

Vivante Software Tool Kit

User Guide

Version 1.2

30 October 2012

This document covers the following vTools:
 vAnalyzer, vCompiler, vEmulator, vProfiler, vShader, and vTexture.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 2 of 44

Legal Notices
COPYRIGHT INFORMATION

Vivante Corporation reserves the right to make changes to any products herein at any time without notice.
Vivante Corporation does not assume any responsibility or liability arising out of the application or use of any
product described herein, except as expressly agreed to in writing by Vivante Corporation; nor does the
purchase or use of a product from Vivante Corporation convey a license under any patent rights, copyrights,
trademark rights, or any other of the intellectual property rights of Vivante Corporation or third parties.

TRADEMARK ACKNOWLEDGMENT

Vivante Corporation and the Vivante Corporation logo design are the trademarks or the registered trademarks
of Vivante Corporation. All other brand and product names may be trademarks of their respective companies.

For our current distributors, sales offices, design resource centers, and product information, visit our web page
located at http://www.vivantecorp.com.

Copyright © 2012 by Vivante Corporation, All rights reserved.

http://www.vivantecorp.com/

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 3 of 44

Table of Contents
LEGAL NOTICES .. 2

TABLE OF CONTENTS .. 3

LIST OF FIGURES ... 5

LIST OF TABLES .. 5

1 VIVANTE TOOL KIT OVERVIEW ... 6

1.1 VTK Component Overview ... 6

1.2 VTK Operating System Requirements .. 7

1.3 VTK Installation .. 7

2 VEMULATOR ... 8

2.1 Supported Operating Systems and Graphics Hardware .. 8

2.2 vEmulator Components ... 9

2.3 vEmulator for OpenCL ... 10

2.4 Supported Extensions .. 10

2.5 vEmulator Environment Variable Setup .. 11

2.6 Sample Code Overview .. 12

2.7 Building and Running the Code Examples ... 12

2.8 OpenGL ES 1.1 Examples ... 13
2.8.1 tutorial1: Rotating Three Color Triangle ... 13
2.8.2 tutorial2: Rotating Six-color Cube ... 13
2.8.3 tutorial3: Rotating Multi-Textured Cube .. 13
2.8.4 tutorial4: Lighting and Fog ... 13
2.8.5 tutorial5: Blending and Bit-mapped Fonts .. 14
2.8.6 tutorial6: Particles Using Point Sprites .. 14
2.8.7 tutorial7: Vertex Buffer Objects .. 14

2.9 OpenGL ES 2.0 Examples ... 15
2.9.1 tutorial1: Rotating Three-color Triangle ... 15
2.9.2 tutorial2: Rotating Six-color Cube ... 15
2.9.3 tutorial3: Rotating Reflecting Ball ... 15
2.9.4 tutorial4: Rotating Refracting Ball ... 15

3 VSHADER .. 16

3.1 vShader Components... 16

3.2 Getting Started with vShader .. 16
3.2.1 Creating a new project .. 17
3.2.2 Opening an existing project .. 17
3.2.3 Saving a project ... 17

3.3 vShader Navigation .. 18
3.3.1 vShader Menu Bar ... 19

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 4 of 44

3.3.2 vShader Window Panes .. 21

3.4 vShader Project Resources .. 22
3.4.1 Header ... 22
3.4.2 Fixed States ... 22
3.4.3 Mesh ... 22
3.4.4 Shaders .. 22
3.4.5 Attributes .. 23
3.4.6 Uniforms ... 23
3.4.7 Textures .. 23

4 VCOMPILER ... 24

4.1 vCompiler Command Line Syntax .. 24
4.1.1 Syntax: ... 24
4.1.2 Input parameters (required): .. 24
4.1.3 Input parameters (optional): .. 24
4.1.4 vCompiler Output.. 26
4.1.5 vCompiler Syntax Examples .. 26

5 VTEXTURE ... 27

5.1 Formats .. 27
5.1.1 Supported Formats ... 27
5.1.2 Format Limitations .. 27

5.2 Command Line Syntax ... 28
5.2.1 Syntax .. 28
5.2.2 Parameters .. 28
5.2.3 vTexture Output .. 28
5.2.4 vTexture Syntax Examples .. 28

6 VPROFILER AND VANALYZER ... 29

6.1 Fundamentals of Performance Optimization .. 29

6.2 vProfiler Setup for Linux .. 30
6.2.1 Building Drivers with vProfiler Option .. 30
6.2.2 Set vProfiler Environment Variables ... 30

6.3 vProfiler Collects Performance Data .. 31
6.3.1 Performance Counters .. 31

6.4 vAnalyzer Viewing and Analyzing a Run-time Profile .. 32
6.4.1 Loading Profile Files .. 32
6.4.2 vAnalyzer Menu Bar .. 33

6.5 vAnalyzer Charts .. 34
6.5.1 vAnalyzer Upper Left Pane: Chart Tab and Menu Options ... 34
6.5.2 Chart Customization.. 35
6.5.3 vAnalyzer Lower Left Pane: Frame Number Slider Bar ... 36
6.5.4 vAnalyzer Left Pane: System Info Tab ... 36
6.5.5 vAnalyzer Upper Right Pane: Frame Analysis ... 37
6.5.6 vAnalyzer Lower Right Pane: Frame Selection .. 38

6.6 vAnalyzer Viewers .. 39
6.6.1 OpenGL Function Call Viewer ... 39
6.6.2 Program Viewer .. 40

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 5 of 44

APPENDIX A: DEBUG AND PERFORMANCE COUNTERS .. 41

Hardware Counters (listed by sub-block) .. 41

HAL Counters ... 42

Overall Computed Values .. 42

Shader Processing Counters .. 42

3D API Counters (OpenGL ES, D3D, etc.) ... 43

DOCUMENT REVISION HISTORY .. 44

List of Figures
Figure 1. Vivante Tool Kit vTools Components .. 6
Figure 2. vEmulator embedded graphics emulator ... 8
Figure 3. vShader shader editor... 16
Figure 4. vShader GUI main window ... 18
Figure 5. vShader Moveable Panes .. 21
Figure 6. vCompiler compiler/linker .. 24
Figure 7. vTexture Image Transfer Tool ... 27
Figure 8. vProfiler performance profiling save data for review in the vAnalyzer visual analyzer 29
Figure 9. vAnalyzer GUI Main Window .. 32
Figure 10. vAnalyzer Performance Counter Charts ... 34
Figure 11. vAnalyzer Create New Chart Dialog .. 35
Figure 12. vAnalyzer Frame Number Slider Bar ... 36
Figure 13. vAnalyzer System Info Tab .. 36
Figure 14. vAnalyzer Frame Analysis Summary and Detail Tabs ... 37
Figure 15. vAnalyzer Frame Selection Slow Frames Tab ... 38
Figure 16. vAnalyzer Frame Selection Critical Frames Tab .. 38
Figure 17. vAnalyzer OpenGL function call viewer window .. 39
Figure 18. vAnalyzer Program Viewer ... 40

List of Tables
Table 1. vEmulator Directory Contents ... 9
Table 2. vEmulator Files for OpenCL 1.1 .. 10
Table 3. vShader Menu Commands ... 19
Table 4. vProfiler Environment Variables .. 30
Table 5. Performance Counter Types .. 31

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 6 of 44

1 Vivante Tool Kit Overview
The Vivante Tool Kit (VTK) is a set of applications designed to be used by graphics application developers
to rapidly develop and port graphics applications either stand alone, or as part of an IDE targeting a
system-on-chip (SoC) platform containing an embedded GPU.

