 163, 211, 222, 223, 228, 233, 237, 239, 241, 259, 287, 299], "x01": 88, "x02": 88, "x1": [14, 30, 41, 43, 54, 55, 78, 88, 93, 163, 211, 212, 222, 223, 233, 237, 239, 241, 259], "x11": 88, "x12": [14, 88], "x2": [14, 30, 41, 54, 78, 88, 93, 163, 211, 223, 237, 239, 241], "x3": [14, 78, 88, 93, 211, 237, 239, 241], "x4": [14, 88, 93, 211, 239], "x5": [14, 88, 93, 211], "x50": 88, "x51": 88, "x6": [14, 88, 211], "x64": 252, "x7": [14, 88, 211], "x8": [14, 88, 211], "x86": 69, "x9": [14, 88, 211], "x_": [14, 39, 51, 55, 69, 78, 88, 89, 93, 130, 212, 214, 217, 223, 234, 237, 242], "x_0": [39, 78, 79, 89, 110, 111, 112, 214, 223, 234, 237, 241, 287], "x_1": [14, 43, 70, 78, 79, 89, 93, 110, 124, 186, 209, 212, 214, 217, 223, 234, 240], "x_1x_0": 78, "x_2": [14, 70, 78, 93, 110, 186, 209, 214, 217, 223, 234, 240], "x_2x_0": 78, "x_2x_1": 78, "x_3": [14, 70, 78, 110, 186], "x_3x_0": 78, "x_3x_1": 78, "x_3x_2": 78, "x_4": 14, "x_5": 14, "x_6": 14, "x_7": 14, "x_8": 14, "x_9": 14, "x_arrai": 207, "x_b": 138, "x_dom": 211, "x_domain": 212, "x_i": [39, 43, 78, 96, 115, 124, 209, 212, 214, 217, 218, 221, 240], "x_j": [212, 214, 217], "x_k": [43, 89, 214], "x_ket": 186, "x_list": [67, 287], "x_m": 241, "x_n": [39, 43, 70, 78, 89, 110, 124, 209, 212, 214, 217, 234, 240], "x_op": 186, "x_reduc": 50, "x_u": 214, "x_val": 18, "x_valu": 54, "x_var": 207, "x_y": 14, "x_y_reduc": 50, "xa": [88, 209, 214], "xax": 79, "xb": [88, 262], "xb7": 221, "xbra": [169, 181, 186], "xc": [88, 190, 262], "xd": [30, 36], "xd2": 30, "xd_x": 14, "xdagger": 190, "xden": 210, "xdg": 221, "xdirect": 101, "xdot": 302, "xdvi": 221, "xe": 36, "xelatex": 8, "xetex": 8, "xf": 211, "xf_1": 214, "xfail": [12, 237, 250, 252], "xfield": 212, "xfree_group": 70, "xgate": 175, "xi": [16, 43, 90, 113, 221, 237, 238, 239], "xiuqin": 230, "xj": 208, "xk": [211, 212, 223], "xket": [169, 181, 186], "xl": 88, "xla": [2, 129], "xlabel": [55, 207, 299], "xlim": [88, 207], "xlist": 67, "xm": 241, "xmax": [98, 99, 101, 103, 104, 207], "xmin": [98, 99, 101, 103, 104, 207], "xml": [35, 36, 233, 270, 306, 308], "xn": [39, 43, 212], "xneg": 42, "xnor": 118, "xnum": 210, "xobj": 221, "xop": [169, 181, 186], "xor": [88, 91, 118, 130, 221, 289], "xp": 12, "xpass": [12, 250, 252], "xpath": 233, "xpo": 42, "xr": [211, 219], "xreplac": [14, 15, 18, 88, 124, 200, 304], "xring": 212, "xscale": 207, "xsol": 210, "xsol_uncancel": 210, "xstr": 221, "xsym": 221, "xt": 96, "xthread": 255, "xval": 239, "xvi": [70, 78], "xx": [36, 69, 124, 155, 200, 259], "xxx": [88, 115, 124, 259, 261], "xxxx": 259, "xxxxxx": 259, "xy": [13, 36, 43, 67, 68, 102, 124, 130, 155, 200, 207, 208, 214, 221, 233, 240, 275, 292, 297], "xymatrix": 68, "xypic": 68, "xypic_draw_diagram": 68, "xypicdiagramdraw": 68, "xyx": [200, 265, 267], "xyz": [3, 36, 61, 100, 130, 136, 140, 200, 265, 267, 270], "xz": [36, 200, 207], "xzx": 200, "xzy": 200, "x\u2080": 222, "y": [3, 4, 11, 12, 13, 14, 15, 16, 18, 22, 24, 28, 30, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 111, 113, 115, 116, 117, 118, 119, 120, 124, 128, 129, 130, 136, 137, 138, 140, 142, 144, 149, 150, 152, 155, 156, 158, 159, 168, 169, 172, 175, 180, 186, 188, 189, 191, 192, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 227, 228, 229, 230, 231, 233, 234, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 253, 254, 257, 259, 260, 262, 265, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "y0": [55, 88, 107, 109, 111, 237], "y1": [13, 30, 55, 88], "y1d": 30, "y2": [30, 55, 88, 211], "y2d": 30, "y3": [88, 211], "y4": 88, "y_": [55, 69, 96, 113, 146, 206], "y_0": [55, 234, 237], "y_1": [55, 70, 234, 241], "y_2": [55, 70, 234, 241], "y_3": 241, "y_arrai": 207, "y_i": [212, 214, 216, 217, 237], "y_list": [67, 287], "y_n": [96, 234], "y_reduc": 50, "y_var": 207, "yanchukb": 303, "yang": 215, "yann": 128, "yaw": 302, "ybar": 237, "ydirect": 101, "ydot": 55, "ye": [12, 89, 118, 128, 237], "year": [0, 3, 4, 13, 18, 195], "yet": [3, 9, 11, 13, 14, 16, 27, 41, 43, 62, 64, 67, 68, 74, 92, 115, 130, 171, 208, 211, 212, 216, 218, 220, 229, 237, 240, 287], "yf": 211, "yf_1": 214, "ygate": 175, "yi": 41, "yibi": 241, "yield": [48, 50, 51, 52, 53, 55, 56, 67, 69, 79, 88, 89, 93, 96, 112, 113, 128, 136, 144, 150, 185, 206, 209, 214, 216, 217, 222, 223, 228, 229, 230, 233, 234, 239, 256, 259, 293], "yih": 259, "yiu": 215, "yk": [211, 212], "ylabel": [55, 207, 299], "ylim": 207, "ymax": [98, 99, 101, 103, 104, 207], "ymin": [98, 99, 101, 103, 104, 207], "yml": 12, "yn": [96, 221, 227], "ynm": [96, 206], "ynm_c": 96, "yop": 169, "yorgei": 256, "york": [29, 96, 113, 231, 239], "you": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 38, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 63, 64, 65, 67, 69, 70, 71, 79, 80, 87, 88, 89, 90, 92, 94, 95, 96, 100, 102, 104, 106, 107, 112, 113, 115, 116, 118, 120, 121, 124, 125, 128, 129, 130, 131, 132, 134, 144, 146, 147, 152, 153, 154, 155, 158, 180, 185, 186, 189, 191, 195, 200, 202, 207, 208, 209, 210, 211, 212, 214, 216, 217, 218, 221, 222, 224, 228, 229, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 250, 252, 253, 254, 255, 257, 259, 260, 269, 270, 271, 272, 285, 286, 287, 289, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300], "you_should_include_your_tests_in_coverag": 12, "young": [13, 136, 247], "your": [0, 2, 3, 4, 5, 8, 12, 13, 14, 16, 18, 21, 25, 27, 36, 43, 45, 48, 49, 50, 51, 53, 55, 56, 57, 59, 63, 88, 89, 115, 116, 124, 129, 130, 131, 132, 144, 152, 207, 221, 228, 233, 237, 240, 241, 259, 260, 287, 291, 293, 294, 296, 297], "your_email": 9, "your_hint": 237, "youremail": 9, "yourobject": 14, "yourself": [2, 7, 11, 12, 14, 43, 45, 57, 69, 255, 287, 302], "yp": 55, "ypp": 55, "yr": [211, 219], "yscale": 207, "yu": [113, 206, 231], "yule": 241, "yulesimon": 241, "yum": 9, "yun": [214, 215], "yun76": [214, 215], "yuvalf": 128, "yx": [36, 79, 200], "yxy": [36, 200], "yxz": 200, "yy": [36, 155, 200, 237], "yz": [36, 155, 200, 207], "yzx": [36, 200], "yzy": 200, "z": [4, 13, 14, 15, 16, 18, 22, 24, 27, 28, 30, 31, 32, 33, 35, 36, 37, 41, 43, 51, 54, 55, 56, 61, 65, 66, 69, 70, 79, 80, 87, 88, 89, 90, 91, 93, 94, 96, 100, 101, 102, 103, 104, 113, 115, 118, 120, 124, 130, 136, 137, 138, 144, 146, 148, 149, 150, 152, 155, 156, 158, 159, 160, 169, 171, 175, 185, 186, 188, 192, 196, 200, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 220, 221, 222, 228, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 253, 254, 260, 265, 268, 269, 270, 271, 272, 274, 275, 286, 287, 289, 291, 292, 296, 297, 298, 299, 302, 303, 304, 306, 307, 309, 310, 311], "z0": [88, 228], "z1": [14, 211, 212, 239], "z1_sympi": 211, "z2": [14, 212], "z3": 212, "z4": 212, "z_": [89, 233], "z_0": [113, 233], "z_1": 113, "z_arrai": 207, "z_eq": 37, "z_k": 216, "z_n": [96, 215], "z_p": 214, "z_r": 160, "z_r_in": 160, "z_r_out": 160, "z_sympi": 211, "z_x": 138, "z_zz": 211, "za": 233, "zaletnyik": 215, "zassenhau": [214, 216], "zc": 211, "zcc09_ijc": 144, "zd_z": 14, "zdirect": 101, "ze": 96, "zeilberg": [87, 239], "zen": 14, "zeng": 230, "zerlegung": 216, "zero": [3, 15, 16, 18, 22, 24, 25, 26, 30, 33, 35, 36, 37, 41, 42, 43, 46, 53, 54, 61, 65, 66, 69, 78, 79, 80, 84, 87, 88, 91, 92, 93, 94, 96, 98, 102, 103, 104, 113, 115, 117, 118, 120, 122, 124, 127, 128, 130, 136, 144, 148, 152, 153, 154, 155, 158, 159, 163, 185, 189, 191, 193, 204, 206, 