
Institute of Information Security

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Formal Security Analysis of the Web
Payment APIs

Nils Wenzler

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Ralf Küsters

Supervisor: Tim Würtele, M.Sc.,
Pedram Hosseyni, M.Sc.

Commenced: September 10th, 2019

Completed: March 10th, 2020

Abstract

The Web Payment APIs are a set of specifications by the W3C Web Payments Working Group that
aim to offer a set of new and improved checkout mechanisms for the web.

Thousands of online shops provide customers with nearly endless possibilities of buying products.
Although they differ in their products and customers, they all share the need for a checkout process
to obtain customer information and a corresponding financial transaction. As these specifications
strive to become the new standard for web payments, security is a crucial aspect.

In this work, we created an extended version of the Web Infrastructure Model by expanding it with
the APIs and functionalities described in the aforementioned specifications of the Web Payment
APIs. Within the model, we performed a formal security analysis which led to the discovery of a
possible attack and additional vulnerabilities.

We offered mitigations against this attack and said vulnerabilities and showed that the resulting
model satisfies the modeled security properties.

By doing so, we show that the resulting model guarantees that payments can only be performed in
an authorized manner and that the integrity of the financial transactions is ensured.

After making the Chromium team aware of the found attack, they implemented our proposed
mitigation approach and released a patch that was already distributed to millions of devices at the
time of writing.

3

Kurzfassung

Mit Hilfe der Web Payment APIs will die W3C Web Payments Working Group einen Standard
etablieren der schnellere, einfachere und sicherere Bezahlvorgänge im Internet ermöglichen soll. Die
in den Spezifikationen beschriebenen Schnittstellen und Erweiterungen ermöglichen es dem Browser
als Vermittler zwischen dem Käufer, dem Verkäufer und dem Anbieter der Zahlungsmethode
aufzutreten. Da Sicherheit ein sehr wichtiger Aspekt be Zahlungsvorgängen darstellt, untersuchte
diese Arbeit die Sicherheitseigenschaften der Web Payment APIs.

Dafür wurden innerhalb dieser Arbeit die Web Payment APIs in das Web Infrastructure Model
integriert um dort formalisierte Sicherheitseigenschaften zu untersuchen.

Bei dieser Untersuchung wurden eine Angriffsmöglichkeit und zwei mögliche Schwachstellen
innerhalb der Spezifikationen gefunden. Innerhalb des Models zeigen wir auf, durch welche
Änderungen diese Angriffsmöglichkeit und die Schwachstelle behoben werden können, sodass die
spezifizierten Sicherheitseigenschaften erfüllt werden.

5

Contents

1 Introduction 11

2 The Web Payment APIs 13
2.1 Involved Parties . 14
2.2 APIs and Specifications of the Web Payment APIs 15
2.3 General Flow . 15
2.4 Extended Flows . 17

3 Overview over the model of the Web Payment APIs 25
3.1 The Web Infrastructure Model . 25
3.2 Informal Description of the Web Payment API Model 27
3.3 Security Properties . 30

4 Attacks and Vulnerabilities 31
4.1 Double Charging Through Retry Mechanism . 31
4.2 Potential Issues Through Ambiguous Method Data 34
4.3 Leak of Personal Data to Merchant Before Expression of Payment Intent 36

5 Conclusion and Outlook 39

A The extended Web Infrastucture Model with Web Payment APIs 41
A.1 General Remarks . 42
A.2 Browser . 44
A.3 Payment Provider Server . 63
A.4 Merchant Server . 65
A.5 Web Payment APIs model with attackers . 65
A.6 Mentionable simplifications and exclusions . 66

B Definitions 69

C Security Properties 71
C.1 Session Integrity . 71
C.2 Payment Integrity . 71

D Proofs 73
D.1 General Properties . 73
D.2 Session Integrity . 77
D.3 Intended Payments . 78
D.4 Uniqueness of Payments . 80

Bibliography 87

7

List of Algorithms

1 Web Browser Model: Main Algorithm. 46
2 Web Browser Model: Execute a script. 49
3 Web Browser Model: Process an event. 54
4 Web Browser Model: Execute a Service Worker. 57
5 Web Browser Model: Process script interaction with Payment APIs 58
6 Relation of script_default_payment_handler . 59
7 Web Browser Model: Deliver a message to the script in a document or a service

worker. 60
8 Web Browser Model: Process an HTTP response. 61
9 Web Browser Model: Get relevant service workers for URL 62
10 Relation of an PP 𝑅𝑖: Processing HTTPS Requests. 64
11 Relation of script_client_index. 64
12 Relation of a merchant server 𝑅𝑖: Processing HTTPS Requests. 65

9

1 Introduction

Several million online stores power the e-commerce industry of the modern web [17]. Although their
checkout processes have a need for very similar information (name, address, phone number, email
address, etc.) and very similar payment processes, a lack of common and standardized interfaces
for these checkout processes forces shop owners to implement these themselves. Since customers
have to provide their data to every single shop instance, their checkout experience is less convenient
than it could be.

The W3C Web Payments Working Group [25] aims at improving this situation by currently specifying
the Payment Handler API [19], the Payment Request API [23], the Payment Method Manifest [21],
and the Payment Method Identifier [20]. We refer to these specifications by the name Web Payment
APIs.

The combination of these specifications extends the browser with functionalities that allows it to
become an intermediary that enables a convenient checkout process for the payer, the payee and
the provider of the payment method (such as banks, Google Pay [11], PayPal [15], Apple Pay [2],
etc.).

A main functionality of the specification lies within storing relevant customer information in the
browser, such that it allows for a faster and more convenient checkout process for the payer over all
online stores that use the APIs. Additionally, the browser is extended by Payment Handlers which
are service worker scripts that are provided by payment method providers. These scripts can be
installed on the browser to enable the browser to support the corresponding payment methods in a
centralized manner. Besides convenience, the aforementioned specifications strive to improve the
privacy and security of internet checkout processes.

The goal of this thesis is to perform an in-depth formal security analysis of the current state of the
Web Payment APIs. This analysis is enabled by modeling the relevant components and protocols in
the Web Infrastructure Model [8]. Most of this work will focus on extending the browser model of
the Web Infrastructure Model, since most of the extensions of the Web Payment APIs concern the
browser. Within the extended model, the intended security goals will be formalized and analyzed.
These security goals are based on the security considerations of the specifications but extended
with further goals to create a comprehensive set of security goals. By using the formalization of
these security goals and the extended Web Infrastructure Model, a formal security proof of the Web
Payment APIs will be provided.

Additionally, there is a need to extend the basic structure of the model of the browser within the Web
Infrastructure Model to model structures that have not been modelled in the WIM before. The main
addition lies within JavaScript promise based communication and communication flows within the
browser itself. By providing an extension to the Web Infrastructure Model that enables such flows,
we provide a foundation for further research based on the Web Infrastructure Model.

11

2 The Web Payment APIs

Within a common online checkout process, a merchant (e.g., the owner of an online store) obtains
information such as the shipping address of a customer (the payer) and sets up a financial transaction
at a payment provider (such as banks, Google Pay [11], PayPal [15], Apple Pay [2], etc.) for the
payer to issue.

Nowadays, the single merchants implement their own checkout processes although they serve the
same purpose. This situation is unfavorable for a customer/payer as well, since she has to repeatingly
provide unchanging information such as the shipping address to each online store that she uses.

The Web Payment APIs introduce a set of features to modern user agents (e.g., browsers), that allow
for a fast and standardized checkout process in the web.

Within this process, the browser takes the role of an intermediary that manages the communication
between the three common stakeholders in such an online checkout process: the merchant, the payer
and the payment method provider.

The browser offers to each stakeholder standardized interfaces for these checkout processes.

The APIs strive to fulfill the following goals:

Standardization Through the Web Payment APIs web checkout processes become standardized.
This allows to introduce reoccurring checkout experiences and helps developers by simplifying
the integration process.

Security By introducing payment handlers that can be installed to the browser separately, payment
providers have the ability to introduce more complex and more secure protocols which can
be updated independently of merchants. Furthermore, the specification introduces a trusted
payment UI which is served directly by the browser.

Faster and more convenient checkout experiences By enabling browsers to act as intermedi-
aries, they can introduce features such as storing the user’s shipping address and their payment
methods (such as credit cards). This makes the checkout process more convenient and faster.
The time to check out is an economically relevant metric for merchants, since during checkout
many users do abort and not complete their buy [5].

Privacy Through the Web Payment APIs, only the relevant information has to be submitted to the
single parties. Furthermore, a merchant might not feel the need to force a customer to create a
user account and store the associated user data indefinitely if a fast and easy checkout process
can be enabled without such an account.

13

2 The Web Payment APIs

2.1 Involved Parties

The three main parties are the merchant, the payer and the payment provider. The following section
explains which components are associated to the single parties and offers a short overview of how
they interact.

2.1.1 The Merchant

The merchant serves a regular website with an online shop. For its checkout process, it uses the
JavaScript APIs of the browser to create a payment request, check for support of the payment
methods and the APIs, and to show and to complete a checkout process. Within the payment request,
the merchant specifies which payment methods are supported in the checkout process.

2.1.2 The Payer

The payer/customer does interact with the Web Payment APIs through the UI of the browser. After the
merchant created the payment request, the merchant can tell the browser to show the corresponding
trusted payment UI upon a click of the user on a button of the website. The user is then presented
with a separate browser UI, that shows the total, the selected items, a prefilled shipping address,
email address and so forth. In the UI, the user can check the corresponding information, select a
payment handler for a supported payment method, and submit the payment to the corresponding
payment handler.

2.1.3 The Payment Method Provider

The payment method provider can use several components to enable its payment service for the
user.

So-called payment handlers are scripts or features that enable a browser to support a payment
method.

There are special standardized payment methods such as basic-card [4], which can be used to ask
the user for credit card information. These are usually directly integrated into the browser and do
not use external scripts.

Other payment methods are identified by URLs (such as http://paypal.com/pay). Payment handlers
for such payment methods are either directly integrated into the browser (as for Apple Pay [2]
in Safari [4]), or their support can be installed via external scripts into service workers that are
registered under the payment method’s URL.

Service workers are scripts that can be installed to a browser that run outside the scope of a window
or a document. They allow browser to be extended with functionalities whose domain lies outside
of a document scope. Examples for such features are serving offline versions of websites, dealing
with push notifications and the for the Web Payment APIs relevant support for payment method
providers.

14

http://paypal.com/pay

2.2 APIs and Specifications of the Web Payment APIs

For a single payment method, there might be several supported payment handlers registered. The
configuration of a payment method can be obtained through its payment method manifest (see
Section 2.2).

Furthermore, a single payment handler might support several payment methods. The supported
payment methods of a payment handler are called its payment instruments.

2.2 APIs and Specifications of the Web Payment APIs

The Web Payment APIs are defined by the following set of documents.

The Payment Request API [23] The Payment Request API specifies the communication between
the merchant’s website and the user agent. The general payment process is started through
this API. All relevant properties of the payment request are specified through this API. Total
cost, shipping cost, the need for a contact phone number and the supported payment methods
is a selection of the most relevant of said properties.

The Payment Handler API [19] The Payment Handler API specifies the interfaces through which
a payment method provider can communicate through installed payment handlers with the
user agent to process a payment request. Internally, payment handlers are service workers
that are able to process payment requests through an extended service worker API. Note that
earlier mentioned payment handlers that are directly implemented into the browser commonly
do not use the Payment Handler API although they are called payment handlers nonetheless.

Payment Method Identifier [20] This specification describes how payment methods are identified
in the Web Payment APIs. Besides predefined payment methods such as basic-card [4],
Payment Method Identifier essentially are URLs.

Payment Method Manifest [21] The Payment Method Manifest specifies a process by which user
agents can obtain necessary information to install payment handlers and verify their validity.
Through this specification, user agents are enabled to automatically install payment handlers.
When a user agent is asked to process a payment with a so-far unknown payment metod
identifier, the user agent queries the payment method manifest by making a call to the URL
of the payment method identifier. Under this URL, a link header references a json manifest
file that offers the necessary information.

Payment Method: Basic Card [22] This specification defines the first specified preinstalled named
payment handler that can be used to obtain credit card information of a user.

2.3 General Flow

To get a basic understanding of how these APIs commonly interact with each other during a payment
process, a short informal description of a payment process with the Web Payment APIs is offered in
Figure 2.1.

15

2 The Web Payment APIs

Note that all depicted actors are located within the browser. The second column “Browser/User
Agent” depicts the implementation of the browser internal implementations of the Web Payment
APIs.

2 pr.show()pr.show()

4 CanMakePaymentEventCanMakePaymentEvent

5 ResponseResponse

9 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

10 pre.respondWith()pre.respondWith()

12 PaymentResponsePaymentResponse

13 pres.complete()pres.complete()

Seller (shop.com) Browser/User Agent Payment Handler

1 Create Payment RequestCreate Payment Request

3 Select all Payment Handlers for PMISelect all Payment Handlers for PMI

6 Present payment UIPresent payment UI

7 User enters dataUser enters data

8 Select Payment Handler and submitSelect Payment Handler and submit

11 Add user information to responseAdd user information to response

14 Close UIClose UI

Seller (shop.com) Browser/User Agent Payment Handler

Figure 2.1 General flow of Web Payments

The checkout process starts through JavaScript code served by the merchants web server.

In this code, a Payment Request first needs to be created (Step 1). All basic information is passed
to the Payment Request at creation time. Among others, this information includes the total to pay
and the payment method identifiers (PMIs) which the merchant accepts.

As soon as the user clicks e.g., a checkout button, the merchant’s website calls the show() method
of the Payment Request (Step 2).

This tells the user agent to start the checkout process. In a next step, the user agent determines
which installed payment handlers are able to process the requested payment.

These are a subset of the payment handlers that support a payment instrument with a payment
method identifier (PMI), that is also present in the payment request (Step 3). There are further
aspects that might determine whether a payment handler is able to process a payment or not. Imagine
for example a payment method that has an internal heuristic of whether a payment request seems
trustworthy, or varying maximum supported totals depending on the shop being used. To cater to
such needs, the Web Payment APIs use preflight CanMakePaymentEvents that ask all potential

16

2.4 Extended Flows

payment handlers whether they would support a concrete payment request (Steps 4 and 5). In the
trusted payment UI only those payment handlers are displayed to the user, that respond with true to
this event (Step 6).

In this UI the user is able to select a payment handler and enter all relevant data such as her shipping
address. Since this overlay can not directly be modified by anyone except the browser (especially
not the merchant’s website), this is also refered to as trusted UI.

Upon clicking a submit button in this trusted UI the user agent submits a PaymentRequestEvent to
the selected payment handler (Step 9).

The PaymentRequestEvent only contains the information of the payment request that is necessary
for the payment handler to process the transaction.

The payment handler uses this information to trigger the processing of the financial transaction and
returns a PaymentHandlerResponse (Step 10).

The PaymentHandlerResponse contains payment provider specific details, that for example can later
be used by the merchant to validate the transaction.

After receiving this information, the user agent merges the entered information (shipping address,
email address, shipping option, etc.) of the user with the response of the payment handler and
submits it to the merchants website as a PaymentResponse object through a JavaScript promise
(Steps 11 and 12).

To acknowledge that the payment has been processed, the merchant’s website afterwards calls the
complete method of the payment response (Step 13), which closes the user agent’s overlay (Step 14).
This last step allows the merchant’s website to validate whether the resulting data is in accordance
to the merchant’s requirements. If this is not the case, the merchant is able to trigger a retry, which
is explained in detail in the following section.

2.4 Extended Flows

In addtion to the earlier presented minimalistic flow (Figure 2.1), there are several possibilities to
divert from this flow. The following short descriptions offer an informal overview over the main
features of the Web Payment APIs.

2.4.1 Retry

After the merchant has received the PaymentResponse, she does not have to call the complete
method. In case of issues with the result, the merchant can decide to issue a retry of the payment.
Imagine for instance that the merchant asks the user for an email address during checkout. If the
merchant has a blacklist or whitelist of email addresses that are supported and the user submits an
email address that is listed on said blacklist, the merchant can issue a retry telling the user to pick
an email address that satisfies the requirements.

17

2 The Web Payment APIs

2 pr.show()pr.show()

4 CanMakePaymentEventCanMakePaymentEvent

5 ResponseResponse

8 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

9 pre.respondWith()pre.respondWith()

11 PaymentResponse (pres)PaymentResponse (pres)

13 pres.retry()pres.retry()

16 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

17 pre.respondWith()pre.respondWith()

19 PaymentResponse (same but updated)PaymentResponse (same but updated)

20 pres.complete()pres.complete()

Seller (shop.com) Browser/User Agent Payment Handler

1 Create Payment RequestCreate Payment Request

3 Select all Payment Handlers for PMISelect all Payment Handlers for PMI

6 Present payment UIPresent payment UI

7 User enters dataUser enters data

10 Add user information to responseAdd user information to response

12 Validate Payment Response user informationValidate Payment Response user information

14 Display error information in UIDisplay error information in UI

15 User changes dataUser changes data

18 Add user information to responseAdd user information to response

21 Close UIClose UI

Seller (shop.com) Browser/User Agent Payment Handler

Figure 2.2 Flow of Web Payment with retry due to invalid user data

Figure 2.2 shows the corresponding flow of a retry during checkout. The initial flow of the checkout
corresponds to one presented in the general flow (Step 1 to 11). In Step 12 , the merchant determines
that a retry is necessary. The merchant therefore calls the retry() method of the payment response
(Step 13). The remainder of the flow (Steps 14 to 21) resembles a second checkout process.

18

2.4 Extended Flows

The major differences are that the user is not allowed to select a different payment handler and
that error information is displayed in the payment UI (Step 14). The payment handler can not
differentiate a retry from an original PaymentRequestEvent except for the reccurence of an earlier
observed payment request id. The payment request id is determined on creation of the payment
request either by the merchant or if none is provider by a randomly generated UUID [14].

2.4.2 Shipping Address Change

In some cases, the final total to be payed or the available shipping options (express delivery,
registered/tracked packages, acknowledgement of receipt, etc.) depend on the selected shipping
address. For such cases, the specification implements a mechanism which allows a merchant to
react to an entered shipping address and potentially update the payment request accordingly.

2 pr.show()pr.show()

4 CanMakePaymentEventCanMakePaymentEvent

5 ResponseResponse

9 PaymentRequestUpdateEvent (prue)PaymentRequestUpdateEvent (prue)

10 prue.updateWith(details)prue.updateWith(details)

12 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

13 pre.respondWith()pre.respondWith()

15 PaymentResponsePaymentResponse

16 pres.complete()pres.complete()

Seller (shop.com) Browser/User Agent Payment Handler

1 Create Payment RequestCreate Payment Request

3 Select all Payment Handlers for PMISelect all Payment Handlers for PMI

6 Present payment UIPresent payment UI

7 User enters dataUser enters data

8 User changes shipping addressUser changes shipping address

11 Select Payment Handler and submitSelect Payment Handler and submit

14 Add user information to responseAdd user information to response

17 Close UIClose UI

Seller (shop.com) Browser/User Agent Payment Handler

Figure 2.3 Flow of Web Payment with shipping address change

19

2 The Web Payment APIs

Figure 2.3 shows the corresponding flow in case of a shipping address change. The steps that
differ from the flow in Figure 2.1 are the Steps 8 to 10 . In Step 8 , the user manually selects
or enters a shipping address to be used. Following this event, the merchant gets notified with
an PaymentRequestUpdateEvent (Step 9). This event contains a redacted shipping address that
contains information such as the country and the postal code of the recipient. Furthermore, this event
contains a handle, that allows a merchant to update the payment request’s total, shipping options,
display items, payment modifiers (such as credit card fees) and further payment method specific
data. In Step 10 , the merchant uses this handle to update e.g., the available shipping options.

The remainder of the checkout flow stays the same. Such PaymentRequestUpdateEvents can be
issued repeatedly and are also used in case of a change of shipping option and payer info (such as
email address or phone number).

Note that pre-filled/auto filled values (values that are automatically filled by a browser) do not
trigger such an event [12]. If a merchant does need the recipient’s shipping address to determine
the shipping cost, the correspondent payment request has to initialize the payment request with
options.requestShippingAddress = 𝑡𝑟𝑢𝑒 and it initially has to offer no shipping option. This leads
the browser to not auto filling the shipping address. When the user manually selects the shipping
address afterwards, the corresponding PaymentRequestUpdateEvent is used to show the available
shipping options.

2.4.3 Open Window

A payment handler might wish to ask the user for additional information during the checkout process.
Such information could be a separate acknowledgment of the transaction or e.g., credentials to
verify the identity of the payer. To allow payment handlers to obtain such additional information,
the specification introduced an openWindow() method in the PaymentRequestEvent that is issued to
the payment handler on submission of the payment by the user.

Figure 2.4 depicts such a payment checkout flow. By calling the openWindow() method, a payment
handler might open a window which shares the same scope as its service worker (Step 10). The
opened website is displayed within the trusted UI of the browser [12]. Through this window, the
user is able to perform the necessary interactions (Step 11). In the specification, it is not defined
how the user’s information is made available to the payment handler afterwards. Theoretically, such
a communication might not even be necessary if the opened website itself triggers the transaction.
As in the reference implementation [18], we model that the window communicates with the payment
handler through post messages (Step 12). In the model the payment handler afterwards triggers the
payment.

20

2.4 Extended Flows

2 pr.show()pr.show()

4 CanMakePaymentEventCanMakePaymentEvent

5 ResponseResponse

9 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

10 pre.openWindow()pre.openWindow()

12 postMessage()postMessage()

13 pre.respondWith()pre.respondWith()

15 PaymentResponsePaymentResponse

16 pres.complete()pres.complete()

Seller (shop.com) Browser/User Agent Payment Handler

1 Create Payment RequestCreate Payment Request

3 Select all Payment Handlers for PMISelect all Payment Handlers for PMI

6 Present payment UIPresent payment UI

7 User enters dataUser enters data

8 Select Payment Handler and submitSelect Payment Handler and submit

Payment Window

11 User interacts with the windowUser interacts with the window

Payment Window

14 Add user information to responseAdd user information to response

17 Close UIClose UI

Seller (shop.com) Browser/User Agent Payment Handler

Figure 2.4 Flow of Web Payment including subwindow communication

2.4.4 Merchant Validation

Merchant validation was introduced to allow for merchant validation through the payment method
provider. Through merchant validation, a payment provider verifies that a payment requet originates
from the corresponding merchant and no other potentially malicious party. The specification is not
very clear concerning the exact flow of merchant validation. But since it was mostly introduced to
allow integration of Apple Pay [2], we present and model a flow which is based on the merchant
validation flow of Apple Pay [3].

Figure 2.5 depicts the relevant flow containing merchant validation.

