-
Notifications
You must be signed in to change notification settings - Fork 1
/
08.tex
517 lines (452 loc) · 18.1 KB
/
08.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
\section{15/04/2024}
\subsection{Galois' correspondence}
\index{Partially ordered set}
\index{Poset}
A \emph{partially order set} (or \emph{poset}) is a pair $(X,\leq)$, where $X$ is a non-empty set
and $\leq$ is a reflexive, antisymmetric and transitive relation on $X$. This means:
\begin{enumerate}
\item $x\leq x$ for all $x\in X$,
\item $x\leq y$ and $y\leq x$ imply $x=y$, and
\item $x\leq y$ and $y\leq z$ imply $x\leq z$.
\end{enumerate}
Let $(X,\leq)$ be a partially ordered set and $x,y\in X$.
An element $z$ of a poset $(X,\leq)$ is an \emph{upper bound} of $x$ and $y$ if
$x\leq z$ and $y\leq z$. And $\xi$
is a \emph{least upper bound} of $x$ and $y$
if it is an upper bound with $\xi\leq z$ for every upper bound $z$ of $x$ and $y$.
Similarly, one defines lower bounds and greatest lower bounds.
\begin{definition}
\index{Lattice}
A \emph{lattice} if a partially ordered set $L$ in which
each pair of elements $x,y\in L$ has a least upper bound $x\vee y$ and a
greatest lower bound $x\wedge y$.
\end{definition}
The basic example is the following.
Let $X$ be a set and $\mathcal{P}(X)$ be the collection of all subsets of $X$. The relation
$A\leq B\Longleftrightarrow A\subseteq B$
turns $\mathcal{P}(X)$ into a lattice
with $A\vee B=A\cup B$ and $A\wedge B=A\cap B$.
\begin{example}
\index{Lattice!of subgroups}
Let $G$ be a group and $L(G)$ be the collection of subgroups of $G$. The relation
\[
H\leq K\Longleftrightarrow H\subseteq K
\]
turns $L(G)$ into a lattice
with $H\vee K=\langle H,K\rangle$ and
$H\wedge K=H\cap K$.
\end{example}
\begin{example}
Let $E/K$ be a field extension and $L(E/K)$ be the collection of
intermediate fields. The relation
\[
F\leq L\Longleftrightarrow F\subseteq L
\]
turns $L(E/K)$ into a lattice with
$F\vee L=FL$ and $F\wedge L=F\cap L$.
\end{example}
\index{Order-reversing map}
A map $f\colon L\to L_1$ between two lattices is
said to be \emph{order-reversing} if
$x\leq y$ implies $f(y)\leq f(x)$.
We shall need an exercise.
\begin{exercise}
\label{xca:order_reversing}
Let $L_1$ and $L_2$ be lattices and $f\colon L_1\to L_2$ be a bijection
such that $f$ and its inverse are both order reversing. Then
\[
f(x\vee y)=f(x)\wedge f(y),\quad
f(x\wedge y)=f(x)\vee f(y)
\]
for all $x,y\in L_1$.
\end{exercise}
% \begin{proof}
% Since $x\leq x\vee y$ and $y\leq x\vee y$,
% $f(x\vee y)$ is a lower bound of $f(x)$ and $f(y)$, as
% \[
% f(x\vee y)\leq f(x),\quad f(x\vee y)\leq f(y).
% \]
% \end{proof}
\begin{theorem}[Galois]
\index{Galois' theorem}
Let $E/K$ be a finite Galois extension and $G=\Gal(E/K)$.
There exists a bijective correspondence
\[
L(E/K)=\{F:K\subseteq F\subseteq E\text{ subfields}\}\leftrightarrow
\{S:S\text{ is a subgroup of $G$}\}=L(G).
\]
The correspondence is given by $\alpha\colon F\mapsto \Gal(E/F)$ and
$\beta\colon \prescript{S}{}{E}\mapsfrom S$. Moreover, the following
conditions hold:
\begin{enumerate}
\item $\alpha$ and $\beta$ are order-reversing bijections.
\item $[F:K]=(G:\Gal(E/F))$ and $(G:S)=[\prescript{S}{}{E}:K]$.
