-
Notifications
You must be signed in to change notification settings - Fork 0
/
bbq-chi_square_errors.txt
99 lines (99 loc) · 487 KB
/
bbq-chi_square_errors.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)<sup>2</sup></sup>⁄ <sub>84</sub></td> <td align='center'>0.429</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>20</td> <td align='center'><sup>(20-30)<sup>2</sup></sup>⁄ <sub>20</sub></td> <td align='center'>5.000</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>43</td> <td align='center'><sup>(43-30)<sup>2</sup></sup>⁄ <sub>43</sub></td> <td align='center'>3.930</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>13</sub></td> <td align='center'>0.692</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>10.051</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 10.05 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 10.05 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>81</td> <td align='center'><sup>(81-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.010</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>29</td> <td align='center'><sup>(29-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.001</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>36</td> <td align='center'><sup>(36-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.040</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>14</td> <td align='center'><sup>(14-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.160</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.211</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.21 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.21 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)<sup>2</sup></sup>⁄ <sub>84<sup>2</sup></sub></td> <td align='center'>0.005</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>20</td> <td align='center'><sup>(20-30)<sup>2</sup></sup>⁄ <sub>20<sup>2</sup></sub></td> <td align='center'>0.250</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>42</td> <td align='center'><sup>(42-30)<sup>2</sup></sup>⁄ <sub>42<sup>2</sup></sub></td> <td align='center'>0.082</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>14</td> <td align='center'><sup>(14-10)<sup>2</sup></sup>⁄ <sub>14<sup>2</sup></sub></td> <td align='center'>0.082</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.418</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.42 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.42 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)</sup>⁄ <sub>90</sub></td> <td align='center'>-0.067</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.367</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>45</td> <td align='center'><sup>(45-30)</sup>⁄ <sub>30</sub></td> <td align='center'>0.500</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)</sup>⁄ <sub>10</sub></td> <td align='center'>0.200</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.267</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.27 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.27 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Correct the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>59</td> <td align='center'><sup>(59-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>9.025</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>40</td> <td align='center'><sup>(40-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>0.000</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>38</td> <td align='center'><sup>(38-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>0.100</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>23</td> <td align='center'><sup>(23-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>7.225</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>16.350</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 16.35 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 16.35 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Correct the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>94</td> <td align='center'><sup>(94-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.178</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>17</td> <td align='center'><sup>(17-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>5.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>33</td> <td align='center'><sup>(33-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.300</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>16</td> <td align='center'><sup>(16-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>3.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>9.711</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 9.71 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 9.71 is greater than the critical value of 9.49, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Correct the wrong numbers in the calculation were used for division Incorrect the wrong rejection criteria was used Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>81</td> <td align='center'><sup>(81-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.900</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>40</td> <td align='center'><sup>(40-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>3.333</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>16</td> <td align='center'><sup>(16-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>3.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>9.467</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 9.47 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 9.47 is greater than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Correct the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>72</td> <td align='center'><sup>(72-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>3.600</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>20</td> <td align='center'><sup>(20-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>3.333</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>52</td> <td align='center'><sup>(52-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>16.133</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>16</td> <td align='center'><sup>(16-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>3.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>26.667</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 26.67 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 26.67 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Incorrect the degrees of freedom is wrong Correct the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>87</td> <td align='center'><sup>(87-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>28</td> <td align='center'><sup>(28-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.133</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>32</td> <td align='center'><sup>(32-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.133</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>1.267</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 1.27 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 1.27 is less than the critical value of 2.37, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Correct the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>86</td> <td align='center'><sup>(86-90)<sup>2</sup></sup>⁄ <sub>86</sub></td> <td align='center'>0.186</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>20</td> <td align='center'><sup>(20-30)<sup>2</sup></sup>⁄ <sub>20</sub></td> <td align='center'>5.000</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>37</td> <td align='center'><sup>(37-30)<sup>2</sup></sup>⁄ <sub>37</sub></td> <td align='center'>1.324</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>17</td> <td align='center'><sup>(17-10)<sup>2</sup></sup>⁄ <sub>17</sub></td> <td align='center'>2.882</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>9.393</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 9.39 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 9.39 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Correct the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>82</td> <td align='center'><sup>(82-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.008</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>22</td> <td align='center'><sup>(22-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.071</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>42</td> <td align='center'><sup>(42-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.160</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>14</td> <td align='center'><sup>(14-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.160</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.399</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.40 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.40 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>96</td> <td align='center'><sup>(96-90)<sup>2</sup></sup>⁄ <sub>96<sup>2</sup></sub></td> <td align='center'>0.004</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>16</td> <td align='center'><sup>(16-30)<sup>2</sup></sup>⁄ <sub>16<sup>2</sup></sub></td> <td align='center'>0.766</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>33</td> <td align='center'><sup>(33-30)<sup>2</sup></sup>⁄ <sub>33<sup>2</sup></sub></td> <td align='center'>0.008</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>15</td> <td align='center'><sup>(15-10)<sup>2</sup></sup>⁄ <sub>15<sup>2</sup></sub></td> <td align='center'>0.111</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.889</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.89 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.89 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Correct the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>99</td> <td align='center'><sup>(99-90)</sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>20</td> <td align='center'><sup>(20-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.333</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>29</td> <td align='center'><sup>(29-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.033</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)</sup>⁄ <sub>10</sub></td> <td align='center'>0.200</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>-0.067</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of -0.07 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of -0.07 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Correct the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>64</td> <td align='center'><sup>(64-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>14.400</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>51</td> <td align='center'><sup>(51-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>3.025</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>21</td> <td align='center'><sup>(21-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>9.025</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>24</td> <td align='center'><sup>(24-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>6.