5.4.1 Configure shadow password suite parameters

While a majority of the password control parameters have been moved to PAM, some parameters are still available through the shadow password suite. Any changes made to /etc/login.defs will only be applied if the usermod command is used. If user IDs are added a different way, use the chage command to effect changes to individual user IDs.

5.4.1.1 Ensure password expiration is configured (Automated)

Profile Applicability:

- Level 1 Server
- Level 1 Workstation

Description:

The PASS_MAX_DAYS parameter in /etc/login.defs allows an administrator to force passwords to expire once they reach a defined age.

PASS_MAX_DAYS <N> - The maximum number of days a password may be used. If the password is older than this, a password change will be forced. If not specified, -1 will be assumed (which disables the restriction).

Rationale:

The window of opportunity for an attacker to leverage compromised credentials or successfully compromise credentials via an online brute force attack is limited by the age of the password. Therefore, reducing the maximum age of a password also reduces an attacker's window of opportunity.

We recommend a yearly password change. This is primarily because for all their good intentions users will share credentials across accounts. Therefore, even if a breach is publicly identified, the user may not see this notification, or forget they have an account on that site. This could leave a shared credential vulnerable indefinitely. Having an organizational policy of a 1-year (annual) password expiration is a reasonable compromise to mitigate this with minimal user burden.

Impact:

The password expiration must be greater than the minimum days between password changes or users will be unable to change their password.

Excessive password expiration requirements do more harm than good, because these requirements make users select predictable passwords, composed of sequential words and numbers that are closely related to each other. In these cases, the next password can be predicted based on the previous one (incrementing a number used in the password for example). Also, password expiration requirements offer no containment benefits because attackers will often use credentials as soon as they compromise them. Instead, immediate password changes should be based on key events including, but not limited to:

- Indication of compromise
- Change of user roles
- When a user leaves the organization.

Not only does changing passwords every few weeks or months frustrate the user, but it's also been suggested that it does more harm than good, because it could lead to bad practices by the user such as adding a character to the end of their existing password.

Audit:

Run the following command and verify PASS_MAX_DAYS is set to 365 days or less and conforms to local site policy:

```
# grep -Pi -- '^\h*PASS MAX DAYS\h+\d+\b' /etc/login.defs
```

Example output:

```
PASS MAX DAYS 365
```

Run the following command and Review list of users and PASS_MAX_DAYS to verify that all users PASS MAX DAYS conforms to site policy (no more than 365 days):

Run the following command to verify all passwords have a PASS_MAX_DAYS of 365 days or less and greater than 0 days:

```
# awk -F: '(2^/^\s.+\s/) {if(5>365| | 5<1)print "User: " 1 " PASS_MAX_DAYS: " 5}' /etc/shadow
```

Nothing should be returned

Remediation:

Set the PASS MAX DAYS parameter to conform to site policy in /etc/login.defs:

PASS_MAX_DAYS 365

Modify user parameters for all users with a password set to match:

```
# chage --maxdays 365 <user>
```

Edit /etc/login.defs and set PASS_MAX_DAYS to a value greater than 0 that follows local site policy:

Example:

PASS MAX DAYS 365

Run the following command to modify user parameters for all users with a password set to a maximum age no greater than 356 or less than 1 that follows local site policy:

chage --maxdays <N> <user>

Example:

```
# awk -F: '(2^{^{\}}) {if(5 > 365 \mid | 5 < 1) system ("chage --maxdays 365" $1)}' /etc/shadow
```

Default Value:

PASS_MAX_DAYS 99999

References:

- 1. CIS Password Policy Guide
- 2. NIST SP 800-53 Rev. 5: CM-1, CM-2, CM-6, CM-7, IA-5

Additional Information:

A value of -1 will disable password expiration.

CIS Controls:

Controls Version	Control		IG 2	IG 3
v8	5.2 <u>Use Unique Passwords</u> Use unique passwords for all enterprise assets. Best practice implementation includes, at a minimum, an 8-character password for accounts using MFA and a 14-character password for accounts not using MFA.	•	•	•
v7	4.4 <u>Use Unique Passwords</u> Where multi-factor authentication is not supported (such as local administrator, root, or service accounts), accounts will use passwords that are unique to that system.		•	•

Techniques / Sub- techniques	Tactics	Mitigations
T1078, T1078.001, T1078.002, T1078.003, T1078.004, T1110, T1110.001, T1110.002, T1110.003, T1110.004		

5.4.1.2 Ensure minimum password age is configured (Manual)

Profile Applicability:

- Level 2 Server
- Level 2 Workstation

Description:

The minimum password age determines the number of days that you must use a password before you can change it.

