-
Notifications
You must be signed in to change notification settings - Fork 54.6k
/
irq.c
550 lines (494 loc) · 15.5 KB
/
irq.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
// SPDX-License-Identifier: GPL-2.0-only
/*
* Common interrupt code for 32 and 64 bit
*/
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/of.h>
#include <linux/seq_file.h>
#include <linux/smp.h>
#include <linux/ftrace.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/irq.h>
#include <asm/irq_stack.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/irq.h>
#include <asm/mce.h>
#include <asm/hw_irq.h>
#include <asm/desc.h>
#include <asm/traps.h>
#include <asm/thermal.h>
#include <asm/posted_intr.h>
#include <asm/irq_remapping.h>
#define CREATE_TRACE_POINTS
#include <asm/trace/irq_vectors.h>
DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
EXPORT_PER_CPU_SYMBOL(irq_stat);
atomic_t irq_err_count;
/*
* 'what should we do if we get a hw irq event on an illegal vector'.
* each architecture has to answer this themselves.
*/
void ack_bad_irq(unsigned int irq)
{
if (printk_ratelimit())
pr_err("unexpected IRQ trap at vector %02x\n", irq);
/*
* Currently unexpected vectors happen only on SMP and APIC.
* We _must_ ack these because every local APIC has only N
* irq slots per priority level, and a 'hanging, unacked' IRQ
* holds up an irq slot - in excessive cases (when multiple
* unexpected vectors occur) that might lock up the APIC
* completely.
* But only ack when the APIC is enabled -AK
*/
apic_eoi();
}
#define irq_stats(x) (&per_cpu(irq_stat, x))
/*
* /proc/interrupts printing for arch specific interrupts
*/
int arch_show_interrupts(struct seq_file *p, int prec)
{
int j;
seq_printf(p, "%*s: ", prec, "NMI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
seq_puts(p, " Non-maskable interrupts\n");
#ifdef CONFIG_X86_LOCAL_APIC
seq_printf(p, "%*s: ", prec, "LOC");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
seq_puts(p, " Local timer interrupts\n");
seq_printf(p, "%*s: ", prec, "SPU");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
seq_puts(p, " Spurious interrupts\n");
seq_printf(p, "%*s: ", prec, "PMI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
seq_puts(p, " Performance monitoring interrupts\n");
seq_printf(p, "%*s: ", prec, "IWI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
seq_puts(p, " IRQ work interrupts\n");
seq_printf(p, "%*s: ", prec, "RTR");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
seq_puts(p, " APIC ICR read retries\n");
if (x86_platform_ipi_callback) {
seq_printf(p, "%*s: ", prec, "PLT");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
seq_puts(p, " Platform interrupts\n");
}
#endif
#ifdef CONFIG_SMP
seq_printf(p, "%*s: ", prec, "RES");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
seq_puts(p, " Rescheduling interrupts\n");
seq_printf(p, "%*s: ", prec, "CAL");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
seq_puts(p, " Function call interrupts\n");
seq_printf(p, "%*s: ", prec, "TLB");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
seq_puts(p, " TLB shootdowns\n");
#endif
#ifdef CONFIG_X86_THERMAL_VECTOR
seq_printf(p, "%*s: ", prec, "TRM");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
seq_puts(p, " Thermal event interrupts\n");
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
seq_printf(p, "%*s: ", prec, "THR");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
seq_puts(p, " Threshold APIC interrupts\n");
#endif
#ifdef CONFIG_X86_MCE_AMD
seq_printf(p, "%*s: ", prec, "DFR");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
seq_puts(p, " Deferred Error APIC interrupts\n");
#endif
#ifdef CONFIG_X86_MCE
seq_printf(p, "%*s: ", prec, "MCE");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
seq_puts(p, " Machine check exceptions\n");
seq_printf(p, "%*s: ", prec, "MCP");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
seq_puts(p, " Machine check polls\n");
#endif
#ifdef CONFIG_X86_HV_CALLBACK_VECTOR
if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
seq_printf(p, "%*s: ", prec, "HYP");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
irq_stats(j)->irq_hv_callback_count);
seq_puts(p, " Hypervisor callback interrupts\n");
}
#endif
#if IS_ENABLED(CONFIG_HYPERV)
if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
seq_printf(p, "%*s: ", prec, "HRE");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
irq_stats(j)->irq_hv_reenlightenment_count);
seq_puts(p, " Hyper-V reenlightenment interrupts\n");
}
if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