\item $F/K$ is a Galois extension if and only if $\Gal(E/F)$ is a normal subgroup of $G$.
\end{enumerate}
%normal subextensions of $E/K$ correspond
%to normal subgroups of $G$.
\end{theorem}
\[
\begin{tikzcd}
&& E \\
& F && {\{1\}} \\
K && S \\
& G
\arrow[no head, from=1-3, to=2-2]
\arrow[no head, from=2-2, to=3-1]
\arrow[no head, from=3-1, to=4-2]
\arrow[no head, from=4-2, to=3-3]
\arrow[no head, from=2-2, to=3-3]
\arrow[no head, from=1-3, to=2-4]
\arrow[no head, from=2-4, to=3-3]
\end{tikzcd}
\]
\begin{proof}
Let $\alpha\colon L(E/K)\to L(G)$, $\alpha(F)=\Gal(E/F)$, and $\beta\colon L(G)\to L(E/K)$,
$\beta(S)=\prescript{S}{}{E}$. A routine
exercise shows that $\alpha$ and $\beta$ are well-defined.
We first note that
\begin{align*}
&\beta(\alpha(F))=\beta(\Gal(E/F))=\prescript{\Gal(E/F)}{}{E}=F
\end{align*}
since $E/F$ is a Galois extension. Moreover,
\begin{align*}
&\alpha(\beta(S))=\alpha(\prescript{S}{}{E})=\Gal(E/\prescript{S}{}{E})=S
\end{align*}
by Artin's theorem, as $S$ is finite.
It is straightforward to check that $\alpha$ and $\beta$ are order-reversing bijections.
Let $F$ be a subfield of $E$ containing $K$ and
$S=\alpha(F)$. Then
\[
[F:K]=\frac{[E:K]}{[E:F]}=\frac{|G|}{|S|}=(G:S).
\]
Let $C$ be an algebraic closure of $K$ that contains $E$.
If $S=\Gal(E/F)$, then $F=\prescript{S}{}{E}$.
We need to prove that $F/K$ is normal if and only if $S$ is normal in $G$.
Let us first prove $\implies$. Let $\tau\in S$ and $\sigma\in G$. Since
$F/K$ is normal, $\sigma|_F\in\Aut(F)$. Thus $\sigma^{-1}(F)=F$. In particular,
if $x\in F$, then $\sigma^{-1}(x)\in F$ and
\[
\sigma\tau\sigma^{-1}(x)=\sigma\sigma^{-1}(x)=x.
\]
Conversely, let $\varphi\in\Hom(F/K,C/K)$. There exists
$\Phi\colon E\to C$ such that $\Phi|_F=\varphi$. Since $E/K$ is normal,
$\Phi(E)=E$ and hence $\Phi\in G$. We claim that $\varphi(x)\in F$ for all $x\in F$.
Note that $F=\prescript{S}{}{E}$, so
\[
\tau\varphi(x)=\tau\Phi(x)=\Phi\Phi^{-1}\tau\Phi(x)=\Phi(x)=\varphi(x)
\]
for all $\tau\in S$, as $\Phi^{-1}\tau\Phi\in S$. This means that $\varphi(x)\in\prescript{S}{}{E}=F$.
Let us compute $\Gal(F/K)$. Since $F/K$ is normal,
the map
$\lambda\colon G\to\Gal(F/K)$, $\sigma\mapsto\sigma|_F$,
is a surjective group homomorphism such that $\ker\lambda=S$. The first isomorphism
theorem implies that $\Gal(F/K)\simeq G/S$.
\end{proof}
Some easy consequences.
\begin{exercise}
\label{xca:Cauchy+Galois}
If $E/K$ is a Galois extension of degree $n$ and
$p$ is a prime number dividing $n$, then $E/K$ admits
a subextension of degree $n/p$.
\end{exercise}
\begin{exercise}
\label{xca:Sylow+Galois}
If $E/K$ is a Galois extension of degree $p^\alpha m$ with
$p$ a prime number coprime with $m$, then $E/K$ admits
a subextension of degree $m$.
%This follows from Sylow's theorem
%and Galois's theorem.