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>32.850</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 32.85 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 32.85 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>82</td> <td align='center'><sup>(82-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.711</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>22</td> <td align='center'><sup>(22-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.133</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>43</td> <td align='center'><sup>(43-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>5.633</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>9.378</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 9.38 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 9.38 is less than the critical value of 9.49, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Correct the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>87</td> <td align='center'><sup>(87-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>18</td> <td align='center'><sup>(18-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.800</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>39</td> <td align='center'><sup>(39-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.700</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>16</td> <td align='center'><sup>(16-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>3.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>11.200</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 11.20 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 11.20 is greater than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>95</td> <td align='center'><sup>(95-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.278</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>16</td> <td align='center'><sup>(16-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>6.533</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>34</td> <td align='center'><sup>(34-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.533</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>15</td> <td align='center'><sup>(15-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>2.500</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>9.844</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 9.84 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 9.84 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Correct the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>81</td> <td align='center'><sup>(81-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.900</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>39</td> <td align='center'><sup>(39-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.700</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>17</td> <td align='center'><sup>(17-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>4.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>10.133</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 10.13 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 10.13 is greater than the critical value of 2.37, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Correct the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>74</td> <td align='center'><sup>(74-90)<sup>2</sup></sup>⁄ <sub>74</sub></td> <td align='center'>3.459</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>19</sub></td> <td align='center'>6.368</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>59</td> <td align='center'><sup>(59-30)<sup>2</sup></sup>⁄ <sub>59</sub></td> <td align='center'>14.254</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>8</sub></td> <td align='center'>0.500</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>24.582</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 24.58 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 24.58 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>86</td> <td align='center'><sup>(86-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.002</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>17</td> <td align='center'><sup>(17-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.188</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>43</td> <td align='center'><sup>(43-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.188</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>14</td> <td align='center'><sup>(14-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.160</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.538</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.54 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.54 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>98</td> <td align='center'><sup>(98-90)<sup>2</sup></sup>⁄ <sub>98<sup>2</sup></sub></td> <td align='center'>0.007</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>26</td> <td align='center'><sup>(26-30)<sup>2</sup></sup>⁄ <sub>26<sup>2</sup></sub></td> <td align='center'>0.024</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>30</td> <td align='center'><sup>(30-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.000</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>6</td> <td align='center'><sup>(6-10)<sup>2</sup></sup>⁄ <sub>6<sup>2</sup></sub></td> <td align='center'>0.444</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.475</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.47 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.47 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>93</td> <td align='center'><sup>(93-90)</sup>⁄ <sub>90</sub></td> <td align='center'>0.033</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>20</td> <td align='center'><sup>(20-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.333</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>39</td> <td align='center'><sup>(39-30)</sup>⁄ <sub>30</sub></td> <td align='center'>0.300</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)</sup>⁄ <sub>10</sub></td> <td align='center'>-0.200</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>-0.200</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of -0.20 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of -0.20 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>62</td> <td align='center'><sup>(62-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>12.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>48</td> <td align='center'><sup>(48-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>1.600</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>28</td> <td align='center'><sup>(28-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>3.600</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>22</td> <td align='center'><sup>(22-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>8.100</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>25.400</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 25.40 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 25.40 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Correct the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Incorrect the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>85</td> <td align='center'><sup>(85-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.278</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>37</td> <td align='center'><sup>(37-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>15</td> <td align='center'><sup>(15-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>2.500</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>6.044</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 6.04 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 6.04 is less than the critical value of 9.49, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Correct the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>93</td> <td align='center'><sup>(93-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>18</td> <td align='center'><sup>(18-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.800</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>41</td> <td align='center'><sup>(41-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.033</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>9.333</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 9.33 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 9.33 is greater than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the wrong rejection criteria was used Correct the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>77</td> <td align='center'><sup>(77-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>1.878</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>17</td> <td align='center'><sup>(17-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>5.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>51</td> <td align='center'><sup>(51-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>14.700</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>15</td> <td align='center'><sup>(15-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>2.500</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>24.711</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 24.71 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 24.71 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>96</td> <td align='center'><sup>(96-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.400</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>18</td> <td align='center'><sup>(18-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.800</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>40</td> <td align='center'><sup>(40-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>3.333</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>6</td> <td align='center'><sup>(6-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>1.