21

2 The Web Payment APIs

As soon as the payment request is shown, following Step 2 , the merchant validation starts. The
browser blocks the payment UI until the merchant validation has completed. Depending on where
the payment handler is located, a corresponding service worker (Step 7) or the browser itself (Step 8)
issues a PaymentValidationEvent to the merchant’s website. The PaymentValidationEvent contains a
validationUrl that the merchant should call from its server [3] (not out of the user agent’s context).

Therefore, the merchant’s website passes the received validationUrl to its server (Step 9), which
then issues a request to the corresponding URL (Step 10).

The corresponding payment provider server then shares a session token with the server of the
merchant (Step 11). The merchant’s server afterwards passes this token back to the website of the
merchant in the browser 12 .

With this data, the client can call the comlete() method of the PaymentValidationEvent (Step 13).
Afterwards, the token is validated in the payment handler, which again might either be implemented
directly in the browser or as a separate service worker (Step 14).

Merchant validation was not considered in this thesis since its status in the specification does not
seem to be stable yet.

This is visible in the fact that in the current payment handler specification [19] the specification
does not determine how such a Step as 7 would be triggered.

22

2.4 Extended Flows

2 pr.show()pr.show()

4 CanMakePaymentEventCanMakePaymentEvent

5 ResponseResponse

7 PaymentValidationEvent (pve)PaymentValidationEvent (pve)

8 PaymentValidationEvent (pve)PaymentValidationEvent (pve)

9 send Validation URLsend Validation URL

10 request validation datarequest validation data

11 ResponseResponse

12 validation data (data)validation data (data)

13 pve.complete(data)pve.complete(data)

14 datadata

17 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

18 pre.respondWith()pre.respondWith()

20 PaymentResponsePaymentResponse

21 pres.complete()pres.complete()

Website Seller (shop.com) Browser/User Agent Payment Handler Server Seller (shop.com) Payment Provider Server

1 Create Payment RequestCreate Payment Request

3 Select all Payment Handlers for PMISelect all Payment Handlers for PMI

6 Present payment UIPresent payment UI

15 User enters dataUser enters data

16 Select Payment Handler and submitSelect Payment Handler and submit

19 Add user information to responseAdd user information to response

22 Close UIClose UI

Website Seller (shop.com) Browser/User Agent Payment Handler Server Seller (shop.com) Payment Provider Server

Figure 2.5 Flow of Web Payment with merchant validation

23

3 Overview over the model of the Web Payment
APIs

In the following sections, we offer a short introduction into the Web Infrastructure Model [8] and
describe how it was extended and instantiated to fit the needs of the analysis of the Web Payment
APIs.

3.1 The Web Infrastructure Model

The Web Infrastructure Model (WIM), is a generic Dolev-Yao style model of the web and its
infrastructure. The following short description is taken from Section 4 of [7]1.

The WIM is designed independently of a specific web application and closely mimics published (de-
facto) standards and specifications for the web, for example, the HTTP/1.1 and HTML5 standards
and associated (proposed) standards. The WIM model defines a general communication model,
and, based on it, web systems consisting of web browsers, DNS servers, and web servers as well as
web and network attackers.

Communication Model. The main entities in the model are (atomic) processes, which are used
to model browsers, servers, and attackers. Each process listens to one or more (IP) addresses.
Processes communicate via events, which consist of a message as well as a receiver and a sender
address. In every step of a run, one event is chosen non-deterministically from a “pool” of waiting
events and is delivered to one of the processes that listens to the event’s receiver address. The
process can then handle the event and output new events, which are added to the pool of events, and
so on.

As usual in Dolev-Yao models (see, e.g., [1]), messages are expressed as formal terms over a
signature Σ. The signature contains constants (for (IP) addresses, strings, nonces) as well as se-
quence, projection, and function symbols (e.g., for encryption/decryption and signatures). For
example, in the web model, an HTTP request is represented as a term 𝑟 containing a nonce,
an HTTP method, a domain name, a path, URI parameters, request headers, and a message
body. For instance, an HTTP request for the URI http://ex.com/show?p=1 is represented as
r ∶= ⟨HTTPReq, 𝑛1, GET, ex.com, /show, ⟨⟨p, 1⟩⟩, ⟨⟩, ⟨⟩⟩ where the body and the list of request headers
is empty. An HTTPS request for 𝑟 is of the form enca(⟨𝑟, 𝑘′⟩, pub(𝑘ex.com)), where 𝑘′ is a fresh
symmetric key (a nonce) generated by the sender of the request (typically a browser); the responder
is supposed to use this key to encrypt the response.

1In its original publication, the model was named FKS in resemblance of the names of the main authors. Later on
the model was renamed to the name used here, the Web Infrastructure Model. The presented section was adapted
accordingly.

25

http://ex.com/show?p=1

3 Overview over the model of the Web Payment APIs

The equational theory associated with Σ is defined as usual in Dolev-Yao models. The
theory induces a congruence relation ≡ on terms, capturing the meaning of the function
symbols in Σ. For instance, the equation in the equational theory which captures asym-
metric decryption is deca(enca(𝑥, pub(𝑦)), 𝑦) = 𝑥. With this, we have that, for example,
deca(enca(⟨𝑟, 𝑘′⟩, pub(𝑘ex.com)), 𝑘ex.com) ≡ ⟨𝑟, 𝑘′⟩ , i.e., these two terms are equivalent w.r.t. the
equational theory.

A (Dolev-Yao) process consists of a set of addresses the process listens to, a set of states (terms),
an initial state, and a relation that takes an event and a state as input and (non-deterministically)
returns a new state and a sequence of events. The relation models a computation step of the process.
It is required that the output can be computed (formally, derived in the usual Dolev-Yao style) from
the input event and the state.

The so-called attacker process is a Dolev-Yao process which records all messages it receives and
outputs all events it can possibly derive from its recorded messages. Hence, an attacker process
carries out all attacks any Dolev-Yao process could possibly perform. Attackers can corrupt other
parties.

A script models JavaScript running in a browser. Scripts are defined similarly to Dolev-Yao processes.
When triggered by a browser, a script is provided with state information. The script then outputs a
term representing a new internal state and a command to be interpreted by the browser (see also the
specification of browsers below). An annotated example for a script can be found in the Appendix
of [8]. Similarly to an attacker process, the so-called attacker script outputs everything that is
derivable from the input.

A system is a set of processes. A configuration of this system consists of the states of all processes in
the system, the pool of waiting events, and a sequence of unused nonces. Systems induce runs, i.e.,
sequences of configurations, where each configuration is obtained by delivering one of the waiting
events of the preceding configuration to a process, which then performs a computation step. The
transition from one configuration to the next configuration in a run is called a processing step. We
write, for example, 𝑄 = (𝑆, 𝐸, 𝑁)Ð→ (𝑆′, 𝐸′, 𝑁 ′) to denote the transition from the configuration
(𝑆, 𝐸, 𝑁) to the configuration (𝑆′, 𝐸′, 𝑁 ′), where 𝑆 and 𝑆′ are the states of the processes in the
system, 𝐸 and 𝐸′ are pools of waiting events, and 𝑁 and 𝑁 ′ are sequences of unused nonces.

A web system formalizes the web infrastructure and web applications. It contains a system consisting
of honest and attacker processes. Honest processes can be web browsers, web servers, or DNS
servers. Attackers can be either web attackers (who can listen to and send messages from their own
addresses only) or network attackers (who may listen to and spoof all addresses and therefore are
the most powerful attackers). A web system further contains a set of scripts (comprising honest
scripts and the attacker script).

In our analysis of the Web Payment APIs, we consider a combination of network attackers and
malicious merchant servers. The here presented model of the Web Payment APIs extends the WIM
with extended definitions of the browser behaviours, server scripts, serivce worker scripts and regular
scripts. These are not defined by the WIM model since they depend on the specific application,
unless they become corrupted, in which case they behave like attacker processes and attacker scripts;
browsers are specified by the WIM model (see below). The modeling of the Web Payment API
specific additions, is outlined in Section 3.2 and with full details provided in Appendices A and
B.

26

3.2 Informal Description of the Web Payment API Model

Web Browsers. An honest browser is thought to be used by one honest user, who is modeled as part
of the browser. User actions, such as following a link, are modeled as non-deterministic actions
of the web browser. User credentials are stored in the initial state of the browser and are given to
selected web pages when needed. Besides user credentials, the state of a web browser contains
(among others) a tree of windows and documents, cookies, and web storage data (localStorage and
sessionStorage).

A window inside a browser contains a set of documents (one being active at any time), modeling the
history of documents presented in this window. Each represents one loaded web page and contains
(among others) a script and a list of subwindows (modeling iframes). The script, when triggered by
the browser, is provided with all data it has access to, such as a (limited) view on other documents
and windows, certain cookies, and web storage data. Scripts then output a command and a new
state. This way, scripts can navigate or create windows, send XMLHttpRequests and postMessages,
submit forms, set/change cookies and web storage data, and create iframes. Navigation and security
rules ensure that scripts can manipulate only specific aspects of the browser’s state, according to the
relevant web standards.

A browser can output messages on the network of different types, namely DNS and HTTP(S)
(including XMLHttpRequests), and it processes the responses. Several HTTP(S) headers are
modeled, including, for example, cookie, location, strict transport security (STS), and origin
headers. A browser, at any time, can also receive a so-called trigger message upon which the
browser non-deterministically choses an action, for instance, to trigger a script in some document.
The script now outputs a command, as described above, which is then further processed by the
browser. Browsers can also become corrupted, i.e., be taken over by web and network attackers.
Once corrupted, a browser behaves like an attacker process.

For a more detailed description of the Web Infrastructure Model, we refer to the appendices of
[8].

3.2 Informal Description of the Web Payment API Model

The following sections give an informal description of the modeling of the Web Payment APIs
and specifications. The relevant areas of the extension are on the one hand changes concerning the
browser and on the other hand the model of the payment provider servers. Although the payment
provider servers are not part of the APIs and specifications, a model is provided to allow for an
investigation of the properties of the whole system.

3.2.1 The Browser

In the current version of the WIM [8], the browser already supports major functionalities such as
navigating websites, the execution of scripts, WebSockets, WebRTC, AJAX requests, post message
communication, and more.

A major difference had to be introduced to depict the new kind of internal communication within
the browser. Within the Web Payment APIs, the three stakeholders of the merchant, the payer and
the payment provider (represented through the payment handler), communicate through APIs of

27

3 Overview over the model of the Web Payment APIs

the browser. The communication uses the asyncronous pattern of JavaScript promises. Promises
are basically objects that contain callback methods that are triggered in case of a reply. In case
of the Web Payment APIs the browser’s internal mechanisms trigger these callbacks based on
corresponding interaction with its APIs. For example, when the user calls the show() method
of a payment request, this returns a promise through which later on the browser will share the
PaymentResponse object with the merhant’s site.

This internal, not network but promise based, communication was a new feature that had to be
introduced. Within its implementation, it is important to allow arbitrary asynchronous orderings of
communication and event processing of these actors within the browser. The browser was extended
with a set of internal events, that are non-deterministically selected and processed. These events are
the mean of communication for all three stakeholders.

In this extension, one can imagine the browser itself becoming a ‘sub-Dolev-Yao-model’. Within the
browser, the actors have their own knowledge which is stored in their scriptstates and communicate
through the processing and creation of events.

Besides this general approach, one can group the extensions of the browser into two groups. Ex-
tensions of the browser’s API to introduce the interfaces needed by the Web Payment APIs and
specifications, and the extension of the browser to model service workers and their payment han-
dlers. The interaction of the provider of the payment method within the browser is intended to be
performed by payment handlers, which are so-called service worker.

The User Agent’s Payment APIs. Since the browser becomes an active intermediary in the Web
Payment APIs, it has to provide the necessary interfaces to the three main stakeholders: merchant,
payer and provider of the payment method.

The merchant communicates with said APIs through new JavaScript interfaces. Therefore, its main
extension lies within an extension of the available JavaScript interfaces within the RUNSCRIPT
algorithm (Algorithm 2). Its main capabilities lie within creating PaymentRequests, and starting,
updating, aborting and completing payment processes.

The payer’s interaction is hidden within the internal processing of events within the browser. Within
the model, no seperate actor such as the payer/user of the browser is modeled. User interaction is
modeled as non-deterministic actions that can be chosen by the browser. Therefore, its most relevant
sections are within the RUNSCRIPT algorithm (Algorithm 2) and the PROCESSEVENT algorithm
(Algorithm 3). One of the most relevant aspects is the submission of a PaymentRequestEvent. This
event represents the expression of the user’s consent to pay.

The Model of Service Workers . Service workers [24] are JavaScript environments that can be
installed on the browser. They run independently of any document or window. Although they can
be used to solve a huge set of problems, within the Web Payment APIs they are used to implement
the payment handlers. Payment handlers are JavaScript implementations provided by the payment
method providers. Their task is to connect to the standardized interface of the browser to trigger
transactions, while dealing with the payment method specific processes internally.

To provide an exhaustive model of the installation process and the feature set of service workers,
would have gone beyond the scope of this work. Therefore, within this model two major simplifica-
tions have been introduced. First, within this model it is assumed that the needed service workers

28

3.2 Informal Description of the Web Payment API Model

are preinstalled. Possible flaws within this process are considered to be out of scope of this work.
They would originate from the service worker specification [24] and would not be payment handler
specific.

Secondly, the modeled features of service workers are only the subset of features that is directly
relevant to the implementation of the Web Payment APIs.

The concrete model of the service workers heavily leans on the existing model of scripts in the
browser. They have their own scriptinputs and scriptstates. Since they do not run in a window context,
they are not modeled as being part of windows but are stored as a direct property of the browser
state 𝑍Webbrowser. Their most relevant algorithm is the RUNWORKER algorithm (Algorithm 4)

Service workers are able to communicate with other parts of the browser through the earlier explained
event system, post messages and indirectly through network communication (such as XHR).

Payment handlers listen to PaymentRequestEvents which are fired after a user expresses consent to
pay. Such a PaymentRequestEvent is processed and can be responded to with a PaymentHandlerRe-
sponse. This PaymentHandlerResponse is used to communicate details of the transaction and its
status.

3.2.2 The Payment Provider Server

The payment provider server models a basic HTTPS server. It uses the template of the original
WIM model [8].

The server offers three endpoints: /index, /authenticate, and /pay.

/index serves a website that allows a user to obtain an authentication token by calling /authenticate.
Afterwards, this token is submitted to the relevant payment handler with a postMessage.

/pay expects an authentication token and the information necessary to perform a financial transac-
tion.

The payment provider server keeps track of all requested transactions.

3.2.3 The Merchant Server

The payment provider server models a basic HTTPS server. It uses the template of the original
WIM [8].

The server offers a single endpoint /index, that serves the script script_arbitrary_merchant.

The merchant server is not explicitly necessary in the model, since the network attacker could have
served the page as well. For sake of completeness and better understandability it was added in this
model though.

29

3 Overview over the model of the Web Payment APIs

3.3 Security Properties

In this section, we present the security properties that are relevant for the Web Payment APIs. We
use a similar categorization as presented in [6]. The three major aspects are: Session Integrity,
Confidentiality/Privacy and Payment Integrity. We present these properties here in an informal way.
For a formal representation of the security properties, we refer to Appendix C.

3.3.1 Session Integrity

Informally put, it must hold true that only a payer can issue payments of her account. No malicious
agent should be able to issue payments of an unaware payer. In our extensions, we provide a model
of the intended payments of each user. For the formal definition of the property refer to Section C.1,
for the corresponding proof refer to Section D.2.

3.3.2 Confidentiality/Privacy

Informally put, it must hold true that no sensitive information should leak to merchants, payment
method providers or other malicious third parties. This property is dependent on whether the payer
did express payment intent or not. After a payer issues a payment, it is intended that for example a
merchant learns the payer’s address to perform shipping of goods. A formal analysis of the privacy
and confidentiality properties of the Web Payment APIs would have went beyond the scope of this
work. Nonetheless, we mention potential issues that were found during our work.

3.3.3 Payment Integrity

Intuitively, payment integrity describes that the payment that a user authorized is the payment that
later on is performed. It should not be possible for a malicious agent to change data such as the
receiver of the payment, the shipping address and the amount to be paid. This property is dependent
on the users intents, that has to be compared to the execution of payments. The main aspects that we
proof is that the total of a transaction matches the user’s intent as well as the sender and the receiver
of a transaction. For the formal definition of the property refer to Section C.2, for the corresponding
proof refer to Section D.4 and Section D.3.

30

4 Attacks and Vulnerabilities

Through our formal analysis of the Web Payment APIs, we found one attack concerning payment
integrity and two vulnerabilities, concerning privacy and payment integrity, that are in conflict with
the formalized security properties. Within the following sections, we offer a description of these.

4.1 Double Charging Through Retry Mechanism

The retry mechanism allows the merchant to ask the user to retry the payment in case of an error
during processing [13]. Such errors could be based on invalid credit cards, invalid shipping addresses,
or user information such as the email address being invalid. The retry method is located as a method
in the PaymentResponse object that the merchants website receives to either complete(), which
closes the payment and its UI, or to retry(), which allows to restart a payment process of a given
PaymentRequest and display error messages. In case of a retry, the payment process flow is very
similar to the regular payment process starting with the show() method of the PaymentRequest
object. For a further description of the retry flow, see Subsection 2.4.1.

Whether payment handlers could be changed during this retry mechanism was unclear to us during
modeling. We therefore looked at the implementation provided by the Chromium browser [16]. In
their implementation the user is allowed to change payment providers during retry.

During the proof of the security properties of the model, we found an attack based on this feature
that allows a malicious merchant to trick a user to be charged twice during a single checkout flow
with a retry.

After finding this issue, the authors of the specification did confirm, that it is not intended that a
user might change payment handlers during a retry [10].

4.1.1 Assumptions

For this attack, we assume that it is allowed to change payment handlers during a retry of a payment
process. This assumption is based on the behaviour of the reference implementation in the Chromium
browser [16]. We chose this browser as a reference point because the Chromium browser is currently
the only major browser that ships with support of the Payment Request API [23] and the Payment
Handler API [19].

31

4 Attacks and Vulnerabilities

4.1.2 Scenario

A malicious merchant tries to charge a customer twice through malicious interaction with the
Payment Request API.

From the user’s perspective, the following happens: The user triggers a checkout process. She
decides to pay with Payment Handler A. After the authorization, the Payment Request Interface
tells her that Payment Handler A is currently unavailable and that she should choose a different
payment handler. The user therefore selects a different handler, Payment Handler B, and authorizes
the payment for B.

Through the attack of the malicious merchant, the user is charged twice. During the attack Payment
Handler A remains unaware of the second payment. Payment Handler B is unaware of the fact, that
this is a retry, and therefore treats the payment as a new payment request. Payment Handler B is
unable to differentiate between a regular payment request and the retry.

Figure 4.1 shows the concrete flow of this attack.

As a first step (Step 1), the malicious merchant creates a regular payment request. The user follows
the regular payment checkout through the Steps 2 to 11 . Notice that in step 8 , the user submits the
payment to an arbitrarily chosen payment handler which we call Payment Handler A. When receiving
the PaymentRequestEvent, the Payment Handler triggers the transaction through communication
with the payment provider of Payment Handler A.

In a regular checkout, an honest merchant would validate the transaction in step 12 and complete
the payment request.

In this scenario, the malicious merchant ignores the successful transaction and triggers a retry through
invocation of the retry method of the PaymentResponse object (Step 13). With this invocation,
the merchant reports errorFields that are displayed in the trusted user interface of the browser. In
this scenario, the merchant displays an error message telling the user that Payment Handler A is
currently unavailable and that a different one has to be chosen. The user complies expecting that
within a single payment process only one payment will be issued. In step 16 , the browser therefore
submits a new PaymentRequestEvent to a different payment handler called Payment Handler B.
Payment Handler B can not detect that this request was issued as a retry, and therefore, issues a
second financial transaction through the payment provider of Payment Handler B. In the remaining
Steps 17 to 21 , the payment process is completed regularly. To the user, there is no indicator in
these steps that the payment was triggered a second time.

4.1.3 Mitigation

This scenario can be prevented by prohibiting a switch of payment handlers during a payment
request retry.

This fix is already included in the model of the Web Payment APIs.

32

4.1 Double Charging Through Retry Mechanism

2 pr.show()pr.show()

4 CanMakePaymentEventCanMakePaymentEvent

5 ResponseResponse

8 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

9 pre.respondWith()pre.respondWith()

11 PaymentResponse (pres)PaymentResponse (pres)

13 pres.retry()pres.retry()

16 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

17 pre.respondWith()pre.respondWith()

19 PaymentResponse (same but updated)PaymentResponse (same but updated)

20 pres.complete()pres.complete()

Attacker (Seller malicious-shop.com) Browser/User Agent Payment Handler A Payment Handler B

1 Create Payment RequestCreate Payment Request

3 Select all Payment Handlers for PMISelect all Payment Handlers for PMI

6 Present payment UIPresent payment UI

7 User enters dataUser enters data

10 Add user information to responseAdd user information to response

12 Send error message although transaction was fineSend error message although transaction was fine

14 Display error information in UIDisplay error information in UI

15 User changes payment handlerUser changes payment handler

18 Add user information to responseAdd user information to response

21 Close UIClose UI

Attacker (Seller malicious-shop.com) Browser/User Agent Payment Handler A Payment Handler B

Figure 4.1 Double charging through retry mechanism

4.1.4 Disclosure and Fix

This issue was disclosed to the Chromium Team on the 25th of November 2019. They classified
the issue as of medium severity. Other security features implemented by the payment providers
often only allow for interaction with validated merchants that could be blocked from interaction
with their APIs as soon as their malicious behavior would be observed and reported. These security
features can only prevent future exploitations, but can not mitigate the initial malicious behaviour of
a merchant. The Chromium Team was very responsive upon disclosure. A patch fixing the issue has
already been created and was integrated in the Chromium source base starting at version 80.x.

33

4 Attacks and Vulnerabilities

4.2 Potential Issues Through Ambiguous Method Data

Payment handler specific information is passed to the payment handler through the payment request’s
methodData attribute. This happens in case of checking whether a payment can be made as a
prepayment request, as well as in case of the submission of the payment [19]. Such methodData
may include information such as a merchant identifier, from which a payment handler / payment
method provider might infer the receiver of the payment, further instructions from the merchant to
the payment handler, or further information on which exact types of payments are supported (e.g.,
MasterCard or Visa credit cards as in the specification of basic-card [22]).

During the proof of the payment integrity property, we realized that for one payment method
identifier (PMI), several definitions of methodData for said PMI can be provided. These definitions
are independent and might differ significantly. According to the Payment Request API specification
[23] and the Payment Handler API specification [19], this leads to a scenario in which the payment
handler obtains both definitions. Since neither of both specifications give a reasoning for this case,
it is not specified how a payment handler should react to this case. If we model that the payment
handler chooses their methodData non-deterministically in such cases, this can lead to situations
where the receivers of a payment are chosen non-deterministically which breaks the underlying
security assumptions.

