-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
test_f16.py
407 lines (312 loc) · 9.14 KB
/
test_f16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import math
import numpy as np
import pytest
from taichi.lang.util import has_paddle, has_pytorch
import taichi as ti
from tests import test_utils
archs_support_f16 = [ti.cpu, ti.cuda, ti.vulkan]
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_snode_read_write():
dtype = ti.f16
x = ti.field(dtype, shape=())
x[None] = 0.3
print(x[None])
assert x[None] == test_utils.approx(0.3, rel=1e-3)
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_float16():
dtype = ti.float16
x = ti.field(dtype, shape=())
x[None] = 0.3
print(x[None])
assert x[None] == test_utils.approx(0.3, rel=1e-3)
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_to_numpy():
n = 16
x = ti.field(ti.f16, shape=n)
@ti.kernel
def init():
for i in x:
x[i] = i * 2
init()
y = x.to_numpy()
for i in range(n):
assert y[i] == 2 * i
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_from_numpy():
n = 16
y = ti.field(dtype=ti.f16, shape=n)
x = np.arange(n, dtype=np.half)
y.from_numpy(x)
@ti.kernel
def init():
for i in y:
y[i] = 3 * i
init()
z = y.to_numpy()
for i in range(n):
assert z[i] == i * 3
@pytest.mark.sm70
@pytest.mark.skipif(not has_pytorch(), reason="Pytorch not installed.")
@test_utils.test(arch=archs_support_f16)
def test_to_torch():
n = 16
x = ti.field(ti.f16, shape=n)
@ti.kernel
def init():
for i in x:
x[i] = i * 2
init()
y = x.to_torch()
print(y)
for i in range(n):
assert y[i] == 2 * i
@pytest.mark.sm70
@pytest.mark.skipif(not has_pytorch(), reason="Pytorch not installed.")
@test_utils.test(arch=archs_support_f16)
def test_from_torch():
import torch
n = 16
y = ti.field(dtype=ti.f16, shape=n)
# torch doesn't have rand implementation for float16 so we need to create float first and then convert
x = torch.arange(0, n).to(torch.float16)
y.from_torch(x)
@ti.kernel
def init():
for i in y:
y[i] = 3 * i
init()
z = y.to_torch()
for i in range(n):
assert z[i] == i * 3
@pytest.mark.sm70
@pytest.mark.skipif(not has_paddle(), reason="Paddle not installed.")
@test_utils.test(arch=archs_support_f16, exclude=[ti.vulkan, ti.dx11])
def test_to_paddle():
import paddle
n = 16
x = ti.field(ti.f16, shape=n)
@ti.kernel
def init():
for i in x:
x[i] = i * 2
init()
y = x.to_paddle()
# paddle's operator slice doesn't have kernel for f16, so cast to f32
y = y.cast(paddle.float32)
print(y)
for i in range(n):
assert y[i] == 2 * i
@pytest.mark.sm70
@pytest.mark.skipif(not has_paddle(), reason="Paddle not installed.")
@test_utils.test(arch=archs_support_f16, exclude=[ti.vulkan, ti.dx11])
def test_from_paddle():
import paddle
n = 16
y = ti.field(dtype=ti.f16, shape=n)
# paddle doesn't have arrange implementation for float16 so we need to create other type first and then convert
x = paddle.arange(0, n).cast(paddle.float16)
y.from_paddle(x)
@ti.kernel
def init():
for i in y:
y[i] = 3 * i
init()
z = y.to_paddle()
# paddle's operator slice doesn't have kernel for f16, so cast to f32
z = z.cast(paddle.float32)
for i in range(n):
assert z[i] == i * 3
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_binary_op():
dtype = ti.f16
x = ti.field(dtype, shape=())
y = ti.field(dtype, shape=())
z = ti.field(dtype, shape=())
@ti.kernel
def add():
x[None] = y[None] + z[None]
x[None] = x[None] * z[None]
y[None] = 0.2
z[None] = 0.72
add()
u = x.to_numpy()
assert u[None] == test_utils.approx(0.6624, rel=1e-3)
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_rand_promote():
dtype = ti.f16
x = ti.field(dtype, shape=(4, 4))
@ti.kernel
def init():
for i, j in x:
x[i, j] = ti.random(dtype=dtype)
print(x[i, j])
init()
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_unary_op():
dtype = ti.f16
x = ti.field(dtype, shape=())
y = ti.field(dtype, shape=())
@ti.kernel
def foo():
x[None] = -y[None]
x[None] = ti.floor(x[None])
y[None] = ti.ceil(y[None])
y[None] = -1.4
foo()
