forked from qingshui/Latte
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
283 lines (242 loc) · 12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
A minimal training script for Latte using PyTorch DDP.
"""
import torch
# Maybe use fp16 percision training need to set to False
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import io
import os
import math
import argparse
import torch.distributed as dist
from glob import glob
from time import time
from copy import deepcopy
from einops import rearrange
from models import get_models
from datasets import get_dataset
from models.clip import TextEmbedder
from diffusion import create_diffusion
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from diffusers.models import AutoencoderKL
from diffusers.optimization import get_scheduler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from utils import (clip_grad_norm_, create_logger, update_ema,
requires_grad, cleanup, create_tensorboard,
write_tensorboard, setup_distributed,
get_experiment_dir, text_preprocessing)
import numpy as np
from transformers import T5EncoderModel, T5Tokenizer
#################################################################################
# Training Loop #
#################################################################################
def main(args):
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
# Setup DDP:
setup_distributed()
# dist.init_process_group("nccl")
# assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
# rank = dist.get_rank()
# device = rank % torch.cuda.device_count()
# local_rank = rank
rank = int(os.environ["RANK"])
local_rank = int(os.environ["LOCAL_RANK"])
device = torch.device("cuda", local_rank)
seed = args.global_seed + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, local rank={local_rank}, seed={seed}, world_size={dist.get_world_size()}.")
# Setup an experiment folder:
if rank == 0:
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{args.results_dir}/*"))
model_string_name = args.model.replace("/", "-") # e.g., Latte-XL/2 --> Latte-XL-2 (for naming folders)
num_frame_string = 'F' + str(args.num_frames) + 'S' + str(args.frame_interval)
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}-{num_frame_string}-{args.dataset}" # Create an experiment folder
experiment_dir = get_experiment_dir(experiment_dir, args)
checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
os.makedirs(checkpoint_dir, exist_ok=True)
logger = create_logger(experiment_dir)
tb_writer = create_tensorboard(experiment_dir)
OmegaConf.save(args, os.path.join(experiment_dir, 'config.yaml'))
logger.info(f"Experiment directory created at {experiment_dir}")
else:
logger = create_logger(None)
tb_writer = None
# Create model:
assert args.image_size % 8 == 0, "Image size must be divisible by 8 (for the VAE encoder)."
sample_size = args.image_size // 8
args.latent_size = sample_size
model = get_models(args)
# Note that parameter initialization is done within the Latte constructor
ema = deepcopy(model).to(device) # Create an EMA of the model for use after training
requires_grad(ema, False)
diffusion = create_diffusion(timestep_respacing="") # default: 1000 steps, linear noise schedule
# vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema").to(device)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device)
# # use pretrained model?
if args.pretrained:
checkpoint = torch.load(args.pretrained, map_location=lambda storage, loc: storage)
if "ema" in checkpoint: # supports checkpoints from train.py
logger.info('Using ema ckpt!')
