-
Notifications
You must be signed in to change notification settings - Fork 225
/
clstm_compute.cc
564 lines (510 loc) · 17.1 KB
/
clstm_compute.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#include "clstm_compute.h"
#include <iomanip>
#include <iostream>
#include <memory>
#include <unsupported/Eigen/CXX11/Tensor>
// The NOINLINE attribute is used before all forward_/backward_ steps
// to make execution profiles a little more readable (probably not
// needed).
#ifndef NOINLINE
#define NOINLINE __attribute__((noinline))
#endif
// The host/device directives are only meaningful with CUDACC
#ifdef __CUDACC__
#define ONBOTH __host__ __device__
#define ONDEVICE __device__
#else
#define ONBOTH
#define ONDEVICE
#endif
namespace ocropus {
inline void print2d(TensorRef2 t) {
for (int i = 0; i < t.dimension(0); i++) {
for (int j = 0; j < t.dimension(1); j++) {
std::cerr << std::setw(8) << t(i, j);
}
std::cerr << "\n";
}
}
// We can generate code for different Eigen devices by defining
// the DEVICE macro when compiling this compilation unit.
//
// When no DEVICE is given, we use the Eigen::DefaultDevice
// and default to some of the Eigen::Matrix routines (which
// are faster in some cases).
//
// When a DEVICE is given, we use all Tensor operations.
#ifndef DEVICE
typedef Eigen::DefaultDevice Device;
Eigen::DefaultDevice default_device;
#else
#define CLSTM_ALL_TENSOR
typedef DEVICE Device;
#endif
inline void device_notify(Device *dev, int gpu) {
static int count = 0;
if (count > 0) return;
cerr << "using " << typeid(dev).name() << " gpu: " << gpu << "\n";
count++;
}
// When compiling with CUDA, we refer to GPUs by integer index outside
// this code. That ensures that none of the rest of CLSTM has to know
// about CUDA or nvcc.
#if defined(CLSTM_CUDA) && defined(__CUDACC__)
#define MAXGPUS 64
using std::unique_ptr;
struct EigenGpu {
unique_ptr<Eigen::CudaStreamDevice> stream;
unique_ptr<Eigen::GpuDevice> dev;
};
static EigenGpu devices[MAXGPUS];
Eigen::GpuDevice *gpu_device(int id) {
using std::cerr;
using std::endl;
if (id < 0) return nullptr;
assert(id < MAXGPUS);
if (!devices[id].dev) {
cerr << "initializing GPU " << id << endl;
assert(id == 0 && "only GPU 0 tested / supported so far");
auto stream = new Eigen::CudaStreamDevice(/*id*/);
devices[id].stream.reset(stream);
devices[id].dev.reset(new Eigen::GpuDevice(stream));
}
return devices[id].dev.get();
}
#endif
// Some utility functions for dealing with Eigen indexes and axes.
typedef Eigen::IndexPair<int> IndexPair;
typedef Eigen::array<IndexPair, 1> Axes1;
typedef Eigen::array<ptrdiff_t, 1> Indexes1;
typedef Eigen::array<ptrdiff_t, 2> Indexes2;
typedef Eigen::array<ptrdiff_t, 3> Indexes3;
typedef Eigen::array<ptrdiff_t, 4> Indexes4;
ONBOTH inline Axes1 axispairs(int i, int j) {
Axes1 result = {IndexPair(i, j)};
return result;
}
ONBOTH inline Indexes1 indexes(int i) { return Indexes1({i}); }
ONBOTH inline Indexes2 indexes(int i, int j) { return Indexes2({i, j}); }
// Non-linearities. These come in two versions: regular and in-place.
// Note that the regular ones use additive backward-deltas, while the
// in-place ones just modify the deltas in place.
