Prompting is not a substitute for probability measurements in large language models

Jennifer Hu Harvard University Roger Levy MIT

Chapter 1

Modern language models refute Chomsky's approach to language

Steven T. Piantadosi^{a,b} ^aUC Berkeley, Psychology ^bHelen Wills Neuroscience Institute Why large language models are poor theories of human linguistic cognition. A reply to Piantadosi (2023). Roni Katzir, Tel Aviv University

(What) Can Deep Learning Contribute to Theoretical Linguistics?

Author: Cabe Dupre Authors Info & Claims

Machel Reid

Google Research*

Large Language Models Demonstrate the Potential of Statistical Learning in Language

Pablo Contreras Kallens, Ross Deans Kristensen-McLachlan, Morten H. Christiansen 🔀

First published: 25 February 2023 | https://doi.org/10.1111/cogs.13256 | Citations: 2

Large Language Models are Zero-Shot Reasoners

Takeshi Kojima The University of Tokyo t.kojima@weblab.t.u-tokyo.ac.jp

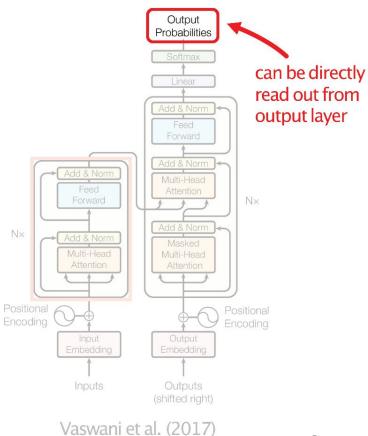
Yutaka Matsuo

The University of Tokyo

Yusuke Iwasawa The University of Tokyo

Shixiang Shane Gu

Google Research, Brain Team

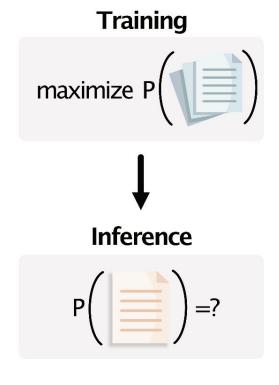

Large Language Models Fail on Trivial Alterations to Theory-of-Mind Tasks

> Tomer D. Ullman Department of Psychology Harvard University Cambridge, MA, 02138 tullman@fas.harvard.edu

How should we evaluate LLMs' linguistic abilities?

The internal distribution

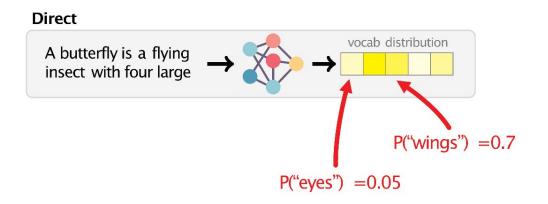
•Fundamental unit of LLM computation: P(token|context)


Nx

The internal distribution

- •Fundamental unit of LLM computation: P(token|context)
- •This distribution reflects the model's **linguistic generalizations**:

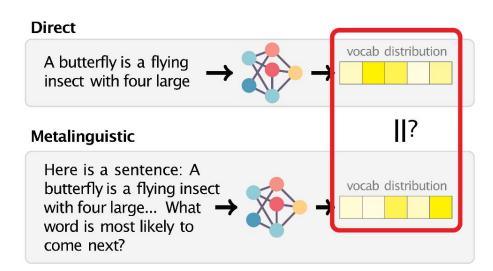
a generative model of the language seen during training...

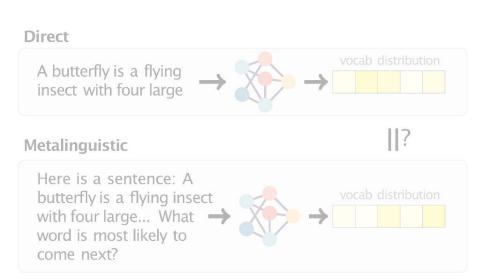

...which can be used to evaluate the likelihood of previously unseen strings

A new method: prompting

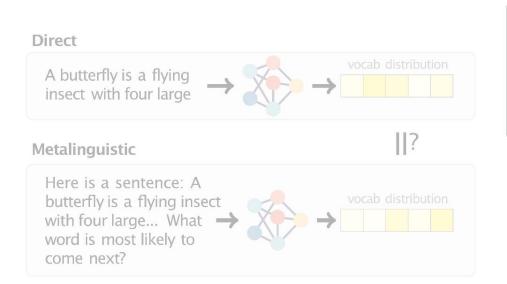
- •Reveals new classes of emergentabilities in LLMs (Brown et al. 2020;Wei et al. 2022;Patel & Pavlick 2022;inter alia)
- •Caveat: tests not only whether a model represents a certain generalization, but also whether the model can report the outcome of applying the generalization to the sentence in the prompt

