Kolmogorov-Arnold
Networks

Mayank Singh

Multi Layer Perceptrons

* Building blocks of modern Al

* Expressive power guaranteed by Universal Approximation
Theorem

* Drawbacks:
* Less interpretable
* Almost all non-embedding parameters

e Can we do better?

Kolmogorov-Arnold Networks

* Inspired by Kolmogorov Arnold Theorem
* Replace activations with splines (1D)
* No edge weights to learn; only spline weights

 Benefits:
e Accurate
* Interpretable

Kolmogorov-Arnold Networks

flxy, -+ ,xN) —exp(Zsm zz)

Splines — Fail due to curse of dimensionality
MLPs — ReLUs cannot express the sines and exponentials accurately
KANs — Can discover the formula from data

MLP vs KAN

Model

Multi-Layer Perceptron (MLP)

Kolmogorov-Arnold Network (KAN)

Theorem

Universal Approximation Theorem

Kolmogorov-Arnold Representation Theorem

Formula
(Shallow)

N(e)
fx) ~ 2 a;0(W; - X+ b))

i=1

2n+1 n

=Y @, Y ¢,,&)
g=1 p=1

Model
(Shallow)

(@

fixed activation functions
on nodes

JJ_/J_//

_ learnable weights

on edges

(®)

learnable activation functions
N Jd 8 0N - on edges

\J
NUUNMNMNNNWAW Y

sum operation on nodes

Formula
(Deep)

MLP(X) = (W3 ° 0'2 ° W2 ° 61 ° Wl)(X)

KAN(x) = (@ o ®, o @,)(x)

Model
(Deep)

nonlinear,

fixed

linear,
learnable

nonlinear,
learnable

Activations iIn KANs

* Activation functions are more heavy-duty and parametrized
* Smooth curves using Splines

* Why smooth?
* For differentiability and end-to-end learning

Splines

« Composed of piece-wise basis functions
(B-Splines)

* Express “almost any” smooth curve
* Why splines?

* Can be made arbitrarily accurate
through number of basis functions
(grid size)

* More accurate for low-dimensional
curves than MLPs

e Struggle at higher-dimensions

[\

knot vector: {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}

spline(x) = Z c;B;(x)

Universal Approximation Theorem

* Feedforward neural network
* with a single hidden layer
* containing a finite number of neurons
* can approximate any continuous function
* (Some constraints)

Kolmogorov-Arnold Representation Theorem

forasmooth f : [0,1]" — R

2n—+1 n
f(x)=f(z1, -,z Z @, (Z qu,p(wp))

where ¢, , : [0,1] - Rand &, : R - R

Kolmogorov-Arnold Representation Theorem

f = Multivariate continuous function on a bounded domain

Can be expressed as:

* Finite composition of continuous functions of a single variable and
addition

Only true multivariate function is addition
1D functions can be non-smooth and even fractal (not learnable)

Kolmogorov-Arnold Networks

This can network can be thought of as two layers applied in sequence:
2n+1 01 ‘ * Thefirst layer maps 2 input features into 5 output features.
fx) = Z @, 2 ¢qp(x) * The second layer maps 5 input features into 1 output feature.
g=1 p=1
n=
2n+1=5
P1 P2 P3 P4 Ps
hn @ h, @ h @ hs @ We sum the output of the learnable functions

Instead of having learnable weights,
we have learnable functions

Adapted from Umar
Jamil’s slides on KANs

Deep KANs

qbl,j,iv l:Ov"'aL_]-a i:]-a"'vnla]: IR {7 S I

| = Layer number
I =input features
j = output features

ny

n
Ti41,j = E Ey = E RORRICIE] j=1,--- ,ni41.
=1

=1

NJMWWWWMMV

N

MLP vs KAN

Model

Multi-Layer Perceptron (MLP)

Kolmogorov-Arnold Network (KAN)

Theorem

Universal Approximation Theorem

Kolmogorov-Arnold Representation Theorem

Formula
(Shallow)

N(e)
fx) ~ 2 a;0(W; - X+ b))

i=1

2n+1 n

=Y @, Y ¢,,&)
g=1 p=1

Model
(Shallow)