We see this as a vulnerability that might lead to potential issues and maybe even attacks in the
future. The impact highly depends on the behavior of the payment handler and the information
that is submitted through the methodData. Especially when thinking about more complex named
payment methods such as basic-card, that might highly depend on the information provided by
methodData, this might become an issue.

Imagine that for example the inconsistency lies between the visible UI and the processing behaviour
of the transaction. Furthermore, imagine two different senders would be specified in the ambiguous
methodData. In such a case a payment handler might send the money to a different person then
what was displayed in the UI.

Or imagine that a not yet existing payment method has a methodData value that determines whether
a payment should be a one-time payment or a recurring scheduled payment. Furthermore, imagine
a malicious merchant uses a deterministic behaviour of the browser and the payment handler to
display a one-time payment and trigger a scheduled payment.

These issues would clearly violate the payment integrity property.

4.2.1 Assumptions

A payment handler / the browser is inconsistent in the way that it uses the methodData when
several potentially ambiguous definitions are given. This assumption is supported by the fact that the
specification does not require the payment handlers to handle such a case in a deterministic/consistent
way.

34

4.2 Potential Issues Through Ambiguous Method Data

2 pr.show()pr.show()

4 CanMakePaymentEventCanMakePaymentEvent

5 ResponseResponse

8 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

10 pre.respondWith()pre.respondWith()

12 PaymentResponse (pres)PaymentResponse (pres)

13 pres.complete()pres.complete()

Attacker (Seller malicious-shop.com) Browser/User Agent Payment Handler

1 Create Payment Request with ambiguous method dataCreate Payment Request with ambiguous method data

3 Select all Payment Handlers for PMISelect all Payment Handlers for PMI

6 Present payment UI (using methodData A)Present payment UI (using methodData A)

7 User enters dataUser enters data

9 use methodData B to perform transactionuse methodData B to perform transaction

11 Add user information to responseAdd user information to response

14 Close UIClose UI

Attacker (Seller malicious-shop.com) Browser/User Agent Payment Handler

Figure 4.2 Potential issue with ambiguous methodDatas for a single payment method identifier

4.2.2 Scenario

Figure 4.2 shows the concrete flow of such a potential issue. This flow basically represents a
general checkout, but with different behavior of the single parties. The attack starts with a malicious
merchant that provides ambiguous method data to a payment request (Step 1). Such ambiguous
method data contains several definitions of data to use for a single payment method identifier. Since
the specification does not define behavior in such a case, we assume that the implemented behavior
of the browser or the payment handlers might be inconsistent. In the figure, we illustrate this by
assuming that in Step 6 , the browsers UI of a payment method may rely on a different method data
value (here called A) than the payment handler later on in Step 9 (here called B).

4.2.3 Mitigation

We propose two potential mitigation approaches: Prohibition of ambiguous methodData values and
specification of the value to use in such a scenario.

Prohibition of ambiguous methodData values, could be realized through checking whether the given
payment method identifiers are specified multiple times when the payment request is constructed. In
such a case the construction of a payment request would lead to an erroneous case and the abortion
of the payment request. We recommend this mitigation approach since it resolves the root cause of
potential issues.

35

4 Attacks and Vulnerabilities

Specification of the value to use, would simply mean extending the specification through a guideline,
defining which value to use in such a case. In case of the paymentModifiers, the specification [23]
contains exactly such a guideline, which suggests a “last-one-wins” approach. Such a guideline
does not fully protect against such issues but at least may raise awareness of the issue.

Within the here presented model, the second method was used. In said cases the algorithms of the
model use the first definition of a methodData for a given payment method identifier. We used this
approach, to verify whether this second proposal does in deed resolve the issue.

4.3 Leak of Personal Data to Merchant Before Expression of Payment
Intent

In a regular online shop setting, a merchant does have a need for obtaining personal data after a
user did express intent to buy. To ship the product to the customer, a merchant needs the address
of the customer. In the specification of the Payment Request API, this information is given to the
merchant before the user did express intent. This is a vulnerability that the specification is aware of,
nonetheless it might leak personal data in a way that a user does not expect.

4.3.1 Assumptions

We assume that the user expects that her information is only shared with the merchant after the
payment was submitted.

4.3.2 Scenario

Figure 4.3 shows the flow of a regular shipping address change in which the described issue occurs.

In Step 8 , the user changes the shipping address in the payment UI. This might be enforced by
initially providing no shippingOption in the payment request as described in Subsection 2.4.2.
The browser afterwards provides the merchant with a PaymentRequestUpdateEvent that contains a
redacted shipping address (containing e.g., the postal code) in Step 9 .

This is an issue since this event occurs before Step 11 in which the user expresses his/her payment
intent.

Additionally, the user is unaware of the fact that this communication with the merchant occurs.

4.3.3 Mitigation

In our opinion, the merchant does not have a need to obtain the shipping address in advance of the
payment intent. The merchant could offer a predefined set of shipping areas and their corresponding
prices. This would resolve the issue without providing the merchant with personal data before the
payment intent was expressed.

36

4.3 Leak of Personal Data to Merchant Before Expression of Payment Intent

2 pr.show()pr.show()

4 CanMakePaymentEventCanMakePaymentEvent

5 ResponseResponse

9 PaymentRequestUpdateEvent (prue)PaymentRequestUpdateEvent (prue)

10 prue.updateWith(details)prue.updateWith(details)

12 PaymentRequestEvent (pre)PaymentRequestEvent (pre)

13 pre.respondWith()pre.respondWith()

15 PaymentResponsePaymentResponse

16 pres.complete()pres.complete()

Attacker (Seller malicious-shop.com) Browser/User Agent Payment Handler

1 Create Payment RequestCreate Payment Request

3 Select all Payment Handlers for PMISelect all Payment Handlers for PMI

6 Present payment UIPresent payment UI

7 User enters dataUser enters data

8 User changes shipping addressUser changes shipping address

11 Select Payment Handler and submitSelect Payment Handler and submit

14 Add user information to responseAdd user information to response

17 Close UIClose UI

Attacker (Seller malicious-shop.com) Browser/User Agent Payment Handler

Figure 4.3 Leak of personal data to merchant before expression of payment intent

37

5 Conclusion and Outlook

Within this thesis, we modeled the Web Payment APIs and analyzed their security. We modeled the
full environment of a web payment ecosystem: the browser APIs, the service workers, the payment
handlers, the payment service provider servers, and the merchant servers. Within this model, we
provided a formal definition of the relevant security properties and performed a security analysis by
proving their fulfillment in the modeled system.

During the proof and the corresponding work with the APIs, we found one attack that allows a
malicious merchant to trick a payer into being charged twice using a vulnerability in the retry
mechanism of the payment request. Since this bug existed in Google Chrome’s implementation of
the Web Payment APIs, we submitted a bug report and the Chromium Team resolved the issue as
recommended in this thesis.

An additional vulnerability was found that might lead to issues depending on future implementations
and extensions. This vulnerability is based on the possibility of defining ambiguous methodData
fields for a single payment method identifier in the payment request. In such a case, the specification
does not recommend a behavior which might lead to inconsistent choices of methodData values to
use.

The last vulnerability that was considered in this thesis is a privacy issue which is already mentioned
in the specification itself. A merchant might get hold of some personal information (e.g., postal
code) in advance of the user’s expression of payment intent. Since this nonetheless is a privacy
issue in our opinion, we offered a mitigation which does prevent said issue.

Furthermore, we provided useful extensions to the Web Infrastructure Model, that allow to model
browser internal promise based communication and offered foundations to provide an exhaustive
model of service workers.

These foundations could be a valuable basis for adding an exhaustive model of service workers to
the Web Infrastructure Model. The life-cycle of service workers and their APIs offer interesting
features, that might introduce potential attacks and vulnerabilities as well.

Our formal analysis did not focus on the privacy of the stakeholders. Although we mention an
obvious issue, we did not formally analyze privacy considerations. During a payment process,
different types of privacy relevant information are used. Such information might contain the
payer’s address, the payer’s installed and supported payment handlers, sensitive data stored in
the methodData, sensitive data stored in the payment details, a payment’s total, the existence of a
payment, the shipping address, the payer’s phone number, the payer’s email address. During the
specified payment process, this data is transmitted and exchanged between the parties that interact
with each other. An in-depth analysis of privacy considerations of the Web Payment APIs therefore
would be an interesting future work.

39

A The extended Web Infrastucture Model with
Web Payment APIs

In the following, we will introduce the extensions and adaptions that were added to the Web
Infrastructure Model to model the Web Payment APIs.

Figure A.1 gives a general overview of how the main mechanisms of the model interact within the
browser during a checkout process.

The first three columns RUNSCRIPT, RUNWORKER and PROCESSEVENT depict the three major
algorithms of the extension. In a non-malicious setting, RUNSCRIPT operates in the domain of the
merchant. Within this algorithm, the APIs are provided that allow a merchant’s website to create
and to interact with payment requests.

RUNWORKER was introduced to model the service workers running the payment handlers. In a
non-malicious setting, they operate in the domain of the payment method provider.

PROCESSEVENT models the intermediary work that is performed by the browser within the
checkout process. As the name suggests, it processes events within the browser.

To allow for all possible orderings of execution, the browser was extended with a set of pending
events. By adding this functionality, the browser becomes a Dolev-Yao style process itself. Within
the browser, different scripts, service workers and the browser itself have different states and inputs,
from which they derive events (messages) that are sent to each other.

A checkout process starts with a script calling the PR_CREATE command (step 1). Through this
command, a payment request is created and added to the paymentStorage of the browser. The script
obtains a payment request nonce, through which it is able to reference the payment request in the
future.

By calling the PR_SHOW command a script can trigger the functionality of a show() method of a
regular payment request object (step 2).

Within this functionality, a CANMAKEPAYMENT event has to be delivered to each relevant
payment handler. Therefore, the corresponding events are added to the pending events in step 3 .
Since from now on, the payment intent can be submitted, an additional event is added, that later on
represents the user’s click on the “pay” button in the payment UI.

In the steps 5 and 6 , the CANMAKEPAYMENT events are delivered to the service workers through
their scriptinputs.

Step 7 corresponds to the user’s click on the “pay” button in the payment UI. The processing of
this event is of special importance, since the payment request’s state at this time corresponds to the
payment that the user intends to perform.

41

A The extended Web Infrastucture Model with Web Payment APIs

As in the specifications defined, the browser then submits a PAYMENTREQUESTEVENT to the
service worker of the selected payment handler (steps 8 to 10).

The service worker processes the payment through interaction with the payment provider server,
that is not depicted in this figure. After this, the service worker calls the PAYMENTHANDLERRE-
SPONSE command (step 11), that creates a PAYMENTHANDLERRESPONSE event (12) that
is delivered to the browser where it is merged with the entered user data (steps 13 and 14). The
resulting PAYMENTRESPONSE is then delivered back to the merchants script (steps 15 to 17).

Finally, the merchant’s script cann call the PRES_COMPLETE command, that resembles the complete()
method of a payment response and completes the checkout process (step 18).

The here depicted flow is not comprehensive in the used functionalities. It is only meant to offer an
easier introduction of the interaction of the components of the models.

Within the presented model, modified algorithms are always presented in its total. Therefore,
some passage directly originate from the Web Infrastructure Model [8]. Unmodified passages are
highlighted in this light gray, while new passages are highlighted in common black.

A.1 General Remarks

To keep the model compact and readable, the abbreviation PRN is used within the model in some
places to denote paymentRequestNonce.

The functions secretOfID(id), ownerOfID(id) and governorOfID(id) are defined analogously to [8].
There they were defined in an OAuth context. In this model the payment provider servers act as
governors of identities/identity providers.

The function secretOfID(id) describes a bijective mapping ID → Passwords that is only available
to the honest browser that owns the ID 𝑏 = ownerOfID(id) and the honest payment provider 𝑝𝑝 =
governorOfID(id).

ownerOfID(id) and governorOfID(id) are adapted accordingly as in [8].

42

A.1 General Remarks

to each payment handlerto each payment handler

5 CANMAKEPAYMENTCANMAKEPAYMENT

6 add to scriptinputadd to scriptinput

7 SUBMITPAYMENTSUBMITPAYMENT

9 PAYMENTREQUESTEVENTPAYMENTREQUESTEVENT

10 add to scriptinputadd to scriptinput

13 PAYMENTHANDLERRESPONSEPAYMENTHANDLERRESPONSE

16 PAYMENTRESPONSEPAYMENTRESPONSE

17 add to scriptinputadd to scriptinput

RUNSCRIPT EventsPROCESSEVENT

1 PR_CREATE commandPR_CREATE command

2 PR_SHOW commandPR_SHOW command

3 CANMAKEPAYMENTCANMAKEPAYMENT

4 SUBMITPAYMENTSUBMITPAYMENT

RUNWORKER

8 PAYMENTREQUESTEVENTPAYMENTREQUESTEVENT

11 PAYMENTHANDLERRESPONSE commandPAYMENTHANDLERRESPONSE command

12 PAYMENTHANDLERRESPONSEPAYMENTHANDLERRESPONSE

RUNWORKER

14 Merge with payer infoMerge with payer info

15 PAYMENTRESPONSEPAYMENTRESPONSE

18 PRES_COMPLETE commandPRES_COMPLETE command

RUNSCRIPT EventsPROCESSEVENT

Figure A.1 General flow of Web Payments in the WIM extension

43

A The extended Web Infrastucture Model with Web Payment APIs

A.2 Browser

Definition A.2.1
The original definition of the set of states of a browser process 𝑍Webbrowser is extended to fit the needs
of the Web Payment APIs. We extend 𝑍Webbrowser by the subterms serviceWorkers, paymentStorage,
events and paymentIntents. A browser state is therefore defined through a term of the form:

⟨𝑤𝑖𝑛𝑑𝑜𝑤𝑠, 𝑖𝑑𝑠, 𝑠𝑒𝑐𝑟𝑒𝑡𝑠, 𝑐𝑜𝑜𝑘𝑖𝑒𝑠, 𝑙𝑜𝑐𝑎𝑙𝑆𝑡𝑜𝑟𝑎𝑔𝑒, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑆𝑡𝑜𝑟𝑎𝑔𝑒, 𝑘𝑒𝑦𝑀𝑎𝑝𝑝𝑖𝑛𝑔,
𝑠𝑡𝑠, 𝐷𝑁𝑆𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐷𝑁𝑆, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑤𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠, 𝑟𝑡𝑐𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠,

serviceWorkers, paymentStorage, events, paymentIntents, 𝑖𝑠𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑⟩

The subterms 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, 𝑖𝑑𝑠, 𝑠𝑒𝑐𝑟𝑒𝑡𝑠, 𝑐𝑜𝑜𝑘𝑖𝑒𝑠, 𝑙𝑜𝑐𝑎𝑙𝑆𝑡𝑜𝑟𝑎𝑔𝑒, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑆𝑡𝑜𝑟𝑎𝑔𝑒,
𝑘𝑒𝑦𝑀𝑎𝑝𝑝𝑖𝑛𝑔, 𝑠𝑡𝑠, 𝐷𝑁𝑆𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐷𝑁𝑆, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑤𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠,
𝑟𝑡𝑐𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠, and 𝑖𝑠𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 are defined as in the original Web Infrastructure Model [8].

The remaining sub terms have the following form:

• serviceWorkers ⊂⟨⟩ ServiceWorkerRegistrations is a list of service worker registrations. This
subterm stores all information concerning service workers, such as their state, their scope
and their inputs.

• paymentStorage ∈ [N × TN] stores references to payment relevant objects that may be
accessed later on through scripts, service workers and the browser

• events ⊂⟨⟩ TN stores a list of events that the browser may process at any time. This set of
events is used to allow for arbitrary orderings of asynchronous events.

• paymentIntents ∈ [N × TN] stores the information, which transactions were intended by the
user. The nonces refer to the relevant payment requests and the terms contain the information
of what totals, receiver etc. were intended in which order. The term is structured as a list of
payment request objects containing the total and the receiver of all intended payments of a
single payment request with the corresponding payment request nonce. This list of historical
intents is necessary because through the retry mechanism an arbitrary amount of intents can
be expressed within one payment request.

An initial state 𝑠𝑏
0 of a browser is defined as in the original WIM [8]. The new subterms are

initialized as follows:

• 𝑠𝑏
0.serviceWorkers ≡ a non-deterministically sampled, finite set of service worker regis-

trations. Note, that these service worker registrations can be partitioned into honest and
malicious service workers by use of their trusted flag. Furthermore, the trusted flag is con-
strained as follows: If there exists a payment provider server that is honest and serves the
scope of the serviceWorker, then the trusted flag must be ⊤. This constraint must be added to
keep the configuration in accordance to the payment method manifest [21]. If a non-trusted
serviceworker was served over the same scope as the trusted and honest payment provider,
the whole trust construct of service workers and payment handlers would be broken directly.

• 𝑠𝑏
0.paymentStorage ≡ ⟨⟩

• 𝑠𝑏
0.paymentIntents ≡ ⟨⟩

44

A.2 Browser

Placeholder Usage
𝜈14 Algorithm 2, lookup key for payment request
𝜈15 Algorithm 3, placeholder for sensitive payer information
𝜈16 Algorithm 2, lookup key for payment request events
𝜈17 Algorithm 3, placeholder for shipping information

Table A.1 List of placeholders added for use in browser algorithms.

Table A.1 shows the newly introduced placeholders in the browser model. It extends the placeholder
table of the browser as provided in [8]. The newly introduced placeholders either serve as place-
holders for lookup nonces or as placeholders for sensitive information that an attacker should not be
able to obtain.

Helper Functions

Given a browser state 𝑠, PaymentObjects(s) denotes the set of all pointers to objects stored in
𝑠.paymentStorage.

Given a browser state 𝑠, PaymentRequests(s) denotes the set of all pointers to objects stored in
𝑠.paymentStorage that originate in Line 96 of Algorithm 2.

Extension of Windows

The window term is extended with a boolean flag paymentRequestShowing. A window therefore is a
term of the form 𝑤 = ⟨nonce, documents, opener, paymentRequestShowing⟩with nonce, documents
and opener defined as in the original model and paymentRequestShowing ∈ {⊤, ⊥}. A window
term is always initialized with 𝑤.paymentRequestShowing = ⊥.

A.2.1 Browser Payment APIs

The main algorithm of the web browser (Algorithm 1) is only extended in a few places. Its main
additions are the support for running service workers and processing the internal browser events.

Algorithm 2 models the execution of a script with the function RUNSCRIPT. Since all earlier function-
alities and interfaces are still exposed to the scripts, a big part of the algorithm stays untouched.

The only old functionality that was adapted in the script is concerning the delivery of post messages.
Service workers can receive post messages in the new model as well. Therefore, if not given a
window nonce but a service worker nonce, the browser submits the message to the corresponding
service worker.

The biggest additions in the script are the extensions of the script APIs by the Web Payment APIs.
PR_CREATE, PR_SHOW, PR_CANMAKEPAYMENT, and PR_ABORT model the corresponding JavaScript func-
tions create(), show(), canMakePayment() and abort() of a PaymentRequest. PRES_COMPLETE, and
PRES_RETRY model the corresponding JavaScript functions complete() and retry() of the Paymen-
tRequestResponse object. PR_GET models later reading of fields of a payment request if changed.
PR_UPDATE_DETAILS models the updateWith() method of the PaymentRequestUpdateEvent. To keep
the model simple, this method is directly exposed to the PaymentRequest in this model, without a
need for a PaymentRequestUpdateEvent.

45

A The extended Web Infrastucture Model with Web Payment APIs

Algorithm 1 Web Browser Model: Main Algorithm.

Input: ⟨𝑎, 𝑓, 𝑚⟩, 𝑠
1: let 𝑠′ ∶= 𝑠

Check if browser is corrupted
2: if 𝑠.isCorrupted /≡ ⊥ then
3: let 𝑠′.pendingRequests ∶= ⟨𝑚, 𝑠.pendingRequests⟩ → Collect incoming messages
4: let 𝑛 ← ℕ
5: let 𝑚′

1, … , 𝑚′
𝑛 ← 𝑑𝑉(𝑠′) → Create 𝑛 new messages nondeterministically.

6: let 𝑎′
1, … , 𝑎′

𝑛 ← IPs
7: stop ⟨⟨𝑎′

1, 𝑎, 𝑚′
1⟩, … , ⟨𝑎′

𝑛, 𝑎, 𝑚′
𝑛⟩⟩, 𝑠′

Receive trigger message
8: if 𝑚 ≡ TRIGGER then
9: let switch ← {script, worker, urlbar, reload, forward, back, event}

10: let 𝑤 ← Subwindows(𝑠′) such that 𝑠′.𝑤.documents ≠ ⟨⟩
↪ if possible; otherwise stop → Pointer to some window.

11: let 𝑡𝑙𝑤 ← ℕ such that 𝑠′.𝑡𝑙𝑤.documents ≠ ⟨⟩
↪ if possible; otherwise stop → Pointer to some top-level window.

