-
Notifications
You must be signed in to change notification settings - Fork 1
/
02.tex
490 lines (430 loc) · 15 KB
/
02.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
\section{19/02/2024}
If $E/K$ is an extension and $x\in E$ is algebraic
over $K$, then the evaluation homomorphism
$K[X]\to E$, $p\mapsto p(x)$, is not injective. In particular,
its kernel is a non-zero ideal. Hence
it is generated by a monic polynomial $f$.
\begin{definition}
\index{Minimal polynomial}
Let $E/K$ be an extension and $x\in E$ be an algebraic element. The monic
polynomial that generates the kernel of $K[X]\to E$, $f\mapsto f(x)$, is
known as the \emph{minimal polynomial} of $x$ over $K$ and it will be
denoted by $f(x,K)$. The \emph{degree} of $x$ over $K$ is then $\deg
f(x,K)$.
\end{definition}
Some basic properties of the minimal polynomial of an algebraic element:
\begin{proposition}
Let $E/K$ be an extension and $x\in E$. Assume that $x$ is algebraic over $K$.
\begin{enumerate}
\item If $g\in K[X]\setminus\{0\}$ is such that $g(x)=0$, then $f(x,K)$ divides $g$ and
$\deg f(x,K)\leq\deg g$.
% \item If $g(x)=0$ and $g\ne 0$, then $\deg g\geq\gr f(x,K)$.
\item $f(x,K)$ is irreducible in $K[X]$.
%\item If $g(x)=0$ and $g(X)$ is monic and irreducible, then
% $g=f(x,K)$.
\item If $F/K$ is a subextension of $E/K$, then $f(x,F)$ divides
$f(x,K)$.
\end{enumerate}
\end{proposition}
\begin{proof}
Write $f=f(x,K)$ to denote the minimal polynomial of $x$.
To prove 1) note that $g(x)=0$ implies that $g$ belongs to the kernel of
the evaluation map, so $g$ is a multiple of $f$. To prove 2)
note that if $f=pq$ for some $p,q\in K[X]$ such that
$0<\deg p,\deg q<\deg f$, then $f(x)=0$ implies that
either $p(x)=0$ or $q(x)=0$, a
contradiction. Finally, we prove 3). Since $f\in K[X]\subseteq F[X]$
and $f(x)=0$, it follows from 1) that $f(x,F)$ divides $f$.
\end{proof}
Some easy examples: $f(i,\Q)=X^2+1$,
$f(i,\C)=X-i$ and
$f(\sqrt[3]{2},\Q)=X^3-2$. Here is the code:
\begin{lstlisting}
> R<x> := PolynomialRing(Rationals());
> Q<i> := QuadraticField(-1);
> MinimalPolynomial(i);
x^2 + 1
\end{lstlisting}
A bit harder: $f(\sqrt[3]{2}+1,\Q)=X^3 - 3X^2 + 3X - 3$. Here is the code:
\begin{lstlisting}
> R<x> := PolynomialRing(Rationals());
> E<z> := NumberField(x^3-2);
> MinimalPolynomial(z+1);
x^3 - 3*x^2 + 3*x - 3
\end{lstlisting}
% composite field
% https://magma.maths.usyd.edu.au/magma/handbook/text/410
% Q<i> := QuadraticField(-1);
% f := MinimalPolynomial(i);
% x<x>:=Parent(f);
% f;
\begin{example}
Let us compute
$f(\sqrt{2}+\sqrt{3},\Q)$. Let $\alpha=\sqrt{2}+\sqrt{3}$.
Then
\begin{align*}
\alpha-\sqrt{2}=\sqrt{3} & \implies
(\alpha-\sqrt{2})^2=3 \implies \alpha^2-2\sqrt{2}\alpha+2=3\\
&\implies \alpha^2-1=2\sqrt{2}\alpha \implies
(\alpha^2-1)^2=8\alpha^2\implies
\alpha^4-10\alpha^2+1=0.