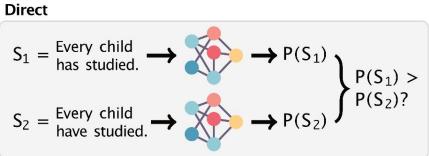
Prompting tests a new emergent ability: metalinguisticjudgment

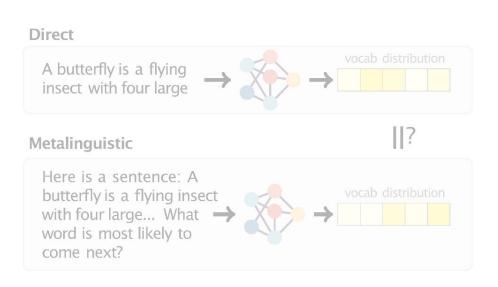

Direct


Metalinguistic

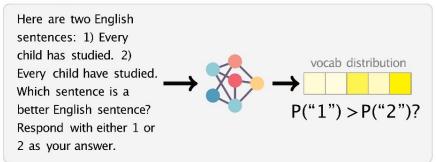
Here is a sentence: A butterfly is a flying insect with four large... What \rightarrow word is most likely to come next?




Example: sentence judgment



Example: sentence judgment



Example: sentence judgment

Metalinguistic

Contribution

In this paper, the authors evaluate the validity of metalinguistic prompting as a way of measuring LLMs' internal knowledge.

Two research questions:

- 1. How well do models perform under direct and metalinguistic evaluation methods?
- 2. How consistent are the metalinguistic methods with the direct method?

Four Experiment

Targeted ability	Task	
Word prediction	Predict final word in a sentence	Direct Method: Computing probabilities of predicted tokens.
Semantic plausibility	Determine which word (of two options) is most likely, given preceding context	
Syntax	Determine which sentence (of two op- tions) is "better", in isolation	Zero-shot metalinguistic prompting: Ask a question or specify a task requiring a judgment about a linguistic expression.
Syntax	Determine which sentence (of two op- tions) is "better", given both options	

Table 1: Overview of experiments in our study.

LLMs

- Flan-T5 models:
 - o small,
 - o large,
 - XL
- GPT-3/3.5 models:
 - textcurie-001/GPT-3,
 - text-davinci-002/GPT-3.5,
 - textdavinci-003/GPT-3.5

Evaluation method

Accuracy evaluation:

- Compare the log probability of the predicted token.
- Pseudo log probability of the whole sentence.

Internal consistency between direct and metalinguistic evaluation:

Average correlation coefficient (Pearson's r) between the item level **differentials** measured by the direct method and a particular metalinguistic prompting method.

Experiment 1: word prediction

- A simplified version of next word prediction.
- Predict the final word of a sentence.
- Datasets:
 - P18: 384 simple declarative sentences that state a fact about familiar concepts.
 - News: 222 sentence from recent news (title-first sentence).

Experiment 1(word prediction): prompt example

Type of prompt	Example
Direct	A butterfly is a flying insect with four large wings
MetaQuestionSimple	What word is most likely to come next in the following sentence? A butterfly is a flying insect with four large wings
MetaInstruct	You are a helpful writing assistant. Tell me what word is most likely to come next in the following sentence: A butterfly is a flying insect with four large wings
MetaQuestionComplex	Here is the beginning of an English sentence: A butterfly is a flying insect with four large What is the best next word? Answer: wings

Table 2: Example prompts for Experiment 1. Region where we measure probability is marked in **boldface**. Ground-truth sentence continuations are shown in <u>blue</u>.

Experiment 2: semantic plausibility

- Judge which of two words is a more likely continuation of a sentence.
- Assess knowledge of semantic plausibility.
- Dataset:
 - Minimal pair: 395 minimal sentence pair. Each pair consist of two sentences that differ only in the final words.
 - Example: The archer released the arrow/interview.

Experiment 2(semantic plausibility): prompt example

Type of prompt	Example
Direct	The archer released the {arrow, interview}
MetaQuestionSimple	What word is most likely to come next in the following sentence (arrow, or interview)? The archer released the {arrow, interview}
MetaInstruct	You are a helpful writing assistant. Tell me what word is most likely to come next in the following sentence (arrow, or interview?): The archer released the {arrow, interview}
MetaQuestionComplex	Here is the beginning of an English sentence: The archer released the What word is more likely to come next: arrow, or interview? Answer: {arrow, interview}

Table 3: Example prompts for Experiment 2. Region where we measure probability is marked in **boldface**. Semantically plausible continuations are shown in <u>blue</u>; implausible in <u>red</u>.

