-
Notifications
You must be signed in to change notification settings - Fork 41
/
custom_layers.py
234 lines (187 loc) · 8.52 KB
/
custom_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
import torch.nn as nn
import numpy as np
from torch.nn.modules.utils import _ntuple
import util
import torchvision.utils
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pytorch_prototyping.pytorch_prototyping import *
class FeatureExtractor(nn.Module):
def __init__(self,
nf0,
out_channels,
input_resolution,
output_sidelength):
super().__init__()
norm = nn.BatchNorm2d
num_down_unet = util.num_divisible_by_2(output_sidelength)
num_downsampling = util.num_divisible_by_2(input_resolution) - num_down_unet
self.net = nn.Sequential(
DownsamplingNet([nf0 * (2 ** i) for i in range(num_downsampling)],
in_channels=3,
use_dropout=False,
norm=norm),
Unet(in_channels=nf0 * (2 ** (num_downsampling-1)),
out_channels=out_channels,
nf0=nf0 * (2 ** (num_downsampling-1)),
use_dropout=False,
max_channels=8*nf0,
num_down=num_down_unet,
norm=norm)
)
def forward(self, input):
return self.net(input)
class RenderingNet(nn.Module):
def __init__(self,
nf0,
in_channels,
input_resolution,
img_sidelength):
super().__init__()
num_down_unet = util.num_divisible_by_2(input_resolution)
num_upsampling = util.num_divisible_by_2(img_sidelength) - num_down_unet
self.net = [
Unet(in_channels=in_channels,
out_channels=3 if num_upsampling <= 0 else 4*nf0,
outermost_linear=True if num_upsampling <= 0 else False,
use_dropout=True,
dropout_prob=0.1,
nf0=nf0*(2**num_upsampling),
norm=nn.BatchNorm2d,
max_channels=8*nf0,
num_down=num_down_unet)
]
if num_upsampling > 0:
self.net += [
UpsamplingNet(per_layer_out_ch=num_upsampling * [nf0],
in_channels=4 * nf0,
upsampling_mode='transpose',
use_dropout=True,
dropout_prob=0.1),
Conv2dSame(nf0, out_channels=nf0 // 2, kernel_size=3, bias=False),
nn.BatchNorm2d(nf0 // 2),
nn.ReLU(True),
Conv2dSame(nf0//2, 3, kernel_size=3)
]
self.net += [nn.Tanh()]
self.net = nn.Sequential(*self.net)
def forward(self, input):
return self.net(input)
class IntegrationNet(torch.nn.Module):
'''The 3D integration net integrating new observations into the Deepvoxels grid.
'''
def __init__(self, nf0, coord_conv, use_dropout, per_feature, grid_dim):
super().__init__()
self.coord_conv = coord_conv
if self.coord_conv:
in_channels = nf0 + 3
else:
in_channels = nf0
if per_feature:
weights_channels = nf0
else:
weights_channels = 1
self.use_dropout = use_dropout
self.new_integration = nn.Sequential(
nn.ReplicationPad3d(1),
nn.Conv3d(in_channels, nf0, kernel_size=3, padding=0, bias=True),
nn.Dropout2d(0.2)
)
self.old_integration = nn.Sequential(
nn.ReplicationPad3d(1),
nn.Conv3d(in_channels, nf0, kernel_size=3, padding=0, bias=False),
nn.Dropout2d(0.2)
)
self.update_old_net = nn.Sequential(
nn.ReplicationPad3d(1),
nn.Conv3d(in_channels, weights_channels, kernel_size=3, padding=0, bias=True),
)
self.update_new_net = nn.Sequential(
nn.ReplicationPad3d(1),
nn.Conv3d(in_channels, weights_channels, kernel_size=3, padding=0, bias=False),
)
self.reset_old_net = nn.Sequential(
nn.ReplicationPad3d(1),
nn.Conv3d(in_channels, weights_channels, kernel_size=3, padding=0, bias=True),
)
self.reset_new_net = nn.Sequential(
nn.ReplicationPad3d(1),
