Fast Ingest and Query Performance in PostgreSQL with SplinterDB
Indexes

Aditya Gurajada

Gabriel Rosenhouse Carlos Garcia-Alvarado

Rob Johnson

VMware

Abstract

Relational databases make extensive use of B-tree indexes to
accelerate query performance. B-Trees offer excellent point-query
performance but inserting data into a large B-tree can be costly,
especially for a workload of random inserts. In fact, high-velocity
tables are often not indexed at all due to the performance limitations
of B-tree insertions.

This paper describes how SplinterDB, a novel, open-source,
write-optimized key-value store developed at VMware, can be used
as an index within a relational database, such as PostgreSQL, to
increase ingestion speed without sacrificing query performance.

In our performance evaluation, we show that a SplinterDB-
indexed table can ingest data up to 24X faster than a B-tree-indexed
table. In fact, SplinterDB ingests data half as fast as a table with no
index at all, whereas B-tree indexes can impose a 36X slowdown
compared to an unindexed table. Furthermore, SplinterDB matched
the point-query performance of Postgres’s B-tree and outperformed
the builtin B-tree by 50% on large-range queries, although it was
about 3X slower on short-range queries.

Our results suggest that a SplinterDB-based index could become
a compelling alternative to B-tree indexes for supporting higher
ingestion rates like those needed for real-time applications in
relational databases like PostgreSQL.

1 Introduction

Databases have typically been optimized for accelerating queries,
and since their inception, they have maintained indexes to support
fast queries. One of the most common indexing structures is the
B-tree [8]. B-Trees are the most commonly used indexing structure
in PostgreSQL [4], a powerful, open-source object-relational DBMS
engine supporting different index types. B-Tree indexes are widely
used indexes by customers because they deliver excellent query
performance for both point lookups and range scans. Often, Btrees
are preferred as an access method to return order-preserving result
sets, avoiding extra sort costs.

Unfortunately, an often-heard customer complaint is that the
ingestion rate suffers on huge tables with large B-tree indexes.
The larger the table, the slower ingestion gets. For example, some
PostgreSQL customers ingesting a large volume of data on a table
with a B-tree have reported a reduction in their ingestion rate larger
than 10x, which compromises their access to fresh data, business
operations, and SLAs.

Recent work has shown that it is possible to build indexes that
support much faster insertions than B-trees. SplinterDB [9] is
an embedded standalone key-value store based on the mapped
Bé-tree data structure designed for high-ingestion rates and good
query performance. SplinterDB was designed for high-performance
when dealing with small key-value pairs in resource-constrained
environments. In direct benchmarks of small key-value pairs,

SplinterDB provides 2-10x ingestion speedups over existing
key-value stores, such as RocksDB, that are already optimized for
insertions. SplinterDB is particularly efficient at handling high
ingestion rates of randomly ordered keys (e.g., the customer’s SSN),
which is where B-trees are particularly weak.

In this work, we empirically demonstrate that SplinterDB can
transform insertion performance in PostgreSQL. We show that, for
random insertion workloads, switching from B-tree indexes to Splin-
terDB indexes can increase throughput by a factor of over 20X due to
the greater I/O efficiency of insertions into SplinterDB. SplinterDB
insertion performance remains steady even as the database grows
much larger than RAM, whereas B-tree insertion performance falls
off a cliff. But, even when the database fits in RAM, SplinterDB is
faster than the B-tree for random insertions. PostgreSQL’s B-tree out-
performs SplinterDB insertions in only one case—single-threaded
sequential insertions—and only by a small margin of 10%.

We also show that SplinterDB insertion throughput scales better
than PostgreSQL’s B-tree with increasing threads. For example,
SplinterDB outperforms the B-tree on sequential insertions (B-tree’s
best case) with 2 or more threads.

We also show that, in all our workloads, inserting into a table
with a SplinterDB index is at least half as fast as inserting into a
table with no index at all. In contrast, adding a B-tree index can slow
down inserts by over 30X.

