-
Notifications
You must be signed in to change notification settings - Fork 5
/
fcoxgroup.cpp
1387 lines (1007 loc) · 28.7 KB
/
fcoxgroup.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
This is fcoxgroup.cpp
Coxeter version 3.0 Copyright (C) 2002 Fokko du Cloux
See file main.cpp for full copyright notice
*/
#include "fcoxgroup.h"
#include "cells.h"
#define undefined (ParNbr)(PARNBR_MAX + 1)
namespace fcoxgroup {
using namespace cells;
};
/* local type definitions */
namespace {
using namespace fcoxgroup;
class Workspace {
List<ParNbr> d_ica_arr;
List<ParNbr> d_nfca_arr;
List<ParNbr> d_prca_arr;
List<ParNbr> d_rdcw_arr;
public:
Workspace();
void setSize(Ulong n);
ParNbr *ica_arr() {return d_ica_arr.ptr();}
ParNbr *nfca_arr() {return d_nfca_arr.ptr();}
ParNbr *prca_arr() {return d_prca_arr.ptr();}
ParNbr *rdcw_arr() {return d_rdcw_arr.ptr();}
};
void fillLongest(FiniteCoxGroup *W);
CoxSize order(FiniteCoxGroup *W);
Workspace& workspace();
};
/****************************************************************************
NOTE : unfinished.
This file contains code for dealing more efficiently with finite Coxeter
groups. There are two representations of group elements which are more
compact than the CoxWord representation.
The first one, which will work for any rank <= 255, represents the elements
as arrays of rank ParNbr's. The computations in this representation are
made through a cascade of small transducers. The drawback of this
representation is that the size of the automata depends strongly on the
choice of ordering (as opposed to the minimal root machine, which is
completely canonical.)
...
Our allocation of workspace avoids having to check the sizes at each
operation; it is not so clear however if this really makes a difference.
****************************************************************************/
/****************************************************************************
Chapter 0 -- Initialization.
****************************************************************************/
namespace {
Workspace::Workspace()
:d_ica_arr(),
d_nfca_arr(),
d_prca_arr(),
d_rdcw_arr()
{}
void Workspace::setSize(Ulong n)
{
d_ica_arr.setSize(n);
d_nfca_arr.setSize(n);
d_prca_arr.setSize(n);
d_rdcw_arr.setSize(n);
return;
}
inline Workspace& workspace()
/*
Returns its static object, which is initialized on first call.
*/
{
static Workspace wspace;
return wspace;
}
};
/****************************************************************************
Chapter I -- The FiniteCoxGroup class.
This section defines the FiniteCoxGroup class. The following functions
are defined :
- FiniteCoxGroup(x,l) : constructor;
- assign(a,g) : sets a to the array form of g;
- duflo() : returns the list of Duflo involutions;
- inverse(a) : inverses a;
- isFullContext() : tells if longest_elt is in context;
- l(r,lr)Cell() : returns the partition in left (right,two-sided) cells;
- l(r,lr)UneqCell() : returns the partition in left (right,two-sided) cells
for unequal parameters;
- l(r)Descent() : returns the partition in left (right) descent classes;
- l(r)String() : returns the partition in left (right) string classes;
- l(r)Tau() : returns the partition in left (right) generalized tau classes;
- length() : returns the length of a;
- normalForm(g,a) : returns the ShortLex normal form of a in g;
- normalForm(g,h) : returns the ShortLex normal form of h in g;
- parseModifier(P) : parses a modifier;
- prod(a,b) : increments a by b;
- prod(a,s) : puts in a the result of a.s;
- prod(a,g) : puts in a the result of a.g;
- power(a,m) : sets a to the power m;
- rDescent(a) : returns the right descent set of the coxarr a;
- reduced(g,a) : puts a reduced expression for a in g;
****************************************************************************/
namespace fcoxgroup {
/******** constructor *******************************************************/
FiniteCoxGroup::FiniteCoxGroup(const Type& x, const Rank& l)
:CoxGroup(x,l)
/*
Constructor for FiniteCoxGroup.
*/
{
d_transducer = new Transducer(graph());
workspace().setSize(l);
for (Rank j = 0; j < rank(); ++j)
transducer(j)->fill(graph());
d_longest_coxarr = new(arena()) ParNbr[rank()];
/* fill longest elements */
for (FiltrationTerm* X = transducer(); X; X = X->next())
d_longest_coxarr[X->rank()-1] = X->size()-1;
Ulong maxlength = length(d_longest_coxarr);
new(&d_longest_coxword) CoxWord(maxlength);
reducedArr(d_longest_coxword,d_longest_coxarr);
d_longest_coxword.setLength(maxlength);
d_maxlength = longest_coxword().length();
d_order = ::order(this);
}
FiniteCoxGroup::~FiniteCoxGroup()
/*
The only thing that the FiniteCoxGroup destructor has to do explicitly
is to delete the transducer table, and d_longest.