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>10.133</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 10.13 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 10.13 is greater than the critical value of 2.37, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Correct the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)<sup>2</sup></sup>⁄ <sub>84</sub></td> <td align='center'>0.429</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>17</td> <td align='center'><sup>(17-30)<sup>2</sup></sup>⁄ <sub>17</sub></td> <td align='center'>9.941</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>46</td> <td align='center'><sup>(46-30)<sup>2</sup></sup>⁄ <sub>46</sub></td> <td align='center'>5.565</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>13</sub></td> <td align='center'>0.692</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>16.627</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 16.63 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 16.63 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>85</td> <td align='center'><sup>(85-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.003</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>20</td> <td align='center'><sup>(20-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.111</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>38</td> <td align='center'><sup>(38-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.071</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>17</td> <td align='center'><sup>(17-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.490</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.675</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.68 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.68 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Correct the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>87</td> <td align='center'><sup>(87-90)<sup>2</sup></sup>⁄ <sub>87<sup>2</sup></sub></td> <td align='center'>0.001</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>19<sup>2</sup></sub></td> <td align='center'>0.335</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>46</td> <td align='center'><sup>(46-30)<sup>2</sup></sup>⁄ <sub>46<sup>2</sup></sub></td> <td align='center'>0.121</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>8<sup>2</sup></sub></td> <td align='center'>0.062</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.520</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.52 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.52 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>94</td> <td align='center'><sup>(94-90)</sup>⁄ <sub>90</sub></td> <td align='center'>0.044</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>21</td> <td align='center'><sup>(21-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.300</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>32</td> <td align='center'><sup>(32-30)</sup>⁄ <sub>30</sub></td> <td align='center'>0.067</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)</sup>⁄ <sub>10</sub></td> <td align='center'>0.300</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.111</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.11 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.11 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>53</td> <td align='center'><sup>(53-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>4.225</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>54</td> <td align='center'><sup>(54-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>4.900</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>30</td> <td align='center'><sup>(30-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>2.500</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>23</td> <td align='center'><sup>(23-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>7.225</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>18.850</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 18.85 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 18.85 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Correct the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>98</td> <td align='center'><sup>(98-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.711</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>15</td> <td align='center'><sup>(15-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>7.500</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>41</td> <td align='center'><sup>(41-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.033</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>6</td> <td align='center'><sup>(6-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>1.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>13.844</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 13.84 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 13.84 is greater than the critical value of 9.49, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Correct the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>96</td> <td align='center'><sup>(96-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.400</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>17</td> <td align='center'><sup>(17-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>5.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>45</td> <td align='center'><sup>(45-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>7.500</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>2</td> <td align='center'><sup>(2-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>6.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>19.933</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 19.93 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 19.93 is greater than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Correct the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>94</td> <td align='center'><sup>(94-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.178</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>18</td> <td align='center'><sup>(18-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.800</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>36</td> <td align='center'><sup>(36-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.200</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>6.578</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 6.58 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 6.58 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Correct the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>93</td> <td align='center'><sup>(93-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>24</td> <td align='center'><sup>(24-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.200</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>31</td> <td align='center'><sup>(31-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.033</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>1.733</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 1.73 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 1.73 is less than the critical value of 2.37, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Correct the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>102</td> <td align='center'><sup>(102-90)<sup>2</sup></sup>⁄ <sub>102</sub></td> <td align='center'>1.412</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>16</td> <td align='center'><sup>(16-30)<sup>2</sup></sup>⁄ <sub>16</sub></td> <td align='center'>12.250</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>34</td> <td align='center'><sup>(34-30)<sup>2</sup></sup>⁄ <sub>34</sub></td> <td align='center'>0.471</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>8</sub></td> <td align='center'>0.500</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>14.632</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 14.63 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 14.63 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>95</td> <td align='center'><sup>(95-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.003</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.054</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>37</td> <td align='center'><sup>(37-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.054</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>5</td> <td align='center'><sup>(5-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.250</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.362</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.36 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.36 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>93</td> <td align='center'><sup>(93-90)<sup>2</sup></sup>⁄ <sub>93<sup>2</sup></sub></td> <td align='center'>0.001</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>22</td> <td align='center'><sup>(22-30)<sup>2</sup></sup>⁄ <sub>22<sup>2</sup></sub></td> <td align='center'>0.132</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>37</td> <td align='center'><sup>(37-30)<sup>2</sup></sup>⁄ <sub>37<sup>2</sup></sub></td> <td align='center'>0.036</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>8<sup>2</sup></sub></td> <td align='center'>0.062</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.232</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.23 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.23 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>85</td> <td align='center'><sup>(85-90)</sup>⁄ <sub>90</sub></td> <td align='center'>-0.056</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>25</td> <td