For queries, we show that a SplinterDB-based index in PostgreSQL
can match the B-tree point-query performance and outperform the
B-tree for large range queries. The one place where the B-tree clearly
outperforms SplinterDB is short range queries, where SplinterDB
can be about 3 slower than the B-tree. However, keep in mind that,
for a high-velocity table, the choice that a database adminiatror
may face is not between a SplinterDB index or a B-tree index, but
between a SplinterDB index or no index at all, for which any range
query would have to scan the entire table. In that case, SplinterDB
would offer orders-of-magnitude faster small range queries.

In summary, we show that adding SplinterDB as an indexing
method in PostgreSQL can offer order-of-magnitude speedups for
many workloads, with little or no downside. But, going further, we
believe that SplinterDB can fundamentally change how customers
use PostgreSQL. A fast index, such as SplinterDB, makes indexing
cheap. This means users can maintain indexes for high-velocity
tables for which B-tree indexes may not be practical. Thus, Splin-
terDB indexes have the potential to accelerate queries in databases
that just cannot afford the maintenance costs of B-tree indexes. And
SplinterDB indexes have the potential to eliminate the need for batch
loads, making application code simpler and faster and enabling
database queries to return results on the latest data efficiently.

In the rest of this paper, we will make the case that developing a
novel index based on the open-source SplinterDB Key-Value store
for a commercial-grade open-source DBMS engine, like PostgreSQL,

PostgreSQL Backend

PostgreSQL /> IAM SplinterDB

Client library @) || \\»

PostgreSQL Backend

SplinterDB @

VA

shared objects

Shared Memory

PosteresQL — SplinterDB
Client IAM >
Iibrary@ :
PostgreSQL PostgreSQL Backend />
Client SplinterDB
\ IAM SplinterDB | | : file
Iibrary@ :

Figure 1: Architecture

could upgrade relational databases to meet the requirements to
supportapplications that need to ingest and query high velocity data.

2 ASplinterDB-Based Index

In this section we describe the challenges to integrating SplinterDB
into PostgreSQL and the techniques we use to overcome those
challenges. There are two main problems we needed to tackle during
the integration:

e Physical integration. PostgreSQL uses a single-threaded
multiprocess model augmented with explict shared memory,
whereas SplinterDB was written for a multi-threaded model
in which all memory is implicitly shared.

e Logical integration. PostgreSQL uses a relational model
whereas SplinterDB supports a simple key-value model.

2.1 Physical Integration

PostgreSQL starts with an initial process, called the postmaster,
which creates shared memory segments on start-up and begins
listening on a network port. All PostgreSQL shared data structures,
such as the buffer cache, metadata, lock structures, etc., are allocated
from this shared segment. For every database client connection, the
postmaster forks a new process called the "backend” dedicated to
that client. Each backend retains references to the shared memory
established on start-up. Thus, all concurrency and synchronization
across multiple clients is managed through shared data structures
allocated from the shared segment.

SplinterDB, on the other hand, is a multithreaded library that
manages its memory using mmap, malloc, and free, i.e. it assumes
that all memory is shared among all threads. Furthermore, it sup-
ports launching background threads to perform tree maintenance
tasks, whereas PostgreSQL processes are generally single threaded.

Figure 1 summarizes the architecture of how we integrated the
SplinterDB library with postgres.

Memory Allocation: We enhanced SplinterDB’s memory
allocation to support a shared-memory model. With our changes,
a SplinterDB instance can now be configured to allocate a shared
memory region at start-up, and all SplinterDB shared data structures
are allocated from this segment. This brings SplinterDB’s memory
allocation and sharing assumptions in line with PostgreSQL’s. We
were aided in this effort by the fact that all memory allocation had
already been abstracted in the SplinterDB code base.

Note that we did not integrate SplinterDB’s page cache with any
of the caches in PostgreSQL. Thus, in our prototype, PostgreSQL’s

tables and B-tree indexes use PostgreSQL’s internal cache and the
SplinterDB indexes use SplinterDB’s cache. However, in our exper-
iments, we always ensured that the total amount of cache (across all
caches) was the same, and we further limited total process memory
using cgroups to ensure a fair comparison of the different indexing
schemes (see Section 3 for details on the experimental setup).

Background Threads: SplinterDB’s "background thread"
functionality was exposed for library users. Since SplinterDB
supports background threads that can asynchronously handle
time-consuming maintenance work, such as compacting trees and
building filters. This feature is intended to reduce tail latencies on
write operations since application-created "foreground threads" (i.e.,
the client connection performing the inserts) can then skip such
maintenance work.