12: if switch ≡ script then → Run some script.
13: let 𝑑 ∶= 𝑤 +⟨⟩ activedocument
14: call RUNSCRIPT(𝑤, 𝑑, 𝑠′)
15: else if switch ≡ worker then → Run some service worker.
16: let sw ← 𝑠′.𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠
17: let 𝑠𝑤 ← P(ℕ) such that 𝑠′.𝑠𝑤.𝑛𝑜𝑛𝑐𝑒 = sw.𝑛𝑜𝑛𝑐𝑒
18: call RUNWORKER(𝑠𝑤, 𝑠′)
19: else if switch ≡ urlbar then → Create some new request.
20: let newwindow ← {⊤, ⊥}
21: if newwindow ≡ ⊤ then → Create a new window.
22: let windownonce ∶= 𝜈1
23: let 𝑤′ ∶= ⟨windownonce, ⟨⟩, ⊥⟩
24: let 𝑠′.windows ∶= 𝑠′.windows +⟨⟩ 𝑤′

25: else → Use existing top-level window.
26: let windownonce ∶= 𝑠′.𝑡𝑙𝑤.𝑛𝑜𝑛𝑐𝑒
27: let protocol ← {P, S}
28: let host ← Doms
29: let path ← 𝕊
30: let fragment ← 𝕊
31: let parameters ← [𝕊 × 𝕊]
32: let url ∶= ⟨URL, protocol, host, path, parameters, fragment⟩
33: let req ∶= ⟨HTTPReq, 𝜈2, GET, host, path, parameters, ⟨⟩, ⟨⟩⟩
34: call HTTP_SEND(⟨REQ, windownonce⟩, req, url, ⊥, ⊥, ⊥, 𝑠′)
35: else if switch ≡ reload then → Reload some document.
36: let url ∶= 𝑠′.𝑤.activedocument.location
37: let req ∶= ⟨HTTPReq, 𝜈2, GET, url.host, url.path, url.parameters, ⟨⟩, ⟨⟩⟩
38: let referrer ∶= 𝑠′.𝑤.activedocument.referrer
39: let 𝑠′ ∶= CANCELNAV(𝑠′.𝑤.nonce, 𝑠′)
40: call HTTP_SEND(⟨REQ, 𝑠′.𝑤.nonce⟩, req, url, ⊥, referrer, ⊥, 𝑠′)
41: else if switch ≡ forward then
42: NAVFORWARD(𝑤, 𝑠′)
43: else if switch ≡ back then
44: NAVBACK(𝑤, 𝑠′)

46

A.2 Browser

45: else if switch ≡ event ∧ 𝑠′.events ≠ ⟨⟩ then
46: let e ← 𝑠′.events
47: let 𝑠′.events ∶= 𝑠′.events / {e}
48: PROCESSEVENT(e,𝑤, 𝑠′)

Change corruption status
49: else if 𝑚 ≡ FULLCORRUPT then → Request to corrupt browser
50: let 𝑠′.isCorrupted ∶= FULLCORRUPT
51: stop ⟨⟩, 𝑠′

52: else if 𝑚 ≡ CLOSECORRUPT then → Close the browser
53: let 𝑠′.secrets ∶= ⟨⟩
54: let 𝑠′.windows ∶= ⟨⟩
55: let 𝑠′.pendingDNS ∶= ⟨⟩
56: let 𝑠′.pendingRequests ∶= ⟨⟩
57: let 𝑠′.sessionStorage ∶= ⟨⟩
58: let 𝑠′.cookies ⊂⟨⟩ Cookies such that

↪ (𝑐 ∈⟨⟩ 𝑠′.cookies)⟺ (𝑐 ∈⟨⟩ 𝑠.cookies ∧ 𝑐.content.session ≡ ⊥)
59: let 𝑠′.isCorrupted ∶= CLOSECORRUPT
60: stop ⟨⟩, 𝑠′

Plain-text messages
61: else if 𝑚 ∈ DNSResponses then → DNS response
62: if 𝑚.nonce /∈ 𝑠.pendingDNS ∨ 𝑚.result /∈ IPs

↪ ∨ 𝑚.domain /≡ 𝜋2(𝑠.pendingDNS[𝑚.nonce]).host then
63: stop
64: let ⟨reference, message, url⟩ ∶= 𝑠.pendingDNS[𝑚.nonce]
65: if url.protocol ≡ S then
66: let 𝑠′.pendingRequests ∶= 𝑠′.pendingRequests +⟨⟩ ⟨reference, message, url, 𝜈3, 𝑚.result⟩
67: let message ∶= enca(⟨message, 𝜈3⟩, 𝑠′.keyMapping [message.host])
68: else
69: let 𝑠′.pendingRequests ∶= 𝑠′.pendingRequests +⟨⟩ ⟨reference, message, url, ⊥, 𝑚.result⟩
70: let 𝑠′.pendingDNS ∶= 𝑠′.pendingDNS −𝑚.nonce
71: stop ⟨⟨𝑚.result, 𝑎, message⟩⟩, 𝑠′

72: else if 𝜋1(𝑚) ≡ HTTPResp ∧ ∃ ⟨reference, request, url, ⊥, 𝑓⟩ ∈⟨⟩ 𝑠′.pendingRequests
↪ such that 𝑚.nonce ≡ request.nonce then → Plain HTTP Response

73: remove ⟨reference, request, url, ⊥, 𝑓⟩ from 𝑠′.pendingRequests
74: call PROCESSRESPONSE(𝑚, reference, request, url, key, 𝑓, 𝑠′)
75: else if 𝑚.1 ≡ WS_MSG ∧ ∃ ⟨reference, nonce, ⊥, 𝑓⟩ ∈⟨⟩ 𝑠′.wsConnections

↪ such that 𝑚.nonce ≡ nonce then → Plain Websocket Message
76: call DELIVER_TO_DOC(𝜋2(reference), 𝑚, 𝑠′)

Encrypted messages
77: else if ∃ ⟨reference, request, url, key, 𝑓⟩ ∈⟨⟩ 𝑠′.pendingRequests

↪ such that 𝜋1(decs(𝑚, key)) ≡ HTTPResp then → Encrypted HTTP response
78: let 𝑚′ ∶= decs(𝑚, key)
79: if 𝑚′.nonce /≡ request.nonce then
80: stop
81: remove ⟨reference, request, url, key, 𝑓⟩ from 𝑠′.pendingRequests
82: call PROCESSRESPONSE(𝑚′, reference, request, url, key, 𝑓, 𝑠′)
83: else if ∃ ⟨reference, nonce, key, 𝑓⟩ ∈⟨⟩ 𝑠′.wsConnections

↪ such that 𝜋1(decs(𝑚, key)) ≡ WS_MSG then → Encrypted Websocket Message
84: let 𝑚′ ∶= decs(𝑚, key)
85: if 𝑚′.nonce /≡ nonce then
86: stop
87: call DELIVER_TO_DOC(𝜋2(reference), 𝑚′, 𝑠′)

47

A The extended Web Infrastucture Model with Web Payment APIs

88: else if ∃⟨nonce, info⟩ ∈⟨⟩ 𝑠′.rtcConnections
↪ such that 𝜋1(deca(𝑚, info.privkey)) ≡ RTC_MSG then → WebRTC message

89: let 𝑚′ ∶= deca(𝑚, info.privkey)
90: if 𝑚′.nonce /≡ nonce then
91: stop
92: let docnonce ∶= info.docnonce
93: call DELIVER_TO_DOC(docnonce, 𝑚′, 𝑠′)
94: stop

Algorithm 3 describes how the function PROCESSEVENT models the browser’s event processing.
The events CANMAKEPAYMENT, PAYMENTREQUESTEVENT, and PAYMENTRESPONSE are simply processed by
transmitting the relevant event to the corresponding party.

PAYMENTHANDLERRESPONSE is more complex since it integrates the information provided by the pay-
ment handler through the PaymentHandlerResponse into a PaymentResponse object and submits it
to the event set for further processing.

48

A.2 Browser

Algorithm 2 Web Browser Model: Execute a script.

1: function RUNSCRIPT(𝑤, 𝑑, 𝑠′)
2: let tree ∶= Clean(𝑠′, 𝑠′.𝑑)
3: let cookies ∶= ⟨{⟨𝑐.name, 𝑐.content.value⟩∣𝑐 ∈⟨⟩ 𝑠′.cookies [𝑠′.𝑑.origin.host]

↪ ∧ 𝑐.content.httpOnly = ⊥
↪ ∧ (𝑐.content.secure ⟹ (𝑠′.𝑑.origin.protocol ≡ S))}⟩

4: let tlw ← 𝑠′.windows such that tlw is the top-level window containing 𝑑
5: let sessionStorage ∶= 𝑠′.sessionStorage [⟨𝑠′.𝑑.origin, tlw.nonce⟩]
6: let localStorage ∶= 𝑠′.localStorage [𝑠′.𝑑.origin]
7: let secrets ∶= 𝑠′.secrets [𝑠′.𝑑.origin]
8: let 𝑅 ← script−1(𝑠′.𝑑.script)
9: let in ∶= ⟨tree, 𝑠′.𝑑.nonce, 𝑠′.𝑑.scriptstate, 𝑠′.𝑑.scriptinputs, cookies,

↪ localStorage, sessionStorage, 𝑠′.ids, secrets⟩
10: let state′ ← TN (𝑉),

↪ cookies′ ← Cookies𝜈,
↪ localStorage′ ← TN (𝑉),
↪ sessionStorage′ ← TN (𝑉),
↪ command ← TN (𝑉),
↪ out𝜆 ∶= ⟨state′, cookies′, localStorage′, sessionStorage′, command⟩
↪ such that (in, out𝜆) ∈ 𝑅

11: let out ∶= out𝜆[𝜈10/𝜆1, 𝜈11/𝜆2, …]
12: let 𝑠′.cookies [𝑠′.𝑑.origin.host]

↪ ∶= ⟨CookieMerge(𝑠′.cookies [𝑠′.𝑑.origin.host], cookies′)⟩
13: let 𝑠′.localStorage [𝑠′.𝑑.origin] ∶= localStorage′

14: let 𝑠′.sessionStorage [⟨𝑠′.𝑑.origin, tlw.nonce⟩] ∶= sessionStorage′

15: let 𝑠′.𝑑.scriptstate ∶= 𝑠𝑡𝑎𝑡𝑒′

16: switch command do
17: case ⟨HREF, url, hrefwindow, noreferrer⟩
18: let 𝑤′ ∶= GETNAVIGABLEWINDOW(𝑤, hrefwindow, noreferrer, 𝑠′)
19: let req ∶= ⟨HTTPReq, 𝜈4, GET, url.host, url.path, ⟨⟩, url.parameters, ⟨⟩⟩
20: if noreferrer ≡ ⊤ then
21: let referrerPolicy ∶= noreferrer
22: else
23: let referrerPolicy ∶= 𝑠′.𝑑.headers[ReferrerPolicy]
24: let 𝑠′ ∶= CANCELNAV(𝑠′.𝑤′.nonce, 𝑠′)
25: call HTTP_SEND(𝑠′.𝑤′.nonce, req, url, ⊥, referrer, referrerPolicy, 𝑠′)
26: case ⟨IFRAME, url, window⟩
27: let 𝑤′ ∶= GETWINDOW(𝑤, window, 𝑠′)
28: let req ∶= ⟨HTTPReq, 𝜈4, GET, url.host, url.path, ⟨⟩, url.parameters, ⟨⟩⟩
29: let referrer ∶= 𝑠′.𝑤′.activedocument.location
30: let referrerPolicy ∶= 𝑠′.𝑑.headers[ReferrerPolicy]
31: let 𝑤′ ∶= ⟨𝜈5, ⟨⟩, ⊥⟩
32: let 𝑠′.𝑤′.activedocument.subwindows

↪ ∶= 𝑠′.𝑤′.activedocument.subwindows +⟨⟩ 𝑤′

33: call HTTP_SEND(𝜈5, req, url, ⊥, referrer, referrerPolicy, 𝑠′)

49

A The extended Web Infrastucture Model with Web Payment APIs

34: case ⟨FORM, url, method, data, hrefwindow⟩
35: if method /∈ {GET, POST} then 1

36: stop
37: let 𝑤′ ∶= GETNAVIGABLEWINDOW(𝑤, hrefwindow, ⊥, 𝑠′)
38: if method = GET then
39: let body ∶= ⟨⟩
40: let parameters ∶= data
41: let origin ∶= ⊥
42: else
43: let body ∶= data
44: let parameters ∶= url.parameters
45: let origin ∶= 𝑠′.𝑑.origin
46: let req ∶= ⟨HTTPReq, 𝜈4, method, url.host, url.path, ⟨⟩, parameters, body⟩
47: let referrer ∶= 𝑠′.𝑑.location
48: let referrerPolicy ∶= 𝑠′.𝑑.headers[ReferrerPolicy]
49: let 𝑠′ ∶= CANCELNAV(𝑠′.𝑤′.nonce, 𝑠′)
50: call HTTP_SEND(𝑠′.𝑤′.nonce, req, url, origin, referrer, referrerPolicy, 𝑠′)
51: case ⟨SETSCRIPT, window, script⟩
52: let 𝑤′ ∶= GETWINDOW(𝑤, window, 𝑠′)
53: let 𝑠′.𝑤′.activedocument.script ∶= script
54: stop ⟨⟩, 𝑠′

55: case ⟨SETSCRIPTSTATE, window, scriptstate⟩
56: let 𝑤′ ∶= GETWINDOW(𝑤, window, 𝑠′)
57: let 𝑠′.𝑤′.activedocument.scriptstate ∶= scriptstate
58: stop ⟨⟩, 𝑠′

59: case ⟨XMLHTTPREQUEST, url, method, data, xhrreference⟩
60: if method ∈ {CONNECT, TRACE, TRACK}∧ xhrreference /∈ {N , ⊥} then
61: stop
62: if url.host /≡ 𝑠′.𝑑.origin.host

↪ ∨ url /≡ 𝑠′.𝑑.origin.protocol then
63: stop
64: if method ∈ {GET, HEAD} then
65: let data ∶= ⟨⟩
66: let origin ∶= ⊥
67: else
68: let origin ∶= 𝑠′.𝑑.origin
69: let req ∶= ⟨HTTPReq, 𝜈4, method, url.host, url.path, , url.parameters, data⟩
70: let referrer ∶= 𝑠′.𝑑.location
71: let referrerPolicy ∶= 𝑠′.𝑑.headers[ReferrerPolicy]
72: call HTTP_SEND(⟨𝑠′.𝑑.nonce, xhrreference⟩, req, url, origin, referrer, referrerPolicy, 𝑠′)
73: case ⟨BACK, window⟩ 2

74: let 𝑤′ ∶= GETNAVIGABLEWINDOW(𝑤, window, ⊥, 𝑠′)
75: NAVBACK(𝑤, 𝑠′)
76: stop ⟨⟩, 𝑠′

77: case ⟨FORWARD, window⟩
78: let 𝑤′ ∶= GETNAVIGABLEWINDOW(𝑤, window, ⊥, 𝑠′)
79: NAVFORWARD(𝑤, 𝑠′)
80: stop ⟨⟩, 𝑠′

50

A.2 Browser

81: case ⟨CLOSE, window⟩
82: let 𝑤′ ∶= GETNAVIGABLEWINDOW(𝑤, window, ⊥, 𝑠′)
83: remove 𝑠′.𝑤′ from the sequence containing it
84: stop ⟨⟩, 𝑠′

85: case ⟨POSTMESSAGE, window, message, origin⟩
86: let 𝑤′ ← Subwindows(𝑠′) such that 𝑠′.𝑤′.nonce ≡ window
87: if ∃𝑗 ∈ ℕ such that 𝑠′.𝑤′.documents.𝑗.active ≡ ⊤

↪ ∧(origin /≡ ⊥ ⟹ 𝑠′.𝑤′.documents.𝑗.origin ≡ origin) then
88: let 𝑠′.𝑤′.documents.𝑗.scriptinputs

↪ ∶= 𝑠′.𝑤′.documents.𝑗.scriptinputs
↪ +⟨⟩ ⟨POSTMESSAGE, 𝑠′.𝑤.nonce, 𝑠′.𝑑.origin, message⟩

89: if ∃𝑗 ∈ ℕ such that 𝑠′.serviceWorkers.𝑗.nonce ≡ window then
90: let 𝑠′.serviceWorkers.𝑗.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠

↪ ∶= 𝑠′.serviceWorkers.𝑗.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠
↪ +⟨⟩ ⟨POSTMESSAGE, 𝑠′.𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠.𝑗.𝑛𝑜𝑛𝑐𝑒, ⟨⟩, message⟩

91: stop ⟨⟩, 𝑠′

Extension with Payment APIs
92: case ⟨PR_CREATE, methodData, details, options⟩
93: if ¬(methodData ∈ MethodDatas) then
94: stop ⟨⟩, 𝑠′

95: let paymentRequest ∶= ⟨PAYMENTREQUEST, 𝜈14, 𝑠′.𝑑.nonce, methodData, details, options,
↪ ⟨⟩, 𝐶𝑅, ⊥, ⟨⟩⟩

96: let 𝑠′.𝑤.𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒[𝜈14]:= paymentRequest → Create Payment Request
97: let 𝑠′.𝑤′.documents.𝑗.scriptinputs

↪ ∶= 𝑠′.𝑤.documents.𝑗.scriptinputs
↪ +⟨⟩ paymentRequest → Inform script of how to access payment request

98: stop ⟨⟩, 𝑠′

99: case ⟨PR_SHOW, paymentRequestNonce, detailsUpdate⟩
100: let 𝑝𝑟′ ∶= PaymentRequests(s) such that 𝑠′.𝑝𝑟′.PRN ≡paymentRequestNonce
101: if 𝑠′.𝑝𝑟′.𝑠𝑡𝑎𝑡𝑒 ≠ 𝐶𝑅 then
102: stop ⟨⟩, 𝑠′

103: if 𝑠′.𝑤.𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑆ℎ𝑜𝑤𝑖𝑛𝑔 = ⊤ then
104: let 𝑠′.𝑝𝑟′.state ∶= 𝐶𝐿
105: stop ⟨⟩, 𝑠′

106: let 𝑠′.𝑝𝑟′.state ∶= 𝐼𝑁
107: let 𝑠′.𝑤.paymentRequestShowing ∶= ⊤
108: let ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∶= ⟨⟩
109: for each ⟨pmi, receiver, paymentIdentifier⟩ ∈ 𝑝𝑟′.methodData do
110: ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 =ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 +⟨⟩ GET_PAYMENT_HANDLERS(𝑝𝑚𝑖, 𝑠′)
111: for each handler ∈ ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 do
112: 𝑠′.events = 𝑠′.events +⟨⟩ ⟨CANMAKEPAYMENT, handler.nonce,

↪ ⟨𝑤′.activedocument.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.ℎ𝑜𝑠𝑡, 𝑤′.activedocument.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙⟩,
↪ ⟨𝑑

′
.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.ℎ𝑜𝑠𝑡, 𝑑

′
.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙⟩, 𝑚𝑒𝑡ℎ𝑜𝑑𝐷𝑎𝑡𝑎⟩ → Submits data to pay-

ment handlers
113: let handler ← handlers
114: if detailsUpdate ≠ ⟨⟩ then
115: let 𝑠′.𝑝𝑟′.updating ∶= ⊤
116: 𝑠′.events = 𝑠′.events +⟨⟩ ⟨PR_UPDATE_DETAILS, 𝑠′.𝑝𝑟′.paymentRequestNonce,

↪ detailsUpdate⟩

51

A The extended Web Infrastucture Model with Web Payment APIs

117: if handler.trusted ≠ ⊤ then
118: 𝑠′.events = 𝑠′.events +⟨⟩ ⟨SUBMITPAYMENT, 𝑠′.𝑝𝑟′.paymentRequestNonce,

↪ handler.handlerNonce⟩
119: stop ⟨⟩, 𝑠′

120: case ⟨PR_CANMAKEPAYMENT, paymentRequestNonce⟩
121: let 𝑝𝑟′ ∶= PaymentObjects(s) such that 𝑠′.𝑝𝑟′.PRN ≡ PRN
122: if 𝑠′.𝑝𝑟′.state ≠ 𝐶𝑅 then
123: stop ⟨⟩, 𝑠′

124: let ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∶= ⟨⟩
125: for each ⟨pmi, receiver, paymentIdentifier⟩ ∈ 𝑝𝑟′.methodData do
126: ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 =ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 +⟨⟩ GET_PAYMENT_HANDLERS(𝑤, 𝑝𝑚𝑖, 𝑠′)
127: if ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ≠ ⟨⟩ then
128: let 𝑠′.𝑤′.documents.𝑗.scriptinputs

↪ ∶= 𝑠′.𝑤′.documents.𝑗.scriptinputs
↪ +⟨⟩ ⟨CANMAKEPAYMENTRESPONSE, paymentRequestNonce, ⊤⟩ → Let script know that

payment handler is available
129: else
130: let 𝑠′.𝑤′.documents.𝑗.scriptinputs

↪ ∶= 𝑠′.𝑤′.documents.𝑗.scriptinputs
↪ +⟨⟩ ⟨CANMAKEPAYMENTRESPONSE, paymentRequestNonce, ⊥⟩ → Let script know that

payment handler is not available
131: stop ⟨⟩, 𝑠′

132: case ⟨PR_ABORT, paymentRequestNonce⟩
133: let 𝑝𝑟′ ∶= PaymentObjects(s) such that 𝑠′.𝑝𝑟′.PRN ≡ PRN
134: if 𝑠′.𝑝𝑟′.state ≠ 𝐼𝑁 then
135: stop ⟨⟩, 𝑠′

136: if 𝑠′.𝑝𝑟′.responseNonce ≠ ⟨⟩ then
137: stop ⟨⟩, 𝑠′

138: let 𝑠′.𝑝𝑟′.state ∶= 𝐶𝐿
139: let 𝑤.𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑆ℎ𝑜𝑤𝑖𝑛𝑔 ∶= ⊥
140: stop ⟨⟩, 𝑠′

141: case ⟨PRES_COMPLETE, paymentresponse⟩
142: let 𝑝𝑟𝑒𝑠′ ∶= PaymentObjects(s) such that 𝑠′.𝑝𝑟𝑒𝑠′.paymentresponse ≡ paymentresponse
143: if 𝑠′.𝑝𝑟𝑒𝑠′.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ≡ ⊤ then
144: stop ⟨⟩, 𝑠′

145: let 𝑠′.𝑝𝑟𝑒𝑠′.complete ∶= ⊤
146: let 𝑠′.𝑤.𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑆ℎ𝑜𝑤𝑖𝑛𝑔 ∶= ⊥
147: case ⟨PRES_RETRY, paymentresponse, errorFields⟩
148: let 𝑝𝑟𝑒𝑠′ ∶= PaymentObjects(s) such that 𝑠′.𝑝𝑟𝑒𝑠′.paymentresponse ≡ paymentresponse
149: if 𝑠′.𝑝𝑟𝑒𝑠′.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ≡ ⊤ then
150: stop ⟨⟩, 𝑠′

151: let pr ∶= 𝑠′.paymentStorage[𝑠′.𝑝𝑟𝑒𝑠′.paymentRequestNonce]
152: let pr.𝑠𝑡𝑎𝑡𝑒 ∶= 𝐼𝑁
153: let ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∶= ⟨⟩
154: for each ⟨𝑝𝑚𝑖, 𝑑𝑎𝑡𝑎⟩ ∈ 𝑝𝑟′.methodData do
155: ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 =ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 +⟨⟩ GET_PAYMENT_HANDLERS(𝑝𝑚𝑖, 𝑠′)

52

A.2 Browser

156: let handler ∶= handlers such that handler.handlerNonce ≡ 𝑠′.𝑝𝑟𝑒𝑠′.handlerNonce
↪ if possible, otherwise stop ⟨⟩, 𝑠′

157: if handler.trusted ≠ ⊤ then
158: 𝑠′.events = 𝑠′.events +⟨⟩ ⟨SUBMITPAYMENT, pr.paymentRequestNonce,

↪ handler.handlerNonce⟩
159: stop ⟨⟩, 𝑠′

160: case ⟨PR_GET, paymentnonce⟩ → Get Payment Request or Response Object
161: let 𝑝𝑟′ ∶= PaymentObjects(s) such that 𝜋2(𝑠′.𝑝𝑟′) ≡ paymentnonce
162: let 𝑠′.𝑤.documents.𝑗.scriptinputs

↪ ∶= 𝑠′.𝑤′.documents.𝑗.scriptinputs +⟨⟩ 𝑠′.𝑝𝑟′ → Let script get status of payment
request

163: case ⟨PR_UPDATE_DETAILS, paymentRequestNonce, details⟩ → According to spec, updateDetails
can only occure as a reaction to a PaymentRequestUpdateEvent. This is simplified in the model.

