forked from yuminsuh/part_bilinear_reid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
190 lines (162 loc) · 6.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import sys
import json
import numpy as np
import random
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
from reid import models, datasets
from reid.loss import TripletLoss
from reid.trainers import Trainer
from reid.evaluators import Evaluator
from reid.utils.data import transforms as T
from reid.utils.data.preprocessor import Preprocessor
from reid.utils.data.sampler import RandomIdentitySampler, caffeSampler
from reid.utils.logging import Logger
from reid.utils.serialization import load_checkpoint, save_checkpoint
from reid.optim.sgd_caffe import SGD_caffe
def get_data(name, split_id, data_dir,
height, width, crop_height, crop_width, batch_size,
caffe_sampler=False,
workers=4):
root = osp.join(data_dir, name)
dataset = datasets.create(name, root, split_id=split_id)
train_set = dataset.trainval
num_classes = dataset.num_trainval_ids
# transforms
train_transformer = T.Compose([
T.RectScale(height, width),
# T.CenterCrop((crop_height, crop_width)),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.RGB_to_BGR(),
T.NormalizeBy(255),
])
test_transformer = T.Compose([
T.RectScale(height, width),
# T.CenterCrop((crop_height, crop_width)),
T.ToTensor(),
T.RGB_to_BGR(),
T.NormalizeBy(255),
])
# dataloaders
sampler = caffeSampler(train_set, name, batch_size=batch_size, root=dataset.images_dir) if caffe_sampler else \
RandomIdentitySampler(train_set, 10) #TODO
train_loader = DataLoader(
Preprocessor(train_set, root=dataset.images_dir,
transform=train_transformer),
batch_size=batch_size, num_workers=workers,
sampler=sampler,
pin_memory=True, drop_last=True)
test_loader = DataLoader(
Preprocessor(list(set(dataset.query) | set(dataset.gallery)),
root=dataset.images_dir, transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
return dataset, num_classes, train_loader, test_loader
def main(args):
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
# Redirect print to both console and log file
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
# Log args
print(args)
args_dict = vars(args)
with open(osp.join(args.logs_dir, 'args.json'), 'w') as f:
json.dump(args_dict, f)
# Create data loaders
dataset, num_classes, train_loader, test_loader = \
get_data(args.dataset, args.split, args.data_dir, args.height, \
args.width, args.crop_height, args.crop_width, args.batch_size, \
args.caffe_sampler, \
args.workers)
# Create model
valid_args = ['features', 'use_relu', 'dilation']
model_kwargs = {k:v for k,v in args_dict.items() if k in valid_args}
model = models.create(args.arch, **model_kwargs)
model = nn.DataParallel(model).cuda()
# Evaluator
evaluator = Evaluator(model)
# Criterion
criterion = TripletLoss(margin=args.margin).cuda()
# Optimizer
params = []
params_dict = dict(model.named_parameters())
for key, value in params_dict.items():
if value.requires_grad == False:
continue
if key[-4:]=='bias':
params += [{'params': [value], 'lr':args.lr*2, 'weight_decay':args.weight_decay*0.0}]
else:
params += [{'params': [value], 'lr':args.lr*1, 'weight_decay':args.weight_decay*1.0}]
optimizer = SGD_caffe(params,
lr=args.lr, weight_decay=args.weight_decay, momentum=args.momentum)
# Trainer
trainer = Trainer(model, criterion)
# Evaluate
def evaluate(test_model):
print('Test with model {}:'.format(test_model))
checkpoint = load_checkpoint(osp.join(args.logs_dir, '{}.pth.tar'.format(test_model)))
model.module.load(checkpoint)
evaluator.evaluate(test_loader, dataset.query, dataset.gallery, msg='TEST')
# Schedule learning rate
def adjust_lr(epoch):
lr = args.lr if epoch <= 200 else \
args.lr * (0.2 ** ((epoch-200)//200 + 1))
for g in optimizer.param_groups:
g['lr'] = lr * g.get('lr_mult', 1)
# Start training
for epoch in range(1, args.epochs+1):
adjust_lr(epoch)
trainer.train(epoch, train_loader, optimizer)
# Save
if epoch%200 == 0 or epoch==args.epochs:
save_dict = model.module.save_dict()
save_dict.update({'epoch': epoch})
save_checkpoint(save_dict, fpath=osp.join(args.logs_dir, 'epoch_{}.pth.tar'.format(epoch)))
print('\n * Finished epoch {:3d}\n'.format(epoch))
evaluate('epoch_750')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Triplet loss classification")
# data
parser.add_argument('-d', '--dataset', type=str, default='market1501',
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=180)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--split', type=int, default=0)
parser.add_argument('--height', type=int, default=160)
parser.add_argument('--width', type=int, default=80)
parser.add_argument('--crop-height', type=int, default=160)
parser.add_argument('--crop-width', type=int, default=80)
# model
parser.add_argument('-a', '--arch', type=str, default='inception_v1_cpm_pretrained',
choices=models.names())
parser.add_argument('--features', type=int, default=512)
parser.add_argument('--use-relu', dest='use_relu', action='store_true', default=False)
parser.add_argument('--dilation', type=int, default=2)
# loss
parser.add_argument('--margin', type=float, default=0.2,
help="margin of the triplet loss, default: 0.2")
# optimizer
parser.add_argument('--lr', type=float, default=0.01,
help="learning rate of all parameters")
parser.add_argument('--weight-decay', type=float, default=2e-4)
parser.add_argument('--momentum', type=float, default=0.9)
# training configs
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--epochs', type=int, default=750)
parser.add_argument('--caffe-sampler', dest='caffe_sampler', action='store_true', default=False)
# paths
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
main(parser.parse_args())