\end{align*}
Thus $\alpha$ is a root of $g=X^4-10X^2+1$. To prove that $g=f(\alpha,\Q)$
it is enough to prove that
$g$ is irreducible in $\Q[X]$. First note that
the roots
of $g$ are $\sqrt{2}+\sqrt{3}$, $\sqrt{2}-\sqrt{3}$,
$-\sqrt{2}+\sqrt{3}$ and $-\sqrt{2}-\sqrt{3}$. This means that
if $g$ is not irreducible,
then $g=hh_1$ for some polynomials $h,h_1\in\Q[X]$ such that
$\deg h=\deg h_1=2$. This is not possible, as
\begin{align*}
& (\sqrt{2}+\sqrt{3})+(\sqrt{2}-\sqrt{3})=2\sqrt{2}\not\in\Q,\\
& (\sqrt{2}+\sqrt{3})+(-\sqrt{2}+\sqrt{3})=2\sqrt{3}\not\in\Q,\\
& (\sqrt{2}+\sqrt{3})(-\sqrt{2}-\sqrt{3})=-5-2\sqrt{6}\not\in\Q.
\end{align*}
\end{example}
% > R<x> := PolynomialRing(Rationals());
% > f := x^2-2;
% > g := x^2-3;
% > E := CompositeFields(NumberField(f), NumberField(g));
%\begin{lstlisting}
%julia> E, x = quadratic_field(2);
%julia> minpoly(x)
%x^2 - 2
%\end{lstlisting}
\begin{proposition}
\label{pro:multiplicativity of degree}
Let $F/K$ be a subextension of $E/K$. Then
\[
[E:K]=[E:F][F:K].
\]
\end{proposition}
\begin{proof}
Let $\{e_i:i\in I\}$ be a basis of $E$ over $F$
and $\{f_j:j\in J\}$ be a basis of $F$ over $K$. If $x\in E$,
then $x=\sum_i \lambda_ie_i$ (finite sum)
for some $\lambda_i\in F$. For each $i$,
$\lambda_i=\sum_j a_{ij}f_j$ (finite sum)
for some $a_{ij}\in K$. Then
$x=\sum_i\sum_j a_{ij}(f_je_i)$. This means
that $\{f_je_i:i\in I,j\in J\}$ generates
$E$ as a $K$-vector space. Let us prove that
$\{f_je_i:i\in I,j\in J\}$
is linearly independent. If $\sum_i\sum_j a_{ij}(f_je_i)=0$ (finite sum)
for some $a_{ij}\in K$,
then
\begin{align*}
0=\sum_i\left(\sum_j a_{ij}f_j\right)e_i&\implies
\sum_j a_{ij}f_j=0\text{ for all $i\in I$}\\
&\implies
a_{ij}=0\text{ for all $i\in I$ and $j\in J$}.\qedhere
\end{align*}
\end{proof}
We state a lemma:
\begin{lemma}
If $A$ is a finite-dimensional commutative algebra over $K$
and $A$ is an integral domain, then $A$ is a field.
\end{lemma}
\begin{proof}
Let $a\in A\setminus\{0\}$. We need to prove that there exists $b\in A$
such that $ab=1$. Let $\theta\colon A\to A$, $x\mapsto ax$. Note that
$\theta$ is $K$-linear transformation, as
\[
\theta(x+y)=a(x+y)=ax+ay=\theta(x)+\theta(y),\quad
\theta(\lambda x)=a(\lambda x)=\lambda (ax)=\lambda\theta(x),
\]
for all $x,y\in A$ and $\lambda\in K$.
It is injective since $A$ is an
integral domain. Since $\dim_KA<\infty$, it follows that $\theta$ is an
isomorphism. In particular, $\theta(A)=A$, which implies that there exists
$b\in A$ such that $1=ab$.
\end{proof}
Let $E/K$ be an extension and $x\in E$.
Then
\[
K[x]=\{f(x): f\in K[X]\}
\]
is a subring of $E$ that contains $K$. Note that
$K[x]$ is a $K$-vector space.
More generally,
if $x_1,\dots,x_n\in E$, then
\[
K[x_1,\dots,x_n]=\{f(x_1,\dots,x_n):f\in K[X_1,\dots,X_n]\}
\]
is a subring of $E$.
Note that $K[x_1,\dots,x_n]$ is a $K$-vector space.
Clearly, $K[x_1,\dots,x_n]$ is a domain
and
\[
K(x_1,\dots,x_n)=\left\{\frac{f(x_1,\dots,x_n)}{g(x_1,\dots,x_n)}:f,g\in K[X_1,\dots,X_n]\text{ with $g(x_1,\dots,x_n)\ne 0$}\right\}
\]
is the extension of $K$ generated by $x_1,\dots,x_n$.
