-
Notifications
You must be signed in to change notification settings - Fork 200
/
EWD998_proof.tla
863 lines (821 loc) · 36.4 KB
/
EWD998_proof.tla
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
---------------------------- MODULE EWD998_proof ----------------------------
(***************************************************************************)
(* Proofs checked by TLAPS about the EWD998 specification. *)
(***************************************************************************)
EXTENDS EWD998, FiniteSetTheorems, TLAPS
USE NAssumption
(***************************************************************************)
(* Type correctness. *)
(***************************************************************************)
THEOREM TypeCorrect == Init /\ [][Next]_vars => []TypeOK
<1>. USE DEF TypeOK, Node, Color, Token
<1>1. Init => TypeOK
BY DEF Init
<1>2. TypeOK /\ [Next]_vars => TypeOK'
<2> SUFFICES ASSUME TypeOK,
[Next]_vars
PROVE TypeOK'
OBVIOUS
<2>1. CASE InitiateProbe
BY <2>1 DEF InitiateProbe
<2>2. ASSUME NEW i \in Node \ {0},
PassToken(i)
PROVE TypeOK'
BY <2>2 DEF PassToken
<2>3. ASSUME NEW i \in Node,
SendMsg(i)
PROVE TypeOK'
BY <2>3 DEF SendMsg
<2>4. ASSUME NEW i \in Node,
RecvMsg(i)
PROVE TypeOK'
BY <2>4 DEF RecvMsg
<2>5. ASSUME NEW i \in Node,
Deactivate(i)
PROVE TypeOK'
BY <2>5 DEF Deactivate
<2>6. CASE UNCHANGED vars
BY <2>6 DEF vars
<2>7. QED
BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6 DEF Environment, Next, System
<1>. QED BY <1>1, <1>2, PTL
(***************************************************************************)
(* Lemmas about FoldFunction that should go to a library. *)
(***************************************************************************)
IsAssociativeOn(op(_,_), S) ==
\A x,y,z \in S : op(x, op(y,z)) = op(op(x,y), z)
IsCommutativeOn(op(_,_), S) ==
\A x,y \in S : op(x,y) = op(y,x)
IsIdentityOn(op(_,_), e, S) ==
\A x \in S : op(e,x) = x
LEMMA FoldFunctionIsFoldFunctionOnSet ==
ASSUME NEW op(_,_), NEW base, NEW fun
PROVE FoldFunction(op, base, fun) = FoldFunctionOnSet(op, base, fun, DOMAIN fun)
LEMMA FoldFunctionOnSetEmpty ==
ASSUME NEW op(_,_), NEW base, NEW fun
PROVE FoldFunctionOnSet(op, base, fun, {}) = base
LEMMA FoldFunctionOnSetIterate ==
ASSUME NEW op(_,_),
NEW S, IsFiniteSet(S), NEW T,
NEW base \in T, NEW fun \in [S -> T],
NEW inds \in SUBSET S, NEW e \in inds,
IsAssociativeOn(op, T), IsCommutativeOn(op, T), IsIdentityOn(op, base, T)
PROVE FoldFunctionOnSet(op, base, fun, inds)
= op(fun[e], FoldFunctionOnSet(op, base, fun, inds \ {e}))
LEMMA FoldFunctionOnSetUnion ==
ASSUME NEW op(_,_),
NEW S, IsFiniteSet(S), NEW T,
NEW base \in T, NEW fun \in [S -> T],
NEW inds1 \in SUBSET S, NEW inds2 \in SUBSET S, inds1 \cap inds2 = {},
IsAssociativeOn(op, T), IsCommutativeOn(op, T), IsIdentityOn(op, base, T)
PROVE FoldFunctionOnSet(op, base, fun, inds1 \cup inds2)
= op(FoldFunctionOnSet(op, base, fun, inds1), FoldFunctionOnSet(op, base, fun, inds2))
LEMMA FoldFunctionOnSetEqual ==
ASSUME NEW op(_,_),
NEW S, IsFiniteSet(S), NEW T, NEW base \in T,
NEW f \in [S -> T], NEW g \in [S -> T],
NEW inds \in SUBSET S,
\A x \in inds : f[x] = g[x]
PROVE FoldFunctionOnSet(op, base, f, inds) = FoldFunctionOnSet(op, base, g, inds)
LEMMA FoldFunctionOnSetType ==
ASSUME NEW op(_,_),
NEW S, NEW T, IsFiniteSet(S),
NEW base \in T, NEW fun \in [S -> T],
NEW inds \in SUBSET S,
\A x,y \in T : op(x,y) \in T
PROVE FoldFunctionOnSet(op, base, fun, inds) \in T
(***************************************************************************)
(* The provers have trouble applying these generic lemmas to the specific *)
(* instances required for the spec so we restate them for the operators *)
(* that appear in the definition of the inductive invariant. *)
(***************************************************************************)
LEMMA NodeIsFinite == IsFiniteSet(Node)
BY FS_Interval DEF Node
LEMMA PlusACI ==
/\ IsAssociativeOn(+, Nat)
/\ IsCommutativeOn(+, Nat)
/\ IsIdentityOn(+, 0, Nat)
/\ IsAssociativeOn(+, Int)
/\ IsCommutativeOn(+, Int)