seq_printf(p, "%*s: ", prec, "HVS");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
irq_stats(j)->hyperv_stimer0_count);
seq_puts(p, " Hyper-V stimer0 interrupts\n");
}
#endif
seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
#if defined(CONFIG_X86_IO_APIC)
seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
#endif
#if IS_ENABLED(CONFIG_KVM)
seq_printf(p, "%*s: ", prec, "PIN");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
seq_puts(p, " Posted-interrupt notification event\n");
seq_printf(p, "%*s: ", prec, "NPI");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
irq_stats(j)->kvm_posted_intr_nested_ipis);
seq_puts(p, " Nested posted-interrupt event\n");
seq_printf(p, "%*s: ", prec, "PIW");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
irq_stats(j)->kvm_posted_intr_wakeup_ipis);
seq_puts(p, " Posted-interrupt wakeup event\n");
#endif
#ifdef CONFIG_X86_POSTED_MSI
seq_printf(p, "%*s: ", prec, "PMN");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
irq_stats(j)->posted_msi_notification_count);
seq_puts(p, " Posted MSI notification event\n");
#endif
return 0;
}
/*
* /proc/stat helpers
*/
u64 arch_irq_stat_cpu(unsigned int cpu)
{
u64 sum = irq_stats(cpu)->__nmi_count;
#ifdef CONFIG_X86_LOCAL_APIC
sum += irq_stats(cpu)->apic_timer_irqs;
sum += irq_stats(cpu)->irq_spurious_count;
sum += irq_stats(cpu)->apic_perf_irqs;
sum += irq_stats(cpu)->apic_irq_work_irqs;
sum += irq_stats(cpu)->icr_read_retry_count;
if (x86_platform_ipi_callback)
sum += irq_stats(cpu)->x86_platform_ipis;
#endif
#ifdef CONFIG_SMP
sum += irq_stats(cpu)->irq_resched_count;
sum += irq_stats(cpu)->irq_call_count;
#endif
#ifdef CONFIG_X86_THERMAL_VECTOR
sum += irq_stats(cpu)->irq_thermal_count;
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
sum += irq_stats(cpu)->irq_threshold_count;
#endif
#ifdef CONFIG_X86_HV_CALLBACK_VECTOR
sum += irq_stats(cpu)->irq_hv_callback_count;
#endif
#if IS_ENABLED(CONFIG_HYPERV)
sum += irq_stats(cpu)->irq_hv_reenlightenment_count;
sum += irq_stats(cpu)->hyperv_stimer0_count;
#endif
#ifdef CONFIG_X86_MCE
sum += per_cpu(mce_exception_count, cpu);
sum += per_cpu(mce_poll_count, cpu);
#endif
return sum;
}
u64 arch_irq_stat(void)
{
u64 sum = atomic_read(&irq_err_count);
return sum;
}
static __always_inline void handle_irq(struct irq_desc *desc,
struct pt_regs *regs)
{
if (IS_ENABLED(CONFIG_X86_64))
generic_handle_irq_desc(desc);
else
__handle_irq(desc, regs);
}
static __always_inline int call_irq_handler(int vector, struct pt_regs *regs)
{
struct irq_desc *desc;
int ret = 0;
desc = __this_cpu_read(vector_irq[vector]);
if (likely(!IS_ERR_OR_NULL(desc))) {
handle_irq(desc, regs);
} else {
ret = -EINVAL;
if (desc == VECTOR_UNUSED) {
pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n",
__func__, smp_processor_id(),
vector);
} else {
__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
}
}
return ret;
}
/*
* common_interrupt() handles all normal device IRQ's (the special SMP
* cross-CPU interrupts have their own entry points).
*/
DEFINE_IDTENTRY_IRQ(common_interrupt)
{
struct pt_regs *old_regs = set_irq_regs(regs);
/* entry code tells RCU that we're not quiescent. Check it. */
RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
if (unlikely(call_irq_handler(vector, regs)))
apic_eoi();
set_irq_regs(old_regs);
}
#ifdef CONFIG_X86_LOCAL_APIC
/* Function pointer for generic interrupt vector handling */
void (*x86_platform_ipi_callback)(void) = NULL;
/*
* Handler for X86_PLATFORM_IPI_VECTOR.
*/
DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)
{
struct pt_regs *old_regs = set_irq_regs(regs);
apic_eoi();
trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
inc_irq_stat(x86_platform_ipis);
if (x86_platform_ipi_callback)
x86_platform_ipi_callback();
trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
set_irq_regs(old_regs);
}
#endif
#if IS_ENABLED(CONFIG_KVM)
static void dummy_handler(void) {}
static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
{
if (handler)
kvm_posted_intr_wakeup_handler = handler;
else {
kvm_posted_intr_wakeup_handler = dummy_handler;
synchronize_rcu();
}
}
EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
/*
* Handler for POSTED_INTERRUPT_VECTOR.
*/
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)
{
apic_eoi();
inc_irq_stat(kvm_posted_intr_ipis);
}
/*
* Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
*/
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)
{
apic_eoi();
inc_irq_stat(kvm_posted_intr_wakeup_ipis);
kvm_posted_intr_wakeup_handler();
}
/*
* Handler for POSTED_INTERRUPT_NESTED_VECTOR.