208, 209, 210, 211, 212, 216, 217, 219, 221, 224, 228, 229, 231, 233, 234, 237, 238, 239, 240, 241, 242, 257, 259, 260, 269, 271, 272, 292, 298, 299, 302, 303, 307, 310], "zero_color": 142, "zero_markers": 142, "zero_matrix": 41, "zero_monom": 212, "zero_to_the_power_of_zero": 88, "zerodivisionerror": [144, 212, 250, 260], "zerohandl": 65, "zeromatrix": [65, 120, 221], "zeropred": 65, "zeroth": [88, 131, 134, 216], "zeroth_order_activ": 18, "zerothorderactiv": [18, 131], "zeta": [4, 15, 16, 87, 88, 92, 93, 212, 216, 221, 228, 241], "zeta5": 212, "zeta7": 212, "zeta_": 212, "zeta_distribut": 241, "zeta_funct": 96, "zeta_pow": 216, "zfade4": 207, "zg": 79, "zgate": 175, "zhegalkin": 118, "zhegalkin_polynomi": 118, "zhenb": 230, "zhong": 230, "zhou": 124, "zigzag": 93, "ziki": 128, "zimmer": 216, "zip": [51, 67, 78, 89, 118, 128, 217, 227, 234, 237, 239, 256, 259, 299, 304], "zk": 216, "zlabel": 207, "znm": 96, "zo42": 80, "zoo": [15, 37, 41, 65, 88, 93, 94, 96, 115, 228, 230, 233], "zoom": 207, "zop": 169, "zotero": 0, "zout": 214, "zp": 100, "zsc347": 11, "zsol": 37, "zt": [96, 113], "zuckerman": 214, "zur": 215, "zx": [36, 155, 200], "zxy": 200, "zxz": [36, 152, 200, 265, 267], "zy": [36, 200], "zyla": 170, "zyx": 200, "zyz": [61, 200], "zz": [13, 36, 88, 93, 110, 111, 115, 120, 124, 125, 128, 155, 200, 208, 209, 210, 211, 214, 216, 217, 218, 219, 236], "zz_i": [210, 211, 214], "zz_python": 212, "zzx": 36, "\u00b2": 221, "\u00b3": 221, "\u00b9": 221, "\u00bc": 221, "\u00bd": 221, "\u00be": 221, "\u00f8yvind": 11, "\u010dert\u00edk": 0, "\u0142ukasz": 11, "\u0161": 0, "\u03b1": [5, 88, 206, 220], "\u03b1\u1d62": 88, "\u03b2": [69, 206], "\u03b2\u2081\u2082": 12, "\u03b3": [206, 287, 297], "\u03b3\u2081": 69, "\u03b3\u2082": 69, "\u03b4": 163, "\u03b8": [36, 116, 152, 163, 240, 270], "\u03bb": [15, 293], "\u03bd": 291, "\u03c0": [43, 92, 163, 221, 240, 287, 291, 297, 298], "\u03c7": 163, "\u03c8": 163, "\u03c9": 152, "\u1d62": 221, "\u1d63": 221, "\u1d64": 221, "\u1d65": 221, "\u1d66": 221, "\u1d67": 221, "\u1d68": 221, "\u1d69": 221, "\u1d6a": 221, "\u2070": 221, "\u2071": 221, "\u2074": 221, "\u2075": 221, "\u2076": 221, "\u2077": 221, "\u2078": 221, "\u2079": 221, "\u207f": 221, "\u2080": 221, "\u2081": 221, "\u2082": 221, "\u2083": 221, "\u2084": 221, "\u2085": 221, "\u2086": 221, "\u2087": 221, "\u2088": 221, "\u2089": 221, "\u2090": 221, "\u2091": 221, "\u2092": 221, "\u2093": 221, "\u2095": 221, "\u2096": 221, "\u2097": 221, "\u2098": 221, "\u2099": 221, "\u209a": 221, "\u209b": 221, "\u209c": 221, "\u2102": [221, 298], "\u2115": 221, "\u2115\u2080": 221, "\u211a": [208, 221], "\u211d": [221, 298], "\u2124": [220, 221, 240, 298], "\u212f": [11, 69, 163, 206, 221, 287, 291, 293, 297, 298], "\u2146": 221, "\u2148": [163, 206, 220, 221, 240, 298], "\u2153": 221, "\u2154": 221, "\u2155": 221, "\u2156": 221, "\u2157": 221, "\u2158": 221, "\u2159": 221, "\u215a": 221, "\u215b": 221, "\u215c": 221, "\u215d": 221, "\u215e": 221, "\u5f6d\u4e8e\u658c": 11, "\ud835\udc45": 275, "\ud835\udd40": 221, "\ud835\udd4c": 221, "\ud835\udfd8": 221, "\ud835\udfd9": 221}, "titles": ["Citing SymPy", "Debugging", "Dependencies", "Deprecation Policy", "Docstrings Style Guide", "Documentation Style Guide", "Contributing", "Introduction to Contributing", "Building the Documentation", "Setup Development Environment", "Guide for New Contributors", "Development Workflow Process", "Writing Tests", "List of active deprecations", "Best Practices", "Glossary", "Gotchas and Pitfalls", "Explanations", "Introduction to Biomechanical Modeling", "Biomechanics", "Physics", "Potential Issues/Advanced Topics/Future Features in Physics/Mechanics", "Autolev Parser", "Classical Mechanics", "Joints Framework in Physics/Mechanics", "Kane\u2019s Method in Physics/Mechanics", "Lagrange\u2019s Method in Physics/Mechanics", "Linearization in Physics/Mechanics", "Masses, Inertias, Particles and Rigid Bodies in Physics/Mechanics", "References for Physics/Mechanics", "SymPy Mechanics for Autolev Users", "Symbolic Systems in Physics/Mechanics", "Potential Issues/Advanced Topics/Future Features in Physics/Vector Module", "Scalar and Vector Field Functionality", "Vector", "Vector: Kinematics", "Vector & ReferenceFrame", "Solve Output by Type", "Classification of SymPy objects", "Finite Difference Approximations to Derivatives", "SymPy Special Topics", "Assumptions", "Symbolic and fuzzy booleans", "Writing Custom Functions", "How-to Guides", "SymPy Logo", "Control Package Examples", "Physics", "Find the Roots of a Polynomial Algebraically or Numerically", "Solve Equations", "Reduce One or a System of Inequalities for a Single Variable Algebraically", "Solve a Diophantine Equation Algebraically", "Solve an Equation Algebraically", "Solve a Matrix Equation Algebraically", "Solve One or a System of Equations Numerically", "Solve an Ordinary Differential Equation (ODE) Algebraically", "Solve a System of Equations Algebraically", "Solving Guidance", "Welcome to SymPy\u2019s documentation!", "Installation", "abc", "Algebras", "Ask", "Assume", "Assumptions", "Predicates", "Refine", "Calculus", "Category Theory", "Code Generation", "Finitely Presented Groups", "Galois Groups", "Gray Code", "Group constructors", "Number of groups", "Combinatorics", "Named Groups", "Partitions", "Polycyclic Groups", "Permutation Groups", "Permutations", "Polyhedron", "Prufer Sequences", "Subsets", "Tensor Canonicalization", "Test Utilities", "Utilities", "Concrete", "Core", "Cryptography", "Differential Geometry", "Discrete", "Numerical Evaluation", "Combinatorial", "Elementary", "Functions", "Special", "Curves", "Ellipses", "Entities", "Geometry", "Lines", "Plane", "Points", "Polygons", "Utils", "About Holonomic Functions", "Converting other representations to holonomic", "Holonomic", "Internal API", "Operations on holonomic functions", "Representation of holonomic functions in SymPy", "Uses and Current limitations", "Computing Integrals using Meijer G-Functions", "Integrals", "Integrals", "Interactive", "Lie Algebra", "Logic", "Dense Matrices", "Matrix Expressions", "Immutable Matrices", "Matrices", "Matrix Kind", "Matrices (linear algebra)", "Matrix Normal Forms", "Sparse Matrices", "Sparse Tools", "Number Theory", "Numeric Computation", "Parsing", "Activation (Docstrings)", "Curve (Docstrings)", "Biomechanics API Reference", "Musculotendon (Docstrings)", "Arch (Docstrings)", "Beam (Docstrings)", "Solving Beam Bending Problems using Singularity Functions", "Cable (Docstrings)", "Continuum Mechanics", "Truss (Docstrings)", "Control", "Control System Plots", "Control", "Control API", "High Energy Physics", "Hydrogen Wavefunctions", "Matrices", "Actuator (Docstrings)", "Deprecated Classes (Docstrings)", "Expression Manipulation (Docstrings)", "Mechanics API Reference", "Joints Framework (Docstrings)", "Kane\u2019s Method & Lagrange\u2019s Method (Docstrings)", "Linearization (Docstrings)", "Bodies, Inertias, Loads & Other Functions (Docstrings)", "Pathway (Docstrings)", "Printing (Docstrings)", "System (Docstrings)", "Wrapping Geometry (Docstrings)", "Gaussian Optics", "Optics", "Medium", "Polarization", "Utilities", "Waves", "Pauli Algebra", "Quantum Harmonic Oscillator in 1-D", "Anticommutator", "Cartesian Operators and States", "Clebsch-Gordan Coefficients", "Circuit Plot", "Commutator", "Constants", "Dagger", "Gates", "Grover\u2019s