forked from libAtoms/pymatnest
-
Notifications
You must be signed in to change notification settings - Fork 1
/
analyze_basins.py
executable file
·706 lines (584 loc) · 32.7 KB
/
analyze_basins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
#!/usr/bin/env python
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--kNN', '-n', type=int, help='number of neighbors for connectivity', default=10)
parser.add_argument('--desc_str', '-d', help='init string for SOAP descriptor for similarity',
default='soap n_max=8 l_max=8 cutoff={length_scale*2.5} atom_sigma={length_scale*0.2}')
parser.add_argument('--no_desc_average', dest='desc_average', action='store_false', help='do not add "average" keyword to descriptor string')
parser.add_argument('--desc_length_scale', '-l', type=float, help='length scale (first neighbor) for descriptor', required=True)
parser.add_argument('--metric', choices=['dot_product'], help='metric for distance', default='dot_product')
parser.add_argument('--n_walkers', '-K', type=int, help='number of walkers (for config space volume), required for plotting')
parser.add_argument('--n_removed_per_iter', type=int, help='number of walkers removed per iter '
'(for config space volume', default=1)
parser.add_argument('--min_barrier', type=float, help='ignore basin if barrier separating it from source basin '
'is smaller than this value', default=-1.0)
parser.add_argument('--min_in_basin', type=int, help='ignore basin if number of samples in basin is less '
'than this value', default=0)
parser.add_argument('--energy_field', help='info field for relevant energy', default='ns_energy')
parser.add_argument('--iter_field', help='info field for NS iteration', default='iter')
parser.add_argument('--index', '-i', help='ase.io.read "index" for trajectory config reading', default=':')
parser.add_argument('--min_iter', type=int, help='min NS iter to consider')
parser.add_argument('--max_E', type=float, help='max E to consider')
parser.add_argument('--extra_connections', nargs='+', type=int, help='extra connections to add to nn_matrix', default=[])
parser.add_argument('--merge', action='append', nargs=2, type=int, help='merge children by identifier', default=[])
parser.add_argument('--volume_scale', choices=['actual', 'constant', 'linear_in_E', 'linear_in_iter', 'exp_in_E'],
help='how to scale volumes when plotting basins', default='exp_in_E')
parser.add_argument('--filled', '-f', action='store_true', help='fill plotted areas')
parser.add_argument('--plot_file', help='file for plot oflandscape chart', default='landscape_chart.pdf')
parser.add_argument('--plot_label_fields', nargs='+', help='extra fields from atoms.info to put in plot labels', default=[])
parser.add_argument('--plot_smooth', type=float, help='smoothing "timescale", in terms of number of iterations, for plotted basin edges', default=1.0)
parser.add_argument('--plot_clean', action='store_true', help='no legend and simpler x axis')
parser.add_argument('--recalculate', '-r', action='store_true', help='do not use saved intermediate results')
parser.add_argument('--update_intermed', '-u', action='store_true', help='update intermediate files if min_iter or max_E changes effective first iter')
parser.add_argument('--write_basin_configs', '-c', action='store_true', help='write pairs of configurations for every basin split')
parser.add_argument('--verbose', '-v', action='store_true', help='verbose output')
parser.add_argument('traj_file', help='trajectory file')
