diff --git a/src/usage/indexing.md b/src/usage/indexing.md index 872ddfd..f9ac692 100644 --- a/src/usage/indexing.md +++ b/src/usage/indexing.md @@ -5,8 +5,8 @@ Indexing is the process of building a data structure that allows for efficient s To construct an index for vectors, first create a table named `items` with a column named `embedding` of type `vector(n)`. Then, populate the table with generated data. ```sql -CREATE TABLE items (val vector(3)); -INSERT INTO items (val) SELECT ARRAY[random(), random(), random()]::real[] FROM generate_series(1, 1000); +CREATE TABLE items (embedding vector(3)); +INSERT INTO items (embedding) SELECT ARRAY[random(), random(), random()]::real[] FROM generate_series(1, 1000); ``` ::: tip diff --git a/src/use-case/sparse-vector.md b/src/use-case/sparse-vector.md index 9de306d..13029e5 100644 --- a/src/use-case/sparse-vector.md +++ b/src/use-case/sparse-vector.md @@ -200,7 +200,7 @@ D_{L2} = \Sigma (x_i - y_i) ^ 2 $$ For sparse vectors, `vector_dot_ops` calculates the dot product, which is a more efficient method. $$ -D_{dot} = - \Sigma x_iy_i +D_{dot} = - \Sigma x_i y_i $$ @@ -266,4 +266,4 @@ scores = reranker.compute_score([["The text you want to search...", candidate] f reranked_text = [t for _, t in sorted(zip(scores, mix_text))] ``` -Congratulations! We have now completed our first step into the world of sparse vector search. \ No newline at end of file +Congratulations! We have now completed our first step into the world of sparse vector search. diff --git a/typos.toml b/typos.toml new file mode 100644 index 0000000..10d3da7 --- /dev/null +++ b/typos.toml @@ -0,0 +1,3 @@ +[default] +extend-ignore-re = ['\$.+\$'] +extend-ignore-identifiers-re = ['\$.+\$']