-
Notifications
You must be signed in to change notification settings - Fork 104
/
realtime_demo.py
295 lines (230 loc) · 11.8 KB
/
realtime_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/
Real-time homography estimation demo. Note that scene has to be planar or just rotate the camera for the estimation to work properly.
"""
import cv2
import numpy as np
import torch
from time import time, sleep
import argparse, sys, tqdm
import threading
from modules.xfeat import XFeat
def argparser():
parser = argparse.ArgumentParser(description="Configurations for the real-time matching demo.")
parser.add_argument('--width', type=int, default=640, help='Width of the video capture stream.')
parser.add_argument('--height', type=int, default=480, help='Height of the video capture stream.')
parser.add_argument('--max_kpts', type=int, default=3_000, help='Maximum number of keypoints.')
parser.add_argument('--method', type=str, choices=['ORB', 'SIFT', 'XFeat'], default='XFeat', help='Local feature detection method to use.')
parser.add_argument('--cam', type=int, default=0, help='Webcam device number.')
return parser.parse_args()
class FrameGrabber(threading.Thread):
def __init__(self, cap):
super().__init__()
self.cap = cap
_, self.frame = self.cap.read()
self.running = False
def run(self):
self.running = True
while self.running:
ret, frame = self.cap.read()
if not ret:
print("Can't receive frame (stream ended?).")
self.frame = frame
sleep(0.01)
def stop(self):
self.running = False
self.cap.release()
def get_last_frame(self):
return self.frame
class CVWrapper():
def __init__(self, mtd):
self.mtd = mtd
def detectAndCompute(self, x, mask=None):
return self.mtd.detectAndCompute(torch.tensor(x).permute(2,0,1).float()[None])[0]
class Method:
def __init__(self, descriptor, matcher):
self.descriptor = descriptor
self.matcher = matcher
def init_method(method, max_kpts):
if method == "ORB":
return Method(descriptor=cv2.ORB_create(max_kpts, fastThreshold=10), matcher=cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True))
elif method == "SIFT":
return Method(descriptor=cv2.SIFT_create(max_kpts, contrastThreshold=-1, edgeThreshold=1000), matcher=cv2.BFMatcher(cv2.NORM_L2, crossCheck=True))
elif method == "XFeat":
return Method(descriptor=CVWrapper(XFeat(top_k = max_kpts)), matcher=XFeat())
else:
raise RuntimeError("Invalid Method.")
class MatchingDemo:
def __init__(self, args):
self.args = args
self.cap = cv2.VideoCapture(args.cam)
self.width = args.width
self.height = args.height
self.ref_frame = None
self.ref_precomp = [[],[]]
self.corners = [[50, 50], [640-50, 50], [640-50, 480-50], [50, 480-50]]
self.current_frame = None
self.H = None
self.setup_camera()
#Init frame grabber thread
self.frame_grabber = FrameGrabber(self.cap)
self.frame_grabber.start()
#Homography params
self.min_inliers = 50
self.ransac_thr = 4.0
#FPS check
self.FPS = 0
self.time_list = []
self.max_cnt = 30 #avg FPS over this number of frames
#Set local feature method here -- we expect cv2 or Kornia convention
self.method = init_method(args.method, max_kpts=args.max_kpts)
# Setting up font for captions
self.font = cv2.FONT_HERSHEY_SIMPLEX
self.font_scale = 0.9
self.line_type = cv2.LINE_AA
self.line_color = (0,255,0)
self.line_thickness = 3
self.window_name = "Real-time matching - Press 's' to set the reference frame."
# Removes toolbar and status bar
cv2.namedWindow(self.window_name, flags=cv2.WINDOW_GUI_NORMAL)
# Set the window size
cv2.resizeWindow(self.window_name, self.width*2, self.height*2)
#Set Mouse Callback
cv2.setMouseCallback(self.window_name, self.mouse_callback)
def setup_camera(self):
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
self.cap.set(cv2.CAP_PROP_AUTO_EXPOSURE, 3)
#self.cap.set(cv2.CAP_PROP_EXPOSURE, 200)
self.cap.set(cv2.CAP_PROP_FPS, 30)
if not self.cap.isOpened():
print("Cannot open camera")
exit()
def draw_quad(self, frame, point_list):
if len(self.corners) > 1:
for i in range(len(self.corners) - 1):
cv2.line(frame, tuple(point_list[i]), tuple(point_list[i + 1]), self.line_color, self.line_thickness, lineType = self.line_type)
if len(self.corners) == 4: # Close the quadrilateral if 4 corners are defined
cv2.line(frame, tuple(point_list[3]), tuple(point_list[0]), self.line_color, self.line_thickness, lineType = self.line_type)
def mouse_callback(self, event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
if len(self.corners) >= 4:
self.corners = [] # Reset corners if already 4 points were clicked
self.corners.append((x, y))
def putText(self, canvas, text, org, fontFace, fontScale, textColor, borderColor, thickness, lineType):
# Draw the border
cv2.putText(img=canvas, text=text, org=org, fontFace=fontFace, fontScale=fontScale,
color=borderColor, thickness=thickness+2, lineType=lineType)
# Draw the text
cv2.putText(img=canvas, text=text, org=org, fontFace=fontFace, fontScale=fontScale,
color=textColor, thickness=thickness, lineType=lineType)
def warp_points(self, points, H, x_offset = 0):