/\ IsIdentityOn(+, 0, Int)
BY DEF IsAssociativeOn, IsCommutativeOn, IsIdentityOn
LEMMA SumEmpty ==
ASSUME NEW fun
PROVE Sum(fun, {}) = 0
BY FoldFunctionOnSetEmpty DEF Sum
LEMMA SumIterate ==
ASSUME NEW fun \in [Node -> Int],
NEW inds \in SUBSET Node, NEW e \in inds
PROVE Sum(fun, inds) = fun[e] + Sum(fun, inds \ {e})
\* BY FoldFunctionOnSetIterate, NodeIsFinite, PlusACI DEF Sum (* fails *)
LEMMA SumSingleton ==
ASSUME NEW fun \in [Node -> Int], NEW x \in Node
PROVE Sum(fun, {x}) = fun[x]
BY SumIterate, SumEmpty, Isa
LEMMA SumUnion ==
ASSUME NEW fun \in [Node -> Int],
NEW inds1 \in SUBSET Node, NEW inds2 \in SUBSET Node, inds1 \cap inds2 = {}
PROVE Sum(fun, inds1 \cup inds2) = Sum(fun, inds1) + Sum(fun, inds2)
LEMMA SumEqual ==
ASSUME NEW f \in [Node -> Int], NEW g \in [Node -> Int],
NEW inds \in SUBSET Node,
\A x \in inds : f[x] = g[x]
PROVE Sum(f, inds) = Sum(g, inds)
\* BY FoldFunctionOnSetEqual, NodeIsFinite DEF Sum (* fails *)
LEMMA SumIsInt ==
ASSUME NEW fun \in [Node -> Int],
NEW inds \in SUBSET Node
PROVE Sum(fun, inds) \in Int
BY FoldFunctionOnSetType, NodeIsFinite, Isa DEF Sum
LEMMA SumIsNat ==
ASSUME NEW fun \in [Node -> Nat],
NEW inds \in SUBSET Node
PROVE Sum(fun, inds) \in Nat
BY FoldFunctionOnSetType, NodeIsFinite, Isa DEF Sum
LEMMA SumZero ==
ASSUME NEW fun \in [Node -> Int], NEW inds \in SUBSET Node,
\A i \in inds : fun[i] = 0
PROVE Sum(fun, inds) = 0
<1>1. IsFiniteSet(inds)
BY NodeIsFinite, FS_Subset
<1>. DEFINE P(T) == T \subseteq inds => Sum(fun, T) = 0
<1>2. P({})
BY SumEmpty
<1>3. ASSUME NEW T, NEW x, IsFiniteSet(T), P(T), x \notin T
PROVE P(T \cup {x})
BY <1>3, SumIterate
<1>4. P(inds)
<2>. HIDE DEF P
<2>. QED BY <1>1, <1>2, <1>3, FS_Induction, IsaM("blast")
<1>. QED BY <1>4
(***************************************************************************)
(* Proof of the inductive invariant. *)
(***************************************************************************)
THEOREM Invariance == Init /\ [][Next]_vars => []Inv
<1>1. Init => Inv
BY DEF Init, B, Rng, Inv
<1>2. TypeOK /\ TypeOK' /\ Inv /\ [Next]_vars => Inv'
<2> SUFFICES ASSUME TypeOK, TypeOK',
Inv,
[Next]_vars
PROVE Inv'
OBVIOUS
<2>1. CASE InitiateProbe
<3>1. B' = Sum(counter', Node)
BY <2>1 DEF InitiateProbe, Inv, B
<3>2. Rng(token.pos+1, N-1)' = {}
BY <2>1 DEF InitiateProbe, Node, Rng
<3>3. Inv!P1'
BY <2>1, <3>2, SumEmpty DEF InitiateProbe
<3>. QED BY <3>1, <3>3 DEF Inv
<2>2. ASSUME NEW i \in Node \ {0},
PassToken(i)
PROVE Inv'
<3>1. B' = Sum(counter, Node)'
BY <2>2 DEF PassToken, Inv, B
<3>2. Inv!2'
<4>1. ASSUME Inv!P1 PROVE Inv!P1'
<5>1. \A j \in Rng(token.pos+1, N-1)' : active'[j] = FALSE
BY <2>2, <4>1 DEF PassToken, TypeOK, Token, Node, Rng
<5>2. token'.pos # N-1
BY <2>2 DEF PassToken, TypeOK, Token, Node
<5>a. /\ Rng(token.pos+1, N-1) \in SUBSET Node
/\ Rng(token'.pos+1, N-1) \in SUBSET Node
BY DEF Rng
<5>b. /\ Sum(counter, Rng(token.pos+1, N-1)) \in Int
/\ Sum(counter, Rng(token.pos+1, N-1))' \in Int
BY <5>a, SumIsInt DEF TypeOK
<5>3. token.q = Sum(counter, Rng(token.pos+1, N-1))
<6>1. CASE token.pos = N-1
BY <4>1, <6>1, SumEmpty DEF Rng, Node
<6>2. CASE token.pos # N-1
BY <4>1, <6>2
<6>. QED BY <6>1, <6>2
<5>c. token'.pos+1 \in Rng(token'.pos+1, N-1)
BY <5>2 DEF TypeOK, Token, Node, Rng
<5>4. Sum(counter, Rng(token.pos+1, N-1))'
= counter'[token'.pos+1] + Sum(counter', Rng(token'.pos+1, N-1) \ {token'.pos+1})
BY SumIterate, <5>2, <5>a, <5>c DEF TypeOK
<5>5. /\ Rng(token'.pos+1, N-1) \ {token'.pos+1} = Rng(token.pos+1, N-1)
/\ token'.pos+1 = token.pos
/\ counter' = counter
/\ token'.q = token.q + counter[token.pos]
BY <2>2 DEF PassToken, TypeOK, Token, Node, Rng
<5>6. Sum(counter, Rng(token.pos+1, N-1))'
= counter[token.pos] + Sum(counter, Rng(token.pos+1, N-1))
BY <5>4, <5>5, Zenon
<5>9. token'.q = Sum(counter, Rng(token.pos+1, N-1))'
BY <5>b, <5>3, <5>5, <5>6 DEF TypeOK, Token
<5>. QED BY <5>1, <5>2, <5>9
<4>2. ASSUME Inv!P2 PROVE Inv!P2'
<5>1. /\ Rng(0, token.pos) \in SUBSET Node
/\ Rng(0, token.pos)' \in SUBSET Node
BY DEF Rng
<5>2. /\ Sum(counter, Rng(0, token.pos)) \in Int