NOINLINE void forward_identity(Device *dev, Batch &y, Batch &x) {
y.v().device(*dev) = x.v();
}
NOINLINE void forward_sigmoid(Device *dev, Batch &y, Batch &x) {
y.v().device(*dev) = x.v().sigmoid();
}
NOINLINE void forward_tanh(Device *dev, Batch &y, Batch &x) {
y.v().device(*dev) = x.v().tanh();
}
NOINLINE void forward_relu(Device *dev, Batch &y, Batch &x) {
y.v().device(*dev) = x.v().cwiseMax(Float(0));
}
NOINLINE void forward_logmag(Device *dev, Batch &y, Batch &x) {
y.v().device(*dev) =
(x.v().abs() + Float(1)).log() *
((x.v() < Float(0)).cast<Float>() * Float(-2) + Float(1));
}
NOINLINE void forward_nonlin(Device *dev, Batch &y, Batch &x, int nl) {
switch (nl) {
case LIN:
forward_identity(dev, y, x);
break;
case SIG:
forward_sigmoid(dev, y, x);
break;
case TANH:
forward_tanh(dev, y, x);
break;
case RELU:
forward_relu(dev, y, x);
break;
case LOGMAG:
forward_logmag(dev, y, x);
break;
default:
abort();
}
}
NOINLINE void backward_identity(Device *dev, Batch &y, Batch &x) {
x.d().device(*dev) += y.d();
}
NOINLINE void backward_sigmoid(Device *dev, Batch &y, Batch &x) {
x.d().device(*dev) += y.v() * (-y.v() + Float(1)) * y.d();
}
NOINLINE void backward_tanh(Device *dev, Batch &y, Batch &x) {
x.d().device(*dev) += (-y.v() * y.v() + Float(1)) * y.d();
}
NOINLINE void backward_relu(Device *dev, Batch &y, Batch &x) {
Float zero = 0;
x.d().device(*dev) += y.d() * (y.v() > zero).cast<Float>();
}
NOINLINE void backward_logmag(Device *dev, Batch &y, Batch &x) {
x.d().device(*dev) += y.d() * (-y.v().abs()).exp();
}
NOINLINE void backward_nonlin(Device *dev, Batch &y, Batch &x, int nl) {
switch (nl) {
case LIN:
backward_identity(dev, y, x);
break;
case SIG:
backward_sigmoid(dev, y, x);
break;
case TANH:
backward_tanh(dev, y, x);
break;
case RELU:
backward_relu(dev, y, x);
break;
case LOGMAG:
backward_logmag(dev, y, x);
break;
default:
abort();
}
}
// Forward and backward non-linearities for in-place processing.
NOINLINE void forward_identity0(Device *dev, Batch &y) {
y.v().device(*dev) = y.v();
}
NOINLINE void forward_sigmoid0(Device *dev, Batch &y) {
y.v().device(*dev) = y.v().sigmoid();
}
NOINLINE void forward_tanh0(Device *dev, Batch &y) {
y.v().device(*dev) = y.v().tanh();
}
NOINLINE void forward_relu0(Device *dev, Batch &y) {
y.v().device(*dev) = y.v().cwiseMax(Float(0));
}
NOINLINE void forward_logmag0(Device *dev, Batch &y) {
y.v().device(*dev) =
(y.v().abs() + Float(1)).log() *
((y.v() < Float(0)).cast<Float>() * Float(-2) + Float(1));
}
NOINLINE void forward_nonlin0(Device *dev, Batch &y, int nl) {
switch (nl) {
case LIN:
forward_identity0(dev, y);
break;
case SIG:
forward_sigmoid0(dev, y);
break;
case TANH:
forward_tanh0(dev, y);
break;
case RELU:
forward_relu0(dev, y);
break;
case LOGMAG:
forward_logmag0(dev, y);
break;
default:
abort();
}
}
NOINLINE void backward_identity0(Device *dev, Batch &y) {
y.d().device(*dev) = y.d();
}
NOINLINE void backward_sigmoid0(Device *dev, Batch &y) {
y.d().device(*dev) = y.v() * (-y.v() + Float(1)) * y.d();
}
NOINLINE void backward_tanh0(Device *dev, Batch &y) {
y.d().device(*dev) = (-y.v() * y.v() + Float(1)) * y.d();
}
NOINLINE void backward_relu0(Device *dev, Batch &y) {
Float zero = 0;
y.d().device(*dev) = y.d() * (y.v() > zero).cast<Float>();
}
NOINLINE void backward_logmag0(Device *dev, Batch &y) {