164: let 𝑝𝑟′ ∶= PaymentObjects(s) such that 𝑠′.𝑝𝑟′.PRN ≡ PRN
165: if 𝑠′.𝑝𝑟′.state ≠ 𝐼𝑁 then
166: stop ⟨⟩, 𝑠′

167: let 𝑠′.𝑝𝑟′.updating ∶= ⊤
168: 𝑠′.events = 𝑠′.events +⟨⟩ ⟨PR_UPDATE_DETAILS, 𝑠′.𝑝𝑟′.paymentRequestNonce, details⟩
169: case else
170: stop

53

A The extended Web Infrastucture Model with Web Payment APIs

Algorithm 3 Web Browser Model: Process an event.

1: function PROCESSEVENT(𝑒,𝑤, 𝑠′)
2: switch e do

PR show - preflight request whether payment can be made
3: case ⟨CANMAKEPAYMENT, handlerNonce, topOrigin, paymentRequestOrigin, 𝑚𝑒𝑡ℎ𝑜𝑑𝐷𝑎𝑡𝑎⟩
4: let 𝑠𝑤′ ∶= P(ℕ) such that 𝑠′.𝑠𝑤′.nonce ≡ handlerNonce
5: let 𝑠′.𝑠𝑤′.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠 ∶= 𝑠′.𝑠𝑤′.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠 +⟨⟩ e → Pass canmakepayment request

event to worker
6: stop ⟨⟩, 𝑠′ → Result is modeled as being independent of reply of script

User accepts the payment request algorithm
7: case ⟨SUBMITPAYMENT, paymentRequestNonce, handlerNonce⟩
8: let 𝑝𝑟′ ∶= PaymentObjects(s) such that 𝑠′.𝑝𝑟′.PRN ≡ PRN
9: if 𝑠′.𝑝𝑟′.updating = ⊤ then

10: stop ⟨⟩, 𝑠′

11: if 𝑠′.𝑝𝑟′.𝑠𝑡𝑎𝑡𝑒 ≠ 𝐼𝑁 then
12: stop ⟨⟩, 𝑠′

13: let ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∶= ⟨⟩
14: for each ⟨pmi, receiver, paymentIdentifier⟩ ∈ 𝑝𝑟′.methodData do
15: ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 =ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 +⟨⟩ GET_PAYMENT_HANDLERS(𝑝𝑚𝑖, 𝑠′)
16: let handler ∶= ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 such that handler.nonce ≡ handlerNonce
17: let total ∶= 𝑠′.𝑝𝑟′.details.total
18: let modifiers ∶= 𝑠′.𝑝𝑟′.details.modifiers → Abstraction: pass all modifiers
19: let requestBillingAddress ← {⊥, ⊤}
20: let instrument ← handler.instruments
21: let instrumentKey ∶= instrument.instrumentKey
22: let methodData ∶= union of terms 𝑖 ∈ ℕ ∶ 𝜋𝑖(𝑠′.𝑝𝑟′.methodData) for which

↪ 𝜋𝑖(𝑠′.𝑝𝑟′.methodData).supportedMethods ≡ instrument.enabledMethods
23: let pre ∶= ⟨PAYMENTREQUESTEVENT, 𝜈16, paymentRequestNonce, ℎ𝑎𝑛𝑑𝑙𝑒𝑟.nonce, methodData,

↪ total, modifiers, instrumentKey, requestBillingAddress⟩
24: let 𝑠′.𝑤.𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒[𝜈16]:= pre → Make event available for later use
25: 𝑠′.events = 𝑠′.events +⟨⟩ pre → User selects a payment handler at a later time
26: let paymentIntent ∶= 𝑠′.𝑝𝑟′

27: let paymentIntent.methodData ∶= methodData
28: 𝑠′.paymentIntents[paymentRequestNonce] = paymentIntent

↪ +⟨⟩𝑠′.paymentIntents[paymentRequestNonce]
29: stop ⟨⟩, 𝑠′

Payment Handler is selected and processes request
30: case ⟨PAYMENTREQUESTEVENT, paymentRequestEvent, paymentRequestNonce, handlerNonce,

↪ methodData, total, modifiers, instrumentKey, requestBillingAdress⟩
31: let 𝑠𝑤′ ∶= P(ℕ) such that 𝑠′.𝑠𝑤′.nonce ≡ handlerNonce
32: let 𝑠′.𝑠𝑤′.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠 ∶= 𝑠′.𝑠𝑤′.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠 +⟨⟩ e → Pass payment request event to

worker
33: stop ⟨⟩, 𝑠′

54

A.2 Browser

Payment handler’s response is merged with relevant data
34: case ⟨PAYMENTHANDLERRESPONSE, paymentRequestEvent, paymentRequestNonce, handlerNonce,

↪ methodName, details⟩
35: → See: Respond to PaymentRequest Algorithm [19]
36: let 𝑝𝑟′ ∶= PaymentObjects(s) such that 𝑠′.𝑝𝑟′.PRN ≡ PRN
37: let 𝑝𝑟𝑒′ ∶= 𝑠′.𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒[𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐸𝑣𝑒𝑛𝑡]
38: if methodName ∉⟨⟩ 𝑝𝑟𝑒′.methodData then
39: stop ⟨⟩, 𝑠′

40: → See: User accepts the Payment Request algorithm (adapted) [23]
41: if 𝑝𝑟′.𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 = ⊤ then
42: stop ⟨⟩, 𝑠′

43: if 𝑝𝑟′.𝑠𝑡𝑎𝑡𝑒 ≠ 𝐼𝑁 then
44: stop ⟨⟩, 𝑠′

45: let handler ← 𝑠′.serviceWorkers such that 𝑠′.𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠.𝑛𝑜𝑛𝑐𝑒 ≡ handlerNonce
46: let shippingAddress ∶= ⟨⟩
47: if 𝑝𝑟′.options.requestShippingAddress = ⊤ then
48: shippingAdress = 𝜈17

49: let shippingOption ∶= ⟨⟩
50: if 𝑝𝑟′.options.requestShipping = ⊤ then
51: shippingOption = 𝑝𝑟′.shippingOption
52: let payerInfo ∶= ⟨⟩
53: if 𝑝𝑟′.options.requestPayerInfo = ⊤ then
54: payerInfo = 𝜈15 → Any payer specific info (phone, name, email)
55: let responceNonce ∶= 𝜈16
56: if 𝑠′.𝑝𝑟′.responseNonce ≠ ⟨⟩ then
57: responceNonce = 𝑠′.𝑝𝑟′.responseNonce → Use old response if retry
58: let response ∶= ⟨PAYMENTRESPONSE, responseNonce, paymentRequestNonce, handlerNonce,

↪ methodName, details, shippingAddress, shippingOption, payerInfo, ⊥⟩
59: let 𝑠′.𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒[response.paymentResponse] ∶= response
60: 𝑠′.events = 𝑠′.events +⟨⟩ response → Create PAYMENTRESPONSE Event
61: stop ⟨⟩, 𝑠′

Payment Response is submitted to script in user agent
62: case ⟨PAYMENTRESPONSE, paymentRequestNonce, methodName, details, shippingAddress,

↪ shippingOption, payerName, payerEmail, payerPhone⟩
63: let 𝑝𝑟′ ∶= PaymentObjects(s) such that 𝑠′.𝑝𝑟′.PRN ≡ PRN
64: DELIVER_TO_DOC(𝑠′.𝑑.nonce, 𝑒, 𝑠′)
65: stop ⟨⟩, 𝑠′

PR update details
66: case ⟨PR_UPDATE_DETAILS, paymentRequestNonce, details⟩
67: let 𝑝𝑟′ ∶= PaymentObjects(s) such that 𝑠′.𝑝𝑟′.PRN ≡ PRN
68: let 𝑠′.𝑝𝑟′.details ∶= details
69: let 𝑠′.𝑝𝑟′.updating ∶= ⊥
70: stop ⟨⟩, 𝑠′

55

A The extended Web Infrastucture Model with Web Payment APIs

A.2.2 Service Workers/Payment Handlers

Algorithm 4 with its function RUNWORKER models how service workers are executed. The algorithm
is very similar to Algorithm 2 with its function RUNSCRIPT. The biggest difference lies within the
non-existence of a relevant document and the available command set.

The six commands that are available are PAYMENTHANDLERRESPONSE, SET_PAYMENTMANAGER,
GET_PAYMENTMANAGER, XMLHTTPREQUEST, POSTMESSAGE, and OPEN_WINDOW.

Their basic functionalities are the following:

PAYMENTHANDLERRESPONSE is called by a script to submit a PaymentHandlerResponse to the payment
issuer. By doing so, it signals the completion of its processing of the PaymentRequestEvent.

SET_PAYMENTMANAGER A service worker can determine which payment instruments it does want to
support. This command is used to perform such updates.

GET_PAYMENTMANAGER A service worker can get a list of its supported payment instruments. This
command offers such functionality.

XMLHTTPREQUEST as in RUNSCRIPT.

POSTMESSAGE posts a message to a window or another service worker via post message.

OPEN_WINDOW allows a payment handler to open a window for further user interaction.

Algorithm 5 defines a helper function GET_PAYMENT_HANDLERS that returns all relevant payment
handlers for a given payment method identifier.

To model a payment handler, Algorithm 6 was designed. It models a payment handler that upon
receiving a PaymentRequestEvent opens a window through which it obtains an authentication token.
With this token it can issue a payment and craft a payment handler response.

The function DELIVER_TO_DOC in Algorithm 7 is extended to be able to deliver messages as well to
service workers.

Documents of the same scope as to which a service worker is registered have a reference to these
service workers. This is provided through extending Algorithm 8 by a few lines and using the
new Algorithm 9 with its function GET_SWS. It returns a set of relevant service workers for a given
URL.

56

A.2 Browser

Algorithm 4 Web Browser Model: Execute a Service Worker.

1: function RUNWORKER(𝑠𝑤, 𝑠′)
2: let swOrigin ∶= ⟨𝑠′.𝑠𝑤.scope.host, 𝑠′.𝑠𝑤.scope.protocol⟩
3: let cookies ∶= ⟨{⟨𝑐.name, 𝑐.content.value⟩∣𝑐 ∈⟨⟩ 𝑠′.cookies [𝑠′.𝑠𝑤.scope.host]

↪ ∧ 𝑐.content.httpOnly = ⊥
↪ ∧ (𝑐.content.secure ⟹ (𝑠′.𝑠𝑤.scope.protocol ≡ S))}⟩

4: let localStorage ∶= 𝑠′.localStorage [swOrigin]
5: let secrets ∶= 𝑠′.secrets [swOrigin]
6: let 𝑅 ← script−1(𝑠′.𝑠𝑤.script)
7: let in ∶= ⟨𝑠′.𝑠𝑤.nonce,𝑠′.𝑠𝑤.scriptstate, 𝑠′.𝑠𝑤.scriptinputs, cookies,

↪ localStorage, 𝑠′.ids, secrets, swOrigin⟩
8: let state′ ← TN (𝑉),

↪ cookies′ ← Cookies𝜈,
↪ localStorage′ ← TN (𝑉),
↪ command ← TN (𝑉),
↪ out𝜆 ∶= ⟨state′, cookies′, localStorage′, command⟩
↪ such that (in, out𝜆) ∈ 𝑅

9: let out ∶= out𝜆[𝜈10/𝜆1, 𝜈11/𝜆2, …]
10: let 𝑠′.cookies [𝑠𝑤.scope.host]

↪ ∶= ⟨CookieMerge(𝑠′.cookies [𝑠𝑤.scope.host], cookies′)⟩
11: let 𝑠′.localStorage [swOrigin] ∶= localStorage′

12: let 𝑠𝑤.scriptstate ∶= 𝑠𝑡𝑎𝑡𝑒′

13: switch command do
14: case ⟨PAYMENTHANDLERRESPONSE, paymentRequestNonce, handlerNonce, methodName, details⟩
15: let 𝑝𝑟𝑒′ ← ℕ such that 𝜋1(𝜋𝑝𝑟𝑒′(𝑠′.𝑠𝑤.scriptinputs)) = PAYMENTREQUESTEVENT

↪ ∧𝑠′.𝑠𝑤.scriptinputs.paymentRequestNonce ≡ paymentRequestNonce
↪ if possible, otherwise stop ⟨⟩, 𝑠′

16: 𝑠′.events = 𝑠′.events +⟨⟩ ⟨PAYMENTHANDLERRESPONSE, paymentRequestNonce,
↪ handlerNonce, methodName, details⟩ → Create PAYMENTHANDLERRESPONSE Event

17: stop ⟨⟩, 𝑠′

18: case ⟨SET_PAYMENTMANAGER, newValue⟩
19: let 𝑠′.𝑠𝑤.paymentManager ∶= newValue
20: stop ⟨⟩, 𝑠′

21: case ⟨GET_PAYMENTMANAGER⟩
22: let 𝑠′.𝑠𝑤.scriptinputs ∶= 𝑠′.𝑠𝑤.paymentManager
23: stop ⟨⟩, 𝑠′

24: case ⟨XMLHTTPREQUEST, url, method, data, xhrreference⟩ → XmlHttpRequests as in scripts but
for workers

25: if method ∈ {CONNECT, TRACE, TRACK}∧ xhrreference /∈ {N , ⊥} then
26: stop
27: if url.host /≡ 𝑠′.𝑠𝑤.scope.host

↪ ∨ url /≡ 𝑠′.𝑠𝑤.scope.protocol then
28: stop
29: if method ∈ {GET, HEAD} then
30: let data ∶= ⟨⟩
31: let origin ∶= ⊥
32: else
33: let origin ∶= ⟨𝑠′.𝑠𝑤.scope.protocol, 𝑠′.𝑠𝑤.scope.host⟩
34: let req ∶= ⟨HTTPReq, 𝜈4, method, url.host, url.path, , url.parameters, data⟩
35: let referrer ∶= 𝑠′.𝑠𝑤.scope
36: let referrerPolicy ∶= noreferer
37: call HTTP_SEND(⟨𝑠′.𝑠𝑤.nonce, xhrreference⟩, req, url, origin, referrer, referrerPolicy, 𝑠′)

57

A The extended Web Infrastucture Model with Web Payment APIs

38: case ⟨POSTMESSAGE, window, message, origin⟩
39: let 𝑤′ ← Subwindows(𝑠′) such that 𝑠′.𝑤′.nonce ≡ window
40: if ∃𝑗 ∈ ℕ such that 𝑠′.𝑤′.documents.𝑗.active ≡ ⊤

↪ ∧(origin /≡ ⊥ ⟹ 𝑠′.𝑤′.documents.𝑗.origin ≡ origin) then
41: let 𝑠′.𝑤′.documents.𝑗.scriptinputs

↪ ∶= 𝑠′.𝑤′.documents.𝑗.scriptinputs
↪ +⟨⟩ ⟨POSTMESSAGE, 𝑠′.𝑤.nonce, 𝑠′.𝑑.origin, message⟩

42: if ∃𝑗 ∈ ℕ such that 𝑠′.paymentStorage.𝑗.handlerNonce ≡ window then
43: let 𝑠′.serviceWorkers.𝑗.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠

↪ ∶= 𝑠′.serviceWorkers.𝑗.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠
↪ +⟨⟩ ⟨POSTMESSAGE, 𝑠′.𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠.𝑗.ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑁𝑜𝑛𝑐𝑒, ⟨⟩, message⟩

44: stop ⟨⟩, 𝑠′

45: case ⟨OPEN_WINDOW, paymentRequestEvent, windownonce, url⟩ → Allow payment handler to
open window

46: if 𝜋1(𝑠′.paymentStorage[paymentRequestEvent]) = PAYMENTREQUESTEVENT then
47: let 𝑤′ ∶= ⟨windownonce, ⟨⟩, ⊥⟩
48: let 𝑠′.windows ∶= 𝑠′.windows +⟨⟩ 𝑤′

49: let req ∶= ⟨HTTPReq, 𝜈2, GET, url.host, url.path, url.parameters, ⟨⟩, ⟨⟩⟩
50: call HTTP_SEND(⟨REQ, windownonce⟩, req, url, ⊥, ⊥, ⊥, 𝑠′)

Algorithm 5 Web Browser Model: Process script interaction with Payment APIs

1: function GET_PAYMENT_HANDLERS(𝑝𝑚𝑖, 𝑠′)
2: let ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∶= {}
3: for each handler ∈ 𝑠′.𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠 do
4: for each instrument ∈ handler.paymentManager.instruments do
5: if instrument.𝑚𝑒𝑡ℎ𝑜𝑑 = 𝑝𝑚𝑖 then
6: let ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∶= ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∪ {handler}

return ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

58

A.2 Browser

Algorithm 6 Relation of script_default_payment_handler

Input: ⟨handlerNonce, scriptstate, scriptinputs, cookies, localStorage, secrets, swOrigin⟩ → Script that
models the behaviour of a payment handler. Reacts to payment request event and communicates to a
given endpoint of the payment service. Crafts a payment handler response.

1: let switch ← {request, pay, craft, xmlhttp, setmgr, getmgr}
2: if switch ≡ request then → Process payment request event.
3: let 𝑝𝑟𝑒′ ← ℕ such that 𝜋1(𝜋𝑝𝑟𝑒′(scriptinputs)) = PAYMENTREQUESTEVENT if possible, otherwise

↪ stop ⟨𝑠, cookies, localStorage, sessionStorage, ⟨⟩⟩ → Choose a random payment request event
to request token for

4: let 𝑢𝑟𝑙 ← ⟨URL, 𝑆, 𝑠𝑤𝑂𝑟𝑖𝑔𝑖𝑛.host, /index, ⟨⟩, ⟨⟩⟩
5: let command ∶= ⟨OPEN_WINDOW, 𝜋𝑝𝑟𝑒′(scriptinputs), 𝜈18, url⟩ → Open window for user authentifica-

tion
6: stop ⟨𝑠, cookies, localStorage, command⟩
7: else if switch ≡ pay then → Craft payment handler response
8: let 𝑝𝑟𝑒′ ← ℕ such that 𝜋1(𝜋𝑝𝑟𝑒′(scriptinputs)) = PAYMENTREQUESTEVENT if possible, otherwise

↪ stop ⟨𝑠, cookies, localStorage, sessionStorage, ⟨⟩⟩ → Reply to a random payment request event
9: let url ← ⟨URL, S, swOrigin.host, /pay, ⟨⟩, ⟨⟩⟩

10: let total ∶= scriptinputs.𝑝𝑟𝑒′.total
11: let tokenMessage such that 𝜋1(token) = POSTMESSAGE∧ token ∈ scriptinputs if possible; otherwise

↪ stop ⟨𝑠, cookies, localStorage, sessionStorage, ⟨⟩⟩
12: let token ∶= 𝜋3(tokenMessage)
13: let methodData ∶= 𝜋1(scriptinputs.𝑝𝑟𝑒′.methodData) → Use first methodData definition even if

several may be given
14: let receiver ∶= methodData.receiver
15: let paymentIdentifier ∶= methodData.paymentIdentifier
16: let paymentrequestnonce ∶= scriptinputs.𝑝𝑟𝑒′.paymentRequestNonce
17: let command ∶= ⟨XMLHTTPREQUEST, url′, POST,

↪ ⟨token, receiver, total, paymentrequestnonce, paymentIdentifier⟩, ⊥⟩
18: stop
19: else if switch ≡ craft then → Craft payment handler response
20: let 𝑝𝑟𝑒′ ← ℕ such that 𝜋1(𝜋𝑝𝑟𝑒′(scriptinputs)) = PAYMENTREQUESTEVENT → Reply to a random

payment request event
21: let methodName ← TN
22: let details ← TN
23: let command ∶= ⟨PAYMENTHANDLERRESPONSE, 𝑝𝑟𝑒′.paymentRequestNonce, handlerNonce,

↪ methodName, details⟩
24: stop ⟨𝑠, cookies, localStorage, command⟩
25: else if switch ≡ setmgr then → Set Payment Manager
26: let newValue ← TN
27: let command ∶= ⟨SET_PAYMENTMANAGER, newValue⟩
28: stop ⟨𝑠, cookies, localStorage, command⟩
29: else if switch ≡ getmgr then → Get Payment Manager
30: let command ∶= ⟨GET_PAYMENTMANAGER⟩
31: stop ⟨𝑠, cookies, localStorage, command⟩
32: else if switch ≡ xmlhttp then → Perform XMLHTTPRequest
33: let protocol ← {P, S}
34: let host ← Doms
35: let path ← 𝕊
36: let fragment ← 𝕊
37: let parameters ← [𝕊 × 𝕊]
38: let url ∶= ⟨URL, protocol, host, path, parameters, fragment⟩
39: let command ∶= ⟨XMLHTTPREQUEST, url, ⟨⟩, ⟨⟩⟩
40: stop ⟨𝑠, cookies, localStorage, command⟩

59

A The extended Web Infrastucture Model with Web Payment APIs

Algorithm 7 Web Browser Model: Deliver a message to the script in a document or a service worker.

1: function DELIVER_TO_DOC(nonce, data, 𝑠′)
2: if ∃𝑥 ∈ P(ℕ) ∶ 𝑠′.𝑠𝑤′.nonce ≡ nonce then
3: let 𝑠𝑤 ∶= P(ℕ) such that 𝑠′.𝑠𝑤′.nonce ≡ nonce
4: let 𝑠′.𝑠𝑤.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠 ∶= 𝑠′.𝑠𝑤.𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠 +⟨⟩ data
5: else
6: let 𝑤 ← Subwindows(𝑠′), 𝑑 such that 𝑠′.𝑑.nonce ≡ docnonce ∧ 𝑠′.𝑑 = 𝑠′.𝑤.activedocument

↪ if possible; otherwise stop
7: let 𝑠′.𝑑.scriptinputs ∶= 𝑠′.𝑑.scriptinputs +⟨⟩ data

60

A.2 Browser

Algorithm 8 Web Browser Model: Process an HTTP response.