Algorithm", "Hilbert Space", "Quantum Mechanics", "Inner Product", "Operator", "Operator/State Helper Functions", "Particle in a Box", "Qapply", "QFT", "Qubit", "Represent", "Shor\u2019s Algorithm", "Spin", "State", "Tensor Product", "Second Quantization", "Quantum Harmonic Oscillator in 3-D", "Dimensions and dimension systems", "More examples", "Unit Systems", "Philosophy behind unit systems", "Unit prefixes", "Physical quantities", "Units and unit systems", "Essential Classes", "Docstrings for basic field functions", "Essential Functions (Docstrings)", "Physics Vector API", "Kinematics (Docstrings)", "Printing (Docstrings)", "Wigner Symbols", "Plotting", "AGCA - Algebraic Geometry and Commutative Algebra Module", "Basic functionality of the module", "Introducing the domainmatrix of the poly module", "Introducing the Domains of the poly module", "Reference docs for the Poly Domains", "Polynomial Manipulation", "Internals of the Polynomial Manipulation Module", "Literature", "Number Fields", "Polynomials Manipulation Module Reference", "Series Manipulation using Polynomials", "Poly solvers", "Examples from Wester\u2019s Article", "Printing", "Term Rewriting", "Formal Power Series", "Fourier Series", "Series", "Limits of Sequences", "Sequences", "Series Expansions", "Sets", "Hongguang Fu\u2019s Trigonometric Simplification", "Hypergeometric Expansion", "Simplify", "Simplify", "Diophantine", "Solvers", "Inequality Solvers", "ODE", "PDE", "Solvers", "Solveset", "Stats", "N-dim array", "N-dim array expressions", "Tensor", "Methods", "Indexed Objects", "Tensor", "Tensor Operators", "Testing", "pytest", "Randomised Testing", "Run Tests", "Autowrap Module", "Codegen", "Decorator", "Enumerative", "Exceptions and Warnings", "Utilities", "Iterables", "Lambdify", "Memoization", "Miscellaneous", "Source Code Inspection", "Timing Utilities", "Essential Classes in sympy.vector (docstrings)", "Vector API", "Orienter classes (docstrings)", "Essential Functions in sympy.vector (docstrings)", "Basic Implementation details", "More about Coordinate Systems", "General examples of usage", "Scalar and Vector Field Functionality", "Vector", "Introduction", "Applications of Vector Integrals", "API Reference", "Basics", "Code Generation", "Logic", "Matrices", "Number Theory", "Physics", "Topics", "Utilities", "Tutorials", "Basic Operations", "Calculus", "SymPy Features", "Gotchas", "Introductory Tutorial", "Introduction", "Advanced Expression Manipulation", "Matrices", "What\u2019s Next", "Preliminaries", "Printing", "Simplification", "Solvers", "Biomechanical Model Example", "Biomechanics Tutorials", "Physics Tutorials", "A bicycle", "Duffing Oscillator with a Pendulum", "A four bar linkage", "Mechanics Tutorials", "Nonminimal Coordinates Pendulum", "Multi Degree of Freedom Holonomic System", "A rolling disc", "A rolling disc, with Kane\u2019s method", "A rolling disc, with Kane\u2019s method and constraint forces", "A rolling disc using Lagrange\u2019s Method"], "titleterms": {"": [25, 26, 27, 58, 153, 176, 187, 220, 230, 239, 240, 270, 275, 294, 303, 306, 309, 310, 311], "1": [4, 13, 22, 27, 46, 55, 113, 137, 167], "10": [8, 13, 137], "11": [13, 137], "12": 13, "13": 13, "14": 13, "2": [4, 22, 27, 46, 55, 113, 137], "2d": 115, "3": [4, 22, 46, 115, 137, 192], "4": [4, 13, 46, 137], "5": [4, 13, 46, 137], "6": [4, 13, 137], "7": [13, 137], "8": [13, 137], "9": [13, 137], "A": [18, 27, 39, 291, 298, 302, 304, 308, 309, 310, 311], "AND": 270, "As": 216, "Be": [14, 48, 50, 51, 52, 53, 54, 55], "For": 115, "If": 55, "Into": [52, 54, 56], "Its": 55, "No": [48, 51, 52, 53, 55], "Not": [3, 48, 50, 51, 52, 54, 55, 56, 57], "Of": 37, "One": [50, 54, 55], "That": [50, 51, 52, 54, 56, 57], "The": [3, 13, 27, 41, 43, 70, 78, 113, 196, 216, 228, 231, 271, 272, 291], "There": 55, "With": [48, 51, 52, 53, 54, 55, 56, 57], "__call__": 13, "__eq__": 14, "_eval_": 43, "_mat": 13, "_smat": 13, "a_and_b": 27, "abc": 60, "about": [106, 240, 270, 298], "abov": 41, "absorbing_probabilit": 13, "abstract": [69, 133, 139, 143, 145, 151, 161, 178, 203, 212], "acceler": [21, 32, 35, 228], "accept": 13, "access": 293, "account": 9, "accuraci": 92, "action": 12, "activ": [13, 18, 131, 299], "actuat": [18, 148, 299], "ad": 3, "add": [11, 13, 43, 88], "addit": [43, 110], "address": 11, "adic": 216, "advanc": [14, 21, 32, 220, 292, 293], "aesara": [129, 221], "agca": 208, "airi": 96, "algebra": [36, 48, 50, 51, 52, 53, 55, 56, 61, 117, 124, 166, 208, 211, 216, 220, 239, 298], "algorithm": [69, 70, 176, 187, 214, 217, 223, 228, 231], "all": [48, 50, 51, 52, 54, 55, 56], "all_root": 48, "also": [4, 88, 259], "altern": [36, 48, 50, 51, 52, 53, 54, 55, 56], "an": [11, 13, 14, 22, 52, 54, 55, 100, 196, 231, 240, 292], "anaconda": 59, "analysi": 194, "analyt": [50, 178], "angular": [28, 35], "ani": [57, 240], "annot": 13, "anticommut": 168, "antlr": 130, "apart": 297, "api": [3, 58, 109, 113, 115, 133, 144, 151, 203, 240, 253, 254, 266, 276], "appel": 217, "appli": [41, 113, 231], "applic": 275, "approxim": [39, 48, 69], "ar": [4, 36, 50, 55, 211, 240], "arbitrari": 55, "arch": [135, 139], "area": 275, "arg": [13, 14, 292], "argand": 113, "argument": [13, 16, 240], "arithmet": 216, "around": 231, "arrai": [13, 242, 243], "art": 207, "articl": 220, "as_real_imag": 43, "ascii": [207, 296], "ask": 62, "askhandl": 13, "assign": 16, "assum": 63, "assumpt": [13, 14, 38, 41, 43, 64, 88], "ast": [22, 69], "attach": 13, "attribut": [13, 14, 70, 78], "author": [11, 206], "auto": 8, "autolev": [22, 30], "automat": [14, 43, 220], "autowrap": [2, 69, 253], "avail": 100, "avoid": [3, 14], "b": [13, 96], "back": 220, "backend": [2, 130, 207], "background": 27, "backward": 3, "bar": 304, "base": [68, 90, 124, 208, 209, 220, 227, 240], "basi": [36, 214, 216], "basic": [12, 14, 88, 92, 124, 201, 209, 211, 217, 229, 269, 276, 277, 286, 293], "beam": [136, 137, 139], "been": 13, "behind": 196, "benchmark": 2, "bend": 137, "bessel": 96, "best": [4, 5, 14, 43], "beta": 96, "between": [16, 41, 198, 211], "bewar": 55, "beyond": 100, "bibliographi": [70, 78], "bicep": 299, "bicycl": 302, "binari": 13, "biomechan": [18, 19, 133, 299, 300], "block": 120, "bode": 142, "bodi": [13, 28, 155, 275], "bool": 42, "boolean": [37, 42, 118], "boundari": 55, "box": 182, "branch": [11, 113], "bug": [48, 50, 51, 52, 53, 54, 55, 56, 57, 115], "build": [2, 8], "c": [69, 221], "cabl": [138, 139], "cach": 88, "calcul": 275, "calculu": [36, 65, 67, 287], "call": [13, 50, 57], "can": [48, 50, 51, 52, 54, 55, 56, 57], "cancel": 297, "cannot": [50, 52, 55, 56], "canonic": 84, "capabl": 130, "capit": 5, "care": 14, "carmichael": 13, "cartesian": 169, "case": [43, 240], "categori": 68, "caveat": [60, 130], "cc": 212, "cfunction": 69, "chang": [3, 11, 13], "chebyshev": 96, "check": [12, 13, 201], "checklist": [3, 11], "choic": 21, "choos": 211, "circuit": 171, "cite": 0, "class": [4, 13, 27, 38, 68, 69, 87, 90, 121, 124, 126, 128, 130, 149, 200, 207, 216, 221, 234, 242, 265, 267], "classic": [23, 214], "classif": 38, "clebsch": 170, "close": [48, 52, 55, 56, 57], "cnode": 69, "co": 11, "code": [2, 3, 5, 7, 9, 11, 12, 13, 14, 21, 36, 69, 72, 221, 263, 276, 278], "codebas": 7, "codegen": [69, 254], "codeprint": 221, "coeffici": [170, 214], "collect": [14, 78, 222, 297], "collector": 78, "color": 207, "column": 