align='center'><sup>(25-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.167</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>44</td> <td align='center'><sup>(44-30)</sup>⁄ <sub>30</sub></td> <td align='center'>0.467</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>6</td> <td align='center'><sup>(6-10)</sup>⁄ <sub>10</sub></td> <td align='center'>-0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>-0.156</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of -0.16 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of -0.16 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Correct the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>69</td> <td align='center'><sup>(69-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>21.025</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>44</td> <td align='center'><sup>(44-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>0.400</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>26</td> <td align='center'><sup>(26-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>4.900</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>21</td> <td align='center'><sup>(21-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>9.025</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>35.350</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 35.35 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 35.35 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Correct the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>85</td> <td align='center'><sup>(85-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.278</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>22</td> <td align='center'><sup>(22-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.133</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>46</td> <td align='center'><sup>(46-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>8.533</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>7</td> <td align='center'><sup>(7-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>11.844</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 11.84 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 11.84 is greater than the critical value of 9.49, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>97</td> <td align='center'><sup>(97-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.544</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>32</td> <td align='center'><sup>(32-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.133</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>2.711</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 2.71 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 2.71 is less than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Incorrect the wrong rejection criteria was used Correct the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.400</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>28</td> <td align='center'><sup>(28-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.133</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>40</td> <td align='center'><sup>(40-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>3.333</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>4.267</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 4.27 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 4.27 is less than the critical value of 5.99, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Correct the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>96</td> <td align='center'><sup>(96-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.400</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>21</td> <td align='center'><sup>(21-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.700</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>38</td> <td align='center'><sup>(38-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.133</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>5</td> <td align='center'><sup>(5-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>2.500</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>7.733</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 7.73 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 7.73 is greater than the critical value of 2.37, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Correct the wrong numbers in the calculation were used for division Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>96</td> <td align='center'><sup>(96-90)<sup>2</sup></sup>⁄ <sub>96</sub></td> <td align='center'>0.375</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>21</td> <td align='center'><sup>(21-30)<sup>2</sup></sup>⁄ <sub>21</sub></td> <td align='center'>3.857</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>36</td> <td align='center'><sup>(36-30)<sup>2</sup></sup>⁄ <sub>36</sub></td> <td align='center'>1.000</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>7</td> <td align='center'><sup>(7-10)<sup>2</sup></sup>⁄ <sub>7</sub></td> <td align='center'>1.286</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>6.518</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 6.52 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 6.52 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Correct the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>86</td> <td align='center'><sup>(86-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.002</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>26</td> <td align='center'><sup>(26-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.018</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>33</td> <td align='center'><sup>(33-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.010</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>15</td> <td align='center'><sup>(15-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.250</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.280</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.28 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.28 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Correct the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)<sup>2</sup></sup>⁄ <sub>84<sup>2</sup></sub></td> <td align='center'>0.005</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>19<sup>2</sup></sub></td> <td align='center'>0.335</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>42</td> <td align='center'><sup>(42-30)<sup>2</sup></sup>⁄ <sub>42<sup>2</sup></sub></td> <td align='center'>0.082</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>15</td> <td align='center'><sup>(15-10)<sup>2</sup></sup>⁄ <sub>15<sup>2</sup></sub></td> <td align='center'>0.111</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.533</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.53 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.53 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>86</td> <td align='center'><sup>(86-90)</sup>⁄ <sub>90</sub></td> <td align='center'>-0.044</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>24</td> <td align='center'><sup>(24-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.200</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>36</td> <td align='center'><sup>(36-30)</sup>⁄ <sub>30</sub></td> <td align='center'>0.200</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>14</td> <td align='center'><sup>(14-10)</sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.356</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.36 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.36 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Correct the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>68</td> <td align='center'><sup>(68-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>19.600</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>38</td> <td align='center'><sup>(38-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>0.100</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>32</td> <td align='center'><sup>(32-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>1.600</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>22</td> <td align='center'><sup>(22-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>8.100</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>29.400</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 29.40 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 29.40 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Correct the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>93</td> <td align='center'><sup>(93-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>16</td> <td align='center'><sup>(16-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>6.533</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>37</td> <td align='center'><sup>(37-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>14</td> <td align='center'><sup>(14-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>1.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>9.867</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 9.87 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 9.87 is greater than the critical value of 9.49, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Correct the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>94</td> <td align='center'><sup>(94-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.178</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.033</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>39</td> <td align='center'><sup>(39-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.700</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>7.311</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 7.31 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 7.31 is less than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Correct the wrong numbers in the calculation were used for division Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>98</td> <td align='center'><sup>(98-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.711</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>14</td> <td align='center'><sup>(14-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>8.533</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>35</td> <td align='center'><sup>(35-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.833</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>10.978</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 10.98 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 10.98 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Correct the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>87</td> <td align='center'><sup>(87-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>20</td> <td align='center'><sup>(20-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>3.333</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>39</td> <td align='center'><sup>(39-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.700</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>14</td> <td align='center'><sup>(14-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>1.