This is the repo for feature extraction in Probabilistic Volume Rendering
Data in *.tif format have been store in folders:
- data_bonsai# CT bonsai
- data_kiwi # MRI kiwi
- data_ldCT # Low dose CT
- data_tooth # CT Tooth
Run main_generate_all.m to generate all sparse maps, response maps (3 levels with hierarchical summation at each level) Maps are stored in maps_*
Base implementation was extended from 2D version of MATLAB code from http://brendt.wohlberg.net/software/SPORCO/
If you use this code please refer to these papers:
@article{quan_intelligent_2017,
title = {An {Intelligent} {System} {Approach} for {Probabilistic} {Volume} {Rendering} using {Hierarchical} 3D {Convolutional} {Sparse} {Coding}},
volume = {PP},
issn = {1077-2626},
doi = {10.1109/TVCG.2017.2744078},
journal = {IEEE Transactions on Visualization and Computer Graphics},
author = {Quan, T. M. and Choi, J. and Jeong, H. and Jeong, W. K.},
year = {2017},
}
@inproceedings{wohlberg_efficient_2014,
title = {Efficient convolutional sparse coding},
doi = {10.1109/ICASSP.2014.6854992},
booktitle = {2014 {IEEE} {International} {Conference} on {Acoustics}, {Speech} and {Signal} {Processing} ({ICASSP})},
author = {Wohlberg, B.},
month = may,
year = {2014},
pages = {7173--7177},
}
@article{wohlberg_efficient_2015,
author={B. Wohlberg},
journal={IEEE Transactions on Image Processing},
title={Efficient Algorithms for Convolutional Sparse Representations},
year={2016},
volume={25},
number={1},
pages={301-315},
doi={10.1109/TIP.2015.2495260},
ISSN={1057-7149},
month={Jan},
}