PASS_MIN_DAYS <*N*> - The minimum number of days allowed between password changes. Any password changes attempted sooner than this will be rejected. If not specified, 0 will be assumed (which disables the restriction).

Rationale:

Users may have favorite passwords that they like to use because they are easy to remember and they believe that their password choice is secure from compromise. Unfortunately, passwords are compromised and if an attacker is targeting a specific individual user account, with foreknowledge of data about that user, reuse of old, potentially compromised passwords, may cause a security breach.

By restricting the frequency of password changes, an administrator can prevent users from repeatedly changing their password in an attempt to circumvent password reuse controls

Impact:

By enforcing a minimum password age, a user will be unable to change their password if they observe a potential compromise of their password, e.g. "shoulder surfing", during the time defined by minimum password age. In this event the user should follow local site policy to report a compromised password.

If a users password is set by other personnel as a procedure in dealing with a lost or expired password, the user should be forced to update this "set" password with their own password. e.g. force "change at next logon".

If it is not possible to have a user set their own password immediately, and this recommendation or local site procedure may cause a user to continue using a third party generated password, PASS_MIN_DAYS for the effected user should be temporally changed to 0, to allow a user to change their password immediately.

For applications where the user is not using the password at console, the ability to "change at next logon" may be limited. This may cause a user to continue to use a password created by other personnel.

Audit:

Run the following command to verify that PASS_MIN_AGE is set to a value greater than oand follows local site policy:

```
# grep -Pi -- '^\h*PASS_MIN_DAYS\h+\d+\b' /etc/login.defs
```

Example output:

```
PASS_MIN_DAYS 1
```

Run the following command to verify all passwords have a PASS MIN AGE greater than 0:

```
# awk -F: '($2~/^\$.+\$/) {if($4 < 1)print "User: " $1 " PASS_MIN_DAYS: " $4}' /etc/shadow
```

Nothing should be returned

Remediation:

Edit /etc/login.defs and set PASS_MIN_DAYS to a value greater than 0 that follows local site policy:

Example:

```
PASS_MIN_DAYS 1
```

Run the following command to modify user parameters for all users with a password set to a minimum age greater than zero that follows local site policy:

```
# chage --mindays <N> <user>
```

Example:

```
# awk -F: '(2^{^{\}}.+\^{\}) {if(4 < 1)system ("chage --mindays 1 " 1)}' /etc/shadow
```

Default Value:

PASS_MIN_DAYS 0

References:

1. CIS Password Policy Guide

CIS Controls:

Controls Version	Control		IG 2	IG 3
v8	5.2 <u>Use Unique Passwords</u> Use unique passwords for all enterprise assets. Best practice implementation includes, at a minimum, an 8-character password for accounts using MFA and a 14-character password for accounts not using MFA.		•	•
v7	4.4 <u>Use Unique Passwords</u> Where multi-factor authentication is not supported (such as local administrator, root, or service accounts), accounts will use passwords that are unique to that system.		•	•

Techniques / Sub- techniques	Tactics	Mitigations
T1078, T1078.001, T1078.002, T1078.003, T1078.004, T1110, T1110.004	TA0006	M1027

5.4.1.3 Ensure password expiration warning days is configured (Automated)

Profile Applicability:

- Level 1 Server
- Level 1 Workstation

Description:

The PASS_WARN_AGE parameter in /etc/login.defs allows an administrator to notify users that their password will expire in a defined number of days.

PASS_WARN_AGE <*N*> - The number of days warning given before a password expires. A zero means warning is given only upon the day of expiration, a negative value means no warning is given. If not specified, no warning will be provided.

Rationale:

Providing an advance warning that a password will be expiring gives users time to think of a secure password. Users caught unaware may choose a simple password or write it down where it may be discovered.