1.1 VTK Component Overview
The VTK includes a graphics and OpenCL emulator (vEmulator) to enable embedded graphics and
compute application development on a PC platform, a driver and hardware performance profiling utility
(vProfiler), and a visual analyzer (vAnalyzer) for graphing the performance metrics. Also provided are pre-
processing utilities for stand-alone development of optimized shader programs (vShader) and for
compiling shader code (vCompiler) into binary executables targeting Vivante accelerated hardware
platforms. An image transfer utility (vTexture) provides compression and decompression options.

Figure 1. Vivante Tool Kit vTools Components

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 7 of 44

1.2 VTK Operating System Requirements
Most VTK vTools applications are designed to run on Microsoft Windows operating systems. The following
systems are compatible with current releases of vTools:

• Microsoft Windows XP Professional, with Service Pack 2 or later
• Microsoft Windows Vista with Service Pack 2 or later
• Microsoft Windows 7 Professional

Some components, such as the vProfiler, are run on other platforms. Refer to the individual vTools
component detail description.

1.3 VTK Installation
The vProfiler tool is not included in the VTK. This tool can be built by setting a build command option
when making the Vivante Graphics Drivers.

The VTK package contains a vtools folder. Inside this folder are five .zip packages which can be
individually extracted. As an example, if you have a system with WinRAR installed, right click and select
Extract Here. A folder will be created with the same name as the .zip file.

• vAnalyzer.zip
• vCompiler.zip
• vEmulator.zip
• vShader.zip
• vTexture.zip

Each vTools extracted folder will contain a SETUP.exe and a vToolName.msi file. The tool can be installed
independently by running the SETUP.exe located in that tool’s folder. Typical licensing and folder
placement options may appear as part of the installation prompts.

vAnalyzer and vShader have a Windows GUI. vEmulator is a library. vCompiler and vTexture are utilities
run from the command line.

NOTES:
• The default installation location for the VTK is usually a folder named something like C:/Program

Files/Vivante/vToolName, where vToolName is the name of the tool being installed. Some systems
may install to a Program Files (x86) folder.

• Windows navigation instructions such as Control Panel navigation will vary with the different
Windows operating systems.

• Administrator rights may be required to install the tool.
• If you are installing an update version, use Windows Add/Remove programs to remove the installed

version of the tool, before installing the update version.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 8 of 44

2 vEmulator
Vivante’s vEmulator duplicates the graphics and compute functionality of the Khronos APIs—namely,
OpenGL ES 2.0, OpenGL ES 1.1 and OpenCL 1.1—in a desktop PC environment. This enables developers to
write and test applications for Vivante embedded GPU cores prior to their availability, using the graphics
cards on Windows XP or Windows Vista™ or Windows 7 PC platforms.

Figure 2. vEmulator embedded graphics emulator

vEmulator is not an application, but rather a set of libraries that convert Khronos mobile API function calls
into OpenGL 2.0 desktop or OpenCL function calls. These libraries can be accessed directly by the graphics
/ compute application.

2.1 Supported Operating Systems and Graphics Hardware
vEmulator libraries are available for Microsoft Windows XP, Windows Vista and Windows 7 operating
systems:

• Microsoft Windows XP Professional, with Service Pack 2 or later
• Microsoft Windows Vista with Service Pack 2 or later
• Microsoft Windows 7 Professional

vEmulator has been tested on popular graphics cards, including:

• NVIDIA GeForce GTX 200 series with driver version 182.05 or later
• NVIDIA GeForce 9000 and 8000 series with driver version 182.05 or later
• NVIDIA GeForce 8400 GS with ForceWare driver version 176.44 or later
• ATI Radeon HD 3000 and 4000 series with driver version Catalyst 9.1 or later

Additional graphics cards will be added as testing is confirmed.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 9 of 44

2.2 vEmulator Components
vEmulator libraries are packaged with the Vivante VTK installer. Once installed the libraries will reside in a
folder vEmulator in the VTK installation path which can be specified by the user at time of installation. The
default location of the Vivante VTK is:

C:\Program Files\vivante

The vEmulator folder contains everything that is needed for emulation. The vEmulator directory structure
and its files are described in the following table.

Table 1. vEmulator Directory Contents
vEmulator subdirectory Filename Description

bin

libEGL.dll Dynamic library for invoking EGL at runtime

libGLESv1_CM.dll Dynamic library for OpenGL ES 1.1 emulation

libGLESv2x.dll Dynamic library for OpenGL ES 2.0 emulation

libOpenCL.dll Dynamic library for OpenCL 1.1 emulation

libVEmulatorVDK.dll Dynamic library for vEmulator VDK functions

inc

gc_vdk.h Vivante VDK declarations

gc_vdk_types.h Vivante VDK type declarations

gc_sdk.h Vivante SDK declarations and definitions

inc/EGL

egl.h EGL declarations

eglext.h EGL extension declarations

eglplatform.h Platform specific EGL declarations

eglrename.h Rename for building static link driver

eglunname.h For mixed usage of ES11, ES20

eglvivante.h Vivante EGL declarations

inc/GLES

egl.h EGL declarations

gl.h OpenGL 1.1 declarations

glext.h OpenGL1.1 extension declarations

glplatform.h Platform specific OpenGL 1.1 declarations

glrename.h Rename for building static link driver

glunname.h For mixed usage of ES11, ES20

inc/GLES2

gl2.h OpenGL 2.0 declarations

gl2ext.h OpenGL 2.0 extension declarations

gl2platform.h Platform specific OpenGL 2.0 declarations

gl2rename.h Rename for building static link driver

gl2unname.h Unified name definitions

inc/hal gc_hal_eglplatform_type.h Vivante HAL platform specific struct declarations

inc/KHR khrplatform.h Platform specific Khronos declarations

lib

libEGL.lib Static library for linking EGL functions

libGLESv1_CM.lib Static library for linking OpenGL ES 1.1 functions

libGLESv2x.lib Static library for linking OpenGL ES 2.0 functions

libVEmulatorVDK.lib Static library for linking vEmulator VDK functions

samples/es11, /es20 tutorials.sln Microsoft Visual Studio project solution file for samples

samples/es11/tutorialN -- Varies with N -- Sample OpenGL ES 1.1 applications

samples/es20/tutorialN -- Varies with N -- Sample OpenGL ES 2.0 applications

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 10 of 44

2.3 vEmulator for OpenCL
If your edition of vEmulator includes support for OpenCL, additional files may be present. For OpenCL
emulation using vEmulator on your PC, please refer to the OpenCL emulator readme file
(OCL_Readme.txt) in the vEmulator folder for additional installation instruction.

Note: An additional environment variable CL_ON_GC2100 needs to be set for simulation for GC2100. The
value can be any characters, as long as it is not null. This variable does not need to be set for other OCL
cores.

Table 2. vEmulator Files for OpenCL 1.1
vEmulator subdirectory Filename Description

 OCL_Readme.txt Readme file for OpenCL 1.1

bin libOpenCL.dll Dynamic library for invoking OCL at runtime

inc/CL

cl.h OpenCL 1.1 core API header file

cl.hpp OpenCL 1.1 C++ binding header file

cl_d3d10.h OpenCL 1.1 Khronos OCL/Direct3D extensions header file

cl_ext.h OpenCL 1.1 extensions header file

cl_gl.h OpenCL 1.1 Khronos OCL/OpenGL extensions header file

cl_gl_ext.h OpenCL 1.1 Vivante OCL/OpenGL extensions header file

cl_platform.h Platform specific OCL declarations

opencl.h Vivante HAL version

lib libOpenCL.lib Dynamic library for linking OpenCL functions

samples/cl11 cl_sample.cpp Sample OpenCL 1.1 source code

samples/cl11 cl_sample.sln Sample OpenCL 1.1 Visual Studio solution file

samples/cl11 cl_sample.vcproj Sample OpenCL 1.1 Visual Studio solution project file

samples/cl11 square.cl Sample OpenCL 1.1 kernel file

2.4 Supported Extensions
Refer to the document EGL & OES Extensions Support for a list of supported and custom extensions
available for EGL and OpenGL ES.