1: function PROCESSRESPONSE(response, reference, request, requestUrl, key, 𝑓, 𝑠′)
Process headers in response

2: if Set-Cookie ∈ response.headers then
3: for each 𝑐 ∈⟨⟩ response.headers [Set-Cookie], 𝑐 ∈ Cookies do
4: let 𝑠′.cookies [request.host] ∶= AddCookie(𝑠′.cookies [request.host] , 𝑐)
5: if Strict-Transport-Security ∈ response.headers ∧ requestUrl.protocol ≡ S then
6: let 𝑠′.sts ∶= 𝑠′.sts +⟨⟩ request.host
7: if Referer ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡.headers then
8: let referrer ∶= 𝑟𝑒𝑞𝑢𝑒𝑠𝑡.headers[Referer]
9: else

10: let referrer ∶= ⊥
11: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then
12: let url ∶= response.headers [Location]
13: if url.fragment ≡ ⊥ then
14: let url.fragment ∶= requestUrl.fragment
15: let method′ ∶= request.method
16: let body′ ∶= request.body
17: if response.status ≡ 303 ∧ request.method /∈ {GET, HEAD} then
18: let method′ ∶= GET
19: let body′ ∶= ⟨⟩
20: if Origin ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡.headers ∧ method′ ≡ POST then
21: let origin ∶= 3
22: else
23: let origin ∶= ⊥
24: if 𝜋1(reference) /≡ XHR then → Do not redirect XHRs.
25: let req ∶= ⟨HTTPReq, 𝜈6, method′, url.host, url.path, url.parameters, ⟨⟩, body′⟩
26: let referrerPolicy ∶= response.headers[ReferrerPolicy]
27: call HTTP_SEND(reference, req, url, origin, referrer, referrerPolicy, 𝑠′)

Deliver/process data in response
28: switch 𝜋1(reference) do
29: case REQ → normal response
30: let 𝑤 ← Subwindows(𝑠′) such that 𝑠′.𝑤.nonce ≡ 𝜋2(reference)

↪ if possible; otherwise stop
31: if response.body /∼ ⟨∗,∗⟩ then
32: stop {}, 𝑠′

33: let script ∶= 𝜋1(response.body)
34: let scriptinputs ∶= 𝜋2(response.body) +⟨⟩ GET_SWS(requestUrl, 𝑠′) → Payment Handler

Extension
35: let 𝑑 ∶= ⟨𝜈7, requestUrl, response.headers, referrer, script, ⟨⟩, scriptinputs, ⟨⟩, ⊤⟩
36: if 𝑠′.𝑤.documents ≡ ⟨⟩ then
37: let 𝑠′.𝑤.documents ∶= ⟨𝑑⟩
38: else
39: let 𝑖 ← ℕ such that 𝑠′.𝑤.documents.𝑖.active ≡ ⊤
40: let 𝑠′.𝑤.documents.𝑖.active ∶= ⊥
41: remove 𝑠′.𝑤.documents.(𝑖 + 1) and all following documents from 𝑠′.𝑤.documents
42: let 𝑠′.𝑤.documents ∶= 𝑠′.𝑤.documents +⟨⟩ 𝑑
43: stop {}, 𝑠′

61

A The extended Web Infrastucture Model with Web Payment APIs

44: case XHR → process XHR response
45: let headers ∶= response.headers − Set-Cookie
46: let 𝑚 ∶= ⟨XMLHTTPREQUEST, headers, response.body, 𝜋3reference⟩
47: call DELIVER_TO_DOC(𝜋2(reference), 𝑚, 𝑠′)
48: stop {}, 𝑠′

49: case WS → process WebSocket response
50: if response.status /≡ 101 ∨ response.headers[Upgrade] /≡ websocket then
51: stop
52: let wsconn ∶= ⟨reference, request.nonce, key, 𝑓⟩
53: let 𝑠′.wsConnections ∶= 𝑠′.wsConnections +⟨⟩ wsconn

Algorithm 9 Web Browser Model: Get relevant service workers for URL

1: function GET_SWS(𝑢𝑟𝑙, 𝑠′)
2: let ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∶= {}
3: for each handler ∈ 𝑠′.𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠 do
4: if handler.scope.domain = 𝑢𝑟𝑙.domain ∧ handler.scope.protocol = 𝑢𝑟𝑙.protocol then
5: let ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∶= ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠 ∪ {handler}

return ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

62

A.3 Payment Provider Server

A.3 Payment Provider Server

Definition A.3.1
The set of possible states 𝑍𝑝𝑝 of a payment provider server 𝑝𝑝 is the set of terms of the form:

⟨𝐷𝑁𝑆𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐷𝑁𝑆, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑐𝑜𝑟𝑟𝑢𝑝𝑡,
𝑘𝑒𝑦𝑀𝑎𝑝𝑝𝑖𝑛𝑔, 𝑡𝑙𝑠𝑘𝑒𝑦𝑠, 𝑖𝑑𝑠, transactions, tokens⟩

Where DNSaddress, pendingDNS, pendingRequests, corrupt, keyMapping, tlskeys, and ids defined
as in the Web Infrastructure Model [8].

The remaining sub terms have the following form:

• transactions ∈ [TN × TN] stores all transactions that have been submitted and accepted by
the payment provider server.

• tokens ∈ [TN ×TN] stores all auth tokens that have been authorized by the payment provider
through basic authorization.

An initial state 𝑠𝑝𝑝
0 of 𝑝𝑝 is a state of 𝑝𝑝 with 𝑠𝑝𝑝

0 .pendingDNS ≡ ⟨⟩, 𝑠𝑝𝑝
0 .pendingRequests ≡

⟨⟩, 𝑠𝑝𝑝
0 .corrupt ≡ ⊥, 𝑠𝑝𝑝

0 .keyMapping being the same as the key mapping for browsers [9],
𝑠𝑝𝑝

0 .tlskeys ≡ tlskeys𝑝𝑝, 𝑠𝑝𝑝
0 .transactions ≡ ⟨⟩, and 𝑠𝑝𝑝

0 .tokens ≡ ⟨⟩.

Placeholder Usage
𝜈1 Algorithm 10, placeholder for auth token used by service worker

Table A.2 List of placeholders used in payment provider server algorithms.

The model of the payment provider server is based on the template for HTTPS servers offered in
the WIM [8].

Table A.2 shows the placeholder that was added to the generic HTTPS model offered in [8]. It is
used to create authentication tokens with which a payment can be authenticated.

The template is modeled in Algorithm 10 with a basic interface offering the ability to process
HTTPS requests of three kinds.

/index serves an entry index page with the script_client_index script.

/authenticate expects the clients credentials as input to respond with an authentication token that
can later be used to pay requests.

/pay is used to process a transaction given a receiver, a total and an authentication token.

In the algorithm, transactions are stored within a dictionary. This allows for an easy implementation
of the retry mechanism, since earlier seen requests of the same request id are simply overwritten.

The script_client_index script is defined in Algorithm 11. It can only do two different things.
First, it can obtain an authorization token by use of a XMLHTTPREQUEST. Secondly, it can submit such
a token with a post request to the service worker waiting for it.

63

A The extended Web Infrastucture Model with Web Payment APIs

Algorithm 10 Relation of an PP 𝑅𝑖: Processing HTTPS Requests.

1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘, 𝑎, 𝑓, 𝑠′)
2: if 𝑚.path ≡ /index then
3: let headers ∶= ⟨⟨ReferrerPolicy, origin⟩⟩
4: let 𝑚′ ∶= encs(⟨HTTPResp, 𝑚.nonce, 200, headers, ⟨script_client_index, ⟨⟩⟩⟩, 𝑘)
5: else if 𝑚.path ≡ /authenticate then
6: let identity ∶=𝑚.body[id]
7: let password ∶=𝑚.body[secret]
8: if password ≠ secretOfID(identity) then
9: stop ⟨⟩, 𝑠′

10: let token ∶= ⟨TOKEN, 𝜈1⟩
11: let 𝑠′.tokens[identity] ∶= 𝑠′.tokens[identity] +⟨⟩ token
12: let 𝑚′ ∶= encs(⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, token⟩, 𝑘)
13: stop ⟨⟨𝑓, 𝑎, 𝑚′⟩⟩, 𝑠′

14: else if 𝑚.path ≡ /pay ∧𝑚.method ≡ POST then
15: let token ∶=𝑚.body[token]
16: let sender ← ids such that token ∈ 𝑠′.tokens[sender]

↪ if possible; otherwise stop
17: let receiver ∶=𝑚.body[receiver]
18: let total ∶=𝑚.body[total]
19: let paymentrequestnonce ∶=𝑚.body[paymentrequestnonce]
20: let paymentIdentifier ∶=𝑚.body[paymentIdentifier]
21: let 𝑠′.transactions[⟨paymentIdentifier⟩] ∶= ⟨sender, receiver, total, pid, paymentrequestnonce⟩

→ Seamlessly integrate retry updates
22: let 𝑚′ ∶= encs(⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨⟩⟩, 𝑘)
23: stop ⟨⟨𝑓, 𝑎, 𝑚′⟩⟩, 𝑠′

Algorithm 11 Relation of script_client_index.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let switch ← {auth, postToken}
2: if switch ≡ auth then
3: let url ∶= GETURL(tree, docnonce)
4: let id ← ids
5: let username ∶= 𝜋1(id)
6: let domain ∶= 𝜋2(id)
7: let interactive ← {⊥, ⊤}
8: let url′ ∶= ⟨URL, S, url.host, /authenticate, ⟨⟩, ⟨⟩⟩
9: let secret such that secret = secretOfID(id)∧ secret ∈ secrets if possible; otherwise

↪ stop ⟨𝑠, cookies, localStorage, sessionStorage, ⟨⟩⟩
10: let command ∶= ⟨XMLHTTPREQUEST, url′, POST, ⟨id, secret⟩, ⊥⟩
11: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
12: else
13: let token such that 𝜋1(token) = TOKEN ∧ token ∈ scriptinputs if possible; otherwise

↪ stop ⟨𝑠, cookies, localStorage, sessionStorage, ⟨⟩⟩
14: let swNonce such that 𝜋1(swNonce) = SWNONCE ∧ swNonce ∈ scriptinputs if possible; otherwise

↪ stop ⟨𝑠, cookies, localStorage, sessionStorage, ⟨⟩⟩
15: let command ∶= ⟨POSTMESSAGE, swNonce, token, ⟨⟩⟩
16: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

64

A.4 Merchant Server

A.4 Merchant Server

Definition A.4.1
The set of possible states 𝑍𝑚𝑠 of a merchant server 𝑚𝑠 is the set of terms of the form:

⟨𝐷𝑁𝑆𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐷𝑁𝑆, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑡𝑙𝑠𝑘𝑒𝑦𝑠, 𝑘𝑒𝑦𝑀𝑎𝑝𝑝𝑖𝑛𝑔, 𝑐𝑜𝑟𝑟𝑢𝑝𝑡⟩

Where DNSaddress, pendingDNS, pendingRequests, tlskeys, keyMapping, and corrupt defined as
in the Web Infrastructure Model [8].

The definition of the server state is therefore exactly the same as in the WIM.

An initial state 𝑠𝑚𝑠
0 of 𝑚𝑠 is a state of 𝑎𝑠 with 𝑠𝑚𝑠

0 .pendingDNS ≡ ⟨⟩, 𝑠𝑚𝑠
0 .pendingRequests ≡ ⟨⟩,

𝑠𝑚𝑠
0 .corrupt ≡ ⊥, 𝑠𝑚𝑠

0 .keyMapping being the same as the keymapping for browsers [9], and
𝑠𝑚𝑠

0 .tlskeys ≡ tlskeys𝑎𝑠.

The model of the payment provider server is based on the template for HTTPS servers offered in
the WIM [8].

The template is implemented in Algorithm 12 with a basic interface offering the ability to process
HTTPS requests of only a single kind.

/index serves an entry index page with the script_arbitrary_merchant script.

Algorithm 12 Relation of a merchant server 𝑅𝑖: Processing HTTPS Requests.

1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘, 𝑎, 𝑓, 𝑠′)
2: if 𝑚.path ≡ /index then
3: let headers ∶= ⟨⟨ReferrerPolicy, origin⟩⟩
4: let 𝑚′ ∶= encs(⟨HTTPResp, 𝑚.nonce, 200, headers, ⟨script_arbitrary_merchant, ⟨⟩⟩⟩, 𝑘)
5: stop ⟨⟩, 𝑠′

script_arbitrary_merchant is not defined through code but through the following textual definition.
script_arbitrary_merchant non-deterministically chooses a command to output for each iteration
of the RUNSCRIPT algorithm (Algorithm 2). By modeling it like this, the bahavior of a malicious
and an honest merchant does not have to be differentiated.

A.5 Web Payment APIs model with attackers

The formal model of the Web Payment APIs model is based on the definition of a web system given
in Definition 27 of the WIM [8].

Definition A.5.1
A web system WPAPI = (W,S, script, 𝐸0) is tuple called a Web Payment APIs model with
attackers. It is defined as follows:

65

A The extended Web Infrastucture Model with Web Payment APIs

• W denotes a system described by a set of Dolev-Yao processes. It is partitioned into the sets
Hon and Net. Net includes a network attacker process. Hon consists out of a finite set of web
browsers B, a finite set of web servers for the merchants C and a finite set of payment provider
servers PP with Hon ∶= 𝐵 ∪ 𝐶 ∪ 𝑃𝑃.

As in [9], DNS servers are not modeled directly since they are subsumed by the network
attacker.

• S contains the scripts of the model with a mapping to their string representation. They are
shown in table A.3.

• 𝐸0 is defined as in the WIM[8] as an (infinite) sequence of events, containing an infinite
number of events of the form ⟨𝑎.𝑎.TRIGGER⟩ for every 𝑎 ∈ ∪𝑝∈W𝐼𝑝.

𝑠 ∈ S script(s)
script_default_payment_handler script_default_payment_handler
script_client_index script_client_index

Table A.3 List of scripts with their mapping to a string represenation

A.6 Mentionable simplifications and exclusions

In the here presented model of the Web Payment APIs, several aspects differ from the exact
specification in the APIs. This section is intended to give a short overview over the aspects that
differ and the reasoning for why these aspects were modeled differently.

During the processing of a payment request, there exists a set of situations in which a payment
request can be updated by the use of the updateWith() method of a PaymentMethodChangeEvent.
In the here presented model, a payment request can be updated independently of the existence of a
PaymentMethodChangeEvent. This decision simplifies the resulting method significantly while not
weakening the resulting proof. In a realistic scenario, one can expect that if an attacker would want
to perform such an update, that the attacker would be able to influence the user to creating such an
event by e.g., entering a different receiver address.

Furthermore, the onpaymentmethodchange interface of the payment request object, and the
changePaymentMethod() interface of a PaymentRequestEvent are not modelled, since their gen-
eral use-case are unclear to the author. Additionally, they do not communicate new information
and happen after the relevant submission of the PaymentRequestEvent (Payment Handler). Such
arbitrary communication can be implemented through different and existing interfaces as well.

The interface onshippingaddresschanged and the redactList feature of addresses are not modeled
as well. This aspect is not modelled since it is a direct threat to a customer’s privacy. The approach
of using a redact list is very basic and still leaks a lot of sensitive data. Instead of modelling it, a
thorough discussion is offered. If it had been added to the model, the issue would have been as
visible as without modeling it.

66

A.6 Mentionable simplifications and exclusions

The feature set of service workers that was modeled is not exhaustive. Features such as the installation
process and their functionality as network proxies are not depicted. Offering an exhaustive model
of the service worker API would have gone beyond the scope of this work. The installation process
is complex and issues within it would not have been linked to the Web Payment APIs but to the
service worker API. Therefore, we assume in this work that the service workers are already installed
at the beginning of a run. This might be a oversimplification that hides existing issues within the
APIs. Furthermore, only the necessary features of service workers, that directly affect the Payment
Handler API were modelled.

Additionally, we did exclude modelling the feature of merchant validation in this thesis. The feature
of merchant validation was introduced very recently and we interpret this feature and its specification
as unstable.

67

B Definitions

The following definitions extend the original WIM[8] and are referenced throughout the extended
model and its analysis. Besides completing the formal definition of the earlier presented extension
of the WIM, this chapter serves as a reference, explaining which information is stored in which
entities such as events and objects.

Definition B.0.1 (Payment Request)
A Payment Request is a term:

⟨PAYMENTREQUEST, paymentRequestNonce, documentnonce, methodData, details, options,

shippingOption, state, updating, responseNonce⟩

Where paymentRequestNonce ∈ N , documentnonce ∈ N , methodData ∈ TN , details ∈ TN ,
options ∈ TN , shippingOption ∈ TN , state ∈ {𝐶𝑅, 𝐼𝑁, 𝐶𝐿} (corresponding to the states: Created,
Interactive and Closed), updating ∈ {⊤, ⊥}, and responseNonce ∈ N .

Definition B.0.2 (Payment Request Event)
A Payment Request Event is a term:

⟨PAYMENTREQUESTEVENT, paymentRequestNonce, handlerNonce, methodData, total,

modifiers, instrumentKey, requestBillingAdress⟩

Where paymentRequestNonce ∈ N , handlerNonce ∈ N , methodData ∈ TN , total ∈ TN ,
modifiers ∈ TN , instrumentKey ∈ TN , and requestBillingAdress ∈ {⊥, ⊤}.

Definition B.0.3 (Payment Handler Response)
A Payment Handler Response is a term:

⟨PAYMENTHANDLERRESPONSE, paymentRequestNonce, handlerNonce, methodName, details⟩

Where paymentRequestNonce ∈ N , handlerNonce ∈ N , methodName ∈ TN , and details ∈ TN .

Definition B.0.4 (Payment Response)
A Payment Response is a term:

⟨PAYMENTRESPONSE, paymentResponse, paymentRequestNonce, handlerNonce, methodName, details,

shippingAddress, shippingOption, payerInfo, complete⟩

Where paymentResponse ∈ N , paymentRequestNonce ∈ N , handlerNonce ∈ N , methodName ∈
TN , details ∈ TN , shippingAddress ∈ TN , shippingOption ∈ TN , payerInfo ∈ TN , and complete ∈
{⊥, ⊤}.

69

B Definitions

Definition B.0.5 (Service Worker Registration)
A Service Worker Registration is defined through a term of the form:

⟨𝑛𝑜𝑛𝑐𝑒, 𝑠𝑐𝑜𝑝𝑒, 𝑠𝑐𝑟𝑖𝑝𝑡, 𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠, 𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑡𝑎𝑡𝑒, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝑡𝑟𝑢𝑠𝑡𝑒𝑑⟩

where 𝑛𝑜𝑛𝑐𝑒 ∈ N , 𝑠𝑐𝑜𝑝𝑒 ∈ 𝑈𝑅𝐿𝑠, 𝑠𝑐𝑟𝑖𝑝𝑡 ∈ TN , 𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠 ∈ TN , 𝑠𝑐𝑟𝑖𝑝𝑡𝑠𝑡𝑎𝑡𝑒 ∈ TN ,
𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑟 ∈ 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑟𝑠, and 𝑡𝑟𝑢𝑠𝑡𝑒𝑑 ∈ {⊥, ⊤}.

The set of all Service Worker Registrations is called ServiceWorkerRegistrations.

Definition B.0.6 (Payment Method Identifier)
A Payment Method Identifier is a URL for that holds true:

𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 = 𝑆

PaymentMethodIdentifiers is the set of all possible Payment Method Identifiers.

Definition B.0.7 (Payment Manager)
A Payment Manager is a term consisting of a series of PaymentInstruments. The set of all Payment
Managers is denoted by PaymentManagers

Definition B.0.8 (Payment Instrument)
A Payment Instrument is a term

⟨instrumentKey, enabledMethods⟩

where instrumentKey ∈ 𝕊 and enabledMethods ∈ 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑀𝑒𝑡ℎ𝑜𝑑𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠.

Definition B.0.9 (Payment Method Data)
A payment method data term is a term consisting of a sequence of terms

⟨x1, x2, … ⟩

where each xi is a term ⟨pmi, receiver, paymentIdentifier⟩ with pmi ∈ PaymentMethodIdentifiers,
receiver ∈ TN , and paymentIdentifier ∈ 𝕊. The set of all possible payment method data terms is
referenced by MethodDatas.

70

C Security Properties

As introduced in Section 3.3, the three major security goals of the Web Payment APIs are session
integrity, privacy and payment integrity. In this work, we excluded the privacy component for the
security analysis and focused our efforts on the integrity properties. The following subsections
introduce the properties in both an intuitive and a formal manner.

C.1 Session Integrity

Intuitively, session integrity describes the property that a payment can only be performed if the
sender of the transaction did intend to perform this transaction. No other malicious party can trigger
transactions in the name of the sender.

Put more formally, the following definition expresses this authentication property.

Definition C.1.1 (Session Integrity Property)
We say that a Web Payment APIs system model WPAPI 𝑛 fulfills Session Integrity iff for every run
𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest payment provider server 𝑝𝑝 ∈ 𝑃𝑃,
every 𝑡 ∈ S(𝑝𝑝).transactions and the honest browser 𝑏 = ownerOfID(t.sender) it holds true:

𝑡.paymentRequestNonce ∈ S(𝑏).paymentIntents

C.2 Payment Integrity

Intuitively, the financial transactions submitted to a payment provider server should only be transac-
tions that the user intended to be processed. The sender, receiver and total should not be different
to what the user did intend to pay. We describe this by a security property that we call payment
integrity. This name is chosen since the messages received by the payment provider server should
not be different to the users intent.

To express the user’s intent, a field paymentIntents was introduced to the browser’s state, that keeps
track of the status of a paymentrequest when the user submits it.

Because of pending events that were not processed yet, there can not be an exact one-to-one mapping
between paymentIntents and transactions in every step.

We therefore formulated two properties that slightly relax the assumption of a one-to-one mapping.
By Intended Payments we formulate the property that if a transaction exists on an honest payment
provider server, there must exist exactly one browser that has a payment intent with the same pay-
mentRequestNonce, total and receiver. Since this property would still allow for multiple transactions

71

C Security Properties

for a single intent, we introduce a second property. By Uniqueness of Payments we formulate the
property that if there exists a paymentIntent in a browser, there exists at most one transaction that
is founded on this payment intent (identified by the payment request nonce). Furthermore, said
transaction, if it exists, has to match the corresponding sender, total and receiver of the payment
intent.

The final payment integrity property is described through the combination of both properties.

The following definitions express this intuitive description formally.

Definition C.2.1 (Intended Payments)
We say that a Web Payment APIs system model WPAPI 𝑛 fulfills Intended Payments iff for every run
𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest payment provider server 𝑝𝑝 ∈ 𝑃𝑃,
every 𝑡 ∈ S(𝑝𝑝).transactions it holds true:

There exists a browser 𝑏 in 𝐵, with ownerOfID(t.sender) = 𝑏, such that:

• ∃𝑖 ∈ ℕ ∶ 𝜋𝑖(S(𝑏).paymentIntents[𝑡.PRN]).total = 𝑡.total

• ∃𝑖 ∈ ℕ ∶ 𝜋𝑖(S(𝑏).paymentIntents[𝑡.PRN]).methodData.receiver = 𝑡.receiver

Definition C.2.2 (Uniqueness of Payments)
We say that a Web Payment APIs system model WPAPI 𝑛 fulfills uniqueness of payments iff for
every run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest browser 𝑏 ∈ 𝐵, every
(𝑝𝑟𝑛, ℎ𝑖𝑠) ∈ S(𝑏).paymentIntents it holds true:

RRRRRRRRRRRRRRRRRR

⋃
𝑝𝑝∈𝑃𝑃∶

S(𝑝𝑝).isCorrupted=⊥

{𝑡 ∈ S(𝑝𝑝).transactions ∣ 𝑝𝑟𝑛 = 𝑡.paymentRequestNonce}

RRRRRRRRRRRRRRRRRR

≤ 1

If such a 𝑡 existst, there exists a 𝑝𝑖 ∈ ℎ𝑖𝑠 such that:

• 𝑏 = ownerOfID(t.sender)

• 𝑡.total = 𝑝𝑖.total

• 𝑡.receiver = 𝜋1(𝑝𝑖.methodData).receiver

Definition C.2.3 (Payment Integrity Property)
We say that a Web Payment APIs system model WPAPI 𝑛 fulfills payment integrity iff the system
both fulfills the Intended Payments property and the Uniqueness of Payments property.