Note that
\[
K(x_1,\dots,x_n)=(K(x_1,\dots,x_{n-1}))(x_n).
\]
The previous construction
can be generalized. Let $I$ be a non-empty set.
For each $i\in I$, let $X_i$ be a variable. Consider
the polynomial ring $K[\{X_i:i\in I\}]$ and let
$S=\{x_i:i\in I\}$ be a subset of $E$. There exists a unique
algebra homomorphism
\[
K[\{X_i:i\in I\}]\to E
\]
such that $X_i\mapsto x_i$ for all $i\in I$. The image
is denoted by $K[S]$. In particular, an element $z\in K[S]$
is of the form
\[
z=h(x_1,\dots,x_n)
\]
for a polynomial $h\in K[X_1,\dots,X_n]$
in finitely many variables $X_1,\dots,X_n$ and
$x_1,\dots,x_n\in S$.
\begin{exercise}
\label{xca: Q[sqrt2]=Q(sqrt2)}
Prove that $\Q[\sqrt{2}]=\Q(\sqrt{2})$.
\end{exercise}
The exercise is not an accident.
\begin{theorem}
\label{thm:simple extesnions}
Let $E/K$ be an extension and $x\in E\setminus K$.
The following statements are equivalent:
\begin{enumerate}
\item $x$ is algebraic over $K$.
\item $\dim_KK[x]<\infty$.
\item $K[x]$ is a field.
\item $K[x]=K(x)$.
\end{enumerate}
\end{theorem}
\begin{proof}
We first prove $1)\implies 2)$. Let $z\in K[x]$, say $z=h(x)$ for some $h\in K[X]$. There exists
$g\in K[X]$ such that $g\ne 0$ and $g(x)=0$. Divide $h$ by $g$ to obtain
polynomials $q,r\in K[X]$ such that $h=gq+r$, where $r=0$ or $\deg r<\deg g$. This implies that
\[
z=h(x)=g(x)q(x)+r(x)=r(x).
\]
If $\deg g=m$, then $r=\sum_{i=0}^{m-1}a_iX^i$ for some $a_0,\dots,a_{m-1}\in K$. Thus
\[
z=\sum_{i=0}^{m-1}a_ix^i
\]
and hence $K[x]\subseteq\langle 1,x,\dots,x^{m-1}\rangle$.
The previous lemma proves that $2)\implies 3)$.
It is trivial that $3)\implies 4)$.
It remains to prove that $4)\implies 1)$.
Since $x\ne 0$, $1/x\in K(x)=K[x]$. There exists $a_0,\dots,a_n\in K$ such that
$1/x=a_0+a_1x+\cdots+a_nx^n$. Thus
\[
a_nx^{n+1}+\cdots+a_1x^2+a_0x-1=0,
\]
and hence $x$ is a root of $a_nX^{n+1}+\cdots+a_0X-1\in K[X]\setminus\{0\}$.
\end{proof}
Note that if $x$ is algebraic over $K$, then
$K[x]\simeq K[X]/(f(x,K))$.
\begin{exercise}
\label{xca:degree_of_x}
Let $E/K$ be an extension and $x\in E$ be an algebraic element over $K$.
Prove that the degree of $x$ over $K$ is equal to $[K(x):K]$.
\end{exercise}
\begin{corollary}
\label{cor:finite=>algebraic}
If $E/K$ is finite, then $E/K$ is algebraic.
\end{corollary}
\begin{proof}
Let $n=[E:K]$ and $x\in E\setminus K$. The set $\{1,x,\dots,x^n\}$ has $n+1$ elements, so it is linearly dependent.
There exist $a_0,\dots,a_n\in K$, not all zero, such that
\[
a_0+a_1x+\cdots+a_nx^n=0.
\]
Thus $x$ is a root of the non-zero
polynomial $a_0+a_1X+\cdots+a_nX^n\in K[X]$.
\end{proof}
In Example~\ref{exa:two_algebraics} we
proved that $\sqrt{2}+\sqrt[3]{3}$ and $\sqrt{2}\sqrt[3]{3}$
are algebraic over $\Q$. This can be easily proved
now with Corollary~\ref{cor:finite=>algebraic}.
\begin{exercise}
\label{xca:algebraic}
Let $E/K$ be an extension and
$a$ and $b$ be algebraic over $K$. Prove
that $a+b$ and $ab$ are algebraic over $K$.
