-
Notifications
You must be signed in to change notification settings - Fork 0
/
acml17-tute.html
137 lines (126 loc) · 14.4 KB
/
acml17-tute.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>Truyen Tran</title>
<meta content="en-us" http-equiv="Content-Language">
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
<meta http-equiv="Content-type" content="text/html;charset=UTF-8">
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Abel">
<style type="text/css">
/* Layout-provided Styles */
ul.itemize {
margin-top: 0.7ex;
margin-bottom: 0.7ex;
margin-left: 3ex;
text-align: left;
}
</style>
<style>
body {
font-family: 'Abel', serif;
font-size: 12px;
}
</style></head>
<body>
<table style="border-collapse: collapse; width: 1038px; height: 1304px;" id="1" border="0" bordercolor="#111111" cellpadding="0" cellspacing="0">
<tbody>
<tr>
<td style="border-right: 1px solid;" v="" bgcolor="#000000"> </td>
<td> </td>
<td style="vertical-align: top;" v=""> </td>
</tr>
<tr>
<td rowspan="2" v="" style="border-width: 1px; border-right: 1px solid; vertical-align: top;">
<p align="right"><img style="border: 2px solid ; width: 200px; height: 200px;" alt="portrait" src="figs/14064962%20390x390%20jpg.jpg" hspace="0"><br>
(Source: <a href="http://www.teksystems.com/resources/teksavvy-blog/2013/august/healthcare-analytics-present-opportunities-poses-challenges">TEKsystems</a>)</p>
<p align="right">
</p>
<p align="right">
</p>
<p align="right">
</p>
<p align="right"><font size="5"><a href="index.html">Home</a></font>
</p>
<br>
<p align="justify"></p>
<p align="justify"> </p>
<p align="justify"></p>
<p align="justify"> </p>
<p align="justify"> </p>
</td>
</tr>
<tr>
<td width="24">
<p></p>
<p> </p>
<p> </p>
</td>
<td width="837">
<p>
<table style="width: 100%; text-align: left; margin-left: auto; margin-right: auto;" border="0" bordercolor="#000000" cellpadding="15" cellspacing="3">
<tbody>
<tr>
<td style="background-color: white;">
<p><font style="font-weight: bold; color: rgb(0, 102, 0);" size="+3">Deep learning for biomedicine</font></p><p><font style="color: rgb(0, 102, 0);" size="+3">A tutorial @ACML17, Seoul, Nov 2017.</font><font style="font-weight: bold; color: rgb(0, 102, 0);" size="+3"></font></p><p style="color: black; font-weight: bold;"><font size="+2">Slides (<a href="talks/DL4biomed-partI.pdf">Part I</a>; <a href="talks/DL4biomed-partII.pdf">Part II</a>)</font></p><ul style="color: black;">
</ul>
</td>
</tr>
</tbody>
</table>
</p>
<hr><br>
<p align="justify"><font style="font-weight: bold;" size="5">References</font></p><ul>
<li><a href="#Genomics__drug_design"><font size="+2">Genomics & drug design</font></a></li>
<li><a href="#Medical_imaging"><font size="+2">Biomedical imaging</font></a></li>
<li><a href="#Healthcare"><font size="+2">Healthcare</font></a></li>
<li><a href="#Deep_learning_fundamentals"><font size="+2">Deep learning fundamentals</font></a></li>
</ul><font size="+2"><span style="font-weight: bold; font-family: Times New Roman,Times,serif;"><br><a name="Genomics__drug_design"></a><span style="font-family: Times New Roman,Times,serif;"></span></span></font><font style="font-weight: bold;" size="5">Genomics & drug design</font><font size="+2"><span style="font-weight: bold; font-family: Times New Roman,Times,serif;"><span style="font-family: Times New Roman,Times,serif;"></span><br></span></font><br>
<ol>
<li><font size="+2">Altae-Tran, Han, et al. "Low Data Drug Discovery with One-Shot Learning." <span style="font-style: italic;">ACS central science</span> 3.4 (2017): 283-293.</font></li><li><font size="+2">Alipanahi, Babak, et al. "Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning."<span style="font-style: italic;"> Nature biotechnology</span> 33.8 (2015): 831-838.</font></li>
<li><font size="+2">Boža,
Vladimír, Broňa Brejová, and Tomáš Vinař. "DeepNano: Deep recurrent
neural networks for base calling in MinION nanopore reads." <span style="font-style: italic;">PloS one</span> 12.6 (2017): e0178751.</font></li>
<li><font size="+2">Ching, Travers, et al. "Opportunities And Obstacles For Deep Learning In Biology And Medicine." <span style="font-style: italic;">bioRxiv</span> (2017): 142760.</font></li>
<li><font size="+2">Duvenaud, David K., et al. "Convolutional networks on graphs for learning molecular fingerprints." <span style="font-style: italic;">Advances in neural information processing systems</span>. 2015.</font></li>
<li><font size="+2">Gilmer, Justin, et al. "Neural message passing for quantum chemistry."<span style="font-style: italic;"> arXiv preprint arXiv:1704.01212</span> (2017).</font></li>
