-
Notifications
You must be signed in to change notification settings - Fork 24
/
generation.py
268 lines (226 loc) · 13.7 KB
/
generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains various classes and functions required for text generation with self-debiasing.
"""
from typing import List, Optional, Union, Tuple
import torch
import torch.nn.functional as F
from transformers import GPT2LMHeadModel, LogitsProcessorList, LogitsProcessor, PreTrainedTokenizer
from transformers.generation_utils import GenerationMixin, SampleOutput, SampleEncoderDecoderOutput, SampleDecoderOnlyOutput
class SelfDebiasingLogitsProcessor(LogitsProcessor):
"""This class represents a logits processor that applies self-debiasing."""
def __init__(self, num_debiasing_prefixes: int, decay_constant: float = 100, epsilon: float = 0.01, debug: bool = False,
tokenizer: Optional[PreTrainedTokenizer] = None):
"""
:param num_debiasing_prefixes: the number of debiasing prefixes used
:param decay_constant: the decay constant (lambda in the paper)
:param epsilon: the minimum factor by which each probability is multiplied
:param debug: whether to print additional debugging output
:param tokenizer: a tokenizer used to print debugging output
"""
assert not debug or tokenizer, "If debug=True, a tokenizer must be passed to SelfDebiasingLogitsProcessor()"
self.num_debiasing_prefixes = num_debiasing_prefixes
self.decay_constant = decay_constant
self.epsilon = epsilon
self.debug = debug
self.tokenizer = tokenizer
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
batch_size = scores.shape[0] // (1 + self.num_debiasing_prefixes)
regular_sentence_indices = range(batch_size)
for regular_sentence_idx in regular_sentence_indices:
bias_indices = self._get_bias_indices(regular_sentence_idx, batch_size)
if bias_indices:
self._debias_scores(scores, regular_sentence_idx, bias_indices)
return scores
def _get_bias_indices(self, regular_sentence_idx: int, batch_size: int) -> List[int]:
"""Returns the indices of all self-debiasing inputs for a regular input"""
return [regular_sentence_idx + (prefix_idx + 1) * batch_size for prefix_idx in range(self.num_debiasing_prefixes)]
def _debias_scores(self, scores: torch.FloatTensor, regular_sent_idx: int, bias_indices: List[int]) -> None:
"""Partially debiases the given scores considering a single sentence and the corresponding self-debiasing inputs"""
logits_biased = [scores[bias_idx] for bias_idx in bias_indices]
mask = self._generate_decay_mask(scores[regular_sent_idx], logits_biased)
scores[regular_sent_idx] = torch.log(self._apply_decay_mask(scores[regular_sent_idx], mask))
for debiasing_sent_idx in bias_indices:
scores[debiasing_sent_idx] = scores[regular_sent_idx]
def _apply_decay_mask(self, logits: torch.Tensor, decay_mask: torch.Tensor) -> torch.Tensor:
"""Applies exponential decay to a tensor of logits"""
probabilities = logits.softmax(dim=-1)
decay_mask = torch.exp(- decay_mask * self.decay_constant)
decay_mask = torch.max(decay_mask, torch.tensor([self.epsilon], device=decay_mask.device))
probabilities = probabilities * decay_mask
probabilities = probabilities / probabilities.sum(dim=-1)
return probabilities
def _generate_decay_mask(self, logits_regular: torch.FloatTensor, logits_biased_list: List[torch.FloatTensor]) -> torch.Tensor:
"""Computes the alpha values (see paper) for each token and stores them in a mask tensor"""
p_regular = logits_regular.softmax(dim=-1)
p_biased = None
for logits_biased in logits_biased_list:
if p_biased is None:
p_biased = logits_biased.softmax(dim=-1)
else:
p_biased = torch.max(p_biased, logits_biased.softmax(dim=-1))
if self.debug:
print(f'== Before Debiasing ==\n'
f'Top 5 predictions (regular): {self._get_most_likely_tokens(p_regular, k=5)}\n'
f'Top 5 predictions (biased): {self._get_most_likely_tokens(p_biased, k=5)}')
mask = torch.max(p_biased - p_regular, torch.tensor([0.], device=p_regular.device))
if self.debug:
p_regular = self._apply_decay_mask(logits_regular, mask)
print(f'== After Debiasing ==\n'
f'Top 5 predictions (regular): {self._get_most_likely_tokens(p_regular, k=5)}')
return mask