\end{exercise}
We note that the converse of Corollary~\ref{cor:finite=>algebraic} result does not hold.
\begin{corollary}
\label{cor:finite type finite}
If $E/K$ is an extension and $x_1,\dots,x_n\in E$
are algebraic over $K$, then
$K(x_1,\dots,x_n)/K$ is finite and
$K(x_1,\dots,x_n)=K[x_1,\dots,x_n]$.
\end{corollary}
\begin{proof}
We proceed by induction on $n$. The case $n=1$ follows immediately from
the theorem. So assume the result holds for some $n\geq1$. Since the extensions
\[
K(x_1,\dots,x_n)/K(x_1,\dots,x_{n-1})\quad\text{and}\quad
K(x_1,\dots,x_{n-1})/K
\]
are
both finite, it follows that $K(x_1,\dots,x_n)/K$ is finite. Moreover,
\begin{align*}
K(x_1,\dots,x_n)&=K(x_1,\dots,x_{n-1})(x_n)\\
&=K(x_1,\dots,x_{n-1})[x_n]=K[x_1,\dots,x_{n-1}][x_n]=K[x_1,\dots,x_n].\qedhere
\end{align*}
\end{proof}
\begin{corollary}
\label{cor:finite type algebraic}
Let $E=K(S)$ for some set $S$. Then $E/K$ is algebraic if and only if
$x$ is algebraic over $K$ for all $x\in S$.
\end{corollary}
\begin{proof}
Let us prove the non-trivial implication. Let $z\in K(S)$. In particular,
there exists a finite subset $T\subseteq S$ such that
$z\in K(T)$. The previous result implies that $K(T)/K$ is algebraic, and
hence $z$ is algebraic.
\end{proof}
If $E/K$ is an extension, let
\[
\overline{K}_E=\{x\in E:x\text{ is algebraic over }K\}.
\]
%is the \emph{algebraic closure} of $K$ in $E$.
\begin{corollary}
If $E/K$ is an extension, then $\overline{K}_E$
is a subfield of $E$ that contains $K$. Moreover,
$K(\overline{K}_E)=\overline{K}_E$ and
$K(\overline{K}_E)/K$ is algebraic.
\end{corollary}
\begin{proof}
By definition, $K(\overline{K}_E)/K$ is algebraic.
Thus $K(\overline{K}_E)\subseteq\overline{K}_E$. From this, it follows that
$K(\overline{K}_E)=\overline{K}_E$.
\end{proof}
The following exercise is now almost trivial:
\begin{exercise}
\label{xca:finite type}
\index{Extension!of finite type}
Let $E/K$ be an extension of finite type; this means
that
$E=K(S)$ for some finite
set $S$.
Prove that $E/K$ is algebraic if and only if $E/K$
is finite.
\end{exercise}
Let $\overline{\Q}=\{\alpha\in\C:\alpha\text{ is algebraic over }\Q\}$.
Then $\overline{\Q}$ is the field of algebraic numbers.
Can you compute $[\overline{\Q}:\Q]$?
\begin{exercise}
\label{xca:degree of sqrt[3]2}
Prove that $[\Q[\sqrt[3]{2}]:\Q]=3$.
\end{exercise}
For the previous exercise, you may use Eisenstein's criterion.
\begin{exercise}
\label{xca:Q(i,sqrt2)}
Let $E=\Q[i,\sqrt{2}]=\Q[\sqrt{2}][i]$. Prove that $[E:\Q]=4$.
\end{exercise}
\begin{exercise}
\label{xca:Q(sqrt2,sqrt[3]5)}
Let $E=\Q[\sqrt{2},\sqrt[3]{5}]$.
\begin{enumerate}
\item Compute $[E:\Q]$.
\item Prove that $E=\Q[\sqrt{2}+\sqrt[3]{5}]$.
\item Find the minimal polynomial of $\sqrt{2}+\sqrt[3]{5}$ over $\Q$.
\end{enumerate}
\end{exercise}
\begin{exercise}
\label{xca:isqrt[4]3}
Find the minimal polynomials of $\sqrt[4]{3}i$ over $\Q[i]$ and over $\Q[\sqrt{3}]$.
