-
Notifications
You must be signed in to change notification settings - Fork 43
/
utils.py
214 lines (165 loc) · 6.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import os
import subprocess
def disparity_normalization_vis(disparity):
"""
:param disparity: Bx1xHxW, pytorch tensor of float32
:return:
"""
assert len(disparity.size()) == 4 and disparity.size(1) == 1
disp_min = torch.amin(disparity, (1, 2, 3), keepdim=True)
disp_max = torch.amax(disparity, (1, 2, 3), keepdim=True)
disparity_syn_scaled = (disparity - disp_min) / (disp_max - disp_min)
disparity_syn_scaled = torch.clip(disparity_syn_scaled, 0.0, 1.0)
return disparity_syn_scaled
def run_shell_cmd(args_list, logger):
"""
run linux commands
"""
if logger:
logger.info("Running system command: {0}".format(" ".join(args_list)))
proc = subprocess.Popen(args_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
s_output, s_err = proc.communicate()
s_return = proc.returncode
return s_return, s_output, s_err
def run_shell_cmd_shell(cmd, logger):
logger.info("Running system command: {0}".format(cmd))
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
s_output, s_err = proc.communicate()
s_return = proc.returncode
return s_return, s_output, s_err
def restore_model(model_path, backbone, decoder, optimizer, logger):
if model_path is None:
if logger:
logger.info("Not using pre-trained model...")
return
assert os.path.exists(model_path), "Model %s does not exist!"
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage.cpu())
for key, model in [("backbone", backbone), ("decoder", decoder), ("optimizer", optimizer)]:
if key not in state_dict:
continue
_state_dict = {k.replace("module.", "") if k.startswith("module.") else k: v
for k, v in state_dict[key].items()}
# Check if there is key mismatch:
missing_in_model = set(_state_dict.keys()) - set(model.state_dict().keys())
missing_in_ckp = set(model.state_dict().keys()) - set(_state_dict.keys())
if logger:
logger.info("[MODEL_RESTORE] missing keys in %s checkpoint: %s" % (key, missing_in_ckp))
logger.info("[MODEL_RESTORE] missing keys in %s model: %s" % (key, missing_in_model))
if key != "optimizer":
model.load_state_dict(_state_dict, strict=False)
else:
model.load_state_dict(_state_dict)
def linspace_batch(start, end, steps, dtype=None, device=None):
"""
x0 ... x ... x1
y0 ... y ... y1
(x-x0) / (x1-x0) = (y-y0) / (y1-y0)
:param start: B
:param end: B
:param steps: int
:param dtype:
:param device:
:return:
"""
assert len(start.size()) == 1 and start.size() == end.size()
assert isinstance(steps, int)
B, S = start.size(0), steps
x = torch.linspace(start[0], end[0], steps=S, dtype=dtype, device=device) # S
x = x.unsqueeze(0).repeat(B, 1) # BxS
x0 = torch.full((B, S), fill_value=start[0], dtype=dtype, device=device)
x1 = torch.full((B, S), fill_value=end[0], dtype=dtype, device=device)
linear_arr = (end-start).unsqueeze(1) * (x - x0) / (x1 - x0) + start.unsqueeze(1)
return linear_arr
def inverse(matrices):
"""
torch.inverse() sometimes produces outputs with nan the when batch size is 2.
Ref https://github.com/pytorch/pytorch/issues/47272
this function keeps inversing the matrix until successful or maximum tries is reached
:param matrices Bx3x3
"""
inverse = None
max_tries = 5
while (inverse is None) or (torch.isnan(inverse)).any():
torch.cuda.synchronize()
inverse = torch.inverse(matrices)
# Break out of the loop when the inverse is successful or there"re no more tries
max_tries -= 1
if max_tries == 0:
break
# Raise an Exception if the inverse contains nan
if (torch.isnan(inverse)).any():
raise Exception("Matrix inverse contains nan!")
return inverse
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class Embedder(object):
# Positional encoding (section 5.1)
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs["input_dims"]
out_dim = 0
if self.kwargs["include_input"]:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs["max_freq_log2"]
N_freqs = self.kwargs["num_freqs"]
if self.kwargs["log_sampling"]:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs["periodic_fns"]:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, i=0):
embed_kwargs = {
"include_input": True,
"input_dims": 1,
"max_freq_log2": multires - 1,
"num_freqs": multires,
"log_sampling": True,
"periodic_fns": [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
def embed(x, eo=embedder_obj):
return eo.embed(x)
return embed, embedder_obj.out_dim
def test_linspace_batch():
B, S = 8, 10
start = torch.arange(B)*10 + 10
end = torch.arange(B) + 1
batch_linspace = linspace_batch(start, end, S)
single_linspace_list = []
for i in range(B):
single_linspace_list.append(torch.linspace(start[i], end[i], S))
assemble_linspace = torch.stack(single_linspace_list, dim=0)
print(batch_linspace - assemble_linspace)
if __name__ == "__main__":
embedder, out_dim = get_embedder(20)
input_t = torch.tensor([[1, 2, 3, 4], [2, 3, 4, 4]])
print(embedder(input_t).size())