args = parser.parse_args()
assert args.n_removed_per_iter == 1
import sys
import os
import warnings
import json
import pickle
import numpy as np
import ase.io
from quippy.descriptors import Descriptor
from sklearn.neighbors import NearestNeighbors
from scipy.sparse import save_npz, load_npz
from scipy.sparse.csgraph import connected_components
from matplotlib.figure import Figure
from matplotlib.collections import LineCollection
import types
from tqdm import tqdm
length_scale = args.desc_length_scale
desc_str = eval("f'"+args.desc_str+"'")
if args.desc_average:
desc_str += ' average'
sys.stderr.write(f'using desc_str="{desc_str}"\n')
if desc_str.startswith('_INFO_'):
desc = types.SimpleNamespace(calc = lambda at : { 'data' : [ at.info[desc_str.replace('_INFO_', '').strip()] ] } )
else:
desc = Descriptor(desc_str)
first_iter_ind = 0
traj_configs = []
reread_intermed = os.path.exists(args.traj_file+'.intermed') and not args.recalculate
if reread_intermed:
# read intermediate results from file
warnings.warn('Loading intermediate results')
with open(args.traj_file+'.intermed') as fin:
n_lines = int(fin.readline().strip())
traj_iters = np.loadtxt(fin, max_rows=n_lines)
traj_energies = np.loadtxt(fin, max_rows=n_lines)
traj_descs = np.loadtxt(fin, max_rows=n_lines)
with open(args.traj_file+'.infos', 'rb') as fin:
traj_infos = pickle.load(fin)
traj_iters = traj_iters.astype(int).tolist()
# filter for args-specified min_iter, max_E
if args.min_iter is not None and args.min_iter < traj_iters[0]:
raise RuntimeError(f'Requested min_iter={args.min_iter} but first iter found was {traj_iters[0]}')
if args.max_E is not None and args.max_E > traj_energies[0]:
warnings.warn(f'Requested max_E={args.max_E} but first energy found was {traj_energies[0]}')
if args.min_iter is not None or args.max_E is not None:
for first_iter, t_E in zip(traj_iters, traj_energies):
if (args.min_iter is None or first_iter >= args.min_iter) and (args.max_E is None or t_E <= args.max_E):
break
first_iter_ind = traj_iters.index(first_iter)
traj_iters = traj_iters[first_iter_ind:]
traj_energies = traj_energies[first_iter_ind:]
traj_descs = traj_descs[first_iter_ind:]
traj_infos = traj_infos[first_iter_ind:]
if args.write_basin_configs or not reread_intermed:
# need to read configs, perhaps calculate intermed quantities
sys.stderr.write('Reading configs and optionally computing descriptors\n')
if not reread_intermed:
# init arrays for calculation
traj_energies = []
traj_iters = []
traj_infos = []
traj_descs = []
for at in tqdm(ase.io.iread(args.traj_file, index=args.index), desc='Read configs and optionally calc desc'):
config_iter = at.info[args.iter_field]
config_E = at.info[args.energy_field]
if (args.min_iter is not None and config_iter < args.min_iter) or (args.max_E is not None and config_E > args.max_E):
continue
if args.write_basin_configs:
# store configs so we can write out minima of each basin
traj_configs.append(at)
# might be here only because we need to read configs, in which case don't
# recalculate descriptors etc
if not reread_intermed:
traj_energies.append(config_E)
traj_iters.append(int(config_iter))
traj_infos.append(at.info)
# mean takes incoherent average, e.g. if it was per center because average=T wasn't used
d = np.mean(desc.calc(at)['data'], axis=0)
traj_descs.append(d)
if (args.update_intermed and first_iter_ind > 0) or not reread_intermed:
traj_energies = np.asarray(traj_energies)