\end{exercise}
\begin{exercise}
\label{xca:sqrt{2}+sqrt[3]{5}i}
Find the minimal polynomial of $\sqrt{2}+\sqrt[3]{5}i$ over $\Q[i]$.
\end{exercise}
%\begin{theorem}[Galois]
% \index{Galois' theorem}
% For every prime number $p$ and every $m\geq1$
% there exists a field of size $p^m$.
%\end{theorem}
%
%\begin{proof}
%\end{proof}
%
%
Algebraic field extensions form a nice class of extensions. The same happens
with finite field extensions.
\begin{proposition}
Let $F/K$ be a subextension of $E/K$. Then $E/K$ is algebraic
if and only if $E/F$ and $F/K$ are algebraic.
\end{proposition}
\begin{proof}
If $E/K$ is algebraic, then $E/F$ and $F/K$ are both algebraic,
as $K\subseteq F\subseteq E$.
Let us assume that $E/F$ and $F/K$ are both algebraic. Let $x\in E$ and
let $L$ be the subextension over $K$ generated by the coefficients of $f(x,F)$,
the minimal polynomial of $x$ over $F$. Then $L/K$ is finite, since it is generated
by finitely many algebraic elements. Moreover, $x$ is algebraic over $L$. Since
\[
[L(x):K]=[L(x):L][L:K]<\infty,
\]
$L(x)/K$ is algebraic. In particular, $x$ is algebraic over $K$.
\end{proof}
\begin{exercise}
\label{xca:tower of finite extensions}
Let $F/K$ be a subextension of $E/K$. Prove that $E/K$ is finite
if and only if $E/F$ and $F/K$ are finite.
\end{exercise}
Let $K$ be a field and $K\subseteq
F\subseteq L$ and $K\subseteq F\subseteq L$ be fields. The \emph{composite}
of $E$ and $F$ is defined~as
\[
EF=K(E\cup F)=F(E)=E(F)
\]
and it is equal to the
smallest field that contains $E$ and $F$. Here is the
picture:
\[\begin{tikzcd}
& L \\
& EF \\
E && F \\
& K
\arrow[no head, from=1-2, to=2-2]
\arrow[no head, from=2-2, to=3-1]
\arrow[no head, from=2-2, to=3-3]
\arrow[no head, from=3-1, to=4-2]
\arrow[no head, from=4-2, to=3-3]
\end{tikzcd}\]
\begin{exercise}
\label{xca:composite generated by products}
Let $E/K$ and $F/K$ be algebraic field extensions.
Prove that
\[
EF=\left\{\sum_{i=1}^me_if_i:m\in\Z_{>0},e_i\in E,f_i\in F\text{ for all $i\in\{1,\dots,m\}$}\right\}.
\]
\end{exercise}
\begin{exercise}
\label{xca:sqrt(2),sqrt(3)}
If $E=\Q(\sqrt{2})$ and $F=\Q(\sqrt{3})$, then $EF=\Q(\sqrt{2},\sqrt{3})$.
Compute $[\Q(\sqrt{2},\sqrt{3}):\Q]$ and
$\Q(\sqrt{2})\cap\Q(\sqrt{3})$.
\end{exercise}
\begin{exercise}
\label{xca:sqrt[3]2,3rd root of 1}
Let $\xi\in\C$ be a primitive cubic root of one.
If $E=\Q(\sqrt[3]{2})$ and $F=\Q(\xi)$, then $EF=\Q(\sqrt[3]{2},\xi)$.
Compute $[\Q(\sqrt[3]{2},\xi):\Q]$ and
$\Q(\sqrt[3]{2})\cap\Q(\xi)$.
\end{exercise}
\begin{exercise}
\label{xca: shift for algebraic}
Let $E/K$ and $F/K$ be extensions, where both $E$ and $F$ are subfields of
a field $L$. If $F/K$ is algebraic, then $EF/E$ is algebraic.
\end{exercise}
% \begin{proof}
% If $F/K$ is algebraic, then $EF/E=E(F)/E$ is algebraic, as it is generated by
% algebraic elements over $E$.
% \end{proof}
\begin{exercise}
\label{xca: shift for finite}
Let $E/K$ and $F/K$ be extensions, where both $E$ and $F$ are subfields of
a field $L$. If $F/K$ is finite, then $EF/E$ is finite.
\end{exercise}
The solution to the previous exercise shows, in particular, that $[EF:E]\leq [F:K]$.