/\ Sum(counter, Rng(0, token.pos))' \in Int
BY <5>1, SumIsInt DEF TypeOK
<5>3. Sum(counter, Rng(0, token.pos))
= counter[token.pos] + Sum(counter, Rng(0, token.pos) \ {token.pos})
BY SumIterate DEF TypeOK, Token, Node, Rng
<5>4. Rng(0, token.pos)' = Rng(0, token.pos) \ {token.pos}
BY <2>2 DEF PassToken, TypeOK, Token, Node, Rng
<5>5. /\ token'.q = token.q + counter[token.pos]
/\ counter' = counter
BY <2>2 DEF PassToken
<5>6. Sum(counter, Rng(0, token.pos))' + token'.q
= Sum(counter, Rng(0, token.pos)) + token.q
BY <5>1, <5>2, <5>3, <5>4, <5>5 DEF TypeOK, Token
<5>. QED BY <4>2, <5>6
<4>3. ASSUME Inv!P3 PROVE Inv!P3' \/ Inv!P4'
<5>1. PICK j \in Rng(0, token.pos) : color[j] = "black"
BY <4>3
<5>2. CASE j = i
BY <2>2, <5>1, <5>2 DEF PassToken
<5>3. CASE j # i
<6>1. j \in Rng(0, token'.pos)
BY <2>2, <5>3 DEF PassToken, TypeOK, Token, Node, Rng
<6>2. color'[j] = color[j]
BY <2>2, <5>3 DEF PassToken
<6>. QED BY <5>1, <6>1, <6>2
<5>. QED BY <5>2, <5>3
<4>4. ASSUME Inv!P4 PROVE Inv!P4'
BY <2>2, <4>4 DEF PassToken
<4>. QED BY <4>1, <4>2, <4>3, <4>4, Zenon DEF Inv
<3>. QED BY <3>1, <3>2 DEF Inv
<2>3. ASSUME NEW i \in Node,
SendMsg(i)
PROVE Inv'
<3>1. PICK j \in Node \ {i} :
/\ active[i]
/\ counter' = [counter EXCEPT ![i] = @+1]
/\ pending' = [pending EXCEPT ![j] = @+1]
/\ UNCHANGED <<active, color, token>>
BY <2>3, Zenon DEF SendMsg
<3>2. B' = Sum(counter, Node)'
<4>1. B' = B + 1
<5>1. /\ B = pending[j] + Sum(pending, Node \ {j})
/\ B' = pending'[j] + Sum(pending', Node \ {j})
BY SumIterate DEF B, TypeOK
<5>2. \A x \in Node \ {j} : pending'[x] = pending[x]
BY <3>1 DEF TypeOK
<5>3. Sum(pending', Node \ {j}) = Sum(pending, Node \ {j})
BY SumEqual, <5>2 DEF TypeOK
<5>. QED BY SumIsNat, <5>1, <5>3, <3>1 DEF B, TypeOK
<4>2. Sum(counter, Node)' = Sum(counter, Node) + 1
<5>1. /\ Sum(counter, Node) = counter[i] + Sum(counter, Node \ {i})
/\ Sum(counter, Node)' = counter'[i] + Sum(counter', Node \ {i})
BY SumIterate DEF TypeOK
<5>2. \A x \in Node \ {i} : counter'[x] = counter[x]
BY <3>1 DEF TypeOK
<5>3. Sum(counter', Node \ {i}) = Sum(counter, Node \ {i})
BY SumEqual, <5>2 DEF TypeOK
<5>. QED BY SumIsInt, <5>1, <5>3, <3>1 DEF TypeOK
<4>. QED BY <4>1, <4>2 DEF Inv
<3>3. ASSUME Inv!P1 PROVE Inv!P1'
<4>1. /\ Rng(token.pos+1, N-1) \in SUBSET Node
/\ Rng(token.pos+1, N-1)' = Rng(token.pos+1, N-1)
BY <3>1 DEF Rng
<4>2. \A x \in Rng(token.pos+1, N-1) : counter'[x] = counter[x]
BY <3>1, <3>3 DEF TypeOK, Rng, Token, Node
<4>3. Sum(counter, Rng(token.pos+1, N-1))' = Sum(counter, Rng(token.pos+1, N-1))
BY SumEqual, <4>1, <4>2, SumEqual DEF TypeOK
<4>. QED BY <3>1, <3>3, <4>1, <4>3
<3>4. ASSUME Inv!P2 PROVE Inv!P2'
<4>1. /\ Rng(0, token.pos) \in SUBSET Node
/\ Rng(0, token.pos)' = Rng(0, token.pos)
BY <3>1 DEF Rng
<4>2. CASE i \in Rng(0, token.pos)
<5>1. /\ Sum(counter, Rng(0, token.pos)) = counter[i] + Sum(counter, Rng(0, token.pos) \ {i})
/\ Sum(counter, Rng(0, token.pos))' = counter'[i] + Sum(counter', Rng(0, token.pos) \ {i})
BY <4>1, <4>2, SumIterate DEF TypeOK
<5>2. \A x \in Rng(0, token.pos) \ {i} : counter'[x] = counter[x]
BY <3>1, <4>1 DEF TypeOK
<5>3. Sum(counter', Rng(0, token.pos) \ {i}) = Sum(counter, Rng(0, token.pos) \ {i})
BY SumEqual, <4>1, <5>2 DEF TypeOK
<5>. QED BY SumIsInt, <3>4, <4>1, <5>1, <5>3, <3>1 DEF TypeOK, Token
<4>3. CASE i \notin Rng(0, token.pos)
<5>1. \A x \in Rng(0, token.pos) : counter'[x] = counter[x]
BY <3>1, <4>3 DEF TypeOK, Rng
<5>2. Sum(counter, Rng(0, token.pos))' = Sum(counter, Rng(0, token.pos))
BY <4>1, <5>1, SumEqual DEF TypeOK
<5>. QED BY <3>1, <3>4, <5>2
<4>. QED BY <4>2, <4>3
<3>5. ASSUME Inv!P3 PROVE Inv!P3'
BY <2>3, <3>5 DEF SendMsg
<3>6. ASSUME Inv!P4 PROVE Inv!P4'
BY <2>3, <3>6 DEF SendMsg
<3>. QED BY <3>2, <3>3, <3>4, <3>5, <3>6, Zenon DEF Inv
<2>4. ASSUME NEW i \in Node,
RecvMsg(i)
PROVE Inv'
<3>1. B' = Sum(counter, Node)'
<4>1. B' = B - 1
<5>1. /\ B = pending[i] + Sum(pending, Node \ {i})
/\ B' = pending'[i] + Sum(pending', Node \ {i})
BY SumIterate DEF B, TypeOK
<5>2. \A x \in Node \ {i} : pending'[x] = pending[x]