assert x[None] == test_utils.approx(1, rel=1e-3)
assert y[None] == test_utils.approx(-1, rel=1e-3)
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_extra_unary_promote():
dtype = ti.f16
x = ti.field(dtype, shape=())
y = ti.field(dtype, shape=())
@ti.kernel
def foo():
x[None] = abs(y[None])
y[None] = -0.3
foo()
assert x[None] == test_utils.approx(0.3, rel=1e-3)
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16, exclude=ti.vulkan)
def test_binary_extra_promote():
x = ti.field(dtype=ti.f16, shape=())
y = ti.field(dtype=ti.f16, shape=())
z = ti.field(dtype=ti.f16, shape=())
@ti.kernel
def foo():
y[None] = x[None] ** 2
z[None] = ti.atan2(y[None], 0.3)
x[None] = 0.1
foo()
assert z[None] == test_utils.approx(math.atan2(0.1**2, 0.3), rel=1e-3)
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_arg_f16():
dtype = ti.f16
x = ti.field(dtype, shape=())
y = ti.field(dtype, shape=())
@ti.kernel
def foo(a: ti.f16, b: ti.f32, c: ti.f16):
x[None] = y[None] + a + b + c
y[None] = -0.3
foo(0.3, 0.4, 0.5)
assert x[None] == test_utils.approx(0.9, rel=1e-3)
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_fractal_f16():
n = 320
pixels = ti.field(dtype=ti.f16, shape=(n * 2, n))
@ti.func
def complex_sqr(z):
return ti.Vector([z[0] ** 2 - z[1] ** 2, z[1] * z[0] * 2], dt=ti.f16)
@ti.kernel
def paint(t: float):
for i, j in pixels: # Parallelized over all pixels
c = ti.Vector([-0.8, ti.cos(t) * 0.2], dt=ti.f16)
z = ti.Vector([i / n - 1, j / n - 0.5], dt=ti.f16) * 2
iterations = 0
while z.norm() < 20 and iterations < 50:
z = complex_sqr(z) + c
iterations += 1
pixels[i, j] = 1 - iterations * 0.02
paint(0.03)
# TODO(): Vulkan support
@pytest.mark.sm70
@test_utils.test(arch=[ti.cpu, ti.cuda])
def test_atomic_add_f16():
f = ti.field(dtype=ti.f16, shape=(2))
@ti.kernel
def foo():
# Parallel sum
for i in range(1000):
f[0] += 1.12
# Serial sum
for _ in range(1):
for i in range(1000):
f[1] = f[1] + 1.12
foo()
assert f[0] == test_utils.approx(f[1], rel=1e-3)
# TODO(): Vulkan support
@pytest.mark.sm70
@test_utils.test(arch=[ti.cpu, ti.cuda])
def test_atomic_max_f16():
f = ti.field(dtype=ti.f16, shape=(2))
@ti.kernel
def foo():
# Parallel max
for i in range(1000):
ti.atomic_max(f[0], 1.12 * i)
# Serial max
for _ in range(1):
for i in range(1000):
f[1] = ti.max(1.12 * i, f[1])
foo()
assert f[0] == test_utils.approx(f[1], rel=1e-3)
# TODO(): Vulkan support
@pytest.mark.sm70
@test_utils.test(arch=[ti.cpu, ti.cuda])
def test_atomic_min_f16():
f = ti.field(dtype=ti.f16, shape=(2))
@ti.kernel
def foo():
# Parallel min
for i in range(1000):
ti.atomic_min(f[0], -3.13 * i)
# Serial min
for _ in range(1):
for i in range(1000):
f[1] = ti.min(-3.13 * i, f[1])
foo()
assert f[0] == test_utils.approx(f[1], rel=1e-3)
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16)
def test_cast_f32_to_f16():
@ti.kernel
def func() -> ti.f16:
a = ti.cast(23.0, ti.f32)
b = ti.cast(4.0, ti.f32)
return ti.cast(a * b, ti.f16)
assert func() == pytest.approx(23.0 * 4.0, 1e-4)
@pytest.mark.sm70
@test_utils.test(arch=archs_support_f16, require=ti.extension.data64)
def test_cast_f64_to_f16():
@ti.kernel
def func() -> ti.f16:
a = ti.cast(23.0, ti.f64)
b = ti.cast(4.0, ti.f64)
return ti.cast(a * b, ti.f16)
assert func() == pytest.approx(23.0 * 4.0, 1e-4)
@pytest.mark.sm70
@test_utils.test(arch=[ti.cuda], half2_vectorization=True)
def test_half2_vectorize():
half2 = ti.types.vector(n=2, dtype=ti.f16)
table = half2.field(shape=(40), needs_grad=True)
embeddings = half2.field(shape=(40, 16), needs_grad=True)
B = 1
@ti.kernel
def test(B: ti.i32):
for i, level in ti.ndrange(B, 16):
w = 4.0
local_feature = ti.Vector([ti.f16(0.0), ti.f16(0.0)])
for index in ti.static(range(64)):
local_feature += w * table[index]
embeddings[i, level] = local_feature
test(B)
for i in range(10):
test.grad(B)
ti.sync()
for i in range(40):
for j in range(16):
embeddings.grad[i, j] = half2(1.0)
for i in range(1000):
test.grad(B)
ti.sync()
assert (table.grad.to_numpy() == 64).all()