Multi-Process Model: SplinterDB’s threading support was
enhanced to integrate with PostgreSQL’s multi-process model. The
existing pthread-based synchronization primitives were changed
so that instead of being process-private, they could now be shared
across OS processes. This enabled multiple Postgres backends, each
a single thread in a separate process, to operate concurrently and
alongside any SplinterDB background threads. Furthermore, Splin-
terDB’s asynchronous IO context management was changed from
global to per-thread (and thus per-process) so that each PostgreSQL
backend could drive its own IO of data managed by SplinterDB.

Linking, startup and shutdown: The SplinterDB library is
statically linked with the postgres binary.

We exposed several SplinterDB-specific configuration param-
eters via PostgreSQL’s configuration file. This allowed us to
enable/disable SplinterDB support and to tune the size of SplinterDB
resources (cache, shared memory, device size, etc.) through normal
PostgreSQL configuration.

The lifecycle of the SplinterDB-enhanced PostgreSQL is simple:
On server start-up, when SplinterDB is enabled, the PostgreSQL’s
"postmaster” process creates (or opens an existing) SplinterDB
device and sets up the required shared memory and other metadata
memory for use by SplinterDB. Then each PostgreSQL forked
backend will register itself as a thread within SplinterDB. When
a client disconnects, the corresponding backend deregisters itself
from SplinterDB before exiting. When the postmaster shuts down,
it closes the SplinterDB instance.

2.2 Schema-Level Integration

PostgreSQL exposes an Index Access Method (IAM) API that enables
the creation of custom index types by implementing a documented
interface [2]. All indexes, including built-in BTree indexes, conform
to this interface.

SplinterDB, on the other hand, provides a simple key-value in-
terface. Keys and values are opaque blobs of bytes with user-defined
comparison and hashing functions.

We implemented functional support for indexing single-column
indexes only on integer columns are allowed. Although restrictive,
this capability is sufficient to perform a wide range of performance
benchmarking to evaluate the two indexing schemes. For such
indexes, the maximum size of a KV-pair is 10 bytes. The integer
column becomes the key in SplinterDB, and we store the tuple ID
as the associated value.

The primary semantic gap between PostgreSQL and SplinterDB is
around uniqueness checking of inserted keys. SplinterDB supports
only “blind” inserts, i.e. an insert of a new key-value pair with
the same key as an existing entry simply overwrites the old entry.
SplinterDB does not return whether an insert results in an overwrite
of an older key-value pair or not.

PostgreSQL IAM, on the other hand, supports two types of
indexes: unique and non-unique. Unique indexes are expected to
return an error if the user attempts to insert a record with the same
key as an existing tuple. Thus, SplinterDB currently supports only
PostgreSQL’s non-unique index mode.

Unfortunately, an index’s uniqueness mode also affects how
PostgreSQL makes queries to that index, and this difference
has significant performance ramifications in SplinterDB. For
non-unique indexes, PostgreSQL uses the index’s iterator method,
even for equality queries. For unique indexes, PostgreSQL uses a
special point-lookup API to the index. SplinterDB supports much
faster point queries than iteration because it maintains quotient
filters [9] internally, which are used to narrow down searches during
point queries, enabling most lookups to complete in a single I/O.

To get around this mismatch, during our point-query benchmarks,
we declare SplinterDB to be a unique index to PostgreSQL. Note that
we do this only for the point-query benchmarks—all our insertion
and range-query benchmarks were executed with SplinterDB in
the non-unique mode.

3 Evaluation

Our evaluation of the SplinterDB index was focused on two major
items: One, quantifying the performance of bulk inserts on large
datasets, in which BTrees struggle. Two, performance of single-table
point-lookups and range scans. The design point was to study the
performance of these usages when the data size far exceeds available
memory (cache) size.

Our objective was to understand the overheads of maintaining
during bulk loads an index (B-tree or SplinterDB) as compared to the
raw throughput of such inserts into a table with no index. We also
wanted to study any degradation of ingest performance with increas-
ing table sizes. For reads, the objective was to compare the query
performance of single-table point-lookups and short- and long-range
scans between a B-tree or SplinterDB index as an access method.