traj_descs = np.asarray(traj_descs)
try:
warnings.warn('Saving intermediate results (iters, energies, descs, infos)')
with open(args.traj_file+'.intermed', 'w') as fout:
fout.write(f'{len(traj_iters)}\n')
np.savetxt(fout, traj_iters)
np.savetxt(fout, traj_energies)
np.savetxt(fout, traj_descs)
with open(args.traj_file+'.infos', 'wb') as fout:
pickle.dump(traj_infos, fout)
except:
warnings.warn(f'Exception while trying to save intermediate results to {args.traj_file+".intermed"}')
if len(traj_descs.shape) == 1:
# reshape vector into matrix so sklearn functions are happy
traj_descs = traj_descs.reshape((-1,1))
sys.stderr.write(f'read {len(traj_iters)} {len(traj_energies)} {len(traj_descs)} {len(traj_configs)} configs\n')
if args.recalculate or not os.path.exists(args.traj_file+'.nn_matrix.npz'):
if args.metric == 'dot_product':
# default is Minkowski p=2, which is the same as Euclidean, which is the
# same as dot product if vectors are normalized, which they are for SOAP
sys.stderr.write('Calculating NNs\n')
nns = NearestNeighbors(n_neighbors=args.kNN, metric='minkowski', p=2)
nns.fit(traj_descs)
sys.stderr.write('Calculating kNN graph\n')
nn_matrix = nns.kneighbors_graph()
# k-NN is not symmetric, but adjacency matrix should be
nn_matrix += nn_matrix.T
else:
raise ValueError(f'Unknown metric {args.metric}\n')
try:
save_npz(args.traj_file+'.nn_matrix.npz', nn_matrix)
except:
warnings.warn(f'Exception while trying to save nn_matrix to {args.traj_file+".nn_matrix.npz"}')
else:
warnings.warn('Loading nn_matrix results')
nn_matrix = load_npz(args.traj_file+'.nn_matrix.npz')
if first_iter_ind > 0:
nn_matrix = nn_matrix[first_iter_ind:, first_iter_ind:]
if args.update_intermed:
try:
save_npz(args.traj_file+'.nn_matrix.npz', nn_matrix)
except:
warnings.warn(f'Exception while trying to save nn_matrix to {args.traj_file+".nn_matrix.npz"}')
for ii, jj in zip(args.extra_connections[0::2], args.extra_connections[1::2]):
print('adding extra connection', ii, jj)
nn_matrix[ii, jj] = 1.0
def component_minima_inds(n_components, component_labels, energies, offset=0):
"""find minimum for each connected component
Parameters
----------
n_components: int
number of connected components
component_labels: list(int)
component label for each configuration in set
energies: list(float)
energies for each configuration in set
Returns
-------
min_E_is: list(float), len(min_E_is) == n_components
array of indices into energies list corresponding to minimum
energy for each connected component
"""
min_E_is = []
for comp_i in range(n_components):
component_contents = np.where(component_labels == comp_i)[0]
t_i = np.argmin(energies[component_contents])
min_E_is.append(component_contents[t_i] + offset)
return min_E_is
def similarity(metric, d1, d2):
if args.metric == 'dot_product':
return sum(d1*d2)
else:
raise ValueError(f'Unknown metric {args.metric}\n')
class Basin():
def __init__(self, identifier, min_E, n_samples, start_iter_i=None, start_E=None):
self.children = []
self.children_iters = []
self.id = identifier
self.min_E = min_E
self.n_samples = n_samples
self.start_iter_i = start_iter_i
self.start_E = start_E
# will be filled in later
# log_weights index is iteration relative to self.start_iter_i
self.log_weights = []
self.end_iter_i = None
self.end_E = None
def merge_child_id(self, child_id):
merged_ids = []
merged_children = []
# loop over all children (by iter)
for child in self.children:
if child_id is None or child_id == child.id:
# need to merge this child
found_child = True
# merge grandchildren
merged_ids += child.merge_child_id(None)
merged_children.append(child)
# add log weights of merged child to this basin
for abs_iter in range(child.start_iter_i, child.end_iter_i+1):
# log(w1 + w2) = log(exp(log_w1) + exp(log_w2)) = log(f exp(low_w1-log_f) + f exp(log_w2-log_f))
# = log(f) + log(exp(log_w1-log_f) + exp(log_w2-log_f))
log_scale = self.log_weights[abs_iter - self.start_iter_i]
self.log_weights[abs_iter - self.start_iter_i] = log_scale + np.log(np.exp(self.log_weights[abs_iter - self.start_iter_i] - log_scale) +
np.exp(child.log_weights[abs_iter - child.start_iter_i] - log_scale))
merged_ids += [child.id]
if child_id is not None and len(merged_ids) == 0:
raise RuntimeError(f'Tried to merge {child_id} into {self.id} but no matching child found')
# remove merged children (but not deeper - those should have been handled by recursive call
# in loop) from self.children and children_iter
for child in merged_children:
try:
child_ind = self.children.index(child)
del self.children[child_ind]
del self.children_iters[child_ind]
break
except ValueError:
pass
return merged_ids
def __str__(self):
start_E_str = 'None' if self.start_E is None else f'{self.start_E:.3f}'
end_E_str = 'None' if self.end_E is None else f'{self.end_E:.3f}'
l = f'id={self.id} min={self.min_E:.3f} started at {self.start_iter_i} {start_E_str} ends at {self.end_iter_i} {end_E_str}'
l += f' n_samples {self.n_samples} children (id, start_iter) {[(c.id, start_iter) for c, start_iter in zip(self.children, self.children_iters)]}'
l += f' log_weight=list({len(self.log_weights)})'
# l += '['
# for w in self.log_weights:
# l += f' {w:.3f}'
# l += ']'
return l
def add_child(self, child_basin):
self.children.append(child_basin)
self.children_iters.append(child_basin.start_iter_i)
def child_barrier(self, child):
return min(child.start_E - child.min_E, child.start_E - self.min_E)
def get_log_weight(self, iter_i):
return self.log_weights[iter_i - self.start_iter_i]
def get_weight(self, iter_i, log_scale=0.0):
return np.exp(self.log_weights[iter_i - self.start_iter_i] - log_scale)
class Basins():
def __init__(self):
self.by_ident = {}
def add(self, ident, min_E, n_samples, source_ident=None, split_iter_i=0, split_E=None):
assert ident not in self.by_ident
new_basin = Basin(ident, min_E, n_samples, split_iter_i, split_E)
self.by_ident[ident] = new_basin
if source_ident is not None:
self.by_ident[source_ident].add_child(new_basin)
def end(self, ident, end_iter_i, end_E):
assert self.by_ident[ident].min_E == end_E
self.by_ident[ident].end_iter_i = end_iter_i
self.by_ident[ident].end_E = end_E
def milestones(self):
m = {}
for ident, basin in self.by_ident.items():
if basin.start_iter_i not in m:
m[basin.start_iter_i] = [[], []]
m[basin.start_iter_i][0].append(ident)
if basin.end_iter_i not in m:
m[basin.end_iter_i] = [[], []]
m[basin.end_iter_i][1].append(ident)
return {k: m[k] for k in sorted(m.keys())}
def __iter__(self):
by_iter = self.milestones()
inds = set()
for iter_i in range(min(by_iter.keys()), max(by_iter.keys())+1):
if iter_i in by_iter:
inds |= set(by_iter[iter_i][0])
yield inds
if iter_i in by_iter:
inds -= set(by_iter[iter_i][1])
def __str__(self):
ls = ''
for ident in self.by_ident:
ls += f'basin minimum index {ident}, {self.by_ident[ident]}\n'
ls += 'by milestone\n' + str(self.milestones())
# ls += '\niterable'
# for iter_i, idents in enumerate(self):
# ls += f'\n{iter_i} {idents}'
return ls