y.d().device(*dev) = y.d() * (-y.v().abs()).exp();
}
NOINLINE void backward_nonlin0(Device *dev, Batch &y, int nl) {
switch (nl) {
case LIN:
backward_identity0(dev, y);
break;
case SIG:
backward_sigmoid0(dev, y);
break;
case TANH:
backward_tanh0(dev, y);
break;
case RELU:
backward_relu0(dev, y);
break;
case LOGMAG:
backward_logmag0(dev, y);
break;
default:
abort();
}
}
// Full layers with constant offset
#ifndef CLSTM_ALL_TENSOR
#define CBUTFIRST(M) (M).block(0, 1, (M).rows(), (M).cols() - 1)
#define CFIRST(M) (M).col(0)
#endif
NOINLINE void forward_lin1(Device *dev, Batch &y, Params &W1, Batch &x) {
int n = W1.v.dimension(0);
int m = W1.v.dimension(1);
assert(y.rows() == n);
assert(y.cols() == x.cols());
assert(x.rows() == m - 1);
#ifdef CLSTM_ALL_TENSOR
int bs = y.cols();
Indexes2 offsets{0, 1};
Indexes2 sizes{n, m - 1};
Axes1 axes01{IndexPair(1, 0)};
y.v().device(*dev) = W1.v.map1().contract(x.v(), axes01);
Indexes2 shape{n, 1};
Indexes2 bcast{1, bs};
y.v().device(*dev) += W1.v.off1().reshape(shape).broadcast(bcast);
#else
y.v.mat() = (W1.v.mat1() * x.v.mat()).colwise() + W1.v.vec1();
#endif
}
NOINLINE void backward_lin1(Device *dev, Batch &y, Params &W1, Batch &x) {
#ifdef CLSTM_ALL_TENSOR
x.d().device(*dev) += W1.v.map1().contract(y.d(), axispairs(0, 0));
W1.d.map1().device(*dev) += y.d().contract(x.v(), axispairs(1, 1));
W1.d.off1().device(*dev) += y.d().sum(indexes(1));
#else
x.d.mat() += W1.v.mat1().transpose() * y.d.mat();
W1.d.mat1() += y.d.mat() * x.v.mat().transpose();
W1.d.vec1() += y.d.mat().rowwise().sum();
#endif
}
// full layers with nonlinearities
NOINLINE void forward_full1(Device *dev, Batch &y, Params &W1, Batch &x,
int nl) {
assert(y.getGpu() < 0 ? typeid(dev) == typeid(&default_device) : true);
assert(y.getGpu() >= 0 ? typeid(dev) != typeid(&default_device) : true);
forward_lin1(dev, y, W1, x);
forward_nonlin0(dev, y, nl);
}
NOINLINE void backward_full1(Device *dev, Batch &y, Params &W1, Batch &x,
int nl) {
backward_nonlin0(dev, y, nl);
backward_lin1(dev, y, W1, x);
}
// softmax
NOINLINE void forward_softmax(Device *dev, Batch &z, Params &W1, Batch &x) {
Float (*f)(Float) = limexp;
int n = W1.v.dimension(0);
assert(n == z.v.dimension(0));
assert(n >= 2);
#ifdef CLSTM_ALL_TENSOR
int bs = x.cols();
z.v().device(*dev) = W1.v.map1().contract(x.v(), axispairs(1, 0));
z.v().device(*dev) +=
W1.v.off1().reshape(indexes(n, 1)).broadcast(indexes(1, bs));
z.v().device(*dev) = z.v().unaryExpr(f);
EigenTensor1 sums = z.v().sum(indexes(0));
z.v().device(*dev) =
z.v() / sums.reshape(indexes(1, bs)).broadcast(indexes(n, 1));
;
#else
z.v.mat() = (W1.v.mat1() * x.v.mat()).colwise() + W1.v.vec1();
z.v.mat() = z.v.mat().unaryExpr(f);
EigenVector sums = z.v.mat().colwise().sum();
z.v.mat().array().rowwise() /= sums.transpose().array();
#endif
}
NOINLINE void backward_softmax(Device *dev, Batch &z, Params &W1, Batch &x) {
#ifdef CLSTM_ALL_TENSOR
x.d().device(*dev) = W1.v.map1().contract(z.d(), axispairs(0, 0));
W1.d.map1().device(*dev) += z.d().contract(x.v(), axispairs(1, 1));
W1.d.off1().device(*dev) += z.d().sum(indexes(1));
#else
x.d.mat() = W1.v.mat1().transpose() * z.d.mat();
W1.d.mat1() += z.d.mat() * x.v.mat().transpose();
W1.d.vec1() += z.d.mat().rowwise().sum();
#endif
}
// stacking
NOINLINE void forward_stack(Device *dev, Batch &z, Batch &x, Batch &y) {