BY <2>4 DEF TypeOK, RecvMsg
<5>3. Sum(pending', Node \ {i}) = Sum(pending, Node \ {i})
BY SumEqual, <5>2 DEF TypeOK
<5>. QED BY SumIsNat, <5>1, <5>3, <2>4 DEF B, TypeOK, RecvMsg
<4>2. Sum(counter, Node)' = Sum(counter, Node) - 1
<5>1. /\ Sum(counter, Node) = counter[i] + Sum(counter, Node \ {i})
/\ Sum(counter, Node)' = counter'[i] + Sum(counter', Node \ {i})
BY SumIterate DEF TypeOK
<5>2. \A x \in Node \ {i} : counter'[x] = counter[x]
BY <2>4 DEF TypeOK, RecvMsg
<5>3. Sum(counter', Node \ {i}) = Sum(counter, Node \ {i})
BY SumEqual, <5>2 DEF TypeOK
<5>. QED BY SumIsInt, <5>1, <5>3, <2>4 DEF TypeOK, RecvMsg
<4>. QED BY <4>1, <4>2 DEF Inv
<3>2. Inv!2'
<4>0. i \in Rng(0, token.pos) \/ i \in Rng(token.pos+1, N-1)
BY DEF TypeOK, Token, Node, Rng
<4>1. CASE i \in Rng(0, token.pos)
BY <2>4, <4>1 DEF RecvMsg, TypeOK \* node i becomes black, establishing P3'
<4>2. CASE i \in Rng(token.pos+1, N-1)
<5>0. /\ Rng(0, token.pos) \in SUBSET Node
/\ Rng(0, token.pos)' = Rng(0, token.pos)
/\ Rng(token.pos+1, N-1) \in SUBSET Node
/\ Rng(token.pos+1, N-1)' = Rng(token.pos+1, N-1)
BY <2>4 DEF RecvMsg, Rng
<5>1. ASSUME Inv!P1 PROVE Inv!P2 \* then step <5>2 will show that P2 is preserved
<6>1. B \in Nat \ {0}
<7>. B = pending[i] + Sum(pending, Node \ {i})
BY SumIterate DEF TypeOK, B
<7>. QED BY <2>4, SumIsNat DEF RecvMsg, TypeOK
<6>2. CASE token.pos = N-1
<7>1. token.q = 0
BY <5>1, <6>2, SumEmpty DEF TypeOK, Token, Node, Rng
<7>2. Sum(counter, Rng(0, token.pos)) = B
<8>. Rng(0, token.pos) = Node
BY <6>2 DEF Rng, Node
<8> QED BY DEF Inv
<7>. QED BY <6>1, <7>1, <7>2
<6>3. CASE token.pos # N-1
<7>1. token.q = Sum(counter, Rng(token.pos+1,N-1))
BY <5>1, <6>3
<7>2. Sum(counter, Rng(0, token.pos)) + Sum(counter, Rng(token.pos+1, N-1))
= Sum(counter, Node)
<8>. /\ Rng(0, token.pos) \union Rng(token.pos+1, N-1) = Node
/\ Rng(0, token.pos) \cap Rng(token.pos+1, N-1) = {}
BY DEF Rng, TypeOK, Token, Node
<8>. QED BY SumUnion DEF TypeOK
<7>3. Sum(counter, Rng(0, token.pos)) + token.q = B
BY <7>1, <7>2 DEF Inv
<7>. QED BY <6>1, <7>3
<6>. QED BY <6>2, <6>3
<5>2. ASSUME Inv!P2 PROVE Inv!P2'
<6>1. \A x \in Rng(0, token.pos) : counter'[x] = counter[x]
BY <2>4, <4>2 DEF RecvMsg, TypeOK, Token, Node, Rng
<6>2. Sum(counter, Rng(0, token.pos))' = Sum(counter, Rng(0, token.pos))
BY SumEqual, <5>0, <6>1 DEF TypeOK
<6>. QED BY <2>4, <5>0, <5>2, <6>2 DEF RecvMsg
<5>3. ASSUME Inv!P3 PROVE Inv!P3'
BY <2>4, <5>0, <5>3 DEF RecvMsg, TypeOK
<5>4. ASSUME Inv!P4 PROVE Inv!P4'
BY <2>4, <5>4 DEF RecvMsg
<5>. QED BY <5>1, <5>2, <5>3, <5>4, Zenon DEF Inv
<4>. QED BY <4>0, <4>1, <4>2, Zenon
<3>. QED BY <3>1, <3>2 DEF Inv
<2>5. ASSUME NEW i \in Node,
Deactivate(i)
PROVE Inv'
BY <2>5 DEF Deactivate, TypeOK, Token, Node, Range, Inv, B
<2>6. CASE UNCHANGED vars
BY <2>6 DEF vars, Inv, B
<2>7. QED
BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6 DEF Environment, Next, System
<1>. QED BY <1>1, <1>2, TypeCorrect, PTL
(***************************************************************************)
(* In particular, the invariant explains why the algorithm is safe. *)
(***************************************************************************)
THEOREM Safety ==
/\ TypeOK /\ Inv /\ terminationDetected => Termination
/\ TypeOK' /\ Inv' /\ terminationDetected' => Termination'
<1>1. TypeOK /\ Inv /\ terminationDetected => Termination
<2>. SUFFICES ASSUME TypeOK, Inv, terminationDetected
PROVE Termination
OBVIOUS
<2>1. Inv!P1
<3>1. ~ Inv!P4
BY DEF terminationDetected
<3>2. ~ Inv!P3
BY DEF terminationDetected, Rng, Node
<3>3. ~ Inv!P2
<4>1. Sum(counter, Rng(0,0)) = counter[0] + Sum(counter, Rng(0,0) \ {0})
BY SumIterate DEF TypeOK, Rng, Node
<4>2. Sum(counter, Rng(0,0)) = counter[0]
BY <4>1, SumEmpty DEF TypeOK, Rng, Node
<4>. QED BY <4>2 DEF terminationDetected, TypeOK, Token
<3>. QED BY <3>1, <3>2, <3>3 DEF Inv
<2>2. \A i \in Node : active[i] = FALSE
BY <2>1 DEF TypeOK, Token, Node, Rng, terminationDetected
<2>3. Sum(counter, Node) = 0
<3>1. token.q = Sum(counter, Rng(1, N-1))
<4>1. CASE token.pos = N-1
<5>1. N = 1