def store_log_weights(self, iter_i, idents, comp_log_weights):
for ident, c_log_weight in zip(idents, comp_log_weights):
self.by_ident[ident].log_weights.append(c_log_weight)
def merge_minimum_criteria(self, min_barrier, min_count):
last_merge_ids = [None]
while len(last_merge_ids) > 0:
last_merge_ids = []
# loop over existing basins
for basin in self.by_ident.values():
# look for basins that existed initially but do not fulfill some criterion
if basin.start_iter_i == 0 and basin.n_samples < min_count:
# merge its children into it
for child in basin.children:
last_merge_ids += basin.merge_child_id(child.id)
last_merge_ids += [basin.id]
if len(last_merge_ids) > 0:
# delete from self.by_ident any basins that were merged
for merge_id in set(last_merge_ids):
del self.by_ident[merge_id]
# break and restart since we modified self.by_ident
break
# look for children with low barrier or too few samples
child_merge_ids = []
for child in basin.children:
if basin.child_barrier(child) < min_barrier or child.n_samples < min_count:
child_merge_ids.append(child.id)
# merge any children found
for merge_id in child_merge_ids:
last_merge_ids += basin.merge_child_id(merge_id)
if len(last_merge_ids) > 0:
# delete from self.by_ident any basins that were merged
for merge_id in set(last_merge_ids):
del self.by_ident[merge_id]
# break and restart since we modified self.by_ident
break
def merge(self, id_source, id_merge):
merged_ids = self.by_ident[id_source].merge_child_id(self.by_ident[id_merge].id)
for merged_id in merged_ids:
del self.by_ident[merged_id]
def get_overall_vol(self, idents, iter_i):
log_vols = [self.by_ident[ident].get_log_weight(iter_i) for ident in idents]
log_scale = max(log_vols)
scaled_overall_vol = np.sum(np.exp(log_vols-log_scale))
return scaled_overall_vol, log_scale
def get_rel_weights(self, iter_i, idents, vol_log_scale):
weights = { ident : self.by_ident[ident].get_weight(iter_i, log_scale=vol_log_scale) for ident in idents }
tot_weight = sum([w for w in weights.values()])
for k in weights:
weights[k] /= tot_weight
return weights
def plot(self, ax, traj_energies, vol_scale):
# should we explicitly pass relevant attributes of args rather than using global?
init_V = 1
final_V = 0.025
# needed for scaled volume of each iter
dV = init_V - final_V
traj_init_E = traj_energies[0]
traj_final_E = traj_energies[-1]
traj_init_iter = 0
traj_final_iter = len(traj_energies)-1
exp_E_f = (traj_final_E - traj_init_E) / np.log(init_V/final_V)
exp_E_prefactor = np.exp(traj_init_E / exp_E_f)
cur_width_l = { 'constant' : lambda iter_i, overall_vol, log_scale : 1.0,
'actual' : lambda iter_i, overall_vol, log_scale : overall_vol*np.exp(log_scale),
'exp_in_E' : lambda iter_i, overall_vol, log_scale : (exp_E_prefactor * np.exp(-(traj_energies[iter_i]/ exp_E_f))),
'linear_in_E' : lambda iter_i, overall_vol, log_scale : (init_V - dV * (traj_energies[iter_i]-traj_init_E)/(traj_final_E-traj_init_E)),
'linear_in_iter' : lambda iter_i, overall_vol, log_scale : (init_V - dV * (iter_i-traj_init_iter)/(traj_final_iter-traj_init_iter)) }
cur_width = cur_width_l[vol_scale]
left_align_basins = vol_scale == 'constant'
iters = iter(self)
idents = next(iters)
next_left_edge = 0.0
geom = {}
# overall volume and current width
scaled_overall_vol, vol_log_scale = self.get_overall_vol(idents, 0)
# total width, basin relative widths and corresponding geometry
width = cur_width(0, scaled_overall_vol, vol_log_scale)
