Gas Fluxes and Dynamic Chamber Measurements
The glimmr
package provides functions to convert high frequency
concentration data obtained by (dynamic-) chamber measurements into
gasfluxes. Data recorded with different devices can be processed
automatically. The data is separated into chunks covering the single
chamber applications and containing additional meta information
(e.g. IDs, temperature…) provided by a metadata file.
Furthermore glimmr
contains functions to calculate gasfluxes with the
‘Boundary Layer Equation’ (BLE).
To calculate gasfluxes from high frequency chamber measurements, glimmr
offers a cusomizable system of gas analyzer definitions (analyzer()
),
as well as two preconfigured devices with read_
, process_
and
inspect_
functions:
process_chamber()
&inspect_chamber()
: custom devicesread_gasmet()
,process_gasmet()
&inspect_gasmet()
: GASMETread_losgatos()
,process_losgatos()
&inspect_losgatos()
: LosGatos
# The package is not released on CRAN yet.
# Development version from GitHub:
# install.packages("devtools")
devtools::install_github("tekknosol/glimmr")
Calculate fluxes from device records and a meta file containing
information about single measurements. Fluxes are reported in
[mmol/m²/d] using linear model fitting and robust linear model
fitting with robust::lmRob()
# read data
gasmet <- read_gasmet("path/to/gasmet_file.txt")
meta_gasmet <- read_csv("path/to/meta_file.csv")
# create diagnostic plot(s)
inspect_gasmet(gasmet, meta_gasmet)
# compute fluxes in mmol/m²/d
# F_LM: Liner Model
# F_RLM: Robust Liner Model
process_gasmet(gasmet, meta_gasmet)
#> End of interval determined by number of observations. Count = 10
#> Using temperature from meta file. Column = temp
#> # A tibble: 18 x 9
#> date site begin gas rep F_LM LM_r2
#> <date> <chr> <dttm> <chr> <dbl> <dbl> <dbl>
#> 1 2017-04-12 plotA 2017-04-12 09:01:49 CH4 1 0.0259 0.0119
#> 2 2017-04-12 plotA 2017-04-12 09:08:56 CH4 2 -0.144 0.360
#> 3 2017-04-12 plotA 2017-04-12 09:14:25 CH4 3 0.0980 0.118
#> 4 2017-04-12 plotB 2017-04-12 16:47:41 CH4 1 0.0151 0.00160
#> 5 2017-04-12 plotB 2017-04-12 16:55:41 CH4 2 -0.0601 0.0449
#> 6 2017-04-12 plotB 2017-04-12 17:02:20 CH4 3 0.107 0.307
#> 7 2017-04-12 plotA 2017-04-12 09:01:49 CO2 1 -7.58 0.533
#> 8 2017-04-12 plotA 2017-04-12 09:08:56 CO2 2 1.73 0.0987
#> 9 2017-04-12 plotA 2017-04-12 09:14:25 CO2 3 -0.945 0.101
#> 10 2017-04-12 plotB 2017-04-12 16:47:41 CO2 1 25.9 0.987
#> 11 2017-04-12 plotB 2017-04-12 16:55:41 CO2 2 23.1 0.953
#> 12 2017-04-12 plotB 2017-04-12 17:02:20 CO2 3 26.6 0.991
#> 13 2017-04-12 plotA 2017-04-12 09:01:49 N2O 1 -0.0419 0.282
#> 14 2017-04-12 plotA 2017-04-12 09:08:56 N2O 2 0.0262 0.279
#> 15 2017-04-12 plotA 2017-04-12 09:14:25 N2O 3 0.0111 0.153
#> 16 2017-04-12 plotB 2017-04-12 16:47:41 N2O 1 0.00409 0.0134
#> 17 2017-04-12 plotB 2017-04-12 16:55:41 N2O 2 0.0154 0.176
#> 18 2017-04-12 plotB 2017-04-12 17:02:20 N2O 3 0.0121 0.0712
#> # … with 2 more variables: F_RLM <dbl>, RLM_r2 <dbl>
Calculate gas transfer coefficient used with the Boundary Layer Equation (BLE).
# Windpseed in m/s
windspeed <- c(2, 4.3, 1.8)
# Water temperature in °C
watertemperature <- c(18, 21, 19.3)
# Calculate gas transfer coefficient
calc_kW(windspeed, watertemperature)
#> [1] 1.488888 7.426978 1.246858