\end{exercise}
\begin{definition}
\index{Extension!abelian}
An extension $E/K$ is \emph{abelian} if $E/K$ is a Galois extension
with $\Gal(E/K)$ abelian.
\end{definition}
\begin{exercise}
If $E/K$ is an abelian extension of degree $n$ and $d$ divides
$n$, then $E/K$ admits a subextension of degree $d$.
\end{exercise}
\begin{definition}
\index{Extension!cyclic}
An extension $E/K$ is \emph{cyclic} if $E/K$ is
a Galois extension with $\Gal(E/K)$ cyclic.
\end{definition}
\begin{example}
The extension $\Q(\sqrt{2},\sqrt{3})/\Q$ admits
exactly three non-trivial subextensions:
\[
\Q(\sqrt{2})/\Q,
\quad
\Q(\sqrt{3})/\Q,
\quad
\Q(\sqrt{6})/\Q,
\]
as $\Gal(\Q(\sqrt{2},\sqrt{3})/Q)\simeq C_2\times C_2$.
% Note that if $\sigma\in\Gal(\Q(\sqrt{2},\sqrt{3})/Q)$, then
% $\sigma(\sqrt{2})\in\{\sqrt{2},-\sqrt{2}\}$ and
% $\sigma(\sqrt{3})\in\{\sqrt{3},-\sqrt{3}\}$.
\end{example}
\begin{example}
Let $\omega\in\C\setminus\{1\}$ be such that $\omega^5=1$.
Then
\[
f(\omega,\Q)=1+X+X^2+X^3+X^4
\]
and $\Q(\omega)/\Q$ has
degree four.
Moreover, $\Q(\omega)/\Q$ is a Galois extension
and
\[
\Gal(\Q(\omega)/\Q)\simeq C_4.
\]
If $\sigma\in \Gal(\Q(\omega)/\Q)$,
then $\sigma(\omega)=\omega^i$ for some $i\in\{1,\dots,4\}$.
Moreover, each
map $\omega\mapsto\omega^i$, for $i\in\{1,\dots,4\}$, induces an automorphism
of $\Q(\omega)/\Q$. Thus $|\Gal(\Q(\omega)/\Q)|=4$. Now
\[
\sigma_i^k=\id\Longleftrightarrow
\omega^{i^k}=\sigma_i^k(\omega)=\omega\Longleftrightarrow
i^k\equiv1\bmod 5.
\]
Thus the map $\sigma_2$ given
by $\omega\mapsto\omega^2$ has order four.
Since $\Gal(\Q(\omega)/\Q)=\langle\sigma\rangle$,
where $\sigma(\omega)=\omega^2$,
is cyclic of order four,
the extension $\Q(\omega)/\Q$ has a unique degree-two
subtextension $F/\Q$. Note that $|\langle\sigma^2\rangle|=2$
and $\sigma^2(\omega)=\omega^4=\omega^{-1}$. Thus
$F=\prescript{\langle\sigma^2\rangle}{}{\Q(\omega)}$. Let
$\theta=\omega+\omega^{-1}$. Then
\[
\theta^2=\omega^2+\omega^3+2=-(1+\omega+\omega^{-1})+2=1-\theta
\]
and hence $\theta$ is a root of $X^2+X-1$. It follows that
\[
\theta\in\{(-1+\sqrt{5})/2,(-1-\sqrt{5})/2\}.
\]
Therefore
$F=\Q(\sqrt{5})$.
\end{example}
Let us mention some other consequences (of the fact that the correspondence
depends on order-reversing bijections).
\begin{exercise}
Let $E/K$ be a finite Galois extension and $G=\Gal(E/K)$.
If $S$ and $T$ are subgroups of $G$, then
$\prescript{\langle S,T\rangle}{}{E}=\prescript{S}{}{E}\cap \prescript{T}{}{E}$ and
$\prescript{S\cap T}{}{E}=\prescript{S}{}{E}\prescript{T}{}{E}$.
\end{exercise}
\begin{exercise}
Let $E/K$ be a finite Galois extension
and $F,L\in L(E/K)$. Prove that $\Gal(E/FL)=\Gal(E/F)\cap\Gal(E/L)$ and
$\Gal(E/F\cap L)=\langle\Gal(E/F),\Gal(E/L)\rangle$.