plot_rel_widths = self.get_rel_weights(0, idents, vol_log_scale)
basin_order = []
for ident in idents:
geom[ident] = (next_left_edge, next_left_edge + width * plot_rel_widths[ident])
next_left_edge = geom[ident][1]
basin_order.append(ident)
prev_geom = { k: tuple(v) for k, v in geom.items() }
plot_data = {}
smooth_coeff = 1.0 / args.plot_smooth
# make sure plot_data exists for every ident
for ident in self.by_ident:
plot_data[ident] = ([], [])
for iter_i, idents in tqdm(enumerate(iters, 1), desc='Plot'):
scaled_overall_vol, vol_log_scale = self.get_overall_vol(idents, iter_i)
rel_weights = self.get_rel_weights(iter_i, idents, vol_log_scale)
width = cur_width(iter_i, scaled_overall_vol, vol_log_scale)
# loop over existing basins that have new children this iter
done_idents = set()
for ident in idents:
basin = self.by_ident[ident]
if iter_i in basin.children_iters:
iter_child_basins = [b for b, i in zip(basin.children, basin.children_iters) if i == iter_i]
superbasin_idents = [b.id for b in iter_child_basins] + [ident]
# new overall relative width, smoothed
superbasin_overall_rel_width = sum([rel_weights[sub_ident] for sub_ident in superbasin_idents])
superbasin_overall_rel_width = (1.0 - smooth_coeff) * plot_rel_widths[ident] + smooth_coeff * superbasin_overall_rel_width
# instantaneous relative widths of components of superbasin
superbasin_component_rel_widths = self.get_rel_weights(iter_i, superbasin_idents, vol_log_scale)
# find edges of superbasin (new smaller basin + new children), make segments
superbasin_left_edge = 0.5 * (prev_geom[ident][0] + prev_geom[ident][1]) - 0.5 * width * superbasin_overall_rel_width
# update geom and update list of identifiers that were taken care of
next_left_edge = superbasin_left_edge
cur_basin_order_i = basin_order.index(ident)
for sub_basin_id in superbasin_idents:
next_left_edge_pos = next_left_edge
plot_rel_widths[sub_basin_id] = superbasin_overall_rel_width * superbasin_component_rel_widths[sub_basin_id]
next_right_edge_pos = next_left_edge + width * plot_rel_widths[sub_basin_id]
geom[sub_basin_id] = (next_left_edge_pos, next_right_edge_pos)
next_left_edge = geom[sub_basin_id][1]
done_idents |= set([sub_basin_id])
if ident != sub_basin_id:
basin_order.insert(cur_basin_order_i, sub_basin_id)
cur_basin_order_i += 1
# loop over existing basins that do not have new children this iter
for ident in set(idents) - done_idents:
# just shrink
ctr = 0.5 * (prev_geom[ident][0] + prev_geom[ident][1])
plot_rel_widths[ident] = (1.0 - smooth_coeff) * plot_rel_widths[ident] + smooth_coeff * rel_weights[ident]
left_edge_pos = ctr - 0.5 * width * plot_rel_widths[ident]
right_edge_pos = ctr + 0.5 * width * plot_rel_widths[ident]
geom[ident] = (left_edge_pos, right_edge_pos)
# close basins that have ended
for ended_ident in set(geom.keys()) - set(idents):
del geom[ended_ident]
ctr = 0.5 * (prev_geom[ended_ident][0] + prev_geom[ended_ident][1])
dE = traj_energies[iter_i-1] - traj_energies[iter_i]
plot_data[ended_ident][0].append([(prev_geom[ended_ident][0], traj_energies[iter_i-1]), (ctr, traj_energies[iter_i-1]-0.25*dE)])
plot_data[ended_ident][1].append([(prev_geom[ended_ident][1], traj_energies[iter_i-1]), (ctr, traj_energies[iter_i-1]-0.25*dE)])
basin_order.remove(ended_ident)
if left_align_basins:
next_left_edge = 0.0
for ident in basin_order:
left_edge_pos = next_left_edge
right_edge_pos = next_left_edge + (geom[ident][1] - geom[ident][0])
