-
Notifications
You must be signed in to change notification settings - Fork 12
/
model.py
192 lines (146 loc) · 7.12 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# ------------------------------------------------------------------
# Tensorflow implementation of
# "Learning Dynamic Memory Networks for Object Tracking", ECCV,2018
# Licensed under The MIT License [see LICENSE for details]
# Written by Tianyu Yang (tianyu-yang.com)
# ------------------------------------------------------------------
import config
import tensorflow as tf
import numpy as np
from feature import extract_feature
from input import generate_labels_overlap, generate_labels_dist
from memnet.memnet import MemNet
from memnet.rnn import rnn
import collections
class ModeKeys():
TRAIN = 'train'
EVAL = 'eval'
PREDICT = 'predict'
EstimatorSpec = collections.namedtuple('EstimatorSpec', ['predictions', 'loss', 'dist_error', 'train', 'summary', 'saver'])
def get_cnn_feature(input, reuse, mode):
input_shape = input.get_shape().as_list()
if len(input_shape) > 4:
input = tf.reshape(input, [-1] + input_shape[2:])
is_train = True if mode == ModeKeys.TRAIN else False
with tf.variable_scope('feature_extraction', reuse=reuse):
cnn_feature = extract_feature(is_train, input)
if len(input_shape) > 4:
cnn_feature_shape = cnn_feature.get_shape().as_list()
cnn_feature = tf.reshape(cnn_feature, input_shape[0:2]+cnn_feature_shape[1:])
return cnn_feature
def batch_conv(A, B, mode):
a_shape = A.get_shape().as_list()
if len(a_shape) > 4:
A = tf.reshape(A, [-1] + a_shape[2:])
b_shape = B.get_shape().as_list()
if len(b_shape) > 4:
B = tf.reshape(B, [-1] + b_shape[2:])
batch_size = A.get_shape().as_list()[0]
output = tf.map_fn(lambda inputs: tf.nn.conv2d(tf.expand_dims(inputs[0], 0), tf.expand_dims(inputs[1], 3), [1,1,1,1], 'VALID'),
elems=[A, B],
dtype=tf.float32,
parallel_iterations=batch_size)
is_train = True if mode == ModeKeys.TRAIN else False
output = tf.layers.batch_normalization(tf.squeeze(output, [1]), training=is_train, name='bn_response')
return tf.squeeze(output, [3])
def get_predictions(query_feature, search_feature, mode):
with tf.variable_scope('mann'):
mann_cell = MemNet(config.hidden_size, config.memory_size, config.slot_size, True)
initial_state = mann_cell.initial_state(query_feature[:, 0])
inputs = (search_feature, query_feature)
outputs, final_state = rnn(cell=mann_cell, inputs=inputs, initial_state=initial_state)
response = batch_conv(search_feature, outputs, mode)
return response
def focal_loss(labels, predictions, gamma=2, epsilon=1e-7, scope=None):
with tf.name_scope(scope, "focal_loss", (predictions, labels)) as scope:
predictions = tf.to_float(predictions)
labels = tf.to_float(labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
preds = tf.where(
tf.equal(labels, 1), predictions, 1. - predictions)
losses = -(1. - preds) ** gamma * tf.log(preds + epsilon)
return losses
def get_loss(outputs, labels, mode):
if mode == tf.estimator.ModeKeys.PREDICT:
return None
outputs_shape = outputs.get_shape().as_list()
if config.label_type == 0:
labels_response, weights = generate_labels_overlap(np.array(outputs_shape[1:3]), labels)
else:
labels_response, weights = generate_labels_dist(outputs_shape[0], np.array(outputs_shape[1:3]))
if config.use_focal_loss:
loss = tf.reduce_sum(weights * focal_loss(labels=labels_response, predictions=tf.nn.sigmoid(outputs))) / outputs_shape[0]
else:
loss = tf.reduce_sum(weights*tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_response, logits=outputs))/outputs_shape[0]
tf.summary.scalar('loss', loss)
return loss
def get_dist_error(outputs, mode):
if mode == tf.estimator.ModeKeys.PREDICT:
return None
outputs_shape = outputs.get_shape().as_list()
outputs = tf.reshape(outputs, [outputs_shape[0], -1])
pred_loc_idx = tf.argmax(outputs, 1)
loc_x = pred_loc_idx%outputs_shape[1]
loc_y = pred_loc_idx//outputs_shape[1]
pred_loc = tf.stack([loc_x, loc_y], 1)
gt_loc = tf.tile(tf.expand_dims([outputs_shape[1]/2, outputs_shape[1]/2], 0), [outputs_shape[0], 1])
dist_error = tf.losses.mean_squared_error(predictions=pred_loc, labels=gt_loc)
tf.summary.scalar('dist_error', dist_error)
return dist_error
def get_train_op(loss, mode):
if mode != ModeKeys.TRAIN:
return None
global_step = tf.train.get_or_create_global_step()
learning_rate = tf.train.exponential_decay(config.learning_rate, global_step, config.decay_circles, config.lr_decay, staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
tvars = tf.trainable_variables()
regularizer = tf.contrib.layers.l2_regularizer(config.weight_decay)
regularizer_loss = tf.contrib.layers.apply_regularization(regularizer, tvars)
loss += regularizer_loss
grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars), config.clip_gradients)
# optimizer = tf.train.GradientDescentOptimizer(self.lr)
optimizer = tf.train.AdamOptimizer(learning_rate)
batchnorm_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(batchnorm_update_ops):
train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
return train_op
def get_summary(mode):
if mode == ModeKeys.PREDICT:
return None
return tf.summary.merge_all()
def get_saver():
return tf.train.Saver(tf.global_variables(), max_to_keep=15)
def model_fn(features, labels, mode):
# get cnn feature for query and search
query_feature = get_cnn_feature(features['query'], None, mode)
search_feature = get_cnn_feature(features['search'], True, mode)
predictions = get_predictions(query_feature, search_feature, mode)
loss = get_loss(predictions, labels, mode)
dist_error = get_dist_error(predictions, mode)
train_op = get_train_op(loss, mode)
summary = get_summary(mode)
saver = get_saver()
return EstimatorSpec(predictions, loss, dist_error, train_op, summary, saver)
def build_initial_state(init_query, mem_cell, mode):
query_feature = get_cnn_feature(init_query, None, mode)
return mem_cell.initial_state(query_feature[:,0])
def build_model(query, search, mem_cell, initial_state, mode):
# get cnn feature for query and search
query_feature = get_cnn_feature(query, True, mode)
search_feature = get_cnn_feature(search, True, mode)
inputs = (search_feature, query_feature)
outputs, final_state = rnn(cell=mem_cell, inputs=inputs, initial_state=initial_state)
response = batch_conv(search_feature, outputs, mode)
saver = get_saver()
return response, saver, final_state
if __name__=='__main__':
query_patch = tf.placeholder(tf.float32, [10, 5, config.z_exemplar_size, config.z_exemplar_size, 3])
search_patch = tf.placeholder(tf.float32, [10, 5, config.x_instance_size, config.x_instance_size, 3])
features = {
'query': query_patch,
'search': search_patch
}
labels = tf.placeholder(tf.float32, [10, 5, 4])
mode = ModeKeys.TRAIN
esti_spec = model_fn(features, labels, mode)
pass