(@

fixed activation functions
on nodes

JJ_/J_//

_ learnable weights

on edges

(®)

learnable activation functions
N Jd 8 0N - on edges

\J
NUUNMNMNNNWAW Y

sum operation on nodes

Formula
(Deep)

MLP(X) = (W3 ° 0'2 ° W2 ° 61 ° Wl)(X)

KAN(x) = (@ o ®, o @,)(x)

Model
(Deep)

nonlinear,

fixed

linear,
learnable

nonlinear,
learnable

Training KANs

Addition of a residual connection b(x):

¢(z) = wyb(z) + w,spline(z).
b(z) =silu(z) =z/(1 +e %)

Spline defined as before. c¢;s are trainable.

spline(z) = Z ¢; Bi(x)

2

Parameter count

* For a network of L layers, each of width N and a spline of order G
Intervals
« KANs - O(N2LG)
 MLPs - O(NZ2L)

* KANs usually require much smaller N than MLPs

2 P(x)
Accuracy: Grid k=3 %

| \
EXtGﬂSlOn / o Px) = Z CiBi(x) \
|
l i=0
' l
* Splines can be made : |
arbitrarily accurate by o ey R e : —t=t— ;=35
increasing the grid size L3ty l)) h B3 Iy &5l L7 I
|
* Optimization via least- : l grid extension 12
squares algorithm | o Ppx) = Z ¢;B/(x)
|
| : ; i=0
|
)
| " L e
NI R R AT Y: Oy =20
\\ //
S /

Accuracy: Grid Extension

Fitting f(x, y) = exp(sin(nx) + y?)

" KAN [2,5,1] . KAN [2,1,1]
' . ' .
' —train ' —— train
i :
107 e test 1001 = test
£ i
& vy
£ £
10 p=. 10-? =
u o \ n
— 2! =1
= — = o
= K_ = — x . = ‘
‘ N ‘ 5!
£ ,\,f},,,,
- & - [~) &
I
» & wl p p B P B NF F|F
o 3 ¥ o§F &g ¥ o§F oF gl
i & s & 8 8 5 S & S &
- T r . b i T - T T L T v v T
1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
step step
e -~ KAN [2,5,1)
% —o— KAN [2,1,1)
&
w
n
i
3 2
v R Cra G
b v @500
o el w1
I = e [}
8 E
B
o
1|)" E
—o— KAN [2,5,1] sgrt{imean of squared) IS
—o— KAN [2,1,1] sqrtimean of squared) ©
10-7 KAN [2,1,1] sartimedian of squared) o 02
10! 16" 10° 16" 11'3‘
grid size G grid size G

Figure 2.3: We can make KANs more accurate by grid extension (fine-graining spline grids). Top left (right):
training dynamics of a (2,5, 1] ([2, 1, 1]) KAN. Both models display staircases in their loss curves, i.e., loss
suddently drops then plateaus after grid extension. Bottom left: test RMSE follows scaling laws against grid
size GG. Bottom right: training time scales favorably with grid size G.

Interpretabilitv

Step 1: train Step 2:

: 2
exp(sm(.nx) +¥) with sparsification ‘\ prune f

L/
$<.\ o ® ® @ /
y . ¢ .
Step 3a:
set sine
Step 5 output Step 4: train ? Step 3c: ? Step 3b: ?
symbolic formula j¢ine parameters set exponential set squared J

1 Oel.Oyz+1.0 sin (3.14x) ‘ >

reach machine

Step 6: precision
number Snap
o

24 sin(zx)

T T
A U7

o : P

e’

Figure 2.4: An example of how to do symbolic regression with KAN.

Continual Learning

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

A A

Data

A A A
T M M | MU | VU
:i R

0 1 -1 0 1 -1 0 1

KAN

MLP

'
-

0 1

'
-

0 1

'
—

Figure 3.4: A toy continual learning problem. The dataset is a 1D regression task with 5 Gaussian peaks (top
row). Data around each peak is presented sequentially (instead of all at once) to KANs and MLPs. KANs
(middle row) can perfectly avoid catastrophic forgetting, while MLPs (bottom row) display severe catastrophic
forgetting.

Thank you!