# do not smooth _again_ when doing left aligned
# if ident in geom:
# left_edge_pos = (1.0 - smooth_coeff) * geom[indent][0] + smooth_coeff * left_edge_pos
# right_edge_pos = (1.0 - smooth_coeff) * geom[indent][1] + smooth_coeff * right_edge_pos
geom[ident] = (left_edge_pos, right_edge_pos)
next_left_edge = geom[ident][1]
# create segments to plot
for ident in idents:
if ident in prev_geom and ident in geom:
plot_data[ident][0].append([(prev_geom[ident][0], traj_energies[iter_i-1]), (geom[ident][0], traj_energies[iter_i])])
plot_data[ident][1].append([(prev_geom[ident][1], traj_energies[iter_i-1]), (geom[ident][1], traj_energies[iter_i])])
# deepcopy geom
prev_geom = { k: tuple(v) for k, v in geom.items() }
for ident_i, ident in enumerate(plot_data):
basin = self.by_ident[ident]
E_str = 'None' if basin.start_E is None else f'{basin.min_E:.3f}'
if args.filled:
# add segments of left edge from top to bottom
new_data = [ plot_data[ident][0][0][0] ]
for segment in plot_data[ident][0]:
if segment[0] != new_data[-1]:
new_data.append(segment[0])
new_data.append(segment[1])
# add segments of right edge from bottom to top
new_data.append(plot_data[ident][1][-1][1])
for segment in reversed(plot_data[ident][1]):
if segment[1] != new_data[-1]:
new_data.append(segment[1])
new_data.append(segment[0])
plot_data[ident] = [new_data]
else:
# concatenate segments for left and right edges
plot_data[ident] = plot_data[ident][0] + plot_data[ident][1]
label = f'{ident} {traj_iters[ident]} n={self.by_ident[ident].n_samples} Emin={E_str}'
label += ' ' + ' '.join([field+'='+(f'{traj_infos[ident][field]:.3f}' if isinstance(traj_infos[ident][field], float) else str(traj_infos[ident][field]) ) for field in args.plot_label_fields])
ax.add_collection(LineCollection(plot_data[ident], colors=f'C{ident_i}', linewidths=1, linestyle='solid',
facecolor=f'C{ident_i}' if args.filled else None,
label=label))
if args.volume_scale == 'linear':
ax.set_xlabel('config space volume')
elif args.volume_scale == 'constant':
ax.set_xlabel('relative config space volume')
else:
if args.plot_clean:
ax.set_xlabel(f'scaled config space volume')
else:
ax.set_xlabel(f'{args.volume_scale} scaled config space volume')
ax.set_ylabel('E')
if not args.plot_clean:
ax.legend(bbox_to_anchor=(1.1, 1), loc='upper left')
ax.autoscale()
def component_log_weights(n_labels, component_labels, traj_log_weights, iter_i):
if traj_log_weights is not None:
cur_traj_log_weights = traj_log_weights[iter_i:]
log_weights = []
for comp_i in range(n_labels):
comp_inds = np.where(component_labels == comp_i)[0]
log_scale = cur_traj_log_weights[comp_inds[0]]
# sum(w) = f * sum(w/f) = f * sum(exp(log(w/f))) = f * sum(exp(log_w-log_f))
# log(sum(w) = log(f) + log(sum(exp(l_w-f)))
log_weights.append(log_scale + np.log(np.sum(np.exp(cur_traj_log_weights[comp_inds]-log_scale))))
log_weights = np.asarray(log_weights)
else:
log_weights = [None] * n_labels
return log_weights
if args.n_walkers is not None:
traj_iters_factors = np.asarray(traj_iters) - traj_iters[0]
log_a = np.log(args.n_walkers - (args.n_removed_per_iter - 1)) - np.log(args.n_walkers + 1)
traj_log_weights = log_a*traj_iters_factors
# normalize to last (smallest) weight = 2 (so log won't be 0)
traj_log_weights -= (traj_log_weights[-1] - np.log(0.5))
else:
traj_log_weights = None
if first_iter_ind > 0:
warnings.warn('Some argument (min_iter or max_E most likely) is leading to skipping some initial iterations, so any saved basins.pckl file is wrong. RECALCULATING!')
