diff --git a/README.md b/README.md index 7259e33..35cc996 100644 --- a/README.md +++ b/README.md @@ -1,235 +1,18 @@ -
- - - -
+# Accelerating Neural Field Training via Soft Mining -[![Core Tests.](https://github.com/KAIR-BAIR/nerfacc/actions/workflows/code_checks.yml/badge.svg)](https://github.com/KAIR-BAIR/nerfacc/actions/workflows/code_checks.yml) -[![Documentation Status](https://readthedocs.com/projects/plenoptix-nerfacc/badge/?version=latest)](https://www.nerfacc.com/en/latest/?badge=latest) -[![Downloads](https://pepy.tech/badge/nerfacc)](https://pepy.tech/project/nerfacc) - -https://www.nerfacc.com/ - -[News] 2023/04/04. If you were using `nerfacc <= 0.3.5` and would like to migrate to our latest version (`nerfacc >= 0.5.0`), Please check the [CHANGELOG](CHANGELOG.md) on how to migrate. - -NerfAcc is a PyTorch Nerf acceleration toolbox for both training and inference. It focus on -efficient sampling in the volumetric rendering pipeline of radiance fields, which is -universal and plug-and-play for most of the NeRFs. -With minimal modifications to the existing codebases, Nerfacc provides significant speedups -in training various recent NeRF papers. -**And it is pure Python interface with flexible APIs!** - -![Teaser](/docs/source/_static/images/teaser.jpg?raw=true) +## Overview +This repository contains the implementation and resources for our research paper "Accelerating Neural Field Training via Soft Mining". ## Installation -**Dependence**: Please install [Pytorch](https://pytorch.org/get-started/locally/) first. - -The easist way is to install from PyPI. In this way it will build the CUDA code **on the first run** (JIT). -``` -pip install nerfacc -``` - -Or install from source. In this way it will build the CUDA code during installation. -``` -pip install git+https://github.com/KAIR-BAIR/nerfacc.git -``` - -We also provide pre-built wheels covering major combinations of Pytorch + CUDA supported by [official Pytorch](https://pytorch.org/get-started/previous-versions/). - -``` -# e.g., torch 1.13.0 + cu117 -pip install nerfacc -f https://nerfacc-bucket.s3.us-west-2.amazonaws.com/whl/torch-1.13.0_cu117.html -``` - -| Windows & Linux | `cu113` | `cu115` | `cu116` | `cu117` | `cu118` | -|-----------------|---------|---------|---------|---------|---------| -| torch 1.11.0 | ✅ | ✅ | | | | -| torch 1.12.0 | ✅ | | ✅ | | | -| torch 1.13.0 | | | ✅ | ✅ | | -| torch 2.0.0 | | | | ✅ | ✅ | - -For previous version of nerfacc, please check [here](https://nerfacc-bucket.s3.us-west-2.amazonaws.com/whl/index.html) on the supported pre-built wheels. - -## Usage - -The idea of NerfAcc is to perform efficient volumetric sampling with a computationally cheap estimator to discover surfaces. -So NerfAcc can work with any user-defined radiance field. To plug the NerfAcc rendering pipeline into your code and enjoy -the acceleration, you only need to define two functions with your radience field. - -- `sigma_fn`: Compute density at each sample. It will be used by the estimator - (e.g., `nerfacc.OccGridEstimator`, `nerfacc.PropNetEstimator`) to discover surfaces. -- `rgb_sigma_fn`: Compute color and density at each sample. It will be used by - `nerfacc.rendering` to conduct differentiable volumetric rendering. This function - will receive gradients to update your radiance field. - -An simple example is like this: - -``` python -import torch -from torch import Tensor -import nerfacc - -radiance_field = ... # network: a NeRF model -rays_o: Tensor = ... # ray origins. (n_rays, 3) -rays_d: Tensor = ... # ray normalized directions. (n_rays, 3) -optimizer = ... # optimizer - -estimator = nerfacc.OccGridEstimator(...) - -def sigma_fn( - t_starts: Tensor, t_ends:Tensor, ray_indices: Tensor -) -> Tensor: - """ Define how to query density for the estimator.""" - t_origins = rays_o[ray_indices] # (n_samples, 3) - t_dirs = rays_d[ray_indices] # (n_samples, 3) - positions = t_origins + t_dirs * (t_starts + t_ends)[:, None] / 2.0 - sigmas = radiance_field.query_density(positions) - return sigmas # (n_samples,) - -def rgb_sigma_fn( - t_starts: Tensor, t_ends: Tensor, ray_indices: Tensor -) -> Tuple[Tensor, Tensor]: - """ Query rgb and density values from a user-defined radiance field. """ - t_origins = rays_o[ray_indices] # (n_samples, 3) - t_dirs = rays_d[ray_indices] # (n_samples, 3) - positions = t_origins + t_dirs * (t_starts + t_ends)[:, None] / 2.0 - rgbs, sigmas = radiance_field(positions, condition=t_dirs) - return rgbs, sigmas # (n_samples, 3), (n_samples,) - -# Efficient Raymarching: -# ray_indices: (n_samples,). t_starts: (n_samples,). t_ends: (n_samples,). -ray_indices, t_starts, t_ends = estimator.sampling( - rays_o, rays_d, sigma_fn=sigma_fn, near_plane=0.2, far_plane=1.0, early_stop_eps=1e-4, alpha_thre=1e-2, -) - -# Differentiable Volumetric Rendering. -# colors: (n_rays, 3). opaicity: (n_rays, 1). depth: (n_rays, 1). -color, opacity, depth, extras = nerfacc.rendering( - t_starts, t_ends, ray_indices, n_rays=rays_o.shape[0], rgb_sigma_fn=rgb_sigma_fn -) - -# Optimize: Both the network and rays will receive gradients -optimizer.zero_grad() -loss = F.mse_loss(color, color_gt) -loss.backward() -optimizer.step() -``` - -## Examples: - -Before running those example scripts, please check the script about which dataset is needed, and download the dataset first. You could use `--data_root` to specify the path. - -```bash -# clone the repo with submodules. -git clone --recursive git://github.com/KAIR-BAIR/nerfacc/ -``` - -### Static NeRFs - -See full benchmarking here: https://www.nerfacc.com/en/stable/examples/static.html - -Instant-NGP on NeRF-Synthetic dataset with better performance in 4.5 minutes. -``` bash -# Occupancy Grid Estimator -python examples/train_ngp_nerf_occ.py --scene lego --data_root data/nerf_synthetic -# Proposal Net Estimator -python examples/train_ngp_nerf_prop.py --scene lego --data_root data/nerf_synthetic -``` - -Instant-NGP on Mip-NeRF 360 dataset with better performance in 5 minutes. -``` bash -# Occupancy Grid Estimator -python examples/train_ngp_nerf_occ.py --scene garden --data_root data/360_v2 -# Proposal Net Estimator -python examples/train_ngp_nerf_prop.py --scene garden --data_root data/360_v2 -``` - -Vanilla MLP NeRF on NeRF-Synthetic dataset in an hour. -``` bash -# Occupancy Grid Estimator -python examples/train_mlp_nerf.py --scene lego --data_root data/nerf_synthetic -``` - -TensoRF on Tanks&Temple and NeRF-Synthetic datasets (plugin in the official codebase). -``` bash -cd benchmarks/tensorf/ -# (set up the environment for that repo) -bash script.sh nerfsyn-nerfacc-occgrid 0 -bash script.sh tt-nerfacc-occgrid 0 -``` - -### Dynamic NeRFs - -See full benchmarking here: https://www.nerfacc.com/en/stable/examples/dynamic.html - -T-NeRF on D-NeRF dataset in an hour. -``` bash -# Occupancy Grid Estimator -python examples/train_mlp_tnerf.py --scene lego --data_root data/dnerf -``` - -K-Planes on D-NeRF dataset (plugin in the official codebase). -```bash -cd benchmarks/kplanes/ -# (set up the environment for that repo) -bash script.sh dnerf-nerfacc-occgrid 0 -``` - -TiNeuVox on HyperNeRF and D-NeRF datasets (plugin in the official codebase). -```bash -cd benchmarks/tineuvox/ -# (set up the environment for that repo) -bash script.sh dnerf-nerfacc-occgrid 0 -bash script.sh hypernerf-nerfacc-occgrid 0 -bash script.sh hypernerf-nerfacc-propnet 0 -``` - -### Camera Optimization NeRFs - -See full benchmarking here: https://www.nerfacc.com/en/stable/examples/camera.html - -BARF on the NeRF-Synthetic dataset (plugin in the official codebase). -```bash -cd benchmarks/barf/ -# (set up the environment for that repo) -bash script.sh nerfsyn-nerfacc-occgrid 0 -``` - -### 3rd-Party Usages: +Please refer to [NerfAcc Repository](https://github.com/KAIR-BAIR/nerfacc) for installation instructions. -#### Awesome Codebases. -- [nerfstudio](https://github.com/nerfstudio-project/nerfstudio): A collaboration friendly studio for NeRFs. -- [sdfstudio](https://autonomousvision.github.io/sdfstudio/): A unified framework for surface reconstruction. -- [threestudio](https://github.com/threestudio-project/threestudio): A unified framework for 3D content creation. -- [instant-nsr-pl](https://github.com/bennyguo/instant-nsr-pl): NeuS in 10 minutes. -- [modelscope](https://github.com/modelscope/modelscope/blob/master/modelscope/models/cv/nerf_recon_acc/network/nerf.py): A collection of deep-learning algorithms. +## Acknowledgements -#### Awesome Papers. -- [Representing Volumetric Videos as Dynamic MLP Maps, CVPR 2023](https://github.com/zju3dv/mlp_maps) -- [NeRSemble: Multi-view Radiance Field Reconstruction of Human Heads, ArXiv 2023](https://tobias-kirschstein.github.io/nersemble/) -- [HumanRF: High-Fidelity Neural Radiance Fields for Humans in Motion, ArXiv 2023](https://synthesiaresearch.github.io/humanrf/) +This project is inspired by and built upon the work found in [**Nerfacc Repository**](https://github.com/KAIR-BAIR/nerfacc). Special thanks to all the contributors of the original repository for laying the groundwork that has enabled us to advance this initiative. -## Common Installation Issues +## License -