-
Notifications
You must be signed in to change notification settings - Fork 66
/
boot.R
249 lines (228 loc) · 7.21 KB
/
boot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#' Bootstrap Sampling
#'
#' A bootstrap sample is a sample that is the same size as the original data
#' set that is made using replacement. This results in analysis samples that
#' have multiple replicates of some of the original rows of the data. The
#' assessment set is defined as the rows of the original data that were not
#' included in the bootstrap sample. This is often referred to as the
#' "out-of-bag" (OOB) sample.
#' @details The argument `apparent` enables the option of an additional
#' "resample" where the analysis and assessment data sets are the same as the
#' original data set. This can be required for some types of analysis of the
#' bootstrap results.
#'
#' @template strata_details
#' @inheritParams vfold_cv
#' @inheritParams make_strata
#' @param times The number of bootstrap samples.
#' @param apparent A logical. Should an extra resample be added where the
#' analysis and holdout subset are the entire data set. This is required for
#' some estimators used by the `summary` function that require the apparent
#' error rate.
#' @export
#' @return A tibble with classes `bootstraps`, `rset`, `tbl_df`, `tbl`, and
#' `data.frame`. The results include a column for the data split objects and a
#' column called `id` that has a character string with the resample identifier.
#' @examplesIf rlang::is_installed("modeldata")
#' bootstraps(mtcars, times = 2)
#' bootstraps(mtcars, times = 2, apparent = TRUE)
#'
#' library(purrr)
#' library(modeldata)
#' data(wa_churn)
#'
#' set.seed(13)
#' resample1 <- bootstraps(wa_churn, times = 3)
#' map_dbl(
#' resample1$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#'
#' set.seed(13)
#' resample2 <- bootstraps(wa_churn, strata = churn, times = 3)
#' map_dbl(
#' resample2$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#'
#' set.seed(13)
#' resample3 <- bootstraps(wa_churn, strata = tenure, breaks = 6, times = 3)
#' map_dbl(
#' resample3$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#' @export
bootstraps <-
function(data,
times = 25,
strata = NULL,
breaks = 4,
pool = 0.1,
apparent = FALSE,
...) {
if (!missing(strata)) {
strata <- tidyselect::vars_select(names(data), !!enquo(strata))
if (length(strata) == 0) strata <- NULL
}
strata_check(strata, data)
split_objs <-
boot_splits(
data = data,
times = times,
strata = strata,
breaks = breaks,
pool = pool
)
if (apparent) {
split_objs <- bind_rows(split_objs, apparent(data))
}
if (!is.null(strata)) names(strata) <- NULL
boot_att <- list(
times = times,
apparent = apparent,
strata = strata,
breaks = breaks,
pool = pool
)
new_rset(
splits = split_objs$splits,
ids = split_objs$id,
attrib = boot_att,
subclass = c("bootstraps", "rset")
)
}
# Get the indices of the analysis set from the analysis set (= bootstrap sample)
boot_complement <- function(ind, n) {
list(analysis = ind, assessment = NA)
}
boot_splits <-
function(data,
times = 25,
strata = NULL,
breaks = 4,
pool = 0.1) {
n <- nrow(data)
if (is.null(strata)) {
indices <- purrr::map(rep(n, times), sample, replace = TRUE)
} else {
stratas <- tibble::tibble(
idx = 1:n,
strata = make_strata(getElement(data, strata),
breaks = breaks,
pool = pool
)
)
stratas <- split_unnamed(stratas, stratas$strata)
stratas <-
purrr::map_df(
stratas,
strat_sample,
prop = 1,
times = times,
replace = TRUE
)
indices <- split_unnamed(stratas$idx, stratas$rs_id)
}
indices <- lapply(indices, boot_complement, n = n)
split_objs <-
purrr::map(indices, make_splits, data = data, class = "boot_split")
list(
splits = split_objs,
id = names0(length(split_objs), "Bootstrap")
)
}
#' Group Bootstraps
#'
#' Group bootstrapping creates splits of the data based
#' on some grouping variable (which may have more than a single row
#' associated with it). A common use of this kind of resampling is when you
#' have repeated measures of the same subject.
#' A bootstrap sample is a sample that is the same size as the original data
#' set that is made using replacement. This results in analysis samples that
#' have multiple replicates of some of the original rows of the data. The
#' assessment set is defined as the rows of the original data that were not
#' included in the bootstrap sample. This is often referred to as the
#' "out-of-bag" (OOB) sample.
#' @details The argument `apparent` enables the option of an additional
#' "resample" where the analysis and assessment data sets are the same as the
#' original data set. This can be required for some types of analysis of the
#' bootstrap results.
#'
#' @inheritParams bootstraps
#' @inheritParams make_groups
#' @export
#' @return An tibble with classes `group_bootstraps` `bootstraps`, `rset`,
#' `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data
#' split objects and a column called `id` that has a character string with the
#' resample identifier.
#' @examplesIf rlang::is_installed("modeldata")
#' data(ames, package = "modeldata")
#'
#' set.seed(13)
#' group_bootstraps(ames, Neighborhood, times = 3)
#' group_bootstraps(ames, Neighborhood, times = 3, apparent = TRUE)
#'
#' @export
group_bootstraps <- function(data,
group,
times = 25,
apparent = FALSE,
...) {
rlang::check_dots_empty()
group <- validate_group({{ group }}, data)
split_objs <-
group_boot_splits(
data = data,
group = group,
times = times
)
## We remove the holdout indices since it will save space and we can
## derive them later when they are needed.
split_objs$splits <- map(split_objs$splits, rm_out)
if (apparent) {
split_objs <- bind_rows(split_objs, apparent(data))
}
boot_att <- list(
times = times,
apparent = apparent,
strata = FALSE,
group = group
)
new_rset(
splits = split_objs$splits,
ids = split_objs$id,
attrib = boot_att,
subclass = c("group_bootstraps", "bootstraps", "group_rset", "rset")
)
}
group_boot_splits <- function(data, group, times = 25) {
group <- getElement(data, group)
n <- nrow(data)
indices <- make_groups(data, group, times, balance = "prop", prop = 1, replace = TRUE)
indices <- lapply(indices, boot_complement, n = n)
split_objs <-
purrr::map(indices, make_splits, data = data, class = c("group_boot_split", "boot_split"))
all_assessable <- purrr::map(split_objs, function(x) nrow(assessment(x)))
if (any(all_assessable == 0)) {
rlang::abort(
c(
"Some assessment sets contained zero rows",
i = "Consider using a non-grouped resampling method"
),
call = rlang::caller_env()
)
}
list(
splits = split_objs,
id = names0(length(split_objs), "Bootstrap")
)
}