72

D Proofs

D.1 General Properties

Lemma 1 (Credentials do not leak). For every run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in
𝜌, for every honest browsers 𝑏 ∈ 𝐵, every 𝑖𝑑 ∈ 𝑏.ids with 𝑝𝑝 = governor(id) and 𝑝𝑝 honest, it holds
true:

∀𝑝 ∈W/{𝑏, 𝑝𝑝} ∶ secretOfID(id) ∉ 𝑑∅(𝑆(𝑝))

Proof. Let 𝑠 ∶= secretOfID(id). Without loss of generality, we choose a concrete 𝑖𝑑, 𝑠, 𝑏, and 𝑝𝑝
with above mentioned properties.

We show that 𝑠 can not be obtained by any other party 𝑝 ∈ W/{𝑏, 𝑝𝑝}. Let’s assume that the
opposite is the case. There exists a 𝑝 ∈W/{𝑏, 𝑝𝑝} that can derive 𝑠:

∃𝑝 ∈W/{𝑏, 𝑝𝑝} ∶ secretOfID(id) ∈ 𝑑∅(𝑆(𝑝))

In 𝑆0 only 𝑏 and 𝑝𝑝 can derive 𝑠 by definition. Therefore, 𝑝 must have obtained 𝑠 through an action
of either 𝑏 or 𝑝𝑝. This action could either be a corruption of 𝑏 or 𝑝𝑝 or a regular message of an
honest 𝑏 or 𝑝𝑝.

Since both 𝑏 and 𝑝𝑝 are honest by assumption, the attacker can not obtain 𝑠 through corruption of
neither 𝑏 nor 𝑝𝑝.

𝑝𝑝 only uses the credentials in Line 8 of Algorithm 10. In this line, the credentials are only compared
to the submitted credentials of the user. At all other paths, even if 𝑠 is part of the request, it can
not leak to the attacker. Since the credentials do not become part of a message, 𝑝𝑝 can not be the
instance that makes 𝑠 derivable for 𝑝.

Let’s therefore consider 𝑏. By definition of the browser, only scripts and serviceworkers from the ori-
gin ⟨id.domain, 𝑆⟩ can obtain 𝑠. The only scripts / service workers that are served through the origin
corresponding to 𝑝𝑝 are script_client_index (Algorithm 11) and script_default_payment_handler
(Algorithm 6).

Case 1: script_client_index: script_client_index references 𝑠 in Line 9. The secret is transmitted
through an HTTPS connection to the host (instance) that served the page. Since this page
has to have had the same origin as the secret, this can only be 𝑝𝑝. 𝑝𝑝 did already know the
credentials and does not leak them as shown above. The only remaining option is leaking the
credentials through observation of the message and inferring the content. As Lemma 8 of the
WIM [7] shows, this is not possible for HTTPS messages.

Case 2: script_default_payment_handler: script_default_payment_handler does not reference
the credentials at all.

73

D Proofs

Therefore, neither 𝑏 nor 𝑝𝑝 do leak 𝑠 to any other 𝑝. Which proofs the Lemma.

∎

Lemma 2 (Authorization tokens do not leak). For every run 𝜌 of WPAPI 𝑛, every configuration (S,
E, N) in 𝜌, every honest payment provider server 𝑝𝑝 ∈ 𝑃𝑃, every 𝑡𝑜𝑘𝑒𝑛 ∈ S(𝑝𝑝).tokens with 𝑖𝑑
such that S(𝑝𝑝).tokens[𝑖𝑑] = 𝑡𝑜𝑘𝑒𝑛, 𝑏 ∈ 𝐵 ∶ 𝑏 = ownerOfID(id) and 𝑏 honest, it holds true:

∀𝑝 ∈W/{𝑏, 𝑝𝑝} ∶ token ∉ 𝑑∅(𝑆(𝑝))

Proof. All tokens of 𝑝𝑝 are nonces created in Line 10 of Algorithm 10. Since 𝑝𝑝 is honest and
𝑡𝑜𝑘𝑒𝑛 is a nonce of 𝑝𝑝, an attacker can only obtain 𝑡𝑜𝑘𝑒𝑛 through an action of 𝑝𝑝 that allows other
parties to derive 𝑡𝑜𝑘𝑒𝑛.

Since 𝑝𝑝 is honest, an attacker can not derive 𝑡𝑜𝑘𝑒𝑛 through corruption of 𝑝𝑝. Therefore, we have
to consider actions of 𝑝𝑝 that allow other instances to derive 𝑡𝑜𝑘𝑒𝑛.

As shown in Lemma 8 of the WIM [8], the used encrypted HTTPS messages do not leak 𝑡𝑜𝑘𝑒𝑛 to
the attacker on observation.

There are only three cases in which 𝑝𝑝 creates messages: /index, /authenticate, and /pay. Neither
/index nor /pay return a token and therefore are irrelevant. The remaining /authenticate does only
create and return a token on submission of credentials.

As shown in Lemma 1, the attacker can not derive the credentials.

It is left to show that an owner of credentials 𝑏 ∈ 𝐵 does not allow an attacker to derive 𝑡𝑜𝑘𝑒𝑛.

As mentioned above, a token is only issued as a response to a call to /authenticate. This call has
to include valid credentials for a token to be issued. As explained in Lemma 1, the only source for
said credentials are the script_client_index.

As mentioned in the proof of Lemma 1, to be able to access the corresponding secret of an ID,
script_client_index has to be served by a corresponding origin ⟨id.domain, 𝑆⟩.

The only outgoing information leaving script_client_index can be found in Line 15. There, the
message is posted to the serviceWorker that is available in the 𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠. This serviceWorker is
added to the input in Line 34 of Algorithm 8 by GET_SWS (Algorithm 9). GET_SWS only returns
service workers that are of the same scope as id.domain which by the initial state definition of the
browser state are considered trusted.

A corresponding service worker therefore has to be served by a 𝑝𝑝 = governor(id).

As mentioned in the definition of the browser’s initial state, service workers that are served through
an honest payment provider are by definition trustworthy as well. This property was introduced
to be in accordance with the payment method manifest [21]. Additionally, without this property
an attacker would directly be able to serve arbitrary service worker and payment handler scripts
through the domain of the payment method provider.

This, therefore, has to be script_default_payment_handler, since no other payment handler script
is served by 𝑝𝑝.

74

D.1 General Properties

script_default_payment_handler accesses its 𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑝𝑢𝑡𝑠 in several lines, but in all of them the
first field of the term is checked for the right value of the term. Since this first field is set by the
browser which is honest by assumption, only Line 11 is relevant.

The resulting outgoing message is sent via HTTPS message to the host of the service worker which
has to be the owner of id.domain which is 𝑝𝑝.

Therefore, 𝑡𝑜𝑘𝑒𝑛 can not leak.

∎

Lemma 3 (No two PaymentRequests have same PaymentRequestNonce). For every run 𝜌 of
WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest 𝑏 ∈ 𝐵, any payment request nonce
paymentRequestNonce ∈ N it exists at most one 𝑝𝑟′ ∈ PaymentObjects(S(b)) such that:

𝜋1(S(𝑏).𝑝𝑟′) ≡ PAYMENTREQUEST ∧ S(𝑏).𝑝𝑟′.paymentRequestNonce ≡ paymentRequestNonce

Proof. Since 𝑏 is honest by assumption, we only have to consider a non-corrupted behaving browser
𝑏. Note, that the paymentRequestNonce of a payment request is never changed in the model after
creation. This models the behaviour of the corresponding JavaScript object.

Furthermore, the first field of a term stored within the paymentStorage is never modified within
the model. Therefore, we only have to consider the creation of objects in the paymentStorage that
have the required first value of PAYMENTREQUEST. Within the model, such a paymentRequest is only
generated in Line 96 of Algorithm 2. Each created payment request is initialized with a new and
random paymentRequestNonce. Therefore, there can not be two payment requests sharing the same
nonce.

∎

Lemma 4 (PaymentRequestNonce in intent and transaction has to originate from browser). For
every Web Payment APIs system model WPAPI 𝑛, for every run 𝜌 of WPAPI 𝑛, every configuration
(S, E, N) in 𝜌, every honest browser 𝑏 ∈ 𝐵, every (𝑝𝑟𝑛, ℎ𝑖𝑠) ∈ S(𝑏).paymentIntents and any
transaction 𝑡 of an honest payment provider 𝑝𝑝 it holds true:

(𝑡.paymentRequestNonce = 𝑝𝑟𝑛) ⇒ (𝑏 = ownerOfID(t.sender))

Proof. Let 𝑝𝑟𝑛, 𝑏, 𝑡 and 𝑝𝑝 be as defined in the lemma.

This proof is based on the additional assumption, that a payment request nonce does not leak
through a malicious merchant’s website. The payment request nonce is used within the model to
reference the real-life JavaScript PaymentRequest object. Additionally, it was artificially introduced
into the model to formulate a causal mapping between a transaction and a payment intent. This
mapping allows for a comprehensive formalization of the security properties. In a real life setting, a
JavaScript object reference can not leak to a party outside the browser. Therefore, this additional
assumption does not introduce a loss of generality for the real-life setting.

75

D Proofs

The proof of the lemma is based on two properties. Firstly, we show that 𝑝𝑟𝑛 is only derivable by 𝑏
and 𝑝𝑝 and does not leak to a malicious party. Afterwards, we show that 𝑡 can only be added through
the party that is the owner of the ID 𝑡.sender. Since the creator of 𝑡 must have had knowledge of
𝑝𝑟𝑛 and be the owner of the ID 𝑡.sender, we can conclude that (𝑡.paymentRequestNonce = 𝑝𝑟𝑛) ⇒
(𝑏 = ownerOfID(t.sender)).

Property 1: 𝑝𝑟𝑛 is only derivable by 𝑏 and 𝑝𝑝 Payment intents are only added to the browser
state in Line 28 of Algorithm 3. The corresponding event must have been created either
in Line 118 or Line 158 of Algorithm 2. Both directly obtain their payment request nonce
through references to PaymentRequests(B(s)) which by definition originates from Line 96 of
Algorithm 2. Therefore, the relevant payment request nonce is a fresh nonce whose initial
derivability lies within 𝑏 itself.

Within an honest browser knowledge of the payment request nonce is shared with the mer-
chant’s site script (Line 97, Algorithm 2) and the service worker to whom the payment request
was submitted (Line 32, Algorithm 3). By above explained assumption, we assume that the
merchant does not leak the payment request nonce with a party outside of the browser. A
service worker only obtains the payment request nonce after a payment request was submitted,
which only happens in case of trusted service workers (Line 118 and Line 158 of Algorithm
2).

A non-malicious payment handler that acts according to Algorithm 6, only shares the obtained
payment request nonce in Line 17 with 𝑠𝑤𝑂𝑟𝑖𝑔𝑖𝑛.host. In case of a trusted payment handler,
this must represent an honest 𝑝𝑝. Since HTTPS communication is used, the content does not
leak to an outside party. As visible in Algorithm 10, an honest 𝑝𝑝 does not leak the payment
request nonce as well.

Therefore, only 𝑏 and 𝑝𝑝 can derive the payment request nonce.

Property 2: The creator of 𝑡 must be ownerOfID(t.sender) Through Lemma 1 we know that in
case of an honest �̄� and an honest ̄𝑝𝑝 the credentials of an ID do not leak to an outside party.
Furthermore, in case of an honest ̄𝑝𝑝 we need an authorization token 𝑡𝑜𝑘𝑒𝑛 to create the
transaction 𝑡 (Line 21, Algorithm 10). Through Lemma 2, we know that 𝑡𝑜𝑘𝑒𝑛 does not leak
to a party that is not �̄� or ̄𝑝𝑝. Therefore, the token 𝑡𝑜𝑘𝑒𝑛 must have been used by either �̄� or

̄𝑝𝑝 to create the transaction. Since both are honest and an honest ̄𝑝𝑝 does not issue requests
to its /pay endpoint, �̄� must be the issuer. Since 𝑡.sender is directly associated to the token
𝑡𝑜𝑘𝑒𝑛 (Line 16, Algorithm 10), we can conclude that �̄� = ownerOfID(t.sender).

Since the issuer of 𝑡, has to be able to derive the credentials of t.sender and the payment request
nonce, said issuer can only be 𝑏 or 𝑝𝑝. Since only 𝑏 can create the corresponding payment intent, it
therefore has to be 𝑏.

∎

76

D.2 Session Integrity

D.2 Session Integrity

Theorem 1 (Session Integrity). For every run 𝜌 of any WPAPI 𝑛, every configuration (S, E, N)
in 𝜌, every honest payment provider server 𝑝𝑝 ∈ 𝑃𝑃, every 𝑡 ∈ S(𝑝𝑝).transactions and for
𝑏 = ownerOfID(t.sender) being honest, it holds true:

𝑡.paymentRequestNonce ∈ S(𝑏).paymentIntents

Proof. For this proof we trace the transaction 𝑡 back to its corresponding payment intent.

Since we consider only an honest 𝑝𝑝, a transaction 𝑡 is only added to S(𝑝𝑝).transactions in case
of a call to /pay (Line 21, Algorithm 10).

This call must have been authorized by a token 𝑡𝑜𝑘 stored in S(𝑝𝑝).tokens. As shown in Lemma 2,
a network attacker can not obtain such a token from 𝑝𝑝 without knowledge of the identity and secret
of a victim.

Only an instance that can derive the credentials of an identity can issue and obtain a token. The
credentials (Lemma 1) and the tokens (Lemma 2) do not leak to anybody except the honest browser
𝑏 and the honest payment provider server 𝑝𝑝. Since an honest 𝑝𝑝 does not issue calls to its own /pay
enpoint, only 𝑏 can have made the call to /pay that did trigger the creation of transaction 𝑡.

Let’s consider the last authorized call to /pay of 𝑏 that did lead to the creation/overwrite of 𝑡 in
S(pp).transactions. Without loss of generality, let 𝑖𝑑 be the identity that was used to authenticate
the corresponding 𝑡𝑜𝑘𝑒𝑛 of the payment. Furthermore, let pre ∶= 𝑡.paymentRequestNonce.

As mentioned in Lemma 1 and since 𝑏 is not corrupted, the only script that uses secretOfID(id) is
script_client_index.

In general, the relevant call to /pay could have had several origins, such as an URL navigation, a
FORM command of a script, a IFRAME command of a script, a XMLHTTPREQUEST command of a script or
a service worker and so forth.

But since the call has to be authorized by a token 𝑡𝑜𝑘𝑒𝑛 and has to be a POST call, only
script_default_payment_handler can be the source of the call.

script_client_index, can not issue a POST call and only shares tokens with a
script_default_payment_handler served of the same domain as script_client_index. As
argued in Lemma 2, the token is only used in Line 11 of Algorithm 6.

Which is followed by the relevant XMLHTTPREQUEST command, that calls /pay.

As Line 8 shows, an event term with its first field being PAYMENTREQUESTEVENT is needed in the script
inputs of the payment handler script for this line to be executed.

Therefore, a term with its first field being PAYMENTREQUESTEVENT must have been added to the
corresponding scriptinputs of the service worker.

Notice that the submitted paymentrequestnonce is the one associated with said PAYMENTREQUESTEVENT

event term.

77

D Proofs

The only place where this can happen to an honest 𝑏, is Line 32 of Algorithm 3. In this line the
event is passed to the service worker in an unmodified manner.

This event only triggers if PROCESSEVENT was called with a corresponding event. For such an
event to be added to S(𝑏).events, Line 25 has to be executed.

If this line was executed, Line 28 has executed as well, which sets the paymentIntent of
S(𝑏).paymentIntents[paymentRequestNonce] = S(𝑏).𝑝𝑟′.

Since it is exactly this paymentRequestNonce that is passed in the event it follows, that
paymentRequestNonce is the PaymentRequestNonce that is submitted in 𝑝𝑝 and stored in 𝑡.

This proves the theorem.

∎

D.3 Intended Payments

Before proofing the fulfillment of the intended payments property, we offer a short informal overview
of the proof. In a first step, the property is decomposed into three proofs. The first proof shows
that if a transaction exists on an honest payment provider server, that exactly one browser may exist
with a fitting paymentIntend in its paymentIntents (Theorem 1). Building uppon the first proof,
the second proof shows that for said pair of the transaction and the paymentIntent, the totals have
to be identical (Lemma 5). The third lemma shows that for said pair of the transaction and the
paymentIntent, the receivers have to be identical (Lemma 6).

Lemma 5 (Equality of totals of paymentIntent and transaction). For every Web Payment APIs sys-
tem model WPAPI 𝑛, every run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest
payment provider server 𝑝𝑝 ∈ 𝑃𝑃, every 𝑡 ∈ S(𝑝𝑝).transactions it holds true:

There exists a browser 𝑏 in 𝐵, with ownerOfID(t.sender) = b, such that:

∃𝑖 ∈ ℕ ∶ 𝜋𝑖(S(𝑏).paymentIntents[𝑡.paymentRequestNonce]).total = 𝑡.total

Proof. As shown in Theorem 1, we know that

𝑡.paymentRequestNonce ∈ S(𝑏).paymentIntents

holds true for exactly one 𝑏 = ownerOfID(t.sender).

Analogously to Theorem 1, 𝑝𝑝 itself can not be the source of a deviation in the total, since it is not
corrupted, communicated through HTTPS and directly stores the 𝑡𝑜𝑡𝑎𝑙 value submitted to it when
/pay is called.

As a remainder, we only have to show that 𝑏 fulfills this property.

This lemma continuous from where Theorem 1 ended and shows that 𝑡.total must equal one
payment that the user intended to execute.

The 𝑡𝑜𝑡𝑎𝑙 submitted to 𝑝𝑝 originates directly from Line 10 of Algorithm 6.

78

D.3 Intended Payments

We use a similar argument as in Theorem 1:

As Line 8 shows, an event term with its first field being PAYMENTREQUESTEVENT is needed in the script
inputs of the payment handler script for this line to be executed. Therefore, a term with its first field
being PAYMENTREQUESTEVENT must have been added to the corresponding scriptinputs of the service
worker.

Notice that the submitted paymentrequestnonce is the one associated with said PAYMENTREQUESTEVENT

event term.

The only place where this can happen to an honest 𝑏, is Line 32 of Algorithm 3. In this line the
event is passed to the service worker in an unmodified manner.

This event only triggers if PROCESSEVENT was called with a corresponding event. For such an
event to be added to S(𝑏).events, Line 25 has to be executed.

Which leads to the conclusion, that the submitted total has to be the one of Line 17 of Algorithm 3.
Therefore the value of 𝑡𝑜𝑡𝑎𝑙 can not be changed once the SUBMITPAYMENT event was executed and
furthermore originates directly from the corresponding value of the PaymentRequest at that time.

Since this is the total that is added to 𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑠, as well as the one sent to 𝑝𝑝, this proves
the lemma.

∎

Lemma 6 (Equality of receivers of paymentIntent and transaction). For every Web Payment APIs
system model WPAPI 𝑛, every run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest
payment provider server 𝑝𝑝 ∈ 𝑃𝑃, every 𝑡 ∈ S(𝑝𝑝).transactions it holds true:

There exists a browser 𝑏 in 𝐵, with ownerOfID(t.sender) = b, such that:

∃𝑖 ∈ ℕ ∶ 𝜋1(𝜋𝑖(S(𝑏).paymentIntents[𝑡.paymentRequestNonce]).methodData).receiver = 𝑡.receiver

Proof. The proof of this lemma is analogous to the proof of Lemma 5.

As with the totals, a diverting 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 could only originate from 𝑏.

The 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 submitted to 𝑝𝑝 originates directly from Line 14 of Algorithm 6.

We use a similar argument as in Theorem 1:

As Line 8 shows, an event term with its first field being PAYMENTREQUESTEVENT is needed in the script
inputs of the payment handler script for this line to be executed. Therefore, a term with its first field
being PAYMENTREQUESTEVENT must have been added to the corresponding scriptinputs of the service
worker.

Notice that the submitted paymentrequestnonce is the one associated with said PAYMENTREQUESTEVENT

event term.

The only place where this can happen to an honest 𝑏, is Line 32 of Algorithm 3. In this line the
event is passed to the service worker in an unmodified manner.

This event only triggers if PROCESSEVENT was called with a corresponding event. For such an
event to be added to S(𝑏).events, Line 25 has to be executed.

79

D Proofs

Which leads to the conclusion, that the submitted methodData set has to be the one of Line 22 of
Algorithm 3. Therefore, the value of 𝑚𝑒𝑡ℎ𝑜𝑑𝐷𝑎𝑡𝑎 can not be changed once the SUBMITPAYMENT

event was executed and furthermore originates directly from the corresponding value of the Pay-
mentRequest at that time.

As argued in Section 4.2, we introduced the assumption that payment handlers can identify which
methodData to use unambiguously. Since in the model both paymentIntent and paymentHandler
refer to the first methodData and its receiver value.

Accordingly, both choose the same receiver as the methodData sets that they use are identical copies
that can not be changed.

∎

Theorem 2 (Intended Payments). For every Web Payment APIs system model WPAPI 𝑛, for every
run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest payment provider server 𝑝𝑝 ∈ 𝑃 𝑃,
every 𝑡 ∈ S(𝑝𝑝).transactions it holds true:

There exists a browser 𝑏 in 𝐵, with ownerOfID(t.sender) = b, such that:

• ∃𝑖 ∈ ℕ ∶ 𝜋𝑖(S(𝑏).paymentIntents[𝑡.PRN]).total = 𝑡.total

• ∃𝑖 ∈ ℕ ∶ 𝜋𝑖(S(𝑏).paymentIntents[𝑡.PRN]).methodData.receiver = 𝑡.receiver

Proof. Let 𝑝𝑝, 𝑡 and 𝑏 defined as in theorem’s description. As shown in Theo-
rem 1, 𝑏 exists and 𝑏 = ownerOfID(t.sender) holds true. Furthermore, we know that
𝑡.paymentRequestNonce ∈ S(𝑏).paymentIntents. Through Lemma 5 we know that within
said S(𝑏).paymentIntents[𝑡.paymentRequestNonce] there exists 𝑖 ∈ ℕ such that:

𝜋𝑖(S(𝑏).paymentIntents[𝑡.paymentRequestNonce]).total = 𝑡.total

Lastly, Lemma 6 guarantees that there exists 𝑖 ∈ ℕ such that:

𝜋𝑖(S(𝑏).paymentIntents[𝑡.paymentRequestNonce]).methodData.receiver = 𝑡.receiver

The combination of these three lemmas proves the theorem.

