-
Notifications
You must be signed in to change notification settings - Fork 11
/
vocab.py
106 lines (86 loc) · 3.12 KB
/
vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import nltk
import pickle
import argparse
import os
from collections import Counter
from pycocotools.coco import COCO
from dataset_coco import PATH_TO_DATA
def path_to_vocab():
return os.path.join(PATH_TO_DATA, 'vocab.pkl')
class Vocabulary(object):
"""Simple vocabulary wrapper."""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __call__(self, word):
if not word in self.word2idx:
return self.word2idx['<unk>']
return self.word2idx[word]
def __len__(self):
return len(self.word2idx)
def start_token(self):
return '<start>'
def end_token(self):
return '<end>'
def build_vocab(json='data/annotations/captions_train2017.json', threshold=4, max_words=15000):
"""Build a simple vocabulary wrapper."""
coco = COCO(json)
counter = Counter()
ids = coco.anns.keys()
for i, id in enumerate(ids):
caption = str(coco.anns[id]['caption'])
tokens = nltk.tokenize.word_tokenize(caption.lower())
counter.update(tokens)
if i % 1000 == 0:
print("[%d/%d] Tokenized the captions." %(i, len(ids)))
# 4 special tokens
words = counter.most_common(max_words-4)
# If the word frequency is less than 'threshold', then the word is discarded.
words = [word for word, cnt in words if cnt >= threshold]
# Creates a vocab wrapper and add some special tokens.
vocab = Vocabulary()
vocab.add_word('<pad>')
vocab.add_word(vocab.start_token())
vocab.add_word(vocab.end_token())
vocab.add_word('<unk>')
# Adds the words to the vocabulary.
for i, word in enumerate(words):
vocab.add_word(word)
print('Total number of words in vocab:', len(words))
return vocab
def dump_vocab(path=path_to_vocab()):
if not os.path.exists(path):
vocab = build_vocab()
with open(path, 'wb') as f:
pickle.dump(vocab, f)
print("Total vocabulary size: %d" %len(vocab))
print("Saved the vocabulary wrapper to '%s'" %path)
else:
print('Vocabulary already exists.')
def load_vocab(path=path_to_vocab()):
try:
with open(path, 'rb') as f:
return pickle.load(f)
except Exception as e:
raise RuntimeError('Failed to load %s: %s' % (path, e))
def main(args):
vocab = build_vocab(json=args.caption_path,
threshold=args.threshold)
vocab_path = args.vocab_path
dump_vocab(vocab_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--caption_path', type=str,
help='path for train annotation file')
parser.add_argument('--vocab_path', type=str, default=path_to_vocab(),
help='path for saving vocabulary wrapper')
parser.add_argument('--threshold', type=int, default=4,
help='minimum word count threshold')
args = parser.parse_args()
main(args)