\end{exercise}
% \begin{exercise}
% \label{xca:composite}
% Let $E/K$ be a finite Galois extension
% and $F_1,\dots,F_n$ fields
% such that $K\subseteq F_i\subseteq E$ for
% all $i\in\{1,\dots,n\}$. For every
% $i$ let $S_i=\Gal(E/F_i)$. Then
% \[
% \Gal\left(E/\bigcap_{i=1}^nF_i\right)=\left\langle\bigcup_{i=1}^nS_i\right\rangle,
% \quad
% \Gal\left(E/\prod_{i=1}^nF_i\right)=\bigcap_{i=1}^nS_i.
% \]
% \end{exercise}
% \begin{sol}{xca:composite}
% We solve the exercise for $n=2$. The general case
% follows by induction.
% Let us prove
% first that
% $\Gal(E/F)\cap\Gal(E/L)=\Gal(E/FL)$:
% \begin{align*}
% \sigma\in\Gal(E/F)\cap\Gal(E/L) & \Longleftrightarrow
% \sigma|_F=\id_F\text{ and }\sigma|_L=\id_L\\
% &\Longleftrightarrow \sigma|_{FL}=\id_{FL}\\
% &\Longleftrightarrow \sigma\in\Gal(E/FL).
% \end{align*}
% Now we prove that $\Gal(E/F\cap L)\simeq\langle\Gal(E/F)\cup\Gal(E/L)\rangle$. Let
% $S=\Gal(E/F)$ and $T=\Gal(E/L)$. Then
% \begin{align*}
% x\in \prescript{S}{}{E}\cup \prescript{T}{}{E} &\Longleftrightarrow \sigma(x)=x\text{ for all $\sigma\in S\cup T$}\\
% &\Longleftrightarrow \sigma(x)=x\text{ for all $\sigma\in\langle S\cup T\rangle$}\\
% &\Longleftrightarrow x\in \prescript{\langle S\cup T\rangle}{}{E}.
% \end{align*}
% \end{sol}
\begin{exercise}
Let $E/K$ be a finite Galois extension and $G=\Gal(E/K)$.
Assume that $G$ is the direct product
$G=S\times T$
of the groups $S$ and $T$. Let
$F=\prescript{S}{}{E}$ and
$L=\prescript{T}{}{E}$. Then $F\cap L=K$ and $FL=E$.
\end{exercise}
\begin{proposition}
Let $E_1/K,E_2/K$ be Galois extensions.
If $E=E_1E_2$, then $E/K$ is a Galois extension. If, moreover, $E_1/K$ and $E_2/K$ are finite,
then
\[
\theta\colon \Gal(E/K)\to \Gal(E_1/K)\times\Gal(E_2/K),
\quad
\sigma\mapsto(\sigma|_{E_1},\sigma|_{E_2}),
\]
is an injective group homomorphism.
\end{proposition}
\begin{proof}
Since $E_1/K$ is algebraic,
then $E_1E_2/E_2$ is algebraic. Since $E_2/K$ is algebraic, $E_1E_2/K$ is algebraic. Similarly,
$E_1E_2/K$ is separable.
Let $C/K$ be an algebraic closure such that $E_1E_2\subseteq C$. If $\sigma\in\Hom(E_1E_2/K,C/K)$, then
$\sigma(E_1E_2)\subseteq\sigma(E_1)\sigma(E_2)=E_1E_2$ (do this calculation as an exercise using the fact that
$E_1/K$ and $E_2/K$ are normal extensions).
Thus $E_1E_2/K$ is normal.
If both $E_1/K$ and $E_2/K$ are finite, then $E_1E_2/K$ is finite.
Then $\theta$ is a group homomorphism. We claim that the map $\theta$ is injective. Let $\sigma\in\ker\theta$. Then
$\sigma|_{E_i}=\id_{E_i}$ for all $i\in\{1,2\}$. Let $S=\langle\sigma\rangle\subseteq\Gal(E/K)$ and
$F=\prescript{S}{}{E}$. Then $E_i\subseteq F$ for all $i\in\{1,2\}$ and
hence $E\subseteq F$. It follows that $F=E=\prescript{\{\id\}}{}{E}$ and therefore $S=\{\id\}$, so
$\sigma=\id$.