def _get_most_likely_tokens(self, probabilities_tensor: torch.Tensor, k: int) -> List[Tuple[str, float]]:
"""Returns the most likely tokens according to a tensor of probabilities"""
assert len(probabilities_tensor.shape) == 1
values, indices = torch.topk(probabilities_tensor, k=k, dim=-1)
tokens = self.tokenizer.convert_ids_to_tokens(indices)
return list(zip(tokens, [pv.item() for pv in values]))
class SelfDebiasingGPT2LMHeadModel(GPT2LMHeadModel, GenerationMixin):
"""
This class represents a regular GPT2LMHeadModel that additionally has the capacity to perform self-debiasing. For self-debiasing, the
init_logits_processor function must be called. Otherwise, this model just performs regular language modeling.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.logits_processor = None # type: Optional[SelfDebiasingLogitsProcessor]
def init_logits_processor(self, *args, **kwargs):
"""Initialize the logits processor. For a list of arguments, see the self-debiasing logit processor's init function."""
self.logits_processor = SelfDebiasingLogitsProcessor(*args, **kwargs)
def _get_logits_processor(self, *args, **kwargs) -> LogitsProcessorList:
logits_processor = super()._get_logits_processor(*args, **kwargs)
if self.logits_processor is not None:
logits_processor.append(self.logits_processor)
return logits_processor
def beam_sample(self, *args, **kwargs):
raise NotImplementedError("Beam sampling is not implemented for self-debiasing models")
def sample(self, input_ids: torch.LongTensor, logits_processor: Optional[LogitsProcessorList] = None,
logits_warper: Optional[LogitsProcessorList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs) -> Union[
SampleOutput, torch.LongTensor]:
"""
This is a verbatim copy of the original implementation by huggingface, with a single modification to ensure that a text and all
corresponding self-debiasing inputs always chose the same token to generate next. This modification is enclosed by the texts
"BEGIN MODIFICATIONS" and "END MODIFICATIONS", respectively.
"""
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
max_length = max_length if max_length is not None else self.config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# init sequence length tensors
sequence_lengths, unfinished_sequences, cur_len = self._init_sequence_length_for_generation(
input_ids, max_length
)
# auto-regressive generation
while cur_len < max_length:
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# sample
probs = F.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# =========================
# BEGIN MODIFICATIONS
# the following modification to the sample method is necessary to ensure that each debiasing sentence is continued in the same
# way as the original sentence
if self.logits_processor is not None:
batch_size = next_tokens.shape[0] // (1 + self.logits_processor.num_debiasing_prefixes)
regular_sentence_indices = range(batch_size)
for regular_sentence_idx in regular_sentence_indices:
debiasing_sentence_indices = self.logits_processor._get_bias_indices(regular_sentence_idx, batch_size)
for debiasing_sentence_idx in debiasing_sentence_indices:
next_tokens[debiasing_sentence_idx] = next_tokens[regular_sentence_idx]
# END MODIFICATIONS
# =========================
# add code that transfomers next_tokens to tokens_to_add
if eos_token_id is not None:
assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined."
next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences)
# add token and increase length by one
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
cur_len = cur_len + 1
# update sequence length
if eos_token_id is not None:
sequence_lengths, unfinished_sequences = self._update_seq_length_for_generation(
sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id
)
# stop when there is a </s> in each sentence, or if we exceed the maximul length
if unfinished_sequences.max() == 0:
break
# update model kwargs
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
if return_dict_in_generate:
if self.config.is_encoder_decoder:
return SampleEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return SampleDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return input_ids