We did not include update of non-index key columns in our work-
load as the performance of such operations is similar to that of read
performance, insofar as the SplinterDB index access is concerned.
For SplinterDB, update of an index key-column or delete of data
rows both essentially result in the insertion of a new tuple(s). Hence,
we expect that the results of comparing insert performance will be
a good indicator for how these other operations would compare.

3.1 Hardware and Server Configuration

We used the following setup for all experiments described below.
Experiments were run on an AWS i4i.16xlarge instance which has
64 logical processors, 378 GiB memory and 4 NVMe SSDs available
as local storage. The SSDs were each formatted with the ext4
filesystem. PostgreSQL 15 was deployed with the SplinterDB-based
Index Access Method described above. PostgreSQL and SplinterDB
data was stored on the ext4 filesystem of one of the SSDs, so that all

10 bandwidth is shared by either form of the index structure along
with IO for the data pages.

PostgreSQL was launched within a Linux cgroup that enforced
an 8GiB limit on the combined memory usage of the server and all of
its child-processes, including backends. This cgroups memory-limit
was used to simulate the common use-case where the database size
far exceeds the available memory on the host, without needing to
test with terabyte-scale workloads.

The PostgreSQL buffer cache and SplinterDB cache were sized to
fit comfortably within this limit. In all experiments using SplinterDB,
its shared memory segment was configured to 1.5 GiB, to avoid
failures due to insufficient shared memory. In practice, we observed
that SplinterDB’s max shared memory usage was no more than 80%
at the end of each experiment.

We performed large data-ingestion throughput experiments for
three scenarios: no index on the table, BTree index and SplinterDB
index. When testing without an index, or with the BTree index,
SplinterDB was disabled (i.e., no shared memory is allocated for
SplinterDB) and the PostgreSQL buffer cache was given 6 GiB of
memory. When testing the SplinterDB index, it was configured
with a 5 GiB cache (in addition to the previously mentioned
shared memory segment) and PostgreSQL was configured with
an equivalently reduced 1 GiB buffer cache. Note that in both
configurations, the same 6 GiB is being distributed across the two
caches, and everything is run under a cgroups of 8 GiB.

The Postgres database was created with its default 8KB page size
while SplinterDB was created with its default 4KB page size. This
may have affected the IO characteristics of our workloads, especially
for random insertions, however, we did not try to fine-tune this
configuration as both systems were using their default page sizes.

3.2 Workload

All experiments ran on a simple table with a 4-byte integer column
and a fixed-length char(10) filler column. The index is defined on
the integer column. Logging was enabled for ingestion performance
experiments to ensure that we include the overheads of run-time
logging needed to support crash recovery.

Data-loading experiments used a custom “workload generator”
program written in Go. The workload program was run on the same
host as PostgreSQL. It opens a configurable number of concurrent
client connections to Postgres and bulk-loads, in batches of 1000
rows, synthetic data via the PostgreSQL COPY FROM <stdin>
statement. When client concurrency was >1, the total row count
was partitioned amongst the clients. The use of the COPY statement,
which is a highly optimized batch load PostgreSQL interface, and the
use of streaming, in-memory data generation using FROM <stdin>
helps minimize overheads in the client, socket, and PostgreSQL
frontend. In practice, we observed that even with the clients and
server running on the same host, the workload generator was able
to drive un-indexed tables to much higher throughput than either
index, so we were confident that the client program was not the
limiting factor in evaluating the performance of the indexes.

The integer column value was generated in one of two ways:

e Sequential integers: When inserting N rows using C concur-
rent clients, each client generated its sequential keys from an
assigned interval of size (N/C) non-overlapping key ranges.

This simulates the ingestion of streaming monitoring data
in, say, timestamp order.

e Uniform-Random integer samples: These used a pseudo-
random generator with a fixed seed value to ensure that the
same sequence of random values is used for all experiments.
There was no partitioning of the key space, so at higher row
counts, concurrent clients almost certainly inserted some
duplicate keys. We did not monitor duplicate key count.

For both cases, the char(10) column was filled with base64-
encoded random bytes.

For ingestion performance and range-scan experiments, a
non-unique index was created on the integer column.