BY <4>1 DEF terminationDetected
<5>2. Sum(counter, Rng(1, N-1)) = 0
BY <5>1, SumEmpty DEF Rng, Node
<5>3. Rng(token.pos+1, N-1) = {}
BY <4>1, NAssumption DEF TypeOK, Token, Rng, Node
<5>. QED BY <2>1, <4>1, <5>2, <5>3, SumEmpty
<4>2. CASE token.pos # N-1
BY <2>1, <4>2 DEF terminationDetected
<4>. QED BY <4>1, <4>2
<3>2. Sum(counter, Node) = counter[0] + Sum(counter, Rng(1, N-1))
BY SumIterate DEF TypeOK, Node, Rng
<3>. QED BY <3>1, <3>2 DEF TypeOK, Token, terminationDetected
<2>. QED BY <2>2, <2>3 DEF Inv, Termination
<1>2. TypeOK' /\ Inv' /\ terminationDetected' => Termination'
BY <1>1, PTL
<1>. QED BY <1>1, <1>2
(***************************************************************************)
(* A useful lemma for the liveness and refinement proofs. *)
(***************************************************************************)
LEMMA B0NoMessagePending ==
/\ TypeOK /\ B=0 => \A i \in Node : pending[i] = 0
/\ TypeOK' /\ B'=0 => \A i \in Node : pending'[i] = 0
<1>1. TypeOK /\ B=0 => \A i \in Node : pending[i] = 0
<2>. SUFFICES ASSUME TypeOK, B = 0, NEW i \in Node, pending[i] # 0
PROVE FALSE
OBVIOUS
<2>. B = pending[i] + Sum(pending, Node \ {i})
BY SumIterate DEF TypeOK, B
<2>. QED BY SumIsNat DEF TypeOK
<1>2. (TypeOK /\ B=0 => \A i \in Node : pending[i] = 0)'
BY <1>1, PTL
<1>. QED BY <1>1, <1>2
-----------------------------------------------------------------------------
(***************************************************************************)
(* Proofs of liveness. *)
(***************************************************************************)
(***************************************************************************)
(* We first establish the enabledness condition for the System action. *)
(* We exclude a special case that we are not interested in. In fact, it *)
(* would be reasonable to assume N>1. *)
(***************************************************************************)
LEMMA EnabledSystem ==
ASSUME TypeOK, N > 1 \/ counter[0]=0
PROVE ENABLED <<System>>_vars
<=> \/ /\ token.pos = 0
/\ token.color = "black" \/ color[0] = "black" \/ counter[0]+token.q > 0
\/ \E i \in Node \ {0} : ~ active[i] /\ token.pos = i
<1>1. <<System>>_vars <=> System
<2>1. InitiateProbe => <<InitiateProbe>>_vars
BY DEF InitiateProbe, TypeOK, Token, vars, Node
<2>2. \A i \in Node \ {0} : PassToken(i) => <<PassToken(i)>>_vars
BY DEF PassToken, TypeOK, Token, vars, Node
<2>. QED BY <2>1, <2>2 DEF System
<1>2. (ENABLED <<System>>_vars) <=> (ENABLED System)
BY <1>1, ENABLEDrules
<1>3. ENABLED UNCHANGED <<active, counter, pending>>
BY ExpandENABLED
<1>. QED BY <1>2, <1>3, ENABLEDrewrites DEF System, InitiateProbe, PassToken
(***************************************************************************)
(* In particular, a system transition is enabled when the token is at the *)
(* master node and termination has not been detected. *)
(***************************************************************************)
COROLLARY EnabledAtMaster ==
ASSUME TypeOK, Inv, Termination, token.pos = 0, ~ terminationDetected
PROVE ENABLED <<System>>_vars
<1>. USE DEF Termination, TypeOK, B, Node, Token
<1>1. N=1 => counter[0] = 0
BY SumSingleton, N=1 => 0 .. N-1 = {0}, Isa DEF Inv
<1>2. /\ token.pos = 0
/\ token.color = "black" \/ color[0] = "black" \/ counter[0]+token.q > 0
<2>1. CASE Inv!P1
<3>1. Sum(counter, Node) = counter[0] + Sum(counter, Rng(token.pos+1, N-1))
BY SumIterate DEF Rng
<3>2. counter[0] + token.q = 0
BY <2>1, <3>1 DEF Inv
<3>. QED BY <3>2, B0NoMessagePending DEF terminationDetected, Color
<2>2. CASE Inv!P2
BY <2>2, SumSingleton DEF Rng
<2>3. CASE Inv!P3
BY <2>3 DEF Rng
<2>4. CASE Inv!P4
BY <2>4
<2>. QED BY <2>1, <2>2, <2>3, <2>4, Zenon DEF Inv
<1>. QED BY <1>1, <1>2, EnabledSystem
(***************************************************************************)
(* Assuming the system has terminated, termination detection may require *)
(* up to three rounds of the token: *)
(* 1. The first round simply brings the token back to the master node. *)