Audit:

Run the following command and verify PASS_WARN_AGE is 7 or more and follows local site policy:

```
# grep -Pi -- '^\h*PASS_WARN_AGE\h+\d+\b' /etc/login.defs
```

Example output:

```
PASS WARN AGE 7
```

Run the following command to verify all passwords have a PASS WARN AGE of 7 or more:

```
# awk -F: '($2~/^\$.+\$/) {if($6 < 7)print "User: " $1 " PASS_WARN_AGE: " $6}' /etc/shadow
```

Nothing should be returned

Remediation:

Edit /etc/login.defs and set PASS_WARN_AGE to a value of 7 or more that follows local site policy:

Example:

PASS WARN AGE 7

Run the following command to modify user parameters for all users with a password set to a minimum warning to 7 or more days that follows local site policy:

```
# chage --warndays <N> <user>
```

Example:

```
# awk -F: '(2^{^{\}}) {if(6 < 7) system ("chage --warndays 7 " $1)}' /etc/shadow
```

Default Value:

PASS_WARN_AGE 7

CIS Controls:

Controls Version	Control	IG 1	IG 2	IG 3
v8	4.1 Establish and Maintain a Secure Configuration Process Establish and maintain a secure configuration process for enterprise assets (end-user devices, including portable and mobile, non-computing/IoT devices, and servers) and software (operating systems and applications). Review and update documentation annually, or when significant enterprise changes occur that could impact this Safeguard.	•	•	•
v7	4.4 <u>Use Unique Passwords</u> Where multi-factor authentication is not supported (such as local administrator, root, or service accounts), accounts will use passwords that are unique to that system.		•	•

Techniques / Sub- techniques	Tactics	Mitigations
T1078	TA0006	M1027

5.4.1.4 Ensure strong password hashing algorithm is configured (Automated)

Profile Applicability:

- Level 1 Server
- Level 1 Workstation

Description:

A cryptographic hash function converts an arbitrary-length input into a fixed length output. Password hashing performs a one-way transformation of a password, turning the password into another string, called the hashed password.

ENCRYPT_METHOD (string) - This defines the system default encryption algorithm for encrypting passwords (if no algorithm are specified on the command line). It can take one of these values:

- MD5 MD5-based algorithm will be used for encrypting password
- SHA256 SHA256-based algorithm will be used for encrypting password
- SHA512 SHA512-based algorithm will be used for encrypting password
- BCRYPT BCRYPT-based algorithm will be used for encrypting password
- YESCRYPT YESCRYPT-based algorithm will be used for encrypting password
- DES DES-based algorithm will be used for encrypting password (default)

Note:

- This parameter overrides the deprecated MD5 CRYPT ENAB variable.
- This parameter will only affect the generation of group passwords.
- The generation of user passwords is done by PAM and subject to the PAM configuration.
- It is recommended to set this variable consistently with the PAM configuration.

Rationale:

The SHA-512 and yescrypt algorithms provide a stronger hash than other algorithms used by Linux for password hash generation. A stronger hash provides additional protection to the system by increasing the level of effort needed for an attacker to successfully determine local group passwords.

Audit:

Run the following command to verify the hashing algorithm is sha512 or yescrypt in /etc/login.defs:

grep -Pi -- '^\h*ENCRYPT METHOD\h+(SHA512|yescrypt)\b' /etc/login.defs

Example output:

```
ENCRYPT_METHOD SHA512
- OR -
ENCRYPT_METHOD YESCRYPT
```

Remediation:

Edit /etc/login.defs and set the ENCRYPT METHOD to SHA512 or YESCRYPT:

```
ENCRYPT METHOD < HASHING ALGORITHM>
```

Example:

ENCRYPT METHOD YESCRYPT

Note:

- This only effects local groups' passwords created after updating the file to use sha512 **Or** yescrypt.
- If it is determined that the password algorithm being used is not sha512 or yescrypt, once it is changed, it is recommended that all group passwords be updated to use the stronger hashing algorithm.
- It is recommended that the chosen hashing algorithm is consistent across /etc/login.defs and the PAM configuration

Default Value:

ENCRYPT METHOD SHA512

References:

1. NIST SP 800-53 Rev. 5: IA-5

CIS Controls:

Controls Version	Control		IG 2	IG 3
v8	3.11 Encrypt Sensitive Data at Rest Encrypt sensitive data at rest on servers, applications, and databases containing sensitive data. Storage-layer encryption, also known as server-side encryption, meets the minimum requirement of this Safeguard. Additional encryption methods may include application-layer encryption, also known as client-side encryption, where access to the data storage device(s) does not permit access to the plain-text data.		•	•
v7	16.4 Encrypt or Hash all Authentication Credentials Encrypt or hash with a salt all authentication credentials when stored.		•	•

Techniques / Sub- techniques	Tactics	Mitigations
T1003, T1003.008, T1110, T1110.002	TA0006	M1041

5.4.1.5 Ensure inactive password lock is configured (Automated)

Profile Applicability:

- Level 1 Server
- Level 1 Workstation

Description:

User accounts that have been inactive for over a given period of time can be automatically disabled.

