Kolmogorov-Arnold Networks

Mayank Singh

Multi Layer Perceptrons

- Building blocks of modern Al
- Expressive power guaranteed by Universal Approximation Theorem
- Drawbacks:
 - Less interpretable
 - Almost all non-embedding parameters
- Can we do better?

Kolmogorov-Arnold Networks

- Inspired by Kolmogorov Arnold Theorem
- Replace activations with splines (1D)
- No edge weights to learn; only spline weights
- Benefits:
 - Accurate
 - Interpretable

Kolmogorov-Arnold Networks

$$f(x_1, \dots, x_N) = \exp\left(\frac{1}{N} \sum_{i=1}^N \sin^2(x_i)\right)$$

Splines – Fail due to curse of dimensionality

MLPs – ReLUs cannot express the sines and exponentials accurately

KANs - Can discover the formula from data

MLP vs KAN

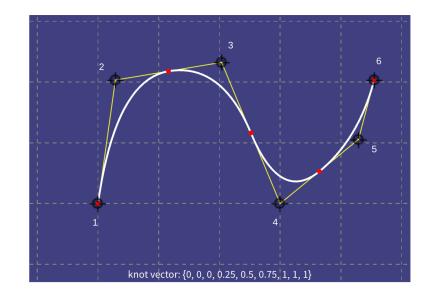
Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$
Model (Shallow)	fixed activation functions on nodes learnable weights on edges	learnable activation functions on edges sum operation on nodes
Formula (Deep)	$\mathrm{MLP}(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$KAN(\mathbf{x}) = (\mathbf{\Phi}_3 \circ \mathbf{\Phi}_2 \circ \mathbf{\Phi}_1)(\mathbf{x})$
Model (Deep)	(c)	(d) Φ_3 Φ_2 nonlinear, learnable Φ_1 X

Activations in KANs

- Activation functions are more heavy-duty and parametrized
- Smooth curves using Splines
- Why smooth?
 - For differentiability and end-to-end learning

Splines

- Composed of piece-wise basis functions (B-Splines)
- Express "almost any" smooth curve
- Why splines?
 - Can be made arbitrarily accurate through number of basis functions (grid size)
 - More accurate for low-dimensional curves than MLPs
 - Struggle at higher-dimensions



$$spline(x) = \sum_{i} c_i B_i(x)$$

Universal Approximation Theorem

- Feedforward neural network
 - with a single hidden layer
 - containing a finite number of neurons
 - can approximate any continuous function
 - (Some constraints)

Kolmogorov-Arnold Representation Theorem

for a smooth $f:[0,1]^n\to\mathbb{R}$

$$f(\mathbf{x}) = f(x_1, \dots, x_n) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$$

where $\phi_{q,p}:[0,1]\to\mathbb{R}$ and $\Phi_q:\mathbb{R}\to\mathbb{R}$

Kolmogorov-Arnold Representation Theorem

- f = Multivariate continuous function on a bounded domain
- Can be expressed as:
 - Finite composition of continuous functions of a single variable and addition
- Only true multivariate function is addition
- 1D functions can be non-smooth and even fractal (not learnable)

Kolmogorov-Arnold Networks



Deep KANs

$$\phi_{l,j,i}, \quad l = 0, \dots, L-1, \quad i = 1, \dots, n_l, \quad j = 1, \dots, n_{l+1}.$$

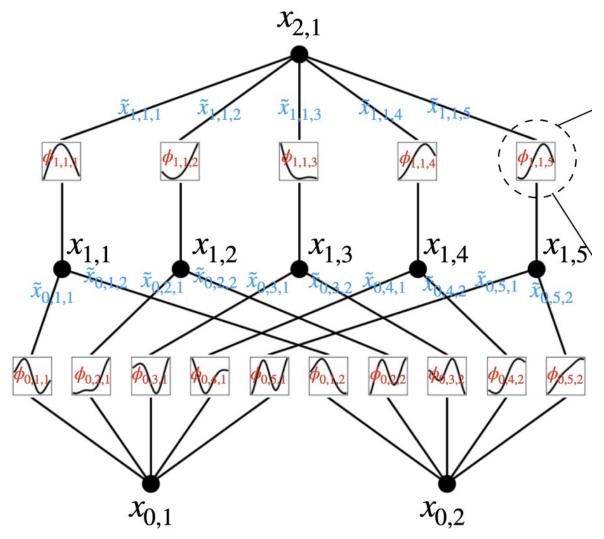
l = Layer number

i = input features

j = output features

$$x_{l+1,j} = \sum_{i=1}^{n_l} \tilde{x}_{l,j,i} = \sum_{i=1}^{n_l} \phi_{l,j,i}(x_{l,i}), \qquad j = 1, \cdots, n_{l+1}.$$