\end{proof}
\begin{exercise}
Let $E_1/K,\dots,E_r/K$ be finite Galois extensions such that for each $j$
one has $E_j\cap (E_1\cdots E_{j-1}E_{j+1}\cdots E_r)=K$. Then
\[
\Gal(E/K)\simeq\Gal(E_1/K)\times\cdots\times\Gal(E_r/K).
\]
In this case, $[E:K]=\prod_{i=1}^r[E_i:K]$.
\end{exercise}
\subsection{The fundamental theorem of algebra}
We now present an easy proof of the fundamental theorem
of algebra based on the ideas of Galois Theory.
We need the following well-known facts:
\begin{enumerate}
\item Every real polynomial of odd degree admits a real root. This means that $\R$
does not admit extension of odd degree $>1$.
\item Every complex number admits a square root in $\C$. This means that $\C$
does not admit degree-two extensions.
\end{enumerate}
\begin{theorem}
The field $\C$ is algebraically closed.
\end{theorem}
\begin{proof}
Let $E/\C$ be an algebraic finite extension. Then $E/\R$
is finite separable extension of even degree. There exists a Galois
extension
$L/\R$ such that $E\subseteq L$, so $[L:\R]$ is even. Let $G=\Gal(L/\R)$.
Then $|G|=2^ms$ for some odd number $s$. If $T$ is a 2-Sylow subgroup
of $G$,
then there exists a subextension $F/\R$ of degree $s$. Since
$\R$ does not admit extensions of odd degree $>1$, $s=1$ and
hence $G$ is a $2$-group. Since
$L/\R$ is a Galois extension, $L/\C$ is a Galois extension.
In particular, $|\Gal(L/\C)|=2^{m-1}$. If $m>1$,
let $U$ be a subgroup of $\Gal(L/\C)$ of order $2^{m-2}$. Then $U$ corresponds
to a subextension $L_1/\C$ of degree two, a contradiction. Hence $m=1$
and $[L:\C]=1$, so $L=\C$ and $E=\C$.
\end{proof}
\subsection{Purely inseparable extensions}
Let $E/K$ be an algebraic extension.
In page \ref{separable} we defined the
\emph{separable closure} of $K$ with respect to $E$ as
the field
\[
F=\{x\in E:x\text{ is separable over }K\}.
\]
Note that $K\subseteq F\subseteq E$
and $F=K(F)$. Moreover,
$F/K$ is separable and
$E/F$ is a \emph{purely inseparable} extension, meaning that
for every $x\in E\setminus F$, the polynomial $f(x,F)$ is not separable.
The number $[E:K]_{\operatorname{ins}}=[E:F]$ is known as the \emph{degree of inseparability} of $E/K$.
Clearly, $E/K$ is separable if and only if $[E:K]_{\operatorname{ins}}=1$ and
$E/K$ is purely inseparable if and only if $[E:K]_{\operatorname{ins}}=[E:K]$.
\begin{exercise}
\label{xca:separable_charp}
Let $K$ be a field of characteristic $p>0$ and $f\in K[X]$ be irreducible.
If $f$ is not separable, then $f=g(X^p)$ for some $g\in K[X]$.
\end{exercise}
\begin{proposition}
Let $K$ be a field of characteristic $p>0$ and
$E/K$ be an algebraic extension. The following statements are equivalent:
\begin{enumerate}
\item $E/K$ is purely inseparable.
\item If $x\in E$, then $x^{p^m}\in K$ for some $m\geq0$.
\item If $x\in E$, then $f(x,K)=X^{p^m}-a$ for some $a\in K$ and $m\geq0$.
\item $\gamma(E/K)=1$.
\end{enumerate}
\end{proposition}
\begin{proof}
We first prove $1)\implies 2)$.
Let $x\in E$ and $f=f(x,K)$. Assume $x$ is not separable. Then
$f(x)=0$ and $f'(x)=0$, as $x$ is not a simple root. By Exercise \ref{xca:separable_charp},
$f=g(X^p)$ for some $g\in K[X]$.