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>7.733</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 7.73 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 7.73 is greater than the critical value of 2.37, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Correct the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>96</td> <td align='center'><sup>(96-90)<sup>2</sup></sup>⁄ <sub>96</sub></td> <td align='center'>0.375</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>21</td> <td align='center'><sup>(21-30)<sup>2</sup></sup>⁄ <sub>21</sub></td> <td align='center'>3.857</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>37</td> <td align='center'><sup>(37-30)<sup>2</sup></sup>⁄ <sub>37</sub></td> <td align='center'>1.324</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>6</td> <td align='center'><sup>(6-10)<sup>2</sup></sup>⁄ <sub>6</sub></td> <td align='center'>2.667</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>8.223</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 8.22 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 8.22 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>98</td> <td align='center'><sup>(98-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.008</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>14</td> <td align='center'><sup>(14-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.284</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>36</td> <td align='center'><sup>(36-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.040</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.040</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.372</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.37 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.37 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>95</td> <td align='center'><sup>(95-90)<sup>2</sup></sup>⁄ <sub>95<sup>2</sup></sub></td> <td align='center'>0.003</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>23<sup>2</sup></sub></td> <td align='center'>0.093</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>34</td> <td align='center'><sup>(34-30)<sup>2</sup></sup>⁄ <sub>34<sup>2</sup></sub></td> <td align='center'>0.014</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>8<sup>2</sup></sub></td> <td align='center'>0.062</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.172</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.17 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.17 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>95</td> <td align='center'><sup>(95-90)</sup>⁄ <sub>90</sub></td> <td align='center'>0.056</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>21</td> <td align='center'><sup>(21-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.300</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>37</td> <td align='center'><sup>(37-30)</sup>⁄ <sub>30</sub></td> <td align='center'>0.233</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>7</td> <td align='center'><sup>(7-10)</sup>⁄ <sub>10</sub></td> <td align='center'>-0.300</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>-0.311</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of -0.31 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of -0.31 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Correct the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>61</td> <td align='center'><sup>(61-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>11.025</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>47</td> <td align='center'><sup>(47-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>1.225</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>26</td> <td align='center'><sup>(26-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>4.900</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>26</td> <td align='center'><sup>(26-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>4.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>22.050</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 22.05 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 22.05 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Correct the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>83</td> <td align='center'><sup>(83-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.544</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>25</td> <td align='center'><sup>(25-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.833</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>40</td> <td align='center'><sup>(40-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>3.333</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>5.111</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 5.11 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 5.11 is less than the critical value of 9.49, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Correct the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>83</td> <td align='center'><sup>(83-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.544</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>18</td> <td align='center'><sup>(18-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.800</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>47</td> <td align='center'><sup>(47-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>9.633</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>15.378</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 15.38 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 15.38 is greater than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Correct the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>82</td> <td align='center'><sup>(82-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.711</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>16</td> <td align='center'><sup>(16-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>6.533</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>49</td> <td align='center'><sup>(49-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>12.033</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>20.178</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 20.18 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 20.18 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Correct the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.400</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>18</td> <td align='center'><sup>(18-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.800</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>50</td> <td align='center'><sup>(50-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>13.333</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>18.933</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 18.93 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 18.93 is greater than the critical value of 2.37, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Correct the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>94</td> <td align='center'><sup>(94-90)<sup>2</sup></sup>⁄ <sub>94</sub></td> <td align='center'>0.170</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>29</td> <td align='center'><sup>(29-30)<sup>2</sup></sup>⁄ <sub>29</sub></td> <td align='center'>0.034</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>29</td> <td align='center'><sup>(29-30)<sup>2</sup></sup>⁄ <sub>29</sub></td> <td align='center'>0.034</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>8</sub></td> <td align='center'>0.500</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.739</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.74 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.74 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>83</td> <td align='center'><sup>(83-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.006</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>17</td> <td align='center'><sup>(17-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.188</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>44</td> <td align='center'><sup>(44-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.218</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>16</td> <td align='center'><sup>(16-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.360</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.772</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.77 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.77 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>94</td> <td align='center'><sup>(94-90)<sup>2</sup></sup>⁄ <sub>94<sup>2</sup></sub></td> <td align='center'>0.002</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>27</td> <td align='center'><sup>(27-30)<sup>2</sup></sup>⁄ <sub>27<sup>2</sup></sub></td> <td align='center'>0.012</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>24</td> <td align='center'><sup>(24-30)<sup>2</sup></sup>⁄ <sub>24<sup>2</sup></sub></td> <td align='center'>0.062</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>15</td> <td align='center'><sup>(15-10)<sup>2</sup></sup>⁄ <sub>15<sup>2</sup></sub></td> <td align='center'>0.111</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.188</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.19 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.19 