-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist.py
233 lines (208 loc) · 7.31 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
Training hand written digit recognition with MNIST dataset
Copyright (c) 2020 Preferred Networks, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import pytorch_pfn_extras as ppe
import pytorch_pfn_extras.training.extensions as extensions
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4 * 4 * 50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.flatten(start_dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(manager, args, model, device, train_loader):
while not manager.stop_trigger:
model.train()
for _, (data, target) in enumerate(train_loader):
with manager.run_iteration(step_optimizers=["main"]):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
ppe.reporting.report({"train/loss": loss.item()})
loss.backward()
def test(args, model, device, data, target):
"""The extension loops over the iterator in order to
drive the evaluator progress bar and reporting
averages
"""
model.eval()
data, target = data.to(device), target.to(device)
output = model(data)
# Final result will be average of averages of the same size
test_loss = F.nll_loss(output, target, reduction="mean").item()
ppe.reporting.report({"val/loss": test_loss})
pred = output.argmax(dim=1, keepdim=True)
correct = pred.eq(target.view_as(pred)).sum().item()
ppe.reporting.report({"val/acc": correct / len(data)})
def main():
# Training settings
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
parser.add_argument(
"--batch-size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=1000,
metavar="N",
help="input batch size for testing (default: 1000)",
)
parser.add_argument(
"--epochs",
type=int,
default=10,
metavar="N",
help="number of epochs to train (default: 10)",
)
parser.add_argument(
"--lr",
type=float,
default=0.01,
metavar="LR",
help="learning rate (default: 0.01)",
)
parser.add_argument(
"--momentum",
type=float,
default=0.5,
metavar="M",
help="SGD momentum (default: 0.5)",
)
parser.add_argument(
"--no-cuda",
dest="cuda",
action="store_false",
default=True,
help="disables CUDA training",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
parser.add_argument(
"--save-model",
action="store_true",
default=True,
help="For Saving the current Model",
)
parser.add_argument(
"--snapshot", type=str, default=None, help="path to snapshot file"
)
args = parser.parse_args()
use_cuda = args.cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
"./data_mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=args.batch_size,
shuffle=True,
**kwargs
) # type: ignore[arg-type]
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(
"./data_mnist",
train=False,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=args.test_batch_size,
shuffle=True,
**kwargs
) # type: ignore[arg-type]
model = Net()
model.to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
# manager.extend(...) also works
my_extensions = [
extensions.LogReport(),
extensions.ProgressBar(),
extensions.observe_lr(optimizer=optimizer),
extensions.ParameterStatistics(model, prefix="model"),
extensions.VariableStatisticsPlot(model),
extensions.Evaluator(
test_loader,
model,
eval_func=lambda data, target: test(args, model, device, data, target),
progress_bar=True,
),
extensions.PlotReport(["train/loss", "val/loss"], "epoch", filename="loss.png"),
extensions.PrintReport(
[
"epoch",
"iteration",
"train/loss",
"lr",
"val/loss",
"val/acc",
]
),
extensions.snapshot(),
]
# Custom stop triggers can be added to the manager and
# their status accessed through `manager.stop_trigger`
trigger = None
# trigger = ppe.training.triggers.EarlyStoppingTrigger(
# check_trigger=(1, 'epoch'), monitor='val/loss')
manager = ppe.training.ExtensionsManager(
model,
optimizer,
args.epochs,
extensions=my_extensions,
iters_per_epoch=len(train_loader),
stop_trigger=trigger,
)
# Lets load the snapshot
if args.snapshot is not None:
state = torch.load(args.snapshot)
manager.load_state_dict(state)
train(manager, args, model, device, train_loader)
# Test function is called from the evaluator extension
# to get access to the reporter and other facilities
# test(args, model, device, test_loader)
if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == "__main__":
main()