-
Notifications
You must be signed in to change notification settings - Fork 76
/
test_widerface.py
134 lines (120 loc) · 6.55 KB
/
test_widerface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import argparse
import time
from pathlib import Path
import os
import copy
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from tqdm import tqdm
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages, letterbox
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
from utils.plots import colors, plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
import numpy as np
def detect(opt):
weights, imgsz, kpt_label = opt.weights, opt.img_size, opt.kpt_label
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
if isinstance(imgsz, (list,tuple)):
assert len(imgsz) ==2; "height and width of image has to be specified"
imgsz[0] = check_img_size(imgsz[0], s=stride)
imgsz[1] = check_img_size(imgsz[1], s=stride)
else:
imgsz = check_img_size(imgsz, s=stride) # check img_size
names = model.module.names if hasattr(model, 'module') else model.names # get class names
if half:
model.half() # to FP16
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
# testing dataset
testset_folder = opt.dataset_folder
testset_list = opt.dataset_folder[:-7] + "wider_val.txt"
with open(testset_list, 'r') as fr:
test_dataset = fr.read().split()
num_images = len(test_dataset)
for img_name in tqdm(test_dataset):
image_path = testset_folder + img_name
img0 = cv2.imread(image_path) # BGR
img = letterbox(img0, imgsz)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms, kpt_label=kpt_label)
t2 = time_synchronized()
save_name = opt.save_folder + img_name[:-4] + ".txt"
dirname = os.path.dirname(save_name)
if not os.path.isdir(dirname):
os.makedirs(dirname)
with open(save_name, "w") as fd:
file_name = os.path.basename(save_name)[:-4] + "\n"
bboxs_num = str(len(pred[0])) + "\n"
fd.write(file_name)
fd.write(bboxs_num)
# Process detections
for i, det in enumerate(pred): # detections per image
gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
scale_coords(img.shape[2:], det[:, :4], img0.shape, kpt_label=False)
scale_coords(img.shape[2:], det[:, 6:], img0.shape, kpt_label=kpt_label, step=3)
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
# Write results
for det_index, (*xyxy, conf, cls) in enumerate(det[:,:6]):
c = int(cls) # integer class
label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
kpts = det[det_index, 6:]
x1 = int(xyxy[0] + 0.5)
y1 = int(xyxy[1] + 0.5)
x2 = int(xyxy[2] + 0.5)
y2 = int(xyxy[3] + 0.5)
fd.write('%d %d %d %d %.03f' % (x1, y1, x2-x1, y2-y1, conf if conf <= 1 else 1) + '\n')
#plot_one_box(xyxy, img0, label=label, color=colors(c, True), line_thickness=opt.line_thickness, kpt_label=kpt_label, kpts=kpts, steps=3, orig_shape=img0.shape[:2])
#cv2.imwrite('result.jpg', img0)
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--img-size', nargs= '+', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.01, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--kpt-label', type=int, default=5, help='number of keypoints')
parser.add_argument('--save_folder', default='./widerface_evaluate/widerface_txt/', type=str, help='Dir to save txt results')
parser.add_argument('--dataset_folder', default='data/widerface/widerface/val/images/', type=str, help='dataset path')
opt = parser.parse_args()
print(opt)
check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))
with torch.no_grad():
detect(opt=opt)