*/
{
arena().free(d_longest_coxarr,rank()*sizeof(ParNbr));
delete d_transducer;
return;
}
/******** general ***********************************************************/
bool FiniteCoxGroup::isFullContext() const
/*
Tells if the longest element is in the context. If so, it is necessarily
the last element fo the context, and can be recognized from its left
descent set.
*/
{
CoxNbr x = schubert().size()-1;
LFlags f = ldescent(x);
if (f == graph().supp())
return true;
else
return false;
}
/******** operations with arrays ********************************************/
const CoxArr& FiniteCoxGroup::assign(CoxArr& a, const CoxWord& g) const
/*
This functions returns the array-form of the element of W represented
by the word g. It returns the result in a.
*/
{
setZero(a);
for(Length i = 0; g[i]; ++i)
prodArr(a,g[i]-1);
return a;
}
const CoxArr& FiniteCoxGroup::inverseArr(CoxArr& a) const
/*
Inverse a. This is a "composite-assignment" type function, in consistency
with our geneeral philosophy that they're the only ones really needed.
Uses ica_arr() as workspace.
*/
{
CoxArr b = workspace().ica_arr();
assign(b,a);
setZero(a);
for (const FiltrationTerm* X = transducer(); X; X = X->next())
{
const CoxWord& g = X->np(b[X->rank()-1]);
Ulong j = g.length();
while (j) {
j--;
prodArr(a,g[j]-1);
}
}
return a;
}
Length FiniteCoxGroup::length(const CoxArr& a) const
/*
Returns the length of a --- overflow is not checked.
*/
{
Length c = 0;
for (const FiltrationTerm* X = transducer(); X; X = X->next())
{
ParNbr x = a[X->rank()-1];
c += X->length(x);
}
return c;
}
const CoxArr& FiniteCoxGroup::powerArr(CoxArr& a, const Ulong& m) const
/*
Raises a to the m-th power. This can be done very quickly, by squarings
and multiplications with the original value of a (stored in b), by
looking at the bit-pattern of m.
*/
{
static Ulong hi_bit = (Ulong)1 << BITS(Ulong) - 1;
static List<ParNbr> buf(0);
if (m == 0) {
setZero(a);
return a;
}
buf.setSize(rank());
CoxArr b = buf.ptr();
Ulong p;
assign(b,a);
for (p = m; ~p & hi_bit; p <<= 1) /* shift m up to high powers */
;
for (Ulong j = m >> 1; j; j >>= 1)
{
p <<= 1;
prodArr(a,a); /* a = a*a */
if (p & hi_bit)
prodArr(a,b); /* a = a*b */
}
return a;
}
int FiniteCoxGroup::prodArr(CoxArr& a, const CoxArr& b) const
/*
Composite assignment operator : increments a by b (i.e., does a *= b).
The algorithm goes by shifting by the successive pieces of the normal
form of b, which are directly accessible.
Uses prca_arr() as workspace;
*/
{
CoxArr c = workspace().prca_arr();
assign(c,b);
int l = 0;
for (Ulong j = 0; j < rank(); ++j)
l += prodArr(a,transducer(rank()-1-j)->np(c[j]));
return l;
}
int FiniteCoxGroup::prodArr(CoxArr& a, Generator s) const
/*
Transforms the contents of a into a.s.
*/
{
for (const FiltrationTerm* X = transducer(); X; X = X->next())
{
ParNbr x = a[X->rank()-1];
ParNbr xs = X->shift(a[X->rank()-1],s);
if (xs < undefined) {
a[X->rank()-1] = xs;
if (xs < x)
return -1;
else
return 1;
}
s = xs - undefined - 1;
}
return 0; // this is unreachable
}
int FiniteCoxGroup::prodArr(CoxArr& a, const CoxWord& g) const
/*
Shifts a by the whole string g. Returns the increase in length.
*/
{
int l = 0;
for (Length j = 0; g[j]; ++j)
l += prodArr(a,g[j]-1);
return l;
}
LFlags FiniteCoxGroup::rDescent(const CoxArr& a) const
/*
Returns the right descent set of a.
NOTE : makes sense only when the rank is at most MEDRANK_MAX.