INACTIVE - Defines the number of days after the password exceeded its maximum age where the user is expected to replace this password.

The value is stored in the shadow password file. An input of $_{0}$ will disable an expired password with no delay. An input of $_{-1}$ will blank the respective field in the shadow password file.

Rationale:

Inactive accounts pose a threat to system security since the users are not logging in to notice failed login attempts or other anomalies.

Audit:

Run the following command and verify INACTIVE conforms to site policy (no more than 45 days):

```
# useradd -D | grep INACTIVE
INACTIVE=45
```

Verify all users with a password have Password inactive no more than 45 days after password expires

Verify all users with a password have Password inactive no more than 45 days after password expires: Run the following command and Review list of users and INACTIVE to verify that all users INACTIVE conforms to site policy (no more than 45 days):

```
# awk -F: '(2^{^{\}}.+\$/) {if(7 > 45 \mid | $7 < 0)print "User: " $1 " INACTIVE: " $7}' /etc/shadow
```

Nothing should be returned.

Remediation:

Run the following command to set the default password inactivity period to 45 days or less that meets local site policy:

useradd -D -f <N>

Example:

useradd -D -f 45

Run the following command to modify user parameters for all users with a password set to a inactive age of 45 days or less that follows local site policy:

chage --inactive <N> <user>

Example:

awk -F: '($2^{^{^{^{^{5}}}}}$) {if($7 > 45 \mid | $7 < 0$) system ("chage --inactive 45" \$1)}' /etc/shadow

Default Value:

INACTIVE=-1

References:

1. CIS Password Policy Guide

Additional Information:

A value of -1 would disable this setting.

CIS Controls:

Controls Version	Control		IG 2	IG 3
v8	5.2 <u>Use Unique Passwords</u> Use unique passwords for all enterprise assets. Best practice implementation includes, at a minimum, an 8-character password for accounts using MFA and a 14-character password for accounts not using MFA.		•	•
v7	4.4 <u>Use Unique Passwords</u> Where multi-factor authentication is not supported (such as local administrator, root, or service accounts), accounts will use passwords that are unique to that system.		•	•

Techniques / Sub- techniques	b- Tactics Mitigation	
T1078, T1078.002, T1078.003	TA0001	M1027

5.4.1.6 Ensure all users last password change date is in the past (Automated)

Profile Applicability:

- Level 1 Server
- Level 1 Workstation

Description:

All users should have a password change date in the past.

Rationale:

If a user's recorded password change date is in the future, then they could bypass any set password expiration.

Audit:

Run the following command and verify nothing is returned

```
{
    while IFS= read -r l_user; do
        l_change=$(date -d "$(chage --list $l_user | grep '^Last password
        change' | cut -d: -f2 | grep -v 'never$')" +%s)
        if [[ "$l_change" -gt "$(date +%s)" ]]; then
            echo "User: \"$l_user\" last password change was \"$(chage --list
$l_user | grep '^Last password change' | cut -d: -f2)\""
        fi
        done < <(awk -F: '$2~/^\$.+\$/{print $1}' /etc/shadow)
}</pre>
```

Remediation:

Investigate any users with a password change date in the future and correct them. Locking the account, expiring the password, or resetting the password manually may be appropriate.

CIS Controls:

Controls Version	Control		IG 2	IG 3
v8	5.2 <u>Use Unique Passwords</u> Use unique passwords for all enterprise assets. Best practice implementation includes, at a minimum, an 8-character password for accounts using MFA and a 14-character password for accounts not using MFA.		•	•
v7	4.4 <u>Use Unique Passwords</u> Where multi-factor authentication is not supported (such as local administrator, root, or service accounts), accounts will use passwords that are unique to that system.		•	•

Techniques / Sub- techniques	Tactics	Mitigations
T1078, T1078.001, T1078.002, T1078.003, T1078.004, T1110, T1110.001, T1110.002, T1110.003, T1110.004		