Point-lookup performance experiments were performed as fol-
lows. We loaded a billion sequential keys to the test table defined with
aUNIQUE index. SplinterDB does not enforce uniqueness checks, but
BTree indexes do. So, by loading sequential data, we avoid running
into uniqueness check failures. We did not measure the ingestion
measure performance in this load-phase, and just used this load to
run point-query performance experiments. We measured scalability
of lookup throughput (in terms of number of lookups / sec) across
number of clients. Each client performed 1 million random point
lookups out of the 1B keys, so each lookup was expected to find a row.

For range scan performance, we loaded a billion sequential keys
to the test table defined with a non-unique index. We used a single
client to measure range-scan performance. For different ranges
of lengths from 10, 102,103 ... 107 (10M) keys, a million queries
were executed using a random value for the lower-end of the range
specified by a BETWEEN clause. The lower-bound of the range was
chosen randomly from the billion keys inserted. Depending on the
lower-bound and the range size, it is possible that not all keys in
the range would be found. We did not measure or check whether the
query returned the specified number of keys in the selected range.

For both read performance queries, to avoid the overheads of
per-statement query optimization, we used PREPARE ed statements
with dynamic parameters to specify the lookup-value or the values
limiting the range.

An “experiment” constitutes a test run with: a choice of index type
(no index, BTree or SplinterDB index), a key-generator (sequential /
random) and a chosen number of concurrent clients. For each exper-
iment, PostgreSQL was re-started, tables and indexes recreated and,
when applicable, the Splinter instance (i.e., its device, shared mem-
ory, cache etc.) was recreated. This ensures that the database and
all caches were in the same initial state for all workloads. Execution
times were measured from the workload generator client program.

4 Benchmarking Results

This work was originally motived by anecdotal reports that bulk-
loading random data into a table with a B-tree index was roughly
10x slower than inserting into an unindexed table. Therefore, we
first aimed to reproduce that claim, and then to determine whether
a SplinterDB-based index might perform better.

For the three test cases of “no index”, “B-tree ” and “SplinterDB”,
we ran a test which created from an empty table with the specified
index (if any), and then used our workload generator to load 1
billion rows in batches of 1000, with either random or sequential key
order, into the table. For each run, the workload generator reported

samples showing the current table size and an “instantaneous”
throughput (averaged over the prior 10 seconds). This helps us
understand how the ingestion throughput changes with increasing
table size for different index types.

Results are shown in Figure 2. As the test proceeded, the table
grew (horizontal axis). Average insert throughput over a 10-second
window is reported along the vertical axis.

4.1 Single Client Inserting Data

Figure 2a shows bulk-load performance for a single client inserting
sequential keys. As B-trees are highly optimized for sequential keys,
the throughput remains consistent. SplinterDB is not specifically
optimized for this case but performs nearly as well in average
throughput. However, the inserting thread also has to perform
tree management, such as compaction, flushing etc., which creates
variability in the throughput.!

Figure 2b shows bulk-load performance for a single client insert-
ing uniformly random keys. When the test begins from an empty
table, the B-tree instantaneous throughput is roughly half that of
the no-index load. As the table size grows, B-tree index throughput
drops dramatically, ending with an instantaneous throughput
(16k rows/sec) that is roughly 30x slower than when inserting
without an index (491k rows/sec). This sharp drop in performance
is presumably due to the table and index growing beyond the
configured memory limits (see Section 3), causing the B-tree inserts
to thrash the PostgreSQL buffer cache and/or OS page cache.

On the other hand, throughput of random inserts into the Splin-
terDB index starts higher than for the B-tree index, and decays only
marginally as the table grows exponentially (note logarithmic scale
on the horizontal axis). Again, the SplinterDB throughput fluctuates
as the inserter threads occasionally perform tree maintenance.