Experiment 3a: Sentence judgment (isolated)

- Evaluate models' ability to judge whether a sentence is a "good" sentence of English.
- A good and bad sentence is evaluated separately.
- Dataset:
 - Minimal pair dataset of english grammatical syntax.
 - SyntaxGym
 - BLiMP

Experiment 3a(Sentence judgment) prompt example

Example	
{Every child has studied, Every child have studied}	
Is the following sentence a good sentence of English? Every child has studied. Respond with	
either Yes or No as your answer. {Yes, No}	
You are a helpful writing assistant. Tell me if the following sentence is a good sentence of	
English. Every child has studied. Respond with either Yes or No as your answer. {Yes, No}	
Here is a sentence: Every child has studied. Is the sentence a good sentence of English? Respond	
with either Yes or No as your answer. Answer: {Yes, No}	

(a)

Experiment 3b: Sentence comparison

- Measure models' syntactic judgments.
- However, instead of presenting the model with sentences in isolation, the experiment present the model with both sentence of a minimal pair.
- Dataset:
 - Same as experiment 3a (SyntaxGym, BLiMP)

Experiment 3b(Sentence comparison) prompt example

Type of prompt	Example
Direct	{Every child has studied, Every child have studied}
MetaQuestionSimple	Which sentence is a better English sentence? 1) Every child has studied. 2) Every child have
	studied. Respond with either 1 or 2 as your answer. $\{1, 2\}$
MetaInstruct	You are a helpful writing assistant. Tell me which sentence is a better English sentence. 1) Every
	child has studied. 2) Every child have studied. Respond with either 1 or 2 as your answer. $\{1, 2\}$
MetaQuestionComplex	Here are two English sentences: 1) Every child have studied. 2) Every child has studied. Which
0 (50)	sentence is a better English sentence? Respond with either 1 or 2 as your answer. Answer: $\{1, 2\}$

(b)

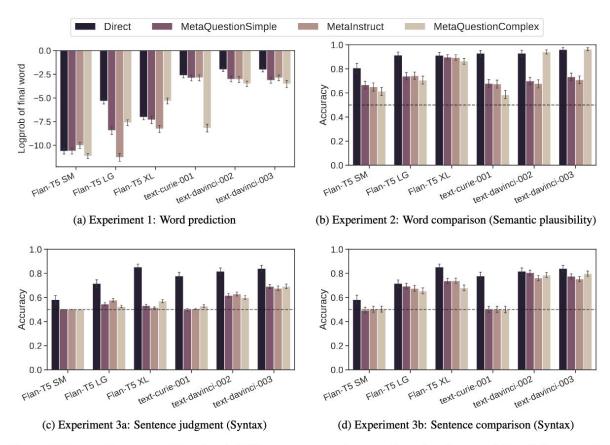


Figure 2: Task performance: Direct probability measurements generally outperform metalinguistic prompts. (a) Log probability assigned to ground-truth sentence continuation, averaged over items and datasets. (b) Proportion of items where model prefers semantically plausible continuation over implausible continuation. (c)-(d) Proportion of items where model prefers grammatical sentence over ungrammatical sentence in minimal pair, averaged over datasets. Error bars denote bootstrapped 95% CIs. Dashed lines indicate random baseline.

Metalinguistic judgments are not the same as direct measurements.

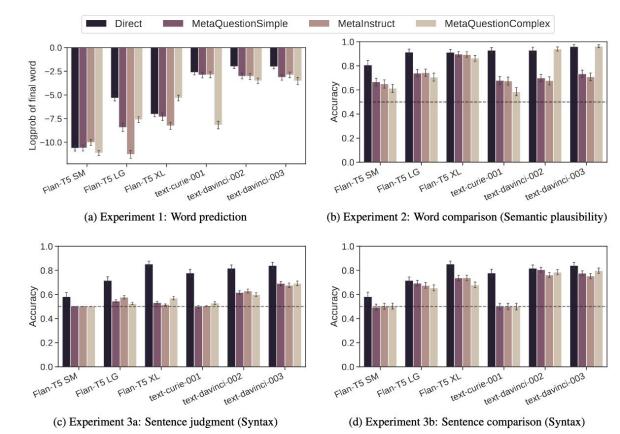


Figure 2: Task performance: Direct probability measurements generally outperform metalinguistic prompts. (a) Log probability assigned to ground-truth sentence continuation, averaged over items and datasets. (b) Proportion of items where model prefers semantically plausible continuation over implausible continuation. (c)-(d) Proportion of items where model prefers grammatical sentence over ungrammatical sentence in minimal pair, averaged over datasets. Error bars denote bootstrapped 95% CIs. Dashed lines indicate random baseline.

Direct measurements generally perform ≥ metalinguistic methods.

