Digit Recognizer,最终digi_vgg16.py在Kaggle得分0.99071,排名23.7%
- DigitRecognizer_scikit.ipynb: 使用SVM(scikit-learn),sharpen数据,经过测试,以32为临界值,可以得到最佳的预测结果
- digi_vgg16.py: 最佳结果,云GPU服务器计算得到结果
- digi_vgg16_dropout.py: 尝试加入一个Dropout层,不过结果变差
- DigitRecognizer_tensorflow.ipynb: Low & High API
- DigitRecognizer_keras.ipynb,digi_vgg16.py: 2个是一样的,工具不同而已,summary如下
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 28, 28, 32) 832
_________________________________________________________________
conv2d_2 (Conv2D) (None, 28, 28, 64) 51264
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 28, 28, 64) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 28, 28, 128) 204928
_________________________________________________________________
conv2d_4 (Conv2D) (None, 28, 28, 256) 819456
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 28, 28, 256) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 200704) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 200704) 0
_________________________________________________________________
dense_1 (Dense) (None, 128) 25690240
_________________________________________________________________
dense_2 (Dense) (None, 10) 1290
=================================================================
Total params: 26,768,010
Trainable params: 26,768,010
Non-trainable params: 0
_________________________________________________________________