4.2 Multiple Clients Inserting Data Concurrently

Relational databases are designed for concurrent access by many
clients and, users often parallelize bulk-loads of large data sets. To
quantify the insert performance of indexes in the face of multiple
concurrent clients, we repeated the above experiments using a
varying number of workload-generating client connections. The
same total amount of data was loaded every time (1 billion rows),
but this load was split equally across the varying number of clients
to study the ingestion performance as a function of concurrency.
Figures 2c and 2d show bulk-load throughput as a function of
table size for 32 concurrent clients. Here, SplinterDB’s optimizations
for high concurrency allow its index to consistently out-perform the
B-tree index for both sequentially generated keys (Figure 2c) and
random keys (Figure 2d). Again, the B-tree performance drops dra-
matically at larger table sizes, while SplinterDB performance decays
only a small amount as the table grows several orders of magnitude.
We also repeated the same experiments at other concurrencies
between 1 and 32 concurrent clients. Overall average throughput
is summarized in Figure 3 for random and sequential . At lower
concurrency levels, insertion throughput of sequential data into
SplinterDB is close to or slightly better than the throughput into
B-tree. At higher concurrency levels, SplinterDB throughput scales

!We have preliminary results showing that enabling SplinterDB’s background
threads for tree maintenance dramatically reduces the variance in throughput seen
by foreground threads.

= = = NoIndex = SplinterDB ===« B-Tree

< — T T T T —TTTTTTT T —T—TTTTTT
Q

L 0SM| acmmccmmeacnmommnnnvaai?
g e st R A

g 04M | ““ i ' ' g
(5]

wv

S 03Mf g
=

2. 02M| y
=

2

2 0IM| g
-

<

= oM IR L | L |

107 108 10°

Cumulative Inserts
(a) Sequential, 1 thread.

o)
[}
= 05M [T Lt T TT LA
g
= 0.4M |- B
=
[}
wv
é 0.3M |- b
5

0.2M | B
=
gn 0.1M
g R
<=
=] oMb— | Mt obnde n|

107 108 10°
Cumulative Inserts
(b) Random, 1 thread.

/g 7ML — T T T T T \\\\\-\\ 7
© i L L ik
2 6M| 1
2
£ 5M |- h
&
=] 4M - B
=
5 My)
< 2Mf 1
=
2 M |- .
i Ceens
= oM L L trengesnNyevnnnnn mabrad

10°

Cumulative Inserts
(d) Random, 32 threads.

Figure 2: Insertion throughput over time. Higher is better.

2 S - — - - —_— - —
7] e I T T R e
2
2 6Mf i
.8
= 5M - B
2 o
& am | |
= .
5 3M % R
= D
h ZM - % i
= .
8 Ml CensssssassssssassassssssEssanssananas |
=
H OM L L L TR L L L L L IR
108 10°
Cumulative Inserts
(c) Sequential, 32 threads.
7M7 T I I -
=@ No Index
6M - b

=jll— SplinterDB
SM | e B-Tree

Throughput (Records/sec)

7M |- T I I -
=@ No Index

== SplinterDB
SM | = B-Tree
4M

6M -

3M
2M
1M -
oM

Throughput (Records/sec)

A

12 4 8 16 32
Threads

(b) Random inserts.

Figure 3: Insertion throughput scaling. Higher is better.

4M B
3M B
2M B
1M | B
oM
12 4 8 16 32
Threads
(a) Sequential inserts.
E)? 140K + 28 |
kd 0 B splinterDB =S
8 120K BN B-Tree
%
2. 100K |- 2
= 0 00
g 8OK|
S T
T 6K | =¥
% 40K |- 33
2 20K| e
Z I | |
B gl M
1 2 4 8 16 32
Threads

Figure 4: Point query throughput. Higher is better.

up while B-tree throughput tapers off. For insertions of random
data, SplinterDB outshines B-trees by a wide margin, delivering up
to a 24X performance gain for 32 concurrent clients.

4.3 Point Queries

We now compare point-query performance with SplinterDB indexes
and B-tree indexes across a range of concurrency levels. Each thread
performs 1 million queries for random keys in a table with 1 billion
records. All queries are for keys that are present in the database.

Figure 4 shows that, across all numbers of concurrent threads,
query throughput with SplinterDB indexes is virtually identical
to query throughput with B-tree indexes. B-Tree queries are
asymptotically optimal in the external-memory atomic key
comparison model [6], so matching the query performance of
B-trees is impressive.

Overall, these results suggest that increased insertion throughput
does not have to come at the cost of decreased point query
throughput.