∎

D.4 Uniqueness of Payments

We split the proof of uniqueness of payments into four major lemmas: The first lemma shows that
for a given paymentIntent, at most one transaction 𝑡 exists at an honest 𝑝𝑝 that shares the same
paymentRequestNonce. Following, the remaining lemmas each show that given the existence of
such a 𝑡, the properties 𝑏 = ownerOfID(t.sender), 𝑡.total = paymentIntent.total and 𝑡.receiver =
paymentIntent.methodData.receiver hold true.

80

D.4 Uniqueness of Payments

Lemma 7 (At most one honest transaction for each paymentIntent). For every Web Payment APIs
system model WPAPI 𝑛, every run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest
browser 𝑏 ∈ 𝐵, every (𝑝𝑟𝑛, ℎ𝑖𝑠) ∈ S(𝑏).paymentIntents it holds true:

RRRRRRRRRRRRRRRRRR

⋃
𝑝𝑝∈𝑃𝑃∶

S(𝑝𝑝).isCorrupted=⊥

{𝑡 ∈ S(𝑝𝑝).transactions ∣ 𝑝𝑟𝑛 = 𝑡.paymentRequestNonce}

RRRRRRRRRRRRRRRRRR

≤ 1

Proof. We proof this property by contradiction. Let’s assume that

RRRRRRRRRRRRRRRRRR

⋃
𝑝𝑝∈𝑃𝑃∶

S(𝑝𝑝).isCorrupted=⊥

{𝑡 ∈ S(𝑝𝑝).transactions ∣ 𝑝𝑟𝑛 = 𝑡.paymentRequestNonce}

RRRRRRRRRRRRRRRRRR

> 1

From which directly would follow that there are one or more payment provider servers that store a
set of at least two transactions 𝑡1 and 𝑡2 in their 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 with:

𝑡1.paymentRequestNonce = 𝑡2.paymentRequestNonce = 𝑝𝑟𝑛

Let 𝑝𝑝1 be the payment provider server associated to 𝑡1 and 𝑝𝑝2 be the payment provider server
of 𝑡2. As shown in Lemma 1, the only way how 𝑡1 and 𝑡2 could have been added to 𝑝𝑝1 and 𝑝𝑝2
is through authorized calls to /pay and with a valid token. Since both 𝑝𝑝1 and 𝑝𝑝2 are honest by
assumption, do only use HTTPS communication and because of Lemma 1 and Lemma 2, the issuer
of these calls must have been 𝑏1 = ownerOfID(t1.sender) or 𝑏2 = ownerOfID(t2.sender).

Since 𝑡1.paymentRequestNonce = 𝑡2.paymentRequestNonce = 𝑝𝑟𝑛, we can conclude through Lemma
4 that since 𝑝𝑟𝑛 ∈ S(𝑏).paymentIntents, ownerOfID(t1.sender) = 𝑏 = ownerOfID(t2.sender).

Therefore, 𝑏 = 𝑏1 = 𝑏2.

Let’s consider the last authorized call to /pay of 𝑏 that did lead to the creation/overwrite of 𝑡1.

Without loss of generality, let 𝑖𝑑 be the identity that was used to authenticate the corresponding
𝑡𝑜𝑘𝑒𝑛 of the payment. Furthermore, let prn ∶= 𝑡.paymentRequestNonce.

As mentioned in Lemma 1 and since 𝑏 is not corrupted, the only script that uses secretOfID(id) is
script_client_index.

In general, the relevant call to /pay could have had several origins, such as an URL navigation, a
FORM command of a script, a IFRAME command of a script, a XMLHTTPREQUEST command of a script or
a service worker and so forth.

But since the call has to be authenticated by a token 𝑡𝑜𝑘𝑒𝑛 and has to be a POST call, only
script_default_payment_handler can be the source of the call.

script_client_index, the source of 𝑡𝑜𝑘𝑒𝑛 for 𝑏, can not issue a POST call and only shares tokens with
a script_default_payment_handler served of the same domain as script_client_index. As argued
in Lemma 2, the token can only be accessed in Line 11 of Algorithm 6.

Which is followed by the relevant XMLHTTPREQUEST command that calls /pay.

81

D Proofs

As Line 8 shows, an event term with its first field being PAYMENTREQUESTEVENT is needed in the script
inputs of the payment handler script for this line to be executed.

Therefore, a term with its first field being PAYMENTREQUESTEVENT must have been added to the
corresponding scriptinputs of the service worker.

Notice that the submitted paymentrequestnonce is the one associated with said PAYMENTREQUESTEVENT

event term.

The only place where this can happen to an honest 𝑏, is Line 32 of Algorithm 3. In this line, the
event is passed to the service worker in an unmodified manner.

This event only triggers if PROCESSEVENT was called with a corresponding event. For such an
event to be added to S(𝑏).events, Line 25 has to be executed.

If this line was executed, Line 28 has executed as well, which appends the paymentIntent of S(𝑏).𝑝𝑟′

to S(𝑏).paymentIntents[paymentRequestNonce].

Note that the paymentRequestNonce which is stored in the PAYMENTREQUESTEVENT is the one directly
passed to the SUBMITPAYMENT event. Since 𝑡1.paymentRequestNonce = 𝑡2.paymentRequestNonce =
𝑝𝑟𝑛, we can conclude that to satisfy the assumption of two transactions with the same payment
request nonce, there is a need for two submit payment events that reference the same payment
request nonce.

To summarize the proof to this point: Assumed that there would be multiple transactions that fulfill
said property, then there must have been multiple SUBMITPAYMENT events that triggered the creation
of these transactions.

To continue the proof, a modification to the model that diverts from the reference implementation
of Google Chrome [12], had to be performed. Otherwise, the vulnerability explained in Section 4.1
would be possible.

SUBMITPAYMENT events can only be created in two places of the model: In line 118 and Line 158 of
Algorithm 2.

As shown in Lemma 3, there can only exist one payment request object for a given
paymentRequestNonce. The calls to PR_SHOW and/or PRES_RETRY therefore have to have hap-
pened on the same payment request object in the paymentStorage.

Let’s consider the source of the second SUBMITPAYMENT event. As mentioned above, this must either
have been PR_SHOW or PRES_RETRY.

Case 1: PR_SHOW PR_SHOW can not have been the source of the second SUBMITPAYMENT event. To
be able to reach Line 118, 𝑠′.𝑝𝑟′.state must be 𝐶𝑅 (Created). This is only the case for an
unmodified 𝑠′.𝑝𝑟′.state. All other overwrites of 𝑠′.𝑝𝑟′.state set the value either to 𝐼𝑁 or 𝐶𝐿.
Since PR_SHOW only creates the SUBMITPAYMENT event after the state was set to 𝐼𝑁, it can not
have been called in advance. Furthermore, PRES_RETRY can not have created a SUBMITPAYMENT

event in advance as well. The reason for that is that it needs a PaymentResponse object with
the fitting payment request nonce. PAYMENTRESPONSE payment objects are only created in Line
58 of Algorithm 3. This line is only executed when processing an PAYMENTHANDLERRESPONSE

event (Line 34). A PAYMENTHANDLERRESPONSE is only created in Line 16 of Algorithm 4, if a

82

D.4 Uniqueness of Payments

PAYMENTREQUEST event with a corresponding paymentRequestNonce exists in its scriptinputs
(Line 15). The only situation in which such a PAYMENTREQUEST event is added to its scriptinputs
is in Line 32 of Algorithm 3.

As argued earlier, these events must originate from a SUBMITPAYMENT event that can only be
created through PR_SHOW or PRES_RETRY. If PRES_RETRY had been the source, this PRES_RETRY
would have to have a SUBMITPAYMENT source itself which inductively at some point must have
lead to a PR_SHOW. PR_SHOW can not have been called in advance since it would have set the
S(𝑏).𝑝𝑟′.state to 𝐼𝑁. Therefore, PR_SHOW can not be the source of the second SUBMITPAYMENT

event.

Case 2: PRES_RETRY As argued in case 1, PRES_RETRY mus be the source of such a second
SUBMITPAYMENT event. And indeed, as shown in case 1, there can be infinite chains of
PRES_RETRY commands, each triggering a SUBMITPAYMENT event. But, SUBMITPAYMENT events
triggered by a PRES_RETRY commands, can not lead to seperate transactions.

First notice that the payment provider server that receives the resulting transaction has to be
the same as earlier when using PRES_RETRY. The selected handler is the one that did trigger
the PaymentResponse object which is used for this command. As argued above, an honest
payment handler sends its /pay requests always to the payment provider associated through
its domain/scope. Therefore, both requests must have been sent to the same payment provider
server.

Furthermore, the submitted paymentIdentifier has to be the same. Since the paymentIdentifier
part of the methodData is only set on creation and can not be changed afterwards. Therefore,
it has to be the same as well.

The sender does not have to be equal, but it has to originate from a 𝑡𝑜𝑘𝑒𝑛 associated to an id
for which 𝑏 = ownerOfID(id) as argued above.

This aspect proves Lemma 8 as well.

Since for an honest payment provider this equality can only lead to the creation of a single
transaction, this is a direct contradiction which proves that there can not have been two
transactions in the very first place.

∎

Lemma 8 (Authorized transactions for honest paymentIntent). For every Web Payment APIs sys-
tem model WPAPI 𝑛, every run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest
browser 𝑏 ∈ 𝐵, every 𝑝𝑖 ∈ 𝜋𝑖(S(𝑏).paymentIntents) it holds true:

If there exists an honest 𝑝𝑝 with a transaction 𝑡 ∈ S(𝑝𝑝).transactions such that
𝑝𝑖.paymentRequestNonce = 𝑡.paymentRequestNonce, then:

𝑏 = ownerOfID(t.sender)

Proof. This property was shown in the proof of Lemma 7. The basic argumentation lies within the
fact that the creation of transactions has to be authorized by credentials and tokens, which do not
leak (Lemma 1 and Lemma 2). For the precise proof refer to the proof of Lemma 7.

83

D Proofs

∎

Lemma 9 (Equal transactions’s total for honest paymentIntent). For every Web Payment APIs sys-
tem model WPAPI 𝑛, every run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest
browser 𝑏 ∈ 𝐵, every (𝑝𝑟𝑛, ℎ𝑖𝑠) ∈ S(𝑏).paymentIntents it holds true:

If there exists an honest 𝑝𝑝 with a transaction 𝑡 ∈ S(𝑝𝑝).transactions such that 𝑝𝑟𝑛 =
𝑡.paymentRequestNonce, then there existst 𝑝𝑖 ∈ ℎ𝑖𝑠 such that:

𝑡.total = 𝑝𝑖.total

Proof. By assumption, we know that a transaction 𝑡 exists for which 𝑝𝑟𝑛 = 𝑡.paymentRequestNonce.
As shown earlier (Lemma 7), such transactions can only be created through a browser 𝑏 for which
𝑏 = ownerOfID(t.sender). As shown in Lemma 8 such a transaction must have originated from
processing a SUBMITPAYMENT event.

The total passed to the PAYMENTREQUESTEVENT, which is passed unmodified to the payment provider
is determined in Line 17 of Algorithm 3. Exactly the same value is appended to the paymentIntents

in Line 28.

Since paymentIntents are only appended and can not be modified, this is a 𝑝𝑖 ∈
S(𝑏).paymentIntents[𝑝𝑟𝑛] for which 𝑡.total = 𝑝𝑖.total

This proves the lemma.

∎

Lemma 10 (Equal transactions’s receiver for honest paymentIntent). For every Web Payment APIs
system model WPAPI 𝑛, every run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest
browser 𝑏 ∈ 𝐵, every (𝑝𝑟𝑛, ℎ𝑖𝑠) ∈ S(𝑏).paymentIntents it holds true:

If there exists an honest 𝑝𝑝 with a transaction 𝑡 ∈ S(𝑝𝑝).transactions such that
𝑝𝑖.paymentRequestNonce = 𝑡.paymentRequestNonce, then there existst 𝑝𝑖 ∈ ℎ𝑖𝑠 such that:

𝑡.receiver = 𝜋1(𝑝𝑖.methodData).receiver

Proof. By assumption, we know that a transaction 𝑡 exists for which 𝑝𝑟𝑛 = 𝑡.paymentRequestNonce.
As shown earlier (Lemma 7), such transactions can only be created through a browser 𝑏 for which
𝑏 = ownerOfID(t.sender). As shown in Lemma 8 such a transaction must have originated from
processing a SUBMITPAYMENT event.

The methodData passed to the PAYMENTREQUESTEVENT, is passed unmodified to the payment handler.
Its value is calculated in Line 22.

The payment handler selects the first paymentMethod of the methodData submitted through the
PAYMENTREQUESTEVENT event in Line 13 of Algorithm 6. Afterwards it submits the associated receiver
to the payment provider (Line 14). As argued in (Lemma 7), this is the only sequence of events,
that could have lead to the creation of 𝑡.

84

D.4 Uniqueness of Payments

Exactly the same value for the methodData field is set for the payment intent (Line 27) that is
appended to the paymentIntents in Line 28.

Since paymentIntents are only appended and can not be modified, this is a 𝑝𝑖 ∈
S(𝑏).paymentIntents[𝑝𝑟𝑛] for which 𝑡.receiver = 𝜋1(𝑝𝑖.methodData).receiver

This proves the lemma.

∎

Theorem 3 (Uniqueness of Payments). For every Web Payment APIs system model WPAPI 𝑛, ev-
ery run 𝜌 of WPAPI 𝑛, every configuration (S, E, N) in 𝜌, every honest browser 𝑏 ∈ 𝐵, every
(𝑝𝑟𝑛, ℎ𝑖𝑠) ∈ S(𝑏).paymentIntents it holds true:

RRRRRRRRRRRRRRRRRR

⋃
𝑝𝑝∈𝑃𝑃∶

S(𝑝𝑝).isCorrupted=⊥

{𝑡 ∈ S(𝑝𝑝).transactions ∣ 𝑝𝑟𝑛 = 𝑡.paymentRequestNonce}

RRRRRRRRRRRRRRRRRR

≤ 1

If such a 𝑡 exists, there exists a 𝑝𝑖 ∈ ℎ𝑖𝑠 such that:

• 𝑏 = ownerOfID(t.sender)

• 𝑡.total = 𝑝𝑖.total

• 𝑡.receiver = 𝜋1(𝑝𝑖.methodData).receiver

Proof. As shown in Lemma 7, there exists at most one such 𝑡. Lemma 8 shows that
ownerOfID(t.sender) = 𝑏. Lemma 9 shows that 𝑡.total = 𝑝𝑖.total. Finally, Lemma 10 shows
that 𝑡.receiver = 𝜋1(𝑝𝑖.methodData).receiver.

∎

85

Bibliography

[1] M. Abadi, C. Fournet. “Mobile Values, New Names, and Secure Communication”. In: SIG-
PLAN Not. 36.3 (Jan. 2001), pp. 104–115. issn: 0362-1340. doi: 10.1145/373243.360213.
url: https://doi.org/10.1145/373243.360213 (cit. on p. 25).

[2] Apple Inc. Apple Pay. url: https://www.apple.com/apple-pay/ (cit. on pp. 11, 13, 14, 21).
[3] Apple Inc. Providing Merchant Validation. url: https://developer.apple.com/documentat

ion/apple_pay_on_the_web/apple_pay_js_api/providing_merchant_validation (cit. on
pp. 21, 22).

[4] Apple Inc. Safari. url: https://www.apple.com/safari/ (cit. on pp. 14, 15).
[5] K. Czesak. Shaping the Future of Payments in the Browser. Sept. 2018. url: https://

shopifyengineering.myshopify.com/blogs/engineering/shaping-the-future-of-payments-

in-the-browser (cit. on p. 13).
[6] Z. Đurić, O. Marić, D. Gašević. “Internet payment system: A new payment system for internet

transactions”. In: Journal of Universal Computer Science 13.4 (2007), pp. 479–503 (cit. on
p. 30).

[7] D. Fett, R. Küsters, G. Schmitz. “The Web SSO Standard OpenID Connect: In-depth Formal
Security Analysis and Security Guidelines”. In: 2017 IEEE 30th Computer Security Founda-
tions Symposium (CSF). Aug. 2017, pp. 189–202. doi: 10.1109/CSF.2017.20 (cit. on pp. 25,
73).

[8] D. Fett. “An expressive formal model of the web infrastructure”. In: (2018) (cit. on pp. 11,
25–27, 29, 42, 44, 45, 63, 65, 66, 69, 74).

[9] D. Fett, P. Hosseyni, R. Kuesters. An Extensive Formal Security Analysis of the OpenID
Financial-grade API. 2019. arXiv: 1901.11520 [cs.CR] (cit. on pp. 63, 65, 66).

[10] GitHub. Prevent double spending through retry · Issue 882 · w3c/payment-request. url:
https://github.com/w3c/payment-request/issues/882 (cit. on p. 31).

[11] Google Inc. Google Pay A better way to pay by Google. url: https://pay.google.com/intl/
en_us/about/ (cit. on pp. 11, 13).

[12] Google Ireland Limited. Google Chrome - The New Chrome and Most Secure Web Browser.
url: https://www.google.com/intl/en_us/chrome/ (cit. on pp. 20, 82).

[13] MDN web docs. PaymentResponse.retry(). url: https://developer.mozilla.org/en-
US/docs/Web/API/PaymentResponse/retry (cit. on p. 31).

[14] Network Working Group. A Universally Unique IDentifier (UUID) URN Namespace. July
2005. url: https://tools.ietf.org/html/rfc4122 (cit. on p. 19).

[15] PayPal. Send Money, Pay Online or Set Up a Merchant Account. url: https://www.paypal.
com/us/home (cit. on pp. 11, 13).

87

https://doi.org/10.1145/373243.360213
https://doi.org/10.1145/373243.360213
https://www.apple.com/apple-pay/
https://developer.apple.com/documentation/apple_pay_on_the_web/apple_pay_js_api/providing_merchant_validation
https://developer.apple.com/documentation/apple_pay_on_the_web/apple_pay_js_api/providing_merchant_validation
https://www.apple.com/safari/
https://shopifyengineering.myshopify.com/blogs/engineering/shaping-the-future-of-payments-in-the-browser
https://shopifyengineering.myshopify.com/blogs/engineering/shaping-the-future-of-payments-in-the-browser
https://shopifyengineering.myshopify.com/blogs/engineering/shaping-the-future-of-payments-in-the-browser
https://doi.org/10.1109/CSF.2017.20
https://arxiv.org/abs/1901.11520
https://github.com/w3c/payment-request/issues/882
https://pay.google.com/intl/en_us/about/
https://pay.google.com/intl/en_us/about/
https://www.google.com/intl/en_us/chrome/
https://developer.mozilla.org/en-US/docs/Web/API/PaymentResponse/retry
https://developer.mozilla.org/en-US/docs/Web/API/PaymentResponse/retry
https://tools.ietf.org/html/rfc4122
https://www.paypal.com/us/home
https://www.paypal.com/us/home

[16] T. C. Projects. Chromium. url: https://www.chromium.org/Home (cit. on p. 31).
[17] O. Rachamim. How many online stores are there in the world? https://www.digitalcommerc

e360.com/2014/12/04/how-many-online-stores-are-there-world/. Dec. 2017 (cit. on p. 11).
[18] R. Solomakhin. Payment Request Test. url: https://rsolomakhin.github.io/ (cit. on p. 20).
[19] W3C. Payment Handler API. Oct. 2019. url: https://www.w3.org/TR/payment-handler/

(cit. on pp. 11, 15, 22, 31, 34, 55).
[20] W3C. Payment Method Identifiers. Sept. 2019. url: https://www.w3.org/TR/payment-

method-id/ (cit. on pp. 11, 15).
[21] W3C. Payment Method Manifest. Dec. 2017. url: https://www.w3.org/TR/payment-method-

manifest/ (cit. on pp. 11, 15, 44, 74).
[22] W3C. Payment Method: Basic Card. Jan. 2020. url: https://www.w3.org/TR/payment-

method-basic-card/ (cit. on pp. 15, 34).
[23] W3C. Payment Request API. Dec. 2019. url: https://www.w3.org/TR/payment-request/

(cit. on pp. 11, 15, 31, 34, 36, 55).
[24] W3C. Service Workers 1. Nov. 2019. url: https://www.w3.org/TR/service-workers/ (cit. on

pp. 28, 29).
[25] W3C. Web Payments Working Group. https://www.w3.org/Payments/WG/ (cit. on p. 11).

All links were last followed on March 5, 2020.

https://www.chromium.org/Home
https://www.digitalcommerce360.com/2014/12/04/how-many-online-stores-are-there-world/
https://www.digitalcommerce360.com/2014/12/04/how-many-online-stores-are-there-world/
https://rsolomakhin.github.io/
https://www.w3.org/TR/payment-handler/
https://www.w3.org/TR/payment-method-id/
https://www.w3.org/TR/payment-method-id/
https://www.w3.org/TR/payment-method-manifest/
https://www.w3.org/TR/payment-method-manifest/
https://www.w3.org/TR/payment-method-basic-card/
https://www.w3.org/TR/payment-method-basic-card/
https://www.w3.org/TR/payment-request/
https://www.w3.org/TR/service-workers/
https://www.w3.org/Payments/WG/

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 The Web Payment APIs
	2.1 Involved Parties
	2.2 APIs and Specifications of the Web Payment APIs
	2.3 General Flow
	2.4 Extended Flows

	3 Overview over the model of the Web Payment APIs
	3.1 The Web Infrastructure Model
	3.2 Informal Description of the Web Payment API Model
	3.3 Security Properties

	4 Attacks and Vulnerabilities
	4.1 Double Charging Through Retry Mechanism
	4.2 Potential Issues Through Ambiguous Method Data
	4.3 Leak of Personal Data to Merchant Before Expression of Payment Intent

	5 Conclusion and Outlook
	A The extended Web Infrastucture Model with Web Payment APIs
	A.1 General Remarks
	A.2 Browser
	A.3 Payment Provider Server
	A.4 Merchant Server
	A.5 Web Payment APIs model with attackers
	A.6 Mentionable simplifications and exclusions

	B Definitions
	C Security Properties
	C.1 Session Integrity
	C.2 Payment Integrity

	D Proofs
	D.1 General Properties
	D.2 Session Integrity
	D.3 Intended Payments
	D.4 Uniqueness of Payments

	Bibliography