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Correct the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)</sup>⁄ <sub>90</sub></td> <td align='center'>-0.067</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>17</td> <td align='center'><sup>(17-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.433</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>52</td> <td align='center'><sup>(52-30)</sup>⁄ <sub>30</sub></td> <td align='center'>0.733</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>7</td> <td align='center'><sup>(7-10)</sup>⁄ <sub>10</sub></td> <td align='center'>-0.300</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>-0.067</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of -0.07 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of -0.07 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Correct the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>64</td> <td align='center'><sup>(64-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>14.400</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>49</td> <td align='center'><sup>(49-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>2.025</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>26</td> <td align='center'><sup>(26-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>4.900</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>21</td> <td align='center'><sup>(21-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>9.025</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>30.350</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 30.35 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 30.35 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Correct the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>93</td> <td align='center'><sup>(93-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>37</td> <td align='center'><sup>(37-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>7</td> <td align='center'><sup>(7-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>4.267</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 4.27 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 4.27 is less than the critical value of 9.49, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the degrees of freedom is wrong Correct the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>100</td> <td align='center'><sup>(100-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>1.111</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>15</td> <td align='center'><sup>(15-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>7.500</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>38</td> <td align='center'><sup>(38-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.133</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>7</td> <td align='center'><sup>(7-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>11.644</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 11.64 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 11.64 is greater than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Correct the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>87</td> <td align='center'><sup>(87-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.033</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>46</td> <td align='center'><sup>(46-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>8.533</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>13.067</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 13.07 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 13.07 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Correct the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>86</td> <td align='center'><sup>(86-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.178</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>24</td> <td align='center'><sup>(24-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.200</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>44</td> <td align='center'><sup>(44-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>6.533</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>6</td> <td align='center'><sup>(6-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>1.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>9.511</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 9.51 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 9.51 is greater than the critical value of 2.37, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Correct the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>94</td> <td align='center'><sup>(94-90)<sup>2</sup></sup>⁄ <sub>94</sub></td> <td align='center'>0.170</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>19</sub></td> <td align='center'>6.368</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>34</td> <td align='center'><sup>(34-30)<sup>2</sup></sup>⁄ <sub>34</sub></td> <td align='center'>0.471</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>13</sub></td> <td align='center'>0.692</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>7.702</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 7.70 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 7.70 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>97</td> <td align='center'><sup>(97-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.006</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>21</td> <td align='center'><sup>(21-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.090</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>34</td> <td align='center'><sup>(34-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.018</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.040</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.154</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.15 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.15 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Correct the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>104</td> <td align='center'><sup>(104-90)<sup>2</sup></sup>⁄ <sub>104<sup>2</sup></sub></td> <td align='center'>0.018</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>12</td> <td align='center'><sup>(12-30)<sup>2</sup></sup>⁄ <sub>12<sup>2</sup></sub></td> <td align='center'>2.250</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>31</td> <td align='center'><sup>(31-30)<sup>2</sup></sup>⁄ <sub>31<sup>2</sup></sub></td> <td align='center'>0.001</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>13<sup>2</sup></sub></td> <td align='center'>0.053</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>2.322</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 2.32 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 2.32 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>104</td> <td align='center'><sup>(104-90)</sup>⁄ <sub>90</sub></td> <td align='center'>0.156</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.367</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>25</td> <td align='center'><sup>(25-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.167</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)</sup>⁄ <sub>10</sub></td> <td align='center'>0.200</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>-0.178</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of -0.18 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of -0.18 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Correct the wrong numbers in the calculation were used for division Incorrect the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>58</td> <td align='center'><sup>(58-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>8.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>46</td> <td align='center'><sup>(46-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>0.900</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>32</td> <td align='center'><sup>(32-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>1.600</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>24</td> <td align='center'><sup>(24-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>6.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>17.000</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 17.00 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 17.00 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Correct the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>83</td> <td align='center'><sup>(83-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.544</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>25</td> <td align='center'><sup>(25-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.833</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>44</td> <td align='center'><sup>(44-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>6.533</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>8.311</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 8.31 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 8.31 is less than the critical value of 9.49, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Incorrect the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.400</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>29</td> <td align='center'><sup>(29-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.033</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>34</td> <td align='center'><sup>(34-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>0.533</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>1.867</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 1.87 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 1.87 is less than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Correct the expected progeny for the null hypothesis is incorrect Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>82</td> <td align='center'><sup>(82-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.711</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>42</td> <td align='center'><sup>(42-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.800</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>8.044</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 8.04 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 8.04 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Correct the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>87</td> <td align='center'><sup>(87-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.100</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>18</td> <td align='center'><sup>(18-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.800</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>43</td> <td align='center'><sup>(43-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>5.633</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>10.933</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 10.93 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 10.93 is greater than the critical value of 2.37, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Correct