args.recalculate = True
if args.recalculate or not os.path.exists(args.traj_file+'.basins.pckl'):
basins = Basins()
# initialize connected clusters
n_components, component_labels = connected_components(nn_matrix, directed=False)
# calculate the index of the minimum E config for each connected component
m_inds_of_comp = component_minima_inds(n_components, component_labels, traj_energies)
for c_ind, m_ind in enumerate(m_inds_of_comp):
basins.add(m_ind, traj_energies[m_ind], sum(component_labels == c_ind))
c_log_w = component_log_weights(n_components, component_labels, traj_log_weights, 0)
basins.store_log_weights(0, m_inds_of_comp, c_log_w)
for E_i, E in tqdm(enumerate(traj_energies[:-1]), desc='Track basins', total=len(traj_energies)-1):
# loop over decreasing energies, eliminating each one and checking remaining network
# removing first (row, col) implicitly assumes that configs are sorted by decreasing energy
nn_matrix = nn_matrix[1:,1:]
new_n_components, new_component_labels = connected_components(nn_matrix, directed=False)
# need to translate from rows/columns in current (smaller) matrix to corresponding
# values in original set, offset is (E_i + 1)
m_inds_of_new_comp = component_minima_inds(new_n_components, new_component_labels, traj_energies[E_i + 1:], offset=E_i + 1)
for new_m_ind in set(m_inds_of_new_comp) - set(m_inds_of_comp):
# found a new minimum
# find number of cluster it came from (in previous iter, hence using
# component_labels rather than new_component_labels)
# new_m_ind-(E_i+1) is index into new_component_labels array. Add 1 to
# make it correct for previous iter component_labels, which was 1 longer
source_cluster = component_labels[1 + new_m_ind - (E_i + 1)]
# find minimum config index for the source cluster
source_m_ind = m_inds_of_comp[source_cluster]
c_ind = m_inds_of_new_comp.index(new_m_ind)
basins.add(new_m_ind, traj_energies[new_m_ind], sum(new_component_labels == c_ind), source_m_ind, E_i+1, E)
for missing_m_ind in set(m_inds_of_comp) - set(m_inds_of_new_comp):
# doesn't exist now, must have ended last iteration
basins.end(missing_m_ind, E_i, traj_energies[E_i])
c_log_w = component_log_weights(new_n_components, new_component_labels, traj_log_weights, E_i+1)
basins.store_log_weights(E_i+1, m_inds_of_new_comp, c_log_w)
m_inds_of_comp = m_inds_of_new_comp
component_labels = new_component_labels
for m_ind in m_inds_of_comp:
basins.end(m_ind, len(traj_energies)-1, traj_energies[-1])
if first_iter_ind == 0 or args.update_intermed:
# only save if this wasn't a restart from intermediate results, or if update_intermed was explicitly specified
try:
with open(args.traj_file+'.basins.pckl', 'wb') as fout:
pickle.dump(basins, fout)
except:
warnings.warn(f'Exception while trying to save nn_matrix to {args.traj_file+".basins.pckl"}')
else:
warnings.warn('Loading basins')
with open(args.traj_file+'.basins.pckl', 'rb') as fin:
basins = pickle.load(fin)
basins.merge_minimum_criteria(min_barrier=args.min_barrier, min_count=args.min_in_basin)
if len(args.merge) > 0:
print('pre merge basins:')
print(basins)
for m_ind_source, m_ind_merge in args.merge:
basins.merge(m_ind_source, m_ind_merge)
print('basins:')
print(basins)
if args.write_basin_configs:
with open(f'basins.xyz', 'w') as fout:
for m_ind, basin in basins.by_ident.items():
traj_configs[m_ind].info['basin_id'] = basin.id
ase.io.write(fout, traj_configs[m_ind], format='extxyz')
if traj_log_weights is not None:
import textwrap
fig = Figure()
ax = fig.subplots()
if not args.plot_clean:
ax.set_title('\n'.join(textwrap.wrap(f'{args}', width=120)))
basins.plot(ax, traj_energies, args.volume_scale)
fig.savefig(args.plot_file, bbox_inches='tight')