points_np = np.array(points, dtype='float32').reshape(-1,1,2)
warped_points_np = cv2.perspectiveTransform(points_np, H).reshape(-1, 2)
warped_points_np[:, 0] += x_offset
warped_points = warped_points_np.astype(int).tolist()
return warped_points
def create_top_frame(self):
top_frame_canvas = np.zeros((480, 1280, 3), dtype=np.uint8)
top_frame = np.hstack((self.ref_frame, self.current_frame))
color = (3, 186, 252)
cv2.rectangle(top_frame, (2, 2), (self.width*2-2, self.height-2), color, 5) # Orange color line as a separator
top_frame_canvas[0:self.height, 0:self.width*2] = top_frame
# Adding captions on the top frame canvas
self.putText(canvas=top_frame_canvas, text="Reference Frame:", org=(10, 30), fontFace=self.font,
fontScale=self.font_scale, textColor=(0,0,0), borderColor=color, thickness=1, lineType=self.line_type)
self.putText(canvas=top_frame_canvas, text="Target Frame:", org=(650, 30), fontFace=self.font,
fontScale=self.font_scale, textColor=(0,0,0), borderColor=color, thickness=1, lineType=self.line_type)
self.draw_quad(top_frame_canvas, self.corners)
return top_frame_canvas
def process(self):
# Create a blank canvas for the top frame
top_frame_canvas = self.create_top_frame()
# Match features and draw matches on the bottom frame
bottom_frame = self.match_and_draw(self.ref_frame, self.current_frame)
# Draw warped corners
if self.H is not None and len(self.corners) > 1:
self.draw_quad(top_frame_canvas, self.warp_points(self.corners, self.H, self.width))
# Stack top and bottom frames vertically on the final canvas
canvas = np.vstack((top_frame_canvas, bottom_frame))
cv2.imshow(self.window_name, canvas)
def match_and_draw(self, ref_frame, current_frame):
matches, good_matches = [], []
kp1, kp2 = [], []
points1, points2 = [], []
# Detect and compute features
if self.args.method in ['SIFT', 'ORB']:
kp1, des1 = self.ref_precomp
kp2, des2 = self.method.descriptor.detectAndCompute(current_frame, None)
else:
current = self.method.descriptor.detectAndCompute(current_frame)
kpts1, descs1 = self.ref_precomp['keypoints'], self.ref_precomp['descriptors']
kpts2, descs2 = current['keypoints'], current['descriptors']
idx0, idx1 = self.method.matcher.match(descs1, descs2, 0.82)
points1 = kpts1[idx0].cpu().numpy()
points2 = kpts2[idx1].cpu().numpy()
if len(kp1) > 10 and len(kp2) > 10 and self.args.method in ['SIFT', 'ORB']:
# Match descriptors
matches = self.method.matcher.match(des1, des2)
if len(matches) > 10:
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = kp1[match.queryIdx].pt
points2[i, :] = kp2[match.trainIdx].pt
if len(points1) > 10 and len(points2) > 10:
# Find homography
self.H, inliers = cv2.findHomography(points1, points2, cv2.USAC_MAGSAC, self.ransac_thr, maxIters=700, confidence=0.995)
inliers = inliers.flatten() > 0
if inliers.sum() < self.min_inliers:
self.H = None
if self.args.method in ["SIFT", "ORB"]:
good_matches = [m for i,m in enumerate(matches) if inliers[i]]
else:
kp1 = [cv2.KeyPoint(p[0],p[1], 5) for p in points1[inliers]]
kp2 = [cv2.KeyPoint(p[0],p[1], 5) for p in points2[inliers]]
good_matches = [cv2.DMatch(i,i,0) for i in range(len(kp1))]
# Draw matches
matched_frame = cv2.drawMatches(ref_frame, kp1, current_frame, kp2, good_matches, None, matchColor=(0, 200, 0), flags=2)
else:
matched_frame = np.hstack([ref_frame, current_frame])
color = (240, 89, 169)
# Add a colored rectangle to separate from the top frame
cv2.rectangle(matched_frame, (2, 2), (self.width*2-2, self.height-2), color, 5)
# Adding captions on the top frame canvas
self.putText(canvas=matched_frame, text="%s Matches: %d"%(self.args.method, len(good_matches)), org=(10, 30), fontFace=self.font,
fontScale=self.font_scale, textColor=(0,0,0), borderColor=color, thickness=1, lineType=self.line_type)
# Adding captions on the top frame canvas
self.putText(canvas=matched_frame, text="FPS (registration): {:.1f}".format(self.FPS), org=(650, 30), fontFace=self.font,
fontScale=self.font_scale, textColor=(0,0,0), borderColor=color, thickness=1, lineType=self.line_type)
return matched_frame
def main_loop(self):
self.current_frame = self.frame_grabber.get_last_frame()
self.ref_frame = self.current_frame.copy()
self.ref_precomp = self.method.descriptor.detectAndCompute(self.ref_frame, None) #Cache ref features
while True:
if self.current_frame is None:
break
t0 = time()
self.process()
key = cv2.waitKey(1)
if key == ord('q'):
break
elif key == ord('s'):
self.ref_frame = self.current_frame.copy() # Update reference frame
self.ref_precomp = self.method.descriptor.detectAndCompute(self.ref_frame, None) #Cache ref features
self.current_frame = self.frame_grabber.get_last_frame()
#Measure avg. FPS
self.time_list.append(time()-t0)
if len(self.time_list) > self.max_cnt:
self.time_list.pop(0)
self.FPS = 1.0 / np.array(self.time_list).mean()
self.cleanup()
def cleanup(self):
self.frame_grabber.stop()
self.cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
demo = MatchingDemo(args = argparser())
demo.main_loop()