(* 2. The second round brings the token back to the master, with all nodes *)
(* being colored white. *)
(* 3. The third round verifies that all nodes are white and brings back a *)
(* white token to the master node. Moreover, the counter held by the *)
(* token corresponds to the sum of the non-master nodes. *)
(* At the end of the third round, the invariant ensures that the master *)
(* node detects termination. *)
(* The proof becomes a little simpler if we assume, aiming for a *)
(* contradiction, that termination is never detected. This motivates the *)
(* definition of the following operator BSpec. *)
(***************************************************************************)
BSpec ==
/\ []TypeOK
/\ []Inv
/\ [][Next]_vars
/\ []~terminationDetected
/\ WF_vars(System)
atMaster == token.pos = 0
tknWhite == token.color = "white"
tknCount == token.q = Sum(counter, Rng(1,N-1))
allWhite == \A i \in Node : color[i] = "white"
LEMMA Round1 == BSpec => (Termination
~> Termination /\ atMaster)
<1>. DEFINE P(n) == Termination /\ n \in Node /\ token.pos = n
Q == P(0)
R(n) == BSpec => [](P(n) => <>Q)
<1>1. \A n \in Nat : R(n)
<2>1. R(0)
BY PTL
<2>2. ASSUME NEW n \in Nat
PROVE R(n) => R(n+1)
<3>. DEFINE Pn == P(n) Pn1 == P(n+1)
<3>. USE DEF TypeOK, Termination, Node, Token, B
<3>1. TypeOK /\ Pn1 /\ [Next]_vars => Pn1' \/ Pn'
BY B0NoMessagePending
DEF Next, vars, System, Environment, InitiateProbe, PassToken, Deactivate, SendMsg, RecvMsg
<3>2. TypeOK /\ Pn1 /\ <<System>>_vars => Pn'
BY DEF System, InitiateProbe, PassToken, vars
<3>3. TypeOK /\ Pn1 => ENABLED <<System>>_vars
BY EnabledSystem
<3>. HIDE DEF Pn1
<3>4. R(n) => (BSpec => [](Pn1 => <>Q))
BY <3>1, <3>2, <3>3, PTL DEF BSpec
<3>. QED BY <3>4 DEF Pn1
<2>. HIDE DEF R
<2>. QED BY <2>1, <2>2, NatInduction, Isa
<1>2. BSpec => []((\E n \in Nat : P(n)) => <>Q)
<2>. HIDE DEF P, Q
<2>1. BSpec => [](\A n \in Nat : P(n) => <>Q)
BY <1>1
<2>2. (\A n \in Nat : P(n) => <>Q) <=> ((\E n \in Nat : P(n)) => <>Q)
OBVIOUS
<2>. QED BY <2>1, <2>2, PTL
<1>3. TypeOK => (Termination => \E n \in Nat : P(n))
BY DEF Termination, TypeOK, Node, Token
<1>. QED BY <1>2, <1>3, PTL DEF BSpec, atMaster
LEMMA Round2 == BSpec => (Termination /\ atMaster
~> Termination /\ atMaster /\ allWhite)
<1>. DEFINE P(n) == /\ Termination /\ n \in Node /\ token.pos = n
/\ color[0] = "white"
/\ \A i \in n+1 .. N-1 : color[i] = "white"
Q == P(0)
R(n) == BSpec => [](P(n) => <>Q)
<1>1. BSpec => (Termination /\ atMaster ~> \E n \in Nat : P(n))
<2>. DEFINE S == Termination /\ atMaster
T == P(N-1)
<2>. USE DEF TypeOK, Termination, Node, Token, B, atMaster
<2>1. TypeOK /\ S /\ [Next]_vars => S' \/ T'
BY B0NoMessagePending
DEF Next, vars, System, Environment, InitiateProbe, PassToken, Deactivate, SendMsg, RecvMsg
<2>2. TypeOK /\ S /\ <<System>>_vars => T'
BY DEF System, InitiateProbe, PassToken, vars
<2>3. TypeOK /\ Inv /\ ~terminationDetected /\ S => ENABLED <<System>>_vars
BY EnabledAtMaster
<2>4. T => \E n \in Nat : P(n)
OBVIOUS
<2>. HIDE DEF T
<2>5. QED BY <2>1, <2>2, <2>3, <2>4, PTL DEF BSpec
<1>2. \A n \in Nat : R(n)
<2>1. R(0)
BY PTL
<2>2. ASSUME NEW n \in Nat
PROVE R(n) => R(n+1)
<3>. DEFINE Pn == P(n) Pn1 == P(n+1)
<3>. USE DEF TypeOK, Termination, Node, Token, B
<3>1. TypeOK /\ Pn1 /\ [Next]_vars => Pn1' \/ Pn'
BY B0NoMessagePending
DEF Next, vars, System, Environment, InitiateProbe, PassToken, Deactivate, SendMsg, RecvMsg
<3>2. TypeOK /\ Pn1 /\ <<System>>_vars => Pn'
BY DEF System, InitiateProbe, PassToken, vars
<3>3. TypeOK /\ Pn1 => ENABLED <<System>>_vars
BY EnabledSystem
<3>. HIDE DEF Pn1
<3>4. R(n) => (BSpec => [](Pn1 => <>Q))
BY <3>1, <3>2, <3>3, PTL DEF BSpec
<3>. QED BY <3>4 DEF Pn1
<2>. HIDE DEF R
<2>. QED BY <2>1, <2>2, NatInduction, Isa
<1>3. BSpec => []((\E n \in Nat : P(n)) => <>Q)
<2>. HIDE DEF P, Q
<2>1. BSpec => [](\A n \in Nat : P(n) => <>Q)
BY <1>2
<2>2. (\A n \in Nat : P(n) => <>Q) <=> ((\E n \in Nat : P(n)) => <>Q)
OBVIOUS
<2>. QED BY <2>1, <2>2, PTL
<1>4. Q => Termination /\ atMaster /\ allWhite
BY DEF atMaster, allWhite, Node
<1>. QED BY <1>1, <1>3, <1>4, PTL
