Continuous-time system
Multiple Representations of CT Systems
the same as DT Systems
New methods based on block diagrams and operators , provide new ways to think about system's behaviors.
Key difference is the delays in DT are replaced by integrators in CT .
use the $A$ operator.
$A$ in CT signal generates a new signal that equals to the integral of the input signal at all points .
$Y=AX$ is equal to $y(t) = \int^t_{-\infty}x(\tau)d\tau$ for all the time $t$ .
Nonzero only at $t=0$ .
Integral $(-\infty, +\infty)$ is $1$ .
Represented by an arrow with number $1$ , representing the area or weight .
Unit Impulse and Unit Step
Indefinite integral of unit impulse is unit step .
$$u(t) = \int^t_{-\infty}\delta(\lambda)d\lambda = \begin{cases}1&t\ge0\0&\text{otherwise} \end{cases}$$
Then we can see the block diagram:
Impulse Response of Acyclic CT System
If the block diagram of CT system has no feedback (acyclic, no circle), then the corresponding expression is imperative .
$Y=(1+A)^2X$
if $x(t) = \delta(t)$ , then $y(y) = \delta(t) + 2u(t) + t\cdot u(t)$
Method 1: Differential Equation Method
$\dot{y}(t) = x(t) + py(t)$ this is a linear, first order equation with constant coefficients.
try $y(t) = C e^{\alpha t}u(t)$ , then we get:
$\dot y(t) = \alpha C e^{\alpha t} u(t) + C e^{\alpha t} \delta (t) = \alpha C e^{\alpha t} u(t) + C\delta(t) = \delta(t) + pC e^{\alpha t} u(t) = x(t) + py(t)$
if $y(t) = e^{pt}u(t)$ , the equation is satisfied ($\delta(t) = e^{pt}\delta(t)$).
Method 2: Operator Method
$Y=A(X+pY) \leftrightarrow \frac{Y}{X} = \frac{A}{1-pA} = A(1 + pA + p^2A^2 + \cdots)$
Let $X = x(t) = \delta(t)$ then:
$y(t) = A(1+pA + p^2A^2 + \dots)\delta(t) \=(1+pA+p^2A^2 + \dots)u(t) \= (1 + pt + \frac{1}{2}p^2t^2 + \frac{1}{6}p^3t^3+\cdots)u(t) = e^{pt}u(t)$ .
Convergent and Divergent Poles
check the CT system :
then we get a $y(t) = e^{pt}u(t)$ .
We decide the convergence by this method:
if $Re(p) < 0$ then it is convergent, $Re(p) > 0$ then it is divergent.
Feedback Comparison (CT, DT)
In CT, each cycle adds new integration.
$y(t) = A(1+pA + p^2A^2 + \dots)\delta(t) \=(1+pA+p^2A^2 + \dots)u(t) \= (1 + pt + \frac{1}{2}p^2t^2 + \frac{1}{6}p^3t^3+\cdots)u(t) = e^{pt}u(t)$
In DT, each cycle creates another sample in output:
$y[n] = (1+pR+p^2R^2+p^3R^3 +\cdots)\delta[n]\=\delta[n] + p\delta[n-1] + p^2\delta[n-2]+p^3\delta[n-3] + \cdots$
Equation:
$\dot{y}(t) = x(t)+py(t)$
$y[n] = x[n]+py[n-1]$
Block diagram:
Operator:
$\frac A {1-pA}$
$\frac 1 {1-pR}$
Solution
$e^{pt}u(t)$
$p^nu[n]$
Convergence:
$\frac{1}{1-\frac{1}{4}R^2}$
$Y = \frac{1}{1-\frac{1}{4}R^2}X\ = k_1\frac{1}{1-\frac{1}{2}R}X+k_2\frac{1}{1+\frac{1}{2}R}X \= k_1 (1 + \frac{1}{2}R + \frac{1}{4}R^2 + \cdots)X + k_2(1 + (-\frac{1}{2}R) + (-\frac{1}{2}R)^2 + \cdots)X$
Poles of $\pm \frac{1}{2}$ for discrete case, so convergent.
$\frac{1}{1-\frac{1}{4}A^2}$
$Y = \frac{1}{1-\frac{1}{4}A^2}X\=k_1\frac{1}{1-\frac{1}{2}A}X + k_2\frac{1}{1+\frac{1}{2}A}X\=k_1(1+\frac{1}{2}A + (\frac{1}{2}A)^2 + \cdots)X + k_2(1+(-\frac{1}{2}A) + (-\frac{1}{2}A)^2 + \cdots)X\ = k_1 e^{1/2t} + k_2 e^{-1/2t}$
Poles of $\pm \frac{1}{2}$ in continuous case, so divergent ($\frac{1}{2}$ ).
$\frac{1}{1+2R+\frac{3}{4}R^2}$
$Y = \frac{1}{1+2R+\frac{3}{4}R^2}X\=k_1\frac{1}{1+\frac{1}{2}R}X+k_2\frac{1}{1+\frac{3}{2}R}X$
We have pole for $-\frac{3}{2}$ and $-\frac{1}{2}$ in discrete case, so divergent ($-\frac{3}{2}$ ).
$\frac{1}{1+2A+\frac{3}{4}A^2}$
$Y = \frac{1}{1+2A+\frac{3}{4}A^2}X\=k_1\frac{1}{1+\frac{1}{2}A}X+k_2\frac{1}{1+\frac{3}{2}A}X$
The poles are $-\frac{1}{2}$ and $-\frac{3}{2}$ in continuous case, so convergent.
Mass-Spring System (Exercise)
$F = K(x(t) - y(t)) = M \dot{\dot{y}}(t)$
$\frac{Y}{X} = \frac{\frac{K}{M}A^2}{1+\frac{K}{M}A^2}$ , thus $p = \pm j\sqrt{\frac{K}{M}}$ .
$e^{j\omega_0t} = cos\omega_0t+jsin\omega_0t$ and $e^{-j\omega_0t} = cos\omega_0t-jsin\omega_0t$ .
$\frac{Y}{X} = \frac{\omega_0}{2j} (\frac{A}{1-j\omega_0A}) - \frac{\omega_0}{2j}(\frac{A}{1+j\omega_0A})$ , with $\frac{A}{1\pm j\omega_0A}$ as two modes (check lecture 2 for fundamental modes )
Then check lecture 3 for fundamental mode and complex poles , we get:
$y(t) = \frac{\omega_0}{2j}(e^{j\omega_0t} - e^{-j\omega_0t}) = \omega_0 sin\omega_0t$ , $t > 0$ .
An alternative (ugly) approach
$\frac{Y}{X} = \frac{\omega_0^2A^2}{1+\omega_0^2A^2} = \omega_0^2A^2\sum^\infty_{l=0}(-\omega_0^2A^2)^l$
then if $x(t) = \delta(t)$ :
$y(t) = \sum^\infty_{l=0}\omega_0^2(-\omega_0^2)^lA^{2l+2}\delta(t) = \omega_0^2t-\omega_0^4\frac{t^3}{3!} + \omega_0^6\frac{t^5}{5!} \cdots = \omega_0sin\omega_0t$