293, "columnspac": 293, "combin": [41, 110], "combinator": [13, 75], "combinatori": 93, "combsimp": 297, "commit": 11, "common": [21, 32, 65, 220, 221, 222], "commut": [172, 208], "compar": 14, "comparison": 13, "compat": [13, 243], "complet": [22, 43, 48], "complex": [48, 54, 94, 211], "composit": 110, "compound": [227, 229, 241], "compress": 70, "comput": [78, 113, 129, 178, 220, 291], "concept": 209, "conclus": 299, "concret": 87, "condit": [13, 55, 113, 229], "conditionset": 13, "conduct": 7, "configur": [9, 214], "confluenc": 231, "conserv": [33, 272], "consid": [48, 50, 51, 52, 53, 54, 55, 56], "consist": [12, 57], "constant": [55, 173, 196], "constraint": 310, "construct": [70, 78, 243], "constructor": [73, 217, 293], "contain": 88, "content": [64, 75, 95, 108, 114, 213, 225, 235, 244], "continu": [241, 297], "continuum": 139, "contract": 242, "contribut": [6, 7, 11, 58, 218], "contributor": 10, "control": [46, 141, 142, 143, 144, 207], "conv_": 13, "converg": 113, "convers": 198, "convert": [107, 110, 211, 286], "convolut": 91, "coordin": [13, 21, 27, 207, 269, 270, 272, 274, 306], "coordsys3d": 270, "copi": 55, "copyright": 206, "core": [13, 88, 120], "coset": 70, "cosett": 70, "cover": 91, "coverag": 12, "coxet": 70, "creat": [9, 11, 13, 16, 43, 54, 124], "credit": 206, "crootof": 48, "cross": 4, "cryptographi": 89, "curl": [33, 272], "current": 112, "curv": [18, 97, 132], "curvilinear": 272, "custom": [14, 18, 43, 207, 221], "cutil": 69, "cxxnode": 69, "cyclotom": 220, "d": [167, 192], "dagger": 174, "damp": 18, "data": 13, "de": [239, 240], "deal": 240, "debian": 8, "debug": [1, 12], "decompos": 50, "decomposit": [216, 217, 220], "decor": 255, "decrement": 231, "defin": [14, 43, 55, 299, 303], "definit": [41, 43, 106], "degre": 307, "del": [271, 272], "delet": [11, 293], "delta": 96, "denest": 14, "denomin": 57, "dens": [119, 211, 212, 214], "densematrix": 13, "depend": [2, 8, 12, 27, 211, 270], "deprec": [3, 12, 13, 149], "depth": [78, 100], "deriv": [36, 39, 55, 242, 272, 287], "descript": [11, 299], "detail": [253, 254, 269], "detect": 222, "determin": 293, "deutil": 239, "develop": [2, 7, 9, 11, 88], "diagon": [242, 293], "diagram": 68, "dictionari": [16, 37, 48, 56], "differ": [30, 39, 41, 67, 211, 270, 287], "differenti": [21, 43, 55, 90, 110, 239, 240, 298, 299], "differentiate_finit": 13, "diffgeom": 13, "dim": [242, 243], "dimens": [100, 193, 196], "dimension": 194, "diophantin": [51, 234, 239, 240], "dirac": 96, "direct": [39, 272], "directli": [27, 270], "disc": [308, 309, 310, 311], "discontinu": 96, "discret": [91, 241], "discretemarkovchain": 13, "dispers": 217, "distribut": [13, 214, 241], "diverg": [33, 272, 275], "divid": 43, "divis": 209, "dixonresult": 13, "dmp": [13, 211], "do": [57, 240], "doc": [8, 212], "docker": 8, "docstr": [4, 131, 132, 134, 135, 136, 138, 140, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 201, 202, 204, 205, 265, 267, 268], "doctest": 12, "document": [2, 3, 4, 5, 7, 8, 11, 58], "doe": [3, 16, 240], "doit": 43, "domain": [52, 209, 211, 212, 217, 220, 240], "domainmatrix": 210, "don": 14, "dot": 296, "dotprint": 221, "doubl": 16, "draw": 68, "duf": 303, "dummi": 12, "dummy_fmt": 13, "dup": 211, "dyadic": [28, 32, 269, 270], "dynam": [18, 22], "dynamicsymbol": 32, "easi": 43, "ecm": 128, "eigenvalu": 293, "eigenvector": 293, "elast": 18, "element": [27, 53, 211, 216], "elementari": [94, 208, 227, 229], "ellips": 98, "ellipt": 96, "email": [9, 11], "emploi": 240, "empti": 37, "encod": 217, "end": 231, "energi": [28, 145], "ensur": [54, 57, 240], "entiti": [99, 100, 207], "entri": [3, 11, 124], "enum": 256, "enumer": [70, 93], "environ": [7, 9], "eq": [13, 52], "equal": [16, 51, 52, 289], "equat": [25, 26, 27, 32, 48, 49, 51, 52, 53, 54, 55, 56, 57, 194, 209, 234, 239, 240, 298, 299], "equival": [30, 118], "error": [92, 96], "essenti": [200, 202, 265, 268], "euclidean": 209, "eval": 43, "evalf": [43, 88, 129, 286], "evalu": [13, 14, 16, 30, 43, 48, 92, 110, 292, 299], "ex": 212, "exact": [14, 48, 57], "exampl": [4, 11, 27, 31, 36, 43, 46, 48, 50, 51, 54, 56, 60, 88, 100, 112, 115, 128, 135, 137, 145, 163, 194, 195, 196, 220, 221, 228, 231, 241, 242, 243, 246, 271, 291, 297, 299], "except": [12, 124, 130, 214, 257], "exercis": 295, "exist": [12, 113], "expand": [43, 220, 222, 297], "expand_func": 297, "expand_log": 297, "expand_power_bas": 297, "expand_power_exp": 297, "expand_trig": 297, "expans": [110, 228, 231, 287], "expect": 12, "experiment": 130, "explan": [4, 17, 58], "explicit": 243, "explicitli": [52, 55], "expon": [78, 220], "exponenti": [94, 96, 297], "expr": [13, 88], "expr_free_symbol": 13, "express": [12, 13, 14, 16, 48, 51, 52, 54, 69, 100, 107, 110, 118, 120, 130, 150, 211, 220, 243, 270, 286, 292], "exprtool": 88, "extend": 231, "extens": [208, 220], "extern": 12, "extra": [14, 217], "extract": [50, 51, 53, 55], "facil": 70, "factor": [48, 209, 214, 220, 297], "factori": 209, "fail": 12, "failur": 12, "fallback": 13, "fals": 13, "familiar": 7, "fast": 91, "featur": [21, 32, 130, 288], "fedora": 8, "fiber": 18, "field": [33, 201, 211, 214, 216, 220, 272, 274], "file": 11, "fill": 13, "final": 289, "find": [48, 54, 216, 217], "find_execut": 13, "finit": [39, 67, 70, 208, 211, 214, 216, 220, 231, 241, 287], "first": [3, 13, 18], "fix": [11, 22], "flag": 13, "float": [14, 16, 92], "flux": 275, "fma": 43, "fnode": 69, "forc": [18, 299, 303, 304, 310], "fork": 9, "form": [27, 48, 52, 55, 56, 57, 118, 125, 243], "formal": [217, 223], "format": [4, 5, 13, 57], "formula": [113, 231], "fortran": [69, 221], "found": 54, "four": 304, "fourier": [91, 224], "fraction": [217, 220, 297], "frame": [13, 36], "framework": [24, 152], "free": [70, 209], "freedom": 307, "fresnel": 96, "from": [13, 14, 16, 51, 52, 53, 57, 220, 243], "from_": 13, "fu": 230, "fulli": 43, "fun_ev": 13, "func": [38, 292], "function": [4, 12, 13, 14, 16, 21, 28, 33, 43, 48, 50, 52, 54, 55, 57, 69, 78, 87, 88, 94, 95, 96, 106, 107, 110, 111, 113, 118, 124, 128, 130, 137, 155, 178, 181, 201, 202, 207, 209, 211, 212, 217, 220, 221, 231, 234, 237, 238, 242, 268, 272, 296, 297], "further": [27, 289], "fuse": 43, "futil": 69, "futur": [21, 22, 32, 100], "fuzzi": 42, "g": [107, 110, 113, 231], "galoi": [71, 216], "gamma": [96, 145], "gammasimp": 297, "gate": 175, "gaussian": [160, 211, 212, 220], "gcd": [209, 214, 220], "gegenbau": 96, "gener": [2, 4, 5, 69, 78, 80, 211, 216, 240, 271, 276, 278], "geometr": 207, "geometri": [18, 90, 100, 159, 208], "get": [2, 7, 9, 16, 48], "get_epsilon": 13, "get_kronecker_delta": 13, "get_seg": 13, "get_upper_degre": 13, "gf": 212, "git": [9, 59], "github": [9, 12], "given": [54, 56], "glossari": 15, "good": 11, "gordan": 170, "gotcha": [16, 22, 41, 289], "gradient": [33, 272], "grai": 72, "groebner": [209, 214], "group": [70, 71, 73, 74, 76, 78, 79, 196, 216], "grover": 176, "gruntz": 228, "gr\u00f6bner": 220, "gtk": 221, "guid": [4, 5, 10, 12, 19, 23, 34, 44, 58, 133, 151, 203, 273], "guidanc": [48, 50, 51, 52, 53, 54, 55, 56, 57], "guidelin": [4, 5], "ha": 27, "hadamard": 91, "hadamardproduct": 13, "handl": [92, 240], "handler": [13, 14, 41], "hard": 2, "hardcod": 14, "harmon": [96, 167, 192], "have": [13, 52, 56, 220], "head": 5, "help": 16, "helper": [181, 221], "hermit": 96, "heurist": 237, "hexagon": 100, "high": 145, "hilbert": 177, "hint": [55, 237, 238], "holonom": [106, 