Software extensions have not been added to vEmulator for OpenGL ES 2.0. vEmulator relies on the
extensions available with the installed version of native OpenGL.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 11 of 44

2.5 vEmulator Environment Variable Setup
There are two steps to running an OpenGL ES or OpenCL application with vEmulator:

Step 1. Link to the vEmulator *.lib static libraries at build time when creating an application
executable image.

Step 2. Provide a path to the vEmulator *.dll dynamic libraries during run-time.

These steps require a one-time setup in which the location of the vEmulator libraries is added to the
Microsoft Windows system environment variable named “Path.” In our example, the following string
would be added to the system “Path” variable: C:\Program Files\vivante\vEmulator\lib.

To add vEmulator DLL files to the Windows XP system path:

a. Click Start then click Control Panel then double-click System
• Vista: then click Advanced system settings from the Tasks list in the upper-left

corner of the window.
• Windows 7: in the System and Security window, click System, then on the left menu

column click Advanced system settings.

b. Select the Advanced tab, then click on the Environment Variables… button.
• An Environment Variables dialogue box will pop up, with two panes for variables.

c. Select Path, and then click on the Edit… button.

d. In the Variable value: field type the following environment variables in the order you want

them found. For instance:

C:\Program Files\vivante\vEmulator\lib; <current path>

Note: The system parses a path string in left-to-right order when looking for a file. Whatever
it finds first is what will be used.

e. If the Vivante Core is GC2100, an additional variable CL_ON_GC2100 should be set to any
non-null value.

f. Click OK.
• Click OK to close the Environment Variables dialogue window.
• Click OK to close the System Properties dialogue window.
• Close the Control Panel > System window.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 12 of 44

2.6 Sample Code Overview
In the discussions that follow about the various sample programs included with the vEmulator
distribution, we assume that vEmulator has been installed in the default location within the vivante VTK
folder:

C:\Program Files\vivante\vEmulator.

Relative to this path:

• run-time dlls are located at …\bin
• include-files are found at …\inc
• library files are located at …\lib\<API>
• examples are located at …\samples\<API>\tutorial*

where API is one of: es11 or es20

The code examples are distributed with working *.exe executable images so that the VTK user can see
how the results should look.

They are presented in a tutorial fashion, progressing from simpler programs to more complex as the
tutorial number increases.

2.7 Building and Running the Code Examples
The steps to build and run are identical for all code examples, regardless of the API (es11 or es20). There
are two general guidelines to keep in mind.

1) A Visual Studio project has environment variables that allow the specification of additional paths to

“include” and “library” files when a source module from that project is being built. The Visual Studio
projects that are part of the vEmulator distribution package are configured out-of-the-box for
building all of the sample code executables, relative to the location where vEmulator is installed.
Specifically the additional paths are set as “$(SolutionDir)..\..\inc” and “$(SolutionDir)..\..\lib”.

If \samples is moved, or if the VTK user begins with the provided projects as templates for developing
applications in a directory that is not directly under the \vEmulator installation, then the project path
variables must be adjusted accordingly. For example:

To access these path variables for tutorial1, first launch the tutorials.sln

• Right-click on tutorial1, then select Properties (at the bottom of the pop-up menu)

• Under “Configuration Properties” > “C/C++” > “General”, edit the Additional Include Directories

entry
o E.g., change ..\..\..\inc to C:\Program Files\vivante\vEmulator\inc

• Under “Configuration Properties” > “Linker” > “General”, edit the Additional Library

Directories entry
o E.g., change ..\..\..\lib to C:\Program Files\vivante\vEmulator\lib

2) Make sure that the system environment variablePATH contains a path to the vEmulator DLL files.

(See above section on vEmulator Environment Variable Setup, above.) Remember that the path is
order-dependent; whatever the system finds first will be used. If there is more than one DLL with the
same name, double-check that the path to the desired one is listed first in the PATH string.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 13 of 44

2.8 OpenGL ES 1.1 Examples

2.8.1 tutorial1: Rotating Three Color Triangle
Renders a cube centered at the origin with a different
color on each face. Flat shading is used. The cube
rotates about the vertical axis. The default projection is
ORTHO, which can be toggled between ORTHO and
PERSPECTIVE by left-clicking in the display window with
the mouse or pressing Enter.

2.8.2 tutorial2: Rotating Six-color Cube
Renders a cube centered at the origin with a different
color on each face. Flat shading is used. The cube
rotates about the vertical axis. The default projection is
ORTHO, which can be toggled between ORTHO and
PERSPECTIVE by left-clicking in the display window with
the mouse or pressing Enter.

2.8.3 tutorial3: Rotating Multi-Textured Cube
This example takes the cube of the previous example
with PERSPECTIVE projection, loads two textures from
file and combines them using GL_ADD blending mode,
and applies the resulting texture to the cube faces.

2.8.4 tutorial4: Lighting and Fog
What appears to be a torus, a cone, and an oblate
spheroid orbiting about the center of a plane is actually a
single mesh being lit by a single rotating, diffuse light
source. Green fog is added to the scene by left-clicking
on the display window with the mouse or pressing Enter.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 14 of 44

2.8.5 tutorial5: Blending and Bit-mapped Fonts
This example makes use of alpha blending to animate
sprites across the display, and it also instructs how to
create a bit-mapped font from a texture. Jumbled letters
iteratively print and move across the display as they
unscramble into a text message.

2.8.6 tutorial6: Particles Using Point Sprites
This example reuses the bit-mapped font technique from
the previous tutorial, but it adds a particle generator to
simulate and animate particles being emitted from the
textured plane. All computation is performed in fixed-
point arithmetic.

2.8.7 tutorial7: Vertex Buffer Objects
Using Vertex Buffer Objects (VBO) can substantially
increase performance by reducing the bandwidth
required to transmit geometry data. Information such
vertex, normal vector, color, and so on is sent once to
locate device video memory and then bound and used as
needed, rather than being read from system memory
every time. This example illustrates how to create and
use vertex buffer objects.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 15 of 44

2.9 OpenGL ES 2.0 Examples

2.9.1 tutorial1: Rotating Three-color Triangle
A single triangle is rendered with a different color at each
vertex, Gouraud shading for blending, rotational
animation in the final display. This is the same example
as es11/tutorial1, only implemented in OpenGL ES 2.0.

2.9.2 tutorial2: Rotating Six-color Cube
Renders a cube centered at the origin with a different
color on each face, and rotates it about the vertical axis.
Similar to the es11/tutorial2 example, the default
projection is ORTHO. But there is no toggle for
PERSPECTIVE.

2.9.3 tutorial3: Rotating Reflecting Ball
A ball made of a mirroring material and centered at the
origin spins about its Y-axis and reflects the scene
surrounding it.

2.9.4 tutorial4: Rotating Refracting Ball
This example is the same as the previous one, except
that the ball is made of clear glass which refracts the
surrounding environment.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 16 of 44

3 vShader
vShader is a complete off-line environment for editing, previewing, analyzing, and optimizing shader
programs.

Figure 3. vShader shader editor

vShader allows users to:

• Map any texture onto shaders
• Import user-defined meshes
• Bind mesh attributes to shaders
• Set uniforms in shaders
• View shader compiler output for optimization hints
• Predict hardware performance

3.1 vShader Components

By default, the vShader executable installs in the following location within the Vivante Toolkit directories:
C:\Program Files\vivante\vShader

The vShader package includes samples of shader programs, a number of standard meshes (sphere, cube,
tea pot, pyramid, etc.) and a text editor. These extra features will help programmers get a quick start on
creating their shader programs.

