-
Notifications
You must be signed in to change notification settings - Fork 2
/
table_text_eval.py
448 lines (399 loc) · 16 KB
/
table_text_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Script to compute metric.
The <reference_file> and <generation_file> should contain references and
generations, respectively, one per line. The <table_file> should contain the
ground truth tables corresponding to these in each line. Multiple references
should be separated by <TAB>s on the same line.
There are two formats supported for the tables:
1. For tables similar to those in WikiBio, with pairs of attributes and values:
attribute_1|||value_1<TAB>attribute_2|||value_2<TAB>...
2. For tables similar to WebNLG with triples of (head, relation, tail):
head_1|||relation_1|||tail_1<TAB>head_2|||relation_2|||tail_2<TAB>...
The default implementations for computing the entailment probability and the
table recall provided in this script can handle both the cases above.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import io
import json
import logging
import math
from absl import app
from absl import flags
from six.moves import range
from six.moves import zip
#import tensorflow.compat.v1 as tf
FLAGS = flags.FLAGS
flags.DEFINE_string(
"references", None, "Text file containing references, one per line. "
"Multiple references should be separated by a <TAB>.")
flags.DEFINE_string("generations", None,
"Text file containing generations, one per line.")
flags.DEFINE_string("tables", None,
"Text file containing tables, one per line.")
flags.DEFINE_float("smoothing", 0.00001,
"Constant to replace 0 precision and recall scores with.")
flags.DEFINE_float("lambda_weight", None,
"Weighting factor for recall computed against the table.")
flags.DEFINE_string(
"entailment_fn", "overlap",
"Method for estimating entailment between ngram and "
"table. Either 'overlap' or 'cooccurrence'.")
flags.DEFINE_string(
"cooccurrence_counts", None,
"JSON file containing co-occurrence counts for computing "
"entailment. Only needed if entailment_fn is "
"'cooccurrence'.")
def _text_reader(text_file, multiple=False):
"""Yields lines from the text file.
Performs lowercasing and white-space tokenization on each line before
returning.
Args:
text_file: String filename.
multiple: Whether multiple references / generations are expected in a line.
"""
with io.open(text_file) as f:
for line in f:
if multiple:
yield [item.lower().split() for item in line.strip().split("\t")]
else:
yield line.strip().lower().split()
def _table_reader(table_file):
"""Yields tables from the table file.
Tables are parsed into a list of tuples with tokenized entries.
Args:
table_file: String filename.
"""
with io.open(table_file) as f:
for line in f:
entries = line.lower().split("\t")
# pylint: disable=g-complex-comprehension
table = [
[member.split() for member in entry.split("|||")] for entry in entries
]
yield table
def cooccur_probability_fn(counts):
"""Returns function for computing entailment probability.
Args:
counts: Dict mapping unigrams / bigrams (joined using "|||") to their
counts.
Returns:
Function handle to compute entailment probability.
"""
def _cooccur_probability(ngram, table):
"""Returns probability of ngram being entailed by the table.
Uses the co-occurrence counts given along with the lexical
entailment model described in:
Glickman, Oren, Ido Dagan, and Moshe Koppel.
"A lexical alignment model for probabilistic textual entailment."
Machine Learning Challenges.
Springer, Berlin, Heidelberg, 2006. 287-298.
E.g.:
>>> _cooccur_probability(["michael", "dahlquist"],
[(["name"], ["michael", "dahlquist"])])
>>> 1.0
Args:
ngram: List of tokens.
table: List of either (attribute, value) pairs or (head, relation, tail)
triples. Each member of the pair / triple is assumed to already be
tokenized into a list of strings.
Returns:
prob: Float probability of ngram being entailed by the table.
"""
table_toks = set()
for item in table:
if len(item) == 2:
# attribute, value
table_toks.add("_".join(item[0]))
table_toks.update(item[1])
else:
# head, relation, tail
table_toks.update(item[0] + ["_".join(item[1])] + item[2])
probability = 1.
for xtok in ngram:
if xtok in table_toks:
continue
max_p = 0.
for btok in table_toks:
if btok not in counts:
continue
p = float(counts.get(btok + "|||" + xtok, 0.)) / counts[btok]
if p > max_p:
max_p = p
probability *= max_p
return math.pow(probability, 1. / len(ngram))
return _cooccur_probability
def overlap_probability(ngram, table, smoothing=0.0, stopwords=None):
"""Returns the probability that the given n-gram overlaps with the table.
A simple implementation which checks how many tokens in the n-gram are also
among the values in the table. For tables with (attribute, value) pairs on the
`value` field is condidered. For tables with (head, relation, tail) triples a
concatenation of `head` and `tail` are considered.
