forked from dome272/Diffusion-Models-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 57
/
modules.py
213 lines (176 loc) · 6.83 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import torch.nn as nn
import torch.nn.functional as F
def one_param(m):
"get model first parameter"
return next(iter(m.parameters()))
class EMA:
def __init__(self, beta):
super().__init__()
self.beta = beta
self.step = 0
def update_model_average(self, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = self.update_average(old_weight, up_weight)
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def step_ema(self, ema_model, model, step_start_ema=2000):
if self.step < step_start_ema:
self.reset_parameters(ema_model, model)
self.step += 1
return
self.update_model_average(ema_model, model)
self.step += 1
def reset_parameters(self, ema_model, model):
ema_model.load_state_dict(model.state_dict())
class SelfAttention(nn.Module):
def __init__(self, channels):
super(SelfAttention, self).__init__()
self.channels = channels
self.mha = nn.MultiheadAttention(channels, 4, batch_first=True)
self.ln = nn.LayerNorm([channels])
self.ff_self = nn.Sequential(
nn.LayerNorm([channels]),
nn.Linear(channels, channels),
nn.GELU(),
nn.Linear(channels, channels),
)
def forward(self, x):
size = x.shape[-1]
x = x.view(-1, self.channels, size * size).swapaxes(1, 2)
x_ln = self.ln(x)
attention_value, _ = self.mha(x_ln, x_ln, x_ln)
attention_value = attention_value + x
attention_value = self.ff_self(attention_value) + attention_value
return attention_value.swapaxes(2, 1).view(-1, self.channels, size, size)
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels, mid_channels=None, residual=False):
super().__init__()
self.residual = residual
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.GroupNorm(1, mid_channels),
nn.GELU(),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.GroupNorm(1, out_channels),
)
def forward(self, x):
if self.residual:
return F.gelu(x + self.double_conv(x))
else:
return self.double_conv(x)
class Down(nn.Module):
def __init__(self, in_channels, out_channels, emb_dim=256):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, in_channels, residual=True),
DoubleConv(in_channels, out_channels),
)
self.emb_layer = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_dim,
out_channels
),
)
def forward(self, x, t):
x = self.maxpool_conv(x)
emb = self.emb_layer(t)[:, :, None, None].repeat(1, 1, x.shape[-2], x.shape[-1])
return x + emb
class Up(nn.Module):
def __init__(self, in_channels, out_channels, emb_dim=256):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
self.conv = nn.Sequential(
DoubleConv(in_channels, in_channels, residual=True),
DoubleConv(in_channels, out_channels, in_channels // 2),
)
self.emb_layer = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_dim,
out_channels
),
)
def forward(self, x, skip_x, t):
x = self.up(x)
x = torch.cat([skip_x, x], dim=1)
x = self.conv(x)
emb = self.emb_layer(t)[:, :, None, None].repeat(1, 1, x.shape[-2], x.shape[-1])
return x + emb
class UNet(nn.Module):
def __init__(self, c_in=3, c_out=3, time_dim=256, remove_deep_conv=False):
super().__init__()
self.time_dim = time_dim
self.remove_deep_conv = remove_deep_conv
self.inc = DoubleConv(c_in, 64)
self.down1 = Down(64, 128)
self.sa1 = SelfAttention(128)
self.down2 = Down(128, 256)
self.sa2 = SelfAttention(256)
self.down3 = Down(256, 256)
self.sa3 = SelfAttention(256)
if remove_deep_conv:
self.bot1 = DoubleConv(256, 256)
self.bot3 = DoubleConv(256, 256)
else:
self.bot1 = DoubleConv(256, 512)
self.bot2 = DoubleConv(512, 512)
self.bot3 = DoubleConv(512, 256)
self.up1 = Up(512, 128)
self.sa4 = SelfAttention(128)
self.up2 = Up(256, 64)
self.sa5 = SelfAttention(64)
self.up3 = Up(128, 64)
self.sa6 = SelfAttention(64)
self.outc = nn.Conv2d(64, c_out, kernel_size=1)
def pos_encoding(self, t, channels):
inv_freq = 1.0 / (
10000
** (torch.arange(0, channels, 2, device=one_param(self).device).float() / channels)
)
pos_enc_a = torch.sin(t.repeat(1, channels // 2) * inv_freq)
pos_enc_b = torch.cos(t.repeat(1, channels // 2) * inv_freq)
pos_enc = torch.cat([pos_enc_a, pos_enc_b], dim=-1)
return pos_enc
def unet_forwad(self, x, t):
x1 = self.inc(x)
x2 = self.down1(x1, t)
x2 = self.sa1(x2)
x3 = self.down2(x2, t)
x3 = self.sa2(x3)
x4 = self.down3(x3, t)
x4 = self.sa3(x4)
x4 = self.bot1(x4)
if not self.remove_deep_conv:
x4 = self.bot2(x4)
x4 = self.bot3(x4)
x = self.up1(x4, x3, t)
x = self.sa4(x)
x = self.up2(x, x2, t)
x = self.sa5(x)
x = self.up3(x, x1, t)
x = self.sa6(x)
output = self.outc(x)
return output
def forward(self, x, t):
t = t.unsqueeze(-1)
t = self.pos_encoding(t, self.time_dim)
return self.unet_forwad(x, t)
class UNet_conditional(UNet):
def __init__(self, c_in=3, c_out=3, time_dim=256, num_classes=None, **kwargs):
super().__init__(c_in, c_out, time_dim, **kwargs)
if num_classes is not None:
self.label_emb = nn.Embedding(num_classes, time_dim)
def forward(self, x, t, y=None):
t = t.unsqueeze(-1)
t = self.pos_encoding(t, self.time_dim)
if y is not None:
t += self.label_emb(y)
return self.unet_forwad(x, t)