This project implements the AOD-Net : All-in-One Network for Dehazing for image dehazing using Python and PyTorch. The model is capable of removing haze, smoke, and water impurities from images."
The repository includes:
- Source code of AOD-Net
- Building code for synthesized hazy images based on NYU Depth V2
- Training code for our hazy dataset
- Pre-trained model for AOD-Net
Python 3.6, Pytorch 0.4.0 and other common packages
To build synthetic hazy dataset, you'll also need:
- Download NYU Depth V2 labeled dataset
- Clone this repository
- Create dataset from the repository root directory
$ cd make_dataset $ python create_train.py --nyu {Your NYU Depth V2 path} --dataset {Your trainset path}
- Random pick 3,169 pictures as validation set
$ python random_select.py --traindir {Your trainset path} --valdir {Your valset path}
- training AOD-Net
$ python train.py --dataroot {Your trainset path} --valDataroot {Your valset path} --cuda
- test hazy image on AOD-Net
$ python test.py --input_image /test/canyon1.jpg --model /model_pretrained/AOD_net_epoch_relu_10.pth --output_filename /result/canyon1_dehaze.jpg --cuda