*/
{
LFlags f = 0;
for (Generator s = 0; s < rank(); s++) /* multiply by s */
{
Generator t = s;
for (const FiltrationTerm* X = transducer(); X; X = X->next())
{
ParNbr x = a[X->rank()-1];
ParNbr xt = X->shift(x,t);
if (xt <= undefined) { /* we can decide */
if (xt < x)
f |= bits::lmask[s];
break;
}
t = xt - undefined - 1;
}
}
return f;
}
const CoxWord& FiniteCoxGroup::reducedArr(CoxWord& g, const CoxArr& a) const
/*
Returns in g a reduced expression (actually the ShortLex normal form in
the internal numbering of the generators) of a.
Here it is assumed that g is large enough to hold the result.
*/
{
Length p = length(a);
g[p] = '\0';
for (const FiltrationTerm* X = transducer(); X; X = X->next())
{
ParNbr x = a[X->rank()-1];
p -= X->length(x);
g.setSubWord(X->np(x),p,X->length(x));
}
return g;
}
/******** input/output ******************************************************/
void FiniteCoxGroup::modify(ParseInterface& P, const Token& tok) const
/*
Executes the modification indicated by tok, which is assumed to be of
type modifier_type. It is possible that further characters may have to
be read from str.
In the case of a finite coxeter group, three modifies are allowed :
*, ! and ^
*/
{
if (isLongest(tok)) {
CoxGroup::prod(P.c,d_longest_coxword);
}
if (isInverse(tok)) {
CoxGroup::inverse(P.c);
}
if (isPower(tok)) {
Ulong m = readCoxNbr(P,ULONG_MAX);
CoxGroup::power(P.c,m);
}
}
bool FiniteCoxGroup::parseModifier(ParseInterface& P) const
/*
This function parses a modifier from P.str at P.offset, and acts upon
it accordingly : in case of success, it applies the modifier to P.c,
and advances the offset. In the case of a finite group, multiplication
by the longest element is allowed.
*/
{
Token tok = 0;
const Interface& I = interface();
Ulong p = I.getToken(P,tok);
if (p == 0)
return false;
if (!isModifier(tok))
return false;
P.offset += p;
modify(P,tok);
return true;
}
/******** kazhdan-lusztig cells *********************************************/
const List<CoxNbr>& FiniteCoxGroup::duflo()
/*
This function returns the list of Duflo involutions in the group, in the
order in which left cells are listed in lCell : duflo[j] is the Duflo
involution in the j-th cell of d_lcell.
The algorithm is as follows. We partition the involutions in the group
according to the left cell partition. Then the Duflo involution in the
cell is the unique involution for which l(w)-2d(w) is minimal, where
d(w) is the degree of the Kazhdan-Lusztig polynomial P_{1,w}.
NOTE : as for the l(r,lr)cell partitions, the list is filled upon the
first call.
*/
{
if (d_duflo.size() == 0) { /* find duflo involutions */
kl::KLContext& kl = d_kl[0];
const SchubertContext& p = kl.schubert();
SubSet q(0);
/* make sure left cell partition is available */
lCell();
/* load involutions in q */
q.bitMap().assign(kl.involution());
q.readBitMap();
/* partition involutions by left cells */
Partition pi(q.size());
for (Ulong j = 0; j < q.size(); ++j) {
pi[j] = d_lcell[q[j]];
}
pi.setClassCount(d_lcell.classCount());
/* find Duflo involution in each cell */
for (PartitionIterator i(pi); i; ++i) {
const List<Ulong>& c = i();
if (c.size() == 1) { /* cell has single involution */
d_duflo.append(q[c[0]]);
continue;
}
Length m = d_maxlength;
CoxNbr d = c[0];
for (Ulong j = 0; j < c.size(); ++j) {
CoxNbr x = q[c[j]]; /* current involution */
const kl::KLPol& pol = kl.klPol(0,x);
Length m1 = p.length(x) - 2*pol.deg();
if (m1 < m) {
m = m1;
d = x;
}
}
d_duflo.append(d);
}
}
return d_duflo;
}
const Partition& FiniteCoxGroup::lCell()
/*
Returns the partition into left cells, making it from the right cell
partitition.
*/
{
if (d_lcell.classCount()) /* partition was already computed */
return d_lcell;
const Partition& r = rCell();
d_lcell.setSize(r.size());
d_lcell.setClassCount(r.classCount());
for (CoxNbr x = 0; x < r.size(); ++x) {
d_lcell[x] = r(CoxGroup::inverse(x));
}
d_lcell.normalize();
return d_lcell;
}
const Partition& FiniteCoxGroup::lrCell()
/*
Similar to rCell, but for two-sided cells.
*/
{
if (d_lrcell.classCount()) /* partition was already computed */
return d_lrcell;
if (!isFullContext()) {
fullContext();
if (ERRNO)
goto abort;
kl().fillMu();
if (ERRNO)
goto abort;
}
if (d_lrcell.size() == 0) /* size is either zero or group order */
cells::lrCells(d_lrcell,kl());
return d_lrcell;
abort:
Error(ERRNO);
return d_lrcell;
}
const Partition& FiniteCoxGroup::lrUneqCell()
/*
Similar to lCell, but for two-sided cells.
*/
{
if (d_lruneqcell.classCount()) /* partition was already computed */
return d_lruneqcell;
if (!isFullContext()) {
fullContext();
if (ERRNO)
goto abort;
uneqkl().fillMu();
if (ERRNO)
goto abort;
}
{
OrientedGraph X(0);
lrGraph(X,uneqkl());
X.cells(d_lruneqcell);
}
return d_lruneqcell;
abort:
Error(ERRNO);
return d_lruneqcell;
}
const Partition& FiniteCoxGroup::lUneqCell()
/*
Returns the partition in left cells for unequal parameters. The partition
is gotten from the right one, by inversing.
*/
{
if (d_luneqcell.classCount()) /* partition was already computed */
return d_luneqcell;
const Partition& r = rUneqCell();
d_luneqcell.setSize(r.size());
d_luneqcell.setClassCount(r.classCount());
for (CoxNbr x = 0; x < r.size(); ++x) {
d_luneqcell[x] = r(CoxGroup::inverse(x));
}
d_luneqcell.normalize();
return d_luneqcell;
}
const Partition& FiniteCoxGroup::rCell()
/*
This function returns the partition of the group in right cells.
NOTE : to be on the safe side, we allow this function to respond only
for the full group context. If the context is not full, it extends it
first to the full group.
NOTE : because this is a potentially very expensive operation, the
partition is computed on request.
NOTE : since it is not clear that the ordering in which rCells constructs
the cells is meaningful, we normalize the partition, so that it can be
guaranteed to always have the same meaning.
*/
{
if (d_rcell.classCount()) /* partition was already computed */
return d_rcell;
if (!isFullContext()) {
fullContext();
if (ERRNO)
goto abort;
}
kl().fillMu();
if (ERRNO)
goto abort;
cells::rCells(d_rcell,kl());
d_rcell.normalize();
return d_rcell;
abort:
Error(ERRNO);
return d_rcell;
}
const Partition& FiniteCoxGroup::rUneqCell()
/*
This function returns the partition of the group in right cells for unequal
parameters.
NOTE : to be on the safe side, we allow this function to respond only
for the full group context. If the context is not full, it extends it
first to the full group.
NOTE : because this is a potentially very expensive operation, the
partition is computed on request.
*/
{
if (d_runeqcell.classCount()) /* partition was already computed */
return d_runeqcell;
if (!isFullContext()) {
fullContext();
if (ERRNO)
goto abort;
}
d_uneqkl->fillMu();
if (ERRNO)
goto abort;
{
OrientedGraph Y(0);
rGraph(Y,uneqkl());
Y.cells(d_runeqcell);
d_runeqcell.normalize();
}
return d_runeqcell;
abort:
Error(ERRNO);
return d_runeqcell;
}
const Partition& FiniteCoxGroup::lDescent()
/*
Returns the partition of the group in left descent classes, where two
elements are equivalent iff they have the same left descent set (this is
the non-generalized tau-invariant of Vogan.)
It is known that this partition is coarser than the one by right cells.
*/
{
if (d_ldescent.classCount()) /* partition was already computed */
return d_ldescent;
if (!isFullContext()) {
fullContext();
if (ERRNO)
goto abort;
}
d_ldescent.setSize(order());
for (CoxNbr x = 0; x < order(); ++x)
d_ldescent[x] = ldescent(x);
d_ldescent.setClassCount(1<<rank());
return d_ldescent;
abort:
Error(ERRNO);
return d_ldescent;
}
const Partition& FiniteCoxGroup::rDescent()
/*
Returns the partition of the group in right descent classes, where two
elements are equivalent iff they have the same right descent set (this is
the non-generalized tau-invariant of Vogan.)
it is known that this partition is coarser than the one by left cells.
