-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval.py
92 lines (67 loc) · 3.14 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# -*- coding: utf-8 -*-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Description: Evaluate the face classification models ('MiniXception' or 'SimpleCNN').
"""
import os
import logging
import paddle
from tqdm import tqdm
from models.simple_cnn import SimpleCNN
from models.mini_xception import MiniXception
from data.dataset import load_imdb, split_imdb_data
from data.dataset import FaceDataset
from paddle.io import DataLoader
from argparse import ArgumentParser
from config.confg import parse_args
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO)
def main():
# Load the validation set
logging.info("Loading dataset ...")
data = load_imdb(os.path.join(data_args.imdb_dir, 'imdb.mat'))
_, val_set = split_imdb_data(data, args.validation_split)
val_set = FaceDataset(val_set, img_path_prefix=data_args.imdb_dir, grayscale=data_args.grayscale,
img_size=data_args.img_size)
logging.info(f"The number of validation samples is {val_set.__len__()}.")
# Create a data loader
val_loader = DataLoader(val_set, batch_size=args.batch_size, num_workers=4)
# Initialize the model ('MiniXception' or 'SimpleCNN')
if args.model_name == "MiniXception":
model = MiniXception(n_classes=args.n_classes, in_channels=args.in_channels)
else:
model = SimpleCNN(n_classes=args.n_classes, in_channels=args.in_channels)
# Load the model state dict
model_state_dict = paddle.load(args.model_state_dict)
model.set_state_dict(model_state_dict)
# The loss function
loss_fn = paddle.nn.CrossEntropyLoss()
n_samples, sum_acc, sum_loss = 0, 0., 0.
model.eval()
for batch in tqdm(val_loader()):
inputs, labels = batch[0], batch[1]
pred = model(inputs)
loss = loss_fn(pred, labels)
acc = paddle.metric.accuracy(pred, labels.unsqueeze(1))
n = len(inputs)
sum_loss += loss.item() * n
sum_acc += acc.item() * n
n_samples += n
loss, acc = sum_loss / n_samples, sum_acc / n_samples
logging.info(f"Samples: {n_samples}, Val loss: {loss}, Val accuracy: {acc}")
if __name__ == '__main__':
parser = ArgumentParser("Eval parameters")
parser.add_argument('--conf_path', '-c', type=str, default='config/conf.yaml', help='Path to the config.')
parser.add_argument('--model_name', '-m', type=str, choices=['MiniXception', 'SimpleCNN'], help='Choose a model.')
parser.add_argument('--model_state_dict', '-msd', type=str, help='Path to the model parameters.')
args = parse_args(parser)
data_args = args.dataset
main()