<li><font size="+2">Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules."<span style="font-style: italic;"> arXiv preprint arXiv:1610.02415</span> (2016)</font></li>
<li><font size="+2">Gupta, Anvita, et al. "Generative Recurrent Networks for De Novo Drug Design." <span style="font-style: italic;">Molecular Informatics</span> (2017).</font></li>
<li><font size="+2">Kusner, Matt J., Brooks Paige, and José Miguel Hernández-Lobato. "Grammar Variational Autoencoder." <span style="font-style: italic;">arXiv preprint arXiv:1703.01925</span> (2017).</font></li>
<li><font size="+2">Lanchantin, Jack, Ritambhara Singh, and Yanjun Qi. "Memory Matching Networks for Genomic Sequence Classification." <span style="font-style: italic;">arXiv preprint arXiv:1702.06760</span> (2017).</font></li>
<li><font size="+2">Olivecrona, Marcus, et al. "Molecular De Novo Design through Deep Reinforcement Learning." <span style="font-style: italic;">arXiv preprint arXiv:1704.07555</span>(2017).</font></li>
<li><font size="+2">Penmatsa,
Aravind, Kevin H. Wang, and Eric Gouaux. "X-ray structure of dopamine
transporter elucidates antidepressant mechanism." <span style="font-style: italic;">Nature</span> 503.7474 (2013): 85-90.</font></li>
<li><font size="+2"> Pham, Trang et al. "Graph Classification via Deep Learning with Virtual Nodes. <span style="font-style: italic;">Third Representation Learning for Graphs Workshop (ReLiG 2017)</span>.</font></li>
<li><font size="+2">Romero, Adriana, et al. "Diet Networks: Thin Parameters for Fat Genomic." <span style="font-style: italic;">arXiv preprint arXiv:1611.09340</span> (2016).</font></li><li><font size="+2">Roses, Allen D. "Pharmacogenetics in drug discovery and development: a translational perspective." <span style="font-style: italic;">Nature reviews Drug discovery</span> 7.10 (2008): 807-817.</font></li><li><font size="+2">Segler, Marwin HS, et al. "Generating focussed molecule libraries for drug discovery with recurrent neural networks." <span style="font-style: italic;">arXiv preprint arXiv:1701.01329</span> (2017). </font></li><li><font size="+2">Segler,
Marwin, Mike Preuß, and Mark P. Waller. "Towards" AlphaChem": Chemical
Synthesis Planning with Tree Search and Deep Neural Network Policies." <span style="font-style: italic;">arXiv preprint arXiv:1702.00020</span>(2017).</font></li>
<li><font size="+2">Stoiber, Marcus, and James Brown. "BasecRAWller: Streaming Nanopore Basecalling Directly from Raw Signal." <span style="font-style: italic;">bioRxiv (2017)</span>: 133058.</font></li><li><font size="+2">Teng, Haotien, et al. "Chiron: Translating nanopore raw signal directly into nucleotide sequence using deep learning." <span style="font-style: italic;">bioRxiv(2017)</span>: 179531. </font></li>
</ol>
<font size="+2"><span style="font-weight: bold; font-family: Times New Roman,Times,serif;"><a name="Medical_imaging"></a></span></font><font style="font-weight: bold;" size="5">Biomedical imaging</font><font size="+2"><span style="font-weight: bold; font-family: Times New Roman,Times,serif;"><br></span></font><ol>
<li><font size="+2">Kraus, Oren Z., and Brendan J. Frey. "Computer vision for high content screening." <span style="font-style: italic;">Critical reviews in biochemistry and molecular biology</span> 51.2 (2016): 102-109.</font></li>
<li><font size="+2">Litjens, Geert, et al. "A survey on deep learning in medical image analysis." <span style="font-style: italic;">arXiv preprint</span> arXiv:1702.05747 (2017).</font></li><li><font size="+2">Quinn, John A., et al. "Deep convolutional neural networks for microscopy-based point of care diagnostics." <span style="font-style: italic;">Machine Learning for Healthcare Conference</span>. 2016.</font></li></ol><font size="+2"><br style="font-family: Times New Roman,Times,serif;"><span style="font-weight: bold; font-family: Times New Roman,Times,serif;"><a name="Healthcare"></a></span></font><font style="font-weight: bold;" size="5">Healthcare</font><font size="+2"><span style="font-weight: bold; font-family: Times New Roman,Times,serif;"><br></span></font>
<ol>
<li><font size="+2">Che, Zhengping, et al. "Recurrent neural networks for multivariate time series with missing values." <span style="font-style: italic;">arXiv preprint arXiv:1606.01865</span>(2016).</font></li>
<li><font size="+2">Choi, Edward, et al. "Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks." <span style="font-style: italic;">arXiv preprint arXiv:1703.06490</span> (2017).</font></li>
<li><font size="+2">Choi, Edward, et al. "Doctor AI: Predicting clinical events via recurrent neural networks." <span style="font-style: italic;">Machine Learning for Healthcare Conference</span>. 2016.</font></li>
