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Multi Layer Perceptrons

* Building blocks of modern Al

* Expressive power guaranteed by Universal Approximation
Theorem

* Drawbacks:
* Less interpretable
* Almost all non-embedding parameters

e Can we do better?



Kolmogorov-Arnold Networks

* Inspired by Kolmogorov Arnold Theorem
* Replace activations with splines (1D)
* No edge weights to learn; only spline weights

 Benefits:
e Accurate
* Interpretable



Kolmogorov-Arnold Networks
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Splines — Fail due to curse of dimensionality
MLPs — ReLUs cannot express the sines and exponentials accurately
KANs — Can discover the formula from data
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Activations iIn KANs

* Activation functions are more heavy-duty and parametrized
* Smooth curves using Splines

* Why smooth?
* For differentiability and end-to-end learning



Splines

« Composed of piece-wise basis functions
(B-Splines)

* Express “almost any” smooth curve
* Why splines?

* Can be made arbitrarily accurate
through number of basis functions
(grid size)

* More accurate for low-dimensional
curves than MLPs

e Struggle at higher-dimensions

[\

knot vector: {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}

spline(x) = Z c;B;(x)



Universal Approximation Theorem

* Feedforward neural network
* with a single hidden layer
* containing a finite number of neurons
* can approximate any continuous function
* (Some constraints)



Kolmogorov-Arnold Representation Theorem
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Kolmogorov-Arnold Representation Theorem

f = Multivariate continuous function on a bounded domain

Can be expressed as:

* Finite composition of continuous functions of a single variable and
addition

Only true multivariate function is addition
1D functions can be non-smooth and even fractal (not learnable)



Kolmogorov-Arnold Networks

This can network can be thought of as two layers applied in sequence:
2n+1 01 ‘ *  Thefirst layer maps 2 input features into 5 output features.
fx) = Z @, 2 ¢qp(x ) *  The second layer maps 5 input features into 1 output feature.
g=1 p=1
n=
2n+1=5
P1 P2 P3 P4 Ps
hn @ h, @ h @ hs @ We sum the output of the learnable functions

Instead of having learnable weights,
we have learnable functions

Adapted from Umar
Jamil’s slides on KANs



Deep KANs
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Training KANs

Addition of a residual connection b(x):

¢(z) = wyb(z) + w,spline(z).
b(z) =silu(z) =z/(1 +e %)

Spline defined as before. c¢;s are trainable.

spline(z) = Z ¢; Bi(x)
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Parameter count

* For a network of L layers, each of width N and a spline of order G
Intervals
« KANs - O(N2LG)
 MLPs - O(NZ2L)

* KANs usually require much smaller N than MLPs
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Accuracy: Grid Extension

Fitting f(x, y) = exp(sin(nx) + y?)
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Figure 2.3: We can make KANs more accurate by grid extension (fine-graining spline grids). Top left (right):
training dynamics of a (2,5, 1] ([2, 1, 1]) KAN. Both models display staircases in their loss curves, i.e., loss
suddently drops then plateaus after grid extension. Bottom left: test RMSE follows scaling laws against grid
size GG. Bottom right: training time scales favorably with grid size G.



Interpretabilitv
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Figure 2.4: An example of how to do symbolic regression with KAN.



Continual Learning
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Figure 3.4: A toy continual learning problem. The dataset is a 1D regression task with 5 Gaussian peaks (top
row). Data around each peak is presented sequentially (instead of all at once) to KANs and MLPs. KANs
(middle row) can perfectly avoid catastrophic forgetting, while MLPs (bottom row) display severe catastrophic
forgetting.



Thank you!