By combining vertex shaders and fragment shaders into a single shader program, an application can
produce a shader effect. A project can make use of many shader effects, which can share vertex and
fragment shaders, mixing and matching to achieve the desired results.

The scope of this guide is to cover the vShader user interface. The tutorials provided with the vShader
package are there to help the reader learn about shaders, if needed.

3.2 Getting Started with vShader
Once the vShader utility is launched by clicking on a shortcut or directly on the executable vShader.exe
projects can be created, developed and saved. Project files have an extension .vsp.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 17 of 44

3.2.1 Creating a new project
To create a new project, locate the main menu bar: Select File then New Project…

Depending on the current project status, one of three things will happen:

1. If this is the first time vShader is launched, then there is no project already open and selecting “File >
New Project…” will appear to have no effect.

2. If there have been no changes to the current project since the last save, then the current project will
close and a new, empty project will be opened.

3. If the current project has been modified, then a dialog box will pop up to ask if you want to save the
changes. Choosing Yes will commit the changes to the current project, which will then be closed, and
a new, empty project will be opened.

3.2.2 Opening an existing project
To open an existing project, locate the main menu bar:

1. Select File then Open Project…

2. Double-click on the desired project from the list that pops up, or single-click on the project name and
click OK.

The project will load into vShader and appear in the state it was last saved.

3.2.3 Saving a project
To save a project, locate the main menu bar:

1. Select File then Save Project…

2. In the resulting dialog box indicate where to save the project, then click OK.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 18 of 44

3.3 vShader Navigation
The vShader application runs on the Windows XP, Windows Vista and Windows 7 platforms and is driven
from a graphical user interface as shown in the figure below.

Main components of the GUI include:

• on upper portion of window: a Menu Bar, Menu Icons,
• on left: Preview pane, Project Explorer pane
• on right: Shader Editor pane, and
• on lower portion of window: InfoLog pane.

Figure 4. vShader GUI main window

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 19 of 44

3.3.1 vShader Menu Bar
The main window opens when a user launches vShader. The main menu bar contains drop-down menus
for File, Edit, View, Mesh, Build, and Help.

Table 3. vShader Menu Commands
Menu
Name Menu Command Description

File

 New Project… Create a new project file; if a project is currently open, then the user
is prompted to choose whether to save it first.

 Open Project… Browse for and load a .vsp VShader project.

 Save Project… Save the current project; if this is the first time saving this project,
then the user is prompted to choose where to save it.

 Load Vertex… Browse for and load a vertex shader from an existing text file.

 Load Fragment… Browse for and load a fragment shader from an existing text file.

 Save Vertex Shader As… Prompts for filename and location to save the active vertex shader.

 Save Fragment Shader As… Prompts for filename and location to save the active fragment
shader.

 Exit Close all open files and exit VShader.
Edit
 Undo [Ctrl-z] Revert to a previous edit state (Note: Undo is only 1-level deep)

 Redo [Ctrl-z] Re-apply the last “undone” edit command (Note: Redo is only 1-level
deep)

 Cut [Ctrl-x] Delete the selected item(s) and save a copy in the paste buffer

 Copy [Ctrl-c] Save a copy of the selected item(s) item in the paste buffer

 Paste [Ctrl-v] Insert the contents of the paste buffer

 Delete [Del or Bkspc] Remove the selected item(s)

 Select All [Ctrl-a] Highlight all items in the current view
View
 Reset Preview Reset Preview window.

 Snapshot Save current preview image to bitmap bmp file. A dialog will display to
let user choose where to save the bmp.

 Perspective Use perspective projection in the Shader Preview pane

 Ortho Use orthographic projection in the Shader Preview pane

 Tool Bar Show or hide toolbar icons

 Preview Window Show or hide Preview window

 Project Explorer Show or hide Project Explorer window

 Shader Editor Show or hide Shader Editor window

 InfoLog Show or hide InfoLog window

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 20 of 44

Mesh

 Conic Looks like a spiral horn.

 Cube A 3D cube.

 Klein The Klein bottle.

 Plane A 2D square.

 Sphere A ball.

 Teapot The Utah teapot.

 Torus Looks like a donut.

 Trefoil A trefoil knot.

 Custom Mesh… Browse for and open a 3DS
mesh file.

Build

 Compile Compile the active shader; this command is also available via the
 “Compile” button in the Shader Editor window pane.

 Link Link the vertex and fragment shaders into a shader program, and apply
it to the mesh showing in the Shader Preview window pane.

 Clear InfoLog Remove all text currently showing in the InfoLog window pane.
Help
 About Information about the version of VShader being used.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 21 of 44

3.3.2 vShader Window Panes
There are four window panes in the vShader GUI: Preview, Project Explorer, Shader Editor, and InfoLog.
Each pane can be resized by left-mouse-dragging the pane edge. A pane can be hidden by clicking the X in
the upper-right corner of the pane, or by un-checking the box next to its name in the View pull-down of
the main menu. Restoring a hidden window pane is done by checking the appropriate box in the View
pull-down menu.

Individual panes in the vShader application can be
resized, relocated or converted to detached
windows, as in the example to the right.

Note: Changes made to pane arrangement are not
restored on application or project relaunch.

Figure 5. vShader Moveable Panes

3.3.2.1 Preview
The shader Preview pane shows the current effect of the shaders on the chosen mesh geometry. A
different mesh may be chosen either via the Mesh pull-down menu in the menu bar near the top of the
vShader main window or by right-mouse clicking in the Preview pane.

When using the right-click method, the user also can choose between perspective and orthographic views
of the mesh, can reset the view orientation to the default, or can save the current view in the Preview
window as a bitmap file by selecting Snapshot.

The object in the Preview window can be rotated, translated, and scaled. Rotation is controlled by left-
mouse-drag; translation is done by holding the Ctrl key plus left-mouse-drag; scaling the image is seen by
holding the Alt key while applying left-mouse-drag.

When shader variables are changed, the shader preview updates automatically. When shader programs
are changed they must be recompiled and relinked by the user, through the Build menu. The Preview
display will automatically update to reflect the new Build.

3.3.2.2 Project Explorer
The Project Explorer displays all of the project resources in a familiar tree structure. The root of the tree
is the project name, and the branches and leaves classify the resources. Folders can be expanded by
clicking on the plus sign next to them, and they can be collapsed by choosing the minus sign. By right-
mouse clicking on any resource name, the user can view and usually edit that resource.

3.3.2.3 Shader Editor
The Shader Editor is a work area for entering and modifying shader programs. There are two tabs: one for
vertex shader, and one for fragment shader. Changes made to a shader must be compiled and linked in
order for their effect to appear in the Shader Preview.

Compiling can be done by selecting Build then Compile from the main menu bar. Likewise, linking and
applying the shaders is performed by choosing Build then Link.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 22 of 44

3.3.2.4 Info Log
The Info Log window pane receives diagnostic messages from the compiler and linker, so that the user can
see if the current shaders have built without errors. This pane can be cleared of text by selecting the Build
then Clear InfoLog entry in the main menu.

3.4 vShader Project Resources
Project resources are accessible from the Project Explorer pane. Click on the item and an Editor pop-up
dialog will appear where the user can enter alternate values. Resources include: header, fixed states,
mesh, shaders, attributes, uniforms, and textures.

3.4.1 Header
Some project identifying information, namely version, author, and company.
Expand the folder to see the settings, or right-click (or double-click) the folder to
edit them.

3.4.2 Fixed States
The Fixed State Editor is a list of OpenGL ES
2.0 fixed states settings, such as depth test
enable/disable, etc. It allows the user to set all
fixed states manually. Right-click or double
click to display an edit dialog.

