-
Notifications
You must be signed in to change notification settings - Fork 0
/
transaction.go
220 lines (178 loc) · 5.04 KB
/
transaction.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
package coin
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"encoding/gob"
"encoding/hex"
"fmt"
"log"
"math/big"
)
const subsidy = 10
// Transaction represents a Blockchain transaction
type Transaction struct {
ID []byte
Vin []TXInput
Vout []TXOutput
}
// IsCoinbase checks whether the transaction is coinbase
func (tx Transaction) IsCoinbase() bool {
return len(tx.Vin) == 1 && len(tx.Vin[0].Txid) == 0 && tx.Vin[0].Vout == -1
}
// Serialize returns a serialized Transaction
func (tx Transaction) Serialize() []byte {
var encoded bytes.Buffer
enc := gob.NewEncoder(&encoded)
err := enc.Encode(tx)
if err != nil {
log.Panic(err)
}
return encoded.Bytes()
}
// NewCoinbaseTX creates a new coinbase transaction
func NewCoinbaseTX(to, data string) *Transaction {
if data == "" {
data = fmt.Sprintf("Reward to '%s'", to)
}
txin := TXInput{
Txid: []byte{},
Vout: -1,
Signature: nil,
PubKey: []byte(data),
}
txout := NewTXOutput(subsidy, to)
tx := Transaction{
ID: nil,
Vin: []TXInput{txin},
Vout: []TXOutput{*txout},
}
tx.ID = tx.Hash()
return &tx
}
// Sign signs each input of a Transaction
func (tx *Transaction) Sign(privKey ecdsa.PrivateKey, prevTXs map[string]Transaction) error {
if tx.IsCoinbase() {
return nil
}
for _, vin := range tx.Vin {
if prevTXs[hex.EncodeToString(vin.Txid)].ID == nil {
return fmt.Errorf("previous transaction is not correct")
}
}
txCopy := tx.TrimmedCopy()
for inID, vin := range txCopy.Vin {
prevTx := prevTXs[hex.EncodeToString(vin.Txid)]
txCopy.Vin[inID].Signature = nil
txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash
dataToSign := fmt.Sprintf("%x\n", txCopy)
r, s, err := ecdsa.Sign(rand.Reader, &privKey, []byte(dataToSign))
if err != nil {
return err
}
signature := append(r.Bytes(), s.Bytes()...)
tx.Vin[inID].Signature = signature
txCopy.Vin[inID].PubKey = nil
}
return nil
}
// TrimmedCopy creates a trimmed copy of a transaction to be used in signing
func (tx *Transaction) TrimmedCopy() Transaction {
var inputs []TXInput
var outputs []TXOutput
for _, vin := range tx.Vin {
inputs = append(inputs, TXInput{vin.Txid, vin.Vout, nil, nil})
}
for _, vout := range tx.Vout {
outputs = append(outputs, TXOutput{Value: vout.Value, PubKeyHash: vout.PubKeyHash, Address: vout.Address})
}
txCopy := Transaction{ID: tx.ID, Vin: inputs, Vout: outputs}
return txCopy
}
// Verify signatures of transaction inputs
func (tx *Transaction) Verify(prevTXs map[string]Transaction) bool {
if tx.IsCoinbase() {
return true
}
for _, vin := range tx.Vin {
if prevTXs[hex.EncodeToString(vin.Txid)].ID == nil {
log.Printf("error: previous transaction of '%s' is not correct\n", vin.Txid)
return false
}
}
txCopy := tx.TrimmedCopy()
curve := elliptic.P256()
for inID, vin := range tx.Vin {
prevTx := prevTXs[hex.EncodeToString(vin.Txid)]
txCopy.Vin[inID].Signature = nil
txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash
r := big.Int{}
s := big.Int{}
sigLen := len(vin.Signature)
r.SetBytes(vin.Signature[:(sigLen / 2)])
s.SetBytes(vin.Signature[(sigLen / 2):])
x := big.Int{}
y := big.Int{}
keyLen := len(vin.PubKey)
x.SetBytes(vin.PubKey[:(keyLen / 2)])
y.SetBytes(vin.PubKey[(keyLen / 2):])
dataToVerify := fmt.Sprintf("%x\n", txCopy)
rawPubKey := ecdsa.PublicKey{Curve: curve, X: &x, Y: &y}
if ecdsa.Verify(&rawPubKey, []byte(dataToVerify), &r, &s) == false {
return false
}
txCopy.Vin[inID].PubKey = nil
}
return true
}
// NewUTXOTransaction creates a new transaction
func NewUTXOTransaction(wallet *Wallet, to string, amount int, UTXOSet *UTXOSet) (*Transaction, error) {
var inputs []TXInput
var outputs []TXOutput
pubKeyHash := HashPubKey(wallet.PublicKey)
acc, validOutputs, err := UTXOSet.FindSpendableOutputs(pubKeyHash, amount)
if err != nil {
return nil, err
}
if acc < amount {
return nil, fmt.Errorf("not enough funds in '%s'", wallet.GetAddress())
}
// Build a list of inputs
for txid, outs := range validOutputs {
txID, err := hex.DecodeString(txid)
if err != nil {
return nil, err
}
for _, out := range outs {
input := TXInput{txID, out, nil, wallet.PublicKey}
inputs = append(inputs, input)
}
}
// Build a list of outputs
from := fmt.Sprintf("%s", wallet.GetAddress())
outputs = append(outputs, *NewTXOutput(amount, to))
if acc > amount {
outputs = append(outputs, *NewTXOutput(acc-amount, from)) // a change
}
tx := Transaction{nil, inputs, outputs}
tx.ID = tx.Hash()
err = UTXOSet.Blockchain.SignTransaction(&tx, wallet.PrivateKey)
return &tx, err
}
// Hash returns the hash of the Transaction
func (tx *Transaction) Hash() []byte {
var hash [32]byte
txCopy := *tx
txCopy.ID = []byte{}
hash = sha256.Sum256(txCopy.Serialize())
return hash[:]
}
// DeserializeTransaction deserializes a transaction
func DeserializeTransaction(data []byte) (Transaction, error) {
var transaction Transaction
decoder := gob.NewDecoder(bytes.NewReader(data))
err := decoder.Decode(&transaction)
return transaction, err
}