E.g.:
>>> overlap_probability(["michael", "dahlquist"],
[(["name"], ["michael", "dahlquist"])])
>>> 1.0
Args:
ngram: List of tokens.
table: List of either (attribute, value) pairs or (head, relation, tail)
triples. Each member of the pair / triple is assumed to already be
tokenized into a list of strings.
smoothing: (Optional) Float parameter for laplace smoothing.
stopwords: (Optional) List of stopwords to ignore (assign P = 1).
Returns:
prob: Float probability of ngram being entailed by the table.
"""
# pylint: disable=g-complex-comprehension
if len(table[0]) == 2:
table_values = set([tok for _, value in table for tok in value])
else:
table_values = set([tok for head, _, tail in table for tok in head + tail])
overlap = 0
for token in ngram:
if stopwords is not None and token in stopwords:
overlap += 1
continue
if token in table_values:
overlap += 1
return float(overlap + smoothing) / float(len(ngram) + smoothing)
def _mention_probability(table_entry, sentence, smoothing=0.0):
"""Returns the probability that the table entry is mentioned in the sentence.
A simple implementation which checks the longest common subsequence between
the table entry and the sentence. For tables with (attribute, value) pairs
only the `value` is considered. For tables with (head, relation, tail) triples
a concatenation of the `head` and `tail` is considered.
E.g.:
>>> _mention_probability((["name"], ["michael", "dahlquist"]),
["michael", "dahlquist", "was", "a", "drummer"])
>>> 1.0
Args:
table_entry: Tuple of either (attribute, value) or (head, relation, tail).
Each member of the tuple is assumed to already be tokenized into a list of
strings.
sentence: List of tokens.
smoothing: Float parameter for laplace smoothing.
Returns:
prob: Float probability of entry being in sentence.
"""
if len(table_entry) == 2:
value = table_entry[1]
else:
value = table_entry[0] + table_entry[2]
overlap = _len_lcs(value, sentence)
return float(overlap + smoothing) / float(len(value) + smoothing)
def _len_lcs(x, y):
"""Returns the length of the Longest Common Subsequence between two seqs.
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: sequence of words
y: sequence of words
Returns
integer: Length of LCS between x and y
"""
table = _lcs(x, y)
n, m = len(x), len(y)
return table[n, m]
def _lcs(x, y):
"""Computes the length of the LCS between two seqs.
The implementation below uses a DP programming algorithm and runs
in O(nm) time where n = len(x) and m = len(y).
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: collection of words
y: collection of words
Returns:
Table of dictionary of coord and len lcs
"""
n, m = len(x), len(y)
table = dict()
for i in range(n + 1):
for j in range(m + 1):
if i == 0 or j == 0:
table[i, j] = 0
elif x[i - 1] == y[j - 1]:
table[i, j] = table[i - 1, j - 1] + 1
else:
table[i, j] = max(table[i - 1, j], table[i, j - 1])
return table
def _ngrams(sequence, order):
"""Yields all ngrams of given order in sequence."""
assert order >= 1
for n in range(order, len(sequence) + 1):
yield tuple(sequence[n - order: n])
def _ngram_counts(sequence, order):
"""Returns count of all ngrams of given order in sequence."""
if len(sequence) < order:
return collections.Counter()
return collections.Counter(_ngrams(sequence, order))
def parent(predictions,
references,
tables,
lambda_weight=0.5,
smoothing=0.00001,
max_order=4,
entailment_fn=overlap_probability,
mention_fn=_mention_probability):
"""Metric for comparing predictions to references given tables.
Args:
predictions: An iterator over tokenized predictions.
Each prediction is a list.
references: An iterator over lists of tokenized references.
Each prediction can have multiple references.
tables: An iterator over the tables. Each table is a list of tuples, where a
tuple can either be (attribute, value) pair or (head, relation, tail)
triple. The members of the tuples are assumed to be themselves tokenized
lists of strings. E.g.
`[(["name"], ["michael", "dahlquist"]),
(["birth", "date"], ["december", "22", "1965"])]`
is one table in the (attribute, value) format with two entries.
lambda_weight: Float weight in [0, 1] to multiply table recall.
smoothing: Float value for replace zero values of precision and recall.
max_order: Maximum order of the ngrams to use.
entailment_fn: A python function for computing the probability that an
ngram is entailed by the table. Its signature should match that of
`overlap_probability` above.
mention_fn: A python function for computing the probability that a
table entry is mentioned in the text. Its signature should
match that of `_mention_probability` above.
Returns:
precision: Average precision of all predictions.
recall: Average recall of all predictions.
f1: Average F-scores of all predictions.
all_f_scores: List of all F-scores for each item.