int nx = x.v.dimension(0), ny = y.v.dimension(0);
int bs = x.v.dimension(1);
assert(z.rows() == x.rows() + y.rows());
assert(z.cols() == x.cols() && z.cols() == y.cols());
z.v().slice(indexes(0, 0), indexes(nx, bs)).device(*dev) = x.v();
z.v().slice(indexes(nx, 0), indexes(ny, bs)).device(*dev) = y.v();
}
NOINLINE void backward_stack(Device *dev, Batch &z, Batch &x, Batch &y) {
int nx = x.v.dimension(0), ny = y.v.dimension(0);
int bs = x.v.dimension(1);
x.d().device(*dev) += z.d().slice(indexes(0, 0), indexes(nx, bs));
y.d().device(*dev) += z.d().slice(indexes(nx, 0), indexes(ny, bs));
}
// stacking with delay
NOINLINE void forward_stack_delay(Device *dev, Batch &z, Batch &x, Sequence &y,
int last) {
int nx = x.v.dimension(0), ny = y[0].v.dimension(0);
int bs = x.v.dimension(1);
assert(z.rows() == x.rows() + y.rows());
assert(z.cols() == x.cols() && z.cols() == y.cols());
#ifdef CLSTM_ALL_TENSOR
z.v().slice(indexes(0, 0), indexes(nx, bs)).device(*dev) = x.v();
if (last >= 0)
z.v().slice(indexes(nx, 0), indexes(ny, bs)).device(*dev) = y[last].v();
else
z.v().slice(indexes(nx, 0), indexes(ny, bs)).device(*dev) =
y[0].v().constant(0);
#else
z.v.mat().block(0, 0, nx, bs) = x.v.mat();
if (last >= 0)
z.v.mat().block(nx, 0, ny, bs) = y[last].v.mat();
else
z.v.mat().block(nx, 0, ny, bs).setZero();
#endif
}
NOINLINE void backward_stack_delay(Device *dev, Batch &z, Batch &x, Sequence &y,
int last) {
int nx = x.v.dimension(0), ny = y[0].v.dimension(0);
int bs = x.v.dimension(1);
#ifdef CLSTM_ALL_TENSOR
x.d().device(*dev) += z.d().slice(indexes(0, 0), indexes(nx, bs));
if (last >= 0)
y[last].d().device(*dev) += z.d().slice(indexes(nx, 0), indexes(ny, bs));
#else
x.d.mat() += z.d.mat().block(0, 0, nx, bs);
if (last >= 0) y[last].d.mat() += z.d.mat().block(nx, 0, ny, bs);
#endif
}
// reverse sequences
NOINLINE void forward_reverse(Device *dev, Sequence &y, Sequence &x) {
int N = x.size();
for (int i = 0; i < N; i++) y[N - i - 1] = x[i];
}
NOINLINE void backward_reverse(Device *dev, Sequence &y, Sequence &x) {
int N = x.size();
for (int i = 0; i < N; i++) x[N - i - 1].d().device(*dev) += y[i].d();
}
// switch time and batch
NOINLINE void forward_btswitch(Device *dev, Sequence &y, Sequence &x) {
TensorMap4 y4 = y.map4();
TensorMap4 x4 = x.map4();
// dimensions are: (feature, batch, 2, time)
assert(y4.dimension(0) == x4.dimension(0));
assert(y4.dimension(1) == x4.dimension(3));
assert(y4.dimension(2) == 2);
assert(y4.dimension(3) == x4.dimension(1));
Indexes3 axes{0, 2, 1};
y4.chip(0, 2).device(*dev) = x4.chip(0, 2).shuffle(axes);
}
NOINLINE void backward_btswitch(Device *dev, Sequence &y, Sequence &x) {
TensorMap4 y4 = y.map4();
TensorMap4 x4 = x.map4();
assert(y4.dimension(0) == x4.dimension(0));
assert(y4.dimension(1) == x4.dimension(3));
assert(y4.dimension(2) == 2);
assert(y4.dimension(3) == x4.dimension(1));
Indexes3 axes{0, 2, 1};
x4.chip(1, 2).device(*dev) += y4.chip(1, 2).shuffle(axes);
}
// stacking neighboring batches
NOINLINE void forward_batchstack(Device *dev, Sequence &y, Sequence &x, int pre,
int post) {
TensorMap4 y4 = y.map4();
TensorMap4 x4 = x.map4();
// dimensions are: (feature, batch, 2, time)
int d = x4.dimension(0);
int bs = x4.dimension(1);
int size = x4.dimension(3);
int copies = pre + post + 1;
assert(y4.dimension(0) == copies * d);