*/
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)
{
apic_eoi();
inc_irq_stat(kvm_posted_intr_nested_ipis);
}
#endif
#ifdef CONFIG_X86_POSTED_MSI
/* Posted Interrupt Descriptors for coalesced MSIs to be posted */
DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc);
void intel_posted_msi_init(void)
{
u32 destination;
u32 apic_id;
this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR);
/*
* APIC destination ID is stored in bit 8:15 while in XAPIC mode.
* VT-d spec. CH 9.11
*/
apic_id = this_cpu_read(x86_cpu_to_apicid);
destination = x2apic_enabled() ? apic_id : apic_id << 8;
this_cpu_write(posted_msi_pi_desc.ndst, destination);
}
/*
* De-multiplexing posted interrupts is on the performance path, the code
* below is written to optimize the cache performance based on the following
* considerations:
* 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
* accessed by both CPU and IOMMU.
* 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
* for checking and clearing posted interrupt request (PIR), a 256 bit field
* within the PID.
* 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
* line when posting interrupts and setting control bits.
* 4.The CPU can access the cache line a magnitude faster than the IOMMU.
* 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
* cache line. The cache line states after each operation are as follows:
* CPU IOMMU PID Cache line state
* ---------------------------------------------------------------
*...read64 exclusive
*...lock xchg64 modified
*... post/atomic swap invalid
*...-------------------------------------------------------------
*
* To reduce L1 data cache miss, it is important to avoid contention with
* IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
* to dispatch interrupt handlers.
*
* In addition, the code is trying to keep the cache line state consistent
* as much as possible. e.g. when making a copy and clearing the PIR
* (assuming non-zero PIR bits are present in the entire PIR), it does:
* read, read, read, read, xchg, xchg, xchg, xchg
* instead of:
* read, xchg, read, xchg, read, xchg, read, xchg
*/
static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
{
int i, vec = FIRST_EXTERNAL_VECTOR;
unsigned long pir_copy[4];
bool handled = false;
for (i = 0; i < 4; i++)
pir_copy[i] = pir[i];
for (i = 0; i < 4; i++) {
if (!pir_copy[i])
continue;
pir_copy[i] = arch_xchg(&pir[i], 0);
handled = true;
}
if (handled) {
for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
call_irq_handler(vec, regs);
}
return handled;
}
/*
* Performance data shows that 3 is good enough to harvest 90+% of the benefit
* on high IRQ rate workload.
*/
#define MAX_POSTED_MSI_COALESCING_LOOP 3
/*
* For MSIs that are delivered as posted interrupts, the CPU notifications
* can be coalesced if the MSIs arrive in high frequency bursts.
*/
DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
{
struct pt_regs *old_regs = set_irq_regs(regs);
struct pi_desc *pid;
int i = 0;
pid = this_cpu_ptr(&posted_msi_pi_desc);
inc_irq_stat(posted_msi_notification_count);
irq_enter();
/*
* Max coalescing count includes the extra round of handle_pending_pir
* after clearing the outstanding notification bit. Hence, at most
* MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
*/
while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
if (!handle_pending_pir(pid->pir64, regs))
break;
}
/*
* Clear outstanding notification bit to allow new IRQ notifications,
* do this last to maximize the window of interrupt coalescing.
*/
pi_clear_on(pid);
/*
* There could be a race of PI notification and the clearing of ON bit,
* process PIR bits one last time such that handling the new interrupts
* are not delayed until the next IRQ.
*/
handle_pending_pir(pid->pir64, regs);
apic_eoi();
irq_exit();
set_irq_regs(old_regs);
}
#endif /* X86_POSTED_MSI */
#ifdef CONFIG_HOTPLUG_CPU
/* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
void fixup_irqs(void)
{
unsigned int vector;
struct irq_desc *desc;
struct irq_data *data;
struct irq_chip *chip;
irq_migrate_all_off_this_cpu();
/*
* We can remove mdelay() and then send spurious interrupts to
* new cpu targets for all the irqs that were handled previously by
* this cpu. While it works, I have seen spurious interrupt messages
* (nothing wrong but still...).
*
* So for now, retain mdelay(1) and check the IRR and then send those
* interrupts to new targets as this cpu is already offlined...
*/
mdelay(1);
/*
* We can walk the vector array of this cpu without holding
* vector_lock because the cpu is already marked !online, so
* nothing else will touch it.
*/
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
continue;
if (is_vector_pending(vector)) {
desc = __this_cpu_read(vector_irq[vector]);
raw_spin_lock(&desc->lock);
data = irq_desc_get_irq_data(desc);
chip = irq_data_get_irq_chip(data);
if (chip->irq_retrigger) {
chip->irq_retrigger(data);
__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
}
raw_spin_unlock(&desc->lock);
}
if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
}
}
#endif
#ifdef CONFIG_X86_THERMAL_VECTOR
static void smp_thermal_vector(void)
{
if (x86_thermal_enabled())
intel_thermal_interrupt();
else
pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
smp_processor_id());
}
DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
{
trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
inc_irq_stat(irq_thermal_count);
smp_thermal_vector();
trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
apic_eoi();
}
#endif