LEMMA Round3 == BSpec => (Termination /\ atMaster /\ allWhite
~> Termination /\ atMaster /\ allWhite /\ tknWhite /\ tknCount)
<1>. DEFINE P(n) == /\ Termination /\ n \in Node /\ token.pos = n
/\ allWhite /\ tknWhite
/\ token.q = Sum(counter, Rng(n+1, N-1))
Q == P(0)
R(n) == BSpec => [](P(n) => <>Q)
<1>1. BSpec => (Termination /\ atMaster /\ allWhite ~> \E n \in Nat : P(n))
<2>. DEFINE S == Termination /\ atMaster /\ allWhite
T == P(N-1)
<2>. USE DEF TypeOK, Termination, Node, Token, B, atMaster, allWhite, tknWhite
<2>0. TypeOK /\ S /\ System => T'
<3> SUFFICES ASSUME TypeOK, S, System
PROVE T'
OBVIOUS
<3>1. CASE InitiateProbe
<4>. Rng(N, N-1) = {}
BY DEF Rng
<4>. QED BY <3>1, SumEmpty DEF InitiateProbe
<3>2. ASSUME NEW i \in Node \ {0},
PassToken(i)
PROVE T'
BY <3>2 DEF PassToken
<3>3. QED
BY <3>1, <3>2 DEF System
<2>1. TypeOK /\ S /\ [Next]_vars => S' \/ T'
BY <2>0, B0NoMessagePending
DEF Next, vars, Environment, Deactivate, SendMsg, RecvMsg
<2>3. TypeOK /\ Inv /\ ~terminationDetected /\ S => ENABLED <<System>>_vars
BY EnabledAtMaster
<2>4. T => \E n \in Nat : P(n)
OBVIOUS
<2>. HIDE DEF T
<2>5. QED BY <2>0, <2>1, <2>3, <2>4, PTL DEF BSpec
<1>2. \A n \in Nat : R(n)
<2>1. R(0)
BY PTL
<2>2. ASSUME NEW n \in Nat
PROVE R(n) => R(n+1)
<3>. DEFINE Pn == P(n) Pn1 == P(n+1)
<3>. USE DEF TypeOK, Termination, Node, Token, B, allWhite, tknWhite
<3>0. TypeOK /\ Pn1 /\ System => Pn'
<4>1. ASSUME TypeOK, Pn1, InitiateProbe
PROVE Pn'
BY <4>1, SumEmpty DEF InitiateProbe, Rng
<4>2. ASSUME TypeOK, Pn1, NEW i \in Node \ {0}, PassToken(i)
PROVE Pn'
<5>. Sum(counter, Rng(i, N-1)) = counter[i] + Sum(counter, Rng(i+1, N-1))
BY <4>2, SumIterate DEF Rng
<5>. QED BY <4>2 DEF PassToken
<4>. QED BY <4>1, <4>2 DEF System
<3>1. TypeOK /\ Pn1 /\ [Next]_vars => Pn1' \/ Pn'
BY <3>0, B0NoMessagePending DEF Next, vars, Environment, SendMsg, RecvMsg, Deactivate
<3>3. TypeOK /\ Pn1 => ENABLED <<System>>_vars
BY EnabledSystem
<3>. HIDE DEF Pn1
<3>4. R(n) => (BSpec => [](Pn1 => <>Q))
BY <3>0, <3>1, <3>3, PTL DEF BSpec
<3>. QED BY <3>4 DEF Pn1
<2>. HIDE DEF R
<2>. QED BY <2>1, <2>2, NatInduction, Isa
<1>3. BSpec => []((\E n \in Nat : P(n)) => <>Q)
<2>. HIDE DEF P, Q
<2>1. BSpec => [](\A n \in Nat : P(n) => <>Q)
BY <1>2
<2>2. (\A n \in Nat : P(n) => <>Q) <=> ((\E n \in Nat : P(n)) => <>Q)
OBVIOUS
<2>. QED BY <2>1, <2>2, PTL
<1>4. Q => Termination /\ atMaster /\ allWhite /\ tknWhite /\ tknCount
BY DEF atMaster, allWhite, tknCount, Node
<1>. QED BY <1>1, <1>3, <1>4, PTL
LEMMA Detection ==
TypeOK /\ Inv /\ Termination /\ atMaster /\ allWhite /\ tknWhite /\ tknCount
=> terminationDetected
<1>. SUFFICES ASSUME TypeOK, Inv, Termination, atMaster, allWhite, tknWhite, tknCount
PROVE terminationDetected
OBVIOUS
<1>1. /\ token.pos = 0
/\ token.color = "white"
/\ color[0] = "white"
/\ ~ active[0]
/\ pending[0] = 0
BY B0NoMessagePending DEF Termination, atMaster, allWhite, tknWhite, Node
<1>2. token.q + counter[0] = 0
<2>1. Sum(counter, Node) = counter[0] + Sum(counter, Rng(1,N-1))
BY SumIterate DEF Node, TypeOK, Rng
<2>2. Sum(counter, Node) = token.q + counter[0]
BY <2>1 DEF tknCount, TypeOK, Token, Node
<2>3. Sum(counter, Node) = 0
BY DEF Termination, Inv
<2>. QED BY <2>2, <2>3
<1>. QED BY <1>1, <1>2 DEF terminationDetected
THEOREM Live == []TypeOK /\ []Inv /\ [][Next]_vars /\ WF_vars(System) => Liveness
BY Round1, Round2, Round3, Detection, PTL DEF BSpec, Liveness
COROLLARY SpecLive == Spec => Liveness
BY TypeCorrect, Invariance, Live, PTL DEF Spec
-----------------------------------------------------------------------------
(***************************************************************************)
(* Refinement proof. *)
(* In order to reuse lemmas about the high-level specification, we *)
(* instantiate the corresponding proof module. *)
(***************************************************************************)
LEMMA NodeIsNode == TD!Node = Node
BY DEF Node, TD!Node
THEOREM Refinement == Spec => TD!Spec
<1>. USE NodeIsNode
<1>1. Init => TD!Init
BY Zenon DEF Init, TD!Init, terminationDetected