checkpoint = checkpoint["ema"]
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {}
for k, v in checkpoint.items():
if k in model_dict:
pretrained_dict[k] = v
else:
logger.info('Ignoring: {}'.format(k))
logger.info('Successfully Load {}% original pretrained model weights '.format(len(pretrained_dict) / len(checkpoint.items()) * 100))
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
logger.info('Successfully load model at {}!'.format(args.pretrained))
if args.use_compile:
model = torch.compile(model)
# set distributed training
model = DDP(model.to(device), device_ids=[local_rank])
logger.info(f"Model Parameters: {sum(p.numel() for p in model.parameters()):,}")
opt = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=0)
# Freeze vae and text_encoder
vae.requires_grad_(False)
# Setup data:
dataset = get_dataset(args)
sampler = DistributedSampler(
dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=True,
seed=args.global_seed
)
loader = DataLoader(
dataset,
batch_size=int(args.local_batch_size),
shuffle=False,
sampler=sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True
)
logger.info(f"Dataset contains {len(dataset):,} videos ({args.data_path})")
# Scheduler
lr_scheduler = get_scheduler(
name="constant",
optimizer=opt,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare models for training:
update_ema(ema, model.module, decay=0) # Ensure EMA is initialized with synced weights
model.train() # important! This enables embedding dropout for classifier-free guidance
ema.eval() # EMA model should always be in eval mode
# Variables for monitoring/logging purposes:
train_steps = 0
log_steps = 0
running_loss = 0
first_epoch = 0
start_time = time()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(loader))
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
# TODO, need to checkout
# Get the most recent checkpoint
dirs = os.listdir(os.path.join(experiment_dir, 'checkpoints'))
dirs = [d for d in dirs if d.endswith("pt")]
dirs = sorted(dirs, key=lambda x: int(x.split(".")[0]))
path = dirs[-1]
logger.info(f"Resuming from checkpoint {path}")
model.load_state(os.path.join(dirs, path))
train_steps = int(path.split(".")[0])
first_epoch = train_steps // num_update_steps_per_epoch
resume_step = train_steps % num_update_steps_per_epoch
if args.pretrained:
train_steps = int(args.pretrained.split("/")[-1].split('.')[0])
for epoch in range(first_epoch, num_train_epochs):
sampler.set_epoch(epoch)
for step, video_data in enumerate(loader):
# Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
continue
x = video_data['video'].to(device, non_blocking=True)
video_name = video_data['video_name']
# x = x.to(device)
# y = y.to(device) # y is text prompt; no need put in gpu
with torch.no_grad():
# Map input images to latent space + normalize latents:
b, _, _, _, _ = x.shape
x = rearrange(x, 'b f c h w -> (b f) c h w').contiguous()
x = vae.encode(x).latent_dist.sample().mul_(0.18215)
x = rearrange(x, '(b f) c h w -> b f c h w', b=b).contiguous()
if args.extras == 78: # text-to-video
raise 'T2V training are Not supported at this moment!'
elif args.extras == 2:
model_kwargs = dict(y=video_name)
else:
model_kwargs = dict(y=None)
t = torch.randint(0, diffusion.num_timesteps, (x.shape[0],), device=device)
loss_dict = diffusion.training_losses(model, x, t, model_kwargs)
loss = loss_dict["loss"].mean()
loss.backward()
if train_steps < args.start_clip_iter: # if train_steps >= start_clip_iter, will clip gradient
gradient_norm = clip_grad_norm_(model.module.parameters(), args.clip_max_norm, clip_grad=False)
else:
gradient_norm = clip_grad_norm_(model.module.parameters(), args.clip_max_norm, clip_grad=True)
opt.step()
lr_scheduler.step()
opt.zero_grad()
update_ema(ema, model.module)
# Log loss values:
running_loss += loss.item()
log_steps += 1
train_steps += 1
if train_steps % args.log_every == 0:
# Measure training speed:
torch.cuda.synchronize()
end_time = time()
steps_per_sec = log_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(running_loss / log_steps, device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / dist.get_world_size()
# logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
logger.info(f"(step={train_steps:07d}/epoch={epoch:04d}) Train Loss: {avg_loss:.4f}, Gradient Norm: {gradient_norm:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
write_tensorboard(tb_writer, 'Train Loss', avg_loss, train_steps)
write_tensorboard(tb_writer, 'Gradient Norm', gradient_norm, train_steps)
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time()
# Save Latte checkpoint:
if train_steps % args.ckpt_every == 0 and train_steps > 0:
if rank == 0:
checkpoint = {
# "model": model.module.state_dict(),
"ema": ema.state_dict(),
# "opt": opt.state_dict(),
# "args": args
}
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
torch.save(checkpoint, checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
dist.barrier()
model.eval() # important! This disables randomized embedding dropout
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
logger.info("Done!")
cleanup()
if __name__ == "__main__":
# Default args here will train Latte with the hyperparameters we used in our paper (except training iters).
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/train.yaml")
args = parser.parse_args()
main(OmegaConf.load(args.config))