nn.Conv3d(in_channels, weights_channels, kernel_size=3, padding=0, bias=False),
)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU()
coord_conv_volume = np.mgrid[-grid_dim // 2:grid_dim // 2,
-grid_dim // 2:grid_dim // 2,
-grid_dim // 2:grid_dim // 2]
coord_conv_volume = np.stack(coord_conv_volume, axis=0).astype(np.float32)
coord_conv_volume = coord_conv_volume / grid_dim
self.coord_conv_volume = torch.Tensor(coord_conv_volume).float().cuda()[None, :, :, :, :]
self.counter = 0
def forward(self, new_observation, old_state, writer):
old_state_coord = torch.cat([old_state, self.coord_conv_volume], dim=1)
new_observation_coord = torch.cat([new_observation, self.coord_conv_volume], dim=1)
reset = self.sigmoid(self.reset_old_net(old_state_coord) + self.reset_new_net(new_observation_coord))
update = self.sigmoid(self.update_old_net(old_state_coord) + self.update_new_net(new_observation_coord))
final = self.relu(self.new_integration(new_observation_coord) + self.old_integration(reset * old_state_coord))
if not self.counter % 100:
# Plot the volumes
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
update_values = update.mean(dim=1).squeeze().cpu().detach().numpy()
x, y, z = np.where(update_values)
x, y, z = x[::3], y[::3], z[::3]
ax.scatter(x, y, z, s=update_values[x, y, z] * 5)
writer.add_figure("update_gate",
fig,
self.counter,
close=True)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
reset_values = reset.mean(dim=1).squeeze().cpu().detach().numpy()
x, y, z = np.where(reset_values)
x, y, z = x[::3], y[::3], z[::3]
ax.scatter(x, y, z, s=reset_values[x, y, z] * 5)
writer.add_figure("reset_gate",
fig,
self.counter,
close=True)
self.counter += 1
result = ((1 - update) * old_state + update * final)
return result
class OcclusionNet(nn.Module):
'''The Occlusion Module predicts visibility scores for each voxel across a ray, allowing occlusion reasoning
via a convex combination of voxels along each ray.
'''
def __init__(self, nf0, occnet_nf, frustrum_dims):
super().__init__()
self.occnet_nf = occnet_nf
self.frustrum_depth = frustrum_dims[-1]
depth_coords = torch.arange(-self.frustrum_depth // 2,
self.frustrum_depth // 2)[None, None, :, None, None].float().cuda() / self.frustrum_depth
self.depth_coords = depth_coords.repeat(1, 1, 1, frustrum_dims[0], frustrum_dims[0])
self.occlusion_prep = nn.Sequential(
Conv3dSame(nf0+1, self.occnet_nf, kernel_size=3, bias=False),
nn.BatchNorm3d(self.occnet_nf),
nn.ReLU(True),
)
num_down = min(util.num_divisible_by_2(self.frustrum_depth),
util.num_divisible_by_2(frustrum_dims[0]))
self.occlusion_net = Unet3d(in_channels=self.occnet_nf,
out_channels=self.occnet_nf,
nf0=self.occnet_nf,
num_down=num_down,
max_channels=4*self.occnet_nf,
outermost_linear=False)
self.softmax_net = nn.Sequential(
Conv3dSame(2*self.occnet_nf +1, 1, kernel_size=3, bias=True),
nn.Softmax(dim=2),
)
def forward(self,
novel_img_frustrum):
frustrum_feats_depth = torch.cat((self.depth_coords, novel_img_frustrum), dim=1)
occlusion_prep = self.occlusion_prep(frustrum_feats_depth)
frustrum_feats = self.occlusion_net(occlusion_prep)
frustrum_weights = self.softmax_net(torch.cat((occlusion_prep, frustrum_feats, self.depth_coords), dim=1))
depth_map = (self.depth_coords * frustrum_weights).sum(dim=2)
return frustrum_weights, depth_map