"""
precisions, recalls, all_f_scores = [], [], []
reference_recalls, table_recalls = [], []
all_lambdas = []
for prediction, list_of_references, table in zip(
predictions, references, tables):
c_prec, c_rec, c_f = [], [], []
ref_rec, table_rec = [], []
for reference in list_of_references:
# Weighted ngram precisions and recalls for each order.
ngram_prec, ngram_rec = [], []
for order in range(1, max_order + 1):
# Collect n-grams and their entailment probabilities.
pred_ngram_counts = _ngram_counts(prediction, order)
pred_ngram_weights = {ngram: entailment_fn(ngram, table)
for ngram in pred_ngram_counts}
ref_ngram_counts = _ngram_counts(reference, order)
ref_ngram_weights = {ngram: entailment_fn(ngram, table)
for ngram in ref_ngram_counts}
# Precision.
numerator, denominator = 0., 0.
for ngram, count in pred_ngram_counts.items():
denominator += count
prob_ngram_in_ref = min(
1., float(ref_ngram_counts.get(ngram, 0) / count))
numerator += count * (
prob_ngram_in_ref +
(1. - prob_ngram_in_ref) * pred_ngram_weights[ngram])
if denominator == 0.:
# Set precision to 0.
ngram_prec.append(0.0)
else:
ngram_prec.append(numerator / denominator)
# Recall.
numerator, denominator = 0., 0.
for ngram, count in ref_ngram_counts.items():
prob_ngram_in_pred = min(
1., float(pred_ngram_counts.get(ngram, 0) / count))
denominator += count * ref_ngram_weights[ngram]
numerator += count * ref_ngram_weights[ngram] * prob_ngram_in_pred
if denominator == 0.:
# Set recall to 1.
ngram_rec.append(1.0)
else:
ngram_rec.append(numerator / denominator)
# Compute recall against table fields.
table_mention_probs = [mention_fn(entry, prediction)
for entry in table]
table_rec.append(sum(table_mention_probs) / len(table))
# Smoothing.
for order in range(1, max_order):
if ngram_prec[order] == 0.:
ngram_prec[order] = smoothing
if ngram_rec[order] == 0.:
ngram_rec[order] = smoothing
# Compute geometric averages of precision and recall for all orders.
w = 1. / max_order
if any(prec == 0. for prec in ngram_prec):
c_prec.append(0.)
else:
sp = (w * math.log(p_i) for p_i in ngram_prec)
c_prec.append(math.exp(math.fsum(sp)))
if any(rec == 0. for rec in ngram_rec):
ref_rec.append(smoothing)
else:
sr = [w * math.log(r_i) for r_i in ngram_rec]
ref_rec.append(math.exp(math.fsum(sr)))
# Combine reference and table recalls.
if table_rec[-1] == 0.:
table_rec[-1] = smoothing
if ref_rec[-1] == 0. or table_rec[-1] == 0.:
c_rec.append(0.)
else:
if lambda_weight is None:
lw = sum([mention_fn(entry, reference) for entry in table
]) / len(table)
lw = 1. - lw
else:
lw = lambda_weight
all_lambdas.append(lw)
c_rec.append(
math.exp((1. - lw) * math.log(ref_rec[-1]) +
(lw) * math.log(table_rec[-1])))
# F-score.
c_f.append((2. * c_prec[-1] * c_rec[-1]) /
(c_prec[-1] + c_rec[-1] + 1e-8))
# Get index of best F-score.
max_i = max(enumerate(c_f), key=lambda x: x[1])[0]
precisions.append(c_prec[max_i])
recalls.append(c_rec[max_i])
all_f_scores.append(c_f[max_i])
reference_recalls.append(ref_rec[max_i])
table_recalls.append(table_rec[max_i])
avg_precision = sum(precisions) / len(precisions)
avg_recall = sum(recalls) / len(recalls)
avg_f_score = sum(all_f_scores) / len(all_f_scores)
return avg_precision, avg_recall, avg_f_score, all_f_scores
def main(_):
reference_it = _text_reader(FLAGS.references, multiple=True)
generation_it = _text_reader(FLAGS.generations)
table_it = _table_reader(FLAGS.tables)
if FLAGS.entailment_fn == "cooccurrence":
assert FLAGS.cooccurrence_counts is not None
logging.info("Reading %s...", FLAGS.cooccurrence_counts)
with tf.gfile.Open(FLAGS.cooccurrence_counts) as f:
cooccur_counts = json.load(f)
entail_method = cooccur_probability_fn(cooccur_counts)
else:
entail_method = overlap_probability
precision, recall, f_score, all_f = parent(
generation_it,
reference_it,
table_it,
lambda_weight=FLAGS.lambda_weight,
smoothing=FLAGS.smoothing,
entailment_fn=entail_method)
logging.info("Evaluated %d examples.", len(all_f))
logging.info("Precision = %.4f Recall = %.4f F-score = %.4f",
precision, recall, f_score)
if __name__ == "__main__":
flags.mark_flags_as_required(["references", "generations", "tables"])
app.run(main)