-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
composite_array_buffer.ts
226 lines (198 loc) · 7.01 KB
/
composite_array_buffer.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/**
* @license
* Copyright 2023 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {TypedArray} from '../types';
import * as util from '../util';
type BufferShard = {
start: number,
end: number,
buffer: ArrayBuffer,
};
/**
* Wraps a list of ArrayBuffers into a `slice()`-able object without allocating
* a large ArrayBuffer.
*
* Allocating large ArrayBuffers (~2GB) can be unstable on Chrome. TFJS loads
* its weights as a list of (usually) 4MB ArrayBuffers and then slices the
* weight tensors out of them. For small models, it's safe to concatenate all
* the weight buffers into a single ArrayBuffer and then slice the weight
* tensors out of it, but for large models, a different approach is needed.
*/
export class CompositeArrayBuffer {
private shards: BufferShard[] = [];
private previousShardIndex = 0;
private bufferUniformSize?: number;
public readonly byteLength: number;
/**
* Concatenate a number of ArrayBuffers into one.
*
* @param buffers An array of ArrayBuffers to concatenate, or a single
* ArrayBuffer.
* @returns Result of concatenating `buffers` in order.
*/
static join(buffers?: ArrayBuffer[] | ArrayBuffer) {
return new CompositeArrayBuffer(buffers).slice();
}
constructor(buffers?: ArrayBuffer | ArrayBuffer[] | TypedArray |
TypedArray[]) {
if (buffers == null) {
return;
}
// Normalize the `buffers` input to be `ArrayBuffer[]`.
if (!(buffers instanceof Array)) {
buffers = [buffers];
}
buffers = buffers.map((bufferOrTypedArray) => {
if (util.isTypedArray(bufferOrTypedArray)) {
return bufferOrTypedArray.buffer;
}
return bufferOrTypedArray;
});
// Skip setting up shards if there are no buffers.
if (buffers.length === 0) {
return;
}
this.bufferUniformSize = buffers[0].byteLength;
let start = 0;
for (let i = 0; i < buffers.length; i++) {
const buffer = buffers[i];
// Check that all buffers except the last one have the same length.
if (i !== buffers.length - 1 &&
buffer.byteLength !== this.bufferUniformSize) {
// Unset the buffer uniform size, since the buffer sizes are not
// uniform.
this.bufferUniformSize = undefined;
}
// Create the shards, including their start and end points.
const end = start + buffer.byteLength;
this.shards.push({ buffer, start, end });
start = end;
}
// Set the byteLength
if (this.shards.length === 0) {
this.byteLength = 0;
}
this.byteLength = this.shards[this.shards.length - 1].end;
}
slice(start = 0, end = this.byteLength): ArrayBuffer {
// If there are no shards, then the CompositeArrayBuffer was initialized
// with no data.
if (this.shards.length === 0) {
return new ArrayBuffer(0);
}
// NaN is treated as zero for slicing. This matches ArrayBuffer's behavior.
start = isNaN(Number(start)) ? 0 : start;
end = isNaN(Number(end)) ? 0 : end;
// Fix the bounds to within the array.
start = Math.max(0, start);
end = Math.min(this.byteLength, end);
if (end <= start) {
return new ArrayBuffer(0);
}
const startShardIndex = this.findShardForByte(start);
if (startShardIndex === -1) {
// This should not happen since the start and end indices are always
// within 0 and the composite array's length.
throw new Error(`Could not find start shard for byte ${start}`);
}
const size = end - start;
const outputBuffer = new ArrayBuffer(size);
const outputArray = new Uint8Array(outputBuffer);
let sliced = 0;
for (let i = startShardIndex; i < this.shards.length; i++) {
const shard = this.shards[i];
const globalStart = start + sliced;
const localStart = globalStart - shard.start;
const outputStart = sliced;
const globalEnd = Math.min(end, shard.end);
const localEnd = globalEnd - shard.start;
const outputSlice = new Uint8Array(shard.buffer, localStart,
localEnd - localStart);
outputArray.set(outputSlice, outputStart);
sliced += outputSlice.length;
if (end < shard.end) {
break;
}
}
return outputBuffer;
}
/**
* Get the index of the shard that contains the byte at `byteIndex`.
*/
private findShardForByte(byteIndex: number): number {
if (this.shards.length === 0 || byteIndex < 0 ||
byteIndex >= this.byteLength) {
return -1;
}
// If the buffers have a uniform size, compute the shard directly.
if (this.bufferUniformSize != null) {
this.previousShardIndex = Math.floor(byteIndex / this.bufferUniformSize);
return this.previousShardIndex;
}
// If the buffers don't have a uniform size, we need to search for the
// shard. That means we need a function to check where the byteIndex lies
// relative to a given shard.
function check(shard: BufferShard) {
if (byteIndex < shard.start) {
return -1;
}
if (byteIndex >= shard.end) {
return 1;
}
return 0;
}
// For efficiency, try the previous shard first.
if (check(this.shards[this.previousShardIndex]) === 0) {
return this.previousShardIndex;
}
// Otherwise, use a generic search function.
// This should almost never end up being used in practice since the weight
// entries should always be in order.
const index = search(this.shards, check);
if (index === -1) {
return -1;
}
this.previousShardIndex = index;
return this.previousShardIndex;
}
}
/**
* Search for an element of a sorted array.
*
* @param sortedArray The sorted array to search
* @param compare A function to compare the current value against the searched
* value. Return 0 on a match, negative if the searched value is less than
* the value passed to the function, and positive if the searched value is
* greater than the value passed to the function.
* @returns The index of the element, or -1 if it's not in the array.
*/
export function search<T>(sortedArray: T[], compare: (t: T) => number): number {
// Binary search
let min = 0;
let max = sortedArray.length;
while (min <= max) {
const middle = Math.floor((max - min) / 2) + min;
const side = compare(sortedArray[middle]);
if (side === 0) {
return middle;
} else if (side < 0) {
max = middle;
} else {
min = middle + 1;
}
}
return -1;
}