-
Notifications
You must be signed in to change notification settings - Fork 1
/
TrainAndTest.py
executable file
·144 lines (95 loc) · 5.33 KB
/
TrainAndTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# TrainAndTest.py
import cv2
import numpy as np
import operator
import os
MIN_CONTOUR_AREA = 100
RESIZED_IMAGE_WIDTH = 20
RESIZED_IMAGE_HEIGHT = 30
class ContourWithData():
npaContour = None
intRectX = 0
intRectY = 0
intRectWidth = 0
intRectHeight = 0
fltArea = 0.0
#sliding Window
def calculateRectTopLeftPointAndWidthAndHeight(self):
[intX, intY, intWidth, intHeight] = self.boundingRect
self.intRectX = intX
self.intRectY = intY
self.intRectWidth = intWidth
self.intRectHeight = intHeight
def checkIfContourIsValid(self):
if self.fltArea < MIN_CONTOUR_AREA: return False
return True
def main():
allContoursWithData = []
validContoursWithData = []
try:
npaClassifications = np.loadtxt("classifications.txt", np.float32)
except:
print "error, unable to open classifications.txt, exiting program\n"
os.system("pause")
return
try:
npaFlattenedImages = np.loadtxt("flattened_images.txt", np.float32)
except:
print "error, unable to open flattened_images.txt, exiting program\n"
os.system("pause")
return
npaClassifications = npaClassifications.reshape((npaClassifications.size, 1))
kNearest = cv2.ml.KNearest_create()
kNearest.train(npaFlattenedImages, cv2.ml.ROW_SAMPLE, npaClassifications)
imgTestingNumbers = cv2.imread("test.png")
if imgTestingNumbers is None:
print "error: image not read from file \n\n"
os.system("pause")
return
imgGray = cv2.cvtColor(imgTestingNumbers, cv2.COLOR_BGR2GRAY)
imgBlurred = cv2.GaussianBlur(imgGray, (5,5), 0)
imgThresh = cv2.adaptiveThreshold(imgBlurred,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV,
11,
2)
imgThreshCopy = imgThresh.copy()
imgContours, npaContours, npaHierarchy = cv2.findContours(imgThreshCopy,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
for npaContour in npaContours:
contourWithData = ContourWithData()
contourWithData.npaContour = npaContour
contourWithData.boundingRect = cv2.boundingRect(contourWithData.npaContour)
contourWithData.calculateRectTopLeftPointAndWidthAndHeight()
contourWithData.fltArea = cv2.contourArea(contourWithData.npaContour)
allContoursWithData.append(contourWithData)
for contourWithData in allContoursWithData:
if contourWithData.checkIfContourIsValid():
validContoursWithData.append(contourWithData)
validContoursWithData.sort(key = operator.attrgetter("intRectX"))
strFinalString = ""
for contourWithData in validContoursWithData:
cv2.rectangle(imgTestingNumbers,
(contourWithData.intRectX, contourWithData.intRectY),
(contourWithData.intRectX + contourWithData.intRectWidth, contourWithData.intRectY + contourWithData.intRectHeight),
(0, 255, 0),
2)
imgROI = imgThresh[contourWithData.intRectY : contourWithData.intRectY + contourWithData.intRectHeight,
contourWithData.intRectX : contourWithData.intRectX + contourWithData.intRectWidth]
imgROIResized = cv2.resize(imgROI, (RESIZED_IMAGE_WIDTH, RESIZED_IMAGE_HEIGHT))
npaROIResized = imgROIResized.reshape((1, RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT))
npaROIResized = np.float32(npaROIResized)
retval, npaResults, neigh_resp, dists = kNearest.findNearest(npaROIResized, k = 1)
strCurrentChar = str(chr(int(npaResults[0][0])))
strFinalString = strFinalString + strCurrentChar
print "\n" + strFinalString + "\n"
cv2.imshow("imgTestingNumbers", imgTestingNumbers)
cv2.waitKey(0)
cv2.destroyAllWindows()
return
###################################################################################################
if __name__ == "__main__":
main()
# end if