107, 108, 110, 111, 307], "homomorph": [208, 216], "hongguang": 230, "how": [3, 36, 44, 58, 113, 240], "hydrogen": 146, "hyperbol": 94, "hyperexpand": 297, "hypergeometr": [87, 96, 107, 110, 223, 231], "hypothesi": 12, "i": [3, 12, 16, 27, 54, 55, 113, 129, 210, 221, 240, 291], "ideal": 208, "identifi": 7, "immut": [16, 121], "immutablematrix": 121, "immutablesparsematrix": 126, "implement": [33, 41, 113, 221, 231, 253, 254, 269, 272], "implic": 41, "implicitli": [48, 55], "import": 4, "improv": [22, 64], "impuls": 142, "includ": [50, 55, 57], "incompat": 3, "increas": 54, "increment": 231, "indefinit": 13, "independ": 55, "index": [10, 70, 78, 243, 246], "indic": 231, "inequ": [50, 236, 239, 240], "inertia": [28, 155, 299], "infer": 118, "infinit": [14, 52, 240], "inform": [237, 238], "initi": 55, "inner": 179, "input": [14, 41, 240], "insert": 293, "inspect": 263, "instal": [8, 9, 58, 59, 130, 295], "integ": [13, 94, 211], "integr": [13, 21, 55, 92, 96, 110, 112, 113, 114, 115, 209, 216, 275, 287], "interact": [2, 116, 207], "interest": [50, 291], "interfac": [21, 32, 207, 241], "intermedi": 13, "intern": [109, 113, 115, 211, 214, 216, 234], "interpret": 41, "interrog": 52, "intersect": [91, 100], "interv": [54, 207], "intfunc": 88, "introduc": [210, 211], "introduct": [7, 16, 18, 22, 30, 33, 35, 39, 61, 68, 69, 70, 78, 90, 100, 118, 133, 196, 207, 208, 209, 216, 220, 274, 291], "introductori": [285, 290], "intuit": 228, "invari": [14, 292], "invers": [16, 43, 94, 113], "is_": 41, "is_emptyset": 13, "issu": [11, 21, 22, 27, 32, 293], "iter": [13, 229, 259], "jacobi": 96, "javascript": 221, "join": 7, "joint": [13, 24, 152, 241], "jointsmethod": 13, "julia": 221, "junk": 11, "k": 212, "kane": [25, 27, 153, 306, 309, 310], "kei": [9, 30, 43, 292], "keyword": 16, "kind": [38, 88, 123], "kinemat": [35, 204, 299, 303], "kinematic_equ": 204, "kinet": 28, "known": 240, "kwarg": 27, "lagrang": [26, 27, 153, 303, 306, 311], "lagrangian": 28, "laguerr": 96, "lambda": 13, "lambdaprint": 221, "lambdifi": [2, 13, 129, 260, 286], "laplac": 113, "laplace_transform": 13, "lark": 130, "last": 3, "latex": [5, 130, 296], "latexprint": 221, "lcm": 209, "lead": 78, "legendr": 96, "length": 18, "level": 214, "lib": 221, "lie": [117, 237], "like": 13, "limit": [22, 41, 50, 51, 112, 226, 228, 287], "line": 101, "linear": [21, 27, 28, 56, 110, 124, 154, 196, 220, 239], "link": 30, "linkag": 304, "list": [7, 13, 16, 37, 48, 50], "literatur": [196, 215, 220], "live": 8, "load": [18, 28, 155], "local": 8, "locat": 270, "logarithm": [96, 297], "logcombin": 297, "logic": [2, 42, 118, 276, 279], "logo": 45, "long": 3, "longer": 13, "lookup": 113, "loos": 231, "low": 70, "lti": 144, "mac": 8, "mail": 7, "mailmap": 11, "main": 216, "make": [11, 52, 57], "managedproperti": 13, "manipul": [14, 118, 124, 150, 213, 214, 217, 218, 240, 292], "map": 11, "mapl": 221, "mark": 12, "markdown": 5, "marker": 13, "mass": [28, 275], "matadd": 13, "math": [5, 69], "mathemat": [4, 16, 30, 48], "mathematica": [13, 221], "mathieu": 96, "mathml": 296, "mathmlprint": 221, "mathrm": [130, 296], "matlab": 221, "matmul": 13, "matric": [13, 39, 53, 119, 120, 121, 122, 124, 126, 145, 147, 243, 276, 280, 293], "matrix": [13, 27, 53, 65, 120, 123, 124, 125, 241, 293], "max_degre": 13, "mdft": 13, "mechan": [13, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 41, 133, 139, 151, 178, 241, 305], "mechanics_print": 157, "median": 100, "medium": 162, "meijer": [107, 110, 113, 231], "mellin": 113, "memoiz": 261, "messag": 11, "metaclass": 13, "method": [13, 25, 26, 27, 39, 43, 53, 59, 153, 221, 238, 240, 245, 270, 293, 303, 306, 309, 310, 311], "metric": 13, "might": 57, "minim": [78, 216], "misc": [13, 64], "miscellan": [43, 94, 100, 262], "mistak": 221, "mix": 13, "mixin": 13, "mlatex": 157, "mod": 88, "mode": 207, "model": [18, 299], "modifi": 11, "modul": [13, 32, 208, 209, 210, 211, 214, 216, 217, 234, 237, 238, 240, 253], "modular": [13, 214], "modularinteg": 13, "momenta": 28, "momentum": 28, "monomi": 217, "more": [194, 195, 228, 270, 291], "motion": 299, "move": [13, 231], "mpmath": 59, "mpprint": 157, "mpq": 212, "mprint": 157, "much": 14, "mul": 88, "multi": 307, "multidimension": 88, "multipl": [36, 48, 55, 110, 216], "multipli": 43, "multivari": [214, 220], "multivariate_result": 13, "muscl": 299, "musculotendon": [18, 134], "must": 53, "mutabl": 13, "m\u00f6biu": 91, "n": [13, 242, 243], "name": [9, 11, 14, 76], "nan": 27, "narr": 5, "necessarili": 52, "need": 196, "new": [10, 11, 13, 270], "new_method": 27, "next": 294, "nocond": 13, "node": 69, "non": 13, "noncontribut": 304, "nonlinear": 56, "nonminim": 306, "normal": [125, 220], "notat": 231, "note": [3, 27, 43, 88, 100, 228, 230, 289, 298], "nroot": 48, "ntheori": [13, 128], "nullspac": 293, "number": [14, 16, 65, 74, 88, 91, 92, 113, 128, 211, 216, 220, 276, 281], "numer": [14, 21, 30, 43, 48, 54, 55, 57, 92, 110, 115, 129, 287], "numpi": 124, "numsampl": 13, "object": [13, 14, 38, 246], "octav": 221, "od": [55, 237, 239, 240], "old": [41, 211], "onli": [2, 50, 55, 240], "onlin": 22, "oo": 27, "oper": [13, 16, 33, 36, 110, 124, 169, 178, 180, 181, 201, 231, 242, 248, 269, 271, 272, 286, 293], "optic": [160, 161], "optim": 239, "option": [2, 9, 52, 55, 56, 57, 214], "order": [13, 18, 51, 65, 217, 228, 231], "ordinari": [55, 239, 240], "orient": [267, 270], "orient_new": 270, "orthogon": [96, 217, 272], "oscil": [167, 192, 303], "other": [33, 41, 43, 59, 107, 155, 270], "our": 7, "output": [21, 37, 240], "over": [115, 220, 229], "overview": [70, 78, 113], "overwrit": 14, "p": [212, 216], "packag": 46, "pair": 55, "paper": 7, "pappu": 100, "paramet": [4, 51, 231, 240], "pars": [2, 57, 130], "parser": [13, 22, 130], "partial": [217, 220, 239, 240], "particl": [28, 182], "partit": [77, 259], "pass": 13, "passiv": 18, "past": 55, "pathwai": [18, 156], "pauli": 166, "pde": [238, 239, 240], "pdf": 8, "pendulum": [303, 306], "per": 50, "perform": 64, "perhap": 48, "perimet": 275, "period": 50, "permut": [13, 79, 80], "perus": 7, "philosophi": 196, "physic": [13, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 47, 145, 198, 203, 276, 282, 285, 301], "pick": 11, "piecewis": 94, "pitfal": 16, "pkgdata": 13, "place": 3, "plan": 240, "plane": [102, 113], "plot": [2, 13, 142, 171, 207], "plotgrid": 207, "point": [13, 21, 32, 35, 43, 92, 103, 269], "polar": [113, 163], "pole": 142, "poli": [13, 210, 211, 212, 219], "polici": [3, 12], "polycycl": 78, "polycyclicgroup": 78, "polygon": [104, 115], "polyhedra": 115, "polyhedron": 81, "polynomi": [13, 48, 96, 110, 209, 211, 212, 213, 214, 216, 217, 218, 220, 239, 297], "polynomialr": 211, "polyr": 211, "polytop": 115, "possibl": [3, 52, 293], "potenti": [21, 27, 28, 32, 33, 272], "powdenest": 297, "power": [88, 223, 229, 291, 297], "powsimp": 297, "practic": [4, 5, 14, 43], "preced": 221, "precis": 54, "predefin": 69, "predic": [41, 64, 65], "prefer": [5, 57], "prefix": 197, "preliminari": 295, "present": [70, 78], "pretti": [13, 221, 296], "pretty_symbologi": 13, "prettyform": 13, "prettyprint": 221, "prevent": 292, "preview": 221, "prime": 216, "print": [2, 13, 21, 32, 43, 69, 116, 157, 205, 221, 296], "print_cycl": 13, "printer": [2, 69, 221, 296], "privat": 13, "problem": [137, 216, 271], "process": [11, 241], "product": [91, 179, 190, 242, 271], "productset": 