-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_base.py
128 lines (105 loc) · 7.37 KB
/
train_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import argparse
import numpy as np
from modules.tokenizers import Tokenizer
from modules.dataloaders import R2DataLoader
from modules.metrics import compute_scores
from modules.optimizers import build_optimizer, build_lr_scheduler
from modules.trainer_base import Trainer
from modules.loss import compute_loss
from models.r2gen import R2GenModel
def parse_agrs():
parser = argparse.ArgumentParser()
# Data input settings
parser.add_argument('--image_dir', type=str, default='data/iu_xray/images/', help='the path to the directory containing the data.')
parser.add_argument('--ann_path', type=str, default='data/iu_xray/annotation.json', help='the path to the directory containing the data.')
# Data loader settings
parser.add_argument('--dataset_name', type=str, default='iu_xray', choices=['iu_xray', 'mimic_cxr'], help='the dataset to be used.')
parser.add_argument('--max_seq_length', type=int, default=60, help='the maximum sequence length of the reports.')
parser.add_argument('--threshold', type=int, default=3, help='the cut off frequency for the words.')
parser.add_argument('--num_workers', type=int, default=2, help='the number of workers for dataloader.')
parser.add_argument('--batch_size', type=int, default=16, help='the number of samples for a batch')
# Model settings (for visual extractor)
parser.add_argument('--visual_extractor', type=str, default='resnet101', help='the visual extractor to be used.')
parser.add_argument('--visual_extractor_pretrained', type=bool, default=True, help='whether to load the pretrained visual extractor')
parser.add_argument('--num_labels', type=int, default=14, help='the size of the label set')
# Model settings (for Transformer)
parser.add_argument('--d_model', type=int, default=512, help='the dimension of Transformer.')
parser.add_argument('--d_ff', type=int, default=512, help='the dimension of FFN.')
parser.add_argument('--d_vf', type=int, default=2048, help='the dimension of the patch features.')
parser.add_argument('--num_heads', type=int, default=8, help='the number of heads in Transformer.')
parser.add_argument('--num_layers', type=int, default=3, help='the number of layers of Transformer.')
parser.add_argument('--dropout', type=float, default=0.1, help='the dropout rate of Transformer.')
parser.add_argument('--logit_layers', type=int, default=1, help='the number of the logit layer.')
parser.add_argument('--bos_idx', type=int, default=0, help='the index of <bos>.')
parser.add_argument('--eos_idx', type=int, default=0, help='the index of <eos>.')
parser.add_argument('--pad_idx', type=int, default=0, help='the index of <pad>.')
parser.add_argument('--use_bn', type=int, default=0, help='whether to use batch normalization.')
parser.add_argument('--drop_prob_lm', type=float, default=0.5, help='the dropout rate of the output layer.')
# for Relational Memory
parser.add_argument('--rm_num_slots', type=int, default=3, help='the number of memory slots.')
parser.add_argument('--rm_num_heads', type=int, default=8, help='the numebr of heads in rm.')
parser.add_argument('--rm_d_model', type=int, default=512, help='the dimension of rm.')
# Sample related
parser.add_argument('--sample_method', type=str, default='beam_search', help='the sample methods to sample a report.')
parser.add_argument('--beam_size', type=int, default=3, help='the beam size when beam searching.')
parser.add_argument('--temperature', type=float, default=1.0, help='the temperature when sampling.')
parser.add_argument('--sample_n', type=int, default=1, help='the sample number per image.')
parser.add_argument('--group_size', type=int, default=1, help='the group size.')
parser.add_argument('--output_logsoftmax', type=int, default=1, help='whether to output the probabilities.')
parser.add_argument('--decoding_constraint', type=int, default=0, help='whether decoding constraint.')
parser.add_argument('--block_trigrams', type=int, default=1, help='whether to use block trigrams.')
# Trainer settings
parser.add_argument('--n_gpu', type=int, default=1, help='the number of gpus to be used.')
parser.add_argument('--epochs', type=int, default=100, help='the number of training epochs.')
parser.add_argument('--save_dir', type=str, default='results/iu_xray', help='the patch to save the models.')
parser.add_argument('--record_dir', type=str, default='records/', help='the patch to save the results of experiments.')
parser.add_argument('--log_period', type=int, default=1000, help='the logging interval (in batches).')
parser.add_argument('--save_period', type=int, default=1, help='the saving period (in epochs).')
parser.add_argument('--monitor_mode', type=str, default='max', choices=['min', 'max'], help='whether to max or min the metric.')
parser.add_argument('--monitor_metric', type=str, default='BLEU_4', help='the metric to be monitored.')
parser.add_argument('--early_stop', type=int, default=50, help='the patience of training.')
# Optimization
parser.add_argument('--optim', type=str, default='Adam', help='the type of the optimizer.')
parser.add_argument('--lr_ve', type=float, default=5e-5, help='the learning rate for the visual extractor.')
parser.add_argument('--lr_ed', type=float, default=1e-4, help='the learning rate for the remaining parameters.')
parser.add_argument('--weight_decay', type=float, default=5e-5, help='the weight decay.')
parser.add_argument('--adam_betas', type=tuple, default=(0.9, 0.98), help='the weight decay.')
parser.add_argument('--adam_eps', type=float, default=1e-9, help='the weight decay.')
parser.add_argument('--amsgrad', type=bool, default=True, help='.')
# Learning Rate Scheduler
parser.add_argument('--lr_scheduler', type=str, default='StepLR', help='the type of the learning rate scheduler.')
parser.add_argument('--step_size', type=int, default=50, help='the step size of the learning rate scheduler.')
parser.add_argument('--gamma', type=float, default=0.1, help='the gamma of the learning rate scheduler.')
# Others
parser.add_argument('--seed', type=int, default=9233, help='.')
parser.add_argument('--resume', type=str, help='whether to resume the training from existing checkpoints.')
args = parser.parse_args()
return args
def main():
# parse arguments
args = parse_agrs()
# fix random seeds
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.seed)
# create tokenizer
tokenizer = Tokenizer(args)
# create data loader
train_dataloader = R2DataLoader(args, tokenizer, split='train', shuffle=True)
val_dataloader = R2DataLoader(args, tokenizer, split='val', shuffle=False)
test_dataloader = R2DataLoader(args, tokenizer, split='test', shuffle=False)
# build model architecture
model = R2GenModel(args, tokenizer)
# get function handles of loss and metrics
criterion = compute_loss
metrics = compute_scores
# build optimizer, learning rate scheduler
optimizer = build_optimizer(args, model)
lr_scheduler = build_lr_scheduler(args, optimizer)
# build trainer and start to train
trainer = Trainer(model, criterion, metrics, optimizer, args, lr_scheduler, train_dataloader, val_dataloader, test_dataloader)
trainer.train()
if __name__ == '__main__':
main()