-
Notifications
You must be signed in to change notification settings - Fork 0
/
sphere-code.lisp
123 lines (99 loc) · 3.06 KB
/
sphere-code.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
(defun sq (x) (* x x))
(defun mag (x y z)
(sqrt (+ (sq x) (sq y) (sq z))))
(defun unit-vector (x y z)
(let ((d (mag x y z)))
(values (/ x d) (/ y d) (/ z d))))
(defstruct (point (:conc-name nil))
x y z)
(defun distance (p1 p2)
(mag (- (x p1) (x p2))
(- (y p1) (y p2))
(- (z p1) (z p2))))
(defun minroot (a b c)
(if (zerop a)
(/(- c) b)
(let ((disc (- (sq b) (* 4 a c))))
(unless (minusp disc)
(let ((discrt (sqrt disc)))
(min (/ (+ (- b) discrt) (* 2 a))
(/ (- (- b) discrt) (* 2 a))))))))
(defstruct surface color)
(defparameter *colors* nil)
(setq *colors* '((RED (255 0 0))
(GREEN (0 255 0))
(BLUE (0 0 255))))
(defparameter *world* nil)
(defconstant eye (make-point :x 0 :y 0 :z -200))
;; This writes to the file. It literally just determines the color of the points on the
;; camera-plane
(defun tracer (pathname &optional (res 1)) ;; ideal resolution: 10
(with-open-file (p pathname :direction :output)
(format p "P2 ~A ~A 255" (* res 128) (* res 72))
(let ((inc (/ res)))
(do ((y -36 (+ y inc)))
((< (- 36 y) inc))
(do ((x -64 (+ x inc)))
((< (- 64 x) inc))
(print (color-at x y) p))))))
(defun color-at (x y) ;; returns the color at the point on the camera plane.
(multiple-value-bind (xr yr zr)
(unit-vector (- x (x eye))
(- y (y eye))
(- 0 (z eye)))
(round (* (sendray eye xr yr zr) 255))))
(defun sendray (pt xr yr zr)
(multiple-value-bind (s int) (first-hit pt xr yr zr)
(if s
(* (lambert s int xr yr zr) (surface-color s)) ; notice that lambert passes the same unit vector. This is because the light is at the eye
0)))
(defun first-hit (pt xr yr zr)
(let (surface hit dist)
(dolist (s *world*)
(let ((h (intersect s pt xr yr zr)))
(when h
(let ((d (distance h pt)))
(when (or (null dist) (< d dist))
(setf surface s hit h dist d))))))
(values surface hit)))
(defun lambert (s int xr yr zr)
(multiple-value-bind (xn yn zn) (normal s int)
(max 0 (+ (* xr xn) (* yr yn) (* zr zn)))))
;; Types of shapes
(defstruct (sphere (:include surface))
radius center)
(defun defsphere (x y z r c)
(let ((s (make-sphere
:radius r
:center (make-point :x x :y y :z z)
:color c)))
(push s *world*)
s))
;; Computing INTERSECTION
(defun intersect (s pt xr yr zr)
(funcall (typecase
s (sphere #'sphere-intersect))
s pt xr yr zr))
(defun sphere-intersect (s pt xr yr zr)
(let* ((c (sphere-center s))
(n (minroot (+ (sq xr) (sq yr) (sq zr))
(* 2 (+ (* (- (x pt) (x c)) xr)
(* (- (y pt) (y c)) yr)
(* (- (z pt) (z c)) zr)))
(+ (sq (- (x pt) (x c)))
(sq (- (y pt) (y c)))
(sq (- (z pt) (z c)))
(- (sq (sphere-radius s)))))))
(if n
(make-point :x (+ (x pt) (* n xr))
:y (+ (y pt) (* n yr))
:z (+ (z pt) (* n zr))))))
;; Computing NORMALS
(defun normal (s pt)
(funcall (typecase s (sphere #'sphere-normal))
s pt))
(defun sphere-normal (s pt)
(let ((c (sphere-center s)))
(unit-vector (- (x c) (x pt))
(- (y c) (y pt))
(- (z c) (z pt)))))