<li><font size="+2">Choi, Edward, et al. "GRAM: Graph-based attention model for healthcare representation learning." <span style="font-style: italic;">Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining</span>. ACM, 2017.</font></li>
<li><font size="+2">Choi, Edward, et al. "RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism." <span style="font-style: italic;">Advances in Neural Information Processing Systems</span>. 2016.</font></li>
<li><font size="+2">Do, Kien et al. "Learning Recurrent Matrix Representation", <span style="font-style: italic;">Third Representation Learning for Graphs Workshop (ReLiG 2017)</span>, also: <span style="font-style: italic;">arXiv preprint arXiv: 1703.01454</span>.</font></li>
<li><font size="+2">Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." <span style="font-style: italic;">Nature</span> 542.7639 (2017): 115-118.</font></li>
<li><font size="+2">Lipton, Zachary C., et al. "Learning to diagnose with LSTM recurrent neural networks."<span style="font-style: italic;"> arXiv preprint arXiv:1511.03677</span>(2015).</font></li><li><font size="+2">Miotto,
Riccardo, et al. "Deep patient: An unsupervised representation to
predict the future of patients from the electronic health records." <span style="font-style: italic;">Scientific reports</span> 6 (2016): 26094.</font></li><li><font size="+2">Nguyen, Phuoc. "Deep Learning to Attend to Risk in ICU", <span style="font-style: italic;"> IJCAI'17 Workshop on Knowledge Discovery in Healthcare II: Towards Learning Healthcare Systems</span> (KDH 2017). </font></li><li><font size="+2">Nguyen, Phuoc et al. "Deepr: A Convolutional Net for Medical Records". <span style="font-style: italic;">IEEE Journal of Biomedical and Health Informatics</span>, vol. 21, no. 1, pp. 22–30, Jan. 2017, Doi: 10.1109/JBHI.2016.2633963</font></li><li><font size="+2">Nguyen, Tu et al. "Tensor-variate Restricted Boltzmann Machines", <span style="font-style: italic;">AAAI</span> 2015.</font></li>
<li><font size="+2">Pham, Trang et al. "Predicting
healthcare trajectories from medical records: A deep learning approach". <span style="font-style: italic;">Journal of Biomedical Informatics</span>, April 2017, DOI: 10.1016/j.jbi.2017.04.001.</font></li>
<li><font size="+2">Tran, Truyen. "Living in the future: AI for healthcare". <span style="font-style: italic;">Blog</span>, Feb 2017.</font></li>
</ol>
<font size="+2"><span style="font-weight: bold; font-family: Times New Roman,Times,serif;"></span><span style="font-weight: bold; font-family: Times New Roman,Times,serif;"><a name="Deep_learning_fundamentals"></a></span></font><font style="font-weight: bold;" size="5">Deep learning fundamentals</font><font size="+2"><span style="font-weight: bold; font-family: Times New Roman,Times,serif;"></span><br style="font-family: Times New Roman,Times,serif;"></font><ol>
<li><font size="+2">Goodfellow, Ian et al., "Generative Adversarial Nets". <span style="font-style: italic;">NIPS</span>, 2014.</font></li>
<li><font size="+2">Graves, Alex et al. "Hybrid
computing using a neural network with dynamic external memory", <span style="font-style: italic;">Nature</span>, 2016.</font></li>
<li><font size="+2">Hochreiter, Sepp, et al. "Learning to learn using gradient descent". In <span style="font-style: italic;">Artificial Neural Networks (ICANN</span>) 2001, pp. 87–94. Springer,2001</font></li>
<li><font size="+2">Kingma, Diederik P., and Max Welling. "Auto-encoding variational Bayes."<span style="font-style: italic;"> arXiv preprint</span> arXiv:1312.6114 (2013).</font></li>
<li><font size="+2">Koch, Gregory et al. "Siamese neural networks for one-shot image recognition." <span style="font-style: italic;">ICML Deep Learning Workshop</span>. Vol. 2. 2015.</font></li>
<li><font size="+2">Kumar, Ankit, et al. "Ask me anything: Dynamic memory networks for natural language processing." <span style="font-style: italic;">International Conference on Machine Learning</span>. 2016.</font></li>
<li><font size="+2">Mishra, Nikhil, et al. "Meta-Learning with Temporal Convolutions." <span style="font-style: italic;">arXiv preprint arXiv:1707.03141</span> (2017).</font></li><li><font size="+2">Santoro, Adam, et al. "Meta-learning with memory-augmented neural networks."<span style="font-style: italic;"> International conference on machine learning</span>, 2016</font></li><li><font size="+2">Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. "End-to-end memory networks." <span style="font-style: italic;">Advances in neural information processing systems</span>. 2015.</font></li></ol></td></tr></tbody></table><br><p style="" align="justify"><br>
</p>
</body></html>