%Since $f\in K[X]$,
%the set
%$\left\{k\geq 0:f\in K\left[X^{p^k}\right]\right\}$ is non-empty
%and hence
%\[
%m=\max\left\{k\geq 0:f\in K\left[X^{p^k}\right]\right\}
%\]
%is well-defined. Thus $f\in K[X^{p^m}]$. This means that
%there exists a polynomial $h$ such that $\deg f=p^m\deg h$, so
%$p^m$ divides $\deg f$. In conclusion, $f=g(X^p)$
%for some $g\not\in K[X^p]$.
We now proceed by induction on the degree of $x$. The result
is true for elements of degree one. So assume the result holds for the element of degree $\leq n$
for some $n\geq1$.
If $x\in E$ is such that $\deg f(x,K)=n+1$, then, since $f(x,K)=g(X^p)$, the element
$x^p$ has degree $\leq n$. By the inductive hypothesis, $x^{p^{m+1}}=(x^p)^{p^m}\in K$.
We now prove $2)\implies 3)$. Let $x\in E$ and $m$ be the minimal positive integer
such that $x^{p^m}\in K$. Then
$x$ is a root of $X^{p^m}-x^{p^m}\in K[X]$. Since
$X^{p^m}-x^{p^m}=(X-x)^{p^m}$, it follows that
\[
f(x,K)=(X-x)^r=X^r+\cdots+(-1)^rx^r
\]
for some
$r\in\{1,\dots,p^m\}$. Write $r=p^st$ for some integer $t$ coprime with $p$ and $s$ such that
$0\leq s\leq m$. Let $a,b\in\Z$ be such that $ar+bp^m=p^s$. Then
\[
x^{p^s}=x^{ar+bp^m}=\left(x^r\right)^a\left(x^{p^m}\right)^b\in K.
\]
The minimality of $m$ implies that $s\geq m$ and hence $s=m$. Now $p^mt=p^st=r\leq p^m$, so $t=1$.
This means $f(x,K)=X^{p^m}-x^{p^m}$.
We now prove $3)\implies 4)$. Let $C/K$ be an algebraic closure of $K$ containing $E$ and $x\in E$.
Let $\sigma\in\Hom(E/K,C/K)$. We claim that $\sigma(x)=x$. Since
$f(x,K)=X^{p^m}-a$,
\[
\left(\sigma(x)\right)^{p^m}=\sigma\left(x^{p^m}\right)=\sigma(a)=a=x^{p^m}.
\]
It follows that $\sigma(x)$ is a root of $X^{p^m}-x^{p^m}=(X-x)^{p^m}$.
Thus $\sigma(x)=x$.
Finally, we prove that $4)\implies1)$. Let
$C$ be an algebraic closure of $K$ containing $E$.
Then $\Gal(E/K)=\Hom(E/K,C/K)=\{\id\}$, as $\gamma(E/K)=1$.
If $x\in E$ is separable over $K$, then
\[
f(x,K)=\prod_{y\in O_{\Gal(E/K)}(x)}(X-y)=X-x\in\ K[X].
\]
Thus $x\in K$ and hence $E/K$ is purely inseparable.
\end{proof}
Some consequences:
\begin{exercise}
Let $K$ be a field of characteristic $p>0$ and
$E/K$ be finite and purely inseparable. Then $[E:K]=p^s$ for some prime number $p$ and some $s$.
Moreover, $x^{[E:K]}\in K$.
\end{exercise}
For the first part of the previous exercise, write $E=K(x_1,\dots,x_n)$ and proceed by induction on~$n$.
\begin{exercise}
Let $K$ be of characteristic $p>0$ and
$E/K$ be a finite extension such that $[E:K]$ is not divisible by $p$. Then
$E/K$ is separable.
\end{exercise}
Let $K$ be of characteristic $p>0$, $E/K$ be finite and $F$ be the separable closure of $K$ in $E$.
Since
\begin{gather*}
\gamma(E/K)=\gamma(E/F)\gamma(F/K)=\gamma(F/K),
\shortintertext{it follows that}
[E:K]=[E:F]\gamma(E/K)=[E:K]_{\operatorname{ins}}\gamma(E/K).
\end{gather*}