3.4.3 Mesh
This resource shows the name of the mesh
which is currently being displayed in the
Preview pane. It does not have a pop-up
window. Right-click on the mesh name to
select a different mesh can be selected from
the resulting pull-down menu.

3.4.4 Shaders
Left-click on the plus sign next to the “shaders”
folder to reveal the two sub nodes in this
section, which are vertex and fragment.
Double-click (or right-click and then choose
Active) on either shader to bring it forward in
the Shader Editor for editing.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 23 of 44

3.4.5 Attributes
The Attribute Editor dialog displays all
attributes bound to the current project. It
allows the user to add new attributes, and
edit or remove existing attributes. Right-click
on Attributes to add a new one. Click on the
plus sign to expand the attributes list, and
then double-click to edit a particular attribute.
Also, by right-clicking on an attribute, you can

edit or remove that attribute or add a new one. Up to 12 attributes are allowed.

3.4.6 Uniforms
This displays all uniforms bound to the current
project. Right-click on Uniforms to add a new
one, or expand the list and double-click on a
given uniform to bring up the Uniform Editor
dialog. When a uniform is right-clicked, the
user can add new uniforms, or edit or remove
existing uniforms. Up to 160 uniforms are
allowed.

3.4.7 Textures
The Texture Editor dialog allows the user to select
a texture for each of up to 8 texture units. The
effect of applying each texture is seen immediately
in the Shader Preview pane.

The texture selection option list is created from
the texture files located in the “textures”
subfolder of the project. The list can be expanded
by adding textures to the textures folder,
formatted as bitmap files.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 24 of 44

4 vCompiler
vCompiler is an off-line compiler and linker for translating vertex and fragment shaders written in OpenGL
ES Shading Language (ESSL) into binary executables targeting Vivante accelerated hardware platforms.
vCompiler is driven by a simple command-line interface.

Figure 6. vCompiler compiler/linker

4.1 vCompiler Command Line Syntax

4.1.1 Syntax:
Optional inputs are indicated by italic font.

vCompiler <shaderInputFileName> [shaderInputFileName_2] [-c] [-h] [-l]
[-o <outputFileName>] [-On] [-v] [-x <shaderType>]

4.1.2 Input parameters (required):
shaderInoutFileName shader input file name, which must contain one of the following file

extensions:
vert vertex shader source file
frag fragment shader source file
vgcSL previously compiled vertex shader input/output file
pgcSL previously compiled pixel shader input/output file

4.1.3 Input parameters (optional):
shaderInputFileName_2 up to two shader files can be specified. The second shader file is

optional but must have one of the file extensions described above for
shaderInputFileName. If the first shader is a vertex shader, this second
shader should be a fragment shader; conversely if the first shader is a
fragment shader, the second should be a pixel shader.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 25 of 44

Note: pre-compiledand compiled shaders may be mixed, as long as
one is a vertex shader and the other a fragment shader.

-c Compile each vertex .vert file into a vgcSL file and/or fragment shader
.frag file into a pgcSL only, with no merged result file of type .gcPGM.
If the –c option is not specified:
a) When only one shader is specified, that shader will be compiled into

a .[v/p]gcSL file.
b) When two shaders are specified, one is assumed to be a vertex

shader and the other a fragment shader. Each shader can be
either a previously compiled .vgcSL or .pgcSL. file or a.vert or .frag
still to be compiled. The two will be merged into a .gcPGM file
after successful compilation.

-h Shows a help message on all the command options.

-l Create a log file. The log file name is created by taking the first input

file name, then replacing its file extension with “.log”. If the input file
name does not have a file extension, .log is appended. e.g.,

myvert.vert => myvert.log
inputfrag => inputfrag.log

-o <outputFileName> Specify the output file name. If the path is other than the current

directory, it must also be specified. Any extension can be specified. If
the extension is not specified, the following are
outputFileName supported default types:

vgcSL compiled vertex shader output file, usually compiled
from a .vert input source file (default result for single
file compile)

pgcSL compiled pixel shader output file, usually compiled
from a .frag source input file.

gcPGM compiled file merging vertex shader and
fragment/pixel shader into a single output file

-On Optimization level. Default is –O1:

-O0 Disable optimizations
-O1- -O9 Indicates on which level optimization should be done.

The default is level 1. Note: Optimization is actually
implemented in the compiler, not vCompiler.

-v Verbose; prints compiler version and diagnostic messages to STDOUT.

-x <shaderType> Explicitly specifies the type of shader instead of relying on the file

extension. This option applies to all following input files until the next
-x option.
ShaderType: supported values for Shader type include:

vert vertex shader source file
frag fragment shader source file
vgcSL compiled vertex shader input/output file
pgcSL compiled pixel shader input/output file

-x none revert back to recognizing shader type according to the file name
extension.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 26 of 44

4.1.4 vCompiler Output
Output files are placed in the current directory, unless another directory is specified with the –o option.
The files can be of the three types described above under outputFileName value of the –o option.

4.1.5 vCompiler Syntax Examples

vCompiler foo.vert produces foo.gcSH

vCompiler bar.frag produces bar.gcSH

vCompiler foo.vert bar.frag produces foo.gcPGM

vCompiler –v –l –O1 foo.vert bar.frag produces foo.gcPGM and foo.log

vCompiler –v –l –O1 –o foo_bar foo.vert bar.frag produces foo_bar.gcPGM and foo_bar.log

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 27 of 44

5 vTexture
The Vivante vTexture tool is introduced in software release version 4.6.9. vTexture is a command line tool
which provides compression and decompression functions to help developers transfer image formats.

Figure 7. vTexture Image Transfer Tool

5.1 Formats

5.1.1 Supported Formats
The vTexture tool supports:

• compression of uncompressed TGA format files to any of the following formats:
o DXT1
o DXT3
o DXT5
o ETC1

• decompression to uncompressed TGA format of the following compressed format file types:
o DXT1
o DXT3
o DXT5
o ETC1

The compressed DXTn format image file will be stored as a DDS file, and the ETC1 format image will be
stored as a PKM file.

5.1.2 Format Limitations
The TGA format uses the RGBA color model and ETC1 format provides an image following the RGB color
model. Therefore, compressing a TGA image to ETC1 format will result in a loss of alpha values.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 28 of 44

5.2 Command Line Syntax
Open a Command prompt.
Navigate to the folder which contains the vTexture files (for example, C:/Program Files
(x86)/vivante/vTexture).
Launch the vTexture or vTextureTools application using the command line syntax described below.

5.2.1 Syntax
The usage of the command line tool is as follows:

vTextureTools -c [option] -src [infile] –dest [outfile]
or

vTextureTools -d [option] -src [infile] –dest [outfile]

5.2.2 Parameters
-c compress a source image of format uncompressed TGA

[option] specify the target output compression format:
-DXT1 compress image to DXT1 format (default format).
-DXT3 compress image to DXT3 format.
-DXT5 compress image to DXT5 format.
-ETC1 compress image to ETC1 format

-d decompress a source image of format specified by the value specified by [option].
The resulting filetype will be uncompressed TGA.
[option] The decompress options are is:
-TGA decompress DXT1, DXT3, DXT5 or ECT1 format image to TGA format.

-src [infile] source file - input image path and filename.
Note: For option –c compress, the application expects an input filename with a
.TGA extension; for –d decompression the application expects .DDS or .PKM
extension.

-dest [outfile] destination file - image path and filename.

Note: the application expects a filename with a .TGA, .DDS or .PKM extension.

-h show help

5.2.3 vTexture Output
Output from the compress option:

• DXTn format image file will be stored as a DDS file,
• ETC1 format image will be stored as a PKM file.

Output from the decompress option:
• all supported formats will be decompressed to an uncompressed TGA file.