Deep KANs



MLP vs KAN

Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$
Model (Shallow)	fixed activation functions on nodes learnable weights on edges	learnable activation functions on edges sum operation on nodes
Formula (Deep)	$\mathrm{MLP}(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$KAN(\mathbf{x}) = (\mathbf{\Phi}_3 \circ \mathbf{\Phi}_2 \circ \mathbf{\Phi}_1)(\mathbf{x})$
Model (Deep)	(c)	(d) Φ_3 Φ_2 nonlinear, learnable Φ_1 X

Training KANs

Addition of a residual connection b(x):

$$\phi(x) = w_b b(x) + w_s \text{spline}(x).$$

$$b(x) = \text{silu}(x) = x/(1 + e^{-x})$$

Spline defined as before. c_is are trainable.

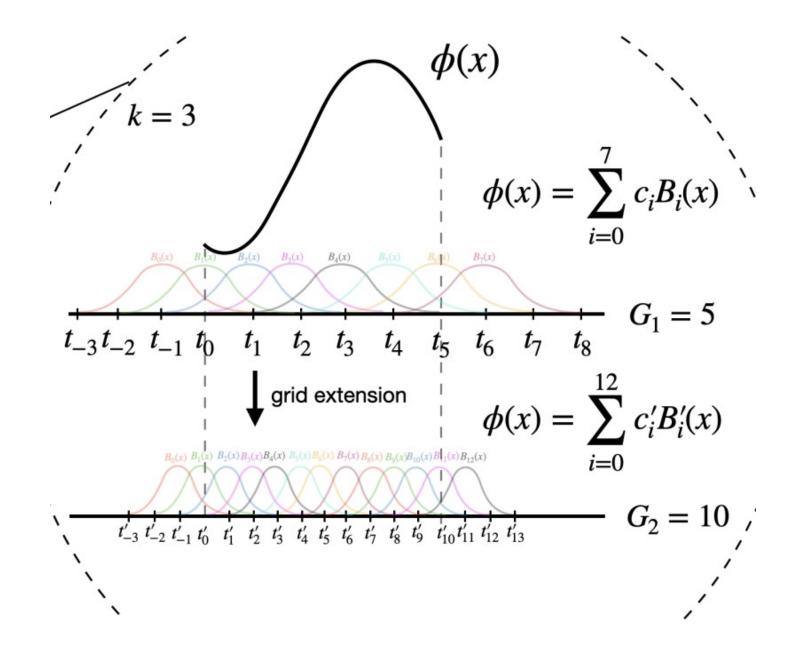
$$spline(x) = \sum_{i} c_i B_i(x)$$

Parameter count

- For a network of L layers, each of width N and a spline of order G intervals
 - KANs O(N²LG)
 - MLPs O(N²L)
- KANs usually require much smaller N than MLPs

Accuracy: Grid Extension

- Splines can be made arbitrarily accurate by increasing the grid size
- Optimization via leastsquares algorithm