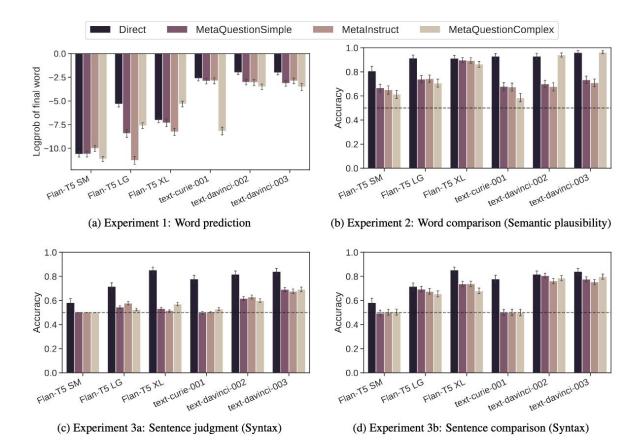


Figure 2: Task performance: Direct probability measurements generally outperform metalinguistic prompts. (a) Log probability assigned to ground-truth sentence continuation, averaged over items and datasets. (b) Proportion of items where model prefers semantically plausible continuation over implausible continuation. (c)-(d) Proportion of items where model prefers grammatical sentence over ungrammatical sentence in minimal pair, averaged over datasets. Error bars denote bootstrapped 95% CIs. Dashed lines indicate random baseline.

Minimal pairs help reveal models' generalization capacities.

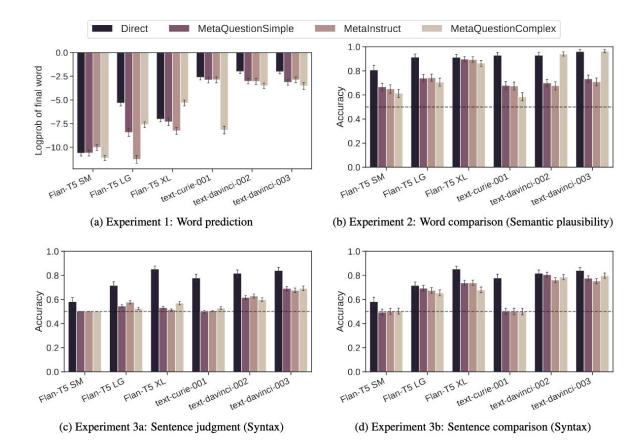


Figure 2: Task performance: Direct probability measurements generally outperform metalinguistic prompts. (a) Log probability assigned to ground-truth sentence continuation, averaged over items and datasets. (b) Proportion of items where model prefers semantically plausible continuation over implausible continuation. (c)-(d) Proportion of items where model prefers grammatical sentence over ungrammatical sentence in minimal pair, averaged over datasets. Error bars denote bootstrapped 95% CIs. Dashed lines indicate random baseline.

Internal consistency

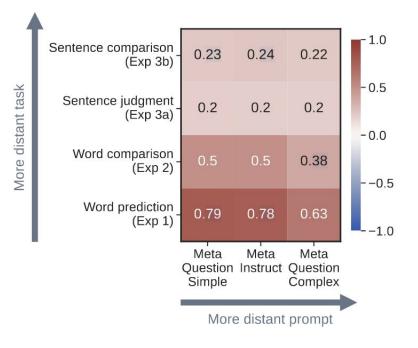


Figure 3: Internal consistency: Correlation between metalinguistic and direct responses gets weaker as prompts become less direct. Pearson r correlation between response magnitudes (averaged over models and datasets) measured by direct prompts versus each metalinguistic prompt. See Appendix C for more details.

Internal consistency

Consistency gets worse as we get further from direct measurement of next-word probabilities.

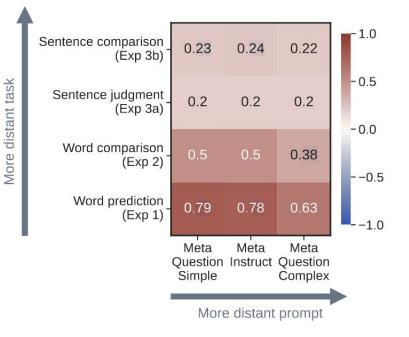


Figure 3: Internal consistency: Correlation between metalinguistic and direct responses gets weaker as prompts become less direct. Pearson r correlation between response magnitudes (averaged over models and datasets) measured by direct prompts versus each metalinguistic prompt. See Appendix C for more details.

Discussion

- Taken together, their findings suggest that negative results relying on metalinguistic prompts cannot be taken as conclusive evidence that an LLM lacks a particular linguistic generalization.
- These findings suggest a possible basis for a **competence** performance distinction in LLMs: namely, the distinction between the information encoded in a model's isolated-sentence string probability distribution versus the model's **behavioral** responses to prompts.
- Their results also highlight the value that is lost as researchers move toward interacting with LLMs through closed APIs, where access to models' underlying probability distributions is limited.