5.2.4 vTexture Syntax Examples

vTextureTools -c tga -src C:/vtexinmyfile.tga –dest C:/vtexout/myfile.dds
vTextureTools -d etc1 -src C:/vtexin/myfile2.pkm –dest C:/vtextout/myfile2.tga
vTextureTools -d -src C:/vtexin/myfile3.dds –dest C:/vtextout/myfile3.tga (assumes DXT1)

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 29 of 44

6 vProfiler and vAnalyzer
vProfiler is a run-time environment for collecting performance statistics of an application and the graphics
pipeline. vAnalyzer is a utility for graphically displaying the data gathered by vProfiler and aiding in visual
analysis of graphics performance. Used together, these tools can assist software developers in optimizing
application performance on Vivante enabled platforms. The GPU includes performance counters that
track a variety of GPU functions. vProfiler gathers data from these counters during runtime and can track
data for a range of frames or a single frame from any application. Appendix A contains a partial list of the
data gathered by the hardware performance counters. Additional counters are present in the software
drivers and hardware access layer.

Figure 8. vProfiler performance profiling save data for review in the vAnalyzer visual analyzer

6.1 Fundamentals of Performance Optimization
Whenever an application runs on a computer, it makes use of one or more of the available resources.
These compute resources include the CPU, the graphics processor, caches and memory, hard disks, and
possibly even the network. Viewed simplistically, it will always be the case that one of these resources will
be the limiting factor in how quickly the application can finish its tasks. This limiting resource is the
performance bottleneck. Remove this bottleneck, and application performance should improve. Note,
however, that removing one limiting factor will always promote something else to become the new
performance bottleneck.

The goal of optimizing, or tuning, application performance is to balance the use of resources so that none
of them holds back the application more than any of the others. In practice there is no single, simple way
to tune an application. The whole system needs to be considered, including the size and speed of
individual components as well as interactions and dependencies among components.

vProfiler collects information on GPU usage and on calls to Vivante functions within the graphics pipeline.
As such it provides an excellent view into what is happening on the GCCORE graphics processor at any
point in time, down to the individual frame. So when your application performance is GPU-bound,
vProfiler and vAnalyzer are the right tools to help you determine why.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 30 of 44

Please note that the initial determination regarding which component of your computer system is the
performance bottleneck—CPU, GPU, memory, etc.—is the domain of system performance analyzers and
is outside the scope of the GPU tools. A list of such performance analysis tools can be found at Wikipedia:
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools.

6.2 vProfiler Setup for Linux
The VTK Windows package includes vAnalyzer for the Windows environment. The vProfiler tool can be
compiled for Linux, as per the instructions below.

vProfiler stores software and hardware counters captured per frame in the vprofiler.xpd file. vAnalyzer
reads the .vpd file and allows the user to browse all counters, visualize application performance
bottlenecks, and measure system utilization of that application run. Presently, vProfiler does not store
frame buffer images due to excessive overhead that changes the behavior of applications.

6.2.1 Building Drivers with vProfiler Option
When building Vivante Graphics Drivers in a Linux environment, please add the following build command
option to enable vProfiler:

make -f makefile.linux USE_PROFILER=1

In some cases when GPU power management is enabled, vProfiler may not be able to get the correct GPU
counters. So to ensure that the vProfiler works properly, GPU power management should be disabled
when building the driver. The corresponding build options are specified as below.

make -f makefile.linux USE_PROFILER=1 USE_POWER_MANAGEMENT=0

6.2.2 Set vProfiler Environment Variables

The following table summarizes the environment variables that vProfiler supports.

Table 4. vProfiler Environment Variables
Environment Variable Description

VPROFILER_OUTPUT Specify the output file name of vProfiler

VPROFILER_FRAME_NUM Specify the number of frames dumped by vProfiler

VPROFILER_SYNC_MODE Enable or disable the synchronous mode of vProfiler

6.2.2.1 VPROFILER_OUTPUT
The output file of vProfiler is vprofiler.vpd by default. To specify an alternate filename use the
environment variable VPROFILER_OUTPUT. For example,

export VPROFILER_OUTPUT = sample.vpd

6.2.2.2 VPROFILER_FRAME_NUM
The profile file generated when running an application for a long time can be very large. This takes up a
large amount of disk space and also makes it hard to view the data in vAnalyzer. To limit the number of
frames to analyze, use the environment variable VPROFILE_FRAME_NUM. For example, this example
setting will make vProfiler dump performance data for the first 100 frames.

export VPROFILER_FRAME_NUM =100

http://en.wikipedia.org/wiki/List_of_performance_analysis_tools

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 31 of 44

6.2.2.3 VPROFILER_SYNC_MODE
To get accurate values from the GPU counters, vProfiler needs to commit the GPU commands at the end
of every frame; this is so-called synchronous mode. The environment variable VPROFILE_SYNC_MODE
can be used to enable or disable synchronous mode. By default, vProfiler works in asynchronous mode.
The command below will make vProfiler work in synchronous mode.

export VPROFILER_SYNC_MODE=1

6.3 vProfiler Collects Performance Data
vProfiler is implemented by utilizing hardware counters and a group of instrumentations inserted into
drivers that are controlled by compilation flags.

6.3.1 Performance Counters
vProfile counters are divided into five sets: hardware, HAL (Vivante Graphics driver), (shader) program,
OpenGL and OpenVG. The counters provide detailed per frame runtime information about the application
that can help the developer monitor and tune an application’s resource usage. The following table briefly
lists the various profile counters. For further information, see Appendix A at the end of this document.

Table 5. Performance Counter Types
Counter Type Description

HWCounters A detailed profile of every stage of the GPU hardware pipeline

HALCounters Driver memory usage

Program Statistics of the shaders loaded in the GPU (Note: Available only for OpenGL ES 2.0 applications.)

OGLCounters Various OpenGL (OpenGLES 20 or 11) counters, such as API usage and primitives drawn.

OVGCounters Various OpenVG counters, such as API usage and primitives drawn.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 32 of 44

6.4 vAnalyzer Viewing and Analyzing a Run-time Profile
vAnalyzer is a GUI-based tool whose purpose is to help the user view and analyze GPU performance data
that was collected using counters during an application run. The performance data from a binary
file(*.vpd) written by vProfiler is displayed by vAnalyzer both in text lists and as line graphs. vAnalyzer
features a multi-tab, multi-pane, graphical user interface that gives the user several ways to inspect any
frame in a captured animation sequence.

6.4.1 Loading Profile Files
vAnalyzer accepts a profile for input, which is a .vpd file of performance data created by the Vivante
vProfiler during a run. For example, the saved file may have a name such as sample.vpd.

A .vpd file can be selected using the File/Load Profile Data menu option.

When a performance profile is loaded, vAnalyzer populates the title bar with information about the GPU
and the CPU.

The vAnalyzer screen shot below shows the vAnalyzer GUI immediately after loading a .vpd performance
file, and moving the frame number slider to frame 374. By default, the main pane of the vAnalyzer
window will display the Charts tab which provides charts for frame time, driver time and GPU cycles.
Additional charts can be added in the graph window by selecting from the list of variables on the right.
Different combinations of counters can be displayed in graphical and list form to illustrate resource
utilization for any portion of the profiled application. A second tab contains system information.

Figure 9. vAnalyzer GUI Main Window

Current frame

Start frame End frame

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 33 of 44

6.4.2 vAnalyzer Menu Bar
The vAnalyzer main window opens when a user launches vAnalyzer. The main menu bar contains drop-
down menus for File, Chart, Viewer and Help. Menu options include the following:

File
– Load Profile Data: load a .vpd profile file
– Export Current Frame Data: dump all the counters for the frame being viewed to a .cvs file
– Exit: exit vAnalyzer

Chart
– Create chart: create a new chart
– Customize chart: add or delete counters in an existing chart
– Remove chart: delete a chart
– Export data from chart: dump the counters in a chart to a .csv file
– Save chart to png : dump the chart to a .png file
– View: zoom in, zoom out or fit the chart

Viewer
– OpenGL function call viewer: display the OpenGL function call statistics
– Program viewer: display the shader program statistics

Help
– About: gives version information for vAnalyzer

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 34 of 44

6.5 vAnalyzer Charts

6.5.1 vAnalyzer Upper Left Pane: Chart Tab and Menu Options
On the Chart tab in the vAnalyzer main window two default line graphs are displayed.