Accuracy: Grid Extension

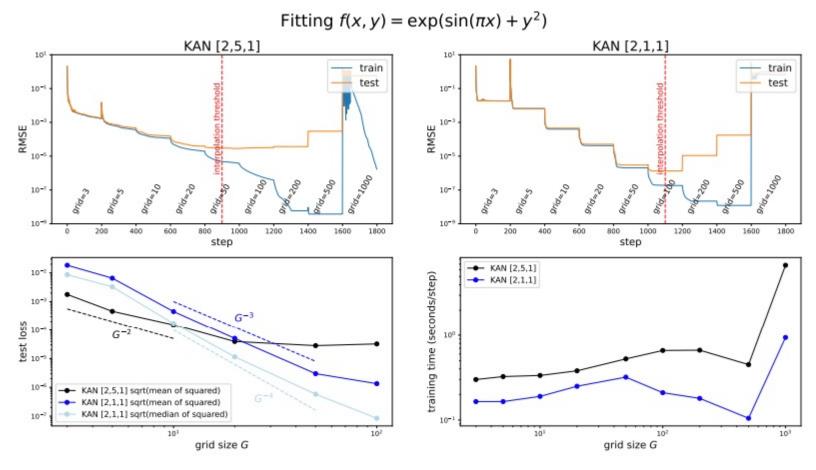


Figure 2.3: We can make KANs more accurate by grid extension (fine-graining spline grids). Top left (right): training dynamics of a [2, 5, 1] ([2, 1, 1]) KAN. Both models display staircases in their loss curves, i.e., loss suddently drops then plateaus after grid extension. Bottom left: test RMSE follows scaling laws against grid size G. Bottom right: training time scales favorably with grid size G.

Interpretability

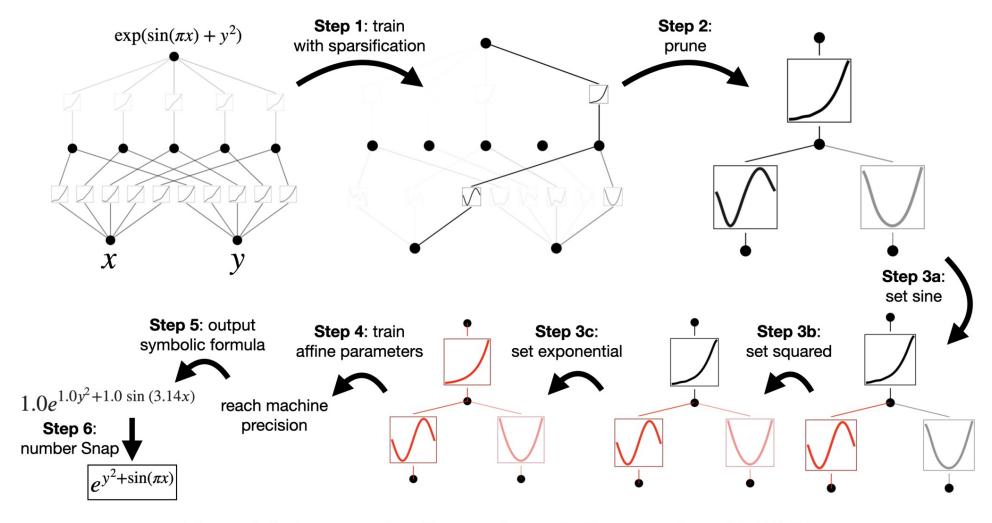


Figure 2.4: An example of how to do symbolic regression with KAN.

Continual Learning

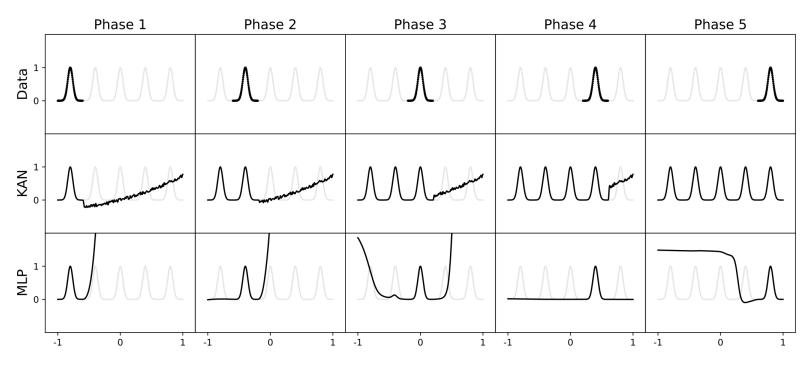


Figure 3.4: A toy continual learning problem. The dataset is a 1D regression task with 5 Gaussian peaks (top row). Data around each peak is presented sequentially (instead of all at once) to KANs and MLPs. KANs (middle row) can perfectly avoid catastrophic forgetting, while MLPs (bottom row) display severe catastrophic forgetting.

Thank you!