We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Swin Transformerを30億パラメータまで拡張し1,536×1,536の解像度の画像を学習可能に。様々なベンチマークでSOTA。学習における不安定性を解決するためにモデルを改良(Layer Normの順番、Cosine Attentionの導入等)。更にGPUのメモリ消費量を大幅に削減する実装方法を提案。
https://openaccess.thecvf.com/content/CVPR2022/html/Liu_Swin_Transformer_V2_Scaling_Up_Capacity_and_Resolution_CVPR_2022_paper.html
https://github.com/microsoft/Swin-Transformer
The text was updated successfully, but these errors were encountered:
No branches or pull requests
論文概要
Swin Transformerを30億パラメータまで拡張し1,536×1,536の解像度の画像を学習可能に。様々なベンチマークでSOTA。学習における不安定性を解決するためにモデルを改良(Layer Normの順番、Cosine Attentionの導入等)。更にGPUのメモリ消費量を大幅に削減する実装方法を提案。
https://openaccess.thecvf.com/content/CVPR2022/html/Liu_Swin_Transformer_V2_Scaling_Up_Capacity_and_Resolution_CVPR_2022_paper.html
Code
https://github.com/microsoft/Swin-Transformer
The text was updated successfully, but these errors were encountered: