-
Notifications
You must be signed in to change notification settings - Fork 36
/
sample.py
144 lines (122 loc) · 5.13 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Sample new images from a pre-trained SiT.
"""
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from download import find_model
from models import SiT_models
from train_utils import parse_ode_args, parse_sde_args, parse_transport_args
from transport import create_transport, Sampler
import argparse
import sys
from time import time
def main(mode, args):
# Setup PyTorch:
torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.ckpt is None:
assert args.model == "SiT-XL/2", "Only SiT-XL/2 models are available for auto-download."
assert args.image_size in [256, 512]
assert args.num_classes == 1000
assert args.image_size == 256, "512x512 models are not yet available for auto-download." # remove this line when 512x512 models are available
learn_sigma = args.image_size == 256
else:
learn_sigma = False
# Load model:
latent_size = args.image_size // 8
model = SiT_models[args.model](
input_size=latent_size,
num_classes=args.num_classes,
learn_sigma=learn_sigma,
).to(device)
# Auto-download a pre-trained model or load a custom SiT checkpoint from train.py:
ckpt_path = args.ckpt or f"SiT-XL-2-{args.image_size}x{args.image_size}.pt"
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval() # important!
transport = create_transport(
args.path_type,
args.prediction,
args.loss_weight,
args.train_eps,
args.sample_eps
)
sampler = Sampler(transport)
if mode == "ODE":
if args.likelihood:
assert args.cfg_scale == 1, "Likelihood is incompatible with guidance"
sample_fn = sampler.sample_ode_likelihood(
sampling_method=args.sampling_method,
num_steps=args.num_sampling_steps,
atol=args.atol,
rtol=args.rtol,
)
else:
sample_fn = sampler.sample_ode(
sampling_method=args.sampling_method,
num_steps=args.num_sampling_steps,
atol=args.atol,
rtol=args.rtol,
reverse=args.reverse
)
elif mode == "SDE":
sample_fn = sampler.sample_sde(
sampling_method=args.sampling_method,
diffusion_form=args.diffusion_form,
diffusion_norm=args.diffusion_norm,
last_step=args.last_step,
last_step_size=args.last_step_size,
num_steps=args.num_sampling_steps,
)
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device)
# Labels to condition the model with (feel free to change):
class_labels = [207, 360, 387, 974, 88, 979, 417, 279]
# Create sampling noise:
n = len(class_labels)
z = torch.randn(n, 4, latent_size, latent_size, device=device)
y = torch.tensor(class_labels, device=device)
# Setup classifier-free guidance:
z = torch.cat([z, z], 0)
y_null = torch.tensor([1000] * n, device=device)
y = torch.cat([y, y_null], 0)
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale)
# Sample images:
start_time = time()
samples = sample_fn(z, model.forward_with_cfg, **model_kwargs)[-1]
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
samples = vae.decode(samples / 0.18215).sample
print(f"Sampling took {time() - start_time:.2f} seconds.")
# Save and display images:
save_image(samples, "sample.png", nrow=4, normalize=True, value_range=(-1, 1))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
if len(sys.argv) < 2:
print("Usage: program.py <mode> [options]")
sys.exit(1)
mode = sys.argv[1]
assert mode[:2] != "--", "Usage: program.py <mode> [options]"
assert mode in ["ODE", "SDE"], "Invalid mode. Please choose 'ODE' or 'SDE'"
parser.add_argument("--model", type=str, choices=list(SiT_models.keys()), default="SiT-XL/2")
parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="mse")
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=4.0)
parser.add_argument("--num-sampling-steps", type=int, default=250)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--ckpt", type=str, default=None,
help="Optional path to a SiT checkpoint (default: auto-download a pre-trained SiT-XL/2 model).")
parse_transport_args(parser)
if mode == "ODE":
parse_ode_args(parser)
# Further processing for ODE
elif mode == "SDE":
parse_sde_args(parser)
# Further processing for SDE
args = parser.parse_known_args()[0]
main(mode, args)