13, "program": 239, "programmat": [51, 52], "properti": [13, 41, 208], "prufer": 82, "public": 3, "pull": [7, 11], "punctuat": 5, "purpos": 3, "put": 52, "pyglet": 207, "pytest": 250, "python": [14, 16, 69], "pythoncodeprint": 221, "pythonprint": 221, "pyutil": 69, "q": 128, "qappli": 183, "qft": 184, "qq": 212, "qq_i": 212, "quadrilater": 271, "qualiti": [11, 12], "quantiti": [194, 196, 198, 270], "quantiz": 191, "quantum": [167, 178, 192], "quaternion": 61, "qubit": 185, "queri": 64, "question": 59, "quick": [286, 287, 289, 292, 293], "quotient": 212, "ramp": 142, "random": [12, 88, 241], "randomindexedsymbol": 13, "randomis": 251, "randtest": 13, "ration": [14, 16, 211, 212, 217, 220, 223, 237, 297], "rawmatrix": 13, "rcodeprint": 221, "read": [7, 289], "real": [54, 211], "real_root": 48, "rebuild": 8, "recommend": [2, 5], "rectangl": 13, "recurr": 239, "recurs": [14, 227, 292], "reduc": [50, 220], "reduct": [50, 231], "redund": 13, "refer": [4, 18, 29, 34, 36, 41, 46, 58, 61, 68, 71, 87, 88, 90, 100, 106, 113, 115, 120, 121, 124, 126, 128, 130, 133, 151, 163, 166, 196, 203, 206, 207, 208, 212, 214, 216, 217, 218, 228, 230, 231, 234, 240, 253, 254, 273, 276, 299, 303], "referenc": 4, "referencefram": [32, 36], "refin": 66, "regress": 12, "reidemeist": 70, "relat": [13, 16, 33, 36, 37, 41, 50, 88, 96, 118, 272], "releas": 3, "reloc": 13, "remaind": 214, "remind": 43, "renam": 13, "rep": 13, "report": [48, 50, 51, 52, 53, 54, 55, 56, 57], "repres": [48, 52, 57, 113, 186, 211, 216], "represent": [36, 107, 111, 196, 211], "request": [7, 11], "requir": [3, 8], "residu": 228, "respons": [142, 221], "restrict": 52, "result": [48, 50, 51, 52, 53, 54, 55, 56, 220], "return": [50, 55, 240], "reveal": 304, "review": 7, "rewrit": [13, 43, 69, 222, 297], "riccati": 237, "riemann": 96, "rigid": [18, 28], "ring": [208, 211, 212], "roll": [308, 309, 310, 311], "root": [48, 54, 217], "rotat": 124, "rough": 30, "routin": 254, "row": 293, "rr": 212, "rref": 293, "rs_seri": 218, "rule": [230, 271], "run": [2, 11, 12, 59, 252], "runtim": 130, "rust": 221, "sage": 2, "same": 53, "sampl": [4, 13], "satisfi": 50, "scalar": [33, 272, 274], "schreier": 70, "scipi": [54, 55], "search": 240, "second": 191, "section": 4, "see": [4, 88, 259, 271], "select": 55, "sentenc": 4, "separ": 14, "sequenc": [82, 110, 214, 217, 226, 227], "seri": [110, 207, 218, 223, 224, 225, 228, 287], "server": 8, "session": 116, "set": [9, 13, 36, 38, 52, 55, 56, 65, 100, 229, 240, 296], "set_potential_energi": 13, "setkind": 229, "setup": [7, 9], "sever": 53, "shape": 293, "shor": 187, "should": [3, 129], "sign": [16, 289], "silenc": 13, "simpl": [18, 220], "simplif": [43, 92, 118, 230, 297], "simplifi": [14, 57, 69, 214, 232, 233, 297], "simul": 299, "singl": [4, 16, 37, 50], "singleton": [88, 227, 229], "singular": [67, 137], "skip": 12, "slow": [12, 27], "smt": 221, "so": 129, "softwar": 7, "solenoid": [33, 272], "solut": [48, 51, 52, 53, 54, 55, 56, 57, 178, 240, 271], "solv": [32, 37, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 137, 209, 216, 239, 240, 298], "solver": [13, 55, 219, 235, 236, 237, 239, 240, 298], "solveset": [52, 240], "some": [13, 30, 55, 240], "someth": [7, 12], "sort": [14, 88], "sourc": [2, 263], "space": [177, 196, 231], "spars": [126, 127, 211, 212, 214], "sparsematrix": [13, 126], "special": [12, 16, 40, 69, 96, 217, 229, 297], "specif": [55, 69], "specifi": [51, 55, 207], "speed": [21, 27, 48, 52, 53, 56, 57], "spell": 5, "spheric": 96, "sphinx": 4, "spin": 188, "spline": 96, "sqrt": 16, "squar": [53, 209], "srepr": [221, 296], "ssh": 9, "standard": 70, "stat": [13, 241], "state": [169, 178, 181, 189], "static": 13, "statist": 2, "step": [142, 240], "stochast": 241, "stochasticprocess": 13, "stoke": 275, "store": 14, "str": 296, "string": [13, 14, 41, 57, 286], "stringpict": 13, "strprinter": 221, "structur": [25, 26, 196, 234], "style": [4, 5, 12], "sub": 129, "subexpress": 222, "subfield": 216, "subgroup": 70, "submodul": [13, 100], "subresult": 214, "subset": [83, 91], "substitut": [21, 32, 52, 54, 286], "subword": 78, "sum": 92, "summari": 4, "support": 220, "surfac": 275, "switch": 22, "symbol": [13, 14, 16, 27, 31, 41, 42, 43, 50, 51, 53, 88, 107, 206, 211, 217, 220, 240, 289, 291], "symbolicsystem": 31, "symengin": 2, "sympi": [0, 7, 9, 13, 14, 16, 30, 33, 38, 39, 40, 45, 50, 52, 56, 58, 59, 69, 111, 130, 211, 265, 268, 269, 272, 286, 288, 291], "sympifi": [13, 88], "syntax": 69, "system": [24, 31, 41, 50, 54, 56, 142, 158, 193, 195, 196, 199, 237, 239, 269, 270, 272, 274, 299, 307], "syzygi": 208, "t": 14, "tabl": [113, 118, 231], "technic": 3, "tendon": 18, "tensor": [13, 84, 96, 190, 244, 247, 248], "tensorhead": 13, "tensorindextyp": 13, "tensorsymmetri": 13, "tensortyp": 13, "term": [87, 220, 222, 228], "test": [2, 11, 12, 13, 85, 118, 220, 249, 251, 252, 293], "theanocod": 13, "theorem": [100, 113, 275], "theoret": 91, "theori": [65, 68, 128, 276, 281], "thi": [113, 240], "third": 271, "three": [42, 100], "through": 292, "time": 264, "tip": [43, 286, 287, 289, 292, 293], "titl": 11, "to_int": 13, "todd": 70, "todo": 115, "tone": 5, "too": 14, "tool": [69, 127], "topic": [21, 32, 40, 276, 283], "trace": 13, "tradeoff": 48, "transform": [91, 113, 115, 130, 270], "transolv": 240, "travers": [13, 88], "tree": [69, 211, 221, 292], "tricep": 299, "trig": 16, "trigonometr": [94, 96, 230, 297], "trigsimp": 297, "true": 27, "truss": [139, 140], "truth": [100, 118], "try": 3, "tupl": [13, 16, 37, 50, 217], "tutori": [58, 234, 285, 290, 300, 301, 305], "two": 289, "type": [5, 12, 37, 50, 69, 96, 201, 240, 241], "ubuntu": 8, "ufuncifi": 129, "unchang": 12, "uncollect": 78, "understand": 292, "undocu": 214, "unevalu": 55, "unicod": [13, 296], "unifi": 211, "unit": [195, 196, 197, 199], "univari": [214, 220], "up": [52, 53, 56, 57, 296], "updat": 12, "us": [2, 5, 7, 13, 27, 28, 36, 39, 48, 50, 51, 52, 53, 54, 55, 56, 57, 69, 91, 112, 113, 129, 137, 207, 218, 240, 270, 311], "usag": [14, 22, 31, 100, 211, 271], "user": [11, 30, 234, 237, 238], "usual": 53, "util": [13, 69, 85, 86, 105, 124, 164, 216, 239, 258, 264, 276, 284], "v": [14, 16, 42, 211], "valid": 113, "valu": [37, 42, 57], "valuat": 216, "variabl": [16, 50, 55, 57, 207, 241, 270, 299, 303], "variat": 259, "variou": [13, 220], "vector": [23, 32, 33, 34, 35, 36, 53, 78, 151, 201, 203, 214, 265, 266, 268, 269, 270, 272, 273, 274, 275], "veloc": [18, 35], "verifi": [51, 275], "versin": 43, "version": 13, "view": 8, "virtual": 9, "visual": [30, 100], "volum": 275, "walk": 292, "walsh": 91, "warn": [12, 13, 257], "wave": 165, "wavefunct": 146, "we": 240, "weight": 67, "welcom": 58, "wester": 220, "what": [3, 27, 210, 211, 240, 291, 294], "when": [3, 57, 113], "where": 240, "which": [50, 52, 56, 129, 221], "why": [240, 291], "wigner": 206, "window": [8, 207], "within": 16, "without": [48, 55], "word": [70, 78], "work": [7, 51, 53, 55, 100, 220], "workflow": 11, "wrap": [18, 159], "write": [4, 5, 11, 12, 43], "wrong": 240, "x": 212, "xstr": 13, "you": 57, "your": [7, 9, 11, 52], "zero": [51, 52, 57, 142, 214, 220, 293], "zeroth": 18, "zeta": 96, "zoo": 27, "zz": 212, "zz_i": 212}}) \ No newline at end of file diff --git a/dev/tutorials/index.html b/dev/tutorials/index.html index 4ad37b0d364..9fe022b9e56 100644 --- a/dev/tutorials/index.html +++ b/dev/tutorials/index.html @@ -851,7 +851,7 @@

Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/basic_operations.html b/dev/tutorials/intro-tutorial/basic_operations.html index be8c8651b30..2b8a378adab 100644 --- a/dev/tutorials/intro-tutorial/basic_operations.html +++ b/dev/tutorials/intro-tutorial/basic_operations.html @@ -1036,7 +1036,7 @@

lambdify Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/calculus.html b/dev/tutorials/intro-tutorial/calculus.html index 6f0aa12819a..32ee7d090da 100644 --- a/dev/tutorials/intro-tutorial/calculus.html +++ b/dev/tutorials/intro-tutorial/calculus.html @@ -1245,7 +1245,7 @@

Series ExpansionFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/features.html b/dev/tutorials/intro-tutorial/features.html index 33413a36171..ca271e6f18e 100644 --- a/dev/tutorials/intro-tutorial/features.html +++ b/dev/tutorials/intro-tutorial/features.html @@ -895,7 +895,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/tutorials/intro-tutorial/gotchas.html b/dev/tutorials/intro-tutorial/gotchas.html index 657828c5817..dd1d2125e29 100644 --- a/dev/tutorials/intro-tutorial/gotchas.html +++ b/dev/tutorials/intro-tutorial/gotchas.html @@ -1101,7 +1101,7 @@

Further ReadingFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/index.html b/dev/tutorials/intro-tutorial/index.html index 6c2b89d591f..87109678025 100644 --- a/dev/tutorials/intro-tutorial/index.html +++ b/dev/tutorials/intro-tutorial/index.html @@ -902,7 +902,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/tutorials/intro-tutorial/intro.html b/dev/tutorials/intro-tutorial/intro.html index d497270d925..e156929a845 100644 --- a/dev/tutorials/intro-tutorial/intro.html +++ b/dev/tutorials/intro-tutorial/intro.html @@ -1045,7 +1045,7 @@

