forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
92 lines (77 loc) · 3.54 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from functools import partial
import paddle
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import AutoTokenizer
from paddlenlp.metrics import SpanEvaluator
from paddlenlp.utils.log import logger
from model import UIE
from utils import convert_example, reader
@paddle.no_grad()
def evaluate(model, metric, data_loader):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
metric(obj:`paddle.metric.Metric`): The evaluation metric.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
"""
model.eval()
metric.reset()
for batch in data_loader:
input_ids, token_type_ids, att_mask, pos_ids, start_ids, end_ids = batch
start_prob, end_prob = model(input_ids, token_type_ids, att_mask,
pos_ids)
start_ids = paddle.cast(start_ids, 'float32')
end_ids = paddle.cast(end_ids, 'float32')
num_correct, num_infer, num_label = metric.compute(
start_prob, end_prob, start_ids, end_ids)
metric.update(num_correct, num_infer, num_label)
precision, recall, f1 = metric.accumulate()
model.train()
return precision, recall, f1
def do_eval():
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
model = UIE.from_pretrained(args.model_path)
test_ds = load_dataset(reader,
data_path=args.test_path,
max_seq_len=args.max_seq_len,
lazy=False)
test_ds = test_ds.map(
partial(convert_example,
tokenizer=tokenizer,
max_seq_len=args.max_seq_len))
test_batch_sampler = paddle.io.BatchSampler(dataset=test_ds,
batch_size=args.batch_size,
shuffle=False)
test_data_loader = paddle.io.DataLoader(dataset=test_ds,
batch_sampler=test_batch_sampler,
return_list=True)
metric = SpanEvaluator()
precision, recall, f1 = evaluate(model, metric, test_data_loader)
logger.info("Evaluation precision: %.5f, recall: %.5f, F1: %.5f" %
(precision, recall, f1))
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default=None, help="The path of saved model that you want to load.")
parser.add_argument("--test_path", type=str, default=None, help="The path of test set.")
parser.add_argument("--batch_size", type=int, default=16, help="Batch size per GPU/CPU for training.")
parser.add_argument("--max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization.")
args = parser.parse_args()
# yapf: enable
do_eval()