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>83</td> <td align='center'><sup>(83-90)<sup>2</sup></sup>⁄ <sub>83</sub></td> <td align='center'>0.590</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>19</sub></td> <td align='center'>6.368</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>43</td> <td align='center'><sup>(43-30)<sup>2</sup></sup>⁄ <sub>43</sub></td> <td align='center'>3.930</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>15</td> <td align='center'><sup>(15-10)<sup>2</sup></sup>⁄ <sub>15</sub></td> <td align='center'>1.667</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>12.556</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 12.56 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 12.56 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>83</td> <td align='center'><sup>(83-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.006</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>26</td> <td align='center'><sup>(26-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.018</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>39</td> <td align='center'><sup>(39-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.090</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.040</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.154</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.15 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.15 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Correct the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>96</td> <td align='center'><sup>(96-90)<sup>2</sup></sup>⁄ <sub>96<sup>2</sup></sub></td> <td align='center'>0.004</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>15</td> <td align='center'><sup>(15-30)<sup>2</sup></sup>⁄ <sub>15<sup>2</sup></sub></td> <td align='center'>1.000</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>36</td> <td align='center'><sup>(36-30)<sup>2</sup></sup>⁄ <sub>36<sup>2</sup></sub></td> <td align='center'>0.028</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>13<sup>2</sup></sub></td> <td align='center'>0.053</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>1.085</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 1.08 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 1.08 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)</sup>⁄ <sub>90</sub></td> <td align='center'>-0.067</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>21</td> <td align='center'><sup>(21-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.300</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>39</td> <td align='center'><sup>(39-30)</sup>⁄ <sub>30</sub></td> <td align='center'>0.300</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>16</td> <td align='center'><sup>(16-10)</sup>⁄ <sub>10</sub></td> <td align='center'>0.600</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.533</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.53 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.53 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Correct the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>65</td> <td align='center'><sup>(65-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>15.625</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>52</td> <td align='center'><sup>(52-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>3.600</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>21</td> <td align='center'><sup>(21-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>9.025</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>22</td> <td align='center'><sup>(22-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>8.100</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>36.350</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 36.35 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 36.35 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Correct the wrong numbers in the calculation were used for division Incorrect the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>85</td> <td align='center'><sup>(85-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.278</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>40</td> <td align='center'><sup>(40-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>3.333</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>5.644</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 5.64 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 5.64 is less than the critical value of 9.49, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Correct the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>85</td> <td align='center'><sup>(85-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.278</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.033</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>49</td> <td align='center'><sup>(49-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>12.033</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>7</td> <td align='center'><sup>(7-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>17.244</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 17.24 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 17.24 is greater than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Correct the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>86</td> <td align='center'><sup>(86-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.178</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>15</td> <td align='center'><sup>(15-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>7.500</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>47</td> <td align='center'><sup>(47-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>9.633</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>17.711</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 17.71 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 17.71 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Correct the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>81</td> <td align='center'><sup>(81-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.900</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>22</td> <td align='center'><sup>(22-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.133</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>44</td> <td align='center'><sup>(44-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>6.533</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>10.467</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 10.47 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 10.47 is greater than the critical value of 2.37, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Correct the wrong numbers in the calculation were used for division Incorrect the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>97</td> <td align='center'><sup>(97-90)<sup>2</sup></sup>⁄ <sub>97</sub></td> <td align='center'>0.505</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>18</td> <td align='center'><sup>(18-30)<sup>2</sup></sup>⁄ <sub>18</sub></td> <td align='center'>8.000</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>38</td> <td align='center'><sup>(38-30)<sup>2</sup></sup>⁄ <sub>38</sub></td> <td align='center'>1.684</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>7</td> <td align='center'><sup>(7-10)<sup>2</sup></sup>⁄ <sub>7</sub></td> <td align='center'>1.286</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>11.475</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 11.47 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 11.47 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>75</td> <td align='center'><sup>(75-90)<sup>2</sup></sup>⁄ <sub>90<sup>2</sup></sub></td> <td align='center'>0.028</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>30</td> <td align='center'><sup>(30-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.000</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>39</td> <td align='center'><sup>(39-30)<sup>2</sup></sup>⁄ <sub>30<sup>2</sup></sub></td> <td align='center'>0.090</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>16</td> <td align='center'><sup>(16-10)<sup>2</sup></sup>⁄ <sub>10<sup>2</sup></sub></td> <td align='center'>0.360</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.478</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.48 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.48 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Correct the degrees of freedom is wrong Incorrect the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>95</td> <td align='center'><sup>(95-90)<sup>2</sup></sup>⁄ <sub>95<sup>2</sup></sub></td> <td align='center'>0.003</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>22</td> <td align='center'><sup>(22-30)<sup>2</sup></sup>⁄ <sub>22<sup>2</sup></sub></td> <td align='center'>0.132</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>31</td> <td align='center'><sup>(31-30)<sup>2</sup></sup>⁄ <sub>31<sup>2</sup></sub></td> <td align='center'>0.001</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>12</td> <td align='center'><sup>(12-10)<sup>2</sup></sup>⁄ <sub>12<sup>2</sup></sub></td> <td align='center'>0.028</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.164</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.16 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.16 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong rejection criteria was used Incorrect the numbers in the calculation have to be squared Incorrect the degrees of freedom is wrong Incorrect the wrong numbers in the calculation were used for division Correct the expected progeny for the null hypothesis is incorrect Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>82</td> <td align='center'><sup>(82-90)</sup>⁄ <sub>90</sub></td> <td align='center'>-0.089</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)</sup>⁄ <sub>30</sub></td> <td align='center'>-0.367</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>46</td> <td align='center'><sup>(46-30)</sup>⁄ <sub>30</sub></td> <td align='center'>0.533</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)</sup>⁄ <sub>10</sub></td> <td align='center'>0.300</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>0.378</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 0.38 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 0.38 is less than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Correct the wrong numbers in the calculation were used for division Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>40</td> <td align='center'>65</td> <td align='center'><sup>(65-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>15.625</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>40</td> <td align='center'>41</td> <td align='center'><sup>(41-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>0.025</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>40</td> <td align='center'>30</td> <td align='center'><sup>(30-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>2.500</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>40</td> <td align='center'>24</td> <td align='center'><sup>(24-40)<sup>2</sup></sup>⁄ <sub>40</sub></td> <td align='center'>6.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>24.550</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 24.55 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 24.55 is greater than the critical value of 7.81, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Correct the degrees of freedom is wrong Incorrect the wrong rejection criteria was used Incorrect the wrong numbers in the calculation were used for division Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>84</td> <td align='center'><sup>(84-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.400</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.033</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>40</td> <td align='center'><sup>(40-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>3.333</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>17</td> <td align='center'><sup>(17-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>4.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>12.667</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 12.67 with 4 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 9.49. Since the chi-squared (χ<sup>2</sup>) test value of 12.67 is greater than the critical value of 9.49, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the degrees of freedom is wrong Correct the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the numbers in the calculation have to be squared Incorrect the wrong rejection criteria was used Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>100</td> <td align='center'><sup>(100-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>1.111</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>16</td> <td align='center'><sup>(16-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>6.533</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>36</td> <td align='center'><sup>(36-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.200</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>9.244</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 9.24 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 7.81. Since the chi-squared (χ<sup>2</sup>) test value of 9.24 is greater than the critical value of 7.81, the null hypothesis was accepted.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Incorrect the numbers in the calculation have to be squared Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Correct the degrees of freedom is wrong Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>103</td> <td align='center'><sup>(103-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>1.878</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>23</td> <td align='center'><sup>(23-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>1.633</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>21</td> <td align='center'><sup>(21-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.700</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>13</td> <td align='center'><sup>(13-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.900</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>7.111</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 7.11 with 2 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.05, we get a critical value of 5.99. Since the chi-squared (χ<sup>2</sup>) test value of 7.11 is greater than the critical value of 5.99, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the expected progeny for the null hypothesis is incorrect Incorrect the wrong numbers in the calculation were used for division Incorrect the wrong rejection criteria was used Incorrect the degrees of freedom is wrong Correct the numbers in the calculation have to be squared Incorrect
MC <table border=1 style="border: 1px solid gray; border-collapse: collapse; "><colgroup width="100"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <colgroup width="60"></colgroup> <tr> <th align='center' colspan='9' style='background-color: gainsboro'>Table of Chi-Squared (χ<sup>2</sup>) Critical Values</th></tr><tr> <th rowspan='2' align='center' style='background-color: silver'>Degrees of Freedom</th> <th align='center' colspan='8' style='background-color: silver'>Probability</th></tr><tr> <th align='center' style='background-color: gainsboro'>0.95</th> <th align='center' style='background-color: gainsboro'>0.90</th> <th align='center' style='background-color: gainsboro'>0.75</th> <th align='center' style='background-color: gainsboro'>0.50</th> <th align='center' style='background-color: gainsboro'>0.25</th> <th align='center' style='background-color: gainsboro'>0.10</th> <th align='center' style='background-color: gainsboro'>0.05</th> <th align='center' style='background-color: gainsboro'>0.01</th></tr><tr> <th align='center' style='background-color: silver'>1</th> <td align='center'>0.00</td> <td align='center'>0.02</td> <td align='center'>0.10</td> <td align='center'>0.45</td> <td align='center'>1.32</td> <td align='center'>2.71</td> <td align='center'>3.84</td> <td align='center'>6.63</td></tr><tr> <th align='center' style='background-color: silver'>2</th> <td align='center'>0.10</td> <td align='center'>0.21</td> <td align='center'>0.58</td> <td align='center'>1.39</td> <td align='center'>2.77</td> <td align='center'>4.61</td> <td align='center'>5.99</td> <td align='center'>9.21</td></tr><tr> <th align='center' style='background-color: silver'>3</th> <td align='center'>0.35</td> <td align='center'>0.58</td> <td align='center'>1.21</td> <td align='center'>2.37</td> <td align='center'>4.11</td> <td align='center'>6.25</td> <td align='center'>7.81</td> <td align='center'>11.34</td></tr><tr> <th align='center' style='background-color: silver'>4</th> <td align='center'>0.71</td> <td align='center'>1.06</td> <td align='center'>1.92</td> <td align='center'>3.36</td> <td align='center'>5.39</td> <td align='center'>7.78</td> <td align='center'>9.49</td> <td align='center'>13.28</td></tr></table><br/><table border=1 style="border: 1px solid black; border-collapse: collapse; "><colgroup width="160"></colgroup> <colgroup width="80"></colgroup> <colgroup width="80"></colgroup> <colgroup width="100"></colgroup> <colgroup width="80"></colgroup> <tr> <th align='center' style='background-color: lightgray'>Phenotype</th> <th align='center' style='background-color: lightgray'>Expected</th> <th align='center' style='background-color: lightgray'>Observed</th> <th align='center' style='background-color: lightgray'>Calculation</th> <th align='center' style='background-color: lightgray'>Statistic</th> </tr><tr> <td>Yellow Round (Y–R–)</td> <td align='center'>90</td> <td align='center'>94</td> <td align='center'><sup>(94-90)<sup>2</sup></sup>⁄ <sub>90</sub></td> <td align='center'>0.178</td></tr><tr> <td>Yellow Wrinkled (Y–rr)</td> <td align='center'>30</td> <td align='center'>19</td> <td align='center'><sup>(19-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>4.033</td></tr><tr> <td>Green Round (yyR–)</td> <td align='center'>30</td> <td align='center'>39</td> <td align='center'><sup>(39-30)<sup>2</sup></sup>⁄ <sub>30</sub></td> <td align='center'>2.700</td></tr><tr> <td>Green Wrinkled (yyrr)</td> <td align='center'>10</td> <td align='center'>8</td> <td align='center'><sup>(8-10)<sup>2</sup></sup>⁄ <sub>10</sub></td> <td align='center'>0.400</td></tr><tr> <td colspan='4' align='right' style='background-color: lightgray'>(sum) χ<sup>2</sup> = </td> <td align='center'>7.311</td></tr></table><br/><p>The final result gives the chi-squared (χ<sup>2</sup>) test value of 7.31 with 3 degrees of freedom. Using the Table of χ<sup>2</sup> Critical Values and a level of significance α=0.50, we get a critical value of 2.37. Since the chi-squared (χ<sup>2</sup>) test value of 7.31 is greater than the critical value of 2.37, the null hypothesis was rejected.</p><hr/> <p>Your lab partner has done a chi-squared (χ<sup>2</sup>) test for your lab data (above), for the F<sub>2</sub> generation in a standard dihybid cross. They wanted to know if the results confirm the expected phenotype ratios, but as usual they did something wrong. <strong>What did they do wrong?</strong></p> the wrong numbers in the calculation were used for division Incorrect the expected progeny for the null hypothesis is incorrect Incorrect the wrong rejection criteria was used Correct the degrees of freedom is wrong Incorrect the numbers in the calculation have to be squared Incorrect