forked from equipe22/BioQuality
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fun_trends.R
78 lines (72 loc) · 3.8 KB
/
fun_trends.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Trend detection function ####
describetrends <- function(inputData, opt1=T, bp=NULL, setwindowSize=120){
# This function performs quantile regression
# Inputs : data in inputData argument, breakpoints position in bp argument, minimal interval size determined bu setwindowSize argument
# If bp is NULL, the quantile regression is performed on whole data
# If there are bp, quantile regressions are performed by interval
# Remove the NA values
inputData <- inputData[!is.na(inputData$value),]
# Sample to adapt infrastructure computationnal performance
inputData <- sample_n(inputData, min(200000,nrow(inputData)))
# This functions gets results from quantile regression (local declaration)
getinfo <- function(x, opt2=opt1){
if(typeof(x)=="list"){
if(opt2){
out <- tryCatch(c(coefficients(x)[2,1],coefficients(x)[2,2],coefficients(x)[2,3],as.vector(summary(x)$coefficients[2,2])
,as.vector(summary(x)$coefficients[2,4]),coefficients(x)[1,1] ), error = function(e) c(coefficients(x)[2,1],coefficients(x)[2,2],coefficients(x)[2,3],NA,NA,coefficients(x)[1,1] ) )
}else{
out <- tryCatch(c(as.vector(coefficients(x)[2]),confint(x)[2,1],confint(x)[2,2],summary(x)$coefficients[2,2],as.vector(summary(x)$coefficients[2,4]),coefficients(x)[1]), error = function(e) rep(NA,6))
}
}else{
out <- rep(NA,6)
}
return(out)
}
# Create dataframe for results output
listecol <- c("bp","datepos","Type","Intercept","coef","LB","UB","Std","p","Scale","Delta (%)")
res <- data.frame(matrix(NA, nrow=ifelse(bp[1]==0,1,2+bp$nbp),ncol=length(listecol) ))
colnames(res) <- listecol
# If no breakpoint, regression on the whole data
res[,"bp"] <- 0
res[,"Type"] <- c("QR50") # Regression on the median
res[1,"datepos"] <- paste0(min(inputData$date,na.rm = T),"//",max(inputData$date,na.rm = T))
res[1,"Delta (%)"] <- max(inputData$date,na.rm = T)-min(inputData$date,na.rm = T)
# Regression on the median : parameter tau sets to .5
obj3 <- tryCatch(rq(value~date, tau=.5, data=inputData, ci=T), error = function(e) NA)
res[1,c("coef","LB","UB","Std","p","Intercept")] <- getinfo(obj3)
# Get the global median
res[1,"Scale"] <- quantile(inputData$value,na.rm = T, probs = .5)
# If breakpoints, regression by interval
if(bp[1]>0){
followcut <- c(0,bp$place,Inf)
pp <- 1
nbregression <- 1
for(kk in 1:(length(followcut)-1)){
newind <- pp*nbregression
res[c(1+newind),"bp"] <- pp
# need to fix a marge of x days fixed by the argument setwindowSize/2 (problem of interval without data)
up <- max( (as.numeric(followcut[kk+1])-setwindowSize/2),(as.numeric(followcut[kk])+setwindowSize/2),na.rm = T)
low <- min( (as.numeric(followcut[kk])+setwindowSize/2),up, na.rm=T)
res[c(1+newind),"datepos"] <- paste0(low,"//",up)
res[c(1:+newind),"Delta (%)"] <- up-low
if(is.na(low) | is.na(up) | up==low){
obj3 <- NA
}else{
ind <- which(inputData$date<=up & inputData$date>=low)
if(length(unique(inputData[ind,"date3"]))<setwindowSize){
obj3 <- NA
}else{
# Regression on the median : parameter tau sets to .5
obj3 <- tryCatch(rq(value~date, tau=.5, data=inputData[ind,], ci=T), error = function(e) NA, warning=function(w) NA)
}
}
res[1+newind,c("coef","LB","UB","Std","p","Intercept")] <- getinfo(obj3)
# Get the global median
res[1+newind,"Scale"] <- quantile(inputData$value[ind],na.rm = T, probs = .5)
pp <- pp + 1
}
}
# Compute variation proportion by interval (taking into account the global median)
res[,"Delta (%)"] <- round(100*(res[,"coef"]*res[,"Delta (%)"])/res[,"Scale"],1)
return(res)
}