4.4 Range Queries

To measure range query performance, we had a single thread
perform random range queries for records with primary key

Y e R e e e A A e B il i
12M | | == SplinterDB
== B-Tree

1M

0.8M
0.6M
0.4M
0.2M

Throughput (Records/sec)

10" 102 103 10% 10° 10° 107

Range Size

oM

Figure 5: Scan throughput. Higher is better.

between two integers, x and x + £. The starting point x was chosen
uniformly randomly, and we varied the size ¢ of the range from
10 to 107. Note that not all integers were present in the database,
so a query for a range of length ¢ could return somewhat less

than ¢ records (for x values closer to the maximum key inserted).

Throughput is measured in terms of returned records per second.

Figure 5 shows throughput as a function of range size. For
small ranges, the B-tree index scan was about 1-5 ms faster than
SplinterDB which resulted in about 3% greater throughput than the
SplinterDB index. For large ranges, (> 10000 keys), SplinterDB was
up to 50% faster than the B-tree index.

These results are consistent with the theory behind B-trees and
SplinterDB. In the external-memory model [5] where each page
can hold B records, a B-tree range query returning k records from
a database of N records will need to access O(k/B + logg N) pages
(logg N pages to find the first record in the range, and k/B pages
to read the k records). In SplinterDB, the same range query would
access O(k/B + \/Elog\/g N) pages. Thus Splinter has a roughly VB
higher startup cost of finding the first item in the queried range, but
it is just as efficient at scanning through the subsequent k items.

In fact, SplinterDB is even more efficient than the B-tree at the
scan phase because it can use larger I/Os than a B-tree. SplinterDB
groups every 32 logically consecutive pages into extents that can
be read using a single I/O. For B-trees, however, the choice of page
size entails a trade-off between range-query performance and the
performance of other operations [6]. This is why B-trees tuned for
OLTP workloads typically use very small nodes (e.g. less than 16KiB),
which is too small to amortize per-page I/O overheads during range
queries. As aresult, SplinterDB is able to outperform the B-tree index
on large range queries, where the startup overhead is immaterial.

5 Related Work

BTree indexes have been part of the design of PostgreSQL since
its seminal papers in the 1980s [14, 15]. Nowadays PostgreSQL has
several types of indexes such as BTree, Hash, GisT, SP-GisT, BiN
and BIN that have different capabilities, performance, and are useful
in different type of scenarios [3]. Despite this, the focus remains
on BTrees due its wide applicability and efficient range querying
capabilities. The dramatic slowdown in BTree insert performance at
large scales has been observed across the literature and novel BTree
variations have been proposed to improve its write performance by
algorithmic modifications [7] or adaptation to novel hardware [10].

Prior work as explored using write-optimized data structures
to accelerate RDBMS performance, including LSM-based solutions
[11], including well-known production grade implementations

such as MyRocks [12]. Prior challenges and efforts to enhance
PostgreSQL performance with alternatives to BTree indexes were
attempted by Jin [13] and Knizhnik [1].

6 Future Work

We plan to extend the support for creating single-column indexes
on data types such as VARCHAR and date-time oriented types such
as DATE, TIME, and TIMESTAMP. Moreover, we plan to support
multi-column indexes and then multiple such indexes defined on
multiple tables, all mapped to the same SplinterDB instance. We
also plan to study the behavior of executing mixed read-write
workloads and the concurrency behavior (in terms of index blocking
or conflicts) as seen using B-Tree v/s SplinterDB indexes.

The goal of these enhancements is (a) to understand better and
overcome the challenges in tightly integrating a key-value storage
engine, such as SplinterDB, with a mature RDBMS engine, and (b) to
gather performance measurements for "real-life" mixed read-write
workloads.

Many other enhancements would be required, including a more
mature shared memory allocator and integrating the logging and
recovery mechanisms between PostgreSQL and SplinterDB. Further-
more, packaging this index access method as a separately compiled
dynamically-loaded SplinterDB+ library would, perhaps, simplify
release-management and deployment of PostgreSQL servers.

7 Conclusion

This paper showed how a SplinterDB-based index could help a
system like PostgreSQL support ingesting data at a rate that will help
real-time applications. In particular, this novel index performed in
the same order of magnitude during ingestion as not using an index.