<1>2. TypeOK /\ TypeOK' /\ Inv /\ Inv' /\ [Next]_vars => [TD!Next]_(TD!vars)
<2> SUFFICES ASSUME TypeOK, TypeOK', Inv, Inv',
[Next]_vars
PROVE [TD!Next]_(TD!vars)
OBVIOUS
<2>1. CASE InitiateProbe
<3>1. terminationDetected = FALSE
BY <2>1 DEF InitiateProbe, TypeOK, Token, Node, terminationDetected
<3>2. UNCHANGED <<active, pending>>
BY <2>1 DEF InitiateProbe
<3>3. CASE terminationDetected' = FALSE
BY <3>1, <3>2, <3>3, Zenon DEF TD!vars
(***********************************************************************)
(* There is a specific case where terminationDetected may become TRUE *)
(* but then terminated must also be TRUE. *)
(***********************************************************************)
<3>4. CASE terminationDetected' = TRUE
<4>1. /\ token'.pos = 0
/\ ~ active[0]
/\ pending[0] = 0
BY <3>2, <3>4 DEF terminationDetected
<4>2. N = 1
BY <2>1, <4>1 DEF InitiateProbe, TypeOK, Token, Node
<4>3. TD!terminated
BY <4>1, <4>2 DEF Node, TD!terminated
<4>. QED BY <3>2, <3>4, <4>3 DEF TD!Next, TD!DetectTermination
<3>. QED BY <3>3, <3>4 DEF terminationDetected
<2>2. ASSUME NEW i \in Node \ {0},
PassToken(i)
PROVE [TD!Next]_(TD!vars)
<3>1. terminationDetected = FALSE
BY <2>2 DEF PassToken, TypeOK, Token, Node, terminationDetected
<3>2. UNCHANGED <<active, pending>>
BY <2>2 DEF PassToken
<3>3. CASE terminationDetected' = FALSE
BY <3>1, <3>2, <3>3, Zenon DEF TD!vars
<3>4. CASE terminationDetected' = TRUE
<4>. TD!terminated'
BY <3>4, Safety, B0NoMessagePending DEF Termination, TD!terminated
<4>. QED BY <3>2, <3>4 DEF TD!Next, TD!DetectTermination, TD!terminated
<3>. QED BY <3>3, <3>4 DEF terminationDetected
<2>3. ASSUME NEW i \in Node,
SendMsg(i)
PROVE [TD!Next]_(TD!vars)
<3>1. PICK j \in Node :
/\ active[i]
/\ counter' = [counter EXCEPT ![i] = @ + 1]
/\ pending' = [pending EXCEPT ![j] = @ + 1]
/\ UNCHANGED <<active, color, token>>
BY <2>3, Zenon DEF SendMsg
<3>2. /\ terminationDetected = FALSE
/\ terminationDetected' = FALSE
BY <3>1, Safety DEF Termination
<3>. QED BY <3>1, <3>2, Zenon DEF TD!Next, TD!SendMsg
<2>4. ASSUME NEW i \in Node,
RecvMsg(i)
PROVE [TD!Next]_(TD!vars)
<3>. /\ terminationDetected = FALSE
/\ terminationDetected' = FALSE
BY <2>4, Safety, B0NoMessagePending DEF RecvMsg, terminationDetected, Termination, TypeOK
<3>. QED BY <2>4, Zenon DEF RecvMsg, TD!Next, TD!RcvMsg
<2>5. ASSUME NEW i \in Node,
Deactivate(i)
PROVE [TD!Next]_(TD!vars)
<3>1. terminationDetected = FALSE
BY <2>5, Safety DEF Termination, Deactivate
<3>2. CASE terminationDetected' = FALSE
BY <2>5, <3>1, <3>2, Zenon DEF Deactivate, TD!Terminate, TD!Next
<3>3. CASE terminationDetected' = TRUE
BY <2>5, <3>3, Safety, B0NoMessagePending, Zenon
DEF Deactivate, Termination, TD!terminated, TD!Terminate, TD!Next, TypeOK
<3>. QED BY <3>2, <3>3 DEF terminationDetected
<2>6. CASE UNCHANGED vars
BY <2>6 DEF vars, terminationDetected, TD!vars
<2>7. QED
BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6 DEF Environment, Next, System
<1>4. []TypeOK /\ []Inv /\ [][Next]_vars /\ WF_vars(System)
=> WF_(TD!vars)(TD!DetectTermination)
<2>1. SUFFICES /\ []TypeOK /\ []Inv /\ [][Next]_vars /\ WF_vars(System)
/\ []ENABLED <<TD!DetectTermination>>_(TD!vars)
=> FALSE
BY PTL
<2>2. TypeOK /\ ENABLED <<TD!DetectTermination>>_(TD!vars)
=> Termination /\ ~ terminationDetected
<3>. SUFFICES ASSUME TypeOK, ENABLED <<TD!DetectTermination>>_(TD!vars)
PROVE Termination /\ ~ terminationDetected
OBVIOUS
<3>1. TD!terminated /\ ~ terminationDetected
BY ExpandENABLED DEF TD!DetectTermination, TD!vars, terminationDetected
<3>2. \A n \in Node : ~ active[n] /\ pending[n] = 0
BY <3>1 DEF TD!terminated
<3>3. B = 0
BY <3>2, SumZero DEF TypeOK, B
<3>. QED BY <3>1, <3>2, <3>3 DEF Termination
<2>. QED BY <2>2, Live, TypeCorrect, Invariance, PTL DEF Liveness
<1>. QED BY <1>1, <1>2, <1>4, TypeCorrect, Invariance, PTL DEF Spec, TD!Spec
=============================================================================
\* Modification History
\* Last modified Fri Jul 01 09:08:35 CEST 2022 by merz
\* Created Wed Apr 13 08:20:53 CEST 2022 by merz