Why SymPy?Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/manipulation.html b/dev/tutorials/intro-tutorial/manipulation.html index c380232ba51..e13c7ba3639 100644 --- a/dev/tutorials/intro-tutorial/manipulation.html +++ b/dev/tutorials/intro-tutorial/manipulation.html @@ -1379,7 +1379,7 @@

Prevent expression evaluationFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/matrices.html b/dev/tutorials/intro-tutorial/matrices.html index ca39ff690c8..4db068e2dc3 100644 --- a/dev/tutorials/intro-tutorial/matrices.html +++ b/dev/tutorials/intro-tutorial/matrices.html @@ -1388,7 +1388,7 @@

Zero TestingFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/next.html b/dev/tutorials/intro-tutorial/next.html index 5a9db1ba556..64c3a701e81 100644 --- a/dev/tutorials/intro-tutorial/next.html +++ b/dev/tutorials/intro-tutorial/next.html @@ -847,7 +847,7 @@

What’s NextFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/preliminaries.html b/dev/tutorials/intro-tutorial/preliminaries.html index 081a1e55a74..56ed645ec08 100644 --- a/dev/tutorials/intro-tutorial/preliminaries.html +++ b/dev/tutorials/intro-tutorial/preliminaries.html @@ -859,7 +859,7 @@

ExercisesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/printing.html b/dev/tutorials/intro-tutorial/printing.html index e71736da62f..31dede79871 100644 --- a/dev/tutorials/intro-tutorial/printing.html +++ b/dev/tutorials/intro-tutorial/printing.html @@ -1079,7 +1079,7 @@

Dot

Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/tutorials/intro-tutorial/simplification.html b/dev/tutorials/intro-tutorial/simplification.html index dd342243683..8e4b781c12d 100644 --- a/dev/tutorials/intro-tutorial/simplification.html +++ b/dev/tutorials/intro-tutorial/simplification.html @@ -1678,7 +1678,7 @@

Example: Continued FractionsFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/intro-tutorial/solvers.html b/dev/tutorials/intro-tutorial/solvers.html index eef9dc48861..0bd0ba84939 100644 --- a/dev/tutorials/intro-tutorial/solvers.html +++ b/dev/tutorials/intro-tutorial/solvers.html @@ -1075,7 +1075,7 @@

Solving Equations AlgebraicallyFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/biomechanics/biomechanical-model-example.html b/dev/tutorials/physics/biomechanics/biomechanical-model-example.html index ad4969613c3..b1adde7b237 100644 --- a/dev/tutorials/physics/biomechanics/biomechanical-model-example.html +++ b/dev/tutorials/physics/biomechanics/biomechanical-model-example.html @@ -1610,7 +1610,7 @@

ReferencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/biomechanics/index.html b/dev/tutorials/physics/biomechanics/index.html index 5f25dbba0db..6a9f30d31f2 100644 --- a/dev/tutorials/physics/biomechanics/index.html +++ b/dev/tutorials/physics/biomechanics/index.html @@ -866,7 +866,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/tutorials/physics/index.html b/dev/tutorials/physics/index.html index d4763162817..6fb395e2e90 100644 --- a/dev/tutorials/physics/index.html +++ b/dev/tutorials/physics/index.html @@ -864,7 +864,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/tutorials/physics/mechanics/bicycle_example.html b/dev/tutorials/physics/mechanics/bicycle_example.html index 8a31918c968..ff9ec7dfc10 100644 --- a/dev/tutorials/physics/mechanics/bicycle_example.html +++ b/dev/tutorials/physics/mechanics/bicycle_example.html @@ -1164,7 +1164,7 @@

A bicycleFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/mechanics/duffing-example.html b/dev/tutorials/physics/mechanics/duffing-example.html index 5e4b7054fd7..a77260e6fc3 100644 --- a/dev/tutorials/physics/mechanics/duffing-example.html +++ b/dev/tutorials/physics/mechanics/duffing-example.html @@ -1047,7 +1047,7 @@

ReferencesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/mechanics/four_bar_linkage_example.html b/dev/tutorials/physics/mechanics/four_bar_linkage_example.html index 4557d4dabd1..80b1027bcf3 100644 --- a/dev/tutorials/physics/mechanics/four_bar_linkage_example.html +++ b/dev/tutorials/physics/mechanics/four_bar_linkage_example.html @@ -1009,7 +1009,7 @@

Revealing noncontributing forcesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/mechanics/index.html b/dev/tutorials/physics/mechanics/index.html index 53ce1afe8d3..05cddc8cf95 100644 --- a/dev/tutorials/physics/mechanics/index.html +++ b/dev/tutorials/physics/mechanics/index.html @@ -870,7 +870,7 @@
Documentation Version
Furo
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024
diff --git a/dev/tutorials/physics/mechanics/lin_pend_nonmin_example.html b/dev/tutorials/physics/mechanics/lin_pend_nonmin_example.html index 2adf15df074..eec0029b0a0 100644 --- a/dev/tutorials/physics/mechanics/lin_pend_nonmin_example.html +++ b/dev/tutorials/physics/mechanics/lin_pend_nonmin_example.html @@ -1653,7 +1653,7 @@

Lagrange’s MethodFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/mechanics/multi_degree_freedom_holonomic_system.html b/dev/tutorials/physics/mechanics/multi_degree_freedom_holonomic_system.html index 470f78c867a..be3b3afc364 100644 --- a/dev/tutorials/physics/mechanics/multi_degree_freedom_holonomic_system.html +++ b/dev/tutorials/physics/mechanics/multi_degree_freedom_holonomic_system.html @@ -935,7 +935,7 @@

Multi Degree of Freedom Holonomic SystemFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/mechanics/rollingdisc_example.html b/dev/tutorials/physics/mechanics/rollingdisc_example.html index fa364d37da1..160c52caae1 100644 --- a/dev/tutorials/physics/mechanics/rollingdisc_example.html +++ b/dev/tutorials/physics/mechanics/rollingdisc_example.html @@ -1086,7 +1086,7 @@

A rolling discFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/mechanics/rollingdisc_example_kane.html b/dev/tutorials/physics/mechanics/rollingdisc_example_kane.html index 32d4e934a7f..1d156585ceb 100644 --- a/dev/tutorials/physics/mechanics/rollingdisc_example_kane.html +++ b/dev/tutorials/physics/mechanics/rollingdisc_example_kane.html @@ -917,7 +917,7 @@

A rolling disc, with Kane’s methodFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/mechanics/rollingdisc_example_kane_constraints.html b/dev/tutorials/physics/mechanics/rollingdisc_example_kane_constraints.html index d4a827b2b45..97edaab3201 100644 --- a/dev/tutorials/physics/mechanics/rollingdisc_example_kane_constraints.html +++ b/dev/tutorials/physics/mechanics/rollingdisc_example_kane_constraints.html @@ -908,7 +908,7 @@

A rolling disc, with Kane’s method and constraint forcesFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024

diff --git a/dev/tutorials/physics/mechanics/rollingdisc_example_lagrange.html b/dev/tutorials/physics/mechanics/rollingdisc_example_lagrange.html index 3c07434e926..9767facc644 100644 --- a/dev/tutorials/physics/mechanics/rollingdisc_example_lagrange.html +++ b/dev/tutorials/physics/mechanics/rollingdisc_example_lagrange.html @@ -905,7 +905,7 @@

A rolling disc using Lagrange’s MethodFuro
- Last updated on Aug 03, 2024
+ Last updated on Aug 04, 2024