Our experiments demonstrated that a SplinterDB-based index
for PostgreSQL outperforms the standard BTree index across a wide
range of workloads, with especially large gains for larger tables
and higher concurrency. For data ingestion of random data, the
gains were in the order of 21x, and using a SplinterDB-based index
reduced the ingestion index overhead from 36x to 2x. Regarding
reads, our results show a point-query performance on par with the
Btree and a performance improvement of 50% for large scans. The
Btree index performed better for short-range scans.

We foresee a path where SplinterDB can be fully integrated into
all relational databases to offer an additional index type offering
for very high ingestion throughput for sequential and random data
loads and enhanced scan/query performance over conventional
BTree indexes. Alternatively, a SplinterDB-based index could be
a compelling alternative for analytical queries.

References

[1] Benchmarking LSM-Trees for Postgres. PostgreSQL’s Message Board.
https://www.postgresql.org/message-id/315b7ce8-9d62-3817-0a92-
4b20519d0c51%40postgrespro.ru.

[2] PostgreSQL Index Access Methods Interfaces. https://www.postgresqgl.org/docs/
current/index-functions.html.

[3] PostgreSQL Indexes. https://www.postgresql.org/docs/current/indexes.html.

[4] PostgreSQL: The world’s most advanced open source database. https://www.
postgresql.org/.

[5] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting
and related problems. Commun. ACM, 31(9):1116-1127, 1988.

[6] Michael A. Bender, Alex Conway, Martin Farach-Colton, William Jannen, Yizheng
Jiao, Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar Mukherjee, Prashant
Pandey, Donald E. Porter, Jun Yuan, and Yang Zhan. Small refinements to the
DAM can have big consequences for data-structure design. In Christian Scheideler

https://www.postgresql.org/message-id/315b7ce8-9d62-3817-0a92-4b20519d0c51%40postgrespro.ru
https://www.postgresql.org/message-id/315b7ce8-9d62-3817-0a92-4b20519d0c51%40postgrespro.ru
https://www.postgresql.org/docs/current/index-functions.html
https://www.postgresql.org/docs/current/index-functions.html
https://www.postgresql.org/
https://www.postgresql.org/

and Petra Berenbrink, editors, The 31st ACM on Symposium on Parallelism in
Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019,

pages 265-274. ACM, 2019.

Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. utree: a
persistent b+-tree with low tail latency. Proceedings of the VLDB Endowment,
13(12):2634-2648, 2020.

Douglas Comer. The ubiquitous b-tree. ACM Comput. Surv., 11(2):121-137, 1979.
Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,
Richard P. Spillane, Amy Tai, and Rob Johnson. Splinterdb: Closing the bandwidth
gap for nvme key-value stores. In Ada Gavrilovska and Erez Zadok, editors,
2020 USENIX Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020,
pages 49-63. USENIX Association, 2020.

Thomas Hardjono, Tadashi Araki, and Tetsuya Chikaraishi. Improving the
performance of enciphered b+-trees. IEICE transactions on fundamentals of

[11

[12

[13

(14

]

electronics, communications and computer sciences, 76(1):104-111, 1993.

Chris Jermaine, Anindya Datta, and Edward Omiecinski. A novel index supporting
high volume data warehouse insertion. In VLDB, volume 99, pages 235-246, 1999.
Yoshinori Matsunobu, Siying Dong, and Herman Lee. Myrocks: Lsm-tree
database storage engine serving facebook’s social graph. Proceedings of the
VLDB Endowment, 13(12):3217-3230, 2020.

Jin Shichao. Introducing Ism-tree into postgresql, making it as a data gobbler.
In Talk from PostgreSQL conference (PGCON-2020).

Michael Stonebraker. The case for partial indexes. ACM Sigmod Record,
18(4):4-11, 1989.

Michael Stonebraker and Lawrence A Rowe. The design of postgres. ACM
Sigmod Record, 15(2):340-355, 1986.

	Abstract
	1 Introduction
	2 A SplinterDB-Based Index
	2.1 Physical Integration
	2.2 Schema-Level Integration

	3 Evaluation
	3.1 Hardware and Server Configuration
	3.2 Workload

	4 Benchmarking Results
	4.1 Single Client Inserting Data
	4.2 Multiple Clients Inserting Data Concurrently
	4.3 Point Queries
	4.4 Range Queries

	5 Related Work
	6 Future Work
	7 Conclusion
	References