Figure 10. vAnalyzer Performance Counter Charts

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 35 of 44

6.5.2 Chart Customization
Chart / Customize Chart: Additional performance counters can be added to existing chart using the
Create New Chart dialog window, which can be invoked from the drop menu Chart / Customize Chart, or
from a pop-up menu which can be invoked by right clicking in the Chart tab area.

New Chart: A new chart can be added in a similar way. A single chart can display up to four (4) counters,
and the Chart pane can hold up to eight (8) charts. Thus a maximum of thirty-two (32) counters can be
graphed at the same time.

Remove Chart: Any chart can be removed from the display using the drop menu Chart / Remove Chart.

Figure 11. vAnalyzer Create New Chart Dialog

6.5.2.1 Chart Components and Navigation

Frame Marker: On the plots displayed in the chart example above there is a blue, vertical frame marker.
This marks the current frame position in the timeline.

Zoom:

Zooming in on a set of frames can be achieved in one of two ways.

• One method is to hold down the left mouse button and then sweep a selection box across a
range of frame numbers, either on a plot itself or in the common X-axis (frame numbers) in the
“Chart” pane, before releasing the mouse button. All charts in the “Chart” pane will zoom in to
the same range of frames.

• Alternatively, if your mouse has a scroll wheel, you may also zoom in by rolling the wheel
forward--toward the screen.

To zoom out move the scroll wheel backward, toward you.

To reset zoom to the default, which will show the entire timeline, press the escape key (ESC) on the
keyboard. The chart view will change to include all frames, from start to end.

6.5.2.2 Data Export

The performance counters in a chart can be dumped to a .csv file by selecting from the dropdown menu
Chart / Export data from chart. The .csv file can be viewed using Excel or another text viewer.

The chart can also be dumped to a .png file by selecting from the main menu Chart / Save chart to PNG.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 36 of 44

6.5.3 vAnalyzer Lower Left Pane: Frame Number Slider Bar
In the lower left pane of the vAnalyzer window, there is a Frame Number gauge in the form of a slider bar.
Numbers at each end of the bar indicate the initial frame (0) and the last frame available in the loaded
sample. By left-clicking and holding the slider, the user can change which frame is selected for analysis.
When the frame number is changed, the blue vertical line which indicates the current frame will move,
and the reported Frame Number will change in the upper right pane Frame Analysis Summary.

Figure 12. vAnalyzer Frame Number Slider Bar

6.5.4 vAnalyzer Left Pane: System Info Tab
When a .vpd profile is loaded, system information about the profiled machine populates the fields on the
System Info pane. Some information is repeated in the title bar of the main GUI for quick reference.

Figure 13. vAnalyzer System Info Tab

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 37 of 44

6.5.5 vAnalyzer Upper Right Pane: Frame Analysis
A selection of performance counters for the frame being viewed are displayed on the right side of the
vAnalyzer main GUI. The user can convert this pane to a pop-up window by dragging the pane outside the
application window. Drag it back to the right pane area of the application window to reintegrate the pane.

Figure 14. vAnalyzer Frame Analysis Summary and Detail Tabs

6.5.5.1 Summary Tab
The Summary tab displays summary information for the frame being viewed.

The Selected Frame Number can be changed by entering a new frame number in the text box at the top of
the list. The user must press Enter after the input to activate the change. Then Summary values, sliders,
and charts all change to reflect the newly entered frame number.

The Summary values below frame number are not directly changeable. They change only when the frame
number is changed, either in the Summary tab, by moving the Frame Number slider, or by selecting a
frame from the Frame Selection pane. Clicking the “…” button to the right of a Summary item will bring
up the corresponding counters in the Detail tab. For example, clicking the “…” button to the right of
Primitive Rate: switches the view to the Detail tab and expands the Primitive processing catogory.
Clicking the “…” button for Driver Utilization: brings up the pop-p window OpenGL function call viewer.

6.5.5.2 Detail Tab
The Detail tab reports values for overall performance evaluation, such as Frame Rate, Driver Utilization,
and GPU cycles. Additionally counter detail is accessible on this tab. The categories of available counters
in the Detail tab are: Overall, OpenGL, Vertex processing, Primitive processing, Pixel processing, Shader
Processing and Bandwidth. Appendix A lists performance as well as hardware counters.

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 38 of 44

6.5.6 vAnalyzer Lower Right Pane: Frame Selection
As with the Frame Analysis pane, this pane can be dragged to display as an independent popup window.

6.5.6.1 Slow Frames Tab
The “Slow Frames” tab lists the ten (10) slowest frames in
the animation sequence, by time in ascending order from
slowest to tenth slowest.

The user can left-click on any entry, or can use the arrow
keys to move up and down the list, and the display in each of
the other GUI panes will change to match that frame.

Figure 15. vAnalyzer Frame Selection Slow Frames Tab

6.5.6.2 Critical Frames Tab
Select the “Critical Frames” tab to customize the criteria by
which a frame is chosen for inspection. One or more of the
performance counters can be specified in building the query,
which also allows for AND and OR logic.

Queries should follow a pattern such as:

“counter name” condition(‘<’/’>’/’==’) values.

Users can identify counter names from those in the Frame
Analysis pane Detail tab. An example is provided just below
the Query input text box.

Figure 16. vAnalyzer Frame Selection Critical Frames Tab

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 39 of 44

6.6 vAnalyzer Viewers
The Viewer information pop-up windows can be launched by selecting
Viewer/OpenGL function call viewer or Viewer/Program viewer from the
Main menu. The selected Viewer will appear in a pop-up window.

6.6.1 OpenGL Function Call Viewer
The OpenGL function call viewer includes three information areas.

• The OGL Function Name area contains a table which lists the available OpenGLES20 or
OpenGLES11 functions by Function Name and Function Type, the run time and the number of
times each has been called for this frame. Functions can be sorted by clicking in the column
heading area. For example, you can sort the functions by call count or run time by clicking the
title bar of “# of Call” or “Time (ms)”.

• The Top 5 Functions area contains a histogram which shows the top 5 call count of the listed
OpenGL functions.

• The Property view area shows the summary when no function is selected; while it shows
performance hints for the function when one is selected.

Figure 17. vAnalyzer OpenGL function call viewer window

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 40 of 44

6.6.2 Program Viewer
For a given Frame Number, the Program Viewer gives the statistics for shader programs: uniforms,
attributes, and the number of instructions in the shader. This is only for OpenGLES20 profile data.