assert(y4.dimension(1) == bs);
assert(y4.dimension(2) == 2);
assert(y4.dimension(3) == x4.dimension(3));
y4.device(*dev) = y4.constant(Float(0));
for (int k = -pre; k <= post; k++) {
int source = max(k, 0);
int dest = max(-k, 0);
int crimp = abs(k);
Indexes4 source_offsets{0, source, 0, 0};
Indexes4 dest_offsets{d * (pre + k), dest, 0, 0};
Indexes4 sizes{d, bs - crimp, 1, size};
y4.slice(dest_offsets, sizes).device(*dev) =
x4.slice(source_offsets, sizes);
}
}
NOINLINE void backward_batchstack(Device *dev, Sequence &y, Sequence &x,
int pre, int post) {
TensorMap4 y4 = y.map4();
TensorMap4 x4 = x.map4();
// dimensions are: (feature, batch, 2, time)
int d = x4.dimension(0);
int bs = x4.dimension(1);
int size = x4.dimension(3);
int copies = pre + post + 1;
assert(y4.dimension(0) == copies * d);
assert(y4.dimension(1) == bs);
assert(y4.dimension(2) == 2);
assert(y4.dimension(3) == x4.dimension(3));
// x4.chip(1,2).device(*dev) = x4.chip(1,2).constant(Float(0));
for (int k = -pre; k <= post; k++) {
int source = max(k, 0);
int dest = max(-k, 0);
int crimp = abs(k);
Indexes4 source_offsets{0, source, 1, 0};
Indexes4 dest_offsets{d * (pre + k), dest, 1, 0};
Indexes4 sizes{d, bs - crimp, 1, size};
x4.slice(source_offsets, sizes).device(*dev) +=
y4.slice(dest_offsets, sizes);
}
}
// combine the delayed gated state with the gated input
NOINLINE void forward_statemem(Device *dev, Batch &state, Batch &ci, Batch &gi,
Sequence &states, int last, Batch &gf) {
state.v().device(*dev) = ci.v() * gi.v();
if (last >= 0) state.v().device(*dev) += gf.v() * states[last].v();
}
NOINLINE void backward_statemem(Device *dev, Batch &state, Batch &ci, Batch &gi,
Sequence &states, int last, Batch &gf) {
if (last >= 0) states[last].d().device(*dev) += state.d() * gf.v();
if (last >= 0) gf.d().device(*dev) += state.d() * states[last].v();
gi.d().device(*dev) += state.d() * ci.v();
ci.d().device(*dev) += state.d() * gi.v();
}
// linear gated output
NOINLINE void forward_gate(Device *dev, Batch &out, Batch &nlstate, Batch &go) {
out.v().device(*dev) = nlstate.v() * go.v();
}
NOINLINE void backward_gate(Device *dev, Batch &out, Batch &nlstate,
Batch &go) {
go.d().device(*dev) += nlstate.v() * out.d();
nlstate.d().device(*dev) += go.v() * out.d();
}
// nonlinear gated output
NOINLINE void forward_nonlingate(Device *dev, Batch &out, Batch &state,
Batch &go, int nl) {
BatchStorage temp;
temp.setGpu(out.getGpu());
temp.resize(out.rows(), out.cols());
forward_nonlin(dev, (Batch &)temp, state, nl);
forward_gate(dev, out, (Batch &)temp, go);
}
NOINLINE void backward_nonlingate(Device *dev, Batch &out, Batch &state,
Batch &go, int nl) {
BatchStorage temp;
temp.setGpu(out.getGpu());
temp.resize(out.rows(), out.cols());
forward_nonlin(dev, (Batch &)temp, state, nl);
backward_gate(dev, out, (Batch &)temp, go);
backward_nonlin(dev, (Batch &)temp, state, nl);
}
NOINLINE void fill(Device *dev, TensorMap2 &a, Float value) {
a.device(*dev) = a.constant(value);
}
NOINLINE void clip_gradient(Device *dev, Batch &x, Float clip) {
if (clip >= 1e6) return;
assert(clip > 0);
x.d().device(*dev) = x.d().cwiseMin(clip);
x.d().device(*dev) = x.d().cwiseMax(-clip);
}
NOINLINE void sgd_update(Device *dev, Params ¶ms, Float lr, Float mom) {
params.v().device(*dev) += params.d() * lr;
params.d().device(*dev) = params.d() * mom;
}
}