*/
{
if (d_rdescent.classCount()) /* partition was already computed */
return d_rdescent;
if (!isFullContext()) {
fullContext();
if (ERRNO)
goto abort;
}
d_rdescent.setSize(order());
for (CoxNbr x = 0; x < order(); ++x)
d_rdescent[x] = rdescent(x);
d_rdescent.setClassCount(1<<rank());
return d_rdescent;
abort:
Error(ERRNO);
return d_rdescent;
}
const Partition& FiniteCoxGroup::lString()
/*
Returns the partition of the group in "left string classes" : the smallest
subsets C with the property that for each x in C, and for each pair of
non-commuting generators {s,t} such that L(x) contains exactly one of s,t,
say s, and the order m(s,t) of st is finite, the whole {s,t}-string
... < tsx < sx < x < tx < stx ...
(the number of elements is m-1) passing through x is contained in C (see
the INTRO file for more details.) It is known (and easy to see) that this
partition is finer than the one by left cells.
*/
{
if (d_lstring.classCount()) /* partition was already computed */
return d_lstring;
if (!isFullContext()) { /* x is not the longest element */
fullContext();
if (ERRNO)
goto abort;
}
lStringEquiv(d_lstring,schubert());
return d_lstring;
abort:
Error(ERRNO);
return d_lstring;
}
const Partition& FiniteCoxGroup::rString()
/*
The same as lString(), but on the right. Finer than the partition by right
cells.
*/
{
if (d_rstring.classCount()) /* partition was already computed */
return d_rstring;
if (!isFullContext()) { /* x is not the longest element */
fullContext();
if (ERRNO)
goto abort;
}
rStringEquiv(d_rstring,schubert());
return d_rstring;
abort:
Error(ERRNO);
return d_rstring;
}
const Partition& FiniteCoxGroup::lTau()
/*
This is the left generalized-tau partition; in brief, the left-descent
partition "stabilized" under left *-operations (see the INTRO file for
more details.) It is known to be coarser than the partition by right cells.
Is gotten from the corresponding right tau partition.
*/
{
if (d_ltau.classCount()) /* partition was already computed */
return d_ltau;
const Partition& r = rTau();
d_ltau.setSize(r.size());
d_ltau.setClassCount(r.classCount());
for (CoxNbr x = 0; x < r.size(); ++x) {
d_ltau[x] = r(CoxGroup::inverse(x));
}
d_ltau.normalize();
return d_ltau;
}
const Partition& FiniteCoxGroup::rTau()
/*
Like lTau, but on the right. Coarser than the partition by left cells.
*/
{
if (d_rtau.classCount()) /* partition was already computed */
return d_rtau;
if (!isFullContext()) { /* x is not the longest element */
fullContext();
if (ERRNO)
goto abort;
}
rGeneralizedTau(d_rtau,schubert());
d_rtau.normalize();
return d_rtau;
abort:
Error(ERRNO);
return d_rtau;
}
};
/****************************************************************************
Chapter II -- Derived classes.
This section contains the constructors for the derived classes of
FiniteCoxGroup appearing in this program.
NOTE : unfinished.
****************************************************************************/
namespace fcoxgroup {
FiniteBigRankCoxGroup::FiniteBigRankCoxGroup(const Type& x, const Rank& l)
:FiniteCoxGroup(x,l)
/*
Constructor for FiniteBigRankCoxGroup.
*/
{}
FiniteBigRankCoxGroup::~FiniteBigRankCoxGroup()
/*
Virtual destructor for FiniteBigRankCoxGroup. Currently, nothing has to
be done.
*/
{}
GeneralFBRCoxGroup::GeneralFBRCoxGroup(const Type& x, const Rank& l)
:FiniteBigRankCoxGroup(x,l)
{}
GeneralFBRCoxGroup::~GeneralFBRCoxGroup()
/*
Non-virtual destructor (leaf class). Currently, nothing has to be done.
*/
{}
FiniteMedRankCoxGroup::FiniteMedRankCoxGroup(const Type& x, const Rank& l)
:FiniteCoxGroup(x,l)
/*
Constructor for FiniteMedRankCoxGroup.
*/
{
mintable().fill(graph());
/* an error is set here in case of failure */
return;
}
FiniteMedRankCoxGroup::~FiniteMedRankCoxGroup()
/*
Virtual destructor for FiniteMedRankCoxGroup. The destruction of the
mintable is the job of the CoxGroup destructor.
*/
{}
GeneralFMRCoxGroup::GeneralFMRCoxGroup(const Type& x, const Rank& l)
:FiniteMedRankCoxGroup(x,l)
{}
GeneralFMRCoxGroup::~GeneralFMRCoxGroup()
/*