Figure 18. vAnalyzer Program Viewer

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 41 of 44

Appendix A: Debug and Performance Counters

Hardware Counters (listed by sub-block)
 Top Level

• Total cycles
• Outstanding Reads
• Outstanding Writes
• Read bandwidth
• Write bandwidth
• Total bandwidth

 Host Interface
• Number of cycles AXI read request is stalled
• Number of cycles AXI write request is stalled
• Number of cycles AXI write data is stalled

 Memory Controller
• Total 8 byte read requests from pipeline
• Total 8 bytes read requests from the core
• Total 8 byte write requests from pipeline

 Primitive Assembly
• Total vertex count
• Input primitive count
• Output primitive count
• Depth clipped primitive count
• Trivial rejected primitive count
• Face culled primitive count

 Front End Vertex Processing
• Input vertex count
• Vertices per batch
• Vertices per primitive

 Setup
• Culled triangles
• Culled lines

 Pixel Engine
• Pixels killed by color pipe, % alpha test fail
• Pixels killed by depth pipe, % depth & stencil test fail
• Pixels drawn by color pipe
• Pixels drawn by depth pipe
• Valid pixel count
• Overdraw

 Shader
• Total shader cycle count
• Vertex shader active cycles
• Vertex shader idle cycles
• Pixel shader active cycles
• Pixel shader idle cycles
• Total vertex instructions executed
• Total vertices shaded
• Total pixel instructions executed
• Total pixels shaded

 Raster Unit
• Valid pixels
• Total quads (after EEZ)

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 42 of 44

• Valid quads (after early-z and EEZ)
• Total primitives
• Cache misses (in the pipeline)
• Cache misses (in the pre-fetcher)
• EEZ culled quads

Texture Unit
• Total bilinear texture requests
• Total trilinear texture requests
• Total texture requests
• Total discarded texture requests
• Memory read count
• Memory read count in 8 byte
• Cache misses (in the pipeline)
• Total hitting texels (in pre-fetcher)
• Total missing texels (in pre-fetcher)

HAL Counters

 Index Buffer, Texture Buffer, and Vertex Buffer
• New bytes allocated
• Total bytes allocated
• New object allocated
• Total objects allocated

Overall Computed Values
• Frame rate
• Driver utilization
• Frame time
• Driver time
• GPU cycle

Shader Processing Counters

 Vertex Shader and Fragment Shader
• Total instruction count
• ALU instruction count
• Texture instruction count
• VS branch instruction count
• VS texture fetches
• PS branch instruction count
• PS texture fetches
• Function calls
• Attribute count
• Uniform count

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 43 of 44

3D API Counters (OpenGL ES, D3D, etc.)

 Vivante generated
• Number of lines drawn
• Number of points drawn
• Number of triangles drawn
• Shader compiler time
• Total OpenGL function calls
• Total OpenGL draw calls
• Total OpenGL state change calls

 OpenGL API Call List
• gl* Note: This list can be generated by combining the function names listed in the following two locations.
 OpenGL ES 2.0 Reference Pages at Khronos.org: http://www.khronos.org/opengles/sdk/docs/man/
 OpenGL ES 1.1 Reference Pages at Khronos.org: http://www.khronos.org/opengles/sdk/1.1/docs/man/

http://www.khronos.org/opengles/sdk/docs/man/
http://www.khronos.org/opengles/sdk/1.1/docs/man/

Vivante Tool Kit User Guide

Rev. 1.2 / October 2012

Page 44 of 44

Document Revision History

Version Date Compatible product Notes

1.2 30 October 2012
SW release 4.6.9.p9

VTK v1.4.2

Remove VDK and vdkEmulator references.
Update Table 1 Directory Contents
Revise Toolkit Diagram (Figures 1,2,3,4, 8,9,10)

1.1 11 October 2012
SW release 4.6.9

VTK v1.4

Remove Confidential Watermarks.
Update Copyright and contact notices.
Revise Toolkit Diagram (Figures 1,2,3,4, 8,9,10)

1.0 14 June 2012 SW release 4.6.9

Renamed from Vivante SDK User Guide (v1.4)to
Vivante Tool Kit User Guide 1.0

Updated vProfiler and vAnalyzer, add vTexture,
miscellaneous refinements.

	Legal Notices
	Table of Contents
	List of Figures
	List of Tables
	1 Vivante Tool Kit Overview
	1.1 VTK Component Overview
	1.2 VTK Operating System Requirements
	1.3 VTK Installation

	2 vEmulator
	2.1 Supported Operating Systems and Graphics Hardware
	2.2 vEmulator Components
	2.3 vEmulator for OpenCL
	2.4 Supported Extensions
	2.5 vEmulator Environment Variable Setup
	2.6 Sample Code Overview
	2.7 Building and Running the Code Examples
	2.8 OpenGL ES 1.1 Examples
	2.9 OpenGL ES 2.0 Examples

	2.8.1 tutorial1: Rotating Three Color Triangle
	2.8.2 tutorial2: Rotating Six-color Cube
	2.8.4 tutorial4: Lighting and Fog
	2.8.5 tutorial5: Blending and Bit-mapped Fonts
	2.8.6 tutorial6: Particles Using Point Sprites
	2.8.7 tutorial7: Vertex Buffer Objects
	2.9.1 tutorial1: Rotating Three-color Triangle
	2.9.2 tutorial2: Rotating Six-color Cube
	2.9.3 tutorial3: Rotating Reflecting Ball
	2.9.4 tutorial4: Rotating Refracting Ball
	3 vShader
	3.1 vShader Components
	3.2 Getting Started with vShader
	3.2.1 Creating a new project
	3.2.2 Opening an existing project
	3.2.3 Saving a project

	3.3 vShader Navigation
	3.3.1 vShader Menu Bar
	3.3.2 vShader Window Panes
	3.3.2.1 Preview
	3.3.2.2 Project Explorer
	3.3.2.3 Shader Editor
	3.3.2.4 Info Log

	3.4 vShader Project Resources
	3.4.1 Header
	3.4.2 Fixed States
	3.4.3 Mesh
	3.4.4 Shaders
	3.4.5 Attributes
	3.4.6 Uniforms
	3.4.7 Textures

	4 vCompiler
	4.1 vCompiler Command Line Syntax
	4.1.1 Syntax:
	4.1.2 Input parameters (required):
	4.1.3 Input parameters (optional):
	4.1.4 vCompiler Output
	4.1.5 vCompiler Syntax Examples

	5 vTexture
	5.1 Formats
	5.1.1 Supported Formats
	5.1.2 Format Limitations

	5.2 Command Line Syntax
	5.2.1 Syntax
	5.2.2 Parameters
	5.2.3 vTexture Output
	5.2.4 vTexture Syntax Examples

	6 vProfiler and vAnalyzer
	6.1 Fundamentals of Performance Optimization
	6.2 vProfiler Setup for Linux
	6.2.1 Building Drivers with vProfiler Option
	6.2.2 Set vProfiler Environment Variables
	6.2.2.1 VPROFILER_OUTPUT
	6.2.2.2 VPROFILER_FRAME_NUM
	6.2.2.3 VPROFILER_SYNC_MODE

	6.3 vProfiler Collects Performance Data
	6.3.1 Performance Counters

	6.4 vAnalyzer Viewing and Analyzing a Run-time Profile
	6.4.1 Loading Profile Files
	6.4.2 vAnalyzer Menu Bar

	6.5 vAnalyzer Charts
	6.5.1 vAnalyzer Upper Left Pane: Chart Tab and Menu Options
	6.5.2 Chart Customization
	6.5.2.1 Chart Components and Navigation
	6.5.2.2 Data Export

	6.5.3 vAnalyzer Lower Left Pane: Frame Number Slider Bar
	6.5.4 vAnalyzer Left Pane: System Info Tab
	6.5.5 vAnalyzer Upper Right Pane: Frame Analysis
	6.5.5.1 Summary Tab
	6.5.5.2 Detail Tab

	6.5.6 vAnalyzer Lower Right Pane: Frame Selection
	6.5.6.1 Slow Frames Tab
	6.5.6.2 Critical Frames Tab

	6.6 vAnalyzer Viewers
	6.6.1 OpenGL Function Call Viewer
	6.6.2 Program Viewer

	Appendix A: Debug and Performance Counters
	Hardware Counters (listed by sub-block)
	HAL Counters
	Overall Computed Values
	Shader Processing Counters
	3D API Counters (OpenGL ES, D3D, etc.)

	Document Revision History

